
10

Embedding and Local Confluence for Typed

AGT Systems

In this chapter, we continue the theory of typed attributed graph transforma-
tion systems by describing the Embedding and Extension Theorems, critical
pairs and local confluence in Sections 10.1, 10.2, and 10.3, respectively. The
constructions have been considered for the graph case in Subsections 3.4.2
and 3.4.3 in Part I.

The notation for the main constructions and results in this chapter is
almost identical to that in Chapter 6. However, Chapter 6 is based on an
adhesive HLR system AHS, while the present chapter is based on a typed
attributed graph transformation system GTS.

10.1 Embedding and Extension Theorems for Typed

AGT Systems

In this section, we study the problem of under what conditions a graph trans-
formation t : G0 ⇒∗ Gn can be embedded into a larger context given by a
graph morphism k0 : G0 → G′

0. In fact, an extension of t : G0 ⇒∗ Gn to a
graph transformation t′ : G′

0 ⇒∗ G′
n is possible only if the extension morphism

k0 is consistent with the given graph transformation t : G0 ⇒∗ Gn. This will
be shown in the Embedding and Extension Theorems for typed AGT systems
below.

This problem has been discussed for the graph case in Part I and presented
in the categorical framework in Part II (see Sections 6.1 and 6.2).

First of all we introduce the notion of an extension diagram. An extension
diagram describes how a graph transformation t : G0 ⇒∗ Gn can be extended
to a transformation t′ : G′

0 ⇒ G′
n via an extension morphism k0 : G0 → G′

0.

Definition 10.1 (extension diagram for typed AGT system). An ex-
tension diagram is a diagram (1),



208 10 Embedding and Local Confluence for Typed AGT Systems

G0

G′
0

Gn

∗

G′
n

∗

k0 kn

t

t′

(1)

where k0 : G0 → G′
0 is a morphism, called an extension morphism, and

t : G0
∗
⇒ Gn and t′ : G′

0
∗
⇒ G′

n are graph transformations via the same produc-
tions (p0, ..., pn−1) and via the matches (m0, ..., mn−1) and (k0 ◦m0, ..., kn−1 ◦
mn−1), respectively, defined by the following DPO diagrams in AGraphsATG:

Li

Gi

G′
i

Ki

Di

D′
i

Ri

Gi+1

G′
i+1

pi :

(i = 0, ..., n − 1), n > 0

li ri

jimi ni

fi gi

diki

f ′
i

ki+1

g′
i

For n = 0 (see Definition 6.7) the extension diagram is given up to isomor-
phism by

G0

G′
0

G0

G′
0

G0

G′
0

idG0
idG0

k0k0

id
G′

0

k0

id′
G0

The following condition for a graph transformation t : G0
∗
⇒ Gn and

an extension morphism k0 : G0 → G′
0 means intuitively that the boundary

graph B of k0 is preserved by t. In order to formulate this property, we first
introduce the notion of a derived span der(t) = (G0 ← D → Gn) of the graph
transformation t, which connects the first and the last graph, and later the
notion of a boundary graph B for k0.

Definition 10.2 (derived span). The derived span of an identical graph

transformation t : G
id
⇒ G is defined by der(t) = (G ← G → G) with identical

morphisms.

The derived span of a direct graph transformation G
p,m
=⇒ H is the span

(G ← D → H) (see Definition 9.4).

For a graph transformation t : G0
∗
⇒ Gn ⇒ Gn+1, the derived span is the

composition via the pullback (P) in the category AGraphATG (see below) of

the derived spans der(G0
∗
⇒ Gn) = (G0

d0← D′ d1→ Gn) and der(Gn ⇒ Gn+1) =

(Gn
fn
← Dn

gn
→ Gn+1). This construction leads (uniquely up to isomorphism)

to the derived span der(t) = (G0
d0◦d2←− D

gn◦d3
−→ Gn+1).



10.1 Embedding and Extension Theorems for Typed AGT Systems 209

G0

D′

D

Gn Dn Gn+1

(P )

d0

d2

d1

d3

fn gn

In the case t : G0 ⇒∗ Gn with n = 0, we have either G0 = Gn and t : G0
id
⇒ G0

(see above), or G0
∼= G′

0 with der(t) = (G0
id
← G0

∼
→ G′

0).

Remark 10.3. According to Section 8.3, we know that pullbacks in
AGraphsATG exist and that they are constructed componentwise in Sets.
For the construction in Sets, we refer to Fact 2.23. In our construction of de-
rived spans above, the given graph morphisms d1 and fn are in M such that
the resulting graph morphisms d2 and d3 are also in M. This means that the
graph D is the intersection of D′ and Dn. Altogether, D can be considered
as the largest subgraph of G0 which is preserved by the graph transformation
t : G0 ⇒∗ Gn, leading to a derived span (G0 ← D → Gn) with subgraph
embeddings D → G0 and D → Gn.

Example 10.4 (derived span). Here, we construct the derived spans of
some of the transformations presented in Example 9.6.

The derived span of the direct transformation S
addMethod,m1

=⇒ AG1 is given
by the span of this transformation, as shown below:

∅ ∅
:Method

mname=add
noOfPars=0S AG1

For the transformation S
addMethod,m1

=⇒ AG1
addClass,m2

=⇒ AG2, the derived span
is depicted in the following, where the pullback object is the empty graph:

∅ ∅

:Method

mname=add
noOfPars=0

:Class

cname=Nat

S AG2

For the transformation AG1
addClass,m2

=⇒ AG2
addParameter,m3

=⇒ AG3 with
m3(n) = 0, m3(p) = p1, and m3(k) = in, we have the following derived
span:



210 10 Embedding and Local Confluence for Typed AGT Systems

:Method

mname=add
noOfPars=0

:Class

cname=Nat

:Method

mname=add

:Method

mname=add
noOfPars=1

:Class

cname=Nat

:Parameter

pname=p1

kind=in

:param

order=1

:type

AG2 AG3

The derived span for the complete transformation S
∗
⇒ AG3 is the span

∅ ← ∅ → AG3. 
�

In order to define consistency of the extension morphism k0 : G0 → G′
0

with respect to the graph transformation t : G0 ⇒∗ Gn, we have to define the
boundary graph B and, later, also the context graph C for k0. Intuitively, the
boundary B is the minimal interface graph that we need in order to be able
to construct a context graph C such that G′

0 can be considered as a pushout
of G0 and C via B, written G′

0 = G0 +B C. This construction is given by an
“initial pushout over k0” according to Definition 6.1, and can be constructed
explicitly in the category AGraphsATG as follows. This construction is given
by the initial pushout over k0 in AGraphsATG as defined in Fact 10.7.

The main idea of the construction is similar to that of initial pushouts in
the graph case (see Section 6.2).

Definition 10.5 (boundary and context for typed attributed graph
morphisms).

1. Given an attributed graph morphism f : G → H, the boundary–context
diagram (1) over f in AGraphs is constructed as follows, where B and
C are called the boundary graph and the context graph, respectively, of f ,
and b, c ∈ M:

B G

C H

g

b∈M

c∈M

f (1)

2. Given a typed attributed graph morphism f : (G, tG) → (H, tH), the
boundary–context diagram (2) over f in AGraphsATG is given by the



10.1 Embedding and Extension Theorems for Typed AGT Systems 211

boundary–context diagram (1) over f in AGraphs, where tB = tG ◦ b and
tC = tH ◦ c:

(B, tB) (G, tG)

(C, tC) (H, tH)

g

b∈M

c∈M

f (1)

Construction (boundary–context diagram (1)). In the following, we denote
an attributed graph X by

X = (V X
G , V X

D , EX
G , EX

NA, EX
EA, (sourceX

j , targetXj )j∈{G,NA,EA}, D
X),

where DX is the DSIG-algebra of X , and we denote an attributed graph
morphism f by f = (fVG

, fVD
, fEG

, fENA
, fEEA

, fD), where fD is the DSIG-

homomorphism of f with fVD
=

�

∪s∈S′
D

fDs
.

In order to clarify the construction of the boundary graph B, let us recall
the signature of an E-graph (see Definition 8.1):

EG VG

EEA ENA

VD

sourceEA

targetEA

sourceNA

targetNA

sourceG

targetG

The boundary graph B is the intersection of suitable attributed subgraphs
B′ of G,

B = ∩{B′ ⊆ G|DG = DB′

, V G
D = V B′

D , V ∗
G ⊆ V B′

G , E∗
G ⊆ EB′

G ,

E∗
NA ⊆ EB′

NA, E∗
EA ⊆ EB′

EA},

where the sets V ∗
G, E∗

G, E∗
NA, and E∗

EA built up by the dangling and identifi-
cation points (see Definition 9.8) are defined as follows:

• V ∗
G = {a ∈ V G

G | ∃a′ ∈ EH
G \ fEG

(EG
G) with fEG

(a) = sourceH
G (a′) or

fEG
(a) = targetHG (a′)}

∪ {a ∈ V G
G | ∃a′ ∈ EH

NA \ fENA
(EG

NA) with fENA
(a) = sourceH

NA(a′)}
∪ {a ∈ V G

G | ∃a′ ∈ V G
G with a �= a′ and fVG

(a) = fVG
(a′)};

• E∗
G = {a ∈ EG

G | ∃a′ ∈ EH
EA \ fEEA

(EG
EA) with fEEA

(a) = sourceH
EA(a′)}

∪ {a ∈ EG
G | ∃a′ ∈ EG

G with a �= a′ and fEG
(a) = fEG

(a′)};
• E∗

NA = {a ∈ EG
NA | ∃a′ ∈ EG

NA with a �= a′ and fENA
(a) = fENA

(a′)};
• E∗

EA = {a ∈ EG
EA | ∃a′ ∈ EG

EA with a �= a′ and fEEA
(a) = fEEA

(a′)}.

The context graph C is the attributed subgraph of H defined by



212 10 Embedding and Local Confluence for Typed AGT Systems

• V C
G = (V H

G \ fVG
(V G

G )) ∪ fVG
(V B

G );
• V C

D = V H
D ;

• EC
j = (EH

j \ fEj
(EG

j )) ∪ fEj
(EB

j ), j ∈ {G, NA, EA};

• DC = DH .

The attributed graph morphisms b, c ∈ M, and g are given by

• b : B → G, inclusion with bVD
= id and bD = id;

• c : C → H , inclusion with cVD
= id and cD = id;

• g : B → C, by gj(x) = fj ◦ bj(x), j ∈ {VG, VD, EG, ENA, EEA, D}.

�

Remark 10.6. Note that B∗ = (V ∗
G, V G

D , E∗
G, E∗

NA, E∗
EA, (s∗j , t

∗
j )j∈{G,NA,EA},

DG) with restrictions s∗j (t
∗
j ) of sG

j (tGj ), where s and t are abbreviations for
source and target, respectively, is in general not an attributed subgraph of
G, such that the subgraph B has to be constructed as the intersection of all
subgraphs B′ ⊆ G defined above. However, we have the following for B:

• V ∗
G ⊆ V B

G ⊆ V G
G ,

• V B
D = V G

D ,
• E∗

G ⊆ EB
G ⊆ EG

G ,
• E∗

NA ⊆ EB
NA ⊆ EG

NA,
• E∗

EA ⊆ EB
EA ⊆ EG

EA,
• DB = DG.

In fact, V B
G and EB

G are target domains of operations in B which are proper
extensions of V ∗

G and E∗
G, respectively, if sG

G(E∗
G) �⊆ V ∗

G, tGG(E∗
G) �⊆ V ∗

G,
sG

NA(E∗
NA) �⊆ V ∗

G and sG
EA(E∗

EA) �⊆ E∗
G, respectively. Note that tGNA(E∗

NA) ⊆
V B

D and tGEA(E∗
EA) ⊆ V B

D because V B
D = V G

D .
The above constructions are all well defined, leading to an initial pushout

over f in AGraphsATG (see Definition 6.1).

Fact 10.7 (initial pushouts in AGraphs and AGraphsATG).

1. Given an attributed graph morphism f : G → H, the boundary–context
diagram (1) over f in Definition 10.5 is well defined and is an initial
pushout over f in (AGraphs,M).

2. Given a typed attributed graph morphism f : (G, tG) → (H, tH), the
boundary–context diagram (2) over f is well-defined and is an initial
pushout over f in (AGraphsATG,M).

Proof. The construction of the boundary–context diagrams in AGraphs and
AGraphsATG is a special case of the initial-pushout construction in the cate-
gory AGSIG-Alg (see Lemma 11.17) using the isomorphism
AGSIG(ATG)-Alg ∼= AGraphsATG of categories, which will be shown in
Chapter 11. Note that an explicit proof of initial pushouts for (AGraphsATG,
M) is more difficult than the general proof for (AGSIG-Alg, M). 
�



10.1 Embedding and Extension Theorems for Typed AGT Systems 213

Example 10.8 (initial pushout). In the following diagram, the boundary–
context diagram of the match morphism m3 in Example 10.4 is depicted. We
have no identification points, but the boundary object B consists of the two
dangling points – the Method and the Class node – because in both cases a
node attribute edge is added in AG2.

1:Method

2:Class

1:Method

noOfPars=n

2:Class

m3

:Method

mname=add

:Class

cname=Nat

:Method

mname=add
noOfPars=0

:Class

cname=Nat

AG2

B

C


�

Now we are able to define the consistency of a morphism k0 with respect
to a graph transformation t. The main idea is that the boundary B of k0,
defined by the initial pushout over k0, is preserved by the transformation t.
This means that there is a suitable morphism b : B → D, where D, defined
by the derived span of t, is the largest subgraph of G0 which is preserved by
t : G0 ⇒∗ Gn.

Definition 10.9 (consistency). Given a graph transformation t : G0
∗
⇒ Gn

with a derived span der(t) = (G0
d0← D

dn→ Gn), a morphism k0 : G0 → G′
0 in

AGraphsATG with the initial PO (1) over k0 is called consistent with respect
to t if there exists a morphism b ∈ M with d0 ◦ b = b0:

B

C

G0

G′
0

D Gn

(1)

b0

k0

d0 dn

b

With the following Embedding and Extension Theorems, we can show that
consistency is both necessary and sufficient for the construction of extension



214 10 Embedding and Local Confluence for Typed AGT Systems

diagrams. These theorems correspond exactly to the corresponding Theorems
3.28 and 3.29 for the graph case and to Theorems 6.14 and 6.16 for the general
case.

Theorem 10.10 (Embedding Theorem for typed AGT systems).

Given a graph transformation t : G0
∗
⇒ Gn and a morphism k0 : G0 → G′

0

which is consistent with respect to t, then there is an extension diagram over
t and k0.

Proof. See Section 11.3. 
�

Theorem 10.11 (Extension Theorem for typed AGT systems). Given

a graph transformation t : G0
∗
⇒ Gn with a derived span der(t) = (G0

d0←

Dn
dn→ Gn) and an extension diagram (1),

B

C

G0

G′
0

Gn

∗

G′
n

∗

(2) (1)

b0

k0

t

t′

kn

with an initial pushout (2) over k0 ∈ M′ for some class M′ closed under
pushouts and pullbacks along M-morphisms and with initial pushouts over
M′-morphisms, then we have:

1. k0 is consistent with respect to t : G0
∗
⇒ Gn with the morphism b : B →

Dn.
2. There is a graph transformation G′

0 ⇒ G′
n via der(t) and k0 given by the

pushouts (3) and (4) below with h, kn ∈ M′.
3. There are initial pushouts (5) and (6) over h ∈ M′ and kn ∈ M′, respec-

tively, with the same boundary–context morphism B → C:

G0

G′
0

Dn

D′
n

Gn

G′
n

(3) (4)

d0

h

dn

k0 kn

B

C

Dn

D′
n

(5)

b

h

B

C

Gn

G′
n

(6)

dn◦b

kn

Proof. See Section 11.3. 
�

Example 10.12 (Embedding and Extension Theorems). If we embed
the start graph S from Example 10.4 via a morphism k0 into a larger context
H , k0 is consistent with respect to the transformation t : S

∗
⇒ AG3. This is

due to the fact that S is the empty graph, and therefore the boundary graph is
also empty and no items have to be preserved by the transformation. Applying
Theorem 10.10 allows us to embed the transformation S

∗
⇒ AG3, leading to

an extension diagram over t and k0. From Theorem 10.11, we conclude that
there is a direct transformation H ⇒ H ′ via the derived span der(t) shown in
Example 10.4. The resulting graph H ′ is the disjoint union of H and AG3. 
�



10.2 Critical Pairs for Typed AGT Systems 215

10.2 Critical Pairs for Typed AGT Systems

In order to study local confluence in Section 10.3, we now introduce criti-
cal pairs, as discussed in Section 3.4 and used for adhesive HLR systems in
Chapter 6.

For the definition of critical pairs, we need the concept of an E ′–M′ pair
factorization introduced in Section 9.3.

Definition 10.13 (critical pair). Given an E ′–M′ pair factorization in
AGraphsATG, a critical pair is a pair of parallel dependent direct trans-

formations P1
p1,o1
⇐= K

p2,o2
=⇒ P2 such that (o1, o2) ∈ E ′ for the corresponding

matches o1 and o2.

In analogy to the graph case considered in Lemma 3.33 and the general
case considered in Lemma 6.22, we now show the completeness of critical pairs
in AGraphsATG.

Lemma 10.14 (completeness of critical pairs in AGraphsATG). Given
an E ′–M′ pair factorization where the M–M′ pushout–pullback decomposition
property holds (see Definition 5.27), then the critical pairs in AGraphsATG

are complete. This means that for each pair of parallel dependent direct trans-

formations H1
p1,m1
⇐= G

p2,m2
=⇒ H2, there is a critical pair P1

p1,o1
⇐= K

p2,o2
=⇒ P2

with extension diagrams (1) and (2) and m ∈ M′:

P1

H1

K

G

P2

H2

(1) (2)m

Remark 10.15. The requirements above are valid in particular for the E ′
1–

M′
1 and E ′

2–M
′
2 pair factorizations given in Definition 9.20.

Example 10.16 (critical pairs in MethodModeling). In the following, we
analyze the critical pairs in our graph grammar MethodModeling from Ex-
ample 9.6. We use the E ′

2–M
′
2 pair factorization given in Definition 9.20.

For the underlying category AGraphsATG with the given type graph
ATG (see Example 8.9), there is a large number of critical pairs. We have
counted 88 different possibilities for only the application of the production
checkNewParameter in two different ways that lead to a critical pair.

If we analyze all these pairs, we see that most of them are strange in some
way and do not meet our intentions for the graph grammar MethodModeling.
We have aimed at modeling the signatures of method declarations, and our
productions reflect this. However, in the critical pairs, often graph nodes have
multiple occurrences of the same attribute, or parameters have multiple types
or belong to more than one method. All these things are allowed in our general



216 10 Embedding and Local Confluence for Typed AGT Systems

theory of typed attributed graphs, but they do not lead to a consistent method
declaration, and cause a high number of critical pairs.

Therefore we analyze only those critical pairs which are of interest for
the language of MethodModeling, which means that we consider only those
graphs that can be derived from the empty graph by applying our productions.

With this restriction, we obtain the following critical pairs P1
p1,m1
⇐= K

p2,m2
=⇒

P2:

1. p1 = p2 = addParameter: 2 critical pairs. In this case, two parameters
are added to the same method, which increases the number of parameters
in the method, i.e. changes the attribute noOfPars and causes a conflict.
There are two possible cases: the classes of the two new parameters are
the same or different.

2. p1 = addParameter, p2 = checkNewParameter: 2 critical pairs. One
parameter is added to a method, and another one is deleted. Adding a
parameter increases the value of noOfPars and the deletion decreases
this value, which leads to a conflict. Again there are two possible cases:
the classes of the new and deleted parameters are the same or different.

3. p1 = p2 = checkNewParameter: 2 critical pairs. We delete the last pa-
rameter with both transformations. There are then two cases: the param-
eters that we use for the comparison (which means checking that the last
parameter is already in the list) are the same or different.

4. p1 = checkNewParameter, p2 = exchangeParameter: 5 critical pairs.
The last parameter of a method is deleted by one transformation, but
the other transformation exchanges it with another parameter. There are
several different ways in which the parameters involed can be matched.

If one of the exchanged parameters is deleted, the other one can be
the same as or different from the parameter we use for the comparison in
checkNewParameter. This leads to four critical pairs. The fifth critical
pair is obtained if both exchanged parameters are mapped together with
the deleted one. This is possible, since matches do not have to be injective.

5. p1 = p2 = exchangeParameter: 11 critical pairs. If the same parameter
is exchanged by both transformations, this leads to a conflict. There are
11 cases of how to map at least one parameter of one left-hand side to
one parameter of the other left-hand side (including the cases where the
matches are not injective).

Other combinations of productions do not result in critical pairs with overlap-
ping graphs being generated by our productions; therefore, altogether, there
are 22 critical pairs.

In the following diagram, the two critical pairs P1 ⇐ K ⇒ P2 and P ′
1 ⇐

K ′ ⇒ P ′
2 for the case p1 = p2 = addParameter are represented. In the top

part of the diagram, we show only the left-hand sides of the productions, and
the graphs K and K ′. In the bottom part, the resulting direct transformations
are depicted. The matches are shown by the names of the nodes. The value
of the attribute noOfPars is changed, which means that in the gluing object



10.2 Critical Pairs for Typed AGT Systems 217

(not shown explicitly) of the direct transformations P1 ⇐ K ⇒ P2 and P ′
1 ⇐

K ′ ⇒ P ′
2, there is no node attribute edge between the method and the variable

n. Therefore these transformations are parallel dependent. The matches are
jointly surjective on the graph part, and both transformation pairs are critical
pairs.

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2′:Class

1:Method

noOfPars=n

2:Class 2′:Class

K K ′

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

:param

order=n+1

:type

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

:param

order=n+1

:type

P1 P2

K

⇐ ⇒



218 10 Embedding and Local Confluence for Typed AGT Systems

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

2′:Class

:param

order=n+1

:type

1:Method

noOfPars=n

2:Class 2′:Class

1:Method

noOfPars=n+1

2′:Class

:Parameter

pname=p

kind=k

2:Class

:param

order=n+1

:type

P ′
1 P ′

2

K ′

⇐ ⇒


�

10.3 Local Confluence Theorem for Typed AGT Systems

A typed AGT system is confluent if, for all pairs of graph transformations
starting from the same graph, there are graph transformations that bring the
resulting graphs back together. Confluence based on critical pairs has been
studied for hypergraphs in [Plu93] and for typed node attributed graphs in
[HKT02]. The main result is, that strict confluence of all critical pairs implies
local confluence of the whole system. These concepts have been discussed
already in Section 3.4 and used for adhesive HLR systems in Chapter 6. Now
we instantiate them to typed AGT systems.

With a suitable E ′–M′ pair factorization, such as one of those given in
Definition 9.20, a graph transformation system is locally confluent if all its
critical pairs are strictly confluent.

In Section 3.4, we have shown that local confluence together with termi-
nation implies the confluence of the whole system. The termination of typed
attributed graph transformation systems will be studied in Section 12.3.

In analogy to the graph case considered in Theorem 3.34 and the general
case considered in Theorem 6.28, we are now able to formulate the Local
Confluence Theorem for typed AGT systems, based on the concept of strict
confluence of critical pairs.

Definition 10.17 (strict confluence of critical pairs). A critical pair

K
p1,o1
=⇒ P1, K

p2,o2
=⇒ P2 is called strictly confluent if we have the following

conditions:



10.3 Local Confluence Theorem for Typed AGT Systems 219

1. Confluence. the critical pair is confluent, i.e. there are transformations

P1
∗
⇒ K ′, P2

∗
⇒ K ′ with derived spans der(Pi

∗
⇒ K ′) = (Pi

vi+2
← Ni+2

wi+2
→

K ′) for i = 1, 2.

2. Strictness. Let der(K
pi,oi
=⇒ Pi) = (K

vi← Ni
wi→ Pi) for i = 1, 2, and let N

be the pullback object of the pullback (1). There are then morphisms z3

and z4 such that (2), (3), and (4) commute:

K

P1 P2

K ′

(p1,o1) (p2,o2)

∗ ∗

P1

N3

N1

K ′

N

K

N4

N2

P2
(2)

(1)

(4)

(3)

w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

Theorem 10.18 (Local Confluence Theorem for typed AGT sys-
tems). Given a graph transformation system GTS based on (AGraphsATG,
M) with an E ′–M′ pair factorization such that M′ is closed under pushouts
and pullbacks along M-morphisms and the M–M′ pushout–pullback decom-
position property holds, then GTS is locally confluent if all its critical pairs
are strictly confluent.

Proof. See Theorem 11.14 in Section 11.3. 
�

Remark 10.19. The language L of a graph transformation system GTS is
locally confluent if we consider only those critical pairs P1 ⇐ K ⇒ P2, where
K is an M′-subgraph of a graph G which can be derived from the start graph
S. “K is M′-subgraph of G” means that there is an M′-morphism m : K → G.

In Section 11.3, we show that the Local Confluence Theorem is valid for
a typed AGT system over the category AGSIG-Alg with a well-structured
AGSIG and a suitable E ′–M′ pair factorization. This implies Theorem 10.18.
The requirements for M′ are valid for M′ = M′

1 and M′ = M′
2 as considered

in Example 9.22.

Example 10.20 (local confluence in MethodModeling). The task of ana-
lyzing the local confluence of our graph grammar MethodModeling is exten-
sive owing to the fact that there are so many critical pairs, even if we consider



220 10 Embedding and Local Confluence for Typed AGT Systems

only the language of MethodModeling (see Example 10.16). Therefore we
only give arguments for local confluence here, and do not prove it.

The confluence of the critical pairs can be shown relatively easily. In the
following we describe how to find suitable productions and matches for a

critical pair P1
p1,m1
⇐= K

p2,m2
=⇒ P2 that lead to confluence.

1. p1 = p2 = addParameter. In this case two parameters are added to the
same method, which increases the number of parameters in the method.
We can apply p2 to P1 with a match m′

2 slightly different from m2, where
only the value of the attribute numberOfPars is increased by 1. This
works similarly if p1 is applied to P2 with a match m′

1. We then obtain

transformations P1
p2,m′

2=⇒ X and P2
p1,m′

1=⇒ X .
2. p1 = addParameter, p2 = checkNewParameter. Here a parameter is

added and deleted in the same method. In P1, we can use the production
exchangeParameter to swap the last two parameters and then apply p2

to this graph with a match m′
2 similar to m2, where only the value of the

attribute numberOfPars in this method is increased by 1. Applying p1 to
P2 results in a common graph. This means that we have transformations

P1
exchangeParameter

=⇒ X ′ p2,m′
2=⇒ X and P2

p1,m′
1=⇒ X .

3. p1 = p2 = checkNewParameter. We have deleted the same (last) pa-
rameter with both transformations, and therefore it already holds that
P1 = P2 or P1

∼
= P2.

4. p1 = checkNewParameter, p2 = exchangeParameter. In K, a parame-
ter is deleted by p1, but p2 exchanges it with another one. In this case,
we can restore the old order by applying p2 once again to P2, result-
ing in the graph K. Applying p1 with the match m1 leads to a com-

mon object. Altogether, we obtain the transformations P1
id
⇒ P1 and

P2
exchangeParameter

=⇒ K
p1,m1
=⇒ P1.

5. p1 = p2 = exchangeParameter. Exchanging parameters can be reversed,

so there are transformations P1
p2

=⇒ K and P2
p1

=⇒ K.

In all these cases, the common part of K that is preserved by applying p1

and p2 is also preserved by the further transformations and mapped equally to
the resulting common object. Therefore the critical pairs are strictly confluent.

By Theorem 10.18, this means that the graph grammar
MethodModeling is locally confluent. 
�




