
3

Simple Learning Classifier Systems

Learning Classifier Systems (LCSs) (Holland, 1976; Booker, Goldberg, & Hol-
land, 1989) are rule-based evolutionary learning systems. A basic LCS consists
of (1) a set of rules, that is, a population of classifiers, (2) a rule evaluation
mechanism, which usually is realized by adapted reinforcement learning (RL)
(Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998) techniques, and
(3) a rule evolution mechanism, which is usually implemented by a genetic
algorithm (GA) (Holland, 1975). The classifier population codes the current
knowledge of the LCS. The evaluation mechanism estimates and propagates
rule utility. Based on the estimated utilities, the evolutionary mechanism gen-
erates offspring classifiers and deletes less useful classifiers.

LCSs can be distinguished between online learning LCSs and offline learn-
ing LCSs. Moreover, they can be distinguished between LCSs that evolve a
single solution, often referred to as Michigan-style LCSs, and LCSs that evolve
a set of solutions, often referred to as Pittsburgh-style learning classifier sys-
tems (DeJong, Spears, & Gordon, 1993; Llorà & Garrell, 2001b). These sys-
tems are usually applied in offline learning scenarios only (also referred to as
batch learning).

We analyze LCSs in a modular, facetwise way. That is, different facets of
successful LCS learning are analyzed separately and then possible interactions
between the facets are considered. The facetwise analysis focuses on appro-
priate identification, propagation, sustenance, and search of a complete and
accurate problem solution. While most of the work focuses on one particular
(online learning, Michigan-style) LCS, that is, the accuracy-based learning
classifier system XCS (Wilson, 1995), the basic analysis and comparisons as
well as the drawn conclusions should readily carry over to other types of LCSs
neither restricted to online-learning LCSs nor to Michigan-style LCSs.

This chapter first gives a general introduction to a simple LCS in tutorial
form, assuming knowledge about both the basic functioning of a GA as well
as basic RL principles. An illustrative example provides more details on basic
LCSs. Section 3.3 introduces our facetwise theory approach. Summary and
conclusions wrap up the most important lessons of this chapter.

32 3 Simple Learning Classifier Systems

3.1 Learning Architecture

LCSs have a rather simple, but interactive, learning structure combining the
strengths of GAs in search, pattern recognition, pattern propagation, and in-
novation with the value estimation capabilities of RL. The result is a learning
system that generates online a generalized state-action value representation.
Depending on the complexity of the problem and the number of different
states, the generalization capability is able to save space as well as time to
learn an optimal behavioral policy. Similarly, in a classification problem sce-
nario, LCSs may be able to detect distributed dependencies in data focusing
on the most relevant ones. Conveniently, the dependencies are usually directly
reflected in the emerging rules, allowing not only statistical datamining but
also more qualitatively oriented datamining.

The basic interaction of the three major components of a learning clas-
sifier system and the environment is illustrated in Figure 3.1. While the RL
component controls the interaction with the environment, the evolutionary
component evolves the problem representation, that is, classifier condition
and action parts. Thus, the learning mechanism interacts not only with the
environment but also within itself. The evolutionary component relies on ap-
propriate evaluation measures from the RL component and, vice versa, the
RL component relies on appropriate classifier structure generated by the GA
component to be able to estimate future reinforcement accurately. The in-
teraction between the two components is the key to LCS success. However,
proper interaction alone does not assure success. This will become particu-
larly evident in our later analyses. The following paragraphs provide a more
concrete definition of a simple learning classifier system LCS1.

3.1.1 Knowledge Representation

To be more concrete, we define a learning classifier system LCS1. LCS1 con-
sists of a population of maximum size N of classifiers. Each classifier cl consists
of a condition part cl.C, an action part cl.A and a reward prediction value
cl.R (using the dot notation to refer to parts of a classifier). Classifier cl pre-
dicts reward cl.R ∈ � given its condition cl.C is satisfied, and given further
that action cl.A ∈ A is executed.

Depending on the representation of the problem space S (e.g. binary, nom-
inal, real...), conditions may be defined in various ways from simple exact
values, over value ranges, to more complex, kernel-based conditions such as
radial basis functions. Each classifier condition defines a problem subspace.
The population of classifiers as a whole usually covers the complete prob-
lem space. Classifiers with non-overlapping conditions (specifying completely
different subspaces) are independent with respect to the representation and
may be considered as implicitly connected by an or operator. Overlapping
classifiers compete for activity and reward.

3.1 Learning Architecture 33

E N V I R O N M E N T

reward propagation /
rule evaluation

action

POPULATION
condition

C1

C

C

C

C

C

2

3

4

5

N

...

action

A1

A

A

A

A

A

2

3

4

5

N

...

reward

R1

R

R

R

R

R

2

3

4

5

N

...

Reinforcement Learning Component

Evolutionary Learning Component

rule selection, reproduction, mutation,
recombination, and deletion

reinforcement
feedback

action decision /
behavioral policy

LEARNING CLASSIFIER SYSTEM ARCHITECTURE

problem instance /
state information

Fig. 3.1. The major components in a learning classifier system are the knowledge
base, which is represented by a set of rules (that is, a population of classifiers), the
evolutionary component, which evolves classifier structure based on their reward
estimation values, and the RL component, which evaluates rules and decides on
actions (or classifications).

Let’s consider the binary case corresponding to our definition of a Boolean
function problem (Chapter 2), as well as our example of Maze 1 (Figure 2.3 on
page 17). The binary input string S = {0, 1}l is matched with the conditions
that specify the attributes it requires to be correctly set. Traditionally, in its
simplest form a condition is represented by the ternary alphabet C ∈ {0, 1,#}l

where the don’t care symbol # matches both zero and one.1 If the condition
part is satisfied by the current problem instance, the classifier is said to match.
Table 3.1 shows an example of a potential problem instance and all conditions
that match this problem instance.

Introducing a little more notation, a classifier cl may be said to have a
certain specificity σ(cl). In the binary case, we may define specificity as the
ratio of the number of specified attributes to the overall number of attributes.
For example, given a problem of length l and a classifier with k specialized
(not don’t care) attributes, the classifier has a specificity of k

l . Similar def-
initions may be used for other problem domains and other condition repre-
sentations. Essentially, specificity is a measure that characterizes how much
of the problem space a classifier covers. A specificity of one means that only
one possible problem instance is covered whereas a specificity of zero means
that all problem instances (the whole problem space) is covered. Thus, the

1 Note that the hash symbol might not be expressed explicitly representing a con-
dition part by a set of position-value tuples corresponding to the attributes in
the traditional representation that are set to zero or one. This representation has
significant computational advantages when the rules only specify a few attributes.

34 3 Simple Learning Classifier Systems

Table 3.1. All classifier conditions whose specified attributes are identical to the
corresponding values in the problem instance match the current problem instance.
The more general a condition part, the more problem instances it matches.

instance matching conditions

1001 1001

100# 10#1 1#01 #001

10## 1#0# #00#

1##1 #0#1 ##01

###1 ##0# #0## 1###

####

matching problem instances condition

1001 1001

1001 1000 100#

1011 1010 1001 1000 10##

1111 1101 ... 0011 0001 ###1

1111 1110 ... 0001 0000 ####

larger the specificity of a classifier, the less of the problem space is covered by
the classifier. Specificity is an important measure in LCSs, useful for deriv-
ing and quantifying evolutionary pressures, problem bounds, and parameter
values. Subsequent chapters derive several problem bounds and performance
measures based on specificity.

3.1.2 Reinforcement Learning Component

Given a current problem instance, an LCS forms a match set [M] of all clas-
sifiers in the population [P] whose conditions are satisfied by the current
problem instance. The match set reflects the knowledge about the current
state (given the current problem instance). An LCS uses the match set [M]
to decide on an action.

The action decision is made by the behavioral policy π controlled by the
RL component. In the simple case, we can use an adapted ε-greedy action
selection mechanism. The predicted action value may be decided upon by
averaging over the reward predictions of all matching classifiers for each action.
The consequent behavioral policy may be written as

πLCS1(s) =

{
arg maxa

∑
{cl∈[M]|cl.A=a} cl.R

|{cl∈[M]|cl.A=a}| with prob. 1 − ε

rand(a) otherwise
, (3.1)

where s denotes the current problem instance, a the chosen action and {cl ∈
[M]|cl.A = a} the set of all classifiers in the match set [M] whose action
part specifies action a. As a result of the action decision a′ = πLCS1(s) a
corresponding action set [A] is formed that consists of all classifiers in the
current match set [M] that specify action a′ ([A] = {cl ∈ [M]|cl.A = a′}).

After the reception of the resulting immediate reward r and the next prob-
lem instance s+1 yielding match set [M]+1, all classifier reward predictions in
[A] are updated using the adapted Q-learning equation:

R ← R + β(r + γmaxa

∑
{cl∈[M]+1|cl.A=a} cl.R

|{cl ∈ [M]+1|cl.A = a}| − R), (3.2)

3.1 Learning Architecture 35

estimating the maximum expected discounted future reward by the average
of all participating classifiers. The max operation indicates the relation to Q-
learning. The difference is that in Q-learning only one value is used to estimate
a Q-value, whereas in LCS1 a set of classifiers together estimates the resulting
Q-value. If all conditions were completely specific, LCS1 would do Q-learning,
predicting each Q-value by the means of a single, fully specific classifier.

3.1.3 Evolutionary Component

At this point, we know how reward prediction values are updated and how
they are propagated in an LCS. What remains to be addressed is how the
underlying conditional structure evolves. Two components are responsible for
classifier structure generation and evolution: (1) a covering mechanism, and
(2) a GA.

The covering mechanism is mostly applied early in a run to ensure that all
problem instances are covered by at least one rule. Given a problem instance,
a rule may be generated that sets the value of each attribute with probability
(1 − P#) to the current value and to a don’t care symbol otherwise. Note
that covering may be mainly avoided by initializing sufficiently general classi-
fiers. Particularly, if adding classifiers for all possible actions with completely
general conditions (all don’t care symbols) to the population, covering will
not be necessary because the completely general classifiers always match. In
this case, the GA needs to fully take care of structure evolution starting from
completely (over-)general classifiers.

In its simplest form, we use a steady-state GA (similar to an (N + 2)
evolution strategy mechanism (Rechenberg, 1973; Bäck & Schwefel, 1995)).
That is, in each learning iteration, the evolutionary component selects two
offspring classifiers using, for example, proportionate selection based on the
reward predictions R. The selected two classifiers are reproduced, mutated,
and recombined yielding two offspring classifiers. For example, mutation can
change a condition attribute, with a certain probability µ, to one of the other
possible values. Additionally, the action part may be mutated with probability
µ. Recombination combines the condition parts with a probability χ applying,
for example, uniform crossover. The two offspring classifiers replace two other
classifiers, which can be selected using proportionate selection on the inverse
of their fitness (e.g. 1

1+R).
In the case of such a simple GA mechanism, the GA searches in the syn-

tactic (genotypic) local neighborhood of the current population. Selection is
biased towards selecting higher reward offspring, consequently propagating
classifier structures that predict high reward on average and deleting classi-
fiers that expect low reward on average.

In combination with the RL component, the GA should evolve structures
that receive high reward on average. Unfortunately, this is not enough to
ensure successful learning. Section 3.3 introduces a general theory of learning
in LCSs that reveals the drawbacks of this simple LCS system.

36 3 Simple Learning Classifier Systems

3.2 Simple LCS at Work

Let’s do a hypothetical run with our simple LCS1 on the Maze 1 problem
(see Figure 2.3 on page 17). Perceptions are coded starting north and coding
clockwise indicating an obstacle by 1 and a free position by 0. The money
position is perceived as a free position. For example, consider the population
shown in Figure 3.2 (generated by hand). Classifier 1 is a classifier that iden-
tifies a move to the north whenever there is no obstacle to the east, whereas
Classifier 2 considers a move to the north whenever there is no obstacle on
the west side. The shown reward values reflect the expected reward received
if all situations were equally likely and the correct Q-values were propagated
(effectively an approximation of the actual values).

In the shown iteration, the provided problem instance 01011101 indicates
that there is a free space north, east, and west (as a result of residing in
the position just south of the money position). The problem instance triggers
the formation of a match set, as indicated in Figure 3.2. In the example, the
classifiers shown in the match set predict a reward of 950.75 for action ↑ and
900 for action ↓. When action ↑ is executed, the money position is reached,
a reward r of 1000 is received, and the reward predictions of all classifiers in
the current action set are updated, applying Equation 3.2 (shown are updates
using learning rate β = 0.2). It can be seen how the reward estimation values
of all classifiers increase towards 1000.

Finally, a GA is applied that selects two classifiers from the popula-
tion, reproduces, mutates, and recombines them, and replaces two existing
classifiers by the new classifiers. For example, the GA may select classifiers
three and six, reproducing them, mutating them to e.g. 3′=(0####1###,↑)
and 6′=(0101#101,↑), recombining them using one-point crossover to e.g.
3∗=(0####1101,↑) and 6∗=(0101####,↑), and finally reinserting 3∗ and 6∗

into the population, replacing two other classifiers (e.g. the lower reward clas-
sifiers two and five).

We can see that the evolutionary process propagates classifiers that specify
how to reach the rewarding position. Due to the bias of reproducing classi-
fiers that predict higher reward, on average, higher-reward classifiers will be
reproduced more often and will be deleted less often. Mutation and crossover
serve as the randomized search operators that are looking for better solutions
in the (syntactically) local neighborhood of the reproduced classifiers.

Our example already exhibits several fundamental challenges for simple
learning classifier systems: the problem of strong overgenerals (Kovacs, 2000),
investigated in detail elsewhere (Kovacs, 2003), the problem of generalization,
and the problem of local vs. global competition. These issues are the subject
of the following section, in which we develop a facetwise theory approach for
LCS analysis and design.

3.3 Towards a Facetwise LCS Theory 37

E N V I R O N M E N T

LEARNING CLASSIFIER SYSTEM LCS1

POPULATION
condition

##0#####
######0#
0#######
1#0####1
11######
01011101
##01110#
#101#11#
##1###0#
...

action

�

�

�

�

�

�

�

�

�

reward

903
900
1000
900
870
1000
900
900
900

Cl.Nr.

1
2
3
4
5
6
7
8
9

problem instance /
state information

01011101

Match Set [M]
condition

##0#####
######0#
0#######
01011101
##01110#
...

action

�

�

�

�

�

reward

903
900
1000
1000
900

Cl.Nr.

1
2
3
6
7

Action Set [A]
condition

##0#####
######0#
0#######
01011101
...

action

�

�

�

�

reward

903
900
1000
1000

Cl.Nr.

1
2
3
6

action

Action Set [A’]
condition

##0#####
######0#
0#######
01011101
...

action

�

�

�

�

reward

922.4
920
1000
1000

Cl.Nr.

1
2
3
6

Reinforcement
Learning

Genetic Algorithm
(selection, reproduction,

mutation, recombination, &
deletion)

reward=1000

Fig. 3.2. In a typical learning iteration, an LCS receives a current problem instance
consequently forming the match set [M]. Next, an action is chosen (in this case
action ↑) and executed in the environment. Since the resulting reward equals one
thousand, the reward estimates are increased (shown is an increase using learning
rate β = 0.2). Finally, the GA may be applied on the updated population.

3.3 Towards a Facetwise LCS Theory

The introduction of LCS1 should have clarified several important properties
of the general LCS learning architecture, such as the online learning property
and the interaction of rule evaluation (using reinforcement methods) and rule
structure learning (using evolutionary computation methods). However, it re-
mains to be understood if and how the interactions can be assured to learn a
complete problem solution.

It is clear that on average classifiers which receive a higher reward will
be selected for reproduction more often and will be deleted less often. Thus,
the GA mechanism propagates their structure by searching in the local neigh-
borhood of these structures. Can we make specific learning projections? How
general will the evolved solution be? How big can the problem be, given a
certain population size? How distributed will the final population be?

This section addresses these issues and develops a facetwise theory for
LCSs to answer them in a modular way. The section first gives a general
outlook of which solution LCSs evolve and how this may be accomplished.
Next, a theory approach, which addresses when this may be accomplished, is
proposed.

38 3 Simple Learning Classifier Systems

3.3.1 Problem Solutions and Fitness Guidance

The above sections showed that LCSs are designed to evolve a distributed
problem solution represented by a population of classifiers. The condition
of each classifier defines the subspace for which the classifier is responsible.
The action specifies the proposed solution in the defined subspace. Finally,
the reward measure estimates the consequent payoff of the chosen action. It
is desired that the action with the highest estimated payoff equals the best
action in the current problem state.

To successfully evolve such a distributed problem solution we need to pre-
vent overgeneralization and we rely on sufficient fitness guidance (that is, a
fitness gradient) towards better classifiers. The two issues are discussed be-
low starting with the problem of overgenerality and the problem of strong
overgenerals in particular.

The problem of strong overgenerals (Kovacs, 2001) concerns a particular
generality vs. specificity dilemma. The problem is that a general classifier clg
(one whose conditions are satisfied in many problem instances or states) may
have a higher reward prediction value, on average, than a more specialized
classifier cls, which may match in a subset of clg. Consequently, the GA will
propagate clg. Additionally, given that the actions are different in clg and cls,
action clg.A has preference over action cls.A. However, action cls.A may yield
higher reward in situations in which cls also matches. Thus, although action
cls.A would be more appropriate in the described scenario, action clg.A will
be chosen by the behavioral policy and will be propagated by the GA. Such
an overgeneral classifier is called strong overgeneral classifier because it has a
higher reward estimate than other, more specific classifiers and is consequently
stronger with respect to evolutionary reproduction and action selection. The
following example helps to clarify the problem.

Considering classifiers 1 and 4 in Figure 3.2, it can be seen that both clas-
sifiers match in the left-most position of Maze 1 (Figure 2.3 on page 17), which
is perceived as 11011111. The best action in this position is certainly to move
to the east, which yields a discounted reward of 900 (as correctly predicted by
Classifier 4). However, Classifier 1 predicts a slightly higher reward for action
↑, since its reward reflects the average reward encountered when executing
action ↑ in its matching states A, B, C, and D. The values would be exact if
the classifier was updated sufficiently often, the learning rate was sufficiently
small, and all states were visited equally often, and action north was exe-
cuted equally often in each of the states. Thus, the incorrect action ↑ may be
executed (dependent on the other classifiers in the population) although the
action → would be correct.

The basic problem shows that good classifiers cannot be distinguished
from bad classifiers as easily as initially thought. In effect, it needs to be
questioned if the fitness approach—deriving fitness directly from the absolute
reward received—is appropriate, or rather, in which problems a direct reward-
based fitness approach is appropriate. Kovacs (Kovacs, 2001; Kovacs, 2003)

3.3 Towards a Facetwise LCS Theory 39

analyzes this problem in detail. The most important result is that strong
overgenerals can occur in any problem in which more than two reward values
may be perceived (and thus essentially in all but the most trivial multistep
problems). The severeness of this problem consequently demands that the
fitness approach itself should be changed.

Solutions to this problem are the accuracy-based fitness approach in XCS
(Wilson, 1995), investigated in detail in later chapters, and the application of
fitness sharing techniques, as applied in ZCS (Wilson, 1994). In the former
case, local fitness is modified requiring explicitly that the reward prediction
of a classifier is accurate (that is, it has low variance). In the latter case,
reward competition in the problem subspaces (defined by the current problem
instance) can cause the extinction of strong overgeneral classifiers.

The problem of strong overgenerals illustrates how important it is to ex-
actly define (1) the structure of the problem addressed (to know which chal-
lenges are expected) and (2) the objective of the learning system (to know how
the system may “misbehave”). Our strength-based system LCS1, for example,
works sufficiently well (with respect to strong overgenerals) in all classifica-
tion problems since only two reward values are received and reward is not
propagated. However, other challenges may have to be faced as investigated
below.

Once we can assure that classifiers in the optimal solution will have the
highest fitness values, we need to ensure that fitness itself guides the learn-
ing process towards these optimal classifiers. It should be acknowledged that
overgeneral classifiers should have lower fitness values by definition of the op-
timal solution. To what degree fitness guides towards higher fitness values
depends on the fitness definition and problem properties. Later chapters ad-
dress this problem in detail with respect to the XCS classifier system and
typical problem properties.

3.3.2 General Problem Solutions

While the problem of strong overgenerals is concerned with a particular phe-
nomenon resulting from the interaction of a classifier structure, reinforce-
ment component, and evolutionary computation component, the problem also
points to a much more fundamental problem: the problem of generalization.
When we introduced LCSs above, we claimed that they can be character-
ized as online generalizing RL systems. And in fact, as the classifier structure
suggests, rules are often matching in several potential problem instances or
states. However, until now it was not addressed at all why and how the evo-
lutionary component may propagate more general classifiers instead of more
specific ones.

Considering again our Maze 1 (Figure 2.3 on page 17) and the exemplar
population shown in Figure 3.2, classifiers 6 and 3 actually contain the same
amount of information: Both classifiers only match in maze position C and
both classifiers predict that a move to the north yields a reward of 1000.

40 3 Simple Learning Classifier Systems

Clearly, Classifier 6 is syntactically much more specialized. The general con-
cept of Classifier 3, which only requires a free space to the north and does not
care about any other position, appears more appealing and might be the best
concept in the addressed environment. In general, the aim is to stay as general
as possible, identifying the minimal set of attributes necessary to predict a
Q-value correctly.

On the other hand, consider classifiers 7 and 8 in Figure 3.2. Both classifiers
predict that moving south results in a reward of 900. Both classifiers are
syntactically equally specific, that is, both have an order of five (five specified
attributes). However, Classifier 7 is semantically more general than Classifier 8
because it matches in more states than Classifier 8 (all three states below the
money vs. only the states south and southeast of the money). Classifier 9
is semantically as general as Classifier 7 but it is syntactically more general.
Later, we will see that XCS biases its learning towards syntactic and semantic
generality using different mechanisms.

In the general case, the quest for generality leads us to a multi-objective
problem in which the objectives are to learn the underlying problem as accu-
rately as possible and to represent the solution with the most general classifiers
and the least number of classifiers possible. This problem is addressed explic-
itly elsewhere (Llorà & Goldberg, 2003; Llorà, Goldberg, Traus, & Bernadó,
2003), in which a Pareto-front of high fitness, high generality classifiers is prop-
agated. Other approaches, including the mechanism in XCS, apply a some-
what constant generalization pressure that is overruled by the fitness pressure
if higher fitness is still achievable. Yet another generalization approach, re-
cently proposed by Bull (2003), was applied in the ZCS system. In this case,
reproduction causes fitness deduction. The lost fitness can only be regained
by reapplication. More general classifiers will be reapplied faster and thus do
not suffer as much from the reproduction penalty and eventually take over
the population.

In Chapter 5, the effects of different generalization mechanisms are ana-
lyzed in more detail.

3.3.3 Growth of Promising Subsolutions

Once we know which solution we intend to evolve with our LCS system, how
fitness may guide us to the solution, and how the solution will tend to be
general, we need to ensure that our intentions can be put into practice. Thus,
we need to ensure the growth of higher fitness classifiers.

To do this, it is necessary to ensure that classifiers with higher fitness
are available in the population. Once we can assure that better classifiers are
present, we need to assure that the RL component and the genetic component
can interact successfully to reproduce higher fitness classifiers. Therefore it
is necessary to assure that the RL component has enough evaluation time
to detect higher fitness classifiers reliably. Moreover, the genetic component

3.3 Towards a Facetwise LCS Theory 41

needs to reproduce and thus propagate those better classifiers before they
tend to be deleted.

The first aspect is related to the BB supply issue in GAs. However, due to
the distributed problem representation, a more diverse supply may need to be
ensured, and the definition of supply differs. In essence, the initial population
needs to be general enough to cover the whole problem space, but it also
needs to be diverse enough to have better solutions available for identification
and propagation. The diversification and specialization effects of mutation
may support the supply issue. These ideas become much more concrete when
investigating the XCS classifier system in Chapter 6.

Note that supply is not only relevant in the beginning of a run, but it is
actually relevant at all stages of the learning progress, continuously requiring
the supply or generation of better offspring classifiers. However, the issue
is most relevant in the beginning due to the fact that later in the run, the
currently found distributed problem solution usually significantly restricts the
search space to the immediate surrounding of these solutions. In the beginning
of a run, the whole search space is the surrounding and any randomized search
operator, such as mutation, can be expected—dependent on the problem—to
have a hard time to find better classifiers by chance.

Once better classifiers are available, we need to ensure that they are identi-
fied. Since the RL component requires some time to identify better classifiers
(iteratively updating the reward estimates), better classifiers need to have
a sufficiently long survival time. Thus, offspring classifiers need to undergo
several evaluations before they are deleted.

Finally, if better classifiers are available and the RL component has enough
time to identify them, it is necessary to ensure that the genetic component
propagates them. Thus, the survival time also needs to be long enough to
ensure the reproduction of better classifiers. Additionally, genetic search op-
erators may need additional time to effectively detect important problem sub-
structures and subspaces. Due to the potentially unequally distributed prob-
lem complexity in problem space (see, for example, the problem in Figure 3.6
on page 46), different time may need to be available for different problem
subspaces. Chapter 6 investigates these issues in detail with respect to the
XCS classifier system.

3.3.4 Neighborhood Search

Once we can assure that higher fitness classifiers undergo reproduction and
thus grow in the population, we need to implement effective neighborhood
search in order to detect even better problem solutions. These problem solu-
tions can be expected to lie in the neighborhood of the currently best subso-
lution or in further partitions of the current subsolution subspace, defined by
the classifier conditions. The neighborhood search especially is very problem
dependent and thus it is impossible to define generally optimal search oper-
ators. We now first look at simple mutation and crossover and their impact

42 3 Simple Learning Classifier Systems

on genetic search. Next, we discuss the issue of local vs. global search bias in
somewhat more detail.

Mutation

Mutation generally searches in the syntactic neighborhood of a selected classi-
fier. A simple mutation operator changes some attributes in the condition part
of a classifier as well as the class of the classifier. If the class is changed, the
new classifier basically considers the possibility that the relevant attributes
for one class might also be appropriate for a reward prediction in another
class. This might be helpful especially in multistep problems, where classifiers
often develop conditions that identify sets of states that are equally distant
from reward.

Mutation of the condition part can have three types of effects that may
apply in combination if several attributes of one condition part are mutated:
(1) generalization, (2) specialization, (3) knowledge transfer. Considering the
ternary alphabet C ∈ {0, 1,#}l and given an attribute with value 0, mutation
may change the attribute to #. In this case, the classifier is generalized (its
specificity decreases) since its condition covers a larger problem subspace (in
the binary case, double the space). On the other hand, if the attribute actually
was a don’t care symbol before and it is mutated to 0 or 1, the classifier
is specialized (its specificity is increased) covering a smaller portion of the
problem space (in the binary case, half of the space). Finally, a specified
attribute (e.g. 0) may be changed to another specific value (e.g. 1), effectively
transferring the subspace structure of the rest of the classifier condition to
another part of the search space.

Figure 3.3 illustrates the three mutation cases. Given the parental clas-
sifier condition 11#11#, cases (a) and (b) show the potential cases for spe-
cialization, that is 11011#, 11111# and 11#110, 11#111, respectively. Case
(c) shows knowledge transfer when a specialized attribute is changed to the
other value. In our example, the classifier condition may change to 11#10#,
11#01#, 10#11#, or 01#11#, effectively moving the hyperrectangle to other
subspaces in the problem space. Cases (d), (e), and (f) show how generaliza-
tion by mutation may change the condition structure. Note that in each case,
the original hyperrectangle is maintained and another hyperrectangle with a
similar structure is added. The shown cases cover all possible mutation cases
of one attribute in the parental classifier. Depending on the mutation proba-
bility µ, additional mutations are exponentially less probable, but may result
in an extended neighborhood search.

In effect, mutation searches in the general/specific neighborhood of the cur-
rent solution and it transfers structure from one subspace to another (near-by)
subspace. The effectiveness of mutation consequently depends on the complex-
ity distribution over the search space. If syntactic neighborhoods are struc-
tured similarly, mutation can be very effective. If there are strong differences
between syntactic neighborhoods, mutation can be quite ineffective.

3.3 Towards a Facetwise LCS Theory 43

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

(a) (b) (c)

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

(d) (e) (f)

Fig. 3.3. Mutation in action: The parental classifier condition on the left-hand
side can be either specialized by one mutation (a,b), projected into a neighboring
subspace (c), or generalized including a neighboring subspace (d,e,f). Different grays
represent different classifier conditions.

Regardless of the problem search effect, mutation is a general diversifica-
tion operator that causes the evolutionary search procedure to search in the
local (syntactic) neighborhood of currently promising solutions. Doing this,
mutation tends to generate an equal number of each available value for an
attribute. In the ternary alphabet, mutation consequently pushes the popu-
lation towards an equal amount of zeros, ones, and #-symbols in classifier
conditions. With respect to specificity, mutation pushes towards a 2:1 spe-
cific:general distribution. Thus, in the usual case when starting with a fairly
general classifier population, mutation has a specialization effect. How muta-
tion influences specificity in XCS and how the specificity influence interacts
with other search operators in the system is analyzed in Chapter 5.

Crossover

The nature of crossover strongly differs from mutation in that crossover does
not search in the local neighborhood of one classifier, but combines classifier
structures. The results are offspring classifiers that specify substructures of the
parental classifiers. In contrast to mutation, simple crossover does not affect
overall specificity, since the combined specificity of the two offspring classifiers
equals the combined specificity of the parents. Thus, although the specificity
of individual offspring classifiers might differ from the parental specificity,
average specificity is not affected.

For example, consider the overlapping classifier conditions 11#### and
1##00# shown on the left-hand side of Figure 3.4. The maximal space crossover

44 3 Simple Learning Classifier Systems

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

(a) (b) (c)

Fig. 3.4. Crossover of two overlapping parental conditions searches in the subspace
indicated by the outer dashed box (left-hand side). More specialized offspring condi-
tions (shown in brighter gray) are included in the more general offspring conditions
(shown in increasingly darker gray).

searches in is restricted to the maximal general offspring that can be gener-
ated from the two parental classifiers, which is 1##### in our example. Other
offspring structures are possible, which are progressively closer to the parental
structures as indicated in Figure 3.4 (a), showing progressively more special-
ized classifier conditions as well as in (b) and (c) showing the four other
possible offspring cases. It can be seen that crossover consequently searches in
the maximal problem subspace defined by the two classifier conditions. Struc-
ture of the two classifiers is exchanged and projected onto other subspaces
inside the maximal subspace.

If the parental classifiers are non-overlapping, crossover searches in the
maximum subspace, which is defined by the non-overlapping parts of the two
subspaces. In the example shown in Figure 3.5, the parental classifiers 1##00#
and 00#### are non-overlapping and the maximum subspaces are character-
ized by either the upper half of the search space (0#####) or the lower half of
the search space (1#####). Note that in the case of non-overlapping classifiers,
the structural exchange may or may not be fruitful and strongly depends on
the underlying problem structure. If structure is similar throughout the whole
search space, then crossover may be beneficial. However, if structure differs in
different search subspaces, crossover can be expected to be mainly disruptive,
when non-overlapping conditions are recombined.

In general, crossover recombines previously successful substructures, trans-
ferring those substructures to other, nearby problem subspaces. Depending on
the complexity and uniformity of problem spaces, crossover may be more or
less effective. Also, it can be expected that the recombination of classifiers
that cover structurally related problem spaces will be more effective than the
recombination of unrelated classifiers. Thus, a good restriction of classifier
recombination is expected to result in a more effective genetic search.

As in GAs, the issue of building blocks (BBs) comes into mind. In sim-
ple LCSs, BBs are complexity units, which define a subspace that yields high
reward on average. The identification and effective propagation of BBs, con-
sequently, should result in another type of more effective search within LCSs.

3.3 Towards a Facetwise LCS Theory 45

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

(a) (b) (c)

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0 1
1

0 1
0

1
1

0 10 1
0

0

x1x2x3

x4

x5

x6

(d) (e) (f)

Fig. 3.5. Given two non-overlapping parental conditions (left-hand side), crossover
explores structure in either of the resulting maximal general, non-overlapping sub-
spaces. Figures a,b,c,d,e,f show condition subspaces that can be generated by
crossover. Brighter gray subspaces are included in darker subspaces but also form a
condition subspace on their own.

Considering such search biases, however, it needs to be kept in mind that
we are searching for a distributed solution representation in which different
subsolutions consist of different BB structures.

Local vs. Global Search Bias

Due to the distributed problem solution representation, LCSs face another
challenge in comparison to standard GAs. Although the incoming problem
instances must be assumed to be structurally and semantically related, the
currently evolved problem subsolutions may be unequally advanced, and good
subsolutions may be highly unequally complex, depending on the problem
subspace they apply in. For example, in some regions of the problem space, a
very low specificity might be sufficient to predict reward correctly whereas in
other regions further specificity might be necessary.

Figure 3.6 illustrates a problem space in which some subspaces are highly
complex (subspace 00******), in that the identification of the problem
class (black or white) requires several further feature specifications. On
the other hand, the rest of the problem space is fairly simple (subspaces
01******, 10******, and 11******) in that classes can be distinguished eas-
ily by the specification of only one or two additional features (01**1***→1,
10**0***→1, and 110**1**→1 and 111**0**→1).

Similar differences in complexity can be found in RL problems. For exam-
ple, in the simple Maze problem in Figure 2.3 on page 17 and the exemplar

46 3 Simple Learning Classifier Systems

0

1

0
0

0
1

1
0
1

1

0
1

0

0
1

1

0
1

0
1

0

1

0
1

0
1

0

1

0

1

0

0 1
1

0 1
0

1
1

0 10 1
0

0
1

0 1
1

0 1
0

1

0 1
1

0 1
0

0

x1x2x3x4

x5

x6

x7

x8

Fig. 3.6. Problem subspaces may vary in complexity dependent on the problem
structure. Complexity-dependent niching as well as suitable subspace-dependent
search mechanisms are mandatory to enable the effective evolution and sustenance
of a complete problem representation.

population shown in Figure 3.2 on page 37, we can see that a classifier of
specificity 1/8 (order one—specifying the empty position to the north) suf-
fices to predict a reward of 1000 correctly when going north (Classifier 3).
On the other hand, in order to predict a 900 reward correctly when head-
ing south, at least two positions need to be specified (see Classifier 9). Thus,
necessary specificities as well as necessary specified positions might differ de-
pending on the problem instance. In effect, global selection and recombination
might not be appropriate since different classifiers might represent solutions
to completely different subspaces. Thus, a balanced search combining local
and global knowledge can be expected to be most effective.

In particular, it is desired to only recombine those classifiers that are com-
patible in the sense that they address related problems as specified by their
condition parts. In the simple LCS, selection, recombination, and crossover
are usually applied globally in that two potentially unrelated classifiers are
selected from the overall population. The consequent recombination is then
likely to be ineffective if solution structure varies over the problem space. We
will see that XCS circumvents this problem by reproducing classifiers in ac-
tion sets. However, if the problem has a much more global structure, further
bias towards global selection may result in additional learning advantages. We
address this problem in further detail in Chapter 7.

3.3 Towards a Facetwise LCS Theory 47

3.3.5 Solution Sustenance

As seen above, a simple GA selects individuals from the whole population,
mutates, and potentially recombines them. Since a GA is usually designed to
optimize a problem, it usually searches for one globally optimal solution. The
sustenance of different solutions is important only early in the run in this case.
Sustenance is usually assured through initial population diversity and supply
as well as by balancing the focusing effects of selection with the diversification
effects of recombination and/or mutation operators.

A different problem arises if the goal is to evolve not only the best solution
but a distributed set of solutions. Since LCSs are designed to generate the
best solution for every potential problem instance, the population in an LCS
needs to evolve optimal solutions for all potential problems in the problem
space. Each problem instance represents a new (sub-)problem (defined by
the problem instance) that might be related to the other (sub-)problems but
represents a new problem in a common problem space.

Due to the necessity of a distributed representation, niching methods
(Goldberg & Richardson, 1987; Horn, 1993; Horn, Goldberg, & Deb, 1994;
Mahfoud, 1992) are even more important in LCSs than they are in standard
GAs. Since LCSs need to evolve and maintain a representation that is able
to generate a solution for every possible problem instance, it needs to be as-
sured that the whole problem space is covered by the distributed solution
representation. Several niching methods are applicable and different LCSs use
different techniques to assure the sustenance of a complete problem solution.
Later chapters address the niching issue in further detail.

3.3.6 Additional Multistep Challenges

The above issues mainly targeted problems in which immediate reward indi-
cates the appropriateness of an action. Also, problem instances were thought
to be independent of each other. In multistep problems, such as the ones
modeled by general MDP or POMDP processes, reward propagation as well
as self-controlled problem sampling comes into play.

Evaluation and reproduction time issues need to be reconsidered in this
case. Since successive problem instances depend on the executed action, which
is chosen by the LCS agent itself, problem instance sampling and problem
instance frequencies may become highly skewed. Thus, the time issues with
respect to classifier selection and propagation in problem subspaces may need
to be reevaluated.

Additionally, the RL and GA component may be influenced by the cur-
rent action policy and vice versa, the action policy may depend on the RL
and GA constraints. For example, exploration may be enhanced in problem
subspaces in which no appropriate classifier structure evolved so far. This re-
lates to prioritized sweeping and other biased search algorithms in RL (Moore
& Atkeson, 1993; Sutton, 1991).

48 3 Simple Learning Classifier Systems

Besides sampling and learning bias issues, the challenge of reward propaga-
tion needs to be faced. Since reinforcement may be strongly delayed depending
on the problem and current problem subspace, accurate non-disruptive reward
backpropagation needs to be ensured. Thus, competent RL techniques need
to be applied. Additionally, due to the rule generalization component, update
techniques that weigh the confidence of the predictive contributions of each
classifier, similar to error estimation techniques used in neural networks, may
be advantageous. These concerns are analyzed in detail in Chapter 10.

3.3.7 Facetwise LCS Theory

The above issues lead to the proposition of the following LCS problem de-
composition. To assure that a classifier system evolves an accurate problem
solution, the following aspects need to be respected:

1. Design evolutionary pressures most effectively :
Appropriate fitness definition, parameter estimation, and rule generaliza-
tion.
a) Fitness guidance: Fitness needs to be defined appropriately to guide

towards the optimal solution disabling strong overgenerals.
b) Parameter estimation: Classifier parameters need to be initialized

and estimated most effectively to avoid fitness disruption in young
and unexperienced classifiers as well as to identify better classifiers as
fast as possible.

c) Adequate generalization: Classifier generalization needs to push
towards a maximally accurate, maximally general problem solution
preventing overgeneralization.

2. Ensure solution growth and sustenance :
Effective population initialization, classifier supply, classifier growth and
niche sustenance.
a) Population initialization: Effective classifier initialization needs to

ensure sufficient classifier evaluation and GA application time.
b) Schema supply: Minimal order schema representatives need to be

available.
c) Schema growth: Schema representatives need to be identified and

reproduced before deletion is expected.
d) Solution sustenance: Niching techniques need to ensure the suste-

nance of a complete problem solution.
3. Enable effective solution search :

Effective mutation, recombination, and structural biases.
a) Effective mutation: Mutation needs to search the neighborhoods of

current subsolutions effectively ensuring diversity and supply.
b) Effective recombination: Recombination needs to combine building

block structures efficiently.

3.4 Summary and Conclusions 49

c) Local vs. global structure: Search operators need to detect and
exploit global structural similarities but also differences in different
local problem solution subspaces.

4. Consider additional challenges in multistep problems:
Behavioral policies, sampling biases, and reward propagation.
a) Effective behavior: A suitable behavioral policy needs to be in-

stalled to ensure appropriate environmental exploration and knowl-
edge exploitation.

b) Problem sampling reconsiderations: Subproblem occurrence fre-
quencies might be skewed due to environmental properties and the
chosen behavioral policy. Thus, evaluation and reproduction times
need to be reevaluated and might be synchronized with currently cho-
sen behavior and encountered environmental properties.

c) Reward propagation: Accurate reward propagation needs to be en-
sured to allow accurate classifier evaluation.

The next chapters focus on this LCS problem decomposition, investigating
how the accuracy-based XCS classifier system faces and solves these problem
aspects. Along the way, we also show important improvements in the XCS
system in the light of several of the theory facets.

3.4 Summary and Conclusions

In this chapter we introduced the general structure of an LCS. We saw that
LCSs are suitable to learn classification problems as well as RL problems.
Additionally, we saw that LCSs are online learning systems that learn from
one problem instance at a time, potentially interacting with a real environment
or problem.

LCSs learn a distributed problem solution represented by a population of
classifiers (that is, a set of rules). Each classifier specifies a condition, which
identifies the problem subspace in which it is applicable, an action or classi-
fication, and a reward prediction, which characterizes the suitability of that
action given the current situation. Although we only considered conditions
in the binary problem space, applications in other problem spaces including
nominal and real-valued inputs are possible. Chapter 9 investigates the per-
formance of the accuracy-based classifier system XCS in such problem spaces.

Classifiers in an LCS population are evaluated by RL mechanisms. Classi-
fier structure is evolved by a steady-state GA. Thus, while the RL component
is responsible for the identification of better classifiers, the GA component
is responsible for the propagation of these better classifiers. The consequent
strong interdependence of the two learning components needs to be considered
when creating an LCS.

Dependent on the classifier condition structure, mutation and crossover
have slightly different effects in comparison to search in a simple GA. Muta-
tion changes the condition structure searching for other subsolutions in the

50 3 Simple Learning Classifier Systems

neighborhood of the parental condition. However, mutation does not only
cause a diversification pressure, it can also have a direct effect on the speci-
ficity of the condition of a classifier. Crossover, on the other hand, does not
affect combined classifier specificity but recombines problem substructures.
As in GAs, crossover may be disruptive and BB identification and propaga-
tion mechanisms may improve genetic search. In contrast to GAs, though,
LCSs search for a distributed problem solution so that crossover operators
need to distinguish and balance search influenced by local and global problem
structure.

The proposed facetwise LCS theory approach for analysis and design is
expected to result in the following advantages: (1) Simple computational mod-
els of the investigated LCS system can be found, (2) The found models are
generally applicable, (3) The models are easily modifiable to the actual prob-
lem and representation at hand, (4) The models provide a deeper and more
fundamental problem and system understanding, (5) The investigated sys-
tem can be improved effectively focusing on the currently most restricting
model facets, and (6) More advanced LCS systems can be designed in a more
straightforward manner, targeted to effectively solve the problem at hand.
The remainder of this book pursues the facetwise analysis approach, which
confirms the expected advantages.

