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Effective XCS Search:
Building Block Processing

The facetwise approach to GA theory stresses effective mixing and decision
making among BBs. The last chapter showed that in XCS, BBs are subsets
of specified attributes that increase accuracy. The reproductive opportunity
bound additionally ensures that BBs are able to grow in the population mak-
ing time for the identification and reproduction of schema representatives.
Until now, we assumed that mutation is sufficient to generate better classi-
fiers as investigated in the time bound. However, the GA literature suggests
that effective crossover operators are mandatory to solve boundedly difficulty
optimization problems in which small, lower-level BBs may mislead the pop-
ulation to a local optimum.

Thus, this section investigates problems that pose a similar BB-challenge
to the XCS system. We create hierarchical classification problems that demand
the effective processing of lower level BB structures. In effect, we face the third
part of the proposed facetwise problem decomposition for LCS systems, that
is, the necessity to enable optimal solution search: (1) Search via mutation
needs to be effective; (2) Search via recombination needs to be effective; (3)
Local problem solution structure may be different from global structure and
thus needs to be taken into account when designing effective recombinatory
search operators.

Search via mutation was investigated in several of the previous chapters.
We showed its influence on specificity as expressed in the specificity equation
(Equation 5.8) as well as its influence in generating schema representatives and
finding an optimal problem solution (time extension of schema supply bound,
time bound, Chapter 6). We also noted slight disruptive effects affecting the
sustenance of problem solutions.

This chapter focuses on recombination as well as differences between local
and global problem structure. To investigate the effectiveness of recombina-
tion, we identify BB-hard problems in classification problems. XCS is not able
to solve these problems due to disruption caused by crossover. Mutation alone
may solve the problem, but may take a long time. To solve the problems ef-
fectively, a competent crossover operator is necessary that recombines BBs
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without disrupting them. Experiments with an informed crossover operator
confirm this hypothesis but are unsatisfactory since BB structures cannot be
assumed to be known beforehand.

Thus, we integrate structure extraction mechanisms previously successfully
applied in the GA literature. However, since XCS reproduces in action sets
and thus in problem subspaces, the methods need to be modified for the
XCS system—respecting the difference in local problem solution structure in
comparison to global problem solution structure as suggested in the eighth
point of our facetwise LCS theory approach.

In particular, we introduce the formation of marginal product models used
in the extended compact GA (ECGA) (Harik, 1999). The technique is able
to identify non-overlapping dependency structures in a problem. Since the
marginal product model can only model non-overlapping BBs, we also utilize
dependency structures in the form of Bayesian decision trees as used in the
Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & Cantu-Paz,
1999). The Bayesian model can also detect overlapping dependency structures.

We integrate the methods in XCS by extracting a dependency structure
from the global population and using the gained structural knowledge to gen-
erate local offspring. The resulting enhanced XCS system is able to solve the
identified BB-hard problems.

The remainder of this chapter first derives BB-hard problems for classi-
fication. The evaluations show that only an informed crossover operator can
solve the problems reliably. Next, we introduce competent crossover operators
derived from mechanisms used in ECGA and BOA to solve the BB-challenge
without any prior structural information. Summary and conclusions put the
results into a broader LCS perspective.

7.1 Building Block Hard Problems

As we have seen in the previous chapter, XCS relies on the supply of mini-
mal order schemata that increase classification accuracy—the BBs in XCS. In
the previous chapter, we evaluated the schema bound and reproductive op-
portunity bound in a problem in which one minimal order schema had to be
present. The solution was found once the block that specified all km attributes
correctly was detected and reproduced.

The question now is if XCS is able to identify and process several of those
BBs, represented by schemata of order km, effectively. Thus, we first revisit
fitness guidance to understand BB processing in XCS even better. Next, we
create hierarchical classification problems which consist of several BB struc-
tures. In order to solve the problems efficiently, it is necessary to identify,
reproduce, and recombine the blocks appropriately. Thus, fitness guidance
needs to be exploited to successfully grow blocks. Effective recombination op-
erators need to be available as well to successfully combine blocks.
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This section first provides further exemplar problems and the consequent
fitness guidance in the problem. Next, we introduce hierarchical classification
problems showing that a proper BB propagation algorithm is mandatory to
solve these types of problems effectively. Section 7.2 introduces explicit BB-
identification and propagation mechanisms to XCS.

7.1.1 Fitness Guidance Exhibited

As noted before, the strength of the fitness pressure in XCS depends on the
problem at hand. A typical easy problem for the XCS mechanism is the count
ones problem (Butz, Goldberg, & Tharakunnel, 2003), in which the majority
of ones (or zeros) in the relevant attributes decides the class. The accuracy
structure in the count ones problem is very similar to the fitness structure of
a one-max problem in the GA literature. Each relevant bit raises accuracy.
Thus, each relevant bit is progressively more specialized in the condition parts
of the classifiers in XCS.

Table 7.1 shows some exemplar classifier condition parts and the corre-
sponding average reward prediction and reward prediction error estimates for
classifiers with action part 1 in the count ones problem. It can be seen that the
specialization of progressively more ones or more zeroes decreases error and
consequently fitness. Thus, fitness progressively pushes towards the specifica-
tion of more ones (zeros) in the problem. Butz, Goldberg, and Tharakunnel
(2003) showed that uniform crossover can assure and improve successful learn-
ing of the count ones problem with many additional irrelevant bits due to its
effective uniform recombination.

Table 7.1. Expected reward prediction and reward prediction error estimates for
exemplar condition parts in several typically-used Boolean function problems for
classifiers with action part A = 1.

5-Count-Ones Problem Hidden 4-Parity Problem 6-Multiplexer Problem

C R ε

##### 500.0 500.0
1#### 687.5 429.7
##1## 687.5 429.7
0#### 312.5 429.7
####0 312.5 429.7
11### 875.0 218.8
##1#1 875.0 218.8
00### 125.0 218.8
#0#0# 125.0 218.8
110## 750.0 375.0
111## 1000.0 0.0
11##1 1000.0 0.0
000## 0.0 0.0
0##00 0.0 0.0

C R ε

##### 500.0 500.0
1#### 500.0 500.0
0#### 500.0 500.0
11### 500.0 500.0
1##1# 500.0 500.0
00### 500.0 500.0
111## 500.0 500.0
000## 500.0 500.0
101## 500.0 500.0
1110# 1000.0 0.0
0100# 1000.0 0.0
0000# 0.0 0.0
1010# 0.0 0.0
1111# 0.0 0.0

C R ε

###### 500.0 500.0
1##### 500.0 500.0
0##### 500.0 500.0
##1### 625.0 468.8
##0### 375.0 468.8
##11## 750.0 375.0
##00## 250.0 375.0
0#1### 750.0 375.0
0#0### 250.0 375.0
0#11## 1000.0 0.0
001### 1000.0 0.0
10##1# 1000.0 0.0
000### 0.0 0.0
01#0## 0.0 0.0
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In comparison with the count-ones problem, the hidden parity problem
(Kovacs, 1999) is harder because the specialization of one attribute of the
parity bits does not raise accuracy. Only once all relevant attributes are spe-
cialized, accuracy raises, effectively directly solving the problem. Thus, supply
of classifiers that specialize all parity bits is necessary, as also shown in the
previous chapter. Table 7.1 shows the four hidden parity problem (the fifth
bit is irrelevant). Error only drops to zero once all four attributes are correctly
specified. In the next section we show that a hierarchical parity, multiplexer
problem forces XCS to propagate the lower level parity blocks effectively.

Finally, we again show the widely studied multiplexer problem (Wilson,
1995; Wilson, 1998), in which accuracy somewhat guides towards the correct
specializations. Initially, though, only the specialization of the value bits raises
accuracy. It is only once some value bits are specified in a classifier condition
that specialization of the address bits decreases accuracy further. Table 7.1
clarifies the property in the 6-multiplexer case. When starting with complete
generality (P# = 1.0), relying on mutation for the first specializations, speci-
ficity initially raises more in the value attributes of the classifiers. Only later
does specificity in the address attributes take over.

7.1.2 Building Blocks in Classification Problems

The above problems consist of BB structure that either consist of only one BB,
as in the hidden parity problem, or many single-attribute BBs as in the count
ones problem. The multiplexer problem is somewhat a hybrid since initial
fitness guidance leads to the less important value bits and only later, fitness
guides towards the specialization of the address bits. Thus, BB processing
is somewhat easy in the count ones problem in that only one specialization
needs to be identified at a time. This can be accomplished by mutation. More
challenging is the hidden parity problem in which classifiers that specialize all
relevant bits need to be available from the beginning.

What if we combine the output of multiple hidden-parity problems to a
higher-level problem input? The hierarchical dependency between the sub-
problems would require that the hidden parity blocks need to be identified
and then recombined effectively. This described hierarchical problem struc-
ture consequently requires effective BB processing.

We construct such a problem structure using a two-level hierarchy. On the
lower level, small Boolean functions are evaluated which provide the input
to the higher level. Thus, the function evaluation is pursued in two stages.
The evaluation of the functions on the lower level serve as input to the higher
level. For example, we mainly use a parity, multiplexer combination in which
the small lower-level blocks are evaluated by the parity function. The results
are then fed into the higher-level multiplexer function deriving the overall
class of the problem instance. Further information and visualizations on the
hierarchical problem class are provided in Appendix C.
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Note that we are not interested in creating a problem to force BB process-
ing for its own sake. In fact, many indications in nature and engineering
suggest that typical natural problems are structured in a hierarchical, de-
composable structure (Simon, 1969; Gibson, 1979; Goldberg, 2002). Thus, we
believe that the introduced hierarchical problem is an important problem to
solve with a general machine learning system.

How can XCS solve this problem? Clearly, the lower level parity blocks
need to be identified first to enable the discovery of the higher level func-
tion. Table 7.2 shows exemplar conditions with corresponding average reward
predictions and prediction errors for the hierarchical 3-parity, 6-multiplexer
problem. In contrast to the plain multiplexer problem or count ones problem,
in these hierarchical problems the lower-level BBs (for example, parity blocks)
need to be identified and then processed effectively. The next section shows
that it is only if the detected blocks are not disrupted that XCS is able to solve
the problem. Additionally, it is only if the BBs are recombined effectively that
XCS can solve the problem efficiently.

Table 7.2. Expected reward prediction and reward prediction error measures for
exemplar condition parts in the hierarchical 3-parity, 6-multiplexer problem for clas-
sifiers with action part A = 1. For readability reasons, the lower level 3-parities are
tightly coded and separated by spaces.

C R ε

### ### ### ### ### ### 500.0 500.0
111 ### ### ### ### ### 500.0 500.0
#1# ### #11 #1# #11 ### 500.0 500.0
### ### 111 ### ### ### 625.0 468.8
### #1# ### 100 ##1 ### 625.0 468.8
### 0## ### ### 000 ### 375.0 468.8
### 111 ### 010 ### ### 750.0 375.0
##1 111 ##0 100 #0# ### 750.0 375.0
101 ### 111 ### ### ### 750.0 375.0
### 000 ### ### 000 ### 250.0 375.0
101 111 ### 100 ### ### 1000.0 0.0
101 000 111 ### ### ### 1000.0 0.0

Note that we focus in the remainder on XCS’s performance in the par-
ity, multiplexer and parity, count-ones combination. Nonetheless, any other
type of Boolean function combination in the proposed hierarchical manner
is possible. Additionally, it is not necessary that all BBs on the lower level
are evaluated by the same Boolean function, nor do they need to be of equal
length. Certainly, though, all these potential manipulations may lead to dif-
ferent challenges with respect to the facetwise theory for LCSs.
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7.1.3 The Need for Effective BB Processing

We tested XCS on the proposed hierarchical problem combining parity and
multiplexer problem as well as parity and count ones problem. Results confirm
that the parity, multiplexer combination is particularly challenging.

Hierarchical Three-Parity, Six-Multiplexer Problem

Performance of XCS in the hierarchical 3-parity, 6-multiplexer problem is
shown in Figure 7.1.1 It can be seen that XCS is not able to solve the prob-
lem if uniform crossover is applied. Due to the disruptive effects of uniform
crossover—as already suggested in Holland’s original schema theory (Holland,
1975)—XCS is not able to process the lower level BBs, but rather disrupts
them.

In addition to the usual crossover operators of uniform, one-point, and
two-point crossover, we applied an informed crossover operator to investi-
gate the potential of more competent recombination operators. The informed
crossover operator is informed about the BB structure in the problem applying
a BB-wise uniform crossover operator. BB-wise uniform crossover exchanges
only complete BBs uniformly randomly similar to uniform crossover, which
exchanges attributes uniformly randomly.

XCS with BB-wise crossover solves the problem effectively and nearly in-
dependently of the mutation type used. Thus, a mechanism in XCS that is
able to identify the lower-level BB structure is necessary. Once identification
is successful, effective BB processing and recombination can be applied. Uni-
form crossover strongly disrupts BB propagation, preventing learning (Fig-
ure 7.1a,c). The continuously high population size indicates that uniform
crossover causes a high diversity in the population. However, BB-disruption
prevents the growth of higher-order BBs (Figure 7.1b,d). Mutation alone is
able to solve the problem but learning takes about three times as long as
in the case of BB-wise uniform crossover operator (Figure 7.1a,c). The pop-
ulation sizes indicate that diversity stays much lower resulting in a lower
macro-population size (Figure 7.1a,c). If the BBs are tightly coded, one-point
and two-point crossover are able to recombine BBs effectively (Figure 7.1a).
However, if the attributes are randomly distributed, the potential recombi-
natory benefit of one-point or two-point crossover is overshadowed by their
disruptive effect delaying learning and population convergence (Figure 7.1c,d).
Thus, one-point and two-point crossover show beneficial effects in the case of
tightly-coded BBs, but disruptive effects in the loosely-coded case. Since the
1 If not stated differently, all results in this chapter are averaged over ten exper-

iments. Performance is assessed by test trials in which no learning takes place
and the better classification is chosen. During learning, classifications are chosen
at random. If not stated differently, parameters were set as follows: N = 20000,
β = 0.2, α = 1, ε0 = 10, ν = 5, θGA = 25, χ = 1.0, µ = 0.01, γ = 0.9, θdel = 20,
δ = 0.1, θsub = 20, and P# = 0.6.
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Fig. 7.1. Performance (a,c) and population sizes (b,d) of XCS (N = 20k) in the
hierarchical 3-parity, 6-multiplexer problem (infX = informed (i.e. BB-wise uniform)
crossover, uniX = uniform crossover, oneX = one-point crossover, twoX = two-point
crossover, noX = mutation only). Efficient BB recombination strongly improves
XCS’s performance. One-point and two-point crossover are only beneficial if the
BBs are tightly coded. Although mutation alone is able to solve the problem, the
time until the solution is found is much larger.

dependency structures cannot be expected to be tightly coded in general,
competent crossover operators are mandatory.

Although mutation can be tuned to solve the hierarchical 3-parity, 6-
multiplexer problem nearly as well as the informed crossover operator does
(Figure 7.2b), the behavior is unsatisfactory: larger problems or the same
problem with additional irrelevant attributes would make it impossible to set
the mutation rate high enough due to the reproductive opportunity bound in-
troduced in the last chapter. However, a small mutation rate strongly delays
learning if only mutation is applied. The BB-wise uniform crossover operator
stays nearly independent from the mutation operator (Figure 7.2a,b). It only
relies on the supply of lower level BBs, which is usually ensured by the initial
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Fig. 7.2. A low mutation rate strongly delays learning if effective recombination
is not applied. With a mutation rate of µ = 0.001, however, certain specialized at-
tributes might get lost so that performance is delayed even with effective recombina-
tion (a). Higher mutation rates alleviate the problem (b) but may not be applicable
in problems with more attributes.

sufficiently large specificity. Thus, a competent crossover operator that detects
BBs on the fly is highly desirable.

Hierarchical Parity, Count-Ones Problem

Figure 7.3 confirms similar results in the hierarchical 3-parity, 5-count ones
problem. In the runs, population size is set to N = 20, 000. Note that the
problem has as many niches as the 3-parity, 6-multiplexer problem. However,
the smaller population size as well as the overlapping niches in the prob-
lem make it very hard for XCS to solve the problem completely optimally.
Nonetheless, effective recombination significantly improves performance. As
before, one-point and two-point crossover are only effective if the blocks are
tightly coded. Otherwise, the operators are nearly as disruptive as uniform
crossover. Mutation alone slowly improves performance but takes a very long
time to evolve an accurate solution. The performance of BB-wise crossover is
not reached by any of the other settings.

7.2 Building Block Identification and Processing

Facing the BB-challenge within XCS it is necessary to develop a mechanism
that learns effective recombination online. Most appropriate for this seems to
be an estimation of distribution algorithm (EDA) approach, modeling depen-
dency structures and recombining them appropriately (Pelikan, Goldberg, &
Lobo, 2002; Larrañaga, 2002).
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Fig. 7.3. Performance (a,c) and population sizes (b,d) of XCS (N = 20k) in the hi-
erarchical 3-parity, 5-count ones problem. Again, efficient BB recombination strongly
improves XCS’s performance. One-point and two-point crossover are only beneficial
if the BBs are tightly coded. Mutation alone gradually improves performance but is
much less effective that BB-wise crossover.

However, the evolutionary component in XCS differs from the usual GA
application in several respects. Due to XCS’s niche reproduction in action
sets and since action sets are generally rather small compared to the whole
population, structure extraction is hard to apply successfully in an action set
alone. On the other hand, extracting global structure results in global offspring
generation, which may not reflect the local problem structure appropriately.
Thus, the inclusion of an EDA mechanism in XCS is not straight-forward.

This section integrates the BB-identification mechanism in the ECGA
(Harik, 1999) to identify and process lower-level dependency structures. Alter-
natively, we also show how to integrate the more powerful Bayesian learning
mechanism used in BOA (Pelikan, Goldberg, & Cantu-Paz, 1999). We show
that both mechanisms are suitable to learn the global lower-level problem
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structure and can be used to generate or improve local classifier offspring.
The generation and improvement of the local offspring depends on the cur-
rent action set, just as the original XCS crossover operation does.

We first give an overview of the learning algorithms used in the ECGA
as well as in BOA to learn the respective dependency structures. Next, we
show how these mechanisms may be integrated into the XCS classifier system.
We learn the dependency structures from the filtered and converted XCS
population and then use the learned structures to sample and/or optimize
offspring in local problem niches.

7.2.1 Structure Identification Mechanisms

Our investigations show that at least two structure identification mechanisms
are suitable for competent BB processing in XCS: (1) marginal product models
used for example in the ECGA mechanism (Harik, 1999), and (2) Bayesian
decision tree structures used in BOA (Pelikan, Goldberg, & Cantu-Paz, 1999;
Pelikan, 2002). The former is easier to understand and to apply but is limited
to the identification of non-overlapping BBs only. The latter is more compli-
cated but is able to model overlapping dependency structures as well.

Any structure extraction mechanism, however, faces the problem of ac-
curacy vs. generality. That is, the generated model is intended to identify
relevant dependencies but ignore spurious, irrelevant dependencies. Hereby,
we rely on Occam’s razor in that we want to find the model that codes the
data structure most compactly. The usual approach to balance the two opti-
mization factors is to apply the minimum description length principle (MDL)
(Mitchell, 1997). Essentially, the MDL principle weighs accuracy with model
complexity by combining the cost of describing the derived model with the re-
sulting cost of encoding the modeled data using the model. Using information
theoretic principles, the two influences can be appropriately balanced using
entropy as the basic measure.

7.2.2 BB-Identification in the ECGA

As mentioned above, the ECGA mechanism learns a non-overlapping BB-
structure, termed a marginal product model. ECGA considers the best indi-
viduals in its current population (selected by any suitable selection mecha-
nism, e.g. tournament selection) and builds the model from these individuals,
that is, the data. For example, consider the simple population shown in Ta-
ble 7.3. ECGA finds dependency structures in terms of feature subsets (that
is, the BBs). A block is essentially formed if the representation as a block,
albeit more complex to express as a model, results in a sufficient reduction in
the resulting data description complexity when using the model.

ECGA expresses these two complexity measures in terms of model com-
plexity MC, which favors more compact models, and the resulting compressed
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population complexity CPC, which favors a more compact (accurate) popu-
lation representation with respect to the used model. The MDL measure is
simply the sum of MC and CPC. The two complexity measures are deter-
mined by

MC = log N
∑

I

2S[I] − 1, (7.1)

CPC = N
∑

I

E(MI), (7.2)

where N specifies the population size, I a dependency subset, S[I] the number
of attributes in subset I, MI the probability distribution of all possible values
in subset I, and E(MI) the entropy of a probability distribution. The mea-
sure MC exploits the fact that log N2S[I] bits are necessary to describe the
probability distributions over each subset S[I] (2S[I]) probability entries. The
measure CPC then determines the complexity of coding all N individuals with
respect to the subsets, which is determined by the sum of the entropies over all
subsets. Table 7.3 shows several potential model structures and the resulting
MC and CPC measures. It can be seen how the MDL principle balances the
model complexity with the resulting population description complexity.

Table 7.3. The illustrated example shows how the marginal product model learning
mechanism detects structural properties in a population. While MC measures the
model complexity, CPC measures the compressed population complexity potentially
gained due to a more complex model representation.

problem instances

11000 11111
11001 11110
11000 11110
00111 00001

marginal product model MC CPC MC+CPC

[1][2][3][4][5] 15 36.98 51.98
[1 2] [3] [4] [5] 18 30.49 48.49
[1 2] [3 4] [5] 21 22.49 43.49
[ 1 2 3 4 ] [5] 48 22.49 70.49
[ 1 2 3 ] [4 5] 30 30.49 60.49

The ECGA mechanism learns the marginal product model, greedily mini-
mizing the sum of MC and CPC. That is, if the scaled entropy decrease and
thus the decrease of CPC due to a merge of two sets is larger than the conse-
quent MC increase, the merge is performed. Subsets are greedily merged until
no more merge is able to decrease the MDL measure. In the ECGA, the model
is learned every GA iteration. The offspring population is generated out of the
derived dependency structure probabilistically sampling from the dependency
structure. That is, each BB is considered independently when generating an
offspring individual choosing the corresponding code probabilistically with re-
spect to the determined probability distribution. The MDL mechanisms used
to grow the dependency structure in XCS similar to the ECGA are taken from
the available ECGA implementation (Lobo & Harik, 1999).
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The ECGA mechanism has shown to be able to effectively solve previously
BB-hard problems, such as the typically used deceptive trap problems (Harik,
1999; Sastry & Goldberg, 2000). Due to its rather straight-forward approach
and the various successful applications, it appears a valuable candidate for
integration into XCS.

7.2.3 BB-Identification in BOA

BOA uses the more powerful representation of Bayesian networks in order to
represent BB-structures. The overall learning mechanism is similar to the one
applied in the ECGA, learning a Bayesian network from a selected subset of
individuals and sampling from the Bayesian network. Due to the potentially
much more complex Bayesian network structure, the generation and sampling
mechanisms are not as straight-forward as in the ECGA.

Bayesian networks (BNs) (Howard & Matheson, 1981; Pearl, 1988; Bun-
tine, 1991; Mitchell, 1997) combine statistics with graph theory generating a
modular graphical model of the analyzed data. BNs can be used to estimate
probability distributions as well as to do inference. A Bayesian network is
defined by its structure and its (conditional) probabilities. The structure is
usually encoded by a directed acyclic graph with the nodes corresponding to
the features and the edges corresponding to conditional dependencies. The
parameters are represented by a set of conditional probability tables (CPTs)
specifying a conditional probability for each variable given any instance of the
variables that the variable depends on.

The BN as a whole encodes a joint probability distribution given by

p(x) =
n∏

i=1

p(xi|Πi), (7.3)

where X = (X0, . . . , xn−1) is a vector of all the variables in the problem; Πi

is the set of parents of xi (the set of nodes from which there exists an edge to
xi); and p(xi|Πi) is the conditional probability of xi given its parents Πi. A
CPT then codes the probability of the values of xi given the parental values.
A directed edge relates the variables so that in the encoded distribution,
a variable corresponding to a terminal node is conditioned on the parental
variables. More incoming edges into a node result in a conditional probability
of the variable with a condition containing all its parents.

As the ECGA structure assumes the independence of the blocks, also a
Bayesian network encodes a set of (implicit) independence assumptions. Vari-
ables are assumed to be independent of each other given the values of the
variables of all of their parents and none of their common descendants. The
exact independence assumptions resulting from the BN structure can be found
in the literature (Mitchell, 1997).

Conditional probability tables (CPTs) store the conditional probabilities
p(xi|Πi) for each variable xi. The number of conditional probabilities for a
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variable that is conditioned on k parents grows exponentially with k. For
binary variables, for instance, the number of conditional probabilities is 2k,
because there are 2k instances of k parents and it is sufficient to store the
probability of the variable being 1 for each such instance. Figure 7.4 shows an
example CPT for p(x1|x2, x3, x4).

A greedy algorithm is usually used to learn a BN. The greedy algorithm
starts with an empty BN. Each iteration, an edge is added to the network that
improves quality of the network maximally. Network quality can be measured
by any popular scoring metric for Bayesian networks, such as the Bayesian
Dirichlet metric with likelihood equivalence (BDe) (Cooper & Herskovits,
1992; Heckerman, Geiger, & Chickering, 1994) or the Bayesian information
criterion (BIC) (Schwarz, 1978). Learning terminates when no more improve-
ment is possible.

The sampling of a Bayesian network can be done using probabilistic logic
sampling (PLS) (Henrion, 1988). In PLS the variables are ordered topolog-
ically so that it is assured that every variable is preceded by all parental
variables it depends on. Variable values are then generated iteratively accord-
ing to the topological ordering. As a result, once the value of a variable xi is
to be generated, the values of its parents Πi are assured to have been gener-
ated already. Thus, the probabilities of different values of xi can be directly
extracted from the CPT for xi using the known values of Πi.

Despite the encoded independence assumptions in a Bayesian network,
identified dependencies may also contain regularities. Furthermore, the ex-
ponential growth of full CPTs with respect to the number of parents often
obstructs the creation of models that are both accurate and efficient. Thus,
often local structures are used in Bayesian networks to represent local con-
ditional probabilities more efficiently than traditional full BNs (Chickering,
Heckerman, & Meek, 1997; Friedman & Goldszmidt, 1999).

Pelikan (2002) uses decision trees to store the conditional probabilities of
each variable in a separate tree. Each internal (non-leaf) node in the decision
tree for p(xi|Πi) has a variable from Πi associated with it and the edges
connecting the node to its children stand for different values of the variable.
For binary variables, there are two edges coming out of each internal node;
one edge corresponds to 0 and the other edge corresponds to 1. For more than
two values, either one edge can be used for each value, or the values may be
classified into several categories and each category creates an edge.

Each path in the decision tree for p(xi|Πi) that starts in the root of the
tree and ends in a leaf encodes a set of constraints on the values of variables in
Πi. Each leaf stores the value of a conditional probability of xi = 1 given the
condition specified by the path from the root of the tree to the leaf. A decision
tree can encode the full conditional probability table for a variable with k
parents if it splits to 2k leaves, each corresponding to a unique condition.
However, a decision tree enables the more efficient and flexible representation
of local conditional distributions. See Figure 7.4b for an example decision tree
modeling the conditional probability table presented earlier.
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Fig. 7.4. A conditional probability distribution representation for p(x0|x1, x2, x3)
using a full-blown conditional probability table (a), as well as a decision tree (b)
and a decision graph (c).

Pelikan (2002) uses also the (acyclic) decision graph feature allowing more
edges to terminate in a single node, enabling the sharing of children by several
internal nodes. This makes the representation even more flexible and allows
even more compact dependency structure representations. Figure 7.4c shows
an exemplar decision graph.

To learn Bayesian networks with decision trees, a decision tree for each
variable xi is initialized to an empty tree with a univariate probability of
xi = 1. In each iteration, each leaf of each decision tree is split (as long as a
topological ordering remains possible) determining the quality change of the
current network measured by the applied metric. The best split is performed.
Learning stops when no potential split is able to improve the current network.

To estimate model quality, a combination of the BDe (Cooper & Her-
skovits, 1992; Heckerman, Geiger, & Chickering, 1994) and BIC (Schwarz,
1978) metrics is used, where the BDe score is penalized with the number of
bits required to encode parameters (Pelikan, 2002). For decision graphs, a
merge operation is introduced to allow merging two leaves in any (single) de-
cision graph. The Bayesian decision graph mechanism applied to XCS is taken
from Pelikan’s BOA implementation available on the net (Pelikan, 2001)

Similar to the ECGA approach, Bayesian networks model dependencies
and independencies where a dependency is defined as a non-linearity. This
non-linearity is identified by an entropy decrease as measured in the applied
metric. Applying the introduced decision graph structure focuses the modeled
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dependencies in one decision graph on one feature modeling local, lower-level
dependency structures, that is, the expected BBs in the problem.

7.2.4 Learning Dependency Structures in XCS

Similar to the BB-identification mechanisms in ECGA and BOA, which search
BBs in the current best subset of individuals, it is possible to learn dependency
structures from the current population in XCS. However, two aspects need to
be considered. (1) Selection from the global population is not straight-forward.
(2) Classifiers need to be suitably transferred into binary.

As in ECGA and BOA, the dependency structure needs to be built from
the current best individuals in the population of XCS. Despite the fitness
sharing in XCS, relative accuracy may not be the appropriate measure since
different problem niches may currently exhibit different learning stages so
that the fitness may be misleading, potentially favoring already converged
subspaces. However, it is possible to require a certain classifier confidence
for selection, similar to the thresholded application of subsumption. We use
a filtering mechanism that extracts the most accurate classifiers out of the
current population. The mechanism extracts those classifiers that have a min-
imum experience θbe, a minimum numerosity θbn, and a maximum error θbε.
The parameters were set to θbe = 20, θbn = 1, θbε = 400 throughout the sub-
sequent experiments filtering out the young and high-error classifiers. Since
predictions below the average reward of 500 can be considered as predictions
of the opposite class with higher reward, we switch the class of those classi-
fiers that predict a reward of less than 500. Note that this method can only
be applied in classification problem in which only two types of reward (e.g.
1000/0) are possible.

Given a filtered population, how to translate the classifier population into
a suitable representation to build the model needs to be clarified. Don’t care
symbols may be simply coded by a third symbol in a ternary alphabet. How-
ever, don’t care symbols do have a special meaning in that they match zero
or one. Thus, to simplify model-building, we decided to code each condition
attribute by two bits: The first bit encodes if the condition attribute is gen-
eral (that is, don’t care) or specific. The second bit encodes the value of the
attribute. If the attribute is a don’t care symbol, we choose zero or one uni-
formly randomly for the second bit. Finally, the classification part may yet
play a special role and future work may build models for each classification
separately. For now, we simply code the classification part as another bit. Ta-
ble 7.4 shows a set of classifiers and the corresponding encoding that is used
to learn the Bayesian network with decision graphs.

With a binary coded set of individuals at hand, we are able to learn the BB
structure via the MDL-metric of the ECGA or the Bayesian decision graph
structure via the Bayesian-network learning algorithm. Note that since XCS
applies a steady-state niche GA, the dependency structure does not need to
be rebuilt every time step. We rebuild the network after a fixed number of
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Table 7.4. Sample classifiers (from the multiplexer problem) and their correspond-
ing binary encoding for the structure learning mechanism. Spaces are added for
clarity. If an attribute is a don’t care symbol, the second bit in the corresponding
binary code is chosen randomly. The class bit is flipped, if the reward prediction is
below 500.

C A R ε binary encoding

##11## 1 750 375 10 11 01 01 11 10 1

##00## 1 250 375 11 11 00 00 10 11 0

0#1### 0 250 375 00 01 11 11 11 10 1

0#0### 0 750 375 00 00 10 11 10 10 0

0#11## 1 1000 0 00 11 01 01 11 10 1

0#11## 0 1000 0 00 11 01 01 11 11 0

001### 1 1000 0 00 00 01 10 10 10 1

10##0# 0 1000 0 01 00 11 11 00 10 0

000### 1 0 0 00 00 00 11 10 10 0

01#1## 0 0 0 00 01 11 01 11 11 1

time steps θbs, usually set to 10, 000 in our experiments. The threshold is only
slightly problem dependent and does not appear to have a strong impact on
performance. In general, the lower the threshold, the more often the model is
rebuilt, potentially adjusting the model to newly detected dependencies faster
but also potentially wasting computational resources for rebuilding the same
dependency structure.

7.2.5 Sampling from the Learned Dependency Structures

As shown in Section 7.1, the recombination of the parents using common
crossover operators may lead to disruptive effects potentially destroying im-
portant BB-structure. Once the dependency model is learned, XCS may use
the model to recombine or directly generate offspring classifiers more effec-
tively. As long as the learned model reflects important dependency structures,
it can be expected that the resulting recombination is less disruptive and much
more directed towards generating offspring that combines already successfully
learned substructures effectively searching in the neighborhoods defined by the
substructures.

As investigated in detail in the previous chapters, XCS generates offspring
from parental classifiers selected from the current action set. This means that
XCS reproduces classifiers that encode solutions with respect to the current
problem instance. When using the globally learned dependency structures to
generate offspring, we consequently need to adjust the structures to be able to
generate local offspring. We investigate the following two options: (1) sampling
classifiers using the model updated to the local probability distribution; and
(2) probabilistically improving the selected parental offspring classifier using
the model with global or local probabilities.
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Fig. 7.5. A probabilistic model of the problem structure can be built and used for
offspring generation in many ways. Since action sets are usually too small to gather
reliable statistics, a selected classifier subset from the global population should reflect
problem structure most effectively. Once the model is formed, offspring may either
be generated optimizing a parental classifier or sampling directly from the model.
Sampling from the global model is inappropriate since the global distribution does
not reflect the local solution structure. Setting the model distribution probabilities
to the local probability distribution results in a model that encodes global depen-
dency structures with respect to the local probability distribution. Thus, optimizing
offspring by the means of the local model can be expected to be most cautious and
most robust.

Figure 7.5 shows the different potential methods for offspring generation
by the means of a dependency model structure. Since XCS generates offspring
in local niches, reproducing classifiers simply sampling from the global model
is impossible since the classifier cannot be expected to reflect the solution
structure in the current niche. Similarly, optimizing classifier structure by the
means of the global model with global probabilities is expected to be disruptive
as well since the optimization biased on the global probability structure again
generates a classifier that reflects the global probability distribution. Even if
the global model represents the dependencies in the population optimally, it
may not be used to directly sample local offspring since it can only be expected
to code lower-level BB information. Higher-level BB dependencies depend on
the problem niche under investigation. Thus, it appears ineffective and very
hard to grasp these higher-level dependencies in the global model.

Both offspring generation methods are introduced next. The latter is used
only in conjunction with the learned Bayesian networks.
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Sampling using Local Probabilities

As shown in Chapter 5, reproducing classifiers in action sets yields classi-
fier offspring that has an average specificity that corresponds to the average
specificity distribution in the action sets. Fitness may increase the average
specificity due its pressure towards higher accuracy, which often leads to an
implicit specialization pressure.

Thus, to sample offspring using the learned dependency structure, the
model probabilities need to reflect the local specificity distribution. Conse-
quently, we update the probabilities in the applied model with respect to the
best classifiers in the current action set. To achieve this, we select a subset of
classifiers from the action set using the tournament selection mechanism. The
selected subset (which may contain identical classifiers several times select-
ing with replacement) is used to update the (conditional) probabilities. The
updated dependency structure consequently reflects the detected global de-
pendency structure but mimics the local probability distribution. The globally
detected dependencies are thus combined with the local probabilities resulting
in an offspring sampling mechanism that combines global with local problem
knowledge.

The sampling is then achieved using the sampling mechanisms in the de-
pendency structures explained above. Effectively, we use the globally detected
dependency structures to sample local offspring. Hereby, the globally extracted
structure biases the recombination. The current local probability distribution
is used to sample offspring locally using the global structure. As a result, we
recombine the locally important BBs effectively as long as the global depen-
dency structure applies in the local problem niche.

Structure Optimization

In the former case, we combined global model information about dependencies
with the local probability distribution. Vice versa, it is also possible to use
the global dependency structure and probability distribution to optimize the
local probability structure. Hereby we have to be cautious to not overwrite
the local information completely by the global information.

Essentially we apply a Markov Chain Monte Carlo (MCMC) approach
(Neal, 1993) first introduced in the statistical physics literature in the 1950s
in the so-called Metropolis Algorithm. An MCMC essentially iteratively and
probabilistically changes a current probability distribution to an equilib-
rium distribution. MCMC iteratively evaluates potential changes of single
attributes and decides probabilistically if the change should be made. Which
probabilities are chosen to confirm an update is application dependent. Our
method uses the likelihood of the change with respect to the global model.

Particularly, XCS chooses an offspring via tournament selection in the
current action set. Instead of simple crossover, XCS then applies the MCMC
mechanism to probabilistically optimize the classifier structure. Bits of the
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binary code of a classifier are chosen at random determining the likelihood
of the structure before and after the change. To avoid zero likelihoods, all
conditional probabilities are linearly normalized to values ranging from 0.05
to 0.95. Normalizing the likelihood before and after the change to one, the
change is then committed with the probability of the normalized likelihood.

In effect, the MCMC pushes the selected local classifier towards the global
probability distribution. The aim is to combine local and global structural
information in the offspring classifier. Too many update iterations can be
expected to not be useful since the resulting classifier will reflect the global
model structure. On the other hand, too few updates will have no effect at
all. The subsequent experimental evaluations confirm these expectations.

To avoid using the global probability distribution, it is also possible to com-
bine the two mechanisms above, adjusting the dependency structure to reflect
the local probability distribution using the consequent structure to probabilis-
tically optimize a selected local offspring classifier. This has the advantage of
avoiding the problem of over-optimization towards the global structure. Addi-
tionally, the freedom of sampling local offspring is further constrained since a
parental offspring classifier is optimized, constraining the search to an actual
parental classifier. In effect, the combination might be the most cautious but
also the most robust offspring optimization mechanism overall.

7.2.6 Experimental Evaluation

We evaluate XCS’s performance on the above introduced hierarchical prob-
lems evaluating and comparing both offspring generation methods applying
several different settings. XCS is set to learn a Bayesian network every 10,000
learning steps (θbs = 10, 000). The population XCS learns from is the filtered
population as explained above. If the filtered population is empty, no model is
learned. As long as no model is learned, XCS applies uniform crossover instead
of the model-based crossover. Mutation is applied to the offspring classifiers
generated by the model, as before when simple crossover was applied. The
results are averaged over ten experiments. Other parameters are set as above
except for the population size which is set to N = 20, 000 in all runs as well as
mutation which is set to µ = 0.01 in the runs with normal crossover operators,
to µ = 0.001 in the XCS/BOA combination, and to either value as indicated
in the subsequent figures in the XCS/ECGA combination. This population
size seems large but the investigated problems are huge as well. For exam-
ple, the hierarchical 3-parity, 6-multiplexer problem requires a final solution
of 210 classifiers so that the only twenty times larger population size appears
reasonable.

Hierarchical Parity, Multiplexer Problems

In Section 7.1 we saw that the evolution of a successful solution in the 3-
parity 6-multiplexer problem strongly depends on the choice of mutation rate
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and crossover type. If a small mutation is chosen, effective BB recombination
is mandatory and was achieved by an informed BB-wise crossover operator.
If mutation is large, the problem was solvable but took longer than with the
application of the informed crossover operator. However, we know that a large
mutation rate is not an option in larger problems in which a smaller mutation
rate is necessary to satisfy the covering challenge as well as the reproductive
opportunity bound (see Chapter 6). Thus, to solve the addressed problem,
mutation needs to be set low and crossover needs to be effective.

Figure 7.6 shows XCS’s performance in the hierarchical 3-parity, 6-multi-
plexer problem. In the ECGA comparison (Figure 7.6 a,b), we see that while
BB-wise crossover learns the model slightly faster, ECGA reaches similar per-
formance. The different settings refer to the number of selected classifiers
used to adjust the model to the local probability distribution. Higher muta-
tion rates are actually somewhat disruptive as also indicated by the resulting
higher population sizes.

An additional specializing effect is observable, which is partially a result
of the binary recoding of the population for the model building and model-
based offspring generation. Due to the random choice of the second bit of a
don’t care attribute, actual offspring may be generated that does not match
the current action set. For example, consider the two simple classifiers 1#→1
##→1. The resulting binary codes may be 0111 and 1010. Thus, dependent
on the model dependencies, offspring may be generated with the code 0010,
which translates into 0#→1. Although the average specificity is maintained,
the offspring may not match the current action set, consequently increasing
diversity in the population. This additional diversity may be slightly disruptive
as observed in the ECGA graphs. Note that we also ran experiments applying
uniform crossover on the transferred binary code. The result was that the
population was filled up with apparently meaningless classifiers. No learning
was observable in this case.

The application of the Bayesian model results in a similarly successful so-
lution of the 3-parity, 6-multiplexer problem. The probabilistic optimization
method even reaches higher performance slightly faster than the informed
BB-wise crossover application (curve BOA: 0/18). However, if too many opti-
mization steps are applied (0/90), the mechanism over-optimizes the offspring
towards the global probability distribution and consequently over-specializes
the population with respect to the current global model. This problem does
not occur when offspring is sampled using the local probability distribution or
if selected offspring is optimized using the local probability distribution. All
settings exhibit similar performance nearly as good as the informed BB-wise
crossover technique. In contrast to the ECGA combination, the BOA combi-
nation does not suffer from any over-specializations and all runs reach 100%
performance reliably.
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Fig. 7.6. When applying ECGA or BOA to the hierarchical 3-parity, 6-multiplexer
problem, recombination becomes effective and XCS is able to effectively learn a
complete solution comparatively fast to the runs with BB-wise crossover. The ap-
plication of the ECGA-based model learning mechanism (a,b) shows competent
performance. The 50/10 variation refers to the number of selected classifiers used to
set the probabilities to the local probability distribution. In the BOA-based model
learning (c,d), the first number again refers to the number of selected classifiers used
to set the probabilities to the local distribution (0 indicates that the global probabil-
ity distribution is used). The second number refers to the probabilistic optimization
steps applied to a selected parental classifier (0 indicates that offspring was sampled
directly from the model).

Hierarchical Parity, Count Ones Problem

Also the investigated hierarchical 3-parity, 5-count ones problem requires a
final optimal solution size of 210. However, in this case the final population
size is overlapping in that three out of five parity blocks need to be specified
correctly to predict class zero or one accurately. XCS with ECGA model
does not show any problems in solving the problem (Figure 7.7a,b). All runs
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converge to the near-optimal solution nearly as fast as the informed BB-
wise crossover runs. Even with a lower mutation rate, performance is hardly
influenced.

Similarly, the XCS runs with Bayesian network successfully learn the prob-
lem (Figure 7.7c,d). BOA learns slightly slower than the ECGA combination
early in the run but then reaches a slightly higher performance level. Ap-
parently, BOA initially models spurious dependencies that may slow down
the overall learning process. Since in this problem the propagation of all five
BBs independently is nearly most effective, the Bayesian learning algorithm
appears to over-model and thus delay learning early on. In the end of a run
BOA decreases disruptive effects. Performance of both methods clearly outper-
forms the runs without crossover application as well as the runs with uniform
crossover application.

In sum, the results confirm that XCS can be successfully combined with
a number of structural learners to improve offspring generation. The im-
plemented XCS/ECGA and XCS/BOA combinations showed to be able
to achieve performance similar to the performance with BB-wise uniform
crossover, which relies on explicit problem knowledge. XCS/ECGA as well
as XCS/BOA do not require any global problem knowledge and thus allow
XCS to flexibly adjust its recombination operators dependent on the encoun-
tered problem. The next chapter provides further evidence for the generality
of the model-building approach in XCS applying the techniques to several
other typical Boolean function problems.

7.3 Summary and Conclusions

This chapter considered the last three aspects of the facetwise LCS theory
approach in the XCS learning system for single-step RL problems. We showed
that—as in GAs—the problem may require effective BB processing in LCSs
to ensure reliable learning of a problem solution. Additionally, we highlighted
the difference between LCSs and GAs in that problem structure may differ
dependent on which problem subspace is currently under investigation. In
essence, different attributes may be relevant in different problem structures
so that different recombinatory mechanisms need to be applied dependent on
the current problem subspace.

To investigate the recombinatory capabilities of the XCS system, we in-
troduced hierarchical binary classification problems combining parity blocks
on the lower level with the multiplexer or count ones function on the higher
level. XCS with simple crossover is not able to solve the resulting problems
reliably. We observed the expected disruptive effects of simple recombina-
tion when applying uniform crossover as well as when applying one-point or
two-point crossover with loosely coded blocks (randomly distributed over the
population). Mutation alone is able to solve the parity, multiplexer problem
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Fig. 7.7. Also the hierarchical 3-parity, 5-count ones problem is effectively solv-
able with either model-based offspring generation method. The ECGA combination
appears slightly more robust in this case, indicating that the Bayesian-net might
model unnecessary, spurious dependencies that delay convergence. Note also how
over-specialization in the 0/90 setting again disrupts learning.

combination—albeit severely delayed in time—but it is not able to solve the
parity, count ones problem combination satisfactorily in the available time.

The integration of the model-building and offspring generation mecha-
nisms from the extended compact GA (ECGA) or the Bayesian model building
algorithm (BOA) show that competent crossover operators can be integrated
in the XCS learning structure. Since XCS applies a steady-state niche GA, the
probabilistic model is not built every time step but it is built from the global
model at predefined points in time. The model is then modified to reflect the
local probability distribution in an action set at each time step to generate off-
spring respecting the local probability distribution but biasing recombination
on the globally detected dependency structure. XCS combined with either
model learner evolved complete solutions to the hierarchical problems.
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With respect to the final points of our facetwise theory approach for LCSs
we showed that XCS respects the difference between global and local problem
structure by reproducing in action sets. Recombination can be made more
efficient by using global BB structure information. However, since the local
problem structure needs to be respected but usually cannot be coded in the
global dependency structure, offspring recombination needs to be adapted to
the current local problem niche. Since knowledge about the current niche is
represented in the local classifier population, that is, the current action set,
model-based offspring generation needs to be biased on the classifier distrib-
ution in the current action set.

In conclusion, XCS with the integration of either model learner may be
termed a competent LCS. That is, it is able to solve boundedly difficult
problems—those with a minimal order complexity of km—effectively. The next
chapter provides further evidence for the generality of the model-learning in-
tegration, investigating XCS’s performance in several Boolean function prob-
lems including noisy and very large problems.




