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Preface

Matrix-valued data sets – so-called tensor fields – have gained significant im-
portance in the fields of scientific visualization and image processing. The
tensor concept is a common physical description of anisotropic behaviour,
especially in solid mechanics and civil engineering. It arises e.g. in the mea-
surements of stress and strain, inertia, permeability and diffusion. In the field
of medical imaging, diffusion tensor magnetic resonance imaging (DT-MRI)
has become widespread in order to gain valuable insights into connectivity
properties of the brain. Tensors have also shown their use as feature descrip-
tors in image analysis, segmentation and grouping.

These recent developments have created the need for appropriate tools
for visualizing and processing tensor fields. Due to the multivariate struc-
ture of the data and their multidimensional variation in space, tensor field
visualization belongs to the most challenging topics in the area of scientific
visualization. Moreover, most signal and image processing methods have been
developed for scalar- and vector-valued data sets, and only recently researchers
have tried to investigate how they can be extended to tensor fields. In this case
one has to take into account a number of additional constraints such as an
appropriate coupling of the different channels, and preservation of properties
such as positive semidefiniteness during the filtering process.

Unfortunately the results in the field of tensor-valued visualization and
image processing are scattered in the literature, and often researchers in one
application area are not aware of recent progress in another area. In order to
address this problem, the editors of this book organized a perspective work-
shop that took place at Schloss Dagstuhl, Germany from April 18 to 23, 2004.
In that week 30 invited scientists, representing many of the world-wide lead-
ing experts in tensor field visualization and processing, had the opportunity
to exchange ideas in a highly inspiring atmosphere. Since many of them met
for the first time, this exchange proved to be particularly fruitful.

One of these fruits was the wish of all participants to compile their knowl-
edge in a single edited volume. The present book – which is the first of its
kind in this field – is the result of these efforts. Its goal is to present the
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state-of-the-art in the visualization and processing of tensor fields, both as an
overview for the inquiring scientist, and as a basic foundation for developers
and practitioners. The book contains some longer chapters dedicated to sur-
veys and tutorials of specific topics, as well as a great deal of original work
not previously published. In all cases the emphasis has been on presenting
the details necessary for others to reproduce the techniques and algorithms.
Another goal of this book is to provide the basic material for teaching state-of-
the-art techniques in tensor field visualization and processing. It can therefore
also serve as a textbook for specialized classes and seminars for graduate and
doctoral students. An extended bibliography is included at the end of each
chapter pointing out where to obtain further information.

Organization of the Book

This volume consists of 25 chapters. Each of them has been reviewed by two
experts and carefully revised according to their suggestions. The chapters are
arranged in five thematic areas. Color plates can be found in the Appendix.

The book starts with an introductory chapter by Hagen and Garth. It gives
the mathematical background from linear algebra and differential geometry
that is necessary for understanding the concept of tensor fields.

Part I of the book is devoted to feature detection using tensors. Here
one typically starts with scalar- or vector-valued images and creates tensor-
valued features that are suitable for corner detection, texture analysis or optic
flow estimation. Structure tensors are the most prominent representatives of
these concepts. Chapter 2 by Brox et al. is a survey chapter on adaptive
structure tensors, while Chap. 3 by Nagel analyzes closed form solutions for a
structure tensor concept in image sequence analysis. An alternative framework
for tensor-valued feature detection is presented in Chap. 4 by Köthe who¨
shows that the so-called boundary tensor may overcome some problems of
more traditional approaches.

Part II deals with the currently most important technique for creating
tensor-valued images, namely Diffusion Tensor Magnetic Resonance Imaging
(DT-MRI), often simply called Diffusion Tensor Imaging (DTI). This tech-
nique measures the diffusion properties of water molecules and has gained
significant popularity in medical imaging of the brain. Chapter 5 by Alexan-
der gives a general overview of the principles of biomedical diffusion MRI and
algorithms for reconstructing the diffusion tensor fields, while the subsequent
chapter by Hahn et al. describes the empirical origin of noise and analyzes its
influence on the DT-MRI variables. After having understood the formation of
DT-MR images their adequate visualization remains a challenging task. This is
the topic of the survey chapter by Vilanova et al. that also sketches the clinical
impact of DT-MR imaging. A more specific medical application is treated in
Chap. 8 by Gee et al. who study anatomical labeling of cerebral white matter
in DT-MR images. For conventional DT-MR imaging, the identification and
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analysis of fibre crossings constitutes a severe difficulty. In Chap. 9, Pasternak
et al. introduce a variational image processing framework for resolving these
ambiguities. An alternative strategy is investigated in Chap. 10 by Özarslan et
al. They reconstruct higher-order tensors from the MR measurements. These
allow to encode a richer orientational heterogeneity.

In the third part, general visualization strategies for tensor fields are ex-
plored. This part starts with a review chapter by Benger and Hege who also
consider applications in relativity theory. Kindlmann’s chapter is concerned
with visualizing discontinuities in tensor fields by computing the gradients of
invariants. The subsequent Chaps. 13–16 investigate different strategies for
understanding the complex nature of tensor fields by extracting suitable dif-
ferential geometric information. While Chap. 13 by Tricoche et al. deals with
the topology and simplification of static and time-variant 2-D tensor fields,
Chap. 14 by Zheng et al. is concerned with a novel and numerically stable
analysis of degerated tensors in 3-D fields. In Chap. 15, Wischgoll and Meyer
investigate the detection of alternative topological features, namely closed hy-
perstreamlines. The third part is concluded with a chapter by Hotz et al. who
introduce specific visualization concepts for stress and strain tensor fields by
interpreting them as distortions of a flat metric.

Part IV of the book is concerned with transformations of tensor fields,
in particular interpolation and registration strategies. In Chap. 17, Moakher
and Batchelor perform a differential geometric analysis of the space of pos-
itive definite tensors in order to derive appropriate interpolation methods.
The next chapter by Pajevic et al. deals with non-uniform rational B-splines
(NURBS) as a flexible interpolation tool, while in Chap. 19 Weickert and
Welk introduce a rotationally invariant framework for tensor field approxima-
tion, interpolation and inpainting. It is based on partial differential equations
(PDEs). Finally, Chap. 20 by Gee and Alexander treats the problem of diffu-
sion tensor registration. Compared to scalar-valued registration approaches,
incorporating the orientation information provides additional challenges.

The fifth part is a collection of contributions on signal and image process-
ing methods that are specifically developed to deal with tensor fields. Chapter
21 by Welk et al. as well as Chap. 22 by Burgeth et al. show that seemingly
simple ideas like median filtering and morphological image processing can
create substantial difficulties when one wants to generalize them to tensor
fields. Since tensor lack a full ordering, many straightforward concepts can-
not be applied and alternative generalizations become necessary. In Chap. 23,
Suarez-Santana et al. review adaptive local filters for tensor field regulariza-´
tion and interpolation that are steered by a structure tensor, while Chap. 24
by Westin et al. is concerned with two other regularization techniques for ten-
sor fields: normalized convolution and Markov random fields. These ideas a
complemented by Chap. 25 where Weickert et al. survey the most important
PDE approaches for discontinuity-preserving smoothing and segmentation of
tensor fields.
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An Introduction to Tensors

Hans Hagen and Christoph Garth

Computer Graphics and Visualization Group, Technical University of
Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
{hagen,garth}@informatik.uni-kl.de

Summary. This chapter is a short introduction into tensor fields, some basic tech-
niques from linear algebra, differential geometry and the mathematical concept of
tensor fields are presented. The main goal of this chapter is to give readers from dif-
ferent backgrounds some fundamentals to access the research papers in the following
chapters.

1.1 Some Linear Algebra

Remark: Since we are only able to sketch out some of the basic facts of linear
algebra, the reader is referred to a comprehensive body of literature on the
topic. For example, the book by Fuhrmann [1] provides an introduction in a
modern language.

1.1.1 Bases and Basis Transforms

Let U a vector space over a field IF (e.g. IF = IR or IF = C). A set of elements|

{a1, . . . , an} ⊂ U , n ∈ IN, is called a basis if every u ∈ U admits a unique
non-trivial linear combination of the ai over IF:

u = u1a1 + · · ·+ unan

The coefficients ui give rise to the vector notation of u ∈ U with respect to
this basis as

u =

⎛⎜⎛⎛⎝⎜⎜u1

...
un

⎞⎟⎞⎞⎠⎟⎟ .

We say that U has dimension n, since every basis has exactly n elements and
every u ∈ U can be described by n elements of IF (coordinates).

Let V a vector space over IF with basis (b1, . . . , bm), m ∈ IN. Hence,
dimV = m. A linear map L : U → V is a map satisfying
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L(αu + βu′) = αL(u) + βL(u′) ∀u, u′ ∈ U,∀α, β ∈ IF .

We can observe

L(u) = L

(
n∑

i=1

uiai

)
=

n∑
i=1

uiL(ai) =
n∑

i=1

ui

m∑
j=1

lijbj ,

where lij denotes the j-th coefficient of L(ai) w.r.t. the basis (b1, . . . , bn).
Hence, L can be represented as L = (Lij), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
leading to matrix notation

v = L(u) = L · u .

In this form, L and its matrix representation are identified. The dot represents
the matrix-vector product

(L · u)i =
m∑

j=1

lijuj .

The space of all linear maps from U to V is denoted by Hom(U, V ). It can
be shown that, given a basis for each U and V , every L ∈ Hom(U, V ) can be
written in the form of an (m×n)-matrix. The algebraic structure of Hom(U, V )
is reflected by the rules of matrix algebra.

We next consider the effect of a basis change on the vector representation
of u ∈ U . Let (ã1, . . . , ãn) another basis of U , then

ai =
n∑

j=1

pij ãj ∀i ∈ {1, . . . ,m} .

Hence, the representation ũ of u w.r.t. {ã1, . . . , ãn} is given through

u =
n∑

i=1

uiai =:
n∑

i=1

ui

n∑
j=1

pij ãj ,

or equivalently,

ũj =
n∑

i=1

pijui .

In other words, the (pij) represent a linear transform P ∈ Hom(U,U). P is
called a basis transform, and

ũ = P · u .

Since {a1, . . . , an} and {ã1, . . . , ãn} can be exchanged in the above calculation,
the transformation is invertible, and we easily see that
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P · P−1 = P−1 · P = I ,

with the identity map I. The linear map L can be transformed to another basis
in a similar fashion as the elements of U (and V ). Let {b̃1, . . . , b̃m} another
basis of V and Q the corresponding basis change matrix, then

L̃ = Q · L · P−1

denotes L w.r.t. the bases {ãi} and {b̃j}. As a special case, if U = V , it is

L̃ = P · L · P−1 .

1.1.2 Dual Spaces

Let U an n-dimensional vector space. A linear map

α : U → IF

is called a linear form on U . The set of all linear forms on U is called the dual
space and noted U∗. As IF is implicitly a vector space, any α ∈ U∗ possesses
a representation as a (1× n)-matrix. For a given basis {a1, . . . , an} of U and
the notation from above, linearity mandates

α(u) =
m∑

i=1

αi (aiui) .

It can be shown that U∗ is again an n-dimensional vector space, and there
exists a dual basis {a1, . . . , an} of U∗ with the property

ai (aj) = δij

where δij is the Kronecker symbol. If U is equipped with a symmetric (her-
mitean in the complex case) and positive inner product < ·, · >, then the Riesz
representation theorem guarantees to every α ∈ U∗ the existence of uα ∈ U
such that

α(u) =< uα , u > for any u ∈ U .

Similarly, for arbitrary u ∈ U , αu :=< u , · > is an element of U∗. Hence, the
two spaces are isomorphic. Furthermore, it is easily seen that V ∗∗ = (V ∗)∗ is
also isomorphic to V . Commonly, elements of the dual space are written as
row vectors.

A linear map A : U → V between vector spaces gives rise to the adjoint
map A∗ : V ∗ → U∗ that is defined via

(A∗α)(u) := α(Au) for all α ∈ U∗, u ∈ U .

A∗ is obviously linear, and in the dual bases of U∗ and V ∗ its matrix repre-
sentation is given as
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(A∗)ij = (Aji)∗ ,

where the star on the right hand side denotes complex conjugation. In other
words, the matrix representation of A∗ is the conjugate transpose of the ma-
trix of A. In the special case U = V , A is called self-adjoint if the matrix
representations of A and A∗ coincide. In tensor calculus, the concept of dual
spaces is found in the occurrence of upper and lower indices, referring to dual
or primal properties of a tensor, respectively. These considerations are detailed
in Sect. 1.3.

1.1.3 Eigenvalues and Eigenvectors

Let U an n-dimensional vector space and L ∈ Hom(U,U) a linear map on U .
A vector u ∈ U is called an eigenvector of L to the eigenvalue λ ∈ IF if

L(u) = λu

holds true. Clearly, any scalar multiple of u is also an eigenvector of L to λ,
and the eigenvectors to λ form a linear subspace of U , the eigenspace Eλ to
U . It can be shown that the eigenvalues of any linear map are the roots of its
characteristic polynomial

χL(λ) := det(L− λI) ,

where I ∈ Hom(U,U) is again the identity map. The characteristic polynomial
is of degree n, which implies that there are at most n eigenvalues of L. If an
eigenvalue λ is known, Eλ can be determined as the set of solutions v to the
equation

(L− λI)(v) = 0 .

In the case IF = IR, the characteristic polynomial has n real roots λ1, . . . , λn

already if the matrix representation of L in some basis is symmetric, i.e. if
lij = lji for i, j ∈ {1, . . . , n}. We then say that L is diagonalizable, because U
can be decomposed into an orthogonal sum of eigenspaces

U = Eλ1 ⊕ · · · ⊕Eλn
,

giving rise to an orthonormal basis {u1, . . . un} of eigenvectors of U . If P is the
corresponding basis transform matrix, then L takes the very simple diagonal
matrix representation

P · L · P−1 = diag(λ1, . . . , λn) .

In this basis, the properties of the map L are most easily comprehended.
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2

X1

Fig. 1.1. The Gauss frame of a surface

1.2 Fundamentals of Differential Geometry

Definition 1. A parametrized Cr-surface is a Cr-differential map X : U →
IE3EE of an open domain U ⊂ IR2 into the Euclidean space IE3EE , whose differential
dX is one-to-one for each u ∈ U .

Remarks. 1. Let X : U → IE3 be a parametrized surface. A change of vari-
ables of X is a diffeomorphism τ : Ũ → U , where Ũ is an open domain
in IR2, such that dτ has always rank 2. If det(τ∗) > 0, τ is orientation-
preserving (τ∗ is the Jacobian matrix of τ). Relationship by change of
variables defines an equivalence relation on the class of all parametrized
surfaces. A corresponding equivalence class of parametrized surfaces is
called a surface in IE3.

2. In this context, the differential dX is a linear map from the tangent space
(introduced below) at a point u into IR. It is one-to-one if and only if
∂X/∂u1 and ∂X/∂u2 are linearly independent at p.

Definition 2. The two-dimensional subspace TuTT X of IE3EE generated by
span(X1, X2) is called the tangent space of X at u (X(( i := ∂X

∂ui ; i = 1, 2).
Elements of TuTT X are called tangent vectors. The vector field N := [X1,X2]

||X1||·||X2||
is called unit normal field ([·, ·] : IE3EE × IE3EE → IE3EE is the vector product of IE3EE ).
The map N from U to the unit sphere S2 is called Gauss map and the moving
frame is called the Gauss frame of the surface in IE3EE .

Remarks. 1. The Gauss frame is in general not an orthogonal frame.
2. Every tangential vector field Y along the surface X : U → IE3 can be

represented in the following form:

Y (s) = λ2(s)X1(u1(s), u2(s)) + λ2(s)X2(u1(s), u2(s))

Definition 3. Let X : U → IE3EE be a surface and u ∈ U . The bilinear form IuII
on TuTT X induced by the inner product of IE3EE by restriction is called the first
fundamental form of the surface.
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Remarks. 1. The matrix representation of the first fundamental form with
respect to the basis {X1, X2} of TuTT X is given by[

g11 g12

g21 g22

]
=

[
〈X1, X1〉 〈X1, X2〉
〈X2, X1〉 〈X2, X2〉

]
.

Here, 〈·, ·〉 : IE3 × IE3 → IR is the scalar product.
2. The first fundamental form is symmetric, positive definite and a geometric

invariant.
3. Geometrically, the first fundamental form allows us to make measure-

ments on the surface (lengths of curves, angles of tangent vectors, areas
of regions) without referring back to the ambient space IE3.

Definition 4. (a) Let X : U → IE3EE be a surface and u ∈ U . The linear map
L : TuTT X → TuTT X defined by

L := −dNuNN · dX−1
u

is called the Weingarten map.
(b) The bilinear form IIuII defined by

IIuII (A,B) := 〈L(A), B〉

for each A,B ∈ TuTT X is called the second fundamental form of the surface.

Remarks. 1. The matrix representation of IIu with respect to the canonical
basis of TuTT IR2 (identified with IE2) and the associated basis {X1, X2} of
TuTT X is given by

hij := 〈−NiNN ,XjX 〉 = 〈N,Xij〉 i, j ∈ {1, 2} .

2. The second fundamental form is invariant under congruences of IE3 and
orientation-preserving changes of variables.

Proposition and Definition 1. Let X : U → IE3 be a surface.

(a) The Weingarten map L is self-adjoint. The eigenvalues k1, k2 are therefore
real and the corresponding eigenvectors are orthogonal.

(b) k1, k2 are called the principal curvatures of the surface.
(c) The quantity

K := k1 · k2 = det(L) =
det II
det I

is called the Gauss curvature and

H :=
1
2

trace(L) =
1
2
(k1 + k2)

is called the mean curvature.
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N

A

Fig. 1.2. A normal section curve on a surface

Considering surface curves we get to know the geometric interpretations
of the second fundamental form: Let A := λ1X1 + λ2X2 be a tangent vector
with ||A|| = 1. Intersecting the surface with the plane given by N and A, we
get an intersection curve y(s) with the properties

y′(s) = A and e2 = ±N .

(e2 is the principal normal vector of the space curve y). The implicit func-
tion theorem implies the existence of this so-called normal section curve. To
calculate the extreme values of the curvature of a normal section curve (the
so-called normal section curvature) we can use the method of Lagrange mul-
tipliers, because we are looking for the extreme values of the normal section
curvature kN under the condition

2∑
i,j=1

gijλ
iλj = ||y′(s)|| = 1 .

As the result of these considerations we get:

Proposition 1. Let X : U → IE3 be a surface and for a tangent vector
A := λ1X1 + λ2X2 let kN (λ1, λ2) be the normal section curvature.

(a)

kN (λ1, λ2) =
∑
i,j

hijλ
iλj

gijλiλj

(b) Unless the normal section curvature is the same for all directions, there
are two perpendicular directions A1 and A2 in which kN attains its ab-
solute maximum and its absolute minimum. These directions and the cor-
responding normal section curvatures are k1 and k2, the principal curva-
tures of the surface.
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Proposition and Definition 2. Let X : U → IE3 be a surface. If I ⊂ IR is
an interval on the real line, let y : I → IE3 be a surface curve. We denote
by ŷ(t) the orthogonal projection of y(t) on the tangent plane to X at (an
arbitrary) point p.

(a) The geodesic curvature kg of y at p is defined to be the curvature of the
projected curve ŷ(t) at p.

(b) A curve y(t) on a surface X is called a geodesic curve or simply geodesic
if its geodesic curvature kg vanishes identically.

(c)
kg := det(y′, y′′, N) ,

where the dots denote derivatives with respect to the arc length s of y.

The great importance of tensor fields is totally obvious by just looking
briefly on these facts and results from differential geometry. This motivates
to have closer look on tensors in general.

For question no touched upon here, the book by do Carmo [2] provides
an detailed introductory-level treatment of differential geometry. For a more
comprehensive overview, see [3].

1.3 Tensor Fields – A Mathematical Concept

Tensor fields are invariant under parameter transformation and therefore an
appropriate tool to describe certain ‘geometric invariant situations’. We are
using Einstein’s summation convention for simplicity (if an index occurs more
than once in the same expression, the expression is implicitly summed over
all possible values for that index).

Definition 5 ((r, s)-tensor).

(a) V is an n-dimensional vector space and V ∗ is its dual space. A multilinear
map

T : V × · · · × V︸ ︷︷︷ ︸︸
r

× V ∗ × · · · × V ∗︸ ︷︷︷ ︸︸
s

→ IR

is called an (r, s)-tensor.
(b) E1, . . . , En is the basis of V , and E1, . . . , En is the dual basis of V ∗. Then

T (A1, . . . , Ar, B
1, . . . , Bs)

= T (ai1
1 Ei1 , . . . , a

ir
r Eir

, b1j1E
j1 , . . . , bs

js
Ejs)

= T (Ei1 , . . . , Eir
, Ej1 , . . . , Ejs) ai1

1 · · · air
r · b1j1 · · · b

s
js

= ti1...ir

j1...js · ai1
1 · · · air

r · b1j1 · · · b
s
js
.

The nr+s real numbers are called components of the (r, s)-tensor T .
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Under a change of basis

Ēi = αi
j EjE and Ēi = ᾱi

j E
j

an (r, s)-tensor transforms in this way:

ti1...ir

j1...js = tl1...lr
k1...ks · αi1

l1 · · ·αir

lr · ᾱk1
j1 · · · ᾱks

js .

Remarks. 1. The elements of IR are tensors of type (0, 0).
2. The elements of V ∗ are tensors of type (1, 0).
3. The elements of V can be identified with tensors of type (0, 1), since V ∗∗

and V are canonically isomorphic.
4. The determinant on V as a multilinear map from V n to IR is a prototypical

example of a (n, 0)-tensor.

Tensor operations:

1. Tensors of the same type can be added and scaled like vectors.

2. Tensor product:

Let T an (r, s)-tensor and T̃ a ( ,̃ s̃)-tensor. Then

T ◦ T̃ (A1, . . . , Ar+˜, B
1, . . . , Bs+˜) :=

T (A1, . . . , Ar, B
1, . . . , Bs) · T̃ (Ar+1, . . . , Ar+˜, B

s+1, . . . , Bs+˜)

is called the tensor product of T and T̃ . In components:

(tt̃)i1...ir+r̃

j1...js+˜ := ti1...ir

j1...js · tir+1...ir+r̃

js+1...js+˜ .

Clearly, T ◦ T̃ is a (r + r̃, s + )̃-tensor.

3. Contraction of a tensor:

(r, s)-tensor
∣∣∣∣∣∣∣∣∣∣ T → T̃

ti1...ir
j1...js 	→ ti i2...ir

i j2...js

∣∣∣∣∣∣∣∣∣∣ (r − 1, s− 1)-tensor

Example: {gij} and {hij} are the components of the first and second
fundamental forms of a surface and H is the mean curvature.

gij , hrs −→
tensor product

gijhrs −→
contraction

gijhis −→
contraction

gijhij = 2H

4. Inner multiplication with a metric tensor: {gij} are the components of a
non-degenerate metric tensor.

gij tj i2...ir

j1...js =: tii2...ir

j1...js

gik ti1...ir

k j2...js =: ti1...ir k
j2...js

Example: the Weingarten map hi
j = hirg

rs.



12 H. Hagen and C. Garth

The tensor concept is by no means restricted to differential geometry.

Examples. 1. In the context of physics, the fundamental characteristic that
affects the deformation of materials is called stress. Since the behavior of a
material does not depend on the coordinates used in its description, stress
can be described by the stress tensor T . The name ‘tensor’ originates in
this context since it was first used to describe tension (stress).
Considering an infinitesimal volume element of a certain material, the
stress tensor describes the force that is necessary to establish an equilib-
rium condition in the material. It depends linearly on the normal of the
surface on which the force acts. In turn, force is given as vector, hence the
stress tensor can be written in the form of a matrix, which is a tensor of
order 2.
In three dimensions of space, given an orthogonal coordinate system
ex, ey, ez, the stress tensor components are given with respect to the planes
normal to the coordinate axes. For each plane, three scalars describe the
required force. Therefore, the tension t with respect to a plane normal to
n is given as

t = T (n) =

⎛⎝⎛⎛σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞⎠⎞⎞ · n
Here, for example, σxz denotes the stress on the plane normal to ex in
direction of ez.
In many applications, T is a symmetric tensor and therefore possesses an
orthogonal system of eigenvectors. They are called principal stress direc-
tions. In this coordinate system, the off-diagonal components of T vanish,
and the volume can be held in equilibrium by forces parallel to the prin-
cipal directions.

2. In medical applications, Diffusion Tensor Imaging is playing an important
role. Using Magnetic Resonance Imaging (MRI), it is possible to record the
directional diffusion behavior of water in the brain. This allows to deduce
information about structures of interest. Again, the diffusion properties
are independent of the reference frame used to describe them.
Mathematically speaking, the diffusion tensor T is a second-order 3 × 3-
tensor that maps a direction d to the directional diffusion coefficient c
via

c(d) = dTTd with T =

⎛⎝⎛⎛txx txy txz

tyx tyy tyz

tzx tzy tzz

⎞⎠⎞⎞ .

The diffusion tensor is symmetric and positive semidefinite, which implies
that its eigenvalues are real and non-negative. Roughly speaking, the ho-
mogeneity of the eigenvalues is a measure of the isotropy of the material
with respect to diffusion. If one of the eigenvalues is essentially larger than
the others, the corresponding eigenvector indicates the preferred diffusion
direction. Looking for locations with anisotropic diffusion tensors, it is
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possible to identify the direction of certain structures (mostly fibers) in
the brain.

We refer the reader to the books by Borisenko and Tarpov [4] and Abra-
ham, Marsden and Ratiu [5] for more detailed introductions and examples to
the general topic of tensor calculus and analysis.
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Summary. The structure tensor, also known as second moment matrix or Förstner
interest operator, is a very popular tool in image processing. Its purpose is the
estimation of orientation and the local analysis of structure in general. It is based
on the integration of data from a local neighborhood. Normally, this neighborhood is
defined by a Gaussian window function and the structure tensor is computed by the
weighted sum within this window. Some recently proposed methods, however, adapt
the computation of the structure tensor to the image data. There are several ways
how to do that. This chapter wants to give an overview of the different approaches,
whereas the focus lies on the methods based on robust statistics and nonlinear
diffusion. Furthermore, the data-adaptive structure tensors are evaluated in some
applications. Here the main focus lies on optic flow estimation, but also texture
analysis and corner detection are considered.

2.1 Introduction

Orientation estimation and local structure analysis are tasks that can be found
in many image processing and early vision applications, e.g. in fingerprint
analysis, texture analysis, optic flow estimation, and in geo-physical analysis
of soil layers. The classical technique to estimate orientation is to look at the
set of luminance gradient vectors in a local neighborhood. This leads to a very
popular operator for orientation estimation, the matrix field of the so-called
structure tensor [4, 10, 16, 20, 38].
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The concept of the structure tensor is a consequence of the fact that one
can only describe the local structure at a point by considering also the data
of its neighborhood. For instance, from the gradient at a single position, it
is not possible to distinguish a corner from an edge, while the integration
of the gradient information in the neighborhood of the pixel gives evidence
about whether the pixel is occupied by an edge or a corner. Further on, the
consideration of a local neighborhood becomes even more important as soon
as the data is corrupted by noise or other disturbing artifacts, so that the
structure has to be estimated before the background of unreliable data.

The structure tensor therefore extends the structure information of each
pixel, which is described in a first order approximation by the gradient at
that pixel, by the structure information of its surroundings weighted with a
Gaussian window function. This comes down to the convolution of the struc-
ture data with a Gaussian kernel, i.e. Gaussian smoothing.

Note however, that the smoothing of gradients can lead to cancellation
effects. Consider, for example, a thin line. At one side of the line there appears
a positive gradient, while at the other side the gradient is negative. Smoothing
the gradients will cause them to mutually cancel out. This is the reason why
in the structure tensor, the gradient is considered in form of its outer product.
The outer product turns the gradient vector∇I of an image I into a symmetric
positive semi-definite matrix, which we will refer to as the initial matrix field

J0JJ := ∇I∇I� =
(

I2
xI IxII IyII

IxII IyII I2
yII

)
. (2.1)

Subscripts thereby denote partial derivatives. The structure tensor can be
easily generalized from scalar-valued data to vector-valued data. As with the
matrix representation it is possible to sum up gradient information, the struc-
ture information from all channels of a vector-valued image I = (I1, . . . , INI )
can be integrated by taking the sum of all matrices [8]:

J0JJ :=
N∑

i=1

∇IiII ∇I�iII . (2.2)

The structure tensor for a certain neighborhood of scale ρ is then computed
by convolution of the components of J0JJ with a Gaussian kernel KρK :

JρJ = KρK ∗ J0JJ . (2.3)

The smoothing, i.e. the integration of neighborhood information, has two pos-
itive effects on orientation estimation. Firstly, it makes the structure tensor
robust against noise or other artifacts, and therefore allows a more reliable
estimation of orientation in real-world data. Secondly, it distributes the in-
formation about the orientation into the areas between edges. This is a very
important effect, as it allows to estimate the dominant orientation also at
those points in the image where the gradient is close to zero. The dominant
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orientation can be obtained from the structure tensor as the eigenvector to
the largest eigenvalue. An operator which is closely related to the structure
tensor is the boundary tensor discussed in Chap. 4 by Köthe.¨

There are many applications for the structure tensor in the field of image
processing. One popular application is optic flow estimation based on the local
approach of Lucas and Kanade [21]. In optic flow estimation one searches for
the spatio-temporal direction with least change in the image, which is the
eigenvector to the smallest eigenvalue of the structure tensor [4, 15].

Another application for orientation estimation is texture analysis. Here
the dominant orientation extracted from the structure tensor can serve as
a feature to discriminate textures [4, 28]. The dominant local orientation is
also used in order to drive anisotropic diffusion processes, which enhance the
coherence of structures [39]. Often the structure tensor is also used as a feature
detector for edges or corners [10]. An application apart from image processing
is a structure analysis for grid optimization in the scope of fluid dynamics
[34].

Although the classic structure tensor has proven its value in all these ap-
plications, it also holds a drawback. This becomes apparent as soon as the
orientation in the local neighborhood is not homogeneous like near the bound-
ary of two different textures or two differently moving objects. In these areas,
the local neighborhood induced by the Gaussian kernel integrates ambiguous
structure information that actually does not belong together and therefore
leads to inaccurate estimations.

There are two alternatives to remedy this problem. One is to adapt the
neighborhood to the data. A classical way of doing so is the Kuwahara-Nagao
operator [2, 18, 25]. At a certain position in an image this operator searches
for a nearby neighborhood where the response (the orientation) is more ho-
mogeneous than it is at the border. That response is then used at the point
of interest. In this way the neighborhoods are not allowed to cross the bor-
ders of the differently oriented regions. In [36] it was shown that the classic
Kuwahara-Nagao operator can be interpreted as a ‘macroscopic’ version of a
PDE image evolution that combines linear diffusion (smoothing) with mor-
phological sharpening (a shock filter in PDE terms). A very similar approach
is to use adaptive Gaussian windows [23, 26] for choosing the local neighbor-
hood. Also by nonlinear diffusion one can perform data-adaptive smoothing
that avoids the integration of ambiguous data [7, 41].

A second possibility to enhance local orientation estimation is to keep the
non-adaptive window, but to clearly choose one of the ambiguous orientations
by means of robust statistics [37]. This chapter will describe both approaches
and will show their performance in the most common applications also in
comparison to the conventional structure tensor. Note that for a data-adaptive
structure tensor to reveal any advantages, discontinuities or mixed data must
play a role for the application. Some applications where this is the case are
optic flow estimation, texture discrimination, and corner detection.
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Chapter organization. The chapter is organized as follows. In the next
section we give an overview on data-adaptive structure tensors. The ap-
proaches using robust statistics and nonlinear diffusion are described in detail
and relations between methods are examined. In Sect. 2.3 – Sect. 2.5 the
structure tensor is applied to optic flow estimation, texture analysis, and cor-
ner detection. Some experiments show the superiority of adaptive structure
tensors in comparison to the classic structure tensor and differences between
the methods. The chapter is concluded by a brief summary in Sect. 2.6.

2.2 Data-adaptive Structure Tensors

An early approach to data-adaptive structure tensors is the gray value local
structure tensor of Nagel and Gehrke [26], which has been designed for its
use in spatio-temporal optic flow estimation. Instead of using a fixed isotropic
Gaussian kernel KρK for smoothing the structure tensor, a space-dependent
Gaussian

G(x) =
1√

(2π)3|Σ(x)|
e−

1
2 x�Σ(x)−1x (2.4)

is employed, which is parameterized by the covariance matrix Σ(x). This
covariance matrix is locally adapted to the image by setting

Σ(x) = U(x)⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
σmin + σ2

max

1+σ2
maxλ1(x) 0 0

0 σmin + σ2
max

1+σ2
maxλ2(x) 0

0 0 σmin + σ2
max

1+σ2
maxλ3(x)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟U�(x)

(2.5)

where λi(x), i ∈ {1, 2, 3} are the eigenvalues of the resulting structure tensor
and U holds its eigenvectors. Initially, Σ(x) is set to an arbitrary diagonal
matrix. The parameters σmin and σmax are for restricting the anisotropy and
the size of the Gaussian. This concept of using a data-adaptive Gaussian for
the convolution with the structure tensor has been further investigated in the
works of Middendorf and Nagel [22, 23]. See also Chap. 3 by Nagel for the
estimation of an adaptive Gaussian.

Another data-adaptive structure tensor has been proposed by Kothe [17]¨
for the purpose of corner detection. For corner detection one uses the fact
that the coherence of the orientation measured by the structure tensor be-
comes small when two edges meet. To achieve an accurate localization of
these points, it is favorable to smooth the structure tensor mainly along edges
in the image. Köthe has therefore proposed to use an hourglass-shaped filter¨
for the convolution with the structure tensor. The orientation of the filter
is thereby adapted to the orientation of the edges, so it is a data-adaptive
smoothing.
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Note that though the two previous structure tensors are data-adaptive,
they are still linear operators, as they imply a convolution operation (which is
linear) based on the initial image data. The adaptation quality can be further
improved by nonlinear operators, which use the updated data in a kind of
feedback loop for the adaptation. Two such nonlinear operators have been
proposed for the structure tensor, firstly the concept based on robust statistics
by van den Boomgaard and van de Weijer [37], and secondly the techniques
based on nonlinear diffusion, proposed by Weickert and Brox [7, 41]. These
methods will now be explained in more detail.

2.2.1 Structure Tensors Based on Robust Statistics

Before describing data-adaptive structure tensors based on robust statistics
it will be shown that the classic structure tensor is the result of least squares
estimation procedures for local orientation. For illustration consider also the
texture in Fig. 2.1(a). The histogram of the gradient vectors in this texture
patch is shown in Fig. 2.1(b). Let v be the true orientation vector of the
patch, i.e. the vector perpendicular to the stripes. In an ideal image patch
every gradient vector should be parallel to the orientation v. In practice they
will not be parallel. The error of a gradient vector g(y) := ∇I(y) observed in
a point y with respect to the orientation v(x) of an image patch centered at
location x is defined as:

e(x,y) = ‖g(y)− (g(y)�v(x))v(x)‖

The difference g(y) − (g(y)�v(x))v(x) is the projection of g on the normal
to v. The error e(x,y) thus measures the perpendicular distance from the
gradient vector g(y) to the orientation vector v(x). Integrating the squared
error over all positions y using a soft Gaussian aperture for the neighborhood
definition we define the total error:

ε(x) =
∫

Ω

∫∫
e2(x,y)KρK (x− y)dy (2.6)

The error measure can be rewritten as

ε =
∫

Ω

∫∫
g�gKρK dy −

∫
Ω

∫∫
v�(gg�)vKρK dy .

where we have omitted the arguments of the functions. Minimizing the error
thus is equivalent with maximizing∫

Ω

∫∫
v�(gg�)vKρK dy ,

subject to the constraint that v�v = 1. Note that v is not dependent on y so
that we have to maximize:
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Fig. 2.1. Histograms of gradient vector space. In (a) an image (64 × 64) is shown
with in (b) the histogram of all gradient vectors (where darker shades indicate that
those gradient vectors occur more often in the image. In (c) a composition of two
differently oriented patterns is shown with the corresponding histogram in (d)

v�
(∫

Ω

∫∫
(gg�)KρK dy

)
v = v�JρJ v

where JρJ is the structure tensor.
Using the method of Lagrange multipliers to maximize v�JρJ v subject to

the constraint that v�v = 1, we need to find an extremum of

λ(1− v�v) + v�JρJ v .

Differentiating with respect to v (remember that d
dv (v�Av) = 2Av in case

A = A�) and setting the derivative equal to zero results in:

JρJ v = λv . (2.7)

The ‘best’ orientation thus is an eigenvector of the structure tensor JρJ . Sub-
stitution in the quadratic form then shows that we need the eigenvector cor-
responding to the largest eigenvalue.
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The least squares orientation estimation works well in case all gradients in
the set of vectors in an image neighborhood all belong to the same oriented
pattern. In case the image patch shows two oriented patterns the least squares
estimate will mix the two orientations and give a wrong result.

A robust estimator is constructed by introducing the Gaussian error norm:

ψ(e) = 1− exp
(

e2

2m2

)
as depicted in Fig. 2.2. In a robust estimator large deviations from the model
(what is considered ‘large’ is determined by the value of m) are not taken into
account very heavily. In our application large deviations from the model are
probably due to the mixing of two different linear textures (see Fig. 2.1(c-d)).

The error, (2.6), can now be rewritten as (we will omit the spatial argu-
ments):

ε =
∫

Ω

∫∫
ψ

(√
g�g − v�(gg�)v

)
KρK dy .

Again we use a Lagrange multiplier method to minimize the error subject
to the constraint that v�v = 1:

d

dv

(
λ(1− v�v) +

∫
Ω

∫∫
ψ

(√
g�g − v�(gg�)v

)
KρK dy

)
= 0 .

This leads to
Jm

ρJ (v)v = λv (2.8)

where

Jm
ρJ (v) =

∫
Ω

∫∫
gg�KmKK (g�g − v�(gg�)v)KρK dy (2.9)

-2 -1 0 1 2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Fig. 2.2. Quadratic versus (robust) Gaussian error norm. The Gaussian error norm
is of ‘scale’ m = 0.7
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with KmKK (e2) = exp
(
e2/2m2

)
. The big difference with the least squares esti-

mator is that now the matrix Jm
ρJ (v) is dependent on v (and on x as well).

Note that Jm
ρJ (v) can be called a ‘robustified’ structure tensor in which the

contribution of each gradient vector is weighted not only by its distance to the
center point of the neighborhood, but also weighted according to its ‘distance’
to the orientation model.

Note that the ‘robustification’ of the structure tensor is dependent on
the model that is fitted to the data, so there is no unique robust structure
tensor. The structure tensor is a local averaging of the gradient product gg�,
but whereas in the classical case each point in the neighborhood contributes
in an equal amount to this average, in the robust formulation the weight is
dependent on the plausibility of the gradient observation g given the model.

A fixed point iteration scheme is used to find a solution. Let vi be the
orientation vector estimate after i iterations. The estimate is then updated
as the eigenvector vi+1 of the matrix Jm

ρJ (vi) corresponding to the largest
eigenvalue, i.e. one solves:

Jm
ρJ (vi)vi+1 = λvi+1

The proposed scheme is a generalization of the well-known fixed point scheme
(also called functional iteration) to find a solution of the equation v = F (v).

Note that the iterative scheme does not necessarily lead to the global min-
imum of the error. In fact one is often not even interested in that global
minimum. Consider for instance the situation of a point in region A (with ori-
entation α) that is surrounded by many points in region B (with orientation
β). It is not too difficult to imagine a situation where the points of region B
outnumber those in region A. Nevertheless the algorithm is to find the ori-
entation α whereas the global minimum would correspond with orientation
β. Because the algorithm starts in the initial orientation estimate and then
finds the local minimum nearest to the starting point it hopefully ends up in
the desired local minimum: orientation α. The choice for an initial estimate of
the orientation vector is thus crucial in a robust estimator in case the image
patch shows two (or more) orientations.

2.2.2 Structure Tensors Based on Nonlinear Diffusion

In the preceding subsection it has been shown that a least squares estimate
of the local orientation comes down to solving an eigenvalue problem of the
structure tensor smoothed with the Gaussian kernel KρK which determines
the local neighborhood. We have also seen a more general technique than
least squares that introduces an additional weighting dependent on the data.
Now the question may arise if there is on the other hand also a more general
smoothing approach than Gaussian convolution, and indeed there is one.
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The generalization of Gaussian smoothing, which is equivalent to diffusion
with a constant diffusivity, is nonlinear diffusion. In contrast to Gaussian con-
volution, nonlinear diffusion reduces the amount of smoothing in the presence
of discontinuities in the data, so it is a data-adaptive smoothing method. Be-
ing a nonlinear approach, discontinuities are determined iteratively in the up-
dated, smoothed data and therefore one can integrate data from an arbitrarily
shaped neighborhood, as illustrated in Fig. 2.3. Thus nonlinear diffusion seems
very appropriate to replace the Gaussian convolution of the classic structure
tensor in order to bring in data-adaptive neighborhoods for the integration.

Nonlinear diffusion has been introduced by Perona and Malik [27]. With
the initial condition u(t = 0) = I, the PDE

∂t∂∂ u = div
(
g(|∇u|2)∇u

)
(2.10)

evolves a scalar-valued data set, such as a gray value image, where I is the
initial image. The so-called diffusivity function g correlates the amount of
smoothing to the gradient magnitude and thereby prevents smoothing across
edges. For smoothing the structure tensor, a good choice for this diffusivity
function is

g(|∇u|) =
1√

|∇u|2 + ε2
(2.11)

where ε is a small positive constant only introduced in order to prevent unlim-
ited diffusivities. Diffusion with this diffusivity is called total variation (TV)
flow [1], which is the diffusion filter corresponding to TV regularization [32].

Since the structure tensor is not a scalar-valued but a matrix-valued data
set, one needs an extension of (2.10) to matrix-valued data. Such an extension
has been provided in [35]:

∂t∂∂ uij = div

(
g

(
N∑

k,l=1

|∇ukl|2
)
∇uij

)
i, j = 1, . . . , N . (2.12)

Details can also be found in Chap. 25 by Weickert et al. When setting the
initial condition to uij(t = 0) = J0JJ ,ij (cf. (2.1) and (2.2)), this PDE provides
the nonlinear structure tensor JtJJ for some diffusion time t. Here, N is the

Fig. 2.3. Illustration of how the local neighborhood is adapted by an increasing
amount of nonlinear diffusion
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number of rows/columns of the structure tensor (which is symmetric), i.e.
N = 2 for the spatial structure tensor and N = 3 for its spatio-temporal
version. Note that all matrix channels are coupled in this scheme. They are
smoothed with a joint diffusivity taking into account the edges of all channels.
Consequently, a discontinuity in one matrix channel inhibits also smoothing
in the others.

There exists also an anisotropic counterpart to this scheme, which has been
introduced in [7, 41]. In the anisotropic case not only the amount of diffusion
is adapted locally to the data but also the direction of smoothing. This has
positive effects for instance in the application of corner detection where one
is interested in smoothing mainly along edges in the image.

∂t∂∂ uij = div

(
D

(
N∑

k,l=1

∇ukl∇u�
kl

)
∇uij

)
i, j = 1, . . . , N (2.13)

The matrix D is the so-called diffusion tensor that replaces the scalar-valued
diffusivity g and which we define in the spatial case, where N = 2, as

D = U

(
g(λ1) 0

0 1

)
U� (2.14)

The diffusivity function g is the same as in the isotropic setting and λ1 de-
notes the larger eigenvalue of the matrix

∑N
i,j=1∇uij∇u�

ij while U holds its
eigenvectors. Simply speaking, the diffusion tensor reduces the amount of
smoothing in gradient direction depending on the gradient magnitude, while
it employs the full amount of smoothing in the direction perpendicular to the
gradient. For detailed information about anisotropic diffusion in general, we
refer to [38]. Anisotropic nonlinear matrix diffusion is also a topic of Chap. 25
by Weickert et al.

By applying a Gaussian convolution with a kernel KρK to the matrix∑N
k,l=1∇ukl∇u�

kl that determines the diffusion tensor D, one can even em-
phasize the smoothing along discontinuities in the data [40]. With such a
nonlinear diffusion process, one obtains the anisotropic structure tensor Jt,ρJJ .

2.2.3 Relations

After the description of these approaches to data-adaptive structure tensors,
one might wonder how they are related. Are they basically all the same, or
are there significant differences?

Let us first consider the gray value local structure tensor of Nagel and
Gehrke and the nonlinear structure tensor based on diffusion. Both methods
perform a smoothing operation on the structure tensor, using a neighbor-
hood that is adapted to the data, so one would expect that both methods
do approximately the same. However, despite the similarities, there are some
significant differences.
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Fig. 2.4. Left: Neighborhood of a non-adaptive isotropic Gaussian Center: Neigh-
borhood of a data-adaptive anisotropic Gaussian. Right: Neighborhood obtained
with an iterative diffusion process

Figure 2.4 visualizes these differences between the approach of Nagel and
Gehrke and the classic as well as the nonlinear structure tensor. The classic
structure tensor uses a fixed isotropic Gaussian kernel for smoothing the data,
thus it is not data-adaptive at all. The method proposed by Nagel and Gehrke
parameterizes the neighborhood by an anisotropic Gaussian and adapts the
parameters locally to the data. Although this approach is more precise than
the classic structure tensor, one can see that in many situations the Gaussian
cannot fully cover the region of interest without also integrating ambiguous
information. The iterative diffusion process involved in the nonlinear structure
tensor is more flexible and can therefore cover a neighborhood with arbitrary
shape.

Furthermore, the nonlinear structure tensor is based on a nonlinear
smoothing operation, i.e. the operation works on the updated data, while the
method of Nagel and Gehrke is still a linear operation as it smooths the initial
data.

The robust structure tensor described in Sect. 2.2.1 is also based on a
nonlinear process, so let us consider its relations to the nonlinear structure
tensor. From (2.9) one can see that dependent on how well the values fit to the
currently estimated orientation, their influence is decreased. This is similar to
the concept of the nonlinear structure tensor, where the further expansion
of the local neighborhood is reduced if the new values do not fit well to the
values of the current neighborhood. Note that the weighting function ψ′(s2) in
(2.9) is one of the diffusivity functions used by Perona and Malik when they
introduced nonlinear diffusion (cf. [27]). Thus both the nonlinear structure
tensor and the robust structure tensor make the integration of further data
dependent on whether it fits to the already gathered data. One can even
choose the same weighting function for this selection process.

The difference between both approaches is that the nonlinear structure
tensor applies this selection process in order to determine the local neighbor-
hood and then uses a simple least squares approach within this neighborhood,
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while the structure tensor based on robust statistics first gathers the data from
the simple fixed Gaussian neighborhood KρK and applies the nonlinear weight-
ing process afterwards. Thus the nonlinear structure tensor assumes that the
values needed for a good estimation are connected, whereas the robust statis-
tics ignore the aspect of connectivity. Consequently, it can be expected that
in situations where the assumption of connected data holds, the nonlinear
structure tensor is better suited, while in situations where the assumption is
false, robust statistics should be advantageous.

Relations between robust statistics, nonlinear diffusion, and other data-
adaptive smoothing approaches are also dealt with in [24].

2.3 Optic Flow Estimation

A well-known application of the structure tensor is optic flow estimation. In
optic flow estimation one searches for the displacement field (u(x, y), v(x, y))
that says for each pixel (x, y) of one image I(x, y, t) to which position it has
moved in a second image I(x, y, t + 1).

In Bigun et al. [4] optic flow estimation has been regarded as the search for¨
the spatio-temporal orientation where there is the least change in the image
sequence. This immediately leads to an orientation estimation problem that
can be solved by computing the eigenvector w = (w1, w2, w3) to the smallest
eigenvalue of the structure tensor. The optic flow vector can then be computed
by normalizing the last component of w to 1, which leads to u = w1/w2 and
v = w2/w3.

Although this has been the first explicit usage of the structure tensor for
optic flow estimation, the structure tensor is also implicitly present in the
early method of Lucas and Kanade [21]. In this method the assumptions of
the optic flow estimation problem become more explicit. Furthermore, the
method of Lucas-Kanade is an ordinary least squares approach, while the
method of Bigün estimates the flow vector by means of total least squares.¨
For optic flow estimation in practice, it turns out that a simple least squares
approach is more robust, so we will stick here to the method of Lucas-Kanade.

2.3.1 Lucas-Kanade with the Conventional Structure Tensor

The assumption that is most frequently used in optic flow estimation is the
assumption that the displacement of pixels does not alter their gray values.
This can be expressed by the well-known optic flow constraint (OFC) [14]

IxII u + IyII v + IzI = 0 . (2.15)

The optic flow is not uniquely determined by this constraint, since this is
only one equation for two flow components. This is also called the aperture
problem. In order to obtain a unique solution, Lucas and Kanade proposed to
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assume the optic flow vector to be constant within some neighborhood, e.g. a
Gaussian window KρK .

With this second assumption, it is possible to estimate the optic flow at
each point by the minimizer of the local energy function

E(u, v) =
1
2
KρK ∗

(
(IxII u + IyII v + IzI )2

)
. (2.16)

A minimum (u, v) of E must satisfy ∂u∂∂ E = 0 and ∂v∂∂ E = 0, what leads to the
2× 2 linear system(

KρK ∗ I2
xI KρK ∗ IxII IyII

KρK ∗ IxII IyII KρK ∗ I2
yII

)(
u
v

)
=
(
−KρK ∗ IxII IzI
−KρK ∗ IyII IzI

)
. (2.17)

Note that it is possible to use instead of a purely spatial neighborhood also
a spatio-temporal neighborhood where the assumption of constant flow is ex-
tended to hold also over time. Since the spatio-temporal version has access to
more data, it leads in general to more accurate results. However, for simplicity
we considered only spatial neighborhoods in the experiments.

2.3.2 Lucas-Kanade with the Nonlinear Structure Tensor

One can easily observe that the entries of this linear system are five of the six
different components of the spatio-temporal structure tensor

JρJ = KρK ∗
(
∇I∇I�

)
= KρK ∗

⎛⎝⎛⎛ I2
xI IxII IyII IxII IzI

IxII IyII I2
yII IyII IzI

IxII IzI IyII IzI I2
zI

⎞⎠⎞⎞ . (2.18)

Thus it is possible to replace these entries by the components of one of the
data-adaptive structure tensors. Such a replacement means that the fixed
neighborhood of the original method is replaced by an adaptive neighborhood
which prefers those pixels that fit the assumption of constant optic flow.

As already discussed in Sect. 2.2, one can obtain a good adaptation of
the neighborhood by nonlinear diffusion. Thus with the nonlinear structure
tensor [7, 41] described in Sect. 2.2.2 and determined by the nonlinear diffusion
process given by (2.12), the assumption of constant flow holds much more often
than in the case of the conventional structure tensor. Consequently, there are
less estimation errors, in particular near motion boundaries.

2.3.3 Robust Structure Tensor for Optic Flow Estimation

Compared to Sect. 2.2.1, with optic flow estimation the orientation estimation
task has changed a bit. We now search for the orientation with least change in
a spatio-temporal space. Since the robustified structure tensor selects the data
according to how well it fits to the model, a new robust structure tensor has
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to be derived due to the change of the model. In order to see the relations to
the derivation in Sect. 2.2.1 we adapt to the same notation and write g = ∇I.
The optic flow vector (u, v) will be written as the estimated orientation v.
Further on, the Lucas-Kanade approach will be interpreted as a least squares
estimation procedure first, before the generalized robust estimation procedure
is described.

Least squares estimation. As stated above, the optic flow constraint (2.15)
has two unknowns: the two components of the optic flow vector v, and a way to
get an expression for a unique solution for v is to come up with more equations
each describing the same vector v. This is achieved with the assumption of
Lucas-Kanade that within a local neighborhood of a point x the optical flow
vector is constant. Like in Sect. 2.2.1 a Gaussian aperture is selected to define
the local neighborhood. Let v(x) be the optical flow vector at x then the error
towards the optic flow constraint is given as:

ε(x) =
∫

Ω

∫∫
(IzI (y) + v(x) · g(y))2 KρK (x− y)dy (2.19)

If we now select the vector v∗ that minimizes the above expression then the
OFC expression IzI + v · g is minimized on average in the local neighborhood
of a point x:

v∗ = argminvε(x)

The optimal value is found by solving for dvε = 0:

dvε = 2
∫

Ω

∫∫ (
IzI (y) + v(x) · g(y)

)
g(y)KρK (x− y)dy

Here we use the convention used throughout this chapter that the integration
of a matrix/vector equation is to be done for each of the matrix/vector com-
ponents individually. Consider the term (v · g)g, where we have omitted the
spatial arguments for clarity. This can be rewritten as (gg�)v. Note that gg�

is a 2 × 2 matrix which, when integrated over a spatial neighborhood, is the
structure tensor J(x). Using this we can rewrite the above equation as:(∫

Ω

∫∫
g(y)g�(y) KρK (x− y)dy

)
v(x) = −

∫
Ω

∫∫
IzI (y)g(y)KρK (x− y)dy (2.20)

or
J(x)v(x) = −

∫
Ω

∫∫
IzI (y)g(y)KρK (x− y)dy

After integration the structure tensor can be assumed to be non-singular and
thus:

v(x) = −J−1(x)
∫

Ω

∫∫
IzI (y)g(y)KρK (x− y)dy

This is the well-known linear least squares estimator of the optical flow vector.
Like many local structure calculations it suffers from the fact that all points
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in the neighborhood are used in the calculation. At motion boundaries the
above expression is known to give the wrong answers.

Robust estimation. Robustifying optical flow calculations can be found e.g.
in [5]. Here we emphasize that a robust estimator of the optical flow vector
nicely fits into the framework for robust local structure calculations as set up
in this chapter.

The squared error of (2.19) is replaced with a robust error measure:

ε(x) =
∫

Ω

∫∫
ψ (IzI (y) + v(x) · g(y))KρK (x− y)dy (2.21)

leading to the following expression for the derivative dvε:

dvε =
∫

Ω

∫∫
ψ′(IzI (y) + v(x)g(y)

)
g(y)KρK (x− y)dy

Like in Sect. 2.2.1 we select the Gaussian error norm for ψ, leading to:

dvε =
∫

Ω

∫∫
IzI (y) + v(x) · g(y)

m2
exp

(
− (IzI (y) + v(x) · g(y))2

2m2

)
g(y)KρK (x−y)dy

This can be rewritten as:

dvε =
∫

Ω

∫∫ (
IzI (y) + v(x) · g(y)

)
g(y)KmKK (IzI (y) + v(x) · g(y))KρK (x− y)dy

Solving for dvε = 0 we obtain:(∫
Ω

∫∫
g(y)g(y)�KmKK (. . . )KρK (x− y)dy

)
v

= −
∫

Ω

∫∫
IzI (y)g(y)KmKK (. . . )KρK (x− y)dy

Compared with the linear least squares estimator, a new term KmKK (. . . ) has
been added that can be interpreted as the model error penalty. This equation
is the ‘robustified’ equivalent of 2.20.

Again we obtain a ‘robustified’ structure tensor. Carefully note that the
model error penalty term is different from the one we have derived in a pre-
vious section where we looked for the local orientation of maximum change in
a purely spatial neighborhood. Here we arrive at the equation

Jm
ρJ (v)v = l(v)

where

Jm
ρJ (v) =

∫
Ω

∫∫
g(y)g(y)�KmKK (IzI (y) + v(x) · g(y))KρK (x− y)dy
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and
l(v) = −

∫
Ω

∫∫
IzI (y)g(y)KmKK (. . . )KρK (x− y)dy .

And again we can solve this through a fixed point procedure:

vi+1 = −
(
Jm

ρJ
)−1 (vi)l(vi)

with v0 some initial estimate of the optical flow vector (the linear least squares
estimate is an obvious choice for this).

2.3.4 Adapting the Neighborhood with a Coherence Measure

As stated above, the assumption of constant flow field over a neighborhood is
used in order to disambiguate the optic flow constraint equation. This leads
to the idea that diffusion should be reduced at those areas where the aperture
problem is already reasonably solved [19]. In regions with non-constant smooth
motion fields, this will avoid oversmoothing the tensor field and then preserve
small motion differences. The aperture problem is solved as soon as the two
larger eigenvalues of the structure tensor are large enough compared to the
smallest one, i.e. that the ellipsoid associated to the tensor is flat. In order
to quantify the flatness of a tensor, we use a slightly changed version of the
coherence or corner measure proposed in [13]:

cm(J) =
(

λ1 − λ3

λ1 + λ3 + ε

)2

−
(

λ1 − λ2

λ1 + λ2 + ε

)2

(2.22)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are the eigenvalues of the structure tensor J and ε is
a small positive constant for regularization purposes. If λ2 ≈ λ3, this measure
yields a value close to 0, while if λ1 ≈ λ2 > λ3, the value is close to 1. This
measure can be use to steer the diffusion of the structure tensor through a
matrix-valued nonlinear diffusion scheme, written in a continuous formulation
as

∂t∂∂ JijJJ = div (g(cm)∇JijJJ ) (2.23)

where g is decreasing, g(0) = 1, g(1) = 0. Note that the continuous formulation
is problematic if g is not smooth. However, an associated discrete scheme will
be generally well defined. It can be written as

Jn+1
sJ = Jn

sJ + τ
∑

r∈N(s)

βrg (cm(Jn
rJJ + Jn

sJ )) (Jn
rJJ − Jn

sJ ) (2.24)

where s = (i, j) denotes a image location (and not the tensor component),
N(s) a discrete neighborhood, τ an evolution step and the βr are positive val-
ues that depend on the neighborhood (but not on the tensors), with reflecting
boundary conditions. The diffusivity function used here
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Fig. 2.5. The diffusivity function g(cm)

g(cm) =

⎧⎨⎧⎧⎩⎨⎨
1 if cm < α− η
(α + η − cm)/2η if α− η ≤ cm < α− η
0 if cm ≥ α− η

(2.25)

is depicted in Fig. 2.5. The thresholds α and η have been set respectively to
0.9 and 0.1 in the experiments. This diffusion is an alteration of the linear
diffusion and possesses the same stability properties. It behaves well in pres-
ence of small structures with high curvatures, but has the same drawback
that the linear diffusion with respect to motion discontinuities. Indeed, as it
can be seen from the discrete formulation (2.24), if JsJ and JrJJ are neighboring
tensors with different orientations, their sum will become isotropic and their
coherence measure small, so a maximal diffusivity of 1 will be assigned in the
corresponding term of (2.24).

2.3.5 Comparison

Figures 2.6–2.8 shows three well-known test sequences for optic flow estima-
tion and the results obtained with the methods described above1. The vi-
sualization of both the orientation and the magnitude of the flow vector is
achieved by using color plots where the hue is determined by the orientation
and the intensity corresponds to the magnitude of the flow vector.

1 The Yosemite sequence with clouds was created by Lynn Quam and is avail-
able at ftp://ftp.csd.uwo.ca/pub/vision. The version without clouds is avail-
able at http://www.cs.brown.edu/people/black/images.html. The original,
uncropped, street sequence has been published in [11] and is available at
http://www.cs.otago.ac.nz/research/vision.
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Fig. 2.6. Yosemite sequence (316 × 252 × 15). From Left to Right, Top to Bottom:
(a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear structure
tensor. (e) Robust structure tensor. (f) Coherence based smoothing. See colour platesf

In all sequences, one can see a clear qualitative difference between the
Lucas-Kanade method based on the classical structure tensor and the methods
based on its data-adaptive versions. While the classic structure tensor causes
blurring artifacts at motion discontinuities, leading to bad estimates in these
areas, the data-adaptive structure tensors avoid mixing the data from the
different regions and therefore yield much more accurate results.

For the test sequences used here, there is also the ground truth available,
so it becomes possible to compare the methods by a quantitative measure. The
standard measure used in the literature is the average angular error (AAE)
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Fig. 2.7. Yosemite sequence without clouds (316×252×15). From Left to Right, Top
to Bottom: (a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothing. Seeff
colour plates

introduced in [3]. Given the estimated flow field (ue, ve) and ground truth
(uc, vc), the AAE is defined as

aae =
1
N

N∑
i=1

arccos

(
uciuei + vcivei + 1√

(u2
ci + v2

ci + 1)(u2
ei + v2

ei + 1)

)
(2.26)

where N is the total number of pixels. Against its indication, this quality mea-
sure not only measures the angular error between the estimated flow vector
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Fig. 2.8. Street sequence (cropped) (145 × 100 × 20). From Left to Right, Top to
Bottom: (a) Frame 10. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothing. Seeff
colour plates

and the correct vector, but also differences in the magnitude of both vectors,
since it measures the angular error of the spatio-temporal vector (u, v, 1).

Table 2.1 compares the errors of the different methods. It can be observed
that all data-adaptive approaches show a higher performance than the con-
ventional method in all sequences. Between the data-adaptive methods there
are some differences, however, there is no clear winner.
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Table 2.1. Comparison between results. In all cases the flow fields are dense.
AAE = average angular error

Yosemite sequence without clouds.

Technique AAE

Classic structure tensor 3.80◦

Nonlinear structure tensor 3.74◦

Robust structure tensor 3.21◦

Coherence based structure tensor 3.43◦

Yosemite sequence with clouds.

Technique AAE

Classic structure tensor 8.78◦

Nonlinear structure tensor 7.67◦

Robust structure tensor 8.01◦

Coherence based structure tensor 8.21◦

Street sequence.

Technique AAE

Classic structure tensor 10.54◦

Nonlinear structure tensor 7.75◦

Robust structure tensor 7.08◦

Coherence based structure tensor 9.79◦

2.4 Texture Analysis

2.4.1 Robust Orientation Estimation

An important property of texture is its dominant orientation. In Sect. 2.2.1 it
was shown that the dominant orientation of an line pattern can be estimated
using a linear least squares estimator. The resulting orientation turns out to
be the eigenvector of the structure tensor belonging to the largest eigenvalue.

In Fig. 2.9(a) an oriented pattern is shown and in (b) the scatter diagram
of the gradient vectors observed at small scale in a neighborhood in the image
at the border of the two differently oriented regions. It is evident that a least
squares estimator cannot distinguish between the two oriented patterns and
will ‘smooth’ the orientation.

A robust estimation of orientation greatly improves this. We start again
with the estimator for the orientation that is based on the error measure as
given in (2.6):

ε =
∫

Ω

∫∫
KρK ψ(

√
g − (g�v)v)dx

where we have replaced the quadratic error norm with a robust error norm ψ.
The local orientation is then found by minimizing the above error measure for
v under the constraint that v�v = 1. Using a Lagrange multiplier we have to
minimize ε + λ(1− v�v). Setting ∂ε/∂v = 0 and solving for v we arrive at:
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Fig. 2.9. Gradient histogram with two differently oriented textures

Jm
ρJ (v)v = λv

where
Jm

ρJ (v) =
∫

Ω

∫∫
gg� KmKK (g − (g�v)v)KρK dx

is the ‘robustified’ structure tensor. Note that the structure tensor Jm
ρJ (v)

depends on the orientation v and thus we have to solve for the optimal ori-
entation in an iterative fixed point manner. Starting with an initial estimate
v0, calculate the structure tensor Jm

ρJ (v0) and calculate a new orientation es-
timate as the eigenvector of largest eigenvalue. This iterative procedure in
practice needs very few iterations to converge (typically 3 to 5 iterations).

In Fig. 2.10 the robust orientation estimation is compared with the linear
least squares estimation. It can be clearly observed that whereas the linear
estimator ‘gently’ changes from the one orientation to the second, the robust
estimator shows a sharp transition. A pattern with only slight variation in
orientation is shown in Fig. 2.11. Again the robust estimator is capable of
clearly detecting the edges between areas of different orientation.

2.4.2 Texture Segmentation

The three different components of the structure tensor can also directly be
integrated as features into a segmentation method, like the one proposed in
[6, 31]. This segmentation framework computes a two region segmentation
given a suitable feature vector. In our case this is the vector composed of
the three different components of the structure tensor and the image gray
value. The components of the structure tensor are normalized to the same
range as the image gray value in order to ensure a fair weighting between the
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Fig. 2.10. Comparison between least squares and robust orientation estimation.
See also colour plates

channels. Figure 2.12 reveals that with a data-adaptive approach, the segmen-
tation can benefit from the reduced blurring effects in the feature channels
and yields a higher accuracy at region boundaries. Note that although the
components of the nonlinear structure tensor look almost unsmoothed, there
is some smoothing that provides the dominant orientation also in the gaps
between the stripes. For comparison, the segmentation result obtained with
the unsmoothed structure tensor J0JJ is depicted in Fig. 2.13.

2.5 Corner Detection

When looking for some important, distinguished locations of an image, one
often considers points where two or more edges meet. Such locations have
been named corners or interest points, and a range of possible approaches



40 T. Brox et al.

Comparison between least squares and robust orientation estimation.
See also colour plates

exists to detect them in an image, see e.g. the reviews in [30, 33]. Methods
based on the structure tensor are well established in this field.

For detecting corners, the coherence information present in the structure
tensor after integration is exploited. At zero integration scale, the structure
tensor J0JJ as introduced in (2.1) or (2.2) contains information on intrinsically
1-dimensional features of the image, i.e. edges. For gray-scale images, only one
eigenvalue of the structure tensor J0JJ may attain nonzero values (equal to the
squared gradient magnitude), while its corresponding eigenvector represents
the gradient direction.

Two-dimensional features of an image (corners) can be detected after in-
tegrating the local 1-D information of J0JJ within some neighborhood, since
the consideration of a local neighborhood makes additional information: that
of the homogeneity, or coherence, of the surrounding orientation. If two dif-
ferently oriented edges appear in the neighborhood, the smoothed structure
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Fig. 2.12. Left Column: Segmentation with the classic structure tensor (ρ = 2).
Center Column: Segmentation with the nonlinear structure tensor (t = 25). Right
Column: Segmentation with the robust structure tensor (ρ = 3, m = 0.05). From
Top to Bottom. (a) Segmented image (250× 167). (b) Tensor component J11 based
on I2

xII . (c) J22JJ based on I2
yII . (d) J12 based on IxI IyII

Fig. 2.13. Segmentation with the unsmoothed structure tensor J0JJ

tensor J will possess two nonzero eigenvalues λ1, λ2. An analysis of the eigen-
values can serve as a measure for the coherence of the surrounding structure.
Three cases can be distinguished when regarding the eigenvalues λ1 ≥ λ2 of
the matrix:

• λ1 ≈ λ2 ≈ 0: homogeneous areas, almost no structure present
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• λ1 > 0, λ2 ≈ 0: edges, one dominant orientation
• λ1 > 0, λ2 > 0: corners, structure with ambiguous orientation

Several possibilities have been proposed to convert this information into a
coherence measure or a measure of ‘cornerness’, e.g. by Forstner [9], Harris¨
and Stephens [12], Rohr [29], or Köthe [17]. In our experiments on corner
detection we employ the last approach, and detect corners at local maxima of
the smaller eigenvalue of the smoothed structure tensor.

One should note that for this application of the structure tensor, it is nec-
essary to allow the integration of ambiguous orientation, because one searches
for exactly the points where these ambiguities attain a maximum. This is com-
pletely contrary to orientation estimation where ambiguities are to be avoided.
It therefore seems contradictive on the first glance that a data-adaptive struc-
ture tensor could perform better than the classic one on this task. Indeed,
the structure tensor based on robust statistics is not applicable here, since
it uses the same neighborhood as the classic structure tensor but selects the
weighting of the pixels in order to minimize the ambiguities.

With the nonlinear structure tensor, however, the situation is a bit dif-
ferent. The nonlinear diffusion process does not select the pixels in order to
minimize the ambiguities, but it selects the neighborhood. Thus ambiguities
in the orientation, though they are reduced, can still appear. Since the neigh-
borhood is better adapted to the structures in the image, this even leads to
advantages in comparison to the classic structure tensor, see Fig. 2.15 and
Fig. 2.16. Corners remain well localized even for higher diffusion times when
any possible noise or small-scale features would have been removed.

The better concept of data-adaptive smoothing in the case of corner de-
tection, however, is the nonlinear diffusion process stated in (2.13). The
anisotropic diffusion process propagates information along the edges. This
leads to a very precise maximum in the second eigenvalue of the structure
tensor at the position where two edges meet, see Fig. 2.15. A small diffu-
sion time already suffices to produce significant corner features which are well
localized. In Fig. 2.16 it can be observed that this kind of smoothing leads to
the best performance.

Fig. 2.14. Left: Detail of a test image with ideal corner position (50, 50). Right:
Larger eigenvalue of the unsmoothed structure tensor J0JJ
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Fig. 2.15. Cornerness measured by the smaller eigenvalue of a smoothed struc-
ture tensor J , and the detected corner. Top: Linear smoothing. Center: Isotropic
nonlinear diffusion with TV diffusivity. Bottom: Anisotropic nonlinear diffusion

It is also very closely related to the data-adaptive structure tensor pro-
posed by Kothe [17]. In order to detect corners, K¨¨ othe also smoothes along¨
edges, in his case using a linear, hourglass-shaped filter. This filter as well
propagates information along edges and leads to a maximum in the second
eigenvalue of the structure tensor at the position where edges meet.

2.6 Summary

In this chapter, we have juxtaposed several concepts for data-adaptive struc-
ture tensors. It has emerged that though the different techniques have the
same basic motivation, there are quite important differences in detail. All
data-adaptive structure tensors discussed here are to deal with the inaccu-
racies and blurring artifacts caused by the Gaussian neighborhood of the
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linear
isotropic
anisotropic

Fig. 2.16. Left: Corners detected in the ‘lab’ test image using the nonlinear structure
tensor with anisotropic diffusion. Right: Comparison of the corners detected by the
classic linear structure tensor and the nonlinear structure tensor with an underlying
isotropic and anisotropic diffusion process, respectively

conventional structure tensor. However, the strategies how to choose an adap-
tive neighborhood are different. In some typical applications of the structure
tensor, the data-adaptive structure tensors have shown their beneficial prop-
erties in comparison to the classic structure tensor. The differences between
the data-adaptive structure tensors have been sometimes marginal, sometimes
larger, depending on the application. This yields two messages: firstly, com-
pared to the conventional structure tensor, the data-adaptive methods are in
many cases worth the additional effort. Secondly, it is wise to choose a data-
adaptive technique depending on the application. There is no clear winner
that always performs better than the other techniques.
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Summary. As a step towards a local analysis of local image features, the position,
peak value, and covariance matrix of an isolated, noise-free multivariate Gaussian are
determined in closed form from four ‘observables’, computed by gaussian-weighted
averaging first and second powers of (up to second order) partial derivatives of a
digitized greyvalue distribution.

3.1 Introduction

Spatiotemporal greyvalue variations in an image sequence encode information
about status and change of a depicted scene. The segmentation and tracking of
characteristic greyvalue structures constitute, therefore, basic processing steps
in any attempt to infer the scene structure and its temporal development from
an image sequence.

3.1.1 Optical Flow (OF) and the Greyvalue Structure Tensor

Let g(x) = g(x, y, t) with g ≥ 0 define a digitized image sequence where
the argument specifies a point x = (x, y, t)T at location (x, y)T in the image
plane at time t. Optical Flow (OF) will be denoted by the three-dimensional
vector u = (u1, u2, 1)T in the (x,y,t)-space. OF is usually estimated based on
the assumption that a local greyvalue distribution moves in the image plane
without changes, i.e. the total variation dg(x, y, t) = 0 should vanish.

A local estimation approach determines the OF-vector u by the following
requirement (an overbar indicates – unweighted or weighted – averaging):

((∇g)T u)2 != min!

u
. (3.1)

In order to exclude the trivial solution u = 0, a unit-vector e = (e1, e2, e3)T

is introduced. The boundary condition u3 = 1 is replaced by ‖e‖ = 1. This
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allows to transform the determination of u into an eigenvector problem for e:

∇g(∇g)T e = λ e . (3.2)

The solution is given by the eigenvector emin(x) associated with the small-
est eigenvalue λmin of the tensor ∇g(∇g)T : the local greyvalue distribution
around x changes the least along the direction given by emin(x) from which
one can recover (provided emin,3 = 0) the corresponding OF-vector��

u = (u1, u2, 1)T =
(

emin,1

emin,3
,

emin,2

emin,3
, 1
)T

. (3.3)

3.1.2 The Concept of a ‘Characteristic Greyvalue Structure’

The concept of a ‘characteristic greyvalue structure’ thus deserves closer at-
tention – see, e.g., [2, 7, 12]. Koenderink [8] (see also [9]) suggested that a
Gaussian intensity distribution should be considered to represent the most
elementary characteristic greyvalue structure:

g(x) = g0 e−
1
2 (x−x0)

T Σ−1
0 (x−x0) (3.4)

where g0 denotes the maximum greyvalue at the center-position x0 of a mul-
tivariate, bell-like Gaussian greyvalue distribution and the covariance matrix
Σ03×3 specifies its extent and shape. The notion of an elementary characteris-
tic greyvalue structure may gain additional support if it becomes possible to
estimate the parameters g0, x0, and Σ03×3 from real-world image sequences.

In principle, these parameters can be estimated easily provided one can
assume that the Gaussian to be determined is the only function which differs
significantly from zero in the entire image plane at all times. This assumption,
however, will in general be grossly violated within an image sequence with
many different local spatio-temporal greyvalue structures. It thus will be useful
to estimate the parameters of a 3D Gaussian Bell (3D-GB) by using only local
evidence.

A procedure will be presented in the sequel which allows – at least in prin-
ciple – to determine the parameters of a 3D-GB in a closed-form solution. This
solution approach combines four ‘observables’ which are obtained by averag-
ing up to second order partial derivatives of the greyvalue distribution within
a local Gaussian bell-like ‘probing environment’. This weighted averaging is
expected to compensate to some extent a potential noise-sensitivity caused
by the use of partial derivatives (see, e.g., [5]).

3.2 Greyvalue Structure Tensor of a Gaussian Bell

Let a ‘probing environment’ be defined by a Gaussian weighting function
centered at the origin of the coordinate system with known covariance matrix
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Σ3×3 – see (3.5). Eventually, the unknown parameters of a 3D-GB according
to (3.4) have to be determined from noisy image data. It appears natural,
therefore, to reduce the influence of noise on parameter estimation by lowpass–
filtering. In order to keep the number of system parameters small, lowpass–
filtering is performed by convolving the given greyvalue distribution with a
Gaussian which has the same covariance matrix as the one defining the probing
environment:

gauß(x) =
1√

(2π)3|Σ|
e−

1
2 xT Σ−1x (3.5)

where |Σ| denotes the determinant of Σ. Somewhat tedious, but otherwise
straightforward manipulations yield (to save space, triple integrals are repre-
sented by a single integral symbol in the remainder of this contribution)

gLP (x,x0) =
1√

(2π)3|Σ|

+∞∫
−∞

dξ g(ξ) · e− 1
2 (ξ−x)T Σ−1(ξ−x)

=
1√

(2π)3|Σ|

+∞∫
−∞

dξ g0 e−
1
2 (ξ−x0)

T Σ−1
0 (ξ−x0)e−

1
2 (ξ−x)T Σ−1(ξ−x)

=
g0 e−

1
2 (x−x0)

T (Σ+Σ0)
−1(x−x0)√∣∣∣∣∣∣∣Σ 1

2
(
Σ−1

0 + Σ−1
)
Σ

1
2

∣∣∣∣∣∣∣ . (3.6)

3.2.1 Determination of g2
LP (x0), a First Observable

The weighted squared greyvalue of the lowpass–filtered greyvalue distribution
within the probing environment constitutes the first observable to be derived:

g2
LP (x0) =

1√
(2π)3|Σ|

+∞∫
−∞

dx
(
gLP (x,x0)

)2 e−
1
2 xT Σ−1x

=
g2
0

+∞∫
−∞

dx
(
e−

1
2 (x−x0)

T (Σ0+Σ)−1(x−x0)
)2

e−
1
2 xT Σ−1x∣∣∣∣∣∣∣Σ 1

2
(
Σ−1

0 + Σ−1
)
Σ

1
2

∣∣∣∣∣∣∣√(2π)3|Σ|

=
g2
0

+∞∫
−∞

dx e−
1
2 (x−x0)

T 2 (Σ0+Σ)−1(x−x0) e−
1
2 xT Σ−1x

|I + Γ−1|
√

(2π)3|Σ|
. (3.7)

The last equation uses the abbreviation Γ = Σ− 1
2 Σ0 Σ− 1

2 with I denoting
the (3× 3)-identity matrix diag(1, 1, 1). Similar manipulations as in the case
of lowpass–filtering eventually lead to
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g2
LP (x0) =

g2
0 e−xT

0 (Σ0+3 Σ)−1x0

|Γ−1|
√
|Γ + I| × |Γ + 3 I|

. (3.8)

3.2.2 The Grayvalue Structure Tensor, a Second Observable

As usual, the gradient of a greyvalue distribution g(x) is obtained by convolv-
ing g(x) with the derivative of a Gaussian lowpass–filter:

∇ gLP (x) =
(
∇gauß ∗ g

)
(x) . (3.9)

According to (3.4 + 3.6), this results for the case of a 3D-GB in

∇ gLP (x,x0) =
g0

(
− (Σ0 + Σ)−1 (x− x0)

)
√
|I + Γ−1|

e−
1
2 (x−x0)

T (Σ0+Σ)−1(x−x0).

(3.10)

The Greyvalue Structure Tensor (GST) for the 3D-GB is defined as

GST(x0) =
∫

dx
{
∇gLP (x,x0)

(
∇gLP (x,x0)

)T gauß(x)
}

(3.11)

which – after insertion of ∇gLP (x,x0) from (3.10) – can be written in the
form

GST(x0) =
g2
0

|I + Γ−1|

×
+∞∫

−∞
dx

(
(Σ0 + Σ)−1 (x− x0)

)(
(x− x0)

T (Σ0 + Σ)−1
)

×
(
e−

1
2 (x−x0)

T (Σ0+Σ)−1(x−x0)
)2 1√

(2π)3|Σ|
e−

1
2 xT Σ−1x

=
g2
0

|I + Γ−1|
√

(2π)3|Σ|

+∞∫
−∞

dx (Σ0 + Σ)−1 (x− x0) (x− x0)
T

e−
1
2 {(x−x0)

T 2 (Σ0+Σ)−1(x−x0) + xT Σ−1x} (Σ0 + Σ)−1
.

(3.12)

In order to evaluate the integral, the integration variable is changed to

η =
(
Σ−1 + 2 (Σ0 + Σ)−1

) 1
2

x−
(
Σ−1 + 2 (Σ0 + Σ)−1

)− 1
2

2 (Σ0 + Σ)−1
x0
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with

dη =
∣∣∣∣∣∣∣∣∣∣(Σ−1 + 2 (Σ0 + Σ)−1

) 1
2

∣∣∣∣∣∣∣∣∣∣dx =
∣∣∣∣∣∣∣Σ−1 + 2 (Σ0 + Σ)−1

∣∣∣∣∣∣∣ 12 dx .

The vector difference x − x0 can then be expressed in the form

x − x0 =
(
Σ−1 + 2 (Σ0 + Σ)−1

)− 1
2

η

+
((

Σ−1 + 2 (Σ0 + Σ)−1
)−1

2 (Σ0 + Σ)−1 − I

)
x0 .

Upon insertion, the integral will comprise outer products η ηT , η xT
0 , x0 ηT ,

and x0 xT
0 . Since the outer products η xT

0 and x0 ηT are antisymmetric with
respect to a sign inversion of the integration variable η, the integrals contain-
ing these factors vanish due to symmetry considerations. A gradual reduction
of the resulting expressions eventually leads to

GST(x0) =
g2
0 e−xT

0 (Σ0+3Σ)−1x0 |Γ |√
|Γ + I| |Γ + 3 I|

×Σ− 1
2

(
(Γ + I)−

1
2 ×

(
Γ + 3 I

)−1

× (Γ + I)−
1
2

+ (Γ + 3 I)−1 ×Σ− 1
2 x0 xT

0 Σ− 1
2 × (Γ + 3 I)−1

)
Σ− 1

2 .

(3.13)

The expression for the 3×3-tensor GST given by (3.13) relates an ‘observable’
computed according to (3.11) with the unknown peak greyvalue g0, three un-
known position parameters x0 and six parameters of the unknown covariance
matrix Σ0. The scalar factor in front of the sum of matrix products can be
completely replaced by g2

LP (x0). Since matrices on both sides are symmet-
ric, they can be diagonalized simultaneously, yielding one equation for each
of the three eigenvalues. So far, we are thus left with three equations for six
remaining unknowns, namely the components of x0 and the eigenvalues of Γ ,
i.e. Σ0, because the covariance matrix Σ for the ‘Gaussian probe’ is known.

3.3 Weighted Average of the Hessian

The considerations at the end of the preceding section suggest to search
for another independent matrix equation. As will be shown in the sequel, a
weighted average of the tensor of second partial derivatives – the Hessian1 of
the GB – can provide the desired equations after suitable normalization. This
1 As used, e.g., in [3, p. 488]; occasionally, the term ‘Hessian’ denotes the determi-

nant of the matrix of second partial derivatives, see [6, p. 22]
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tensor, however, is a linear function of the (lowpass–filtered) input greyvalues
whereas the GST comprises the square of these lowpass–filtered greyvalues
and, thereby, indirectly some product of the lowpass–filter with itself. In or-
der to obtain results compatible with (3.13), lowpass–filtering prior to the
computation of the second partial derivatives will thus be performed based
on a Gaussian with twice the covariance matrix as the one given in (3.5):

gLP,2Σ(x,x0) =
g0 e−

1
2 (x−x0)

T (Σ0+2 Σ)−1(x−x0)√
|2Σ| ×

∣∣∣∣∣∣∣Σ−1
0 + (2Σ)−1

∣∣∣∣∣∣∣ . (3.14)

The tensor of second partial derivatives of a twice lowpass–filtered 3D-GB
thus can be written as

∇∇gLP,2Σ(x,x0) =
[
(Σ0 + 2Σ)−1 (x− x0) (x− x0)

T (Σ0 + 2Σ)−1

− (Σ0 + 2Σ)−1
]
gLP,2Σ(x) . (3.15)

3.3.1 Weighted Average of the Tensor
of Second Partial Derivatives

Using the expression for ∇∇gLP,2Σ(x,x0) given by the last equation of the
preceding section, the computation of its weighted average requires to evaluate

∇∇gLP,2Σ(x0) =
g0√

(2π)3 |Σ| |2Σ| ×
∣∣∣∣∣∣∣Σ−1

0 + (2Σ)−1
∣∣∣∣∣∣∣

×
+∞∫

−∞
dx

{[
(Σ0 + 2Σ)−1 (x− x0) (x− x0)

T (Σ0 + 2Σ)−1 − (Σ0 + 2Σ)−1
]

×e−
1
2 (x−x0)

T (Σ0+2 Σ)−1(x−x0) × e−
1
2 xT Σ−1x

}
. (3.16)

A lengthy, but otherwise elementary computation eventually yields the fol-
lowing compact result:

∇∇gLP,2Σ(x0) =
g0 e−

1
2 xT

0 (Σ0+3 Σ)−1x0
√
|Γ |√

|Γ + 3 I|[(
Σ0 + 3Σ

)−1

x0 xT
0

(
Σ0 + 3Σ

)−1

−
(
Σ0 + 3Σ

)−1
]
. (3.17)

3.3.2 Weighted Average of a Twice Lowpass–Filtered 3D-GB

The determination of the unknown covariance matrix Σ0 will be greatly sim-
plified if the scalar factor in front of the matrix difference in (3.17) can be com-
pensated, too, by a suitable normalization. The experience from the preceding
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section suggests to compute the weighted average of the twice lowpass–filtered
3D-GB greyvalue distribution given in (3.14):

gLP,2Σ(x0) =

+∞∫
−∞

dx
g0 e−

1
2 (x−x0)

T (Σ0+2 Σ)−1(x−x0)√
|2Σ| ×

∣∣∣∣∣∣∣Σ−1
0 + (2Σ)−1

∣∣∣∣∣∣∣ × e−
1
2 xT Σ−1x√
(2π)3 |Σ|

. (3.18)

Similar, but much simpler manipulations as in the case of the preceding inte-
grals result in

gLP,2Σ(x0) =
g0 e−

1
2 xT

0 (Σ0+3 Σ)−1x0
√
|Γ |√

|Γ + 3 I|
. (3.19)

3.4 Determination of Parameters of a Gaussian Bell

Using the result of the preceding section, the difference of matrix products
in the expression for the averaged tensor of second partial derivatives from
(3.17) can be rewritten in the form

∇∇gLP,2Σ(x0)
gLP,2Σ(x0)

=
[(

Σ0 + 3Σ
)−1

x0 xT
0

(
Σ0 + 3Σ

)−1

−
(
Σ0 + 3Σ

)−1
]

.

(3.20)

Simultaneous extraction of the known factor Σ
1
2 from the expressions (Σ0 +

3Σ) – once to the left and once to the right – allows to isolate the difference
of matrix products in a form suitable for further evaluation:

Σ
1
2 GST (x0)Σ

1
2

g2
LP (x0)

=

(
(Γ + I)−

1
2 × (Γ + 3 I)−1 × (Γ + I)−

1
2

+ (Γ + 3 I)−1 × Σ− 1
2 x0 xT

0 Σ− 1
2

× (Γ + 3 I)−1

)
, (3.21)

Σ
1
2 ∇∇gLP,2Σ(x0)Σ

1
2

gLP,2Σ(x0)
=
[(

Γ + 3 I
)−1

×Σ− 1
2 x0 xT

0 Σ− 1
2

×
(
Γ + 3 I

)−1

−
(
Γ + 3 I

)−1]
. (3.22)

Subtraction of the second matrix equation from the first one – obtained from
(3.13) – removes the terms which depend on the unknown 3D-GB center
position x0:
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Σ
1
2 GST (x0)Σ

1
2

g2
LP (x0)

−
Σ

1
2 ∇∇gLP,2Σ(x0)Σ

1
2

gLP,2Σ(x0)

= (Γ + I)−
1
2 ×

(
Γ + 3 I

)−1

× (Γ + I)−
1
2 +

(
Γ + 3 I

)−1

. (3.23)

Note that the left-hand side has been constructed entirely from previously de-
rived ‘observables’ in combination with the known covariance matrix Σ of the
‘Gaussian probe’. Using the abbreviation Φ = Γ +2 I, the right-hand side can
be transformed into

(
Φ− Φ−1

)−1. Let λi, i = 1, 2, 3 denote the eigenvalues of
the inverse of the observable expression on the left-hand side and correspond-
ingly λΦi

, i = 1, 2, 3 the eigenvalues of the matrix Φ. One thus obtains three
quadratic equations λi = λΦi

− λ−1
Φi

with the solutions

λΦi
=

λi

2
±

√
λ2

i

4
+ 1 , i = 1, 2, 3 . (3.24)

The positive root has to be taken because Φ represents a positive-definite
matrix. Since both sides of the matrix equation (3.23) share the same eigen-
vectors, Φ has been determined which implies that Γ = Φ− 2 I is known and
thus Σ0 = Σ

1
2 Γ Σ

1
2 . The known Γ can now be exploited in order to extract

the unknown vector x0 from the sum of the two component-equations (3.21 +
3.22):

Σ
1
2 GST (x0)Σ

1
2

g2
LP (x0)

+
Σ

1
2 ∇∇gLP,2Σ(x0)Σ

1
2

gLP,2Σ(x0)

− (Γ + I)−
1
2

(
Γ + 3 I

)−1

(Γ + I)−
1
2 + (Γ + 3 I

)−1

= 2×
(
Γ + 3 I

)−1

×Σ− 1
2 x0 xT

0 Σ− 1
2 ×

(
Γ + 3 I

)−1

. (3.25)

The right-hand side represents the outer product of a vector
√

2 (Γ + 3 I)−1×
Σ− 1

2 x0 with itself, i.e. x0 can be determined from the eigenvector related to
the – in general uniquely defined – non-zero eigenvalue of this matrix. The
sign to be used is fixed by selecting the alternative which points towards the
center, i.e. the eigenvector should point into the same direction as the gradient
vector – unless the corresponding eigenvalue is zero, too, because the probe
happens to be already positioned ‘on top’ of the GB to be determined.

3.5 Discussion

The preceding exposition outlines an algorithm to determine all unknown
parameters of an isolated ‘Gaussian Bell (3D-GB)’ from a noise-free greyvalue
distribution.
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Fig. 3.1. A bivariate ‘Gaussian Bell’ GBinput with Σ0 = diag(64, 128) (in pixel
units) is intensity-coded (brightest pixel = peak value). The center of the ‘probe’
Gaussian GBprobe is given in parentheses relative to the center of GBinput. The
(1 s.d.) ellipse indicates the estimated center and covariance matrix (see text)

Figure 3.1 illustrates results obtained by this approach. To simplify com-
parisons across panels, the ‘input’ GB with Σ0 = diag(64, 128) (in pixel units)
is centered at the origin, whereas the ‘probe’ Gaussian Bell GBprobe is cen-
tered at different locations given in parentheses, with the same covariance
matrix ΣprobeΣ = diag(2, 2) used for all tests. The ‘footprint’ for the discretized
GBprobe has been extended automatically such that neglected contributions
outside the footprint remain below 0.1 %, see [14]. In the center panel, the
estimated center and 1 standard deviation (s.d.) ellipse – superimposed onto
the greyvalue-coded GBinput – agrees well with expectations. The panels sur-
rounding the center one show the estimated center location and 1 s.d. ellipse
when the GBprobe is shifted away from the origin by (roughly, caused by the
probe center being quantized to integer pixel units) 1 s.d. of Σ0 up and to
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Fig. 3.2. Analogously to Fig. 3.1, but with another GB added, centered at (−25,
+25) with a covariance matrix Σ02 = diag(128, 64). In comparison with Fig. 3.1,
the effect of this second GB on the estimation results becomes the more prominent
the closer the GBprobe is located to the second GB (see text). Note, however, the
comparatively quick decay of this effect

the left, vertical upwards, and sloping up and to the right, respectively. The
line segment connects the center of GBprobe with the estimated center for
GBinput. The bottom row shows results for shifts by roughly 2 s.d. in the
opposite direction as in the top row, respectively. Even with a probe center
having been shifted up to 2 s.d. away from the center of GBinput, the esti-
mates agree acceptably with the corresponding parameters of GBinput. This
reminds of findings reported for a low-level feature extraction approach with
some formal similarities (see [4, Sect. 3.1]).

Figure 3.2 illustrates results if another Gaussian Bell is added at location
(−25, +25) with a covariance matrix Σ02 = diag(128, 64). The probe centers
have been chosen identically to those in the corresponding panels of Fig. 3.1.
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The closer the GBprobe is located to the second GB, the stronger is the effect
on the estimates. At the origin, the effect can be just noticed, however, and
it becomes almost unnoticeable further away (bottom row, center and right
panel). Inspection of the result for the GST in (3.13) and for the tensor of
averaged second partial derivatives in (3.17) shows that the influence of a
3D-GB centered at x0 decays exponentially with the Mahalanobis distance
from the center of the ‘probing environment’ (the origin for these equations).
Additional characteristic greyvalue distributions which are compatible with a
3D-GB model and are positioned at greater Mahalanobis distances from the
current ‘probing center’ are thus expected to quickly loose their influence upon
the estimates for a ‘locally dominant’ 3D-GB. It remains to be investigated
how sensitive this procedure will be to noise and possible related numerical
problems like, for example, in analogous studies on self-adaptive GST and
OF estimation [14, 15, 16]. When applied to OF-estimation, this approach
assumes that a delayed evaluation can delimit non-causal effects (see, e.g.,
[10, 13]) reasonably well.

An advantage of this contribution is seen in the fact that the concept
of a characteristic local greyvalue structure has been operationalized by a
direct local computation – at least for the ‘ideal’ case of GBs not corrupted by
noise. This suggests an (at most) three-step estimation approach: (i) choose an
isotropic GBprobe, a ‘test’ lattice with a unit size commensurate with ΣprobeΣ ,
and apply this approach. (ii) Pick those lattice positions where the estimate
for x0 attains a local minimum, i.e. at locations where an ‘input GB’ appears
to have been localized. (iii) Possibly re-estimate with GBprobe located at these
locations once if ||x0|| exceeds some multiple of the s.d. of GBprobe.

Another reason for a re-estimation could be that ΣprobeΣ differs too much
from the estimated Σ0 – or if it is suspected that a strongly localized grey-
value structure happens to be on top of a substantially more extended one. It
should be noted, though, that such a procedure does not iterate for a solution,
but searches for two substantially different structures in the same area. In
essence, the approach ‘adapts’ in a single step in the sense that it estimates
non-iteratively the (structure) parameters of the assumed underlying GB. The
structure-estimation problem is thus approached in a more model-based man-
ner in comparison with the adaptive approaches reviewed in Chap. 2 [1]. In
particular, it does not require a Laplacian-Pyramid search – potentially ne-
cessitating fine-graded steps – as discussed in Chap. 4 [11] where, however,
more complex structures such as corners have to be localized.

It may be conceivable to study this closed-form solution approach as a
tool for analytical investigations of structure estimation. Obviously, it ap-
pears interesting to study it for estimating the parameters of Gaussian mixture
distributions. An extension towards more general local greyvalue structures
appears attractive although initial attempts in this direction quickly lead to
nonlinear equations for which I did not yet find solutions as in the case pre-
sented above. This experience does not imply, however, that closed solutions
cannot be found.
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Low-level Feature Detection Using
the Boundary Tensor
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Summary. Tensors are a useful tool for the detection of low-level features such
as edges, lines, corners, and junctions because they can represent feature strength
and orientation in a way that is easy to work with. However, traditional approaches
to define feature tensors have a number of disadvantages. By means of the first
and second order Riesz transforms, we propose a new approach called the boundary
tensor. Using quadratic convolution equations, we show that the boundary tensor
overcomes some problems of the older tensor definitions. When the Riesz transform
is combined with the Laplacian of Gaussian, the boundary tensor can be efficiently
computed in the spatial domain. The usefulness of the new method is demonstrated
for a number of application examples.1

4.1 Introduction

Even when the raw image data are not tensor-valued, tensor-based methods
have been found useful in image analysis because tensors describe local image
properties in a way that is invariant under Euclidean transformations of the
space. The two main applications so far are feature extraction and optical
flow computation. Historically, the latter one has been investigated first. The
optical flow problem can be formulated as the task of finding the main local
orientation at every point of the 3-dimensional spatio-temporal domain that is
formed by interpreting an image sequence as a 3-dimensional data set with two
spatial and one temporal dimensions. One can then define the spatio-temporal
gradient of the sequence f3ff as:

∇f3ff =
(
∂f3ff

∂x
,
∂f3ff

∂y
,
∂f3ff

∂t

)T

(4.1)

1 This work was performed during a visit at the Computer Vision Lab of the Uni-
versity of Linkoping, Sweden. I’d like to thank G. Granlund, M. Felsberg and¨
K. Nordberg for many valuable discussions, and the Informatics Department of
the University of Hamburg for their generous support of this visit.
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Under the assumption of constant optical flow in a neighborhood of the current
point, the flow vector v can be determined from the null-space of the structure
tensor S3 [2, 11], cf. Chaps. 2 by Brox et al. and 3 by Nagel in this volume:

S3v = 0 with S3 = gσ � (∇f3ff ∇fT
3ff ) (4.2)

The structure tensor is the averaged outer product of the spatio-temporal gra-
dient with itself, where the averaging filter gσ (usually a Gaussian) is chosen
according to the size of the neighborhood where the flow is assumed con-
stant. The flow vector is only uniquely determined if the null space of the
3-dimensional structure tensor is 1-dimensional, i.e. if the structure tensor
has rank 2. If it has lower rank, there is no unique flow vector, which is known
as the aperture problem. This problem naturally leads to the definition of the
2D structure tensor as the averaged outer product of just the spatial gradient:

S2 = gσ � (∇f2ff ∇fT
2ff ) with ∇f2ff =

(
∂f2ff

∂x
,
∂f2ff

∂y

)T

(4.3)

This 2-dimensional tensor must have full rank for a unique flow vector to
exist, which is the case if the local image structure is neither flat (as in ho-
mogeneous regions) nor 1-dimensional (as at edges), but has high variation
in all directions. Points of maximal variation are called spatial interest points
and correspond to important structural features such as gray level corners,
junctions, and extrema. They can for example be found as the local maxima
of the corner strength measures proposed by Förstner¨ [6] and Harris [8]:

cFörstner¨ =
det(S2)
tr(S2)

cHarris = det(S2)− κ tr2(S2) (4.4)

where κ is usually set to 0.04. In addition, Forstner [6] and Nagel [11] used the¨
structure tensor to define a contrast independent measure of local isotropy:

croundness =
4det(S2)
(tr(S2))

2 (4.5)

A completely different approach to tensor-based feature detection was pro-
posed by Granlund and Knutsson [9]. They were interested in the character-
ization of locally 1-dimensional image structures, i.e. edges and lines, which
they call simple structures. Formally, simple structures are defined by the fact
that the image is locally reduced to a 1-dimensional function that varies only
along a certain direction n and is constant perpendicular to that direction:

f2ff (x) ≈ f1(xT n) (4.6)

Then the local signal energy and orientation can be represented by an orien-
tation tensor as

T = λnnT (4.7)
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Since in [9] the authors are interested in arbitrary 1-dimensional features,
the estimation procedure for T must react uniformely to edges and lines. This
property is called phase invariance because edges and lines can be understood
as superpositions of trigonometric (complex exponential) basis functions at
different phase (namely phase 0 or π for lines and ±π/2 for edges). Phase
invariance can be achieved by estimating the tensor with oriented quadrature
filters [9] or with a local [4]. Quadrature filter pairs were originally invented
to estimate the instantaneous energy and phase of a 1-dimensional signal. A
quadrature pair (heven, hodd) consists of an even and an odd symmetric filter,
and the instantaneous (edge or line) energy can be calculated as the sum of
squares of the filter responses:

E(x) = (heven � f1)2 + (hodd � f1)2 (4.8)

To actually form a quadrature pair, the filters must be related by the Hilbert
transform H, which is defined in the Fourier domain by

HoddHH (u) = H[HevenHH (u)] = j
u

|u|HevenHH (u) = j sign(u)HevenHH (u) (4.9)

(slanted capitals denote the Fourier transforms of the corresponding lower-
case functions). To apply these filters in 2D, it is conventional to rotate them
into some orientation of interest. In order to estimate T on a 2D image, at
least 3 orientations are necessary [9]. When the local image structure is indeed
1-dimensional and the orientations θi = [0, π/3, 2π/3] are used, we get

T =
∑

i

(mimT
i − I/4)Ei (4.10)

where Ei is the energy computed for orientation i, mi = (cos θi, sin θi)T and
I is the unit tensor. A second order polynomial approximation of the image
structure around x0 is defined by the local model

fmodelff (x0 + x) = c + xT b + xT Ax (4.11)

An in-depth discussion of how to estimate A,b, c can be found in [4]. Possibil-
ities include local polynomial fits, facet models, moment filters, and Gaussian
derivative filters. The orientation tensor is then defined as

T = AAT + γbbT (4.12)

However, with the common estimation methods for A and b this tensor is
only phase invariant for a single frequency determined by γ, which is therefore
considered as an algorithm tuning parameter.

The existing methods have a number of shortcomings. The structure tensor
approach is not phase invariant, because, being based on the image gradient,
it reacts differently to edges and lines. Furthermore, due to averaging over a
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neighborhood, nearby features (e.g. the corners of a small triangle) will blend
into only a single response and cannot be resolved separately. In the quadra-
ture filter approach, definite statements about the properties of T can only
be made if the local image structure is indeed 1-dimensional. It is unclear
exactly what happens at 2-dimensional configurations. Finally, when the ten-
sor is based on a polynomial approximation, the choice of the parameter γ is
problematic. Usually it is impossible to find a single γ that works well on the
entire image, and a procedure to choose it locally is not known. Consequently,
the response is not phase invariant at most locations, and multiple responses
near a single line are common.

In this contribution I am discussing the boundary tensor introduced in [10]
as a method designed to overcome these shortcomings. It will be based on a
new generalization of quadrature filters to 2 dimensions using the Riesz trans-
form. The boundary tensor will turn out to be structurally equivalent to the
polymial-based tensor definition, but with a uniquely determined parameter
γ = 1. It will exhibit phase invariance for all frequencies in the same way as
the quadrature filter approach. By analysing the new method in the frame-
work of quadratic convolution, we can also show that it reacts in a useful way
to locally 2-dimensional configurations. An efficient spatial domain algorithm
and a number of feature analysis examples conclude the chapter.

4.2 The Boundary Tensor

Before we go on to define the boundary tensor, we recall that (Cartesian)
tensors are in general characterized by the fact that the tensor elements in
a rotated coordinate system can be calculated as linear combinations of the
tensor elements in the original coordinate system (cf. Chap. 1 in this book):

T̃iTT 1...ip
=

N∑
l1=1

· · ·
N∑

lp=1

ri1l1 . . . riplpTlTT 1...lp (4.13)

where TlTT 1...lp are the elements of a pth-order tensor, and ril are the elements
of the N -dimensional rotation matrix. These transformation rules ensure that
the properties represented by the tensor as a whole remain invariant under
Euclidean transformations of the space, even when the individual tensor ele-
ments do not. New tensors can be created from existing ones by linear com-
binations, by means of the Cartesian (outer) product and by contraction. A
tensor of order zero is a rotationally invariant scalar. Therefore, we can inter-
pret every pixel of the original image or an image obtained by a rotationally
symmetric filter as a 0th-order tensor.

We can define a tensor-based generalization of quadrature filtering by re-
placing the 1-dimensional Hilbert transform with the N -dimensional Riesz
transform [5] which is defined as:
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Fourier domain: HN [H(u)] = j
u
|u|H(u) (4.14)

spatial domain: HN [h(x)] =
Γ ((N + 1)/2)

π(N+1)/2

(
−x
|x|N+1

� h(x)
)

(4.15)

where Γ is the gamma function. In essence, the scalar-valued frequency co-
ordinate u of the Hilbert transform is simply replaced by an N -dimensional
frequency vector u. The Riesz transform can be interpreted as a first-order
tensor operator because it turns a scalar valued function into a first or-
der tensor-valued one. This can be easily seen by observing that the ra-
tio u

|u| defines the first order spherical harmonics (i.e. (cos θ, sin θ)T in 2D,
(cos θ cosφ, sin θ cosφ, sinφ)T in 3D etc.), and polar separable functions with
this angular behavior conform exactly to (4.13) with p = 1. Spherical har-
monics are preserved by inverse Fourier transformation, so that the spatial
domain version (4.15) of the Riesz transform has the same angular behavior
and the tensor requirements are still satisfied. The Riesz transform is closely
related to the gradient and acts in a qualitatively similar way, as can be seen
by defining the latter in terms of the former:

∇Nh(x) � �� HN [ |u|H(u)] (4.16)

where � �� denotes Fourier correspondence. Both operators have the same
angular behavior, but the gradient in addition changes the radial part of the
spectrum. This difference is of crucial importance for the definition of phase-
invariant operators. Another important observation concerns the difference
between the 1-dimensional Hilbert transform and the multi-dimensional Riesz
transform: while applying the former transform twice just reproduces the orig-
inal signal (with reversed sign), multiple applications of the Riesz transform
create tensors of higher and higher orders. This is again similar to the gradient
operator, where twofold application results in the Hessian matrix etc.

However, applying the Riesz transform to the original image makes little
sense in practice, because its spatial domain kernel decreases only as |x|−N ,
so that feature localization would be bad. Instead, one combines it with a
radially symmetric band-pass. In contrast to derivative filters, where the band-
pass changes with the derivative order, the band-pass is kept the same for all
orders of the Riesz transform. We define the first and second order band-pass
Riesz transforms b and A of an image F in the Fourier domain as

b � �� HN [K(|u|)F (u)] = j
u
|u|K(|u|)F (u) (4.17)

A � �� H2
N [K(|u|)F (u)] = −uuT

|u|2 K(|u|)F (u) (4.18)

where K(|u|) is the band-pass. It should be noted that these definitions are
valid for all dimensions N ≥ 2. The boundary tensor is now defined as
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B = bbT + AAT (4.19)

This definition is structurally equivalent to (4.12), but the parameter γ is no
longer needed, because the boundary tensor is phase invariant for all frequen-
cies (see below). Since A and b are both real, it follows that B is always
positive semi-definite. Therefore, the trace of the tensor can be interpreted
as a measure of local signal energy, which will be called boundary energy.
The choice of this name stems from the fact that the tensor indeed detects
important boundary features, as is shown below.

4.3 Analysis of the Boundary Tensor
as a Quadratic Filter

In order to analyse the properties of the boundary tensor, we follow the pro-
posal of [12] and formulate the tensor as a quadratic filter [13]. Quadratic
convolution is defined as

f̃(x) =
∫∫

h(x− x1,x− x2)f(x1)f(x2) dx1 dx2 (4.20)

where h(., .) is the kernel, and the method is termed ‘quadratic’ because the
original image f appears twice in the integral. Let gi(x) denote the ith com-
ponent (i = 1...N) of the first order band-pass Riesz transform kernel. Then

(bbT )il = bibl = (gi � f)(gl � f)

=
∫

gi(x− x1)f(x1) dx1

∫
gl(x− x2)f(x2) dx2

=
∫∫

gi(x− x1)gl(x− x2)f(x1)f(x2) dx1 dx2 (4.21)

Similarly, let gil(x) represent component il (i, l = 1...N) of the kernel for the
second order band-pass Riesz transform. This leads to

(AAT )il =
∑

k

AikAkl =
∑

k

(gik � f)(gkl � f)

=
∫∫ (∑

k

gik(x− x1)gkl(x− x2)

)
f(x1)f(x2) dx1 dx2 (4.22)

We can combine both equations into a single quadratic convolution with

hil(x1,x2) = gi(x1)gl(x2) +
∑

k

gik(x1)gkl(x2) (4.23)

Then the components of the boundary tensor can be written as
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spatial domain: Bil(x) =
∫∫

hil(x− x1,x− x2)f(x1)f(x2) dx1 dx2

Fourier domain: Bil(x) � ��

∫∫
HilHH (u,v)F (u)F (v)ej(u+v)T x du dv (4.24)

where F is the N -dimensional Fourier transform of f , HilHH is the 2N -dimensio-
nal Fourier transform of hil, and ej(u+v)T x translates f so that the current
point x becomes the origin. Inserting the Fourier representation of the band-
pass Riesz transform, HilHH gets a simple functional form:

HilHH (u,v) = − ui

|u|
vl

|v|K(|u|)K(|v|) +
∑

k

(
uiuk

|u|2
vkvl

|v|2

)
K(|u|)K(|v|)

=
uivl

|u||v|

(
−1 +

uT v
|u||v|

)
K(|u|)K(|v|) (4.25)

In order for Bil to be real for real images f , it is required that HilHH (−u,−v) =
HilHH (u,v), which is easily verified. Conditions for an N -dimensional tensor
operator to behave like a 1-D quadrature filter for simple images (i.e. images
where f(x) = f̂(xT n) for some unit vector n giving the signal orientation)
are derived in [12]. If the signal is simple, the spectrum of F (u) vanishes for
all u �=�� tn, and the restriction of the kernel to this line must reduce to

HilHH (tn, τn) = ninlĤ(t, τ) (4.26)

Furthermore, in order for the signal energy to be phase invariant Ĥ(t, t) = 0
must hold for all t. Both conditions are fulfilled, because ui = tni and vi =
τni, and thus

HilHH (tn, τn) =
tτninl

|t||τ |

(
−1 +

tτnT n
|t||τ |

))
K(|t|)K(|τ |)

= ninl (− sign(tτ) + 1)K(|t|)K(|τ |) (4.27)

In fact, this is precisely 4 times the expression which [12] derived for the
quadrature filter method according to [9], cf. 4.10), so that both approaches
behave identically for simple signals. For simple signals the signal energy
tr(B) =

∑
k Bkk reduces exactly to the 1-dimensional quadrature energy (4.8):

tr(B) =
∑

k

∫∫
n2

k(− sign(tτ) + 1)K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)nTxTT

dt dτ

=
(
H1[k1] � f̂

)2

+
(
k1 � f̂

)2

(4.28)

where k1 is the 1-dimensional inverse Fourier transform of K and H1[k1] its
Hilbert transform (derivation see appendix).

HilHH is also a useful tool to analyse the behavior of the boundary tensor for
intrinsically 2-dimensional features. To simplify matters, we consider points



70 U. Köthe

x where the spectrum F (u) computed with x as coordinate origin is polar
separable within the pass-band of the tensor filter K(|u|). At many structures
of interest this is at least approximately true. Then the product K(|u|)F (u)
can be written as K(|u|)FrFF (|u|)FaFF (φ). After inserting this and (4.25) into the
boundary tensor expression (4.24), the latter can be transformed into polar
coordinates and simplifies into a product of two integrals:

Bil =
∫∫

uivl

|u||v|

(
−1 +

uT v
|u||v|

)
K(|u|)K(|v|)F (u)F (v) du dv

=
(∫∫

ni(φ)nl(ψ)
(
−1 + nT(φ)n(ψ)

)
FaFF (φ)FaFF (ψ) dφ dψ

)
(∫∫

K(ρ1)K(ρ2)FrFF (ρ1)FrFF (ρ2) ρ1 dρ1 ρ2 dρ2

)
(4.29)

= Ba,iltensorBr

with u = ρ1n(φ)= ρ1(cos(φ), sin(φ))T and v = ρ2n(ψ)= ρ2(cos(ψ), sin(ψ))T .
It should be noted that this is a major advantage of using the Riesz transform:
Otherwise, the first and second order filter kernels would have had different
radial parts, and the separation of angular and radial behavior were impossi-
ble. The angular integral Ba,il in (4.29) can be further simplified in terms of
the Fourier coefficients of FaFF :

αn =
∫

cos(nφ)FaFF (φ) dφ βn =
∫

sin(nφ)FaFF (φ) dφ (4.30)

It turns out that only the Fourier coefficients up to second order are relevant
(the others drop out due to orthogonality of trigonometric functions), and the
boundary tensor components can be written as (see appendix):

B11 = (α2
1 + 1

4 (α0 + α2)2 + 1
4β

2
2)Br

B22 = (β2
1 + 1

4 (α0 − α2)2 + 1
4β

2
2)Br

B12 = (α1β1 + 1
2α0β2)Br

(4.31)

where Br is the radial part of (4.29). These equations give us a qualitative
understanding of how the boundary tensor reacts to 2D features: At (approx-
imately) polar separable locations, its components are products of radial and
angular expressions. The former measure the contrast of the local structure at
the scale of the bandpass filter, and the latter determine how well the angular
shape can be represented with circular harmonics up to order 2. Since many
important structures (edges, lines, saddles, corners) are covered by this model,
the boundary tensor reacts reasonably at many locations where for example
the gradient (which solely relies on first-order circular harmonics) fails. We
illustrate this with two examples: parameterized step and line edges. In the
spatial domain the angular parts of these features can be written as

fa,ff edge(φ) = Θ(φ+φ0)−Θ(φ−φ0) fa,ff line(φ) = δ(φ+φ0)−δ(φ−φ0) (4.32)
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Fig. 4.1. Eigenvalue ratios µ = min(B11,B22)/ max(B11,B22) for a parameterized
edge (left) and line (right) as a function of l0 = φ0/(2π)

where Θ is the step function and δ the impulse function. The parameter
φ0 ∈ [0, π] determines the angle of the corner, and φ0 = π/2 results in a
straight edge or line. Due to symmetry, B12 is always zero at the center of
these configurations, and B11, B22 are the tensor eigenvalues. The ratio of
the eigenvalues is a measure that distinguishes locally 1-dimensional and 2-
dimensional configurations – it is near 0 in the former and near 1 in the latter
case. Figure 4.1 shows these ratios as a function of φ0. It can be seen that we
get indeed µ = 0 for φ0 = π/2 (straight edge/line) and µ = 1 for φ0 = π/4
and φ0 = 3π/4 (90 degree corners). For φ0 = 0 the edge disappears, and
µ = 1 indicates that the remaining homogenuous region is interpreted as a 2D
configuration, whereas in case of the line, φ0 = 0 results in a half-line which
the boundary tensor cannot distinguish from a straight line, hence µ = 0.
Since more complex junction configurations can be expressed as combinations
of multiple edge and/or line corners, they can be analysed in essentially the
same way. All junctions that can be approximated well with an angular second-
order Fourier series (e.g. saddle points, crossings of two straight lines) will be
characterized correctly by the boundary tensor.

4.4 Efficient Computation of the Boundary Tensor

In order to compute the boundary tensor in practice we have to choose a
suitable band-pass K. Filters based on Gaussian or exponential transfer func-
tions and log-normal filters are obvious choices. If implemented in the Fourier
domain, all these filters are equally easy to compute. However, we have only
been able to find an efficient spatial domain implementation of the boundary
tensor (or actually a close approximation of it) if the band-pass equals the
magnitude of the Laplacian of Gaussian

K(|u|, σ) = |u|2e−
|u|2σ2

2 (4.33)

Moreover, we have experimentally found that this band-pass gives better fea-
ture resolution (less blending of nearby features into each other) than other
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choices, which is probably due to the Gaussian’s optimal localization in both
the spatial and frequency domains. The spectra of the filters are the product
of the bandpass with first and second order Riesz transforms:

Gi(u) = jui|u|e−
|u|2σ2

2 (4.34)

Gil(x) = −uiule
− |u|2σ2

2 (4.35)

It can be seen that the second order spectra are exactly those of the second
derivative of the Gaussian. Therefore, the spatial filter function is:

gil(x) =
xixl − 2σ2δil

2πσ6
e−

|x|2
2σ2 (4.36)

and the resulting tensor A is the Hessian of Gaussian, which can be efficiently
computed by separable convolutions. Inverse Fourier transform of the first
order filters is more complicated (see appendix). The result is

gi(x) =
xi

4
√

2πσ7
e−

|x|2
4σ2

(
(
((
|x|2−3σ2)I0II

(
|x|2
4σ2

)
−(|x|2−σ2)I1

(
|x|2
4σ2

))
(4.37)

where I0II and I1 are modified Bessel functions of the first kind. Figure 4.2
left depicts the shape of g1 and g11 along the x1 axis. Unfortunately, the first
order kernels are unsuitable for practical applications because their asymptotic
decay is only O(|x|−4) and they are not Cartesian separable. This means that
large 2-dimensional filter masks are needed, which makes computation of gi

very slow. Therefore, we apply a design technique similar to the one used for
steerable quadrature filters [7] to approximate gi with filters g̃i that can be
computed separably and decay exponentially. The idea is to realize g̃i as sums
of filters that are third order polynomials times a Gaussian. The polynomials-
times-Gaussian are defined so that they together form a supersymmetric third
order tensor filter g̃ijk (a supersymmetric tensor has the property that its
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Fig. 4.2. Left: g1 (solid) and g11 (dashed) along the x1 axis when the band-pass is
the Laplacian of Gaussian at σ = 1 (g1 and its approximation g̃1 according to (4.39)
and (4.41) are almost indistinguishable in the depicted 4σ interval). Right: spectra
of K (dashed) and its approximation G̃1 = F [g̃1] (solid) at σ = 1
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components don’t change under permutation of indices, i.e. g̃112 = g̃121 = g̃211

etc.). Then the first order tensor filter can be obtained by contraction over
any pair of indices, i.e. g̃i =

∑
k g̃ikk. We make the following ansatz:

g̃iii(x, σ′) =
(
ax3

i

σ′5 +
bxi

σ′3

)
g(x, σ′)

g̃ill(x, σ′) =
xi

σ′2

(
ax2

l

σ′3 +
b

3σ′

)
g(x, σ′) (i �=�� l) (4.38)

g̃ilk(x, σ′) =
a

σ′5 xixlxk g(x, σ′) (i �=�� l �=�� k)

where g(x, σ′) is an N -dimensional Gaussian, and the last function is only
required if N > 2 (for N = 2, the condition i �=�� l �=�� k is never satisfied).
By expressing these functions in a rotated coordinate system, it is easy (if
tedious) to verify that (4.13) is fulfilled with p = 3 . The spectrum of g̃i is

g̃i =
∑

k

g̃ikk
� �� G̃i(u, σ′) =

ui

σ′

(
a

((
(4− |u|2σ′2) +

4b
3

)
e−|u|2σ′2/2 (4.39)

We now formulate a least squares problem to choose a, b, σ′ so that the radial
part of G̃i(u, σ′) becomes as similar to K(u, σ) as possible:

minimize w.r.t. a, b, σ′ :
∫ (

G̃(|u|, σ′)−K(|u|, σ)
)2

du (4.40)

where G̃(|u|, σ′) is obtained from G̃i(u, σ′) by replacing ui with |u|. The
optimum depends on the dimension N of the space. For N = 2, 3 we get

a2D = −0.5589, b2D = 2.0425, σ′
2D = 1.0818σ

a3D = −0.5086, b3D = 1.8562, σ′
3D = 1.0683σ (4.41)

Figure 4.2 right depicts G̃ and K for the 2D case. It should be noted that
it is important to include the filter scale in the optimization because this
significantly improves the fit. To conclude, we can compute the boundary
tensor by using 7 separable, exponentially decaying filters in 2D, and 15 such
filters in 3D. This can be compared with the structure tensor, where N filters
are used to compute the gradients, but then N(N + 1)/2 filters at a larger
(typically doubled) scale are applied to integrate the gradient tensors over a
neighborhood. Thus, the number of filters is lower, but larger windows are
required, making the overall computational effort about equal.

4.5 Applications

The boundary tensor can be used much like the structure tensor, e.g. as an
integrated detector for low-level image features such as edges, lines, corners,
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Fig. 4.3. Top: test patterns, center: boundary energy tr(B), bottom: junction energy
tr(Bjunction)

and junctions (in 3D additionally surfaces), and to estimate local orienta-
tion. For feature analysis it is advantageous to consider the eigensystem of
the boundary tensor. Using the eigenvalues µ1 ≥ µ2 ≥ 0 and the eigenvector
n corresponding to µ1 (cf. Chap. 1 by Hagen and Garth), one can decom-
pose the boundary tensor into its 1D and 2D (edge/line and corner/junction)
contributions:

B = Bedge + Bjunction = (µ1 − µ2)nnT + µ2I (4.42)

Figure 4.3 demonstrates this for a number of test patterns. The angle ψ be-
tween n = (cos(ψ), sin(ψ))T and the x-axis is given as

ψ =
1
2

arctan
(

2B12

B11 −B22

)
(4.43)

Local maxima of the 2D energy tr(Bjunction) = 2µ2 are a good corner and
junction detector. Its localization error is only half as big as the errors of the
Forstner and Harris detectors (4.4), Fig. 4.4 left. Moreover, it does not give¨
multiple responses at saddle-like junctions, Fig. 4.4 right. An edge detector
can be defined by reducing the edge part of the tensor to a vector

g =
√
µ1 − µ2 n (4.44)

which can be used instead of the gradient vector in Canny’s algorithm [3].
This algorithm can then detect lines as well as edges, and sub-pixel accurate
localization is still possible, although we have found the noise sensitivity of
edge position to be somewhat higher than for the standard Canny algorithm.
Edge/line detection can also be integrated with corner/junction detection,
because both feature types are derived from the same tensor representation.
In this way, a complicated integration step of edge and corner responses into
a unified boundary representation is avoided. This is illustrated in Fig. 4.5.
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Fig. 4.4. Corner localization of the boundary tensor (white +) and Förstner detector¨
(black ×) relative to exact corner location (white ×). Note the double response of
the Forstner detector in the right image. Had the contrast of the two wings of the¨
saddle been equal, the boundary tensor response would have been exact. Harris
detector results are very close to Förstner’s¨

Fig. 4.5. Top: original image. bottom: integrated edge (black lines) and junction
(white crosses) detection
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4.6 Conclusions

In this chapter we discussed the boundary tensor as a new way to represent
low-level feature strength and orientation. It combines many good properties
of existing tensor-based approaches and avoids a number of problems. The
key insight is that the filters used to compute the boundary tensors should be
defined in terms of the Riesz transform which determines the angular filter
sensitivity, combined with a band-pass which controls scale sensitivity. In this
way, the tensor components become products of an angular part that charac-
terizes the feature type, and a radial part that determines feature strength at
a given scale. Since the tensor definition does not depend on the dimension
of the image, it can readily be used for 3D (volume or space-time) and 4D
(volume-time) data sets.

We have shown that a tensor defined with Riesz transform filters reacts like
a quadrature filter to locally 1-dimensional configurations. We used filters up
to second order, so the boundary tensor also reacts in a predictable and useful
way to 2-dimensional configurations that are well approximated by a second-
order angular Fourier series, e.g. corners, saddle junctions and crossings of
straight lines. If more complex junction configurations have to be analysed,
it is possible to extend the boundary tensor definition towards third and
higher order Riesz transforms by including terms of the form

∑
k,m TikmTT TlkmTT

etc. However, higher order filters can no longer be used at small scales due
to angular aliasing, so the best trade-off will be application dependent. By
choosing the band-pass as the Laplacian of Gaussian, we were able to derive an
efficient and accurate spatial domain implementation. In a number of examples
we illustrated the good performance of the new method. Further illustrations
can be found in [10].

Appendix

Derivation of (4.28): We want to show that in case of a simple signal
the trace of the boundary tensor is exactly the 1-dimensional signal energy.
Observe that − sign(tτ) = j sign(t)j sign(τ) and

∑
k n2

k = 1:

tr(B) =
∑

k

∫∫
n2

k(− sign(tτ) + 1)K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)nTxTT

dt dτ

=
∑

k

n2
k

(∫∫
− sign(tτ)K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)nTxTT

dt dτ

+
∫∫

K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)nTxTT

dt dτ

)
=
(∫

j

∫∫
sign(t)K(|t|)F̂ (tn) ejtnTxTT

dt

)2

+
(∫

K(|t|)F̂ (tn) ejtnTxTT

dt

)2

=
(
H1[k1] � f̂

)2

+
(
k1 � f̂

)2
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The last transition is simply based on recognizing the integrals as the Fourier
domain correspondents of the respective spatial convolutions.

Derivation of (4.31): We show that the boundary tensor components can
be expressed in terms of the Fourier coefficients of the angular function FaFF
when the spectrum F (u) is polar separable. The Fourier series of FaFF is:

FaFF (φ) =
α0

2π
+

∞∑
n=1

jn

π
(αn cos(nφ) + βn sin(nφ)) (4.45)

where αn and βn are the Fourier coefficients according to (4.30). Note that
the odd order terms are imaginary, because the spatial domain image is real.
We perform the derivation for Ba,11, the procedure for the other components
is analogous.

Ba,11 =
∫ 2π

0

∫∫ ∫π 2π

0

∫∫
n1(φ)n1(ψ)

(
−1 + nT(φ)n(ψ)

)
FaFF (φ)FaFF (ψ) dφ dψ

=
∫∫

cos(φ) cos(ψ) (−1 + cos(φ) cos(ψ) + sin(φ) sin(ψ))FaFF (φ)FaFF (ψ) dφ dψ

= −
(∫((

cos(φ)FaFF (φ) dφ
)
φ

2

+
(∫((

cos2(φ)FaFF (φ) dφ
)
φ

2

+
(∫((

cos(φ) sin(φ)FaFF (φ) dφ
)
φ

2

= −
(∫((

cos(φ)FaFF (φ) dφ
)
φ

2

+
(∫((

1 + cos(2φ)
2

FaFF (φ) dφ
)
φ

2

+
(∫((

sin(2φ)
2

FaFF (φ) dφ
)
φ

2

Now we insert the Fourier series for FaFF . Due to orthogonality, all integrals
involving a product of different trigonometric functions are zero. Only terms
containing the square of a single trigonometric are nonzero, reproducing a
Fourier coefficient, e.g.:∫ 2π

0

∫∫
cos(φ)FaFF (φ) dφ =

j

π
α1

∫ 2π

0

∫∫
cos(φ) cos(φ) dφ = j α1

Collecting all ‘surviving’ terms, we get the desired result:

Ba,11 = α2
1 +

1
4
(α0 + α2)2 +

1
4
β2

2

Derivation of (4.37): We want to calculate the two spatial filter functions
(i.e. inverse Fourier transforms) of the first order band-pass Riesz kernels

jui|u|e−
|u|2σ2

2 . In this context, it is advantageous to interpret the pair of real
valued filters as a complex valued function g(x) = g1(x) + j g2(x). Then the
inverse Fourier transform of both filters can be written as a single integral:

g(x) = g1(x) + j g2(x) =
1

4π2

∫∫
j (u1 + ju2)|u|e−

|u|2σ2

2 ejuT x du
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We turn to the polar representations u = ρejφ and x = rejψ and get:

g(rejψ) =
1

4π2

∫∫
j ejφ ρ2e−

ρ2σ2

2 ejrρ cos(φ−ψ) dφ ρ dρ

By means of the substitution φ′ = φ− ψ, we can rearrange terms as follows:

g(rejψ) =
1

4π2
ejψ

∫ ∞

0

∫∫
jρ2e−

ρ2σ2

2

(∫ 2π

0

∫∫
ej(rρ cos(φ′)+φ′) dφ′

)
ρ dρ

The inner integral is a well-known representation of the first-order Bessel
function of the first kind: J1JJ (t) = 1

2πj

∫ 2π

0

∫∫
ej(t cos(φ′)+φ′) dφ′. The outer integral

is called the first-order Hankel transform of the kernel. It can be computed
by means of a symbolic mathematics program such as Mathematica or, more
traditionally, by using [1], formulas 11.4.28, 13.4.2-5, and 13.6.3:

Hankel[ρ2e−
ρ2σ2

2 ] = 2π
∫ ∞

0

∫∫
ρ2e−

ρ2σ2

2 J1JJ (rρ)ρ dρ

=
π3/2

√
2σ7

r e−
r2

4σ2

(
(3
((

σ2 − r2)I0II
(

r2

4σ2

)
+ (r2 − σ2)I1

(
r2

4σ2

))
where I0II and I1 are modified Bessel functions. Inserting this into the previous
equation and going back to Cartesian coordinates, we arrive at the result:

gi(x) =
xi

4
√

2πσ7
e−

|x|2
4σ2

(
(
((
|x|2 − 3σ2)I0II

(
|x|2
4σ2

)
− (|x|2 − σ2)I1

(
|x|2
4σ2

))
During the above calculations, the expression g(rejψ) ∼ rM( 5

2 , 2,
−r2

4σ2 ) occurs
as an intermediate result, where M is a confluent hypergeometric function.
Using this together with [1], 13.1.5, we obtain the filters’ asymptotic behavior
for large r as O(r−4).
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Summary. This chapter gives an introduction to the principles of diffusion mag-
netic resonance imaging (MRI) with emphasis on the computational aspects. It
introduces the philosophies underlying the technique and shows how to sensitize
MRI measurements to the motion of particles within a sample material. The main
body of the chapter is a technical review of diffusion MRI reconstruction algorithms,
which determine features of the material microstructure from diffusion MRI mea-
surements. The focus is on techniques developed for biomedical diffusion MRI, but
most of the methods discussed are applicable beyond this domain. The review be-
gins by showing how the standard reconstruction algorithms in biomedical diffusion
MRI, diffusion-tensor MRI and diffusion spectrum imaging, arise from the principles
of the measurement process. The discussion highlights the weaknesses of the stan-
dard approaches to motivate the development of a new generation of reconstruction
algorithms and reviews the current state-of-the-art. The chapter concludes with a
brief discussion of diffusion MRI applications, in particular fibre tracking, followed
by a summary and a glimpse into the future of diffusion MRI acquisition and recon-
struction.

5.1 Introduction

Diffusion magnetic resonance imaging (MRI) provides a unique probe into the
microstructure of materials. The method observes the displacements of par-
ticles that are subject to Brownian motion within a sample material. Specifi-
cally, it measures the probability density function p of particle displacements
x over a fixed time t. The microstructure of the material determines the mo-
bility of the particles within and thus determines p. Conversely, features of p
provide information about the material microstructure.

In biomedical diffusion MRI, the particles of interest are usually water
molecules. Water is a major constituent of biological tissue. Water molecules
within tissue undergo random motion due to thermal fluctuations. Currently,
brain imaging is the most common application of biomedical diffusion MRI.
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(a) (b)

(c) (d)

Fig. 5.1. See colour plates. Schematic diagrams four microstructures found in the
brain. The black lines are barriers to the movement of water molecules. The red
contours show the expected shape of p in each tissue. Panel (a) shows a fluid-filled
region. Panel (b) shows isotropic grey matter. Panels (c) and (d) show white matter
with one and two dominant fibre orientations, respectively

The brain has a complex architecture of grey-matter areas connected by white-
matter fibres. Diffusion MRI allows non-invasive mapping of the connectivity
of the brain.

Figure 5.1 shows schematic diagrams of four different microstructures that
appear in brain tissue together with contours of the p that we expect to observe
within each kind of tissue. The diagrams do not aim to reproduce true brain-
tissue microstructure, but merely to show how different shapes of p can arise
from different configurations of barriers to water mobility. Some regions of
the brain, such as the ventricles, contain mostly cerebro-spinal fluid (CSF)
and Fig. 5.1(a) depicts such a fluid-filled region. Microstructural barriers to
water mobility are sparse in these regions, although a few membranes may be
present. The function p is isotropic, since displacements are equally likely in
all directions. Figure 5.1(b) depicts grey-matter microstructure. Grey matter
is dense tissue containing many barriers to water mobility, such as cell walls
and membranes. However, the barriers in grey matter often, as in the picture,
have no preferred orientation and so hinder the water movement equally in
all directions. The function p thus remains isotropic, but is less spread out
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than in the CSF region, since the average length of displacements is smaller.
Figure 5.1(c) depicts the microstructure in a white-matter fibre bundle. White
matter contains bundles of parallel axon fibres that connect different regions
of the brain. The orientations of the cell walls that form barriers to water
mobility have much greater consistency in white matter than in grey matter.
The microstructure hinders movement more in directions perpendicular to
the fibre than along the fibre axis. Displacements along the fibre are larger
on average than displacements across it and p is anisotropic with a ridge
in the direction of the fibre. More complex microstructure also appears in
white matter. Figure 5.1(d) depicts the microstructure at an orthogonal fibre
crossing. Displacements are largest on average in the fibre directions and p
has ridges in the directions of each fibre. Other configurations of white matter
fibres also occur in the brain.

If we can determine the orientations of the ridges of p, we can infer the
dominant orientations of the microstructural fibres. With fibre-orientation
estimates in each voxel of a three-dimensional MR image volume, we can
follow fibres through the image, using so-called ‘tractography’ algorithms, see
Chap. 7 by Vilanova et al., and construct a connectivity map of the imaged
sample.

The following length scales of brain tissue and the measuring process help
appreciation of the discussion in the rest of the chapter:

• The voxel volume in biomedical MRI is of order 10−9 m3.
• The diffusion time, t, in biomedical diffusion MRI is of order 10−2 s and,

over this time, the root-mean-squared displacement of water molecules is
in the micrometer range.

• The diameters of axon fibres in human white matter can reach 2.50 ×
10−5 m, but most axon-fibre diameters are less than 10−6 m [1, 2, 3].

• Coherent white-matter fibre-bundles vary widely in size from several cen-
timetres across down to a few axons.

• The packing density of axon fibres in white matter is of order 1011 m−2

[1, 2, 3].

The next section introduces the basic diffusion MRI measurement and its
relationship to the function p. Section 5.3 reviews diffusion MRI reconstruction
algorithms, which determine features of the microstructure from diffusion MRI
measurements. Section 5.4 gives a brief review of diffusion MRI applications
that concentrates on fibre-tracking and connectivity-mapping methods. We
conclude in Sect. 5.5 with a summary of the field and some pointers for future
research in diffusion MRI methods.

5.2 Diffusion-Weighted MRI

Diffusion-weighted MRI acquires measurements that are sensitive to the mo-
tion of nuclei possessing a net spin (‘spins’), most commonly hydrogen nuclei.
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Fig. 5.2. Shows the pulsed-gradient spin-echo sequence

We can sensitize the MRI measurement to spin displacements by introducing
magnetic-gradient pulses to the standard spin-echo sequence (or other stan-
dard sequences, such as the stimulated-echo sequence). Figure 5.2 shows the
pulsed-gradient spin-echo (PGSE) sequence [4], which is the most common
pulse sequence for diffusion-weighted MRI. The scanner maintains a constant
and approximately homogeneous magnetic field H0 over the sample. The spins
align with H0 and have a slightly higher probability of having spin up state
than spin down, which causes a non-zero net magnetization of the material.
The 90◦ radio-frequency (RF) pulse P90, centred at time τ = 0, tips the spins
into the ‘transverse’ plane perpendicular to H0. The spins then precess about
H0 at the Larmor frequency, which is proportional to |H0|. Immediately after
P90, the spins precess in phase so that the net magnetization rotates about
H0. Inhomogeneities in H0 cause the spin precessions to dephase gradually
so that the net magnetization decays. The 180◦ RF pulse P180, centred at
time τ = TE/2 where TE is the ‘echo time’, negates the phase of each spin.
In the absence of the gradient pulses Γ1 and Γ2, the rate of dephasing is the
same before and after P180 so the spins come back into phase at time TE.
The ‘spin echo’ occurs when the spins come back into phase and recover their
net magnetization, which is the MR signal.

The spatially homogeneous diffusion-weighting gradient offsets the phase
of each spin by a linear function of the spin position. A gradient pulse Γ offsets
the phase of a spin at position r by r · q, where

q = γ

∫ ∞

0

∫∫
Γ(τ)dτ ,

Γ(τ) is the component of the magnetic-field gradient parallel to H0 (i.e.
(∇H0) Ĥ0) at time τ and γ is the gyromagnetic ratio of the spins. The gyro-
magnetic ratio for protons in water, which are usually the spins in biomedical
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diffusion MRI, is 2.675 × 108 s−1T−1. In practice, the pulses are usually ap-
proximately rectangular (with brief rise and fall times) so that Γ1 and Γ2

have constant value g over the pulse duration δ and q = γδg. Since P180
negates the phase of each spin, Γ2 cancels the phase offset from Γ1 for a sta-
tionary spin. However, if a spin moves from position r1 to r2 between the two
pulses, it retains a residual phase offset of q · (r2 − r1) = q · x, where x is the
spin displacement. The magnetic moment of the spin at the spin echo is thus
M exp(iq ·x), whereM is the magnitude of the magnetic moment. The MRI
signal A(q) is the magnetization of all contributing spins. If we sum over all
possible spin displacements, we see that

A(q) = A(0)
∫

p(x) exp(iq · x)dx ,

where A(0) is the signal with no diffusion-weighting gradients and the inte-
gral is over three-dimensional space. Diffusion MRI usually assumes that the
local advection velocity is zero (no net motion of the spin population), so that
p(x) = p(−x) and A(q) is real valued in the absence of noise. Moreover, we
use the normalized signal

A(q) = (A(0))−1A(q) =
∫

p(x) cos(q · x)dx , (5.1)

which is the Fourier transform of the function p at wavenumber q. A mea-
surement A(q) thus provides the apparent diffusion coefficient (ADC) d =
−b−1 log(A(q)), where b = t|q|2 is the diffusion-weighting factor , on the as-
sumption that p is an isotropic zero-mean Gaussian function [4, 5]. Researchers
in the 1980s [6, 7] combined the basic diffusion-weighted NMR measurement
described above with MRI to obtain image maps of the ADC.

The derivation of equation (5.1) assumes that the movement of particles
during the gradient pulses is negligible. This assumption is justified if δ is small
compared with the pulse separation ∆, which is then the diffusion time t = ∆.
In practice however, δ and ∆ usually have similar magnitude, as in Fig. 5.2.
When δ is non-negligible, the phase offset of a spin depends on its trajectory
during Γ1 and Γ2 rather than just its displacement, which complicates the
model relating the measurements to p; see discussions in [5, 8, 9]. With some
assumptions, we can model the effects of non-negligible δ analytically. For
example, if p is Gaussian and the gradient pulses are rectangular, then non-
negligible δ reduces t to an effective diffusion time of ∆ − δ/3, see [4, 5].
The effective diffusion time reduces still further for higher moments of p [10].
Mitra and Halperin [9] show that, if p is the displacement density of the
centres of mass (COM) of particle trajectories over time δ, rather than the
displacements of particles themselves, equation (5.1) holds with t = ∆ even
with non-negligible δ. The COM displacement density has similar shape to the
particle displacement density (though somewhat blurred) and, in particular,
indicates fibre directions in the same way. Thus, although non-negligible δ
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confounds absolute measurements of the particle displacement density, the
features of p of interest in brain imaging are relatively unaffected. Lori et al. [8]
and Brihuega-Moreno et al. [11] provide some further analysis of the non-
negligible ∆ problem.

The MRI measurement is complex-valued, since the magnetization has
magnitude and phase. Often the phase of the measurements is discarded,
since inhomogeneities in H0 and movement of the sample make it unstable.
In practice, it is common to take the modulus of A(q) as the real-valued MR
signal. An additive Gaussian noise model is common in MRI. With this model,
the real and imaginary parts of the signal are independent and identically
distributed with distribution N(0, σ2). Noise on the modulus of the signal thus
follows a Rician distribution [12], which tends to a Gaussian distribution as the
signal-to-noise ratio increases. A common measurement of quality of diffusion
MRI data sets is the signal-to-noise ratio S = A(0)/σ of the measurement
with q = 0, where A is the noise-free signal.

5.3 Diffusion MRI Reconstruction Algorithms

This section reviews diffusion MRI reconstruction algorithms. We focus here
on reconstructing fibre orientations, but note that some diffusion MRI tech-
niques aim to estimate other features of the microstructure, such as the ratio
of intracellular to extracellular water [13], by targeting other features of p.
For this discussion, a diffusion MRI reconstruction algorithm inputs a set of
diffusion-weighted MRI measurements from one voxel and outputs, at least,
i) the number n of dominant fibre directions and ii) an estimate of each dom-
inant fibre direction. Most of these algorithms determine a feature of p that
highlights fibre orientations. In addition to fibre-orientation estimates, these
features of p usually provide scalar indices of shape that discriminate differ-
ent kinds of material and can indicate the reliability of the fibre-orientation
estimates.

5.3.1 Diffusion Tensor MRI

Diffusion-tensor (DT) MRI [14] computes the apparent diffusion tensor on
the assumption that p is a zero-mean trivariate Gaussian distribution:

p(x) = G(x;D, t) , (5.2)

where

G(x;D, t) = ((4πt)3 det(D))−
1
2 exp

(
−xT D−1x

4t

)
,

D is the diffusion tensor and t is the diffusion time. Since the Gaussian function
has a single ridge, DT-MRI assumes n = 1. Substitution of (5.2) into (5.1)
gives
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A(q) = exp(−tqT Dq) . (5.3)

If we take the logarithm of (5.3), we see that each A(q) provides a linear
constraint on the elements of D. The Gaussian model has six free parame-
ters, which are the elements of the symmetric three-by-three matrix D. To
fit the six free parameters, we need a minimum of six A(q) with indepen-
dent q, although many more are often acquired. Note that six A(q) requires a
minimum of seven A(q) including one for normalization. Practitioners most
often use the linear least-squares fit of D to the log measurements. However,
fitting directly using equation (5.3), as in [15], can improve results, since the
error distribution is closer to normal on A(q) than on log(A(q)). When fitting
directly to A(q), we can include constraints on the diffusion tensor, such as
positive definiteness, using the Cholesky decomposition as in [15], or cylindri-
cal symmetry, by writing

D = αnnT + βI , (5.4)

where n is the principal direction of the diffusion tensor, I is the identity tensor
and D has eigenvalues α + β, β and β.

Diffusion-tensor MRI generalizes the ADC calculation from simple diff-
usion-weighted MRI to three dimensions. It provides two extra insights into
the material microstructure over simple diffusion-weighted MRI. First, it pro-
vides rotationally invariant statistics of the anisotropy of p, which reflect the
anisotropy of the microstructure. Second, it provides an estimate of the dom-
inant orientation of microstructural fibres. The eigenvalues λ1 ≥ λ2 ≥ λ3 of
D determine the shape of p. The Gaussian function has ellipsoidal contours
and the relative lengths of the major axes of the ellipsoids have the same
proportions as the (λi)

1
2 . Statistics of anisotropy come from the distribution

of eigenvalues. A common statistic is the fractional anisotropy [16]

ν =

(
3
2

3∑
i=1

(
λi −

1
3
Tr(D)

)2
) 1

2
(

3∑
i=1

λ2
i

)− 1
2

, (5.5)

which is the normalized standard deviation of the eigenvalues. Figure 5.3(a)
shows ν over a coronal slice through a healthy human brain. The highest
values of ν are in regions of dense white matter, such as the corpus callosum,
where the fibres are packed most densely and have consistent orientation.
Other common scalar statistics derived from the diffusion tensor are Tr(D)
and the skewness µ. The trace of the diffusion tensor Tr(D) =

∑3
i=1 λi is

proportional to the mean squared displacement of water molecules and thus
indicates the mobility of water molecules within each voxel, which reflects the
density of microstructural barriers. The skewness

µ =

(
9
2

3∑
i=1

(
λi −

1
3
Tr(D)

)3
) 1

3
(

3∑
i=1

λ3
i

)− 1
3

, (5.6)
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(a) (b)
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Fig. 5.3. See colour plates. Shows various features of p plotted over a coronal slice
through a healthy human brain. Panel (a) shows the fractional anisotropy, ν. Panel
(b) shows Tr(D). Panels (c) shows the skewness, µ. Panel (d) shows the colour coded
principal direction, e1. Panel (e) shows the output of Alexander’s voxel classification
algorithm (Sect. 5.3.2); black is background, blue is order 0, white is order 2 and
pink is order 4. Panel (f) shows the spherical-harmonic anisotropy (Sect. 5.3.2). Inff
each panel, the upper region of interest contains some grey matter (top), part of the
corpus callosum (middle) and some CSF (bottom). The lower region contains the
fibre crossing in the pons

is close to zero for isotropic diffusion tensors with near spherical contours
(λ1 ≈ λ2 ≈ λ3), positive for prolate diffusion tensors with cigar-shaped con-
tours (λ1 � λ2 ≈ λ3) and negative for oblate diffusion tensors with pancake-
shaped contours (λ1 ≈ λ2 � λ3). Figures 5.3(b) and 5.3(c) show Tr(D) and µ,
respectively, over the coronal slice in Fig. 5.3(a). The highest values of Tr(D)
are in the ventricles and other regions of cerebro-spinal fluid, where the density
of barriers to water mobility is low. The skewness is positive in most white-
matter regions. In some white-matter regions, such as the pons, the skewness
is negative showing oblate diffusion tensors. Oblate diffusion tensors arise in
regions contain orthogonally crossing fibres, as depicted in Fig. 5.1(d), where
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the best-fit Gaussian model has oblate contours. Many other configurations
of fibres or microstructures can also give rise to oblate diffusion tensors.

The eigenvectors e1, e2 and e3 of D determine the orientation of p. In
regions of prolate diffusion tensors, the principal eigenvector e1 (that with
eigenvalue λ1) provides an estimate of the single fibre orientation. At fibre
crossings where the diffusion tensor is oblate, e1 and e2 span the plane of the
crossing fibres. Pajevic and Pierpaoli [17] use colour for a compact visualiza-
tion of fibre orientations. A popular choice is to use RGB vectors proportional
to ν1/2e1. Figure 5.3(d) uses this colour orientation-encoding for the coronal
slice in Fig. 5.3(a); red indicates left-right orientation, green indicates anterior-
posterior (front to back of the head) and blue indicates inferior-superior (top
to bottom of the head).

Diffusion-tensor MRI requires a minimum of seven MRI measurements.
Most diffusion-tensor MRI sequences acquire more than the minimum seven
measurements to reduce the effects of noise. The standard approach [18] is
to acquire M measurements with q = 0 and N measurements with non-
zero wavenumbers qi, i = 1, . . . , N . The |qi| are all equal and the diffusion
time, t, and hence b, is fixed for all the A(qi). The directions q̂i are unique
and distributed uniformly over the sphere. This kind of scheme gives less
rotational dependence of the fibre-orientation estimates and shape statistics
than schemes that acquire repeated measurements at a smaller number of qi

[19]. The images in Fig. 5.3 come from a data set with M = 6, N = 54,
δ = 0.034 s, ∆ = 0.040 s and |g| = 0.022Tm−1. Thus |qi| = 2.0 ×105m−1 and
b = 1150 s m2 using t = ∆−δ/3. This scheme is typical for whole-brain clinical
DT-MRI and requires around 20 minutes scan time on standard hardware. In
white-matter regions, the signal to noise ratio at q = 0, S, is around 16 on
average.

Diffusion-tensor MRI is the most popular diffusion MRI reconstruction al-
gorithm by far. It is the simplest technique that provides anisotropy statistics
and fibre-orientation estimates. The computational and data requirements of
the technique are modest. Modern scanners come with built-in acquisition se-
quences for DT-MRI and the post-processing is simple to implement and fast
to run on modern desktop computers. However, a major drawback of DT-MRI
is that the Gaussian model is often a poor fit to the data. Diffusion-tensor MRI
provides only one fibre-orientation estimate in each voxel. In regions where
fibres cross within one voxel, p has multiple ridges, as Fig. 5.1(d) depicts. The
Gaussian model of p in Fig. 5.1(d) has oblate ellipsoidal contours. When the
Gaussian model is poor the two major selling-points of DT-MRI fail. First, in-
dices of anisotropy derived from the diffusion tensor, such as ν, underestimate
the true directional variability of p. The Gaussian model for p in Fig. 5.1(d)
smoothes out the ridges in the plane of the page. Second, fibre-orientation
estimates are incorrect. For a perfectly oblate Gaussian distribution, D has
no unique principal eigenvector. In regions with the microstructure depicted
in Fig. 5.1(d), measurement noise will ensure that e1 is randomly oriented
in the plane of the crossing fibres. Non-orthogonally intersecting fibres are
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potentially more dangerous. The single fibre-orientation estimate from DT-
MRI then lies consistently between the two true fibre directions; see [20] for
an example.

5.3.2 Modelling the ‘ADC Profile’

Equation (5.3) shows that, with no noise, log(A) is quadratic in q when p is
Gaussian. Several authors model log(A) with higher-order polynomials both
to detect departures from the Gaussian model and to obtain more reliable
indices of anisotropy.

Frank [21] and Alexander et al. [22] both fit the spherical-harmonic series
to log(A) at a fixed |q|. In the literature, the term ‘ADC profile’ refers to
−b−1 log(A) as a function of x̂ with fixed |q|. The spherical harmonics YlmYY ,
l = 0, . . . ,∞, m = −l, . . . , l, form a basis for complex-valued functions on the
unit sphere in three dimensions S2. Thus we can write any complex-valued
function f of the sphere as

f =
∞∑

l=0

l∑
m=−l

almYlmYY .

Each spherical-harmonic series containing only terms up to order l = L is
the restriction to S2 of an order L polynomial, and vice versa. Series with
only even-order terms are symmetric, so that f(x̂) = f(−x̂), and constraining
both Im(al0) = 0 and alm = (−1)ma

l(−m) for all l and m ensures that f

is real-valued [22]. Reference [22] shows how to compute the least-squares-fit
symmetric real-valued spherical-harmonic series to log(A(qi)), i = 1, . . . , N ,
robustly via a single matrix multiplication.

If log(A) is quadratic, its spherical-harmonic series contains only terms up
to order 2. If the fitted spherical-harmonic series contains significant higher-
order terms, the Gaussian model for p is poor. Frank [21] observes signif-
icant fourth-order terms in the spherical-harmonic series in various white-
matter regions in the human brain. Alexander [22] uses the analysis of
variance (ANOVA) test for deletion of variables, the ‘F -test’ [23], to choose
the lowest-order series that fits the data. This simple voxel-classification algo-
rithm classifies each voxel as isotropic (order 0), anisotropic Gaussian (order
2), or non-Gaussian (order 4 or above). Results show clusters of order 4 voxels
in several fibre-crossing regions in human-brain data similar to that used for
Fig. 5.3. Figure 5.3(e) shows Alexander’s voxel classification over the coronal
slice in Fig. 5.3(a). Order 4 voxels appear consistently in the pons and other
fibre crossings showing failure of the Gaussian model.

Spherical-harmonic models of log(A) provide anisotropy indices that are
robust to departures from the Gaussian model. The moments of a spherical
function f are

ωn[f ] = (4π)n/2

∫
fn(x̂)dx̂ .



5 Introduction to Diffusion MRI 93

A general index of anisotropy of f is (ω1[f ])−1(ω2[f ] − (ω1[f ])2)1/2. For a
real-valued symmetric spherical-harmonic series, ω1[f ] = 4πa00 and ω2[f ] =
4π
∑∞

l=0

∑2l
m=−2l |a(2l)m|2. Figure 5.3(f) shows the spherical-harmonic aniso-

tropy from series including terms up to order 4. Differences between the
spherical-harmonic anisotropy and ν are more noticeable at higher b. Other
moments may also provide useful shape indices.

Ozarslan et al. [24] use a higher-order tensor model of log(A) so that

log(A(q)) = −tq(j)D(2j)qj , (5.7)

where the term on the right contains the contraction of the order 2j ten-
sor D(2j) by q(j), which is the outer product of q(1) = q and q(j−1). The
tensors D(2j) are real valued and have symmetry ensuring that log(A(q)) =
log(A(−q)). It is straightforward to demonstrate that the unique elements
of the tensor model in (5.7) with order 2j are a linear transformation of the
real and imaginary parts of the coefficients of the real symmetric spherical-
harmonic model including terms up to order 2j. In this sense, the two methods
are equivalent, both theoretically and computationally. Liu et al. [10] model
log(A(q)) by a sequence of higher-order tensors, which includes both odd and
even-order tensors. The inclusion of odd-order tensors allows the model to
capture non-symmetric spin displacements.

Neither the spherical-harmonic nor the higher-order-tensor models provide
fibre-orientation estimates. Both model log(A) rather than p and the peaks of
log(A) at a fixed radius are not in the directions of the ridges of p in general.
The scalar anisotropy of log(A) correlates with that of p, so we can compute
anisotropy indices from log(A). Also when p is Gaussian, A is Gaussian, so
we can infer departures from the Gaussian model of p from departures of the
A(qi) from the best-fit Gaussian. To estimate fibre orientations, however, we
must invert the Fourier transform in (5.1) and reconstruct directional features
of p.

5.3.3 Multi-Compartment Models

A simple generalization of DT-MRI replaces the Gaussian model for p with a
mixture of Gaussian densities:

p(x) =
n∑

i=1

aiG(x;Di, t) , (5.8)

where each ai ∈ [0, 1] and
∑

i ai = 1. Particle displacements in media contain-
ing n distinct compartments, between which no exchange of particles occurs,
follow the distribution in equation (5.8) if the displacement density in the i-th
compartment, which has volume fraction ai, is G(x;Di, t).

We take the Fourier transform of (5.8) and substitute into (5.1) to relate
the measurement values to the model parameters (Di and ai, i = 1, . . . , n):
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A(q) =
n∑

i=1

ai exp(−tqT Diq) .

The constraint on the model parameters from each measurement is non-linear
so we must fit the model to the data by non-linear optimization using, for
example, a Levenberg–Marquardt algorithm [25]. The principal eigenvector of
each Di provides a fibre-orientation estimate. The multi-compartment model
assumes n is fixed. Practical considerations, such as the number of MRI mea-
surements and the measurement noise level, limit the number of orientations
the method can resolve reliably. Most work to date uses a maximum n of 2.

Two problems accompany the use of multi-compartment models. First, the
choice of n presents a model-selection problem. Second, the non-linear fitting
procedure is unstable and starting-point dependent, because of local minima
in the objective function. Parker and Alexander [26] and Blyth et al. [27] use
Alexander’s voxel classification algorithm [22] to solve the model-selection
problem. They use n = 2 in order 4 voxels, where DT-MRI fails, and n = 1
elsewhere. This method does not extend naturally above n = 2, however. Al-
though a fourth-order polynomial is a good approximation to log(A) from a
mixture of two Gaussian densities [21], a mixture of three Gaussians does not
necessarily require a sixth-order polynomial. Tuch [28] thresholds the corre-
lation of the measurements with their predictions from a single-component
model to decide whether to use one or two components. Constraints on the
diffusion tensors in the multi-compartment model can help stabilize the fitting
procedure. For example, we can enforce positive definiteness on the Di, using
the Cholesky decomposition [29], or cylindrical symmetry on Di using equa-
tion (5.4), or specific eigenvalues as in [28]. Spatial regularization techniques
also help overcome the fitting problem by ensuring voxel to voxel coherence,
see [29] and Chap. 9 by Pasternak et al.

5.3.4 Fibre Models

A similar model-based approach [30] assumes that particles belong to one
of two populations: a restricted population within or around microstructural
fibres and a free population that are unaffected by microstructural barriers.
With negligible exchange between the populations, p = apf +(1−a)pr, where
pf is the spin-displacement density for the free population, pr that for the
restricted population, and a is the fraction of particles in the free population.
Behrens et al. [30] use an isotropic Gaussian model for pf . They use a Gaussian
model for pr in which the diffusion tensor has only one non-zero eigenvalue so
that particle displacement is restricted to a line. Assaf et al. [31] describe a
similar approach. They model pr with Neuman’s model for restricted diffusion
in a cylinder [32]. The fitted pr provides the fibre-orientation estimate. For pf ,
which they call the ‘hindered compartment’, they use an anisotropic Gaussian
model.
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Both approaches extend naturally to the multiple-fibre case by including
multiple restricted populations in the model, which gives a more physically-
based mixture model than the multi-compartment models in Sect. 5.3.3. In
the multiple-fibre case, fibre-model approaches have the same model-selection
and fitting problems as multi-compartment models. Assaf et al. [31] show
promising results in the two-fibre case in simulation.

5.3.5 Diffusion Spectrum Imaging

Diffusion spectrum imaging [33], unlike the approaches discussed earlier in
this section, does not use a parametric model for p. Instead, DSI reconstructs
a discrete representation of p directly from measurements on a regular grid of
wavenumbers via a fast Fourier transform. The reconstruction gives values of
p on a grid of displacements.

The orientation distribution function (ODF)

φ(x̂) =
∫ ∞

0

∫∫
p(αx̂)dα , (5.9)

where x̂ is a unit vector in the direction of x, is the radial projection of p onto
the unit sphere. The ODF has peaks in the directions in which p has most
mass and thus has peaks in the directions of the ridges of p. In DSI, therefore,
the peaks of φ provide the fibre-orientation estimates. The function φ can have
multiple pairs of equal and opposite peaks. Each pair provides a separate fibre-
orientation estimate, which enables DSI to resolve the orientations of fibres
that cross within a single voxel. The ODF also provides anisotropy indices.
For example, we can use the standard deviation (ω2[φ] − 4π)1/2 of φ as an
analogue of the fractional anisotropy, ν.

Qualitative results from DSI in [33, 34] and subsequent publications show
ODF peaks in the expected fibre directions at known crossings in human and
animal brain data. However, the results also show ODFs with multiple peaks
in grey-matter regions and it is unclear whether these peaks show genuine
anatomic structure or simply arise from measurement noise. Diffusion spec-
trum imaging has clear advantages over DT-MRI and multi-compartment
modelling, since it can resolve multiple fibre orientations, it does not require
non-linear fitting and it does not involve a model-selection problem. Despite
its advantages, DSI is not used as widely as DT-MRI. The main drawback
of the technique is that acquisition times are long, since it requires an or-
der of magnitude more measurements than DT-MRI to get sufficient detail
in the reconstructed p. Wedeen and Tuch and coworkers [33, 34] use around
500 measurements for DSI. They acquire images with 64 × 10−9 m3 voxels,
compared with 10 × 10−9 m3 voxels typical in DT-MRI, to keep the acquisi-
tion time manageable. Furthermore, DSI ignores the effects of non-negligible
δ discussed at the end of Sect. 5.2.
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5.3.6 A New Generation of Multiple-Fibre Reconstructions

The main drawback of DSI is the long acquisition time. However, in many
applications, DSI wastes much of the information in the measurements. The
projection of p onto the sphere to obtain the ODF, φ, discards the radial com-
ponent of p to which much of the information in the measurements contributes.
In some applications, the radial component of p may be useful. However,
the primary interest is often in the angular structure, which provides fibre-
orientation estimates and anisotropy indices. An emerging new generation of
diffusion MRI reconstruction algorithm reconstructs the angular structure of
p directly from the measurements. Rather than acquiring measurements on a
grid of wavenumbers, as in DSI, the new methods use sets of wavenumbers
chosen to contribute mostly to the angular structure of p. Specifically, meth-
ods to date use the spherical acquisition schemes popular in DT-MRI (see
Sect. 5.3.1).

Approximations to the ODF

Several methods approximate the ODF from measurements acquired using a
spherical acquisition scheme. Tuch’s q-ball imaging method [34, 35] approxi-
mates the ODF by the Funk transform [36] of the measurements. (For brevity
in the remainder of the chapter, we shall refer to Tuch’s method simply as
‘q-ball’.) The Funk transform is a mapping between functions of the sphere.
The value of the Funk transform of a function f at a point x̂ is the inte-
gral of f over the great circle perpendicular to x̂. In [34], Tuch shows that,
in the absence of noise, the approximation becomes closer as |q| increases.
Qualitative results in [34, 35] show good agreement between q-ball and full
DSI in a fibre-crossing region in the human brain. Tuch uses high-quality test
data with N = 492 and with |q| = 3.6 × 105 m−1 (b = 4.0 × 109 s m−2) and
|q| = 5.4 × 105 m−1 (b = 12.0 × 109 s m−2). Lin et al. [37] propose a similar
algorithm independently. They test their algorithm on data acquired from a
phantom containing water-filled capillaries in two orientations, which simu-
lates crossing white-matter fibres. The algorithm recovers the orientation of
the capillaries consistently.

In Chap. 10 and [38], Ozarslan et al. fit higher-order tensor models (see
Sect. 5.3.2) to measurements from a spherical acquisition scheme. They as-
sume that A(q) decays exponentially with increasing |q| and fixed q̂. This
assumption allows them to estimate the measurements on a regular grid of
wavenumbers, which they use as input to DSI. The method finds the ridge
directions of simple test functions and qualitative results on rat-brain data,
with N = 81 and b = 1.5× 109 sm2, are promising.

Deconvolution Techniques

Deconvolution methods generalize the fibre-model methods by assuming a
distribution of fibre orientations. The diffusion MRI signal is the convolution
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of the fibre orientation distribution (FOD) with the response from a single
fibre [30, 39, 40]. Any fibre model can provide the response for a single fi-
bre. References [30, 39] use Gaussian fibre models. Tournier [40] derives a
fibre model directly from the data by taking an average signal from the most
anisotropic voxels. Deconvolution is linear using a linear set of basis func-
tions, such as the spherical harmonics, for the FOD [39, 40]. The peaks of
the FOD provide fibre-orientation estimates. Like the ODF, the FOD can
have any number of pairs of equal and opposite peaks and each pair pro-
vides a separate fibre-orientation estimate. Thus, deconvolution methods avoid
the model-selection problems associated with multi-compartment and fibre
models.

Other Methods

Jansons and Alexander’s PASMRI algorithm [41] computes another feature
of p called the persistent angular structure (PAS). The PAS is the function ˜
of the sphere that, when embedded in three-dimensional space on a sphere of
radius r, has Fourier transform that best fits the measurements. Thus

p̃ = arg min
p̂

[
N∑

i=1

(
A(qi)− Â(qi; p̂)

)2
]

,

where
Â(qi; p̂) =

∫
p̂(x̂) cos(rqi · x̂)dx̂ . (5.10)

Jansons and Alexander use a maximum-entropy parametrization of .̃ They
fit the N + 1 parameters of ˜ using a Levenberg–Marquardt algorithm and
numerical approximations of the integrals in (5.10). The function ˜ can have
any number of pairs of equal and opposite peaks and each pair provides a
fibre-orientation estimate. The parameter r controls the smoothness of p̃.

The iterative optimization required to compute ˜ makes PASMRI a much
slower algorithm than the other algorithms discussed in this section. How-
ever, Alexander [42] shows that PASMRI reconstructs fibre directions more
consistently than q-ball. On the human-brain data used for Fig. 5.3, the q-
ball algorithm fails to resolve the orientations at known fibre-crossings, where
PASMRI succeeds. Simulations show that PASMRI is more sensitive than q-
ball to anisotropy in test functions and recovers ridge directions more reliably,
particularly at low b and S. Figures 5.4 and 5.5 show the PAS, computed by
PASMRI, and ODF, approximated by q-ball, respectively, in the coronal brain
slice in Fig. 5.3. The PAS has sharper peaks than the ODF and resolves the
crossing fibres in the pons more consistently.

Liu et al. [10] outline a general inversion of their higher-order-tensor series
model (see Sect. 5.3.2) of log(A) to obtain p. They simulate random walks of
molecules through restricted media to obtain synthetic MRI measurements. In
simulation, the reconstructed p reflects the geometry of several simple media.
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Fig. 5.4. See colour plates. Shows the PAS (in red) in brain voxels of the coronal
slice in Fig. 5.3 superimposed on the fractional anisotropy map

Liu et al. use the phase of the MRI measurements and include odd-order
tensors in their model, which allows them to determine net motion of particles
(advection) as well as symmetric motion.

5.4 Applications

Diffusion-tensor MRI is now a routine clinical technique. Scalar statistics de-
rived from the apparent diffusion tensor, such as Tr(D) and the fractional
anisotropy [16], are used to study a broad range of conditions including stroke,
epilepsy, multiple sclerosis, dementia and many other white-matter diseases;
see [43] for a recent review. Diffusion MRI is also used to probe the mi-
crostructure of a variety of other materials including muscle tissue, e.g. in the
heart [44], cartilage [45], plant tissue [46] and porous rock [47].

A major application area of diffusion MRI is fibre-tracking or ‘tractog-
raphy’. References [48, 49] contain reviews of tractography techniques with
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Fig. 5.5. See colour plates. Shows the ODF (in red) approximated using q-ball in
brain voxels of the coronal slice in Fig. 5.3 superimposed on the fractional anisotropy
map

qualitative and quantitative performance comparisons. Chapter 7 by Vilanova
et al. also discusses tractography techniques. Simple ‘streamline’ tractogra-
phy algorithms trace fibre trajectories by following fibre-orientation estimates
from point to point through an image volume. Probabilistic tractography al-
gorithms use a probability density function to model the uncertainty in the
fibre-orientation estimate in each voxel. The algorithms run repeated stream-
line tractography processes with fibre-orientation estimates drawn from the
model in each voxel. The fraction of streamlines that pass through a voxel
provides an index of the connectivity of that voxel to the starting point. The
distributions on the fibre-orientation estimates generally come from modelling
the distribution of estimates from repeated trials of adding synthetic noise to
the measurements. Some implementations [20, 50] use shape indices, such
as the fractional anisotropy, to predict the parameters of the distribution.

Most tractography in the literature uses DT-MRI for fibre-orientation es-
timates. Several authors [20, 26, 27, 34, 51] use multiple-fibre reconstructions
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in tractography applications. Tractography algorithms based on multiple-fibre
reconstruction use fibre-orientation estimates from multi-compartment mod-
els [20, 26, 27] or the peaks of the ODF [34] or PAS [51] together with un-
certainty models obtained from simulations. Blyth et al. [27] provide direct
evidence that multiple-fibre reconstruction improves tractography results over
DT-MRI. One might be tempted to use the PAS, the ODF or the FOD as a
direct estimate of the distribution of fibre orientations for probabilistic trac-
tography. However, the physical basis of these functions is a gross simplifica-
tion of the complex distribution of barriers to diffusion within material such
as brain tissue. Any supposed relationship between these features of p and the
true distribution of fibre orientations would require a great deal of validation
and verification.

Tractography algorithms have undergone intensive development since the
introduction of DT-MRI and exciting applications are now beginning to
emerge. By mapping fibre pathways in abnormal brains [52, 53], we can
monitor disease progression and assist neurosurgical planning. Probabilistic
tractography has led to profound insights in human neuroanatomy [26, 54]
and highlights region-connectivity differences between normal and patient
groups [55]. Behrens et al. [54] use probabilistic tractography to segment the
human thalamus into regions that connect to different cortical regions. The
segmentation they produce is consistent among individuals and similar to a
connectivity-based segmentation of the monkey thalamus performed by his-
tology. Barrick et al. [56] use a similar idea to segment the whole human brain
into connected regions. Behrens et al. [57] also propose a method for automatic
segmentation based on connectivity information. For the future, tractography
and connectivity-mapping hold great promise for studies of brain develop-
ment [58, 59].

5.5 Discussion

We have reviewed the principles of diffusion MRI measurements and recon-
struction. We have seen how the standard diffusion MRI reconstruction al-
gorithms, in particular DT-MRI and DSI, arise from a simple model relating
the measurements to the spin-displacement density function p. We have high-
lighted the drawbacks of these basic approaches: DT-MRI provides only a
single fibre-orientation estimate in each voxel and fails at fibre crossings; DSI
requires too many measurements for routine use on current hardware. We have
reviewed a new generation of multiple-fibre reconstruction algorithms, includ-
ing multi-compartment and fibre models and all the methods in Sect. 5.3.6,
that can resolve the orientations of crossing fibres from sparse sets of mea-
surements, similar to those acquired routinely in DT-MRI.

The new generation of reconstruction algorithms is still in its infancy and
requires refinement and validation before routine application in clinical stud-
ies. As yet, no single algorithm has emerged as a comprehensive replacement
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for DT-MRI. The most tested new algorithms, which are multi-compartment
models, PASMRI and q-ball, all have problems. Multi-compartment models
have problems with model selection and model fitting. The q-ball algorithm
does not resolve crossing fibres reliably on current standard data sets, but
does produce acceptable results with a moderate increase in data quality [42].
The PASMRI algorithm works well on current data, but is too computation-
ally heavy in practice. The great interest in fibre tractography continues to
expand. Such are the problems caused by fibre crossings that development of
the new algorithms will be rapid and we can expect to see them in routine
use within the next few years.

We shall conclude with some specific questions for the further development
of diffusion MRI reconstruction algorithms:

What New Shape Indices Can We Derive
from Multiple-Fibre Reconstructions?

Multiple-fibre reconstructions produce a range of new features of p that can
provide new scalar indices of shape beyond the common anisotropy and skew-
ness statistics. We can compute higher-order moments of these functions,
which may highlight previously unseen tissue-type boundaries. The number of
peaks and relative peak strength of the PAS, ODF or FOD may also provide
useful stains for analysis and diagnosis.

How Reliable are Fibre-Orientation Estimates and Shape Indices?

We can determine the accuracy of fibre-orientation estimates in simulation
from test functions, as in [41], and also with bootstrap methods from re-
peated scanner acquisitions, as in [60]. Such experiments on multiple-fibre
reconstructions will provide performance comparisons for selecting the best
algorithms and uncertainty estimates for probabilistic tractography. We can
assess the reliability of shape indices in the same ways. The reliability de-
termines the diagnostic power of shape indices as well as their potential as
indicators of fibre-orientation-estimate accuracy in probabilistic tractography.
These performance estimates will depend on the imaging parameters, such as
|q|, t, N , M and S. We must optimize the trade-off between imaging time
and data quality to maximize performance.

Can We Detect and Reject Spurious Structure in Isotropic Areas?

A major concern with multiple-fibre reconstructions is that they often show
spurious structure in isotropic regions. Jansons and Alexander [41] and Alex-
ander [61] illustrate this problem on synthetic data for PASMRI and q-ball. On
scanner data, these methods invariably produce functions with strong peaks
in grey-matter and CSF regions. However, the fibre orientation estimates have
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little or no voxel-to-voxel coherence, which suggests that the peaks come from
measurement noise rather than genuine anatomy. The success of the new gen-
eration of algorithms will require methods for distinguishing spurious from
genuine structure. Voxel classification algorithms, such as Alexander’s [22],
may help solve the problem, as may methods that analyze voxel-to-voxel con-
sistency.

Can We Do Better than Spherical Acquisition Schemes?

In the literature, multi-compartment models and fibre models, ODF approxi-
mations, PASMRI and deconvolution methods mostly use data acquired with
a spherical acquisition scheme. However, these methods can work with data
acquired with any set of qi. Other distributions of sample points surely exist
that will improve the methods, but the diffusion MRI community is yet to
investigate methods for choosing and optimizing these distributions.

What is the Best Model for p in Brain Tissue?

The literature contains a variety of parametric models for p in white-matter
fibres; see for example [30, 31, 39, 40]. Multi-compartment, fibre-model and
deconvolution methods can use any such model. Quantitative comparisons
of these models, again using simulations and bootstrap techniques, will de-
termine which models best fit the data and produce the most reliable fibre-
orientation estimates and shape statistics.

Can We Estimate the Fibre-Orientation Distribution Reliably?

Diffusion-weighted MRI [4, 5, 6, 7] and one-dimensional q-space imaging [5]
were the first generation of diffusion MRI algorithms. The second genera-
tion, diffusion-tensor MRI and DSI, generalizes the first to three-dimensions.
The third generation consists of the multiple-fibre reconstructions from data
designed to emphasize the angular structure of p. Despite the names of the
features of p that these algorithms compute (‘orientation-distribution func-
tion’ and ‘fibre-orientation distribution’), only the peaks of these functions
are generally considered reliable as fibre-orientation estimates. Perhaps gen-
eration four will provide reliable estimates of the true distribution of fibre
orientations within each voxel of an image and help distinguish crossing, kiss-
ing and diverging patterns of fibres.

The questions above are the tip of an iceberg. The remaining chapters
of this book will reveal many other questions that demand answers in this
exciting, expanding and fast-moving area of research.
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Summary. The empirical origin of random noise is described, its influence on DTI
variables is illustrated by a review of numerical and in vivo studies supplemented
by new simulations investigating high noise levels. A stochastic model of noise prop-
agation is presented to structure noise impact in DTI. Finally, basics of voxelwise
and spatial denoising procedures are presented. Recent denoising procedures are re-
viewed and consequences of the stochastic model for convenient denoising strategies
are discussed.

6.1 Introduction

Though the theoretical and experimental basics of Diffusion Tensor Imaging
DTI are still in a stage of development, it is well established, that magnetic
resonance measurements of diffusing water molecules can reveal unique infor-
mation about the architecture of normal and diseased brain tissues. See [1]
for a recent survey on basic concepts, experimental methods, postprocessing
procedures, and potential applications. An enumeration of the limitations of
DTI at present would fill a long list. Some of them are caused by the ‘arti-
facts’ which comprise effects of subject motion, eddy currents, susceptibility
variations, calibration errors, and noise [1, 2].

Random or Johnson noise is essentially white and has its origin in thermal
Brownian motion of electrons. Johnson noise is superposed in DTI by two
components: noise from the scanner apparatus and noise from the patient’s
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body inside the scanner [3]. The measurement of the magnetization, carry-
ing the anatomical information, results in complex valued data in k-space
which give, after Fourier transformation, the signal in configuration or physi-
cal space [3]. Johnson noise in the data or signals can be approximated by a
complex Gaussian distribution with mean zero, constant standard deviation
and independent real and imaginary parts [4].

Consequently, the magnitude of the signal follows the family of Rician dis-
tributions [5], which comprises distributions with nearly Gaussian shape for
low noise levels. In case of increasing noise however, the distributions become
appreciably skewed and have a biased mean value. Hence the expectation value
of a noisy signal magnitude is different from its noise-free or true value. Such
magnitudes or diffusion weighted images DWI are mapped in the standard
model of DTI via the Stejskal-Tanner equations ST to the diffusion tensor
[6, 7] and then via several nonlinear transformations to detailed anatomical
information of the brain. From a statistical point of view one should real-
ize that in general any nonlinear transformation can transform a Gaussian
distribution to a skewed and heavy tailed one with biased mean value. Con-
sequently, a chain of such transformations can create a highly complicated
stochastic situation. In fact, nonlinear noise propagation can lead to severe
misinterpretations in DTI, which is still one of the central problems.

Several topics are addressed in this chapter. First we present some formal
results of stochastics to model noise propagation in DTI. Then, a survey of
published results on noise artifacts and denoising methods is presented. The
whole range of signal to noise ratios is covered, own results for high noise levels
supplement the review. Final aim of this work is to structure the complicated
field of noise impact in DTI and to support the application and development
of convenient denoising methods.

6.2 Noise Impact

First of all we introduce some fundamental concepts of DTI and of its sta-
tistics. In particular, the statistical Delta Method will be introduced. This
method describes the large sample convergence to Gaussian distributions for
variables which are derived by nonlinear transformations. Second, we present
a survey of published results on noise artifacts. These studies comprise results
achieved by Monte Carlo simulation and by bootstrap sampling.

6.2.1 Noise Propagation Model

In the following we restrict ourselves to statistical aspects caused by John-
son noise; the influence of non statistical distortions is excluded. In addition,
only the standard diffusion tensor with rank=2 is considered, for extensions
see Chap. 10 by Özarslan et al. The chain of nonlinear transformations, lead-
ing from measured quantities to anatomically relevant observables proceeds
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as follows: {signals S} 	→ {		 magnitudes |S|} → {		 tensor d} 	→ {		 eigenvalues,
eigenvectors} 	→ {		 anisotropy, tracks} 	→ {		 connectivity, etc.} Only for the first
transformation, the statistics is completely formalized [5]. We present in the
following a closer look at the second map in order to exemplify statistical
peculiarities caused by nonlinear mappings. The central concept in standard
DTI is the diffusion tensor d(x) for any voxel x in e.g. a brain. The three
eigenvalues λi(x) and eigenvectors |i(x)〉 describe the geometric properties of
a diffusion ellipsoid along the fibers. As the tensor is real and symmetric, a
convenient braket notation [8] is used, where the ket |.〉 is a column vector,
the bra 〈.| a transposed ket, and 〈 .| .〉 a scalar product. In this notation we
get

d(x) =

⎛⎝⎛⎛d11(x) d12(x) d13(x)
d12(x) d22(x) d23(x)
d13(x) d23(x) d33(x)

⎞⎠⎞⎞ =
3∑

i=1

λi(x) |i(x)〉 〈i(x)| . (6.1)

The ST equations are then

|SjS (x)| = |S0(x)| exp

(
−b

3∑
i=1

λi(x) 〈 i(x)|gj〉2
)

, (6.2)

incorporating the diffusion weighting b-value which is a function of scanning
parameters [7], a normalized diffusion measuring gradient |gj〉, the diffusion
weighted image DWI |SjS (x)|, j ≥ 1, and the reference |S0(x)|.

Noise enters the system via the complex signals Sk(x), by Sk,noisy(x) =
Re[Sk(x)] + εRe + i(Im[Sk(x)] + εIm), for k ≥ 0, where εRe and εIm are
independent and normally distributed, ε ∼ N(0, σ). The noise level σ is the
Rayleigh corrected standard deviation of background noise [4, 5].

To quantify the signal to noise ratio, we define SNRk = |Sk(x)|/σ for
k ≥0, where |Sk(x)| is without noise [5]. As SNRk determines, within the
Rician family, the distribution of |Sk,noisy(x)|, these distributions change in
space. In the same way, the statistical properties of derived variables affected
by noise, like d(x), change with x. In short notation, those variables build up
random fields.

We introduce now several abbreviations to formulate the least square esti-
mation of the tensor from the measured DWIs for the general case including
n ≥ 6 gradient directions 〈gj | = (g1,j , g2,j , g3,j). To make the notation more
transparent, the dependence on x and the label noisy is suppressed:

DT := (D1, D2, D3, D4, D5, D6) = (d11, d22, d33, d12, d13, d23)
(A)j := (g2

1,j , g
2
2,j , g

2
3,j , 2g1,jg2,j , 2g1,jg3,j , 2g2,jg3,j) (6.3)

sj := − log(|SjS |/|S0|)/b,

where (A)j is a row of the n × 6 matrix A. The equation AD = s for D is
then solved by D = B−1(AT s), where B = AT A, see [9]. Introducing the
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weights wil =
∑6

k=1 B−1
lk Aik, we can finally write Dl =

∑n
i=1 wilsi, and find

for the expectation of Dl,

E[Dl] = −
n∑

i=1

wilE[log(|Si|)]/b + E[log(|S0|)]
n∑

i=1

wil/b . (6.4)

This equation shows the origin of a possible bias in Dl, hence in general

E[Dl] �=�� −
n∑

i=1

wil log(|E[Si]|)/b + log(|E[S0]|)
n∑

i=1

wil/b . (6.5)

The right hand side of (6.5) describes the tensor components without noise,
as the signals Si are normally distributed. When the DWIs |Si| are essentially
free from bias, SNRi > 3, the function log introduces a (possibly) small bias
in Dl, as log is a concave map. This effect is enhanced if the DWIs are biased
for SNRi ≤ 3. Concave or convex mappings of random variables produce
bias effects due to the Jensen inequality [10]. Therefore, any further nonlinear
transformation on Dl can, in principle, cause additional bias in the derived
variable.

A further important aspect is the shape of the distributions. For high
noise level the DWIs, as well as derived variables are not normally distrib-
uted. However, as noise is sufficiently reduced, the Delta Method [11] predicts
approximate Gaussian statistics for all variables of the DTI chain. This follows
from an iterative application of the following Theorem and of its generaliza-
tions: If the distributions of a sequence of random variables TmTT approach
with increasing m the Gaussian distributions N(Θ, τ2/m), where Θ is the
expectation value and τ2/m the variance, then, for any nonlinear transfor-
mation f : TmTT → f(TmTT ) with ḟ(Θ) �= 0 , the distributions of�� f(TmTT ) tend to
N(f(Θ), ḟ(Θ)2τ2/m)), see [11] for an exact but less descriptive formulation
and for extensions to multivariate cases. Thus, reduction of noise greatly sim-
plifies the structure of the mentioned random fields. However, as Θ depends
on the spatial coordinate, variance is still varying in space. The Delta Method
does pose only weak restrictions on the distributions of TmTT and thus extends
the usefulness of the Central Limit Theorems CLT [11] as prerequisites for
an application of this method. Appropriate TmTT can in DTI experiments be
achieved by performing m replications of experiments and consecutive averag-
ing of the m magnitudes |Si,noisy(x)|. For low m, due to practical limitations,
this is one of the standard procedures in DTI to denoise data.

6.2.2 Noise Artifacts

We review only a selection from the huge number of articles on noise arti-
facts and emphasize the diversity of artifacts, more technical papers are not
considered. The artifacts are investigated by numerical modelling via Monte
Carlo simulation MCS [12, 13], perturbation theory [8] and bootstrap sam-
pling [1, 14].
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The degree of anisotropy in diffusion is connected to the homogeneitiy of
the fiber directions in a measured voxel, as diffusion propagates mainly along
the fiber direction, see Chap. 7 by Vilanova et al. for illustrations of anisotropy
and nerve fibers in the human brain. In [12] different quantitative indices of
anisotropy are investigated. The authors show that rotational variant indices
suffer from non random orientational artifacts and can make highly anisotropic
white matter structures appear isotropic in vivo. Therefore, rotationally vari-
ant indices depending on the eigenvalues are included in their study, like
e.g. the fractional anisotropy FA = (3

∑3
k=1(λk − λ)2/2

∑3
k=1 λ2

k)1/2, where
λ =

∑3
k=1 λk/3, see [12, 13] for more indices depending on eigenvalues. It is

shown by MCS that those indices are biased in the presence of noise. This
bias enhances artificially the mean anisotropy and can make isotropic diffu-
sion appear anisotropic. Two sources of this error are detected: a) the mean
eigenvalues are biased, where the largest eigenvalue is typically enhanced by
noise, the smaller ones are reduced; b) noise introduces sorting bias, i.e. due
to overlapping statistical distributions of neighboring eigenvalues, magnitude
sorting fails. These bias effects increase with decreasing SNR, the study covers
a range of SNR0 > 5. Similar findings are reported in [13], in addition, the
eigenvalue distributions are investigated. The dependence of skewness on the
angles between main diffusion and laboratory system or diffusion gradients
is apparent. This exemplifies that DTI distributions build up random fields.
Also negative eigenvalues are detected for higher noise level preventing an
interpretation of the tensor as a quantity describing diffusion. Perturbation
theory is applied [15] for SNR0 > 20, to calculate power series expansions of
the eigenvalues and of eigenvectors of the tensor for different model diffusions.
The results for the bias in eigenvalues and in FA of [12, 13] are essentially con-
firmed. Noise in the eigenvector orientation produces random walk trajectories
which should model the nerve fiber pathes. The mean position error of the
calculated tracks and the standard deviation are calculated for a total of 256
path steps. Both increased, in different manner, with the step number and
the noise level. This may indicate fundamental limits in accuracy for track-
ing, though only a very simple tracking algorithm is applied [15]. The studies
discussed so far deal with SNR0 > 5 for b ≈ 1000 smm−2 and focus more on
even higher SNR0, relevant for clinical investigations. Recently, experiments
with higher b-values (b � 1000 smm−2) to measure non-Gaussian diffusion
[16] or with high spatial resolution (e.g. 1mm3) to reduce partial volume ef-
fects are performed. Such data include DWIs with SNRk < 3 (henceforth with
k > 0), which are strongly influenced by peculiarities of the Rician statistics,
and consequently we may find different noise artifacts. The first systematic
MCS for higher b-values was published recently [17]. Just one interesting re-
sult may be reported. In contrast to the findings of [12, 13, 15], the mean FA
can now be essentially unbiased for b ≈ 3000 smm−2, or underestimated for
b > 5000 smm−2.

Non-parametric bootstrap BS analysis offers a more empirical approach to
error analysis allowing a better inclusion of non statistical distortions. These
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Fig. 6.1. General bootstrap resampling scheme adapted to a typical DTI acquisition
of a reference and six diffusion weighted signals, each k times. By random drawing
with replacement N bootstrap resamples are obtained. The distribution of a statistic
of interest Θ is determined by the N + 1 samples

distortions modify the statistical distributions but it is hard to model them in
the frame of MCS. The BS draws inferences about some features of unknown
distributions by generating multiple replications. The replications are achieved
by iterated random drawings with replacement out of a pool of experimental
data. See Fig. 6.1 for a BS scheme, applied to a typical DTI acquisition. In
this setup k replications of an experiment with 6 diffusion gradients and one
reference are performed. A box indicates a complete data set with pool size
k, the left box is the purely empirical starting point of the procedure. To
the right, artificial resamples created by random drawings are shown. The
information in all samples together defines the distribution of interest and
allows to study, in an approximate way, the statistical properties of a random
variable in a voxel.

By BS in [18] the uncertainty in main diffusion directions is analyzed
in vivo. Applying the formalism of dyadic tensors 95% confidence inter-
vals for the angles between the mean and the random directions are cal-
culated. A correlation between this uncertainty and the anisotropy index
ClC = (λ1−λ2)/(λ1+λ2+λ3) for λ1 ≥ λ2 ≥ λ3 is found. The uncertainty grows
with decreasing ClC qualitatively like C−1

lC . Even for high ClC an uncertainty of
about 2.5 degrees remains. In [19] BS is applied to distribution specific para-
meters which can serve as quality measures for DTI data, this could help to
detect e.g. data which are corrupted by some machine error in the scanner.
For this purpose, the confidence intervals of FA in white matter are deter-
mined and submitted to histogram analysis. The mean, modus and height
are extracted as quality descriptors. The study particularly investigates the
impact of noise and of denoising, as well as motion of the patient on those
parameters. In [14] MCS and BS are applied in conjunction. By MCS it is in-
vestigated how good a multivariate Gaussian distribution can describe noise
in the tensor. Marginal distributions of the tensor and the distributions of
the squared rational anisotropy RA, see Chap. 7, are compatible with this



6 Random Noise in DTI 113

assumption. In particular the marginals are well normal distributed already
for SNR0 >2, when only 6 diffusion gradients are applied, and for clinical
b-values. The estimation of the covariance matrix is less robust, for a linear
regression model the diagonal elements are underestimated by about 20%.
In addition, BS for DTI data is introduced in this chapter. Its reliability is
shown by MCS on simulated data. BS is also applied to human data under
approximate clinical conditions, one result is that in the majority of voxels
the statistical properties of the tensor components are compatible with the
Gaussian assumption.

6.3 Corrections of Noise Effects

The different denoising methods can be divided into voxelwise and spatial
procedures. In the first group, frequently experiments with a small number of
gradients close to the minimum number ng = 6 and sometimes with different
b-values per experiment are repeated, to average the DWIs or to derive the
tensor via regression methods [7]. In multigradient experiments the gradient
number is enhanced, ng � 6. Different ways to construct the spatial orienta-
tion of such gradients were proposed, see [20] for a review and a comparison.
Finally, the tensor can be derived from the DWIs by the least squares fit
described in Sect. 2.1. Both acquisition schemes reduce noise in the system
voxelwise. A complementary technique is offered by spatial denoising, where
samples of neighboring voxels are used to estimate the variable of interest.
This technique relies on the fact, that anatomical units occupy at least sev-
eral neighboring voxels in a brain, and that it is possible to detect those regions
ROI of ‘homogeneity’. Such methods are applied to reduce the sorting bias of
tensor eigenvalues [21, 22], or to filter the spatial DWI fields [23, 24], more
global assumptions are involved in the denoising methods [25, 26, 27, 28].

6.3.1 Voxelwise Denoising

For SNRk > 3, voxelwise averaging of DWIs derived from repeated mea-
surements introduces, according to the classical CLT [11], unbiased normally
distributed mean values with small variance. If, by a high number of replica-
tions, the variance is reduced sufficiently one can estimate the derived DTI
variables practically without noise influence, due to the Delta Method. In
agreement with that it was shown by MCS [15], that for SNR0 ≈ 20 bias in
the eigenvalues is minimized best by averaging the DWIs before the tensor
is derived. For medium SNR0 ≈ 50 the results imply an equivalence between
DWI and tensor averaging, as the bias in the tensor, see (6.4), is no more
relevant. Only at high SNR0 direct eigenvalue averaging is equivalent to the
other methods, as the whole system is now close to the Gaussian limit.

Different orientations in multigradient systems led to the introduction of
the condition number κ = κ(A) , which gives an error bound by κ ≥ (relative
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error in D)/(relative error in s) [29, 30], for notations see Sect. 6.2.1. In
[30] it is shown, that for icosahedral gradients κ is small and independent
of rotations of A in the laboratory system. Within this bound, however, the
tensor distributions and the bias effects do depend on SNRk or on the gradient
directions, see (6.2) for an explanation. The number of gradients ng has also an
important influence on bias effects. The MCS in [31] shows, that the fractional
anisotropy FA, the mean diffusion MD =

∑3
k=1 λk/3 and the direction of

main diffusion depend on the number ng of uniformly distributed gradients.
Increasing ng reduces and stabilizes those bias effects, for SNR0 = 15 at least
20 gradients are necessary to achieve reliable anisotropy maps and 30 gradients
for reliable directions and MD .

To include SNRk ≤ 3 we performed MCS at SNR0 ≈ 4. Several three
dimensional models of realistic diffusion tensors are explored, with b =
1000 smm−2 and |S0| = 1000. The gradients are icosahedral, twelve differ-
ent gradient sets are used, ng ∈ {6, 10, 15, 16, 20, 25, 36, 40, 45, 60, 81, 126}.
In Fig. 6.2 typical results for a ‘cigar shaped’ diffusion with d11, d22, d33 =
.00155, .000354, .000191mm2 s−1, else zero are presented. To minimize SNRk

every gradient set is rotated, such that at least one gradient direction is paral-
lel to the main diffusion direction of the model. This produces maximal Rician
bias in the corresponding DWI. The relative bias of the three invariants of the
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Fig. 6.2. Impact of Rician statistics on DTI variables for SNR0 = 4.2. The model
diffusion is ‘cigar shaped’, FA = 0.8 and MD = 0.0007 mm2 s−1. Relative bias
versus number of applied gradients is presented for the invariants INV1 , INV2 ,
INV3 and FA, also the fractions of positive definite voxels and the angles between
main eigenvector of the model and the averaged main eigenvector of noisy diffusion.
Different line styles correspond to different levels of voxelwise averaging: thick line
(one experiment), dotted line (5 replications and DWI averaging DA), dashed dotted
line (30 replications and DA), thin lines close together (30, 50, 100 replications, DA
and application of bias correction according to Rician statistics)
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tensor INV1 =
∑3

k=1 λk, INV2 = λ1λ2 + λ1λ3 + λ2λ3, INV3 = λ1λ2λ3 are
shown in the upper panels. Below one finds the fractions of positive definite
voxels, the relative bias of FA and the angle between the true main diffusion
direction and the averaged noisy main diffusion direction. Before averaging,
the main directions were calculated by dyadic sorting, see below, and were
aligned to the model. In contrast to [31], increasing ng does not eliminate
in all cases the bias effects, see thick lines in panels INV1 , INV2 , FA and
ALPHA. This is due to a strong bias in the DWIs, with minimum SNRk ≈ 1.
When DWI averaging is performed, the bias effects even increase, see dotted
and dashed-dotted lines. Due to the classical CLT averaging of DWIs trans-
forms the Rician distributions to nearly normal shape with small variance,
centered around the biased Rician mean values. After bias correction [5], the
relative bias of the invariants and of FA is practically zero for 100 replications,
the angle bias is below 2 degrees for ng ≥ 6. If only 50 or 30 experiments are
applied the results deteriorate only slightly (thin lines). Positive definiteness
of the tensor is violated drastically before averaging, but denoising by DWI
averaging improves the situation considerably, see Fig. 6.2.

6.3.2 Spatial Denoising

In [12] the so called ‘lattice’ index of anisotropy is proposed, combining eigen-
value and eigenvector information in a ROI. This index shows enhanced ro-
bustness in the presence of noise for low anisotropy, compared to intravoxel
indices, like FA. Also eigenvalue sorting is improved by considering ROIs.
In [21] vector sorting is introduced, where the maximum coherence of main
eigenvectors in a ROI is involved. By MCS it is shown for isotropic diffusion
that this method is superior to magnitude sorting. Dyadic sorting [22] is an-
other improvement. In this method first magnitude sorting is applied to a
spatially averaged tensor used as reference, then, by a dyadic overlap measure
for tensors, the eigenvalues of the unknown tensor are sorted.

Nonlinear filtering is applied in [23, 24] to DWIs. In those filters the ROIs,
or better effective windows, where smoothing is performed, are not only de-
fined by spatial conditions, but also by a distance measure for the DWI to
enable edge preservation. Edges are typical features of spatial DTI variables as
e.g. anisotropy and fiber directions can change drastically between two voxels.
In [23] the diffusion equation by Perona Malik is applied, in [24] a chain of
nonlinear Gaussian filters is used. Both methods include only few assumptions
about the structure of the signals and seem to be convenient denoising tools
for DTI data with SNRk > 3.

Denoising of tensor fields is described in [25, 26], see also Chap. 18 by
Pajevic et al., Chap. 19 and 25 by Weickert et al., and Chap. 24 by Westin et
al. In [25] B-splines are applied to a discrete set of noisy DT-MRI measure-
ments to obtain a continuous representation of the tensor field, see Chap. 18
for edge preserving representations by NURBS. In such representations differ-
ential geometric quantities, like curvature or torsion of fiber tracts, but also
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the tangent field could be derived directly. In [25] noise affected templates are
denoised with good accuracy, except where the field is not homogenous, e.g.
in regions where fiber tracts cross. In [26] the Stejskal Tanner Equations ST
for complex signals are used; to achieve them formally, replace the DWIs in
(6.2) by the corresponding complex signals or complex DWIs. Assuming that
sufficiently many complex DWIs are given by the measurements, a smoothed
tensor field d(x) and S0(x) are derived by a variational principle ensuring
positive definiteness of the tensor. The minimization of the variational inte-
gral under ST constraints is achieved by an iterative procedure. The method
is edge preserving and is tested in model and real data applications.

The main diffusion directions are smoothed in [27, 28]. By a variational
regularization, in [27], coherent vector fields are estimated from noisy data.
This method conserves discontinuities and reduces the regularization for small
anisotropy. In model calculations those properties are verified, for higher noise
level an influence of sorting bias leading to orthogonal directional artifacts is
observed. The estimated vector field is then used as a prior to estimate, in
a second step, also the eigenvalue fields. To this end a diffusion equation
including the ‘flow’ tensor is applied. This ‘flow’ tensor includes information
about the diffusion tensor and controls smoothing and edge preservation. For
real data, denoised tensor, eigenvalue and FA fields are discussed. In [28]
the regularized main directions are estimated by the Bayesian approach. The
estimated maximum of the posterior probability for the main direction field
relies on a trade-off between DTI data and a priori assumption regarding the
low curvature of the nerve fibers. The a priori probability includes information
about the behavior of the modelled direction field in the neighborhood or
clique around the voxel of interest, leading to a Gibbs random field with
interaction, the likelihood includes only voxelwise calculated probabilities. The
regularized direction field is finally used to apply a new tracking algorithm to
simulated and real data, allowing the treatment of diverging fibers.

Finally we mention a method proposed especially for very high noise levels,
SNRk < 3 [32]; DWI averaging is combined with nonlinear DWI filtering [24]
and a bias correction, see Fig. 6.2. Human brain data with 1mm3 resolution,
this is roughly a factor 10 below the clinical voxel volume which produces
severe partial volume deficiencies [1], could be denoised successfully.

Both denoising principles discussed in Sect. 6.3 have inherent shortcom-
ings. Voxelwise denoising involves many experiments, therefore patient mo-
tion introducing partial volume effects and distortions, as well as temporal
instabilities in the scanner are the main limiting factors. Spatial smoothing
suffers often from a trade off between blurring and bias caused by the applied
method. Blurring occurs when different ‘objects’ cannot be discriminated by
the denoising method and when consequently anatomically separated infor-
mation is mixed together, like e.g. in the case of two neighbored fiber bun-
dles with different directions. Bias is mainly caused by too strong priors; e.g.
edge preserving filters can be tuned for very high quality in edge finding or
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‘object’ discrimination, the price is usually a decreasing flexibility in the linear
behavior or a decreasing ability to model curvature.

6.4 Conclusion

What can we learn from our analysis to find convenient strategies for spatial
denoising? For very high noise level, SNRk < 3, denoising and bias correc-
tion of the DWIs is a suitable procedure [32]. For reduced noise the tensor
distributions approach normality [14] and become also reasonable candidates
for smoothing. Our own calculations indicate a limit for tensor smoothing
well above SNR0 ≈ 4 due to the strong bias effects shown in Fig. 6.2. Tensor
denoising is particularly important for multigradient designs where DWI aver-
aging of replications, a convenient preprocessing step before spatial denoising,
is seldom feasible. For higher SNR0, when a bias due to the nonlinear DTI
chain can be neglected, eigenvector and eigenvalue fields may be convenient
variables. In [15] a similar SNR dependent denoising strategy for the reduction
of eigenvalue bias is derived by perturbation theory. For SNR0 ≈ 20 denoising
of the DWIs is recommended, for SNR0 ≈ 50 tensor denoising is shown to
be equally good, and only for higher SNRs direct eigenvalue denoising is pro-
posed. Additional priors in the denoising method may help to correct effects of
minor skewness or kurtosis in the distributions, or may even correct intrinsic
partial volume defects, e.g. in the main diffusion directions [28]. But, a spatial
dependence in the (co)variance is predicted by the Delta Method already at
very low noise levels and may be included in the denoising procedures.
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Summary. Water diffusion is anisotropic in organized tissues such as white matter
and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, mea-
sures water self-diffusion rates and thus gives an indication of the underlying tissue
microstructure. The diffusion rate is often expressed by a second-order tensor. In-
sightful DTI visualization is challenging because of the multivariate nature and the
complex spatial relationships in a diffusion tensor field. This chapter surveys the
different visualization techniques that have been developed for DTI and compares
their main characteristics and drawbacks. We also discuss some of the many biomed-
ical applications in which DTI helps extend our understanding or improve clinical
procedures. We conclude with an overview of open problems and research directions.

7.1 Introduction

Diffusion tensor imaging (DTI) is a medical imaging modality that can reveal
directional information in vivo in fibrous structures such as white matter or
muscles. Although barely a decade old, DTI has become an important tool
in studying white matter anatomy and pathology. Many hospitals, universi-
ties, and research centers have MRI scanners and diffusion imaging capability,
allowing widespread DTI applications.

However, DTI data require interpretation before they can be useful. Vi-
sualization methods are needed to bridge the gap between the DTI data sets
and understanding of the underlying tissue microstructure. A diffusion tensor
measures a 3D diffusion process and has six interrelated tensor components.
A volumetric DTI data set is a 3D grid of these diffusion tensors that form
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Fig. 7.1. The research context of DTI. Note that all the research domains are
interrelated: progress in one domain can easily propagate into the rest of the field

complicated patterns. The multivariate nature of the diffusion tensor and the
3D spatial characteristics of the diffusion tensor field combine to make DTI
visualization a challenging task. It is early in the history of visualization of
tensor fields and the field is still in an experimental stage. Visualization meth-
ods are exploring what users might need to see or evaluate qualitatively on
the data. Getting insight on the data allows to identify measures that have
statistical and scientific importance to obtain a quantitative evaluation. Ap-
plications that involve visualization are beginning to be pursued, but they are
even more embryonic than the visualization methods themselves.

This chapter compares current visualization techniques and analyzes their
strengths and weaknesses.

DTI research is broadly interdisciplinary. Figure 7.1 gives a simplified il-
lustration of the research domains surrounding DTI. It is worth noting that all
of the components in the diagram are interrelated in a loop: new discoveries
in one specific area often lead to improvements in the whole DTI field. For
example, Pierpaoli et al. found incorrect connections in the neural pathways
generated from a DTI data set [1]. Issues like this stimulate research in dif-
fusion imaging and lead to new methods, in this case high angular resolution
imaging [2, 3]. In Sect. 7.2, we review techniques for DTI data acquisition In
Sect. 7.3, we survey the computation and visualization techniques. We review
some applications of DTI in Sect. 7.4, discuss some open issues and problems
in Sect. 7.5, and conclude in Sect. 7.6.
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7.2 Diffusion Tensor Imaging

As for any visualization method, the merits of DTI visualization methods
depend on the quality of the data. Understanding where the data come from,
what they measure, and what their limitations are is an important first step
in designing and implementing a visualization scheme. We briefly review the
diffusion tensor imaging techniques here. Chapter 5 by Alexander presents a
more detailed discussion of the subject.

Water molecules in human tissues constantly collide randomly with one
another and with other molecules, a phenomenon called Brownian motion.
In pure water, this seemingly random movement results in a dynamically ex-
panding Gaussian distribution of water molecules released from one point [4].
In human tissues, however, cell membranes and large protein molecules limit
the motion of water molecules. The geometrical and physical properties of
the tissue determine the rate and orientation of diffusion. We can thus infer
the microstructure of human tissue by measuring the diffusion of the water
molecules.

The discovery of the nuclear magnetic resonance (NMR) effect [5, 6] in 1946
was the beginning of work that has led to the current form of diffusion mag-
netic resonance imaging (MRI). Two important landmarks were the discovery
of the spin echo [7], whose signal is perturbed by the water molecule diffusion,
and MR imaging [8], which determines exactly where the NMR signal origi-
nates within the sample. Diffusion imaging was the first imaging modality to
measure the diffusion of water in human tissues in vivo. Although the exact
mechanism of the generation of diffusion MRI signals in biological tissues is
not fully understood, it is generally believed that the quantity measured by
diffusion MRI is a mixture of intracellular diffusion, intercellular diffusion,
and the exchange between the two sides of the the cell membrane [9].

Inferring tissue structure from the diffusion process requires exploring the
orientation dependence of the diffusion. This dependence can be described
by the diffusion propagator P (r, r′, τ), which is the probability of a water
molecule traveling from position r′ to r in diffusion time τ [10]. In practice, the
number of diffusion directions we can measure in a clinical scan is limited by
scanning time, making it impossible to reconstruct the diffusion propagator
completely. A diffusion tensor [11] describes the orientation dependence of
diffusion assuming free diffusion in a uniform anisotropic medium (Gaussian
diffusion). For example, a diffusion tensor is a good model for diffusion in
uniformly oriented white matter structures such as the corpus callosum, but
is insufficient in areas where different tracts cross or merge. The coefficients
of the diffusion tensor, D, are related to the diffusion-weighted MRI (DWI)
signals by [12] Ĩ = I0 exp(b : D), where I0 is the 0-weighted diffusion image,
the tensor b characterizes the diffusion-encoding gradient pulses used in the
MRI sequence, and b : D =

∑3
i=1

∑3
j=i bijDij is the tensor dot product.

A 3D diffusion tensor is a 3× 3 positive symmetric matrix:
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Fig. 7.2. Barycentric space of diffusion tensor ellipsoids

Fig. 7.3. Illustration of regions with planar anisotropy due to the fiber configuration.
Gray regions represent voxels with planar anisotropy: (left) kissing fibers, (middle)
two fiber bundles crossing and (right) diverging fibers

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


Diagonalizing D, we get three positive eigenvalues λ1, λ2 and λ3 (in decreasing
order) and their corresponding eigenvectors e1, e2 and e3. Many scalar indices
and visualization methods are based on the eigenvalues and eigenvectors of
DTI measurements, as discussed in Sect. 7.3.

One geometric representation of Gaussian diffusion is a diffusion ellipsoid.
These ellipsoids represent the surface of constant mean-squared displacement
of diffusing water molecules at some time τ after they are released from one
point. The shape of a diffusion ellipsoid is inherently related to the eigen-
values and eigenvectors of the diffusion tensor: the three principal radii are
proportional to the eigenvalues and the axes of the ellipsoid aligned with the
three orthogonal eigenvectors of the diffusion tensor. Figure 7.2 shows ellip-
soids representing different kinds of diffusion; the difference among the shapes
of the ellipsoids are discussed in Sect. 7.3.1.

DTI measurements have been validated within acceptable error on the
fibrous muscle tissue of the heart [13, 14]. However, in a voxel containing
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nonuniformly oriented neural fibers (see Fig. 7.3), DTI measures an average
signal from all the fibers within the voxel, which usually results in an appar-
ent reduction of anisotropy and increase in uncertainty [15]. To resolve the
uncertainty in these areas, q-space spectral imaging [16] and other high an-qq
gular resolution diffusion imaging methods [17, 18] have been explored (see
Chap. 10 by Özarslan et al.). Beyond these ambiguities introduced in regions
where the diffusion is not coherent and cannot be modelled as a tensor, noise
in the underlying MR images propagates through the computational pipeline
changing the source diffusion weighted images, resulting diffusion tensor im-
ages, and visualizations based on them. Understanding the implications of all
of these artifacts in visualizations is an active area of current research (see,
e.g., Chap. 6 by Hahn et al.).

Image acquisition for DTI is a very active research area. Progress is fre-
quently reported on resolution improvement and reductions in imaging time,
noise, and distortion.

7.3 DTI Visualization

Meaningful visualization of diffusion tensor fields is challenging because of its
multivariate nature and complex interrelationships. The last decade has seen
several approaches to visualizing diffusion tensor data, most of them based
on reducing the dimensionality of the data by extracting relevant informa-
tion from the tensor. One possible classification of the different visualization
techniques is by the dimensionality to which the tensor is reduced. Another
important characteristic is the ability of these algorithms to show local or
global information, where global information means the complex spatial re-
lationships of tensors. Our discussion here groups the visualization methods
on the basis of these two criteria. Anisotropy indices reduce the 6D informa-
tion to a scalar value (1D). Volume rendering for DTI uses anisotropy indices
to define transfer functions that show the anisotropy and shape of the ten-
sor. Tensor glyphs do not reduce the dimensionality of the tensor, instead
using primitives that show the 6D tensor as such; however, these techniques
cannot show global information. Vector-field visualization reduces the tensor
field to a vector field, and therefore to 3D information at each point. Several
techniques can be used for vector-field visualization that show local as well
as global information. Section 7.3.5 describes algorithms in which the vector
field is extended with more information from the tensor. This includes tech-
niques where the whole tensor information is taken into account. Finally in
Sect. 7.3.6, several interaction schemes in DTI visualization are discussed.

7.3.1 Scalar Indices

The complexity of a DTI data set requires a complicated visualization scheme;
however, medical researchers and practitioners alike are trained to read scalar
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Table 7.1. Some scalar indices for DTI data. ||D|| =
√

D : D is the tensor norm,
Var(λ) and E(λ) are the variance and expectation of the three eigenvalues, an is a
normalized weighting factor, A = D − 〈D〉I

Scalar Index Equations

Mean diffusivity, 〈D〉 Dxx + Dyy + Dzz
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3

[19] Volume ratio, VR
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)3 , 27
Determinant(

3
D)

Trace(D)3

[20] Fractional anisotropy, FA

√
3
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[20] Rational anisotropy, RA
||D − 〈D〉I||

||〈D〉I|| ,

√
Var(λ)

E(λ)

[19] Lattice index, LI
N∑

n=1

an

(√
3√
8

√
A : An√
D : Dn

+
3

4

A : An√
D : D

√
Dn : Dn

)
[21] Linear anisotropy, cl

λ1 − λ2

λ1 + λ2 + λ3

Planar anisotropy, cp
2(
1

λ2 − λ3)

λ1 + λ2 + λ3

Isotropy, cs i
3λ3

λ1 + λ2 + λ3

fields on gray-level images slice by slice. Scalar data sets, although limited in
the amount of information they can convey, can be visualized with simplicity
and clarity and thus interpreted quickly and easily. It can thus be useful to
reduce DTI to scalar data sets. Since the advent of diffusion MRI, scalar
indices of diffusion MRI data have been designed and visualized successfully
alongside multivariate visualization schemes: rather than competing, the two
methods complement one another.

The challenges of reducing a tensor-valued diffusion MRI measurement to
a scalar index include mapping to a meaningful physical quantity, maintaining
invariance with respect to rotation and translation, and reducing the effect of
noise. Some scalar indices for DTI data are listed in Table 7.1.

Mean diffusivity (MD), which measures the overall diffusion rate, is the
average of the diffusion tensor eigenvalues and is rotationally invariant. Van
Gelderen et al. [22] demonstrated that, after a stroke, the trace of the diffusion
tensor delineates the affected area much more accurately than the diffusion
image in one orientation.

Before the diffusion tensor model was made explicit in 1994 by Basser
et al. [11], several different anisotropy indices derived from DWIs were used,
such as anisotropic diffusion ratio [23]. Unfortunately, these anisotropy indices
depend on the choice of laboratory coordinate system and are rotationally
variant: their interpretation varies according to the relative positions of the
MR gradient and the biological tissues, usually resulting in an underestimation
of the degree of anisotropy [19]. Therefore it is important to use rotationally
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invariant anisotropy indices such as volume ratio (VR), rational anisotropy
(RA) or fractional anisotropy (FA), which are based on the rotationally
invariant eigenvalues. Note that both RA and FA can be derived from tensor
norms and traces without calculating the eigenvalues.

However, rotationally invariant indices such as RA and FA are still sus-
ceptible to noise contamination. Pierpaoli et al. [19] calculated an intervoxel
anisotropy index, the lattice index (LI), which locally averages inner products
between diffusion tensors in neighboring voxels. LI decreases the sensitivity to
noise and avoids underestimation of the anisotropy when the neighbor voxels
have different fiber orientations.

Because they contract the tensor to one scalar value, FA, RA and LI do
not indicate the directional variation of the diffusion anisotropy well. For
example, a cigar-shaped and a pancake-shaped ellipsoid can have equal FA
while their shapes differ greatly. Geometrical diffusion measures [21] have been
developed: linear anisotropy, cl, planar anisotropy, cp and spherical anisotropy
or isotropy, cs. By construction, cl + cp + cs = 1. Thus, these three metrics
parameterize a barycentric space in which the three shape extremes (linear,
planar, and spherical) are at the corners of a triangle, as shown in Fig. 7.2. It
is worth noting that, unlike FA or RA, geometrical diffusion metrics depend
on the order of the eigenvalues and are thus prone to bias in the presence of
noise [19].

Figure 7.4 shows one way to compare qualitatively some of the metrics
described above by sampling their values on a slice of a DTI data set of a
brain. Notice that the mean diffusivity (MD) is effective at distinguishing be-
tween cerebrospinal fluid (where MD is high) and brain tissue (lower MD),
but fails to differentiate between different kinds of brain tissue. High frac-
tional anisotropy, FA, on the other hand, indicates white matter, because the
directionality of the axon bundles permits faster diffusion along the neuron

(a) MD: mean diffu-
sivity

(b) FA: fractional
anisotropy

(c) cl (green) and cp

(magenta)

Fig. 7.4. Shape metrics applied to one slice of a brain DTI scan. See color plates
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fiber orientation than across it. FA is highest inside thick regions of uniformly
anisotropic diffusion, such as inside the corpus callosum. Finally, while both
cl and cp indicate high anisotropy, their relative values indicate the shape of
the diffusion ellipsoid.

7.3.2 Volume Rendering

Volume rendering is a means of visualizing large-scale structure in a tensor
field, based on locally measured properties of the tensor data [24]. Volume ren-
dering has the defining property of mapping from the tensor field attributes to
a rendered image, without introducing additional geometry. However, volume
rendering is inherently flexible in the sense that the volume scene can easily
be supplemented with other visualizations (such as glyphs or fiber tracts, de-
scribed in following sections) to create a more informative image. Compositing
all the scene components together creates an integrated visualization in which
local and global aspects of the field may be seen in context. The volume of
tensor field attributes can either be precomputed and stored as a scalar field,
or computed implicitly as part of rendering. In either case, an anisotropy index
plays the important role of determining the opacity (thus visibility) of each
sample. Each sample is then colored and shaded to indicate local shape char-
acteristics; then samples are composited as the integral of colors and opacities
are sampled along each ray.

An essential element of volume rendering is the transfer function, which
assigns colors and opacities according to locally measured field properties.
Traditionally, volume rendering has been applied to visualization of scalar
fields, in which the domain of the transfer function is either the scalar value
defining the data set or additionally includes derived quantities such as the
gradient magnitude [25, 26]. The transfer function is usually implemented
as a one-dimensional or two-dimensional lookup table. The transfer function
domain variables are quantized to generate indices of table entries that contain
the colors and opacity of the transfer function range.

The extension of volume rendering to diffusion tensor fields is thus essen-
tially a matter of determining which quantities should serve as transfer func-
tion domain variables. To define opacity, the anisotropy indices in Table 7.1
are used. Fractional anisotropy (FA) is attractive in this respect because it
can be expressed in terms of differentiable tensor invariants, so the chain rule
can be used to calculate the gradient of FA as a normal for surface shad-
ing. Figure 7.5 shows a depiction of basic 3D structure with volume-rendered
isosurfaces of fractional anisotropy. Rather than using a polygonal model of
the anisotropy isosurface (as with Marching Cubes [27]), these images are
computed with an opacity step function: opacity is 0.0 or 1.0 depending on
whether FA is below or above the indicated threshold.

Color can be assigned in diffusion tensor volume rendering to indicate
either the orientation or the shape of the underlying tensor samples. Apply-
ing the standard RGB coloring of the principal eigenvector (see Sect. 7.3.4)
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FA = 0.0 FA = 0.3 FA = 0.5 FA = 0.65

Fig. 7.5. Volume-rendered isosurfaces at a range of FA values show basic 3D struc-
ture of white matter in a DTI brain scan

allows basic neuroanatomic features to be recognized by their overall color,
as in Fig. 6(a). Color can also be used to clarify differences in the shape of
anisotropy apart from the anisotropy index used to define opacity. In particu-
lar, the difference between linear and planar anisotropy as measured by the cl

and cp indices (Table 7.1) can be mapped onto the anisotropy isosurface, as
in Fig. 6(b) (where the variation from green to magenta for linear to planar
anisotropy is the same as in Fig. 4(c)). The rendering indicates how features
with orthogonal orientations lead to planar anisotropy at their adjacencies.
Locations in the brain characterized by this configuration of white-matter
fibers include the right-left transpontine tracts ventral to the inferior-superior
corticospinal tracts in the brainstem, and the right-left tracts of the corpus
callosum inferior to the anterior-posterior cingulum bundles.

A recent application of volume rendering to diffusion tensor visualization
is based on converting the tensor field to scalar fields, as described by Wenger
et al. [28]. The approach here is to precompute multiple scalar volumes that
can be layered and interactively rendered with 3D texture-mapping graphics
hardware [29]. The renderings in Fig. 7.7 show visualizations that combine a
volume rendering of the cerebral spinal fluid with a collection of fiber tracts

(a) Principal eigenvector (b) Linear versus planar

Fig. 7.6. Volume renderings of half a brain scan, (a) colored according to orientation
of principal eigenvector; (b) the distribution of linear (green) and planar (magenta)
anisotropy. Surface is defined by FA = 0.4. See color plates
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Fig. 7.7. Interactive volume renderings of a human brain data set. The volume ren-
derings (top) show collections of threads consistent with major white-matter struc-
tures: IC = internal capsule, CR = corona radiata, CB = cingulum bundle, CC =
corpus callosum diagrammed on the bottom. Components of the tensor-valued data
control thread orientation, color, and density. Direct volume rendering simultane-
ously shows in blue the cerebral spinal fluid in the ventricles (labeled V) and some
sulci for anatomical context. See color plates

rasterized into a color-coded scalar volume to illustrate the relationship be-
tween the distribution and orientation of the fiber tracts and the large-scale
patterns of anisotropy. The flexible combination of the different scalar vol-
umes into the final rendering permits interactive exploration and generation
of visualizations.

There are currently no implementations that can volume render directly
from a diffusion tensor volume to an image at interactive rates. The computa-
tional speed and flexibility of modern graphics hardware is increasing at such a
rate, however, that this should soon be feasible. For example, two-dimensional
transfer functions took minutes to render (in software) when introduced in
1988 [26], but can now be rendered at multiple frames per second with com-
modity graphics hardware [30]. Whether applied to scalar or tensor data, the
intrinsically data-parallel nature of volume rendering makes it well suited to
the streaming-based processors found on modern graphics hardware [31]. We
anticipate that volume-rendering graphics hardware will play an increasing
role in the interactive visualization of diffusion tensor data.
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7.3.3 Tensor Glyphs

Another avenue of DTI visualization has focused on using tensor glyphs to
visualize the complete tensor information at one point. A tensor glyph is a
parameterized graphical object that describes a single diffusion tensor with its
size, shape, color, texture, location, etc. Most tensor glyphs have six or more
degrees of freedom and can represent a diffusion tensor completely. However,
tensor glyphs do not expose relationships and features across a diffusion ten-
sor field; rather, they imply these relationships from the visual correlation
and features of the individual glyphs. While exploiting many different types
of tensor glyphs, from boxes to ellipsoids to superquadrics, tensor glyph de-
signers aim to make the mapping between glyphs and diffusion tensors faithful,
meaningful and explicit.

The diffusion ellipsoid described in Sect. 7.2 is the most commonly used
representation of a diffusion tensor. Pierpaoli et al. [19], in the first use of
ellipsoids as tensor glyphs for DTI, associated ellipsoid size with the mean
diffusivity and indicated the preferred diffusion orientation by the orientation
of the diffusion ellipsoid. Arrays of ellipsoids were arranged together in the
same order as the data points to show a 2D slice of DTI data.

Laidlaw et al. normalized the size of the ellipsoids to fit more of them in
a single image [32] (see Fig. 8(a)). While this method forgoes the ability to
show mean diffusivity, it creates more uniform glyphs that show anatomy and
pathology over regions better than the non-normalized ellipsoids.

Laidlaw et al. [32] also developed a method that uses the concepts of brush
strokes and layering from oil painting to emphasize the diffusion patterns.
They used 2D brush strokes both individually, to encode specific values, and
collectively, to show spatial connections and to generate texture and a sense
of speed corresponding to the speed of diffusion. They also used layering and
contrast to create depth. This method was applied to sections of spinal cords of

(a) (b)

Fig. 7.8. (a) Arrays of normalized ellipsoids visualize the diffusion tensors in a single
slice. (b) Brush strokes illustrate the orientation and magnitude of the diffusion:
background color and texture-map show additional information. See color plates
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Fig. 7.10. Superquadrics as tensor glyphs, sampling the same barycentric space as
in Fig. 7.2

(a) Boxes (b) Ellipsoids (c) Superquadrics

Fig. 7.9. A portion of a brain DTI scan as visualized by three different glyph
methods (overall glyph sizes have been normalized). See color plates

mice with experimental allergic encephalomyelitis (EAE) and clearly showed
anatomy and pathology (see Fig. 8(b)).

Boxes and cylinders have also been used to show the directions and relative
lengths of all three eigenvectors. Boxes clearly indicate the orientation of the
eigenvectors. They also have fewer polygons and are thus faster to render. But
their flat faces usually make it hard to infer the 3D shapes from a 2D image
(see Fig. 9(a)).

Kindlmann adapted superquadrics, a traditional surface modeling tech-
nique, to generate tensor glyphs [33]. The class of shapes he created includes
spheres in the isotropic case, while emphasizing the differences among the
eigenvalues in the anisotropic cases. As shown in Fig. 7.10, cylinders are used
for linear and planar anisotropy and intermediate forms of anisotropy are
represented by approximations to boxes. As with ellipsoid glyphs, a circular
cross-section accompanies equal eigenvalues, for which distinct eigenvectors
are not defined.



7 Visualization and Applications of DTI 133

The differences among some of the glyph methods can be appreciated by
comparing their results on a portion of a slice of a DTI brain scan, as shown in
Fig. 7.9. The individual glyphs have been colored with the principal eigenvec-
tor colormap. The directional cue given by the edges of box glyphs 9(a) is effec-
tive in linearly anisotropic regions, but can be misleading in regions of planar
anisotropy and isotropy, since in these cases the corresponding eigenvectors are
not well defined numerically. The rotational symmetry of ellipsoid glyphs 9(b)
avoids misleading depictions of orientation, with the drawback that different
shapes can be difficult to distinguish. The superquadric glyphs 9(c) aim to
combine the best of the box and ellipsoid methods.

7.3.4 Vector Field Visualization

The tensor field can also be simplified to a vector field defined by the main
eigenvector, e1. This simplification is based on the assumption that in the
areas of linear anisotropy, e1 defines the orientation of linear structures. The
sign of e1 has no meaning.

One commonly used method to visualize DTI data is to map e1 to color,
e.g., directly using the absolute value of the e1 components for the RGB
channel: R = |e1 · x|, G = |e1 · y|, B = |e1 · z|. The saturation of this
color is weighted by an anisotropy index to de-emphasize isotropic areas (see
Fig. 7.11).

Other methods have been proposed to visualize the global information
of 2D as well as 3D vector fields [34], and there are well established 2D
vector-field visualization methods [35]. Although 2D techniques have been

(a) sagittal slice (b) axial slice

Fig. 7.11. Mapping of e1 to the RGB channel shown in 2D slices of a healthy
volunteer brain. See color plates
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extended to 3D, the visualization of 3D vector fields is still a challenging
problem due to visual cluttering and computational cost.

We concentrate here on 3D DTI data. The most commonly used technique
to visualize DTI data is streamline tracing; in DTI-specific literature this is
also called fiber tracking [36] or tractography [37]. There is a direct analogy
between the streamlines and the linear structures to be visualized (e.g., fibers).
Furthermore, streamlines in 3D can easily be visualized by regions in order to
avoid cluttering. Streamline tracing is based on solving the following equation:

p(t) =
∫ t

0

∫∫
v(p(s))ds (7.1)

where p(t) is the generated streamline and v corresponds to the vector field
generated from e1. p(0) is set to the initial point of the integral curve.

The streamline technique has three main steps: definition of initial tracking
points (i.e., seed points), integration, and the definition of stopping criteria.
Seed points are usually user defined: the user specifies one or more regions of
interest (ROI). Interior of the ROIs are sampled and the samples are used as
seed points (see Fig. 7.12). Equation (7.1) is solved by numerical integration
via such schemes as Euler forward and second or fourth-order Runge-Kutta.
Stopping criteria avoid calculation of the streamline where the vector field
is not robustly defined. In areas of isotropic or planar diffusion, the value of
e1 can be considered random, and thus has no meaning for the underlying
structure. The user can usually set a threshold based on the anisotropy indices
(e.g., FA, RA or cl) to describe the areas where the vector field is defined;
the value of this threshold depends on the data-acquisition protocol and the
nature of the object being scanned. Other criteria can also be used, such as
the curvature or length of the streamline.

(a) (b)

Fig. 7.12. (a) Streamline tracing using two ROIs to trace the corona radiata in a
data set of a healthy volunteer brain. (b) Streamlines in a data set of a goat heart
using the seeding technique of Vilanova et al. [38]. See color plates



7 Visualization and Applications of DTI 135

Hyperstreamlines are an extension to streamlines for second-order tensor
fields [39], first used by Zhang et al. for DTI data [40]. Hyperstreamlines
employ all eigenvalues and eigenvectors. A streamline defines the axis of a
generalized cylinder whose cross-section perpendicular to the axis is an ellipse
defined by e2 and e3 and λ2 and λ3, respectively.

Streamline-tracing techniques for DTI have several disadvantages that are
constantly being addressed. In areas of nonlinear diffusion the main eigenvec-
tor is not robustly defined [15]. However, linear structures can be present in
areas with nonlinear diffusion, appearing where the linear structure orienta-
tion is not coherent within a voxel (see Fig. 7.3) or arising from noise. Most
DTI tracing algorithms consider only the areas where the vector field is de-
fined robustly. Several authors have proposed methods to trace within areas of
isotropic or planar diffusion following the most probable diffusion orientation
based on some heuristics (e.g., [41, 42]). Some of these methods are based
on regularization techniques that are commonly used in image processing for
noise removal.

Another difficulty in streamlines is seeding. The seed points can be defined
by the user. In a healthy person with known anatomy, users can estimate where
the interesting bundles are and where to seed. However, in some cases, there
are no real clues to the possible underlying structure and user seeding can
miss important structures. Defining the seed points to cover the whole volume
can be computationally expensive, however, and furthermore, too many seed
points clutter the image and make it difficult to extract useful information.

Zhang et al. [40] employed uniform seeding throughout the entire vol-
ume and developed a culling algorithm as a postprocessing step to control
the streamline density. This allows inside structures to be visible and out-
side structures still to be adequately represented. The metrics for the culling
process include the length of a trajectory, the average linear anisotropy along
a trajectory, and the similarity between a trajectory and the group of trajec-
tories already selected.

Vilanova et al. [38] extended Jobard et al.’s seeding algorithm [43] for
3D DTI data (see Fig. 7.12(b)). Here seeding and generation of streamlines
depend on a parameter that defines the density of the streamlines (i.e., min-
imal distance between streamlines). This method allows control of cluttering
and less computationally expensive generation of streamlines than seeding
the whole volume regularly. However, if the density is set to a low value this
method does not guarantee that the important structures are visible, since
only the distance between streamline seed points is taken into account.

Generally, the fiber bundles are more interesting than an individual fiber,
and several authors have proposed ways to cluster the streamlines to ob-
tain bundles (e.g., [44, 45, 46, 47]). These algorithms differ primarily in the
metrics used to define the similarity between streamlines and clusters, which
are mainly based on the shape and distance between fiber pairs. Bundles
are a compact representation of the data that alleviates cluttering; however,
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these algorithms have the disadvantage of relying solely on the results of the
streamline-tracing algorithm, and therefore are very sensitive to its errors.

7.3.5 Beyond Vector Field Visualization

The previous section presented several visualization methods for which the
diffusion tensor data are simplified to the main diffusion orientation to recon-
struct the underlying linear structure. In doing this, of course, information is
lost. In this section, we present several approaches that try to rectify this loss
and use more information than the main eigenvector, e1.

In DTI, it is assumed that the diffusion tensor gives an indication of the
underlying geometrical structure. In the streamline tracing algorithm, the
main eigenvector is assumed to represent the tangent vector of an underlying
linear structure. However, diffusion does not indicate just linear structures,
but also planar structures (e.g., sheet). Similarly to linear anisotropy, it can
be assumed that planar anisotropy indicates a planar structure. Therefore,
the eigenvectors e1 and e2 define the tangent plane of an underlying planar
structure, i.e., the streamsurface. Zhang et al. [40] presented an algorithm to
generate the streamsurface based on the planar anisotropic characteristics of
the data. Figure 7.13(a) shows the results of using their algorithm to trace
streamlines and streamsurfaces in the whole volume. In the brain there are
no structures which have a planar like shape. However, due to fibers crossing
and the partial volume effect planar like structures appear in the DTI data.

(a) (b)

Fig. 7.13. Examples of streamsurfaces: (a) red streamlines (represented as cylin-
ders) and green streamsurfaces generated using the method of Zhang et al. [40] show
linear and planar anisotropy, respectively, together with anatomical landmarks for
context; (b) Streamlines using seed points (yellow region) trace streamsurfaces and
show the possible prolongation of the fiber bundle, generated using the algorithm of
Vilanova et al. [38] (see color plates)
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Vilanova et al. [38] used a similar algorithm to Zhang et al. in combination
with streamline tracing to show the areas where linear structures cross, kiss,
converge or diverge (see Fig. 7.3).

Figure 7.13(b) shows streamlines generated by a few seed points (in the
yellow circle). Instead of stopping, a streamsurface is traced when a streamline
reaches an area of planar anisotropy. In addition, the possible continuations
of the initial streamline going through the streamsurface are traced further.

Streamsurfaces are extensions of streamlines, but the tensor information is
still simplified and not treated as a whole. Parker et al. [48] and Brun et al. [49]
modeled all possible paths from a given starting point. Parker et al. used
a front-propagation method with a speed function based on the underlying
tensor field. The path between the starting point and any point in the volume
is defined by using the time of arrival of the front to each point and a gradient-
descent algorithm. A connectivity metric describes the likelihood of connection
of each path. Brun et al. [49] modeled the paths as a probability distribution
that is discretely represented by weighted samples from it. For each path, a
connectivity is also assigned according to the diffusion tensor and the path’s
shape. Batchelor et al. [50] propose a method based on simulating the diffusion
defined by the diffusion tensor, and use a probabilistic interpretation of the
time of arrival of the diffusion front to quantify the connectivity of two points.
O’Donnell et al. [51] describe a similar idea: a flux vector field based on solving
for the steady-state concentration is created. Paths generated in this vector
field have a measure of connectivity based on the flow along the paths; the
maximum flow indicates the most probable connection. They also present a
method based on warping the space locally using a metric defined by the
inverse of the diffusion tensor. The minimum-distance path (i.e., geodesic) in
this warped space provides a reconstruction of a possible underlying linear
structure and a numerical measure of connectivity between two points (i.e.,
distance).

The advantage of these methods is that they are well defined in the com-
plete space, even in areas with planar or isotropic diffusion. Furthermore, they
give a quantitative measure of connectivity. Their drawbacks are that they are
computationally expensive and any pair of points in the space is connected.
Therefore, it is necessary to define not just a starting point but also end points,
or to establish criteria for which points are considered to be connected (e.g.,
a percentile of the most probable connections).

There have been several efforts to visualize the global information of the
second-order tensor field in general [52, 53] (see also Chap. 16 by Hotz et al.).
Zheng and Pang [54] presented an extension of the vector-field visualization
method LIC (line integral convolution) to tensor data. Similarly, Bhalerao and
Westin [55] extended splatting (a scalar volume rendering technique) to tensor
data. Cluttering is a problem when these methods are applied to DTI data,
since not much more than the outer shell of the anisotropic areas is visible.

Hesselink et al. [56] presented a method to extract topology skeletons of
second-order 3D tensor fields. These skeletons are mainly defined by points,
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lines and surfaces that represent the complex structure of a tensor field in
a compact and abstract way. The topology is based on the calculation of
degenerate points whose eigenvalues are equal to each other. In Chap. 14,
Zheng et al. show that the stable degenerated features in 3D tensor fields
form lines. The main drawback of this method is the lack of an intuitive
interpretation of the topology skeletons for tensor fields. In real data, the
resulting skeletons can be very complex and difficult to analyze.

7.3.6 Interaction

Human-computer interaction (HCI) arises in multiple aspects of DTI visu-
alization: transfer function manipulation, seeding point selection, streamline
culling, streamline query, and graphical model exploration, to name a few. We
briefly review some of the interaction techniques here.

In volume rendering, transfer functions determine the mapping from the
data to color and opacity (see Sect. 7.3.2). The selection of transfer functions
often requires expertise; in addition, it is often done by trial and error, so that
it is important that the user be able to select the transfer functions intuitively
and quickly. Kniss et al. [30] describes a set of widgets that let the user specify
multidimensional transfer functions interactively. Wenger et al. [28] applied
this idea to DTI volume rendering, employing a set of widgets including a
barycentric widget for manipulating the geometrical diffusion measures (see
Fig. 7.14).

Interaction permeates the whole process of vector field visualization: both
seed points selection and connectivity query involve specifying ROIs. Stream-
line culling requires selecting certain criteria and setting the corresponding
thresholds. Displaying the 3D streamline models often relies on user input

(a) (b)

Fig. 7.14. (a) An interactive exploration tool for DTI volume rendering. Clockwise
from upper left are a 2D barycentric widget, a 1D widget, a 2D Cartesian widget,
and a 2D Cartesian culling widget. (b) A user explores a complex 3D model in a
virtual reality CAVE. See color plates
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to show the models at different scales and perspectives. Akers et al. [57] de-
veloped a pathway-query prototype to expedite the first two operations, pre-
computing the pathways and their statistical properties to achieve real-time
interaction.

The complexity of the DTI data sets often yields complicated graphical
models that are hard to discern in a still picture. Continuing developments in
computer graphics constantly change how users interact with these models.
Desktop 3D graphics used mouse click and drag to move the models; fishtank
virtual reality display systems added stereo and head tracking [58]. The CAVE
provided an immersive virtual environment that engaged the user in whole-
body interaction [59] (see Fig. 14(b)). However, none of these systems are
sufficient alone; each has its strengths and weaknesses depending on certain
applications [58].

The interaction schemes can also be combined in hybrid visualization
methods. For example, the streamtube-culling widget can be incorporated into
the control panel with various other transfer function widgets (see Fig. 14(a)).
A traditional 2D structural image slice provides context in a complex 3D scene
(see Fig. 14(b)).

Currently, computational power limits our ability to achieve real-time in-
teraction and precomputed models must often be used for sake of speed. In
the future, we expect a closer tie between computation and human input for
more efficient and effective data exploration.

7.4 Applications

DTI is especially useful in studying fibrous structures such as white matter
and muscle: the anisotropy information it provides reveals the fiber orientation
in the tissue and can be used to map the white-matter anatomy and muscle
structure in vivo [37]. The diffusion coefficient measures a physical property
of the tissue and the measurements can be compared across different times,
locations, and subjects. Therefore, DTI has frequently been used to identify
differences in white matter due to a variety of conditions. Normal conditions
such as age and gender have been reported to affect anisotropy and diffusivity;
neural developments such as myelination, physical trauma such as brain injury,
and neurodegenerative diseases such as multiple sclerosis and HIV have all
been indicated by DTI studies to affect white-matter composition, location,
or integrity.

The variety of DTI applications provides a valuable testbed for visual-
ization methods. Indeed, without applications to guide the development of
computational and visualization tools, these tools are far less likely to be
useful. We introduce some of the applications of DTI in this section.
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7.4.1 White Matter Normal Conditions

Some normal conditions are reflected in the microstructure of white matter.
Significant differences were found in diffusivity and anisotropy of the human
corpus callosum with gender and handedness [60]. Age also has significant
effect on white matter, usually resulting in reduced FA and increased diffusiv-
ity [61, 62]. These factors should be considered when selecting control groups
for white-matter pathology studies.

The vector-field visualization methods introduced in Sect. 7.3.4 have been
employed to reveal connectivity in a normal brain. A common application is to
use neuroanatomy knowledge to select the ROIs and then reconstruct neural
pathways running through them. Evidence of occipito-temporal connections
within the living human brain was found by tracing neural pathways between
two ROIs [63]. Expert-defined ROIs for brainstem fibers and associated fibers
have been used to generate corresponding tracts [64]. An exciting trend is
to combine functional MRI (fMRI), which measures the changes in blood
flow and oxygenation in a brain area, with DTI fiber tracking, so that both
activated brain areas and the tract connecting them to other brain areas can
be visualized at the same time. For example, foci of fMRI activation have
been used as ROIs to reveal axonal connectivity in a cat’s visual cortex [65].

7.4.2 White Matter Development

Almost all the neurons that a brain will ever have are present at birth. How-
ever, the brain continues to develop for a few years after birth. A significant
aspect of brain development is myelinization, the continued growth of myelin
around the axons. Myelin acts as an insulating membrane and allows a con-
duction of nerve impulses from ten to one hundred times faster than along a
non-myelinated system and, at birth, few fibers are myelinated. The develop-
ment of myelin is thus a measure of increasing maturity of the neural system.
Previous studies have explored when particular fibers are myelinated; e.g.,
areas related with primary sensory (vision, touch, hearing, etc.) and motor
areas are the first to myelinate [66].

Diffusion tensor imaging has the potential to evaluate brain maturity in
newborns. Myelinated fibers have higher anisotropy than non-myelinated ones,
i.e., the anisotropy depends on the development phase. The study of newborn
brain presents new challenges:

• The anisotropy in the neonatal brain is lower than in the adult brain.
Therefore it is more difficult to reconstruct fibers reliably.

• Motion artifacts can play a larger role, since neonates often move more
than adults.

• The signal-to-noise ratio is smaller. The neonatal brain is smaller than that
of an adult, and hence the voxel size must be smaller, leading to decreased
signal.
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(a) (b)

Fig. 7.15. Studies of white matter fibers in neonatal brains with different data sets.
(a) Premature neonate lacking corpus callosum (see arrow), (b) full-term neonate
where no fiber abnormalities were found. Corpus callosum and corona radiata are
seen (see color plates)

The first years of life are a critical time for brain development. Early di-
agnoses of brain lesions can help diminish the consequences of an injury. For
example, neonates who suffer hypoxic ischemic brain damage have brain in-
juries caused by lack of oxygen and nutrients because of blood flow problems.
Diffusion weighted imaging has already proved useful in detecting this injury.
Diffusion tensor imaging might provide further information about structure
and the development of the neonatal brain. Figure 7.15(a) shows the white
matter fibers corresponding to a data set of a premature neonate of 26 weeks
and scanned at six weeks old. Several fiber structures are visible (e.g., corona
radiata in blue). However, the corpus callosum is not visible: the arrow in-
dicates where the fibers are missing. Further investigation of remaining MR
images of this neonate confirmed that this patient lacks a corpus callosum.
Figure 7.15(b) shows the result of tracing streamlines using ROIs to visualize
the corpus callosum and the corona radiata in a full-term neonate scanned
at four weeks after birth. The DTI data does not reveal any alteration in the
fibers, even though the neonate had meningitis.

7.4.3 White Matter Injury and Disorders

DTI has proven effective in studying a range of white-matter disorders. Some
of these disorders are brain injury, brain tumor, focal epilepsy, multiple sclero-
sis, tuberous sclerosis, Parkinson’s disease, Alzheimer’s disease, schizophrenia,
HIV infection, Krabbe’s disease, chronic alcohol dependence, ALS, X-linked
ALD, and CADASIL. Reviews of these studies can be found in [67, 68, 69, 70].
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We select three application areas in which pathological causes differ greatly,
resulting in different patterns and subtleties of the changes in white mat-
ter. These cases can be analyzed effectively only by applying processing and
visualization methods accordingly.

Brain Tumor

It is estimated that 17,500 people in the U.S. die from primary nervous-system
tumors each year [71]. A better understanding of the pathophysiology of brain
tumors is essential if we are to find effective treatments. Cortical disconnection
syndromes may play a significant role in clinical dysfunction associated with
this disorder.

Tractography methods have been applied to study patterns of white-
matter tract disruption and displacement adjacent to brain tumors. Wiesh-
mann et al. [72] found evidence of displacement of white-matter fibers of the
corona radiata in a patient with low-grade glioma when compared with spa-
tially normalized data collected from 20 healthy volunteers. Mori et al. [73]
found evidence of displacement and destruction of the superior longitudinal
fasciculus and corona radiata in two patients with anaplastic astrocytoma.
Gossl et al. [74] observed distortion of the pyramidal tract in a patient with
a high-grade glioma. Witwer et al. [75] found evidence of white-matter tract
edema. Zhang et al. [76] observed the pattern of linear and planar diffusion
around a tumor and analyzed the asymmetries of white-matter fiber tracts
between the tumor and the contralateral hemisphere.

Figure 7.16 shows visual exploration and quantitative analysis of a can-
cerous brain [76]. The streamtubes and streamsurfaces visualize both linear
and planar diffusion. The displacement of fiber tracts around the tumor is
accompanied by a cradle of streamsurfaces, indicating a local increase of pla-
nar anisotropy. The normalized distribution of anisotropy is calculated on a
barycentric space (see Sect. 7.3.1) for both the tumor-bearing side and con-
tralateral side of the brain. The difference in the two distributions (Fig. 16(b))
clearly indicates a decrease in linear anisotropy and an increase in planar
anisotropy in the tumor side of the brain.

As Fig. 7.17 indicates, the geometrical alteration of fiber structures sur-
rounding the tumors can have different patterns [38]. In Fig. 17(a), the fibers
are pushed to the left by the presence of the tumor; in Fig. 17(b), the fibers
seem to be destroyed: the structure around the tumor is not moved, but in
the tumor area no fibers are present.

Tumors and their surrounding edema often cause gross changes in the
neural fibers around them. DTI can benefit tumor growth study and surgery
planning by modeling these changes geometrically. Scalar index analysis com-
plement the geometrical modeling by quantifying these changes.
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(a)

Cl=1

Cp=1 Cs=1

(b)

Fig. 7.16. Visual exploration and quantitative analysis of a cancerous brain. (a)
A 3D visualization showing streamtubes and streamsurfaces as well as tumor and
ventricles. (b) The difference histogram obtained by subtracting normalized barycen-
tric histograms calculated from tumor-bearing and contralateral sections. Here zero
maps to medium gray because the difference is signed. Note that the most striking
difference occurs near the cs = 1 vertex. See color plates

(a) (b)

Fig. 7.17. Two cases of adult tumor brain. (a) Fibers are pushed by the tumor.
(b) No fibers are in the tumor area, indicating the destruction of neural structures
there. See color plates
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(a) (b) (c)

Fig. 7.18. Visualization of coregistered DTI and MS lesion models. (a) The whole
brain with streamtubes, streamsurfaces, lesion masks and ventricles. (b) A closeup
view of white matter fibers near the MS lesions. The streamtubes around the lesion
area give some clues about white matter structural changes there. (c) The same
brain and view as (a) but showing only streamtubes that contact the lesions, thus
clarifying the white matter structures involved. See color plates

Multiple Sclerosis

Multiple sclerosis (MS) is a chronic disease of the central nervous system
that predominantly affects young adults during their most productive years.
Pathologically, MS is characterized by the presence of areas of demyelination
and T-cell predominant perivascular inflammation in the brain white matter.
Recent studies on MS have shown an elevated mean diffusivity and reduced
diffusion anisotropy [77] in MS lesion areas. The lesions with more destructive
pathology are generally shown to have the highest diffusivity.

Analyzing the interrelationship between the MS lesion and the affected
fiber pathways might help in understanding the mechanism of the axonal
damage. The visualization of DTI models with coregistered MS lesion masks
in Fig. 7.18 can be utilized to determine the relationship between focal lesions
and the neuronal tracts that are anatomically related. Figure 18(b) suggests
the different effects that the focal lesions might have on the fibers. Note that
the streamtubes sometimes continue through the lesions (A) and sometimes
break within them (B). Figure 18(c) depicts only the fiber pathways that are
confined in the lesion area.

MS lesions are often dispersed and show different levels of severity. Visual-
izing the affected tracts can clarify the various effects of the lesions. Identifying
the gray matter to which these partially damaged tracts connect might help
explain the disabling effect of MS. The study of MS remains an active research
area. These visualization results might help researchers think about the pro-
gression of the pathology and design other experiments which, in turn, might
help validate the DTI results.

HIV Neurodegeneration

Human immunodeficiency virus (HIV) is an aggressive disease that affects
multiple organ systems and body compartments, including the central ner-
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vous system (CNS). Structural imaging studies of HIV patients’ brains reveal
morphometric changes in the subcortical gray and white matter regions [78].
However, because of the relatively poor sensitivity of structural imaging to
white-matter abnormalities in patients with mild HIV [79], the relationship
between cognition and white-matter abnormalities in structural MRI has not
been fully determined. These limitations can be overcome by DTI. Recent
DTI studies have demonstrated white-matter abnormalities among patients
with HIV even when fluid-attenuated inversion recovery (FLAIR) structural
MRI scans failed to do so [80, 81]. Most recently, Ragin et al. [82] reported
strong relationships between whole-brain fractional anisotropy and severity of
dementia among a small cohort of HIV patients (n = 6).

In cases such as HIV infection, where the white-matter structural changes
may be too subtle to detect with structural imaging, DTI can be used to
quantify the changes.

7.4.4 Myocardial Structure

Diffusion tensor MRI can also be used to measure directionally constrained
diffusion in tissues outside the nervous system. Understanding the complex
muscular structure of the mammalian heart is another important applica-
tion. The efficiency of the heart is due in part to its precise arrangement of
myofibers (contractile muscle cells), especially the myocardium (the muscu-
lar wall) of the left ventricle, which is responsible for pumping blood to the
rest of the body. The pattern of myofiber orientation in the myocardium is
helical : between the epicardium and endocardium (outer and inner surface)
there is roughly a 140-degree rotation of myofiber orientation, from −70 to
+70 degrees. Computational simulations of heart dynamics require an accu-
rate model of the myofibral orientation in order to model both the contractile
mechanics of the myocardium and the pattern of electrical wave propagation
within it [83]. The principal eigenvector as measured by DT-MRI has been
confirmed to align with the myofiber orientation [13, 14]. Recent work (see
Fig. 7.19) has applied superquadric tensor glyphs to visualize the myofiber
twisting and to inspect other anatomical features revealed by DT-MRI [84].

As is clear from the descriptions above, the applications of DTI are in-
creasingly diverse. Associated with the breadth of application areas is a need
for a wide variety of visualization techniques. Characterizing a tumor’s effect
on white matter integrity is based on fiber tracking, while the effect of neu-
rodegenerative diseases may be quantified in terms of anisotropy metrics, and
myocardial structure is described by a continuous rotation of the principal
eigenvector.

7.5 Open Problems

Successfully applying DTI to new research areas and problem domains de-
mands that visualization tools be flexible enough to support experimentation
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Fig. 7.19. Visualization of transmural twist of myofibers in canine myocardium,
seen in a short axis slice. The edges of the superquadric glyphs help show the flat
inclination at midwall and the differences among the eigenvalues at various locations

with the range of techniques, so as to evaluate the appropriateness of each.
This in turn requires that the modes of interaction efficiently support the ex-
ploration and parameter setting needed for creating visualizations, ideally in
a manner friendly to application-area experts who may not be visualization
experts.

In clinical practice, anisotropy indices, such as FA or trace (see Sect. 7.3.1),
are commonly used. Although, they show just a part of the information con-
tained in the tensor, their visualization is similar to what radiologists are
used to, and they are easy to understand and quantify. Other visualization
techniques based on tractography or fiber tracking are popular probably due
to the direct analogy between streamlines and fibers. However, the result of
most of these techniques are very sensitive to input parameter values from
the user (e.g., seed point). Important information can be missed if the user
fails to give the right input when the underlying anatomy is not known. User
independence is critical for statistical comparison and evaluation of diseases.

Some methods have tried to achieve more user independence by recon-
structing linear structures in the whole volume. The main problems in this
case are the computational cost and the huge amount of data to inspect.
Therefore, the user should be able to navigate and explore the data interac-
tively and in an intuitive way. For example, meaningful grouping or clustering
of data can help navigation. Intuitive interaction for setting of parameters,
such as transfer functions or thresholds (e.g., cl in fiber tracking to define ar-
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eas with linear structure). Fiber tracking algorithms are prone to error, e.g.,
due to partial volume effect or numerical integration. Finding and visualizing
uncertainty measures for the visualization algorithms could help to reduce the
effect of this error.

Visualization techniques are commonly used as exploratory tool to identify
measures for quantification. At the moment, measures for quantification only
exist for anisotropy indices. Quantification is important to get clinical accep-
tance. It is necessary to generate statistics and distinguish between diseased
and normal, and to build models according to the different demographic and
clinical variables that influence the results such as age and sex.

Validation is an important issue for DTI. There have been too few vali-
dation studies to be able to conclude that what is measured corresponds to
the anatomy [1, 13]. At the moment and to our knowledge, there is no gold
standard to validate the results of the techniques developed in this field.

An open problem of a different sort is the communication among different
scientific fields. It is important for physicians and technicians to communicate
in such a way that the necessary software and tools to advance in the clinical
investigations for DTI are developed.

Finally, although not discussed in this chapter, a main research issue is
the protocols for DTI data acquisition in order to improve quality and reduce
scanning times. Furthermore, much research in image processing has been
devoted to scalar but less to vector images, and little work has been done
on image processing techniques for tensor data. Filters for noise removal,
interpolation, feature extraction, etc. are of importance for the development
of DTI (e.g., see the chapters of part V: Image Processing Methods for Tensor
Fields). Second order diffusion tensor does not contain enough information
to disambiguate areas where a voxel contains non-coherent linear structures.
New representations for diffusion that show its more complex behavior are
being researched. Visualization and image processing techniques would need
to adapt to the complexity of this new data.

7.6 Summary and Conclusions

DTI allows the visualization of tissue microstructure (e.g., white matter or
muscle) in vivo. Meaningful visualizations are crucial in analyzing and get-
ting insight into multivariate data such as DTI. We have presented several vi-
sualization techniques developed in recent years. All visualization techniques
have their advantages and disadvantages. Tensor glyphs are good for giving
information at individual points, however, they miss to communicate their
relationships. Fiber tracking methods are good for following major coherent
fiber structures, but prone to error, e.g., partial volume effects, numerical in-
tegration. Fiber tracking methods usually reduce the dimensionality of the
tensor from 6D to 3D, based in the assumption that just linear structures
are interesting. Other methods were the whole tensor information is used to
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show the relationships between tensors, suffer from cluttering. A combina-
tion of different visualization techniques might be the best solution to provide
most insight in the data. However, there are still essential disadvantages, such
as robust parameter definition, that must be overcome. These visualization
methods ideally should be easy to use to application-area experts who may
not be visualization experts.

Some examples of the large variety of DTI applications have been pre-
sented. Besides the large amount of research that is devoted to white matter,
DTI is not limited to it. Other fields are also gaining from DTI, e.g., heart
studies. There is clear evidence that DTI will bring new insights in various
fields of research.

DTI is a relative young and exciting new field of research that brings
together several disciplines. Research in each of these disciplines is crucial to
achieve fruitful results in the application and use of DTI data.

Acknowledgments

We thank the BioMedical NMR group at the Eindhoven University of Tech-
nology and Maxima Medical Center in Veldhoven, Drs. Raimond Winslow
and Elliot McVeigh of Johns Hopkins University, and Andrew Alexander of
the W. M. Keck Laboratory for Functional Brain Imaging and Behavior at
the University of Wisconsin-Madison for providing some of the data sets and
evaluations used in this chapter. We thank Dr. Mark Bastin of the University
of Edinburgh, Dr. Jack Simon of the University of Colorado Health Science
Center, and Dr. Robert Paul of the Brown Medical School for providing some
of the data sets and for contributing to the section on white matter injury
and disorders.

References

1. C. Pierpaoli, A.S. Barnett, S. Pajevic, A. Virta, and P.J. Basser. Validation of
DT-MRI tractography in the descending motor pathways of human subjects. In
ISMRM, Conf. Proc., p. 501, 2001.

2. D.S. Tuch, R.M. Weisskoff, J.W. Belliveau, and V.J. Wedeen. High angular
resolution diffusion imaging of the human brain. In ISMRM, Conf. Proc., p.
321, 1999.

3. L.R. Frank. Anisotropy in high angular resolution diffusion-weighted MRI. MR
in Medicine, 45(6):935–939, 2001.
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Summary. In this chapter, we consider the task of anatomically labeling diffu-
sion tensor images of cerebral white matter to facilitate visualization as well as
quantitative comparison of these data. The analogous labeling problem for struc-
tural magnetic resonance images of the brain has been extensively studied and we
propose that advances in atlas-based techniques may be leveraged to anatomically
segment the fiber-tractographic maps derived from diffusion tensor data. The feasi-
bility of the approach is demonstrated with data acquired of the corpus callosum,
and implications of the results for callosal morphometry are discussed.

8.1 Introduction

Diffusion tensor (DT) imaging is a recent innovation in magnetic resonance
imaging (MRI) [1]. The measurement made at each voxel in a DT-MR image
is a symmetric second order tensor, which describes the local diffusive behav-
ior of water at the corresponding point in the imaged material. The DT may
be represented by an ellipsoid describing the root mean squared displacement
in each direction from the center of the voxel. DT imaging has proved useful,
because of the added insight it provides into the structure of fibrous tissue,
such as white matter in the brain, which contains bundles of fibrous axons. In
this type of tissue, although water is relatively free to diffuse along the axis of
the fibers, diffusion is hindered in perpendicular directions by cell membranes
that bound the fibers. Measurements acquired from these regions thus tend to
be anisotropic, i.e., the rate of diffusion is dependent on direction [2]. Further-
more, the major axis of the DT points along the axis of the bundled fibers,
which allows these fibers to be traced in vivo through DT images. In the brain,
this affords the possibility of connectivity maps being constructed [3, 4], since
the fibers are axons which form connections in the brain.

DT-MRI and its visualization are discussed in detail in various chapters
of this volume. Here, we consider the problem of anatomically labeling fiber
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Fig. 8.1. Visualization of the corpus callosum as extracted via fiber tractography [5]
from the diffusion tensor MR image of a female human brain (see color plates). Views
are from the side (top) and top (bottom) of the brain, with the head facing toward
the left. The corpus callosum is the connecting band of white matter fibers that
provide the primary means of communication between the two cerebral hemispheres

tracts that have been extracted from diffusion tensor images of brain white
matter using any of the available fiber tracking methods in the literature. The
proposed approach is especially useful for visualizations of the corpus callo-
sum, the connecting band of fibers that provide the primary means of commu-
nication between the two cerebral hemispheres. Typical tracings of this tract
originate from a region of interest corresponding to the corpus callosum on
the midsagittal plane. The fiber tracings are then extended toward the corti-
cal regions in both hemispheres that the fibers interconnect. As exemplified
in Fig. 8.1, the result provides a vivid depiction of the anatomy of the callo-
sum in much the same way that structural MRI is able to produce exquisite
pictures of soft tissue such as the human brain. However, just as anatomical
localization is a difficult task with brain images, so is the analogous problem
of identifying the particular gray matter regions interconnected by different
sets of fiber bundles within the corpus callosum. This anatomic labeling of
white matter is prerequisite for the conduct of cross-sectional or longitudi-
nal DT-MRI studies of health and disease. We thus foresee the development
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of algorithmic solutions to the white matter labeling problem emerging as a
major focus in research and clinical applications of diffusion tensor imaging.

In this chapter, we sketch out an approach for labeling diffusion tensor
images of cerebral white matter that leverages advancements in both fiber
tractography and atlas-based techniques for brain image segmentation. The
proposed method is demonstrated on DT-MRI data acquired of the corpus
callosum, and implications of the results for callosal morphometry are dis-
cussed.

8.2 Methods

The goal of the proposed tract labeling and visualization algorithm is to take
as input tractographic maps of brain white matter and to differentiate the
fiber bundles in these maps according to the gray matter regions that they
interconnect. Figure 8.5 depicts such a cortex-based anatomic parcellation,
in this case of the corpus callosum shown in Fig. 8.1. A prerequisite for im-
plementation of the algorithm is a labeled atlas of the brain and a method
for warping the atlas into detailed alignment with the corresponding struc-
tural MR images of the diffusion tensor data. In the examples to follow, high
resolution T1-weighted images are used because of the anatomic detail that
they can contain. Lower quality structural images may be used but these will
limit the anatomic fidelity of subsequent atlas-based segmentations. Because
the brain labels are determined over the structural scan for an individual and
then superimposed on the diffusion tensor image of the individual, another
factor that will affect the reliability of the tract labeling results is the degree
to which the structural and DT images are co-registered.

Once the different gray matter regions of interest in the diffusion tensor im-
ages are identified via atlas-based registration, the previously extracted white
matter fiber tracts can in principle be associated with the regions at which the
tracts terminate, and their labels determined accordingly. In practice, routine
clinical DT-MRI studies, such as those used in the experiments here, are too
noisy for existing tractography methods to reliably trace fibers all the way to
the gray-white interface. One way to proceed in this situation is to propagate
the gray matter labels into the white matter until they intersect the fiber
tracts. This can be accomplished in a principled way by computing a Voronoi
tessellation of the image volume, where the cells correspond to different labels.
To help ensure the veracity of the final results depicted in the figures below,
an additional constraint is imposed that precludes labeling of fiber bundles
which do not terminate within a certain distance – 15 mm in the examples –
from the cortex.

In the remainder of this section, the steps above are illustrated through
their application to the task of labeling the callosal tract in Fig. 8.1. Fig-
ure 8.2 depicts the brain atlas and its warped version after registration to the
T1-weighted structural image of the female subject whose corpus callosum is
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Fig. 8.2. Atlas-based brain image segmentation (see color plates). (Left) A surface
rendering of the labeled atlas used in this work. (Middle) The gray matter labels
for one hemisphere are shown superimposed on the underlying structural image of
the brain atlas. (Right) The atlas is registered to the corresponding T1-weighted
structural image of the female subject whose corpus callosum is depicted in Fig. 8.1,
and the warped gray matter labels for one hemisphere are shown superimposed on
the subject’s structural image. The following brain regions are delineated in the
atlas, further details of which can be found in [6]: precentral gyrus; superior tem-
poral gyrus; middle temporal gyrus; inferior temporal gyrus; superior frontal gyrus;
middle frontal gyrus; inferior frontal gyrus; supramarginal gyrus; postcentral gyrus;
parahippocampal gyrus; occipitotemporal gyrus; superior parietal lobule; inferior
parietal lobule; occipital lobe

shown in Fig. 8.1. The registration result was obtained with the method de-
tailed in [7], but a variety of other techniques are potentially applicable [7, 8].

The degree of anatomic correspondence between the atlas and structural
images after registration can be appreciated in Fig. 8.4. The superimposed
gray matter labels seen in Fig. 8.2 are used to obtain the three-dimensional
Voronoi partition – shown in Fig. 8.3 – of the structural image volume. Given
this partition, callosal fibers can be associated with the gray matter region at
which they terminate. Figures 8.5 and 8.6 depict this anatomic parcellation
for the corpus callosum of our original female subject and a second, male
subject, respectively.

Fig. 8.3. Voronoi partition derived from the individualized atlas (see color plates).
(Left) The distance-constrained Voronoi tessellation superimposed on the individ-
ualized gray matter labels on which the tessellation is based. (Middle and Right)
Surface renderings of the same three-dimensional Voronoi partition
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Fig. 8.4. Highly detailed correspondence obtained between the registered atlas
and subject images. The atlas (top) is non-rigidly registered (middle) to the female
subject (bottom) by optimizing in multiresolution fashion a robust mean squares
metric under the constraints of a viscous fluid transformation model [7, 7]. The
cursor is positioned at the same location in the three volumes

8.3 Discussion

The advent of diffusion tensor imaging has provoked considerable interest in
part because of the new and unique information it provides into the structure
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Fig. 8.5. Visualization of the anatomically labeled version of the callosal tract
depicted in Fig. 8.1 (see color plates). The color legend is the same as that for the
atlas in Fig. 8.2. The bottom row shows the tract within one hemisphere (oblique
view) and its appearance at the midsagittal plane (bottom left)

Fig. 8.6. Visualization of the anatomically labeled version of the callosal tract from
a male subject (see color plates). The color legend is the same as that for the atlas
in Fig. 8.2. The bottom row shows the tract within one hemisphere (oblique view)
and its appearance at the midsagittal plane (bottom left)
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of white matter regions in the brain. However, in order to be able to use this
information reliably in clinical interpretation or cross-sectional studies, the
measurements must be characterized with respect to the underlying anatomy,
which would make possible their reference on a common anatomical basis.
The development of methods for anatomic labeling of brain white matter is
therefore expected to become a major avenue for research in diffusion tensor
visualization and analysis.

In this chapter, we have proposed a scheme for identifying white matter
tracts extracted from DT-MRI brain studies of an individual using cortical
labels transferred from an atlas that has been warped into alignment with the
individual’s corresponding structural image. Individualization of the atlas is
obtained via very high dimensional registration. The warped cortical labels
are resampled into the space of the diffusion tensor data, which is co-registered
with the structural image, and used to generate a Voronoi partitioning of the
image volume, where the cells correspond to different labels. By determining
the cell at which a fiber bundle terminates, subject to distance constraints
from the cortex, we automatically obtain the label of the fiber bundle and
color it accordingly. Feasibility of the approach was demonstrated using trac-
tographic maps of the corpus callosum, producing a refined anatomic par-
cellation of this white matter tract according to the gray matter regions it
interconnects.

Callosal morphology as a potential clinical diagnostic criterion has at-
tracted much attention in the research community [10]. Recently, many inves-
tigators have focused on shape and size variations of the corpus callosum be-
tween distinct populations. There appears to be evidence confirming possible
morphological differences between normal subjects and those subjects afflicted
with schizophrenia [11, 12, 13], prenatal alcohol exposure [14], dyslexia [15],
Alzheimer disease [16], Williams syndrome [17] or chromosome 22q11 deletion
syndrome [18]. If these effects are found to be distinctive enough, we can hope
to be able to use these differences in a diagnostic manner. Even barring such
a diagnostic success, understanding the pathologies of a disease, in this case
morphometric differences, may aid in uncovering the cause.

Most studies of the corpus callosum (CC) searching for group differences
have used the Witelson partition or similar partitions [19, 20]. The Witel-
son partition consists of subdividing the CC using cuts perpendicular to the
longest line segment that can be formed by connecting two points on the mid-
sagittal plane of the structure. The first third is called the anterior third; the
next sixth, the anterior midbody; the following sixth, the posterior midbody;
the next two-fifteenths the isthmus; and the remaining fifth the splenium.
Studies typically report statistical differences in the overall or relative size of
the whole CC or one of these parts of the CC. Because this approach may
fail to reveal statistically relevant differences which either bridge boundaries
between partitions or perhaps occur on scales smaller than the partition and
are cancelled out by other competing effects within the same partition, some
studies have instead applied deformation-based morphometry [21, 22, 23],
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where a CC template is registered to subject callosa, and the resulting set
of transformations are used to search for differences in any subregion of the
CC, potentially even distributed effects which are not confined to a single
contiguous region.

A more important shortcoming of existing partitioning schemes, however,
is their dependence on heuristic albeit systematic specifications of the CC
partitions. The availability of DT-MRI enables an alternative, more princi-
pled approach, in which the CC is partitioned according to rigorous anatomic
definitions as advanced in this work. Current applications of deformation-
based callosal morphometry also have limitations; specifically, they use only
the two-dimensional boundary information of the CC as it appears on the
midsagittal plane, and morphological variations within the body of the CC
must be inferred from the boundary correspondences.

In related work [24], Huang et al. provide proof-of-concept of the use of
diffusion tensor imaging as a rigorous basis for anatomically partitioning the
CC. Moreover, they leverage the partition boundaries as additional landmarks
with which to guide deformation-based morphometry within the callosum.
In this work, we extend the heuristically obtained parcellations of Huang et
al., and present a principled approach to the tract labeling problem and its
automatic implementation via atlas registration. These developments when
combined with the fully volumetric tractographic maps derived from DT-MRI
brain studies open an exciting new realm for research in cerebral connectivity.
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Summary. Diffusion Tensor Imaging (DTI) became a popular tool for white matter
tract visualization in the brain. It provides quantitative measures of water molecule
diffusion anisotropy and the ability to delineate major white matter bundles. The
diffusion model of DTI was found to be inappropriate in cases of partial volume
effect, such as Multiple Fiber Orientations (MFO) ambiguity. Recently, a variety of
image processing methods were proposed to enhance DTI results by reducing noise
and correcting artifacts, but most techniques were not designed to resolve MFO
ambiguity. In this Chapter we describe variational based DTI processing techniques,
and show how such techniques can be adapted to the Multiple Tensor (MT) diffusion
model via the Multiple Tensor Variational (MTV) framework. We show how the
MTV framework can be used in separating differently oriented white matter fiber
bundles.

9.1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) enables the
measurement of the apparent water self-diffusion along a specified direction
[1, 2, 3, 4]. Diffusion Tensor Imaging (DTI) uses multiple Diffusion Weighted
Images (DWIs) to extract anisotropic diffusion effects [1]. DTI is based on
the assumptions that each voxel can be represented by a single diffusion com-
partment and that the diffusion within this compartment has a Gaussian
distribution. Under those assumptions DTI states the relation between the
signal attenuation, E, and the diffusion tensor, D, as follows [2, 3]:
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E(qk) =
A(qk)
A(0)

= exp(−bqT
k Dqk) , (9.1)

where A(qk) is the DWI for the kth applied diffusion gradient direction, A(0) is
a non weighted image and b is a constant reflecting the experimental diffusion
weighting [1]. D is a second order tensor, i.e., a 3 × 3 positive semidefinite
symmetric matrix, and therefore at least 6 DWIs from different non-collinear
applied gradient directions are required to uniquely calculate it [2]. One of
the promising applications based on DTI is fiber tracking (See Chap. 7 by
Vilanova et al.), producing 3D visualization of white matter tracts in the
brain, by integrating over the field of principle eigenvectors [5, 6, 7]. Principle
eigenvectors are found using the tensor spectral decomposition

D =
3∑

a=1

λaUa(Ua)T , (9.2)

for three eigenvectors Ua and three positive eigenvalues λa. The ratio between
the eigenvalues determines the diffusion anisotropy, with measures such as
Fractional Anisotropy (FA)[3]. Fiber tracking techniques have provided visu-
alization of white matter tracts, resembling known anatomical structures in
the brain [6, 7], but at the same time they also reveal DTI’s limitations. DTI
was found to produce erroneous orientations in voxels with partial volume,
i.e., exhibiting more than one compartment [4], where the assumption of a
single diffusion compartment no longer holds. A specific type of partial vol-
ume occurs in voxels containing Multiple Fiber Orientations (MFO), where
diffusion is not restricted to a Single Fiber Orientation (SFO) and therefore
is not accurately described by a Gaussian distribution. In addition to the
MFO modeling limitation, DTI has to deal with machine noise and with var-
ious artifacts accompanying the DWI acquisition process. The effect of noise
and artifacts on DWIs is hard to model, much yet to remove [8]. The errors
propagate and accumulate through the tracking process and can create large
diversions from initially small signal changes. Since the DTI algorithm does
not contain any inherent mechanism to eliminate artifacts or to reduce noise
effects it requires either pre or post processing. In this chapter we focus on the
variational approach for DTI denoising, and show how this approach could
be applied on the multiple tensor diffusion model, aiming to reduce the errors
resulting from partial volume effects while reducing noise effects.

9.2 Variational Approach for DTI Denoising

Variational frameworks for denoising images usually consists of a functional
which minima is considered to be provided by a regularized image [9]. Consid-
ering an initial image I0II (x, y, z) in the image domain Ω then an appropriate
functional with a denoised image I(x, y, z) as minimizer will have the following
form:
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F (I) =
∫

Ω

∫∫
(αK(I, I0II ) + R(∇I)) dΩ . (9.3)

The first term of the functional, the fidelity term, is used to constrain the
solution to the original image with the function K. The second part of the
functional, the regularization term, adds neighborhood alignment constraints
to the desired solution with the function R. The regularization term aims to
reduce overall edges in the image, which are measured with the gradient, ∇I,
values. The relative influence of both terms is determined by the parame-
ter α. Small variations in gradients assumed to be caused by noise, whereas
large variations are attributed to edges or contour lines. Adapting variational
framework to the processing of diffusion data would be by concerning different
diffusion measures as scalar, vector or matrix valued images.

9.2.1 Scalar Diffusion Images

Raw diffusion data is usually in the form of DWIs, which are scalar images.
DWIs are then further analyzed to fit diffusion models such as DTI. Applying
the variational framework on the set of DWIs is one possible way to achieve
smoother DTI results, such as FA values and principle eigenvectors [10, 11].
An example for such functional is [10]

F (I) =
∫

Ω

∫∫ (
α(I − I0II )2 + φ(|∇I|)

)
dΩ . (9.4)

Minimization by gradient descent of (9.4) gives the diffusion flow

∂I

∂t
= α(I0II − I) + div

(
φ′(|∇I|)
|∇I| ∇I

)
. (9.5)

The function φ should smooth insignificant edges while preserve the significant
ones. Example of different functions are Perona-Malik’s φ(|∇I|) = e−(|∇I|/K)2

[12], Total Variation φ(|∇I|) = |∇I| [13] or Charbonnier et al. φ(|∇I|) =√
1 + |∇I|2

k2 [14]. Since DWIs have a scalar value for each pixel, they are dealt
as regular gray valued images, and do not require additional constraints (For
scalar images regularization see [15]).

9.2.2 Multi-Valued Diffusion Images

Diffusion data can also be regularized at the diffusion tensor level, after fitting
the DWIs to the DTI model [16, 17]. The reasoning is that achieving smooth
variation of tensors will supply smoothed FA maps and fiber tracts. In general
the functional to minimize has a similar shape to (9.4) only now the scalar
images, I, are replaced with tensor valued images, D(x, y, z) = (dkl(x, y, z))
as follows:

F (D) =
∫

Ω

∫∫ (
α‖D −D0‖2 + φ(|∇D|)

)
dΩ . (9.6)
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The Frobenius norm is usually used for matrix norm as ‖D‖ =
√∑

k,l d
2
kl .

The matrix gradient can be calculated as |∇D| =
∑

k,l |∇dkl| for isotropic
flow or could be calculated with other schemes (For vector and matrix valued
image regularization see [18]). When handling tensors it is important that
the solution will preserve the diffusion tensor properties, i.e., D has to be
symmetric positive semidefinite. Some methods monitor the tensor proper-
ties explicitly by decomposing the tensor to formats which promise to main-
tain symmetric positive semidefiniteness, such as the Cholesky decomposition
(D(x) = LLT (x), with L being a lower triangular matrix) [17], or by decom-
posing D to D = RTR where R ∈ GL(n, IR), the Lie group of invertible n×n
real matrices [16]. The necessity of explicitly monitoring the positive semidef-
inite nature of the tensor is brought to question by Weickert and Brox [18]
where they prove that there exits a finite different scheme for diffusion filter-
ing that implicitly preserves positive semidefiniteness of the initial matrix field
for all iteration levels, providing that the filtering method applies the same
diffusivities on all tensor channels. For some DTI applications such as fiber
tracking, it is enough to regularize only the tensor orientations. Therefore,
regularization of all tensor channels is not needed. The minimization in this
case is done by changing the orientations of the eigenvectors [19] computed
by the spectral decomposition (9.2):

F (U) =
∫

Ω

∫∫ (
α|U − U0UU |2 + φ1(|∇U |)

)
dΩ , (9.7)

where U is a vector consisting all the components of the eigenvectors. With this
kind of regularization the orthonormal ratio between the eigenvectors has to
be preserved, and it is done by simultaneously rotating all 3 of them with the
same angle, determined by a momentum vector comprising the different flows
of ∂Ua

i

∂t for each element UiUU of U [19]. The results are smoothed eigenvector
maps, which can directly be used for fiber tracking, or could be used for
reconstruction of the reoriented diffusion tensor.

9.2.3 Simultaneous Fitting and Regularization

The variational framework could also be used for estimating a regularized
tensor field. The estimation is done by fitting the DWIs to the diffusion model
[20, 21] and does not require an initial tensor field. Simultaneous fitting and
smoothing is achieved by finding the tensor field, D, minimizing the following:

F (D) =
∫

Ω

∫∫ (
α(M(D)− I0II )2 + φ(|∇D|)

)
dΩ . (9.8)

Both (9.8) and (9.6) share the same regularization term, whereas (9.8) is re-
stricted by a different fidelity term, consisted of M , a diffusion model depen-
dent function, and I0II , the normalized DWIs. In the DTI case, M estimates
the DWIs which would fit D by (9.1). The fitting term measures how far
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are the predicted DWIs for the currently estimated diffusion tensor from the
measured DWIs. Minimization by gradient descent of (9.8) leads to the flow

∂D

∂t
= αM ′(D)(I0II −M(D)) + div

(
φ′(|∇D|)
|∇D| ∇D

)
(9.9)

The simultaneous fitting and smoothing should provide better results than
smoothing a prior fitted tensor field, since the fitting procedure itself in a
noisy situation is ill-posed, and adding the regularization stabilizes it [9].

9.3 Multiple Tensor Variational Framework for Fitting
and Regularizing Diffusion Weighted Images

Chapter 5 by Alexander explains that the DTI model shows some inaccura-
cies in areas of complex architecture where the assumptions of DTI do not
hold. A specific case is fiber orientation ambiguity, where fiber bundles with
different orientations reside in the same voxel. Trying to fit the attenuation
signal from Multiple Fiber Orientations (MFO) voxels to the DTI model (9.1)
usually results with low FA tensors with an oblate form (λ1 � λ2 � λ3), or
sometimes even spherical form (λ1 � λ2 � λ3) with no significant diffusion
orientation [22]. The principle eigenvector in those cases will not necessarily
be aligned with any of the fiber orientations [4], causing either a deviation
of the delineated tract, or a premature termination of the tracing procedure
when arriving to MFO voxels. In the recent years advanced diffusion models
and acquisition techniques were introduced aiming to overcome limitations
of the DTI model [23, 24, 25, 26, 27]. One of those methods is presented in
Chap. 10 by Özarslan et al. In the previous section variational framework for
DTI fitting and denoising were described, but those are confined within the
limitation of DTI diffusion model. In this section we will describe application
of the variational framework on a Multiple Tensor (MT) diffusion model [23],
which we call the Multiple Tensor Variational (MTV) framework.

9.3.1 Multiple Tensor Model

The MTV framework [28] is based on the MT water molecules diffusion model
[23]. The model is based on the assumption that each voxel is consisted of
discrete number of homogeneous regions, which are in slow exchange, i.e.,
separated by a distance much greater than the diffusion mixing length. It
is further assumed that the diffusion within each region is Gaussian, i.e.,
fully described by a tensor. Under those assumptions the attenuation signal
is described as a finite mixture of Gaussians,

E(qk) =
n∑

i=1

fiff Ei(qk) , (9.10)
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for n components, with each component described as

Ei(qk) = exp(−bqT
k Diqk) (9.11)

and fiff as the weight of the i’th component in the mixture of Gaussian diffusion
densities Ei. To ensure that the volume fractions are properly bounded (fiff ∈
[0, 1]) and normalized (

∑
i fiff = 1) the weights are calculated through the

soft-max transform
fiff =

exp ηi∑n
j=1 exp ηj

, (9.12)

where ηi ∈ IR. Using (9.2) and (9.12), the modelled signal takes the form

E(qk) =
n∑

i=1

eηi∑n
j=1 eηj

e−bqT
k (Σ3

a=1λa
i Ua

i (Ua
i )T )qk , (9.13)

where λa
i (Ua

iUU ) are the a’th eigenvalue (eigenvector) of the i’th diffusion tensor.

9.3.2 Variational Framework for the Multi-Tensor Model

The MTV framework estimates the MT vector field while smoothing it by the
minimization of the following functional:

S1(η,D) =
∫

Ω

∫∫ [
α0H +

∑
i

(α1φ1(|∇ηi|) + α2φ2(|∇Di|))
]
dΩ , (9.14)

where H =
∑d

k=1(E(qk) − Ê(qk))2, for d different acquisition directions.
Ê is the measured diffusion signal attenuation and E is calculated using
(9.13). During the regularization the tensors have to maintain their symmet-
ric positive semidefinite attributes and in addition should remain anisotropic.
Anisotropy is enforced in order to resemble neuronal fibers cylindrical shape
and in this way to avoid fitting of MFO voxels to a single isotropic tensor
as would happen with DTI fitting. In order to allow addition of anisotropy
constraints and in order to delimit the regularization to the principle eigen-
vector orientations the tensor components were spectral decomposed using
(9.2). Consequently a regularization scheme based on (9.7) was separately
preformed on the eigenvalues and eigenvectors:

S2(η, λ, U) =
∫

Ω

∫∫ [
α0H +

n∑
i=1

(
α1φ1(|∇ηi|) + α2φ2(|∇U1

iUU |)

+
3∑

a=1

α3φ3(|∇λa
i |)
)]

dΩ . (9.15)

The eigenvectors are regularized using the rotation scheme [19]. The rotation
momentum was determined solely by the flow of the principle eigenvector for
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each tensor, ∂U1
i

∂t . This momentum vector is then used to build a rotation
matrix with the Rodrigues’ formula [29], applied on all three eigenvectors,
resulting with preservation of orthonormality. The eigenvalues are regularized
channel by channel as independent scalar images. The regularization is con-
strained to positive eigenvalues and to anisotropic ratio by projection to the
allowed range (λ > λmin > 0, λ1

i

λ2
i

> minRate > 1). Furthermore the second
and the third eigenvectors were set to remain equal during the regularization
(λ2

i = λ3
i ). The minimum of S2 solves the Euler-Lagrange equations found by

the gradient descent scheme. The resulting is a system of coupled diffusion-like
equations:

∂Xi

∂t
= αXdiv

(
φ

′
X(|∇Xi|)
|∇Xi|

∇Xi

)
− α0

∂H

∂Xi
(9.16)

where X is replaced by the parameters λi
a, U1

iUU and ηi. The gradient de-
scent scheme used the Neumann boundary condition and the initial condi-
tions Xi(t = 0) = (Xi)0. The functional (9.15) is based on the calculation
of gradients, which is straightforward for scalar parameters, but requires a
specialized gradient scheme for eigenvectors. This is since two tensors with
oppositely oriented eigenvectors are in fact equal, due to the symmetric nature
of the diffusion measured in DWIs, whereas in contrast the angular difference
or metric difference between the opposite eigenvectors is large. Therefore, to
calculate the gradients of the principle eigenvectors a modified gradient cal-
culation scheme [19] is used: eigenvector orientations in a neighborhood are
flipped to create sharp angles, following with channel by channel difference
computation. The computation difficulties related to the tensor fields can be
avoided by confining the diffusion model to a fixed sets of tensors [30]. The
fitting is done by finding the relative weights of the different tensors in each
voxel, thus reducing the problem to scalar valued data. The cost of this sim-
plification is lower angular resolution and requires a choice of tensor bases
which takes in account the various eigenvalues relations which are found in
brain tissue.

9.3.3 MTV as a General Framework

DTI fitting, DTI regularization and MT fitting are all special cases of the more
general MTV model. DTI results can be achieved with MTV by using only
the fitting term (α1 > 0, αi = 0|i = 1) with single component fitting (�� n = 1).
Adding the fitting term to the single component fitting (αi > 0, n = 1) and
using DTI output as an initial state, reduces MTV to DTI regularization. The
advantage of MTV is clearly the addition of more than one orientation per
voxel. Using only the fitting term without restriction to a single component
(α1 > 0, αi = 0|i = 1) reduces MTV to MT. Fitting the MT model in MFO��
voxels is known to be ill-posed, especially in noisy setups, since the diffusion
shape becomes planar or spherical and could be equally fitted to more than one
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set of orientations. The addition of the regularization terms should stabilize
the fitting process [9], since additional constraints provide better specification
to the desired solution. However, MTV can not promise to prevent from local
minima entrapment, which is a problem shared by all variational methods
when the functional is not convex. The regularization term should have the
most effect in MFO voxels, where ambiguity causes lower fidelity term penal-
ties. The desired outcome are smoother tracts in MFO voxels which continue
the denoised orientations of tracts found at neighboring SFO voxels.

9.4 Simulations

Comparing simulations of DTI, DTI based variational regularization and
MTV regularization, demonstrates the effect of the variational regularization.
The simulations also show how fiber ambiguity can be resolved by MTV. The
algorithms were implemented as MATLAB code, and were tested on both
synthetic and experimental DWIs.

Observing a noise free simulation of perpendicular fibers, crossing each
other, shows that DTI does not correctly identify the orientations of either
fibers in the crossing area (Fig. 9.1a). The fitting was done with 99 simulated
DWIs corresponding to 99 applied gradient directions distributed equally over
a unit sphere, simulated using (9.10) (b = 1,000 s/mm2, λ1 = 1.5 × 10−3

mm2/s, λ2 = λ3 = 0.4× 10−3 mm2/s). MFO voxels appear where both fibers
reside in the same voxels, and in those voxels the principle eigenvectors found
are aligned between the two simulated fiber orientations. Addition of the reg-
ularization term creates smooth tract continuity inside the MFO voxels areas,
but correct orientation can not be recovered since the model is limited to sin-
gle component per voxel (Fig. 9.1b). Removing this limitation using the MTV
framework (Fig. 9.1c) allows the successful fitting of both fiber orientations.

Fig. 9.1. (See colour plates) Synthetic data. Computer simulation of crossing fibers.
(a) Left: DTI results. Middle: (b) DTI variational regularization (VR) results. (c)
Right: MTV results.Each arrow represents a voxel. Voxels represented by more than
one arrow have multiple components. Only components with a considerable volume
fraction are shown (fiff > 0.3)
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Fig. 9.2. (See colour plates) Phantom. (a) Top Right: Excised spinal cords placed
crossing at 45 degrees (illustration). (b) Top Left: DTI results. (c) Bottom Left:
Regularization results. (d) Bottom Right MTV results. Only components with a
considerable volume fraction are shown (fiff > 0.3) The directions supplied by MTV
are parallel to the original fiber orientations

Observing the fitting of DW-MRI acquired from a phantom reinforces
the synthethic results in conditions similar to regular MRI acquisitions. The
phantom used consisted of two sections of a freshly excised cervical pig spinal
cord which were placed crossing at 45 degrees (Fig. 9.2a), and was scanned on
a 7T spectrometer (PGSE, TR/TE = 2000/200ms, ∆/δ = 150/40ms, FOV
= 5 cm, 32×32 pixels, 15mm slice thickness, 0.14G/mm gradient strength, b =
1725 s/mm2) providing 31 DWIs corresponding to 31 non-collinear gradient
directions. Similar to the synthetic case, MTV was able to provide correct
fiber directions in the MFO voxels area (Fig. 9.2d), where both DTI and
variational regularization of DTI fails (Fig. 9.2b,c). Noise reduction achieved
with the variational framework is more noticeable observing fiber tracking
images (Fig. 9.3). Fiber tracking was generated from the tensor field outcome



174 O. Pasternak et al.

Fig. 9.3. (See colour plates) Fiber Tracking. (a) Top Right: T2TT non diffusion
weighted reference image. (b) Top Left: DTI resulted fiber tracking. (c) Bottom
Left: Fiber tracking of a regularized tensor field. (d) Bottom Right: MTV resulted
fiber tracking. The tracking originated from the ROI, marked with a rectangle

of the three algorithms. The tracts provided by DTI (Fig. 9.3b) show many
fluctuations and sharp edges, most of those are eliminated using the variational
frameworks (Fig. 9.3c,d).

9.5 Concluding Remarks

The variational framework is a powerful tool for the modelling and regulariza-
tion of various mappings. It is applied, with great success, to scalar and vector
fields in image processing and computer vision. Recently It has been general-
ized to deal with tensor fields which are of great interest to brain research via
the analysis of DWIs and DTI. We review in this chapter few approaches to
the determination of neuronal fiber bundles from DTI, with emphasis on vari-
ational methods. We show that the more realistic model of multi-fiber voxels
conjugated with the variational framework provides much improved results
and better accuracy of the fiber tracking algorithms. Based on the success
of our model to perform intra-voxel separation between different bundles of
neuronal fibers we currently study cases of partial volume between different
type of tissues, such as at the endings of fiber bundles in cortical areas.
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Summary. In this work we review how the diffusivity profiles obtained from dif-
fusion MRI can be expressed in terms of Cartesian tensors of ranks higher than 2.
When the rank of the tensor being used is 2, one recovers traditional diffusion ten-
sor imaging (DTI). Therefore our approach can be seen as a generalization of DTI.
The properties of generalized diffusion tensors are discussed. The shortcomings of
DTI experienced in the presence of orientational heterogeneity may cause inaccu-
rate anisotropy values and incorrect fiber orientations. Employment of higher rank
tensors is helpful in overcoming these difficulties.

10.1 Introduction

The dependence of the magnetic resonance signal intensity on the direction
of the applied diffusion sensitizing gradients has been exploited to calculate
the local orientations in fibrous tissues, which may eventually lead to the con-
struction of anatomical connections within different regions of the brain. The
most common approach used to model orientational dependence of the diffu-
sivities, called diffusion tensor MRI or diffusion tensor imaging (DTI) [1, 2],
has employed a Cartesian tensor of rank-2 that has yielded a simple scheme
to calculate anisotropy values as well as local orientations of the fibers from
multidirectional diffusion measurements. However, the underlying assumption
of DTI, i.e. the orientational homogeneity within the voxels, may be too re-
strictive for the imaging of neural tissue. The incapability of DTI to resolve
more than one fiber orientation has prompted recent interest in the develop-
ment of more sophisticated techniques. A review of DTI along with some of
the techniques developed to overcome the failure of DTI in regions of tissue
with complex microstructure by Alexander can be found in Chap. 5. Also
note that a recent method by Pasternak et al. based on modeling the signal
in a variational framework using multiple rank-2 tensors is detailed in the
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preceding chapter. In this chapter, we present a technique that we have re-
cently introduced called generalized diffusion tensor imaging that uses tensors
of rank possibly higher than 2.

10.1.1 Background

The dynamics of magnetization within the tissue is governed by the Bloch-
Torrey equation [3], which, upon simplification to keep its diffusion related
parts, takes the form

∂ψ

∂t
= −iγr ·Gψ + D∇2ψ , (10.1)

where r is the position vector, γ is the gyromagnetic ratio, D is the appar-
ent diffusion coefficient and G is the linear magnetic field gradient, whose
direction g is assumed to be time independent. In the above expression
ψ := M+MM exp(iw0t + t/T2TT ), where w0 is the Larmor frequency, T2TT is the
spin-spin relaxation constant and M+MM is the complex representation for local
transverse magnetization. Integral of M+MM over the voxel yields the signal S
received from that voxel. The components of g can be written in terms of the
spherical coordinates as

g :=
G
||G|| =

⎛⎝⎛⎛ g1

g2

g3

⎞⎠⎞⎞ =

⎛⎝⎛⎛ sin θ cosφ
sin θ sinφ

cos θ

⎞⎠⎞⎞ , (10.2)

where θ is the polar and φ is the azimuthal angle.
The solution to (10.1) yields the well known Stejskal-Tanner equation [4],

that relates the applied diffusion gradient to the MR signal, given by

S(g) = S0 exp(−γ2δ2||G||2(∆− δ/3)D(g)) = S0 exp(−bD(g)) , (10.3)

where δ is the duration of the gradient pulses and ∆ is the time difference
between the leading edges of these pulses.

In DTI, one replaces the diffusivity in (10.1) with a rank-2 symmetric
positive definite tensor, which results in an approximate signal attenuation
expression given by

S(g) = S0 exp(−bgTDg) . (10.4)

Comparison of the last two equations indicates that DTI assumes a diffusivity
profile that is specified by the quadratic forms of the rank-2 tensor, i.e.,

D(g) = gTDg . (10.5)
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10.1.2 Generalized Diffusion Tensor Imaging

As an extension of the transition from a diffusion coefficient (a rank-0 tensor)
to the rank-2 diffusion tensor, we have proposed to use Cartesian tensors of
rank higher than 2 to model the orientational dependence of diffusivities [5].
In this scheme, generalization of (10.4) is given by

S = S0 exp

(
−b

3∑
i1=1

3∑
i2=1

. . .

3∑
il=1

Di1i2...ilgi1gi2 . . . gil

)
, (10.6)

where Di1i2...il represents the components of the rank-l tensor. In this case,
the diffusivity profile implied by the rank-l tensor can be expressed as

D(g) =
3∑

i1=1

3∑
i2=1

. . .

3∑
il=1

Di1i2...ilgi1gi2 . . . gil . (10.7)

Note that (10.7) implies that

D(−g) =
{

D(g), if l is even
−D(g), if l is odd . (10.8)

However, the latter case would yield negative diffusivities which are nonphys-
ical. Therefore, the rank of the tensor model has te be even in which case
antipodal symmetry of the diffusivities is also ensured. Furthermore, (10.7)
also implies that the rank-l tensor is a totally symmetric tensor, i.e.,

Di1i2...il = D(i1i2...il) , (10.9)

where (i1i2 . . . il) stands for all permutations of the indices. This is because the
rank-l tensor links the components of the same l vectors to a scalar, therefore
the order of these vectors do not affect the result. A totally symmetric tensor
in three dimensional space has

NlNN :=
(

l + 2
2

)
=

(l + 1)(l + 2)
2

(10.10)

distinct components [6], where each of these distinct elements is repeated

µ :=
(

l
nx

) (
l − nx

ny

)
=

l!
nx!ny!nz!

(10.11)

times1, where nx, ny and nz are respectively the number of x, y and z in-
dices included in the full sequence of subscripts defining the component of
1 Note that the properties of the higher order diffusion tensor as described in the

text follows from the expression given in (10.7). A similar expression is found in
the linear theory of elasticity where the elastic energy U (a scalar) is obtained
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the tensor. For example, for Dxxxz, i.e., xxxz component of the rank-4 tensor,
nx = 3, ny = 0 and nz = 1. Therefore, using (10.11), it is easy to see that the
multiplicity, µ, of this component is 4.

These findings can be incorporated into (10.6) to yield a simplified expres-
sion for the generalized Stejskal-Tanner equation:

S = S0 exp

(
−b

Nl∑
k=1

µkDk

l∏
p=1

gk(p)

)
, (10.12)

where Dk is the k-th distinct element of the tensor, and gk(p) is the component
of the gradient direction specified by the p-th index of Dk.

A rank-l tensor contains the information stored in tensors of rank smaller
than l. Therefore, once a rank-l tensor is calculated, the components of the
lower rank tensors can be derived from this rank-l tensor. For example the
rank-0 tensor has only 1 component and is given in terms of the components
of the rank-2 tensor by D = 1/3(Dxx + Dyy + Dzz). The derivations of these
relations involve using the irreducible representation of the tensor and are
given in [5].

10.2 Quantification of Anisotropy
from Higher Rank Tensors

One of the most widely utilized achievements of DTI has been the parametriza-
tion of anisotropy, which produces a new contrast mechanism between highly
structured tissue and others2. It has been found in numerous studies that
changes in the neural tissue integrity due to many pathologies are reflected on
the values obtained from anisotropy maps [7]. Many indices have been pro-
posed to date that relate the observed signal intensities to an anisotropy value.
Most of these formulations are based upon the rank-2 tensor model of DTI. In
Chap. 17, Moakher and Batchelor present a new approach to the quantifica-
tion of anisotropy from rank-2 diffusion tensors. However, the failure of DTI in
the presence of orientational heterogeneity introduces a major problem in the
anisotropy values calculated. This is because when there is more than one ori-
entation within the voxel of interest, using the rank-2 tensor model gives rise

from the elasticity tensor E (a rank-4 tensor) through the relationship

U =
1

2
Eijkl ζij ζkl .

The differences in the properties of the elasticity tensor when compared to the
rank-4 diffusion tensor stem from the fact that the former links the components
of the strain tensor ζ (a rank-2 tensor) to a scalar whereas the diffusion tensor
links the components of a vector (a rank-1 tensor) to a scalar.

2 In Chap. 12, Kindlmann presents a comprehensive work on tensor invariants
including anisotropy indices as well as other invariants.
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Fig. 10.1. Simulations of the diffusivity profiles from rank-2 (top) and rank-6 (bot-
tom) tensors from a unidirectional voxel (left) and a voxel with two different fiber
orientations (right). See colour plates

to an excessive smoothing of the diffusivity profile, hence a reduction in the
anisotropy value [8]. In Fig. 10.1, we show the diffusivity profiles as implied
by rank-2 and rank-6 tensors for simulated unidirectional and directionally
heterogeneous voxels. It is clear that employment of a rank-2 tensor gives rise
to a significant change in the diffusivity profiles in the presence of multiple
orientations. As a result, one may expect inaccurate anisotropy values in such
voxels if a rank-2 tensor model is used.

10.2.1 Generalization of Trace

The most widely used indices such as Fractional Anisotropy (FA) and Relative
Anisotropy (RA) [9] are not readily generalizable to accomodate diffusivity
profiles that are more general than those that can be generated by rank-2
tensors. Therefore, we attempt to express these indices in a way that may make
it feasible to generalize them to higher rank tensors as well as to arbitrary
functions defined on the surface of a unit sphere. We note that FA and RA can
be expressed in terms of the trace of the square of a matrix R := D/trace(D)
as

FA=

√
1
2

(
3− 1

trace(R2)

)
, and RA=

√
3 trace(R2)− 1 . (10.13)

The trace of a rank-2 tensor can be expressed as the integral of the
quadratic forms of the tensor given by

trace(D) =
3
2π

∫
Ω

∫∫
gTDg dg , (10.14)
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where Ω is the unit hemisphere. Note that this expression can be generalized
to functions whose domains are the unit hemisphere because gTDg is a func-
tion on Ω. We will denote this generalized trace operation with ‘gentr’. For
functions f(g), with antipodal symmetry on the unit sphere, this operation is
given by

gentr(f(g)) =
3
2π

∫
Ω

∫∫
f(g) dg . (10.15)

Insertion of (10.7) into the above expression enables one to calculate the gen-
eralized trace of a rank-l tensor. We have shown that the generalized trace of
a rank-l diffusion tensor is independent of the tensor rank and is just 3 times
the mean diffusivity value [8].

10.2.2 Anisotropy in Terms of Variance

In this work, we formulate anisotropy in terms of the variance of the normal-
ized diffusivity profile where normalization is achieved (in analogy with the
definition of R above) via the expression

DN(g) =
D(g)

gentr(D(g))
. (10.16)

Next, instead of trace(R2), we propose to use the quantity gentr(DN(g)2).
When a rank-l tensor model is used, this quantity can be shown to be given
by

gentr(DN(g)2) =
1

6π〈D〉2
Nl∑

k1=1

Nl∑
k2=1

µk1µk2Dk1Dk2 (10.17)

×
(∫

Ω

∫∫
dg

l∏
p1=1

l∏
p2=1

gk1(p1)gk2(p2)

)
,

where mean diffusivity, 〈D〉, is just

〈D〉 =
1
2π

3∑
i1=1

3∑
i2=1

. . .

3∑
il=1

Di1i2...il

∫
Ω

∫∫
gi1gi2 . . . gil dg . (10.18)

Note that the integrals in (10.17 and 10.18) can be evaluated analytically.
It is straightforward to show that the variance of the normalized diffusiv-

ities is related to gentr(DN (g)2) through the relationship

V := variance(DN(g)) =
1
3

(
gentr(DN(g)2)− 1

3

)
. (10.19)

This variance value takes its minimum value of 0 only when diffusivities
along all directions are equal. This value is independent of l, i.e., the min-
imum value is the same for all tensor models. This is in contrast with the
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supremum value, which is achieved when the diffusivity profile is expressed as
proportional to the outer product of same l vectors given by

Di1i2...il = Dg′i1g
′
i2 . . . g′il . (10.20)

The variance value associated with this tensor is

sup variance(DN(g)) =
l2

9(2l + 1)
. (10.21)

In (10.20), g′ is the unit vector specifying the direction of greatest diffusion
coefficient and D is this maximal diffusivity. The form of the supremum value
in (10.21) implies that

• the supremum value depends on the rank of the model
• there is a limit to the anisotropy of the profiles that can be characterized

by lower rank tensor models
• when an arbitrary function is given3 this supremum value is ∞.

As a result of the last of these findings, a general anisotropy index can be
defined as a monotonic function that maps the interval [0,∞) to [0, 1). Based
on this, we define the generalized anisotropy index as

GA := 1− 1
1 + (250V)ε(V )

, (10.22)

where
ε(V ) := 1 +

1
1 + 5000V

. (10.23)

The particular form of this index differs from those of FA and RA in that
FA and RA emphasize the variations among pixels with very low anisotropy
values. However, the sensitivity of the GA images to changes in variance values
is suppressed when those variance values are very small. As a result, the
formulation of GA index as given in (10.22–10.23) ensure that the emphasized
variations in the variance values are within a window that is more consistent
with the variance values observed in the real datasets, increasing the contrast
of the anisotropy images.

In Fig. 10.2, we show the GA images implied by rank-2 and rank-6 tensors
where the sample is an excised rat brain acquired at 17.6T. Also included
are the difference maps demonstrating how much the variance and GA values
calculated from rank-6 tensors differ from those calculated from rank-2 ten-
sors. Complicated architecture of the brain stem is distinguished as the bright
pixels in the difference maps.

3 Note that in this case the required tensor model is ∞.
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Fig. 10.2. GA values from rank-2 (left column) and rank-6 (second column) tensors
from a coronal slice of an excised rat brain image. The right two columns show the
difference between the variance and GA values when these two tensor models were
used (see colour plates)

10.3 Fiber Orientations Implied by Higher Rank Tensors

The underlying hypothesis in the utilization of diffusion weighted imaging
to map fiber orientations in tissue is that the major orientations along which
diffusion occurs coincide with the fiber orientations. Therefore, in order for one
to have a correct orientation map, he needs to accurately estimate a function
P (x, td) that is just the probability of water molecules to move a distance x
during a time td. It is known from q-space imaging [10] that the average of this
function over the voxel is just the Fourier transform of the signal attenuations
(assuming δ << ∆), where the signal is envisioned to be on the reciprocal
space of x defined by the gradient directions:

P (x, td) =
∫

dq
S(q)
S0

exp(−i2πq · x) , (10.24)

where q := (2π)−1γδGg.
Note that in the rank-2 tensor model of traditional DTI, making the sub-

stitution (from (10.4))

S(q)
S0

= exp
(
−4π2q2tdgTDg)

)
(10.25)

into (10.24) results in the well-known oriented Gaussian displacement profile
for water molecules

P (x, td) =
1√

(4πtd)3 det(D)
exp

(
−xTD−1x

4td

)
. (10.26)

Although (10.25) is known to be incorrect for large values of q, DTI has been
found to be quite successful in the determination of fiber directions when the
voxel of interest is unidirectional.
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In the case of rank-2 DTI, in order to find the fiber direction, it is sufficient
to diagonalize the diffusion tensor because the peak of the displacement and
diffusivity profiles coincide and are given by the principal eigenvector of the
diffusion tensor.

In this work, we generalize these ideas to the case when diffusion is char-
acterized by a tensor of rank possibly higher than 2. Following the same lines
with the above formulation, we make the same monoexponentiality assump-
tion as in (10.25), and write

S(q)
S0

= exp
(
−4π2q2tdD(g)

)
, (10.27)

where in the case of a rank-l tensor model, D(g) will be given by (10.7). It is a
formidable task to analytically calculate the P (x, td) function corresponding
to a rank-l tensor model. Therefore, we adopt a numerical scheme in which
we sample the q-space on a rectangular regular lattice using (10.27). We use
a 64 × 64 × 64 grid such that the largest q-value corresponds to a b-value of
60000 s/mm2. Then we apply the FFT algorithm to estimate the displacement
probabilities [11].

In Fig. 10.3, we show the simulations of 1, 2 and 3 fiber systems. Clearly
rank-2 DTI fails to give meaningful results when there are more than one fiber
directions. As seen in the third column, the peaks of the diffusivity profiles
do not correspond to the fiber orientations when there are more than one
fiber orientation. Increasing the rank of the tensor model however, enables
the visualization of the different fiber bundles. In the last column, we apply a
sharpening transformation to the isosurfaces of the displacement probability

Fig. 10.3. The simulation results (see colour plates). The three rows show the 1,
2 and 3 fiber systems from top to bottom. The different columns show the orienta-
tions of the cylinders, probability isosurfaces obtained using rank-2 DTI, diffusivity
profiles, equiprobability surfaces from rank-6 DTI, and these probability surfaces
after a sharpening transformation (from left to right)
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Fig. 10.4. Isosurfaces of displacement probability functions implied by a rank-6
tensor model from a selected region of interest (ROI) in an excised rat spinal cord
image. The top right image is from a non-diffusion weighted dataset showing the
ROI where the probability isosurfaces were calculated (see colour plates)

profile that involves the removal of the largest sphere that fits into the surface.
This step can be thought of as an operation analogous to disregarding of the
smaller eigenvalues of the diffusion tensor in traditional DTI.

Figure 10.4 shows the sharpened isosurfaces of the displacement profiles
calculated on a slice of excised rat spinal cord imaged at 14.1 T. The rank of
the tensor model employed was 6. Fiber crossings are visible in many areas
in the spinal cord, particularly in the ventral nerve roots that travel among
white-matter fiber bundles in a direction perpendicular to them and causing
partial volume effects. Also note the complicated structure in gray-matter
where most fibers are oriented in the plane of the image.

Acknowledgments

We would like to acknowledge Dr. Tim M. Shepherd of Neuroscience depart-
ment for useful discussions. This work was supported by National Institutes
of Health grant numbers P41-RR16105 and R01-NS42075. The magnetic res-
onance images were acquired in the Advanced Magnetic Resonance Imaging
and Spectroscopy Facility of the McKnight Brain Institute. The experiments
on animal tissue were performed with the approval of the University of Florida
Institutional Animal Care and Use Committee.



10 Higher Rank Tensors in Diffusion MRI 187

References

1. Basser P. J., Mattiello J., et al. (1994) MR diffusion tensor spectroscopy and
imaging. Biophys. J. 66 (1), 259–267.

2. Basser P. J., Mattiello J., et al. (1994) Estimation of the effective self-diffusion
tensor from the NMR spin echo. J. Magn. Reson. B 103(3), 247–254.

3. Torrey H. C. (1956) Bloch equations with diffusion terms. Phys. Rev. 104(3),
563–565.

4. Stejskal E. O., Tanner J. E. (1965) Spin diffusion measurements: Spin echoes in
the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292.
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Summary. Tensor field visualization aims either at depiction of the full informa-
tion contained in the field or at extraction and display of specific features. Here,
we focus on the first task and evaluate integral and glyph based methods with re-
gard to their power of providing an intuitive visual representation. Tensor fields are
considered in a differential geometric context, using a coordinate-free notation when
possible. An overview and classification of glyph-based methods is given and selected
innovative visualization techniques are presented in more detail. The techniques are
demonstrated for applications from medicine and relativity theory.

11.1 Introduction

We consider tensor fields which are given either analytically or numerically
on a discrete mesh. For the last kind of data we assume that the we are able
to reconstruct the underlying continuous field approximately employing some
interpolation method (as described in Chap. 17 by Moakher and Batchelor,
Chap. 18 by Pajevic et al., and Chap. 19 by Weickert and Welk).

Depicting tensor fields, two major problems arise: first, the large number of
degrees of freedom to be displayed at each point and, second, for data in more
than two dimensions, the view occlusion to be minimized. The tensor degrees
of freedom have to be mapped to graphical degrees of freedom like color,
transparency, reflectivity, texture patterns and shape. Encoding all degrees
of freedom of a tensor field into the parameter space of just one of these
categories is difficult, if not impossible.

Ideally one would like to map all degrees of freedom to graphical encod-
ings at each point in space. However, texture patterns and shaped objects are
spatially extended, and color plus transparency encompass essentially only
four degrees of freedom. The occlusion problem is usually tackled by employ-
ing transparency and depicting sparsely distributed thin objects like, e.g.,
lines. Direct tensor field visualization techniques can thus be differentiated
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Fig. 11.1. Maelstrom of spacetime around a rotating black hole, visualized via
integral lines (left) and vertex-based glyphs (right) See also color plates

in those computing integral lines or surfaces, and others displaying the field
per vertex in the entire volume by drawing tiny objects, so-called ‘glyphs’, cf.
Fig. 11.1. We will discuss the benefits of both approaches, concentrating on
the mathematical aspects of integral manifolds in the first part, and focusing
on rendering glyphs in the second part of the chapter.

We do not delve into feature based (indirect) visualization methods that
aim at extraction and graphical representation of specific structural features
of the tensor field, like e.g. topological ones. For further information about this
class of visualization techniques, see Chap. 13 by Tricoche et al., Chap. 14 by
Zheng et al., and Chap. 15 by Wischgoll and Meyer.

11.1.1 Basic Notation

In computer graphics, one usually considers vector operations in Euclidean
space En with dimension n. A more general concept is a differentiable mani-
fold1. A curve γ within a manifold is a continuous map γ : R→M : s 	→ γ(s),
1 A manifold is a topological Hausdorff space that looks locally like the ordinary

Euclidean space En, i.e. every point has an open neighbourhood homeomorphic
to an open subset of En. To work with these objects one uses coordinate charts
which are homeomorphisms between open sets of M and open sets of En. A
collection of charts which cover M is called an atlas of M . The homeomorphisms
of two overlapping charts provide a transition map from a subset of En to some
other subset of En. If all these maps are k times continuously differentiable, then
the atlas is an Ck atlas. Ck atlases are called equivalent if their union is a Ck

atlas (this is an equivalence relation). A Ck manifold is defined to be a manifold
together with an equivalence class of Ck atlases. If all the connecting maps are
infinitely often differentiable, then one speaks of a C∞ manifold or differentiable
manifold
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where s is called the curve parameter. The set of all points of a curve within
a manifold is a line; it can be thought of as an equivalence class of infinitely
many curves with different parameterizations.

In contrast to Euclidean space, a manifold is not necessarily a vector space.
However, associated with a manifold M is a tangential space TpTT (M) at each
point p ∈ M . Tangential spaces2 are vector spaces, their elements are tan-
gential vectors which can be thought of as the vectors which are tangent
to lines through point p. A covariant tensor of rank n is a multilinear map
TpTT (M)n → R that maps n tangential vectors to a real number. Its co-ordinates
with respect to a specific basis are given by applying it to combinations of n
basis vectors of the n vector spaces.

The set of all tangential spaces on all points of a manifold3 is called the
tangential bundle T (M). This is an example of a vector bundle, i.e. a vector
space depending on parameters – the parameters being in a manifold. Choos-
ing a specific vector vp at each point p ∈ M gives a vector field (also called
‘section of a bundle’). Since the tensor product is independent of any choice
of the basis, tensor products of tangential bundles on M can be taken. The
component-free treatment of tensors carries over – again independently of co-
ordinates. In this geometric setting, a tensor field is a section of a tensor field
bundle, which assigns a tensor to each point p ∈M .

A covariant tensor of rank 1 thus is a linear functional on TpTT (M) and is
also called co-vector. In Euclidean space, there is an isomorphism between
tangential vectors and co-vectors, and there is no need to distinguish them.
In curved space, such as the surface of sphere, this not anymore true.

All these terms are defined without any coordinates. Expressing mathe-
matical statements in a co-ordinate free fashion guarantees that the state-
ments are valid not only in certain coordinates but in any chart. But for
numerical compuations, one needs to deal with representations of these ob-
jects in coordinate systems. For a n-dimensional manifold, a tensor g of rank
two is represented by a n× n matrix (g) in a coordinate system. Such a ten-
sor may also be used to map a tangential vector to a co-vector. Tangential
vectors which are mapped to their isomorphic representation as co-vectors
(same numerical representation in Euclidean space) are called eigenvectors.
In Euclidean space, this corresponds to the matrix multiplication gvi = λivi

2 Suppose M is a Ck manifold (k ≥ 1) and p is a point in M . Select a chart
φ : U → Rn where U is an open subset of M containing p. Suppose two curves
γ1 : (−1, 1) → M and γ2 : (−1, 1) → M with γ1(0) = γ2(0) = p are given such
that φ ◦ γ1 and φ ◦ γ2 are both differentiable at 0. Then γ1 and γ2 are called
tangent at 0, if the ordinary derivatives of φ ◦ γ1 and φ ◦ γ2 coincide. This is an
equivalence relation and the equivalence classes are the tangent vectors of M at
p. The equivalence class of the curve γ is written as γ′(0). The tangent space of
M at p, denoted by TpTT (M), is defined as the set of all tangent vectors; it does
not depend on the choice of the chart.

3 The elements of the tangential bundle T (M) are pairs (p, v) with p ∈ M and
v ∈ TpTT (M). T (M) itself is is a manifold of dimension 2n.
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with g the tensor, vi the ith eigenvector and λi the ith eigenvalue. There
may be at most n independent eigenvalues and eigenvectors. The eigenvector
which corresponds to the largest eigenvalue is called the principal eigenvector.
A visualization scheme for eigenvalues is presented in Chap. 12 by Kindlmann.

If only m out of n eigenvectors are linearly independent with m < n,
then the matrix (g) is singular, i.e. not invertible. In this case, at most m
eigenvalues will differ. However, the reverse is not true: linearly independent
eigenvectors may still share the same eigenvalues. In this case, the eigenvalues
are said to be degenerated and the points in a manifold where the tensor’s
eigenvalues degenerate are called degenerated points of the tensor field4. If
all eigenvalues are identical, then the tensor is isotropic. However, the term
‘degenerate’ is also used for bi-linear forms and metric tensor fields: here it
denotes a tensor field which is not invertible on specific points, subregions or
the whole domain. Both notions of ‘degenerate’ do not neccessarily coincide.

11.1.2 Classification and Properties of Tensor Fields

At first, we need to determine the symmetry properties with respect to permu-
tations of indices of a rank two tensor field: is it symmetric, like the diffusion
tensor field in magneto-resonance imaging (DT-MRI) or like the metric tensor
field in general relativity; is it antisymmetric, or does it contain no symmetries
at all, like the Jacobi matrix of a general vector field? Any general tensor field
can be decomposed into a symmetric and an antisymmetric part, so one can
defer the visualization of a generic tensor field into two sub-tasks. In three
dimensions, an antisymmetric tensor field of rank 2 consists of three indepen-
dent components and is thus equivalent (homeomorphic) to a vector field. For
an n-dimensional manifold, the number of independent quantities for general
tensors of rank 2 is n2, whereby the symmetric part contributes n(n + 1)/2
components and the antisymmetric part n(n − 1)/2. The homeomorphism
between the antisymmetric part and a vector field thus only exists in three
dimensions.

An important property of a tensor field that needs to be known before
selecting an appropriate visualization method is its definiteness: A multilinear
map g : V × V → R : (x,y) 	→ g(x,y), with V a vector space, is positive
definite if ∀v ∈ V with v �=�� 0 : g(v,v) > 0. If g(v,v) ≥ 0, then g is called
positive semi-definite. This property is equivalent to requiring all eigenvalues
of the tensor field to be positive at each point p ∈M .

For positive-definite symmetric three-dimensional tensors of rank two we
may compute linear, planar and spherical shape factors [WPG+97] from its
eigenvalues: cl = (λmax − λmed)/tr(g), cp = 2(λmed − λmin)/tr(g) and cs =
3λmin/tr(g), where tr(g) = λmax + λmed + λmin is the trace of the tensor.
The three shape factors obey the relationship cl + cp + cs = 1 and can thus
be interpreted as barycentric coordinates within a triangle.

4 See also Chap. 14 by Zheng, Tricoche and Pang as well as Chap. 16 by Hotz et al.
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11.2 Visualization via Integral Manifolds

Because powerful vector field visualization techniques already exist, we want
to try these first. A straightforward approach is to employ vector field visu-
alization methods to the eigenvectors of a tensor field. Since field lines are
very useful for vector field visualization, we review vector field integral meth-
ods first and discuss their applicability to eigenvector fields. Dealing also with
time-dependent fields, we take a spacetime point of view (see also [TWHS05]).
However, tensor fields are richer in information and thus can only partially
be represented by eigenvector integral lines. A more appropriate approach is
visualization of geodesics.

11.2.1 Integral Lines in Vector Fields

An integral line q ⊂M on a vector field v ∈ T (M) within a manifold M with
starting point q0 ∈M5 is defined via

q̇ ≡ d

ds
q(s) = v(q(s)) with q(0) = q0 . (11.1)

Integral lines are also called trajectories or tangent curves. They describe the
path of a point-like particle in the flow of a vector field. In coordinates, q de-
scribes spatial and temporal information; usually only three-dimensional, but
possibly time-dependent (non-stationary) vector fields are considered. Then
we may use the time coordinate as the curve parameter and equation (11.1)
reduces to three equations

q̇a(s) = va(qt(s), q1(s), q2(s), q3(s)), qt(s) = s (11.2)

whereby a = 1, 2, 3 describes spatial coordinates.
In the case of a stationary vector field or when investigating a vector field

at some instance of time, we may drop the time dependency and by solving

q̇a(s) = va(qt(s), q1(s), q2(s), q3(s)), qt(s) = qt(0) (11.3)

we get lines known as field lines or stream lines. They correspond to the flow
direction of many particles which are spread around in the volume of the
vector field. Path lines and stream lines are both one-dimensional manifolds;
they can’t cross each other, since at each point their direction is uniquely
determined by the given vector field. A stream line is a static object, all of
its points belong to the same time slice, whereas a path line is constructed
by points from different time instances. A path line can be considered as the
projection of a stream line within an time-dependent n-dimensional manifold

5 If M is a spacetime manifold, we call a point, i.e. a spatial location together with
a specific point in time, an ‘event’.
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onto an n− 1 dimensional spatial submanifold. This projection may intersect
itself.

Beside the inspection of lines that start from a single event q0, we can also
study the behavior of a bundle of lines that start from a set of events, e.g.
some ‘initial seed’ line q0(τ) : I →M with I ⊂ R. The integral surface S ⊂M
within a vector field v ∈ T (M) with initial seed line q0 is then constructed
from all integral lines that pass through an event on this initial seed line:

S = {q : R→M, q̇(s) = v(q(s)), q(0) = q0(τ)} . (11.4)

It contains a natural parametrization S(s, τ) by the initial seed parameter
τ and the integration length s. The intersection of an 2-dimensional surface
within a n-dimensional manifold with a n−1 sub-manifold does not necessarily
yield a one-dimensional manifold and thus may lead to lines that can self-
intersect.

A commonly used choice is to use a timelike initial seed line q0(τ) =
(τ, q1, q2, q3) with fixed spatial coordinates q1, q2, q3 (we can call such a seed
line a ‘location’, since it describes a point in space independent of time). The
resulting integral surface will then be spanned by a timelike tangential vector
∂t∂∂ and a spacelike tangential vector ∂s. For a fixed time coordinate t the
projection of the integral surface into a time slice dt = 0 yields a line, called
a ‘streak line’. It is formed by the location of all particles that have passed
(or will pass) through a specific point q0(t) at some time t. For stationary
vector fields, integral lines will be independent of time, and so streak lines
will coincide with stream lines.

Another choice is to use a spacelike initial seed line q0(τ) =
(q0, q1(τ), q2(τ), q3(τ)). The image of the seed line under evolution, the line
S(s, τ)|s=const is called a ‘material line’ or ‘time line’. The surface S is called
a stream surface. Improved algorithms for computing a stream surface, based
on the original one by Hultquist [Hul92], are given in [Sta98] and [GTS+04].

Sometimes higher dimensional initial seed data are used, revealing sur-
faces or volumes evolving under the flow map of the underlying vector field.
For instance, evolving a timelike two-dimensional initial seed surface (spa-
tially a line) yields streak surfaces in the spatial projection of the resulting
timelike volume. In general, these spatial projections are not manifolds and
may penetrate themselves like streak lines.

11.2.2 Eigenvector Stream Lines

It is a straightforward approach to employ vector field visualization meth-
ods to the principal eigenvectors of a tensor field g. However, treatment of
eigenvectors needs to consider the following two aspects:

• The principal eigenvector is undefined in isotropic regions. Its direction is
ambiguous and may vary due to slight numerical instabilities.
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• The sign of eigenvectors is undefined, since −v is a solution of the eigen-
value equation g · v = λv as well. We may call a vector whose sign is left
open a ‘pre-vector ’ (as a not yet fully determined vector).

The difference among pre-vector and vector fields is important. For instance,
it is possible to find a pre-vector field representing the tangential vectors
of a non-orientable manifold. Consider, e.g., a three-dimensional pre-vector
field that is tangential to a Moebius strip in a volume, and getting smoothly
zero farther away from the Moebius strip. Since the Moebius strip is a non-
orientable manifold, also its associated tangential pre-vector field cannot be
oriented globally to yield a vector field. Thus in general it is not possible to
apply unmodified vector field visualization methods to eigenvectors. Further-
more, due to the eigenvector ambiguity within isotropic regions, unmodified
vector field visualizations find and display features which are not a property of
the data field, but stem from the numerical eigenvalue extraction algorithm
(isotropy artifacts). Modified interpolation and/or integration methods are
required for eigenvector fields:

• When interpolating eigenvectors within a cell, all vectors contributing to
the interpolation must be oriented such that they point into the same
half-space, i.e. vi · vj ≥ 0 (‘local alignment ’).

• Interpolating eigenvectors yields different results than interpolating the
tensor field and computing the eigenvector at each interpolation point.
The choice of the most appropriate interpolation method for tensor fields
is an open issue by itself (see Chaps. 17–19).

• Stream line integration advances a point q(s) of the stream line q to the
next point q(s + ds) by a small step size ds via

q(s + ds) = q(s) + ds q̇(s) , (11.5)

whereby the new tangential direction is the direction of the vector field v
at the point of interest q(s)

q̇(s) = v|q(s) . (11.6)

Here, v is the solution of the eigenvalue equation Gv = λv at the point
q(s) such that v · q(s) ≥ 0. This last condition of local alignment dur-
ing integration is essential and needs to be added to a usual stream line
integration algorithm.

• Local alignment does not cure the problems arising from isotropy artifacts.
Stream lines of the principal eigenvector only lead to reasonable results
in regions with one dominant eigenvalue. An alternative, less vulnerable
integration algorithm is to start stream lines in regions with high linearity
and to advance it according to the deviation vector6 g · q̇:

6 The operation g · q̇ actually yields a co-vector, such that the deviation vector is
the isomorphic correspondence, which is no longer numerically identical in the
case of a non-flat base manifold.
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v = g · q̇ → q(s + ds) = q(s) + ds v . (11.7)

Integral lines of deviation vector fields are e.g. used in [ZP03b]. The method
of ‘tensor lines’ [WKL99] combines this method by blending the oriented
principal eigenvector vmax and the deviation vector with the linearity
shape factor cl at the point q(s + 1):

v = cl vmax + (1− cl) [(1− w) q̇(s) + w g · q̇] . (11.8)

Hereby w is a user-controlled ‘stiffness’ parameter in the range [0, 1] which
is said to be selected depending on the type of data.

• Both integral lines as solution of (11.7) and tensor lines don’t provide a
unique direction at each point in space, thus intersections of lines may
occur – in contrast to non-intersecting stream lines.

11.2.3 Visualization of Eigenvector Stream Lines

Hyperstreamlines [DH93] are a widely known technique for visualizing eigen-
vector streamlines. They encode the median and minimal eigenvectors as el-
liptical cross-section and the eigenvalue maximum as color along the stream-
line. However, they severely suffer from isotropy artifacts and, while they are
good for inspecting single lines, they are afflicted with view occlusion prob-
lems when depicting a large data volume. An alternative approach is to use
the technique of illuminated stream lines [ZSH96] upon eigenvector fields. As
the cross-section is infinitely small here, we may encode the additional tensor
field quantities as transparency and line distribution density. To reduce or even
avoid anisotropy artifacts, the transparency is set proportional to the isotropy,
using the spherical shape factor cs. Consequently, lines in isotropic regions of
undefined principal eigenvector become invisible, although a stream line of the
principal eigenvector field continues there technically. The seed points for the
stream line integration, which determines the density and number of stream
lines, are set dominantly in regions where one eigenvector is dominant (den-
sity chosen to be proportional to the linear shape factor cl), because only then
there is a unique direction. As a result, stream lines start in highly linear re-
gions, may traverse through planar regions but are less dense there and vanish
in isotropic parts of the volume data set.

This approach is very suitable for full three-dimensional visualization of
a data set as in Fig. 11.2 and is able to display most of the tensor field
features, including isotropic and linear regions in a comprehensible way (see
Fig. 11.3). However, due to the three-dimensional nature of stream lines, it is
not applicable to two-dimensional slices or for point-wise detailed inspection of
a data set. Also, planar regions are not visualized correctly, since eigenvector
stream lines visually suggest only one direction there.

An alternative approach on visualizing vector fields is line integral convo-
lution (LIC). Its extension to tensor fields leads to methods such as HyperLIC,
see [ZP03a] or Chap. 16 by Hotz et al.
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Fig. 11.2. Front, side and top view of stream lines along the maximum eigenvector
in linear regions of a human brain data set. See also color plates

Fig. 11.3. Magnification of two regions showing stream lines along the principal
eigenvector. Left: stable lines in linear regions, depicted pronouncedly. Right: unsta-
ble lines in more isotropic regions, depicted more transparently

11.2.4 Geodesics

A positive definite tensor field of rank two can be interpreted as a metric
tensor field and used to measure distances among points in space and time.
This interpretation can be used to compute embedding diagrams as in [Hot02,
BAS02].

[OHW02] interpreted a diffusion tensor field as a metric tensor field and
computed geodesics there. They employed Dijkstra’s algorithm and a level set
method to compute all possible geodesics originating from a single point. Here,
we review the computation of a single geodesic as a corresponding extension
of stream lines within a vector field to tensor fields.

An extremal line is the shortest or longest (i.e. most extreme) connection
between two points. It is determined by the metric tensor field. A curve q(s)
is the most extreme connection between two points A = q(s1) and B = q(s2)
if and only if

s2∫
s1

√
|g(q̇(s), q̇(s))| ds = minimum . (11.9)
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We may employ the Lagrange formalism to derive a differential equation for
the curve q(s). If we take the square of the length of the tangential vectors as
Lagrange function,

L(qk(s), q̇k(s)) = g(q̇(s), q̇(s)) = q̇µq̇νgµν (11.10)

then the parameterization of the curve becomes fixed and the solutions are
extremal lines parameterized by their affine parameters. These curves are
called geodesics. By inserting (11.10) into the Euler-Lagrange-equations and
a little algebra we arrive at the coordinate expression for the geodesic equation

q̈λ + Γλ
µνΓ q̇µq̇ν = 0 , (11.11)

whereby Γλ
µνΓ are the so-called Christoffel symbols and q̈λ denotes the second

derivative of the coordinate expression qλ(s) by the curve parameter. They
abbreviate an expression involving only the metric and its first partial deriv-
atives:

Γλ
µνΓ :=

1
2
gλα (gµα,ν +gνα,µ−gµν ,α ) . (11.12)

Here, the comma denotes the partial derivative by a coordinate function,
i.e. gµα,ν ≡ ∂gµα/∂x

ν . The partial derivative of a tensor gµα,ν (or even of a
vector vµ,ν) does not yield a tensor again; it may be zero in all components
in one coordinate system while non-zero in another ones. Consequently, the
Christoffel symbols Γλ

µνΓ do not form a tensor, too. The Christoffel symbols
can be used to define the covariant derivative of a tensor field that does not
depend on the choice of coordinates. This covariant derivative is denoted by
a semicolon, e.g. vµ

;ν . Its coordinate expression for a vector field is given by

vµ
;ν = vµ, ν + Γµ

λνΓ vλ . (11.13)

The directional derivative of a vector field is just the linear combination of
covariant derivatives and the components of the direction of interest. This
operation is written as ∇uv := vµ

;νu
ν∂µ. Differently from partial derivatives,

covariant derivatives in general do not commute: vµ
,ν,λ = vµ

,λ,ν , but vµ
;ν;λ �=��

vµ
;λ;ν . As the covariant derivative yields a tensor, so does the difference of two

covariant derivatives. This tensor is the Riemannian curvature tensor:

Kµ
νλσv

σ = vµ
;ν;λ − vµ

;λ;ν . (11.14)

It is used in general relativity to form the left-hand side of the Einstein field
equations of the gravitational field (via contraction). The Riemann tensor
is a map K : V × V × V → V and is defined in coordinate free notation
with u, v, w ∈ V based on the directional derivative ∇ and the commutator
[u, v] = u(v)− v(u):

K(u, v)w := ∇u∇vw −∇v∇uw −∇[u,v]w . (11.15)



11 Strategies for Tensor Field Visualization 201

The Riemann tensor only depends on the metric, its first and second par-
tial derivatives. The first partial derivatives may vanish in a certain coordi-
nate system, but the second ones do not. Thus, the Riemann tensor allows a
coordinate-independent classification of the underlying metric tensor fields. If
all of its components vanish in one coordinate system, then the metric space
associated with the tensor field is said to be flat.

11.2.5 Geodesic Deviation

The difference among close geodesics as depicted by the cross-section of a
geodesic bundle depends on differences of the Christoffel symbols and thus
directly visualizes the Riemann tensor. Let Φ(s, t) : R

2 → M denote a two-
dimensional family of geodesics such that for fixed parameter t the curves
γ(s) := Φ(s, t = const.) are geodesics. Let δ := d

dtΦ(s, t) ∈ T (M) denote
the deviation vector of points on the geodesics with same parameter s ∈ R,
also known as the Jacobi field of the geodesics [O’N83]. Here the dot denotes
the derivative by the geodesic parameter s, which is given by the directional
derivative along the geodesic:

δ̇ :=
d

ds
δ ≡ ∇γ̇δ (11.16)

We may also describe the deviation by an vector field δ ∈ T (M) that is
transported along the geodesic bundle, i.e. its evolution is described by the
flow map along the geodesics. This requires its Lie derivative Lγ̇δ to vanish
(see [Ben04] for illustration):

0 = Lγ̇δ ≡ [γ̇, δ˙ ] = γ̇δ˙ − δγ̇ = ∇γ̇δ −∇δγ̇ (11.17)

and we see that
∇γ̇δ = −∇δγ̇ . (11.18)

If we compute the second derivative by the affine parameter we get

δ̈ :=
d2

ds2
δ ≡ ∇γ̇∇γ̇δ = −∇γ̇∇δγ̇ . (11.19)

Recalling definition (11.15) of the Riemann tensor K(u, v)w and inserting
u = δ, w = v = γ̇ yields:

K(δ, γ̇)γ̇ = ∇δ∇γ̇ γ̇ −∇γ̇∇δγ̇ −∇[δ,γ̇]γ̇ . (11.20)

∇γ̇ γ̇ = 0 is just the geodesic equation and from (11.17) we know that [δ, γ̇] = 0.
Thus we see that the second derivative of the deviation vector is linearly
related to the Riemann curvature tensor:

δ̈ = K(δ, γ̇)γ̇ . (11.21)



202 W. Benger and H.-C. Hege

The evolution of the deviation vector in a chart is given by the coordinate
expression

δ̈µ∂µ = Kµ
αβνδ

αγ̇β γ̇ν ∂µ . (11.22)

In flat space K = 0 in any coordinate system and no focusing happens. The
deviation vector then describes just a linear expansion of a geodesic bundle
like a cone, depending on its initial cross-section δ and opening angle δ̇. The
influence of curved space on a geodesic bundle, e.g. as depicted in Fig. 11.4,
is also known as ‘Ricci focusing’ and plays a central role in gravitational lens
theory. See also Fig. 11.12. An extensive discussion of theory and application
can be found in [SSE94, SEF99].

Fig. 11.4. Particle geodesics in the vicinity of a rotating black hole. The congruence
of the geodesics is a direct visualization of the Riemann tensor, which is a central
component of the Einstein equations describing the gravitational field in general
relativity. The change of proper distances among geodesic paths thus indicates that
the spacetime is non-Euclidean, i.e. it has a non-vanishing Riemann tensor due to
some mass distribution. See also color plates

11.3 Vertex-Based Visualization Methods

A symmetric tensor of rank two at a point p may be represented graphically by
the set of all vectors v which are mapped to the same length �, i.e. g(v,v) = �.
This set of vectors corresponds to a set of points which have distance � from
the point p as measured with a metric tensor g. The coordinate expression is
quadratic, so these points form a quadric surface, i.e. an ellipsoid (a hyper-
boloid in general) for a positive definite tensor field on a three dimensional
base manifold. If g is a metric tensor, this surface can be interpreted physically
as the shape of a light sphere emitted from a certain point.
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11.3.1 Rendering Metric Ellipsoids

The quadric surface is defined by all vectors with the same length � when
measured with the tensor field g as a metric, i.e. g(v,v) = �. Any unit vec-
tor e has a corresponding ‘metric’ unit vector v = e/

√
g

√√
(e, e) which fulfills

g(v,v) = 1:

g(v,v) = g

(
e√

g
√√

(e, e)
,

e√
g

√√
(e, e)

)
=

g(e, e)√
g

√√
(e, e)

√
g

√√
(e, e)

= 1 . (11.23)

Thus, each vertex of an arbitrarily triangulated sphere may be radially scaled
by 1/

√
g

√√
(e, e), where e is the unit radial direction of the vertex relative to the

sphere’s center, to yield a metric ellipsoid. However, due to the discrete repre-
sentation of the sphere as a graphical primitive, the vertex with the maximal
or minimal extent of the metric ellipsoid might be missed. A more precise
alternative is to use tensor’s eigendecomposition to set up a projection matrix
while drawing a unit sphere; the maximal extent is then ensured to corre-
spond to the sphere’s pole. Due to the numerical overhead of the eigenvector
computation this variant is slower, but allows using any graphical primitive
instead of a sphere (e.g. a hedgehog).

11.3.2 Projection of Metric Ellipsoids

For rendering the quadric surface of a tensor, it is sufficient to just draw a
two-dimensional ellipse instead of a truly three-dimensional object that is pro-
jected by the 3D graphics engine. For depicting such an ellipsoid, we can draw
a rectangle with an arbitrary texture on it. This rectangle needs to be oriented
perpendicular to the view direction and transformed by a transformation ma-
trix according to the projection of the tensor field in the view plane.

Let z be the view direction and x,y be two orthonormal vectors describing
the view plane. A point q on the view plane can be computed from two
parameters (a, b) via q = ax+by. We get the projected ellipsoid by considering
a ray p = q + λz that is orthogonal to the view plane (we could model rays
for perspective projection as well). Points on the ellipsoid obey g(p,p) = 1,
which yields a quadratic equation in the ray parameter λ

1 = g(q + λz,q + λz) ≡ g(q,q) + 2λg(q, z) + λ2g(z, z) . (11.24)

For the projection of the ellipsoid on the view plane we are interested in the
set of parameters (a, b) where the ray is tangential to the ellipsoid, i.e. where
the discriminant of (11.24) vanishes:

g(q, z)2

g(z, z)2
− g(q,q)− 1

g(z, z)
= 0 ≡ g(q, z)2 − g(q,q)g(z, z) + g(z, z) . (11.25)
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Substituting q = ax+ by into ((11.25)) yields a quadratic expression in (a, b):

a2
[
g(x, z)2 − g(x,x)g(z, z)

]
+ 2ab

[
g(x, z)g(y, z)− g(x,y)g(z, z)

]
+ b2

[
g(y, z)2 − g(y,y)g(z, z)

]
+ g(z, z) = 0 . (11.26)

The coefficients in (11.26) for a2, 2ab and b2 are the components of a bilinear
form describing the shadow of the metric ellipsoid in the coordinates (a, b).
Note that in this derivation we never used coordinates on the 3-vectors, i.e.
this derivation was completely coordinate-free. We may also write (11.26) as

(
a b
)
⎡⎢⎡⎢⎢⎢⎢⎢⎢⎣⎢⎢g(z, z)

=:π(g)︷ ︸︸︸ ︷︷(
g(x,x) g(x,y)

g(y,y)

)
−
(
g(x, z)2 g(x, z)g(y, z)

g(y, z)2

)⎤⎥⎤⎥⎥⎥⎥⎥⎥⎦⎥⎥
︸ ︷︷︷ ︸︸

=:σ(g)

(
a
b

)
= g(z, z)

(11.27)
whereby π(g) is the intersection of the ellipsoid with the view plane g(q,q)
and σ(g) is the ‘shadow ellipsoid’. With (v, w) the eigenvectors of this 2 × 2
metric and (λ, µ) the corresponding eigenvalues, i.e.

σg · v = λv σg · w = µw , (11.28)

the orientation of the resulting projected ellipsoid in 3D is given by evaluating
the eigenvectors as linear combination of the basis {x,y}:

p1 = (vx/
√
λ)x +(vx/

√
λ)y (11.29)

p2 = (wx/
√
µ)x +(wx/

√
µ)y . (11.30)

The two three-dimensional vectors p1,p2 are orthonormal with respect to the
metric tensor g (i.e. g(pi,pj) = δij) and are completely contained in the view
plane x,y. Since the eigenvalue equation of σ(g) is just quadratic, it can be
solved faster and more precisely than the eigenvalue equation of the full 3× 3
tensor matrix. From the visualization side, the advantage of this method is
that we can use an arbitrary image as texture on the distorted rectangle.

11.3.3 Selected Glyph-Based Visualization Methods

Many alternatives to the quadric surfaces have been proposed that are su-
perior in enhancing certain features of the tensor field and that are more
sensitive to deviations. Here, we review some glyph-based methods that pro-
vide alternatives to quadric surfaces (‘metric ellipsoids’).
Superquadrics. [Kin04] uses superquadrics, i.e. surfaces of the form axn+byn+
czn = 1 with n > 2, to reduce ambiguities on the appearance of view-projected
quadric surfaces. See also Chap. 12 by Kindlmann.
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Reynold Glyphs. Reynold glyphs [MSM95] are an inverse mapping of the met-
ric ellipsoid, mapping each unit vector e to e ·

√
g

√√
(e, e) instead of e/

√
g

√√
(e, e)

as with the quadric surface.
Haber Glyphs. Haber [Hab90] used a disc and a rod instead of an ellipsoid to
encode the eigenvalues of a tensor at each point. This glyph is useful for depict-
ing anisotropy more easily than ellipsoids, but is also vulnerable to isotropy
artifacts.

Shape Icons. To allow reading off directly the relationships of the shape factors,
[WMM+02] used a combination of a sphere, a disc and a needle at each vertex.
Each component is scaled accordingly to the spherical, planar and linear shape
factor. The method is robust against isotropy artifacts, but suffers under visual
clutter like any opaque tensor glyph.

Van Gogh Keystrokes. [LAK+98] were inspired by the key strokes in the oil
paintings of Van Gogh for their tensor field visualization. At each vertex of a
planar slice, the projected ellipsoid is drawn with an elliptical shape, whereby
an additional texture indicates the tensor components orthogonal to the slice.
The method provides a pattern-like qualitative overview when viewed from a
large scale, but still allows a quantitative inspection when viewed closely.

Tensor Glow. Here, the idea is to avoid rendering three-dimensional objects
as a tensor glyph, but instead to only compute the projection of the tensor
ellipsoid on the view plane on the fly, depending on the view direction [Ben04].
The actual graphics primitive is just a rectangle which is stretched and ori-
ented according to the visible projection as derived in (11.29) and (11.30).
This rectangle can be rendered very fast and equipped with an arbitrary,
even animated texture. It is thus very suitable to provide the impression of a
glowing flash of light dissipating into space, which is an intuitive rendering of
a metric tensor field.

Tensor Cones. Inspired by the frequently used light cones in general relativity,
tensor cones [Ben04] are constructed from little cones with elliptical cross-
sections. An arbitrary input vector field has to be provided which forms the
original axis of these cones. Their extruded cross-section is computed from
the 2× 2 tensor in the projection orthogonal to the original axis. Finally, the
three left over components of the tensor field along the vector field are used to
tilt the cones according to the deviation vector. The tensor cones incorporate
the full tensor information content, but depend on a certain input vector field.
This allows to display simultaneously a vector field and a tensor field.
Tensor Schlieren. This is an experimental technique [Ben04], inspired by the
visual appearance of Schlieren photography [Set01]. Here the deviation of the
view direction by the tensor field is visualized by decreased transparency at
locations of large deviations. The visual appearance is like a fuzzy geometry
that changes with view position or rotation of the data volume. This technique
is not limited to positive definite tensor fields.
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Tensor Splats. This technique has been described in detail in [BH04] and
[BH]. The basic idea is to replace the complex geometries of glyphs by trans-
parent splats equipped with a texture-like pattern that incorporates the same
information content. As a result, tensor splats are able to visualize entire
three-dimensional volumes of a tensor field and intuitively provide a notion of
the tensor field’s important properties.

11.3.4 Comparison of Visualization Techniques
using DT MRI Data

Diffusion weighted magnetic resonance imaging (DW MRI) is a technique
that measures the diffusion properties of water molecules in tissues. With
the availability of such measured tensor field data for medical purposes, the
interest of visualizing such data has grown rapidly in the last years (see Part
B). We will compare selected visualization methods upon an example data set
using exactly the same view parameters.

Metric Ellipsoids. As first approach, we may employ metric ellipsoids with col-
ors indicating the trace of the tensor. We find that this representation clearly
depicts the properties of the tensors at each point, Fig. 11.5, but we need
to enlarge the image such that each ellipsoids becomes visible on their own.
When inspecting the entire image as an overview, hardly anything can be seen
at all because the structures of the ellipsoids fall below the image resolution,
cf. also Fig. 11.11 (top). Equivalently we could use volume rendering of the
trace as a scalar field. But even when zoomed onto an interesting regions, the
ellipsoids are hard to interpret because we only see their projected shape.

Tensor Glow. Employing the method of tensor glow in Fig. 11.6 reduces the
visual clutter. In the variant used here, the projected glow pattern is not
normalized, but its transparency is proportional to the trace of the tensor

Fig. 11.5. Metric ellipsoids applied to a slice of the human brain: overview (left)
and enlargement (right). See also color plates
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Fig. 11.6. Tensor glow technique applied to a slice of the human brain: overview
(left) and enlargement (right). See also color plates

field. Other variants are possible, too. Using e.g. an isotropy indicator were a
reasonable approach. Employing these settings upon the human brain tensor
field enhances regions of high trace. This is the region where water may flow
rapidly. Such areas are depicted clearly, in an overview as well as in an en-
largement. We also get an glimpse of the orientation of the flow, but it is not
too prominent as the anisotropy is not overwhelmingly large. The tensor glow
method is thus applicable and helps to enhance certain features, but one gets
the impression that it should be possible to do better.

Tensor Cones. Although specifically developed for relativistic data, using ten-
sor cones for brain data Fig. 11.7 resulted in a pleasant surprise: it displays
some global structure information more clearly than both metric ellipsoids
and tensor glow. This is due to the larger sensitivity of the appearance of
tensor cones to variations of the tensor field. As a consequence, we get a good

Fig. 11.7. Tensor cones applied to a slice of the human brain: overview (left) and
enlargement (right). See also color plates
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Fig. 11.8. Haber glyphs applied to a slice of a human brain: overview (left) and
enlargement (right). See also color plates

Fig. 11.9. Tensor schlieren applied to a slice of a human brain: overview (left) and
enlargement (right). See also color plates

overview of all structures contained in the data set. However, the interpreta-
tion is difficult since the user-chosen vector field probe is an arbitrary input
parameter. So we can study the tensor field properties by visual inspection,
but it still requires some mental effort.

Haber Glyphs. Haber glyphs have some history in computational fluid dynam-
ics. They are very sensitive to anisotropy and are thus able to enhance global
structures in an overview similar to the tensor cones, but without dependence
on an user-chosen input vector field. The enlarged view as in Fig. 11.8 also
gives a hint of some large structures that incorporate a flow. However, to really
recognize the details, we require an extreme enlargement such that all glyphs
become resolved. A drawback of Haber glyphs are their anisotropy artifacts,
as the glyphs are randomly oriented in isotropic areas.
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Tensor Schlieren. In contrast to tensor cones and Haber glyphs, the technique
of tensor schlieren uses transparency as a fundamental part of the visualiza-
tion technique. Thus, it is more suitable for large-scale overviews. However,
transparency is not an invariant quantity here, but depends on the view di-
rection, as the purpose of tensor schlieren is to enhance regions where the
principal eigenvector is perpendicular to the view direction. Tensor schlieren
are thus especially suitable for an interactive environment rather than for
static, two-dimensional images. However, even for static images it yields the
best overview, Fig. 11.9, of the brain visualizations discussed so far: it reduces
visual clutter by rendering large regions transparent (those where the prin-
cipal eigenvector is parallel to the view direction), while strongly displaying
the orientation of the minor eigenvector in other regions. We thus get a good
structural overview plus directional information in each area.

Tensor Splats. While tensor schlieren produces view-dependent images en-
coding the orientation of the tensor field’s eigenvectors by intensity, the tech-
nique of tensor splats [BH04] employs view-independent graphical primitives
oriented according to the eigenvectors and uses colors for depicting the rela-
tionships of the eigenvalues. Transparency is used to encode the isotropy, i.e.
isotropic regions are visually removed from the image. The result Fig. 11.10 is
a strong enhancement for all anisotropic features, cf. also Fig. 11.11 (bottom),
with clear depiction of difference among minor and median eigenvectors as
well. The tensor splat technique intentionally displays various features redun-
dantly in different manners to compensate the reduction of visual information
by projection of the glyph geometry onto the two-dimensional view plane.
Green, e.g., indicates a linear region independent from its orientation and is
thus clearly distinguishable from a red disk seen from aside. Tensor splats
thus appear to provide the best view of the discussed methods and are also
appropriate for full three-dimensional volume visualization.

Fig. 11.10. Tensor splats applied to a slice of a human brain: overview (left) and
enlargement (right). See also color plates
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Fig. 11.11. Comparison of metric ellipsoids with tensor splats technique applied
to a slice through a diffusion tensor field acquired from a human brain (see color
plates)

11.4 Summary

Table 11.1 compares various tensor field visualization methods. The table is
ordered according to the tensor field quantities which are used for the visual-
ization. It is not possible to provide a general scoring of these methods and to
determine the ‘best’ visualization method – each method has advantages that
might cause it to be superior to others in specific applications. For instance,
tensor ellipsoids are straightforward to understand, but suffer from the prob-
lem of visual clutter. Tensor splats clearly display relevant features of a tensor
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Fig. 11.12. Geodesics in the spacetime of a rotating black hole, indicating the ‘event
horizon’ of the black hole at the location of their congruence (see color plates)

field even in 3D volume, but require some experience for understanding the
visual effects – as with most tensor field visualization methods.

Nevertheless some criteria might help to select an appropriate method for
a particular application:

• Number of quantities: Does the method make use of the full information
content of the tensor field or does it work by reduction to fewer quantities?
Some methods display a reduced set and include parameters that allow to
browse other quantities as well, such that multiple images are required to
get a complete impression of the tensor field. These parameter-dependent
tensor quantities are denoted by numerical indices such as ‘g00’, whereas
parameter-independent quantities are denoted by coordinate components
such as ‘gxx’.

• Robustness against visual clutter: Is a method suitable for three-
dimensional data volumes or is it limited to two-dimensional slices only?

• Isotropy artifacts: Visualization methods based on eigenvectors have to
address/handle ambiguities in isotropic regions.

• Limitation to positive definite tensors: Can the method handle tensor fields
with negative or zero eigenvalues? Tensor fields like in DT-MRI or Rie-
mannian metric tensors are always positive definite, such that the cor-
responding quadric surface is an ellipsoid. The stress tensor in CFD or
the extrinsic curvature tensor in general relativity may contain negative
eigenvalues as well.

• Limitation to symmetric tensors: Can the method display asymmetric ten-
sor fields?
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Table 11.1. Comparison and assessment of selected tensor field visualization meth-
ods. The entries in column ‘Q’ tells the number of quantities depicted by the method,
‘�’ stand for the robustness against visual clutter, tr(g) indicates how far the meth-
ods suffer under eigenvector ambiguities in isotropic regions, the ‘+’/‘sym’ columns
shows the methods requires the tensor field to be positive definite or symmetric.
Although geodesics incorporate the derivatives of the tensor field, too, they are
only able to display a subset of the full parameter space depending on their initial
conditions, so the number of depictable quantities is quoted. See text for further
details

Tensor Encoding Q Viz Method � tr(G) ‘+” sym

gxx, gxy, gyy,
gyz, gzz, gzx

6 Quadric surface bad good no yes

Metric ellipsoids bad good yes yes
Reynold Glyph bad good yes yes

vmax, λmax, λmed, λmin 6 Haber Glyph bad bad yes yes
Tensor Schlieren good bad yes yes

g00, g01, g11,
g12, g22, g20

6+3 Tensor Cones bad bad yes yes

g00, g01, g11 3 Deformation Surfaces bad good no no
g00, g01, g11,

tr(g)
4 Color Coding good good no no

vmax, tr(g), cp, cl 6 Tensor Splats good good yes yes
g(x,x), g(x,y), g(x,y)

x(ϑ, ϕ),y(ϑ, ϕ)
3-6 Tensor Glow good medium yes yes

gxx, gxy, gyy,
tr(g), λmax

5 Van Gogh keystrokes bad good yes yes

vmax, λmax, λmed,
λmin, ∂vmax

9 Hyperstreamlines good bad yes no

9 Tensor Lines good good yes no
gmn, ∂gmn ‘24” Geodesic good good yes yes
gmn, ∂gmn, ∂∂gmn ‘78” Geodesics Bundle good good yes yes

Which method is best suited for a specific application therefore depends on
both, the characteristics of the tensor field and the features to be emphasized.
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Summary. Second-order tensors may be described in terms of shape and orienta-
tion. Shape is quantified by tensor invariants, which are fixed with respect to coor-
dinate system changes. This chapter describes an anatomically-motivated method of
detecting edges in diffusion tensor fields based on the gradients of invariants. Three
particular invariants (the mean, variance, and skewness of the tensor eigenvalues)
are described in two ways: first, as the geometric parameters of an intuitive graphical
device for representing tensor shape (the eigenvalue wheel), and second, in terms
of their physical and anatomical significance in diffusion tensor MRI. Tensor-valued
gradients of these invariants lead to an orthonormal basis for describing changes in
tensor shape. The spatial gradient of the diffusion tensor field may be projected onto
this basis, producing three different measures of edge strength, selective for different
kinds of anatomical boundaries. The gradient measures are grounded in standard
tensor analysis, and are demonstrated on synthetic data.

12.1 Background and Notation

As described in Chap. 5 by Alexander, fields of water diffusion tensors may
be measured in vivo with magnetic resonance imaging (MRI), providing a
valuable tool for assessing the organization of tissue microstructure. A dif-
fusion tensor D is numerically estimated by its matrix representation in the
orthonormal laboratory frame L = {b1,b2,b3} associated with the MRI scan-
ner [1]:

[D]L =

⎡⎣⎡⎡D11 D12 D13

D12 D22 D23

D13 D23 D33

⎤⎦⎤⎤ .

Unit-length eigenvectors ei can be found to form an orthonormal principal
frame E = {e1, e2, e3}, in which the matrix representation of D has the eigen-
values λi along the diagonal:

[D]E =

⎡⎣⎡λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦⎤⇒ [D]L = R

⎡⎣⎡λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦⎤Rt .
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Column i of rotation matrix R is unit-length eigenvector representation [ei]L.
Diagonalizing a matrix representation of D into eigenvalues and eigenvec-
tors separates the tensor into shape and orientation information, respectively.
Herein, tensor ‘shape’ refers to the unordered set of three eigenvalues.

12.2 From Principal Invariants to Eigenvalues

The eigenvalues of a symmetric tensor D are computed by solving its cubic
characteristic polynomial:

det(λI−D) = 0

The determinant of λI−D may be computed in the laboratory frame:

det(λI − [D]L) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ−D11 −D12 −D13

−D12 λ−D22 −D23

−D13 −D23 λ−D33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ = λ3 − J1JJ λ2 + J2JJ λ− J3JJ ;

J1JJ = D11 + D22 + D33

J2JJ = D11D22 + D11D33 + D22D33 −D2
12 −D2

13 −D2
23

J3JJ = 2D12D13D23 + D11D22D33 −D2
13D22 −D11D

2
23 −D2

12D33

(12.1)

On the other hand, evaluating det(λI−D) in the principal frame E gives:

J1JJ = λ1 + λ2 + λ3 ; J2JJ = λ1λ2 + λ1λ3 + λ2λ3 ; J3JJ = λ1λ2λ3 (12.2)

J1JJ , J2JJ , J3JJ are the principal invariants [2], with coordinate free expression:

J1JJ = tr(D) ; J2JJ =
tr(D)2 − tr(D2)

2
; J3JJ = det(D) (12.3)

Equation (12.1) is how the principal invariants are computed in practice, based
on the matrix components of the tensor represented in the laboratory frame.
Equation (12.2) shows how JiJJ are functions of λi alone.

Another useful invariant J4JJ is computed from the principal invariants:

J4JJ = tr(DtD) = J2
1JJ − 2J2JJ

= D2
11 + 2D2

12 + 2D2
13 + D2

22 + 2D2
23 + D2

33

= λ2
1 + λ2

2 + λ2
3

J1JJ and J4JJ both describe tensor size, either by the sum of the eigenvalues,
or their squares, respectively. Much of the DT-MRI literature has noted the
utility of the JiJJ invariants as measures of tensor shape that do not require
diagonalization [1, 3, 4]. Computing eigenvalues, however, is simply arithmetic
combination of principal invariants to create new invariants. The standard
formulas for solving cubic polynomials define [5, 6]:
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Q =
J2

1JJ − 3J2JJ

9
; R =

−9J1JJ J2JJ + 27J3JJ + 2J3
1JJ

54
; Θ =

1
3

cos−1

(
R√
Q3

)
(12.4)

With these, the three eigenvalues (themselves invariants) are:

λ1 = J1JJ /3 + 2
√
Q cos(Θ)

λ2 = J1JJ /3 + 2
√
Q cos(Θ − 2π/3)

λ3 = J1JJ /3 + 2
√
Q cos(Θ + 2π/3)

(12.5)

J1JJ /3 λ1λ2λ3

2
√√
Q

Θ

Fig. 12.1. Characteristic polynomial in gray, eigenvalues λi, and wheel parameters
J1, Q, Θ

12.3 Eigenvalue Wheel

The structure of (12.5) suggests a geometric analogy, shown in Fig. 12.1 [7].
A wheel with three equally placed spokes is centered on the real number line
at J1JJ /3. The radius of the wheel is 2

√
Q, and Θ measures the orientation.

The eigenvalues are the projection of the spoke ends onto the horizontal axis.
The wheel geometry can be expressed in terms of statistics of the unsorted
eigenvalues, starting with their central moments µ1, µ2, µ3:

µ1 = 〈λi〉 = J1JJ /3
µ2 = 〈(λi − µ1)2〉 = 2Q
µ3 = 〈(λi − µ1)3〉 = 2R

(12.6)

The eigenvalue mean, variance and standard deviation are µ1, µ2, and σ =√
µ2, respectively. The skewness of the eigenvalues α3 is defined as [5]1:

1 ‘Skewness’ can also refer to µ3, as in Chap. 5.
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Fig. 12.2. Visualizations of shape variations associated with changing eigenvalue
mean µ1 (wheel location), variance µ2 (wheel radius) and skewness α3 (spoke angle)

α3 =
µ3

σ3
=

R√
2Q3

=
cos(3Θ)√

2
⇒ Θ =

1
3

cos−1(
√

2α3) (12.7)

Note that the eigenvalue statistics determine the wheel parameters. The
geometric intuition that the wheel’s location, radius, and orientation may be
varied in isolation is grounded in the statistical property that mean, variance,
and skewness are orthogonal. That is, viewing µ1, µ2, and α3 as scalar func-
tions over the space of unsorted eigenvalue triples (λ1, λ2, λ3), and letting ∇λ∇∇ J
be the gradient of scalar invariant J over (λ1, λ2, λ3), one finds:

∇λ∇∇ µ1 · ∇λ∇∇ µ2 = 0 ; ∇λ∇∇ µ1 · ∇λ∇∇ α3 = 0 ; ∇λ∇∇ µ2 · ∇λ∇∇ α3 = 0 . (12.8)

The orthogonality of µ1, µ2, α3 was described by Bahn [8] with cylindrical
coordinates for (λ1, λ2, λ3) space. Previous work in continuum mechanics de-
fined related orthogonal measures with the mean, variance, and skewness of
the logarithms of the strain tensor eigenvalues [9]. Figure 12.2 illustrates the
orthogonal invariants with eigenvalue wheels and superquadric glyphs [10].
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12.4 Anatomical Significance of Eigenvalue Statistics

The measures described in the previous sections take on physical meaning
when interpreted in the context of a particular application domain, such as
diffusion tensor imaging. The diffusion tensor eigenvalues are the apparent
diffusion coefficients (ADCs) along the eigenvectors [1]. Eigenvalue mean µ1 is
the bulk mean diffusivity [11], the average of ADC over all possible directions.
This readily distinguishes the cerebral spinal fluid (CSF) of the ventricles
(high µ1) from the white and gray matter (lower µ1). An important empirical
fact is that µ1 is essentially constant across white and gray matter [11, 12, 13].
Isolating this degree of freedom permits µ2 and α3 to better characterize the
brain tissue features that DT-MRI is uniquely capable of detecting.

The variance of the eigenvalues µ2 measures the directional dependence of
the ADC, which indicates anisotropic microstructure. As described in Chap. 5,
anisotropy is generally low in gray matter, and high in white matter, due
in part to myelinated axon sheaths [14]. Basser and Pierpaoli defined the
fractional and relative anisotropy measures with µ2 [15]:

FA =

√
3
2
‖D− µ1I‖
‖D‖ = 3

√
µ2

2J4JJ
; RA =

‖D− µ1I‖
‖µ1I‖

=
√

µ2

µ2
1

. (12.9)

The empirical constancy of µ1 in brain tissue helps compensate for the un-
fortunate property (visible in Fig. 12.2(a)) that varying µ1 separately from
µ2 and α3 effectively changes the anisotropy defined by FA or RA. This as-
sumes, however, that CSF can be masked out with µ1, which can be somewhat
challenging given the limited spatial resolution of DT-MRI.

Eigenvalue skewness α3 isolates the variation between anisotropic tensors
which are ‘planar’ (large in two axes and small in the other) versus ‘linear’
(large along one axis, small in the others). This shape variation is not mea-
sured by the usual anisotropy metrics: from (12.8) and (12.9), skewness is in
fact orthogonal to FA and RA. There are two related aspects to the anatomical
significance of eigenvalue skewness. The phenomenon of partial voluming is a
basic characteristics of discretely sampled medical images, in which the sample
value records a measurement over some spatial extent related to the spacing
between samples. Previous analysis of partial voluming in DT-MRI demon-
strated a bias towards planar anisotropy caused by measurement mixing of
adjacent regions of linear anisotropy along orthogonal orientations [16, 17].
Planar anisotropy can also arise in more complex configurations. For example,
previous work in visualizing regions of significant planar anisotropy character-
ized locations where populations of differently-oriented fibers apparently mix
at a fine scale, far below that of the image resolution [18]. A location with
this configuration is the intersection of the medial-lateral tracts of the corpus
callosum and inferior-superior tracts of the corona radiata, as confirmed by
high-angular resolution diffusion imaging in [19].
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12.5 Edge Detection with Invariant Gradients

One strategy for image processing on diffusion tensor data is to locally decom-
pose the space of tensor values (at each tensor sample) into shape changes and
orientation changes, enabling a more anatomically driven approach to edge
and feature detection. Measuring spatial changes in eigenvalue mean µ1 could
isolate the boundary of the cerebral spinal fluid. Rapid changes in µ2 might
indicate the transition from gray matter to white matter, as well as structural
variations within white matter. Changes in α3 might signal the partial vo-
luming between regions of orthogonally oriented white matter structures. In
all cases, disregarding changes in tensor orientation may reduce the chance of
falsely identifying structural boundaries. Implementing this strategy involves
the gradients of eigenvalue statistics. This generalizes previous work decom-
posing tensor changes into changes in the isotropic component, and changes
in anisotropy and orientation (the deviator) [20].

Some elements of tensor analysis are reviewed herein [2]. Though a diffu-
sion tensor D is often identified with its matrix components in the laboratory
frame, D is in fact an element of L(R3,R3), the set of linear transforms from
R

3 to R
3 (see Chap. 1 by Hagen and Garth). L(R3,R3) is a vector space [21],

so every tensor is also a vector. Though potentially confusing, recognizing
L(R3,R3) as a vector space grounds the tensor analysis below on our geomet-
ric intuition about bases, projections, and gradients from vector calculus. The
double contraction C:D = tr(CtD) endows L(R3,R3) with an inner (or dot)
product. The tensor norm is defined as ‖D‖ =

√
D:D. The tensor product of

vectors u⊗v is defined by (u⊗v)x = u(v ·x) for all vectors x. The Kronecker
delta δij is 1 if i = j and 0 otherwise. The coordinate-free spectral decompo-
sition of a symmetric tensor D into eigenvalues and unit-length eigenvectors
is:

D =
∑

iλiei ⊗ ei (12.10)

Just as invariants characterize tensor shape, gradients of invariants char-
acterize changes in tensor shape. Herein, ‘invariant gradient’ denotes differen-
tiation with respect to the tensor value (in L(R3,R3)), rather than differenti-
ation with respect to the spatial domain of the image (R3). The tensor-valued
gradient of a scalar invariant J is notated here with ∇J (rather than ∇J):

∇J : L(R3,R3) 	→ L(R3,R3) ; ∇J =
∂J

∂D
; ([∇J ]L)ij =

∂J

∂Dij

By differentiating the spectral decomposition (12.10), one finds ∇λi = ei⊗ei,
and thus ∇λi :∇λj = δij . That is, {∇λ1,∇λ2,∇λ3} is an orthonormal basis
for shape change around a given tensor value. However, this basis lacks the
immediate anatomical significance associated with the eigenvalue statistics
(described in the previous section), and the gradients of sorted eigenvalues
are not defined when two or more eigenvalues are equal.

To address this, an alternative orthonormal basis for shape change is pro-
posed, based on the (tensor-valued) gradients of µ1, µ2, and α3. From the
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first-order Taylor expansion of J around D, J(D+ε) = J(D)+ε :∇J+O(ε2),
the gradients of the JiJJ invariants can be computed as [2]:

∇J1J (D) = I ∇J2JJ (D) = tr(D)I−D
∇J3JJ (D) = det(D)D−1 ∇J4JJ (D) = 2D (12.11)

Expressions for ∇µ1, ∇µ2, and ∇α3 may then be built up from (12.4), (12.6),
(12.7), and (12.11), using the standard rules of vector calculus. The spectral
decomposition (12.10) allows the double contraction of the gradients of in-
variants J and K to be reduced to a simple three-dimensional vector dot
product:

∇J :∇K = (
∑

i∂J/∂λi ei ⊗ ei) : (
∑

j∂K/∂λj ej ⊗ ej)
=
∑

i,j(∂J/∂λi)(∂K/∂λj)δij

=
∑

i(∂J/∂λi)(∂K/∂λi)
= ∇λ∇∇ J · ∇λ∇∇ K

Then, (12.8) establishes the mutual orthogonality of ∇µ1, ∇µ2, and ∇α3.
Where defined, the eigenvalue gradients ∇λi have constant unit magni-

tude. ‖∇̂µ1‖ = 1/3 is also constant, but the gradients of µ2 and α3 have
varying magnitude, because their ranges are bounded. ∇µ2 vanishes when all
eigenvalues are equal (µ2 at minimum), and ∇α3 vanishes when two eigen-
values are equal (α3 at extremum). Still, the space of shape changes is always
three-dimensional, so some scheme is required to ‘fix’ the {∇µ1,∇µ2,∇α3}
basis to consistently span the space of shape variation. Developing this scheme
is a focus of ongoing work. One inelegant approach is to, at each tensor sam-
ple in an image being processed, slightly perturb the tensor values if there is
equality between eigenvalues, so that ∇µ2 and ∇α3 become non-zero.

Normalized invariant gradients are then defined by:

∇̂J = ∇J/‖∇J‖ ; J = µ1, µ2, α3

12.6 Application to Diffusion Tensor Images

The tensor field is assumed to be a continuous and differentiable function D :
R

3 	→ Sym3, as is ensured by the band-limited nature of MRI measurements.
The gradient of D is a third-order tensor, described by Pajevic et al. [20]:

∇D : R
3 	→ Sym3

3 ; ∇D =
∂D

∂x
; ([∇D]L)ijk =

∂Dij

∂xk

The double contraction of a second-order tensor with a third-order tensor is a
first-order tensor – a vector. Double contracting invariant gradient ∇J with
field gradient ∇D creates a vector ∇J , measuring spatial changes of J in the
tensor field D. This is simply the chain rule applied to J(D(x)):

∇J∇∇ : R
3 	→ R

3 ; ∇J∇∇ (x) = ∇J∇∇ (D(x)) :∇D(x) ; ([∇J∇∇ (x)]L)k =
∑
i,j

∂J

∂Dij

∂Dij

∂xk
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Fig. 12.3. Synthetic tensor image for testing gradient measures. Superquadric
glyphs are shown in (a). Eigenvalue statistics are shown in grayscale in (b), (c),
and (d)

Note that |∇J | is effectively scaled by ‖∇J‖. This has implications for how
spatial changes (edges) in shape are detected. Because ‖∇λi‖ = 1, the spatial
eigenvalue gradients ∇λi will collectively indicate any and all shape changes
in a tensor field, while ∇µ2 and ∇α3 fail in this respect. For example, ∇µ2

does not detect changes in anisotropy around a field location with an isotropic
tensor. This motivated the definition of {∇̂µ1, ∇̂µ2, ∇̂α3} – an anatomically
relevant orthonormal basis for tensor shape change. With this in mind, a novel
‘equi-sensitive’ spatial gradient of invariant J is defined as:

∇̂J : R
3 	→ R

3 ; ∇̂J(x) = ∇̂J(D(x)) :∇D(x)

Note that ∇̂J �= ∇J/|∇J |. Rather, ∇̂J = ∇J/‖∇J‖, assuming ‖∇J‖ > 0.
The spatial gradients are demonstrated with a two-dimensional synthetic

dataset shown in Fig. 12.3. There are four types of materials (isotropic
low diffusivity, isotropic high diffusivity, planar anisotropic, and linear
anisotropic), with boundaries between every material pair. Eigenvalue sta-
tistics are evaluated at each tensor sample and shown in Figs. 12.3(b),
12.3(c), and 12.3(d). The gradient measurement results are shown in Fig. 12.4.
Figure 12.4(a) shows a measure of both shape and orientation gradients,
‖∇D‖ =

√∑
ijk(∂Dij/∂xk)2 [20]. However, note that Figs. 12.4(b) and 12.4(c)

indicate shape changes only, and with equal sensitivity, as intended. Finally,
Figs. 12.4(d), 12.4(e), and 12.4(f) show how the edges in the three degrees
of freedom in shape can be detected in isolation.
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(a) D (b)
√

|∇λ∇∇ 1|2+|∇λ∇∇ 2|2+|∇λ∇∇ 3|2 (c)
√

|∇∇∇µ∇∇ 1|2+|∇∇∇µ∇∇ 2|2+|∇∇∇α∇∇ 3|2

(d) |∇∇∇µ1| (e) |∇∇∇µ2| (f) |∇∇∇α3|

Fig. 12.4. Gradient magnitudes of synthetic data, shown with inverted grayscale

12.7 Discussion

This chapter describes a method for detecting changes (edges) in tensor shape
within diffusion tensor fields. A particular set of three tensor invariants (the
eigenvalue statistics µ1, µ2, α3) was leveraged for both its orthogonality and
its relevance to anatomical feature detection. Tensor analysis was used to cre-
ate a tensor-valued orthonormal basis for shape change, against which the
spatial gradient of the tensor field is measured. Various aspects of this work
require further development, most importantly the robust and efficient com-
putation of the invariant-based orthonormal basis for shape change, since this
must be calculated anew at every tensor value. Ongoing work is validating the
utility of this approach on real data, as well as assessing the impact of noise in
the MRI measurements. In the interests of space, the practical details of effi-
ciently measuring the derivatives of the tensor components (for ∇D) have not
been explored here, though continuous tensor field models from convolution
or splines (see Chap. 18) provide a natural basis for this.
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3. AM Uluğ and PCM van Zijl. Orientation-independent diffusion imaging without˘
tensor diagonalization: Anisotropy definitions based on physical attributes of the
diffusion ellipsoid. Journal of Magnetic Resonance Imaging, 9:804–813, 1999.

4. KM Hasan, PJ Basser, DL Parker, and AL Alexander. Analytical computation
of the eigenvalues and eigenvectors in DT-MRI. Journal of Magnetic Resonance,
152:41–47, 2001.

5. EW Weisstein. CRC Concise Encyclopedia of Mathematics, pp. 362–365, 1652.
CRC Press, Florida, 1999.

6. WH Press, BP Flannery, SA Teukolsky, and WT Vetterling. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, Cambridge (UK)
and New York, 2nd edition, 1992.

7. RWD Nickalls. A new approach to solving the cubic: Cardan’s solution revealed.
The Mathematical Gazette, 77:354–359, November 1993.

8. MM Bahn. Invariant and orthonormal scalar measures derived from magnetic
resonance diffusion tensor imaging. Journal of Magnetic Resonance, 141:68–77,
1999.

9. JC Criscione, JD Humphrey, AS Douglas, and WC Hunter. An invariant basis
for natural strain which yields orthogonal stress response terms in isotropic
hyperelasticity. Journal of Mechanics and Physics of Solids, 48:2445–2465, 2000.

10. G Kindlmann. Superquadric tensor glyphs. In Proceedings IEEE TVCG/EG
Symposium on Visualization 2004, pp. 147–154, May 2004.

11. PJ Basser and DK Jones. Diffusion-tensor MRI: theory, experimental design and
data analysis – a technical review. Nuclear Magnetic Resonance in Biomedicine,
15:456–467, 2002.

12. C Pierpaoli, P Jezzard, PJ Basser, A Barnett, and G DiChiro. Diffusion tensor
MR imaging of the human brain. Radiology, 201(3):637–648, 1996.
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Summary. We introduce the underlying theory behind degenerate points in 2D
tensor fields to study the local field properties in the vicinity of linear and nonlin-
ear singularities. The structural stability of these features and their corresponding
separatrices are also analyzed. From here, we highlight the main techniques for vi-
sualizing and simplifying the topology of both static and time-varying 2D tensor
fields.

13.1 Fundamental Notions
of Two-Dimensional Tensor Field Topology

13.1.1 Basic Definitions

Eigenvector Fields

We consider symmetric, second-order two-dimensional, real tensor fields that
we call tensor fields hereafter. The tensor values of such fields correspond to
symmetric, linear transformations that map vectors to vectors in the plane.
When considered in a Cartesian coordinate system, tensor fields can be repre-
sented by matrix-valued functions mapping points to 2×2 symmetric matrices.
Tensor fields are fully characterized by their real eigenvalues and orthogonal
eigenvectors. Hence the basic idea behind tensor field topology is to analyze
the qualitative properties of a tensor field through the structure of its asso-
ciated fields of eigenvectors. To formalize the notion of tensor topology, one
needs a systematic way to associate a tensor field with the classified pair
of corresponding eigenvector fields. This is done by sorting the eigenvectors
according to the real eigenvalues.

Definition 1. Let λ1 ≥ λ2 be the two real eigenvalues of the tensor field T,
i.e. λ1 and λ2 are both scalar fields as functions of the coordinate vector x.
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The corresponding eigenvector fields e1 and e2 are called major and minor
eigenvector field, respectively. Positions at which λ1 = λ2 are associated with
isotropic tensor values and constitute singularities.

Line Fields and Covering Spaces

Similar to streamlines integrated over vector fields, tensor field lines [5] are
defined as follows.

Definition 2. A tensor field line computed in a smooth continuous eigenvector
field, is a curve that is everywhere tangent to the direction of the field. By
analogy with vector fields, we associate the set of all tensor field lines in a
particular eigenvector field with a mathematical flow.

Because of the very nature of eigenvectors, the tangency is expressed at each
position in the domain in terms of lines. For this reason, an eigenvector field is
essentially a line field. This implies that classical theorems ensuring existence
and uniqueness of streamlines cannot be directly applied here.

However, there exists a fundamental relationship between vector and eigen-
vector fields that can be formally characterized in terms of covering space. A
rigorous introduction to this notion of algebraic topology is beyond the scope
of this presentation and we restrict ourselves to an illustration of the basic
idea. More details can be found in [6]. Consider the configuration illustrated
in Fig. 13.1(a). An eigenvector field is defined over the bottom layer. This
layer is covered by two similar layers over which two normalized vector fields
are defined that point in opposite directions. A projection operator associates
every pair of opposite vectors with a single eigenvector (line) direction in the
bottom layer. Using this construct, an eigenvector field can be interpreted as
the projection of two opposite vector fields. Moreover, the path lifting prop-
erty ensures that streamlines integrated over the vector fields defined in the
covering space project onto tensor field lines in the eigenvector field. This
eventually provides the theoretical framework for tensor field line integration.
We mentioned previously that eigenvector fields become degenerate at posi-
tions where the tensor field is isotropic, that is, has two equal eigenvalues.

1yy

y
2

yy

x

Π

(a) 2-fold covering (b) Branched covering

Fig. 13.1. Covering spaces
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This degeneracy corresponds to a so-called branch of the covering space. In
the case of a 2-fold covering of a two-dimensional space, this configuration is
equivalent to the complex map z 	→ z2 defined over the unit ball around zero,
as shown in Fig. 13.1(b). In other words, a degenerate point is associated with
a single critical point at the branch point in the covering space through the
projection operator.

Tensor Index

The relationship between vector and tensor fields can also be used to extend
the notion of Poincare index to the tensor setting. Analogous to the vector´
case, one defines the index of a closed curve as the number of rotations of the
eigenvector fields along this curve. Since these fields are orthogonal, the tensor
index has the same value for both of them. By continuity of the eigenvector
fields, the index of any closed curve will take values that are multiples of 1

2 . As
a matter of fact, the eigenvector direction reached after full rotation along the
curve must be the same as the one we started from. Because of the orientation
indeterminacy of eigenvectors, this direction might in fact correspond to a
rotation by π of the starting eigenvector. An example is shown in Fig. 13.2.

The tensor index is independent of the coordinate frame. Moreover, it
remains invariant under local continuous transformations of the eigenvector
field since it takes discrete values. Additionally a curve enclosing a region
exhibiting uniform flow has index 0 and the index of a curve enclosing a set
of curves is the sum of their individual indices.

13.1.2 Degenerate Points

The map associating a tensor value with the corresponding pair of eigenvectors
is singular at locations where the tensor value is isotropic.

1
2

1

e2

λ2

λ1

θ

dθ1
2π

Fig. 13.2. Tensor index of a trisector
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Definition 3. A degenerate point of a two-dimensional tensor field is a loca-
tion where the field is isotropic. At this position, every non-zero vector is an
eigenvector.

Because of the indeterminacy of the eigenvectors at degenerate points, tensor
lines can intersect there. In the following, we successively consider the linear
and nonlinear cases.

Degenerate Points in Planar Linear Fields

A tensor field is called linear if its scalar components are linear functions of
the space variable p = (x, y)T . In this case, the linear system providing the
position of a degenerate point has a unique solution in general. For the sake
of simplicity, we assume that the degenerate point is located at the origin of
the coordinate system and rewrite the tensor field as follows.

T(p) =
(

α(p) β(p)
β(p) −α(p)

)
+ γ(p)I2 , (13.1)

where γ is the mean value of the real eigenvalues, α(p) = α1x + α2y and
β(p) = β1x+β2y are linear functions of (x, y), and I2 is the identity matrix. By
definition, the right term is isotropic and has no influence on the eigenvectors
of T. The remaining matrix is called the deviator part of the symmetric tensor,
denoted D. Observe that it is zero by construction at a degenerate point.

To characterize the flow pattern around a linear degenerate point, we ex-
tract directions of radial convergence, i.e. tensor lines reaching the degenerate
point along straight lines. For convenience, we reformulate the eigensystem in
polar coordinates, using the fact that it is independent of the distance to the
origin in the linear case. We obtain

Dθ eθ × eθ =
((

αθ βθ

βθ −αθ

)(
cos θ
sin θ

))
×
(

cos θ
sin θ

)
= 0 , (13.2)

where αθ = α(cos θ, sin θ) = α1 cos θ + α2 sin θ and βθ = β(cos θ, sin θ) =
β1 cos θ + β2 sin θ, by linearity. Straightforward calculus yields

tan 2θ =
β1 cos θ + β2 sin θ

α1 cos θ + α2 sin θ
. (13.3)

Setting u = tan θ finally leads to the following cubic polynomial equation:

β2u
3 + (β1 + 2α2)u2 + (2α1 − β2)u− β1 = 0 . (13.4)

Equation (13.4) has either 1 or 3 real roots that correspond to angles along
which the tensor lines radially reach the origin. These angles are defined mod-
ulo π and one obtains 6 possible angle solutions for radial eigenvectors. For a
given minor or major eigenvector field, one finally gets up to 3 radial eigen-
vectors. Consequently the linear case exhibits two major types of degenerate
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Fig. 13.3. Linear degenerate points

points as shown in Fig. 13.3. In the case of a trisector, the 3 directions com-
puted previously bound so-called hyperbolic sectors, as defined in the next
section. In the case of a wedge point, 3 radial directions correspond to the pat-
tern shown in the middle of Fig. 13.3, while a single radial direction leads to
the type depicted on the right. The analysis of the general, nonlinear case will
clarify the special role of radial directions as separatrices of the linear topol-
ogy. Considering the tensor index, it can be seen that trisectors have index
− 1

2 while both types of wedge points have index 1
2 . Again, refer to Fig. 13.2.

Nonlinear Degenerate Points

The configurations seen previously are in fact the simplest types of degenerate
points. Using the notations of (13.1) it can be shown that a degenerate point
is linear if and only if the following condition holds:

δ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂α

∂x

∂α

∂y

∂β

∂x

∂β

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ �= 0�� . (13.5)

Observe that the determinant δ can also be used to distinguish wedge points
from trisectors [3]. To study the geometric properties of tensor lines in the
vicinity of a nonlinear degenerate point, we return to previous considerations
about branched covering spaces (see Sect. 13.1.1). It follows from the local
structure of the covering space that the vector field defined over it is wrapped
by the projection operator around the degenerate point. Refer to Fig. 13.1(b).
For example, Fig. 13.4 shows the vector field corresponding to a trisector
point. Standard results from the qualitative theory of dynamical systems [1]
tell us that the local flow structure in the vicinity of nonlinear vector field
singularities always consists of a set of curvilinear sectors that exhibit one of
three possible patterns:

• parabolic: streamlines reach the singularity in one direction but leave the
neighborhood in the other.

• hyperbolic: streamlines leave the neighborhood in both directions.
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Π

Fig. 13.4. Wrapping of monkey saddle onto trisector point

Fig. 13.5. Parabolic, hyperbolic, and elliptic sector types

• elliptic: streamlines reach the singularity in both directions.

From the preceding discussions, we conclude that the same sector decompo-
sition characterizes nonlinear degenerate points. These sectors are shown in
Fig. 13.5. This relationship leads to the following definition of separatrices
and topological graph of a tensor field.

Definition 4. The boundary curve of a hyperbolic sector in the vicinity of a
degenerate point is called the separatrix. The set of all degenerate points and
associated separatrices is called the topology of the tensor field.

Back in the linear case, the definition above implies that the radial direc-
tions computed previously, correspond to the separatrices of linear degener-
ate points. Observe that in the case of a wedge point with two separatrices,
two radial directions are actual separatrices whereas the third one is simply
included in the parabolic sector and has no topological significance.

Eigenvalues Near Degenerate Points

Although extracting 2D singularities is simple (see Sect. 13.2), finding 3D
degenerate tensors is non trivial, as explained in Chap. 14 by Zheng et al.
A 3D degenerate tensor is similarly defined as one with at least two equal
eigenvalues. Since 3D degenerate tensors are defined solely on eigenvalues,
one might be tempted to calculate the eigenvalues at each point and try to
find those that are equal. Although the issue is raised in 3D, we explain
the difficulty in a 2D context. The approach above is not viable because the
eigenvalues are sorted on each grid point. Unless the singularity coincides
with the data point, the majors are always larger than the minors at the data
points. There is no way to find the points where the major equals the minor
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Fig. 13.6. Eigenvalues around a degenerate tensor

just from the interpolated eigenvalues. Of course, one may blame the sorting
step. For example, in Fig. 13.6(A), we plot the eigenvalues on a line passing
through a degenerate tensor. The solid line represents the major eigenvalues
and the dotted line the minor. If we know the major and minor at discrete
points, we cannot recover the degenerate points; but if we switch the order
of the major and the minor after the degenerate tensor as in Fig. 13.6(B),
and have the two groups of eigenvalues on discrete points, we can recover the
singularities through interpolation on each group. The question becomes: can
we consistently group the eigenvalues into two groups on a 2D domain, where
each of them is differentiable? If this could be done, we could use bilinear
or bicubic interpolation on each group to get the eigenvalue fields easily, and
then recover the singularities.

However, from Fig. 13.6(C), we see that this is impossible. The figure plots
the eigenvalues around a degenerate tensor on a 2D domain. Separating the
eigenvalues into two differentiable groups, corresponds to separating the struc-
ture into two differentiable surfaces. But from Fig. 13.6(C), we see that the
eigenvalues around a degenerate point form two conical structures. It is easy
to see that there is no way to separate this structure into two differentiable
surfaces. This conclusion in 2D is easily extended to 3D.

13.1.3 Structural Stability and Bifurcations

In cases where the tensor field depends on an additional parameter (e.g. time),
the stability of the topological features described previously becomes an es-
sential notion. In fact, the structures considered previously only correspond
to instantaneous states of an evolving topology. Both the position and na-
ture of degenerate points may change as the parameter is modified. They can
be created or annihilated, which affects the connectivity of the topological
graph. In particular, an important question is the persistence of degenerate
points under small perturbations of the underlying parameter. This property
is called local stability. Structural transformations are called bifurcations by
analogy with the terminology used for vector fields. In this section, we restrict
our considerations to simple cases of local and global bifurcations.
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Structural Stability

The observations proposed next follow the line of reasoning used in the qual-
itative study of vector fields [7]. In the following, we provide a set of criteria
that determine the stability of degenerate points and separatrices.

Degenerate Points

Similar to critical points in vector fields, degenerate points obtained in the
linear, non-singular case (i.e. trisectors and wedges) are the only stable ones.
As a matter of fact, it can be easily shown that arbitrarily small perturba-
tions can transform nonlinear degenerate points into a set of linear degenerate
points. The stability of trisectors and wedges is explained by the invariance of
the tensor index. The stability of each type of wedge points is due to the fact
that they correspond to different sets of solutions of the cubic polynomial in
(13.4), which are both stable.

Separatrices

Following our analogy with the vector case, we may see that separatrices
corresponding to the boundary curves of hyperbolic sectors at both ends are
unstable. Examples are shown in Fig. 13.7.

The intuitive justification of this assertion is geometric in nature: adding
an arbitrarily small angular perturbation to the line field around any point
along such a separatrix suffices to break the connection.

Fig. 13.7. Unstable separatrices

Local Bifurcations

Previous considerations now allow us to describe typical bifurcations associ-
ated with the instability of degenerate points. Note that we do not consider
homogeneous merging, as described by Delmarcelle in [3] since it creates un-
stable structures.
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Fig. 13.8. Pairwise annihilation

Pairwise Creation and Annihilation

A wedge and a trisector have opposite indices. Therefore a closed curve enclos-
ing a trisector and a wedge has index 0 which suggests that the combination
of both degenerate points is structurally equivalent to a uniform flow. The
local transition from a uniform flow to a wedge and a trisector is a pairwise
creation. The reverse bifurcation is called pairwise annihilation. An example
is shown in Fig. 13.8.

Wedge Bifurcation

This type of bifurcation was suggested by the remarks on the structural sta-
bility of wedge points. Each type of wedge corresponds to a specific number of
real roots of the cubic polynomial in (13.4), either 1 or 3. The transition from
one type to another implies the appearance or disappearance of a parabolic
sector.

Global Bifurcations

In contrast to local bifurcations, global bifurcations induce changes in the
connectivity of the topological graph and typically involve large regions in the
domain of definition. The bifurcations mentioned here are related to previous
considerations about unstable separatrices. They occur when two separatrices
emanating from two degenerate points become closer, merge and then split.
At the instant of merging, an unstable connection exists. As it breaks, it forces
the swapping of both separatrices. This modifies the behavior of most curves
in the concerned region. An example is proposed in Fig. 13.9, involving 2
trisectors.

13.2 Basic Topology Visualization

The topological approach was first introduced for the visualization of planar
vector fields. Helman and Hesselink pioneered this field in 1989 [8]. They pro-
posed a scheme for the extraction, characterization and depiction of linear
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Fig. 13.9. Global bifurcation with trisector-trisector connection

critical points. This early work inspired Delmarcelle who extended the origi-
nal scheme to symmetric, second-order planar tensor fields [4] as part of his
work on general techniques for tensor field visualization [3]. The method can
be applied to either the minor or major eigenvector field. Basically, degenerate
points are searched in the data set on a cell-wise basis, where the interpolation
scheme is typically linear or bilinear. The corresponding equations to solve are
then either linear or quadratic. To distinguish between wedge points and tri-
sectors, Delmarcelle used the determinant δ. Refer to (13.5). He showed that a
negative value of δ characterizes a trisector, while a positive one corresponds
to a wedge point. The cubic polynomial (13.4) yields the angle coordinates
of the separatrices. Since angular solutions are defined modulo π, for each of
them a test must be carried out to determine which one of both possible ori-
entations actually corresponds to a radial direction in a particular eigenvector
field. In the case of a wedge point, special care must be taken if the polynomial
has three real roots. Indeed, one of the solutions must be discarded since it lies
within the parabolic sector. This is done by retaining the two angles spanning
the largest interval smaller than π, since Delmarcelle showed that parabolic
sectors are always smaller than π in the linear case [3]. The edges of the topo-
logical graph are finally obtained by numerical integration of the separatrices,
as tensor lines of the line field under consideration. Classical schemes for the
integration of differential equations like Runge-Kutta [9] can be adapted to
ensure consistency of two consecutive directions along the curve. In that way,
the problem induced by the direction indeterminacy of eigenvectors can be
avoided. Observe however that a small step size is required in the vicinity of
degenerate points because of fast changing flow directions. This can be done by
assigning the Frobenius norm of the deviator as an artificial norm to the tensor
field since it provides a measure for the anisotropy. Delmarcelle also suggested
a way to embed the missing information conveyed by the eigenvalues by means
of a color-coding scheme applied over a LIC-like texture [2] representing the
eigenvector flow as shown in Fig. 13.10(a). A possible extension of the original
topology extraction technique consists in detecting half-singularities located
on the boundary of the considered domain. The purpose of topology analysis
is namely to characterize the flow behavior in terms of limit sets of the tensor
lines, which leads to a partition of the domain in regions where all contained
tensor lines connect the same limit set(s). We saw previously that degenerate
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(a) Steady 2D tensor field (b) Discrete Tracking

Fig. 13.10. Original tensor topology visualization by Delmarcelle (from [4])

points are such limit sets. Yet, dealing with bounded domains implies that
the boundary itself must be part of this classification. This line of reasoning
has already been considered by Scheuermann et al. for vector fields [10]. The
same idea applies to the tensor setting: points where the flow is tangential to
the boundary correspond to additional limit sets of the topology. They are
associated with new separatrices if the tensor line touching the boundary is
bent inward. Simple computation leads to the following equation for deter-
mining the exact position of a touching point: αβ sin 2θ−β2 cos 2θ = 0, where
α, β and θ are functions of the edge parameterization, and (cos θ, sin θ)T is the
normalized direction of the considered boundary edge. The notations corre-
spond to (13.1). Usually, the restriction of the tensor field along the boundary
is linear over each edge. In that case, α and β are linear, too. Solving this
quadratic equation while checking if the positions obtained actually lie on the
edge (i.e. 0 ≤ t ≤ 1) yields positions of tangential contact.

13.3 Topology Simplification

Topology-based visualization of symmetric tensor fields usually provides syn-
thetic graph depictions of large and complex data sets while conveying the es-
sential structural information of the considered phenomenon. Unfortunately,
in certain cases, the intricacy of the flow results in a cluttered representa-
tion that exhibits a large number of degenerate points and separatrices. This
problem typically arises in the analysis of turbulent data sets where numer-
ous structures of various scales are present. In that case, it becomes tedious
to distinguish between important properties of the data and insignificant de-
tails. Observe that this problem is worsened in practice by typical low-order
interpolation schemes (like linear or bilinear interpolation) that cause arti-
facts. Moreover, noise is frequently present in numerical simulations which
introduces additional confusing features. An example is given in Fig. 13.11.
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Fig. 13.11. Original and scaled topology (see color plates)

To solve this problem, simplification methods are required that discard in-
significant features according to criteria specific to the considered application.
The corresponding transformation of the topology must ensure consistency
with the original to permit reliable analysis of the final results. Two different
methods have been designed to tackle this problem, based on two different
assumptions about the cause of the topological complexity.

13.3.1 Topology Scaling

The first approach is of geometric nature. Assuming that the topological com-
plexity is inherent to the data (e.g. we have a turbulent flow) the task consists
in clarifying the depiction by highlighting large scale structures while neglect-
ing small scale details. Practically, the method is based on the observation that
close degenerate points, when seen from afar, cannot be distinguished from
one another and seem to be merged into a more complex, locally equivalent
singularity. From the theoretical point of view, the merging of an arbitrary
number of linear degenerate points creates a nonlinear singularity, as discussed
in Sect. 13.1.2. These facts are the basic ingredients of the scheme proposed
by Tricoche et al. [12] to scale the topology.

The first step of the method provides a segmentation of the domain into
regions in which all degenerate points are sufficiently close to another, ac-
cording to a prescribed proximity threshold. A bottom-up clustering scheme
is therefore applied on the positions of the original singularities. The sec-
ond step replaces, in each region, the contained singularities by a single one,
mimicking their merging. To this end, the grid structure is locally deformed
and a degenerate tensor value is assigned to a grid vertex. The interpolation
scheme in the new cells ensures that this degenerate point is the only one
present in the region. Further, by preserving the original field values on the
region boundary, global consistency is maintained. The final step consists in
extracting the structure of these nonlinear singularities. This is done by look-
ing for radial flow directions on a cell-wise basis and characterizing the types
of the various sectors surrounding the degenerate point (refer to Fig. 13.5).
The separatrices are extracted as bounding curves of hyperbolic sectors and
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integrated over the whole domain to obtain the simplified topological graph.
Results are shown in Fig. 13.11.

13.3.2 Continuous Topology Simplification

As opposed to the previous method, the second technique proposed by Tric-
oche et al. [13] is specifically designed to remove insignificant degenerate points
from the topological graph. In other words, the topological complexity is
treated as an artifact and must therefore be removed while keeping important
properties unchanged. We saw previously how bifurcations locally modify the
topology while preserving consistency with the surrounding eigenvector flow.
More specifically, a pairwise annihilation consists of the simultaneous cancel-
lation of a trisector and a wedge point. Therefore, imposing such bifurcations
on the original data permits us to prune undesired features.

Practically, the method assumes that the tensor field is defined over a
piecewise linear triangulation. First, the topological graph is computed and
degenerate points are assigned to pairs of trisectors and wedges. Next, each
pair of singularities is associated with a scalar value that evaluates its im-
portance in the overall topology. Any user-prescribed criterion can be used
for this purpose. A natural idea is to penalize very close degenerate points
since they cause visual clutter. However, application specific knowledge can
be applied to weigh individual degenerate points and, by extension, the pairs
they belong to. The pairs are then sorted according to their importance and
processed sequentially. For each of them, a connected cell-wise region is deter-
mined that contains the pair and no other degenerate point. In terms of tensor
index, the boundary of the region has index 0 and the enclosed eigenvector
flow is uniform. Finally the tensor values at the internal vertices are slightly
modified in a way that guarantees that both degenerate points disappear.
This deformation is controlled by angular constraints on the new eigenvector
values and is based on specific properties of piecewise linear tensor fields. As a
result, a pairwise annihilation has been enforced while the surrounding struc-
ture is unchanged. The corresponding results for the same data set are shown
in Fig. 13.12. Looking at an enlargement, we can see that preserved features
are not affected by the removals taking place in the same area, see Fig. 13.13.

13.4 Topology Tracking

Theoretical results show that bifurcations are the key to understanding and
properly visualizing parameter-dependent tensor fields: they transform the
topology and explain how stable structures arise. Typical examples in practice
are time-dependent datasets. This basic observation motivates the design of
techniques that permit us to accurately visualize the continuous evolution of
topology.
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Fig. 13.12. Progressive topology simplification by enforced bifurcations (see color
plates)

Fig. 13.13. Local topology simplification (see color plates)

An early method was proposed by Delmarcelle and Hesselink [4]. They
extended their original scheme for tensor topology visualization to the time-
dependent case. The method is restricted to a graphical connection between
the successive positions of degenerate points and associated separatrices, lead-
ing to a connection if consistency was preserved. However no connection is
made if a structural transition has occurred and bifurcations are not visual-
ized. Instead, the comparison between successive time steps is used to infer
the nature of the corresponding transitions: either creation or annihilation.

Tricoche et al. proposed a different approach in [11]. The central idea of
their technique is to handle the three-dimensional space made of the Euclidean
space on one hand and the parameter space on the other hand as a continuum.
The time-dependent tensor data is assumed to lie on a fixed triangulation. A
‘space-time’ grid is constructed by linking corresponding triangles through
prisms over the parameter space as shown in Fig. 13.14(a). The choice of
a suitable interpolation scheme permits an accurate and efficient tracking of
degenerate points through the grid along with the detection of local bifur-
cations. More precisely, linear space interpolation ensures that each triangle
contains at most a single degenerate point at any position in time. There-
fore, pairwise creations and annihilations are constrained to take place on the
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(a) Space-time grid

wedge swap

creation

annihilation

side face

t

(x,y)

(b) Cell-wise tracking

Fig. 13.14. Data structure for topology tracking

Fig. 13.15. Visualization of the complete topology evolution (see color plates)

side faces of the prisms which simplifies their detection. The principle is illus-
trated in Fig. 13.14(b). Individual degenerate points are tracked over prisms
and potential wedge bifurcations are detected in their interior. The corre-
sponding segments are then reconnected and pairwise creations/annihilations
are found. The paths followed by degenerate points yield curves over the 3D
grid. Separatrices integrated from them span separating surfaces that are ob-
tained by embedding corresponding curves in a single surface. These surfaces
are used further to detect modifications in the global topological connectivity:
consistency breaks correspond to global bifurcations. See Fig. 13.15.

13.5 Conclusion

The topological approach provides a powerful framework for the visualization
of planar, symmetric, second-order tensor fields. Essential properties of ten-
sor data sets can be efficiently depicted by extracting the singularities of the
associated eigenvector fields and integrating the set of separatrices that forms
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their connectivity. This yields synthetic, graph-type representations that cap-
ture the structural characteristics of tensor fields.

In this chapter we have introduced the essential theoretical notions that
found the concept of topology in the tensor setting. By clarifying the relation-
ship between vector and tensor topology, the vast mathematical tradition of
dynamical systems can be leveraged to analyze eigenvector fields. From the
visualization viewpoint, we have discussed the implementation of the basic
topology-based technique, and described extensions that address the visual
clutter induced by turbulent or noisy fields, as well as their transient nature.
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Summary. Topological analysis of 3D tensor fields starts with the identification
of degeneracies in the tensor field. In this chapter, we present a new, intuitive and
numerically stable method for finding degenerate tensors in symmetric second order
3D tensor fields. This method is based on a description of a tensor having an isotropic
spherical component and a linear or planar component. As such, we refer to this
formulation as the geometric approach. In this chapter, we also show that the stable
degenerate features in 3D tensor fields form lines. On the other hand, degenerate
features that form points, surfaces or volumes are not stable and either disappear or
turn into lines when noise is introduced into the system. These topological feature
lines provide a compact representation of the 3D tensor field and are useful in helping
scientists and engineers understand their complex nature.

14.1 Introduction

Tensor fields, especially second-order tensor fields, are useful in many medical,
mechanical and physical applications such as: fluid dynamics, meteorology,
molecular dynamics, biology, astrophysics, mechanics, material science and
earth science. Effective tensor visualization methods can enhance research in
a wide variety of fields. However, developing an effective algorithm can be
difficult because of the large amount of information contained in 3D tensor
fields: there are nine independent components in each tensor and six for a
symmetric tensor. Users in many research fields are especially interested in real
symmetric tensors. In some applications, the data themselves are inherently
symmetric. In other cases, symmetric tensor data can be obtained through
various decomposition techniques.

The main motivation and goal of this chapter is to develop a simple yet
powerful representation of 3D real symmetric tensor fields. Topology-based
methods can yield simplified and effective depictions in many visualization
fields. These methods consist of two parts: identifying the critical features,
and their separatrices. Together, they divide the data space into regions with
locally similar characteristics. Different types of topology can be extracted
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from a data field depending on how the critical features are defined. In this
chapter, we are interested in features defined by the relative magnitudes of
the eigenvalues. That is, when some of the eigenvalues are equal, the resulting
degeneracy is a critical feature. We assume that the tensor fields are contin-
uous and differentiable. A typical tensor field is one where the tensors are
‘randomly’ distributed in the tensor space, and does not have any inherent
constraints such as having two equal eigenvalues at all times. On the other
hand, a degenerate tensor field may have, by definition, two repeated eigenval-
ues everywhere – such as in momentum flux tensor fields defined as: Π = V ·V T

for a flow field V . In this case, the tensor field is degenerate everywhere. The
degenerate features are important in that they are the backbone from which
the separatrices are anchored, and they provide a launching point for further
analyses into the tensor field. For example, these features may form the basis
for seeding hyperstreamlines [7].

Early work on using topology-based method to visualize tensor fields by
[1, 2] lays an important background for this research project. It defines the
tensor topology based on degenerate features and discusses its nature for the
2D case in great detail, and provides useful knowledge for the 3D case. But we
find this early work insufficient in studying 3D tensor topology. Not only is the
dimensionality of the features unknown, but how to numerically extract the
topological structures is also obscure. In their previous work, Hesselink et al.
mentioned that the dimension of the degenerate features can be points, lines,
surfaces or subvolumes. This claim itself is essentially true, but it does not
point out the dimension of features in a typical 3D tensor field. By analogy,
although the critical features (defined by locations where the velocity is zero)
in 3D vector fields can be lines, surfaces or even subvolumes, we know they
are mostly isolated points in a typical vector field. This knowledge is the
foundation for the study of topological structure in vector visualization. All
the subsequent study on separatrices are based on the extraction of the critical
points. On the other hand, no topological results on 3D real symmetric tensor
fields have been published to date indicating that critical features in tensor
fields form lines.

Our recent research [8], we found that the degenerate features in 3D ten-
sor fields form feature lines that are stable even in the presence of noise. In
the next section, we discuss the dimensionality of features in 3D tensor fields.
Then, we quickly review the traditional method of finding degenerate features
in 3D tensors fields based on discriminants, followed by the constraint func-
tion approach presented in [8]. Both of these methods are considered implicit
functional approaches. This is followed by a presentation of our new method
based on the geometric interpretation of a tensor.
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14.2 Dimensionality of Degenerate Features

Similar to the 2D case described by Tricoche et al. in Chap. 13, a 3D real
symmetric tensor can be decomposed into three orthogonal eigenvectors, each
of which has a real eigenvalue associated with it. They are labeled as major,
medium and minor eigenvectors according to the relative order of their eigen-
values. A tensor is degenerate when two or more of the eigenvalues are equal.
The corresponding position in the tensor field is called a degenerate point. It
follows that degenerate points are the only places where hyperstreamlines can
cross each other, and therefore they are critical features in the tensor fields.
The collection of these degenerate points constitutes the topological features
of interest. Although the experience in flow visualization shows that a visu-
alization restricted to topology alone may be incomplete and ignore essential
features like vortex core lines, this analysis remains an important step towards
better understanding of the complicated nature of 3D tensor data.

Before we can extract these topological features from 3D tensor fields,
we need to know their dimension. Algorithms to locate points, lines, surfaces
and volumes employ very different strategies. During our earlier work [8], we
discovered that for most typical 3D tensor fields, the dimension of the topo-
logical feature is one, i.e. the collection of degenerate points form lines. This
conclusion can be shown using an early theorem by von Neumann and Wigner
which states that the real symmetric degenerate matrices form a variety of
codimension two [5]. Codimension is defined as the difference between the
dimension of a space and the dimension of a subspace contained in it. Read
symmetric tensors in 3D have six independent components. Therefore they
form a tensor space of dimension six. A double degenerate tensor where two
eigenvalues are equal can be uniquely specified using four parameters. In other
words, double degenerate tensors form a subspace A of dimension four in 6D
tensor space. In a typical setting, tensor fields defined in 3D space usually
form a subspace B of dimension three in the same 6D tensor space. The de-
generate tensors are then the intersection of these two subspaces. It can be
shown by transversality that these dimensions satisfy the following formula:
codim(A∩B) = codim(A)+codim(B), which yields codim(A∩B) = 2+3 = 5,
that is this intersection usually has a dimension one, i.e. forms lines. From the
same line of reasoning, we know that degenerate tensors are isolated points
in most cases if the data is specified in a 2D space. Since most numerical
algorithms are designed to capture points, the basic block of our feature ex-
traction algorithm is to locate 3D degenerate tensors on a 2D patch and then
to connect them into lines afterwards.

While the main features are lines, it is still possible to obtain features
that are points, surfaces or subvolumes. Features that form points, surfaces or
subvolumes are less common in most 3D tensor fields and are usually induced
by symmetry constraints. Such features are considered unstable and do not
persist under perturbation. For example, a triple degenerate point where three
eigenvalues are equal can be uniquely specified using one parameter (scaling of
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an identity matrix). In this case, previous computation yields a codimension
5+3 = 8 > 6, which results in an unstable feature. Hence we focus our tensor
feature extraction on lines rather than surfaces or subvolumes. Having said
that, our extraction algorithm still needs to extract points first as these form
the basis for finding the lines. Because of this design criterion, features that
are surfaces (e.g. in the single point load data) or subvolumes may not be
detected as readily as feature lines. This limitation is not insurmountable,
but is rather based on the effective use of limited resources in finding features
that are not as common nor as stable.

14.3 Implicit Function Approach

The first family of methods to analyze degenerate tensors is through implicit
functions. In this family, a tensor is degenerate if and only if its value makes an
implicit function equal zero. Here we introduce two formulations: discriminant
and constraint function. Note that since degenerate tensors form a variety
of codimension two, an ideal formulation of the implicit constraint defining
degenerate tensors should have two implicit functions. But neither of the two
formula shown below has this property.

14.3.1 Discriminants

Hesselink et al. [2] define degenerate points as those tensors having at least
two equal eigenvalues. Fortunately, we do not need to conduct the eigen-
decomposition to find the degenerate points. A tensor has two (or three)
equal eigenvalues if and only if its discriminant equals zero. The discriminant
D3 of a tensor T with eigenvalues λ1, λ2 and λ3 is defined as,

T =

⎛⎝⎛⎛T00TT T01TT T02TT
T01TT T11TT T12TT
T02TT T12TT T22TT

⎞⎠⎞⎞ (14.1)

D3(T ) = (λ1 − λ2)2(λ2 − λ3)2(λ3 − λ1)2 (14.2)

This can be reformulated into a form that does not require eigen-
decomposition to determine eigenvalues as follows:

P = T00TT + T11TT + T22TT (14.3)

Q =
∣∣∣∣∣∣∣∣∣∣T00TT T01TT
T01TT T11TT

∣∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣∣T11TT T12TT
T12TT T22TT

∣∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣∣T22TT T02TT
T02TT T00TT

∣∣∣∣∣∣∣∣∣∣ (14.4)

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
T00TT T01TT T02TT
T01TT T11TT T12TT
T02TT T12TT T22TT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (14.5)
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D3(T ) = Q2P 2 − 4RP 3 − 4Q3 + 18PQR− 27R2 (14.6)

From (14.2), we can easily find that a discriminant is (a) always non-
negative; (b) equal to zero if and only if at least two of the eigenvalues are
equal. And it is ideal for computation and numerical purposes because al-
though it is defined on eigenvalues, we do not really need to carry out an ex-
pensive eigen-decomposition. Instead, we only need to compute (14.6) which
is a polynomial of order six to get the discriminant.

An interesting geometric mapping of the three real eigenvalues is the Car-
dano circle or the eigenwheel (see Chap. 12 by Kindlmann). This is illustrated
in Fig. 14.1 where the three roots are the x-intercepts of the three axes that
are 120 degrees apart. Note that the roots λ1, λ2 and λ3 are increasing from
left to right. The angle of the axes associated with the largest eigenvalue and
the positive X axis is labeled as α. It is obvious that a double degeneracy
occurs when α = 0 resulting in λ1 = λ2, and α = 180 resulting in λ2 = λ3.
We refer to the first type of double degeneracy as Type L for linear, and the
second type of double degeneracy as Type P for planar. A triple degenerate
point occurs when all three eigenvalues are equal, and the radius of the circle
reduces to zero. A very rare event indeed.

α
λ1 λ2 λ3

(a)

λ1 λ2 λ3

(b)

λ1 λ2 λ3

(c)

Fig. 14.1. Cardano’s circle. The center of the circle is the mean of the three eigen-
values, and the eigenvalues are the x-coordinates of the line segments. (a) Relative
positions of eigenvalues along the x-axis, (b) type L double degenerate point where
the minor and medium eigenvalues are equal, and (c) type P double degenerate
point where the medium and the major eigenvalues are equal

14.3.2 Constraint Functions

In [8], an alternative formulation of degenerate points leading to a more stable
numerical solution was presented. We briefly highlight the results here.

Although Equation 14.6 provides an elegant representation for evaluating
the discriminant without having to perform eigen-decomposition, it is difficult
to solve. In (14.6), the discriminant of a real symmetric tensor is a polynomial



246 X. Zheng et al.

of order six. Since it is always non-negative, the degenerate tensor also happens
to be its minimum. Rather than using a minimization approach to find the
degenerate tensors, the numerical analysis community recommends a root-
finding strategy such as conjugate gradient for better numerical stability. A
good method widely used to find the root of an equation is to detect the
change of signs and then to recursively bisect the domain of interest. But
because the degenerate feature is itself a minimum, there is no change of sign
at all. Relying on the gradients is also dangerous, because the gradients are
notoriously unstable unless they are very close to the feature. Due to this high-
orderedness and singularity, directly finding the root of a cubic discriminant
stably is very difficult. Instead, we look for another representation of the
discriminant.

In our previous investigation, we found that while Hilbert [3] pointed out
that not all non-negative polynomials can be broken down into the sum of
squares of polynomials, the cubic discriminant can be written as the sum
of the squares of seven polynomials. We also learned that not only can the
discriminant of a second-order tensor of any dimension be expressed as the
sum of squares [4], but our solution to the 3D case of seven equations is optimal
[6] in the number of equations. Therefore, the definition of degenerate tensors
can also be expressed as the tensors where the seven constraint functions are
all zero at the same time. We use these seven cubic equations to extract the
feature lines from 3D tensor fields. The seven discriminant constraints are:

fxff (T ) = T00TT (T 2
11TT − T 2

22TT ) + T00TT (T 2
01TT − T 2

02TT ) + T11TT (T 2
22TT − T 2

00TT )
+ T11TT (T 2

12TT − T 2
01TT ) + T22TT (T 2

00TT − T 2
11TT ) + T22TT (T 2

02TT − T 2
12TT )

fyff 1(T ) = T12TT (2(T 2
12TT − T 2

00TT )− (T 2
02TT + T 2

01TT ) + 2(T11TT T00TT + T22TT T00TT

− T11TT T22TT )) + T01TT T02TT (2T00TT − T22TT − T11TT )
fyff 2(T ) = T02TT (2(T 2

02TT − T 2
11TT )− (T 2

01TT + T 2
12TT ) + 2(T22TT T11TT + T00TT T11TT

− T22TT T00TT )) + T12TT T01TT (2T11TT − T00TT − T22TT )
fyff 3(T ) = T01TT (2(T 2

01TT − T 2
22TT )− (T 2

12TT + T 2
02TT ) + 2(T00TT T22TT + T11TT T22TT

− T00TT T11TT )) + T02TT T12TT (2T22TT − T11TT − T00TT )
fzff 1(T ) = T12TT (T 2

02TT − T 2
01TT ) + T01TT T02TT (T11TT − T22TT )

fzff 2(T ) = T02TT (T 2
01TT − T 2

12TT ) + T12TT T01TT (T22TT − T00TT )
fzff 3(T ) = T01TT (T 2

12TT − T 2
02TT ) + T02TT T12TT (T00TT − T11TT )

D3(T ) = fxff (T )2 + fyff 1(T )2 + fyff 2(T )2 + fyff 3(T )2

+ 15fzff 1(T )2 + 15fzff 2(T )2 + 15fzff 3(T )2 (14.7)

A tensor is degenerate if and only if all of its seven constraint functions
are zero. This is the condition that we employ to extract the degenerate 3D
tensors. Its first advantage is that the constraint functions are only cubic
polynomials, instead of a polynomial of order of six which tend to oscillate
more. This property leads to a more stable and accurate numerical algorithm.
In addition, the requirement that all seven constraint functions be zero at
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(a) Two degenerate points (b) Three degenerate points

Fig. 14.2. White dots are degenerate points indicating places where all seven con-
straint functions are zero. Each colored curve corresponds to a constraint function
being equal to zero. Places where multiple curves intersect are where multiple con-
straint functions are satisfied simultaneously. The background is pseudo-colored by
the discriminant functions. The data is a 2D slice of a randomly generated 3D tensor
field. See color plates

the same time depends on the tensor value only and not on the gradient
calculated from adjacent tensors. Hence, the algorithm yields a more accurate
result than the algorithms that rely on finding degenerate points where the
gradients of the discriminants are zeros. Its second advantage is that the
constraint functions can be both positive or negative, as opposed to always
being non-negative. This property allows us to perform a fast and inexpensive
check for the existence of features. And finally, the reformulation also does
not require eigen-decomposition.

To find the degenerate lines, we visit all the cells in the data. For each
cell, we first examine all the faces and find their intersections with the feature
lines, if any. After all the degenerate points are extracted, we revisit the cells
and connect them to form lines. Note that in our current implementation, we
only consider regular hexahedral cells.

To find the degenerate points on a 2D face, we employ an iterative root
finding method that satisfies all the seven constraint functions simultaneously.
Note that although we are looking at a 2D face, the tensors are still 3D.
Assume the tensor at location X is denoted by T (X). For the feature points
X∗, we have

−−→
CF (X∗) = CFiFF (X∗) = 0, for i = 1, . . . , 7, where

−−→
CF (X) is an

assembly of the seven constraint functions into one vector function. Using the
Newton-Raphson method and an initial guess of Xn, we have the following
conceptual algorithm,
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Xn+1 = Xn −
(

∂
−−→
CF
∂X

)−1

· −−→CF

∣∣∣∣∣∣∣∣∣∣
X=Xn

= Xn −
(

∂
−−→
CF
∂T ·

∂T
∂X

)−1

· −−→CF

∣∣∣∣∣∣∣∣∣∣
X=Xn

(14.8)

Note that we calculate the ∂
−−→
CF
∂X from the chain rule using ∂

−−→
CF
∂T and ∂T

∂X rather
than from the interpolated values of

−−→
CF on the grid using finite difference

methods for higher precision. ∂
−−→
CF
∂T is calculated from the formula of the tensor

constraints, and ∂T
∂X is from the interpolated tensor values. We used both the

bilinear and bicubic natural spline interpolations.
However, (14.8) does not work because on a cell face, X is only 2D while

−−→
CF is 7D. Thus, ∂

−−→
CF
∂X is a 7 × 2 matrix. There are a number of ways to

deal with such a system. In our case, we find that the least square estimator
involving the transpose of the matrix works quite well.

Xn+1 = Xn −

⎛⎝⎛⎛∂
−−→
CF

∂X

T

· ∂
−−→
CF

∂X

⎞⎠⎞⎞−1⎛⎝⎛⎛∂
−−→
CF

∂X

T

· −−→CF

⎞⎠⎞⎞
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X=Xn

(14.9)

This new hybrid algorithm minimizes the square error terms among the
seven constraints. Using the center of each cell as the initial guess for an in-
tersection point, we find that this method converges to the actual intersection
point within five iterations in most non-degenerate cases with precisions up to
10−9, and it almost never misses a feature point if it exists. Even if it happens,
as evidenced by disconnected feature lines, the missing points can be recov-
ered by subdividing the cell face or tracing the tangents of the feature lines
[9]. This Newton-Raphson based method on constraint functions is superior in
speed, accuracy and precision compared to other methods developed directly
based on the cubic discriminants. For example, we also implemented a com-
parison algorithm based on cubic discriminant that searched for its minimum
using conjugate gradient methods. Not only is it about 50 times slower, using
any precision less than 10−6 will yield a false negative rate of over 50%.

14.4 Geometric Approach

Since we want to extract the degenerate tensors in a root-finding framework,
it is desirable to have a system of equations with an equal number of equations
as there are unknowns. However, neither the discriminant nor the constraint
functions satisfy this condition. An equation based on discriminant is under-
specified since there is only one equation but with two unknowns. An equation
based on constraint functions is over-specified because there are seven equa-
tions with two unknowns. The formulation on constraint functions is bet-
ter than its discriminant counterpart numerically because an over-specified
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Fig. 14.3. Relationship between s and V and the degenerate tensor glyph

system is easier to solve using the modified Newton-Raphson algorithm and
achieves high convergence rates and precision. In this section, we present an-
other extraction algorithm based on the geometric properties of 3D tensors
that meets the desired criterion of a well defined system.

Theorem 1. A tensor T is degenerate if and only if it can be written as the
sum of a spherical tensor and a linear tensor (see Fig. 14.3).

A linear tensor transforms all vectors onto a line. The sufficiency of this
theorem is easy to prove. To show its necessity, we simply subtract the dupli-
cate eigenvalues from the diagonal components of the tensor. It is easy to show
that the remaining tensor has two duplicate zero eigenvalues. In other words,
the rank of the remaining tensor is at most rank one, i.e., linear. Depending
on the sign of the other eigenvalue, a linear real symmetric tensor can always
be written as the product of a vector, its transpose and an extra sign. This
gives us a simple way to write a degenerate tensor,

T = sI ± V · V T (14.10)

where s is a scalar, I is a 3 × 3 identity matrix and V is a 3 × 1 vector.
An advantage of this formula is that it can distinguish between type P and
type L double degenerate points: T is type P with equal major and medium
eigenvalues if the minus sign holds; and T is type L with equal minor and
medium eigenvalues if the plus sign holds. In applications where the users are
only interested in the major hyperstreamline topology, they only need to keep
the minus sign, since the major hyperstreamlines are only degenerate at type
P features. The three eigenvalues are: λ1 = λ2 = s, and λ3 = s ± ‖V ‖2. One
of the eigenvectors is e3 = V/‖V ‖ and the other two eigenvectors are any two
orthogonal vectors that are also perpendicular to e3. Besides its simplicity,
this equation also clearly states that all 3D degenerate tensors form a four-
parameter family. A degenerate tensor on a 2D patch of a typical 3D real
symmetric tensor field can be found by solving:
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T (x, y) = sI ± V · V T (14.11)

Finding the location (x, y) of a four-parameter degenerate tensor on a 2D
patch means we will have six unknowns. Since there are six independent com-
ponents in real symmetric tensors, we can write a system of six equations
with six unknowns. Such well-defined systems can be solved using any stan-
dard numerical method such as Newton-Raphson or one of its variants. And
since the problem is well-defined, we also expect it to have stable and isolated
solutions.

For the initial guess in the Newton-Raphson method, we use the center
of the patch, (x0, y0), in place of the position parameters (x, y). Suppose the
tensor at (x0, y0) is T0TT and suppose that its eigenvalues are (λ1 ≤ λ2 ≤ λ3)
and its normalized eigenvectors are (e1, e2, e3), respectively. Without loss of
generality, we also assume that we are extracting type P degenerate features.
The algorithm for extracting type L degenerate features is similar in form. To
obtain the initial estimates of the four parameters (s, V ), we use the following
heuristic,

s0 =
λ2 + λ3

2
(14.12)

V0VV =
√

s0 − λ1 · e1 (14.13)

Using s0 and V0VV for the initial guess, we iteratively update the six parameters
using the Newton-Raphson method until convergence to a solution. Since each
equation is a simple quadratic equation, taking derivatives is trivial. When
the algorithm converges, not only do we have the location of the degenerate
feature, but we also get the eigenvalues and eigenvectors of the tensor values
at that point from s and V . Besides its simplicity, the disadvantage of this
algorithm is also obvious – we need to invert a 6 × 6 matrix during each
iteration of the Newton-Raphson algorithm. A less obvious disadvantage is
that in our experiments, this algorithm shows worse numerical stability than
the algorithms built on the constraint functions in situations when the features
are very close to triple degeneracy.

A useful form of 3D tensor is the deviator. It is simply a 3D tensor whose
trace is zero, which implies that the sum of the eigenvalues is also zero. We
can obtain the deviator part of any 3D tensor T by subtracting one third
of its trace from its three diagonal components. Since this is a linear oper-
ation, the zero-trace property is preserved on a discrete grid using tri-linear
interpolation.

One variation of the basic geometric algorithm is to consider only the devi-
ator field of the original tensors. For the case of extracting type P degenerate
features, it is easy to get,

s =
V 2

xVV + V 2
yVV + V 2

zVV

3
(14.14)

Substituting this term back into (14.11) and throwing away any redundant
diagonal equation, we get a system with five equations and five unknowns.
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In our experiments, we found that this variation is almost equivalent to the
original algorithm in terms of numerical stability and convergence speed.

14.5 Topological Feature Lines

Now that we have obtained the degenerate points using one of the methods
described in the two previous sections, the next step is to form the topological
feature lines. The general idea is to connect the degenerate points on cell faces
with those at neighboring cell faces. However, as we can clearly see in Fig. 14.2,
some cells may have more than one degenerate point, and hence more than
one feature line going though them. We therefore use a multi-pass approach to
connect these degenerate points. The procedure proceeds by examining only
those candidate cells that contain degenerate points (i.e. intersection points of
feature lines with the face) on at least one of their six faces. In the first pass, all
candidate cells containing exactly two intersection points are processed by: (a)
simply connecting those two points, (b) recording the orientation of the line
segment as tangents at the end points, and (c) marking the cell as processed.
In each subsequent pass, the number of candidate cells is further reduced by
connecting the remaining intersection point(s) to points in neighboring cells
that have been processed earlier, and therefore have tangent information. If
a face has multiple degenerate points, we select the point that minimizes the
angle between the resulting feature line and the previously computed tangent.
Each candidate cell is marked as processed, and the procedure continues until
there are no more candidate cells.

In our current implementation, we use this iterative method to generate
the tangent lines on topological feature points and ultimately resolve the line
connections between multiple points. In the future, we plan to calculate the
tangent of the degenerate tensor line at a specific feature point analytically
instead of this post-processing method.

14.6 Results

We experimented with four data sets to test out our degenerate tensor extrac-
tion algorithm using the geometric approach. In the experiments, we use a pre-
filtering algorithm that is similar to the one used in [8]. The first is a 2D rectan-
gular patch with randomly set symmetric 3D tensor values at the four corners
(see Fig. 14.2). The tensor values within the patch are obtained through linear
interpolation. This synthetic data corresponds to tensors on a face of a 3D
cell. The second is a 3D hexahedral cell also with randomly set symmetric 3D
tensors values at its eight corners (see Fig. 14.4). It is resampled into a finer
resolution for smoother features lines. The third is the stress tensor data in a
semi-infinite volume with two point loads (see Fig. 14.5). The fourth is the de-
formation tensors in the computed flow past a cylinder with hemispherical cap
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(a) First set (b) Second set

Fig. 14.4. Randomly generated 3D tensors. Warmer line colors are closer to type
P degenerate points where major and medium hyperstreamlines intersect, while
cooler line colors are closer to type L degenerate points where medium and minor
hyperstreamlines intersect. The rest of the volume is pseudo-colored by the discrim-
inant using cool colors for low discriminant values (closer to feature lines) and warm
transparent colors for distant values. See color plates

(see Fig. 14.6). From Figs. 14.4 to 14.5, the colors of the volumes are mapped
to the tensor discriminant (14.6) with blue mapped with lower transparency
to zero and warmer colors with higher transparency mapped to higher values.
Degenerate tensors can be found in the blue regions. Additional digital images
can be accessed online at: www.cse.ucsc.edu/research/avis/tensortopo.html.

Figure 14.4 shows degenerate tensors in a 3D cell form feature lines (ren-
dered as tubes). Note that the feature lines are not hyperstreamlines, rather

(a) Oblique view (b) Top view

Fig. 14.5. Double point load data. Arrows indicate point load, while the 2 magenta
spheres show the location of the triple degenerate points. Color scheme is the same
as Fig. 14.4. See color plates
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they are where the major and medium, or the medium and minor, or all three
hyperstreamlines intersect each other. Only the faint green is visible in the
vicinity of the tubes because the tubes are in the blue regions. The color of
the tubes are such that type P points with very different minor value are
mapped to warmer colors, and type L points with very different major value
are mapped to cooler colors. The milder colors are where the other eigenvalue
is not as different as the degenerate pair. We see that complex feature lines
can form even from a simple linearly interpolated random tensor field.

Figure 14.5 shows the double point load stress tensors. The yellow arrows
indicate the two point loads, and the two magenta spheres are the triple de-
generate points. We can see the line of double degeneracy connecting these
two stress-free points as alluded to in [2]. Other very interesting feature lines
are also extracted: (1) a vertical loop that lies directly under the double de-
generate feature line connecting the two triple degenerate points. This feature
is not present in the single point load data. This loop feature is also stable
in the sense that it persists even as the relative magnitudes of the two point
loads are varied. (2) how the blue feature line below each of the point load
bifurcate and then reconnect. These two structures and the vertical loop are
connected together by a type P feature line running between the two point
loads. Looking from the top view in (b), we see another interesting feature
which is the circular feature line that connects the two point loads and the
two triple degenerate points. It is worth noting that in the vicinity below each
load point, the stress tensors are similar to those found in single point load
data sets where we have observed the degenerate tensors to form a conical
surface. One can also make out these degenerate conical surfaces, particularly
the one under the more distant point load in (a). Since our algorithm is de-
signed for extracting features lines, it produces artifacts when the features
form a surface or subvolume.

Figure 14.6 shows degenerate lines in the deformation tensors of the com-
puted flow at an angle past a cylinder with a hemispherical cap. Only a
portion of the data close to the cap is shown because most of the interesting
features are found there. A little bit of asymmetry is apparent on the left side
of Fig. 14.6(b) where the seam of the curvilinear grid wraps around. We see
a curved line on the cap shown by the black arrow. It matches some of the
patterns of the velocity topology from the same data set. There are more fea-
tures at the upper half of the data because the flow there is more turbulent.
Figure 14.6(a) is from an oblique view. Most of the features are close to the
geometry of the object except a complicated branch structure which extends
away from the geometry. It contains a small cyan horn shape pointed by the
pink arrow, two green ring shapes, and a bifurcating structure. Figure 14.6(b)
is from a top view. Recall that lines with cool colors have type L degenera-
cies while lines with cool colors have type P degeneracies. While we can see
some lines that are greenish in color, we did not find any triple degeneracies.
Also, while we can see very interesting complicated line structures, we have
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(a) Oblique view (b) Top view

Fig. 14.6. Degenerate lines in deformation tensors of flow past a cylinder with a
hemispherical cap. Feature lines are colored as in Fig. 14.4. See color plates

yet to explore their full significance as we still need to develop methods for
extracting the separating surfaces in order to describe the full topology.

The time statistics for the different data sets are summarized in Table 14.1.
All the results are generated on a Dell Dimension 8100 with a single 1.5 GHz
Pentium 4, 1Gb of memory, and an nVidia GeForce2 Ultra.

14.7 Open Problems

There are many open problems that need to be investigated. We highlight a
few of them here.

First, since all the algorithms are built on extracting lines, they have prob-
lems dealing with features that form surfaces and volumes. Finding the sepa-
ratrices of these features would also need to be addressed.

Second, in our numerical algorithms, we define the degenerate tensors as
points with two equal eigenvalues without considering the eigenvectors. But we
are originally interested in these points because they are where hyperstream-
lines can cross each other, and hyperstreamlines are defined on eigenvectors.

Table 14.1. Time to extract degenerate tensors in different datasets

Data Set Time

2D Random Patch (1 × 1) 0.05 (millisec)
3D Random Cell (32 × 32 × 32) 0.9 (sec)
Double Point Load (64 × 64 × 64) 4.2 (sec)
Hemisphere (72 × 110 × 84) 23 (sec)
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Therefore, a proper definition or an extraction algorithm based on both eigen-
values and eigenvectors could provide more insight into this problem. This is
possible through a quantity solely defined on eigenvectors and is similar to
the index of 2D critical points.

At each point along the degenerate lines, we can project the 3D tensors
onto a 2D plane perpendicular to the eigenvector with distinct eigenvalue [7].
The projected 2D tensors also show a degenerate pattern. One can extract
the separatrix of the 3D tensor field by calculating the separatrices of the
projected 2D tensors at each point and connecting them together. With the
3D degenerate tensors and their separatrix surfaces, we will have a complete
topological structure of 3D tensor fields.

Simplification and tracking of the topological structure proved to be useful
for 2D tensor fields (see Chap. 13). In 3D, they are more difficult since the
degenerate features become lines instead of points.

Finally these techniques should be extended to other application domains
such as diffusion tensor (DT) MRI data described in other chapters of this
book. While the main attribute of interest is usually the path of the fibers,
highly linear fibers are where we would likely find feature lines. Hence, it is
possible that topological visualization of DT-MRI data would also be benefi-
cial. For this approach to be of real practical interest, the issue of topological
artifacts induced by noisy data must be addressed as well. DT-MRI data are
considered as typical tensor fields since there is no inherent constraint on
the eigenvalues that may result in different codimensions. Although it could
have large regions where the tensors are close to degeneracy, if one exam-
ines those points with very high precision and checks their persistence against
noise, the results still form lines. That is, the topological features in such
tensor fields form feature lines that are stable even in the presence of noise
[8]. In practice, if an algorithm detects these nearly degenerate regions, such
as in isotropic regions, it can mark off that region and skip the subsequent
topological analysis because these regions contain very little topological in-
formation. Alternatively, those regions can be removed by post-processing or
simplification. While we have found that feature lines are stable even in noisy
environment, the topological structure (both for vectors and tensors) is quite
sensitive. This can be used to our advantage, for example, when comparing
topological structures from two tensor fields.

14.8 Conclusion

Double degenerate points in 3D real symmetric tensor fields form lines. These
are the stable features. In this chapter, we presented an intuitive geometric
approach used in extracting these feature lines. It provides an alternative to
the constraint functions and the discriminant function formulations. In all
these three approaches, degenerate points are first extracted on each face of
a candidate hexahedral cell. These points are then connected in an iterative
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fashion to generate feature lines. We applied this algorithm on several data
sets including randomly generated tensor fields, the analytic double point
load data set, and the computational data set on a flow past a cylinder with
a hemispherical cap. The results from the double point load stress tensor
field reveals new insight on a thoroughly studied data set by Hesselink et al.
At the same time, the results also point to several areas that require further
investigation such as studying the correlation between the interesting patterns
we saw in the real data sets and the underlying physics. These new insights
will be useful in designing strategies for seeding hyperstreamlines, topology
simplification, and tracing topology in time-varying data.
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Summary. The analysis and visualization of tensor fields is an advancing area
in scientific visualization. Topology-based methods that investigate the eigenvector
fields of second order tensor fields have gained increasing interest in recent years.
Most algorithms focus on features known from vector fields, such as saddle points
and attracting or repelling nodes. However, more complex features, such as closed
hyperstreamlines are usually neglected. In this chapter, a method for detecting closed
hyperstreamlines in tensor fields as a topological feature is presented. The method
is based on a special treatment of cases where a hyperstreamline reenters a cell and
prevents infinite cycling during hyperstreamline calculation. The algorithm checks
for possible exits of a loop of crossed edges and detects structurally stable closed
hyperstreamlines. These global features cannot be detected by conventional topology
and feature detection algorithms used for the visualization of second order tensor
fields.

15.1 Introduction

Many problems in natural science and engineering involve tensor fields. For
example, stresses, viscous stresses, rate-of-strain, and momentum flux density
are described as symmetric tensor fields. Due to the multivariate nature of
tensor fields, appropriate methods for visualization are required in order to
investigate the data. This, of course, includes the detection of special proper-
ties of a tensor field, for instance topological features, that can be emphasized
on in the visualization to reduce visual clutter.

The topological analysis of tensor fields as described by Hesselink
et al. [DH94] focuses on degenerate points and their topological meaning.
A special type of degenerate point, the trisector point, corresponds to sad-
dle points in vector fields from a topological point of view. Hyperstreamlines,
that follow the vectors in a particular, previously chosen eigenvector field,
lead to separatrices inside a 2-D tensor field. Similarly, a detailed analysis of
the degenerate points [HLL97] in a symmetric, second order 3-D tensor field
leads to hyperstreamlines [HD93] depicting parts of the topology of the tensor
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field. To incorporate the two remaining eigenvector fields that are not used
for integrating the hyperstreamline, an ellipse spanned by those two eigenvec-
tors is used, resulting in a tube-shaped representation that follows the main
eigenvector field.

Obviously, integrating curves inside an eigenvector field plays an important
role in such a visualization. The qualitative nature of these curves can be
studied with topological methods developed originally for dynamical systems.
Especially in the area of fluid mechanics, topological analysis and visualization
have been used with success [GLL91, HH91, Ken98, SHJK00].

Besides point-shaped singularities, other topological features exist in ten-
sor fields. Similar to closed streamlines in vector fields [WS01, WS02], closed
hyperstreamlines can be found in tensor fields. These integral curves within
an eigenvector field are closed, therefore forming a loop. Their importance
stems from the fact that quite often neighboring integral curves either tend
to bend toward the loop or originate from the loop (i.e. tend to move toward
the loop after reversing the direction of time). This is a well established result
from dynamical systems theory [GH83, HS74]. Consequently, being able to
determine closed hyperstreamlines in tensor fields is an important addition to
tensor field topology.

Several publications have dealt with related topics in vector fields. Hepting
et al. [HDER95] study invariant tori in four-dimensional dynamical systems
by using suitable projections into three dimensions to enable detailed visual
analysis of the tori. Wegenkittel et al. [WLG97] present visualization tech-
niques for known features of dynamical systems. Bürkle et al. [BDJ+99] use a
numerical algorithm developed by some of the coauthors [DJ99] to visualize
the behavior of more complicated dynamical systems. In the literature on nu-
merical methods, one can find several algorithms for the calculation of closed
curves in dynamical systems [Jea80, vV87], but these algorithms are tailored
to dealing with smooth dynamical systems where a closed form solution is
given.

In most cases, visualization deals with piecewise linear, bilinear or tri-linear
data. In this chapter, a suitable algorithm for this situation is presented which
can be integrated into a computational algorithm for standard hyperstream-
lines. While computing a hyperstreamline, the algorithm tracks the visited
cells and checks for repetition. Upon revisiting a cell, the algorithm tests if
the hyperstreamline stays in the same cell cycle indefinitely. For this pur-
pose, the boundary of the current cell cycle is investigated to determine if the
integral curve can cross this boundary.

The structure of the remainder of this chapter is as follows. First, a short
description of the mathematical background is given. Subsequently, the algo-
rithm for detecting closed hyperstreamlines is discussed. Finally, results of the
algorithm are presented and concluding remarks are given.
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15.2 Mathematical Background

This section provides the necessary theoretical background and the mathe-
matical terms used in the algorithm. The scope of this chapter is restricted
to steady, linearly interpolated three-dimensional second order tensor fields
defined on a tetrahedral grid:

t : R
3 ⊃ D →Mat(3× 3,R), (x, y, z) 	→

⎛⎝⎛⎛t11 t12 t13
t21 t22 t23
t31 t32 t33

⎞⎠⎞⎞ =: (tij) .

D is assumed to be bounded. This is the case for almost every experimental
or simulated tensor field that has to be visualized. A tensor described as a
three-by-three matrix can be decomposed into two matrices S = (sij) and
A = (aij) such that the equation T = A+S holds where sij = 1

2 (tij + tji) and
aij = 1

2 (tij − tji). Then S is called the symmetric part of the tensor T since
the equation sij = sji holds for every i and j, while A is the antisymmetric
part of the tensor T with aij = −aji. Since the antisymmetric part of a tensor
basically describes a rotation only, this chapter focuses on symmetric, second
order tensors. For these, the eigenvalues exist and are real. The corresponding
eigenvectors form an orthogonal basis of R

3. This allows the computation of
hyperstreamlines by using one eigenvector field for calculating integral curves,
while the remaining two eigenvalues can be used to span an ellipse resulting
in a tube that follows the direction of the followed eigenvector field [HD93].
In addition, the ellipse can be scaled using the remaining eigenvalues.

According to the definition by Hesselink et al. [DH94], the topology of
a tensor field is the topology of its eigenvector fields. Consequently, critical
points known from vector fields, such as saddles, nodes, and foci, occur as sin-
gularities in tensor fields as well. Due to the way hyperstreamlines are defined,
an additional kind of topological feature results from that definition. In the
case of two or more eigenvalues being identical, only two or one eigenvector(s)
can be determined. As a consequence, hyperstreamlines end at such a point,
since there is no unique way to continue. Therefore, these locations are usually
referred to as degenerate points. Recent studies as described in Chap. 14 by
Zheng et al. show that these points form lines instead of individual points.
Consequently, this type of singularity occurs more often compared to vec-
tor field singularities. However, with respect to hyperstreamlines, degenerate
points play only a minor role since a hyperstreamline that is terminated by a
degenerate point can no longer be a closed hyperstreamline.

Since hyperstreamlines follow one of the eigenvector fields, the behavior of
integral curves ha : R→Mat(3× 3,R), τ 	→ ha(τ) can be described by their
properties ha(0) = a and ∂ha

∂τ (τ) = t(ha(τ)). For a Lipschitz continuous eigen-
vector field, one can prove the existence and uniqueness of integral curves ha

through any point a ∈ D, see [HS74, Lan95]. The actual computation of inte-
gral curves is usually done by numerical algorithms, such as Euler methods,
Runge-Kutta-Fehlberg methods or Predictor/Corrector methods [SB90].
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Fig. 15.1. Example of a closed hyperstreamline in a 3D tensor field. See color plates

The topology of a tensor field is defined as the topology of its eigenvector
fields. Thus, the topological analysis considers asymptotic behavior of integral
curves in these different eigenvector fields. In order to be able to clearly iden-
tify where integral curves are coming from and where they are going, one can
define two different sets describing the area covered by the integral curve for
approaching a positive or a negative infinite parameter value resulting in the
α- and ω-limit set, respectively. The α-limit set of an integral curve h is defined
by {p ∈ R

3|∃(τnττ )∞n=0 ⊂ R, τnττ → −∞, limn → ∞ h(τnττ ) → p}. The ω-limit
set of an integral curve h is defined by {p ∈ R

3|∃(τnττ )∞n=0 ⊂ R, τnττ → ∞,
limn → ∞ h(τnττ ) → p}. If the α- or ω-limit set of an integral curve consists
of only one point, this point is a critical point or a point on the boundary
∂D. (It is usually assumed that the integral curve stays at the boundary point
indefinitely.)

The most common case of an α- or ω-limit set in an eigenvector field
containing more than one inner point of the domain is a closed hyperstream-
line [HS74]. This is an integral curve ha with the property that there is a
τ0ττ ∈ R with ha(τ + nτ0ττ ) = ha(τ) ∀n ∈ N. Consequently, for every closed
hyperstreamline there exists a hyperstreamline that converges to this closed
hyperstreamline when integrating in positive or in negative direction. This fact
will be exploited later in the algorithm for detecting this topological feature.

Figure 15.1 shows a typical example of a closed hyperstreamline in a three-
dimensional tensor field. Such a closed hyperstreamline is called structurally
stable if, after small changes in the tensor field, the closed hyperstreamline
remains.

15.3 Detection of Closed Hyperstreamlines

The concept of detecting closed hyperstreamlines in a three-dimensional sec-
ond order tensor field is similar to the three-dimensional vector case [WS02],
because a hyperstreamline follows one of the eigenvector fields. Once such a
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closed hyperstreamline is detected in one of the eigenvector fields a tubular
structure can be built around the closed curve in a fashion similar to regular
hyperstreamlines.

Since the algorithm for detecting closed hyperstreamlines in symmetric,
second order 3-D tensor fields is very similar to the 3-D vector case it will
be repeated here only briefly. Details can be found in [WS02]. Before the
algorithm itself is explained, a few notations need to be defined. We use the
term current hyperstreamline to describe the hyperstreamline currently under
testing for the loop condition.

To reduce computational cost, the hyperstreamline is first integrated using
a Runge-Kutta method of fourth order with an adaptive step size control. In
order to determine eigenvectors required for this step, the tensors are interpo-
lated tri-linearly inside the cells. Using the interpolated tensors, eigenvalues
and eigenvectors can then be calculated. This is known to be numerically
more stable. Otherwise, large numerical errors have the potential to modify
the topology of the tensor field in such a way that singularities do not form
lines any more. Further information about tensor interpolation is described
by Kindlmann et al. [KWH00].

During this integration step, every cell that is crossed by the current hy-
perstreamline is stored in a list. If a hyperstreamline approaches a loop it
reenters the same cell. This results in a cell cycle consisting of a finite se-
quence of neighboring cells c0, . . . , cn with c0 = cn crossed by the current
hyperstreamline.

This cell cycle identifies a region where it needs to be determined if the
current hyperstreamline can escape that cycle. To check this, every backward
integrated hyperstreamline starting at an arbitrary point on a face of the
boundary of the cell cycle has to be considered. Looking at the edges of a face
it can be seen directly that it is not sufficient to just integrate hyperstreamlines
backward which originate at the vertices of that edge. This is due to the fact
that individually started hyperstreamlines only cover a discrete portion of
the edge. Instead, a hyperstreamsurface has to be computed with the edge
in question as initial condition. Figure 15.2 shows an example where a single
cell and a backward integration is depicted. A hyperstreamsurface is started
at the rear left vertical edge and turns inside the cell towards the rear lower
right corner of the cell. The parts of the hyperstreamsurface that are outside
the cell are drawn as dashed lines. The two edges of the hyperstreamsurface
which are identical with a backward integrated hyperstreamline started at the
vertices of the rear left edge of the cell leave the cell at the lower and rear face,
respectively. However, a hyperstreamline started at the center of the rear left
edge of the cell (drawn in red) leaves the cell at the right face. If the cell cycle
continuous at the right face the backward integration would be considered
as leaving the cell if only the backward integrated hyperstreamlines starting
at the vertices of an edge would have been considered. As a consequence,
we have to find another definition for exits as in the two-dimensional vector
case [WS01]. Thus, potential exit edges, which are the starting points of the
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Fig. 15.2. Backward integrated hyperstreamsurface. See color plates

backward integration step, are defined as the edges on the boundary of the
cell cycle. In analogy to the two-dimensional case, curves on a boundary face
of a cell contained in the cell cycle where the eigenvector field is tangential to
the face is identified as a potential exit edge as well.

Due to the nature of the interpolation inside the tetrahedral grid, it can
be shown that there will be at most a two-dimensional curve on the face of a
tetrahedron of that grid where the eigenvector field is tangential to the face,
the whole face is tangential to the eigenvector field, or there is no tangential
area at all. An isolated point on the face where the eigenvector field is tangen-
tial to the face cannot occur and do not need to be considered as a potential
exit.

The potential exit edges as previously defined then serve as initial condi-
tions for the backward integration step. Hyperstreamlines are computed orig-
inating at the potential exit edges. These hyperstreamsurfaces are then called
backward integrated hyperstreamsurface. In case part of the hyperstreamline
leaves the cell cycle the current hyperstreamline can leave at the cell cycle at
that location and there is no closed hyperstreamline present in the current cell
cycle. Hence, this exit edge is referred to as a real exit edge. It is worthwhile
noting that the backward integrating step is insensitive to degenerate points.
On encounter of a degenerate point, a hyperstreamsurface may separate into
two parts, but can still be computed. For the backward integrated hyper-
streamsurface the streamsurface algorithm introduced by Hultquist [Hul92] is
used. Further details about the described methodology can be found in [WS02]
due to its similarity to the vector case.

Applying this motivation to symmetric, second order 3-D tensor fields,
an algorithm for detecting closed hyperstreamlines can be described. First,
a hyperstreamline is integrated using a standard integration method. During
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that process the cells covered by the current hyperstreamline are traced to
check if a cell cycle is reached. Then, all potential exit edges are identified
by going backward through the crossed cells. As a final step, all exit edges
are validated by integrating a hyperstreamsurface backward from every po-
tential exit edge through the whole cell cycle. If there is no real exit edge,
meaning that no backward integrated hyperstreamline left the cell cycle, the
current hyperstreamline cannot leave the cell cycle. Consequently, there exists
a closed hyperstreamline within the cell cycle on condition that there is no
singularity contained in the cell cycle. On the other hand, if a real exit edge
exists, then there is no closed hyperstreamline present in the current cell cycle.
Consequently, the criterion serves as both a necessary as well as a sufficient
condition. The proof for this algorithm is similar to the vector case and can
be found in [WS02].

15.4 Results

To test the implementation, a synthetic data set was created which includes
one closed hyperstreamline in the minor eigenvector field. To compute this
data set, a two-dimensional vector field which contains two sinks and is sym-
metrical with respect to the y-axis is used as a starting point. In addition,
all vectors residing at the y-axis are zero in this vector field. By rotating this
two-dimensional vector field about the y-axis, a three-dimensional flow is cre-
ated. To convert each vector v in this vector field into a tensor, basic linear
algebra methods are used. First, two vectors v1 and v2 are determined in such
a way that these two vectors in combination with the one from the vector field
form an orthonormal basis of R

3. Defining a matrix T = (v, v1, v2) yields to a
tensor t = T · E · T−1, where E is a matrix defined as

E =

⎛⎝⎛⎛1 0 0
0 2 0
0 0 3

⎞⎠⎞⎞ .

Determining the minor eigenvector in a tensor field that was created in
such a way, results in exactly the same vector that was plugged in initially.
Consequently, the tensor field contains a single closed minor hyperstreamline.
Figure 15.3 shows the hyperstreamline that was detected by the algorithm.
The wavy appearance of the closed hyperstreamline is due to the way this
data set was generated; the location of the closed hyperstreamline is deter-
mined very accurately by the algorithm. The hyperstreamline is drawn only
as the center line without considering the medium and major eigenvectors. In
addition, a hyperstreamline which was computed by a regular hyperstreamline
algorithm was started in the vicinity of the closed hyperstreamline. The seg-
ments of this hyperstreamline are colored according to the minor eigenvalue.
Due to the attracting nature of this closed hyperstreamline, the regularly
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Fig. 15.3. Closed hyperstreamline (minor eigenvector field) in combination with a
regular hyperstreamline. See color plates

Fig. 15.4. Closed hyperstreamline including hyperstreamsurfaces exposing the sur-
rounding tensor field (minor eigenvector field). See color plates

computed hyperstreamline approaches it and eventually merges with the first
as can be seen in the figure.

Figure 15.4 shows the same closed hyperstreamline with two hyperstream-
surfaces. The hyperstreamsurfaces – just like the hyperstreamline – are at-
tracted by this closed hyperstreamline. The hyperstreamsurface becomes
smaller and smaller while it spirals around the closed hyperstreamline. After
a few turns around the closed hyperstreamline, the ellipses are only slightly
wider than the closed hyperstreamline itself, finally causing the hyperstream-
surface to completely merge with the hyperstreamline. A rather arbitrary color
scheme is used for the hyperstreamsurfaces to enhance the three-dimensional
impression.

To apply the algorithm to a more common data set, a single point load
data set was used. Here, a force is applied to an infinite half space. The
stress-strain tensor field is determined to describe the pressure inside that
infinite half space. Figure 15.5 shows the result of the algorithm. Two major
hyperstreamlines were computed, starting at the top of the figure and ending
at the lower left corner. The force acting on the infinite half space is attached
to the center of the funnel-shaped end of the larger hyperstreamline in the
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Fig. 15.5. Closed hyperstreamlines in single point load data set. See color plates

figure. Several closed hyperstreamlines can be found in the minor eigenvector
field of this data set. In fact, there is a complete surface totally covered by
closed hyperstreamlines. Figure 15.5 shows just two of these hyperstreamlines
to avoid visual clutter. Due to the interpolation used for computing the tensors
in the data set, the closed hyperstreamlines do not appear as perfect circles
as would be expected from the simulation. Similar to the previous example,
the segments of all hyperstreamlines are colored according to the eigenvalue
whose eigenvector is used to follow the hyperstreamline.

15.5 Conclusion

A method for detecting closed hyperstreamlines in symmetric, second order
tensor fields was presented. It was found that most methods that have been
established for vector fields can be applied to tensor fields as well. As can be
seen in the first example of Sect. 15.4, closed hyperstreamlines can have an
attracting property and therefore form a topological feature. Consequently,
this feature, which is missing in topological analysis algorithms, was added.
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national Journal on Non-Linear Mechanics, 15:367–376, 1980.

[Ken98] D. N. Kenwright. Automatic Detection of Open and Closed Separation
and Attachment Lines. In D. Ebert, H. Rushmeier, and H. Hagen, edi-
tors, IEEE Visualization ’98, pp. 151–158, Research Triangle Park, NC,
1998.

[KWH00] G. Kindlmann, D. Weinstein, and D. Hart. Strategies for direct volume
rendering of diffusion tensor fields. IEEE Transactions on Visualization
and Computer Graphics, 6(2):124–138, 2000.

[Lan95] S. Lang. Differential and Riemannian Manifolds. Springer, New York,
third edition, 1995.

[SB90] J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer, Berlin,
3 edition, 1990.



15 Locating Closed Hyperstreamlines in Second Order Tensor Fields 267

[SHJK00] G. Scheuermann, B. Hamann, K. I. Joy, and W. Kollmann. Visualizing
local Vector Field Topology. Journal of Electronic Imaging, 9(4):356–
367, 2000.

[vV87] M. van Veldhuizen. A New Algorithm for the Numerical Approxima-
tion of an Invariant Curve. SIAM Journal on Scientific and Statistical
Computing, 8(6):951–962, 1987.
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Summary. This chapter introduces a visualization method specifically tailored to
the class of tensor fields with properties similar to stress and strain tensors. Such
tensor fields play an important role in many application areas such as structure
mechanics or solid state physics. The presented technique is a global method that
represents the physical meaning of these tensor fields with their central features: re-
gions of compression or expansion. The method consists of two steps: first, the tensor
field is interpreted as a distortion of a flat metric with the same topological struc-
ture; second, the resulting metric is visualized using a texture-based approach. The
method supports an intuitive distinction between positive and negative eigenvalues.

16.1 Introduction

Since the physical interpretation of mathematical features of tensor fields is
highly application-specific it is important that visualization techniques are
closely driven by the special application. In this chapter, we focus on symmet-
ric tensor fields of second order that are similar to stress strain tensor fields,
or the symmetrical part of the gradient tensor. These tensor fields are char-
acterized by the property that they have positive and negative eigenvalues.
The sign of the eigenvalues indicates regions of expansion and compression,
and it is therefore of special interest. To understand the field behavior, it is
important to express these features in an intuitive way. The underlying idea
of our visualization method is to transform the tensor field into a metric. This
metric is represented using a texture that is aligned to the eigenvector fields,
similarly to line integral convolution (LIC) [CL93, SH95]. The eigenvalues are
included using the free parameters in the texture generation: the convolution
filter length, and parameters of an input noise texture. This approach leads
to a fabric-like texture that is dense in regions of compression and sparse in
regions of expansion.
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16.2 Related Work

Even though several good visualization techniques exist for tensor fields, they
only cover a few specific applications. Many of these methods are extensions
of vector field visualization methods, which focus on a technical generalization
without providing an intuitive physical interpretation of the resulting images.
They often concentrate on the representation of eigendirections and neglect
the importance of the eigenvalues. Therefore, in many application areas tra-
ditional two-dimensional plots are still used, which represent the interaction
of two scalar variables.

One way to represent a tensor field is based on using icons. They illus-
trate the characteristics of a field at some selected points (see, for example,
[Hab90, KGM95, LW93]). Even though these icons represent the tensor value
at one point well they fail to provide a global view of the tensor field. A more
advanced but still discrete approach uses hyperstreamlines. This approach is
strongly related to streamline methods used for vector fields. They were in-
troduced by Delmarcelle and Hesselink [DH92] and have been utilized in a
geomechanical context by Jeremic et al. [JSchF02]. Given a point in the field,
one eigenvector field is used to generate a vector field streamline. The other
two eigendirections and eigenvalues are represented by the cross section along
the streamline. This method extracts more information than icons, but it still
leaves the problem of choosing appropriate seed points to the user. Thus, both
methods have limited usage in exploring complete data sets and are limited
to low-resolution due to cluttering.

To generate a more global view, a widely accepted solution for vector
fields is the reduction of the field to its topological structure. These methods
generate topologically similar regions that lead to a natural separation of
a field domain. The concept of topological segmentation was also applied
to two-dimensional tensor fields [HD95]. The topological skeleton consists of
degenerated points and connecting separatrices. Degenerated points are where
the tensor has multiple eigenvalues and the eigenvectors are not uniquely
defined. Although the tensor field can be reconstructed on the basis of its
topological structure, physical interpretation is difficult.

Following an approach of Pang et al. [BP98, ZP02] a tensor field is con-
sidered as a force field that deforms an object placed inside it. The local
deformation of probes, such as planes and spheres, illustrate the tensor field.
This method only displays a part of the information because it reduces the
tensor field to a vector field. To avoid visual clutter only a small number of
probes can be included in one picture. Zheng et al. [ZPa03] extended this
method by applying it to light rays that are bended by the local tensor value.

Another class of visualization methods provides a continuous representa-
tion, based on textures. The first ones to use a texture to visualize a tensor
field in a medical context were Ou and Hsu [OH01]. An approach based on the
adaptation of LIC to tensor fields by Zheng et al. [ZP03]. Here, a white-noise
texture is blurred according to the tensor field. In contrast to LIC images,
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the convolution filter is a two-dimensional or three-dimensional volume de-
termined by the local 2D or 3D tensor field respectively. This visualization
is especially good for showing the anisotropy of a tensor field. However, one
problem of this method is the integration of the sign of the eigenvalues. Points
with the same eigenvalues but with opposite sign are illustrated as isotropic.

There exist some other techniques designed especially for the visualiza-
tion of diffusion tensors that only have positive eigenvalues. But they are not
appropriate for stress, strain or gradient tensor fields.

16.3 Metric Definition

To motivate our approach we discuss an example for the kind of tensor fields
we are interested in. These are stress tensor fields and gradient tensor fields
whose behavior is very similar, as a stress tensor is often computed as gradient
of a virtual displacement field. It can be observed that for gradient fields or
stress and strain tensors, positive eigenvalues lead to a separation of parti-
cles or expansion of a probe. Eigenvalues equal to zero imply no change in
distances, and negative eigenvalues indicate a convergence of the particles or
compression of the probe.

For the symmetric part of a gradient tensor S of a vector field v =
(v1, v2, v3) with sij = 1

2 (vi,j + vj,i) this behavior is expressed by (16.1). Here,
vi,j denotes the partial derivative of the ith component of v with respect to
coordinate xj .

d
dt

(ds2) =
3∑

i,k=1

sik dxi dxk =
3∑

j=1

λj du2
j . (16.1)

Here, ds = (dx1,dx2,dx3) and ds2 is the quadratic distance of two neighboring
points, λj , j = 1, 2, 3 are the eigenvalues of S, and duj are the components
of dx corresponding to the eigenvector basis {wj , j = 1, 2, 3}. If we focus on
just one eigendirection wi, the change of ds2 is defined by the corresponding
eigenvalue λi:

λi > 0→ d
dt

ds2 > 0 , λi = 0→ d
dt

ds2 = 0 , λi < 0→ d
dt

ds2 < 0 .

(16.2)
A similar behavior can be observed for the deformation of a probe in a stress
field (see Fig. 16.1).

Considering a time-independent vector field, a formal integration of (16.1)
results in the following expression for ds2:

ds2(t) = ds2(0) +
∑
ik

(sik · t) dxi dxk . (16.3)

Using ds2(0) = a ·
∑
i

dxi dxi we obtain:
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Fig. 16.1. Deformation of a unit probe under influence of a stress tensor in direction
of eigenvector wi. Eigenvalues larger than zero correspond to a tensile, and eigen-
values smaller than zero to a compressive force in the direction of the eigenvector

ds2(t) =
∑
ik

(aδik + sik · t︸ ︷︷︷ ︸︸
=: gik

) dxi dxk, (16.4)

where δik is the Kronecker-delta. The tensor g with components gik =
aδik + sik · t can be interpreted as a time-dependent metric of the under-
lying parameter space D. The constant a plays the role of a unit length, and
t is a time variable that can be used as a scaling factor. This metric definition
is the basis of our tensor field visualization method.

16.3.1 The Transformation

Based on the observations made in Sect. (16.3), we define a transformation of
the tensor field into a metric. We do not exactly follow the motivating (16.4)
but use a more flexible approach.

Let T be a tensor field defined on a domain D. The tensor at a point
P ∈ D is given by T(P ). For each point P , the tensor T(P ) is mapped to a
metric tensor g(P ) describing the metric in P . In the most general form, the
assignment is achieved by the following three steps:

1. Diagonalization of the tensor field:
Switching from the original coordinate basis to the eigenvector basis {w1,
w2, w3}, we obtain a diagonal tensor T′ having the eigenvalues of T on its
diagonal:

T 	→ T′ = U ·T · UT = diag (λ1, λ2, λ3) , (16.5)

where U is the diagonalization matrix.

2. Transformation and scaling of the eigenvalue, to define the metric g′ ac-
cording to the eigenvector basis:

T′ 	→ g′ = diag (F (λ1), F (λ2), F (λ3)) , (16.6)
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where F : [−λmax, λmax] → IR+ is a positive monotone function, with
λmax = max{|λi(P )|;P ∈ D, i = 1, 2, 3}.

3. Definition of the metric g in the original coordinate system by inverting the
diagonalization defined in (16.5):

g = UT · g′ · U. (16.7)

If the mapping F is linear, the three steps can be combined into one step,
and F can be applied to the tensor components, independently of the chosen
basis. The resulting metric g has the following properties:

• It is positive definite and symmetric.
• Its eigenvector field corresponds to the original eigenvector field of T.

Thus, the tensor field topology in the sense of Delmarcelle et al. [HD95] is
preserved.

• Its eigenvalues are given by F (λj). Positive eigenvalues are mapped to
values greater than a, negative eigenvalues to values smaller than a but
larger then zero. The zero tensor is mapped to a multiple of the unit
matrix.

• Since the transformation is invertible, we get a one-to-one correspondence
of the metric and the tensor field.

16.3.2 Examples for Transformation Functions F

In this paragraph we suggest some explicit definitions for the function F .
Except from the first example all these functions are nonlinear and therefore
cannot be directly applied to the tensor components. The functions we discuss
can be classified in two groups:

1. Anti-symmetric Treatment of the Eigenvalues
To underline the motivation defined by (16.4), we can define the transforma-
tion function as:

F (λ) = a + σf(λ) . (16.8)

Here, a = F (0) defines the unit length, and σ �= 0 is an appropriate scaling��
factor that guarantees that the resulting metric is positive definite. The func-
tion f : IR → IR is a monotone function with f(0) = 0. If we want to treat
positive and negative eigenvalues symmetrically it is f(−λ) = −f(λ). From
the large class of functions satisfying this condition we have considered three
examples:

a. Identity: f = id , f(λ) = λ.
Since f is linear, the metric g is defined by gij = F (tij) = a + σ · tij . This
equation corresponds exactly to our motivating (16.4), where σ plays the role
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Fig. 16.2. Figures (a) and (b) are examples for an anti-symmetric transformation
function f . (a) Logarithmic function; (b) arc-tangent for two different slopes for
λ = 0. (c) is an example of a non-symmetric transformation function F for two
different slopes at the origin

of the time variable t. With σ < a/λmax we can guarantee that the metric is
positive definite.

b. Anti-symmetric logarithmic function.
To emphasize regions where the eigenvalues change sign one can choose a
function f with a larger slope in the neighborhood of zero.

f(λ; c) =
{

log(c · λ + 1) for λ ≥ 0
− log(1− c · λ) for λ < 0 . (16.9)

If we require σ < a/ log(c · λmax + 1) the resulting metric is positive definite.

c. Asymptotic function.
A function where the limitation of the scaling factor σ is independent of λmax

is
f(λ; c) = arctan(c · λ), (16.10)

with σ < 2a/π. For both functions, the constant c controls the ‘sharpness’
at the zero crossing. For higher values of c the function becomes steeper, see
Fig. 16.2.

2. Non-symmetric Function
As the visual perception of texture attributes is nonlinear, an anti-symmetric
approach is not always the best choice. An alternative that takes care of this
aspect is defined by the class of functions F [−λmax, λmax]→ [ a

M , a·M ], where

F (−λ) =
a2

F (λ)
. (16.11)

The constant a defines again the unit, aṀ the maximum, and a
M the minimum

value for F satisfying M > 1. Functions with this property can be obtained
by using anti-symmetric functions f as exponent:
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F (λ) = a · exp(σ · f(λ)) where f(−λ) = −f(λ) . (16.12)

An example for such a function with a = 1 is F (λ; c, σ) = exp(σ arctan(c ·
λ)). The constant c determines the slope of the function in the origin, see
Fig. 16.2. The second class of functions produces much better results because
the differences in the density of the resulting structure is more obvious. The
special choice of the function f does not have a significant influence on the
result. Another advantage of this class of functions F is that the resulting
metric is always positive definite and therefore, the scaling factor σ is not
limited. By an animation of this parameter we can enhance the impression of
stretching and compression.

16.3.3 Visualization

We now have transformed the problem of visualizing a tensor field to the
problem of visualizing an abstract metric. One way to solve this problem is an
isometric embedding of the metric [Hot02]. The disadvantage of this approach
is that it is restricted to two dimensions, and its existence is only guaranteed
locally. In general, several patches are needed to cover a field’s entire domain.
Since we want to produce a global representation of a field we decided to follow
a different approach: Our basic idea is to use a texture that resembles a piece
of fabric to express the characteristic properties of the metric. The texture is
stretched or compressed and bended according to the metric. Large values of
the metric, which indicate large distances, are illustrated by a texture with
low density or a stretched piece of fabric. We use a dense texture for small
values of the metric. One can also think of a texture as probe inserted into
the tensor field.

We generate the texture using LIC, a very popular method for vector
field visualization. LIC blurs a noise image along the vector field or integral
curves. Blurring results in a high correlation of the pixel along field lines,
whereas almost no correlation appears in direction perpendicular to the field
lines. The resulting image leads to a very effective depiction of flow direction
everywhere, even in a dense vector field. LIC was introduced in 1993 by Cabral
and Leedom [CL93]. Since the method was introduced, several extensions and
improvements were made to make it faster [SH95] and more flexible.

We compute one LIC image for every eigenvector field to illustrate the
eigendirections of the tensor field. For the integration of the integral curves
we use a Runge-Kutta method of fourth order, the LIC image is computed
using Fast-LIC as proposed in [SH95]. In each LIC image the eigenvalues of
every eigenvector field are used to define the free parameters of the underlaying
noise image and the convolution. Finally, we overlay all resulting LIC images
to obtain the fabric-like texture.
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(a) (b) (c)

Fig. 16.3. Example for different input images. (a) White noise image with maximum
resolution; (b) spot noise image with changing density; (c) spot noise image with
changing spot size

Input Noise Image

We use the free parameters of this input image to encode properties of the
metric. Three basic parameters are changed according to the eigenvalues. They
are: density, spot size, and color intensity of the spots. Considering these
parameters, the standard white-noise image is the noise image with maximum
density, minimal spot size, and constant color intensity. It allows one to obtain
a very good overall impression of the field; its resolution is only limited by pixel
size. Unfortunately, it is not flexible enough to integrate the eigenvalues which
represent fundamental field properties besides the directions. For this reason,
we use sparse noise input images, with lower density and larger spot size even
if we obtain a lower resolution. Some examples for different input images with
changing density and spot size are shown in Fig. 16.3. The connection of these
parameters to the eigenvalues is explained in the following paragraphs:

Density. For each direction field wi, we define a specific density di depending
on the orthogonal eigenvalues. A compression orthogonal to fibers leads to in-
creasing density, and an expansion to decreasing density. For two-dimensional
textures this approach leads to the following definition of a one-dimensional
density di [spots/cm]:

di(λ) = d0 ·
1

F (λj)
, with j =

{
2 if i = 1
1 if i = 2 ,

(16.13)

where F is defined by (16.6), and d0 defines the ‘unit-density,’ d(0) = d0/F (0).
In three dimensions, we have two orthogonal eigenvalues and thus obtain a
direction-dependent density di,j for each direction wj :

di,j(λ) = d0 ·
1

F (λj)
. (16.14)
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Table 16.1. Assignment of eigenvalues to free parameters for a three-dimensional
texture.

Eigenvector Field

Free Parameters i = 1 i = 2 i = 3

density value di,j
1

λ2

1
λ1

1
λ1

di,k
1

λ2

1
λ1

1
λ1

color intensity IiII
1

λ1

1
λ2

1
λ3

convolution length li λ1 λ2 λ3

spot diameter ri,j λ2 λ3 λ1

ri,k λ3 λ1 λ2

Spot Size. Increasing the radius of the underlying noise image leads to
thicker, decreasing the radius leads to thinner fibers. This value is controlled
by the orthogonal eigenvalues. In three dimensions, we define ellipsoids with
three different diameters according to the three eigenvalues:

ri,j =
r0

di,j
. (16.15)

Convolution Length. The defined noise image only uses the eigenvalues
orthogonal to the actual eigendirection field. A stretching or compressing in
the direction of the integral lines changes the length of the fibers. Fiber length
is directly correlated to the length of the convolution filter li, i.e.,

li = l0 · F (λi) . (16.16)

Color and Color Intensity. In addition to these three ‘structure’ parame-
ters, color intensity can be used to enhance the impression of compression
and stretching. We use red for compression and green for tension. We apply
a continuous color mapping from red for the smallest negative eigenvalues,
white for zero eigenvalues, and green for positive eigenvalues. The definition
of the different parameters for three dimensions is summarized in Table 16.1.

16.4 Results and Conclusions

We have evaluated our method using synthetic and real data sets. Simple
tensor fields, where the eigenvector fields are aligned to the coordinate axes,
have allowed us to validate the effect of changing texture parameters. We have
obtained similar results for datasets where the eigenvector fields are rotated
by 90 degrees. Results where only one eigenvector field is used are shown in
Fig. 16.4. Images for the same datasets showing both eigendirections are shown
in Fig. 16.5. We have used different input textures and parameter mappings.
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(a) (b) (c) (d) (e)

Fig. 16.4. Effect of changing image parameters for one eigenvector field of dif-
ferent simple synthetic tensor fields. In (a)–(c), only the input image is changed
corresponding to the eigenvalues of the orthogonal eigenvector field; (a) change of
density; (b) change of spot size; (c) change of density and spot size. Images (d)
illustrates the effect of changing the convolution length, where the parameters of
the input noise image are constant. Image (e) shows a combination of the three
parameters (density, spot size, and convolution length)

(a) (b) (c)

Fig. 16.5. Combination of two eigenvector fields, each representing both eigenval-
ues. In (a) and (b), only density and spot size are changed; (c) shows a combination
of the three parameters

The next examples are results for simulated finite element data sets of
the stress field resulting from applying different load combinations to a solid
block. These datasets are well-studied and therefore appropriate to evaluate
our method. For the simulation, a ten-by-ten-by-ten grid had been used. The
tensor field resulting from the simulation is continuous inside each cell, but
not on cell boundaries. This fact can be observed in our images. Figure 16.6
and Fig. 16.7 (see color plates) show different slices of the three-dimensional
dataset from a single point load. Figure 16.8 (see color plates) represents a
block where two forces with opposite sign were applied. These images provide
a good visual segmentation of regions of compression and expansion.
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(a) (b) (c)

Fig. 16.6. Images showing a yz-plane slice of single top-load data set, where a force
is applied in z-direction. (a) and (b) illustrate the two eigenvector fields separately;
in (c) they are overlaid. In all images, spot size and density are changed according
to eigenvalues

(a) (b)

Fig. 16.7. See color plates. This figure shows a single-top-load. Spot size and den-
sity of the input images are adapted to the corresponding eigenvectors. Red shows
regions of compression, green expansion according the respective eigenvector field:
the images are planar slices along the (a) yz-plane and (b) xy-plane slice orthogonal
to the force

The interpretation of a tensor field as a distortion of a flat metric can
be used to produce a visualization based on the real physical effect of the
tensor field. The distortion of the texture according to the metric supports a
flexible representation of two-dimensional slices of a tensor field, which is easy
to understand. An extension to three dimensions is possible but there is still
the problem of cluttering which must be solved.
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(a) (b)

Fig. 16.8. See color plates. The images represents a yz-plane (a) and xz-plane
(b) slice of a two-force dataset. (a): In the lower-left corner we see a region of
compression, a result mainly due to the pushing force on the left; in the upper-right
corner expansion dominates as a result of the right pulling force. (b): The left circle
corresponds to the pushing and the right to the pulling force. The fluctuation of the
color is a result of the low resolution of the simulation
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Summary. In many engineering applications that use tensor analysis, such as ten-
sor imaging, the underlying tensors have the characteristic of being positive def-
inite. It might therefore be more appropriate to use techniques specially adapted
to such tensors. We will describe the geometry and calculus on the Riemannian
symmetric space of positive-definite tensors. First, we will explain why the geom-
etry, constructed by Emile Cartan, is a natural geometry on that space. Then, we
will use this framework to present formulas for means and interpolations specific to
positive-definite tensors.

17.1 Introduction

Symmetric positive-definite (SPD) matrices arise in many physical and math-
ematical contexts. This is not surprising as the set of SPD matrices has a very
rich structure and possesses many interesting features. Recent years have seen
an increasing demand for a rigorous framework for dealing with different op-
erations on the set of SPD matrices such as regularization, interpolation, and
averaging of SPD matrices data sets.

In this work we exploit the differential geometric structure of the set of
SPD matrices and use analogy with Euclidean space to give precise definitions
for means of SPD matrices. We also discuss various anisotropy measures as
well as methods for constructing multivariate interpolations of SPD matrices.
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17.2 Geometry of the Space of SPD Matrices

In this section we fix notations and briefly recall some differential-geometric
properties of the space of symmetric positive-definite matrices. Further details
can be found in standard texts such as [4, 6, 13].

Let M(n) denote the space of n × n real matrices. On M(n) we have
the Frobenius inner product 〈A,B〉F = tr(AT B) and the associated norm
‖A‖F = [tr(AT A)]1/2. OnM(n) we define the Euclidean metric by

dF (A,B) = ‖A−B‖ . (17.1)

Let GL(n) be the general linear group of all nonsingular matrices inM(n).
The exponential of a matrix A ∈ M(n) is given as usual by the power series
expA =

∑∞
k=0 Ak/k!, which converges for all A ∈ M(n). The exponential is

a differentiable map from M(n) onto GL(n).
The vector space of symmetric matrices in M(n) is denoted by S(n). For

P ∈ S(n) we say that P is positive semidefinite if xT Px ≥ 0 for all x ∈ R
n.

If P is positive semidefinite and invertible we say that P is symmetric posi-
tive definite. The subset of S(n) consisting of all positive-definite matrices is
a convex cone whose interior consists of all positive-definite matrices and is
denoted by P(n). While in most applications n = 3 (or n = 2), the differ-
ent notions dealt with in this work are introduced for arbitrary n > 0. The
graphical illustrations presented here are for the interesting case n = 3.

17.2.1 Riemannian Structure of P(n)

The set P(n) is a manifold whose tangent space at any of its points P is the
space TPTT P(n) = {P} × S(n). The infinitesimal arclength

ds := (tr(P−1dP)2)1/2 = ‖P−1/2dPP−1/2‖F (17.2)

defines a Riemannian metric on P(n). The general linear group GL(n) acts
transitively on the manifold P(n) by congruent transformations defined for
S ∈ GL(n) by [S]P = ST PS. Using properties of the trace one can easily
verify that for any curve P(t) in P(n) we have

‖([S]P(t))−1/2[S]dP(t)([S]P(t))−1/2‖F = ‖(P(t))−1/2dP(t)(P(t))−1/2‖F ,

and hence, [S] is an isometry for the Riemannian metric.
The exponential of a symmetric matrix is a symmetric positive-definite

matrix. The inverse map, i.e., the principal logarithm, which we denote by Log,
of a symmetric positive-definite matrix is a symmetric matrix. The geodesic
distance between P and Q in P(n) is given by [6, p. 326]

dR(P,Q) = ‖Log(P−1Q)‖F =

[
n∑

i=1

log2 λi(P−1Q)

]1/2

, (17.3)
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where λi(P−1Q), 1 ≤ i ≤ n are the eigenvalues of the matrix P−1Q. Because
P−1Q is similar to P−1/2QP−1/2, the eigenvalues λi(P−1Q) are all positive
and hence (17.3) is well defined for all P and Q of P(n). The unique geodesic
joining P and Q is the curve

[0, 1] � t 	→ P1/2(P−1/2QP−1/2)tP1/2 . (17.4)

It follows from (17.3) that dR(P−1,Q−1) = dR(P,Q). Hence, the inversion
P 	→ P−1 is an involutive isometry on P(n) for this metric, and therefore,
P(n) becomes a Riemannian symmetric space. It is in fact a typical example
of a symmetric space of non-compact type as classified by E. Cartan [13]. It
is also an example of a Riemannian manifold of nonpositive curvature [6].

17.2.2 The Kullback-Leibler Divergence

In information geometry, closeness between two probability distributions p and
q on an event space Ω is usually measured by the Kullback-Leibler divergence
or ‘relative entropy’ [1],

KL(p, q) =
∫

Ω

∫∫
p(x) log

p(x)
q(x)

dx . (17.5)

Recall that a divergence on a space X is a non-negative function J(·, ·) on
the Cartesian product space X ×X which is zero only on the diagonal, i.e.,
J(x, y) ≥ 0 for all x and y in X and that J(x, y) = 0 if and only if x = y. We
mention here that a symmetrized form of this divergence has been recently
used by Lenglet et al. [7] for the segmentation of probability density fields in
the context of diffusion MRI.

The Kullback-Leibler divergence between the two zero-mean Gaussian dis-
tributions

p(x|P) =
1√

(2π)n detP
exp

(
−1

2
xT P−1x

)
,

q(x|Q) =
1√

(2π)n detQ
exp

(
−1

2
xT Q−1x

)
,

whose covariant matrices are P and Q gives rise to the Kullback-Leibler di-
vergence for the two SPD matrices P and Q

KL(P,Q) = tr(Q−1P− I)− log det(Q−1P) . (17.6)

If λi, i = 1, . . . , n denote the (positive) eigenvalues of Q−1P then

KL(P,Q) =
n∑

i=1

(λi − log λi − 1) . (17.7)
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From this expression, as x− log x− 1 ≥ 0 for all x > 0 with equality holding
only when x = 1, it becomes clear that KL(·, ·) defines a divergence on the
space of SPD matrices.

We emphasize here the fact that the Kullback-Leibler divergence (17.6)
does not define a distance on the space of positive-definite matrices as it
is neither symmetric with respect to its two arguments nor does it satisfy
the triangle inequality. Its symmetrized form KLs(P,Q) = 1

2 (KL(P,Q) +
KL(Q,P)) can be expressed as

KLs(P,Q) = 1
2 tr(Q−1P + P−1Q− 2I), (17.8)

or, in terms of the λi’s, as

KLs(P,Q) =
1
2

n∑
i=1

(√
λi −

1√
λi

)2

. (17.9)

By construction, the symmetrized Kullback-Leibler divergence (17.8) is in-
variant under inversion, i.e., KLs(P−1,Q−1) = KLs(P,Q). It is easy to see
that it is also invariant under congruent transformations, i.e.,

KLs(P,Q) = KLs(ST PS,ST QS), for all S ∈ GL(n).

From (17.9) it becomes clear that the symmetrized Kullback-Leibler di-
vergence (17.8) behaves as the square of a distance. For comparison of
the distance measures dF (·, ·), dR(·, ·) and KLs(·, ·) in Fig. 17.1 we show
‘spheres’ centered at the identity tensor and with radii r = 0.1, 0.5 and
1: (a) dF (I,P) = ‖I − P‖F = r, (b) dR(I,P) = ‖Log P‖F = r, and (c)√

KLs(I,P) = 1√
2
‖P1/2 −P−1/2‖F = r, where P ∈ P(3).

(a) (b) (c)

Fig. 17.1. ‘Spheres’: Isosurfaces of the distance measure between a SPD tensor in
P(3) with eigenvalues (λ1, λ2, λ3) and the identity tensor; (a) Euclidean distance,
(b) geodesic distance, and (c) square root of the Kullback-Leibler symmetrized
divergence
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17.3 Anisotropy Indices

In this section we are going to use the distance and divergence functions
discussed above to define properly invariant measures of anisotropy of SPD
tensors. Such measures are a useful tool for the identification of changes in
tissue structure from diffusion tensor magnetic resonance imaging (DT-MRI)
data sets, see for example [2, 10, 11].

Definition 17.3.1 We define the anisotropy index of a matrix relative to a
distance (or a divergence) to be its distance (or square root of the divergence)
to its closest isotropic matrix.

This definition guarantees that the anisotropy index is a non-negative quantity
that is zero only for isotropic matrices and that it inherits all the invariance
properties of the distance (or divergence) it is induced from.

Proposition 17.3.2 Let P be a SPD matrix with eigenvalues λ1, . . . , λn.

• The anisotropy index relative to the Euclidean distance is

AF (P) = dF

(
P,

trP
n

I
)

=

√
tr

√
P2 − 1

n
tr2 P

=

√√√√√√√√√√n− 1
n

n∑
i=1

λ2
i −

2
n

∑
1≤i<j≤n

λiλj .

• The anisotropy index relative to the Riemannian distance is

AR(P) = dR

(
P,
√
n detPI

)
=

√
tr Log

√
2 P− 1

n
tr2 Log P

=

√√√√√√√√√√n− 1
n

n∑
i=1

ln2 λi −
2
n

∑
1≤i<j≤n

lnλi lnλj .

• The anisotropy index relative to the symmetrized Kullback-Leibler diver-
gence is

AKL(P) =
√

dKL

(
P,
√

trP/ trP−1I
)

=
√

2(
√

trP trP−1 − n)

=

√√√√√√√√√√√√√2

√√√√√√√√√√ n∑
i=1

λi

n∑
i=1

1/λi − 2n .

Proof. By straightforward computations we first determine the positive num-
ber α such that the isotropic matrix αI is closest (relative to the distance or
divergence in question) to P, then we compute the corresponding distance or
divergence.
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(a) (b) (c)

Fig. 17.2. Anisotropy indices: Isosurfaces of the anisotropy index of SPD tensors in
P(3) represented in the space (λ1, λ2, λ3) of eigenvalues; (a) Fractional anisotropy,
(b) geodesic anisotropy, and (c) Kullback-Leibler anisotropy

Note that AR(·) has the same functional form in terms of the eigenvalues
as AF (·) but on a logarithmic scale. We remark that AR(·) and AKL(·) are
invariant under matrix inversion while AF (·) is not.

The range of all of the above anisotropy indices is [0,∞). In order to
compare these indices with other anisotropy indices with range [0, 1) used in
the literature, we normalize these indices in the following way

FA(P) = AF (P)/‖P‖F ,

GA(P) = AR(P)/(1 + AR(P)) ,

KLA(P) = AKL(P)/(1 + AKL(P)) .

The normalized anisotropy index relative to the Euclidean distance coincides
with the fractional anisotropy index (FA) commonly used in the DT-MRI
community [2, 10, 11]. The geodesic anisotropy (GA) was recently introduced
in [3] and applied to a DT-MRI data set.

Figure 17.2 gives isosurfaces for the (normalized) anisotropy index1 with
respect to the Euclidean distance, Riemannian distance, and the Kullback-
Leibler divergence for SPD matrices in P(3). The fractional anisotropy is
defined for all symmetric tensors but only the parts of the isosurfaces that are
inside the positive orthant of the (λ1, λ2, λ3)-space are shown. Both the geo-
desic and the Kullback-Leibler anisotropies are defined only for SPD tensors.
Their isosurfaces always stay inside the positive orthant. For the geodesic and
the Kullback-Leibler anisotropies, the limiting value 1 corresponds to singular
matrices (i.e., the boundary of the positive orthant), whereas for the fractional
anisotropy this value is attained when at least one eigenvalue is infinite. For
nearly isotropic tensors, the geodesic and the Kullback-Leibler anisotropies are
similar to the fractional anisotropy. However, for tensors relatively far form
being isotropic the behavior of the geodesic anisotroppy is similar to that of

1 From now on we will consider only the normalized anisotropy indices.
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(a) (b) (c)

Fig. 17.3. Anisotropy indices: Contours of the anisotropy index of SPD tensors in
P(3) with eigenvalues (λ1, λ2, λ3) on an octahedral plane; (a) Fractional anisotropy,
(b) geodesic anisotropy, and (c) Kullback-Leibler anisotropy.

the Kullback-Leibler anisotropy, and both behave quite differently than the
fractional anisotropy.

The set of all symmetric tensors in S(3) with a given trace is a plane
in the (λ1, λ2, λ3)-space, called an octahedral plane, which is perpendicular
to the line of isotropic tensors (or in the language of plasticity theory, the
line of hydrostatic pressure). The intersection of this plane with the positive
orthant of SPD tensors is an equilateral triangle. In Fig. 17.3, contours of
the anisotropies on the octahedral plane that passes through the identity
tensor, i.e., plane of tensors with trace equal 3, are presented. Once again, the
fractional anisotropy does not see the boundary of the set of SPD tensors: for
relatively large values of the anisotropy the contour lines go over the limiting
equilateral triangle. The contour lines for the geodesic and Kullback-Leibler
anisotropies, on the other hand, stay inside this triangle and follow it closely
for large values of the anisotropy index.

We recall that the spectral decomposition of a SPD matrix P in P(3) is
P = RDRT , where D = diag(λ1, λ2, λ3) are the eigenvalues of P and R
is an orthogonal matrix whose columns are the eigenvectors of P. The set
of (positive) eigenvalues λ1, λ2, λ3 and the orthogonal matrix R provide a
parametrization for the elements of P(3). It has been customary to use this
parametrization to visualize a SPD matrix P as an ellipsoid whose principal
directions are parallel to the eigenvectors of P and axes proportional to the
eigenvalues of P. Thus the methods discussed in this chapter such as averag-
ing, interpolation can also be used to perform these operations for ellipsoids.
In Fig. 17.4 we use this representation to visualize the diffusion tensors of a
brain region and we use color for representing the indicated anisotropy index.

17.4 Means

The arithmetic and geometric means, usually used to average a finite set of
positive numbers, generalize naturally to a finite set of SPD matrices. This
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(a) (b) (c)

Fig. 17.4. Anisotropies: Diffusion ellipsoids of a brain region colored by the FA (a),
the GA (b) and the KLA (c). (See color plates)

generalization is based on the key observation that a mean has a variational
characterization [8]. The arithmetic mean minimizes the sum of the squared
Euclidean distances to given positive numbers xk, k = 1, . . . ,m

x̄ = arg min
x>0

m∑
k=1

|x− xk|2.

Likewise, the geometric mean, x̃ = m
√
m x1x2 · · ·xm, minimizes the sum of the

squared hyperbolic distances to the given positive numbers xk

x̃ = arg min
x>0

m∑
k=1

| log x− log xk|2.

By analogy with the set of positive numbers we define means of symmetric
positive-definite matrices as follows:

Definition 17.4.1 We define a mean relative to a distance (or a divergence)
of a finite set of SPD matrices P1, . . . ,Pm to be the SPD matrix P that
minimizes

m∑
i=1

d(Pi,P)2 ,

where d(·, ·) designates the distance (or the square root of the divergence).

17.4.1 Metric-Based Means

Using the Euclidean distance (17.1) and the Riemannian distance (17.3) on
P(n) in Definition 17.4.1 we obtain the arithmetic and geometric means.

Proposition 17.4.2 Given a set of SPD matrices P1, . . . ,Pm.

• Their mean relative to the Euclidean distance (17.1) is the arithmetic mean
given by
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A(P1, . . . ,Pm) =
1
m

m∑
i=1

Pi . (17.10)

• Their mean relative to the Riemannian distance (17.3) is the geometric
mean G(P1, . . . ,Pm) which is the unique solution of the nonlinear matrix
equation

m∑
i=1

Log(P−1
i P) = 0 . (17.11)

We note that, in general, equation (17.11) can not be solved in closed
forms. This is basically due to the non-commutative nature of matrix multi-
plication. However, the geometric mean of two matrices P1 and P2 is given
explicitly by

G(P1,P2) = P1(P−1
1 P2)1/2 = P2(P−1

2 P1)1/2. (17.12)

We remark that the arithmetic and geometric means are invariant under con-
gruent transformations, and that the geometric mean is invariant under inver-
sion. We refer the reader to [8] for further details on the geometric mean and a
proof of its characterization (17.11). Solution of the nonlinear matrix equation
(17.11) can be obtained numerically by different methods. For instance, one
can use Newton’s method on general Riemannian manifolds which is similar
to the classical Newton’s method on a Euclidean space but with the substi-
tution of straight lines by geodesics and vector addition by the exponential
map, see e.g., [12]. We also point out the fixed point algorithm proposed in
[9] specifically to solve (17.11).

17.4.2 Kullback-Leibler Divergence-Based Means

In the previous section we showed that arithmetic and geometric means are
defined, and arise naturally, as the unique minimizers of the sum of squared
distances from a given set of SPD matrices. The following Lemma shows that
the arithmetic and harmonic means arise as minimizers of functions defined
by the Kullback-Leibler divergence and that the geometric mean of those two
means arise as the unique minimizer of a function defined by the symmetrized
Kullback-Leibler divergence.

Lemma 17.4.3 Let Qi, i = 1, . . . ,m be m given SPD matrices.

1. The function

A(P) :=
m∑

k=1

KL(Qi,P)

is minimized by A(Q1, . . . ,Qm), i.e., the arithmetic mean of Q1, . . . ,Qm.
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2. The function

B(P) :=
m∑

k=1

KL(P,Qi)

is minimized by H(Q1, . . . ,Qm) := m
(∑m

i=1 Q−1
i

)−1
, i.e., the harmonic

mean of Q1, . . . ,Qm.
3. The function

C(P) :=
m∑

k=1

KLs(P,Qi)

is minimized by G(A(Q1, . . . ,Qm),H(Q1, . . . ,Qm)), i.e., the geometric
mean of the arithmetic mean of Q1, . . . ,Qm and the harmonic mean of
Q1, . . . ,Qm.

Proof. With the help of the formula
∂ detX
∂X

= (detX)(X−1)T , we have

∇A(P) = mP−1 −P−1
m∑

i=1

QiP−1 ,

∇B(P) = −mP−1 +
m∑

i=1

Q−1
i ,

∇C(P) = 1
2

(
m∑

i=1

Q−1
i −P−1

m∑
i=1

QiP−1

)
.

Equating these gradients to zero and solving for P yield the results.

The following Lemma shows that the mean based on the symmetrized
Kullback-Leibler divergence of two matrices coincides with their geometric
mean.

Lemma 17.4.4 The geometric mean satisfies the identity

G(P,Q) = G(A(P,Q),H(P,Q))

for any two matrices P, Q in P(n).

Proof. By invariance of the arithmetic, geometric and harmonic means under
congruent transformations it suffices to prove this Lemma for the case P = I.
In fact, we have

G(A(I,Q),H(I,Q)) = G(1
2 (I + Q), 2(I + Q−1)−1)

= (I + Q−1)−1((I + Q−1)(I + Q))1/2

= (I + Q−1)−1(Q + 2I + Q−1)1/2

= (I + Q−1)−1(Q1/2 + Q−1/2)

= (I + Q−1)−1(I + Q−1)Q1/2 = Q1/2 = G(I,Q) .
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Before we close this section we note that weighted means can also be
defined by analogy with means of positive numbers.

Definition 17.4.5 We define a weighted mean relative to a distance (or a
divergence) of a finite set of SPD matrices P1, . . . ,Pm with (non-negative)
weights w1, . . . , wm to be the SPD matrix P that minimizes

m∑
i=1

wi d(Pi,P)2 ,

where d(·, ·) designates the distance (or the square root of the divergence).

Among the applications of weighted means we can cite their use as a smoothing
filter for denoising measured SPD data, see e.g., Chap. 21 by Welk et al. In
the next section we are going to use weighted means to define interpolation
of scattered SPD data.

17.5 Interpolation

One of the emerging problems from the DT-MRI community is the interpo-
lation of scattered diffusion tensor data, see for example Chap. 18 by Pajevic
et al. and Chap. 19 by Weickert and Welk. Given the values of a symmetric
positive-definite matrix field at some points of space what is the natural way
to evaluate the tensor field at some other points? We present here several
methods of multivariate interpolation of SPD tensor data over simplicial do-
mains. These interpolation methods are analogous to multivariate Lagrange
interpolation of scalar or vector data. The main ingredients are the use of
weighted means and barycentric coordinates.

17.5.1 Univariate Interpolation

We start by discussing the univariate interpolation. Given two symmetric
positive-definite matrices P1 and P2, as the set of SPD matrices P(n) is subset
of the Euclidean space of real matrices M(n), one can define the function

λ 	→ P(λ) = λP1 + (1− λ)P2, 0 ≤ λ ≤ 1 , (17.13)

as the linear interpolation of the two tensors P1 and P2. Indeed, as P(n) is
an open convex cone, the tensor P(λ) is SPD for all λ ∈ [0, 1]. We remark in
passing that if λ is outside of the interval [0, 1], the matrix P(λ) can leave the
set P(n), which means that linear extrapolation of SPD matrices might not
be possible.

Another way to look at P(λ) is that it is the weighted arithmetic mean of
P1 and P2 with weights λ and 1 − λ. Note that the weights are exactly the
barycentric coordinates on the line segment (simplex of dimension one) [0, 1].



296 M. Moakher and P.G. Batchelor

Fig. 17.5. Univariate interpolation: Ellipsoidal representation of linear interpola-
tion (left) and geodesic interpolation (right) between two SPD tensors. In both cases,
the colors are based on the values of the geodesic anisotropy index. (See color plates)

This property of the linear interpolation on the line segment [0, 1], which also
holds true for simplices of higher dimension, can be generalized by replacing
the weighted arithmetic mean by other weighted means. For example, if we
use the weighted geometric mean we obtain the geodesic interpolation given
explicitly by

λ 	→ G(λ) = P1(P−1
1 P2)λ = P2(P−1

2 P1)1−λ, 0 ≤ λ ≤ 1 . (17.14)

The geodesic interpolation naturally takes into account the positive-definite
character of the involved matrices. Furthermore, the matrix G(λ) is always in
P(n) even if λ falls outside the interval [0, 1] (extrapolation). If the matrices P1

and P2 commute then G(λ) = Pλ
1P

1−λ
2 . Figure 17.5 shows diffusion ellipsoids

for linear interpolation based on (17.13) and geodesic interpolation based on
(17.14) between two SPD tensors.

17.5.2 Multivariate Interpolation

Given d + 1 SPD matrices P1, . . . ,Pd+1 that are the values of a SPD matrix
field at the d + 1 vertices of a d-dimensional simplex, the linear Lagrange
interpolation at a point with barycentric coordinates (λ1, . . . , λd+1) is given
by

(λ1, . . . , λd+1) 	→ P(λ1, . . . , λd+1) =
d+1∑
i=1

λiPi , (17.15)

where the λi’s satisfy 0 ≤ λi ≤ 1, for 1 ≤ i ≤ d + 1 and λ1 + · · ·+ λd+1 = 1.
Once again, P(λ1, . . . , λd+1) can be seen as the weighted arithmetic mean

of the SPD matrices P1, . . . ,Pd+1. Similar to the univariate case, we can also
define the geodesic interpolation of P1, . . . ,Pd+1 at a point with barycentric
coordinates (λ1, . . . , λd+1) as the weighted geometric mean of P1, . . . ,Pd+1

with weights λ1, . . . , λd+1. However, unlike the univariate case, for d > 1 this
weighted geometric mean cannot be given explicitly and one has to numerically
solve the nonlinear matrix equation

d+1∑
i=1

λi Log(P−1
i X) = 0 . (17.16)
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Fig. 17.6. Bivariate interpolation: Ellipsoidal representation of the interpolation
of a 3D tensor field over a 2-dimensional hexagonal region: Euclidean interpolation
(left) and geodesic interpolation (right). In both cases, the colors correspond to the
values of the geodesic anisotropy index. (See color plates)

In the case where all Pi’s commute this equation yields the solution

Pλ1
1 · · ·P

λd+1
d+1 .

Otherwise, (17.16) is solved numerically, e.g., by the fixed point algorithm
described in [9].

As an illustration of multivariate interpolation we visualize in Fig. 17.6 the
result of a bivariate interpolation of SPD tensors on a hexagonal region. A ten-
sor field given by its values at the vertices of the blue triangles is interpolated
based on both the Euclidean and geodesic methods.
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Summary. Diffusion Tensor MRI (DT-MRI) measurements are a discrete noisy
sample of an underlying macroscopic effective diffusion tensor field, D(x), of water.
This field is presumed to be piecewise continuous/smooth at a gross anatomical
length scale. Here we describe a mathematical framework for obtaining an estimate
of this tensor field from the measured DT-MRI data using a spline-based continuous
approximation. This methodology facilitates calculation of new structural quantities
and provides a framework for applying differential geometric methods to DT-MRI
data. A B-spline approximation has already been used to improve robustness of
DT-MRI fiber tractography. Here we propose a piecewise continuous approximation
based on Non-Uniform Rational B-Splines (NURBS), which addresses some of the
shortcomings of the previous implementation.

18.1 Introduction

Diffusion tensor MRI provides a measurement of an effective diffusion ten-
sor of water, Deff, in each voxel within an imaging volume [1]. These diffusion
measurements are inherently discrete, noisy and voxel-averaged. Here we treat
DT-MRI data as discrete noisy samples of an underlying macroscopic piece-
wise continuous diffusion tensor field, D(x), where, x = (x, y, z) are the spatial
coordinates in the laboratory frame of reference. This field is presumed to be
piecewise continuous or smooth at a gross anatomical length scale, an as-
sumption based on the known anatomy of many soft fibrous tissues, including
white matter, muscles, ligaments, and tendons. One of our objectives is to de-
velop a mathematical framework to estimate this piecewise continuous field,
D(x), from discrete noisy DT-MRI measurements. A reliable estimate of this
field enables us to use differential geometric methods directly. Additionally, it
enables computation and display of intrinsic architectural or microstructural
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MRI features based upon tissue fiber geometry [2, 2]. Some previously sug-
gested characteristics are curvature and torsion of the individual fiber tracts,
as well as the properties of the tangent field, e.g. twisting, bending, and di-
verging [4]. Here we focus on estimating curvature of the fiber tracts (tangent
field) but also show the architectural features of the tensor field itself. Esti-
mating such quantities accurately using measured diffusion tensor data and
interpolation is difficult, since their evaluation requires spatial differentiation
of noisy tensor quantities. Below we show that they can be calculated more
reliably and robustly using continuous tensor field approximation.

Originally, estimating the tensor field from sample tensor data was per-
formed using B-spline approximation [5]. It was used with DT-MRI data to
elucidate fiber tract trajectories, which can be done by integrating the fiber
direction (vector) field [9]. Other methods for fiber tracking at the time uti-
lized interpolation or directly followed the local fiber orientation [6, 7, 8],
with exception of Poupon et al. [11] who used a regularization method. In-
tegrating a noisy direction vector field can result in fiber trajectories that
wander off course. Using a smoothed representation of the direction field,
obtained from the continuous representation of D(x), however, can improve
the fidelity of tract following [9]. Establishing connectivity and continuity of
neural pathways can also benefit from the development of this specialized ten-
sor field processing methodology. These tasks require determining continuous
links between different regions of the brain, or assessing disjunctions between
them. Finally, there are a number of generic image processing tasks one would
like to perform on high dimensional DT-MRI data, since no signal processing
framework currently exists for these. These include: filtering noise, sharpen-
ing edges, detecting boundaries; compressing, storing and transmitting large
image files; interpolating and extrapolating tensor data; resampling data at
different resolutions (e.g., rebinning); extracting textural features, segment-
ing images, clustering data, and classifying tissues; and detecting statistical
outliers. The B-spline approximation provides the mathematical underpin-
nings for performing these tasks both rapidly and efficiently [10]. However,
the problem with it is that it introduces smoothing in the data uniformly
and isotropically and is incapable of dealing with discontinuities. The smaller
structures as well as sudden or rapid changes (edges, high curvatures, etc.) will
be distorted at the levels of approximation/smoothing required to alleviate the
noise effects. To achieve a more efficient approximation we use Non-Uniform
Rational B-Splines (NURBS). They allow for discontinuities and can describe
complex piecewise continuous geometrical shapes with many fewer parameters
than the original B-spline approximation.

Although there are other approaches for finding an approximate tensor
field, in this chapter we focus on a mathematical framework for continuous
approximation based on splines. A number of other methods for tensor field
approximation exist, for example see references [11, 12, 13, 14]. Also, Chap. 17
by Moakher and Batchelor and Chap. 19 by Weickert and Welk present
novel and sophisticated ways of interpolating and regularizing tensor fields.
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However, the goal of this chapter is not to review comprehensively the tensor
field approximation methods, instead, we describe and compare two different
spline methods for computing approximated tensor fields: (i) the previously
proposed method using B-splines and (ii) a new method that uses NURBS.

18.2 Continuous Approximation and Representation
of Discrete Tensor Data

The two approximation methods we focus on, (i) and (ii), have many com-
mon features which we generalize here. In both, to construct a continuous
approximation to a diffusion tensor field, we start with a set of basis functions
(approximants) whose linear combinations define an approximation space. In
[5], to make the approximation scheme practicable, we required it possess the
following properties: (P1) The set of basis functions must be sufficiently rich
to represent the diffusion tensor field precisely and accurately; (P2) The math-
ematical description of the approximation space is computationally tractable;
(P3) The approximation of the diffusion tensor field is implemented using al-
gorithms that are fast, robust, and accurate. In this chapter we also require
(P4) the approximation scheme must be able to produce a piecewise contin-
uous representation. We will see later that this can be done using NURBS,
which will provide even richer set of basis functions (strengthening P1), how-
ever, the requirement for speed in P3 will have to be relaxed.

To meet these requirements in general, we use atomic spaces [16], which are
a generalization of shift invariant spaces. In particular, we choose an atomic
space, SA(x, B), such that any function in that space, T (x) is of the form

T (x) =
Nr∑
i=1

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Pm(i, j, k)×Bm(x,Qi,j,k) (18.1)

In other words, each approximant in the approximation space, T (x), is a
weighted sum of a finite number of tensor field generators , Bm(x,Qi,j,k), m =
1, . . . , NrNN . The Pm(i, j, k) are the coefficients for the total of NrNN NxNN NyNN NzN basis
functions and are the first set of parameters of the approximation model. The
other parameters that describe the basis functions are lumped into Qi,j,k, and
can be different for different basis functions as indicated.

We showed previously that finding the tensor field generator could be
reduced to finding a continuous representation of each of its individual tensor
components [10]. To represent the field of the symmetric diffusion tensor, we
proposed the following six orthogonal tensor-field generators used in (18.1) to
define the tensor approximation space:
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B1(x)= b1(x)

 1 0 0
0 0 0
0 0 0

, B2(x)= b2(x)

 0 0 0
0 1 0
0 0 0

, B3(x)= b3(x)

 0 0 0
0 0 0
0 0 1



B4(x)= b4(x)

 0 1 0
1 0 0
0 0 0

, B5(x)= b5(x)

 0 0 1
0 0 0
1 0 0

, B6(x)= b6(x)

 0 0 0
0 0 1
0 1 0


(18.2)

Each tensor field generator Bm(x), can now be expressed in terms of a
single function, bm(x), which now serves as a basis for the ith component of
the tensor field. Based on the choice for this function we distinguish between
two implementations for the field generators; the original one that used B-
splines [5] and the new one that uses NURBS.

18.3 B-Spline Approximation

With the B-splines we choose bm(x) to be a product of one-dimensional func-
tions, i.e., bm(x) = fm(x)gm(y)hm(z). The basis functions are now separable
in two ways, first with respect to the components of the tensor, and second
with respect to the coordinates. Finding the continuous field D(x) can be
reduced to applying a one dimensional approximation algorithm along x, y
and z coordinates sequentially within the imaging volume for each component
[10].

The fm(x), gm(y), hm(z) are B-spline functions [17, 19] which are obtained
by repeated convolutions of the simple box function (Fig. 18.1a) The number
of convolutions determines the order of the B-spline, i.e., linear, quadratic,
cubic, etc. The use of the separable basis function provides also an easy way
to account for the nonuniform resolutions in x, y, and z directions in some
DT-MRI acquisitions.

(a)

p=3
p=1

p=2
(b)

Fig. 18.1. (a) 1-D B-spline functions of degree p = 0 through 3. The B-spline of
degree n is obtained by n-fold convolutions of the box function (p = 0) as indicated.
(b) 2-D separable B-spline basis functions with degrees p = 1, 2, and 3
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Using B-spline functions has several advantages: B1) the generators have
finite spatial extent (i.e., finite support), which speeds up and simplifies digital
processing algorithms; B2) they can be evaluated fast in a recursive fashion
(as well as analytically, faster) in terms of splines of lower degree; B3) the
derivatives of B-splines can be expressed recursively in terms of the original
B-splines; B4) by changing the polynomial order or degree of the B-spline
functions, we can control the degree of smoothness and differentiability of
our continuous approximation; B5) by adjusting the (scale) parameters of
the B-spline representation we can choose between interpolation (fitting data
points exactly) and approximation (fitting data points approximately); B6)
invariant representation under affine as well as perspective transformations;
B7) possess the convex-hull property; and B8) B-spline functions naturally
generate multi-resolution structures that are useful in analyzing signals and
images at different length scales.

Additionally, the separable multi-dimensional spline functions behave well
for the cubic and higher order splines as demonstrated in Fig. 18.1b. It shows
that the two-dimensional spline function bm(x) constructed as a product of
linear one-dimensional B-splines is anisotropic (i.e., shows preferential direc-
tions) and will produce artifacts when used for scaling (i.e., smoothing) a
general tensor field. However, when the cubic B-splines are used these ar-
tifacts are negligibly small and the bm(x) constructed in this way perform
nearly as well as the true two-dimensional isotropic basis functions, but are
much more computationally efficient to implement. In our application we use
mainly the cubic B-splines. If higher order derivatives are needed, it is advis-
able to use B-splines of higher polynomial order than three to preserve the
isotropic properties of the multidimensional basis functions.

Another advantage of using B-splines is that they need very few additional
parameters. In fact the simplest implementation can consist of only one para-
meter, the scale parameter, ∆, which controls the smoothness of the model,
and indicates the degree of parameter reduction in the model. For example,
when the scaling parameter ∆ equals 0.25, the B-spline model is a projection
of the original data to a 4-fold smoother space and in 1-D case requires 4
times less parameters. Typically, we use three scale parameters, ∆x,∆y, and
∆z, which control the degree of smoothness along each direction. The shifts
on a uniform grid within the imaging volume, are indicated by k, l, and m.
The generator for B-splines in this case is written as

Bm(x,Qi,j,k) = Bm(x,∆) = Bm(x∆x − i, y∆y − j, z∆z − k) (18.3)

The optimal choice of the coefficients, Pm(i, j, k), for a given choice of the
B-spline and scale parameters is the one that minimizes the least-squared
difference between the original tensor data and the approximated diffusion
tensor field [10].
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18.3.1 Implementing B-Spline Approximation

Once the polynomial order of the B-spline is chosen (generally cubic), then for
a given DT-MRI data set, we calculate B-spline coefficients in the x, y, and
z-directions for each of the six independent diffusion tensor elements using
the spatial separability property described above. Thus, we perform 18 1-D
transforms on the tensor data set. The 1-D B-spline approximation we use is
based on a scale conversion algorithm which finds the optimal approximation
of the original signal at a given scale ∆ [15, 17, 18, 19]. The only difference
in our implementation is the exclusion of the post-filtering step, as described
in the block diagram of the algorithm in [20]. The task of this algorithm is
to find the minimal least square approximation of the original signal in the
space scaled down by factor ∆. This algorithm efficiently obtains the B-spline
coefficients by projecting the B-spline expansion of the original signal onto
the scaled space basis. This algorithm is not exact, i.e., it does not provide
a mathematically precise projection between the two spaces. However, the
deviations from the exact solution are mostly formal in nature. In practice,
the performance of this algorithm is nearly optimal, while gaining in speed
and efficiency. This and other details of our implementation are described in
the Appendix of [5].

An important step in the implementation is also to choose the appropriate
scale parameters. If the scale parameters equal 1, the continuous represen-
tation becomes interpolation; if one or more of the ∆i is less than 1, the
continuous representation becomes a data reduction technique that approxi-
mates or fits the discrete tensor data. Since the ∆ is the ratio of the number
of unknown parameters to the number of measured data points for the 1-D
approximation the scale parameters can only take on specific rational values,
{∆}N , which designates the rational number closest to ∆ that contains N
in the denominator. For DT-MR images N is usually large enough to allow
sufficient precision in the range of the scale parameter values between 0 and
1. We reduce the number of scale parameters by choosing only one ∆ and
by assigning the three values of the model as {∆}Nx

, {∆}Ny
, {VrVV ∆}Nz

, where
VrVV is the voxel aspect ratio (VrVV ≈ 2) in our case), thus making the grid of
B-spline coefficients more uniform. Ideally, the value of ∆ should be twice the
ratio of the maximal spatial frequency of the pure (noise-free) signal and the
sampling frequency. Note, however, that our approximation method is not a
simple low-pass filter and the projecting onto a smoother space is not the
same as smoothing. The first one provides the least square fit while the latter
does not, in general. In cases where structures within the image appear at all
length scales, the choice of ∆ is empirical as the structures on the small scales
(single or a few voxels) must be blurred in order to improve estimates of large
structures of the diffusion tensor field elsewhere.

The B-spline approximation, although successfully applied to the fiber
tracking application [9] (see Fig. 18.2), does not provide a reliable frame-
work for applying general methods of differential geometry to DT-MRI data.
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Fig. 18.2. Fiber tracts result from integrating along the tangent direction of the
B-spline approximated tensor field, and with starting points chosen from the two
circular regions in the area of pons. The obtained result agrees well with known
anatomical data. (See colour plates.)

Calculations of curvature, torsion and other differential geometric quantities
were highly unreliable [5].

18.4 Non-Uniform Rational B-Splines (NURBS)

Non-Uniform Rational B-Splines, or NURBS as they are widely known, are a
powerful tool to describe and model complex curves and surfaces using a small
number of parameters [21]. It is a much richer set of basis functions which
generalize many concepts of ordinary B-splines. To introduce the NURBS
model we focus on the 1-D model, since here too the multidimensional models
are derived using products of basis functions.

There are three main groups of parameters that describe a NURBS model.
The first is the knot vector, U , which controls the non-uniformity along a
particular dimension, the second is a set of weights, W, one for each basis
functions, and the third are the ‘control points’, which correspond to the B-
spline coefficients of our model, but we adopted this commonly used jargon.

The knot vector is a set of monotonically nondecreasing numbers in the
real interval [a, b] which parametrizes a given curve, i.e.,

U = {a, . . . , a︸ ︷︷︷ ︸︸
p+1

, up+1, ..., ui−1, ui, ui+1, ..., um−p−1, b, ..., b︸ ︷︷︷ ︸︸
p+1

} (18.4)
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As can be seen some values can be repeated and an important quantity is
the multiplicity of the knot, nm, which is equal to the number of times a
given value is repeated. In this way it is possible to control the continuity of
the curve. Each basis function is Ck-continuous, k = p − nm at a knot with
multiplicity nm, and C∞ continuous elsewhere. The p + 1 repetition of the
end points of the interval is just a statement that at the edges the curve is
discontinuous. Alternatively, one can lower the multiplicity at the end points
by using boundary conditions.

The set of basis functions is obtained using the recursive structure of the
B-splines except that now the factors in front of the interacting B-splines
of lower order are not constant but are functions of the knot vector. They
are called Non-Uniform B-Splines (NUBS). The NUBS basis functions are
obtained using the following recursion:

Bi,p(u) =
(

u− ui

ui+p − ui

)
Bi,p−1(u)−

(
u− ui+p+1

ui+p+1 − ui+1

)
Bi+1,p−1(u)

Bi,0(u) =
{

1 u ∈ [ui, ui+1)
0 otherwise (18.5)

and the kth derivate at point u can be obtained using

B
(k)
i,p (u) = p

(
B

(k−1)
i,p−1 (u)

ui+p − ui
−

B
(k−1)
i+1,p−1(u)

ui+p+1 − ui+1

)
(18.6)

Figure 18.3a shows a set of NUBS for the given values of spline degree
and the knot vector. Once a set of NUBS is obtained we use the second set of
parameters, W, which are the weights associated with each of the NUB basis

0 0.2 0.4 0.6 0.8 1

(a)

0 0.2 0.4 0.6 0.8 1

(b)

Fig. 18.3. (a) A set of 1-D NUB-basis functions with p = 2 and the knot vector
U = [0 0 0 0.1 0.6 0.6 0.8 1 1 1]. (b) A set of rational basis functions (NURBS)
obtained using the NUBs in (a) and by changing the weights for the 3rd, 4th and
5th basis function to 0.2, 0.5 and 5, respectively. The remaining NUBs had weights
w = 1. (See colour plates)
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functions, to obtain the rational basis functions (Fig. 18.3b). The rational
basis function Ri,p(u) corresponding to the ith NUB basis function, Bj,p, is
obtained as

Ri,p(u) =
Bi,p(u)wi

n∑
j=0

Bj,p(u)wj

(18.7)

The third set of parameters are the coefficients Pm of the spline model, or
in NURBS parlance, control points. The control points are actually tuplets of
B-spline coefficients grouped together to reflect the geometry of the model.
For example, for a 3-D space curve the B-spline coefficients of the x(u), y(u)
and z(u) functions are grouped together to form a 3-D control point, Pi =
(P i

xPP , P i
yPP , P i

zPP ). The NURBS curve model C(u) can now be written as

C(u) =
n∑

i=0

Ri,p(u)Pi (18.8)

Once the weights and the knot vector are chosen, which we discuss below,
the rational basis functions Ri,p(u) are determined, and the model in (18.8)
is linear. Thus, when solving this linear system for control points, here too
we can choose between interpolation (number of control points is the same
as the number of data points) or the least square fit (fewer control points).
The NURBS curve model can be extended using the function products, as
described in Sect. 18.2, to surfaces, volumes and ultimately to tensor fields.
Here we finally write our NURBS tensor model in terms of control tensors,
Dc

i,j,k,

D(x, y, z) =
n∑

i=0

m∑
j=0

l∑
k=0

Ri,j,k(x, y, z)Dc
i,j,k (18.9)

where Ri,j,k(x, y, z) is a new 3-D rational function defined from NUBS, which
now require three different knots vectors U, V, and S and can be of different
degree in each dimension (p, q, r), i.e.,

Ri,j,k(x, y, z) =
Bi,p(x)Bj,q(y)Bk,r(z)wi,j,k

n∑
i′=0

m∑
j′=0

l∑
k′=0

Bi′,p(x)Bj′,q(y)Bk′,r(z)wi′,j′,k′

(18.10)

Equation (18.9) is equivalent to (18.1), except that here the NrNN independent
components of the tensor field are lumped together into a control tensor. This
geometric interpretation can be very useful. For example, since the convex
hull property has much tighter bounds in the case of the NURBS model we
can use positive semidefiniteness of the control tensors to enforce the same
property for the tensor field at any point in space.

The NURBS model shares all the good properties of the B-spline model
(B1-B8) but has important additional advantages: (N1) precisely represents
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a large family of mathematical curves, piecewise polynomials, conic sections
(circles, ellipses, hyperbolas, parabolas), Bezier curves, and very efficiently
arbitrary shapes (N2) can control the degree of smoothness and continuity,
including discontinuous functions, thus suitable for piecewise continuous rep-
resentation.

However, although they enable fast evaluation in a recursive fashion at
any point in the space (like B-spline), obtaining the appropriate parameters
of the model is much harder now. We assume here that one wants to use the
properties N1-N2, otherwise the NURBS model can be simplified. After all,
the B-splines are a special case of NURBS with uniformly spaced knot vector
and all weights equal. Here we mainly refer to NURBS as model that requires
non-uniform knots and varying weights.

As mentioned above, we obtained the control points by solving the linear
system in (18.8). The knot vector is initially chosen based on the spacing
between the data (1-D case), but later knots are randomly added or removed.
The most difficult part in fitting the NURBS model is to determine the optimal
set of weights. Here, we initially set the weights to 1 and after obtaining the
desired set of control points we use simulated annealing to obtain the new set
of weights, keeping control points and the knot vector fixed. After randomly
adding or removing a single knot we obtain a new knot vector and with the
new weights calculate the new set of rational basis functions, Ri,p(u). This
procedure is repeated until satisfactory solution is obtained.

In the case of one dimensional data one can still obtain useful NURBS
fits relatively quickly. Figure 18.4a shows a fit to synthetic 2-D data (noisy
samples of two different 2-D curves were joined together to create an apparent
discontinuity). The solid line indicates the fit to a NURBS model and one can
see that even with a discontinuity, the NURBS describes the curve very well
with only 14 control points. The B-spline model was incapable of describing
such curve.

The image inset in Fig. 18.4b shows a 2D-projection of a tract (solid yellow
line) onto a slice of DT-MRI volume with color coded orientations. The tract
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Fig. 18.4. (a) 2-D curve NURBS model fit to noisy data (b) 3-D curve NURBS
model fit to fiber tracking data, indicated on the inset image. (See colour plates)
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passes through the corpus callosum and spans from one end of the brain to
the other. Figure 18.4b shows side by side the same tract in 3-D described
with NURBS model (left) and B-spline model (right). The B-spline model,
parameterized with B-spline coefficients needs a total of 3*130 = 390 parame-
ters to produce as faithful representation of the space curve as the NURBS
model did with only 15 control points (total of 60 parameters). Such a sparser
parameter space enables more efficient explorations of connectivity, and more
importantly can significantly alleviate the noise effects. In the next section we
compare B-spline and NURBS models on the important example of estimating
local curvature of the fiber tract.

18.5 B-spline vs NURBS Comparison
on Curvature Estimation

Estimating curvature is problematic for noisy data. The curvature of a fiber
tract, or a space curve, is defined as

κ(u) =
∣∣∣∣∣∣∣∣∣∣dt(u)

du

∣∣∣∣∣∣∣∣∣∣ =
|ṙ× r̈|
|ṙ|3

(18.11)

where r = r(u) is the position vector parameterized by u, and t(u) is the
tangent of the space curve at r(u). Since higher derivatives are involved, this
estimate is very sensitive to noise (each derivation acts as a linear ramp high
pass filter). Another look at the problem is that the fiber tracts are not poly-
nomial and their estimates are noisy. Thus in order to faithfully depict a given
curve one has to represent curves with a relatively high number of B-spline
coefficients, thus sampling the noise often. The curvature of noise is infinite
and thus the local estimates of the radius will be biased towards zero, besides
being also very noisy. We reported previously that the B-spline approximation
did not produce satisfactory results in this regard. Here we compare B-spline
estimates with NURBS estimates.

We test curvature estimation on a simulated space curve consisting of
four circular arcs with radii Rc = 100,10,5,35 in arbitrary units. We then
sampled 50 points with sampling error of 1%, which are indicated as solid
black circles on the inset in upper right corner of Fig. 18.5. The inset also
shows the 15 control points of the fit, together with the ‘ideal’ control points
(light blue circles) which could describe such curve exactly. There are total of
10 ‘ideal’ points but not all are shown since in many cases they are very close
to the control points obtained from the fit. We see that the NURBS fitting
routine can be improved further, however, even this imperfect fit provides
significant improvement over the B-spline approximation. The solid black line
in Fig. 18.5a indicates the true radius, with the exception of the three inflection
points where the curvature is infinite. The solid blue line indicates the NURBS
estimates outperforms the B-spline approximation for any level of smoothness,
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Fig. 18.5. Radii of curvature obtained from a noisy data set of points sampled
from a curve consisting of four circular arcs (see the inset in upper right corner)
with radii 100,10,5,35. The sampling error was 1%. The solid black line indicates the
true radius (at inflection points the radius is infinite). The solid blue line indicates the
NURBS fit, while B-spline approximation estimates are labeled as follows: ∆ = 1,
i.e., interpolation (green triangles), ∆ = 0.5 (purple dots), or ∆ = 0.2 (red solid
line). Note that the original curve could have been described with only 10 control
points (the light blue circles, not all shown). (See colour plates)

as described in the caption. The spike in the NURBS estimate occurs at the
inflection point where the radius of curvature is infinite.

In Fig. 18.6 we determined the radius of curvature for every voxel in one of
the slices using both NURBS estimate and the B-spline approximation with
∆ = 0.2 (since such choice produced relatively stable estimates in Fig. 18.5,
however with significant loss in resolution. This loss of resolution is evident in
Fig. 18.6a, where it appears that very little variation of the radius of curvature
is occurring, for example, in the splenium of the corpus callosum. The NURBS
estimate in 18.6b does show significant variation. Even though the lower cur-
vature structures appear ‘spotty’ in the NURBS estimate they indicate errors
of only 20 % (a good precision for the curvature radius).

18.6 Discussion and Conclusion

The continuous approximation methodology takes noisy, voxel-averaged, and
discrete statistical samples of an underlying macroscopic effective diffusion
tensor field as its input, and produces a piecewise continuous, smooth tensor
field approximation as its output. Besides being able to recover the original
noiseless tensor field reliably, the approximation schemes substantially reduces
bias of the mean and variance of various quantities derived from the tensor
field, e.g., Trace(D(x)). This new methodology also facilitates following nerve
and other fiber tract trajectories in vivo. New MR features or parameters
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Fig. 18.6. Color coded images of the radius of curvature obtained at the center
of each voxel for the given slice using B-spline approximation with ∆ = 0.2 (left)
and NURBS (right), with colorbar indicating the scales. We see that the NURBS
estimates are capable of showing the spatial variation of the fiber curvature. Note,
that although the models are continuous, the estimates obtained from them are not
necessarily smooth. The pixelization in the image, however, is arbitrary and we could
have obtained the estimates at any point in space with the continuous models. (See
colour plates)

that characterize structure, architecture, and functional assessment of tissues
can be developed from this continuous representation of DT-MRI data. As
analytical functions are used to approximate the diffusion tensor field, we can
evaluate and display quantities such as the gradient tensors [5], which cannot
be evaluated accurately from noisy DT-MRI data.

18.6.1 Microscopic Field (Underlying) vs Macroscopic Field
(Voxel Averaged)

The microscopic tensor field is one that describes water diffusion on a micro-
scopic scale, whereas the macroscopic effective tensor field describes the tensor
field on a voxel scale. If we assume no intercompartmental mixing of spins, the
measured macroscopic tensor field is just the voxel-average of this microscopic
tensor field. While these macro and micro fields should be similar in regions
containing tissue whose distribution of fiber direction is uniform within the
voxel, in tissues whose distribution of fiber direction is non-uniform, such as re-
gions where fibers diverge or converge (splay), bend or twist, branch or merge,
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a significant disparity may exist between these fields. Generally, in these re-
gions, the macroscopic field will be a powder average of the heterogeneous
microscopic tensor field within a voxel. An important long-term goal is to
develop techniques to identify regions in which such powder averaging occurs,
and then attempt to infer the microscopic tensor field from macroscopic voxel-
scale measurements there using additional information from other sources [22]
(see also Chap. 5 by Alexander).

18.6.2 NURBS vs B-Spline

The B-spline approximation is not nearly as efficient as the NURBS model. Its
estimation of quantities involving higher derivatives is inaccurate and thus the
model is not adequate for applying differential geometric methods. Another
shortcoming of the B-spline approximation method is that it forces continuity
of the tensor field at boundaries or interfaces, where there is no physical
requirement to impose continuity. This results in high approximation errors
at the edges of the structures.

NURBS can account for piecewise continuity by modifying knot vector.
NURBS produce promising results for 1-D curves, and to some extent with
surfaces. However, to date, we have been unable to obtain an efficient ten-
sor model, mainly due to an extremely large parameter space and the very
rich model, which is difficult to fit (many local minima). It appears that the
NURBS methodology will have to be used differently than the B-spline ap-
proximation, and a long computation will be required to obtain the model,
using various stochastic fitting methods (simulated annealing, genetic algo-
rithms, etc.) Once the model is obtained it will be possible to explore its
geometry, tract fibers, and run various differential geometric models with al-
most the same efficiency as with B-splines. Work is underway to improve
NURBS fitting and at the same time to generalize this continuous tensor field
approximation to treat internal boundaries and discontinuities in the tensor
field more naturally and robustly by using control tensors that do not use the
actual coordinates x, y, and z for parameterization. In other words the control
tensor will contain information about its position in space. The tensor model
is now written as

D(u, v, s) =
n∑

i=0

m∑
j=0

l∑
k=0

Ri,j,k(u, v, s)Dc
i,j,k(ri,j,k) (18.12)

Effectively, the control tensor is now a 9-dimensional quantity (6 independent
tensor components plus 3 spatial dimensions).
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Summary. We present a unified framework for interpolation and regularisation of
scalar- and tensor-valued images. This framework is based on elliptic partial differ-
ential equations (PDEs) and allows rotationally invariant models. Since it does not
require a regular grid, it can also be used for tensor-valued scattered data interpo-
lation and for tensor field inpainting. By choosing suitable differential operators, in-
terpolation methods using radial basis functions are covered. Our experiments show
that a novel interpolation technique based on anisotropic diffusion with a diffusion
tensor should be favoured: It outperforms interpolants with radial basis functions,
it allows discontinuity-preserving interpolation with no additional oscillations, and
it respects positive semidefiniteness of the input tensor data.

19.1 Introduction

Many tasks in image processing, computer vision and computer graphics re-
quire to interpolate or resample images in order to obtain data at locations
that do not coincide with the grid points where the digital image values are
known. Classical methods to achieve this goal are linear interpolation, cubic or
quintic splines, radial basis functions and sinc-based interpolation techniques;
see e.g. [10, 13]. If the data are not available on a regular grid, scattered data
interpolation techniques have been proposed [7, 14]. More recently, also in-
terpolation methods based on variational formulations and nonlinear partial
differential equations (PDEs) have been advocated [4, 11], in particular for so-
called inpainting methods [5, 9, 12], where the image data are only corrupted
in specific areas. Nonlinear PDEs allow to design discontinuity-preserving in-
terpolants.

While image interpolation is fairly well-understood for scalar images, not
much research has been done so far with respect to interpolation of matrix
fields. Aldroubi and Basser [1] have proposed sampling in shift invariant amal-
gam spaces, while Pajevic et al. study in Chap. 18 of this volume B-splines
and non-uniform rational B-splines for interpolating tensor fields. In Chap. 17,
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Moakher and Batchelor investigate the Riemannian symmetric space of posi-
tive definite tensors and propose interpolation strategies that respect positive
definiteness. In Chap. 23, Suarez-Santana et al. use a convolution-based inter-
polation with structure-adaptive weights. No attempts, however, have been
made so far to study nonlinear PDE-based interpolation schemes for tensor
fields. This is the goal of the present chapter.

The chapter is organised as follows. In Sect. 19.2 we first consider the
scalar case. We review splines as minimisers of suitable energy functionals
whose Euler–Lagrange equations lead to elliptic PDEs. By showing that vari-
ational image restoration methods lead to similar PDEs, we derive a novel
unified model for image approximation and interpolation. This unified model
is extended to the tensor framework in Sect. 19.3. It covers linear and nonlin-
ear PDEs of arbitrary order. Experiments are presented with data sets from
DT-MRI and computational fluid dynamics that demonstrate the properties
of the different PDE interpolants. The chapter is concluded with a summary
in Sect. 19.4.

19.2 Scalar Interpolation

19.2.1 Spline Interpolation

Let us start our considerations with one of the most important scalar in-
terpolation methods: spline interpolation in 1-D. Assume we are given some
interpolation points 0 = x1 < x2 < · · · < xn = 1 with function values
f(x1), . . . , f(xn). For performing spline interpolation we are seeking a smooth
function u(x) : [0, 1]→ IR that minimises

E(u) =
∫ 1

0

∫∫
(∂m

x∂ u)2 dx (19.1)

subject to
u(xi) = f(xi) (i = 1,. . . ,n). (19.2)

It is well-known that this gives linear interpolation for m = 1. In this case
we have continuity, i.e. C0-smoothness at the interpolation points. For m = 2
we obtain cubic spline interpolation, with C2-smoothness at the interpolation
points, and m = 3 gives quintic spline interpolation with C4-smoothness. In
general, we get spline interpolation of degree 2m−1 with C2m−2-smoothness.

A necessary condition for minimising (19.1) is given by the Euler–Lagrange
equation (−1)m+1 ∂m

xx∂ u = 0. Together with the interpolation constraints
(19.2), we can cast both conditions in a single equation:

c(x) · (u(x)− f(x))︸ ︷︷︷ ︸︸
interpolation

− (1− c(x)) · (−1)m+1∂m
xx∂ u︸ ︷︷︷ ︸︸

smoothness

= 0 (19.3)
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with

c(x) :=
{

1 if x ∈ {x0, . . . , xn}
0 else . (19.4)

This is a linear PDE of order 2m. For large m, we obtain a very smooth
solution, but in general we can expect no maximum–minimum principle for
m > 1. As a consequence, the interpolating spline may give over- and under-
shoots, i.e. there is no guarantee that it remains within the convex hull of
the data. This can be very undesirable in a number of applications. The case
m = 1, on the other hand, is not very exciting since it leads to simple linear
interpolations which are not sufficiently smooth for many purposes. However,
later on we shall see that it can be attractive to stick to the case m = 1, if we
permit nonlinear anisotropic PDEs instead of linear ones.

19.2.2 Regularisation

It is instructive to complement our considerations on interpolation by an
important approximation paradigm, namely variational regularisation meth-
ods. In 1-D, they can be introduced as follows. Given some noisy signal
f : [0, 1] → IR, we want to find a signal u that minimises an energy func-
tional that rewards similarity between u(x) and f(x), as well as smoothness
of u(x):

E(u) =
∫ 1

0

∫∫ (
c · (u− f)2︸ ︷︷︷ ︸︸

similarity

+ (1− c) · Ψ(u2
x)︸ ︷︷︷ ︸︸

smoothness

)
dx (19.5)

with some weight 0 < c < 1 and an increasing penalising function Ψ : [0,∞)→
IR. This leads to the Euler–Lagrange equation

c · (u− f)− (1− c) · ∂x∂
(
Ψ ′(u2

x)ux

)
= 0 (19.6)

with homogeneous Neumann boundary conditions. In general, this is a non-
linear PDE of order 2 that satisfies a maximum–minimum principle. The non-
linear penaliser Ψ(u2

x) allows discontinuity-preserving smoothing. The total
variation (TV) penaliser [15] e.g. is given by Ψ(u2

x) = 2|ux|. It leads to an
Euler–Lagrange equation with the TV diffusivity g(u2

x) := Ψ ′(u2
x) = 1

|ux| . It
reduces smoothing at locations where the gradient magnitude is large.

19.2.3 A Unified Model

The PDE interpretation of spline interpolation and regularisation allows us
now to study a unified model for image interpolation and approximation. Let
Ω ⊂ IRn denote our n-dimensional image domain and assume we are given
some incomplete or noisy scalar image data f : Ω → IR. Then we propose to
obtain an interpolated or processed image u that satisfies

c(x) · (u− f) − (1− c(x)) · Lu = 0 (19.7)
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with a confidence function c(x) : Ω → [0, 1], some elliptic differential operator
L, and homogeneous Neumann boundary conditions.

Let us first analyse the confidence function c(x). This function allows to
fill in missing data at locations x where c(x) = 0, while u(x) reproduces
f(x) at locations where c(x) = 1. Consequently, we can use this model for
interpolation by simply setting c to 0 or 1. It should be noted that the locations
x where c(x) := 1 do not necessarily have to be on a regular grid: The model
is equally valid for scattered data interpolation and inpainting. At locations
where we choose 0 < c(x) < 1, we obtain an approximation by regularisation.
For classical regularisation, c is fixed. However, c(x) expresses the confidence
in the data. It can be chosen e.g. such that it is inversely proportional to
the local noise variance of f , if there are indications that the data are not
equally reliable at different locations. Hence we have a very flexible method for
denoising (approximation) with simultaneous filling-in of data (interpolation).

Regarding the elliptic differential operator L, many possibilities exist. In-
spired from spline interpolation, a suitable n-dimensional generalisation of
(19.3) would use the Laplacian operator (also called harmonic or linear dif-
fusion operator) Lu := ∆u for m = 1, the biharmonic operator Lu := −∆2u
for m = 2, or the triharmonic operator Lu := ∆3u for m = 3. These linear
operators correspond to interpolation with radial basis functions [3]. From
the theory of nonlinear diffusion filtering, on the other side, it would be inter-
esting to use the isotropic nonlinear operator Lu := div (g(|∇u|2)∇u) or its
anisotropic counterpart1 Lu := div (g(∇uσ∇u�

σ )∇u), where uσ is a Gaussian-
smoothed version of u, and g is a decreasing positive diffusivity function. The
isotropic operator reduces diffusion at edges of uσ, while the anisotropic one
permits diffusion along edges of uσ and reduces diffusion across edges of uσ.
For more details on nonlinear diffusion the reader is referred to [17]. Note that
only the second-order differential operators allow a maximum–minimum prin-
ciple, where the values of u stay within the range of the values that f takes
at locations where c(x) > 0. One should also note that all these differential
operators are rotationally invariant, unlike a number of popular interpolation
techniques such as multivariate spline interpolation.

19.2.4 Experiments

Let us now evaluate the quality of our unified model (19.7) in the case of scalar
image interpolation. To this end we extract the solutions of the elliptic PDEs
as steady states of corresponding parabolic evolutions that are discretised by
an explicit (Euler forward) finite difference scheme.

Figure 19.1 shows a test image and a sparsified version where only 1 out
of 64 pixels is used. Based on this sparsified image, interpolation with various
1 A scalar-valued function g(x) is extended to a matrix-valued function g(A) by

applying g to the eigenvalues on A and leaving the eigenvectors unchanged.
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Fig. 19.1. (a) Left: Original image. (b) Right: Data points for interpolation. Only
1 out of 64 points is used

Fig. 19.2. Scalar-valued interpolation of Fig. 19.1(b). (a) Top Left: Interpolation
data. (b) Top Middle: Interpolation with linear diffusion. (c) Top Right: Isotropic
nonlinear diffusion. (d) Bottom Left: Anisotropic nonlinear diffusion. (e) Bottom
middle: Biharmonic smoothing. (f)ff Bottom right: Triharmonic smoothing

differential operators and optimised parameters is shown in Fig. 19.2. In the
nonlinear diffusion cases, a Charbonnier diffusivity [6] is used:

g(s2) =
1

1 + s2/λ2
(19.8)

with some contrast parameter λ > 0. Quantitative results in terms of the
average Euclidean distance
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Table 19.1. Interpolation quality of the scalar-valued methods from Fig. 19.2.
AED = average Euclidean distance to the correct image

Smoothing Operator AED Max.–Min. Principle

linear diffusion 19.80 yes
isotropic nonlinear diffusion 18.42 yes
anisotropic nonlinear diffusion 15.16 yes
biharmonic smoothing 15.76 no
triharmonic smoothing 16.36 no

AED (u, v) :=
(

1
|Ω|

∫
Ω

∫∫
(u(x)− v(x))2 dx

)1/2

(19.9)

between the interpolated image u and its ground truth v are given in
Table 19.1. We observe that linear diffusion performs worst and is signifi-
cantly worse than isotropic nonlinear diffusion. Biharmonic and triharmonic
smoothing give fairly good results, but blur image edges and show oscillations
near them. They also violate a maximum–minimum principle. Anisotropic
diffusion performs best: It gives the highest SNR. It also obeys a maximum–
minimum principle, respects discontinuities and does not suffer from visible
oscillations.

19.3 Tensor Interpolation

19.3.1 PDE Formulations

Let us now investigate how the scalar PDE-based interpolation techniques
from the previous section can be extended to the tensor case.

For the linear PDEs, extensions to the tensor framework are straightfor-
ward: Harmonic (linear diffusion), biharmonic and triharmonic smoothing can
be applied componentwise leading to

c(x)(uij − fijff ) − (1− c(x))∆1uij = 0 (harmonic) (19.10)
c(x)(uij − fijff ) + (1− c(x))∆2uij = 0 (biharmonic) (19.11)
c(x)(uij − fijff ) − (1− c(x))∆3uij = 0 (triharmonic) (19.12)

for a tensor image F = (fijff ) : Ω → IRn×n and its interpolant U = (uij).
The fact that biharmonic and triharmonic smoothing violate a maximum–
minimum principle in the scalar setting has an interesting consequence in the
tensor framework: The interpolated tensor field may not be positive semi-
definite (PSD), even if all tensors at locations x with c(x) > 0 are positive
semidefinite. This may be a drawback for applications such as diffusion tensor
MRI.
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In the nonlinear diffusion setting where discontinuities are to be preserved,
a suitable channel coupling is natural. We can design interpolation methods by
applying recent tensor-valued extensions of nonlinear diffusion filtering in the
isotropic [16] and anisotropic case [18]: In the isotropic case, channel coupling
is achieved by a joint diffusivity leading to

c(x) (uij−fijff ) − (1−c(x)) div

(
g

(∑
k,l

|∇ukl|2
)
∇uij

)
= 0 . (19.13)

In the anisotropic case, a joint diffusion tensor is used:

c(x) (uij−fijff ) − (1−c(x)) div

(
g

(∑
k,l

∇ukl,σ∇u�
kl,σ

)
∇uij

)
= 0 . (19.14)

Interestingly, one can show that such a channel coupling allows PSD preserva-
tion for these second-order PDEs, both in the continuous [2] and the discrete
setting [18]. An intuitive explanation for this fact is given by the observation
that coupled nonlinear diffusion can be regarded as a weighted averaging of
matrices where identical (but space-variant) weights are used for all channels.
If the matrices are positive semidefinite, then their weighted average is also
positive semidefinite.

19.3.2 Experiments

For our experiments on tensor field interpolation we have created a synthetic
2-D test image that is depicted in Fig. 19.3(a). The positive definite tensors
are visualised by ellipses. Their colour is a function of the orientation of the
ellipse and its anisotropy, such that an isotropic ellipse (a disk) appears white.

We perform two experiments where we evaluate the interpolation quality
of the different tensor-valued PDEs: a zooming experiment where the interpo-
lation points are equidistant, and a tensor-valued scattered data interpolation

Fig. 19.3. (a) Left: Synthetic 2-D tensor test image, 32 × 32 pixels. (b) Middle:
Regular interpolation data where every fourth pixel in each direction is given. (c)
Right: Scattered interpolation data where 10 percent of all pixels have been selected
randomly. See colour plates
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Fig. 19.4. Tensor-valued interpolation of Fig. 19.3(b). (a) Top Left: Interpolation
data. (b) Top Middle: Interpolation with linear diffusion. (c) Top Right: Isotropic
nonlinear diffusion. (d) Bottom Left: Anisotropic nonlinear diffusion. (e) Bottom
middle: Biharmonic smoothing. (f)ff Bottom right: Triharmonic smoothing. See colour
plates

experiment. The corresponding interpolation data are given in Figs. 19.3(b)
and (c), respectively.

For the zooming experiment the results for the different PDE-based in-
terpolation methods are depicted in Fig. 19.4. We observe that linear and
isotropic nonlinear diffusion may create singularities at interpolation points
near discontinuities. Biharmonic and in particular triharmonic interpolation,
on the other hand, lead to visible oscillations. This is most evident in the
white region where incorrect colours are created at the incorrect colours that
are created in the white region. These artifacts reflect the fact that these
equations are not PSD-preserving. Anisotropic nonlinear diffusion interpola-
tion appears to be the best of both worlds: Since it is PSD-preserving, it
does not introduce oscillatory artifacts. Moreover, it seems that is suffers less
from singularities at interpolation points than linear and isotropic nonlinear
diffusion interpolation.

The scattered data experiment in Fig. 19.5 allows qualitatively similar ob-
servations: Linear and isotropic nonlinear diffusion can exhibit singularities
at interpolation points, while biharmonic and triharmonic interpolation cre-
ate very disturbing oscillations. Once again, anisotropic nonlinear diffusion
performs best.



19 Tensor Field Interpolation with PDEs 323

Fig. 19.5. Tensor-valued scattered data interpolation of Fig. 19.3(c). (a) Top
Left: Interpolation data. (b) Top Middle: Interpolation with linear diffusion. (c)
Top Right: Isotropic nonlinear diffusion. (d) Bottom Left: Anisotropic nonlinear dif-
fusion. (e) Bottom middle: Biharmonic smoothing. (f)f Bottom right: Triharmonic
smoothing. See colour plates

In Table 19.2 we measure the difference between the interpolated tensor
field U = (uij) and the ground truth V = (vij) for both experiments. This is
done by computing the average Frobenius distance

AFD (u, v) :=

(
1

4 |Ω|

2∑
i,j=1

∫
Ω

∫∫
(uij(x)− vij(x))2 dx

)1/2

, (19.15)

the tensorial analogue to the average Euclidean distance (19.9). The results
confirm in both cases the visual impression that anisotropic nonlinear diffusion
is the favourable interpolant for tensor fields.

19.4 Summary

We have presented a unified PDE model for regularisation and interpolation,
both for scalar- and tensor-valued data. This framework allows rotationally
invariant models and is not restricted to regular grids: It can also be used
for scattered data interpolation and inpainting. Our experiments have shown
that the use of a novel interpolation technique based on anisotropic nonlinear
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Table 19.2. Interpolation quality of the tensor-valued interpolation experiments
from Fig. 19.4 (zoom) and Fig. 19.5 (scattered data). Criteria are the average Frobe-
nius difference (AFD) and preservation of positive semidefiniteness (PSD)

Smoothing Operator AFD (Zoom) AFD (Scattered) PSD

linear diffusion 8.78 9.85 yes
isotropic nonlinear diffusion 8.03 9.59 yes
anisotropic nonlinear diffusion 7.25 9.19 yes
biharmonic smoothing 8.10 9.47 no
triharmonic smoothing 8.54 12.92 no

diffusion with a diffusion tensor gives the most favourable results: It outper-
forms interpolation techniques based on radial basis functions, linear diffusion
and isotropic nonlinear diffusion, Moreover, it allows discontinuity-preserving
interpolation without visible oscillations. Provided that the tensor input data
are positive semidefinite, this property is naturally inherited to its diffusion
interpolant. This renders anisotropic nonlinear diffusion interpolation a highly
interesting tool for applications such as diffusion tensor MRI.

In our future work, we head for a detailed theoretical analysis of these
methods. We also plan to implement numerical methods with high efficiency,
and study possible extensions. We will also investigate the usefulness of
anisotropic nonlinear diffusion interpolation for lossy image compression. First
results are reported in [8].
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Summary. In this chapter, we introduce the problem of registering diffusion ten-
sor magnetic resonance (DT-MR) images. The registration task for these images is
made challenging by the orientational information they contain, which is affected by
the registration transformation. This information about orientation and other as-
pects of the diffusion tensor are exploited in the development of similarity measures
with which to guide DT-MR image registration, and the current state-of-the-art is
reviewed. The chapter concludes with a discussion of some outstanding issues and
future avenues for research in diffusion tensor registration.

20.1 Introduction

Image registration is a process by which a geometric (and possibly signal)
transformation of an image is obtained that brings its features into align-
ment with those of a second image with similar content. Algorithms of this
type have numerous applications [1]. Relevant to diffusion tensor magnetic
resonance imaging (DT-MRI), registration can be used to spatially normal-
ize ensembles of brain images acquired from different subjects, thus enabling
accurate mapping of characteristics of the DT, such as diffusion anisotropy,
within the brain in order to assist clinical studies into the variation of mea-
surements derived from the DT over normal and patient population groups.
Development of multi-modality atlases for surgical planning and teaching is
another valuable application.

The next section introduces the special characteristics of DT-MRI data,
the general problem of image registration and some particular challenges
when specializing to diffusion tensor registration. The first of these challenges,
warping of DT images, is discussed in Sect. 20.3. The second challenge, that
of developing appropriate similarity measures with which to drive DT-MRI
registration, is considered within the context of a brief literature review in
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Sect. 20.4. We conclude in Sect. 20.5 with a summary of the state-of-the-art
and some future avenues for research in diffusion tensor registration.

20.2 Background

20.2.1 Diffusion MRI

Diffusion-tensor MRI [2] determines the apparent diffusion tensor of water
molecules in each voxel of an MRI volume. The method assumes that water
molecules move according to a simple anisotropic diffusion process so that the
distribution p of displacements x over a fixed time t is a zero-mean Gaussian
with covariance 2tD, where D is the diffusion tensor. The apparent diffusion
tensor is the best fit D to a set of diffusion-weighted MRI measurements; see
Chap. 5 by Alexander.

The Gaussian function has ellipsoidal contours. The lengths of the major
axes of the ellipsoidal contours are in the same proportions as the square roots
of the eigenvalues λ1 ≥ λ2 ≥ λ3 of D. The eigenvectors e1, e2 and e3, where
ei has eigenvalue λi, of D are the directions of the major axes of the ellipsoid.
The eigenvalues provide simple scalar indices of the size and shape of p. The
trace of the diffusion tensor Tr(D) =

∑3
i=1 λi is proportional to the mean

squared displacement of water molecules. The fractional anisotropy ν (see [3]
and Chap. 5) is the normalized standard deviation of the λi and indicates the
directional dependence of p.

Biological tissue contains microstructural barriers, such as cell walls and
membranes, to the movement of water molecules. The barriers are sparser in
fluid-filled regions, such as the ventricles in the brain, than in dense tissue, such
as white matter and gray matter. Microstructural barriers reduce the average
length of displacements. Thus Tr(D) is lower in white-matter and gray-matter
regions than in fluid-filled regions. In gray matter, the microstructural barriers
usually have no preferred orientation and hinder water movement equally in all
directions. Thus p is isotropic in most gray-matter regions and λ1 ≈ λ2 ≈ λ3.
White matter consists of bundles of parallel axon fibers. The axon cell walls
hinder water movement perpendicular to the fibers, but not along the fiber
axis. Thus displacements are larger on average in the direction of the fibers
and p is anisotropic with a ridge in the fiber direction so that λ1 ≥ λ2 ≈ λ3

and e1 is the fiber direction.
A well documented drawback of DT-MRI is that it provides only a single

fiber-orientation estimate in each voxel and fails at fiber crossings. At fiber
crossings, tissue microstructure has multiple dominant fiber orientations and
p has ridges in each. When the microstructure contains two orthogonal and
equally weighted dominant fiber orientations, p has two orthogonal ridges with
equal size. The best-fit Gaussian model then has disc-shaped contours and
λ1 ≈ λ2 > λ3. With three orthogonal fibers, λ1 ≈ λ2 ≈ λ3 and the apparent
diffusion tensor is indistinguishable from that observed in isotropic tissue.
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The literature now contains a variety of alternative reconstruction algorithms
that can extract multiple fiber directions from diffusion MRI measurements.
Chap. 10 by Ozarslan describes one such method and Chap. 5 reviews the
others.

20.2.2 Image Registration

Underlying every registration task is an associated optimization problem, the
solution of which optimizes a measure of similarity, φ(I(x), J(v(x)), of two
images, I, J , within the constraints of an image transformation model v.
A numerical measure of similarity is obtained by comparing the data values
at corresponding points in the two images. For single component intensity
images, the simplest approach is to use the difference in scalar intensity at
corresponding image locations. However, neighborhood measures such as the
cross correlation provide more information and generally produce better re-
sults. Many other similarity measures have been proposed, relying on particu-
lar assumptions about the data appearance, statistical relationships between
measurements or detailed anatomical information gained from medical ex-
pertise [4]. In the case of DT imagery, a comparative measure of similarity
between diffusion tensors is required to drive the registration algorithm.

The registration problem requires a nonlinear optimization regardless of
the similarity measure employed, and thus iterative methods are necessary to
solve for v. When the number of parameters that specify the unknown trans-
formation is small, it is common to code the algorithm using optimization
routines, such as conjugate gradients, from available numerical libraries [5].
Nonlinear optimization is generally more accurate when the objective func-
tion has analytic derivatives that we can implement explicitly to guide the
optimization.

In contrast to the low-dimensional methods above, techniques for highly
non-rigid or deformable registration typically involve transformation models
with orders of magnitude more degrees of freedom [6]. These transformations
allow modeling and quantification of image differences that arise from highly
complex motion, development, or anatomical variability. They also entail dif-
ferent approaches to the optimization, since the similarity functional φ is
fundamentally under-constrained and the solution space contains many indis-
tinguishably good answers. The standard solution to ill-posedness is Tikhonov
regularization. By constraining the energy of the solution’s derivatives through
the introduction of a stabilizing functional, ψ(v), one is restricted to a com-
putable subspace and provable uniqueness. This strategy is also useful in en-
suring that solutions are physically meaningful, a motivation for using con-
tinuum mechanical models in some of the non-rigid algorithms. The resulting
optimization problem may be formulated with classical variational (or control
or Bayesian) theory [8]: E(v) =

∫
Ω

∫∫
φ(v) + ψ(v)dΩ, where E is the global

variational energy to be optimized over image domain Ω.
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The variational framework permits three equivalent views of the regular-
ized optimization that constitutes the non-rigid registration problem [7]. The
equation for E is the first, a global potential energy, from which the weak
equation follows that in turn leads to the Euler-Lagrange (E-L) differential
equations. The variational or weak form, as in classical elastic matching [8],
may be used in the finite element method, while the E-L equations, including
versions of optical flow [7], are associated with finite difference techniques.

A special issue that arises in the registration of diffusion tensors and de-
tailed in the next section is the effect of image transformations on the voxel
data in a DT image. Specifically, J warped into register with I becomes
R(v)(J(v−1)), and φ must be adjusted accordingly. This transformation of
the voxel’s data as well as its location has significant implications for solution
of the corresponding diffusion tensor registration problem.

20.2.3 DT-MRI Registration

Diffusion-tensor images contain orientational information not present in other
structural images. The motivation for using diffusion-tensor data to drive the
registration is that the orientational information potentially provides powerful
new cues for matching. Matching orientations can clamp otherwise poorly
defined transformations in homogeneous regions. To see this, we shall first
consider two new challenges that are particular to registration of diffusion-
tensor images.

The first challenge of diffusion-tensor-image registration lies in warping
a diffusion tensor image. Image transformations change the orientation of
diffusion tensors as well as their location. We must ensure that the DT ori-
entations remain consistent with the anatomy after an image transformation.
Figure 20.1(a) shows e1 in anisotropic voxels of an axial slice of a DT-MR
image of a healthy human brain. Figures 20.1(b) and (c) show the same slice
after a 45◦ rotation. To generate Fig. 20.1(b), we transform the image in the
standard way. The rotation of the image is R and we copy the value in voxel
x of the transformed image directly from R−1(x) in the untransformed im-
age. However, because of the image rotation, e1 no longer points along the
white-matter fibers. To maintain consistency between the diffusion-tensor ori-
entations and the fibers in the image, the diffusion tensors must undergo the
same rotation as the image, as in Fig. 20.1(c). In Fig. 20.1(c), the value in
voxel x is RT DR, where D is the value at R−1(x) in the untransformed image.
More complex image transformations affect the image orientation differently
at different points. The reorientation of the diffusion tensors must depend on
the local reorientation of the image. Note that an additional challenge in warp-
ing diffusion-tensor images lies in interpolation strategies for this data. Here,
we use linear interpolation of the tensor elements, but Chap. 17 by Moakher
and Batchelor discusses a more principled approach.

The second challenge lies in finding similarity measures to drive the reg-
istration process. We need similarity measures for diffusion-tensor data. The
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(a) (b)

(c) (d)

Fig. 20.1. Diffusion tensor reorientation. Panel (a) shows e1 in anisotropic regions
of an axial slice of a DT-MR image of a healthy human brain. Panel (b) shows the
same slice after a 45◦ rotation about the z-axis with no reorientation of the apparent
diffusion tensors. Panel (c) shows the slice after the same rotation, but with each
tensor transformed by the same rotation. Panel (d) shows the slice after an affine
transformation with PPD reorientation (see Sect. 20.3). The regions of interest in
panels (a) and (d) show part of the corpus callosum

diffusion tensor within a tissue is independent of the measurement process.
Errors in the apparent diffusion tensor measured using DT-MRI may depend
to some extent on the scanner and the parameters of the imaging sequence.
However, these differences should be minor compared to differences in the
apparent diffusion tensor in different kinds of brain tissue. Furthermore, most
often we register images acquired from the same scanner using the same imag-
ing sequence. Thus, direct comparisons, such as the least-squares difference,
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(a) (b)

(c) (d)

Fig. 20.2. Illustrates the need for orientation matching on two example images,
one scalar image, panel (a), and one vector image, panel (c). The scalar image in
panel (a) does not change under the transformation in panel (b). The vector image
in panel (c) is homogeneous in the same regions as the scalar image in (a). Panel (d)
shows the image in (c) after the transformation in (b). The transformation changes
the vector image, but not the scalar image

should produce better results than information-theoretic statistics, such as
the mutual information [4], which are designed to match images with signifi-
cantly different values in corresponding regions. To exploit the information in
DT-MRI fully, we need similarity measures that are sensitive to all aspects of
the diffusion tensor including the size, shape and orientation.

Matching orientations, instead of or as well as intensity values, reduces the
number of plausible transformations between two images. Consider the image
in Fig. 20.2(a). Clearly the identity transformation transforms Fig. 20.2(a) to
itself. However, since the foreground and background regions of Fig. 20.2(a)
are homogeneous, many other transformations also transform Fig. 20.2(a) to
itself, such as the transformation in Fig. 20.2(b). Now consider a similar im-
age with homogeneous regions of directions (or tensors) as in Fig. 20.2(c). The
identity transformation retains the homogeneity of the foreground and back-
ground regions of Fig. 20.2(c). However, the transformation in Fig. 20.2(b)
causes local changes in the image orientation. With a warping algorithm that
updates the orientation of the diffusion tensors to reflect changes in image
orientation, we obtain the result in Fig. 20.2(d). A major motivation for us-
ing diffusion-tensor data to drive registration algorithms is that we can avoid
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spurious kinks and whorls in homogeneous regions by searching for transfor-
mations that match orientations in these regions.

20.3 Warping DT-MRIs

Alexander et al. [9] outline simple ‘reorientation strategies’ to determine the
effect of an image transformation on the diffusion tensor in each voxel. They
show how to reorient diffusion tensors under an affine transformation of the
image. The reorientation strategies extend easily to more flexible transfor-
mation groups by using the Jacobian of the transformation at each voxel
as a local affine model. With the local affine model, the same reorientation
strategies derived for global affine transformations provide the diffusion tensor
transformation to accompany any image transformation.

Alexander et al. make the fundamental assumption that image transfor-
mations affect only the orientation (eigenvectors) of the diffusion tensor. The
shape (eigenvalues) of the diffusion tensor remains unchanged. They argue
that the apparent diffusion tensor is a property of the tissue microstructure
and independent of the shape or extent of the tissue region within the image.
For example, tissue in the corpus callosum has a particular density of axon
fibers. We expect that the density of fibers in two different sized and different
shaped corpus callosa is approximately equal and, thus, the apparent diffusion
tensors within the two corpus callosa have approximately the same shape. If
we double the size of the corpus callosum region in an image, we do not double
the size of the average particle displacement, but rather double the number
of barriers to water mobility so that p, and hence D, remains unchanged.

From an affine or local affine transformation, consisting of a linear trans-
formation F and a translation, reorientation strategies determine a rotation
R to update the orientation of the diffusion tensor. The first reorientation
strategy in [9], the ‘finite strain’ reorientation strategy, uses the polar decom-
position of F . The polar decomposition separates F into a pure rotation R
and a pure deformation U , where F = UR. In finite-strain reorientation, the
pure rotation component, R = (FFT )−1/2F, reorients the diffusion tensor.

For a global affine transformation, the finite-strain reorientation strat-
egy uses the same rotation for every tensor in the image. However, the re-
quired rotation depends on the original orientation of the tensor. Consider
the schematic fibers and apparent diffusion tensors in Fig. 20.3. A horizontal
shear transforms Fig. 20.3(a) to Fig. 20.3(b). The horizontal shear does not
affect the orientation of the horizontal fiber, but does change the orientation
of the vertical and diagonal fibers. The reorientation of the apparent diffusion
tensors in those fibers must reflect the reorientation of the fibers themselves,
which finite-strain reorientation fails to do. The second reorientation strat-
egy in [9], the ‘preservation of principal directions’ (PPD) algorithm, uses the
original orientation of the apparent diffusion tensor to select the rotation in
each voxel.
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(a) (b)

Fig. 20.3. Schematic diagrams of white-matter fibers and the diffusion tensors in
each before (a) and after (b) a horizontal shear of the region

The PPD algorithm determines a rotation to match the eigenvectors of
D with their image under F . Suppose that ni = Fei/|Fei| is the normalized
image of ei under F . First, the algorithm finds a rotation R1 for which R1e1 =
n1. Then the algorithm finds the rotation R2 about n1 that maximizes n2 ·
(R2R1e2). The rotation R = R2R1 reorients the diffusion tensor. The PPD
algorithm thus maps e1, which is the local fiber-orientation estimate, directly
to Fe1, the transformed fiber-orientation estimate, and e2 as close as possible
to Fe2 in the plane perpendicular to e1.

Figure 20.4 compares the outputs of the reorientation strategies in [9] on
a region of a human brain image. Figure 20.1(a) highlights a region of the
corpus callosum containing an inverted-V-shaped fiber in the plane of the im-
age slice. Figure 20.1(d) shows the same slice after a shear along one arm of
the highlighted fiber chosen to make the other arm approximately horizon-
tal in the image. Figure 20.4(a) shows the apparent diffusion tensors in the
region highlighted in Fig. 20.1(a). Figures 20.4(b), (c) and (d) show the appar-
ent diffusion tensors in the same region after the shearing transformation, as
highlighted in Fig. 20.1(d), using no reorientation, finite-strain reorientation
and PPD, respectively. With no reorientation, the apparent diffusion tensors
no longer point along the fiber after the shear. The differences in the results
from finite-strain reorientation and PPD are minor, but the tensors in the
PPD result point more consistently along the horizontal arm of the fiber.
The most noticeable difference is at the right-hand end of the fiber, where
finite-strain rotates the tensors too much, but with PPD the tensors show the
correct horizontal fiber direction.

When the deformation component of the image transformation is small,
finite-strain reorientation is a good approximation to PPD. The finite-strain
method is computationally simpler than PPD, particularly for global affine
transformations where it only requires one rotation for the whole image rather
than a separate rotation in each voxel. Furthermore, the finite-strain expres-
sion for R is analytic and differentiable unlike PPD, which is algorithmic. For
these reasons, the finite-strain reorientation strategy is sometimes preferred
to the more accurate PPD method.
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(a)

(b)

(c)

(d)

Fig. 20.4. Compares the results of Alexander’s reorientation strategies. (See color
plates.) Panel (a) shows the apparent diffusion tensors in the region of interest in
Fig. 20.1(a). Panels (b), (c) and (d) show the apparent diffusion tensors in the same
region after a shear along the left-hand arm of the corpus callosum fiber in the region,
as highlighted in Fig. 20.1(d), using no reorientation, finite-strain reorientation and
PPD, respectively
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Xu et al. [10] note that PPD assumes e1 is the fiber orientation. Since e1 is
only an estimate subject to measurement noise, they suggest a variation that
uses a statistical estimate of the fiber orientation from the voxel neighborhood.

Other variations on the PPD method are simple to imagine. For example,
we might compute the rotation of D that matches its eigenvectors to those of
the transformed tensor FT DF . The problem of associating the eigenvectors
of D and FT DF can become significant for large deformations, but solutions
are simple to devise. It is not clear whether this approach, or Xu et al.’s algo-
rithm, is better or worse than PPD and the literature contains no conclusive
comparisons.

The assumption that the diffusion-tensor shape is fixed is only an ap-
proximation. The assumption breaks down in, for example, tissues containing
crossing or diverging fibers. Consider a fiber-crossing region containing equal
densities of axons in two orthogonal orientations. The apparent diffusion ten-
sor in the region is oblate with λ1 ≈ λ2. A shear along the direction of one
of the fiber orientations leaves the orientation of one fiber fixed, but changes
the orientation of the other. This reduces the angle between the two fibers
so that the apparent diffusion tensor is no longer oblate but elongated in the
direction between the two fiber orientations. In brain imaging, these effects
are usually minor so that the fixed shape assumption is reasonable.

20.4 Review of Current DT-MRI Registration Literature

Alexander and Gee [11, 12] use the elastic matching algorithm of Gee
et al. [8, 13] for matching DT-MR images. They propose a variety of com-
parative statistics for diffusion tensor data. They compare the statistics as
similarity measures for driving the registration. The statistics they propose
include correlation of Tr(D) or ν over small image neighborhoods, direct tensor
comparisons such as the tensor difference, ∆(D1,D2) = Tr

[
(D1 − D2)2

]
, and

the tensor scalar product, D1 : D2 = Tr(D1D2), and principal direction com-
parisons, such as (ν1ν2)1/2(e11 ·e21), where νi is the fractional anisotropy of Di

and ei1 is the principal eigenvector of Di. They also suggest using the tensor
difference and tensor scalar product with the deviatoric tensors D̃ = D−1/3I,
where I is the identity tensor, and normalizing both ∆(D1,D2) and D1 : D2

by Tr(D1)Tr(D2). Alexander and Gee do not include tensor reorientation in
the optimization of their elastic transformation and thus do not match orien-
tations.

Curran and Alexander [14] optimize an affine transform to match DT-
MR images with no reorientation, finite-strain reorientation and PPD. On a
single example run, they recover synthetic transformations more accurately
using PPD and finite-strain reorientation than using no reorientation. In later
work [15], they highlight added difficulties in orientation matching over scalar
image matching caused by more severe local minima in the objective function
optimized to compute the registration.
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Ruiz-Alzola et al. [16] formally generalize the standard scalar measures of
similarity, such as sum of squared differences and correlation, for application to
tensor data, and develop a novel tensor measure of ‘cornerness’ [17, 18] to iden-
tify candidates with highly distinguishing features for robust template match-
ing – registration performance is further improved by implementing a multi-
resolution optimization strategy. The resultant sparse correspondences are
interpolated over the entire image domain using a newly introduced Kriging
estimator, and finite-strain reorientation is performed subsequent to matching.
The method should run faster than those that implement global optimization,
its speed gained from the uncoupling of the correspondence calculation and
displacement interpolation procedures, each of which can then be optimized
separately for efficient implementation.

Guimond et al. [19] take note of the computational complexity introduced
by tensor reorientation and adapt their multi-channel version of the demons
deformable registration algorithm to use the set of rigid-invariant tensor eigen-
values along with the T2-weighted intensity as the features with which image
similarity is determined. They show that this orientation independent ap-
proach qualitatively compares in performance with an implementation of full-
tensor (plus T2-weighted intensity) registration with finite-strain reorientation
and outperforms scalar registration using only the T2-weighted information.
In preliminary studies, an order of magnitude speedup is obtained by match-
ing rigid-invariant tensor features over that using the full tensor, with both
operating in multi-resolution fashion.

In one of the most comprehensive studies in the field to date, Park et al. [20]
further examined Guimond’s multi-channel method and find instead that the
use of all tensor components together with PPD reorientation yields the most
reliable registration results, particularly, for atlas construction. Their study
introduces task-specific evaluation measures based on alignment of extracted
fiber bundles from the registered data. The comparison included registration
of real and synthetic DT imagery based on: T2-weighted intensity alone; frac-
tional anisotropy alone; difference of the first and second tensor eigenvalues;
fractional anisotropy together with trace of the tensor; all three tensor eigen-
values; and the 6 independent tensor components. The newly proposed per-
formance indices characterize the alignment along the length of corresponding
fiber bundles in the registered data as well as the disparity between their end-
points. By examining the correspondence of reconstructed fiber bundles, er-
rors in both gross anatomic and voxelwise tensor alignment can be effectively
detected. These task-specific measures were complemented with additional
voxel-based indices of tensor overlap and alignment.

Rohde et al. [21] similarly construct vectors of DT-derived indices or fea-
tures, I = {IiII (x)}, at each image voxel x, whose similarity is evaluated with
the multivariate version of mutual information for normally distributed data.
This multi-channel measure is shown to approximate the linear correlation
coefficient between the same features of two images, I, J , and additionally
takes into account the correlation between the images’ non-corresponding
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features {IiII , JjJ }, where i �=�� j. Rohde et al. incorporate the measure into
an existing non-rigid registration algorithm that iteratively refines an adap-
tive radial-basis representation of the transformation solution. Finite-strain
reorientation of the warped diffusion tensors is applied, but only after the
initial affine alignment and as a postprocessing step of the non-rigid method.
The simultaneous use of multiple indices, particularly those encoding direc-
tional information, is shown to be advantageous in experiments over real and
simulated data [22].

Verma and Davatzikos [23] in preliminary work also propose a multi-
channel characterization of the DT-MRI data at a voxel to facilitate cor-
respondence detection, where the features are obtained by applying a novel
Gabor filter bank with different scales and frequencies that are all oriented
along the dominant direction of the tensors in a neighborhood about the voxel.

Duda et al. [24] propose a similarity measure φ for non-rigid registra-
tion with two terms, the first comparing tensor eigenvalues to quantify shape
differences between diffusion ellipsoids and the second, a novel region-based
measure for orientation matching. Specifically, the relative pattern of pair-
wise orientation differences between the voxel of interest located at x and
every voxel within a neighborhood centered at x is proposed as a more robust
and accurate replacement of the usual voxelwise comparison of orientation
information, either at a voxel or over a region (see Fig. 20.5). The similarity
optimization is regularized, and its solution obtained by iteratively linearizing
via first order Taylor series expansion of E. Preliminary results indicate the
new orientation measure may reduce the number of local minima typically
observed in tensor registration.

Zhang et al. [25] match general apparent diffusion coefficient (ADC) pro-
files rather than diffusion tensors. The ADC profile, defined in [26] and
Chap. 5, is the value of the ADC in each direction and is thus a function
of the sphere. When p is Gaussian, the ADC in direction x̂ is proportional to
x̂T Dx̂. At fiber crossings, the ADC profile can depart significantly from this
model [26]. The naturally induced L2 distance between positive-valued spher-
ical functions is specialized to the case of diffusion tensors, which differs from
∆ by an additional term that effectively accounts for differences in mean diffu-
sivity and in practice appears to afford more robust registration performance
over small regions. Zhang et al. couple this statistic with a non-standard affine
parameterization that allows an analytic formulation of the finite strain-based
reorientation of tensors adopted in their work. Preliminary results are shown
demonstrating the piecewise affine extension to high dimensional non-rigid
registration of DT-MRI data.

20.5 Discussion

The development of DT-MRI registration is at a relatively early stage, as
evidenced by the small number of available methods and the paucity of
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Fig. 20.5. Matching diffusion orientation patterns in Duda et al. (Left) A neigh-
borhood of interest. The number shown in each square/voxel is the angle difference
between the principal eigenvector of the tensor located at the voxel and that of the
tensor at the center voxel. (Middle) The neighborhood of interest (in dashed out-
line) is overlain onto two different regions of a larger neighborhood (image strip).
The voxelwise orientation difference is much larger for the lower region. (Right) The
orientation patterns are shown for the same two regions. Note that the orientation
pattern in the lower region is the same as in the original neighborhood of interest,
while the pattern in the upper region is different. The orientation pattern measure
would match the original neighborhood with the lower region, whereas a voxelwise
measure of orientation would match to the upper region

comprehensive performance evaluation studies. Intense interest in clinical and
research application of DT-MRI, however, is sure to dramatically accelerate
further innovation in the field. Current approaches have mostly examined
general or diffusion-tensor-specific features and their optimal combination in
multi-valued measures of similarity. Awareness of the unique requirement for
tensor reorientation during DTI warping has not, however, translated to rou-
tine integration within algorithms because of the computational challenges
presented by existing reorientation strategies.

Furthermore, although the idea is seductive, the registration and diffu-
sion MRI communities are yet to demonstrate improvements to registration
from orientation matching. Park et al. show only that the information in
the off-diagonal tensor components improves matching over using just the
tensor eigenvalues, but do not show explicitly that the improvement comes
from orientation matching. Curran and Alexander and Zhang et al. show
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improvements from orientation matching only in simulation or on very limited
sets of examples. It seems likely that we can expect only minor improvements
from orientation matching with low dimensional transformations. Reports of
authors in the field support this supposition. The true power of orientation
matching will come from harnessing the flexibility of high dimensional trans-
formations. These are also the most difficult to validate, but progress in per-
formance evaluation is required before results can be transferred to the clinical
workplace.

There are various other avenues for research. In Chap. 17, Moakher and
Batchelor present a framework for diffusion tensor analysis using Riemannian
geometry that takes into account the positive definiteness of true diffusion
tensors [27]. They use the framework to define a distance between diffusion
tensors, which could be used as a similarity measure for registration. Related
work can be found in [28].

If Curran’s initial findings about the increased local minima in tensor reg-
istration objective functions over scalar registration prove to be a general
feature of the problem, we may require more sophisticated optimization algo-
rithms to get the best out of DT-MRI data for registration.

An obvious extension of current work on DT-MRI registration is to use
the extra information in the output of the multiple-fiber reconstructions, such
as those described in Chaps. 5 and 10. However, we still require considerable
research to optimize registration methods for DT-MRI and confine, for now,
registration of multiple-fiber reconstructions to future work.
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Summary. Median filters for scalar-valued data are well-known tools for image
denoising and analysis. They preserve discontinuities and are robust under noise.
We generalise median filtering to matrix-valued data using a minimisation approach.
Experiments on DT-MRI and fluid dynamics tensor data demonstrate that tensor-
valued median filtering shares important properties of its scalar-valued counterpart,
including the robustness as well as the existence of non-trivial steady states (root
signals).

A straightforward extension of the definition allows the introduction of matrix-
valued mid-range filters and, more general, M-smoothers. Mid-range filters can also
serve as a building block in constructing further (e.g. supremum-based) tensor image
filters.

21.1 Introduction

Matrix-valued data generated from measurements are often polluted by noise.
It is therefore a necessity to design filters which allow to denoise matrix data
without eliminating valuable information. Particularly in the context of DT-
MRI data processing intensive research has attacked this problem recently.
One class of approaches is based on manipulating the matrix components di-
rectly. Sometimes the components are treated independently, thereby reducing
matrix-valued image processing directly to the scalar-valued case, cf. [20] for
linear or [9] for nonlinear techniques. Particularly for nonlinear filters, chan-
nel coupling as e.g. in [15] and [17] respects better the inherent relations of
matrix-valued data. In [17], a nonlinear structure tensor has been introduced
which has also been applied successfully in the context of optic flow estima-
tion [5]. Other proposed smoothing techniques work on derived quantities like
eigendecompositions of diffusion tensors [6, 13, 15] or the fractional anisotropy
[12].

Median filtering has been introduced first in signal processing by Tukey
[16]. In the meantime, it has become an established technique in image
processing [7, 10] which is attractive especially for its ability to cope with
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extreme noise such as uniform or salt-and-pepper noise, and its discontinuity-
preserving properties. A remarkable relation between median filtering and
PDE-based techniques has been brought up by Guichard and Morel [8].

Medians have early been noted to be part of a more general class of av-
eraging operators [4] which are now known as M-estimators and which also
comprise the arithmetic mean, mid-range and mode; in image processing, they
underly the M-smoother techniques.

In this contribution, we present a generalisation of median filtering along
with mid-range filtering and general M-smoothers to tensor-valued data. The
key to this generalisation is the transfer of the minimisation property from
scalar to matrix data. Matrix-valued medians using the Frobenius norm have
first been introduced in [19]. They stand in a close relation to the vector-
valued median notion that goes back to Austin [2]. Other attempts to design
multivariate median filters for vector-valued data are described in [3, 11].

21.2 Scalar-Valued Median Filters

The median of a finite set of real numbers is the middle element in the sequence
that contains the given numbers ordered by size. This type of average displays
a high robustness against outliers in the data set. Besides that, taking the
median commutes with monotonic transformations of the data.

An interesting characterisation of the median of a set X is that it is a
minimiser of the convex function

EX(y) :=
∑
x∈X

|y − x| (21.1)

where |y − x| is the Euclidean distance on real numbers.
Median filtering for greyscale images is done by assigning each pixel the

median of all grey values within a certain neighbourhood of the pixel as its
new grey value. The neighbourhood is commonly taken to be either a square-
shaped ((2k + 1) × (2k + 1)) or disk-shaped stencil centered at the pixel.
Iterations of the median filter often lead to a non-trivial steady state, a so-
called root signal. Although for discrete median filtering not each initial image
converges to a root signal – a counter-example is given by an image made up
of alternating black and white rows of pixels – the ability of iterated median
filtering to preserve discontinuities is one of its most interesting properties.
Moreover, the robustness of the median causes the pronounced denoising ca-
pability of median filters for extreme noise.

Guichard and Morel [8] have established an interesting link to PDE-based
image filters by proving that in a continuous setting iterated median filtering
approximates mean curvature flow.
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21.3 Tensor-Valued Median Filters

The excellent properties of median filters make it highly desirable to provide
a similar tool for the processing of matrix-valued images. The filtering process
is the same as in the scalar-valued case once a suitable median definition for
matrix data is found. We therefore aim at establishing such a notion.

21.3.1 Requirements for Tensor-Valued Medians

In the absence of a linear ordering for matrices, the original order-based defini-
tion does not support a generalisation to matrices. Instead, we start by listing
properties that a matrix-valued median should possess to enable a similar
range of applications as in the scalar-valued case.

First, the median of a given set of symmetric matrices must itself be a
symmetric matrix. Moreover, in application contexts like DT-MRI positive
semidefiniteness is a natural property of the tensor data; in these cases, the
median of positive semidefinite matrices should be positive semidefinite, too.

While general monotonic transformations don’t make sense in the matrix-
valued setting, it is still natural to demand invariance of the median w.r.t.
scaling, i.e. for a real number λ

med (λA1, . . . , λAn) = λmed (A1, . . . , An) . (21.2)

Crucial in image processing applications is the requirement of rotational
invariance. Applying the same rotation R to all input matrices should imply
the same rotation of the median:

med (RTA1R, . . . , RTAnR) = RT med (A1, . . . , An) R . (21.3)

The constraints of positive semidefiniteness preservation and rotational
invariance narrow considerably the range of possible definitions1.

Finally, a matrix-valued generalisation of medians should reproduce the
scalar median if all input values are multiples of one and the same matrix A:

med (λ1A, . . . , λnA) = med (λ1, . . . , λn) A . (21.4)

21.3.2 Definition of Matrix-Valued Medians

Adapting (21.1) to the matrix-valued setting, we define the median of a matrix
set X = {A1, . . . , An} as the minimiser of

EX(Y ) =
n∑

i=1

‖Y −Ai‖ (21.5)

1 In particular, taking the scalar median in each matrix component violates both
conditions. For

(
5 2
2 1

)
,
(

1 2
2 5

)
, and

(
1 0
0 1

)
one obtains

(
1 2
2 1

)
, which is indefinite. A

rotation gives
(

5 −2
−2 1

)
,
(

5 2
2 1

)
, and

(
1 0
0 1

)
with componentwise median

(
5 0
0 1

)
.
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where ‖ · ‖ is a matrix norm which needs to be specified; its choice is confined
by rotational invariance and semidefiniteness preservation where required. We
discuss two possibilities: the Frobenius norm and the spectral norm2.

First, the Frobenius norm of a matrix A ∈ IRm×m is defined by

‖A‖ = ‖A‖F :=

(
m∑

j,k=1

a2
jk

)1/2

.

Note that this is also the Euclidean norm of A considered as a vector in m2-
dimensional vector space. The resulting median definition is therefore quite
general – it carries over verbatim to non-square matrices, including vectors as
special case. For the latter, the multivariate median introduced by Austin [2]
is recovered. At last, the Frobenius norm is easy to compute from the matrix
components and differentiable except at 0.

Second, the spectral norm ‖A‖S of a symmetric square matrix A ∈ IRm×m

is the largest absolute value of an eigenvalue of A. Its computation is more
costly than that of the Frobenius norm. The spectral norm is non-differentiable
at all matrices having eigenvalues of multiplicity greater than one; in 2D these
are exactly the multiples of the unit matrix.

The rotational invariance of both the Frobenius and spectral norm guar-
antee the rotational invariance property (21.3) for the median. The scaling
property (21.2) and the embedding of the scalar median (21.4) follow directly
from the scaling property ‖λA‖ = |λ| ‖A‖ holding for every norm ‖·‖.

To prove that the median defined via the Frobenius norm preserves posi-
tive semidefiniteness, we prove that it is always a convex combination of the
given matrices A1, . . . , An. Assume X is a matrix outside the convex hull of
A1, . . . , An. Then there exists a hyperplane h separating X from A1, . . . , An.
Let Y be the point of h closest to X; then X − Y is perpendicular to h.
Moreover, 〈X − Y, Y −Ai〉 is positive for all i = 1, . . . , n which implies

〈X −Ai, X −Ai〉 − 〈Y −Ai, Y −Ai〉
= 〈X,X〉 − 2〈X,Ai〉 − 〈Y, Y 〉+ 2〈Y,Ai〉
= 2〈X − Y, Y −Ai〉+ 〈X − Y,X − Y 〉 > 0

i.e. X can’t be a minimiser of (21.5). Preservation of positive semidefiniteness
follows since convex combinations of positive semidefinite matrices are also
positive semidefinite.

With the spectral norm, positive semidefiniteness is also preserved in most
cases. There exist, however, cases in which this is not true.

We point out that the matrix median is not bound by its definition to
select values among the given data. However, it still does so in many cases –
new values are generated only if none of the given matrices is located well
enough amidst the entire set.
2 The L1 norm which sums up the absolute values of all matrix entries cannot be

used since it would lead to component-wise median, compare footnote 1.
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21.4 Mid-Range Filters and M-Smoothers

The use of the minimiser property of the median as the base of its generali-
sation encourages an extension of this principle to further image filters which
can be described in terms of similar minimisations.

21.4.1 Mid-Range Values and Mid-Range Filtering

The mid-range value of a set X of real numbers is usually defined as the arith-
metic mean of their maximum and minimum. Like the median, it is turned
into a local image filter simply by application to the grey-values within a
suitable neighbourhood of a pixel.

To define a matrix-valued mid-range value, we note that the scalar mid-
range value is the minimiser of the convex function

EX(y) := max
x∈X
|y − x| .

Replacing again |y − x| with a matrix norm, we introduce the mid-range value
for a set X = {A1, . . . , An} of matrices as the minimiser of the convex function

EX(Y ) := max
i=1,...,n

‖Y −Ai‖ .

The minimiser definition of scalar mid-range values does not rely on the
extrema of X themselves; instead, these are recovered by adding or subtracting
from the midrange mid (X) the corresponding value of the objective function,

max(X) = mid (X) + max
x∈X
|mid (X)− x| , (21.6)

for the minimum, + has to be replaced by − on the right-hand side.
Using these identities to define extrema of X would be circular in the

scalar setting; yet rewriting (21.6) for matrices reveals an interesting relation.
Namely, when mid (X) is defined via the spectral norm, a supremum of the
matrix set X can be introduced by

sup (X) := mid (X) + max
i=1,...,n

‖mid (X)−Ai‖S I

where the scalar-valued maximum on the right-hand side is converted into
a matrix simply by multiplication with the unit matrix I. It can be proven
that this supremum definition is equivalent to that introduced in Chap. 22 by
Burgeth et al. via the so-called Loewner ordering of matrices.

21.4.2 M-Estimators and M-Smoothers

A more general class of nonlinear averages for real numbers is established by
replacing the distances |y − x| by their p-th powers, p > 0. Minimisers of
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EX(y) :=
∑
x∈X

|y − x|p (21.7)

belong to the class of M-estimators [4]; the corresponding local image fil-
ters are M-smoothers [14, 21]. Besides the median (p = 1), the family of
M-estimators also contains the arithmetic mean (p = 2) and as limit case
for p → ∞, the mid-range value. The analog of this concept for continuous
distributions of data values incorporates another remarkable limit case: By
sending p to zero, the mode of the distribution is obtained, i.e. the maximum
of its density. Generally, M-smoothers for p < 1 are attractive for applications
because of their higher robustness and ability to enhance edges.

For p ≥ 1 the objective function EX is convex. For p < 1 it has local
minima at all x ∈ X and is strictly concave in the remaining intervals.

Adapting (21.7), we define matrix-valued M-estimators as minimisers of

EX(Y ) :=
n∑

i=1

‖Y −Ai‖p , p > 0 ,

where ‖ ·‖ again denotes Frobenius or spectral norm. For p = 1, we obtain the
median; for p > 1, the strict convexity of EX guarantees uniqueness of the
minimiser. In the non-convex case p < 1, the situation becomes tremendously
more complex. We restrict our discussion to the Frobenius norm. Analog to
the scalar case, all matrices from X are local minima but unlike there, addi-
tional minima can exist in regions where EX is smooth. These minima can-
not come arbitrarily close to the input values: Since the gradient magnitude
|∇(‖Y −Aj‖p)| grows over all limits when Y approaches the singularity at
Aj , there exists for each p < 1 and given data set X a radius � = �(p,X) such
that within a �-neighbourhood of Aj , the gradient ∇(‖Y −Aj‖p) dominates∑

i�=�� j ∇(‖Y −Ai‖p) guaranteeing Aj to be the only local minimum of EX

within that neighbourhood.
In the design of an M-smoother with p < 1, the crucial question therefore

arises which minimum of EX should be chosen as the value of the M-estimator.
We present two alternatives. The global minimum with its advantage of avoid-
ing any artificial assumptions has the drawback of being highly sensitive to
changes in the input data. An alternative is a focussing strategy that starts
with the unique minimum at p = 1 and tracks its drifting while p decreases.
Although this method reduces the set of minima to be considered, instabil-
ities of two kinds are still introduced into it by the way how minima evolve
with decreasing p. First, minima can split by bifurcations where no obvious
criterion tells which branch to follow. Second, minima can vanish; then the
focussing must jump into another minimum, chosen e.g. by gradient descent.
Besides that, the focussing method applied in the scalar setting would just
trivially lock in at the median.
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21.5 Algorithmic Aspects

In computing medians defined via the Frobenius norm, the convexity of EX(Y )
and its differentiability except at Y = Ai legitimate the use of gradient descent
techniques3. One difficulty is encountered: the gradient vector ∇‖Ai−Y ‖ has
equal length for all Y �=�� Ai and thus contains no information on the distance
to Ai. Consequentially, the gradient of EX , too, though indicating a descent
direction, is of no use in determining an appropriate step size. This problem
is solved by an adaptive step-size control based on the over- and undershoots
encountered in the subsequent iteration steps.

The algorithm starts by identifying the Aj ∈ X for which E(Aj) is small-

est. If
∥∥∥∥∥∥∥∇∑i�=�� j ‖Ai −Aj‖

∥∥∥∥∥∥∥ ≤ 1, we have found the minimiser of EX(Y ) and
stop. Otherwise we proceed by gradient descent in the direction of −∇EX(Y )
with some arbitrary initial step size s0 > 0. If in step k the matrix YkYY −1

was replaced by YkYY = YkYY −1 − sk∇E(YkYY −1), the projection of ∇E(YkYY ) onto
∇E(YkYY −1) is compared with ∇E(YkYY −1) to estimate over- and undershoots.
To this end, we compute r = 〈∇E(YkYY −1),∇E(YkYY )〉

〈∇E(YkYY ),∇E(YkYY )〉 . A ratio r < 0 indicates an
overshoot while r >>>> 0 signals an undershoot. According to this ratio, sk+1

is adapted. The simplest way to do so is to set sk+1 = sk/(1− r). In practice
we limit the adaptation factor per iteration step, e.g. to [1/2, 2]. In case of
extreme overshoots, i.e. r < ro with a constant ro ∈ (−1, 0), the last step is
rolled back and repeated with smaller step size.

M-smoothers with 1 < p <∞ for the Frobenius norm are computed analo-
gously. In the mid-range computation however, singularities show up along the
bisector hyperplanes between certain data points. All filters based on the spec-
tral norm inherit also its singularities which appear along the hypersurfaces of
matrices Y for which the differences Y − Ai have multiple eigenvalues. Both
types of hypersurface-singularities arise from maximum operations between
differentiable functions f1(Y ) and f2ff (Y ) of Y . In the mid-range computation
these are f1(Y ) = ‖Y − Ai‖ and f2ff (Y ) = ‖Y − Aj‖ for two data matrices
Ai, Aj while in computing the spectral norm ‖Y −Ai‖S the maximum of two
eigenvalues f1(Y ) = λ1(Y −Ai) and f2ff (Y ) = λ2(Y −Ai) is to be determined.
These singularities are therefore regularised by replacing max(f1(Y ), f2ff (Y ))
with wf1(Y )+(1−w)f2ff (Y ) where the weight function w = w(f1(Y )−f2ff (Y ))
is a smoothed Heaviside function.

For p < 1 the missing convexity is the dominating problem. Improving
the numerics in the nonconvex case is a topic of our ongoing research. In our
experiments, we use two approaches: a grid search within the convex hull of
the input data for the global minimum and the focussing strategy.

3 An alternative approach to the computation of matrix-valued median and mid-
range filters via convex optimisation is described in [18]
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Fig. 21.1. Edge preserving tensor denoising. See colour plates. Left to right: (a)
Positive semidefinite matrix field, 29 × 30. (b) Eigenvalues perturbed by Gaussian
noise. (c) Median filtering of (a), 5 × 5 stencil, Frobenius norm, 5 iterations. (d)
Same for (b). Adapted from [19]

Fig. 21.2. Median filtering of 2D DT-MRI data. Top, left to right: (a) 2D DT-MRI
data set (128× 128). (b) 30% of all pixels replaced by uniform noise. (c) The noisy
image after one iteration of median filtering, 3 × 3 stencil, Frobenius norm. (d) 5
iterations. Bottom, left to right: (e) Median filtering, 25 iterations, 3 × 3 stencil,
Frobenius norm. (f) 5ff × 5 stencil, 25 iterations. (g) 9 × 9 stencil, 25 iterations. (h)
25 iterations of median filtering with 3 × 3 stencil using spectral norm

21.6 Experiments

In the figures, we use two visualisations of symmetric 2 × 2 matrices. In
Figs. 21.2, 21.3 and 21.5, matrix components are depicted by separate grey-
value images where middle grey corresponds to zero; the colour Figs. 21.1, 21.4
and 21.6 show matrices represented by ellipses. In the positive semidefinite
data sets (Figs. 21.1 and 21.4), each matrix A is first transformed into the el-
lipse xTA−2x = 1 which has principal axes in the directions of the eigenvectors
of A with lengths equal to the eigenvalues of A; in Fig. 21.4 the size variation
among the ellipses is then reduced by rescaling each matrix with (detA)−1/3.
For the fluid dynamics data which contain indefinite matrices (Fig. 21.6), the
lengths of principal axes are set to the eigenvalues of I +εA instead, ε ≈ 0.22,
such that a zero matrix is represented by a unit circle. Again, rescaling is used
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Fig. 21.3. Filtering of 2D DT-MRI data. Left to right: (a) Mid-range filtering
of Fig. 21.2(a), 5 × 5 stencil, Frobenius norm. (b) Detail (16 × 16 pixels) from
Fig. 21.2(a), corpus callosum region below ventricle. (c) Same detail M-smoothed
with p = 0.1, 3×3 stencil, Frobenius norm, using grid search. (d) M-smoothed with
same parameters as in (c) but using focussing strategy

Fig. 21.4. Filtering of 2D DT-MRI data. See colour plates. Top, left to right:
(a) Corpus callosum detail, cf. Fig. 21.3(b), represented by ellipses. Missing ellipses
result from outliers with negative eigenvalues. (b) Same with noise, cf. Fig. 21.2(b).
(c) Median filtering of noisy image, 3 × 3 stencil, Frobenius norm, 1 iteration. (d)
Same as (c) but 5 iterations. Bottom, left to right: (e) Mid-range filtering of the
original image, 3 × 3 stencil, Frobenius norm. (f) Same but with 5ff × 5 stencil. (g)
M-smoothed (p = 0.1, 3 × 3 stencil, Frobenius norm) using grid search. (h) Same
with focussing strategy

to reduce the size variations. The colouring of the ellipses is determined by
the principal axes directions.

Figure 21.1 demonstrates particularly the discontinuity preservation and
robustness of median filtering. To this end, we use a synthetic set of positive
semidefinite 2× 2 matrices containing a straight line discontinuity (a). After
five iterations of median filtering, the straight edge is very well preserved, with
a notable distortion only near the image boundaries. The latter results from
the reflecting boundary conditions that treat the edge–boundary junction like
a corner which is consequentially rounded. At the same time, the noise from
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Fig. 21.5. Median filtering of a tensor field containing indefinite matrices. The data
are deformation tensors originating from a fluid dynamics simulation. Left to right:
(a) Initial data, 124 × 101 pixels. (b) 10 iterations, 3 × 3 stencil, Frobenius norm.
(c) 100 iterations. (d) 1000 iterations

Fig. 21.6. Median filtering of fluid dynamics data. See colour plates. Left to right:
(a) Detail (32× 32) from Fig. 21.5(a). (b) Median filtering, 3× 3 stencil, Frobenius
norm, 10 iterations. (c) 100 iterations. (d) 1000 iterations

image (b) has almost completely been removed in image (d) which is hardly
to distinguish from (c), the filtered version of the original image (a).

In Figs. 21.2–21.4 we demonstrate our filtering methods on a set of positive
semidefinite 2×2 matrices. The original image, Fig. 21.2(a) has been extracted
from a human brain DT-MRI scan. The iterated median filtering experiments
(Fig. 21.2) have been performed on a noisy version (b) where 30% of all
matrices were replaced by uniform noise (uniform in orientation and uniform
in the eigenvalues). Images (c–e) show the effect of increased iterations of a
3× 3 stencil; the filtering result for higher numbers of iterations does hardly
change any more – evidence that root signals exist even in the matrix-valued
case. The effect of stencil size is illustrated in (e–g). The shape of objects
as it develops under median filtering with spectral norm (h) hardly differs
from that obtained with the Frobenius norm (e). Figure 3 shows mid-range
filtering (a) and M-smoothing with p = 0.1 (c, d). Both are not iterated and
applied to the original image, Fig. 21.2(a). To contrast better the grid search
(c) and focussing strategy (d) for the M-smoothers, an enlarged detail (b) is
used for their demonstration. Selected detail views from Fig. 21.2 and 21.3
are visualised by ellipses in Fig. 21.4.

Median filtering of indefinite matrix data is illustrated in Figs. 21.5 and
21.6 using a set of data set from fluid dynamics simulations.
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21.7 Conclusion

Median filtering, mid-range filtering and M-smoothers have been extended to
matrix data. To achieve this, a minimisation property was transferred from
the scalar- to the matrix-valued setting. In the definitions, a degree of free-
dom remains in the choice of the matrix norm to be used; Frobenius and
spectral norm were discussed as possibilities. Numerics for medians, mid-
range filters and M-smoothers with p > 1 have been sketched. For p < 1
the non-uniqueness of minimisers constitutes a serious problem. Improving
the numerics in this case is a subject of ongoing research.
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Summary. The notions of maximum and minimum are the key to the powerful
tools of greyscale morphology. Unfortunately these notions do not carry over directly
to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this
chapter extends the maximum and minimum operation to the tensor-valued setting.
This provides the ground to establish matrix-valued analogues of the basic morpho-
logical operations ranging from erosion/dilation to top hats. In contrast to former
attempts to develop a morphological machinery for matrices, the novel definitions
of maximal/minimal matrices depend continuously on the input data, a property
crucial for the construction of morphological derivatives such as the Beucher gradi-
ent or a morphological Laplacian. These definitions are rotationally invariant and
preserve positive semidefiniteness of matrix fields as they are encountered in DT-
MRI data. The morphological operations resulting from a component-wise maxi-
mum/minimum of the matrix channels disregarding their strong correlation fail to
be rotational invariant. Experiments on DT-MRI images as well as on indefinite ma-
trix data illustrate the properties and performance of our morphological operators.

Key words: mathematical morphology, dilation, erosion, matrix-valued images,
positive definite matrix, indefinite matrix, diffusion tensor MRI

22.1 Introduction

Since the late sixties mathematical morphology has proven itself a very valu-
able source of techniques and methods to process images: The path-breaking
work of Matheron and Serra [12, 13] started a fruitful and extensive devel-
opment of morphological operators and filters. Morphological tools have been
established to perform noise suppression, edge detection, shape analysis, and
skeletonisation for applications ranging from medical imaging to geological
sciences, as it is documented in monographs [8, 14, 15, 16] and conference
proceedings [6, 17]. It would be desireable to have the tools of morphology at
our disposal to process tensor-valued images since nowadays the notion of im-
age encompasses this data type as well. The variety of appearances of tensor
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fields clearly calls for the development of appropriate tools for the analysis
of such data structures because, just as in the scalar case, one has to remove
noise and to detect edges and shapes by appropriate filters.

Median filtering [21], Chap. 21 by Welk et al., active contour models and
mean curvature motion [4], Chap. 25 by Weickert et al., nonlinear regulari-
sation methods and related diffusion filters [2, 18, 20], Chap. 22 by Suarez-
Santana et al., Chap. 23 by Westin et al., Chap. 25 by Weickert et al., also
Chap. 19 by Weickert and Welk, exist for matrix-valued data that genuinely
exploit the interaction of the different matrix-channels.

First successful steps to extend morphological operations to matrix-valued
data sets have been made in [3] where the basic operations dilation and ero-
sion as well as opening and closing are transfered to the matrix-valued set-
ting. However, the proposed approaches lack the continuous dependence on
the input matrices. This makes the meaningful construction of morphological
derivatives impossible.

The goal of this chapter is to present an alternative approach to mor-
phological operators for tensor-valued images based on the Loewner ordering.
This offers a greater potential for extensions and brings expedient notions of
morphological derivatives within our reach. The morphological operations to
be defined should work on the set Sym(n) of real symmetric n × n matrices
and have to satisfy conditions such as:

i) Continuous dependence of the basic morphological operations on the ma-
trices used as input for the aforementioned reasons.

ii) Rotational invariance.
iii) Preservation of the positive semidefiniteness of the matrix field since

DT-MRI data sets, for instance, posses this property, see e.g. Chap. 5
by Alexander, Chap. 7 by Vilanova et al., Chap. 17 by Moakher and
Batchelor.

Remarkably, the requirement of rotational invariance rules out the
straightforward component-wise approach, as is shown in [3]. In this chap-
ter we will introduce a novel notion of the minimum/maximum of a finite
set of symmetric, not necessarily positive definite matrices. These notions will
exhibit the above mentioned properties.

The chapter is structured as follows: The next section is devoted to a brief
review of the greyscale morphological operations we aim to extend to the
matrix-valued setting, starting from the basic erosion/dilation and reaching
to the morphological equivalents of gradient and Laplacian. In Sect. 3 we
present the crucial maximum and minimum operations for matrix-valued data
and investigate some of their relevant properties. We report the results of
our experiments with various morphological operators applied to real DT-
MRI images as well as indefinite tensor fields from fluid mechanics in Sect. 4.
Section 5 offers concluding remarks.
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22.2 Brief Review of Scalar Morphology

In grey scale morphology an image is represented by a scalar function f(x, y)
with (x, y) ∈ IR2. The so-called structuring element is a set B in IR2 determin-
ing the neighbourhood relation of pixels. In this chapter we restrict ourselves
to flat greyscale morphology where this binary type of structuring element is
used. Then greyscale dilation ⊕, resp., erosion � replaces the greyvalue of
the image f(x, y) by its supremum, resp., infimum within the mask B:

(f ⊕B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B} ,
(f �B) (x, y) := inf {f(x+x′, y+y′) | (x′, y′)∈B} .

By concatenation other operators are constructed such as opening and closing,

f ◦B := (f �B)⊕B , f •B := (f ⊕B)�B ,

the white top-hat and its dual, the black top-hat

WTH(f) := f − (f ◦B) , BTH(f) := (f •B)− f ,

finally, the self-dual top-hat,

SDTH(f) := (f •B)− (f ◦B) .

In an image the boundaries or edges of objects are the loci of high grey-
value variations and those can be detected by gradient operators. Erosion and
dilation are also the elementary building blocks of the basic morphological
gradients. The so-called Beucher gradient

�B(f) := (f ⊕B)− (f �B)

is an analog to the norm of the gradient ‖∇f‖ if an image is considered as a
differentiable function. Other useful approximations to ‖∇f‖ are the internal
and external gradient,

�−B(f) := f − (f �B) , �+
B(f) := (f ⊕B)− f .

We also present a morphological equivalent for the Laplace operator ∆f =
∂xx∂ f +∂yy∂∂ f suitable for matrix-valued data. The morphological Laplacian has
been introduced in [19]. We consider a variant given by the difference between
external and internal gradient:

∆mf := �+
B(f)− �−B(f) = (f ⊕B)− 2 · f + (f �B) .

This form of a Laplacian represents the second derivative ∂ηη∂∂ f where η
denotes the direction of the steepest slope. ∆mf is matrix-valued, but
trace(∆mf) provides us with useful information: Regions where trace(∆mf) ≤
0 can be viewed as the influence zones of maxima while those areas with
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trace(∆mf)≥ 0 are influence zones of minima. It therefore allows us to dis-
tinguish between influence zones of minima and maxima in the image f . This
is crucial for the design of so-called shock filters.

The basic idea underlying shock filtering is applying either a dilation or
an erosion to an image, depending on whether the pixel is located within the
influence zone of a minimum or a maximum [10]:

δB(f) :=
{

f ⊕B if trace(∆mf) ≤ 0 ,
f �B else . (22.1)

The shock filter expands local minima and maxima at the cost of regions
with intermediate greyvalues. When iterated experimental results in greyscale
morphology suggest that a non-trivial steady state exists characterised by a
piecewise constant segmentation of the image.

In the scalar case the zero-crossings ∆f = 0 can be interpreted as edge
locations [7, 9, 11]. We will also use the trace of the morphological Laplacian
in this manner to derive an edge map.

22.3 Extremal Matrices in the Loewner Ordering

There is a natural partial ordering on Sym(n), the so-called Loewner ordering
defined via the cone of positive semidefinite matrices Sym+(n) by

A,B ∈ Sym(n) : A ≥ B :⇔ A−B ∈ Sym+(n) ,

i.e. if and only if A−B is positive semidefinite.
This partial ordering is not a lattice ordering, that is, the notion of a

unique supremum and infimum with respect to this ordering does not exist
[1]. Nevertheless, given any finite set of symmetric matrices A = {A1, . . . , An},
we will be able to identify suitable maximal, resp., minimal matrices

A := maxA resp., A := minA .

For presentational reasons we restrict ourselves from now on to the case of
2×2-matrices in Sym(2). The 3×3-case is treated similarly but is technically
more involved.

To find these extremal matrices for a set A we proceed as follows: The
cone Sym+(2) can be visualized in 3D using the bijection

(
α β
β γ

)
←→ 1√

2

⎛⎝⎛⎛ 2β
γ − α
γ + α

⎞⎠⎞⎞ , resp.,
1√
2

(
z − y x
x z + y

)
←→

⎛⎝⎛⎛x
y
z

⎞⎠⎞⎞ .

This mapping creates an isometrically isomorphic image of the cone Sym+(2)
in the Euclidean space IR3 given by {(x, y, z)� ∈ IR3|

√
x2 + y2 ≤ z} and



22 Mathematical Morphology on Tensor Data 361

yx

Fig. 22.1. (a) Left: Image of the Loewner cone Sym+(2). (b) Right: Cone covering
four penumbras of other matrices. The tip of each cone represents a symmetric 2×2
matrix in IR3. For each cone the radius and the height are equal

depicted in Fig. 22.1(a). For A ∈ Sym(2) the set P (A) = {Z ∈ Sym(2)|A ≥ Z}
denotes the penumbra of the matrix A. It corresponds to a cone with vertex
in A and a circular base in the x-y-plane:

P (A) ∩ {z = 0} = circle with centre
(√

2β,
γ − α√

2

)
and radius

trace(A)√
2

.

Considering the associated penumbras of the matrices in A the search for the
maximal matrix A amounts to determine the smallest cone covering all the
penumbras of A; see Fig. 22.1(b). Note that the height of a penumbra in the x-
y-plane is equal to the radius of its base, namely trace(A)√

2
. Hence a penumbra

is already uniquely determined by the circle constituting its base. This implies
that the search for a maximal matrix comes down to find the smallest circle
enclosing the base-circles of the matrices in A. This is a non-trivial problem
in computer graphics. An efficient numerical solution for finding the smallest
ball enclosing a given number of points has been implemented in C++ only
recently by Gärtner [5].

By sampling the basis circles we use this implementation for the calculation
of the smallest circle enclosing them. This gives us the smallest covering cone
and hence the maximal matrix A. A suitable minimal matrix A is obtained
via the formula

A =
(
max(A−1

1 , . . . , A−1
n )

)−1

inspired by the well-known relation min(a1, . . . , an) =
(
max(a−1

1 , . . . , a−1
n )

)−1

valid for real numbers a1, . . . , an. Furthermore, inversion preserves posi-
tive definiteness as well as rotational invariance. For i = 1, . . . , n we have
A ≤ Ai ≤ A with respect to the Loewner ordering. We emphasise that A
and A depend continuously on A1, . . . , An by their construction. Also the
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rotational invariance is preserved, since the Loewner ordering is already ro-
tational invariant: A ≥ B ⇐⇒ UAU� ≥ UBU� holds for any orthogonal
matrix U . Finally it is important to note that if all the Ai are positive definite
then so is A as well as A.

Nevertheless, the definitions of the matrices A and A are still meaningful
for matrices that are not positive definite as long as they have a nonnegative
trace (since it corresponds to a radius in the construction above). It also be-
comes evident from their construction that in general neither A nor A coincide
with any of the Ai: A,A �∈ A�� .

With these essential notions of suitable maximal and minimal matrices A
and A at our disposal the definitions of the higher morphological operators
carry over essentially verbatim, with one exception:

The morphological Laplacian ∆m as defined in Sect. 2 is a matrix. In
equation (22.1) we used the trace of the morphological Laplacian to steer the
interwoven dilation-erosion process, and to create an edge map.

A word of care has to be stated: unlike in the scalar-valued setting the
minimum/maximum are not associative, e.g. max(A1, A2, A3) generally can
not be obtained by evaluating max(max(A1, A2), A3). This entails a loss of
the semi-group property of the derived dilation and erosion. Clearly this has
no effects as long as these morphological operations are not iterated.

In the next section we will apply various morphological operators to posi-
tive definite DT-MRI images as well as to indefinite matrix fields representing
a flow field.

22.4 Experimental Results

In our numerical experiments we use two data sets:

1) Positive definite data. A 128× 128 field of 2-D tensors which has been
extracted from a 3-D DT-MRI data set of a human head. Those data are rep-
resented as ellipses via the level sets of the quadratic form {x�A−2x|x ∈ IR2}
associated with a matrix A ∈ Sym(n). The exponent −2 takes care of the
fact that the small, resp., big eigenvalue corresponds to the semi-minor, resp.,
semi-major axis of the ellipse. The color coding of the ellipses reflects the
direction of their principle axes. Another technical issue is that our DT-MRI
data set of a human head contains not only positive definite matrices. Because
of the quantisation there are singular matrices (particularly, a lot of zero ma-
trices outside the head segment) and even matrices with negative eigenvalues.
The negative values are of very small absolute value, and they result from
measurement imprecision and quantisation errors. While such values do not
constitute a problem in the dilation process, the erosion, relying on inverses
of positive definite matrices, has to be regularised. Instead of the exact in-
verse A−1 of a given matrix A we use therefore (A + εI)−1 with a small
positive ε.
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Fig. 22.2. (a) Top left: 2-D tensor field extracted from a DT-MRI data set of a
human head. (b) Top right: enlarged section of left image. (c) Bottom left: dilation
with DSE(

√
5). (d) Bottom right: erosion with DSE(

√
5)

2) Indefinite data. An image of size 248×202 containing indefinite matrices
and depicting a rate-of-deformation tensor field from a experiment in fluid
dynamics. Here tensor-valued data are represented in the figures by greyvalue
images which are subdivided in four tiles. Each tile corresponds to one matrix
entry. A middle grey value represents the zero value; Magnitude information
of the matrix-valued signals is essentially encoded in the trace of the matrix
and thus in the main diagonal. Instead, the off-diagonal of a symmetric matrix
encode anisotropy.

Figure 22.2 displays the original head image and an enlarged section of it as
well as the effect of dilation and erosion with a disk-shaped structuring element
of radius

√
5. For the sake of brevity we denote in the sequel this element by

DSE(
√

5). We encounter the expected enhancement or suppression of features
in the image. As known from scalar-valued morphology, the shape of details in
the dilated and eroded images mirrors the shape of the structuring element.
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Fig. 22.3. (a) Left: closing with DSE(
√

5). (b) Right: opening with DSE(
√

5)

Fig. 22.4. (a) Left: white top hat with DSE(
√

5). (b) Middle: black top hat with
DSE(

√
5). (c) Right: self-dual top hat with DSE(

√
5)

In Figs. 22.3 and 22.7, the results of opening and closing operations are
shown. In good analogy to their scalar-valued counterparts, both operations
restitute the coarse shape and size of structures. Smaller details are eliminated
by the opening operation, while the closing operation magnifies them. It also
seems that the isotropy of the matrices is increased under both operations.

The top hat filters can be seen in Fig. 22.4. As in the scalar-valued case,
the white top hat is sensitive for small-scale details formed by matrices with
large eigenvalues, while the black top hat responds with high values to small-
scale details stemming from matrices with small eigenvalues. The self-dual
top hat as the sum of white and black top hat results in homogeneously high
matrices rather evenly distributed in the image.

Figures 22.5 and 22.8 depict the internal and external morphological gra-
dients and their sum, the Beucher gradient for positive and negative definite
matrix-fields. It is no surprise that these operators respond to the presence of
edges, the one-sided gradients more so than the Beucher gradient whose iner-
tance is known. The images depicting the flow field show clearly that changes
in the values of the matrices are well detected.
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Fig. 22.5. (a) Left: external gradient with DSE(
√

5). (b) Middle: internal gradient
with DSE(

√
5). (c) Right: Beucher gradient with DSE(

√
5)

Fig. 22.6. (a) Left: morphological Laplacian with DSE(
√

5). (b) Middle: result of
shock filtering with DSE(

√
5). (c) Right: edge map derived from zero crossings of

the morphological Laplacian with DSE(
√

5)

Fig. 22.7. (a) Left: original image of a flow field. (b) Middle: closing with DSE(
√

5).
(c) Right: opening with DSE(

√
5)

The effect of the Laplacian ∆m and its use for controlling a shock filter
can be seen in Fig. 22.6: while applying dilation in pixels where the trace of
the Laplacian is negative, it uses erosion wherever the trace of the Laplacian
is positive. The result is an image in which regions with larger and smaller
eigenvalues are sharper separated than in the original image. We also may
concede some edge detection capabilities to the morphological Laplacian for
tensor data. Image (c) in Fig. 22.6 displays an edge map derived by setting
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Fig. 22.8. (a) Left: external gradient with DSE(
√

5). (b) Middle: internal gradient
with DSE(

√
5). (c) Right: Beucher gradient with DSE(

√
5)

the pixel value to 255 if in that pixel the condition −100 ≤ trace(∆mf) ≤ 100
is satisfied, and 0 if the absolute value of trace(∆mf) exceeds 100.

22.5 Conclusions

In this chapter we have extended fundamental concepts of mathematical mor-
phology to the case of matrix-valued data. This has been achieved by de-
termining maximal and minimal elements A, A in the space of symmetric
matrices Sym(n) with respect to the Loewner ordering. These extremal ele-
ments serve as an suitable analogue for the continuous notion of maximum
and minimum, which lie at the heart of mathematical morphology. As a con-
sequence we were able not only to design the matrix-valued equivalents of
basic morphological operations like dilation or erosion but also morphological
derivatives and shock filters for tensor fields. In the experimental section the
performance of the various morphological operations on positive definite as
well as indefinite matrix-fields is documented.

Future work comprises the extension of the methodology to the demanding
case of 3 × 3-matrix-fields as well a the development of more sophisticated
morphological operators for matrix-valued data.
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Summary. Acquisition systems are not fully reliable since any real sensor will
provide noisy and possibly incomplete and degraded data. Therefore, in tensor mea-
surements, all problems dealt with in conventional multidimensional statistical signal
processing are present with tensor signals. In this chapter we describe some non-
iterative approaches to tensor signal processing. Our schemes are achieved by the
estimation of a local structure tensor, which is used as a key element in regular-
ization. A stochastic point of view as well as a phase-invariant implementation are
presented. This work also covers tensor extensions for common scalar operations
such as anisotropic interpolation and filtering. An application of the structure ten-
sor for regularization of deformation fields in tensor image registration is also shown.
The techniques presented in this chapter suppose an alternative to variational and
PDEs schemes, and another point of view of the tensor signal processing.

23.1 Introduction

The properties of uniqueness and stability of the solution are crucial in the
formulation of problems in computer science. This is not always the case, so in
these situations it becomes necessary the injection of ad-hoc constraints or a
priori knowledge into the model. The modification of the computational theo-
retic model to enforce these properties is called regularization. It is important
to realize that regularization applies to the model, not to the solution. So that,
we may find on it dependence with respect to initial data. A singular example
in signal processing is interpolation. In interpolation, values of a signal are
known in several points of the space, and values in the rest of the points must
be estimated. In this case it’s common to step over the model directly to the
algorithm. Nevertheless, implicit information is supplied as limited bandwidth
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requirement (sinc interpolation) or minimum squares derivatives (linear inter-
polation). Interpolation may be understood as regularization in this sense.

The way regularization is injected depends on the original formulation.
For example, variational formulations are usually modified by the addition of
a functional term. Under this framework, tasks in image processing such as
interpolation, filtering or even registration may be regularized in very similar
ways.

In this chapter, the structure tensor is presented as a valid key element in
such tasks. Expressions to estimate the structure tensor are given not only for
scalar fields, but also for general tensor valued images. Perhaps its most pow-
erful application is in filtering, where it appears as an anisotropic weighting of
the strength of the smoothing. A simpler approach is shown in interpolation,
as an anisotropic weighting as well. Finally, extracting a scalar structure mea-
sure, it can steer the regularization of a deformation field in registration. In all
cases, and as an alternative to variational, PDEs or other methods presented
in different chapters of this book (see Chaps. 21, 22 and 25), our techniques
follow non-iteratives and strictly anisotropic methods. The text is organized
as follows. First, we present a stochastic interpretation of the local structure
tensor as a generalized correlation matrix for general multidimensional tensor
fields. An initial simple estimate is introduced, followed by a more advanced
approach that guarantees phase invariance. In Sect. 23.3, this tensor is used
to drive an anisotropic filtering technique based on a steerable filters decom-
position. The application of the structure tensor for interpolation and for
regularization of displacement fields in registration is shown in Sect. 23.4.

23.2 The Structure Tensor

23.2.1 A Stochastic Point of View

Consider a scalar random field s(x) and the gradient vector random field
∇s(x), which can be represented wrt a basis by the component form1 s,k,
where k = 1 . . . n and n is the dimension of the field. The correlation matrix
of ∇s(x) is defined at each point by

T(x) = R∇(x) = E[∇s(x)∇s(x)t] = E[s,k(x) s,l(x)] (23.1)

and an initial estimate for it is given by

T̂(x) = R̂∇(x) =
1

V (N (x))

∑
xi∈N (x)

s,k(xi) s,l(xi) , (23.2)

where N (x) stands for the neighborhood of x and V for its number of samples.

1 The comma convention has been used: , k is an indexing of the partial derivatives,
that is, s,k = ∂s(x)

∂xk . Strictly, it corresponds to a covariant derivative.
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The interpretation presented here (23.1) has been reported by [12]. Fur-
thermore, it provides a theoretical background for the extension of the ap-
proach to the tensor case.

A tensor field is a function that assigns a tensor to each point of a domain,
a surface, of more concrete, of a differential manifold. As shown in Chap. 1,
tensor spaces are a generalization of vector spaces. Once a basis is set, tensors
are expressed by means of their components that can be stored in multi-
dimensional arrays si1...in

. Therefore, a tensor field can be interpreted as a
multichannel signal, where each channel corresponds to a different component
of the tensor field. Analogous to scalar fields, gradient of a tensor field s(x)
can be defined as

∇⊗ s(x) = si1...in,k(x) , (23.3)

again a tensor field, but of order n + 1.
By means of tensor operations, it is possible to define the correlation tensor

of the gradient of a tensor random field as

RT∇(x) = E [∇⊗ s(x)⊗∇⊗ s(x)] = E [si1...in,k(x) sj1...jn,l(x)] . (23.4)

We also define the generalized correlation matrix of the gradient of a tensor
random field as the contraction (see Chap. 1 for details) of all indices in its
correlation tensor (23.4) but those corresponding to the partial derivatives
(comma indices):

T(x) = R∇(x) = E

[ ∑
i1...in

si1...in,k(x) si1...in,l(x)

]
=

∑
i1...in

R∇(x; i1 . . . in) ,

(23.5)
where R∇(x; i1 . . . in) = E [si1...in,k(x)si1...in,l(x)] is the correlation matrix of
the gradient field of the channel i1 . . . in of s(x). Consequently, the generalized
correlation matrix of the gradient of a tensor field is the sum of the correlation
matrices of the gradient of each component of the tensor field. The properties
of the correlation matrix (23.1) apply to the generalized correlation matrix
(23.5).

Notice that its principal directions are obtained from contributions from
each tensor component. The addition makes the ellipsoids associated with
the generalized correlation matrices rounder than the ones associated with
the correlation matrices of each component, which will tend to be more elon-
gated, unless the correlation matrices of all tensor components have the same
eigendecomposition.

23.2.2 A Phase-Invariant Estimate

Estimation of differential operators (e.g. gradient) has well-known practical
implementations. However, they are highly sensitive to noise or they can pro-
duce double border detection. This is due to they are not independent to
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variations of phase in the signal (they provide different detections for lines
and edges) [5], and are not idempotent operators [11].

In the scalar case, Knutsson et al. [4] proposed to obtain a phase-
independent estimation of the local structure tensor T̂, by representing it
with respect to a tensor basis {Mk} and selecting the coordinates as the mag-
nitudes of the outputs of the original scalar field to a bank of multidimensional
spherically separable quadrature filters, ||qk||: T̂ =

∑
k ||qk||Mk. The bank of

quadrature filters have as transfer function:

Q(ω)k =

{
e( −4

B2ln2
)(ln2(

||ω||
||ωo|| )) · (ω̂tn̂k)2 if ω̂tn̂k > 0

0 otherwise ,
(23.6)

where n̂k is the unitary vector associated to the orientation of every quadra-
ture filter in the bank. This kind of filters can be seen as an oriented Gaussian
function in logarithmic scale, centered at ||ωo|| and with bandwidth B. The
tensor basis elements Mk represent the tensors associated to the quadrature
filters orientations n̂k, and they are obtained from the tensors resulted of the
outer products of orientation vectors, {Nk = n̂kn̂

t
k}. The basis Mk is the dual

basis of Nk, and can be obtained as: Mk = 〈Nk,Nl〉−1Nl.
In order to cover all the local spectrum of the dataset, Knutsson proposed

to use the directions pointing to the vertices of a regular polytope (an hexagon
in 2-D, an icosahedron in 3-D, etc). For an n-dimensional dataset, by symme-
try, the minimum number of elements in the tensor basis, and consequently
the minimum number of orientations associated to the quadrature filters is
n(n+1)

2 . Hence, the local structure tensor can be written as

T̂ =
n(n+1)/2∑

k=1

||qk||Mk . (23.7)

where the dual basis is given by a simple expression: Mk = C1Nk + C2CC I, with
C1, C2CC scalars constants and I the identity tensor.

The extension of the previous approach to tensor fields is presented at [9].
This scheme uses the same representation (i.e., the same tensor basis and
number of directions) of the local structure tensor, though a new method to
compute the coordinates is needed. To this extent each quadrature filter is
applied to every tensor component, and the magnitude of the outputs are
used to compute a 2-norm. In a first order vector field, the Euclidean norm,

T̂ =
n(n+1)/2∑

k=1

√/
(‖q[k]1‖2 + ‖q[k]2‖2)︸ ︷︷︷ ︸︸
norm of

⎛⎝⎛⎛‖⎛⎛ q[k]1

‖
⎝⎝
q[k]2

⎞
‖‖⎠
‖‖

⎞⎞
Mk , (23.8)

while in the case of a 2D second order tensor field, resorting to the Frobenius
norm,



23 Structure Measure for Tensor Field Regularization 373

T̂=
n(n+1)/2∑

k=1

(‖q[k]11‖2+‖q[k]12‖2+‖q[k]21‖2+‖q[k]22‖2)
1
2︸ ︷︷︷ ︸︸

Frob. norm of

⎛⎝⎛⎛‖q[k]11‖‖q[k]12‖
‖q[k]21‖‖q[k]22‖

⎞⎠⎞⎞
Mk . (23.9)

For a tensor field of an arbitrary order:

T̂ =
n(n+1)/2∑

k=1

( ∑
i1...in

||q[k]i1...in
||2
) 1

2

Mk , (23.10)

where subscripts i1 . . . in are associated to the components of the tensor field.
This generalization is consistent with the fact that each component adds

its own local structure (edges, lines, etc), and the sum of the filter responses
only adds isotropic information unless they provide additional high structure.

23.3 Anisotropic Tensor Field Filtering

The Wiener filter is the optimal linear estimator that balances the trade-
off between smoothing the signal discontinuities and removal of the noise.
However, real signals are not Gaussian distributed and this technique produces
an excessive blurring of high structure regions.

In this section, we present a general filtering technique that adapts spa-
tially, following the local complexity coded by the structure tensor of the
data field, a Wiener filter. This scheme enables filtering scalar, vector and
higher order tensor fields [9]. The method is based on an extension of the
classical unsharp masking [14], using the Wiener filter as the low-pass com-
ponent, intended to get the coarse information, and the remaining as a set of
high-pass filters oriented in different directions, that give the level of detail at
each direction. The high-pass filters are obtained from the subtraction of the
low pass filter to all-pass ones oriented in the corresponding directions. These
components, the low-pass and high-pass ones, are balanced by a general local
structure tensor for the tensor field that weights their importance (coarse and
detail information). A previous version of this method, intended to be used on
scalar data, along with a comparison with a state-of-the-art anisotropic dif-
fusion technique was presented in [8]. Our method showed a better behavior
enhancing closed structures like joints, while flux-diffusion worked better for
thin structures as vessels. This result is due to the eigenvectors of the struc-
ture tensor respond better in regions of closed structures, where estimating
the gradient and principal curvatures is more difficult.

The filtering scheme for tensor fields is based on the independent applica-
tion of the same anisotropic scalar filter to every component, though the local
structure measure is obtained from the whole input tensor field.
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The scalar filter consists of a bank of steerable filters forming a basis:

sr(x) = slp(x) +
n(n+1)/2∑

k=1

ak(x) shpk
(x) , (23.11)

where sr denotes the global filter output of a n-dimensional dataset, slp and
shpk

, the outputs to the low-pass and high-pass filters, respectively, and ak

the coefficients that weight the contribution of detail of every high-pass com-
ponent. Obviously, these coefficients are related to the local complexity given
by T̂ (23.7) and, hence, they can be obtained from the projection of T̂ onto
every high-pass filter orientation n̂k. Since we associate a basis tensor Mk to
each orientation, the dual tensors associated to the outer products of the fil-
ter directions, {n̂kn̂t

k}, the coefficients ak are obtained from the inner product
of T̂ (normalized) and the basis tensors: 〈T̂,Mk〉. This operation will yield a
measure of the importance of the detail in each direction.

In the case of a tensor field of an arbitrary order, applying (23.11) to each
tensor component i1 . . . in, and using the generalized local structure tensor T̂
(23.10), we obtain:

sr(x)i1...in
= slp(x)i1...in

+

n (n+1)
2∑

k=1

< T̂,Mk > shpk
(x)i1...in

, (23.12)

where sr i1...in
, slpi1...in

and shpk i1...in
follow the same interpretation than in

the scalar case (23.11) for every tensor field component i1 . . . in. Note that
this scheme is different of a multichannel filtering technique, because the high
structure information of the tensor field is included in the general local struc-
ture tensor, and it affects to each tensor component taking in account the
correlation between components.

In Fig. 23.1, some results applying this scheme to 2-D synthetic tensor
data are presented.

One of the applications of this technique is regularizing the 3-D diffu-
sion tensor field associated to the diffusion tensor magnetic resonance imag-
ing (DT-MRI) modality. Our results with this type of data can be seen in
Fig. 23.2. Although the estimated diffusion tensor should be positive semi-
definite, our scheme doesn’t guarantee this constraint, and to avoid small
negatives eigenvalues, we set the negative eigenvalues to zero. It can be shown
that this is optimal in a least squares sense, and equivalent to a projection
onto the subspace of positive semidefinite tensors.

If we compare qualitatively our scheme with other approaches presented
in Chaps. 21, 24 and 25, we can conclude that:

• Our scheme is non-iterative, and propose an alternative to PDEs tech-
niques.

• Although the normalized convolution is non-iterative, it is not strictly
anisotropic. Our technique uses the local structure tensor to drive the
process.
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Fig. 23.1. (a) Synthetic random noisy 2-D vector field; (b) regularized vector field;
(c) synthetic random noisy 2-D second-order tensor field represented as ellipses; (d)
regularized tensor field. The noise is white, additive, and Gaussian with zero mean
and 0.2 standard deviation. Notice how vectors and tensors are more aligned, while
preserving the edge

• The design of our filtering scheme allows easier parallelization of the reg-
ularization process, compared to other techniques.

23.4 Applications

23.4.1 Structure Weighted Interpolation

Similarly to the scalar case, interpolating tensor data requires to estimate
tensors at unsampled points in order to obtain an upsampled tensor field [7].
In this section a recently anisotropic interpolation technique for tensor data [2]
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Fig. 23.2. Left : A 25 × 25 zoomed corpus callosum region of a slice in a DT-MRI
dataset, overlapped by the 2D projections of the diffusion tensor (ellipses) in every
point; right : the result after our filtering approach (see colour plates)

is presented, using the local structure tensor as a metric tensor to adaptively
weight the samples.

This approach to interpolate assumes that the unknown tensor D̂ in an
upsampled point x can be estimated as a linear combination of tensor data
sampled in a neighborhood N (x), as

D̂(x) =

∑
i∈N (x) ωi D(xi)∑

i∈N (x) ωi
, (23.13)

where ωi denote the weights of each sample at xi.
Different interpolators and estimators assign different weights to samples.

In some cases it is possible to obtain very efficient separable kernels. Never-
theless, in order to preserve edges, the local structure should be accounted
for, and the estimator must be spatially adaptive.

Suppose, for example, that the weights are obtained as inversely propor-
tional to the squared distance to the samples, ωi = ||x− xi||−2 . This inverse
squared distance interpolator is usual in many applications with conventional
scalar images, but it smooths boundaries and other highly structured regions.
Then, if only the distance between samples and the point to be estimated is
considered, the estimator mixes high structure regions, i.e. edges, even though
they are spatially close. Therefore an analysis of the local complexity of the
signal is necessary prior to assigning weights to samples in order to avoid this
behavior.

In order to simplify, and to keep the computational complexity as low as
possible, the interpolation is based on the 4 nearest samples in 2-D and on
the 8 nearest samples in 3-D; this could obviously be extended easily to larger
neighborhoods. For regular discrete arrays, the interpolated point is located
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Fig. 23.3. Results from interpolation of tensor valued data. A constant tensor edge
has been upsampled by a factor of two. Left : linear interpolation; right : anisotropic
interpolation

in the center of the pixel/voxel, on an edge/side. The process is carried out
in successive sweeps to interpolate in the centers, edges or sides.

The local structure tensor can be used to control how samples are weighted
when building signal estimators. For instance, samples from two different sides
of a strong edge should not be combined. Samples should be weighted along
the direction of maximum signal variation less than those in the orthogonal
one. Although the Euclidean distance between the interpolated point and data
samples is the same, their contributions will be different. Hence, the weights
for the linear combination in (23.13) are computed as

ωi =
1

(x− xi)t T̂ (x− xi)
, (23.14)

with T̂ the local structure tensor of the tensor field. Since the weights are pos-
itive (the metric tensors are positive semidefinite), the interpolated tensors, if
input tensors are PSDs (e.g. DT-MRI volume) will satisfy the PSD constraint.

In Fig. 23.3, we present a simple synthetic example that compares our
approach with an isotropic one. Notice that the edge is smeared out further
using linear interpolation compared to the method using the structure tensor
as a local metric. Again, the main application to this scheme is the interpo-
lation in DT-MRI modality. In Fig. 23.4 we present an interpolation test on
the image presented before.

23.4.2 Structure Weighted Registration

Image registration consists of finding the coordinate transformation (also re-
ferred to as deformation or displacement field) that relates two different im-
ages: source and target. Hence when the transformation is applied to the
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Fig. 23.4. Left : DT-MRI section of the corpus callosum; right : upsampling of the
framed region (see colour plates)

source image, an image with the same geometry than the target one is ob-
tained. In this case, regularization enforces the estimated field to fulfill the
constraints of spatial coherence, smoothness and eventually invertibility of the
estimated field.

Intensity based registration methods, usually correspond to one of two
important families: template matching and variational. Template matching
finds the displacement for every voxel in a source image by minimizing a
local cost measure, obtained from a small neighborhood of the source image
and a set of potential correspondent neighborhoods in a target image. In
the case of template matching, regularization may be achieved by means of
the Normalized Convolution [16], a refinement of weighted-least squares that
explicitly deals with the so-called signal/certainty philosophy. Essentially, a
scalar measure of local structure (the certainty), obtained from our structure
tensor as [3, 10, 12, 13]

structure (x) =
det T̂(x)

trace T̂(x)
(23.15)

is incorporated as a weighting function in a least squares fashion. The field
(the signal) obtained from template matching is then projected onto a vector
space described by a non-orthogonal basis, i.e., the dot products between the
field and every element of the basis provide covariant components that must
be converted into contravariant by an appropriate metric tensor. Normalized
convolution, explained in detail in Chap. 24 of this book, provides a simple and
efficient implementation of this operation. Besides, an applicability function is
enforced on the basis elements in order to guarantee a proper localization and
avoid high frequency artifacts. This way the simplicity of template matching
is kept while its drawbacks are addressed. Figure 23.5 shows a 2-D discrete
deformation field that has been regularized using the certainty on the left side
and a 2-D Gaussian applicability function with σ = 0.8.
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midal -
jcsy’s [6]. In the highest level, the deformation field is estimated by template
matching and regularized. In the next level, the source dataset is deformed
with a displacement field obtained by spatial upsampling and interpolation
of the one obtained in the previous level. The target and deformed source
datasets are then registered to obtain the displacement field corresponding to
the current level of resolution. This process is propagated to every level in the
pyramid. Improvements may be found in literature.

Figure 23.6 shows the registration of two axial sections of DT-MR images
of two different patients. Images have been registered using the norm of the
difference [1] as the similarity measure, a Gaussian applicability of σ = 1, 5
and seven pyramidal levels.
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Fig. 23.5. Left: local structure from an axial section of the ventricles (certainty);
center: discrete matching displacement (signal); right: weighted filtered deformation

Fig. 23.6. Registration of two DT-MR images. (a) source tensor image; (b) target
tensor image; (c) estimated deformation field, shown as a warping, from target to
source; (d) source deformed (see colour plates)
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Summary. This chapter presents two techniques for regularization of tensor fields.
We first present a nonlinear filtering technique based on normalized convolution,
a general method for filtering missing and uncertain data. We describe how the
signal certainty function can be constructed to depend on locally derived certainty
information and further combined with a spatially dependent certainty field. This
results in reduced mixing between regions of different signal characteristics, and in-
creased robustness to outliers, compared to the standard approach of normalized
convolution using only a spatial certainty field. We contrast this deterministic ap-
proach with a stochastic technique based on a multivariate Gaussian signal model
in a Bayesian framework. This method uses a Markov random field approach with
a 3D neighborhood system for modeling spatial interactions between the tensors lo-
cally. Experiments both on synthetic and real data are presented. The driving tensor
application for this work throughout the chapter is the filtering of diffusion tensor
MRI data.

24.1 Introduction

Using conventional MRI, we can easily identify the functional centers of the
brain (cortex and nuclei). However, with conventional anatomical MRI tech-
niques, the white matter of the brain appears to be homogeneous without any
suggestion of the complex arrangement of fiber tracts. Diffusion Tensor MRI
(DT-MRI) is a relatively recent imaging modality that measures the diffu-
sion of water in biological tissue. A common first order model of anisotropic
diffusion is the Gaussian model that gives ellipsoidal isoprobability surfaces
describing the diffusion. This then naturally leads to the tensor representation
through the analogy between symmetric 3× 3 tensors to the ellipsoidal repre-
sentation. Within white matter, the mobility of the water is restricted by the
axons that are oriented along the fiber tracts. Hence, the demonstration of
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anisotropic diffusion in the brain by MRI has paved the way for non-invasive
exploration of the structural anatomy of the white matter in vivo [1, 12].
Alexander presents a good introduction to DT-MRI and the diffusion process
in Chap. 5.

The diffusion weighted MRI images are corrupted by noise. There are many
factors that contribute to the noise. One source is associated with the receiving
coil resistance, others come from inductive losses. The major source of noise
will depend on the strength of the static magnetic field and the volume sample
size. In addition, the final image noise can also depend on other factors like
the voxel size, the receiver bandwidth and the number of time averages in
the acquisition process [4]. Hahn et al. discuss the origin of the noise and its
impact in Chap. 6. By imposing smoothness or regularization constraints on
the tensor field the amount of noise can be reduced. In this chapter we will
present two different types of regularization approaches: one deterministic
and one stochastic. An overview of other recent regularization methods can
be found in [15].

24.2 Normalized Convolution

In this section we outline how normalized convolution (NC) can be used for
regularizing scalar, vector, and higher order tensor fields. The method pre-
sented here closely follows the description in [17].

NC was introduced as a general method for filtering missing and uncertain
data [7, 16]. This method can be viewed as locally solving a weighted least
squares (WLS) problem. A local description of a signal, f , can be defined using
a weighted sum of basis functions stored as columns, B. Minimizing1

||W(Bθ − f)|| (24.1)

with respect to the weights θ, which are the coordinates of the signal in the
basis B, results in the WLS solution [5]

f0ff = Bθ = B(B∗WT WB)−1B∗WT Wf , (24.2)

where B∗ is the conjugate transpose of B.
In NC the weights W are split into two parts. One that belongs to the

basis functions and usually referred to as the applicability function a, a scalar
windowing function that deals with spatial localization of the operators in B.
This provides an alternative to traditional windowing with the advantage of
not changing the function values.

The second part belongs to the signal and is referred to as the signal
certainty function c describing the credence of the signal samples. Missing

1 The norm of a matrix A is the Frobenius norm given by ||A|| =
√

tr(AT A),
where tr(A) is the trace and AT the transpose of A.
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samples are handled by setting this function to zero. Note that handling miss-
ing data in a more traditional way by for example setting the signal values to
zero would introduce artificial structures in the image. Further, the certainty
function is usually set to zero outside the signal border reducing the impact
of traditional edge effects.

The weight matrix W can be constructed by multiplying two diagonal
matrices containing the applicability and the certainties in the diagonal re-
spectively, Wa and Wc. To keep in line with established notation [16] we
define WT W = WaWc which will avoid squaring the weights in the calcula-
tions. Inserting this into equation (24.2) gives

f0ff = Bθ = B(B∗WaWcB)−1B∗WaWcf . (24.3)

24.2.1 Certainty Measures

There are several ways to define signal certainty function c. For simplicity we
here will use

c = cvcs (24.4)

where cv is the voxel certainty and cs is the similarity certainty. The spatial
voxel certainty measure cv is defined by the input data. Further, the similarity
certainty measure cs has been constructed as:

cs = cmca , (24.5)

where cm and ca are the magnitude and angular similarity measures, respec-
tively. For the magnitude certainty cm the following Gaussian magnitude func-
tion has been used

cm = exp

[
−
(
||T0|| − ||T||

σ

)2
]
, (24.6)

where the norm of a tensor is given by ||T|| =
√

tr(TT T), and T0 is a tensor
calculated from a local neighborhood as explained in Sect. 24.2.3. The angular
similarity measure, ca, is based on the inner product between the normalized
tensors and is given by

ca = 〈T̂0, T̂〉α = tr(T̂T
0 T̂)α (24.7)

where T̂ = T/||T||. In general the spatial voxel certainty function, cv, will be
based on prior information about the data. The voxel certainty is set to zero
outside the signal extent to reduce unwanted border effects. If no specific local
information is available the voxel certainty is set to one. As described above,
the second certainty component, cs, is defined locally based on neighboring
information. The idea here is to reduce the impact of outliers, where an outlier
is defined in terms of the local signal neighborhood, and to reduce the blurring
across interfaces between regions having very different signal characteristics.
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24.2.2 Applicability Functions

The applicability function define the localization of the operator. The family
of applicability functions used in the examples in this chapter is given by

a =

{
r−α cosβ

(
π r

2rmax

)
r < rmax

0 otherwise
(24.8)

where r denotes the distance from the neighborhood center and α, β and rmax

are positive constants.

24.2.3 Simple Local Neighborhood Model

The simplest possible model in the NC framework is when using only one
constant basis function, simplifying the expression for the NC (24.3) to a
ratio of convolutions2 [7]:

T0(m,n, p) =

∑
i,j,k

a(m + i, j + n, k + p)cv(i, j, k)T(i, j, k)∑
i,j,k

a(m + i, j + n, k + p)cv(i, j, k)
(24.9)

where (m,n, p) are the indexes that correspond to each voxel. To focus on
the power of introducing the signal/model similarity certainty measure, this
simple local neighborhood model is used in our examples below.

24.2.4 Scalar Field Regularization

Before describing the tensor case (Sect. 24.2.5), we will first present a scalar
example to show the effect of the the voxel and magnitude certainty functions.
This concept can be seen as generalization of bilateral filtering [14] into the
signal-certainty framework of normalized convolution.

Figure 24.1 shows the result of filtering a scalar signal using the proposed
technique. Figure 24.1(a) shows the original scalar signal: a noisy step func-
tion. Figure 24.1(b) shows the result using standard NC demonstrating that
reduction of noise is achieved at the expense of unwanted mixing of features
from adjacent regions. The amount of border blurring can be controlled ef-
fectively by including the new magnitude certainty measure, cm, given by
equation (24.6). The smaller the σ value, the smaller the inter region averag-
ing. The result for σ = 2 is shown in Fig. 24.1(c).

2 Using correlation or convolution is a matter of preference since the applicability
function is in general symmetric.
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(a) (b)

(c) (d)

Fig. 24.1. Original scalar field (step edge) with added noise (a), the result without
using the magnitude certainty measurement cm (b), results using cm with σ = 1 (c)
and with σ = 0.5 (d). See appendix for color plates

24.2.5 Tensor Field Regularization

Figure 24.2 shows the result of filtering a synthetic 2D tensor field visual-
ized using ellipses. The original tensor field with added noise is shown in
Fig. 24.2(a) and the result in Fig. 24.2(b). In this example, the voxel cer-
tainty measure, cv, was set to one except outside the signal extent where it
was set to zero. When filtering tensor data, the angular measure ca is impor-
tant since it can be used to reduce mixing of information from regions having
different orientations. This is demonstrated in Fig. 24.2(c) using α = 0 and
in Fig. 24.2(d) with α = 2. Notice how the degree of mixing depends on the
angular similarity measure.

Figure 24.3 shows a region of interest (ROI) for tensor field generated from
DT-MRI data. Figure 24.3(b) shows the result of filtering the DT-MRI tensor
field using the proposed method. In this example, the voxel certainty measure,
cv, was set to one except outside the signal extent where it was set to zero.
An alternative to this is to use for example Proton Density MRI data defining
where the MR signal is reliable. For the angular certainty function, ca, α = 4
was used.
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(a) (b) (c)

Fig. 24.2. Original synthetic tensor field with added noise (a) and the result using
the proposed method using α = 0 (b) and α = 2 (c)

(a) (b)

Fig. 24.3. Tensor field generated from noisy DT-MRI data (a) and result of filtering
the tensor field using the NC method (b). The ROI is the corpus callosum, the dark
bow-shaped region. See appendix for color plates

24.3 Bayesian Regularization using Multivariate
Gaussian Markov Random Fields

The use of MRFs for regularization of tensor fields has gained interest in the
last few years [13]. We will discuss a new approach for regularization of DT-
MRI data using Markov Random Fields (MRFs) in a Bayesian framework
[8, 9, 10]. The MRFs that are going to be described have Gaussian distribu-
tion [11]. A description of multivariate Gaussian distributed noise for tensors
is presented in [2]. The concept of ‘isotropic’ noise is defined resulting in a
distribution whose covariance has two parameters. Our noise model is not
constrained to be isotropic so a non-constrained model for the covariance will
be used. In this chapter we define a Bayesian model where MRFs are used for
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7 27 33

Fig. 24.4. Examples of 3D neighborhood systems δ(m, n, p) with different spatial
extent. The numbers indicate the number of voxels L belonging to each system

achieving a global result from local interactions described by a simple neigh-
borhood model [19]. We will first present a scalar version of the model and
later extend this to the tensor case.

24.3.1 Prior Probability Model

Let the (non-observable) scalar volume that we want estimate be described
by a random vector X with K elements. This vector is formed by rearranging
the original data with dimensions M × N × P , and thus giving K = MNP
elements.

We assume that the prior probability density function (PDF) of the non-
observable scalar field X is a K-dimensional multivariate Gauss-MRF [11]
defined by a K × 1 mean vector µ, and a K ×K covariance matrix C.

As the 3D spatial dependencies are assumed to be strictly local, the co-
variance matrix C will be sparse, and thus it will be more practical to work
directly with the local characteristics of the field. This is achieved by defining
a 3D neighborhood system δ(m,n, p) for each voxel. Each δ(m,n, p) is a set of
L triplet indices. In Fig. 24.4, four different neighborhoods are shown. Using
each index set (one for each voxel site) we can define the sets of neighboring
random vectors δX(m,n, p) with L elements as

δX(m,n, p) =
{
X(m′, n′, p′), (m′, n′, p′) ∈ δ(m,n, p)

}
(24.10)

and the same for the squared image values δX2(m,n, p),

δX2(m,n, p) =
{
X2(m′, n′, p′), (m′, n′, p′) ∈ δ(m,n, p)

}
. (24.11)

Under these assumptions the local characteristic of the field is given by the
following conditional Gauss-MRF3 [11]

p
(
X
∣∣∣∣δX) =

1√
2π σX

exp
{
− (X − µX)2

2σ2
X

}
(24.12)

3 For simplicity we are omitting describing the dependence of the voxel indices
(m, n, p), unless explicitly specified.
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with
µX =

1
L

∑
δX σ2

X =
1
L

∑
δX2 − µ2

X (24.13)

the prior local mean and variance, respectively, both estimated with the max-
imum likelihood (ML) method [5]. The summations in (24.13) is over the L
elements of the sets δX and δX2 as defined in (24.10) and (24.11), respec-
tively.

24.3.2 Likelihood Model

In this section we will define a likelihood model for the observed (noisy) signal.
Let the observed scalar signal be defined by

Y = X + N (24.14)

where X is the wanted (non-observable) signal, and where N denotes the
noise. For simplicity we assume that the noise is independent of the signal X
to be estimated. The likelihood model (also called transition model) is given
by the conditional PDF of the observed signal Y given X, which is assumed
to be a K-dimensional multivariate Gauss-MRF with given K×1 mean vector
X and K ×K covariance matrix CN .

In the likelihood model we will exploit the spatial dependencies of the
MRF to determine the local likelihood characteristic of the scalar data. This
is achieved by assuming the following local conditional independence property
for the PDF

p
(
Y
∣∣∣∣X, δX

)
= p

(
Y
∣∣∣∣X) (24.15)

which is here described by a conditional Gauss-MRF

p
(
Y
∣∣∣∣X) =

1√
2πσN

exp
{
− (Y −X)2

2σ2
N

}
, (24.16)

where the local noise variance σ2
N = σ2

Y |X is assumed to be homogeneous,
that is, independent of the spatial indices (m,n, p). This variance has to be
estimated from the observed scalar volume Y. The estimator for the noise
variance used in the examples below is

σ2
N = λσ2

Nave
+ (1− λ)σ2

Nmin
, (24.17)

where 0 ≤ λ ≤ 1 is a free parameter defining the degree of regularization (low
λ gives low regularization). The average local variance σ2

Nmean
is given by

σ2
Nave

=
1
K

M∑
m=1

N∑
n=1

P∑
p=1

σ2
Y (m,n, p) , (24.18)

and where σ2
Y (m,n, p) is given by the ML method following the (24.13) re-

placing all the X variables with Y . The minimum local variance σ2
Nmin

is
given by
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σ2
Nmin

= min
m,n,p

σ2
Y (m,n, p) (24.19)

The reasoning for (24.17) is that as the signal and the noise are independent,
and the total variance is given by adding the noise and the signal variance.
A possible estimator for the noise variance would then be given by a total
variance estimator in a region for which the signal is zero. If we consider
the local variance as a realization for the total variance, then the minimum
among this local variances will be a possible estimator for the noise variance
(24.19). However, due to the presence of outliers and that the local variance
has significant variability, this minimum will have a bias towards zero. An
alternative estimator for the noise variance is given by the average of the local
variances (24.18). In this case, due to the presence of signal components in
the local variances, this estimator will have a bias towards infinity. A trade-off
between these two estimators can be defined by introducing a regularization
parameter λ ranging in the interval (0, 1) reducing the effect of these biases
(24.17). The two estimators in (24.18) and (24.19) naturally define two bounds
that can be used to define the maximum and minimum meaningful amount
of regularization, and the parameter λ between 0 and 1 can be used as a
regularization parameter to tune the desired amount of regularization.

24.3.3 Posterior Probability Modeling

This section describes how to combine the prior probability model for the
estimated signal with the likelihood model for the observed signal. Bayes’
theorem lets us write the posterior probability density function as

p
(
X
∣∣∣∣Y) =

p
(
Y
∣∣∣∣X)p(X)
p
(
Y
) , (24.20)

where p
(
Y
)

depends only on the known signal Y.
In the Gaussian case the maximum a posteriori (MAP) estimation is equal

to the minimum mean square error (MMSE) estimation [5] given both by

XMAP = arg max
X

p
(
X
∣∣∣∣Y) = XMMSE = E

[
X
∣∣∣∣Y] = µX|Y (24.21)

with µX|Y defined by

µX|Y = CN

(
CX + CN

)−1

µX + CX

(
CX + CN

)−1

Y . (24.22)

In general, it is not feasible to explicitly determine CX, CN and µX, and we
will resort to either the Gibbs sampler (GS) algorithm to iteratively find a
solution for the MMSE estimation or the simulated annealing (SA) algorithm
for the MAP estimation [3, 19]. Those algorithms are based on iteratively
visiting all the sites (voxels) by sampling the posterior local characteristic of
the field directly (temperature parameter T = 1) for the GS algorithm and
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using a logarithmic cooling schedule defined by a temperature parameter T
for the SA algorithm. The MMSE solution is given by the average of the
solutions achieved after each iteration of the GS algorithm and the MAP
solution is given by the last iteration of the SA algorithm (low temperature)
[19]. In practice, 20 to 50 iterations are enough to get reasonable MMSE
solutions and 10 to 20 for MAP solutions.

For determining the posterior local characteristic we will again resort to
the Bayes’ theorem:

p
(
X
∣∣∣∣Y, δX) =

p
(
Y
∣∣∣∣X)p(X∣∣∣∣δX)
p
(
Y
∣∣∣∣δX) (24.23)

where p
(
Y
∣∣∣∣δX) depends only on the known signal Y . This posterior local

characteristic is a Gauss-MRF given by [11]

p
(
X
∣∣∣∣Y, δX) =

1√
2πT σX|Y

exp
{
−

(X − µX|Y )2

2Tσ2
X|Y

}
(24.24)

with the following posterior local mean and variance

µX|Y =
σ2

N µX + σ2
XY

σ2
X + σ2

N

σ2
X|Y =

σ2
N σ2

X

σ2
X + σ2

N

. (24.25)

These expressions show that in the Gaussian case both the posterior local
mean µX|Y and the posterior local variance σ2

X|Y can be obtained by closed
form expressions, which greatly simplifies the implementation of the method,

|

as well as reduces the computational burden. The proof for (24.25) is rather
involved. Some hints on how to prove it can be found in [5], the core of the
proof is that one quadratic form is to be constructed from a summation of
two quadratic forms coming from the prior and likelihood PDFs.

To determine the performance of the described method a synthetic data
volume was constructed. The volume is defined as a sphere with a one pe-
riod sawtooth radial profile. Figure 24.5(a) shows the middle slice for this
data, Fig. 24.5(b) the same volume with added noise, Fig. 24.5(c) the esti-
mated MAP solution and Fig. 24.5(d) the MMSE solution. The regularization
parameter λ was set to 0.5. Notice that as the method is designed for con-
tinuous signals, it cannot deal well with discontinuities. This is noticeable in
Fig. 24.5(c) and 24.5(d) where the voxels close to the boundary have not been
filtered. The use of an edge model as proposed in [19] may be helpful. Such
models has the potential to filter the boundary voxels along the boundaries
without inter region blurring. Comparing Fig. 24.5(c) to Fig. 24.5(d), we can
see that the variability of the MAP solution is lower than the variability of
the MMSE. However the bias of the MAP solution is greater than the bias for
the MMSE. In general, the MAP method converges faster than the MMSE.
To quantitatively compare these results, we have computed the signal to noise
ratio (SNR). For the noisy data shown in Fig. 24.5(b) the SNR is 4.1, for the
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MAP solution shown in Fig. 24.5(c) the SNR is 150.1 and for the MMSE so-
lution shown in Fig. 24.5(d) the SNR is 184.6. Measuring the SNR only close
to the discontinuity gives for the noisy data 4.8, for the MAP 18.6, and for
the MMSE 21.7. The SNR values in the continuous areas are as follows: for
the noisy 4.0, for the MAP 674.0 and for the MMSE 949.1. The SNR is better
for the MMSE than for the MAP estimator due to the bias of the latter. As
expected, the model performs better in the homogeneous areas.

Figure 24.6(a) shows a coronal view for MRI data set of a human brain and
in Fig. 24.6(b) the result after applying the proposed regularization scheme.
The regularization parameter λ was set to 0.2. The noise is reduced in the
homogeneous regions without smoothing the boundaries.

24.3.4 Multi-Component Model Extension

In this section we extend the scalar case to multi-component case. For DT-
MRI we have a second-rank tensor at each voxel position which is being rep-
resented by a symmetric 3× 3 tensor matrix.

(a) (b)

(c) (d)

Fig. 24.5. Synthetic data volume (a), with added noise (b), the result using the
MAP estimator (c) and the MMSE estimator (d)
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Each tensor matrix X(m,n, p) is symmetric so that Xij = XjiX , and has 6
different random variables. The total number of different random variables is
thus K = 6MNP . We further define a rearrangement matrix operator LT
(lower triangular part) in order to extract the 6 different elements at each
voxel position and to regroup them as a 6× 1 column vector, XLT (m,n, p) as

XLT (m,n, p) = LT
[
X(m,n, p)

]
= (X11 X21 X31 X22 X32 X33)T . (24.27)

By applying the rearrangement operator to each tensor, a 4D random matrix
XLT with dimensions 6×M ×N ×P is obtained without repeated elements.
In order to formulate the probability density function of the tensor field we
need to rearrange the tensor field XLT as a column vector, we define a second
rearrangement operator CV (column vector) as

XCV = CV
[
XLT

]
(24.28)

making XCV a K × 1 random vector which represents the whole tensor field.
In order to calculate the MAP or the MMSE estimator for the tensor field

XCV we need to extend the prior model presented in Sect. 24.3.1, the likeli-
hood model in Sect. 24.3.2 and the posterior model in Sect. 24.3.3 by using

(a) (b)

Fig. 24.6. A coronal slice of a MRI volume (a) and the result after applying the
3D Gaussian MRF scheme (b)

Let the non-observable tensor field be represented by a random matrix X
with dimensions 3× 3×M ×N × P of a volume of dimensions M ×N × P ,
where each voxel is represented by a random tensor given by the 3× 3 matrix

X(m,n, p) =

X11 X12 X13

X21 X22 X23

X31 X32 X33

 . (24.26)
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6-dimensional multivariate Gaussian distribution instead of the 1-dimensional
Gaussian distribution explained for the scalar case. This should be done us-
ing the local characteristics of the field defined for each 6-component vector
variable XLT (m,n, p). A short list of what is needed to be estimated in the
method follows:

– For the prior PDF we need to estimate the vector means µXLT
(m,n, p) and

the covariance matrices CXLT
(m,n, p) by using the neighboring sites.

– For the likelihood PDF we need to estimate the noise covariance matrix
CNLT

, which does not depend on the site indices (m,n, p) as the noise is
assumed to be homogeneous. This noise covariance matrix can be estimated
in a similar way as the one proposed in Sect. 24.3.2 for the scalar case, but
modified accordingly to deal with covariance matrices instead of variances.

– For the posterior PDF using the prior parameters µXLT
(m,n, p) and

CXLT
(m,n, p), the noise covariance matrix CNLT

and the observed noisy
field YLT (m,n, p) we can determine the posterior means µXLT |YLT

(m,n, p)
and the posterior covariances CXLT |YLT

(m,n, p) by means of4ff

µXLT |YLT
= CNLT

(
CXLT

+ CNLT

)−1

µXLT
+ CXLT

(
CXLT

+ CNLT

)−1

YLT

(24.29)
and

CXLT |YLT
= CXLT

(
CXLT

+ CNLT

)−1

CNLT
. (24.30)

These equations are a vector generalization of the ones given by (24.25) in Sect.
24.3.3. In [5] we can also find some hints on how to prove that equations. In
the vector case, special care has to be taken, however the procedure is similar
to the scalar case.

For the SA algorithm we need to sample the posterior local characteristic,
that is a 6-dimensional multivariate Gaussian distribution with parameters
µXLT |YLT

and CXLT |YLT
. This can be done by first generating a 6×1 sample

vector U whose elements are independent and have Gaussian distribution with
zero mean and unit standard deviation, and then transforming this sample
according to

XLT =
√
T DXLT |YLT

U + µXLT |YLT
(24.31)

where DXLT |YLT
is a matrix given by5

DXLT |YLT
= QXLT |YLT

√
ΛXLT |YLT

(24.32)

4 We omit the indices (m, n, p) to enhance the readability of the equations.
5 The square root of a diagonal matrix is a diagonal matrix whose elements are the

square root of the corresponding original matrix.
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(a) (b) (c)

Fig. 24.7. Original synthetic tensor field (a), with noise added (b) and regulariza-
tion result (c)

where the matrix QXLT |YLT
has in its columns the eigenvectors of the covari-

ance matrix CXLT |YLT
. The matrix ΛXLT |YLT

is diagonal having the corre-
sponding eigenvalues in the principal diagonal.6

In order to assure the positive semidefinite condition of the diffusion ten-
sors, the SA algorithm is modified as follows: after visiting a voxel, the condi-
tion is tested; if the test is not passed then the tensor is discarded and sampled
again until the condition is satisfied.

We have generated a 3D helix synthetic tensor field for which the internal
tensors are anisotropic and the external tensors are isotropic. Figure 24.7(a)
shows the surface corresponding to the boundary separation between the two
tensor classes. We have added noise to that tensor field and repeated the
same visualization obtaining the Fig. 24.7(b). The random spots outside the
helix surface correspond to anisotropic tensors and the internal random holes
to isotropic tensors. After applying the proposed regularization method, al-
though the field is not completely homogeneous, the two tensor classes are
recovered as shown in Fig. 24.7(c). The regularization parameter λ was set
to 0.5.

We have also regularized a DT-MRI data volume of a monkey brain. The
results can be shown in Figs. 24.8, 24.9 and 24.10. The regularization parame-
ter λ was set to 0.05. Figure 24.8(a) shows an axial view of the original noisy
tensor described by the trace of the tensors, and Fig. 24.8(b) the result after
regularization. Note that the main structures are maintained while the back-
ground noise in the flat regions have been removed. Figure 24.8(c) shows the
fractional anisotropy (FA) measure [1] for the original data and Fig. 24.8(d)

6 A real symmetric positive semidefinite matrix C can be factorized as C =
QΛQT = DDT , where D = Q

√
Λ. A covariance matrix is always real, sym-

metric and positive semidefinite.
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(a) (b)

(c) (d)

Fig. 24.8. Axial slice of the tensor trace for the original noisy DT-MRI data from
a monkey brain (a), trace after regularization (b), axial slice of the FA measure for
the original noise DT-MRI data (c) and FA measure after regularization (d)

after regularization. The higher the FA value, the more likely the presence of
white matter fiber tracts. Notice that after regularization the white matter
structures are better defined. In Fig. 24.9(a) a glyph visualization using su-
perquadratics [6] for same data is shown. A description of these glyphs can be
found in Chap. 7. Figure 24.9(b) shows the results after regularization. Notice
that fiber tracts can be better distinguished in the filtered data set. To fur-
ther explore the result of regularization we present results from tractography
in the corpus callosum. Figure 24.10(a) displays the result of tractography in
the original data and Fig. 24.10(b) in the regularized data. Notice that the
fiber tracts are more continuous and better grouped in the filtered data.
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Fig. 24.9. Glyph visualization for a coronal slice for the original noisy DT-MRI
data from a monkey brain (a) and the same visualization after regularization (b).
See appendix for color plates

Fig. 24.10. Tractography in the corpus callosum for the original noise DT-MRI
data from a monkey brain (a) and the same after regularization (b). See appendix
for color plates
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24.4 Conclusion

In this chapter we have described two different regularization methods. First
we described NC, a general method for filtering missing and uncertain data.
This filtering method solves a WLS problem by applying filters in a basis set
which are assumed to span the signal locally. In NC, a certainty is defined for
the signal, and localization of the basis functions is achieved by an applicability
function, the corresponding certainty function for the basis filters. The effect
of this is that spatial localization of the filter is achieved by a certainty window
and not by changing the filter coefficients as in traditional windowing. The
strengths of NC are the power of signals/certainty framework, and the use of
basis functions that can be defined to span a subspace locally that fits the
signal.

Second, we described a purely stochastic approach to regularization based
on Gaussian MRF modeling of the signal. The strength of this approach is
the Bayesian framework which enables an efficient control of the trade-off of
applying the model (here the Gaussian model) where it fits, and not applying
it in areas where it does not. The presented method can be improved by
introducing boundary models for the prior at an expense of increasing the
computational load.

Future work combining the best of the two approaches presented in this
chapter will likely provide interesting and useful results.
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Summary. Methods based on partial differential equations (PDEs) belong to those
image processing techniques that can be extended in a particularly elegant way to
tensor fields. In this survey chapter the most important PDEs for discontinuity-
preserving denoising of tensor fields are reviewed such that the underlying design
principles becomes evident. We consider isotropic and anisotropic diffusion filters
and their corresponding variational methods, mean curvature motion, and self-
snakes. These filters preserve positive semidefiniteness of any positive semidefinite
initial tensor field. Finally we discuss geodesic active contours for segmenting tensor
fields. Experiments are presented that illustrate the behaviour of all these methods.

25.1 Introduction

In the last 15 years, partial differential equations (PDEs) have become increas-
ingly popular in image processing. This has a number of reasons: PDE-based
methods are mathematically well-understood techniques, they allow a rein-
terpretation of several classical methods under a unifying framework, they
have led to novel methods with more invariances, and they are the natural
framework for scale-space analysis. Moreover, the PDE formulation reflects
the continuous structure of space. Thus, PDE approximations aim to be inde-
pendent of the underlying grid and may reveal good rotational invariance. In
a number of image processing and computer vision areas, PDE-based methods
and related variational approaches and level-set techniques belong to the best
performing methods; see e.g. the books [2, 4, 18, 20, 25, 30] and the references
therein.

Interestingly, PDEs are also among the first image processing techniques
that have been extended from scalar- and vector-valued images to matrix-
valued data. One of the reasons for this is the fact that these extensions are
not too difficult, once the scalar-valued processes are mastered.

In this chapter we give a survey on some of the most important PDE
methods for discontinuity-preserving denoising of tensor images, namely non-
linear diffusion filters and their corresponding regularisation methods, mean
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curvature motion, and self-snakes. Moreover, we describe an extension of geo-
desic active contours for tensor images. In order to keep things as simple as
possible, we focus on 2-D methods. It should be noted, however, that these
concepts can be extended in a natural way to higher dimensions [13]. Parts of
our description follow the original papers [12, 13, 31]. We would like to empha-
sise that we focus on methods for genuine tensor processing. Thus we do not
consider scalar- or vector-valued PDE methods working on the eigensystem
or filtering channels that are measured prior to computing tensors [10, 27, 28].

The chapter is organised as follows. In Sect. 25.2 we introduce a gener-
alised structure tensor for matrix fields. It is used for steering all nonlinear
PDE methods that are discussed in the course of this chapter. Section 25.3
describes nonlinear diffusion filters for tensor data, both in the isotropic case
with a scalar diffusivity as well as in the anisotropic case with a diffusion
tensor. Closely related regularisation methods are presented in Sect. 25.4. In
Sect. 25.5 we design a mean curvature type evolution for tensor-valued data.
Modifying tensor-valued mean curvature motion by a suitable edge stopping
function leads us to tensor-valued self-snakes. They are discussed in Sect. 25.6.
In Sect. 25.7 we use the self-snake model in order to derive geodesic active con-
tours for tensor fields. The chapter is concluded with a summary in Sect. 25.8.

25.2 Structure Analysis of Tensor-Valued Data

In this section we generalise the concept of an image gradient to the tensor-
valued setting [12]. This may be regarded as a tensor extension of Di Zenzo’s
method for vector-valued data [11].

Let us consider some rectangular image domain Ω ∈ IR2 and some tensor
image F = (fi,jff ) : Ω → IR2×2, where the indices (i, j) specify the tensor
channel. We intend to define an ‘edge direction’ for such a matrix-valued
function. In the case of some scalar-valued image f , we would look for the
direction v which is orthogonal to the gradient of a Gaussian-smoothed version
of f :

0 = v�∇fσff (25.1)

where fσff := Kσ ∗ f and Kσ denotes a Gaussian with standard deviation
σ. Gaussian convolution makes the structure detection more robust against
noise. The parameter σ is called noise scale.

In the general tensor-valued case, we cannot expect that all tensor channels
yield the same edge direction. Therefore we proceed as follows. Let FσFF =
(fσ,i,jff ) be a Gaussian-smoothed version of F = (fi,jff ), where the smoothing
is performed componentwise. Then we define the edge direction as the unit
vector v that minimises

E(v) :=
2∑

i=1

2∑
j=1

(v�∇fσ,i,jff )2 = v�

⎛⎝⎛⎛ 2∑
i=1

2∑
j=1

∇fσ,i,jff ∇f�
σ,i,jff

⎞⎠⎞⎞ v .
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This quadratic form is minimised when v is an eigenvector to the smallest
eigenvalue of the structure tensor

J(FσFF ) :=
2∑

i=1

2∑
j=1

∇fσ,i,jff ∇f�
σ,i,jff . (25.2)

The eigenvalues of this positive semidefinite matrix measure the local contrast
in the directions of the eigenvectors. Its trace

tr J(FσFF ) =
2∑

i=1

2∑
j=1

|∇fσ,i,jff |2 (25.3)

sums up all eigenvalues. It can be regarded as a tensor-valued generalisation of
the squared gradient magnitude. The matrix J(FσFF ) will allow us to generalise
a number of PDE methods to the tensor-valued setting.

Figure 25.1 illustrates the concept of edge detection with the structure
tensor. The test image we use for our experiments is obtained from a DT-
MRI data set of a human brain. We have extracted a 2-D section from the
3-D data. The 2-D image consists of four quadrants which show the four tensor
channels of a 2 × 2 matrix. The top right channel and bottom left channel
are identical since the matrix is symmetric. To test the robustness under
noise we have replaced 30% of all data by random matrices: The angles of
their eigensystem obey a uniform distribution on [0, π], while their eigenvalues
are random numbers uniformly distributed in [0, 127]. Figure 25.1 shows the
outcome of using trJ(FσFF ) for detecting edges in tensor-valued images. We
observe that this method gives good results for the original data set. When
increasing the noise scale σ, it is also possible to handle situations where
substantial noise is present.

Fig. 25.1. Edge detection with a structure tensor for matrix-valued data. From
left to right: (a) Original 2-D tensor field extracted from a 3-D DT-MRI data set by
using the channels (1, 1), (1, 2), (2, 1) and (2, 2). Each channel is of size 128 × 128.
The channels (1, 2) and (2, 1) are identical for symmetry reasons. (b) Trace of the
structure tensor of (a) with σ = 1. (c) Noisy version of (a) with 30% noise. (d) Trace
of the structure tensor from (c) with σ = 3. From [13]
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25.3 Diffusion Filtering

25.3.1 Linear Diffusion

Linear diffusion filtering is the oldest PDE method for image denoising [15]. It
creates a family of simplified images {u(x, t) | t ≥ 0} from some scalar initial
image f(x) by solving the PDE

∂t∂∂ u = ∆u on Ω × (0,∞) , (25.4)

with f as initial condition,

u(x, 0) = f(x) on Ω , (25.5)

and reflecting (homogeneous Neumann) boundary conditions:

∂νu = 0 on ∂Ω × (0,∞) . (25.6)

Here ∂ν denotes differentiation in the direction of the outer normal of the im-
age boundary ∂Ω. The diffusion time t determines the degree of simplification:
For t = 0 the original image f is recovered, and larger values for t result in
more pronounced smoothing. On an infinitely extended image domain, linear
diffusion filtering with stopping time T is equivalent to Gaussian convolution
with standard deviation σ =

√
2T .

It is straightforward to extend linear diffusion filtering to tensor images:
All one has to do is to apply this process channelwise.

Figure 25.2 zooms into the corpus callosum region of Fig. 25.1(a),(c), and
displays the evolution of this region under linear diffusion. The tensors are
visualised by ellipses with colour-coded orientation. We observe that linear
diffusion is well-suited for removing noise, but suffers from blurring important
features such as discontinuities in the tensor field.

25.3.2 Isotropic Nonlinear Diffusion

The goal of nonlinear diffusion filtering is to smooth an image while respect-
ing its discontinuities [6, 22]. Nonlinear diffusion filtering replaces the linear
diffusion equation (25.4) by

∂t∂∂ u = div
(
g(|∇uσ|2)∇u

)
on Ω × (0,∞) . (25.7)

The diffusivity function g is a decreasing nonnegative function of the squared
gradient magnitude of uσ, a Gaussian smoothed version of u. One may choose
e.g. [22]

g(|∇uσ|2) =
1

1 + |∇uσ|2/λ2
(25.8)

with some contrast parameter λ > 0. We observe that |∇uσ|2 serves as an edge
detector: Locations where |∇uσ| � λ are regarded as edges where diffusion
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Fig. 25.2. Tensor-valued linear diffusion. Top row, from left to right: Detail from
a DT-MR image (size 15 × 15), at time t = 0.96, at time t = 2.4. Bottom row, from
left to right: Same experiment with 30% noise. See colour plates

is inhibited, while locations with |∇uσ| ! λ are considered to belong to the
interior of a segment, where full diffusion is performed.

This scalar-valued diffusion scheme can also be generalised for smoothing
a matrix field F = (fi,jff ) : Ω → IR2×2. Tschumperle and Deriche [27] have´
proposed a PDE system for matrix-valued diffusion where a joint diffusivity
function is used that depends on the trace of the structure tensor (in their
case with σ = 0):

∂t∂∂ ui,j = div (g(tr J(UσUU ))∇ui,j) (i, j ∈ {1, 2}) . (25.9)

The synchronised channel evolution with a joint diffusivity avoids that edges
are formed at different locations for the different tensor channels. This syn-
chronisation of channel smoothing is also a frequently used strategy in vector-
valued diffusion filtering [14].

Figure 25.3 illustrates the evolution under isotropic nonlinear diffusion.
Discontinuities are well-preserved, but noise at discontinuities is removed
rather slowly.

25.3.3 Anisotropic Nonlinear Diffusion

Besides isotropic diffusion schemes with a scalar-valued diffusivity, there exist
also anisotropic counterparts. In the anisotropic case not only the amount of
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Fig. 25.3. Tensor-valued isotropic nonlinear diffusion. Top row, from left to right:
Detail from a DT-MR image (size 15×15), at time t = 4.8, and at t = 12.0 (λ = 0.5,
σ = 0.5). Bottom row, from left to right: Same experiment with 30% noise (λ = 0.5,
σ = 1). See colour plates

diffusion is adapted locally to the data but also the direction of smoothing. It
allows to encourage smoothing along discontinuities rather than across them.
This can be achieved by replacing the scalar-valued diffusivity function by a
matrix-valued diffusion tensor.1

Tensor-valued anisotropic diffusion regards the original image F (x) =
(fi,jff (x)) as initial value for the coupled PDE system [31]

∂t∂∂ ui,j = div (g(J(UσUU ))∇ui,j) (i, j ∈ {1, 2}) (25.10)

subject to the reflecting boundary conditions

∂ν (g(J(UσUU ))∇ui,j) = 0 (i, j ∈ {1, 2}) . (25.11)

Here the scalar-valued function g is generalised to a matrix-valued function
in the following way: Let J(UσUU ) = Q diag(λi)Q� denote the principal axis
decomposition of J(UσUU ), with the eigenvalues λi as the elements of the diag-
onal matrix diag(λi), and the normalised eigenvectors as the columns of the
orthogonal matrix Q. Then it is common to set g(J(UσUU )) := Q diag(g(λi))Q�,
where the scalar diffusivity g is the same decreasing function as in the isotropic
case.
1 In the diffusion filtering literature, the word anisotropic is often already used for

space-variant diffusion processes with a scalar diffusivity function.
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Anisotropic diffusion offers the advantage of smoothing in a direction-
specific way: Along the i-th eigenvector of J(UσUU ) with corresponding eigen-
value λi, the eigenvalue of the diffusion tensor is given by g(λi). In eigendi-
rections with large variation of local structure, λi is large and g(λi) is small.
This avoids smoothing across discontinuities. Along discontinuities, λi is small.
Hence, g(λi) is large and full diffusion is performed. For more information
about anisotropic diffusion in general, we refer to [30].

Interestingly, the bare coupling of the tensor channels via a joint diffusion
tensor guarantees – without additional projection steps – that the evolving
matrix field U(x, t) = (ui,j(x, t)) remains positive semidefinite if its initial
value F (x) = (fi,jff (x)) is positive semidefinite. In the discrete case, this follows
from the fact that convex combinations of positive semidefinite matrices are
computed [31]. In the continuous case, going from matrices to their quadratic
forms allows to prove preservation of positive semidefiniteness by means of a
scalar-valued maximum-minimum principle [3]. This reasoning also holds for
linear and isotropic nonlinear diffusion. Hence one does not have to consider
more sophisticated constrained flows [8] if one is only interested in preserving
positive semidefiniteness.

Tensor-valued anisotropic nonlinear diffusion. Top row, from left to right:
Detail from a DT-MR image (size 15×15), at time t = 1.92, and at t = 4.8 (λ = 0.5,
σ = 0.5). Bottom row, from left to right: Same experiment with 30 % noise, at time
t = 1.92 and t = 4.8 (λ = 0.5, σ = 1). See colour plates
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The effects of anisotropic nonlinear diffusion are illustrated in Fig. 25.4. It
seems to combine the advantages of linear and isotropic nonlinear diffusion:
Noise is removed efficiently while discontinuities are preserved for a long time.

Tensor-valued nonlinear diffusion has also led to nonlinear structure ten-
sors, a refinement of the structure tensor concept itself, see [3] and Chap. 2 of
this book. They offer advantages for optic flow estimation, texture analysis,
and corner detection.

25.4 Regularisation Methods

Regularisation methods belong to the class of variational approaches for image
restoration. Typically one calculates a restoration of some degraded scalar-
valued image f as the minimiser of an energy functional

E(u) :=
∫

Ω

∫∫ (
|u−f |2 + αΨ(|∇u|2)

)
dx (25.12)

where the penaliser Ψ : [0,∞) → IR is an increasing function [19]. The first
summand encourages similarity between the restored image and the original
one, while the second one rewards smoothness. The smoothness weight α > 0
is called regularisation parameter. From variational calculus it follows that a
minimiser of E(u) satisfies the Euler–Lagrange equation

u− f

α
= div

(
Ψ ′(|∇u|2)∇u

)
(25.13)

with homogeneous Neumann boundary conditions. This elliptic PDE can be
regarded as a fully implicit time discretisation of the diffusion filter

∂t∂∂ u = div
(
Ψ ′(|∇u|2)∇u

)
(25.14)

with initial image f and stopping time α; see [26] for more details.
In the tensor case, Deriche and Tschumperlé [27] consider the energy

E(U) =
∫

Ω

∫∫ (
‖U−F‖2 + αΨ(tr J(U))

)
dx (25.15)

where ‖ ·‖ is the Frobenius norm for matrices. Then the corresponding Euler–
Lagrange equations are given by

ui,j − fi,jff

α
= div (Ψ ′(tr J(U))∇ui,j) (i, j ∈ {1, 2}) . (25.16)

They can be regarded as an approximation to the isotropic nonlinear diffusion
filter (25.9) if one chooses Ψ ′ := g and σ := 0.

Weickert and Brox [31], on the other hand, consider
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E(U) =
∫

Ω

∫∫ (
‖U−F‖2 + α trΨ(J(U))

)
dx . (25.17)

It leads to the Euler–Lagrange equation

ui,j − fi,jff

α
= div (Ψ ′(J(U))∇ui,j) (i, j ∈ {1, 2}) (25.18)

which is an approximation to the anisotropic nonlinear diffusion filter (25.10).
These considerations show that regularisation methods are closely related

to nonlinear diffusion filtering. In practise they can lead to results that are
hardly distinguishable from diffusion results [26]. For this reason we refrain
from presenting specific experiments for this filter class.

25.5 Mean Curvature Motion

In this section we describe tensor-valued mean curvature motion [12]. To this
end, we first have to sketch some basic ideas behind scalar-valued mean cur-
vature motion.

We start with the observation that the Laplacian ∆u of an isotropic linear
diffusion model may be decomposed into two orthogonal directions ξ ⊥ ∇u
and η ‖ ∇u:

∂t∂∂ u = ∆u = ∂ξξ∂ u + ∂ηη∂∂ u (25.19)

where ∂ξξ∂ u describes smoothing parallel to edges and ∂ηη∂∂ smoothes perpen-
dicular to edges. Mean curvature motion (MCM) uses an anisotropic variant
of this smoothing process by permitting only smoothing along the level lines:

∂t∂∂ u = ∂ξξ∂ u . (25.20)

This can be rewritten as

∂t∂∂ u = |∇u| div
(
∇u

|∇u|

)
. (25.21)

Alvarez et al. have used this evolution equation for denoising highly degraded
images [1]. It is well-known from the mathematical literature that under MCM
convex level lines remain convex, nonconvex ones become convex, and in finite
time they vanish by approximating circular shapes while converging to points.

If we want to use an MCM-like process for processing tensor-valued data
F = (fi,jff ), it is natural to replace the second directional derivative ∂ξξ∂ u in
(25.20) by ∂vv∂ u, where v is the eigenvector to the smallest eigenvalue of the
structure tensor J(U). This leads us to the evolution

∂t∂∂ ui,j = ∂vv∂∂ ui,j on Ω × (0,∞) (25.22)
ui,j(x, 0) = fi,jff (x) on Ω, (25.23)

∂νui,j = 0 on ∂Ω × (0,∞) (25.24)
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Fig. 25.5. Tensor-valued mean curvature motion. Top row, from left to right: Detail
of size 15 × 15 from a DT-MR image; at time t = 2.4, at time t = 6. Bottom row,
from left to right: Same experiment with 30% noise. See colour plates

for all tensor channels (i, j). Note that this process synchronises the smoothing
direction in all channels. It may be regarded as a tensor-valued generalisation
of the vector-valued mean curvature motion by Chambolle [7].

Our notion of edge directions as eigenvectors of the structure tensor is
equivalent to the generalised level lines in [9]. Hence, tensor-valued MCM can
be regarded as smoothing along these lines. Reinterpreting the concept of
curve evolution in the same spirit allows even to gain a theoretical foundation
of MCM as shortening flow for its level lines [13]. It is also possible to show
that tensor MCM preserves positive semidefiniteness [13].

Figure 25.5 illustrates the tensor-valued mean curvature model. As can
be seen in the first row, this process regularises the tensor field while it is
capable of respecting anisotropies in a better way than linear diffusion. The
second row of Fig. 25.5 shows the same algorithm applied to the noisy image.
It displays a fairly high robustness to noise: For increasing evolution times the
results for the original and the noisy images approach each other.

25.6 Self-Snakes

In [24], Sapiro has proposed a specific variant of MCM that is well-suited for
image enhancement. This process – which he names self-snakes – introduces
an edge-stopping function into mean curvature motion in order to prevent
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further shrinkage of the level lines once they have reached important image
edges. In the scalar-valued setting, a self-snake u(x, t) of some image f(x) is
generated by the evolution process

∂t∂∂ u = |∇u|div
(
g(|∇uσ|2)

∇u

|∇u|

)
on Ω × (0,∞) , (25.25)

u(x, 0) = f(x) on Ω , (25.26)
∂νu = 0 on ∂Ω × (0,∞) , (25.27)

where g is a decreasing function such as the diffusivity (25.8). Self-snakes
have been advocated as alternatives to nonlinear diffusion filters [32], they
can be used for vector-valued images [24], and related processes have also
been proposed for filtering 3-D images [23].

Using the product rule of differentiation, we may rewrite (25.25) as

∂t∂∂ u = g(|∇uσ|2) ∂ξξ∂ u +∇�(g(|∇uσ|2))∇u (25.28)

with ∇� := (∂x∂ , ∂y∂∂ ). This formulation suggests a straightforward generalisa-
tion to the tensor-valued setting. All we have to do is to replace |∇uσ|2 by
trJ(UσUU ), and ∂ξξ∂ by ∂vv∂∂ , where v is the eigenvector to the smallest eigenvalue
of J(U). This leads us to the following tensor-valued PDE:

∂t∂∂ ui,j = g(tr J(UσUU )) ∂vv∂ ui,j +∇�(g(tr J(UσUU )))∇ui,j . (25.29)

We observe that the main difference to tensor-valued MCM consists in the
additional term ∇�(g(tr J(UσUU )))∇ui,j . It can be regarded as a shock term
[21] that is responsible for the edge-enhancing properties of self-snakes.

With only minor modifications, it is possible to extend the semidefiniteness
preservation proof for tensor-valued MCM also to the case of tensor-valued
self-snakes.

Experimental results for the tensor-valued self-snake technique are shown
in Fig. 25.6. Compared to tensor-valued MCM, self-snakes offer increased
sharpness at discontinuities due to the additional shock term. The filtered
tensor fields look segmentation-like.

25.7 Geodesic Active Contour Models

Active contours go back to Kass et al. [16]. They play an important role in
interactive image segmentation, in particular for medical applications. The
underlying idea is that the user specifies an initial guess of an interesting
contour (organ, tumour, . . .). Then this contour is moved by image-driven
forces to the edges of the object in question.

So-called geodesic active contour models [5, 17] achieve this by applying a
specific kind of level set ideas. In its simplest form, a geodesic active contour
model consists of the following steps. One embeds the user-specified initial
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Tensor-valued self-snakes. Top row, from left to right: Detail of size
15 × 15 from a DT-MR image; at time t = 2.4, at time t = 6 (σ = 0.5, λ = 2).
Bottom row, from left to right: Same experiment with 30% noise (σ = 1, λ = 2). See
colour plates

curve C0CC (s) as a zero level curve into a function f(x), for instance by using
the distance transformation. Then f is evolved under a PDE that includes
knowledge about the original image h:

∂t∂∂ u = |∇u|div
(
g(|∇hσ|2)

∇u

|∇u|

)
on Ω × (0,∞) , (25.30)

u(x, 0) = f(x), on Ω , (25.31)
∂νu = 0 on ∂Ω × (0,∞) , (25.32)

where g inhibits evolution at edges of f . One may choose decreasing functions
such as the diffusivity (25.8). Experiments indicate that, in general, (25.30)
will have nontrivial steady states. The evolution is stopped at some time
T , when the process does hardly alter anymore, and the final contour C is
extracted as the zero level curve of u(x, T ). This contour turns out to be a
shortest path with respect to an image-induced metric which motivates the
notion of geodesic active contours.

In [12] geodesic active contours have been extended to tensor valued data
H = (hi,j) by using tr (J(HσHH )) as argument of the stopping function g:

∂t∂∂ u = |∇u|div
(
g(tr J(HσHH ))

∇u

|∇u|

)
. (25.33)
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Note that, in contrast to the processes in the previous section, this equation is
still scalar-valued, since the goal is to find a contour that segments all channels
simultaneously. In [13] it is shown that the final contour is a geodesic in a
metric that now depends on J(HσH ). The PDE (25.33) may also be rewritten
as

∂t∂∂ u = g(tr J(HσHH )) ∂ξξ∂ u + ∇�(g(tr J(HσH )))∇u . (25.34)

Since a tensor-valued image involves more channels than a scalar-valued one,
we can expect that this additional information stabilises the process when
noise is present.

Figure 25.7 shows the temporal evolution of the active contour model
for tensor fields. The goal was to extract the contour of the human brain
shown in the original image. First one notices that the evolution is slower
in the noisy case. The reason is that noise creates large values in the trace
of the structure tensor. As a consequence, the evolution is slowed down. For
larger times, however, both results become very similar. This shows the high
noise robustness of the active contour model for tensor-valued data sets. A
comparison with an uncoupled active contour model in Fig. 25.8 demonstrates
the crucial role of channel coupling.

Alternative active contour models based on the Mumford–Shah functional
have been considered recently in [29].

Fig. 25.7. Tensor-valued geodesic active contours (σ = 3, λ = 1). Top row, from
left to right: Tensor image of size 128× 128 including contour at time t = 0, t = 960
and t = 9600. Bottom row, from left to right: Same experiment with 30% noise. From
[13]
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Fig. 25.8. Left: Noisy tensor image from Fig. 25.7 with initial contour. Right:
Result when no channel coupling is used. (σ = 3, λ = 1, t = 9600). From [13]

25.8 Summary and Conclusions

We have surveyed a number of discontinuity-preserving PDEs for denoising
or segmenting tensor fields. They include isotropic and anisotropic nonlinear
diffusion and their corresponding regularisation methods, mean curvature mo-
tion, self-snakes, and geodesic active contours. We have seen that they arise as
natural extensions of their scalar-valued predecessors provided that uniform
design principles are obeyed: The evolution of the different channels has to
be coupled by a joint diffusivity, diffusion tensor or smoothing direction. In-
stead of adapting the nonlinear PDEs to the evolving image structure via the
squared gradient magnitude, the trace of a structure tensor is used. In those
cases where the edge direction is required, it is replaced by the eigenvector
direction for the smallest eigenvalue of the structure tensor. Apart from these
natural design principles, PDEs for tensor fields offer additional qualities:
Their continuous nature supports rotationally invariant models. Last but not
least, by virtue of the channel coupling a maximum–minimum principle for the
scalar-valued PDEs translates into preservation of positive semidefiniteness in
the tensor setting.
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Fig. 2.6. Yosemite sequence (316 × 252 × 15). From Left to Right, Top to Bottom:
(a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear structure
tensor. (e) Robust structure tensor. (f) Coherence based smoothingff
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Fig. 2.7. Yosemite sequence without clouds (316×252×15). From Left to Right, Top
to Bottom: (a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothingff
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Street sequence (cropped) (145 × 100 × 20). From Left to Right, Top to
Bottom: (a) Frame 10. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothingf
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Fig. 2.10. Comparison between least squares and robust orientation estimation

Fig. 2.11. Comparison between least squares and robust orientation estimation
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Fig. 5.1. Schematic diagrams four microstructures found in the brain. The black
lines are barriers to the movement of water molecules. The red contours show the
expected shape of p in each tissue. Panel (a) shows a fluid-filled region. Panel (b)
shows isotropic grey matter. Panels (c) and (d) show white matter with one and two
dominant fibre orientations, respectively
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.3. Shows various features of p plotted over a coronal slice through a healthy
human brain. Panel (a) shows the fractional anisotropy, ν. Panel (b) shows Tr(D).
Panels (c) shows the skewness, µ. Panel (d) shows the colour coded principal di-
rection, e1. Panel (e) shows the output of Alexander’s voxel classification algorithm
(Sect. 3.2); black is background, blue is order 0, white is order 2 and pink is order
4. Panel (f) shows the spherical-harmonic anisotropy (Sect. 3.2). In each panel, the
upper region of interest contains some grey matter (top), part of the corpus callosum
(middle) and some CSF (bottom). The lower region contains the fibre crossing in the
pons
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Fig. 5.4. Shows the PAS (in red) in brain voxels of the coronal slice in Fig. 5.3
superimposed on the fractional anisotropy map
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Fig. 5.5. Shows the ODF (in red) approximated using q-ball in brain voxels of the
coronal slice in Fig. 5.3 superimposed on the fractional anisotropy map
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(a) MD: mean diffu-
sivity

(b) FA: fractional
anisotropy

(c) cl (green) and cp

(magenta)

Fig. 7.4. Different shape metrics applied to one slice of a brain DTI scan

(a) Principal eigenvector (b) Linear versus planar

Fig. 7.6. Volume renderings of half a brain scan, (a) colored according to orientation
of principal eigenvector; (b) the distribution of linear (green) and planar (magenta)
anisotropy. Surface is defined by FA = 0.4
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(a) (b)

Fig. 7.8. Brush strokes illustrate the orientation and magnitude of the diffusion:
background color and texture-map show additional information

Fig. 7.7. Interactive volume renderings of a human brain data set. The volume
renderings (top) show collections of threads consistent with major white-matter
structures: IC = internal capsule, CR = corona radiata, CB = cingulum bundle, CC
= corpus callosum diagrammed on the bottom. Components of the tensor-valued
data control thread orientation, color, and density. Direct volume rendering simul-
taneously shows in blue the cerebral spinal fluid in the ventricles (labeled V) and
some sulci for anatomical context
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(a) Boxes (b) Ellipsoids (c) Superquadrics

Fig. 7.9. A portion of a brain DTI scan as visualized by three different glyph
methods (overall glyph sizes have been normalized)

(a) sagittal slice (b) axial slice

Fig. 7.11. Mapping of e1 to the RGB channel shown in 2D slices of a healthy
volunteer brain



428 A Color Plates: 7 Vilanova et al.

(a) (b)

Fig. 7.12. (a) Streamline tracing using two ROIs to trace the corona radiata in a
data set of a healthy volunteer brain. (b) Streamlines in a data set of a goat heart
using the seeding technique of Vilanova et al. [38]

Seed Points

(a) (b)

Fig. 7.13. Examples of streamsurfaces: (a) red streamlines (represented as cylin-
ders) and green streamsurfaces generated using the method of Zhang et al. [40] show
linear and planar anisotropy, respectively, together with anatomical landmarks for
context; (b) Streamlines using seed points (yellow region) trace streamsurfaces and
show the possible prolongation of the fiber bundle, generated using the algorithm of
Vilanova et al. [38]
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(a) (b)

Fig. 7.14. (a) An interactive exploration tool for DTI volume rendering. Clockwise
from upper left are a 2D barycentric widget, a 1D widget, a 2D Cartesian widget,
and a 2D Cartesian culling widget. (b) A user explores a complex 3D model in a
virtual reality CAVE

(a) (b)

Fig. 7.15. Studies of white matter fibers in neonatal brains with different data sets.
(a) Premature neonate lacking corpus callosum (see arrow), (b) full-term neonate
where no fiber abnormalities were found. Corpus callosum and corona radiata are
seen
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(a)

Cl=1

Cp=1 Cs=1

(b)

Fig. 7.16. Visual exploration and quantitative analysis of a cancerous brain. (a)
A 3D visualization showing streamtubes and streamsurfaces as well as tumor and
ventricles. (b) The difference histogram obtained by subtracting normalized barycen-
tric histograms calculated from tumor-bearing and contralateral sections. Here zero
maps to medium gray because the difference is signed. Note that the most striking
difference occurs near the cs = 1 vertex

(a) (b)

Fig. 7.17. Two cases of adult tumor brain. (a) Fibers are pushed by the tumor.
(b) No fibers are in the tumor area, indicating the destruction of neural structures
there
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(a) (b) (c)

Fig. 7.18. Visualization of coregistered DTI and MS lesion models. (a) The whole
brain with streamtubes, streamsurfaces, lesion masks and ventricles. (b) A closeup
view of white matter fibers near the MS lesions. The streamtubes around the lesion
area give some clues about white matter structural changes there. (c) The same
brain and view as (a) but showing only streamtubes that contact the lesions, thus
clarifying the white matter structures involved
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Fig. 8.1. Visualization of the corpus callosum as extracted via fiber tractography
[5] from the diffusion tensor MR image of a female human brain. Views are from
the side (top) and top (bottom) of the brain, with the head facing toward the left.
The corpus callosum is the connecting band of white matter fibers that provide the
primary means of communication between the two cerebral hemispheres



A Color Plates: 8 Gee et al. 433

Fig. 8.2. Atlas-based brain image segmentation. (Left) A surface rendering of
the labeled atlas used in this work. (Middle) The gray matter labels for one hemi-
sphere are shown superimposed on the underlying structural image of the brain atlas.
(Right) The atlas is registered to the corresponding T1-weighted structural image
of the female subject whose corpus callosum is depicted in Fig. 8.1, and the warped
gray matter labels for one hemisphere are shown superimposed on the subject’s
structural image. The following brain regions are delineated in the atlas, further
details of which can be found in [6]: precentral gyrus; superior temporal gyrus; mid-
dle temporal gyrus; inferior temporal gyrus; superior frontal gyrus; middle frontal
gyrus; inferior frontal gyrus; supramarginal gyrus; postcentral gyrus; parahippocam-
pal gyrus; occipitotemporal gyrus; superior parietal lobule; inferior parietal lobule;
occipital lobe

Fig. 8.3. Voronoi partition derived from the individualized atlas. (Left) The
distance-constrained Voronoi tessellation superimposed on the individualized gray
matter labels on which the tessellation is based. (Middle and Right) Surface render-
ings of the same three-dimensional Voronoi partition



434 A Color Plates: 8 Gee et al.

Fig. 8.5. Visualization of the anatomically labeled version of the callosal tract
depicted in Fig. 8.1. The color legend is the same as that for the atlas in Fig. 8.2. The
bottom row shows the tract within one hemisphere (oblique view) and its appearance
at the midsagittal plane (bottom left)
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Fig. 8.6. Visualization of the anatomically labeled version of the callosal tract from
a male subject. The color legend is the same as that for the atlas in Fig. 8.2. The
bottom row shows the tract within one hemisphere (oblique view) and its appearance
at the midsagittal plane (bottom left)
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Synthetic data. Computer simulation of crossing fibers. (a) Left: DTI
results. Middle: (b) DTI variational regularization (VR) results. (c) Right: MTV
results.Each arrow represents a voxel. Voxels represented by more than one arrow
have multiple components. Only components with a considerable volume fraction
are shown (fiff > 0.3)
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Fig. 9.2. Phantom. (a) Top Right: Excised spinal cords placed crossing at 45 degrees
(illustration). (b) Top Left: DTI results. (c) Bottom Left: Regularization results. (d)
Bottom Right MTV results. Only components with a considerable volume fraction
are shown (fiff > 0.3) The directions supplied by MTV are parallel to the original
fiber orientations
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Fig. 9.3. Fiber Tracking. (a) Top Right: T2 non diffusion weighted reference image.
(b) Top Left: DTI resulted fiber tracking. (c) Bottom Left: Fiber tracking of a reg-
ularized tensor field. (d) Bottom Right: MTV resulted fiber tracking. The tracking
originated from the ROI, marked with a rectangle
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Fig. 10.1. Simulations of the diffusivity profiles from rank-2 (top) and rank-6 (bot-
tom) tensors from a unidirectional voxel (left) and a voxel with two different fiber
orientations (right)

Fig. 10.2. GA values from rank-2 (left column) and rank-6 (second column) tensors
from a coronal slice of an excised rat brain image. The right two columns show the
difference between the variance and GA values when these two tensor models were
used



440 A Color Plates: 10 Özarslan et al.

Fig. 10.3. The simulation results. The three rows show the 1, 2 and 3 fiber systems
from top to bottom. The different columns show the orientations of the cylinders,
probability isosurfaces obtained using rank-2 DTI, diffusivity profiles, equiproba-
bility surfaces from rank-6 DTI, and these probability surfaces after a sharpening
transformation (from left to right)

Fig. 10.4. Isosurfaces of displacement probability functions implied by a rank-6
tensor model from a selected region of interest (ROI) in an excised rat spinal cord
image. The top right image is from a non-diffusion weighted dataset showing the
ROI where the probability isosurfaces were calculated
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Fig. 11.1. Maelstrom of spacetime around a rotating black hole, visualized via
integral lines (left) and vertex-based glyphs (right)

Fig. 11.2. Front, side and top view of stream lines along the maximum eigenvector
in linear regions of a human brain data set

Fig. 11.4. Particle geodesics in the vicinity of a rotating black hole
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Fig. 11.5. Metric ellipsoids applied to a slice of the human brain – overview (left)
and enlargement (right)

Fig. 11.6. Tensor glow technique applied to a slice of the human brain – overview
(left) and enlargement (right)

Fig. 11.7. Tensor cones applied to a slice of the human brain – overview (left) and
enlargement (right)
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Fig. 11.8. Haber glyphs applied to a slice of a human brain – overview (left) and
enlargement (right)

Fig. 11.9. Tensor schlieren applied to a slice of a human brain – overview (left)
and enlargement (right)

Fig. 11.10. Tensor splats applied to a slice of a human brain – overview (left) and
enlargement (right)
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Fig. 11.11. Comparison of metric ellipsoids with tensor splats technique applied to
a slice through a diffusion tensor field acquired from a human brain

Fig. 11.12. Geodesics in the spacetime of a rotating black hole, indicating the ‘event
horizon’ of the black hole at the location of their congruence
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Fig. 13.11. Original and scaled topology

Fig. 13.12. Progressive topology simplification by enforced bifurcations

Fig. 13.13. Local topology simplification
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(a) Space-time grid

wedge swapw

creation

annihilation
side face

t

(x,y)

(b) Cell-wise tracking

Fig. 13.14. Local topology simplification

Fig. 13.15. Visualization of the complete topology evolution
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(a) Two degenerate points (b) Three degenerate points

Fig. 14.2. White dots are degenerate points indicating places where all seven con-
straint functions are zero. Each colored curve corresponds to a constraint function
being equal to zero. Places where multiple curves intersect are where multiple con-
straint functions are satisfied simultaneously. The background is pseudo-colored by
the discriminant functions. The data is a 2D slice of a randomly generated 3D tensor
field

(a) First set (b) Second set

Fig. 14.4. Randomly generated 3D tensors. Warmer line colors are closer to type
P degenerate points where major and medium hyperstreamlines intersect, while
cooler line colors are closer to type L degenerate points where medium and minor
hyperstreamlines intersect. The rest of the volume is pseudo-colored by the discrim-
inant using cool colors for low discriminant values (closer to feature lines) and warm
transparent colors for distant values
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(a) Oblique view (b) Top view

Fig. 14.5. Double point load data. Yellow arrows indicate point load, while the 2
magenta spheres show the location of the triple degenerate points. Color scheme is
the same as Fig. 14.4

(a) Oblique View (b) Top View

Fig. 14.6. Degenerate lines in deformation tensors of flow past a cylinder with a
hemispherical cap. Feature lines are colored as in Fig. 14.4
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Fig. 15.1. Example of a closed hyperstreamline in a 3D tensor field

Fig. 15.2. Backward integrated hyperstreamsurface
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Fig. 15.3. Closed hyperstreamline (minor eigenvector field) in combination with a
regular hyperstreamline

Fig. 15.4. Closed hyperstreamline including hyperstreamsurfaces exposing the sur-
rounding tensor field (minor eigenvector field)

Fig. 15.5. Closed hyperstreamlines in single point load data set
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(a) (b)

Fig. 16.7. This figure shows a single-top-load. Spot size and density of the input
images are adapted to the corresponding eigenvectors. Red shows regions of com-
pression, green expansion according the respective eigenvector field: the images are
planar slices along the (a) yz-plane and (b) xy-plane slice orthogonal to the force

(a) (b)

Fig. 16.8. The images represents a yz-plane (a) and xz-plane (b) slice of a two-force
dataset. (a): In the lower-left corner we see a region of compression, a result mainly
due to the pushing force on the left; in the upper-right corner expansion dominates
as a result of the right pulling force. (b): The left circle corresponds to the pushing
and the right to the pulling force. The fluctuation of the color is a result of the low
resolution of the simulation
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Fig. 17.6. Bivariate interpolation: Ellipsoidal representation of the interpolation
of a 3D tensor field over a 2-dimensional hexagonal region: Euclidean interpolation
(left) and geodesic interpolation (right). In both cases, the colors correspond to the
values of the geodesic anisotropy index

(a) (b) (c)

Fig. 17.4. Anisotropies: Diffusion ellipsoids of a brain region colored by the FA (a),
the GA (b) and the KLA (c)

Fig. 17.5. Univariate interpolation: Ellipsoidal representation of linear interpolation
(left) and geodesic interpolation (right) between two SPD tensors. In both cases, the
colors are based on the values of the geodesic anisotropy index



A Color Plates: 18 Pajevic et al. 453

Fig. 18.2. Fiber tracts result from integrating along the tangent direction of the
B-spline approximated tensor field, and with starting points chosen from the two
circular regions in the area of pons. The obtained result agrees well with known
anatomical data

0 0.2 0.4 0.6 0.8 1

(a)

0 0.2 0.4 0.6 0.8 1

(b)

Fig. 18.3. (a) A set of 1-D NUB-basis functions with p = 2 and the knot vector
U = [0 0 0 0.1 0.6 0.6 0.8 1 1 1]. (b) A set of rational basis functions (NURBS)
obtained using the NUBs in (a) and by changing the weights for the 3rd, 4th and
5th basis function to 0.2, 0.5 and 5, respectively. The remaining NUBs had weights
w = 1
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(a) (b)

Fig. 18.4. (a) 2-D curve NURBS model fit to noisy data (b) 3-D curve NURBS
model fit to fiber tracking data, indicated on the inset image

Fig. 18.5. Radii of curvature obtained from a noisy data set of points sampled from
a curve consisting of four circular arcs (see the inset in upper right corner) with
radii 100,10,5,35. The sampling error was 1%. The solid black line indicates the true
radius (at inflection points the radius is infinite). The solid blue line indicates the
NURBS fit, while B-spline approximation estimates are labeled as follows: ∆ = 1,
i.e., interpolation (green triangles), ∆ = 0.5 (purple dots), or ∆ = 0.2 (red solid
line). Note that the original curve could have been described with only 10 control
points (the light blue circles, not all shown)
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Fig. 18.6. Color coded images of the radius of curvature obtained at the center
of each voxel for the given slice using B-spline approximation with ∆ = 0.2 (left)
and NURBS (right), with colorbar indicating the scales. We see that the NURBS
estimates are capable of showing the spatial variation of the fiber curvature. Note,
that although the models are continuous, the estimates obtained from them are
not necessarily smooth. The pixelization in the image, however, is arbitrary and we
could have obtained the estimates at any point in space with the continuous models
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Fig. 19.3. (a) Left: Synthetic 2-D tensor test image, 32 × 32 pixels. (b) Middle:
Regular interpolation data where every fourth pixel in each direction is given. (c)
Right: Scattered interpolation data where 10 percent of all pixels have been selected
randomly

Tensor-valued interpolation of Fig. 19.3(b). (a) Top Left: Interpolation
data. (b) Top Middle: Interpolation with linear diffusion. (c) Top Right: Isotropic
nonlinear diffusion. (d) Bottom Left: Anisotropic nonlinear diffusion. (e) Bottom
Middle: Biharmonic smoothing. (f)ff Bottom Right: Triharmonic smoothing
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Tensor-valued scattered data interpolation of Fig. 19.3(c). (a) Top Left:
Interpolation data. (b) Top Middle: Interpolation with linear diffusion. (c) Top
Right: Isotropic nonlinear diffusion. (d) Bottom Left: Anisotropic nonlinear diffu-
sion. (e) Bottom Middle: Biharmonic smoothing. (f)ff Bottom Right: Triharmonic
smoothing
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(a)

(b)

(c)

(d)

Fig. 20.4. Compares the results of Alexander’s reorientation strategies. (See color
plates.) Panel (a) shows the apparent diffusion tensors in the region of interest in
Fig. 1(a). Panels (b), (c) and (d) show the apparent diffusion tensors in the same
region after a shear along the left-hand arm of the corpus callosum fiber in the
region, as highlighted in Fig. 1(d), using no reorientation, finite-strain reorientation
and PPD, respectively
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Fig. 21.1. Edge preserving tensor denoising. Left to right: (a) Positive semidefinite
matrix field, 29 × 30. (b) Eigenvalues perturbed by Gaussian noise. (c) Median
filtering of (a), 5×5 stencil, Frobenius norm, 5 iterations. (d) Same for (b). Adapted
from [19]

Fig. 21.4. Filtering of 2D DT-MRI data. Top, left to right: (a) Corpus callosum
detail, cf. Fig. 3(b), represented by ellipses. Missing ellipses result from outliers with
negative eigenvalues. (b) Same with noise, cf. Fig. 2(b). (c) Median filtering of noisy
image, 3 × 3 stencil, Frobenius norm, 1 iteration. (d) Same as (c) but 5 iterations.
Bottom, left to right: (e) Mid-range filtering of the original image, 3 × 3 stencil,
Frobenius norm. (f) Same but with 5ff × 5 stencil. (g) M-smoothed (p = 0.1, 3 × 3
stencil, Frobenius norm) using grid search. (h) Same with focussing strategy

Fig. 21.6. Median filtering of fluid dynamics data. Left to right: (a) Detail (32×32)
from Fig. 5(a). (b) Median filtering, 3×3 stencil, Frobenius norm, 10 iterations. (c)
100 iterations. (d) 1000 iterations
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Fig. 22.2. (a) Top left: 2-D tensor field extracted from a DT-MRI data set of a
human head. (b) Top right: enlarged section of left image. (c) Bottom left: dilation
with DSE(

√
5). (d) Bottom right: erosion with DSE(

√
5)
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Fig. 22.3. (a) Left: closing with DSE(
√

5). (b) Right: opening with DSE(
√

5)

Fig. 22.4. (a) Left: white top hat with DSE(
√

5). (b) Middle: black top hat with
DSE(

√
5). (c) Right: self-dual top hat with DSE(

√
5)

Fig. 22.5. (a) Left: external gradient with DSE(
√

5). (b) Middle: internal gradient
with DSE(

√
5). (c) Right: Beucher gradient with DSE(

√
5)
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Fig. 22.6. (a) Left: morphological Laplacian with DSE(
√

5). (b) Middle: result of
shock filtering with DSE(

√
5). (c) Right: edge map derived from zero crossings of

the morphological Laplacian with DSE(
√

5)
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Left : DT-MRI section of the corpus callosum; right : upsampling of the
framed region

Fig. 23.6. Registration of two DT-MR images. (a) source tensor image; (b) target
tensor image; (c) estimated deformation field, shown as a warping, from target to
source; (d) source deformed

1 12 241 12 24
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24
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24

Fig. 23.2. Left : A 25 × 25 zoomed corpus callosum region of a slice in a DT-MRI
dataset, overlapped by the 2D projections of the diffusion tensor (ellipses) in every
point; right : the result after our filtering approach
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(a) (b)

(c) (d)

Fig. 24.1. Original scalar field (step edge) with added noise (a), the result without
using the magnitude certainty measurement cm (b), results using cm with σ = 1 (c)
and with σ = 0.5 (d)
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(a) (b)

Fig. 24.3. Tensor field generated from noisy DT-MRI data (a) and result of filtering
the tensor field using the NC method (b). The ROI is the corpus callosum, the dark
bow-shaped region
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Fig. 24.9. Glyph visualization for a coronal slice for the original noisy DT-MRI
data from a monkey brain (a) and the same visualization after regularization (b)
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(a) (b)

Fig. 24.10. Tractography in the corpus callosum for the original noise DT-MRI
data from a monkey brain (a) and the same after regularization (b)
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Tensor-valued linear diffusion. Top row, from left to right: Detail from a
DT-MR image (size 15 × 15), at time t = 0.96, at time t = 2.4. Bottom row, from
left to right: Same experiment with 30% noise
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Tensor-valued isotropic nonlinear diffusion. Top row, from left to right:
Detail from a DT-MR image (size 15×15), at time t = 4.8, and at t = 12.0 (λ = 0.5,
σ = 0.5). Bottom row, from left to right: Same experiment with 30% noise (λ = 0.5,
σ = 1)
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Tensor-valued anisotropic nonlinear diffusion. Top row, from left to right:
Detail from a DT-MR image (size 15×15), at time t = 1.92, and at t = 4.8 (λ = 0.5,
σ = 0.5). Bottom row, from left to right: Same experiment with 30% noise, at time
t = 1.92 and t = 4.8 (λ = 0.5, σ = 1)
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Tensor-valued mean curvature motion. Top row, from left to right: Detail
of size 15 × 15 from a DT-MR image; at time t = 2.4, at time t = 6. Bottom row,
from left to right: Same experiment with 30% noise
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Tensor-valued self-snakes. Top row, from left to right: Detail of size 15×15
from a DT-MR image; at time t = 2.4, at time t = 6 (σ = 0.5, λ = 2). Bottom row,
from left to right: Same experiment with 30% noise (σ = 1, λ = 2)
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conjugate gradient method 246, 248
constraint function 242, 244–248
continuum mechanics 218
contraction see tensor, contraction of
control point 305
convex combination 348
convolution 302
convolution filter length 269, 277
coordinate

barycentric 194, 295
Cartesian 225
cylindrical 218
polar 228

coordinate chart see chart
coordinate function 200

corner detection 39, 74
cornerness 337
corona radiata 219
corpus callosum 123, 128, 129, 140,

156, 219, 353, 395, 402
covariant tensor see tensor, covariant
co-vector 193
covering space 226, 229

branch 227
creation see pairwise creation
critical feature 241–243
critical point 227, 242, 259, 260
Cr-surface 7
curvature

Gauss 8
geodesic 10
mean 8
normal section 9
of a fiber tract 309
principal 8
radius 454
radius of 310

curve 192, 193, 199, 201
closed 227
geodesic 10
normal section 9
orthogonal projection of 10
tangent 195

data-adaptive structure tensor see
structure tensor, data-adaptive

deconvolution methods 96
deformation 270
deformation surface 212
degenerate line 247, 253, 255

double 253
degenerate point 194, 225, 227–232,

234, 236–238, 243–245, 247, 251,
257, 259, 262, 270

double 245, 255
linear 245, 249
planar 245, 249

nonlinear 229
triple 245, 253

Delta method 110, 113
denoising 345

discontinuity-preserving 346, 353
spatial 115
variational 116, 166
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voxelwise 113
density

of lines 198
of spots 276

derivative
covariant 200
directional 200, 201
Lie see Lie derivative
partial 200

determinant 11
deviation vector 197, 198, 201, 202,

205
deviator 220, 228, 234, 250, 336
diagonalizable 6
diffeomorphism 7
differential 7
differential equation 200

partial 315–324, 399–412
diffusion

anisotropic 26, 322, 403, 407
directional 12
linear 320, 322, 402
matrix-valued 26, 402–406
nonlinear 24, 322, 402, 406

diffusion ellipsoid see ellipsoid
diffusion spectrum imaging (DSI) 95
diffusion tensor 12, 88, 123, 215, 220,

271, 404
3D 123

diffusion tensor imaging 88, 121, 122,
155, 165, 194, 206–209, 211, 215,
216, 219, 221, 255, 299, 320, 345,
347, 354, 374, 401

biomedical 83
reconstruction 88
visualization 125–139

diffusion tensor magnetic resonance
imaging see diffusion tensor
imaging

diffusion weighted imaging 85, 109,
123, 206

diffusion weighted magnetic resonance
imaging see diffusion weighted
imaging

diffusion weighting factor 87
diffusivity function 25, 32, 318, 402
Dijkstra’s algorithm 199
dilation 359
dimension 3

discriminant 242, 244–248, 252
distribution

Gaussian 108, 287
probability 287

divergence
Kullback-Leibler 287
Kullback-Leibler, symmetrized 288

DTI see diffusion tensor imaging
DT-MRI see diffusion tensor imaging
DWI see diffusion weighted imaging
DW-MRI see diffusion weighted

imaging
dynamical system 229, 258

edge detection 220
edge detector 74
eigendecomposition 203, 215, 220, 244,

245, 247, 291, 345
eigenspace 6
eigenvalue 6, 124, 194, 204, 215–220,

225, 230, 242, 243, 259, 261, 271,
275, 348

degenerated 194
gradient 220–222
sign 271
wheel 217, 245

eigenvalue statistics 126, 217, 219–220,
222, 223

eigenvector 6, 124, 193–198, 203, 204,
215, 225, 243, 261, 271

field 225–228, 257–259, 262, 269,
275, 277

flow 237
principal 128, 194, 196–198, 209
radial 228

Einstein field equations 200, 202
Einstein’s convention 10
elastic matching 330
ellipsoid 124, 128, 202, 203

metric 203–206, 210, 212
projection 203
rendering 203
shadow 204

energy functional see variational
energy

equation
differential see differential equation

erosion 359
Euclidean space 192, 193
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Euler method 134, 259
Euler-Lagrange equation 171, 200,

316, 317, 330, 406, 407
expansion 269, 271, 276–278
extremal line 199

fast-LIC 275
feature

critical see critical feature
unstable 243

feature analysis 74
feature line 251–253
fiber orientation 128, 172, 219
fiber orientation distribution (FOD)

97
fiber tracking 156, 168
fiber tract 130, 309
fiber-tracking 98
field line 195
finite difference 330
finite element method 330
fixed point iteration 24
flow 226
flow field 242
fluid dynamics

computational 208, 211, 258, 354
focal point 259
focusing strategy 350, 351
force field 270
form

bilinear 7
first fundamental 7
linear 5
second fundamental 8

fractional anisotropy see anisotropy
index, fractional

Frobenius inner product 286
functional iteration see fixed point

iteration

Gauss
curvature 8
frame 7
map 7

Gaussian bell 50
Gaussian noise 88
Gaussian smoothing 18
general relativity see relativity
generalized anisotropy 183

generator
of a tensor field 301
of B-splines 303

geodesic 10, 195, 199–202, 211, 212,
411

distance 137, 286
interpolation 296

geodesic bundle 201, 202, 212
geodesic deviation 201
geomechanics 270
Gibbs random field 116
Gibbs sampler 389
global structure 207, 208
glyph 125, 130, 191, 192, 204–209, 249,

270
Haber see Haber glyph
Reynold see Reynold glyph
shape icon 205
superquadric 132, 204, 218, 222
van Gogh keystroke 205, 212

gradient descent 350, 351
graph

topological 233, 234, 237
graphical primitive 125, 203, 205
gravitational lens 202
gray matter 219, 220
grid

cell 234, 247, 248, 255, 258, 261, 278
cycle 258, 261, 262
face 248, 251, 261, 262

curvilinear 253
hexahedral 247, 255, 278
of wavenumbers 95, 96
regular 315
tetrahedral 259, 262

Haber glyph 205, 208, 212
HARDI see high angular resolution

diffusion imaging
hedgehog 203
high angular resolution diffusion

imaging (HARDI) 122, 125, 219
higher order tensor model 92, 179
human-computer interaction 138
hyper-LIC 198
hyperboloid 202
hyperstreamline 134, 198, 212, 242,

243, 249, 252, 254, 257–265, 270
closed 257–265
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hyperstreamsurface 261, 262, 264

icon see glyph
ill-posed 169
image registration 327
image restoration 315–324, 406
implicit function 244
index

Poincaré 227´
tensor field 227, 229, 233, 237

initial seed line see seed line
inpainting 315
integral curve see integral line
integral line 192, 195, 196, 198,

258–260, 275, 277
asymptotic behavior 260

integral manifold 195, see manifold,
integral

integral surface 192, 196
interactive environment 209
interpolation 235, 238, 262, 315–324,

375
biharmonic 318, 320, 322
bilinear 234
convolution-based 316
eigenvalue field 231
eigenvector field 197
harmonic 318
linear 234, 259, 315
matrix field 191, 197, 295–297

bivariate 297
multivariate 296
univariate 295

of scattered data 315
PDE-based 316
triharmonic 318, 320, 322
trilinear 250, 261

invariance
phase 371
rotational 318, 347, 348, 361
scaling 347

invariant 216
gradient 218, 220, 221
principal 216
torus 258

isotropy 126
isotropy artifact 197, 198, 205, 208,

211

Jacobi field 201
Jacobi matrix 194
Jensen inequality 110

knot vector 305
Kriging estimator 337
Kuwahara-Nagao operator 19

Lagrange formalism 200
Lagrange function 200
Laplacian of Gaussian 71
lattice index see anisotropy index,

lattice index
least squares estimation 23, 30, 92, 374

weighted 382
length scales of brain tissue 85
level set method 199, 409
Levenberg-Marquardt algorithm 94,

97
LIC see line integral convolution
Lie derivative 201
limit set 234, 260
line field 226
line integral convolution (LIC) 137,

198, 269, 270, 275
linear combination 3
local alignment 197
location 196
Loewner ordering 360
Lucas-Kanade method 28

Mahalanobis distance 59
manifold 192–197

differentiable 192
integral 192
non-orientable 197
one-dimensional 195

map
adjoint 5
Cr-differential 7
Gauss 7
identity 5
linear 3
multilinear 10
self-adjoint 6
Weingarten 8

Markov random fields 386
material line 196
matrix
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covariant 287
exponential of 286
indefinite 354
positive semidefinite 347
singular 194
symmetric 347
symmetric positive definite 123, 286

matrix gradient 168
matrix representation 4, 215
maximum a posteriori estimation 389
mean

arithmetic 346, 350
of eigenvalues see eigenvalue

statistics
of symmetric positive definite

matrices
arithmetic 292
geometric 293
harmonic 294
weighted 295

mean curvature motion 346, 407–408
mean diffusivity 126, 127
median 346, 350, 351

filter 345–347, 351, 353
matrix-valued 346, 347
scalar-valued 346
vector-valued 348

medicine 191
M-estimator 346, 349, 350
metric 200, 201, 269, 272, 273, 275, 279

distortion 269
Euclidean 286, 346
flat 269
Riemannian 286
time-dependent 272

metric ellipsoid see ellipsoid, metric
metric space

flat 201
metric tensor see tensor, metric
metric tensor field see tensor field,

metric
mid-range filter 349, 351
mid-range value 346, 349, 350

matrix-valued 349
scalar-valued 349

minimizer 293, 346–349, 351
minimum mean square error estimation

389
mode 346, 350

Moebius strip 197
momentum flux density 257
monkey saddle 230
Monte Carlo simulation (MCS) 110
morphology 359
M-smoother 346, 349–351
multi-compartment models 93
multiple fiber orientations 166
multiple tensor model 169
multiple tensor variational framework

169, 170
Mumford-Shah functional 411
muscle tissue 124
myocardial structure 145

Newton method 293
Newton-Raphson method 247, 248,

250
node 257, 259
noise 276, 277

artifacts 110
correction 113
Gaussian 352
impact 108
Johnson 107
random 107
salt-and-pepper 346
spot 276
uniform 354, 401
white 276

nonlinear diffusion see diffusion,
nonlinear

nonlinear structure tensor see
structure tensor, nonlinear

non-uniform B-spline see B-spline,
non-uniform

non-uniform rational B-spline see
B-spline, non-uniform rational

norm
Euclidean 348, 372
Frobenius 168, 234, 346, 348, 350,

351, 372, 406
matrix 348–350
spectral 348, 350, 351
tensor 126, 220

normal section
curvature 9
curve 9

normalized convolution 378, 382
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NUBS see B-spline, non-uniform
NURBS see B-spline, non-uniform

rational

objective function see variational
energy

occlusion 191, 198
octahedral plane 291
opacity 128
opening 359
optic flow constraint 28
optic flow estimation 28, 49
optimization

nonlinear 329
regularized 330

orientation 220
orientation distribution function (ODF)

95
orientation estimation 37
orientation tensor 64

pairwise creation and annihilation
233, 237, 238

partial volume effect 136, 219, 220
path line 195
persistent angular structure (PAS) 97
perturbation 243
phase invariance 65
Poincaré index´ see index, Poincaré
point

critical see critical point
degenerate see degenerate point

point load 251, 253
double 253, 256, 278
single 244, 264, 278

polar decomposition 333
polynomial

characteristic 6, 216, 217
cubic 216, 228, 246

polynomial approximation 65
PPD see preservation of principal

directions
predictor-corrector method 259
preservation of positive semidefiniteness

170, 348, 361, 405, 408, 409
preservation of principal directions

(PPD) 333
principal frame 215

principal invariant see invariant,
principal

principal logarithm 286
probe 270, 271, 275
product

inner 220
tensor 220

q-ball imaging 96
q-space spectral imaging 125
quadratic filter 68
quadrature filter 65, 69, 372
quadric surface 202–205, 211, 212

radial basis function 315, 318
rate of strain 257
ray 203
reflectivity 191
registration 157, 377
regularization 317, 406–407
relative anisotropy see anisotropy

index, relative
relativity 191, 194, 200, 202, 205, 211
reorientation 333

finite strain 333
preservation of principal directions

333
Reynold glyph 205, 212
Ricci focusing 202
Rician distribution 88, 108, 115
Riemann curvature tensor 200–202
Riemann tensor see Riemann

curvature tensor
Riesz representation theorem 5
Riesz transform 66
robust statistics 21
robust structure tensor see structure

tensor, robust
robustness 211, 346, 350, 353, 401
Rodrigues’ formula 171
root signal 346, 354
Runge-Kutta method 134, 234, 261,

275
Runge-Kutta-Fehlberg method 259

saddle point 257, 259
schlieren 205
sector 229

elliptic 230
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hyperbolic 229, 230, 236
parabolic 229, 230, 233, 234

seed line 196
seed point 134, 198
self-snakes 408–409
separatrix 225, 229, 230, 232–234, 236,

238, 239, 241, 254, 257, 270
unstable 232, 233

shadow ellipsoid see ellipsoid, shadow
shape 125, 191
shape factor 194, 205, see also

anisotropy
linear 194, 198
planar 194
spherical 194, 198, see also isotropy

shock filter 360
signal to noise ratio 109, 390
similarity measure 329
simulated annealing 308, 389
singularity 225, 226, 230, 236, 237, 351

half- 234
skewness 89

of eigenvalues see eigenvalue
statistics

solid state physics 269
space

approximation 301
atomic 301
covering see covering space
dual 5
Euclidean see Euclidean space
flat 201, 202
Riemannian symmetric 287, 316
shift invariant 301
tangential see tangential space
vector 3

spacetime 195, 202, 211
spatial interest points 64
spectral decomposition (of a matrix)

see eigendecomposition
spherical-harmonic series 92
spline 248, 315, 316, see also B-spline
spot size 277
standard deviation

of eigenvalues see eigenvalue
statistics

Stejskal-Tanner equation 108, 109,
178, 180

stencil 346, 354

streak line 196
streak surface 196
stream line 195–197, 199, 226, 230, 270

illuminated 198
integration 197, 198, 226
tracing 134

stream surface 196
stress 12, 257

principal directions 12
viscous 257

stress tensor see tensor, stress
structural stability 225, 231, 233, 260
structure mechanics 269
structure tensor 17, 49, 64, 370,

400–401
data-adaptive 20
gray value local 20
nonlinear 24–29
robust 21, 27, 29
spatio-temporal 29

structuring element 359
superquadric see glyph, superquadric
symmetry constraint 243

tangent space 7
tangent vector 7, 193
tangential bundle 193
tangential space 193
tangential vector 193
template matching 378
tensor see also matrix

antisymmetric 194
antisymmetric part 259
contraction of 11, 200, 220, 221
covariant 193
deformation 251, 253
deviatoric see deviator
difference 336
diffusion see diffusion tensor
gradient 271
isotropic 194
metric 11, 202, 204, 211
momentum flux 242
of rank two 193, 194, 199, 202
of Riemannian curvature see

Riemann curvature tensor
of second order 225, 257, 259, 269
positive definite 194, 199, 202, 211,

see also matrix, positive definite
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positive semidefinite 12, 194, see
also matrix, positive semidefinite

product 11, 123
scalar product 336
stress 12, 251, 253
stress-strain 264, 269, 271
structure see structure tensor
symmetric 12, 194, 202, 211, 220,

225, 241–257, 259, 269, see also
matrix, symmetric

symmetric part 259, 271
tensor cone 205, 207, 212
tensor field 193, 194, 196, 199, 205,

225, 257, 264, 269, see also tensor
metric 194, 199, 201, 203, 205
topology see topology, tensor field
two-dimensional 225

tensor field line 226
tensor glow 205–207, 212
tensor index see index, tensor field
tensor line 212, 234
tensor schlieren 205, 208, 209, 212
tensor splat 206, 209, 210, 212
texture 191, 203–205, 269, 270

analysis 37
fabric 269, 275
generation 269
parameters 277
segmentation 38

Tikhonov regularization 329
time line 196
tissue microstructure 123
top-hat 359
topology

graph see graph, topological
hyperstreamline 249
scaling 236
simplification 235, 237
tensor field 225, 230, 242, 257–259,

261, 270, 273
tracking 237, 239

total variation flow 25
total variation regularization 25, 317
tractography 98, 395

trajectory 195
transfer function 125, 128
transformation function 273
transparency 191, 198, 205, 209
trisector 229, 232–234, 237, 257

unit normal field 7
unsharp masking 373

van Gogh keystroke see glyph, van
Gogh keystroke

variance
of eigenvalues see eigenvalue

statistics
variational energy 316, 317, 329,

346–351, 406
non-convex 350, 351

vector field 193–196, 205, 271
time-dependent 195

vector field visualization 125, 133
view direction 203, 209
view plane 203, 204
visualization

glyph-based 130, 204–209
of topology 233
texture-based 269
topology-based 241–257
vertex-based 202–209

volume ratio see anisotropy index,
volume ratio

volume rendering 125, 128, 129
Voronoi tessellation 157
vortex core line 243

warping 157, 330
wedge bifurcation see bifurcation,

wedge
wedge point 229, 230, 232–234, 237
Weingarten map 8
white matter 123, 127, 129, 219, 220

development 140
injury and disorder 141
normal conditions 139

Wiener filter 373
Witelson partition 161
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