
2

Prerequisites

LCSs are designed to solve classification as well as more general reinforcement
learning (RL) problems. LCSs solve these problems by evolving a rule-base of
classifiers by the means of a critic based on RL techniques for rule evaluation
and a GA for rule evolution. Before jumping directly into the LCS arena, we
first look at these prerequisites.

Since optimization and learning is comparable to a search for expected
structure, we first look at the problem types and problem structures we are
interested in. We differentiate between optimization problems, classification
problems, and Markov decision process problems. Each problem causes differ-
ent but related challenges. Thus, successful learning architectures need to be
endowed with different but related learning mechanisms and learning biases.
LCSs are facing RL problems but might also be applied to classification or
even optimization problems.

Since it is provenly impossible that there exists a learning technique that
can solve all possible problems (assuming that all expressible problems given
a certain representation are equally likely) better than simple enumeration or
random search (Wolpert & Macready, 1995; Wolpert, 1996b; Wolpert, 1996a;
Wolpert & Macready, 1997), it is important to characterize and distinguish
different problem structures. In this problem introduction we focus on such
different problem properties. We then use these properties to reveal what GAs
and LCSs are actually searching for; in other words, we identify the learning
biases of the algorithms. As we will see, GAs and LCSs are very general learn-
ing mechanisms that are searching for lower order dependency structures in a
problem, often referred to as building blocks (BBs). The advantage of such a
search bias is that natural problems typically but arguably obey such a hierar-
chically composed problem structure (Simon, 1969; Gibson, 1979; Goldberg,
2002).

Apart from the necessary understanding of LCS-relevant problem types
and typical problem structures, the second major prerequisite is a general
understanding of RL techniques and genetic algorithms (GAs). Section 2.2
introduces RL including the most relevant Q-learning algorithm (Watkins,



10 2 Prerequisites

1989). We show that RL is well-suited to serve as an online learning ac-
tor/critic system that is capable of evaluating rules, distributing reward, and
making action (or classification) decisions. Section 2.3 introduces GAs, which
are well-suited to learn relevant rule structures given a quality or fitness mea-
sure. Additionally, we highlight the importance of the mentioned facetwise
analysis approach taken in the GA literature to promote understanding of
GA functioning, scale-up behavior, and parameter settings as well as to en-
able the design of more elaborate, competent GAs (Goldberg, 2002).

Summary and conclusions summarize the most important issues addressed
in this chapter, pointing towards the integration of the addressed mechanisms
into LCSs.

2.1 Problem Types

LCSs may be applied in two major problem domains. One is the world of
classification problems. The second is the one of RL problems either modeled
by a Markov decision process (MDP) or by a more general, partially observable
Markov decision process (POMDP).

In classification problems, feedback is provided instantly. Successive prob-
lem instances are usually sampled independently and identically distributed.
On the other hand, in RL problems feedback may be delayed in time and suc-
cessive problem input depends on the underlying problem structure as well
as on the chosen actions. Thus, internal reinforcement propagation becomes
necessary, which poses an additional learning challenge.

Before introducing classification and RL problems, we give a short intro-
duction to optimization problems emphasizing similarities and differences as
well as typically expectable problem structures and properties.

2.1.1 Optimization Problems

An optimization problem is a problem in which a particular structure or solu-
tion needs to be optimized. Thus, given a particular solution space, an opti-
mization algorithm searches for the best solution in the solution space. Opti-
mization problems cover a huge range of problems such as (1) the optimization
of a particular object, such as an engine, (2) the optimization of a particular
method, such as a construction process, (3) the optimization or detection of a
state of lowest energy, such as a physical problem, or (4) the optimization of
a solution to any search problem, such as the problem of satisfiability or the
traveling salesman problem.

More formally, a simple binary optimization problem is defined for a
problem space S that is characterized by a bit string of a certain length l:
S = {0, 1}l. Each bit string represents a particular problem solution. Feed-
back is provided in terms of a scalar reward (fitness) value that rates the



2.1 Problem Types 11

solution quality. An optimization algorithm should be designed to effectively
search the solution space for the global optimum.

Given, for example, the problem of optimizing a smoothie drink with a
choice of additional ingredients mango, banana, and honey available, the prob-
lem may be coded by three bits indicating the absence (0) or presence (1) of
each ingredient. The fitness is certainly very subjective in this example, but
assuming that we like all three ingredients equally well, prefer any combi-
nation of two of the ingredients over just one ingredient alone, and like the
combination of all three ingredients best, we constructed a one-max problem.

Table 2.1 (first numeric column) gives possible numerical values for a four
bit one-max problem. The best solution to the problem is denoted by 1111 and
the fitness is determined by the number of ones in the problem. Certainly, the
one-max problem is a very easy problem. There is only one (global) optimum
and the closer to the global optimum, the higher the fitness. Thus, the problem
provides strong fitness guidance towards the global optimum. This guidance
can be even more clearly observed in the six bit visualization of the one-max
problem shown in Figure 2.1a: The more ones that are specified in a solution,
the higher the fitness of the solution.

However, problems can be misleading in that the fitness measure may
give incorrect clues in which direction to search for more promising solutions.
Table 2.1 and Figure 2.1 show progressively more misleading types of prob-
lems. While the royal-road function still provides the steps that lead to the
best solution (Mitchell, Forrest, & Holland, 1991), the needle in the haystack
problem provides no directional clues whatsoever—only the optimum results
in high fitness. The trap problem provides quality clues in the opposite direc-
tion: Fitness leads towards a local optimum away from the global optimum.
In a trap problem the combination of a number of factors (e.g. ingredients)
makes the solution better, but the usage of only parts of these factors makes
the solution actually worse than the base solution that uses none.

The reader should not be misled by these abstract problems thinking that
a local optimum (if existent) and the global optimum will always be the exact
inverse of a binary string. In other, albeit related problems, this certainly
does not need to be the case. Finally, the meaning of zeroes and ones may be
(partially) swapped so that the global optimum does not need to be all ones
but the problem structure may still be identical to one of the types outlined in
the table. Thus, although the examples are very simplified, they characterize
important problem structures that pose different challenges to the learning
algorithm.

The problem substructures may be combined to form larger, more com-
plex problems. Each substructure can then be regarded as a building block
(BB) in the larger problem, that is, a substructure that is evaluated rather
independently of the other structures. Certainly, there can be higher-order
dependencies or overlapping BB structures. Also, the fitness contribution of
each BB may vary.



12 2 Prerequisites

Table 2.1. There are several ways in which the solution quality measure can lead
towards the global optimal solution (here: 1111). In the one-max problem, the closer
the solution is to the optimal solution, the higher its quality. In the royal-road
problem, the path leads to the optimal solution step-wise. In the needle in the
haystack problem, fitness gives no hints about the optimal solution. In the trap
problem, the quality measure is misleading since the more the solution differs from
the optimal solution, the higher its fitness.

One-Max Royal-Road Needle i.H. Trap Prob.

0000 0 0 0 3
0001 1 0 0 2
0010 1 0 0 2
0100 1 0 0 2
1000 1 0 0 2
0101 2 0 0 1
1001 2 0 0 1
0110 2 0 0 1
1010 2 0 0 1
0011 2 2 0 1
1100 2 2 0 1
0111 3 2 0 0
1011 3 2 0 0
1101 3 2 0 0
1110 3 2 0 0
1111 4 4 4 4

Two most basic combinations can be distinguished. In the simplest case the
fitness contribution of each substructure is equal and simply added together
yielding an uniformly scaled problem. Another method is to exponentially
scale the utility of each substructure. In this case the fitness of the second
block matters only once the optimum of the first block is found and so forth,
yielding an exponentially scaled problem. It should be noted that in a uni-
formly scaled problem the blocks can be solved in parallel because fitness
provides information about all blocks. On the other hand, in an exponentially
scaled problem, the BBs need to be solved sequentially since the exponentially
scaled fitness nearly eliminates fitness information from later blocks that are
not most relevant yet.

Problem structures that are composed of many smaller dependency struc-
tures are often referred to as decomposable problems or problems of bounded
difficulty (Goldberg, 2002). Boundedly difficult problems are bounded in that
the BB size of lower-level interactions is bounded to a certain order—the or-
der of problem difficulty. For example, from the problems in Table 2.1, the
one-max problem has an order of difficulty of one because it is actually com-
posed of four uniformly scaled BBs of size one. The royal-road function is of
order two since two BBs are combined. Both the needle in the haystack and



2.1 Problem Types 13
F

it
n
e
s
s

Number of Ones 60
F

it
n
e
s
s

Number of Ones 60

F
it
n
e
s
s

Number of Ones 60

F
it
n
e
s
s

Number of Ones 60

(a) (b) (c) (d)

Fig. 2.1. The figures show progressively more challenging optimization problems.
In the one-max problem (a), fitness progressively increases on the way to the globally
optimal solution (here: all ones). In the royal-road problem (b), larger steps need to
be taken towards the optimal solution. In the needle in the haystack problem (c),
fitness gives no information about where the optimal solution is situated. Finally, in
the trap problem (d), fitness actually misleads to a local optimum (here: all zeroes)
and thus away from the globally optimal solution (here: all ones).

the trap problem are of order four since there is no further decomposition
possible.

Regardless of the problem structure, the problem may actually have mul-
tiple optimal solutions, the quality measure may be noisy, or the provision
of several near-optimal solutions may be more desirable than the detection
of one (completely) optimal solution. Often, an expert may want to choose
from such a set of (near-) optimal solutions. In this case, a learner would be
required to find not only one globally optimal solution but rather a set of
several different (near-) optimal solutions.

To summarize, optimization problems are problems in which a best solu-
tion must be found given a solution space. Feedback is available that rates
solutions proposed by the learner. The feedback may or may not provide hints
where to direct the further search for the optimal solution. Finally, the number
of optimal solutions may vary and, dependent on the problem, one or many
optimal (or near optimal) solutions may need to be found.

2.1.2 Classification Problems

A classification problem poses further difficulties to the learning algorithm.
Although a classification problem may be reduced to an optimization problem,
the reduction is tedious and often destroys much of the available problem
structure and information inherent in a classification problem.

We define a classification problem as a problem that consists of problem
instances s ∈ S. Each problem instance belongs to one class (traditionally
termed an action in LCSs) a ∈ A. In machine learning terms, s may be
termed a feature vector and a a concept class. The mapping from S to A
is represented by a target concept belonging to a set of concepts (that is,
the concept space). The goal of a classification system is to learn the target
concept. Thus, the classification system learns to which class ai each problem



14 2 Prerequisites

instance si belongs to. The desirable properties of such a learning system
are that the learner learns a maximally accurate problem solution, measured
usually by the percentage of correct problem instance classifications, and a
maximally general problem solution, which can be characterized as a solution
that generalizes well to other (unseen) problem instances. Given that the
learner has a certain hypothesis space of expressible solutions, the learner
looks for the maximally accurate, maximally general hypothesis with respect
to the target concept.

As in optimization problems, a classification problem may be composed
of several subproblems characterizable as BBs. However, such BBs cannot be
directly related to fitness but can only increase the probability that a problem
instance belongs to a certain class. Solution hypotheses may be represented in
a more distributed fashion in that different subsolutions may be responsible for
different problem subspaces. This is expected to be particularly useful if differ-
ent problem subspaces are expected to have a quite different class distribution.
In this case, different BBs will be relevant dependent on the current problem
subspace. Thus, in contrast to optimization problems, different BBs may need
to be detected and propagated in different problem subspaces. Nonetheless,
the global BB distribution can also be expected to yield important information
that can improve the search for accurate problem (sub-)solutions.

Boolean Function Problems

In most of this work, we focus on Boolean function problems. In these prob-
lems, the problem instance space is restricted to the binary space, that is,
S ⊆ {0, 1}l where l denotes the fixed problem length. Similarly, a Boolean
function problem has only two output classes A = {0, 1}. Consequently, any
Boolean function can be represented by a logical formula and consequently
also by a logical formula in disjunctive normal form (DNF). Appendix C intro-
duces the Boolean function problems investigated herein showing an exemplar
DNF representation and discussing their general structure and problem diffi-
culty.

As an example, let us consider the well-known multiplexer problem, which
is widely studied in LCS research (De Jong & Spears, 1991; Wilson, 1995;
Wilson, 1998; Butz, Kovacs, Lanzi, & Wilson, 2001). It has been shown that
LCSs are superior compared to standard machine learning algorithms, such
as the decision tree learner C4.5, in the multiplexer task (De Jong & Spears,
1991). The problem is of particular interest due to its dependency structure
and its distributed niches, or subsolutions. The problem is defined for binary
strings of length l = k + 2k. The output of the multiplexer function is deter-
mined by the bit situated at the position referred to by k position bits (usually
but not necessarily located at the first k positions). The disjunctive normal
form of the 6-multiplexer for example can be written as follows:

6MP (x1, x2, x3, x4, x5, x6) = ¬x1¬x2x3∨¬x1x2x4∨x1¬x2x5∨x1x2x6; (2.1)



2.1 Problem Types 15

for example, f(100010) = 1, f(000111) = 0, or f(110101) = 1. More informa-
tion on the multiplexer problem can be found in Appendix C. It is interesting
to see that the DNF form of the multiplexer problem consists of conjunctions
that are non-overlapping. Any problem instance belongs, if at all, to only one
of the conjunctive terms in the problem. Later, we will see that the amount
of overlap in a problem is an important problem property for LCSs’ learning
success.

Real-valued Problems

Boolean function problems are a rather restricted class of classification prob-
lems. In the general case, a problem instance s may be represented by a feature
vector. Each feature may be a binary attribute, a nominal attribute, an integer
attribute, or a real-valued attribute. Mixed representations are possible.

We refer to such real-world classification problems as datamining prob-
lems. The problem is represented by a set of problem instances with their
corresponding class. A problem instance may consist of a mixture of features
and there may be more than two classification classes. Since the target concept
is generally unknown in datamining problems, performance of the learner is
often evaluated by the means of stratified ten-fold cross-validation (Mitchell,
1997) that trains the system on a subset of the data set and tests it on the
remaining problem instances. The data is partitioned into ten subsets. The
learner is trained on nine of the ten subsets and tested on the remaining sub-
set. To avoid sampling biases, this procedure is repeated ten times, each time
training and testing on different subsets. Stratification assures that the class
distribution is approximately equal in all folds. Ten-fold cross-validation is
very useful in evaluating the generalization capabilities of the learner since
performance is tested on previously unseen data instances.

2.1.3 Reinforcement Learning Problems

In contrast to optimization and classification problems, feedback in the form of
a class or immediate reinforcement is not necessarily available immediately in
RL problems. Rather, feedback is provided in terms of a scalar reinforcement
value that indicates the quality of a chosen action (or classification). Addi-
tionally, successive problem instances may be dependent upon each other in
that subsequent input usually depends on previous input and on the exe-
cuted actions. RL problems are thus more difficult, but also more natural,
simulating interaction with an actual outside world. Figure 2.2 shows the
agent-environment interaction typical in RL problems.

Despite the environmental interaction metaphor, a classification problem
may be redefined as an RL problem providing reward feedback about the
accuracy of the chosen class. For example, a reward of 1000 may be provided
for the correct class and a reward of 0 for the incorrect class. In this case
reward is not delayed. We refer to such redefined classification problems as



16 2 Prerequisites

E N V I R O N M E N T

action
reinforcement
feedback

ADAPTIVE LEARNING ARCHITECTURE

state
information

Fig. 2.2. In RL problems an adaptive agent interacts with an environment executing
actions and receiving state information and reinforcement feedback.

single-step RL problems. On the other hand, multistep RL problems refer to
RL problems in which reward is delayed and successive states depend on each
other and on the chosen action. In the latter case, reward (back-)propagation
is necessary.

Later, we see that LCSs are online generalizing RL mechanisms. Classi-
fication problems are usually converted into single-step RL problems when
learned by LCSs. For convenience reasons we usually refer to these single-step
RL problems as classification problems. However, the reader should keep in
mind that when referring to classification problems in conjunction with an
LCS application, the LCS actually faces a single-step RL problem.

Two types of multistep RL problems need to be distinguished: those that
are modeled by a Markov decision process (MDP) and those that are modeled
by a partially observable Markov decision process (POMDP).

Markov Decision Processes

We define a multistep problem as a Markov decision process (MDP), reusing
notation from the classification problems where appropriate. An MDP prob-
lem consists of a set of possible sensory inputs s ∈ S (i.e. the states in
the MDP); a set of possible actions a ∈ A; a state transition function
f : S × A → Π(S), where Π(S) denotes a probability distribution over all
possible next states (S); and a reinforcement function R : S × A × S → �.
The state transition function defines probabilities for reaching all possible
next states given the current state and the current action. The reinforcement
function defines the resulting reward, which depends on the current state tran-
sition. For example, at a certain point in time t, state st may be given. The
system may then decide on the execution of action at. The execution of at

leads to the reception of reward rt and the perception of the consequent state
st+1.

An MDP is called a Markov decision process because it satisfies the Markov
property: Future probabilities and thus the optimal action decision can be
determined from the current state information alone since the state transition
probabilities depend solely on the current state information.

A simple example of a (multistep) MDP problem is Maze 1—a simple
maze environment shown in Figure 2.3. The learning system, or agent, may



2.1 Problem Types 17

Fig. 2.3. Maze 1 is a simple MDP
problem

Fig. 2.4. The two identical looking states
in Maze 2 turn the problem into a POMDP
problem.

reside in one of the five positions in the maze perceiving the eight surrounding
positions. An empty position may be coded by 0, a blocked position by 1. The
money bag indicates a reward position in which reward is received and the
agent is reset to a randomly chosen empty position. Note that each position
has a unique perception code so that the problem can be modeled by an MDP
process.

Partially Observable Markov Decision Processes

More difficult than MDP problems, are POMDP problems in which current
sensory input may not be sufficient to determine the optimal action. Formally,
a POMDP can be defined by a state space X , a set of possible sensations S,
a set of possible actions A, a state transition function f : X ×A → Π(X ). In
contrast to an MDP problem, however, states are not perceived directly but
are converted into a sensation using an observation function O : X → Π(S)
that converts a particular state into a sensation. Similarly, the reward function
does not rely on the sensations but on the underlying (unobservable) states
R : X × A × X → �. In contrast to the MDP, a POMDP might violate the
Markov property in that optimal action decisions cannot be made solely based
on current sensory input.

A simple example of a POMDP problem is shown in Figure 2.4. Although
only slightly larger than Maze 1, this maze does not satisfy the Markov prop-
erty since the second empty position on the left looks identical to the second
empty position on the right. Thus, given that the agent is currently in either
of the two positions, it is impossible to know if the fastest way to the reward
is to the left or to the right. Only an internal state or a short-term mem-
ory (that may, for example, indicate that the agent came from the left-most
empty position) can disambiguate the two states and allow the agent to act
optimally in the positions in question.

In the studies herein, we focus on MDP problems. Applications of the
learning classifier system XCS to POMDP problems can be found elsewhere
(Lanzi & Wilson, 2000; Lanzi, 2000), in which the system is enhanced with
internal memory mechanisms somewhat similar to Holland’s original message
list idea.



18 2 Prerequisites

2.2 Reinforcement Learning

Facing an MDP or POMDP problem, an RL system is the most appropriate
system to solve the problem. In essence, the investigated rule-based evolution-
ary systems are RL systems that use GAs to evolve their state-action-value
representation. Excellent introductions to RL are available (see Kaelbling,
Littman, & Moore, 1996; Dietterich, 1997; Sutton & Barto, 1998) and the
following overview can only provide a brief glance at RL. We introduce ter-
minology and basic understanding necessary for the remainder of the book.

The task of an RL system is to learn an optimal behavioral policy inter-
acting with an MDP (or POMDP) problem. A behavioral policy is a policy
that decides on action execution. Given current sensory input (and possibly
further internal state information) the behavioral policy is responsible for the
action decision. A behavioral policy is optimal if it results in the maximum ex-
pectable reward in the long run. The most often used expression to formalize
the expected reward is the cumulative discounted reward :

E(
∞∑

t=0

γtrt), (2.2)

where γ ∈ [0, 1] denotes the discount factor that weighs the importance of
more distant rewards. Setting γ to zero results in a single-step RL problem in
which only current reward is important. Setting γ to one results in a system
in which cumulative reward needs to be optimized. Usually, γ is set to values
close to one such as 0.9. RL essentially searches for a behavioral policy that
maximizes the cumulative discounted reward.

Looking back at our small maze problem in Figure 2.3, we can see how
much reward can be expected in each state executing an optimal behavioral
policy. Assuming that the environment triggers a reward of 1000 when the
rewarding position is reached, the three positions that are one step away from
the reward position have an expected reward of 1000 and the two outermost
positions have an expected reward of 900.

RL systems learn state value or state-action value representations using
temporal difference learning techniques to estimate and maximize the ex-
pected discounted reward expressed in Equation 2.2. Two approaches can be
distinguished: (1) Model-free learners learn an optimal behavioral policy di-
rectly without learning the state-transition function; (2) Model-based learners
learn the state-transition function using it to learn or improve their behavioral
policy.

2.2.1 Model-Free Reinforcement Learning

Two major approaches comprise the model-free RL realm: (1) TD(λ) and (2)
Q-learning . While the former needs an interactive mechanism that updates
the RL-based critic and the behavioral policy in turn, the latter is doing the



2.2 Reinforcement Learning 19

same more naturally. After a short overview of TD(λ) we focus on Q-learning
since it is able to learn an optimal policy off-policy (that is, independent
of the current behavioral policy). The RL mechanism implemented in the
subsequently investigated learning classifier system XCS closely resembles Q-
learning.

TD(λ) methods interactively, or in turn, update their current behavioral
policy π and the critic V π that evaluates the policy π. Given the current critic
V π, a k-armed bandit optimization mechanism may be used to optimize π.
Given current policy π, V π may be updated using the TD(λ) strategy. Hereby,
each state value V (s) is updated using

V (s) ← V (s) + β(r + γV (s′) − V (s))e(s), (2.3)

e(s) =
t∑

k=1

(λγ)t−kδs,sk
, where δs,sk

=

{
1 if s = sk

0 otherwise

where e(s) denotes the eligibility of state s, meaning its involvement in the
achievement of the current reward. Parameter β denotes the learning rate
somewhat reflecting the belief in the new information vs. the old information.
A large β assumes very low prior knowledge resulting in a large change in the
value estimate, whereas a small β assumes solid knowledge resulting in a small
change in the value estimate. Parameter λ controls the importance of states
in the past and δ monitors the occurrences of the states. With λ = 0, past
states are not considered and only the currently encountered state transition
is updated. Similarly, setting λ to one, all past states are considered as equally
relevant. Note that the update is still discounted by γ so that the influence of
parameter λ specifies the belief in the relevancy of the current update for the
states encountered in the past (Kaelbling, Littman, & Moore, 1996).

A somewhat more natural approach is Watkins’ Q-learning mechanism
(Watkins, 1989). Instead of learning state values, Q-learning learns state-
action values, effectively combining policy and critic in one. A Q-value of
a state action pair (s, a) essentially estimates the expected discounted future
reward if executing action a in state s and pursuing the optimal policy there-
after. Q-values are updated by

Q(s, a) ← Q(s, a) + β(r + γ maxa′Q(s′, a′) − Q(s, a)). (2.4)

Due to the max operator, the Q-value predicts the average discounted reward
of executing a in state s reaching state s′ and following the optimal policy
thereafter. Q-learning is guaranteed to converge to the optimal values as long
as it is guaranteed that in the long run all state-action pairs are executed
infinitely often and learning rate β is decayed appropriately. If the optimal
Q-values are determined, the optimal policy is determined by

π∗(s) = arg maxaQ(s, a), (2.5)

which chooses the action that is expected to maximize the consequent Q-
value if executed in current state s. To ensure an infinite exploration of the



20 2 Prerequisites

state-action space, an ε-greedy exploration strategy may be used:

π(s) =

{
arg maxaQ(s, a) with probability 1 − ε

rand(a) otherwise
, (2.6)

which chooses a random action with probability ε.
In our running Maze 1 example, the Q-table learned by a Q-learner is

shown in Table 2.2. The environment provides a constant reward of 1000
when the money position is reached. Additionally, after reward reception, the
agent is reset to a random position in the maze. The reward is propagated
backward through the maze yielding lower reward to more distant positions.
In effect, Q-learning is an online distance learning mechanism to a reward
source where the reward prediction, or Q-value, indicates the worthiness or
value of executing an action given the current situation. Note that worthi-
ness in Q-learning is defined as the expected discounted future reward using
Equation 2.4. Other discount mechanisms often work just as well depending
on the task setup. For example, parameter γ could be set to one but actions
may have an associated, potentially fixed, cost value which will be deducted
from the expected future reward. In this case, explicit discounting is unneces-
sary since the environment—actually reflecting the inner architecture of the
agent—would take care of discounting. The cost would reflect a potentially
body-specific effort measure of the executed action.

Table 2.2. The Q-values in the shown Q-table reflect the value of each available
action in each possible state of Maze 1 (shown on the left). Each value is defined
as the immediate reward plus the expected discounted future reward received after
executing the action indicated by the arrows in the state defined by the letters. The
corresponding sensation is derived by specifying the surrounding conditions starting
north and coding clockwise, specifying an obstacle by symbol 1 and a free space by
symbol 0. The discount level is set to γ = .9.

A EDCB

stat e sensation
A 11011111 810 810 900 810 810 810 810 810
B 10011101 900 1000 900 900 900 900 810 900
C 01011101 1000 900 900 900 900 900 900 900
D 11011100 900 900 810 900 900 900 900 1000
E 11111101 810 810 810 810 810 810 900 810

To summarize, Q-learning learns a Q-function that determines state-
dependent value estimates for each available action in each state of the envi-
ronment. Due to its well-designed interactive learning mechanism and proven
convergence properties, it is commonly used in RL. As we will see, Q-learning
forms the fundamental basis for the RL component used in the investigated
LCSs.



2.3 Genetic Algorithms 21

2.2.2 Model-Based Reinforcement Learning

In addition to the reward prediction values, model-based RL techniques learn
(potentially an approximation of) the state-transition function of the underly-
ing MDP problem. Once the state-transition function is learned with sufficient
accuracy, an optimal behavioral policy can be learned by simply simulat-
ing state-transitions offline using dynamic programming techniques (Bellman,
1957).

In dynamic programming, the state transition function is known to the sys-
tem and used to estimate the payoff for each state-action pair. The literature
on dynamic programming is broad, conveying many convergence results con-
cerning different environmental properties such as circles, probabilistic state
transitions, and probabilistic reward (see e.g. Bellman, 1957; Gelb, Kasper,
Nash, Price, & Sutherland, 1974; Sutton & Barto, 1998).

In model-based RL, the state-transition function needs to be learned as
suggested in Sutton’s DYNA architecture (Sutton, 1990). DYNA uses state-
transition experiences in two ways: (1) to learn a behavioral policy (using
TD(λ) or Q-learning); (2) to learn a predictive model of the state-transition
function. Additionally, DYNA executes offline policy updates (independent
of the environmental interactions) using the learned predictive model. Moore
and Atkeson (1993) showed that the offline learning mechanism can be sped
up significantly if the offline learning steps are executed in a prioritized fashion
favoring updates that promise to result in large state(-action) value changes.
DYNA and related techniques usually represent their knowledge in tabular
form.

Later, we will see that GAs can be applied in LCSs to learn a more gen-
eralized representation of Q-values and predictions. LCSs essentially try to
cluster the state space so that each cluster accurately predicts a certain value.
GAs are used to learn the appropriate clusters.

2.3 Genetic Algorithms

Prior to LCSs, John H. Holland proposed GAs (Holland, 1971; Holland,
1975). Somewhat concurrently, evolution strategies (Rechenberg, 1973; Bäck
& Schwefel, 1995) were proposed, which are very similar to GAs but are not
discussed any further herein. Goldberg (1989) provides a comprehensive in-
troduction to GAs including LCSs. Goldberg’s recent book (Goldberg, 2002)
provides a much more detailed analysis of GAs including scale-up behavior as
well as problem and parameter/operator dependencies.

This section gives a short overview of the most important results and
basic features of GAs. The interested reader is referred to Goldberg (1989) for
a comprehensive introduction and to Goldberg (2002) for a detailed analysis
of GAs leading to the design of competent GAs—GAs that solve boundedly
difficult problems quickly, accurately, and reliably.



22 2 Prerequisites

2.3.1 Basic Genetic Algorithm

GAs are evolutionary-based search or optimization techniques. They evolve a
population (or set) of individuals, which are represented by a specific genotype.
The decoded individual, also called phenotype, specifies the meaning of the
individual. For example, when facing the problem of optimizing the ingredients
of a certain dish, an individual may code the presence (1) or absence (0) of
the available ingredients. The decoded individual, or phenotype, would then
be the actual ingredients put together.

Basic GAs face an optimization problem as specified in Section 2.1.1. Feed-
back is provided in form of a fitness value that specifies the quality of an
individual, usually in the form of a scalar value. If we face a maximization
problem, a high fitness value denotes high quality. GAs are designed to pro-
gressively generate (that is, evolve) individuals that yield higher fitness.

Given a population of evaluated individuals, evolutionary pressures are
applied to the population generating offspring and deleting old individuals.
A basic GA comprises the following steps executed in each iteration given a
population:

1. evaluation of current population
2. selection of high fitness individuals from current population
3. mutation and recombination of selected individuals
4. generation of new population

The evaluation is necessary to derive a fitness measure for each individual.
Selection focuses the current population on more fit individuals, which repre-
sent more accurate subsolutions. Mutation is a diversification operator that
searches in the syntactic, genotypic neighborhood of an individual by slightly
changing its structure. Recombination, also called crossover , recombines the
structure of parental individuals in the hope of generating offspring that com-
bines the positive structural properties of both parents. Finally, the generation
of the new population decides which individuals are part of the new popu-
lation. In the simplest case, the number of reproduced classifiers equals the
population size and the offspring individuals replace the old individuals. In a
more steady-state version, less individuals are reproduced and only a subset
of the old population is replaced. Replacement may also depend on fitness.

The remainder of this chapter analyzes the different methods in more
detail. Hereby, we follow Goldberg’s facetwise GA theory.

2.3.2 Facetwise GA Theory

To understand a system as complex as a GA, it is helpful to partition the
system into its most relevant components and investigate those components
separately Once the single components are sufficiently well understood, they
may then be combined appropriately, respecting interaction constraints. This



2.3 Genetic Algorithms 23

is the essential idea behind Goldberg’s facetwise approach to GA theory (Gold-
berg, 1991; Goldberg, Deb, & Clark, 1992; Goldberg, 2002).

Before we can do the partitioning, though, it is necessary to understand
how a GA is supposed to work and what it is supposed to learn.

Since GAs are targeted to solve optimization problems evolving the so-
lution that yields highest fitness, fitness is the crucial factor along the way
to an optimal solution. Learning success in GAs relies on sufficient fitness
guidance towards the optimal solution. However, fitness may be misleading
as illustrated above in the trap problem (Table 2.1). Thus, the structural
assumption made in GAs is that of bounded difficulty, which means that the
overall optimization problem is composed of substructures, or BBs, that are of
bounded length. The internal structure of one BB might be misleading in that
a BB might, for example, resemble a trap problem. However, the overall prob-
lem is assumed to provide some fitness guidance so that good combinations
of BBs are expected to lead towards the optimal solution.

With this objective in mind, it is clear that GAs should detect and propa-
gate subproblems effectively. The goal is to design competent GAs (Goldberg,
2002)—GAs that solve boundedly difficult problems quickly, accurately, and
reliably. Hereby, quickly means to solve the problems in low-order polynomial
time (ideally subquadratic), with respect to the problem length. Accurately
means to find a solution in small fitness distance from the optimal solution,
and reliably means to find this solution with a low error probability.

The actual GA design theory (Goldberg, 1991; Goldberg, Deb, & Clark,
1992; Goldberg, 2002) then stresses the following points for GA success:

1. Know what GAs process: Building blocks
2. Know the GA challenge: BB-wise difficult problems
3. Ensure an adequate supply of raw BBs
4. Ensure increased market share for superior BBs
5. Know BB takeover and convergence times
6. Make decisions well among competing BBs
7. Mix BBs well

While we characterized building blocks and BB-wise difficult problems (that
is, boundedly difficult problems) above, we elaborate on the latter points in
the subsequent paragraphs. First, we focus on supply and increased market
share. Next, we look at diversification, BB decision making, and effective BB
mixing.

2.3.3 Selection and Replacement Techniques

As in real-live Darwinian evolution (Darwin, 1859), selection, reproduction,
and deletion decide the life and death of individuals and groups of individu-
als in a population. Guided by fitness, individuals are evolved that are more
fit for the problem at hand. Several selection and deletion techniques exist,



24 2 Prerequisites

each with certain advantages and disadvantages. For our purposes most im-
portant are (1) proportionate selection (also often referred to as roulette-wheel
selection) and (2) tournament selection. Most other commonly used selection
mechanisms are comparable to either of the two. More detailed comparisons of
different selection schemes can be found elsewhere (Goldberg, 1989; Goldberg
& Deb, 1991; Goldberg & Sastry, 2001).

Proportionate Selection

Proportionate selection is the most basic and most natural selection mecha-
nism: Individuals are selected for reproduction proportional to their fitness.
The higher the fitness of an individual, the higher its probability of being
selected. In effect, high fitness individuals are evolved. Given a certain indi-
vidual with fitness fi and an overall average fitness in the population f , the
proportion of individual pi is expected to change as

pi ←
fi

f
pi (2.7)

A similar equation can be derived for the proportion of a BB representation
and its fitness contribution in the population (Goldberg & Sastry, 2001). The
equation shows that structural growth by the means of proportionate selection
strongly depends on fitness scaling and the current fitness distribution in the
population (Baker, 1985; Goldberg & Deb, 1991; Goldberg & Sastry, 2001).

A simple example clarifies the dependence on fitness scaling. Given any
fitness measure that needs to be maximized, the probability of reproducing
the best individual is the following:

P (rep. of best individual) =
fmax

f
pi (2.8)

Assuming now that we add a positive value x to the fitness function, the
resulting probability of reproduction decreases to

P (rep. of best individual scaled) =
fmax + x

f + x
pi (2.9)

The larger x, the smaller the probability that the best individual is selected
for reproduction until all selection probabilities are equal to their current
proportion, although the best individual should usually receive significantly
more reproductive opportunities. The manipulation is certainly inappropriate
but shows that a fitness function needs to be well-designed—or appropriately
scaled—to ensure sufficient selection pressure when using proportionate selec-
tion.

The dependency on the current fitness distribution has a strong impact on
the convergence to the global best individual of a population. The more similar
the fitness values in a population, the less selection pressure is encountered by



2.3 Genetic Algorithms 25

the individuals. Thus, once the population has nearly converged to the global
optimum, fitness values tend to be similar so that selection pressure due to
proportionate selection is weak. This effect is undesirable if a single global
solution is searched.

However, complete convergence may not necessarily be desired or may
even be undesired if multiple solutions are being searched for. In this case,
proportionate selection mechanisms might actually be appropriate given a rea-
sonable fitness value estimate. For example, as investigated elsewhere (Horn,
1993; Horn, Goldberg, & Deb, 1994), proportionate selection can guarantee
that all similarly good solutions (or subsolution niches) can be sustained with
a population size that grows linearly in the number of niches and logarithmi-
cally in the time they are assured to be sustained. The only requirement is
that fitness sharing techniques are applied and that the different niches are
sufficiently non-overlapping.

Tournament Selection

In contrast to proportionate selection, tournament selection does not depend
on fitness scaling (Goldberg & Deb, 1991; Goldberg, 2002). In tournament
selection, tournaments are held among randomly selected individuals. The
tournament size s specifies how many individuals take part in a tournament.
The individual with the highest fitness wins the tournament and consequently
undergoes mutation and crossover and then serves as a candidate for the next
generation.

If replacing the whole population by individuals selected by tournament
selection, the best individuals can be expected to be selected s times so that
the proportion pi of the best individual i can be expected to grow with s, that
is:

pi ← spi (2.10)

That means that the best individual is expected to take over the population
quickly since the proportion of the best individual grows exponentially in s.
Thus, in contrast to proportionate selection, which naturally stalls late in the
run, tournament selection pushes the better individuals until the best available
individual takes over the whole population.

Supply

Before selection can actually be successful, BBs need to be available in the
population. This leads to the important issue of initial BB supply. If the initial
population is too small to guarantee the presence of all important BBs (ex-
pressed in usually different) individuals, a GA relies on mutation to generate
the missing structures by chance. However, an accidental successful mutation
is very unlikely (exponentially decreasing in the number of missing BB val-
ues). Thus, a sufficiently large population with an initially sufficiently large
diversity is mandatory for GA success.



26 2 Prerequisites

Niching

Very important for a successful application of GAs in the LCS realm is the par-
allel sustenance of equally important subsolutions. Usually, niching techniques
are applied to accomplish this sustenance. Hereby, two techniques reached sig-
nificant impact in the literature: (1) crowding, and (2) sharing.

In crowding (De Jong, 1975; Mahfoud, 1992; Harik, 1994) the replacement
of classifiers is restricted to classifiers that are (usually syntactically) similar.
For example, in the restricted tournament selection technique (Harik, 1994),
offspring is compared with a subset of other individuals in the population.
The offspring competes with the (syntactically) closest individual, replacing
it, if its fitness is larger.

In sharing techniques (Goldberg & Richardson, 1987) fitness is shared
among similar individuals where similarity is defined by an appropriate dis-
tance measure (e.g. Hamming distance in the simplest case). The impact of
sharing has been investigated in detail (Horn, 1993; Horn, Goldberg, & Deb,
1994; Mahfoud, 1995). Horn, Goldberg, and Deb (1994) highlight the impor-
tance of fitness sharing in the realm of LCSs showing the important impact
of sharing on the distribution of the population and potentially near infinite
niche sustenance due to the applied sharing technique.

Although sharing can be beneficial in non-overlapping (sub-)solution rep-
resentations, the more the solutions overlap, the less beneficial fitness sharing
techniques become. Horn, Goldberg, and Deb (1994) propose that sharing
works successfully as long as the overlap proportion is smaller than the fitness
ratio between the competing individuals. Thus, if the individuals have iden-
tical fitness, only a complete overlap eliminates the sharing effect. In general,
the higher the degree of overlap, the smaller the sharing effect and thus the
higher the probability of losing important BB structures due to genetic drift.

2.3.4 Adding Mutation and Recombination

Selection alone certainly does not do much good. In essence, selection uses a
complicated method to find the best individuals in a given set of individuals.
Certainly, this can be done much faster by simple search mechanisms. Thus,
selection needs to be combined with other search techniques that search in
the neighborhoods of the current best individuals for even better individuals.
The two basic operators that accomplish such a search in GAs are mutation
and crossover .

Simple mutation takes an individual as input and outputs a slight variation
of the individual. In the simplest form when coding an individual in binary,
mutation randomly flips bits in the individual with a certain probability µ.
Effectively, mutation searches in the syntactic neighborhood of the individ-
ual where the shape and size of the neighborhood depend on the mutation
operator and the mutation probability µ.



2.3 Genetic Algorithms 27

Crossover is designed to recombine current best individuals. Thus, rather
than searching in the syntactic neighborhood of one individual, crossover
searches in the neighborhood defined by two individuals, resulting in a certain
type of knowledge exchange among the crossed individuals. In the simplest
case when coding individuals in binary, uniform crossover exchanges each bit
with a 50% probability, whereas one-point or two-point crossover choose one
or two positions in the bit strings and exchange the right or the inner part of
the resulting partition, respectively.

It should be noted that uniform crossover does not assume any relationship
among bit positions, whereas one- and two-point crossover implicitly assume
that bits that are close to each other depend on each other since substrings
are exchanged. One-point crossover additionally assumes that beginning and
ending are unrelated to each other, whereas two-point crossover assumes a
more circular coding structure. More detailed analyses of simple crossover
operators can be found elsewhere (Bridges & Goldberg, 1987; Booker, 1993).

It is important to appreciate the effects of mutation and crossover alone,
disregarding selection for a moment. If selecting randomly and simply mutat-
ing individuals, mutation causes a general diversification in the population.
In the long run, each attribute in an individual will be set independently
uniformly distributed resulting in a population with maximum entropy in its
individuals. In combination with selection, mutation causes a search in the
syntactic neighborhood of an individual where the spread of the neighbor-
hood is controlled by the mutation type and rate. Mutation may be biased,
incorporating potentially available problem knowledge to improve the neigh-
borhood search as well as to obey problem constraints.

Recombination, on the other hand, exchanges information among individ-
uals syntactically dependent on the structural bias in the applied crossover
operator. Selecting randomly, random crossover results in randomized shuf-
fling of the individual genotypes. In the long run, crossover results in a random
distribution of attribute values over the classifiers but does not affect the pro-
portion of each value in the population.

In conjunction with selection, crossover is responsible for effective BB
processing. Crossover needs to be designed to ensure proper BB recombi-
nation by exchanging important BBs among individuals and preventing the
disruption of BBs in the meantime. Goldberg (2002) compares this very impor-
tant exchange of individual substructures with innovation. Since innovation
essentially refers to a successful (re-)combination of available knowledge in a
novel manner, GAs are essentially designed (or should be designed) to do just
that—be innovative in a certain sense.

Unfortunately, standard crossover operators are not guaranteed to propa-
gate BBs effectively. BBs may also be disrupted by destroying important BB
structures when recombining individuals. Dependent on the crossover opera-
tor and BB structure, a probability may be derived that the BB is not fully
exchanged but cut by crossover. If it is cut and only a part is exchanged, the



28 2 Prerequisites

BB structure may get lost dependent on the structure present in the other
individual.

To prevent such disruption and design a more directed form of innova-
tion, estimation of distribution algorithms (EDA) were recently introduced to
GAs (Pelikan, Goldberg, & Lobo, 2002; Larrañaga, 2002). These algorithms
estimate the current structural distribution of the best individuals in the pop-
ulation and use this distribution estimation to constrain the crossover operator
or to generate better offspring directly from the distribution. In Chapter 7, we
show how to incorporate mechanisms from the extended compact GA (ECGA)
(Harik, 1999), which learns a non-overlapping BB structure, as well as from
the Bayesian optimization algorithm (BOA), which learns a Bayes model of
the BB structure, into the investigated XCS classifier system.

2.3.5 Component Interaction

We already discussed that a combination of selection with mutation and re-
combination leads to local search plus potentially innovative search. In addi-
tion to the impact of selection on growth and convergence, selection strength is
interdependent with mutation and recombination. The two methods interact
in that selection propagates better individuals while mutation and crossover
search in the neighborhood of these individuals for even better solutions. Con-
sequently, the growth of better individuals (or better BBs), often characterized
by a take over time (Goldberg, 2002), needs to be balanced with the search in
the neighborhood of the current best solutions. Too strong selection pressure
may result in a collapse of the population to one only locally optimal indi-
vidual, preventing effective search and innovation via mutation and crossover.
On the other hand, too weak selection pressure may allow genetic drift that
can cause the loss of important BB structures by chance.

These insights led to the proposition of a control map for GAs (Goldberg,
Deb, & Thierens, 1993; Thierens & Goldberg, 1993; Goldberg, 1999) that char-
acterizes a region of selection and recombination parameter settings in which
a GA can be expected to work. The region is bounded by drift, when selection
pressure is too low, cross-competition, when selection is too high, and mixing,
when knowledge exchange is too slow with respect to the selection pressure.
The mixing bound essentially characterizes the boundary below which knowl-
edge exchange caused by crossover is not strong enough with respect to the
selection pressure applied. Essentially the time until the expected generation
of a better individual needs to be shorter than the mentioned take over time
of the current best individual. For further details on these important factors,
the interested reader is referred to Goldberg (2002).

2.4 Summary and Conclusions

This chapter introduced the three major problem types addressed in this book:
(1) optimization problems, (2) classification problems, and (3) reinforcement



2.4 Summary and Conclusions 29

learning problems. Optimization problems require effective search techniques
to find the best solution to the problem at hand. Classification problems re-
quire a proper structural partition into different problem classes. RL problems
additionally require reward backpropagation.

RL techniques are methods that solve MDP problems online applying dy-
namic programming techniques in the form of temporal difference learning to
estimate discounted future reward. The behavioral policy is optimized accord-
ing to the estimated reward values. In the simplest case, RL techniques use
tables to represent the expected cumulative discounted reward with respect
to a state or a state-action tuple.

The most prominent RL technique is Q-learning, which is able to learn
an optimal behavioral policy online without learning the underlying state
transition function in the problem. Q-learning learns off-policy, meaning that
it does not need to pursue the current optimal policy in order to learn the
optimal policy.

Genetic algorithms (GAs) are optimization techniques derived from the
idea of Darwinian evolution. GAs combine fitness-based selection with muta-
tion and recombination operators to search for better individuals with respect
to the current problem. Individuals usually represent complete solutions to a
problem.

Effective building block (BB) processing is mandatory in order to solve
problems of bounded difficulty. Effective BB processing was recently success-
fully accomplished using statistical modeling techniques that estimate the
dependency structures in the current population and bias recombination to-
wards propagating the identified dependencies.

Niching techniques are very important when the task is to sustain a sub-
set of equally good solutions or different subsolutions for different subspaces
(or niches) in the problem space. Fitness sharing and crowding are the most
prominent niching methods in GAs.

Goldberg’s facetwise analysis approach to GA theory significantly im-
proved GA understanding and enabled the design of competent GAs. Al-
though the facetwise approach has the drawback that the found models may
need to be calibrated to the problem at hand, the advantages of the approach
are invaluable for the analysis and design of highly interactive systems. First,
crude models of system behavior are derivable cheaply. Second, analysis is
more effective and more general since it is adaptable to the actual problem
at hand and focuses only on most relevant problem characteristics. Finally,
the approach enables more effective system design and system improvement
due to the consequently identifiable rather independent aspects of problem
difficulty.

The following chapters investigate how RL and GA techniques are com-
bined in LCSs to solve classification problems and RL problems effectively.
Similar to the facetwise decomposition of GA theory and design, we propose
a facetwise approach to LCS theory and design in the next chapter. We then



30 2 Prerequisites

pursue the facetwise approach to analyze the XCS classifier system qualita-
tively and quantitatively. The analysis also leads to the design of improved
XCS learning mechanisms and to the proposition of more advanced LCS-based
learning architectures.




