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How XCS Works: Ensuring Effective
Evolutionary Pressures

The last chapter gave a concise introduction to the accuracy-based XCS clas-
sifier system. We saw that XCS is designed to evolve online a complete, max-
imally accurate, and maximally general solution to the problem at hand (e.g.
by approximating the Q-value function). The accuracy-based approach as-
sures that no strong overgenerals are possible since the maximally accurate
classifiers receive maximal fitness.

With this knowledge in mind, we now turn to the further aspects of
our facetwise LCS theory approach regarding the evolutionary pressures in
the XCS classifier system. While strong overgenerals are prevented by the
accuracy-based fitness approach, it still needs to be assured that fitness guides
towards the intended solution. Second, parameter initialization and estima-
tion needs to be most effective. Third, appropriate generalization needs to
apply so that the solution becomes maximally general.

To investigate these points in XCS, we undertake a general analysis of
all evolutionary pressures in XCS. Evolutionary pressures can be regarded as
evolutionary biases that influence or bias learning in XCS. Often, the pres-
sures influence specificity in the classifier population. Specificity was defined
in Chapter 3. It essentially characterizes how restricted a classifier condition
is. The smaller the problem subspace a classifier condition covers, the more
specific it is.

The pressure analysis quantifies generalization in XCS as well as the in-
fluence of mutation. It leads to an equilibrium in population specificity if no
fitness pressure applies. This interaction is quantified in the specificity equa-
tion, which we evaluate in detail. With the addition of fitness pressure and
subsumption, the equilibrium lies exactly at the point of the desired maxi-
mally accurate and maximally general problem solution.

However, in order to ensure that fitness guides to the equilibrium, the gen-
eralization pressure needs to be overcome. This is assured by an appropriate
selection mechanism leading us to the introduction of tournament selection
for offspring selection. We show that tournament selection assures sufficiently
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strong fitness guidance and consequently makes XCS much more parameter
as well as noise independent.

The next section introduces all evolutionary pressures, analyzes them in
separation, and combines them in one general specificity equation. The results
are experimentally validated in binary classification problems. Next, tourna-
ment selection is introduced and evaluated. The investigations prepare XCS
to face the subsequent challenges outlined in the facetwise theory approach.

5.1 Evolutionary Pressures in XCS

Previous publications have considered the influence of fitness guidance and
generalization. The principles underlying evolution in XCS were originally
outlined in Wilson’s generalization hypothesis (Wilson, 1995), which suggests
that classifiers in XCS become maximally general due to niche-based repro-
duction in combination with population-wide deletion. Subsequently, Kovacs
(1996) extended Wilson’s explanation to an optimality hypothesis, supported
experimentally in small multiplexer problems, in which he argued that XCS
develops minimal representations of optimal solutions (that is, the optimal
solution representation [O]). Later, Wilson (1998) suggested that XCS scales
polynomially in problem complexity and thus is machine learning competitive.
Kovacs and Kerber (2001) related problem complexity directly to the size of
the optimal solution |[O]|. However, Butz, Kovacs, Lanzi, and Wilson (2001)
showed that the |[O]| measure is clearly not the only measure that influences
XCS’s learning behavior.

Despite these insights, Wilson’s generalization hypothesis still needed to
be theoretically validated and quantified. In this section, we investigate Wil-
son’s hypothesis developing a fundamental theory of XCS generalization and
learning. To avoid the additional complication of back-propagating reward in
RL problems, we focus on XCS’s performance in classification problems.

In particular, we analyze the evolutionary pressures present in XCS. An
evolutionary pressure refers to a learning bias in XCS influencing the popu-
lation structure, often with respect to specificity. The average specificity in a
population, denoted by σ[P ], refers to the average specificity of all classifiers
in the population. That is,

σ[P ] =

∑
c∈[P ] σ(c) · c.num
∑

c∈[P ] c.num
, (5.1)

where σ(c) refers to the specificity of classifier c. We defined specificity for the
binary case in Chapter 3 as the fraction of specified attributes (zero or one)
in the condition part of a classifier.

Our analysis distinguishes between the following evolutionary pressures:

1. Set pressure, which quantifies Wilson’s generalization hypothesis;
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2. Mutation pressure, which quantifies the influence of mutation on speci-
ficity;

3. Deletion pressure, which qualifies additional deletion influences;
4. Fitness pressure, which qualifies the accuracy-based fitness influence;
5. Subsumption pressure, which qualifies the exact influence of subsumption

deletion.

Set pressure and mutation pressure are combined to a general specificity equa-
tion that is evaluated in several experiments progressively increasing the in-
fluence of deletion and fitness pressure.

5.1.1 Semantic Generalization due to Set Pressure

The basic idea behind the set pressure is that XCS reproduces classifiers in
action sets [A] whereas it deletes classifiers from the whole population [P ].
The set pressure is a combination of the selection pressure produced by the
GA applied in [A] and the pressure produced by deletion applied in [P ]. It
was originally qualitatively proposed in Wilson’s original paper (Wilson, 1995)
and later further experimentally analyzed by Kovacs (1996).

The generalization hypothesis argues that since more general classifiers
appear more often in action sets [A], they undergo more reproductive events.
Combined with deletion from [P ], the result is an intrinsic tendency towards
generality favoring more general classifiers. Classifiers in this respect are se-
mantically more general in that they are more frequently part of an action set.
Classifiers that are equally often part of an action set but may be distinguished
by syntactic generality are not affected by the set pressure.

To formalize the set pressure, we determine the expected specificity σ[A] of
classifiers in an action set [A] with respect to the current expected specificity
σ[P ] of the classifiers in population [P ]. The specificity of the initial random
population σ[P ] is directly correlated with the don’t-care probability P#, i.e.,
σ[P ] = 1 − P#. For our calculations, we assume a binomial specificity dis-
tribution in the population. This assumption essentially holds in the case of
a randomly generated population. It enables us to determine the probability
that a randomly chosen classifier in the population cl ∈ [P ] has specificity k/l
as follows:

P (σ(cl) = k/l|σ[P ]) =
(

l

k

)
σ[P ]k (1 − σ[P ])l−k

, (5.2)

where cl is a classifier; l is the length of classifier conditions; and k is the num-
ber of specified attributes in the condition, that is, the number of attributes
different from a don’t-care symbol. The equation essentially is able to estimate
the proportion of different specificities in a population with average specificity
σ[P ].

The probability that a classifier cl matches a certain input s depends on
its specificity σ(cl). To match, a classifier cl with specificity k/l must match
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all k specific bits. This event has probability 0.5k since each specific attribute
matches with probability 0.5. Therefore, the proportion of classifiers in [P]
with a specificity k/l that match in a specific situation is as follows:

P (cl matches ∧ σ(cl) = k/l|σ[P ]) =
= P (σ(cl) = k/l|σ[P ])P (cl matches|σ(cl) = k/l) =

= P (σ(cl) = k/l|σ[P ]) 0.5k =
(

l

k

) (
σ[P ]

2

)k

(1 − σ[P ])l−k (5.3)

To derive a specificity σ[M ] of a match set [M ], it is first necessary to specify
the proportion of classifiers in [M ] with specificity k/l given the population
specificity σ[P ]. This proportion can be derived as follows:

P (σ(cl) = k/l|cl ∈ [M ] ∧ σ[P ]) =
P (cl matches ∧ σ(cl) = k/l)|σ[P ]

∑l
i=0 P (cl matches ∧ σ(cl) = i/l)|σ[P ]

=

=

(
l
k

) (
σ[P ]

2

)k

(1 − σ[P ])l−k

∑l
i=0

(
l
i

) (
σ[P ]

2

)i

(1 − σ[P ])l−i
=

(
l
k

) (
σ[P ]

2

)k

(1 − σ[P ])l−k

(
1 − σ[P ]

2

)l
=

=
(

l

k

)(
σ[P ]

2 − σ[P ]

)k (
1 − σ[P ]

2 − σ[P ]

)l−k

(5.4)

To compute σ[M ] we multiply actual specificity values, k/l, by the proportions
P (σ[M ] = k/l|σ[P ]) and sum up the values to derive the resulting specificity
of [M ]. Since the action set [A] has on average the same specificity as the
match set [M ] (σ[A] ≈ σ[M ]), σ[A] can be derived as follows:

σ[A] ≈ σ[M ] =

=
l∑

k=0

k

l
P (σ(cl) = k/l|cl ∈ [M ] ∧ σ[P ]) =

=
l∑

k=1

k

l

(
l

k

) (
σ[P ]

2 − σ[P ]

)k (
1 − σ[P ]

2 − σ[P ]

)l−k

=

=
l∑

k=1

(
l − 1
k − 1

)(
σ[P ]

2 − σ[P ]

)k (
1 − σ[P ]

2 − σ[P ]

)l−k

=

=
σ[P ]

2 − σ[P ]

l−1∑

j=0

(
l − 1

j

)(
σ[P ]

2 − σ[P ]

)j (
1 − σ[P ]

2 − σ[P ]

)l−1−j

=

=
σ[P ]

2 − σ[P ]
(5.5)

The equation can be used to determine the average expected specificity σ[A]
in an action set [A] assuming a binomially distributed specificity with mean
σ[P ] in the population.
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Fig. 5.1. Except at the lower and upper bounds, the expected average specificity
of action sets σ[A] is always smaller than that of the current population.

Figure 5.1 depicts Equation 5.5. Except at the lower and upper bounds,
the specificity of [A] is always smaller than the specificity of [P ]. Thus, since
selection takes place in the action sets but deletion occurs in the population as
a whole, there is a tendency for the generality of the population to increase—in
line with Wilson’s generalization hypothesis. In the absence of fitness pressure,
the equation provides an estimate of the difference in specificity of selected and
deleted classifiers. Equation 5.5 is enhanced below accounting for mutation as
well.

5.1.2 Mutation’s Influence

Although usually only a low mutation probability is applied, mutation still
influences specificity. In the absence of other evolutionary influences, mutation
pushes the population towards a certain proportion of zeros, ones, and don’t-
cares. As outlined in Chapter 3, free mutation pushes towards a distribution
of 1:2 general:specific. Niche mutation, which mutates a specified attribute
always to a don’t care and a don’t care always to the current value of the
respective attribute, pushes towards a distribution of 1:1 general:specific.

The average expected change in specificity between the parental classifier
cp and the mutated offspring classifier co for the niche mutation case can be
written as follows:

∆mn(σ(cp)) = σ(co) − σ(cp) =
= σ(cp)(1 − µ) + (1 − σ(cp))µ − σ(cp) =
= µ(1 − 2σ(cp)), (5.6)

and for free mutation as
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∆mf (σ(cp)) = σ(co) − σ(cp) =

= σ(cp)(1 − µ

2
) + (1 − σ(cp))µ − σ(cp) =

= 0.5µ(2 − 3σ(cp)). (5.7)

As expected, the increase in specificity is higher when free mutation is applied
given low parental specificity (σ(cp) < 1/2) and specificity decrease is lower
when parental specificity is high (σ(cp) > 2/3). Applying random selection,
mutation, and random deletion, mutation pushes the population towards a
specificity of 0.5 applying niche mutation and 0.66 applying free mutation. The
current intensity of the pressure depends on the mutation type, the current
parental specificity, and on the frequency of the GA application (influenced
by the parameter θGA).

5.1.3 Deletion Pressure

The probability of a classifier being deleted depends on its action set size es-
timate as and (depending on classifier experience) its fitness F . Due to the
resulting bias towards deleting classifiers that occupy larger action sets, dele-
tion pushes the population towards an equal distribution of classifiers in each
environmental niche. With respect to specificity, classifier selection for dele-
tion from [P ] is essentially random and there is no particular deletion pressure
for or against general classifiers. In the absence of other biases the average
expected specificity of deleted classifiers is equal to the average specificity in
the population σ[P ].

A more significant effect can be observed with respect to overlapping
niches. Given there are two non-overlapping, accurate niches and another
accurate niche that overlaps with either one of the former, the action set
size estimate of the overlapping niche will be larger than that of the non-
overlapping ones. For example, given the non-overlapping niches 000*** and
01*0** and the overlapping niche 0*00** (this is actually the case in the
multiplexer problem), and given further that all niches are represented by ac-
curate, maximally general classifiers with a numerosity of say ten, then the
action set size estimate of the overlapping classifier will stay on 20 whereas the
estimate of the non-overlapping ones will approximate 15, making the dele-
tion of the overlapping classifier more likely. Thus, apart from emphasizing
equal niche support, the action-set size estimate based deletion pushes the
population towards a non-overlapping solution representation.

5.1.4 Subsumption Pressure

Subsumption deletion applies only to classifiers that are accurate (ε < ε0) and
sufficiently experienced (exp > θsub). The accuracy requirement suggests that
the problem is less noisy than ε0 since otherwise classifiers are not expected
to satisfy the criterion ever.
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If accurate classifiers evolve, subsumption deletion pushes towards maxi-
mal syntactic generality in contrast to the set pressure which pushes towards
semantic generality. GA subsumption deletion prevents the insertion of off-
spring into [P ], if there is a classifier in [A] that is more general than the
generated offspring. Thus, once an accurate, maximally general solution was
found for a particular niche, no accurate, more specialized classifier will be
inserted anymore, disabling any specialization in the current niche.

To summarize, subsumption pressure is an additional pressure towards ac-
curate, maximally syntactically general classifiers from the over-specific side.
It applies only when accurate classifiers are found. Thus, subsumption pres-
sure is helpful mainly later in the learning process once accurate classifiers
are found. It usually results in a strong decrease of population size, focusing
on maximally general classifiers.

5.1.5 Fitness Pressure

Until now we have not considered the effect of fitness pressure which can
influence several other pressures. Fitness pressure is highly dependent on the
particular problem being studied and is therefore difficult to formalize. In
general, fitness results in a pressure which pushes [P ] from the overgeneral
side towards accurate classifiers. Late in the run, when the optimal solution
is mainly found, it prevents overgeneralization.

As in the case of subsumption, fitness also pushes the population towards
a non-overlapping problem representation. Since fitness is derived from the
relative accuracy, the accuracy-share is lower in classifiers that overlap with
many other accurate classifiers. In effect, unnecessary, overlapping classifiers
have a lower fitness on average, are thus less likely to reproduce, and are thus
likely to be deleted from the population.

In terms of specificity, fitness pressure towards higher accuracy results usu-
ally in a specialization pressure since higher specificity usually implies higher
accuracy. Certain problems, however, may mislead fitness guidance in that
more general classifiers may actually have higher accuracy. This is particu-
larly the case in problems with unbalanced class distributions and multiple
classes (Butz, Goldberg, & Tharakunnel, 2003; Bernadó-Mansilla & Garrell-
Guiu, 2003). Since the problem is not as severe as originally suspected, we do
not investigate it any further. As suggested by our facetwise theory, though,
fitness guidance needs to be ensured.

In sum, fitness pressure usually works somewhat in the opposite direction
(towards higher specificity) of the set pressure. Thus, given fitness pressure
in a problem, the specificity in the population is expected to decrease less or
to increase dependent on the amount of fitness pressure. Fitness pressure is
certainly highly dependent on the investigated problem and thus hard to quan-
tify. The following section combines the pressure influences into the specificity
equation.
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5.1.6 Pressure Interaction

We now combine the above evolutionary pressures and analyze their inter-
action. Initially, we consider the interaction of set pressure, mutation pres-
sure, and deletion pressure, which yields an important relationship we call
the specificity equation. Next, we consider the effect of subsumption pressure
and potential fitness influences. Finally, we provide a visualization of the in-
teraction of all the pressures. The analyses are experimentally evaluated in
Section 5.1.7.

Specificity Equation

Since mutation is only dependent on the specificity of the selected parental
classifier and deletion can be assumed to be random, selection and mutation
can be combined into one specificity equation. Essentially, set pressure gener-
alizes whereas mutation specializes or generalizes dependent on the specificity
of the currently selected classifier.

Since fitness pressure is highly problem dependent, we disregard fitness
influences, essentially assuming equal fitness of all classifiers in our analysis.
As shown later in Section 5.1.7, this assumption holds when all classifiers
are accurate and nearly holds when all are similarly inaccurate. Despite the
fitness equality assumption, deletion is also dependent on the action set size
estimate as of a classifier. However, in accordance with Kovacs’ insight on the
relatively small influence of this dependence (Kovacs, 1999), we assume a ran-
dom deletion from the population in our formulation. Thus, as stated above,
a deletion results on average in the deletion of a classifier with a specificity
equal to the specificity of the population σ[P ]. The generation of an offspring,
on the other hand, results in the insertion of a classifier with an average speci-
ficity of σ[A]+∆mx(σ[A]) (x ∈ f, n) dependent on the type of mutation used.
Putting the observations together we can calculate the average specificity of
the resulting population after one time step:

σ[P (t + 1)] = σ[P (t)] + fGA
2(σ[A] + ∆mx(σ[A]) − σ[P (t)])

N
(5.8)

The parameter fGA denotes the frequency of a GA application per time step
assuming a constant application frequency for now. The formula adds to the
current specificity in the population σ[P (t)] the expected change in specificity
calculated as the difference between the specificity of the two reproduced
and mutated classifiers, that is, σ[A] + ∆mx(σ[A]) and σ[P (t)]. Note that
although the frequency fGA is written as a constant in the equation, fGA

actually depends on θGA, the specificity σ[P (t)], as well as on the specificity
distribution in the population. Thus, fGA cannot be written as a constant in
general. However, by setting θGA to zero, it is possible to force fGA to be one
since the average time since the last application of the GA in an action set
will always be at least one.
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XCS’s tendency towards accurate, maximally general classifiers from the
overgeneral side is not dependent on the use of subsumption. However, sub-
sumption is helpful in focusing the population more on the maximally general
representation. In fact, although the set pressure pushes the population to-
wards more general classifiers the pressure is somewhat limited. Equation 5.8
shows that without subsumption the complete convergence of the popula-
tion towards maximally accurate, maximally general classifiers is not assured.
However, XCS is an online learning system that should be flexible with respect
to problem dynamics so that complete convergence is usually not desired.

Another reason for a potential lack of complete convergence can be that
the set pressure is not present at all. This can happen if the state space of
a problem is a proper subspace of all possible representable states {0, 1}l

(as is essentially the case in most datamining applications as well as in RL
problems). Subsumption can be helpful in generalizing the population further.

As mentioned above, fitness pushes towards higher specificity from the
overgeneral side. Equation 5.8 assumes that the selected parental classifier
has an expected average specificity of σ[A], effectively assuming random se-
lection in the action set. However, selection is biased towards the selection
of more accurate classifiers. In effect, σ[A] needs to be replaced by the ex-
pected offspring specificity that depends on the expected fitness distribution
in the action set. Since this distribution is not only dependent on the problem
but also on the selection method used and the current specificity distribution
in each action set, we won’t analyze the fitness influence any further. How-
ever, it should be kept in mind that fitness influences are expected to cause
a specialization pressure that diminishes the generalization effect of the set
pressure.

All Pressures

The interaction of all the pressures is illustrated in Figure 5.2. In particular,
the fitness pressure pushes [P ] towards more accurate classifiers; the set pres-
sure pushes [P ] towards more general classifiers; the subsumption pressure
pushes [P ] towards classifiers that are accurate and syntactically maximally
general; the mutation pressure pushes towards a fixed proportion of symbols
in classifier conditions. Deletion pressure is implicitly included in the notion of
set pressure. More detailed effects of deletion are not depicted. Overall, these
pressures lead the population towards a population of accurate maximally
general classifiers. While set pressure and mutation pressure (free mutation
is represented) are independent of classifier accuracy, subsumption pressure
and, of course, fitness pressure are influenced by accuracy.

5.1.7 Validation of the Specificity Equation

This section evaluates the specificity equation, formulated in Equation 5.8,
and the additional evolutionary pressures identified in the previous sections.
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Fig. 5.2. The sketched interaction of all evolutionary pressures on imaginary speci-
ficity and accuracy axes shows how the evolutionary process in XCS is designed to
evolve accurate, maximally general classifiers. If the classifiers are over-general (that
is, specificity is smaller than at the accurate, maximally general point), accuracy is
low (strongly dependent on the problem and XCS’s accuracy equation) and fitness
pushes towards the propagation of more accurate classifiers. On the other hand,
if classifiers are over-specialized, accuracy is maximal but further generalization is
possible. Set pressure and subsumption pressure are responsible to stress such gen-
eralizations.

The specificity equation summarizes the effect of three main evolutionary
pressures in XCS: set pressure , mutation pressure, and deletion pressure.

XCS is applied to Boolean strings of length l = 20 with different settings.
The following figures show runs with mutation rates varying from 0.02 to 0.20.
In each plot, solid lines denote the result from Equation 5.8; while crossed
lines represent the result of actual XCS runs. Curves are averages over 50
runs. If not stated differently, the population is initially filled up with random
classifiers with don’t-care probability P# = 0.5. Niche mutation is applied.
The other XCS parameters are set as follows: N = 2000; β = 0.2; α = 0.1;
ε0 = 10; ν = 5; θGA = 0; χ = 0.8, θdel = 20; δ = 0.1; and θsub = ∞. Note
that the discount factor γ is irrelevant here since these are classification or
single-step problems. Since this section is concerned with the set pressure,
subsumption is turned off to prevent additional generalization influences.

Constant Function

We begin the validation of Equation 5.8 examining runs in a constant function,
which always returns one. With these settings, all classifiers turn out to be
accurate since their prediction error is always zero. Note however that a zero
prediction error does not necessarily mean constant fitness values. In fact,
since fitness is determined by the classifier’s relative accuracy, fitness should
still have an influence on evolutionary pressure. We investigate the influence
of free mutation, niche mutation, the GA threshold θGA, and the influence of
the deletion pressure.
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XCS in Constant Problem, l=20, niche mutation, random deletion
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XCS in Constant Problem, l=20, free mutation, random deletion
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Fig. 5.3. Solid lines represent the specificity as predicted in Equation 5.8. Marked
lines represent the actual experimental specificity σ[P ]. In a constant function set-
ting, the actual specificity behaves nearly exactly as predicted by the model applying
either (a) niche mutation or (b) free mutation.

Niche Mutation.

Figure 5.3a) depicts the average specificity σ[P ] in the specified settings vary-
ing the mutation rate. The deletion pressure is eliminated by deleting clas-
sifiers uniformly randomly in the population based solely on the numerosity
num.

The empirical specificities match very closely to the model expressed in
Equation 5.8. The initial specificity of 0.5 drops off quickly in the beginning
due to the strong set pressure. Soon the specializing effect of the mutation
pressure becomes visible and the specificity in the population converges as
predicted. The higher the mutation rate µ, the stronger the specializing influ-
ence of mutation, as manifested in the higher convergence value in the curves
with higher µ.

Free Mutation.

Figure 5.3b) depicts the specificity of the population [P] when free mutation
is used. Besides the visibility of the mutation pressure due to the variation of
µ, Figure 5.3b) confirms that free mutation has a slightly stronger influence
on specificity as formulated in Equation 5.7. When directly comparing Fig-
ures 5.3a) and 5.3b) we note that the higher the parameter µ, the higher the
influence of mutation pressure and thus the higher the differences in specificity
due to the different mutation types.

θGA Threshold.

As noted above, the GA frequency fGA in Equation 5.8 can generally not be
written as a constant value. The frequency depends on the specificity σ[P (t)]
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XCS in Constant Problem, l=20, niche mutation, random deletion, θGA=100
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XCS in Constant Problem, l=20, niche mutation

 0
 20000

 40000
 60000

 80000
 100000problems

 0
 0.05

 0.1
 0.15

 0.2

mutation rate µ

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

σ[P]

(a) (b)

Fig. 5.4. (a) When applying a GA threshold of θGA = 100, the GA frequency
and consequently the specificity pressure decreases. Convergence values are not in-
fluenced. (b) Due to slow adaptation of the action set size estimate parameter,
specificity convergence takes longer when action set size estimate based deletion is
applied.

of the population, its distribution, and the problem distribution. However, the
GA frequency fGA equals one when the GA threshold θGA is set to zero (as
has been done in the above evaluations). When setting θGA to a higher value
(e.g. θGA = 100), Figure 5.4a) reveals the lower GA frequency effect. Once the
specificity in the population has dropped, the action set sizes increase since
more classifiers match a specific state. Consequently, more classifiers take part
in a GA application, more time stamps ts are updated, the average time since
the last GA application in the population and in the action sets decrease, and
finally the GA frequency decreases. The decrease is observable in the slower
specificity decrease. As predicted by Equation 5.8, fGA does not influence the
convergence value.

Normal Deletion

The behavior of σ[P ] changes when we apply the usual deletion mechanism,
which deletes proportional to the action set size estimate parameter as. Fig-
ure 5.4b) reports runs in which the usual deletion is used. Note that also
in Figure 5.4b) the slopes of the curves decrease in comparison to the ones
in Figure 5.3a). In the end, though, specificity of [P ] converges to the value
predicted by the theory. The difference can only be the result of the bias in
the deletion method of deleting classifiers with larger action set size estimates
as. As the specificity of [P ] decreases, the action set size increases as noted
before. Thus, since more general classifiers are more often present in action
sets, their action set size estimate as is more sensitive to the change in the
action set size and consequently, it is larger in more general classifiers while
specificity drops. Eventually, all as values will have adjusted to the change
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XCS in Random Problem, l=20, niche mutation, random deletion
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XCS in Random Problem, l=20, niche mutation
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Fig. 5.5. (a) Applied to a random function, which returns zero or one equally
probable for each problem instance, the specificity stays on a higher level due to
the higher error variance in more specialized classifiers and parameter initialization
effects. (b) Fitness-biased deletion decreases convergence of specificity due to the
discussed action set size estimate influence.

and the predicted convergence value is met. This explanation is further con-
firmed by the fact that the difference between the actual runs and the curves
given by Equation 5.8 become smaller and converge faster for higher mutation
rates µ since the specificity slope is not as steep as in the curves with lower µ
values.

Random Function

The results in the previous section show that the specificity equations accu-
rately predict the behavior of XCS’s average specificity. The fitness influence
in XCS with a constant function proved to be rather small. Accordingly, we
now apply XCS with two different deletion strategies to a much more challeng-
ing problem, that is, to a random Boolean function, which randomly returns
rewards of thousand and zero. Figure 5.5a) reports the runs in which XCS
with random deletion is applied to the random function. The experiments
show that in the case of a random function, the fitness influences the speci-
ficity slope as well as the convergence value. In fact, the convergence value is
larger than predicted by the model in Equation 5.8. The main effect is caused
by the chosen initialization technique as well as by the higher error, and thus
fitness variance in less experienced classifiers.

Since the possible rewards are 0 and 1000, assuming accurate parame-
ter estimates in a classifier, classifier predictions fluctuate around 500, and
consequently also the prediction errors fluctuate around 500. As in the more
sensitive action set size estimates in Section 5.1.7, here the sensitivity is man-
ifested in the prediction error ε. More specific classifiers have a less sensitive
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ε and consequently a higher variance in the ε values. Since the accuracy cal-
culation expressed in Equation 4.5 scales the prediction error to the power
ν, the higher variance causes an on average higher accuracy and thus higher
fitness.

Different parameter initialization techniques in combination with the
moyenne adaptative modifiée technique enhance this influence. The more a
classifier is inexperienced, the more the classifier parameters are dependent on
the most recent cases. This, in combination with the scaled fitness approach,
can make the effect even stronger. Since we set the experience exp of a new
classifier to 1, XCS keeps the decreased parental parameter estimates so that
fitness over-estimation is prevented. In fact, experimental runs with exp = 0
show that the specificity can increase to a level of even 0.2 independent of the
mutation rate and type.

When applying the usual deletion strategy, based on as and the fitness
estimate F , deletion causes an increase in the specificity of [P ] early on as
shown in Figure 5.5b). This longer convergence time is attributable to the bias
on as as already observed in Figure 5.4b). The additional fitness bias causes
hardly any observable influence.

Overall, it can be seen that in a random function fitness causes an intrin-
sic pressure towards higher specificity. This pressure is due to the parameter
initialization method and the higher variance in more specific classifiers. The
on-average higher fitness in more specific classifiers causes fitness pressure and
deletion pressure to favor those more specific classifiers; thus the resulting
undirected slight pressure towards higher specificity. Note that the specificity
change and the convergence to a particular specificity level observed in Fig-
ure 5.5b) should essentially take place in all problems that are similar to a
random function. This is particularly the case if classifiers are overgeneral
and the investigated problem provides no fitness guidance from the overgen-
eral side.

Steady State Specificity Distribution

The performance evaluations showed that the specificity equation is correct.
Initialization influences and variance effects usually result in a slightly higher
specificity than predicted.

From Equation 5.8 it is possible to derive the specificity a population
is expected to converge to (regardless of the initial specificity) assuming no
fitness influence. Setting the difference (σ[A]) + ∆mx(σ[A]) − (σ[P ]) to zero,
we derive for free mutation

σ[A] + ∆mf (σ[A]) = σ[P ]

σ[P ]
2 − σ[P ]

+
µ

2

(
2 − 3

σ[P ]
2 − σ[P ]

)
= σ[P ], (5.9)

solving for σ[P ]:
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σ[P ] =
1 + 2.5µ −

√
6.25µ2 − 3µ + 1
2

, (5.10)

solving for µ:

µ =
σ[P ] − σ[P ]2

2 − 5
2σ[P ]

. (5.11)

Similarly, we derive for niche mutation

σ[A] + ∆mn(σ[A]) = σ[P ]

σ[P ]
2 − σ[P ]

+ µ

(
1 − 2σ[P ]

2 − σ[P ]

)
= σ[P ], (5.12)

solving for σ[P ]:

σ[P ] =
1 + 3µ −

√
9µ2 − 2µ + 1
2

, (5.13)

solving for µ:

µ =
σ[P ] − σ[P ]2

2 − 3σ[P ]
. (5.14)

The above equations enable us to determine the expected specificity in the
population given a fixed mutation probability. On the other hand, given a de-
sired specificity in the population, we can determine the mutation probability
necessary to achieve that specificity.

Table 5.1 shows the resulting specificities in theory and empirically deter-
mined in a random function (that is, a Boolean function that returns uni-
formly randomly either zero or one for each problem instance) and a constant
function (that is, a Boolean function that returns always one). Evaluated are
niche mutation and free mutation. Empirical runs were carried through using
either proportionate selection or tournament selection, which is introduced
in Section 5.2.3. In the random function, the empirical results show slightly
higher values than predicted by the theory. We note that the resulting speci-
ficity values can be roughly approximated by twice the value of mutation.
The higher specificity values are mainly due to offspring initialization effects
in conjunction with the application frequency of classifiers. In the case of low
mutation rates, the fitness decrease in offspring classifiers is quickly overruled
by higher relative accuracies. In the case of high mutation rates, the fitness
decrease causes lower consequent specificities. These effects are enhanced by
the much stronger pressure induced by tournament selection. Figure 5.6 shows
the convergence values of the table in graphical form.

Table 5.2 shows necessary mutation rates for desired specificities in the-
ory and derived from experiments. Due the specialization effects caused by
offspring initialization, the mutation rate needs to be set slightly lower than
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Table 5.1. Converged specificities from empirical results in a constant and a random
function with free mutation and niche mutation with proportionate selection and
tournament selection as well as in theory.

Constant Function Random Function

Free Mu. Niche Mu. Free Mu. Niche Mu. Theory

µ Prop.S. Tour.S. Prop.S. Tour.S. Prop.S. Tour.S. Prop.S. Tour.S. Free Mu. Niche Mu.

0.01 0.02091 0.10846 0.02098 0.10773 0.03396 0.16846 0.03276 0.16456 0.01990 0.01980

0.02 0.04034 0.11512 0.04022 0.11358 0.06615 0.19667 0.06447 0.18864 0.03959 0.03918

0.04 0.07846 0.12953 0.07720 0.12641 0.12856 0.23261 0.12300 0.21903 0.07830 0.07668

0.06 0.11418 0.14594 0.11119 0.14076 0.18233 0.25920 0.17180 0.24384 0.11606 0.11240

0.08 0.15109 0.16560 0.14509 0.15790 0.22668 0.27971 0.21360 0.26364 0.15279 0.14629

0.10 0.18357 0.18712 0.17554 0.17743 0.25995 0.29965 0.24340 0.28007 0.18839 0.17830

0.12 0.21762 0.21116 0.20539 0.19864 0.28872 0.31810 0.26615 0.29549 0.22280 0.20841

0.14 0.24856 0.23706 0.23055 0.22128 0.31172 0.33538 0.28641 0.30855 0.25592 0.23661

0.16 0.28025 0.26089 0.25655 0.24380 0.33549 0.35106 0.30432 0.32357 0.28769 0.26293

0.18 0.30818 0.28485 0.27956 0.26548 0.35761 0.36812 0.32255 0.33633 0.31803 0.28740

0.20 0.33648 0.30964 0.30244 0.28554 0.37750 0.38494 0.33820 0.34983 0.34689 0.31010
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Fig. 5.6. Specificity is strongly dependent on mutation rate and mutation type.
In a constant function, the theory nearly matches the resulting specificities. Fitness
differences due to offspring initialization and frequency of evaluation change the
specificity distribution, especially when tournament selection is applied.

suggested by the theory. Tournament selection enhances this effect since it fo-
cuses selection pressure, considering even small fitness differences significant.
Note that apart from its effect on specificity, if mutation probability is set too
high, mutation may be disruptive, destroying important parental structural
information. The result would be an undesired random problem search.

5.2 Improving Fitness Pressure

The previous section has shown that XCS has an intrinsic generalization pres-
sure that needs to be overcome by a sufficiently strong fitness pressure in or-
der to evolve accurate classifiers. Selection in XCS and other LCSs has always
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Table 5.2. Mutation settings for desired specificities. Empirical results are derived
from simulations in a random function, which returns zero or one equally probable
for each problem instance.

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6

free mut.
theory 0.0253 0.0514 0.0785 0.1067 0.1364 0.1680 0.2400 0.3333 0.4800
prop.sel. 0.02 0.03 0.05 0.07 .10 0.14 > .2 > .2 > .2
tour.sel. < 0.01 < 0.01 0.01 0.02 0.06 0.10 > .2 > .2 > .2

niche mut.
theory 0.0257 0.0529 0.0823 0.1143 0.1500 0.1909 0.3000 0.5000 −
prop.sel. 0.02 0.03 0.05 0.08 0.11 0.16 > .2 > .2 > .2
tour.sel. < 0.01 < 0.01 0.01 0.03 0.07 0.14 > .2 > .2 > .2

been done by means of proportionate selection. As we have seen in Chapter 2,
though, proportionate selection results in a fitness pressure that is strongly
dependent on fitness scaling and the fitness distribution in the population
(Baker, 1985; Goldberg & Deb, 1991; Goldberg & Sastry, 2001; Goldberg,
2002).

This section shows that XCS can actually suffer from the pitfalls of pro-
portionate selection observed in the GA literature. Moreover, we show that
tournament selection with tournament sizes proportional to the action set size
can solve the problem resulting in a strong, stable, and reliable fitness pressure
towards more accurate classifiers.

5.2.1 Proportionate vs. Tournament Selection

Proportionate selection was applied and analyzed in Holland’s original GA
work (Holland, 1975). However, proportionate selection strongly depends both
on fitness scaling (Baker, 1985; Goldberg & Deb, 1991) as well as on the cur-
rent fitness distribution in the population. The smaller the fitness differences
in the population the smaller the fitness pressure. Goldberg and Sastry (2001)
show that evolutionary progress stalls when a population comes close to con-
vergence since the fitness differences are not sufficiently strong anymore.

Fitness of XCS classifiers is derived from the scaled, set-relative accuracy.
Although fitness scaling usually works well and proportionate selection is ap-
plied in the current action sets and not in the whole population, the more
similarly accurate classifiers are, the less fitness pressure due to proportionate
selection is expectable. In effect, similar accuracy of all classifiers in an action
set should decrease or even annihilate fitness pressure.

Tournament selection, on the other hand, does not care about the current
relative fitness differences. What matters is fitness rank. Thus, tournament
selection does not suffer from fitness scaling nor from very small differences in
accuracy. As long as there are significant differences in accuracy, tournament
selection detects them and propagates the higher accurate classifier.

The next section shows that proportionate selection does not only suffer
from cases in which classifiers are expected to have similar fitness values, but
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fitness pressure can actually be insufficiently strong. We propose set-size rela-
tive tournament selection as the remedy and confirm its superior performance
in the exemplar multiplexer problem.

5.2.2 Limitations of Proportionate Selection

To reveal the limitations of proportionate selection, we apply XCS to the
multiplexer problem with various parameter settings or with additional noise
in the problem. We show that learning in XCS with proportionate selection
is disrupted if the learning parameter β is set too low or if problem noise is
set too high. The multiplexer problem is introduced in Appendix C.1

Figure 5.7 reveals the strong dependence on parameter β. Decreasing the
learning rate hinders XCS from evolving an accurate problem solution. The
problem is that initially overgeneral classifiers occupy a big part of the pop-
ulation. Better offspring often lose against the overgeneral parents since the
fitness of the offspring only increases slowly (due to the low β value). Small
differences in the fitness F only have small effects when using proportionate
selection. Altering the slope of the accuracy curve by changing parameters α
and ε0 does not have any positive learning effect.

Figure 5.8 reveals XCS’s dependence on initial specificity. Increasing P#

(effectively decreasing initial specificity) impairs the learning speed of XCS,
since fitness does not cause sufficient specialization pressure. Decreasing the
mutation rate µ also has a detrimental effect strongly delaying learning
progress. The generalizing set pressure appears to be often stronger than the
specializing fitness pressure so that the chances of reaching higher accurate
classifiers are significantly decreased.

Additionally, we detected significant parameter initialization effects when
using proportionate selection. If prediction p and reward prediction error ε
are set to the parental values, learning speed is slightly decreased. Since in
our problems only zero or thousand reward is possible and reward prediction
is set directly to either one of the values, if the classifier is accurate, its error
will decrease faster and fitness will increase faster.

In addition to the dependency on parameters β, P#, µ, and initialization,
we can show that XCS with proportionate selection is often not able to solve
noisy problems. We added two kinds of noise to the multiplexer problem: (1)
Gaussian noise with a standard deviation σ is added to the payoff provided
by the environment; (2) The payoff is swapped with a certain probability,
termed alternating noise in the remainder of this work. Figures 5.9 and 5.10
show that XCS’s performance is strongly degraded when adding only a small
1 Unless stated otherwise, all results in this section are averaged over 50 exper-

imental runs. Performance is assessed by test trials in which no learning takes
place and the better prediction array value is chosen as the classification. Dur-
ing learning, classifications are chosen at random. Parameters are set as follows:
N = 2000, β = 0.2, α = 1, ε0 = .001, ν = 5, θGA = 25, χ = 1.0, µ = 0.04,
θdel = 20, δ = 0.1, θsub = 20, and P# = 0.6.
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amount of either noise. Similar observations were made in Kovacs (2003),
where Gaussian noise was added to the reward in some of the output classes.

In general, the more noise is added, the smaller the fitness difference be-
tween accurate and inaccurate classifiers. Thus, selection pressure decreases
due to proportionate selection and the population starts to drift at random.
Lanzi (1999c) proposed an extension to XCS that detects noise in environ-
ments and adjusts the error estimates accordingly. This approach, however,
does not solve the parameter dependencies nor problems in which noise is not
equally distributed over the problem space.



84 5 How XCS Works: Ensuring Effective Evolutionary Pressures

5.2.3 Tournament Selection

In contrast to proportionate selection, tournament selection is independent
of fitness scaling (Goldberg & Deb, 1991). In tournament selection parental
classifiers are not selected proportional to their fitness, but tournaments are
held in which the classifier with the highest fitness wins (stochastic tourna-
ments are not considered herein). Participants for the tournament are usually
chosen at random from the population in which selection is applied. The size
of the tournament controls the selection pressure. Fixed tournament sizes are
generally used in GAs.

Compared to standard GAs, the GA in XCS is a steady-state, niche GA.
Only two classifiers are selected in each GA application and selection is re-
stricted to the classifiers in the current action set. Thus, some classifiers might
not get any reproductive opportunity at all before being deleted from the pop-
ulation. Additionally, action set sizes can vary significantly. Initially, action
sets are often over-populated with overgeneral classifiers. Thus, a relatively
strong selection pressure, which adapts to the current action set size, appears
to be necessary.

Thus, effective tournament selection in XCS holds tournaments of sizes
dependent on the current action set size |[A]| choosing a subset of size τ |[A]|
(τ ∈ (0, 1]) of the classifiers in [A].2 Instead of proportionate selection, two
independent tournaments are held in which the classifier with the highest
fitness is selected. The tournament selection procedure is described in algo-
rithmic form in Appendix B.

The action set size proportionate tournament size assures that the current
best classifier (assuming only one copy) is selected at least once with prob-
ability 1 − (1 − τ)2. For example, if the tournament size is set to τ = 0.4
of the population, we assure that the maximally accurate classifier is part of
at least one of the two tournaments with a probability of 0.64. On average,
2τ2 +2(τ(1− τ)) = 2τ optimal classifiers are selected. The more copies of the
best classifier exist, the higher the probability. This derivation is impossible
when fixed tournament sizes are used since the action set size continuously
varies and consequently the probability of selecting the best classifier contin-
uously varies as well.

XCSTS in the Previous 20 Multiplexer Settings

Figures 5.11 and 5.12 show that XCS with tournament selection, referred to
as XCSTS, can solve the 20 multiplexer problem even with a low parameter
value β, a low parameter value µ, or a high parameter value P#. XCSTS is
also more independent from initial parameter settings. The much stronger and
stable fitness pressure overcomes the generalizing set pressure even without
the help of mutation pressure. A reliable and stable performance increase is
observable.
2 If not stated differently, τ is set to 0.4 in the subsequent experimental runs.
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no learning influence.
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hardly influences XCSTS’s learning be-
havior.

Figures 5.13 and 5.14 show that XCSTS is much more robust in noisy prob-
lems as well. XCSTS solves the same Gaussian noise 20 multiplexer problem
with nearly no performance degradation (Figure 5.13). Despite the noisy pa-
rameter estimation values, tournament selection detects the more accurate
classifiers generating a sufficiently strong fitness pressure. The decrease in the
differences of accuracy due to the additional noise hardly affects XCSTS. Also
in the alternating noise case, XCSTS reaches a higher performance level (Fig-
ure 5.14). Note that as expected, the population sizes do not converge to the
sizes achieved without noise, since subsumption does not apply. Nonetheless,
in both noise cases the population sizes decrease indicating the detection and
convergence to maximally accurate classifiers.

Tournament Selection with Fixed Size

XCS’s action sets vary in size and in distribution. Dependent on the initial
specificity in the population (controlled by parameter P#), the average action
set size is either large or small initially. As was shown above, the average speci-
ficity in an action set is on average smaller than the specificity in the whole
population. Replication in action sets and deletion from the whole population
results in an implicit generalization pressure that can only be overcome by a
sufficiently large specialization pressure. Additionally, the distribution of the
specificities depends on initial specificity, problem properties, the resulting
fitness pressure, and learning dynamics. Thus, an approach with fixed tour-
nament size is dependent on the particular problem and probably not flexible
enough. Kovacs used fixed tournament sizes to increase fitness pressure in his
comparison to a strength-based XCS version (Kovacs, 2003).
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In Figure 5.15 we show that XCSTS with fixed tournament size τf only
solves the multiplexer problem with the large tournament size of τf = 12. Since
the population is usually over-populated with overgeneral classifiers early in
a run, action set sizes are large so that a small tournament size mainly causes
competition only among overgeneral classifiers. Thus, not enough fitness pres-
sure is generated. When adding noise, an even larger tournament size is neces-
sary (Figure 5.16). A tournament size of τf = 32, however, does not allow any
useful recombinatory events anymore since the action set size itself is usually
not much bigger than that. Thus, fixed tournament sizes are inappropriate
for XCS’s selection mechanism.

Different Tournament Sizes

A change in the relative tournament size effectively changes the strength of
the selection pressure applied. While a tournament size τ = 0 corresponds
to random selection, τ = 1 corresponds to a deterministic selection of the
classifier with the currently highest fitness in the action set, and thus the
strongest selection pressure. As can be seen in Figure 5.17 and Figure 5.18,
XCSTS is able to generate a complete and accurate problem representation for
a large range of τ . However, if selection pressure is too weak, learning may not
take place at all or may be delayed. On the other hand, if selection pressure is
very strong, crossover never has any effect since identical classifiers are crossed.
The lack of effective recombinations hardly influences XCS performance in
the multiplexer problem as shown in Figure 5.18. However, in other problems
ineffective crossover may strongly impair XCS’s learning capabilities. Thus, τ
may not be set to 1. In practice, a value of 0.4 proved to be robust.
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Fig. 5.18. Very large tournament set
size proportions may prevent effective
recombination. In the multiplexer prob-
lem, this restriction results in hardly any
performance influence.

Specificity Guidance Exhibited

As theorized above, the two selection methods differ in their dependence on
the fitness estimate and fitness distribution. The fitness pressure, resulting
from proportionate selection, depends on fitness scaling and in particular on
the relative amount of fitness difference. Tournament selection on the other
hand only depends on the fitness difference itself and not on the amount of
the difference. That is, as long as the more accurate classifiers have a higher
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Fig. 5.19. Starting with an overgeneral
population and low mutation rate, XCS
is not able to pick up the accuracy signal
reliably.
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Fig. 5.20. XCSTS immediately pushes
the population towards higher specificity
and thus higher accuracy.

fitness estimate (regardless of how much higher the estimate is), tournament
selection causes fitness pressure towards higher accuracy.

To exhibit this pressure, we monitor the average specificity in the pop-
ulation as well as the average standard deviation of the specificity. Fig-
ures 5.19 and 5.20 show the change in specificity when starting with a com-
pletely general population (P# = 1.0) in the 11 multiplexer problem. Fig-
ure 5.20 shows that XCSTS immediately identifies higher accurate classifies
causing the specificity to rise. XCS, on the other hand, stalls at the overgeneral
level apparently relying on a lucky guess for successful learning (Figure 5.19).

Another indicator can be found in the performance increase showing also
the standard deviation over the experiments. Since XCSTS detects the fitness
guidance in the problem immediately, the standard deviation between the
runs remains small and the performance is hardly affected by a higher initial
generality. Performance of XCS with proportionate selection, on the other
hand, is much less reliable and strongly depends on initial generality. If there is
no accurate classifier generated initially, proportionate selection has problems
generating a sufficiently strong fitness guidance.

5.3 Summary and Conclusions

This chapter has shown how XCS evolves a complete, accurate, and maximally
general problem solution. Several evolutionary pressures guide the initial clas-
sifier population to the solution.

1. Fitness pressures is the main pressure towards higher accuracy.
2. Set pressure causes classifier generalization towards higher semantic gen-

erality.
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3. Mutation pressure causes diversification searching in the syntactic neigh-
borhood of currently best subsolutions. Mutation also has an effect on
specificity.

4. Deletion pressure emphasizes the maintenance of a complete solution.
5. Subsumption pressure propagates accurate classifiers that are syntactically

more general.

Combining set pressure and mutation pressure, we derived a specificity equa-
tion, which is able to predict the expected specificity change in an XCS pop-
ulation as long as no additional fitness pressure applies. In conjunction with
fitness pressure and subsumption pressure, the pressures push towards an
equilibrium that coincides with the desired complete, maximally accurate,
and maximally general problem solution.

However, to reach this equilibrium, fitness pressure needs to be strong
enough to reliably overcome the generalizing set pressure. We showed that
proportionate selection may not be sufficiently strong due to parameter influ-
ences as well as problem influences such as a noisy reward function. Tourna-
ment selection with tournament sizes proportional to the current action set
size solves these drawbacks. Since the tournament size is set proportionate
to the current action set size, the minimal probability of selecting the most
accurate classifier is fixed so that the minimal fitness pressure is also fixed. We
showed that XCS with tournament selection is able to solve the investigated
problems reliably, confirming the theorized reliable fitness pressure towards
higher accuracy.

Note however that tournament selection for deletion is actually inappropri-
ate. Tournament selection strives to evolve the best classifiers and converges
to these classifier fast. This is appropriate for reproduction because only one
maximally accurate classifier or a few accurate, overlapping classifiers should
evolve in each action set. Since deletion is applied population wide and XCS
evolves a distributed problem solution, proportionate selection is the right
choice in this case since it naturally maintains a distributed problem solution.
Horn, Goldberg, and Deb (1994) provides a detailed analysis on the suitability
of population wide proportionate selection with fitness sharing.

With respect to the facetwise theory approach for LCSs, we can now assure
the first major aspects of the approach: (1) Due to the addition of tournament
selection, fitness guides reliably to the intended solution. The accuracy-based
fitness approach prevents strong overgenerals; (2) Parameters are estimated
appropriately using adapted Q-learning and the moyenne adaptative modifiée
technique; (3) Appropriate generalization applies as quantitatively analyzed in
the specificity equation. Other influences with respect to generalization cause
(crossover) or slight additional specificity influence (deletion, parameter ini-
tialization, accuracy determination) but no disruption. Subsumption pushes
towards maximally syntactically general, accurate classifiers as long as com-
plete accuracy can be reached in the problem (reward prediction error ε drops
below ε0).
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With the first main aspect of our facetwise LCS theory understood and
satisfied, we are now ready to face the second aspect. The next chapter con-
sequently investigates the computational effort necessary to ensure solution
growth and sustenance.




