
11

Adhesive HLR Categories for Typed

Attributed Graphs

In Chapters 8–10, we have presented the main concepts and results for typed
attributed graph transformation systems. However, we have postponed most
of the proofs, because they have been given already for adhesive HLR sys-
tems in Part II. It remains to instantiate them for typed attributed graph
transformation systems.

For this purpose, we have to show that the category AGraphsATG of
typed attributed graphs is an adhesive HLR category. In Theorem 11.3, we
show that the category AGraphsATG is isomorphic to a category of alge-
bras over a suitable signature AGSIG(ATG), which is uniquely defined by
the attributed type graph ATG. In fact, it is much easier to verify the cat-
egorical properties of adhesive HLR categories for the category of algebras
AGSIG(ATG)-Alg and to show the isomorphism between AGSIG(ATG)-
Alg and AGraphsATG than to show the categorical properties directly for
the category AGraphsATG.

In Theorem 11.11, we show that AGSIG(ATG)-Alg, and hence also
AGraphsATG, is an adhesive HLR category. In fact, we show this result for
the category AGSIG-Alg, where AGSIG is a more general kind of attributed
graph structure signatures in the sense of [LKW93, CL95, FKTV99]. This al-
lows us to obtain the results of our theory for other kinds of attributed graphs,
also. However, we shall not discuss these other instantiations in more detail.
By combining the results given in Sections 11.1 and 11.2 with those in Part
II, we are able to verify in Section 11.3 that the following basic results stated
in Chapters 9 and 10 are valid for typed attributed graph transformations:

1. The Local Church–Rosser, Parallelism, and Concurrency Theorems.
2. The Embedding and Extension Theorems.
3. The completeness of critical pairs and the Local Confluence Theorem.

An alternative way to show that AGraphsATG is an adhesive HLR cat-
egory is given at the end of Section 11.2, where AGraphs is represented as
a subcategory of a comma category and AGraphsATG as a slice category of

222 11 Adhesive HLR Categories for Typed Attributed Graphs

AGraphs. However, for showing the existence of initial pushouts, it is eas-
ier to give the corresponding construction in the more general context of the
category AGSIG-Alg. Moreover, this allows us to apply the results to the
general attributed graph structure signatures mentioned above.

11.1 Attributed Graph Structure Signatures and Typed

Attributed Graphs

Attributed graph structure signatures were introduced in [LKW93] to model
attributed graphs and the corresponding transformations. In fact, this con-
cept is general enough to model various kinds of attributed graphs, especially
attributed graphs with node attributes only, as presented in [HKT02], and
our concept with node and edge attributes introduced in Chapter 8.

In this section, we review attributed graph structure signatures and
show that, for each type graph ATG, there is a graph structure signature
AGSIG(ATG) such that the category AGraphsATG of attributed graphs
typed over ATG and the category AGSIG(ATG)-Alg of AGSIG(ATG)-
algebras are isomorphic.

We start with the definition of attributed graph structure signatures.

Definition 11.1 (attributed graph structure signature). A graph struc-
ture signature GSIG = (SG, OPG) is an algebraic signature with unary oper-
ations op : s → s′ in OPG only.

An attributed graph structure signature AGSIG = (GSIG, DSIG) con-
sists of a graph structure signature GSIG and a data signature DSIG =
(SD, OPD) with attribute value sorts S′

D ⊆ SD such that S′
D = SD ∩ SG and

OPD ∩ OPG = ∅.

AGSIG is called well structured if, for each op : s → s′ in OPG, we have
s /∈ SD.

The next steps are to introduce the category AGSIG-Alg of attributed
graph structure signatures and the special case AGSIG(ATG)-Alg, which
allows us to construct an isomorphism with the category AGraphsATG. In
Example 11.4, we construct an explicit attributed graph structure signature
AGSIG(ATG) for the attributed type graph in Example 8.9.

Definition 11.2 (category AGSIG-Alg). Given an attributed graph struc-
ture signature AGSIG = (GSIG, DSIG), the category of all AGSIG-algebras
and AGSIG-homomorphisms is denoted by AGSIG-Alg, where AGSIG-
Alg corresponds to the category Alg(Σ) (see Definition B.9) with

Σ = GSIG ∪ DSIG.

11.1 Attributed Graph Structure Signatures and Typed Attributed Graphs 223

Theorem 11.3 (isomorphism AGraphsATG
∼
= AGSIG(ATG)-Alg). For

each attributed type graph ATG, there is a well-structured attributed graph
structure signature AGSIG(ATG) such that the category AGraphsATG is
isomorphic to the category AGSIG(ATG)-Alg:
AGraphsATG

∼
= AGSIG(ATG)-Alg.

Proof. For a given attributed type graph ATG, we suppose that SD∩V TG
G = ∅

and SD∩ETG
j = ∅ for all j ∈ {G, NA, EA}. This means that data sorts cannot

be graph node types or the type of any kind of edge. Otherwise, we would
rename them accordingly.

We first construct the corresponding attributed graph structure signature
AGSIG(ATG). Then we find a functor F : AGraphsATG →AGSIG(ATG)-
Alg and an inverse functor F−1: AGSIG(ATG)-Alg → AGraphsATG that
show the isomorphism.

For an attributed type graph ATG = (TG, Z) with a final DSIG-
algebra Z, a type graph TG = (V TG

G , V TG
D , ETG

G , ETG
NA, ETG

EA , (sourceTG
j ,

targetTG
j)j∈{G,NA,EA}) and S′

D ⊆ SD, we define AGSIG(ATG) = (GSIG,

DSIG), where GSIG = (SG, OPG), SG = SV

�

∪ SE , SV = V TG
G

�

∪ V TG
D ,

SE = ETG
G

�

∪ ETG
NA

�

∪ ETG
EA , and OPG =

�

∪e∈SE
OPe, with OPe = {srce, tare}

defined by

• srce : e → v(e) for e ∈ ETG
G with v(e) = sourceTG

G (e) ∈ V TG
G ,

• tare : e → v′(e) for e ∈ ETG
G with v′(e) = targetTG

G (e) ∈ V TG
G ,

• srce, tare for e ∈ ETG
NA and e ∈ ETG

EA are defined analogously.

AGSIG(ATG) is a well-structured attributed graph structure signature,

since we have only unary operations and, from V TG
D =

�

∪s∈S′
D

Zs = S′
D,

V TG
G ∩ SD = ∅ and ETG

j ∩ SD = ∅ for all j ∈ {G, NA, EA}, we have

SD ∩ SG = SD ∩ V TG
D = S′

D and the well-structuredness follows.
The functor F : AGraphsATG → AGSIG(ATG)-Alg is defined, for

objects (AG, t : AG → ATG) with AG = (G, D), tG : G → TG and tD : D →
Z, by F (AG, t) = A, with the following AGSIG(ATG)-algebra A:

• As = t−1
G,Vi

(s) ⊆ Vi for s ∈ V TG
i ⊆ SV , i ∈ {G, D};

• Ae = t−1
G,Ej

(e) ⊆ Ej for e ∈ ETG
j ⊆ SE , j ∈ {G, NA, EA};

• As = t−1
Ds

(s) = Ds for s ∈ SD;

• srcA
e (a) = sourceG(a) for e ∈ ETG

G ⊆ SE , a ∈ t−1
G,EG

(e) = Ae ⊆ EG;

• tarA
e (a) = targetG(a) for e ∈ ETG

G , a ∈ t−1
G,EG

(e) = Ae ⊆ EG;

• analogously for srcA
e (a), tarA

e (a), with e ∈ ETG
j , a ∈ t−1

G,Ej
(e), j ∈

{NA, EA};
• opA = opD for all op ∈ OPD.

For a typed attributed graph morphism f : (AG1, t1) → (AG2, t2), we
have F (f) = h : F (AG1, t1) = A → F (AG2, t2) = B; h is an algebra homo-
morphism defined by

224 11 Adhesive HLR Categories for Typed Attributed Graphs

• hs(a) = fG,Vi
(a) for s ∈ V TG

i ⊆ SV , a ∈ As, i ∈ {G, D},
• he(a) = fG,Ej

(a) for e ∈ ETG
j ⊂ SE , a ∈ Ae, j ∈ {G, NA, EA},

• hs = fD,s for s ∈ SD.

In the other direction, the functor F−1 is defined for an AGSIG(ATG)-
algebra A by F−1(A) = (AG = (G, D), t : AG → ATG), with

• Vi =
�

∪s∈V T G
i

As, Ej =
�

∪e∈ET G
j

Ae for i ∈ {G, D}, j ∈ {G, NA, EA};

• sourcej(a) = srcA
e (a) for e ∈ ETG

j , a ∈ Ae, j ∈ {G, NA, EA};

• targetj(a) = tarA
e (a) for e ∈ ETG

j , a ∈ Ae, j ∈ {G, NA, EA};

• tG,Vi
(a) = s for a ∈ As, s ∈ V TG

i , i ∈ {G, D};
• tG,Ej

(a) = e for a ∈ Ae, e ∈ ETG
j , j ∈ {G, NA, EA};

• D = A|DSIG;
• tD,s(a) = s for a ∈ As, s ∈ SD.

For a homomorphism h : A → B, we define F−1(h) = f : F−1(A) →
F−1(B) by

• fG,Vi
(a) = hs(a) for a ∈ As, s ∈ V TG

i , i ∈ {G, D};
• fG,Ej

(a) = he(a) for a ∈ Ae, e ∈ ETG
j , j ∈ {G, NA, EA};

• fD = h|DSIG.

The constructed morphisms F and F−1 are well defined; they are actually
functors and isomorphisms (as proven in Section C.3).
�

Example 11.4 (corresponding AGSIG(ATG) and algebra). We present
the corresponding signature AGSIG(ATG) for the the type graph ATG de-
fined in Example 8.9 and the resulting AGSIG(ATG)-algebra for the typed
attributed graph (AG, t).

AGSIG(ATG) = (GSIG, DSIG) for type graph ATG = (TG, Z) has the
same data signature DSIG. GSIG has the following structure:

GSIG : sorts : Method, Parameter, Class,
string, nat, parameterDirectionKind,
param, type, noOfPars, mname, pname, cname,
kind, order

opns : srcparam : param → Method
tarparam : param → Parameter
srctype : type → Parameter
tartype : type → Class
...
srcorder : order → param
tarorder : order → nat

All node and edge types in the type graph correspond to a sort, and for all
edge types we define operation symbols that describe the types of the source
and target.

11.2 Definition of Concrete Adhesive HLR Categories 225

The corresponding AGSIG(ATG)-algebra A for AG = (G, D) is defined
as follows:

A : AMethod = {m}
AParameter = {par1, par2, par3}
AClass = {c}
Anat = Dnat

...
Aparam = {mpar1, mpar2, mpar3}
Atype = {par1c, par2c, par3c}

...
Aorder = {order1, order2, order3}
As = Ds for all s ∈ SD

srcA
param : Aparam → AMethod : mpari 	→ m

tarA
param : Aparam → AParameter : mpari 	→ pari

srcA
type : Atype → AParameter : paric 	→ pari

tarA
type : Atype → AClass : paric 	→ c

...
srcA

order : Aorder → Aparam : orderi 	→ mpari

tarA
order : Aorder → Anat : orderi 	→ i

opA = opD for all op ∈ OPD

�

11.2 Definition of Concrete Adhesive HLR Categories

In this section, we consider a fixed attributed graph structure signature
AGSIG = (GSIG, DSIG). We prove that the category AGSIG-Alg over
AGSIG with a distinguished class M (defined in the following) fulfills all
properties of an adhesive HLR category. By Theorem 11.3, AGraphsATG is
also an adhesive HLR category.

Finally, we sketch an alternative way to show that AGraphsATG is an
adhesive HLR category using comma categories.

Definition 11.5 (class M in AGSIG-Alg and AGraphsATG). The class
M in AGSIG-Alg is the class of all algebra homomorphisms f = (fGSIG,
fDSIG), where fGSIG is injective and fDSIG is an isomorphism. The notation
f = (fGSIG, fDSIG) means that fGSIG and fDSIG are the restrictions of
f to GSIG and DSIG, respectively, where the two restrictions coincide on
S′

D = SD ∩ SG.
In AGraphsATG, the morphism class M is the class of all morphisms

f = (fG, fD), where fG is injective and fD is an isomorphism on the data
part (see Definition 8.10).

226 11 Adhesive HLR Categories for Typed Attributed Graphs

Remark 11.6. We use the same notation for the morphism classes M in
AGraphsATG and in AGSIG(ATG)-Alg because they correspond to each
other, owing to the construction of the functors F and F−1 in the proof of
Theorem 11.3.

We prove step by step the properties necessary for an adhesive HLR cat-
egory. First we check the closure properties of M.

Lemma 11.7 (properties of M). The class M in AGSIG-Alg as defined
in Definition 11.5 is closed under isomorphisms, composition, and decompo-
sition.

Proof. An algebra homomorphism is injective or isomorphic if all its compo-
nents are injective or isomorphic, respectively, in Sets. In Sets, the class of
injective morphisms and the class of isomorphic morphisms are closed under
isomorphism, composition and decomposition. Therefore this property holds
for the class M of injective homorphisms with an isomorphic data part.
�

For the second property, we need to the prove existence and closedness
of pushouts and pullbacks along M-morphisms. This is done with the fol-
lowing lemmas, where we show that pushouts along M-morphisms and pull-
backs can be constructed componentwise in Sets. Note that general pushouts
in AGSIG-Alg exist, but in general cannot be constructed componentwise,
which is essential for the proof of the VK property in Lemma 11.10. On the
other hand, general pullbacks in AGSIG-Alg can be constructed componen-
twise.

Lemma 11.8 (POs in AGSIG-Alg along M-morphisms). For given
morphisms m : A → B ∈ M and f : A → C, there is a pushout (1) in
AGSIG-Alg with n ∈ M:

A B

C D

(1)

m

f

n

g

Moreover, given that (1) is commutative with m ∈ M, then (1) is a pushout
in AGSIG-Alg iff (1) is a componentwise pushout in Sets. Then m ∈ M
implies n ∈ M.

Proof. Part 1. If (1) is commutative, m ∈ M, and (1)s are componentwise
pushouts in Sets, we can show that (1) is a pushout in AGSIG-Alg. Consider
an object X with morphisms k : B → X and l : C → X such that k◦m = l◦f :

11.2 Definition of Concrete Adhesive HLR Categories 227

A B

C D

X

(1)

m

f

n

g

l

k

x

Then, for each s ∈ SG ∪ SD, there exists a unique xs : Ds → Xs such that
xs ◦ gs = ks and xs ◦ ns = ls.

We show that x = (xs)s∈SG∪SD
is a homomorphism as follows:

1. op ∈ OPD. For s ∈ SD, ms being an isomorphism implies that ns is an
isomorphism. This gives the compatibility of x with op ∈ OPD, because l
is a homomorphism.

2. op ∈ OPG. Since (1)s is a pushout, ns and gs are jointly surjective.
This means that for every d ∈ DS there is a b ∈ Bs with gs(b) = d
or a c ∈ Cs with ns(c) = d. Then, for op : s → s′ ∈ OPG it
holds that opX(xs(d)) = opX(xs(gs(b))) = opX(ks(b)) = ks′(opB(b)) =
xs′ (gs′(opB(b))) = xs′ (opD(gs(b))) = xs′(opD(d)) or opX(xs(d)) =
opX(xs(ns(c))) = opX(ls(c)) = ls′(opC(c)) = xs′ (ns′(opC(c))) =
xs′(opD(ns(c))) = xs′ (opD(d)).

x is unique, since all its components are unique, and therefore (1) is a pushout
in AGSIG-Alg.

Part 2. Now we construct a pushout object D with morphisms n and g for

given objects and morphisms C
f
← A

m
→ B, with m ∈ M. For all s ∈ SD, let

Ds = Cs, gs = fs ◦m−1
s , and ns = idCs

. For op ∈ OPD, we define opD = opC .
Since ms is an isomorphism and ns is the identity, (1)s is obviously a pushout
in Sets.

For s ∈ SG\SD, let Bs
gs
→ Ds

ns← Cs be the pushout over Cs
fs
← As

ms→ Bs

in Sets, and for op : s → s′ ∈ OPG we define

opD(d) =

⎧⎨⎩ns′ ◦ fs′(opA(a)) : ∃a ∈ As : ns(fs(a)) = d
gs′(opB(b)) : ∃b ∈ Bs\ms(As) : gs(b) = d
ns′(opC(c)) : ∃c ∈ Cs\fs(As) : ns(c) = d

We have to show that these operations are well defined. Since (1)s is a
pushout, exactly one of the cases above applies. In the second or the third case
b or c, respectively, must be unique. In the first case we have the result that ms

being injective implies that ns is injective. For a1, a2 ∈ As with ns(fs(a1)) =
ns(fs(a2)) = d, it holds that fs(a1) = fs(a2). Then ns′ ◦ fs′(opA(a1)) =
ns′(opC(fs(a1))) = ns′(opC(fs(a2))) = ns′ ◦ fs′(opA(a2)) follows.

n = (ns)s∈SG∪SD
is a homomorphism. This is clear for all op ∈ OPD .

Consider an operation op : s → s′ ∈ OPG. Then, for all c ∈ Cs, it holds that
opD(ns(c)) = ns′(opC(c)): if c ∈ Cs\fs(As), then opD(ns(c)) = ns′(opC(c)) by

228 11 Adhesive HLR Categories for Typed Attributed Graphs

definition. Otherwise, c ∈ fs(As). There then exists an a ∈ As with fs(a) = c,

and it holds that opD(ns(c)) = opD(ns(fs(a)))
Def.
= ns′(fs′(opA(a))) =

ns′(opC(fs(a))) = ns′(opC(c)). Obviously, we have n ∈ M. That g =
(gs)s∈SG∪SD

is a homomorphism follows analogously.
Since g ◦ m = n ◦ f and we have componentwise pushouts, it follows by

part 1 that (1) with the constructed D, n, and g is a pushout in AGSIG-Alg.

Part 3. Let (1) be a pushout in AGSIG-Alg with m ∈ M. By the
construction in part 2 and the uniqueness of pushouts up to isomorphism,
it follows directly that n ∈ M and that (1) is a componentwise pushout in
Sets.
�

Lemma 11.9 (PBs in AGSIG-Alg). Given g : B → D and n : C → D,
then there is a pullback (1) in AGSIG-Alg:

A B

C D

(1)

m

f

n

g

Moreover, given that (1) is commutative, then (1) is a pullback in AGSIG-
Alg iff (1) is a componentwise pullback in Sets. If n ∈ M, then m ∈ M
also.

Proof. Part 1. If (1) is commutative and (1)s are componentwise pullbacks in
Sets, we can show that (1) is a pullback in AGSIG-Alg. Consider an object
X with morphisms k : X → B and l : X → C such that n ◦ l = g ◦ k:

A B

C D

X

(1)

m

f

n

g

l

kx

Then, for each s ∈ SG ∪ SD, there exists a unique xs : Xs → As such that
ms ◦ xs = ks and fs ◦ xs = ls.

We show that x = (xs)s∈SG∪SD
is a homomorphism. For each operation

op : s1...sn → s ∈ OPG ∪ OPD and yi ∈ Xsi
, it holds that

• fs(xs(opX(y1, ..., yn))) = ls(opX(y1, ..., yn)) = opC(ls1(y1), ..., lsn
(yn)) =

opC(fs1(xs1 (y1)), ..., fsn
(xsn

(yn))) = fs(opA(xs1(y1), ..., xsn
(yn))) and

• ms(xs(opX(y1, ..., yn))) = ks(opX(y1, ..., yn)) = opB(ks1(y1), ..., ksn
(yn)) =

opB(ms1(xs1(y1)), ..., msn
(xsn

(yn))) = ms(opA(xs1(y1), ..., xsn
(yn))).

11.2 Definition of Concrete Adhesive HLR Categories 229

Since (1)s is a pullback in Sets, ms and fs are jointly injective (see Fact
2.23). This means that if ms(a1) = ms(a2) and fs(a1) = fs(a2), it follows
that a1 = a2. Therefore xs(opX(y1, ..., yn)) = opA(xs1(y1), ..., xsn

(yn)), and x
is a homomorphism.

x is unique, since all its components are unique. Therefore (1) is a pullback
in AGSIG-Alg.

Part 2. Now we construct a pullback object A with morphisms f and m

for given objects and morphisms C
n
→ D

g
← B.

For s ∈ SG ∪ SD, let Bs
ms← As

fs
→ Cs be the pullback over Cs

ns→ Ds
gs
← Bs

in Sets. For op : s1...sn → s ∈ OPG ∪ OPD , we define opA(a1, ..., an) =
a, with opB(ms1(a1), ..., msn

(an)) = ms(a) and opC(fs1(a1), ..., fsn
(an)) =

fs(a). This a exists and is unique, since (1)s is a pullback in Sets.
f = (fs)s∈SG∪SD

and m = (ms)s∈SG∪SD
are homomorphisms by construc-

tion. Since g ◦ m = n ◦ f and we have componentwise pullbacks, it follows by
part 1 that (1), with the constructed object A and morphisms f and m is a
pullback in AGSIG-Alg.

Part 3. Let (1) be a pullback in AGSIG-Alg. By the construction in
part 2 and the uniqueness of pullbacks up to isomorphism, it follows directly
that (1) is a componentwise pullback in Sets.

Part 4. If n ∈ M, we have the result that ns is injective for all s ∈ SG,
and it is an isomorphism for s ∈ SD. Since pullbacks in Sets are closed under
monomorphisms and isomorphisms, it follows that ms is injective for s ∈ SG

and is an isomorphism for s ∈ SD, which means that m ∈ M.
�

Lemma 11.10 (VK property of POs along M-morphisms). A pushout
in AGSIG-Alg along an M-morphism is a VK square.

Proof. Consider the pushout (1) below with m ∈ M, and the commutative
cube (2), where (1) is in the bottom and the back faces are pullbacks.

Part 1. If the front faces are pullbacks, then the top is a pushout.
Let the front faces be pullbacks. By applying Lemmas 11.8 and 11.9, we can

decompose the cube for every component s ∈ SG ∪ SD such that the bottom
is a pushout with ms ∈ M, and the front and back faces are pullbacks in
Sets. Then (1)s is a VK square in Sets. From the VK square property, we
obtain the top as a componentwise pushout. The fact that m ∈ M and the
back right square is a pullback implies that m′ ∈ M, owing to Lemma 11.9.
By Lemma 11.8, the top of cube (2) is a pushout in AGSIG-Alg.

230 11 Adhesive HLR Categories for Typed Attributed Graphs

A′

B′

A

B

C′

D′

C

D

(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

(1)

m

f

n

g

Part 2. If the top is a pushout, then the front faces are pullbacks.
Let the top be a pushout. The fact that m ∈ M and the back right is a

pullback implies, from Lemma 11.9, that m′ ∈ M. By applying Lemmas 11.8
and 11.9, we can decompose the cube for every component s ∈ SG ∪ SD such
that the bottom and the top are pushouts, ms ∈ M and the back faces are
pullbacks in Sets. Then (1)s is a VK square in Sets. From the VK square
property, we obtain the result that the front faces are componentwise pull-
backs. By Lemma 11.9, the front faces of cube (2) are pullbacks in AGSIG-
Alg.
�

Theorem 11.11 (AGSIG-Alg and AGraphsATG are adhesive HLR
categories). The categories (AGSIG-Alg, M) and (AGraphsATG, M)
with morphism classes M as defined in Definition 11.5 are adhesive HLR
categories.

Proof. In AGSIG-Alg, M is a class of monomorphisms since monomor-
phisms in AGSIG-Alg are componentwise monomorphisms in Sets, which
means that they are componentwise injective (and isomorphisms are both in-
jective and surjective). The closure properties of M are explicitly proven in
Lemma 11.7.

The existence and closedness of pushouts and pullbacks along M-morph-
isms follow from Lemmas 11.8 and 11.9.

In Lemma 11.10, it is shown that pushouts along M-morphisms are VK
squares.

Therefore (AGSIG-Alg, M) is an adhesive HLR category.
For each attributed type graph ATG there is by Theorem 11.3, a corre-

sponding graph structure signature AGSIG(ATG) such that AGraphsATG

is isomorphic to AGSIG(ATG)-Alg. The morphism classes M in
AGraphsATG and AGSIG(ATG)-Alg are isomorphic. Therefore
(AGraphsATG, M) is also an adhesive HLR category.
�

Finally, let us sketch an alternative way to show that (AGraphs, M)
and (AGraphsATG, M) are adhesive HLR categories. First we use a comma
category construction to show this for AGraphs, and then we use a slice
category construction for AGraphsATG.

Fact 11.12 (comma category construction for AGraphs). The category
AGraphs is isomorphic to a subcategory ComCat(V1,V2; Id) of the comma

11.2 Definition of Concrete Adhesive HLR Categories 231

category ComCat(V1,V2; I) defined below, where I = {1}, which implies that
(AGraphs, M) with M as defined in Definition 8.10 is an adhesive HLR
category.

Construction. Let V1 and V2 be the forgetful functors defined by

• V1 : E-Graphs → Sets with V1(G) = V G
D and V1(fG) = fG,VD

;

• V2 : DSIG-Alg → Sets with V2(D) =
�

∪s∈S′
D

Ds and V2(fD) =
�

∪s∈S′
D

fDs
.

ComCat(V1,V2; Id) is the subcategory of ComCat(V1,V2; I) where I =
{1} and the objects (G, D, op : V1(G) → V2(D)) satisfy V1(G) = V2(D) and
op = id.
�

Proof. For attributed graphs AG = (G, D), we have, by Definition 8.10,
�

∪s∈S′
D

Ds = V G
D , and for morphisms f = (fG, fD) : AG1 → AG2, we have

commutativity of (1) for all s ∈ S′
D, which is equivalent to commutativity of

(2):

D1
s D2

s

V 1
D V 2

D

(1)

fDs

fG,VD

�

∪s∈S′
D

D1
s

�

∪s∈S′
D

D2
s

V 1
D V 2

D

(2)

�

∪fDs

id

fG,VD

id

Using V1(G) = V2(D), we have V i
D =

�

∪s∈S′
D

Di
s for i = 1, 2, and

(2) expresses exactly the compatibility of the morphisms fG and fD in

ComCat(V1,V2; ID), because V1(fG) = fG,VD
and V2(fD) =

�

∪s∈S′
D

fD1 .
This implies that
AGraphs ∼= ComCat(V1,V2; ID).

Let M1 be the class of injective E-graph morphisms and M2 the class
of DSIG-isomorphisms. Then (E-Graphs, M1) is a functor category over
(Sets, M1) and hence an adhesive HLR category by Theorem 4.15, item
3. Moreover, each category (C, Miso) with the class Miso of all isomor-
phisms is an adhesive HLR category; hence, so is (DSIG-Alg, M2). This
implies, by Theorem 4.15 item 4, that ComCat(V1,V2; I) with I = {1} and
M = (M1×M2)∩MorComCat(V1,V2;I) is an adhesive HLR category, provided
that V1 preserves pushouts along M1-morphisms and V2 preserves pullbacks.
But pushouts in E-graphs are constructed componentwise in Sets; hence V1

preserves pushouts. Also, pullbacks in DSIG-Alg are constructed componen-

twise, and the disjoint union functor
�

∪s∈S′
D

: SetsS′
D → Sets preserves pull-

backs; therefore V2 preserves pullbacks. This implies that ComCat(V1,V2; I)
with I = {1} and M as above, which corresponds to M in AGraphs, is
an adhesive HLR category. Finally, it can be shown that a special choice of
pushouts and pullbacks in E-graphs and DSIG-Alg leads also to pushouts
and pullbacks in the subcategory ComCat(V1,V2; ID), which allows us to

232 11 Adhesive HLR Categories for Typed Attributed Graphs

conclude that (ComCat(V1,V2; ID),M) and hence also (AGraphs, M)
are adhesive HLR categories.
�

Fact 11.13 (slice category construction for AGraphsATG). The cate-
gory (AGraphsATG, M) is a slice category of (AGraphs, M) with M as
defined in Definition 8.10, and hence it is an adhesive HLR category.

Proof. This is a direct consequence of Theorem 4.15, item 2, and Fact 11.12.

�

11.3 Verification of the Main Results for Typed AGT

Systems

In this section, we give proofs for the results in Chapters 9 and 10 based on
the corresponding results for adhesive HLR categories and systems in Part II.
In Section 11.2, we have shown that the categories (AGSIG-Alg, M) (see
Definition 11.2) and (AGraphsATG,M) are adhesive HLR categories with a
morphism class M as defined in Definition 11.5.

This is already sufficient to prove the Local Church–Rosser and Embedding
Theorems. For the Parallelism Theorem, we need binary coproducts compat-
ible with M in addition. For the construction of the boundary and context
and the Extension Theorem, we also use initial pushouts. Finally, we need an
E ′–M′ pair factorization for the Concurrency Theorem, the completeness of
critical pairs, and the Local Confluence Theorem. We show all these proper-
ties for the category AGSIG-Alg, where in some cases we need to require
that AGSIG is well structured. By Theorem 11.3, the results are also true for
the category AGraphsATG.

Theorem 11.14 (main results for typed AGT systems). Given a typed
attributed graph transformation system GTS = (DSIG, ATG, P), we have the
following results:

1. Local Church–Rosser Theorem (Theorem 9.14);
2. Parallelism Theorem (Theorem 9.18);
3. Concurrency Theorem (Theorem 9.26);
4. E-related transformations (Fact 9.27);
5. Embedding Theorem (Theorem 10.10);
6. Extension Theorem (Theorem 10.11);
7. completeness of critical pairs (Theorem 10.14);
8. Local Confluence Theorem (Theorem 10.18).

Proof.

1. This follows from Theorems 5.12 and 11.11.
2. This follows from Theorems 5.18 and 11.11 and Lemma 11.15 below.
3. This follows from Theorems 5.23 and 11.11.

11.3 Verification of the Main Results for Typed AGT Systems 233

4. This follows from Fact 5.29, Theorem 11.11, and Lemma 11.16 below.
5. This follows from Theorems 6.14 and 11.11.
6. This follows from Theorems 6.16 and 11.11 and Lemma 11.17 below.
7. This follows from Lemma 6.22 and Theorem 11.11.
8. This follows from Theorems 6.28 and 11.11 and Lemma 11.17.

�

It remains to state and prove all the lemmas which are needed in the proof
of Theorem 11.14 above.

Lemma 11.15 (binary coproducts compatible with M). Given a well-
structured attributed graph structure signature AGSIG, then the categories
AGSIG-Alg and AGraphsATG have binary coproducts compatible with M.
This means that f , g ∈ M implies f + g ∈ M.

Proof. By Theorem 11.3, it suffices to show the property for AGSIG-Alg.
Given algebras A and B in (AGSIG-Alg, M) with a well-structured at-
tributed graph structure signature AGSIG, for all sorts s ∈ SG\SD we con-
struct the componentwise coproduct (A + B)s = As + Bs with coproduct
injections ιA,s and ιB,s in Sets. For the data part, we construct the algebra
coproduct (A + B)D = A|DSIG + B|DSIG with coproduct injections ιA,D and
ιB,D.

For the coproduct A + B, we combine these components into the co-
product object A + B = (((A + B)s)s∈SG\SD

, (A + B)D) with morphisms
ιi = ((ιi,s)s∈SG\SD

, ιi,D) for i = A, B. For op : s → s′ ∈ OPG the operation
opA+B is defined by

opA+B : (A + B)s → (A + B)s′ : x 	→{
ιA,s′(opA(y)) : ∃y ∈ As : ιA,s(y) = x
ιB,s′(opB(y)) : ∃y ∈ Bs : ιB,s(y) = x

.

This is well defined, since AGSIG is well structured and therefore it holds

that s ∈ SG\SD and (A + B)s = As

�

∪ Bs. If s′ ∈ SD, we know that As′

�

∪

Bs′ ⊆ (A+B)D,s′ ; otherwise, s′ ∈ SG\SD and we have (A+B)s′ = As′

�

∪ Bs′ .
We have to show that the constructed object A+B is indeed a coproduct.

Consider morphisms f : A → X and g : B → X as in the following diagram.
There then has to be a unique morphism [f, g] : A + B → X such that
[f, g] ◦ ιA = f and [f, g] ◦ ιB = g:

A A + B B

X

f g

ιA ιB

[f,g]

234 11 Adhesive HLR Categories for Typed Attributed Graphs

Since (A+B)D is the coproduct for the data part, there is a morphism [f, g]D :
(A+B)D → X |DSIG with [f, g]D ◦ιA,D = f |DSIG and [f, g]D ◦ιB,D = g|DSIG.
Similarly, we have for each s ∈ SG\SD a morphism [f, g]s : (A + B)s → Xs

such that [f, g]s ◦ ιA,s = fs and [f, g]s ◦ ιB,s = gs.
For the data operations, it is clear that [f, g]D is a homomorphism.

Consider an operation op : s → s′ ∈ OPG. Since s ∈ SG\SD, it holds

that (A + B)s = As

�

∪ Bs. For an x ∈ (A + B)s, suppose without loss
of generality that there is a y ∈ As with ιA,s(y) = x. We then have
the result that [f, g]s′(opA+B(x)) = [f, g]s′(ιA,s′(opA(y))) = fs′(opA(y)) =
opX(fs(y)) = opX([f, g]s(ιA,s(y))) = opX([f, g]s(x)). Therefore [f, g] =
(([f, g]s)s∈SG\SD

, [f, g]D) is a homomorphism.
The result that [f, g] ◦ ιA = f and [f, g] ◦ ιB = g follows by definition,

and [f, g] is unique, since all its components are unique. Therefore [f, g] is the
required morphism, and A + B is the coproduct of A and B in AGSIG-Alg.

It remains to show the compatibility with M. Given f : A → A′ and g :
B → B′ with f, g ∈ M, we construct the coproduct morphism f +g : A+B →
A′+B′. In Sets, binary coproducts are compatible with monomorphisms, and
therefore (f + g)s = [ιA′,s ◦ fs, ιB′,s ◦ gs] is injective for all s ∈ SG\SD.

The coproduct can be considered as a functor and hence preserves isomor-
phisms. Therefore, if f |DSIG and g|DSIG are isomorphisms, (f + g)|DSIG =
[(ιA′ ◦ f)|DSIG, (ιB′ ◦ g)|DSIG] = f |DSIG + g|DSIG is also an isomorphism.

If AGSIG is not well structured, we still have binary coproducts in
AGSIG-Alg, but they may not be compatible with M.
�

Lemma 11.16 (closure properties of M–M′ and PO–PB decomposi-
tions). Let M′ = M′

1 or M′ = M′
2 in AGraphsATG as given in Example

9.22 or consider the corresponding morphism classes in AGSIG-Alg. We
then have:

1. M′ is closed under pushouts and pullbacks along M-morphisms in
AGSIG-Alg and AGraphsATG.

2. The M–M′ pushout–pullback decomposition property holds in the cate-
gories AGSIG-Alg and AGraphsATG.

3. M′ is closed under composition and decomposition.

Proof. It suffices to prove the lemma for AGSIG-Alg with the class M′
2.

For the class M′
1 = M of all monomorphisms, the lemma follows from the

properties of adhesive HLR categories.

1. Given the pushout (1) below, with m, n ∈ M and f ∈ M′
2, Lemma 11.8

implies that (1) is a componentwise pushout in Sets. In Sets, if fs is
injective, so is gs. This means that gs is injective for all s ∈ SG\SD, and
therefore g ∈ M′

2.

11.3 Verification of the Main Results for Typed AGT Systems 235

A

C

B

D

(1)

m

f g

n

It follows analogously, by Lemma 11.9, that if (1) is a pullback with m, n ∈
M and g ∈ M′

2, then f ∈ M′
2 also.

2. Consider the following diagram, where l ∈ M, w ∈ M′
2, (1) + (2) is a

pushout, and (2) is a pullback. It follows that v, s ∈ M and r ∈ M′
2,

since M is closed under pushouts and pullbacks and M′
2 is closed under

pullbacks along M-morphisms.

A B

C D

E

F

(1) (2)

k

l s

u

r

w

v

We have to show that (1) and (2) are pushouts in AGSIG-Alg.
Using Lemmas 11.8 and 11.9, we can split up this diagram componen-

twise and obtain a pushout (1)s + (2)s and a pullback (2)s in Sets for
each s ∈ SG ∪ SD.
a) For s ∈ SD, l is an isomorphism. In Sets, a commmutative square

along an isomorphism is a pushout. Therefore (1)s is a pushout.
b) For s ∈ SG\SD, we have the fact that l, s, v, w, and r are injective.

Since Sets is an adhesive HLR category, we can conclude from The-
orem 4.26 that (1)s is a pushout in Sets.

By Lemma 11.8, (1) is a pushout in AGSIG-Alg. By pushout decompo-
sition, (2) is also a pushout.

3. By the definition of M′ = M′
2, we have the result that f : A → B ∈ M′,

and g : B → C ∈ M′ implies g◦f ∈ M′ and g◦f, g ∈ M′ implies f ∈ M′,
since injectivity is preserved componentwise.

�

Lemma 11.17 (initial POs in AGSIG-Alg). The categories (AGSIG-
Alg, M), where AGSIG and (AGraphsATG, M) are well structured, have
initial pushouts over general morphisms.

Construction. By Theorem 11.3, it suffices to show the construction and
property for (AGSIG-Alg, M). For an explicit construction in
(AGraphsATG, M), see Definition 10.5 and Fact 10.7.

Consider a well-structured AGSIG, which means that for all op : s′ → s
in OPG we have s′ /∈ SD. Given f : A → A′, the initial pushout over f is
constructed by the following diagram:

236 11 Adhesive HLR Categories for Typed Attributed Graphs

B

C

A

A′

(1)

b

g f

c

Here, the objects B, and C and the morphisms b, c, and g are defined as
follows:

• B = ∩{B′ ⊆ A | B′
DSIG = ADSIG and A∗

s ⊆ B′
s for all s ∈ SG\SD} with

A∗
s = {a ∈ As | ∃op : s′ → s ∈ OPG ∃a′ ∈ A′

s′\fs′(As′) : fs(a) = opA′(a′)}
∪ {a ∈ As | ∃a′ ∈ As, a �= a′ : fs(a) = fs(a

′)},

• Cs =

{
A′

s : s ∈ SD

A′
s\fs(As) ∪ fs(Bs) : s ∈ SG\SD

,

opC =

{
opA′ : op ∈ OPD

opA′ |Cs
: op : s → s′ ∈ OPG

,

• b : B → A, c : C → A′ are inclusions with identical data type parts and
hence b, c ∈ M. g : B → C is defined by gs = fs|Bs

for all s ∈ SG ∪ SD.

Initial pushouts are closed under double pushouts (see Lemma 6.5).

Proof. It can be shown that this construction is well defined and is indeed an
initial pushout over f (see the proof in Section C.4).
�

