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Embedding and Local Confluence

In this chapter, we continue to present important results for adhesive HLR
systems which have been introduced in Section 3.4 of Part I already. The
Embedding Theorem is one of the classical results for the graph case presented
in [Ehr79]. For the categorical presentation of most of the results in this
chapter, we introduce in Section 6.1 the concept of initial pushouts, which
is a universal characterization of the boundary and the context, discussed in
Section 3.2 for the graph case. This allows us to present the Embedding and
Extension Theorems in Section 6.2, which characterize under what conditions
a transformation sequence can be embedded into a larger context. The main
ideas of the Embedding and Extension Theorems and of the other results in
this chapter have been explained already in Section 3.4.

The concepts of critical pairs and local confluence were motivated origi-
nally by term rewriting systems, and were studied for hypergraph rewriting
systems in [Plu93] and for typed attributed graph transformation systems in
[HKT02]. The general theory of critical pairs and local confluence for adhesive
HLR systems according to [EHPP04] is presented in Sections 6.3 and 6.4.

We start this chapter with the concept of initial pushouts in Section 6.1,
because they are needed in the Extension Theorem. Initial pushouts and the
Extension Theorem are both needed in the proof of the Local Confluence
Theorem, which is the most important result in this chapter, because it has
a large number of applications in various domains.

6.1 Initial Pushouts and the Gluing Condition

An initial pushout formalizes the construction of the boundary and the context
which were mentioned earlier in Subsection 3.4.2. For a morphism f : A → A′,
we want to construct a boundary b : B → A, a boundary object B, and a
context object C, leading to a pushout. Roughly speaking, A′ is the gluing of
A and the context object C along the boundary object B.
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Definition 6.1 (initial pushout). Given a morphism f : A → A′ in a
(weak) adhesive HLR category, a morphism b : B → A with b ∈ M is called
the boundary over f if there is a pushout complement of f and b such that
(1) is a pushout which is initial over f . Initiality of (1) over f means, that
for every pushout (2) with b′ ∈ M there exist unique morphisms b∗ : B → D
and c∗ : C → E with b∗, c∗ ∈ M such that b′ ◦ b∗ = b, c′ ◦ c∗ = c and (3) is a
pushout. B is then called the boundary object and C the context with respect
to f .

B

C

A

A′

(1)

b

f

c

B

C

D

E

A

A′

(3) (2)

b∗

c∗

b′

c′

f

b

c

Example 6.2 (initial pushouts in Graphs). The boundary object B of
an injective graph morphism f : A → A′ consists of all nodes a ∈ A such that
f(a) is adjacent to an edge in A′\f(A). These nodes are needed to glue A to
the context graph C = A′\f(A)∪ f(b(B)) in order to obtain A′ as the gluing
of A and C via B in the initial pushout.

Consider the following morphism f : A → A′ induced by the node labels.
Node (3) is the only node adjacent to an edge in A′\f(A) and therefore has
to be in the boundary object B. The context object C contains the nodes (3)
and (4) and the edge between them. All morphisms are inclusions.

b

c

f

(3)

(3) (4) (3) (4)(2)(1)

(3)(2)(1)

In Graphs, initial pushouts over arbitrary morphisms exist. If the given
graph morphism f : A → A′ is not injective, we have to add to the boundary
object B all nodes and edges x, y ∈ A with f(x) = f(y) and those nodes that
are the source or target of two edges that are equally mapped by f . 
�

The concept of initial pushouts allows us to formulate a gluing condition
analogous to that in the graph case (see Definition 3.9), leading to the exis-
tence and uniqueness of contexts in Theorem 6.4, which generalizes the graph
case considered in Fact 3.11.

Definition 6.3 (gluing condition in adhesive HLR systems). Given an
adhesive HLR system AHS over a (weak) adhesive HLR category with initial
pushouts, then a match m : L → G satisfies the gluing condition with respect
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to a production p = (L
l
← K

r
→ R) if, for the inital pushout (1) over m, there

is a morphism b∗ : B → K such that l ◦ b∗ = b:

B

C

L K

G

R

(1)

b

m

c

b∗

l r

In this case b, l ∈ M implies b∗ ∈ M by the decomposition property of M.

Theorem 6.4 (existence and uniqueness of contexts). Given an ad-
hesive HLR system AHS over a (weak) adhesive HLR category with initial
pushouts,a match m : L → G satisfies the gluing condition with respect to a

production p = (L
l
← K

r
→ R) if and only if the context object D exists, i.e.

there is a pushout complement (2) of l and m:

B

C

L K

G

R

D

(1) (2)

b

m

c

b∗

l r

k

f

c∗

If it exists, the context object D is unique up to isomorphism.

Proof. If the gluing condition is fulfilled, then we can construct from b∗ ∈ M
and B → C a pushout (3) with the pushout object D and the morphisms k
and c∗, where (3) is hidden behind (1) and (2). This new pushout (3), together
with the morphisms c and m ◦ l, implies a unique morphism f with f ◦ c∗ = c
and m ◦ l = f ◦ k, and by pushout decomposition of (3), (2) is also a pushout,
leading to the context object D.

If the context object D with the pushout (2) exists, the initiality of pushout
(1) implies the existence of b∗ with l ◦ b∗ = b.

The uniqueness of D follows from the uniqueness of pushout complements
shown in Theorem 4.26. 
�

We shall now show an interesting closure property of initial pushouts,
which we need for technical reasons (see the proof of Theorem 6.16). The
closure property shows that initial pushouts over M′-morphisms are closed
under composition with double pushouts along M-morphisms. In the (typed)
graph case, we can take as M′ the class of all (typed) graph morphisms or
the class of all injective (typed) graph morphisms.

Lemma 6.5 (closure property of initial POs). Let M′ be a class of mor-
phisms closed under pushouts and pullbacks along M-morphisms (see Remark
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6.6), with initial pushouts over M′-morphisms. Then initial pushouts over
M′-morphisms are closed under double pushouts along M-morphisms.

This means that, given an initial pushout (1) over h0 ∈ M′ and a double-
pushout diagram (2) with pushouts (2a) and (2b) and d0, d1 ∈ M, we have
the following:

1. The composition of (1) with (2a), defined as pushout (3) by the initiality
of (1), is an initial pushout over d ∈ M′.

2. The composition of the initial pushout (3) with pushout (2b), leading to
pushout (4), is an initial pushout over h1 ∈ M′.

B

C

G0

G′
0

(1)

b0

h0

G0

G′
0

D

D′

G1

G′
1

(2)(2a) (2b)

d0

d

d1

h0 h1

B

C

D

D′

(3)

b

d

B

C

G1

G′
1

(4)

d1◦b

h1

Remark 6.6. The statement that M′ is closed under pushouts along M-

morphisms means that, for a pushout C
n
→ D

g
← B over C

f
← A

m
→ B with

m, n ∈ M and f ∈ M′, it holds also that g ∈ M′. There is an analogous
definition for pullbacks.

Proof. We prove this lemma in three steps.

Step I. Initial pushouts are closed under pushouts (in the opposite direc-
tion) in the following sense.

Given an initial pushout (5) over a ∈ M′ and a pushout (6) with m ∈ M,
then there is an initial pushout (7) over d ∈ M′ with m◦ b′ = b and n◦ c′ = c:

B

C

A

A′

D

D′

(5) (6)

b m

a d

c n

B

C

D

D′

(7)

b′

d

c′

Since (5) is an initial pushout, there are unique morphisms b′ and c′ with
b′, c′ ∈ M such that (7) is a pushout. It remains to show the initiality and
that d ∈ M′.

For any pushout (8) with m′ ∈ M, we have the result that the composition
(8) + (6) is a pushout, with m◦m′ ∈ M. Since (5) is an initial pushout, there
are morphisms b∗ : B → E and c∗ : C → E′ ∈ M with m◦m′ ◦b∗ = b = m◦b′

and n ◦ n′ ◦ c∗ = c = n ◦ c′, and (9) is a pushout:
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B

C

A

A′

D

D′

E

E′

(5) (6) (8)

b m

a d

c n

m′

n′

b′

c′

B

C

E

E′

(9)

b∗

c∗

Since m and n are monomorphisms, it holds that b′ = m′ ◦ b∗ and c′ = n′ ◦ c∗.
Therefore (7) is an initial pushout. Finally, pushout (6) is also a pullback by
Theorem 4.26, part 1, with a ∈ M′ such that the closure property of M′

implies d ∈ M′.

Step II. Initial pushouts are closed under pushouts (in the same direction)
in the following sense.

Given an initial pushout (5) over a ∈ M′ and a pushout (10) with m ∈ M,
then the composition (5) + (10) is an initial pushout over d ∈ M′:

B

C

A

A′

D

D′

(5) (10)

b m

a d

c n

Since M′-morphisms are closed under pushouts along M-morphisms, we
have d ∈ M′. The initial pushout (11) over d then exists. Comparing (5) +
(10) with (11), we obtain unique morphisms l′ : B′ → B and k′ : C′ → C ∈ M
with m ◦ b ◦ l′ = b′and n ◦ c ◦ k′ = c′, and (12) is a pushout:

B′

C′

BD

C

l′

k′

D′

(11)

b′ m◦b

d

c′ n◦c

B′

C′

B

C

A

A′

B

C

(12) (5) (5)

l′ b

a

k′ c

b

c

l

k

(12) + (5) is then also a pushout and, from the initial pushout (5), we obtain
unique morphisms l : B → B′ and k : C → C′ ∈ M with b ◦ l′ ◦ l = b
and c ◦ k′ ◦ k = c. Since b and c are monomorphisms, we obtain l′ ◦ l =
idB and k′ ◦ k = idC , and since l′ and k′ are monomorphisms they are also
isomorphisms. This means that (5) + (10) and (11) are isomorphic, and (5)
+ (10) is an initial pushout over d ∈ M′.then also

Step III. Initial pushouts are closed under double pushouts.
Square (3) is an initial pushout over d ∈ M′, which follows directly from

Step I.
(1) is a pushout along the M-morphism b0 and therefore a pullback by

Theorem 4.26, part 1, and since M′ is closed under pullbacks, we have B →
C ∈ M′. We then have d ∈ M′ and h1 ∈ M′ with M′ closed under pushouts,
and by applying Step II we also have the result that (4) is an initial pushout
over h1 ∈ M′. 
�
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6.2 Embedding and Extension Theorems

We now present the Embedding and Extension Theorems, which allow us to
extend a transformation to a larger context. The ideas behind these theorems
were given in Section 3.4 in Part I.

An extension diagram describes how a transformation t : G0
∗
⇒ Gn can

be extended to a transformation t′ : G′
0

∗
⇒ G′

n via an extension morphism
k0 : G0 → G′

0 that maps G0 to G′
0.

Definition 6.7 (extension diagram). An extension diagram is a diagram
(1), as shown below,

G0

G′
0

Gn

∗

G′
n

∗

k0 kn

t

t′

(1)

where k0 : G0 → G′
0 is a morphism, called an extension morphism, and t :

G0
∗
⇒ Gn and t′ : G′

0
∗
⇒ G′

n are transformations via the same productions
(p0, . . . , pn−1) and matches (m0, . . . , mn−1) and (k0 ◦ m0, . . . , kn−1 ◦ mn−1)
respectively, defined by the following DPO diagrams:

Li

Gi

G′
i

Ki

Di

D′
i

Ri

Gi+1

G′
i+1

pi :

(i = 0, . . . , n − 1), n > 0

li ri

jimi ni

fi gi

diki

f ′
i

ki+1

g′
i

For n = 0, the extension diagram is given up to isomorphism by

G0

G′
0

G0

G′
0

G0

G′
0

idG0
idG0

k0k0

id
G′

0

k0

id′
G0

Example 6.8 (extension diagram). Consider the transformation sequence
t : S ⇒ G ⇒ H from Example 5.5 and the extension morphism k : S → S′

as shown in the following diagram. The complete diagram is an extension
diagram over t and k.
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(1) (2) (1) (2) (1) (2)

(3) (4) (3) (4) (3) (4)

(2)(3) (4)

(1)

(2)(3) (4)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

(2)(3) (4)

(1)

(2)(3) (4)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

l2 r2

f g

m k n

k

l4 r4

f ′ g′

m′ k′ n′

S′ G′ H ′

S G H

L2 K2 R2

L4 K4 R4


�

The consistency condition given in Definition 6.12 for a transformation
t : G0

∗
⇒ Gn and an extension morphism k0 : G0 → G′

0 means intuitively
that the boundary object B of k0 is preserved by t. In order to formulate this
property, we use the notion of a derived span der(t) = (G0 ← D → Gn) of
the transformation t, which connects the first and the last object.

Definition 6.9 (derived span). The derived span of an identical transfor-

mation t : G
id
⇒ G is defined by der(t) = (G ← G → G) with identical

morphisms.

The derived span of a direct transformation G
p,m
=⇒ H is the span (G ←

D → H) (see Def. 5.2).

For a transformation t : G0
∗
⇒ Gn ⇒ Gn+1, the derived span is the

composition via the pullback (P) of the derived spans der(G0
∗
⇒ Gn) = (G0

d0←

D′ d1→ Gn) and der(Gn ⇒ Gn+1) = (Gn
fn
← Dn

gn
→ Gn+1). This construction

leads to the derived span der(t) = (G0
d0◦d2←− D

gn◦d3
−→ Gn+1):

G0

D′

D

Gn Dn Gn+1

(P )

d0

d2

d1

d3

fn gn

In the case t : G0 ⇒∗ Gn where n = 0, we have either G0 = Gn and

t : G0
id
⇒ G0 (see above) or G0

∼= G′
0 with der(t) = (G0

id
← G0 → G′

0).

Remark 6.10. The derived span of a transformation is unique up to isomor-
phism and does not depend on the order of the pullback constructions.
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Example 6.11 (derived span). Consider the direct transformation sequence
t : S ⇒ G ⇒ H from Example 5.5. The following diagram shows the construc-

tion of the derived span der(t) = (S
f◦k1
←− K

g′◦k2
−→ H) with the pullback (P ):

(P )

k1 k2

g

f

f ′

g′

S D D′ H

G

K


�

Definition 6.12 (consistency). Given a transformation t : G0
∗
⇒ Gn with

a derived span der(t) = (G0
d0← D

dn→ Gn), a morphism k0 : G0 → G′
0 is called

consistent with respect to t if there exist an initial pushout (1) over k0 and a
morphism b ∈ M with d0 ◦ b = b0:

B

C

G0

G′
0

D Gn

(1)

b0

k0

d0 dn

b

Example 6.13 (consistency). Consider the direct transformation sequence

t : S ⇒ G ⇒ H from Example 5.5 with the derived span der(t) = (S
f◦k1
←−

K
g′◦k2
−→ H) as constructed in Example 6.11. The extension morphism k : S →

S′ given in Example 6.8 is then consistent with respect to t.
We can construct the initial pushout (1) over k as shown in the following

diagram. For the morphism b depicted, it holds that f ◦ k1 ◦ b = b0:
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(1)

f◦k1 g′
◦k2

k

b0

b

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

B S K H

C S′


�

Using the following Embedding and Extension Theorems, we can show that
consistency is both sufficient and necessary for the construction of extension
diagrams. Both theorems are abstractions of the corresponding Theorems 3.28
and 3.29 for the graph case.

Theorem 6.14 (Embedding Theorem). Given a transformation t : G0
∗
⇒

Gn and a morphism k0 : G0 → G′
0 which is consistent with respect to t, then

there is an extension diagram over t and k0.

Proof. We prove this theorem by induction over the number of direct trans-
formation steps n.

Consider a transformation t : G0
n
⇒ Gn with a derived span (G0

d0← Dn
dn→

Gn), the initial pushout (1) over k0 : G0 → G′
0, and a morphism b : B → Dn

with d0 ◦ b = b0. We show that there is a suitable extension diagram and
suitable morphisms bn = dn ◦ b : B → Gn and cn : C → G′

n, such that (Pn) is
a pushout:

B

C

G0

G′
0

(1)

b0

c0

k0

B

C

Gn

G′
n

(Pn)

bn

cn

kn

Basis. n = 0. Consider the transformation t : G0
id
⇒ G0 with the derived

span (G0 ← G0 → G0) and the morphism k0 : G0 → G′
0, consistent with

respect to t. There is then the initial pushout (1) over k0 and a morphism
b = b0 : B → G0, and we have the following extension diagram:

B

C

G0

G′
0

G0

G′
0

G0

G′
0

(1)

b0

c0

k0

idG0
idG0

b0

k0 k0

id
G′

0
id

G′
0
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n = 1. Given the solid arrows in the following diagram, we can construct

the pushout object D′
0 over C ← B

b
→ D0, derive the induced morphism

d′0 from this constructed pushout and, by pushout decomposition, conclude

that (2) is also a pushout. Finally, we construct the pushout (3) over D′
0

h0←

D0
d1→ G1 and obtain the required extension diagram, and the morphisms

b1 = d1 ◦ b : B → G1 and c1 = d′1 ◦ c : C → G′
1. By pushout composition, (P1)

is a pushout.

B

C

G0

G′
0

D0

D′
0

G1

G′
1

L0 K0 R0

(1) (2) (3)

b0

k0

d0 d1

m0

l0 r0

j0 n0

b

h0 k1

d′
0 d′

1

c

Induction step. Consider the transformation t : G0
n
⇒ Gn

pn,mn
=⇒ Gn+1

with a derived span der(t) = (G0
d0←− Dn+1

dn+1
−→ Gn+1). There is then a

transformation t′ : G0
n
⇒ Gn with der(t′) = (G0

d′
0← Dn

dn→ Gn) such that (P )
is the pullback obtained from the construction of the derived span, and we
have the result that d′0 ◦ d′1 = d0 and gn ◦ d′2 = dn+1:

G0

Dn

Dn+1

Gn D Gn+1

(P )

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

Since k0 : G0 → G′
0 is consistent with respect to t, we have an initial

pushout (1) over k0 and a morphism b : B → Dn+1 with b0 = d0◦b = d′0◦d′1◦b.
This means that k0 is also consistent with respect to t′, using the morphism
b′ = d′1 ◦ b. We can apply the induction assumption, obtaining an extension
diagram for t′ and k0 and morphisms bn = dn ◦ b′ : B → Gn and cn : C → G′

n

such that (Pn) is a pushout. This is denoted by the dotted arrows in the
following diagram:
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B

C

G0

G′
0

Dn

Dn+1

Gn D Gn+1

G′
n

...

...

(P )

(1)

b0

c0

k0

b

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

b′

cn

kn

Now we construct the pushout object D′ over C ← B
d′
2◦b
−→ D and derive the

induced morphism f ′
n by applying kn ◦ fn and cn to this constructed pushout.

Since (Pn) is a pushout and it holds that fn ◦d′2 ◦ b = dn ◦d′1 ◦ b = dn ◦ b′ = bn,
it follows by pushout decomposition that (2) is also a pushout. Finally, we

construct the pushout (3) over D′ h
← D

gn
→ Gn+1 and obtain the required

extension diagram and the morphisms bn+1 = dn+1 ◦ b : B → Gn+1 and
cn+1 = g′n ◦ c : C → G′

n+1. By pushout composition, (Pn+1) is a pushout.

B

C

G0

G′
0

Dn

Dn+1

Gn D Gn+1

G′
n D′ G′

n+1

...

...

(P )

(1) (2) (3)

b0

c0

k0

b

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

b′

cn

kn h

f ′
n

kn+1

g′
n

c


�

Example 6.15 (Embedding Theorem in ExAHS). Consider the trans-
formation sequence t : S ⇒ G ⇒ H in Example 5.5 and the extension mor-
phism k : S → S′ given in Example 6.8. In Example 6.13, we have verified
that k is consistent with respect to t. We can conclude, from the Embedding
Theorem, that there is an extension diagram over k and t. Indeed, this is the
diagram presented in Example 6.8. 
�

Similarly to the graph case considered in Section 3.4, the next step is to
show, in the following Extension Theorem, that the consistency condition is
also necessary for the construction of extension diagrams, provided that we
have initial pushouts over M′-morphisms. Moreover, we are able to give a
direct construction of G′

n in the extension diagram (1) below. This avoids the

need to give an explicit construction of t′ : G′
0

∗
⇒ G′

n.
For technical reasons, we consider again, in addition to the class M of

the (weak) adhesive HLR category, a class M′ with suitable properties; such
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a class has already been used in Lemma 6.5. In the (typed) graph case, we
can take M′ as the class of all (typed) graph morphisms or as the class of all
injective (typed) graph morphisms.

Theorem 6.16 (Extension Theorem). Given a transformation t : G0
∗
⇒

Gn with a derived span der(t) = (G0
d0← Dn

dn→ Gn) and an extension diagram
(1),

B

C

G0

G′
0

Gn

∗

G′
n

∗

(2) (1)

b0

k0

t

t′

kn

with an initial pushout (2) over k0 ∈ M′ for some class M′, closed under
pushouts and pullbacks along M-morphisms and with initial pushouts over
M′-morphisms, then we have the following, shown in the diagram below:

1. k0 is consistent with respect to t : G0
∗
⇒ Gn, with the morphism b : B →

Dn.
2. There is a direct transformation G′

0 ⇒ G′
n via der(t) and k0 given by the

pushouts (3) and (4) with h, kn ∈ M′.
3. There are initial pushouts (5) and (6) over h ∈ M′ and kn ∈ M′, respec-

tively, with the same boundary–context morphism B → C.

G0

G′
0

Dn

D′
n

Gn

G′
n

(3) (4)

d0

h

dn

k0 kn

B

C

Dn

D′
n

(5)

b

h

B

C

Gn

G′
n

(6)

dn◦b

kn

Proof. We prove this theorem by induction over the number of direct trans-
formation steps n.

Basis. n = 0, n = 1. Given the solid arrows in the following diagram, for

n = 1 and t : G0
p0,m0
=⇒ G1 with der(t) = (G0

d0← D0
d1→ G1), we conclude that:

1. k0 is consistent with respect to t, since (1) is an initial pushout over k0,
and, since (7) is a pushout, we have b : B → D0 with d0 ◦ b = b0.

2. (7) and (8) correspond to the required pushouts (3) and (4). In fact, (7) is
a pushout along the M-morphism d0 and therefore a pullback. Since M′

is closed under pullbacks along M-morphisms, with k0 ∈ M′, it follows
that h0 ∈ M′ also. (8) is a pushout along the M-morphism d1, and since
M′ is closed under pushouts along M-morphisms, k1 ∈ M′ follows.

3. The initial pushouts corresponding to (5) and (6) follow directly from
Lemma 6.5, where d0 ◦ b = b0 has already been shown in item 1.
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B

C

G0

G′
0

D0

D′
0

G1

G′
1

L0 K0 R0

(1) (7) (8)

b0

k0

d0 d1

m0

l0 r0

j0 n0

b

h0 k1

d′
0 d′

1

The case n = 0 can be dealt with analogously by substituting D0 and G1 by
G0, and d0 and d1 by idG0 .

Induction step. Consider the transformation t : G0
n
⇒ Gn

pn,mn
=⇒ Gn+1

with a derived span der(t) = (G0
d0←− Dn+1

dn+1
−→ Gn+1), the following exten-

sion diagram, and the initial pushout (1) over k0 : G0 → G′
0. There is then

a transformation t′ : G0
n
⇒ Gn with der(t′) = (G0

d′
0← Dn

dn→ Gn) such that
(P ) is the pullback obtained from the construction of the derived span, and
we have the result that d′0 ◦ d′1 = d0 and gn ◦ d′2 = dn+1:

B

C

G0

G′
0

Dn

Dn+1

Gn D Gn+1

G′
n D′ G′

n+1

...

...

(P )

(1)

b0

c0

k0

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

kn h

f ′
n

kn+1

g′
n

By the induction assumption, k0 is consistent with respect to t′, with a
morphism b′ : B → Dn such that d′0◦b′ = b0, and there exists a transformation
G′

0 ⇒ G′
n via der(t′) with initial pushouts (9) over hn ∈ M′ and (10) over

kn ∈ M′:

B

C

G0

G′
0

Dn

D′
n

Dn+1

Gn D Gn+1

G′
n D′ G′

n+1

(P )

(1)

b0

c0

k0

d′
0

d′
1

dn

d′
2

fn gn

hn

b

b′′

dn+1
d0

b′

kn h

f ′
n

kn+1

g′
n
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B

C

Dn

D′
n

(9)

b′

hn

B

C

Gn

G′
n

(10)

dn◦b′

kn

We then have the following:

1. The initiality of (10) implies a morphism b′′ : B → D with fn◦b′′ = dn◦b′.
Since (P ) is a pullback, there is an induced morphism b : B → Dn+1 with
d′2 ◦ b = b′′ and d′1 ◦ b = b′. We then have the result that d′0 ◦ d′1 ◦ b =
d′0 ◦ b′ = b0. Thus k0 is consistent with respect to t.

2. Since k0 is consistent with respect to t we can easily construct the trans-
formation G′

0 ⇒ G′
n+1 via der(t). First we construct the pushout (13)

and obtain the induced morphism h : D′
n+1 → G′

0. By pushout decom-
position, (11) is also a pushout. Lemma 6.5, with the initial pushout
(10) over kn ∈ M′, implies that there is an initial pushout (14). Since
gn ◦ b′′ = gn ◦ d′2 ◦ b = dn+1 ◦ b (see item 1), we obtain from the
pushout (13), in comparison with the object G′

n+1, a unique morphism
h′ : D′

n+1 → G′
n+1, with h′ ◦ c = c′ and h′ ◦ hn+1 = kn+1 ◦ dn+1. By

pushout decomposition, it follows that (12) is a pushout.

B

C

Dn+1

D′
n+1

(13)

c

b

hn+1

B

C

G0

G′
0

Dn+1

D′
n+1

Gn+1

G′
n+1

(1) (11) (12)

b0

k0

d0 dn+1

b

c

hn+1 kn+1

h h′

B

C

Gn+1

G′
n+1

(14)

c′

gn◦b′′

kn+1

3. Lemma 6.5 states that (13) is an initial pushout over hn+1 and (14) is an
initial pushout over kn+1 with gn ◦ d′2 ◦ b = gn ◦ b′′ (as shown in items 1
and 2).


�

Example 6.17 (Extension Theorem in ExAHS). For the extension di-

agram in Example 6.8 with the derived span der(t) = (S
f◦k1
←− K

g′◦k2
−→ H)

constructed in Example 6.11, we have shown in Example 6.13 that an initial
pushout over k exists and that k is consistent with respect to t. Applying
Theorem 6.16, we can conclude further that:

• There is a transformation S′ ⇒ H ′ via der(t) and k, with d and k′ being
injective:
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f◦k1 g′
◦k2

k d k′

S K H

S′ H ′

• There are initial pushouts over d and k′:

d

K

k′

H

H ′


�

In the following, we present a restriction construction which is in some
sense inverse to the embedding construction in the Embedding Theorem (The-
orem 6.14). The Restriction Theorem, however, is formulated only for direct
transformations, in contrast to Theorem 6.14, which is formulated for general
transformations. In [Ehr79], it was shown for the graph case that there is a
corresponding theorem for the restriction of general graph transformations;
however, this requires a consistency condition similar to Definition 6.12. It is
most likely that such a general Restriction Theorem can also be formulated for
adhesive HLR systems. However, in the following we need only the Restriction
Theorem for direct transformations.

Theorem 6.18 (Restriction Theorem). Given a direct transformation

G′ p,m′

=⇒ H ′, a morphism s : G → G′ ∈ M, and a match m : L → G such

that s ◦ m = m′, then there is a direct transformation G
p,m
⇒ H leading to the

following extension diagram:
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L K R

G D H

G′ D′ H ′

(1)

(2) (3)

(4)

l r

f g

f ′ g′

m k n

s d h

m′ k′ n′

Remark 6.19. In fact, it is sufficient to require s ∈ M′ for a suitable mor-
phism class M′, where the M–M′ pushout–pullback decomposition property
holds (see Definition 5.27).

Proof. First we construct the pullback (1) over s and f ′ and obtain the in-
duced morphism k from (1) in comparison with m◦ l and k′. From the PO–PB
decomposition, both (1) and (2) are pushouts using l, s ∈ M. Now we con-
struct the pushout (3) over k and r and obtain the induced morphism h; by
pushout decomposition, (4) is also a pushout. 
�

6.3 Critical Pairs

We now present the concept of critical pairs, which leads in the next section
to the Local Confluence Theorem. The ideas behind this have already been
given in Section 3.4 of Part I.

Throughout this section, let M′ be a morphism class closed under pushouts
and pullbacks along M-morphisms. This means that, given (1) with m, n ∈
M, we have the results that:

• if (1) is a pushout and f ∈ M′, then g ∈ M′ also and
• if (1) is a pullback and g ∈ M′, then f ∈ M′ also:

A B

DC

(1)

n

g

m

f

For the completeness of critical pairs considered in Lemma 6.22 and the
Local Confluence Theorem given in Theorem 6.28, we need in addition the
M–M′ pushout–pullback decomposition property (see Definition 5.27). In the
(typed) graph case we take M′ = M as the class of all injective (typed) graph
morphisms, but in Part III, for typed attributed graphs, we shall consider
different morphism classes M and M′.

On the basis of the E ′–M′ pair factorization in Definition 5.25, we can
define a critical pair as a pair of parallel dependent direct transformations,
where both matches are a pair in E ′.
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Definition 6.20 (critical pair). Given an E ′–M′ pair factorization, a criti-
cal pair is a pair of parallel dependent direct transformations

P1
p1,o1
⇐= K

p2,o2
=⇒ P2 such that (o1, o2) ∈ E ′ for the corresponding matches

o1 and o2.

Example 6.21 (critical pairs in ExAHS). Consider the adhesive HLR sys-
tem ExAHS introduced in Example 5.5. We use an E ′–M′ pair factorization,
where there are pairs of jointly epimorphic morphisms in E ′, and M′ is the
class of all monomorphisms. We then have the following five critical pairs (up
to isomorphism).

The first critical pair consists of the productions addEdge and
deleteV ertex, where deleteV ertex deletes the souce node of the edge inserted
by addEdge. Therefore these transformations are parallel dependent. The
choice of the matches and their codomain object makes sure that they are
jointly surjective:

∅ ∅l2r2 l3 r3

(1) (3) (2)(1) (3) (2) (1) (3) (2)

(1) (2)(1) (2) (1) (2)

(2) (2)

(3)

R2 K2 L2 L3 K3 R3

The second critical pair has the same productions addEdge and
deleteV ertex, but deleteV ertex deletes the target node of the edge inserted
by addEdge:

∅ ∅l2r2 l3 r3

(1) (2) (3)(1) (2) (3) (1) (2) (3)

(1) (2)(1) (2) (1) (2)

(1) (1)

(3)

R2 K2 L2 L3 K3 R3

The third critical pair contains the production deleteV ertex twice: the
same vertex is deleted by both transformations:

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

l3r3 l3 r3

R3 K3 L3 L3 K3 R3

The fourth critical pair contains the production del1of2edges twice. The
same edge is deleted by both transformations:
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R4 K4 L4 L4 K4 R4

The last critical pair consists also of the production del1of2edges twice.
In this case, different edges are deleted by the transformations. However, to
apply del1of2edges, both edges are necessary:

R4 K4 L4 L4 K4 R4


�

The following lemma shows that every pair of parallel dependent direct
transformations is an extension of a critical pair. It generalizes Lemma 3.33
from graphs to high-level structures.

Lemma 6.22 (completeness of critical pairs). Consider an adhesive HLR
system with an E ′–M′ pair factorization, where the M–M′ pushout–pullback
decomposition property holds (see Definition 5.27). The critical pairs are then
complete. This means that for each pair of parallel dependent direct transfor-

mations H1
p1,m1
⇐= G

p2,m2
=⇒ H2, there is a critical pair P1

p1,o1
⇐= K

p2,o2
=⇒ P2 with

extension diagrams (1) and (2) and m ∈ M′:

P1

H1

K

G

P2

H2

(1) (2)m

Proof. From the E ′–M′ pair factorization, for m1 and m2 there exists an
object K and morphisms m : K → G ∈ M′, o1 : L1 → K, and o2 : L2 → K,
with (o1, o2) ∈ E ′ such that m1 = m ◦ o1 and m2 = m ◦ o2:
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R1

H1

K1

D1

L1

K

G

L2 K2

D2

R2

H2

r1 r2l1 l2

o1 o2

m

f1 g1 g2 f2

m1 m2
n1 k1 n2k2

We can construct the required extension diagram. First we construct the
pullback (1) over g1 and m and derive the induced morphism t1. By apply-
ing the M–M′ pushout–pullback decomposition property, we find that both
squares (1) and (2) are pushouts, because l1 ∈ M and m ∈ M′:

R1

H1

K1

N1

D1

L1

K

G

L2 K2

D2

R2

H2

(1)

(2)

r1 r2l1 l2

o1 o2

m

f1 g1 g2 f2

t1

v1

s1

m1 m2
n1 k1 n2k2

We then construct the pushout (3) over r1 and t1 and derive the induced
morphism z1. By pushout decomposition, the square (4) is a pushout. The
same construction is applied to the second transformation. This results in
the following extension diagrams, where the lower part corresponds to the
required extension diagrams (1) and (2) with m ∈ M′:

R1

P1

H1

K1

N1

D1

L1

K

G

L2 K2

N2

D2

R2

P2

H2

(4)

(3)

r1 r2l1 l2

o1 o2

m

f1 g1 g2 f2

t1

v1

s1

t2

v2

s2

w1

u1

z1

w2

u2

z2

m1 m2
n1 k1 n2k2

Now we show that P1 ⇐ K ⇒ P2 is a critical pair. We know that (o1, o2) ∈

E ′, by construction. It remains to show that the pair P1
p1,o1
⇐= K

p2,o2
=⇒ P2 is

parallel dependent. Otherwise, there are morphisms i : L1 → N2 and j : L2 →
N1 with v2◦i = o1 and v1◦j = o2. Then g2◦s2◦i = m◦v2◦i = m◦o1 = m1 and

g1 ◦ s1 ◦ j = m ◦ v1 ◦ j = m ◦ o2 = m2, which means that H1
p1,m1
⇐= G

p2,m2
=⇒ H2
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are parallel independent, which is a contradiction. Thus, P1
p1,o1
⇐= K

p2,o2
=⇒ P2

is a critical pair. 
�

Example 6.23 (completeness of critical pairs). The pair of parallel de-
pendent direct transformations G ⇐ S ⇒ G′′ in Example 5.11 leads, by the
construction in the proof, to the first critical pair from Example 6.21 and the
following extension diagrams. We have not shown the productions, but only
the actual extensions.

fg f ′′ g′′

(1) (2) (1) (2) (1) (2) (2) (2)

(1)

(2)

(1)

(2)

(1)

(2) (2) (2)

G S G′′


�

6.4 Local Confluence Theorem

We now present the Local Confluence Theorem for adhesive HLR systems.
This theorem has been considered in Section 3.4 in Part I for graph trans-
formation systems. As shown in Section 3.4 for graphs and in the following
for adhesive HLR systems, local confluence and termination imply confluence,
which is the main property of interest. Termination is discussed for the case
of graphs in Section 3.4 and analyzed in more detail for the case of typed
attributed graph transformation systems in Chapter 12 in Part III.

Definition 6.24 (confluence). A pair of transformations H1
∗
⇐ G

∗
⇒ H2 is

confluent if there are transformations H1
∗
⇒ X and H2

∗
⇒ X:

G

H1 H2

X

∗ ∗

∗ ∗

An adhesive HLR system is locally confluent if this property holds for each
pair of direct transformations. The system is confluent if this holds for all
pairs of transformations.

Lemma 6.25 (termination and local confluence imply confluence).
Every terminating and locally confluent adhesive HLR system is confluent.
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Proof. See Section C.2. 
�

It remains to show local confluence. Roughly speaking, we have to re-
quire that all critical pairs are confluent. Unfortunately, however, confluence
of critical pairs is not sufficient to show local confluence. As discussed in Sub-
section 3.4.3, we need strict confluence of critical pairs, which is defined in
the following.

Definition 6.26 (strict confluence of critical pairs). A critical pair

K
p1,o1
=⇒ P1, K

p2,o2
=⇒ P2 is called strictly confluent, if we have the following:

1. Confluence.: the critical pair is confluent, i.e. there are transformations

P1
∗
⇒ K ′, P2

∗
⇒ K ′ with derived spans der(Pi

∗
⇒ K ′) = (Pi

vi+2
← Ni+2

wi+2
→

K ′) for i = 1, 2.

2. Strictness. Let der(K
pi,oi
=⇒ Pi) = (K

vi← Ni
wi→ Pi) for i = 1, 2, and let N

be the pullback object of the pullback (1). There are then morphisms z3

and z4 such that (2), (3), and (4) commute:

K

P1 P2

K ′

(p1,o1) (p2,o2)

∗ ∗

P1

N3

N1

K ′

N

K

N4

N2

P2
(2)

(1)

(4)

(3)

w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

Example 6.27 (strict confluence in ExAHS). In our adhesive HLR sys-
tem ExAHS, all critical pairs defined in Example 6.21 are strictly confluent.
The confluence of the first and the second critical pair is established by apply-
ing no further transformation to the first graph and applying addV ertex and
addEdge to the second graph. This is shown in the following diagram for the
first critical pair, and works analogously for the second pair. The strictness
condition holds for the morphisms z3 and z4 shown:
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(2) (3)

(1)

(4)

z3 z4

(1) (2)

(1) (2)

(1) (2)

(1) (2)

(1) (2)

(2)

(2)

(2)

(2)

The third critical pair is also confluent, since both transformations result
in the empty graph. In the strictness diagram, all graphs except for K are
empty, and therefore the strictness condition is fulfilled. Similarly, for the
fourth critical pair, both transformations result in the same graph, with two
nodes and one edge between them. This is the graph for all objects in the
strictness diagram except K, which has two edges between the two nodes.

For the last critical pair, we can reverse the deletion of the edges by ap-
plying the production addEdge to both graphs. The following diagram shows
that the strictness condition holds, since all morphisms are inclusions:

(2) (3)

(1)

(4)

z3 z4


�

Now we are able to prove the following Local Confluence Theorem for
adhesive HLR systems, which generalizes Theorem 3.34 for the graph case. In
the special case of graphs, E ′ is the class of pairs of jointly surjective (typed)
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graph morphisms and M′ = M is the class of all injective (typed) graph
morphisms. In the case of typed attributed graphs considered in Part III, we
shall consider different choices for E ′, M′, and M.

Theorem 6.28 (Local Confluence Theorem and Critical Pair Lem-
ma). Given an adhesive HLR system AHS with an E ′–M′ pair factorization,
let M′ be a morphism class closed under pushouts and pullbacks along M-
morphisms, with initial pushouts over M′-morphisms and where the M–M′

pushout–pullback decomposition property is fulfilled. AHS is then locally con-
fluent if all its critical pairs are strictly confluent.

Proof. For a given pair of direct transformations H1
p1,m2
⇐ G

p2,m2
⇒ H2, we

have to show the existence of transformations t′1 : H1
∗
⇒ G′ and t′2 : H2

∗
⇒ G′.

If the given pair is parallel independent, this follows from Theorem 5.12.
If the given pair is parallel dependent, Lemma 6.22 implies the existence

of a critical pair P1
p1,o1
⇐= K

p2,o2
=⇒ P2 with the extension diagrams (5) and (6)

below, and m ∈ M′. By assumption, this critical pair is strictly confluent,
leading to transformations t1 : P1

∗
⇒ K ′, t2 : P2

∗
⇒ K ′ and the following

diagrams:

G

H1 H2

K

P1 P2

K ′

(5) (6)

∗ ∗
t1 t2

m

q1 q2

G

H1 H2

D1 D2

P1

N3

N1

K ′

N

K

N4

N2

P2
(2) (3)

(1)

(4)

(10)

(11) (12)

(13)
w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

m

q1 q2

s1 s2

g1

f1 f2

g2
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Since v1, v2 ∈ M, (1) is a pullback, and M is closed under pullbacks, we
have the result that z1, z2 ∈ M. The fact that w1, w2, v3, v4 ∈ M, (2) and (3)
are commutative, and M is closed under decomposition gives us z3, z4 ∈ M.

Now let (7) be an initial pushout over m ∈ M′, and consider the double
pushouts (10) and (11) corresponding to the extension diagram (5):

B

C

K

G

N1

D1

P1

H1

(7) (11) (10)m′

b

c

m s1 q1

v1

f1 g1

w1

b1

c1

The initiality of (7), applied to the pushout (11), leads to unique morphisms
b1, c1 ∈ M such that v1 ◦b1 = b, f1 ◦c1 = c, and (14) is a pushout. By Lemma
6.5, (14) is an initial pushout over s1 and (15) is an initial pushout over q1:

B

C

N1

D1

P1

H1

B

C

P1

H1

(14) (15)(10)m′ s1 q1

g1

w1b1

c1

m′

w1◦b1

q1

g1◦c1

Dually, we obtain morphisms b2, c2 ∈ M with v2 ◦ b2 = b from (12) and
(13). Using the pullback property of (1) with v1 ◦ b1 = b = v2 ◦ b2, we obtain
a unique b3 : B → N with z1 ◦ b3 = b1 and z2 ◦ b3 = b2. Moreover, b1, z1 ∈ M
implies b3 ∈ M by the decomposition property of M:

C

BG

H1 H2

D1 D2

P1

N3

N1

K ′

N

K

N4

N2

P2
(2) (3)

(1)

(4)

(10)

(11) (12)

(13)

(7)

w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

m

q1 q2

s1 s2

g1

f1 f2

g2

m′

b

c

b1 b2
b3

In order to show the consistency of q1 with respect to t1, with the initial
pushout (15) over q1, we have to construct b′3 : B → N3 ∈ M such that
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v3 ◦ b′3 = w1 ◦ b1. This holds for b′3 = z3 ◦ b3, since then v3 ◦ b′3 = v3 ◦ z3 ◦ b3
(2)
=

w1 ◦ z1 ◦ b3 = w1 ◦ b1. It holds that b′3 ∈ M, by the composition of M-
morphisms.

Dually, q2 is consistent with respect to t2, using b′4 = z4 ◦ b3 ∈ M and the
commutativity of (3). By Theorem 6.14, we obtain extension the diagrams (8)
and (9), where the morphism q : K ′ → G′ is the same in both cases:

G

H1 H2

K

P1 P2

K ′

G′

(5) (6)

(8) (9)∗ ∗

∗ ∗

t1 t2

t′1 t′2

m

q

q1 q2

This equality can be shown using part 3 of Theorem 6.16, where q is deter-
mined by an initial pushout of m′ : B → C and w3 ◦ b′3 : B → K ′ in the first
case and w4 ◦ b′4 : B → K ′ in the second case, and we have w3 ◦ b′3 = w4 ◦ b′4
given by the commutativity of (4). 
�

Example 6.29 (local confluence of ExAHS). In ExAHS, we have M′

= M and initial pushouts over injective graph morphisms. Therefore all pre-
conditions for the Local Confluence Theorem are fulfilled. Since all critical
pairs in ExAHS are strictly confluent, as shown in Example 6.27, ExAHS is
locally confluent. 
�




