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Introduction

Rule-based evolutionary online learning systems, often referred to as Michigan-
style learning classifier systems (LCSs) 1, were originally inspired by the gen-
eral principles of Darwinian evolution and cognitive learning. In fact, when
John Holland proposed the basic LCS framework (Holland, 1976; Holland,
1977; Holland & Reitman, 1978), he actually referred to LCSs as cognitive
systems (CSs). Inspired by stimulus-response principles in cognitive psychol-
ogy, Holland designed CSs to evolve a set of production rules that convert
given input into useful output. Temporary memory in the form of a message
list was added to simulate inner mental states situating the system in the
current environmental context.

Early work on LCSs confirmed the great potential of the systems for sim-
ulating animal learning and cognition as well as for real-world applications.
In the first classifier system implementation, Holland and Reitman (1978)
confirmed that LCSs can simulate animal behavior successfully. They evolved
a representation that resulted in goal-directed, stimulus-response-based be-
havior satisfying multiple goals represented in resource reservoirs. Booker
(1982) extended Holland’s approach by experimenting with an agent that
needs to avoid aversive stimuli and reach attractive stimuli. Wilson (Wil-
son, 1985; Wilson, 1987a) confirmed the potential of LCSs to simulate arti-
ficial animals termed animats—triggering the animat approach to artificial
intelligence (Wilson, 1991). In brief, the approach suggests simulating ani-
mats in simulated, progressively more complex environments to understand

1 This book is concerned with Michigan-style LCSs. These systems are online learn-
ing systems, which iteratively interact with a problem, receiving one problem in-
stance at a time. In contrast to Michigan-style LCSs, there are Pittsburgh-style
learning classifier systems (DeJong, Spears, & Gordon, 1993; Llorà & Garrell,
2001b; Llorà & Garrell, 2001a), which are batch learning systems that are much
more similar to pure genetic algorithms. Despite the fundamental differences of
batch-learning and the evolution of a set of solutions in these systems, a big part
of the analysis in this book may be carried over—appropriately modified—to
Pittsburgh-style LCSs.
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learning in organisms as well as to develop highly adaptive autonomous ro-
botic systems. Goldberg (1983) successfully applied an LCS to the control
of a simulated pipeline system, confirming that LCSs are valuable learning
systems for real-world applications as well.

Many of these publications were far-reaching and somewhat visionary. The
LCS framework predated and inspired the now well-established reinforcement
learning field (Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998).
The originally used bucket-brigade algorithm in LCSs (Holland, 1985) distrib-
uted reward very similar to now well-established temporal difference learning
techniques, such as TD(λ) or SARSA (Sutton & Barto, 1998). The ambi-
tious scenarios and the relation to animal learning, cognition, and robotics
pointed towards research directions that remain mind boggling even today.
Thus, most early LCS work laid out very interesting and challenging future
research directions.

Despite these promising factors and interesting directions, the LCS frame-
work was somewhat ahead of its time. Due to the high complexity of the
systems, scalable learning of robust problem solutions could not be guaran-
teed. Essentially, hardly any theory was developed for an LCS system, because
(1) neither learning nor convergence could be assured mathematically, (2) the
learning interactions in the system appeared to be too complex and remained
not well-understood, (3) the learning biases of the system were only explained
intuitively, and (4) competitive applications were restricted to a somewhat
limited set of smaller problems. These problematic factors led a surprisingly
wide inacceptance of LCSs in the artificial intelligence and machine learning
literature.

In their “Critical review of classifier systems”, Wilson and Goldberg (1989)
pointed out several of the most important problems in the available LCSs at
that time. First, it appeared that successful reward chains were hard to learn
and to maintain by the means of the bucket-brigade algorithm in combination
with the evolutionary component. Second, inappropriate bidding and payment
schemes obstructed generalization, enabled overgeneralization, or prevented
the formation of default hierarchies. Third, the limitations of simple classi-
fier syntax prohibited effective processing of noisy input features, continuous
problem spaces, or larger binary problem spaces. Besides these challenges,
Wilson and Goldberg (1989) also mentioned the importance of developing
and understanding planning and lookahead mechanisms, representations for
expectations, implementations of a short-term memory, and population sizing
equations.

During the subsequent LCS winter, Stewart Wilson and a few others con-
tinued to work in the LCS field. And it was Stewart Wilson who heralded an
LCS renaissance with the publication of the two most influential LCS systems
to date: (1) the zeroth level classifier system ZCS (Wilson, 1994) and (2) the
accuracy-based classifier system XCS (Wilson, 1995).

Both classifier systems overcome many of the previously encountered chal-
lenges. The credit assignment mechanism in ZCS and XCS is directly related
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to the then well-understood Q-learning algorithm (Watkins, 1989) in the rein-
forcement learning (RL) literature so that appropriate reward estimation and
propagation is ensured. Overgeneralization problems are overcome by proper
fitness sharing techniques (ZCS) or the new accuracy-based fitness approach
(XCS). Additionally, in XCS generalization is achieved by a niche reproduction
combined with population-wide deletion, as stated in Wilson’s generalization
hypothesis (Wilson, 1995).

Published results suggested the competitiveness of the new LCSs (Wil-
son, 1994; Wilson, 1995). Solutions were found in previously unsolved maze
problems that require proper generalization as well as hard Boolean function
problems, such as the multiplexer problem.

Later, research focused further on the XCS system solving larger Boolean
function problems (Wilson, 1998), suggesting the scalability of the system.
Others focused on performance investigations in larger maze problems con-
sidering action noise and generalization (Lanzi, 1997; Lanzi, 1999a; Lanzi,
1999c).

In addition to the promising experimental results, the growth of quali-
tative and quantitative theoretical insights and understanding slowly gained
momentum. Tim Kovacs investigated Wilson’s generality hypothesis in more
detail and showed that XCS strives to learn complete, accurate, and minimal
representations of Boolean function problems (Kovacs, 1997). Later, Kovacs
investigated the appropriate fitness approach in LCSs, contrasting a purely
strength-based approach with XCS’s accuracy-based approach (Kovacs, 2000;
Kovacs, 2001). Finally, one of the most important questions was asked: What
makes a problem hard for XCS (Kovacs & Kerber, 2001)? This question led
to some insights on problem difficulty with respect to the optimal solution
representation [O]. However, it remained obscured how XCS evolves an op-
timal solution as well as which computational requirements are necessary to
successfully evolve and maintain such a solution.

Besides the new direct insights into LCSs, genetic algorithms (GAs) are
now much better understood than they were back in the late 1980s. Gold-
berg provided a comprehensive introduction to GAs (Goldberg, 1989) and
later suggested a facetwise approach to GA theory and design (Goldberg,
1991). The facetwise approach puts forward a modular analysis of GA com-
ponents and their interactions including different selection types, structure
propagation and disruption via recombination, mutation influences, or struc-
ture sustenance. The approach enabled a rigorous quantitative analysis of GA
components and their interaction, which lead to a proper understanding of
GA scale-up behavior and its dependence on problem structure (Goldberg,
Deb, & Clark, 1992; Goldberg, Deb, & Thierens, 1993; Harik, Cantú-Paz,
Goldberg, & Miller, 1997; Goldberg, 1999; Goldberg, 2002).

In addition to the quantitative achievements, the design decomposition also
enables a rigorous qualitative understanding of what GAs are really searching
for. Holland (1975) already hypothesized that GAs are processing schemata,
referring to low-order attribute dependencies. GA learning success depends on
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the successful detection and propagation of such dependencies. However, Hol-
land’s original schema theory mainly showed the potential failure of schema
processing instead of focusing on the best way to identify and propagate use-
ful schemata, which are often called building blocks (BBs) (Holland, 1975;
Goldberg, 1989; Goldberg, 2002). BBs may be characterized as lower order
dependency structures (in which few attributes interact) that result in a fit-
ness increase when set to the correct values. Attributes of a BB structure
interact nonlinearly with respect to their fitness influence so that a small dif-
ference from the correct values may lead to a large difference in fitness. It
should be clear that the presence of BBs highly depends on the problem at
hand as well as on the chosen problem representation (Rothlauf, 2002).

It should be noted that Goldberg’s facetwise analysis approach does not
only facilitate system analysis and modeling but also leads to a more general
system understanding and enables more effective system design (Goldberg,
2002). In the pure GA realm, for example, the GA design decomposition led
to the creation of competent GAs—GAs that solve boundedly difficult prob-
lems quickly, accurately and reliably—including the extended compact GA
(ECGA) (Harik, 1999) and the Bayesian optimization algorithm (BOA) (Pe-
likan, Goldberg, & Cantu-Paz, 1999) and triggering the field of estimation
of distribution algorithms (EDAs) (Mühlenbein & Paaß, 1996; Pelikan, Gold-
berg, & Lobo, 2002; Larrañaga, 2002).

Objectives

The train of thought in this book follows a similar decomposition approach
to analyze LCSs. With Wilson’s powerful XCS system at hand, it establishes
a rigorous understanding of XCS functioning, computational requirements,
convergence properties, and generalization capabilities. The design decompo-
sition enables us to consider evolutionary components independently so that a
precise and general system analysis is possible. Meanwhile, the analysis leads
us to several successfully integrated system improvements. Moreover, the pro-
posed decomposition points towards many interesting prospective research
directions including further LCS analyses and the modular and hierarchical
design of more advanced LCSs.

In further detail, we first establish a rigorous understanding of LCSs, and
the XCS classifier system in particular. We show which learning mechanisms
can be identified, which learning biases these mechanisms cause, and how they
interact. The undertaken facetwise analysis enables us to establish a funda-
mental theory for population sizing, problem difficulty, and learning speed. It
is shown that the derived problem bounds can be used to confirm (restricted)
PAC-learning capabilities of the XCS system in k-DNF problems. Moreover,
the analysis leads us to the identification and analysis of BB-hard problems
in the LCS realm. We consequently integrate competent GA recombination
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operators solving the BB-hard problems by making evolutionary search more
effective.

Additionally, we draw connections with neural network-based function ap-
proximation techniques, combined with reinforcement learning mechanisms
(Baird, 1999; Haykin, 1999; Sutton & Barto, 1998) and tabular Q-learning
(Watkins, 1989). It is shown that the integration of gradient techniques im-
proves learning reliability and accuracy in XCS. The theoretical considerations
confirm that LCSs are hybrid techniques that have neural network-like inter-
dependence properties but also tabular-like independence properties.

Besides the theoretical and mechanism-based enhancements, the book
shows key-results in various problem domains including binary, nominal, and
real-valued classification problems as well as multistep RL problems. Learn-
ing behavior is analyzed respecting typical problem structures and problem
properties.

The lessons learned from the XCS analysis provide a broader understand-
ing of LCSs and their interactive learning mechanisms. The analyses and ex-
perimental evaluations combined with the facetwise approach lay out a clear
path towards the successful design and application of future LCS-based learn-
ing systems. The key to success is an appropriate combination of necessary
learning biases comprised in the structure and type of LCS modules and their
efficient interaction. Representational considerations are thereby as important
as the choice of mechanisms and their effective integration.

With the gained understanding at hand, we finally propose the creation of
LCS-based, cognitive learning systems that may learn interactively and incre-
mentally a modular, distributed, and hierarchical predictive problem represen-
tation and use the representation to pursue anticipatory cognitive behavior.
The proposed cognitive LCS-based structures are in accordance with Holland’s
original ideas but are now endowed with a modular theory on computational
requirements, interactivity, learning reliability, solution accuracy and quality
as the supporting backbone. The book lies out the foundations for the success-
ful creation and application of such competent modular integrative LCS-based
learning structures.

Road Map

The remainder of the book is structured as follows:
Chapter 2 provides an overview of required background knowledge. First,

we introduce optimization, classification and RL problems and discuss most
important structural properties, differences, and problem difficulties. Next, we
provide an overview of relevant RL mechanisms. Finally, we introduce GAs
focusing on Goldberg’s facetwise GA decomposition approach and the aspects
within most relevant for our subsequent analyses on LCSs.

Chapter 3 first gives a gentle introduction to a basic LCS system. The
application to a simple toy problem illustrates the general functioning. Next,
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we discuss LCS theory and analysis. In particular, we propose a facetwise
LCS theory approach decomposing the LCS architecture into relatively inde-
pendent system facets. Each facet needs to be implemented appropriately to
ensure the successful system application.

Chapter 4 introduces the system under investigation, that is, the accuracy-
based classifier system XCS (Wilson, 1995). We illustrate XCS’s learning be-
havior on exemplar toy problems, including classification and RL problems,
revealing basic intuition behind XCS functioning. We then proceed to our
XCS analysis.

XCS’s major learning biases are investigated in Chapter 5. We show that
fitness propagates accurate rules whereas generalization is achieved by a com-
bination of subset-based reproduction and population-wide deletion. We de-
rive a specificity equation that models the behavior of specificity in a pop-
ulation not influenced by fitness. Finally, we replace the previously applied
proportionate selection with a subset-size dependent tournament selection
mechanism ensuring reliable fitness pressure towards better classifiers.

Chapter 6 analyzes the computational requirements for solution growth
and sustenance. We show that initial specificity and population size needs
to be chosen adequately to ensure learning startup, minimal structural sup-
ply, relevant structural growth, and solution sustenance. With the additional
learning time estimate, we can show that the computational effort scales in a
low-order polynomial in problem length and solution complexity.

Next, we address solution search. Chapter 7 confirms that effective BB
structure identification and processing may be necessary also in the realms of
classification and RL. We introduce statistical techniques to extract evolved
lower level problem structure. The gained knowledge about dependency struc-
tures is then used to mutate and recombine offspring rules more effectively,
consequently solving previously hard problems successfully.

Chapter 8 applies the resulting XCS system to diverse Boolean function
problems. We investigate performance in large problems, the impact of irrel-
evant problem features, overlapping problem subsolutions, unequally distrib-
uted subsolution complexities, and external noise. As a whole, the chapter
experimentally confirms the theoretic learning bounds and supports the de-
rived mathematical learning robustness and scalability results.

Chapter 9 applies the XCS system to real-world datamining problems as
well as function approximation problems. We compare XCS’s performance
with several other machine learning systems in the investigated datasets. The
comparison further confirms XCS’s learning competence and machine learn-
ing competitiveness. We also enhance the facetwise theory to the real-valued
problem domain.

Chapter 10 then investigates multistep RL problems addressing the ad-
ditional challenges of reward backpropagation and distribution. The chapter
shows that XCS is a competent online generalizing RL system that is able to
ignore additional irrelevant problem features with additional computational
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effort that is linear in the number of features. The results confirm that XCS
offers a robust alternative to purely neural-based RL approaches.

With pieces of the LCS puzzle then in place, Chapter 11 outlines how a
similar facetwise problem approach may be helpful in the analysis of other
LCSs and how LCSs can be designed using the modular theory approach.
Alternative learning biases are discussed as well.

Chapter 12 then outlines how the analysis may carry over to the design of
further competent and flexible LCS systems targeted to the problem at hand.
In particular, we put forward the integration of LCS learning mechanisms into
cognitive learning structures. Hierarchical and modular structures, anticipa-
tory mechanisms, incremental learning, and sequential processing mechanisms
are discussed. LCS mechanisms may serve as the tool-box for generating the
desired structures.

Chapter 13 summarizes the major findings. The conclusions outline the
next steps necessary for further LCS analysis and more competent LCS design.
With the facetwise perspective on LCSs at hand, the design of Holland’s
originally envisioned cognitive systems may finally be within our grasp.




