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Preface

In the late 1960s and early 1970s, the concepts of graph transformation and
graph grammars started to become of interest in picture processing and com-
puter science. The main idea was to generalize well-known rewriting tech-
niques from strings and trees to graphs, leading to graph transformations and
graph grammars. In particular, the concepts of algebraic graph transforma-
tion gained considerable importance in the early years and have done so even
more in the last decade. Today, algebraic graph transformation techniques are
playing a central role in theoretical computer science, as well as in several ap-
plied areas, such as software engineering, concurrent and distributed systems,
and visual modeling techniques and model transformations.

The aim of this book is to present the fundamentals of algebraic graph
transformation techniques for the purposes of teaching, research, and devel-
opment, with respect to the following aspects:

1. Fundamentals in the sense of an introduction with a detailed motivation
to algebraic graph transformation, including the main constructions and
results, as well as their generalization to high-level replacement systems,
with a wide range of applications in computer science and related areas.

2. Fundamentals in the sense of mathematical theories, which are the basis
for precise definitions, constructions, and results, and for the implementa-
tion of algebraic graph transformation in a tool environment called AGG.

3. Fundamentals in the sense of the integration of data types and process
specification techniques, where the concepts of algebraic data types are
integrated with graph rewriting, leading to the concept of typed attributed
graph transformation.

In accordance with these aims, the book is organized in four parts:

• Part I: Introduction to Graph Transformation Systems, where graph trans-
formations based on classical graphs are introduced and the main construc-
tions and results are motivated in detail.
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• Part II: Adhesive High-Level Replacement Categories and Systems, where
the theory is presented in a categorical framework with applications to a
large variety of high-level structures, especially transformation systems for
various kinds of graphs and Petri nets.

• Part III: Typed Attributed Graph Transformation Systems, where the con-
cepts of typed attributed graphs are carefully introduced and the main
results are obtained as instantiations of Part II.

• Part IV: Case Study on Model Transformation, and Tool Support by AGG,
where the concepts of typed attributed graph transformation are applied
in a separate case study to visual model transformation, and it is shown
how the theory is implemented in the AGG tool.

The book is organized in such a way that the reader can switch, after
the introduction in Part I, immediately to Part III; however, the concepts
and results in both of these parts are instantiations of the categorical theory
presented in Part II.

The material of this book is based on a theory of algebraic graph trans-
formation developed at the Technical University of Berlin in cooperation with
several international partners in the EU projects COMPUGRAPH, GET-
GRATS, APPLIGRAPH and SEGRAVIS. This material can also be seen as
being in the tradition of algebraic specification techniques, described in the
EATCS series of Monographs in Theoretical Computer Science.

We are most thankful to Hans-Jörg Kreowski, Michael Pfender, Hans-
Jürgen Schneider, Barry Rosen, and Grzegorz Rozenberg for creating the al-
gebraic approach to graph transformation in fruitful cooperation with the first
author in the 1970s. For the main contributions to the algebraic approach in
subsequent years, we would like to thank in addition Paolo Baldan, Roswitha
Bardohl, Paolo Bottoni, Andrea Corradini, Gregor Engels, Claudia Ermel,
Ingrid Fischer, Annegret Habel, Reiko Heckel, Berthold Hoffmann, Manuel
Koch, Barbara König, Martin Korff, Jochen Küster, Juan de Lara, Leen Lam-
bers, Michael Löwe, Ugo Montanari, Mark Minas, Fernando Orejas, Julia Pad-
berg, Karl-Heinz Pennemann, Francesco Parisi-Presicce, Detlef Plump, Leila
Ribeiro, Francesca Rossi, Olga Runge, Andy Schürr, Pawel Sobociński, Daniel
Varró, Szilvia Varró-Gyapay, Annika Wagner, and Dietmar Wolz.

We would especially like to thank Reiko Heckel for several useful comments
concerning the overall structure of the book.

A draft version of the book was carefully studied by the participants of a
compact seminar on “Fundamentals of Algebraic Graph Transformation” for
advanced students and young researchers in the SEGRAVIS TMR network.
We are most grateful to the following members of this seminar, whose com-
ments led to several useful improvements in the final version of this book:
Paolo Baldan, Enrico Biermann, Benjamin Braatz, Esther Guerra, Stefan
Hänsgen, Frank Herrmann, Markus Klein, Barbara König, Sebastian Kuh-
nert, Juan de Lara, Tihamer Levendovsky, Katharina Mehner, Tony Modica,
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Mattia Monga, Allesandra Raffaetta, Guilherme Rangel, Giovanni Toffetti
Carughi, Daniel Varró, Szilvia Varró-Gyapay, and Jessica Winkelmann.

Finally, we thank Grzegorz Rozenberg and all the other editors of the
EATCS monograph series, and those at Springer-Verlag, especially Ronan
Nugent, for smooth publication.

Berlin, Summer 2005 Hartmut Ehrig
Karsten Ehrig
Ulrike Prange

Gabriele Taentzer
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The first Part of this book provides a general introduction to graph transfor-
mation, graph transformation systems, and graph grammars. In Chapter 1,
we start with an overview of various graph transformation approaches, espe-
cially the algebraic approach; we describe the organization of the chapters of
the book; and we provide some bibliographic notes. In Chapter 2, we give a
detailed introduction to the algebraic approach in the case of graphs, labeled
graphs and typed graphs, leading to the basic notions and results of graph
transformation systems described in Chapter 3.

The classical theory of labeled graph grammars and labeled graph transfor-
mation systems was mainly developed in the 1970s, particularly as a result of
a cooperation between TU Berlin (H. Ehrig, M. Pfender, and H.J. Kreowski),
the University of Erlangen (H.J. Schneider), and IBM Yorktown Heights (B.
Rosen) (see [EPS73, ER76, Kre78, Ehr79]). The theory was extended in the
1980s and 1990s by groups in Bremen (H.J. Kreowski, A. Habel, D. Plump,
and B. Hoffmann), Pisa (U. Montanari, A. Corradini, and P. Baldan), Rome
(F. Parisi-Presicce and P. Bottoni), Leiden/Paderborn (G. Rozenberg and G.
Engels) and Porto Allegre (L. Ribeiro and M. Korff), in cooperation with TU
Berlin (H. Ehrig, G. Taentzer, M. Löwe, and R. Heckel); this is documented
in the three volumes of the Handbook of Graph Grammars and Computation
by Graph Transformation [Roz97, EEKR99, EKMR99]. The main work in
the last five years has been on extensions of the theory to typed attributed
graph transformation and adhesive high-level replacement systems, which are
described in Parts II and III of this book.

For those readers who are interested mainly in the concepts and results of
transformation systems for classical and typed attributed graphs, but not so
much in the general theory and the proofs, it is advisable to read Part I, skip
Part II, and continue after Part I with Parts III and IV.
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General Introduction

The main idea of graph grammars and graph transformation is the rule-based
modification of graphs, where each application of a graph rule leads to a
graph transformation step. Graph grammars can be used to generate graph
languages similar to Chomsky grammars in formal language theory. Moreover,
graphs can be used to model the states of all kinds of systems, which allows
one to use graph transformation to model state changes in these systems. This
enables the user to apply graph grammars and graph transformation systems
to a wide range of fields in computer science and other areas of science and
engineering. A detailed presentation of various graph grammar approaches
and application areas of graph transformation is given in the three volumes of
the Handbook of Graph Grammars and Computing by Graph Transformation
[Roz97, EEKR99, EKMR99].

1.1 General Overview of Graph Grammars and Graph

Transformation

The research area of graph grammars or graph transformation is a discipline
of computer science which dates back to the 1970s. Methods, techniques, and
results from the area of graph transformation have already been studied and
applied in many fields of computer science, such as formal language theory,
pattern recognition and generation, compiler construction, software engineer-
ing, the modeling of concurrent and distributed systems, database design and
theory, logical and functional programming, artificial intelligence, and visual
modeling.

This wide applicability is due to the fact that graphs are a very natural
way of explaining complex situations on an intuitive level. Hence, they are
used in computer science almost everywhere, for example for data and control
flow diagrams, for entity relationship and UML diagrams, for Petri nets, for
visualization of software and hardware architectures, for evolution diagrams
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of nondeterministic processes, for SADT diagrams, and for many more pur-
poses. Like the token game for Petri nets, graph transformation allows one to
model the dynamics in all these descriptions, since it can describe the evo-
lution of graphical structures. Therefore, graph transformations have become
attractive as a modeling and programming paradigm for complex-structured
software and graphical interfaces. In particular, graph rewriting is promising
as a comprehensive framework in which the transformation of all these very
different structures can be modeled and studied in a uniform way.

Before we go into more detail, we discuss the following basic question.

1.1.1 What Is Graph Transformation?

Graph transformation has at least three different roots:

• from Chomsky grammars on strings to graph grammars;
• from term rewriting to graph rewriting;
• from textual description to visual modeling.

We use the notion of graph transformation to comprise the concepts of graph
grammars and graph rewriting. In any case, the main idea of graph transfor-
mation is the rule-based modification of graphs, as shown in Fig. 1.1.

�
��

�
��

L R

p = (L, R)

Fig. 1.1. Rule-based modification of graphs

The core of a rule or production, p = (L, R) is a pair of graphs (L, R), called
the left-hand side L and the right-hand side R. Applying the rule p = (L, R)
means finding a match of L in the source graph and replacing L by R, leading
to the target graph of the graph transformation. The main technical problems
are how to delete L and how to connect R with the context in the target
graph. In fact, there are several different solutions to how to handle these
problems, leading to several different graph transformation approaches, which
are summarized below.

1.1.2 Aims and Paradigms of Graph Transformation

Computing was originally done on the level of the von Neumann Machine
which is based on machine instructions and registers. This kind of low-level
computing was considerably improved by assembler and high-level imperative
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languages. From the conceptual point of view – but not necessarily from the
point of view of efficiency – these languages were further improved by func-
tional and logical programming languages. This newer kind of computing is
based mainly on term rewriting, which, by analogy with graphs and graph
transformations, can be considered as a concept in the field of tree trans-
formations. Trees, however, unlike graphs, do not allow sharing of common
substructures, which was one of the main reasons for the efficiency problems
concerning functional and logical programs. This motivates us to consider
graphs rather than trees as the fundamental structures of computing.

The main idea is to advocate graph transformations for the whole range of
computing. Our concept of computing by graph transformations is not focused
only on programming but includes also specification and implementation by
graph transformation, as well as graph algorithms and computational models,
and computer architectures for graph transformations.

This concept of computing by graph transformations was developed as
a basic paradigm in the ESPRIT Basic Research Actions COMPUGRAPH
and APPLIGRAPH and in the TMR Network GETGRATS during the years
1990–2002. It can be summarized in the following way.

Computing by graph transformation is a fundamental concept for the fol-
lowing items:

• Visual modeling and specification. Graphs are a well-known, well-
understood, and frequently used means to represent system states. Class
and object diagrams, network graphs, entity-relationship diagrams, and
Petri nets are common graphical representations of system states or classes
of system states; there are also many other graphical representations. Rules
have proved to be extremely useful for describing computations by local
transformations of states. In object-oriented modeling, graphs occur at
two levels: the type level (defined on the basis of class diagrams) and the
instance level (given by all valid object diagrams). Modeling by graph
transformation is visual, on the one hand, since it is very natural to use
a visual representation of graphs; on the other hand, it is precise, owing
to its formal foundation. Thus, graph transformation can also be used in
formal specification techniques for state-based systems.

The aspect of supporting visual modeling by graph transformation is
one of the main intentions of the ESPRIT TMR Network SEGRAVIS
(2002–2006). In fact, there are a wide range of applications in the support
of visual modeling techniques, especially in the context of UML, by graph
transformation techniques.

• Model transformation. In recent years, model-based software development
processes (such as that proposed by the MDA [RFW+04]) have evolved. In
this area, we are witnessing a paradigm shift, where models are no longer
mere (passive) documentation, but are used for code generation, analysis,
and simulation as well. An important question is how to specify such model
transformations. Starting from visual models as discussed above, graph
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transformation is certainly a natural choice. On the basis of the underlying
structure of such visual models, the abstract syntax graphs, the model
transformation is defined. Owing to the formal foundation, the correctness
of model transformations can be checked. More precisely, correctness can
be formulated on a solid mathematical basis, and there is a good chance of
verifying correctness using the theory of graph transformation. The first
steps in this direction have been taken already (see Chapter 14).

• Concurrency and distribution. When graph transformation is used to de-
scribe a concurrent system, graphs are usually taken to describe static
system structures. System behavior expressed by state changes is mod-
eled by rule-based graph manipulations, i.e. graph transformation. The
rules describe preconditions and postconditions of single transformation
steps. In a pure graph transformation system, the order of the steps is
determined by the causal dependency of actions only, i.e. independent rule
applications can be executed in an arbitrary order. The concept of rules
in graph transformation provides a clear concept for defining system be-
havior. In particular, for modeling the intrinsic concurrency of actions,
graph rules provide a suitable means, because they explicate all structural
interdependencies.

If we stick to sequential execution, parallel transformations have to be
modeled by interleaving their atomic actions arbitrarily. This interleaving
leads to the same result if the atomic actions are independent of each
other. Simultaneous execution of actions can be modeled if a parallel rule
is composed from the actions.

Parallel and distributed graph transformation both offer structured
rule applications, in both temporal and spatial dimensions. Distributed
graphs contain an additional structure on the graphs. Graphs are allowed
to be split into local graphs and, after local transformations, local graphs
are joined again to one global graph. Parallel graph transformation can
be considered as a special case of distributed graph transformation, where
the host graph is nondistributed.

• Software development. In software development, a large variety of differ-
ent structures occur on different levels, which can be handled as graphs.
We distinguish architectural and technical structures from administrative
configurations and integration documents. All this structural information
evolves, i.e. it changes during the software development process. This in-
cludes editing of documents, execution of operations, modification (opti-
mization) of programs, analysis, configuration and revision control, etc.
Graph transformation techniques have been used to describe this struc-
tural evolution in a rule-based way.

For software development purposes, graphs have several advantages
over trees. Graphs are a powerful description technique for any kind of
structure. This means that all structural information can be expressed by
graphs and does not have to be stored outside the structural part, as is done
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in the case of trees. Attributes are important for storing data information.
In this way, structural information is separated from nonstructural.

Graph transformations are used to describe certain development
processes. Thus, we can argue that we program on graphs. But we do so
in a quite abstract form, since the class of structures is the class of graphs
and is not specialized to a specific class. Furthermore, the elementary op-
erations on graphs are rule applications. Mostly, the execution order of
rule applications relies on structural dependencies only, i.e. it is just given
implicitly. Alternatively, explicit control mechanisms for rule applications
can be used.

A state-of-the-art report on applications, languages, and tools for graph
transformation on the one hand and for concurrency, parallelism, and distri-
bution on the other hand is given in Volumes 2 and 3 of the Handbook of Graph
Grammars and Computing by Graph Transformation [EEKR99, EKMR99].

1.1.3 Overview of Various Approaches

From an operational point of view, a graph transformation from G to H ,
written G ⇒ H , usually contains the following main steps, as shown in Fig.
1.2:

1. Choose a production p : L ⇒ R with a left-hand side L and a right-hand
side R, and with an occurrence of L in G.

2. Check the application conditions of the production.
3. Remove from G that part of L which is not part of R. If edges dangle

after deletion of L, either the production is not applied or the dangling
edges are also deleted. The graph obtained is called D.

4. Glue the right-hand side R to the graph D at the part of L which still
has an image in D. The part of R not coming from L is added disjointly
to D. The resulting graph is E.

5. If the production p contains an additional embedding relation, then embed
the right-hand side R further into the graph E according to this embedding
relation. The end result is the graph H .

L R

G D E H

Fig. 1.2. Graph transformation from an operational point of view

Graph transformation systems can show two kinds of nondeterminism:
first, several productions might be applicable and one of them is chosen ar-
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bitrarily; and second, given a certain production, several matches might be
possible and one of them has to be chosen. There are techniques available to
restrict both kinds of choice. Some kind of control flow on rules can be defined
for applying them in a certain order or by using explicit control constructs,
priorities, layers, etc. Moreover, the choice of matches can be restricted by
specifying partial matches using input parameters.

The main graph grammar and graph transformation approaches developed
in the literature so far are presented in Volume 1 of the Handbook of Graph
Grammars and Computing by Graph Transformation [Roz97]:

1. The node label replacement approach, developed mainly by Rozenberg,
Engelfriet, and Janssens, allows a single node, as the left-hand side L,
to be replaced by an arbitrary graph R. The connection of R with the
context is determined by an embedding relation depending on node labels.
For each removed dangling edge incident with the image of a node n in
L, and each node n′ in R, a new edge (with the same label) incident with
n′ is established provided that (n, n′) belongs to the embedding relation.

2. The hyperedge replacement approach, developed mainly by Habel, Kre-
owski, and Drewes, has as the left-hand side L a labeled hyperedge, which
is replaced by an arbitrary hypergraph R with designated attachment
nodes corresponding to the nodes of L. The gluing of R to the context
at the corresponding attachment nodes leads to the target graph without
using an additional embedding relation.

3. The algebraic approach is based on pushout constructions, where pushouts
are used to model the gluing of graphs. In fact, there are two main variants
of the algebraic approach, the double- and the single-pushout approach.
The double-pushout approach, developed mainly by Ehrig, Schneider, and
the Berlin and Pisa groups, is introduced in Section 1.2 and presented later
in Part I of this book in more detail. In both cases, there is no additional
embedding relation.

4. The logical approach, developed mainly by Courcelle and Bouderon, allows
graph transformation and graph properties to be expressed in monadic
second-order logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehrenfeucht,
as a framework for the decomposition and transformation of graphs.

6. The programmed graph replacement approach of Schürr combines the glu-
ing and embedding aspects of graph transformation. Furthermore, it uses
programs in order to control the nondeterministic choice of rule applica-
tions.

1.2 The Main Ideas of the Algebraic Graph

Transformation Approach

As mentioned above, the algebraic graph transformation approach is based
on pushout constructions, where pushouts are used to model the gluing of
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graphs. In the algebraic approach, initiated by Ehrig, Pfender, and Schneider
in [EPS73], two gluing constructions are used to model a graph transformation
step, as shown in Fig. 1.4. For this reason, this approach is also known as the
double-pushout (DPO) approach, in contrast to the single-pushout (SPO)
approach. Both of these approaches are briefly discussed below.

1.2.1 The DPO Approach

In the DPO approach, roughly speaking, a production is given by p =
(L, K, R), where L and R are the left- and right-hand side graphs and K
is the common interface of L and R, i.e. their intersection. The left-hand side
L represents the preconditions of the rule, while the right-hand side R de-
scribes the postconditions. K describes a graph part which has to exist to
apply the rule, but which is not changed. L\K describes the part which is to
be deleted, and R\K describes the part to be created.

A direct graph transformation with a production p is defined by first finding
a match m of the left-hand side L in the current host graph G such that m is
structure-preserving.

When a direct graph transformation with a production p and a match m is
performed, all the vertices and edges which are matched by L\K are removed
from G. The removed part is not a graph, in general, but the remaining
structure D := (G\m(L)) ∪ m(K) still has to be a legal graph, i.e., no edges
should be left dangling. This means that the match m has to satisfy a suitable
gluing condition, which makes sure that the gluing of L\K and D is equal to
G (see (1) in Fig. 1.3). In the second step of a direct graph transformation,
the graph D is glued together with R\K to obtain the derived graph H (see
(2) in Fig. 1.3). Since L and R can overlap in K, the submatch occurs in the
original graph G and is not deleted in the first step, i.e. it also occurs in the
intermediate graph D. For gluing newly created vertices and edges into D, the
graph K is used. This defines the gluing items at which R is inserted into D.
A graph transformation, or, more precisely, a graph transformation sequence,
consists of zero or more direct graph transformations.

More formally, a direct graph transformation with p and m is defined as
follows. Given a production p = (L ← K → R) and a context graph D, which
includes also the interface K, the source graph G of a graph transformation
G ⇒ H via p is given by the gluing of L and D via K, written G = L +K D,
and the target graph H is given by the gluing of R and D via K, written
H = R+K D. More precisely, we shall use graph morphisms K → L, K → R,
and K → D to express how K is included in L, R, and D, respectively. This
allows us to define the gluing constructions G = L +K D and H = R +K D
as the pushout constructions (1) and (2) in Fig. 1.3, leading to a double
pushout. The resulting graph morphism R → H is called the comatch of the
graph transformation G ⇒ H .

In order to apply a production p with a match m of L in G, given by a
graph morphism m : L → G as shown in Fig. 1.3, we first have to construct a
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context graph D such that the gluing L+K D of L and D via K is equal to G.
In the second step, we construct the gluing R+K D of R and D via K, leading
to the graph H and hence to a DPO graph transformation G ⇒ H via p and
m. For the construction of the first step, however, a gluing condition has to
be satisfied, which allows us to construct D with L +K D = G. In the case of
an injective match m, the gluing condition states that all dangling points of
L, i.e. the nodes x in L such that m(x) is the source or target of an edge e in
G \ L, must be gluing points x in K.

L K R

G D H

(1) (2)m

Fig. 1.3. DPO graph transformation

A simple example of a DPO graph transformation step is given in Fig.
1.4, corresponding to the general scheme in Fig. 1.3. Note that in the diagram
(PO1), G is the gluing of the graphs L and D along K, where the numbering
of the nodes indicates how the nodes are mapped by graph morphisms. The
mapping of the edges can be uniquely deduced from the node mapping. Note
that the gluing condition is satisfied in Fig. 1.4, because the dangling points
(1) and (2) of L are also gluing points. Moreover, H is the gluing of R and
D along K in (PO2), leading to a graph transformation G ⇒ H via p. In
fact, the diagrams (PO1) and (PO2) are pushouts in the category Graphs of
graphs and graph morphisms (see Chapter 2).

For technical reasons, the morphisms K → L and K → R in the produc-
tions are usually restricted to injective graph morphisms. However, we allow
noninjective matches m : L → G and comatches n : R → H . This is es-
pecially useful when we consider a parallel production p1 + p2 : L1 + L2 ←
K1 + K2 → R1 + R2, where + denotes the disjoint union. Even for injective
matches m1 : L1 → G of p1 and m2 : L2 → G of p2, the resulting match
m : L1 + L2 → G is noninjective if the matches m1(L1) and m2(L2) are
overlapping in G.

1.2.2 The Algebraic Roots

In Chapter 2, we shall see that a graph G = (V, E, s, t) is a special case of
an algebra with two base sets V (vertices) and E (edges), and operations
s : E → V (source) and t : E → V (target). Graph morphisms f :
G1 → G2 are special cases of algebra homomorphisms f = (fV : V1 → V2,
fE : E1 → E2). This means that fV and fE are required to be compatible with
the operations, i.e. fV ◦s1 = s2◦fE and fV ◦t1 = t2◦fE. In Fig. 1.4, all arrows
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(PO1) (PO2)

L K R

G D H

(1) (1) (1)

(1) (1) (1)

(2) (2) (2)

(2) (2) (2)

(3)

(4)

(5)

(3)

(4)

(5)

(6) (7) (6) (7) (6) (7)

Fig. 1.4. Example of DPO graph transformation

between the boxes are graph morphisms. Moreover, the gluing construction of
graphs can be considered as an algebraic quotient algebra construction. This
algebraic view of graphs and graph transformations is one of the main ideas of
the algebraic graph transformation approach introduced in [EPS73, Ehr79].

1.2.3 From the DPO to the SPO Approach

As pointed out already, the gluing constructions in the algebraic approach are
pushouts in the category Graphs based on (total) graph morphisms. On the
other hand, the production p = (L ← K → R) shown in Fig. 1.4 can also be
considered as a partial graph morphism p : L → R with domain dom(p) = K.
Moreover, the span (G ← D → H) can be considered as a partial graph
morphism s : G → H with dom(s) = D. This leads to the diagram in Fig.
1.5, where the horizontal morphisms are partial and the vertical ones are total
graph morphisms. In fact, Fig. 1.5 is a pushout in the category PGraphs of
graphs and partial graph morphisms and shows that the graph transformation
can be expressed by a single pushout in the category PGraphs. This approach
was initiated by Raoult [Rao84] and fully worked out by Löwe [Löw90], leading
to the single-pushout approach.

From the operational point of view, the SPO approach differs in one main
respect from the DPO approach, which concerns the deletion of context graph
elements during a graph transformation step. If the match m : L → G does not
satisfy the gluing condition with respect to a production p = (L ← K → R),
then the production is not applicable in the DPO approach. But it is applicable
in the SPO approach, which allows dangling edges to occur after the deletion
of L\K from G. However, the dangling edges in G are also deleted, leading to
a well-defined graph H .
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If, in Fig. 1.4, vertex (2) were to be deleted from K, the gluing condition
would not be satisfied in the DPO approach. In the SPO approach, this would
mean that vertex (2) is not in the domain of p, leading to a dangling edge
e in G after deletion of L \ dom(p) in Fig. 1.5. As a result, edge e would be
deleted in H .

A detailed presentation and comparison of the two approaches is given
in Volume 1 of the Handbook of Graph Grammars and Computing by Graph
Transformation [Roz97]. In this book, however, we consider only the DPO
approach as the algebraic graph transformation approach.

p

s

L R

G H

(1) (1)

(1) (1)

(2) (2)

(2) (2)

(3)

(4)

(5)

(3)

(4)

(5)

(6) (7) (6) (7)

ee

Fig. 1.5. Example of SPO graph transformation

1.2.4 From Graphs to High-Level Structures

The algebraic approach to graph transformation is not restricted to the graphs
of the form G = (V, E, s, t) considered above, but has been generalized to a
large variety of different types of graphs and other kinds of high-level struc-
tures, such as labeled graphs, typed graphs, hypergraphs, attributed graphs,
Petri nets, and algebraic specifications, which will be considered in later chap-
ters of this book. This extension from graphs to high-level structures – in
contrast to strings and trees, considered as low-level structures – was initi-
ated in [EHKP91a, EHKP91b] leading to the theory of high-level replacement
(HLR) systems. In [EHPP04], the concept of high-level replacement systems
was joined to that of adhesive categories introduced by Lack and Sobociński
in [LS04], leading to the concept of adhesive HLR categories and systems,
which will be described in Chapters 4 and 5. The theory of adhesive HLR sys-
tems, developed in Part II of this book, can be instantiated in particular to
typed attributed graph transformation systems, described in Part III, which
are especially important for applications to visual languages and software en-
gineering. In Part I of this book, we give an introduction to classical graph
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transformation systems, as considered in [Ehr79]. Hence the fundamentals of
algebraic graph transformation are given in this book on three different levels:
in Part I on the classical level, in Part II on the level of adhesive HLR systems,
and in Part III on the level of typed attributed graph transformation systems.
A more detailed overview of the four Parts is given below.

1.3 The Chapters of This Book and the Main Results

The chapters of this book are grouped into Parts I–IV and three appendices.

1.3.1 Part I: Introduction to Graph Transformation Systems

Part I of this book is an introduction to graph transformation systems in
general and to the algebraic approach in the classical sense of [Ehr79] in par-
ticular. In Chapter 2, we introduce graphs, graph morphisms, typed graphs
and the gluing construction for sets and graphs. In order to show that the
gluing construction is a pushout in the sense of category theory, we also in-
troduce some basic notions of category theory, including the categories Sets
and Graphs, and pullbacks as dual constructions of pushouts.

This is the basis for introducing the basic notions of graph transformation
systems in Chapter 3. As mentioned above, a direct graph transformation
is defined by two gluing constructions, which are pushouts in the category
Graphs. The first main results for graph transformations discussed in Chap-
ter 3 are concerned with parallel and sequential independence of graph trans-
formations. The Local Church–Rosser Theorem allows one to apply two graph
transformations G ⇒ H1 via p1 and G ⇒ H2 via p2 in an arbitrary order, pro-
vided that they are parallel independent. In this case they can also be applied
in parallel, leading to a parallel graph transformation G ⇒ H via the parallel
production p1 +p2. This second main result is called the Parallelism Theorem.
In addition, in Chapter 3 we give a detailed description of the motivation
for and an overview of some other main results including the Concurrency,
Embedding, and Extension Theorems, as well as results related to critical
pairs, confluence, termination, and the Local Confluence Theorem. Finally,
we discuss graph constraints and application conditions for graph transfor-
mations. All these results are stated in Chapter 3 without proof, because they
are special cases of corresponding results in Parts II and III.

1.3.2 Part II: Adhesive HLR Categories and Systems

In Part II, we introduce adhesive HLR categories and systems, as outlined
in Subsection 1.2.4 above. In addition to pushouts, which correspond to the
gluing of graphs, they are based on pullbacks, corresponding to the inter-
section and homomorphic preimages of graphs. The basic axioms of adhesive
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HLR categories stated in Chapter 4 require construction and basic compatibil-
ity properties for pushouts and pullbacks. From these basic properties, several
other results, called HLR properties, can be concluded, which allow us to prove
the main results stated in Part I on the general level of high-level replacement
systems. We are able to show that there are several interesting instantiations
of adhesive HLR systems, including not only graph and typed graph transfor-
mation systems, but also hypergraph, Petri net, algebraic specification, and
typed attributed graph transformation systems. The HLR properties allow us
to prove, in Chapter 5, the Local Church–Rosser and Parallelism Theorems,
concerning independent transformations, as well as the Concurrency Theorem,
concerning the simultanous execution of causally dependent transformations.

Some further important results for transformation systems are the Em-
bedding, Extension, and Local Confluence Theorems presented in Chapter 6.
The first two allow us to embed transformations into larger contexts, and with
the third one we are able to show local confluence of transformation systems
on the basis of the confluence of critical pairs.

In Chapter 7, we define constraints and application conditions for adhesive
HLR systems, which generalize the graph constraints and application condi-
tions introduced in Chapter 3. We are able to show, as the main results, how
to transform constraints into right application conditions and, further, how
to transform right to left application conditions. A left or right application
condition is a condition which has to be satisfied by the match L → G or the
comatch R → H , respectively, of a DPO transformation, as shown for graphs
in Fig. 1.3.

1.3.3 Part III: Typed Attributed Graph Transformation Systems

In Part III, we apply the theory of Part II to the case of typed attributed
graph transformation systems outlined in Subsection 1.2.4. In Chapter 8, we
introduce attributed type graphs ATG, typed attributed graphs, and typed
attributed graph morphisms leading to the category AGraphsATG of typed
attributed graphs and the construction of pushouts and pullbacks in this cat-
egory. In Chapter 9, we define the basic concepts of typed attributed graph
transformations. Moreover, we extend some of the main results from the case
of graphs considered in Chapter 3 to typed attributed graphs. In particular,
this leads to the important result of local confluence for typed attributed
graph transformation systems based on confluence of critical pairs. All the re-
sults suggested in Chapter 3 and presented in the general framework of Part
II are instantiated for typed attributed graph transformation in Chapters 9
and 10. They are proven in Chapter 11 by showing that AGraphsATG is an
adhesive HLR category with suitable additional properties, which allows us to
apply the general results from Part II. In Chapter 12, we apply the categori-
cal theory of constraints and application conditions to typed attributed graph
transformation systems and discuss termination in addition. In Chapter 13,
we introduce attributed type graphs with inheritance in order to model type
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inheritance in the sense of class inheritance in UML. The main result shows
the equivalence of concrete transformations without inheritance and abstract
transformations with inheritance. However, the use of inheritance leads to a
much more efficient representation and computation of typed attributed graph
transformations.

1.3.4 Part IV: Case Study and Tool Support

In Part IV, we show how the theory of Part III can be applied in a case
study and what kind of tool support can be offered at present. A case study
of model transformation from statecharts to Petri nets using typed attributed
graph transformation systems is given in Chapter 14. In Chapter 15, we show
how typed attributed graph transformation has been implemented in the AGG
tool environment developed at TU Berlin [AGG, ERT99].

1.3.5 Appendices

In Appendix A, we give a short introduction to category theory summarizing
the main categorical concepts introduced in Parts I–III together with some
technical results. Since, on the one hand, typed attributed graphs as consid-
ered in Part III are based on algebraic signatures and algebras, and, on the
other hand, algebraic specifications themselves and in connection with Petri
nets are interesting instantiations of adhesive HLR systems, we review the
corresponding algebraic concepts from [EM85] in Appendix B. Finally, we
present in Appendix C all of the proofs that were postponed in Parts I–III.

1.3.6 Hints for Reading This Book

For those readers who are interested mainly in the concepts and results of
transformation systems for classical and typed attributed graphs, but not so
much in the general theory and in the proofs, it is advisable to read Part I
but to skip Part II and continue immediately with Parts III and IV.

1.4 Bibliographic Notes and Further Topics

In this last section of the introduction, we present some bibliographic notes
and an overview of further topics concerning concepts, applications, languages,
and tools for graph transformation systems.

1.4.1 Concepts of Graph Grammars and Graph Transformation
Systems

Graph transformation originally evolved in the late 1960s and early 1970s
[PR69, Pra71, EPS73] as a reaction to shortcomings in the expressiveness
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of classical approaches to rewriting, such as Chomsky grammars and term
rewriting, to deal with nonlinear structures. The main graph grammar and
graph transformation approaches that are still popular today are presented
in Volume 1 of the Handbook of Graph Grammars and Computing by Graph
Transformation [Roz97] and have been mentioned in Subsection 1.1.2 already.
In contrast to the algebraic approach, which is based on the concept of gluing
(see Section 1.2), the NLC approach [JR80] and other ones such as that of
Nagl in [Nag79] can be considered as embedding approaches. In this case,
the embedding (of the right-hand side into the context graph) is realized by
a disjoint union, with as many new edges as needed to connect the right-
hand side with the context graph. Nagl’s approach has been extended by
Schürr to programmed graph replacement systems [Sch97], leading to the
PROGRES approach in [SWZ99]. In the FUJABA approach [FUJ], graph
transformations are used in order to define transformations from UML to
Java and back again. Both approaches allow the replacement of substructures
in an unknown context using the concept of set nodes or multiobjects.

Concerning the algebraic approach described in Parts I and II, most of the
concepts in the classical case of graph transformation systems were developed
in the 1970s [EPS73, Ehr79]. Application conditions were first considered in
the 1980s [EH86], and negative application conditions together with graph
constraints in the 1990s [HW95, HHT96], including the important result of
transforming graph constraints into application conditions.

The main parts of the theory for the DPO and SPO approaches are pre-
sented in Volume 1 of the Handbook of Graph Grammars and Computing by
Graph Transformation [Roz97]. In addition to our presentation in Part I, the
presentation in the Handbook includes an abstract concurrent semantics of
graph transformation systems in the DPO case. This is based on the shift
equivalence of parallel graph transformations, developed by Kreowski in his
Ph.D. thesis [Kre78]. Further concepts concerning parallelism, concurrency,
and distribution for the algebraic and other approaches are presented in Bal-
dan’s Ph.D. thesis [Bal00] and in Volume 3 of the Handbook of Graph Gram-
mars and Computing by Graph Transformation [EKMR99]. For the concepts
of term graph rewriting, hierarchical graph transformation systems, graph
transformation modules and units, and for the first approaches to the anal-
ysis, verification, and testing of graph transformation systems, we refer to
the proceedings of the first and second International Conferences on Graph
Transformation ICGT 2002 [CEKR02] and ICGT 2004 [EEPR04].

The first approach to HLR categories and systems, as presented in Part
II, was described in [EHKP91b] and was joined to adhesive categories [LS04]
in [EHPP04] and [EEHP04]. Attributed and typed attributed graph trans-
formations, as described in Part III, were considered explicitly in the 1990s,
especially in [LKW93, CL95, HKT02]. A fundamental theory for these impor-
tant kinds of graph transformation systems was first developed in [EPT04] as
an instantiation of adhesive HLR systems.
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1.4.2 Application Areas of Graph Transformation Systems

At the very beginning, the main application areas of graph transformation
systems were rule-based image recognition [PR69] and translation of diagram
languages [Pra71]. Later on, graph transformations have been applied to sev-
eral areas in computer science, biology, chemistry, and engineering, as docu-
mented in Volume 2 of the Handbook of Graph Grammars and Computing by
Graph Transformation [EEKR99]. More recently, graph transformations have
been applied most successfully to the following areas in software engineering,
some part of which have been mentioned already in Subsection 1.1.2:

• model and program transformation;
• syntax and semantics of visual languages;
• visual modeling of behavior and programming;
• modeling, metamodeling, and model-driven architecture;
• software architectures and evolution;
• refactoring of programs and software systems;
• security policies.

Other important application areas have been term graph rewriting, DNA
computing, Petri nets, process algebras and mobile systems, distributed algo-
rithms and scheduling problems, graph theory, logic, and discrete structures.
These application areas have been subject of the international conferences
ICGT 2002 [CEKR02] and ICGT 2004 [EEPR04], together with the follow-
ing satellite workshops and tutorials, most of which have been published in
Electronic Notes in Theoretical Computer Science (see e.g. [GTV03, SET03]):

• Graph Transformation and Visual Modeling Techniques (GTVMT);
• Software Evolution through Transformations (SETRA);
• Petri Nets and Graph Transformations (PNGT);
• DNA Computing and Graph Transformation (DNAGT);
• Graphs, Logic and Discrete Structures;
• Term Graph Rewriting (TERMGRAPH).

1.4.3 Languages and Tools for Graph Transformation Systems

In Chapter 15, we discuss the implementation of typed attributed graph trans-
formation using the AGG language and tool [AGG, ERT99]. A basic version
of AGG was implemented by Löwe et al. in the early 1990s, and later a com-
pletely redesigned version was implemented and extended by Taentzer, Runge,
and others. Another general-purpose graph transformation language and tool
is PROGRES [Sch97, SWZ99]. Quite different support is offered by FUJABA
[FUJ], an environment for round-trip engineering between UML and Java
based on graph transformation.

Two examples of more application-specific tools are DIAGEN [Min97] and
GenGed [BE00, Bar02]. These provide support for the generation of graphical
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editors based on the definition of visual languages using graph grammars. In
addition, several model transformation tools based on graph transformation
have been developed, e.g. ATOM3 [dLV02a], MetaEnv [BP02], and Viatra
[VP03]. More detailed presentations of languages and tools are given in Vol-
ume 2 of the Handbook of Graph Grammars and Computing by Graph Trans-
formation [EEKR99] and in the proceedings [MST02, MST04] of the GraBats
workshops on graph-based tools held as satellite events of ICGT 2002 and
2004 [CEKR02, EEPR04].

1.4.4 Future Work

The aim of this book is to present the fundamentals of algebraic graph trans-
formation based on the double-pushout approach. As discussed above, there
are several other topics within the DPO approach which have been published
already, but are not presented in this book. There are also several interesting
topics for future work. First of all, it would be interesting to have a similar
fundamental theory for the single-pushout approach. A comparative study of
the DPO and SPO approaches is presented in Volume 1 of the Handbook of
Graph Grammars and Computing by Graph Transformation [Roz97]. Another
important topic for future research is the DPO approach with borrowed con-
text [EK04], motivated by process algebra and bigraphical reactive systems
in the sense of Milner [Mil01] and Sobociński [Sob04]. Concerning the main
topics of this book, it is open to extend the main results for graph transfor-
mations to the case of negative and general application conditions and also
to study new kinds of constraints for graphs and typed attributed graphs.
Concerning typed attributed graph transformation, we have introduced type
inheritance, but it remains open to extend the theory in Chapters 9–12 to
this case. Finally, the theory has to be extended to meet the needs of several
interesting application domains. In particular, in the area of model transfor-
mations (Chapter 14), it remains open to develop new techniques in addition
to the analysis of termination and confluence, to show the correctness of model
transformations.
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Graphs, Typed Graphs, and the Gluing

Construction

This chapter is an introduction to graphs and typed graphs. Moreover, some
basic notions of category theory are presented which are essential to the gluing
construction of graphs. In Section 2.1, we define graphs, graph morphisms, and
typed graphs. To analyze graphs with categorical methods, we introduce cat-
egories, and as special morphism types, monomorphisms, epimorphisms, and
isomorphisms in Section 2.2. In Section 2.3, we present the gluing construc-
tion as the basis of graph transformation steps; it is a pushout in categorical
terms. Pullbacks, which are the dual construction to pushouts in a category,
are introduced in Section 2.4.

2.1 Graphs and Typed Graphs

A graph has nodes, and edges, which link two nodes. We consider directed
graphs, i.e. every edge has a distinguished start node (its source) and end
node (its target). We allow parallel edges, as well as loops.

Definition 2.1 (graph). A graph G = (V, E, s, t) consists of a set V
of nodes (also called vertices), a set E of edges, and two functions s, t : E → V ,
the source and target functions:

E V
s
t

Remark 2.2. In the literature, a graph G is often represented by a set V of
nodes and a set E ⊆ V × V of edges. This notion is almost the same as the
one in Definition 2.1: for an element (v, w) ∈ E, v represents its source and w
its target node, but parallel edges are not expressible.

To represent undirected graphs, for each undirected edge between two
nodes v and w we add both directed edges (v, w) and (w, v) to the set E of
edges.
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Example 2.3 (graph). The graph GS = (VS , ES , sS , tS), with node set VS =
{u, v, x, y}, edge set ES = {a, b}, source function sS : ES → VS : a, b 	→ u and
target function tS : ES → VS : a, b 	→ v, is visualized in the following:

GS

x

u

y

v
a

b


�

Graphs are related by (total) graph morphisms, which map the nodes and
edges of a graph to those of another one, preserving the source and target of
each edge.

Definition 2.4 (graph morphism). Given graphs G1, G2 with Gi =
(Vi, Ei, si, ti) for i = 1, 2, a graph morphism f : G1 → G2, f = (fV , fE)
consists of two functions fV : V1 → V2 and fE : E1 → E2 that preserve the
source and target functions, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE:

E1 V1

E2 V2

fE fV

s1
t1

s2
t2

=

A graph morphism f is injective (or surjective) if both functions fV , fE are
injective (or surjective, respectively); f is called isomorphic if it is bijective,
which means both injective and surjective.

Fact 2.5 (composition of graph morphisms). Given two graph mor-
phisms f = (fV , fE) : G1 → G2 and g = (gV , gE) : G2 → G3, the composition
g ◦ f = (gV ◦ fV , gE ◦ fE) : G1 → G3 is again a graph morphism.

Proof. As compositions of functions, gV ◦fV : V1 → V3 and gE ◦fE : E1 → E3

are well defined. Using the associativity of the composition of functions and
the fact that f and g, as graph morphisms, preserve the source and target
functions, we conclude that

1. gV ◦ fV ◦ s1 = gV ◦ s2 ◦ fE = s3 ◦ gE ◦ fE and
2. gV ◦ fV ◦ t1 = gV ◦ t2 ◦ fE = t3 ◦ gE ◦ fE .

Therefore g ◦ f also preserves the source and target functions. 
�

A type graph defines a set of types, which can be used to assign a type to
the nodes and edges of a graph. The typing itself is done by a graph morphism
between the graph and the type graph.

Definition 2.6 (typed graph and typed graph morphism). A type
graph is a distinguished graph TG = (VTG, ETG, sTG, tTG). VTG and ETG

are called the vertex and the edge type alphabets, respectively.
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A tuple (G, type) of a graph G together with a graph morphism type : G →
TG is then called a typed graph.

Given typed graphs GT
1 = (G1, type1) and GT

2 = (G2, type2), a typed
graph morphism f : GT

1 → GT
2 is a graph morphism f : G1 → G2 such that

type2 ◦ f = type1:

G1 G2

TG

f

type1 type2
=

Example 2.7 (typed graph). Consider the following type graph GT = (VT ,
ET , sT , tT ) with VT = {s, t}, ET = {e}, sT : ET → VT : e 	→ s, and tT : ET →
VT : e 	→ t. This type graph ensures that all edges of a graph G typed over
GT link from an s-typed node to a t-typed node, and each node is either a
source (with only outgoing edges) or a sink (with only incoming edges).

The graph GS from Example 2.3, together with the morphism type =
(typeV , typeE) : GS → GT with typeV : VS → VT : u, x 	→ s; v, y 	→ t and
typeE : ES → ET : a, b 	→ e, is then a typed graph (typed over GT ). The
graph G = (GS , type) and its typing morphism are explicitly shown in the
left-hand side of the following diagram, and in a compact notation on the
right-hand side, where each node and edge is labeled with its type (we have
left out their names):

GS

GT

x

u

y

v
a

b

s te

G

e
e

s

s

t

t


�

In addition to graphs and typed graphs, we now introduce labeled graphs,
which were originally considered as the main notion of graphs (see [EPS73,
Ehr79]). In fact, we can show that labeled graphs and labeled graph mor-
phisms can be considered as special cases of typed graphs and typed graph
morphisms. For this reason, we present the theory in the following sections for
graphs and typed graphs only, but it can also be applied to labeled graphs.

Definition 2.8 (labeled graph and labeled graph morphism). A label
alphabet L = (LV , LE) consists of a set LV of node labels and a set LE

of edge labels.
A labeled graph G = (V, E, s, t, lV , lE) consists of an underlying graph

G0 = (V, E, s, t) together with label functions

lV : V → LV and lE : E → LE .
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A labeled graph morphism f : G1 → G2 is a graph morphism f : G0
1 → G0

2

between the underlying graphs which is compatible with the label functions, i.e.
l2,V ◦ fV = l1,V and l2,E ◦ fE = l1,E:

E2 V2
s2
t2

E1 V1
s1
t1

LE LV
l2,E

l1,E

l2,V

l1,V

fE fV= ==

Fact 2.9 (labeled graphs as special typed graphs). Given a label alpha-
bet L = (LV , LE), the type graph TG(L) is defined by TG(L) = (VTG, ETG,
sTG, tTG) with

• VTG = LV ,
• ETG = LV × LE × LV ,
• sTG : ETG → VTG : (a, x, b) 	→ a,
• tTG : ETG → VTG : (a, x, b) 	→ b.

There is then a bijective correspondence between labeled graphs (and labeled
graph morphisms) over the label alphabet L and typed graphs (and typed graph
morphisms) over the type graph TG(L).

Construction. Given a labeled graph G = (V, E, s, t, lV , lE), the corresponding
typed graph over TG(L) is given by GT = (G0, type : G0 → TG(L)) with
G0 = (V, E, s, t), typeV = lV : V → VTG = LV , and typeE : E → ETG =
LV × LE × LV , defined by

typeE(x) = (lV ◦ s(x), lE(x), lV ◦ t(x)).

Given a labeled graph morphism f : G1 → G2, the typed graph morphism
f : GT

1 → GT
2 is given by f : G0

1 → G0
2, satisfying type2 ◦ f = type1:

G0
1 G0

2

TG(L)

f

type1 type2
=

Vice versa, given GT = (G0, type : G0 → TG(L)), the corresponding labeled
graph G is given by G = (G0, lV , lE), with lV = typeV : V → LV = VTG, and
lE : E → LE, defined by lE(e) = x with typeE(e) = (a, x, b). Given a typed
graph morphism f : GT

1 → GT
2 with a graph morphism f : G0

1 → G0
2, then f

is also a labeled graph morphism f : G1 → G2. 
�

Proof. It is easy to check that the commutativity of the diagrams (0) (sep-
arately for s and t), (1), and (2) below for labeled graph morphisms is
equivalent to the commutativity of the diagrams (0), (2), (3), (4) for typed
graph morphisms and that the constructions above are inverse to each other,
with type1,E(x) = (l1,V ◦ s1(x), l1,E(x), l1,V ◦ t1(x)) and type2,E(x) = (l2,V ◦
s2(x), l2,E(x), l2,V ◦ t2(x)):
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E2 V2
s2
t2

E1 V1
s1
t1

LE LV
l2,E

l1,E

l2,V

l1,V

fE fV(1) (2)(0)

E1 V1
s1
t1

E2 V2
s2
t2

LV × LE × LV = ETG VTG = LV
sT G
tT G

type1,E

type2,E

l1,V =type1,V

l2,V =type2,V

fE fV

(3) (2)

(0)

(4)


�

2.2 Introduction to Categories

In general, a category is a mathematical structure that has objects and mor-
phisms, with a composition operation on the morphisms and an identity mor-
phism for each object.

In particular, we shall show that sets, graphs, and typed graphs, together
with functions, graph morphisms, and typed graph morphisms, lead to the
categories Sets, Graphs, and GraphsTG, respectively.

Definition 2.10 (category). A category C = (ObC , MorC , ◦, id) is defined
by

• a class ObC of objects;
• for each pair of objects A, B ∈ ObC , a set MorC(A, B) of morphisms;
• for all objects A, B, C ∈ ObC , a composition operation

◦(A,B,C) : MorC(B, C) × MorC(A, B) → MorC(A, C); and
• for each object A ∈ ObC , an identity morphism idA ∈ MorC(A, A);

such that the following conditions hold:

1. Associativity. For all objects A, B, C, D ∈ ObC and morphisms
f : A → B, g : B → C, and h : C → D, it holds that (h◦g)◦f = h◦(g◦f).

2. Identity. For all objects A, B ∈ ObC and morphisms f : A → B, it holds
that f ◦ idA = f and idB ◦ f = f .

Remark 2.11. Instead of f ∈ MorC(A, B), we write f : A → B and leave
out the index for the composition operation, since it is clear which one to use.
For such a morphism f , A is called its domain and B its codomain.

Example 2.12 (categories). In the following, we give examples of structures
that are categories.
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1. The basic example of a category is the category Sets, with the object
class of all sets and with all functions f : A → B as morphisms. The
composition is defined for f : A → B and g : B → C by (g ◦ f)(x) =
g(f(x)) for all x ∈ A, and the identity is the identical mapping idA : A →
A : x 	→ x.

2. The class of all graphs (as defined in Definition 2.1) as objects and of all
graph morphisms (see Definition 2.4) forms the category Graphs, with
the composition given in Fact 2.5, and the identities are the pairwise
identities on nodes and edges.

3. Given a type graph TG, typed graphs over TG and typed graph mor-
phisms (see Definition 2.6) form the category GraphsTG (see Example
A.6).

4. The category Alg(Σ) has as objects algebras over a given signature Σ,
and the morphisms are homomorphisms between these Σ-algebras. The
composition is defined componentwise for homomorphisms, and the iden-
tities are componentwise identities on the carrier sets (see Appendix B).


�

In the categorical framework, the morphism classes of monomorphisms,
epimorphisms, and isomorphisms are of special interest, because in our exam-
ple categories they correspond to injective, surjective, and bijective functions
or morphisms, respectively.

Definition 2.13 (monomorphism, epimorphism, and isomorphism).
Given a category C, a morphism m : B → C is called a monomorphism if,
for all morphisms f, g : A → B ∈ MorC , it holds that m ◦ f = m ◦ g implies
f = g:

A B Cm
f
g

A morphism e : A → B ∈ MorC is called an epimorphism if, for all mor-
phisms f, g : B → C ∈ MorC , it holds that f ◦ e = g ◦ e implies f = g:

A B Ce
f
g

A morphism i : A → B is called an isomorphism if there exists a morphism
i−1 : B → A such that i ◦ i−1 = idB and i−1 ◦ i = idA:

A Bi
i−1

Remark 2.14. Monomorphisms, epimorphisms, and isomorphisms are closed
under composition: if f : A → B and g : B → C are monomorphisms (or
epimorphisms or isomorphisms), so is g ◦ f .

An isomorphism is also a monomorphism and an epimorphism. But the
inverse conclusion does not hold: a morphism i that is both a monomorphism
and an epimorphism need not be an isomorphism, since i−1 might not exist
(in the category).
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Fact 2.15 (monomorphisms, epimorphisms and isomorphisms). In
Sets, Graphs, and GraphsTG the monomorphisms (or epimorphisms or
isomorphisms) are exactly those morphisms which are injective (or surjective
or bijective, respectively).

Proof. First we show this fact for the category Sets.

1. m : B → C is injective ⇔ m is a monomorphism.
“⇒”. Given f, g : A → B with m ◦ f = m ◦ g, then we have, for all

a ∈ A, m(f(a)) = m(g(a)), and since m is injective, f(a) = g(a), i.e.
f = g.

“⇐”. Suppose ∃x �= y ∈ B : m(x) = m(y). For f, g : {∗} → B with
f(∗) = x and g(∗) = y, we have m(f(∗)) = m(x) = m(y) = m(g(∗)) and
f �= g, which is a contradiction.

2. e : A → B is surjective ⇔ e is an epimorphism.
“⇒”. Given f, g : B → C with f ◦e = g◦e, then we have, for all a ∈ A,

f(e(a)) = g(e(a)), and since e is surjective, f(b) = g(b), i.e. f = g.
“⇐”. Suppose ∃x ∈ B : ∀a ∈ A : e(a) �= x. For f, g : B → {∗, 1, 2}

with

f(b) =

{
1 : b = x
∗ : otherwise

, g(b) =

{
2 : b = x
∗ : otherwise

,

we have ∀a ∈ A : f(e(a)) = g(e(a)). Therefore f ◦ e = g ◦ e, but f �= g,
which is a contradiction.

3. i : A → B is bijective iff the inverse function i−1 : B → A with i−1◦i = idA

and i ◦ i−1 = idB exists, i.e. i is an isomorphism.

In Graphs and GraphsTG, a (typed) graph morphism f is injective (or
surjective or bijective) if it is componentwise injective (or surjective or bijec-
tive, respectively), i.e. all components are monomorphisms (or epimorphisms
or isomorphisms, respectively) in Sets, and then also f is a monomorphism (or
an epimorphism or an isomorphism, respectively) in Graphs or GraphsTG,
respectively.

We still have to show that all monomorphisms (and epimorphisms and
isomorphisms) are injective (and surjective and bijective, respectively).

1. Given a monomorphism m : B → C in Graphs or GraphsTG, suppose
that m is not injective.

Case 1: mV is not injective. Then we have v1 �= v2 ∈ VB with
mV (v1) = mV (v2). Consider the graph A with a single node v (and
the typing typeA(v) = typeB(v1) = typeB(v2)). We define morphisms
f, g : A → B by fV (v) = v1 and gV (v) = v2; m ◦ f = m ◦ g, but f �= g.
Therefore m is not a monomorphism, which is a contradiction.

Case 2: mE is not injective. Then we have e1 �= e2 ∈ EB with
mE(e1) = mE(e2). Consider the graph A with an edge e between
the two nodes v and w (and the typing typeA(v) = typeB(sB(e1)) =
typeB(sB(e2)), typeA(w) = typeB(tB(e1)) = typeB(tB(e2)), and
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typeA(e) = typeB(e1) = typeB(e2)). We define morphisms f, g : A → B
by fV (v) = sB(e1), fV (w) = tB(e1), fE(e) = e1, and gV (v) = sB(e2),
gV (w) = tB(e2), gE(e) = e2; m ◦ f = m ◦ g, but f �= g. Therefore m is not
a monomorphism, which is a contradiction.

2. Given an epimorphism e : A → B in Graphs or GraphsTG, suppose
that e is not surjective.

Case 1: eV is not surjective, but eE is. Then there exists a node v ∈ VB

with v /∈ eV (VA), and v is isolated (otherwise eE is not surjective). We
construct the graph C = (VC , EC , sC , tC) with the disjoint union VC =

VB

�

∪ {v}, EC = EB, sC = sB, tC = tB (and the typing morphism
typeC : C → TG with

typeC(x) =

{
typeB(x) : x ∈ B
typeB(v) : x = v

).

Now we define morphisms f, g : B → C with

f(x) = x and g(x) =

{
x : x �= v
v : x = v

.

These morphisms are well defined and we have f ◦ e = g ◦ e, but f �= g.
Therefore e is not an epimorphism, which is a contradiction.

Case 2: eE is not surjective. Then there exists an edge e ∈ EB with
e /∈ eE(EA). We construct the graph C = (VC , EC , sC , tC) with VC = VB ,

EC = EB

�

∪ {e},

sC =

{
sB(x) : x �= e
sB(e) : x = e

, tC =

{
tB(x) : x �= e
tB(e) : x = e

(and the typing morphism typeC : C → TG with

typeC(x) =

{
typeB(x) : x ∈ B
typeB(e) : x = e

).

Finally, we define morphisms f, g : B → C with

f(x) = x and g(x) =

{
x : x �= e
e : x = e

.

These morphisms are well defined and we have f ◦ e = g ◦ e, but f �= g.
Therefore e is not an epimorphism, which is a contradiction.

3. Given an isomorphism i, then i is a monomorphism and an epimorphism,
and therefore both injective and surjective, i.e. bijective.


�
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2.3 Pushouts as a Gluing Construction

For the application of a graph transformation rule to a graph, we need a
technique to glue graphs together along a common subgraph. Intuitively, we
use this common subgraph and add all other nodes and edges from both
graphs. The idea of a pushout generalizes the gluing construction in the sense
of category theory, i.e. a pushout object emerges from gluing two objects along
a common subobject.

Definition 2.16 (pushout). Given morphisms f : A → B and g : A → C
in a category C, a pushout (D, f ′, g′) over f and g is defined by

• a pushout object D and
• morphisms f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f

such that the following universal property is fulfilled: For all objects X and
morphisms h : B → X and k : C → X with k ◦ g = h ◦ f , there is a unique
morphism x : D → X such that x ◦ g′ = h and x ◦ f ′ = k:

A B

C D

X

f

g

k

h

f ′

g′

x

=

=

=

We shall often use the abbreviation “PO” for “pushout”. We write D =
B +A C for the pushout object D, where D is called the gluing of B and C via
A, or, more precisely, via (A, f, g).

Fact 2.17 (POs in Sets, Graphs, and GraphsTG). In Sets, the pushout
object over the morphisms f : A → B and g : A → C can be constructed

as the quotient B
�

∪ C|≡, where ≡ is the smallest equivalence relation with
(f(a), g(a)) ∈ ≡ for all a ∈ A. The morphisms f ′ and g′ are defined by
f ′(c) = [c] for all c ∈ C and g′(b) = [b] for all b ∈ B.

Moreover, we have the following properties:

1. If f is injective (or surjective), then f ′ is also injective (or surjective,
respectively).

2. The pair (f ′, g′) is jointly surjective, i.e. for each x ∈ D there is a preim-
age b ∈ B with g′(b) = x or c ∈ C with f ′(c) = x.

3. If f is injective and x ∈ D has preimages b ∈ B and c ∈ C with g′(b) =
f ′(c) = x, then there is a unique preimage a ∈ A with f(a) = b and
g(a) = c.

4. If f and hence also f ′ is injective, then D is isomorphic to D′ = C
�

∪
B \ f(A).
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In Graphs and GraphsTG, pushouts can be constructed componentwise
for nodes and edges in Sets. Moreover, the above properties 1–4 hold compo-
nentwise.

Proof. In Sets, for a given object X with morphisms h : B → X and k : C →
X such that h ◦ f = k ◦ g, we define

x([d]) =

{
h(b) if ∃b ∈ B : b ∈ [d]
k(c) if ∃c ∈ C : c ∈ [d]

.

At least one of these two cases occurs, and if both occur, then the transitive
closure of ≡ implies the existence of a1, . . . , an ∈ A with f(a1) = b, g(a1) =
g(a2), f(a2) = f(a3), . . . , g(an−1) = g(an) = c, which implies h(b) = k(c)
using h ◦ f = k ◦ g. Similarly, b1, b2 ∈ [d] implies h(b1) = h(b2) and c1, c2 ∈ [d]
implies k(c1) = k(c2). Therefore x is well defined and we have x ◦ f ′ = k and
x ◦ g′ = h. The uniqueness of x follows from f ′ and g′ being jointly surjective,
i.e. for all d ∈ D there is a b ∈ B with g′(b) = d or a c ∈ C with f ′(c) = d.

If f is injective (or surjective), using the properties of the equivalence
relation ≡ it can be shown that f ′ is also injective (or surjective, respectively).

Property 2 follows from the construction of D = B
�

∪ C|≡. If f is injective,
the discussion above implies f(a1) = b and g(a1) = c, which implies property
3. For property 4, we can show that b : D′ → D, defined by b(x) = [x], is a
bijection.

This pushout construction in Sets works analogously in Graphs and
GraphsTG for the sets of nodes and edges, respectively, of the pushout graph.
The source and target functions of the pushout graph are uniquely determined
by the pushout property of the node set of the pushout graph. 
�

Remark 2.18. For the construction of pushout objects in Sets we consider
the following steps:

1. Define the relation ∼ on the disjoint union B
�

∪ C as follows: For all a ∈ A
do f(a) ∼ g(a).

2. Let [x] = {y ∈ B
�

∪ C | x ≡ y}, where ≡ is the equivalence relation
generated by ∼.

3. D := {[x] | x ∈ B
�

∪ C}.

Note that the eqivalence relation ≡ is the reflexive, symmetric, and transitive
closure of ∼. In ∼, all those elements that are reached from the same a ∈ A
are identified. The result D is then the pushout object of f and g.

Example 2.19 (pushout). Given the sets A = {a, b, c, d}, B = {1, 2, 3, 4},
and C = {5, 6, 7, 8} with morphisms f : A → B, f(a) = 1, f(b) = f(c) = 2,
f(d) = 3 and g : A → C, g(a) = g(b) = 5, g(c) = 6, g(d) = 7, we use the
construction in Remark 2.18:

1. 1 ∼ 5, 2 ∼ 5, 2 ∼ 6, 3 ∼ 7.
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2. 1 ≡ 2 ≡ 5 ≡ 6 and 3 ≡ 7; therefore [1] = [2] = [5] = [6] = {1, 2, 5, 6},
[3] = [7] = {3, 7}, [4] = {4}, and [8] = {8}.

3. D = {[1], [3], [4], [8]}.

Altogether, we obtain the pushout object D and morphisms f ′ : C → D : x 	→
[x] and g′ : B → D : x 	→ [x], as shown in the left-hand side of the following
diagram. The analogous construction in Graphs leads to the pushout diagram
over graphs on the right-hand side, where we have depicted the node mappings
only:

a
b

c
d

1
2

3
4

5
6

7
8

[1]
[3]

[4][8]

A B

C

D

GA GB

GC GD


�

Finally, we show some important properties of pushouts which are essential
for the theory of graph transformation.

Fact 2.20 (uniqueness, composition, and decomposition of POs).
Given a category C, we have the following:

(a) The pushout object D is unique up to isomorphism.
(b) The composition and decomposition of pushouts result again in a pushout,

i.e., given the following commutative diagram, the statements below are
valid:

A B

C D

E

F

(1) (2)

f e

f ′
e′

g g′
e′′

– Pushout composition: if (1) and (2) are pushouts, then (1) + (2) is
also a pushout.

– Pushout decomposition: if (1) and (1) + (2) are pushouts, then (2) is
also a pushout.
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Proof.

(a) Given the pushout (1), suppose that there is another pushout (1′′) with
a pushout object D′′ and morphisms f ′′ : C → D′′, g′′ : B → D′′ such
that f ′′ ◦ g = g′′ ◦ f . Both of the squares (1) and (1′′) below are pushouts;
therefore we have morphisms d : D → D′′ with d◦ f ′ = f ′′ and d◦ g′ = g′′,
and d′′ : D′′ → D with d′′ ◦ f ′′ = f ′ and d′′ ◦ g′′ = g′:

A B

C D

D′′

A B

C D′′

D

(1) (1′′)

f

g g′

f ′

f ′′

g′′

d

f

g g′′

f ′′

f ′

g′

d′′

From pushout (1), it follows that idD : D → D is the unique morphism
with idD ◦ f ′ = f ′ and idD ◦ g′ = g′. The same holds for d′′ ◦ d; therefore
we have d′′ ◦ d = idD and, analogously, d ◦ d′′ = idD′′ . This means that
D

∼
= D′′ (see also Remark A.18).

(b) Pushout composition. Given the pushouts (1) and (2), in order to show
that (1) + (2) is a pushout, we assume that we have an object X with
morphisms h : E → X and k : C → X satisfying h ◦ e ◦ f = k ◦ g. From
pushout (1), we obtain a unique morphism y : D → X with y ◦ f ′ = k
and y ◦ g′ = h ◦ e. Pushout (2), in comparison with y and h, gives us a
unique morphism x : F → X with x ◦ e′′ = h and x ◦ e′ = y, which implies
x ◦ e′ ◦ f ′ = y ◦ f ′ = k. Moreover, we can also show that x is unique with
respect to the properties x◦e′′ = h and x◦e′ ◦f ′ = k using the uniqueness
properties of the pushouts (1) and (2).

A B

C D

E

F

X

(1) (2)

f e

f ′
e′

g g′
e′′

h

k y x

Pushout decomposition. Given the pushouts (1) and (1) + (2), in order
to show that (2) is a pushout, we assume that we have an object X with
morphisms h : E → X and y : D → X satisfying h ◦ e = y ◦ g′. From
pushout (1) + (2), we obtain a unique morphism x : F → X with x◦e′′ = h
and x ◦ e′ ◦ f ′ = y ◦ f ′. Since (1) is a pushout, the uniqueness of y with
respect to (1) implies x ◦ e′ = y. Therefore x has the required properties
x ◦ e′′ = h and x ◦ e′ = y. Moreover, we can also show that x is unique
with respect to these properties using the uniqueness properties of (1) +
(2) and (1). 
�



2.4 Pullbacks as the Dual Construction of Pushouts 33

Example 2.21 (PO composition and decomposition). The following di-
agram illustrates the composition and decomposition of pushouts in Graphs.
The squares (1) and (2) are pushouts, as well as the composed diagram (1) +
(2):

(1) (2)


�

2.4 Pullbacks as the Dual Construction of Pushouts

The dual construction of a pushout is a pullback. Pullbacks can be seen as a
generalized intersection of objects over a common object.

Pushouts, pullbacks, and the stability of pushouts and pullbacks are es-
sential for the concept and theory of (weak) adhesive HLR categories, which
will be studied in Chapter 4.

Definition 2.22 (pullback). Given morphisms f : C → D and g : B → D
in a category C, a pullback (A, f ′, g′) over f and g is defined by

• a pullback object A and
• morphisms f ′ : A → B and g′ : A → C with g ◦ f ′ = f ◦ g′

such that the following universal property is fulfilled: For all objects X with
morphisms h : X → B and k : X → C with f ◦ k = g ◦ h, there is a unique
morphism x : X → A such that f ′ ◦ x = h and g′ ◦ x = k:

A B

C D

X

g

f

k

h

f ′

g′

x

=

=

=

We shall often use the abbreviation “PB” for “pullback”.
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Fact 2.23 (PBs in Sets, Graphs, and GraphsTG). In Sets, the pullback

C
g′

← A
f ′

→ B over the morphisms f : C → D and g : B → D is constructed by
A =

⋃
d∈D f−1(d) × g−1(d) = {(c, b) | f(c) = g(b)} ⊆ C × B with morphisms

f ′ : A → B : (c, b) 	→ b and g′ : A → C : (c, b) 	→ c. Moreover, we have the
following properties:

1. If f is injective (or surjective), then f ′ is also injective (or surjective,
respectively).

2. f ′ and g′ are jointly injective, i.e. for all a1, a2 ∈ A, f ′(a1) = f ′(a2) and
g′(a1) = g′(a2) implies a1 = a2.

3. A commutative square, as given in Definition 2.22, is a pullback in Sets
iff, for all b ∈ B, c ∈ C with g(b) = f(c), there is a unique a ∈ A with
f ′(a) = b and g′(a) = c.

In Graphs and GraphsTG, pullbacks can be constructed componentwise
for nodes and edges in Sets.

Proof. In Sets, for given morphisms h : X → B and k : X → C with f ◦ k =
g ◦ h, the unique morphism x : X → A is given by x(p) = (k(p), h(p)) ∈ A for
all p ∈ X . The required properties can be easily checked.

This pullback construction in Sets works analogously in Graphs and
GraphsTG for the sets of nodes and edges, respectively, of the pullback graph.
The source and target functions of the pullback graph are uniquely determined
by the pullback property of the edge set of the pullback graph. 
�

Remark 2.24 (special cases of PBs). In Sets, if the given function g :
B → D is an inclusion then the pullback object can be constructed as the
preimage of B under f , i.e. A = f−1(B). If both given functions g : B → D
and f : C → D are inclusions, then A can be constructed as the intersection
of B and C, i.e. A = B ∩C. This interpretation works not only for Sets, but
also for Graphs and GraphsTG.

Remark 2.25 (relationship between PBs and POs). In Sets, Graphs,
and GraphsTG we have the interesting property that a pushout where at
least one of the given morphisms is injective is also a pullback. This property
will be shown for (weak) adhesive HLR categories in Section 4.3. For Sets, it
is an easy consequence of the PO property 3 in Fact 2.17. Vice versa, given
the pullback in Definition 2.22 in Sets, then this pullback is also a pushout
if f and f ′ are injective, g and f are jointly surjective, and g is injective up
to f ′. The last property means that g(b1) = g(b2) for b1 �= b2 ∈ B implies
b1, b2 ∈ f ′(A). This property can be extended to Graphs and GraphsGT

componentwise.

Example 2.26 (pullback). Given the sets B = {1, 2, 3, 4}, C = {5, 6, 7},
and D = {a, b, c, d} with morphisms g : B → D, g(1) = g(2) = a, g(3) = b,
g(4) = c, and f : C → D, f(5) = a, f(6) = b, f(7) = d, then the pullback
object D is constructed as D = {(5, 1), (5, 2), (6, 3)} with morphisms f ′ : A →
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B : (x, y) 	→ y and g′ : A → C : (x, y) 	→ x, as shown in the left-hand side
of the following diagram. The analogous construction in Graphs leads to the
pullback diagram over graphs shown in the right-hand side, where we have
depicted the node mappings only:

(5, 1)
(5, 2)

(6, 3)

1
2

3
4

5
6

7

a
b

c
d

A B

C

D

GA GB

GC

GD


�

Dually to the uniqueness, composition, and decomposition of pushouts
described in Fact 2.20, we have corresponding properties for pullbacks.

Fact 2.27 (uniqueness, composition, and decomposition of PBs).

(a) The pullback object A is unique up to isomorphism.
(b) The composition and decomposition of pullbacks result again in a pullback,

i.e., given the following commutative diagram, the statements below are
valid:

A B

C D

E

F

(1) (2)

– Pullback composition: if (1) and (2) are pullbacks, then (1) + (2) is
also a pullback.

– Pullback decomposition: if (2) and (1) + (2) are pullbacks, then (1) is
also a pullback.

Proof. This fact follows by dualization from the corresponding Fact 2.20 for
pushouts. 
�
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Graph Transformation Systems

In this chapter, we introduce graph and typed graph transformation systems
and grammars based on the constructions presented in Chapter 2. In Section
3.1, we present the basic definitions for graph transformation (GT) systems
in the classical algebraic approach, based on double pushouts in the category
Graphs of graphs. The construction of direct graph transformations in two
steps is presented in Section 3.2. The first important results, concerning the
independence of transformations, are presented in Section 3.3. In Section 3.4,
we present an overview of the other main results for GT systems. The proofs
of all these results are obtained by instantiation of corresponding results in the
categorical framework of Chapter 5. Finally, we introduce graph constraints
and application conditions in Section 3.5, and refer to the corresponding re-
sults in the general categorical framework in Chapter 7.

3.1 Basic Definitions for GT Systems

In this section, we introduce graph and typed graph transformation systems,
or (typed) graph transformation systems, for short. In the following, we always
use an abbreviated terminology of this kind to handle both cases simultane-
ously. Graph transformation is based on graph productions, which describe a
general way how to transform graphs. The application of a production to a
graph is called a direct graph transformation.

Definition 3.1 (graph production). A (typed) graph production p =

(L
l
← K

r
→ R) consists of (typed) graphs L, K, and R, called the left-

hand side, gluing graph, and the right-hand side respectively, and two injective
(typed) graph morphisms l and r.

Given a (typed) graph production p, the inverse production is defined by

p−1 = (R
r
← K

l
→ L).
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Definition 3.2 (graph transformation). Given a (typed) graph produc-

tion p = (L
l
← K

r
→ R) and a (typed) graph G with a (typed) graph mor-

phism m : L → G, called the match, a direct (typed) graph transformation

G
p,m
=⇒ H from G to a (typed) graph H is given by the following double-pushout

(DPO) diagram, where (1) and (2) are pushouts in the category Graphs (or
GraphsTG, respectively):

L K R

G D H

(1) (2)

l r

m k n

f g

A sequence G0 ⇒ G1 ⇒ . . . ⇒ Gn of direct (typed) graph transformations is

called a (typed) graph transformation and is denoted by G0
∗
⇒ Gn. For n = 0,

we have the identical (typed) graph transformation G0
id
⇒ G0. Moreover, for

n = 0 we allow also graph isomorphisms G0
∼
= G′

0, because pushouts and hence
also direct graph transformations are only unique up to isomorphism.

In Section 3.2, we shall discuss how to construct a direct graph transfor-

mation G
p,m
=⇒ H from a given production p and match m.

The application of a production to a graph G can be reversed by its inverse
production – the result is equal or at least isomorphic to the original graph
G.

Fact 3.3 (inverse graph transformation). Given a direct (typed) graph

transformation G
p,m
=⇒ H with a comatch morphism n : R → H, then there is

a direct (typed) graph transformation H
p−1,n
=⇒ G.

Proof. This follows directly from Definitions 3.1 and 3.2. 
�

Now we shall define (typed) graph transformation systems and (typed)
graph grammars. The language of a (typed) graph grammar consists of those
(typed) graphs that can be derived from the start graph.

Definition 3.4 (GT system, graph grammar, and language). A graph
transformation system GTS = (P ) consists of a set of graph productions P .

A typed graph transformation system GTS = (TG, P ) consists of a type
graph TG and a set of typed graph productions P .

A (typed) graph grammar GG = (GTS, S) consists of a (typed) graph
transformation system GTS and a (typed) start graph S.

The (typed) graph language L of GG is defined by

L = {G | ∃ (typed) graph transformation S
∗
⇒ G}.

We shall use the abbreviation “GT system” for “graph and typed graph
transformations system”.
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Remark 3.5. A (typed) graph grammar without its start graph is a (typed)
graph transformation system. In the context of (typed) graph grammars,
(typed) graph transformations are often called (typed) graph derivations.

Similarly to Chomsky grammars, in the string case it is also possible to
distinguish between terminal and nonterminal symbols for the productions in
graph transformation systems and grammars. In the case of nonterminals, the
language L would be restricted to graphs with terminal symbols only.

Example 3.6 (graph grammar MutualExclusion). In the following, we
show an example of a typed graph grammar, which is a variant of Dijkstra’s
algorithm for mutual exclusion (see [Lyn96]). Given two processes that com-
pete for a resource used by both of them, the aim of the algorithm is to ensure
that once one process is using the resource the other has to wait and cannot
access it.

There is a global variable turn that assigns the resource to any of the
processes initially. Each process i has a flag f(i) with possible values 0, 1, 2,
initially set to 0, and a state that is initially non-active. If the process wants
to access the resource, its state changes to active and the flag value is set
to 1. If the variable turn has assigned the resource already to the requesting
process, the flag can be set to 2, which indicates that the process is accessing
the resource. Then the process uses the resource and is in its critical section.
Meanwhile, no other process can access the resource, because the turn variable
cannot be changed in this stage of the process. After the critical section has
been exited, the flag is set back to 0 and the state to non-active. Otherwise, if
the resource is assigned to a nonactive process, it can be reassigned and then
accessed analogously by the requesting process.

For our typed graph grammar, we have the following type graph TG and
five typed graph productions, where all morphisms are inclusions:

TG: P

T

F1

F2

R

start

crit

check

setTurn

active

non−active

setF lag:

P R P R P F1 R

start

non−active

setTurn

active
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setTurn1:

P

T

P

R

P

T

P

R

P

T

P

R

non−active non−active

setTurn

non−active

check

setTurn2:

P T R P T R P T R

setTurn check

enter:

P

F1

T

R P

T

R P

F2

T

R

check crit

exit:

P F2 R P R P R

crit

active

start

non−active

Each process is typed by P , a resource is typed by R, and T denotes the turn.
If the flag of a process is set to 0, we do not depict it in the graph. The flag
values 1 and 2 are shown by nodes typed with F1 or F2, respectively, with
a link from the corresponding process to the node and a link to the required
resource.

The production setF lag allows a nonactive process to indicate a request
for the resource by setting its flag to 1. The production setTurn1 allows the
turn to be changed to an active process if the other process, which has the
turn, is nonactive. If the turn is already assigned to the active process, then
the turn remains in setTurn2. Thereafter, in the production enter, the process
enters its critical section. Finally, the process exits the critical section with the
production exit and another process may get the turn and access the resource.

The start graph is the following typed graph S, containing two nonac-
tive processes that can compete for one resource. For better readability, we
have assigned a number to each process node. These numbers show only the
mapping between different graphs and do not belong to the graph itself:

S : P
2

TP
1

R

non−active

start

non−active

start
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Altogether, we have the typed graph grammar MutualExclusion = (P, S)
with P = {setF lag, setTurn1, setTurn2, enter, exit}.

We can apply the typed graph production setF lag to the start graph S

with a match m, leading to the direct typed graph transformation S
setF lag,m

=⇒
G1 shown in the following diagram:

setF lag

P R P R P F1 R

start

non−active

setTurn

active

P
2

TP
1

R

non−active

start

non−active

start

P
2

TP
1

R

non−active

start

P
2

T

F1

P
1

R

non−active

start

active

setTurn

m

S D G1

If we apply the typed graph productions setTurn1, enter, setF lag,
and exit to G1, then we obtain the direct typed graph transformations

G1
setTurn1,m1

=⇒ G2, G2
enter,m2

=⇒ G3, G3
setF lag,m3

=⇒ G4, and G4
exit,m4
=⇒ G5,

where the graphs G2, G3, G4, and G5 are shown in the following, and a typed
graph transformation S

∗
⇒ G5:

G1 : P
2

RP
1

T

F1
non−active

start

active

setTurn

⇓setTurn1

G2 : P
2

RP
1

T

F1
non−active

start

active

check

⇓enter
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G3 : P
2

RP
1

T

F2
non−active

start

active

crit

⇓setF lag

G4 : P
2

RP
1

T

F2

F1

active

setTurn

active

crit

⇓exit

G5 : P
2

RP
1

TF1

active

setTurn

non−active

start

To show that this typed graph grammar indeed ensures mutual exclusion, the
whole derivation graph is depicted in the following diagram. The nodes – which
stand for the graphs in the typed graph language – show, in an abbreviated
notation, the state of the processes. On the left-hand side of each node, the
state of the first process is shown, and also its flag value and if the turn is
assigned to that process. Analogously, this information for the second process
is depicted on the right-hand side. The gray nodes are those nodes where the
resource is actually accessed by a process – and only one process can access
it at any one time.
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process 1 process 2
non−act. active
start setTurn
flag=0 flag=1

turn

process 1 process 2
non−act. active
start check
flag=0 flag=1

turn

process 1 process 2
non−act. active
start crit
flag=0 flag=2

turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0

turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0

turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1

turn

process 1 process 2
active active
setTurn check
flag=1 flag=1

turn

process 1 process 2
active active
setTurn crit
flag=1 flag=2

turn

process 1 process 2
non−act. active
start setTurn
flag=0 flag=1
turn

process 1 process 2
active active
setTurn setTurn
flag=1 flag=1
turn

process 1 process 2
active active
check setTurn
flag=1 flag=1
turn

process 1 process 2
active active
crit setTurn
flag=2 flag=1
turn

process 1 process 2
non−act. non−act.
start start
flag=0 flag=0
turn

process 1 process 2
active non−act.
setTurn start
flag=1 flag=0
turn

process 1 process 2
active non−act.
check start
flag=1 flag=0
turn

process 1 process 2
active non−act.
crit start
flag=2 flag=0
turn

setF lag

setF lag

setF lag

setTurn2

setF lag

enter

setF lag

setTurn2

setF lag

enter

setF lag

setF lag

setF lag

setF lag

setTurn2

setTurn2

setF lag

enter

enter

setF lag

exit exit

setTurn1setTurn1

exitexit

S :


�

3.2 Construction of Graph Transformations

In this section, we analyze the question under what conditions a (typed) graph
production p = (L ← K → R) can be applied to a (typed) graph G via a
match m. In general, the existence of a context graph D that leads to a pushout
is required. This allows us to construct a direct (typed) graph transformation

G
p,m
=⇒ H , where, in a second step, the (typed) graph H is constructed as the

gluing of D and R via K.
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Definition 3.7 (applicability of productions). A (typed) graph produc-

tion p = (L
l
← K

r
→ R) is applicable to a (typed) graph G via the match

m if there exists a context graph D such that (1) is a pushout in the sense
of Definition 3.2:

L K R

G D

(1)

l r

m k

f

Example 3.8 (applicability of a production). In the direct typed graph

transformation S
setF lag,m

=⇒ G1 in Example 3.6, the typed graph production
setF lag is applicable via the given match m.

In contrast, the typed graph production deleteProcess : P ← ∅ → ∅
is not applicable to the start graph S via the match m′, as shown in the
following diagram, because no context graph D exists. If the second process
node is deleted, we obtain two dangling loops that have no source and target,
which do not form a proper graph.

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

P ∅ ∅

P
2

TP
1

R

non−active

start

non−active

start
D

m′

S


�

This definition does not formulate a syntactical criterion to decide whether
a (typed) graph production is applicable or not. A more constructive approach
is to check the following gluing condition. The two concepts are equivalent,
as shown in Fact 3.11.

Definition 3.9 (gluing condition). Given a (typed) graph production p =

(L
l
← K

r
→ R), a (typed) graph G, and a match m : L → G with

X = (VX , EX , sX , tX) for all X ∈ {L, K, R, G}, we can state the following
definitions:
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• The gluing points GP are those nodes and edges in L that are not deleted
by p, i.e. GP = lV (VK) ∪ lE(EK) = l(K).

• The identification points IP are those nodes and edges in L that are iden-
tified by m, i.e. IP = {v ∈ VL | ∃w ∈ VL, w �= v : mV (v) = mV (w)}∪{e ∈
EL | ∃f ∈ EL, f �= e : mE(e) = mE(f)}.

• The dangling points DP are those nodes in L whose images under m are
the source or target of an edge in G that does not belong to m(L), i.e.
DP = {v ∈ VL | ∃e ∈ EG\mE(EL) : sG(e) = mV (v) or tG(e) = mV (v)}.

p and m satisfy the gluing condition if all identification points and all dangling
points are also gluing points, i.e. IP ∪ DP ⊆ GP .

Note that in our terminology, a match m : L → G is a general graph
morphism from the left-hand side L of a production to a graph G, but we still
have to check the gluing condition in order to apply the production via the
match m. If the gluing condition is not satisfied, the production p cannot be
applied via the match m.

Example 3.10 (gluing condition). For the direct typed graph transforma-

tion S
setF lag,m

=⇒ G1 in Example 3.6, we analyze the gluing, identification, and
dangling points:

• GP = l(K), which means that the gluing points in L are both nodes.
• IP = ∅, since m does not identify any nodes or edges.
• The resource node is the only dangling point: in S, there is an edge from

the turn node T (which has no preimage in L) to the resource node R, but
no edge from or to the upper process node P that is not already in L.

This means that IP ∪ DP ⊆ GP , and the gluing condition is satisfied by m
and setF lag.

If we look at the typed graph production deleteProcess from Example 3.8
with the match m′, then we have:

• GP = l(K), which means that there are no gluing points in L.
• IP = ∅, since m′ does not identify any nodes or edges.
• The process node in L is a dangling point: in S, there are two loops at

this node, which have no preimages in L.

This means that DP � GP , and the gluing condition is not satisfied by m′

and deleteProcess. 
�

Fact 3.11 (existence and uniqueness of context graph). For a (typed)

graph production p = (L
l
← K

r
→ R), a (typed) graph G, and a match m :

L → G, the context graph D with the PO (1) exists iff the gluing condition is
satisfied. If D exists, it is unique up to isomorphism.

Remark 3.12. As usual, the word “iff” means “if and only if”.
In categorical terms, the construction of D together with the morphisms

k : K → D and f : D → G is called the pushout complement of l : K → L
and m : L → G leading to the PO (1) below:
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L K

G D

(1)

l

m k

f

Proof. “⇒”. Given the PO (1), then the properties of the gluing condition
follow from the properties of pushouts in Graphs and GraphsTG:

1. If m(x) = m(y) for x �= y ∈ L and (1) is a pushout, then there exist
x′ �= y′ ∈ K with l(x′) = x and l(y′) = y. This means that x, y ∈ l(K),
i.e. IP ⊆ GP .

2. Consider v ∈ DP with e ∈ EG\mE(EL) and, without loss of gen-
erality mV (v) = sG(e). From property 2 in Fact 2.17, f and m are
jointly surjective, therefore there is an e′ ∈ ED with fE(e′) = e and
fV (sD(e′)) = mV (v). This means that, from property 3 in Fact 2.17, there
is a v′ ∈ VK : l(v′) = v and kV (v′) = sD(e′). This means that v ∈ l(K),
i.e. DP ⊆ GP .

“⇐”. If the gluing condition is satisfied, we can construct D = (VD, ED, sD,
tD), k, and f (and typeD : D → TG) as follows:

• VD = (VG\mV (VL)) ∪ mV (lV (VK));
• ED = (EG\mE(EL)) ∪ mE(lE(EK));
• sD = sG|ED

, tD = tG|ED
;

• kV (v) = mV (lV (v)) for all v ∈ VK , kE(e) = mE(lE(e)) for all e ∈ EK ;
• f is an inclusion;
• in the case of typed graphs, typeD = typeG|D.

The well-definedness of this construction and the pushout properties follow
from Definition 3.9 and can be easily checked.

We omit the proof of the uniqueness of D. This can be shown explicitly,
but it also follows from the properties of adhesive HLR categories, as shown
in Theorem 4.26. 
�

If a (typed) graph production is applicable to a (typed) graph via a match,
i.e. the gluing condition is fulfilled, then we can construct the direct (typed)
graph transformation as follows.

Fact 3.13 (construction of direct (typed) graph transformations).

Given a (typed) graph production p = (L
l
← K

r
→ R) and a match m : L → G

such that p is applicable to a (typed) graph G via m, the direct (typed) graph
transformation can be constructed in two steps:

1. Delete those nodes and edges in G that are reached by the match m, but
keep the image of K, i.e. D = (G\m(L))∪m(l(K)). More precisely, con-
struct the context graph D (see the proof of Fact 3.11) and pushout (1)
such that G = L +K D.
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2. Add those nodes and edges that are newly created in R, i.e. H = D
�

∪

(R\r(K)), where the disjoint union
�

∪ is used to make sure that we add
the elements of R\r(K) as new elements. More precisely, construct the
pushout (2) of D and R via K such that H = R +K D.

This construction is unique up to isomorphism.

L K R

G D H

(1) (2)

l r

m k n

f g

Proof. The first step corresponds to the construction of the pushout comple-
ment, as described in the proof of Fact 3.11.

The second step corresponds to the construction of the pushout, as shown
in Fact 2.17.

The uniqueness of this construction follows from the uniqueness of D (see
Fact 3.11) and the uniqueness of pushout objects (see Fact 2.20). 
�

Example 3.14 (construction of a graph transformation). We follow

this construction to analyze the typed graph transformation S
setF lag,m

=⇒ G1 in
Example 3.6:

1. The two loops at the match of the process node in L have no preimage in
K; therefore they are deleted in D. The nodes have a preimage in K and
therefore remain in D.

2. In R, we create the loops at the process node and the flag node with the
label F1, and the corresponding edges. All these elements are added in
G1.


�

3.3 Local Church–Rosser and Parallelism Theorems for

GT Systems

In this section, we study under what conditions two direct (typed) graph
transformations applied to the same (typed) graph can be applied in arbitrary
order, leading to the same result. This leads to the notions of parallel and
sequential independence of direct (typed) graph transformations and to the
Local Church–Rosser Theorem. Moreover, the corresponding (typed) graph
productions can be applied in parallel in this case, leading to the Parallelism
Theorem. Both results were shown in the 1970s [ER76, EK76, Ehr79].

Definition 3.15 (parallel and sequential independence). Two direct

(typed) graph transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel in-

dependent if all nodes and edges in the intersection of the two matches are
gluing items with respect to both transformations, i.e.
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m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2)).

Two direct (typed) graph transformations G
p1,m1
=⇒ H1

p2,m2
=⇒ H2 are sequen-

tially independent if all nodes and edges in the intersection of the comatch
n1 : R1 → H1 and the match m2 are gluing items with respect to both trans-
formations, i.e.

n1(R1) ∩ m2(L2) ⊆ n1(r1(K1)) ∩ m2(l2(K2)).

Remark 3.16. G1
p1
⇒ G2

p2
⇒ G3 are sequentially independent iff G1

p
−1
1⇐ G2

p2
⇒

G3 are parallel independent.
Two direct (typed) graph transformations that are not parallel (or sequen-

tially) independent are called parallel (or sequentially) dependent.

Example 3.17 (parallel and sequential independence). We apply the
typed graph production setF lag from Example 3.6 twice to the start graph
S, first with the match m, and the second time with a different match m′ that
maps the process node in L to the lower process node in S. These two direct
typed graph transformations are parallel independent: in the intersection of
the matches, there is only the resource node, which is a gluing point with
respect to both transformations. In the diagram below, we show only the left-
hand sides and the gluing graphs of the productions and, accordingly, the
context graphs, but not the whole direct typed graph transformations:

K1 L1 L2 K2

setF lag setF lag

P RP R P R P R

start

non−active

start

non−active

P
2

TP
1

R

non−active

start

non−active

start

P
2

TP
1

R

non−active

start

P
2

TP
1

R

non−active

start
f2f1

m m′

D1 S D2

... ...

The two direct typed graph transformations G2
enter,m2

=⇒ G3
setF lag,m3

=⇒ G4

of the typed graph transformation S ⇒ G5 are sequentially independent: in
the intersection of the first comatch n2 and the second match m3, there is only
the resource node, which is a gluing point with respect to both transforma-
tions. In the diagram below, we show only the right-hand side and the gluing
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graph of the first typed graph production enter, and the left-hand side and
the gluing graph of the second typed graph production setF lag. Accordingly,
the context graphs, but not the whole direct typed graph transformations, are
depicted:

K1 R1 L2 K2

enter setF lag

P R

T

F2

P

T

R P R P R

crit start

non−active

P
2

T

F2

P
1

R

non−active

start

active

crit

P
2

TP
1

R

non−active

start

active

P
2

T

F2

P
1

R

active

crit
f2g1

n2 m3

D′
1 G′′ D′′

2

... ...

On the other hand, the first two direct typed graph transformations

S
setF lag,m

=⇒ G1
setTurn1,m1

=⇒ G5 of the typed graph transformation S ⇒ G5

in Example 3.6 are sequentially dependent: the setTurn loop at the process
node is in the intersection of the first comatch and the second match, but it
is not a gluing item, since it is deleted by the second transformation. 
�

In order to show the Local Church–Rosser Theorem (Theorem 3.20), we
need the following more categorical characterization of independence. This
will be used as a definition of independence in Part II and allows us to prove
Theorem 5.12, the categorical version of Theorem 3.20.

Fact 3.18 (characterization of parallel and sequential independence).

Two direct (typed) graph transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are par-

allel independent iff there exist morphisms i : L1 → D2 and j : L2 → D1 such
that f2 ◦ i = m1 and f1 ◦ j = m2:

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

l1r1

m1k1n1

f1g1

l2 r2

m2 k2 n2

f2 g2

ij
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Two direct (typed) graph transformations G
p1,m1
=⇒ H

p2,m2
=⇒ G′ are sequentially

independent iff there exist morphisms i : R1 → D2 and j : L2 → D1 such that
f2 ◦ i = n1 and g1 ◦ j = m2:

L1 K1 R1 L2 K2 R2

G D1 H D2 G′

l1 r1

m1 k1 n1

f1 g1

l2 r2

m2 k2 n2

g2f2

ij

Proof. “⇒”. Given parallel independent direct (typed) graph transformations
and a node or edge x ∈ L1, we consider the following two cases:

Case 1: m1(x) /∈ m2(L2). By PO property 2 in Fact 2.17, m2 and f2 are
jointly surjective. This implies m1(x) ∈ f2(D2).

Case 2: m1(x) ∈ m2(L2). Since m1(x) ∈ m1(L1)∩m2(L2) ⊆ m1(l1(K1))∩
m2(l2(K2)), we have m1(x) ∈ m2(l2(K2)) = f2(k2(K2)) ⊆ f2(D2).

Hence, in both cases, we have m1(x) ∈ f2(D2), such that the injectivity of
f2 allows us to define i(x) = f−1

2 ◦ m1(x). This argument implies, separately
for edges and vertices, that f2 ◦ i = m1, and i becomes a graph morphism,
because m1 and f2 are graph morphisms and f2 is injective.

Similarly, there is a j with f1 ◦ j = m2.
“⇐”. Given i, j with f2 ◦ i = m1 and f1 ◦j = m2, let y ∈ m1(L1)∩m2(L2);

then y ∈ m1(L1)∩f1(j(L2)), which means that y ∈ m1(L1)∩f1(D1). Now PO
property 3 in Fact 2.17 implies the existence of z1 ∈ K1 with y = m1(l1(z1)) =
f1(k1(z1)). Hence y ∈ m1(l1(K1)) and, similarly, y ∈ m2(l2(K2)), which im-
plies m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2)).

The characterization of sequential independence follows from Remark 3.16.

�

Example 3.19 (characterization of independence). In the parallel in-
dependent typed graph transformations in Example 3.17, we have a graph
morphism i : L1 → D2 that maps the process node in L1 to the second pro-
cess node in D2 such that f2 ◦ i = m, and a graph morphism j : L2 → D1

that maps the process node in L2 to the first process node in D1 such that
f1 ◦ j = m′.

Analogously, the sequential independence of the typed graph transforma-

tions G2
enter,m2

=⇒ G3
setF lag,m3

=⇒ G4 implies the existence of graph morphisms
i : R1 → D′′

2 with f2 ◦ i = n2 and j : L2 → D′
1 with g1 ◦ j = m3; i maps

the process node in R1 to the second process in D′′
2 , while j maps the process

node in L2 to the first process node in D′
1. 
�

Theorem 3.20 (Local Church–Rosser Theorem for GT systems).

Given two parallel independent direct (typed) graph transformations G
p1,m1
=⇒

H1 and G
p2,m2
=⇒ H2, there is a (typed) graph G′ together with direct (typed)

graph transformations H1
p2,m′

2=⇒ G′ and H2
p1,m′

1=⇒ G′ such that G
p1,m1
=⇒ H1

p2,m′
2=⇒

G′ and G
p2,m2
=⇒ H2

p1,m′
1=⇒ G′ are sequentially independent.
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Given two sequentially independent direct (typed) graph transformations

G
p1,m1
=⇒ H1

p2,m′
2=⇒ G′, there are a (typed) graph H2 and direct (typed) graph

transformations G
p2,m2
=⇒ H2

p1,m′
1=⇒ G′ such that G

p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2

are parallel independent:

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

Proof. This follows from Theorem 5.12. 
�

Example 3.21 (Local Church–Rosser Theorem). We consider the two
parallel independent direct typed graph transformations given in Example

3.17, S
setF lag,m

=⇒ G and S
setF lag,m′

=⇒ G′, with G′ as shown below:

G′ : P
2

T

F1

P
1

R

active

setTurn

non−active

start

We can obviously apply the typed graph production setF lag with the opposite
match to each of them, and obtain the following graph X :

X : P
2

T

F1

F1P
1

R

active

setTurn

active

setTurn

These transformations correspond to the following diagram, and Theorem 3.20

also implies that the typed graph transformations S
setF lag,m

=⇒ G1
setF lag,m′

=⇒ X

and S
setF lag,m′

=⇒ G′ setF lag,m
=⇒ X are sequentially independent:

S

G1 G′

X

setF lag,m setF lag,m′

setF lag,m′ setF lag,m
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Given the sequentially independent direct typed graph transformations

G2
enter,m2

=⇒ G3
setF lag,m3

=⇒ G4, using Theorem 3.20 we can reverse the or-
der of the typed graph productions, leading to a sequentially independent

typed graph transformation G2
setF lag,m′

3=⇒ G′
3

enter,m′
2=⇒ G4, with G′

3 as de-

picted below, and the direct typed graph transformations G2
enter,m2

=⇒ G3 and

G2
setF lag,m′

3=⇒ G′
3 are parallel independent:

G′
3 : P

2
RP

1

T

F1

F1

active

setTurn

active

check


�

The Local Church–Rosser Theorem states that two parallel independent
direct (typed) graph transformations can be applied in arbitrary order. Now
we shall see that they can also be applied in parallel. For this purpose, we
introduce parallel (typed) graph productions and transformations, which allow
us to formulate the Parallelism Theorem for GT systems.

Definition 3.22 (parallel graph production and transformation). Giv-

en two (typed) graph productions p1 = (L1
l1← K1

r1→ R1) and p2 = (L2
l2←

K2
r2→ R2), the parallel (typed) graph production p1 + p2 is defined by the

disjoint union of the corresponding objects and morphisms: p1 + p2 = (L1

�

∪

L2
l1

�

∪l2←− K1

�

∪ K2
r1

�

∪r2−→ R1

�

∪ R2).
The application of a parallel (typed) graph production is called a parallel

direct (typed) graph transformation.

Example 3.23 (parallel graph production). In the following diagram, the
parallel typed graph production enter + setF lag over the productions enter
and setF lag from Example 3.6 is shown:

enter + setF lag:

P R P R P F1 R

start

non−active

setTurn

active

P

F1

T

R P

T

R P

F2

T

R

check crit

The application of this production leads to the parallel direct typed graph

transformation G2
enter+setF lag,m2+m3

=⇒ G4. 
�
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Theorem 3.24 (Parallelism Theorem for GT systems). For a (typed)
graph transformation system GTS, we have:

1. Synthesis. Given a sequentially independent direct (typed) graph transfor-
mation sequence G ⇒ H1 ⇒ G′ via (typed) graph productions p1 and
p2, then there is a parallel (typed) graph transformation G ⇒ G′ via the
parallel (typed) graph production p1 + p2, called a synthesis construction.

2. Analysis. Given a parallel (typed) graph transformation G ⇒ G′ via p1 +
p2, then there is a construction leading to two sequentially independent
(typed) graph transformation sequences G ⇒ H1 ⇒ G′ via p1 and p2 and
G ⇒ H2 ⇒ G′ via p2 and p1, called an analysis construction.

3. Bijective correspondence. The synthesis and analysis constructions are
inverse to each other up to isomorphism.

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

p1+p2

Proof. This follows from Theorem 5.18. 
�

The Parallelism Theorem is the basis of a shift construction which can be
applied to a sequence of parallel (typed) graph transformations. This allows
one to shift the application of a (typed) graph production p within a parallel
(typed) graph transformation t to the left (i.e. toward the beginning), as long
as p is sequentially independent in t from the previous productions, leading
to a “canonical transformation”. The construction and uniqueness of canoni-
cal transformations have been analyzed by Kreowski in [Kre78], leading to a
concurrent semantics of algebraic graph transformation systems (see [Roz97]).

Example 3.25 (Parallelism Theorem). We can apply Theorem 3.24 to the

sequentially independent direct typed graph transformation G2
enter,m2

=⇒ G3
setF lag,m3

=⇒ G4 from Example 3.6, leading to the parallel graph production
enter+setF lag and the parallel direct graph transformation given in Example
3.23, and vice versa. 
�

3.4 Overview of Some Other Main Results

for GT Systems

In the previous section, we have analyzed parallel and sequential independence
of (typed) graph transformations, leading to the Local Church–Rosser and
Parallelism Theorems. In this section, we shall give an overview of some other
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main results for (typed) graph transformation systems, which are presented
in full detail in Part II on a categorical level and in Part III for the case of
typed attributed graph transformation systems. In contrast to the previous
section, we now study the properties of dependent transformations. As before,
we present the main results with illustrative examples, but we shall give only
an intuitive idea of some of the new notions used in these results. A formal
definition of these notions and also the proofs of the results are given in Part
II in the general framework of adhesive HLR categories.

This semiformal presentation is a compromise between completeness and
symmetry between Parts I–III on the one hand and too much redundancy on
the other hand.

3.4.1 Concurrency Theorem

The Concurrency Theorem is concerned with the execution of general (typed)
graph transformations, which may be sequentially dependent. This means
that, in general, we cannot commute subsequent direct (typed) graph transfor-
mations, as done for independent transformations in the Local Church–Rosser
Theorem, nor are we able to apply the corresponding productions in parallel,
as done in the Parallelism Theorem. Nevertheless, it is possible to apply both
transformations concurrently using a so-called E-concurrent (typed) graph

production p1 ∗E p2. Given an arbitrary sequence G
p1,m1
=⇒ H

p2,m2
=⇒ G′ of direct

(typed) graph transformations, it is possible to construct an E-concurrent
(typed) graph production p1 ∗E p2. The “epimorphic overlap graph” E can
be constructed as a subgraph of H from E = n1(R1) ∪ m2(L2), where n1

and m2 are the first comatch and the second match, and R1 and L2 are the
right- and the left-hand side of p1 and p2, respectively. Note that the restric-
tions e1 : R1 → E of n1 and e2 : L2 → E of m2 are jointly epimorphic
(see Definition A.16), i.e. e1 and e2 are jointly surjective. The E-concurrent
(typed) graph production p1 ∗E p2 allows one to construct a direct (typed)

graph transformation G
p1∗Ep2
=⇒ G′ from G to G′ via p1 ∗E p2. Vice versa,

each direct (typed) graph transformation G
p1∗Ep2
=⇒ G′ via the E-concurrent

(typed) graph production p1 ∗E p2 can be sequentialized, leading to an E-

related (typed) graph transformation sequence G
p1,m1
=⇒ H

p2,m2
=⇒ G′ of direct

(typed) graph transformations via p1 and p2, where “E-related” means that
n1 and m2 overlap in H as required by E. This leads to the following Concur-
rency Theorem for (typed) graph transformation systems, which is a special
case of Theorem 5.23 in Part II.

Theorem 3.26 (Concurrency Theorem for GT systems). Given two
(typed) graph productions p1 and p2 and an E-concurrent (typed) graph pro-
duction p1 ∗E p2, we have:

1. Synthesis. Given an E-related (typed) graph transformation sequence G ⇒
H ⇒ G′ via p1 and p2, then there is a synthesis construction leading to a
direct (typed) graph transformation G ⇒ G′ via p1 ∗E p2.
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2. Analysis. Given a direct (typed) graph transformation G ⇒ G′ via p1∗Ep2,
then there is an analysis construction leading to an E-related (typed) graph
transformation sequence G ⇒ H ⇒ G′ via p1 and p2.

3. Bijective correspondence. The synthesis and analysis constructions are
inverse to each other up to isomorphism.

G

H

G′

p1 p2

p1∗Ep2

Proof. This follows from Theorem 5.23. 
�

Note that the construction of E-concurrent (typed) graph productions can

be iterated such that each (typed) graph transformation sequence G
∗
⇒ G′ via

(p1, . . . , pn) can be done in one direct (typed) graph transformation G ⇒ G′

via an iterated E-concurrent (typed) graph production p1∗E1p2∗E2 . . .∗En−1pn.

Example 3.27 (E-concurrent production and E-related transforma-
tion). In Example 3.17, we showed that the direct typed graph transforma-

tions S
setF lag,m

=⇒ G1
setTurn1,m1

=⇒ G2 were sequentially dependent. This trans-
formation sequence is E-related with respect to the following typed graph
E:

E :

P

TP

R

F1

active

non−active

setTurn

The corresponding E-concurrent typed graph production setF lag ∗E

setTurn1 is depicted in the following diagram and leads to the direct typed

graph production S
setF lag∗EsetTurn1

=⇒ G2:

setF lag ∗E setTurn1:

P

TP

R

P

TP

R

P

TP

R

F1

non−active

non−active non−active

start

non−active

active

check


�
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3.4.2 Embedding and Extension Theorems

In this subsection, we analyze the problem of under what conditions a (typed)

graph transformation t : G0
∗
⇒ Gn can be extended to a graph transformation

t′ : G′
0

∗
⇒ G′

n via an extension morphism k0 : G0 → G′
0. The idea is to obtain

an extension diagram (1) as below, where the same (typed) graph productions
p1, . . . , pn are applied in the same order in t and t′:

G0

G′
0

Gn

∗

G′
n

∗

k0 kn

t

t′

(1)

Unfortunately, this is not always possible, but we are able to give a nec-
essary and sufficient consistency condition to allow such an extension. This
result is important for all kinds of applications where we have a large (typed)
graph G′

0, but only small subparts of G′
0 have to be changed by the (typed)

graph productions p1, . . . , pn. In this case we choose a suitably small sub-
graph G0 of G′

0 and construct a (typed) graph transformation t : G0
∗
⇒ Gn

via p1, . . . , pn first. In a second step, we extend t : G0
∗
⇒ Gn via the inclusion

k0 : G0 → G′
0 to a (typed) graph transformation t′ : G′

0
∗
⇒ G′

n via the same
(typed) graph productions p1, . . . , pn.

Now we are going to formulate the consistency condition which allows us
to extend t : G0

∗
⇒ Gn to t′ : G′

0
∗
⇒ G′

n via k0 : G0 → G′
0, leading to the

extension diagram (1) above. The idea is to first construct a boundary graph
B and a context graph C for k0 : G0 → G′

0, such that G′
0 is the gluing of

G0 and C along B, i.e. G′
0 = G0 +B C. In fact, this boundary graph B is

the smallest subgraph of G0 which contains the identification points IP and
the dangling points DP of k0 : G0 → G′

0, considered as the match morphism
in Definition 3.9. Now the (typed) graph morphism k0 : G0 → G′

0 is said to

be consistent with t : G0
∗
⇒ Gn if the boundary graph B is preserved by t.

This means that none of the (typed) graph production p1, . . . , pn deletes any
item of B. The following Embedding Theorem states that this consistency
condition is sufficient; this is a special case of Theorem 6.14 in Part II.

Theorem 3.28 (Embedding Theorem). Given a (typed) graph transfor-

mation t : G0
∗
⇒ Gn and a (typed) graph morphism k0 : G0 → G′

0 which is
consistent with respect to t, then there is an extension diagram over t and k0.

Proof. This follows from Theorem 6.14. 
�

The next step is to show that the consistency condition is also necessary,
and to give a direct construction of G′

n in the extension diagram (1) below,

which avoids an explicit construction of t′ : G′
0

∗
⇒ G′

n. The following Extension
Theorem is a special case of Theorem 6.16 in Part II.
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Theorem 3.29 (Extension Theorem). Given a (typed) graph transforma-

tion t : G0
∗
⇒ Gn with an extension diagram (1) and a pushout diagram (2),

where B is the boundary and C is the context graph of k0 : G0 → G′
0, then we

have:

1. k0 is consistent with respect to t : G0
∗
⇒ Gn.

2. There is a (typed) graph production der(t) = (G0
d0← Dn

dn→ Gn), called

the derived span of t : G0
∗
⇒ Gn, a direct (typed) graph transformation

G′
0 ⇒ G′

n via der(t), leading to pushouts (3) and (4), and an injective
(typed) graph morphism b : B → Dn.

3. There are pushouts (5) and (6), leading to a direct gluing construction of
D′

n = Dn +B C and G′
n = Gn +B C:

B

C

G0

G′
0

Gn

∗

G′
n

∗

(2) (1)

b0

k0

t

t′

kn

G0

G′
0

Dn

D′
n

Gn

G′
n

(3) (4)

d0

h

dn

k0 kn

B

C

Dn

D′
n

(5)

b

h

B

C

Gn

G′
n

(6)

dn◦b

kn

Proof. This follows from Theorem 6.16. 
�

Note that the Embedding and Extension Theorems are, in a sense, inverse
to each other. The Embedding Theorem allows one to embed a transformation
t : G0

∗
⇒ Gn into a larger context given by k0 : G0 → G′

0, by construction
of an extension diagram. This is possible if k0 is consistent with respect to t.
Vice versa, the Extension Theorem shows that, for each extension diagram,
we have consistency and a direct construction of G′

n.

Example 3.30 (Embedding and Extension Theorems). We embed the
start graph S from Example 3.6, with the typed graph morphism k0, into
a larger context graph G′

0, where an additional resource is available that is
also assigned to the first process. The boundary and context graphs for k0 are
shown in the following diagram:



58 3 Graph Transformation Systems

B

P
1

S

P
2

T

P
1

R
2

non−active

start

non−active

start

G′
0

P
2

T

P
1

R
2

T R
1

non−active

start

non−active

start

C

P
1

T R
1

k0

Since, in the boundary graph, there is only the first process node, which is
preserved by every step of the typed graph transformation t : S

∗
⇒ G5, we can

extend t over k0 to G′
0 and obtain a typed graph transformation t′ : G′

0
∗
⇒ G′

5,
where the graph G′

5 is depicted below:

G′
5 : P

2

R

P
1

TF1

RT

active

setTurn

non−active

start

The embedding k′
0 of S = G0 into a different typed graph G′′

0 and the
boundary and context graphs of k′

0 are shown in the following diagram. In
this case, both process nodes and their loop edges are mapped together in G′′

0

by k′
0. Since the typed graph transformation t : S

∗
⇒ G5 does not preserve the

loop edges in the boundary graph, it cannot be extended to G′′
0 .

B

P
1

P
2

non−active

start

non−active

start S

P
2

TP
1

R

non−active

start

non−active

start

G′′
0

TP R

non−active

start

C

P

non−active

start

k′
0


�
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3.4.3 Confluence, Local Confluence, Termination, and Critical
Pairs

The Local Church–Rosser Theorem shows that, for two parallel independent

direct (typed) graph transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2, there

is a (typed) graph G′ together with direct (typed) graph transformations

H1
p2,m′

2=⇒ G′ and H2
p1,m′

1=⇒ G′. This means that we can apply the (typed)
graph productions p1 and p2 with given matches in an arbitrary order. If each
pair of productions is parallel independent for all possible matches, then it
can be shown that the corresponding (typed) graph transformation system
(GTS) is confluent in the following sense: a GTS is called confluent if, for all

(typed) graph transformations G
∗
⇒ H1 and G

∗
⇒ H2, there is a (typed) graph

X together with (typed) graph transformations H1
∗
⇒ X and H2

∗
⇒ X . Local

confluence means that this property holds for all pairs of direct (typed) graph
transformations G ⇒ H1 and G ⇒ H2:

G

H1 H2

X

∗ ∗

∗ ∗

G

H1 H2

X∗ ∗

In the following, we discuss local confluence (and, similarly, confluence) for
the general case in which G ⇒ H1 and G ⇒ H2 are not necessarily parallel
independent.

Confluence is an important property of a GTS, because, in spite of lo-
cal nondeterminism concerning the application of a (typed) graph production
(see Subsection 1.1.3), we have global determinism for confluent (typed) graph
transformation systems. Global determinism means that, for each pair of ter-
minating (typed) graph transformations G

∗
⇒ H1 and G

∗
⇒ H2 with the same

source graph, the target graphs H1 and H2 are equal or isomorphic. A (typed)

graph transformation G
∗
⇒ H is called terminating if no (typed) graph pro-

duction in the GTS is applicable to H anymore.

Lemma 3.31 (global determinism of a GTS). Every confluent (typed)
graph transformation system is globally deterministic.

Proof. Given terminating (typed) graph transformations G
∗
⇒ H1 and G

∗
⇒

H2, confluence implies the existence of a (typed) graph X together with

(typed) graph transformations H1
∗
⇒ X and H2

∗
⇒ X . Since G

∗
⇒ H1 and

G
∗
⇒ H2 are terminating, the (typed) graph transformations H1

∗
⇒ X and

H2
∗
⇒ X must have length n = 0 such that H1

∼
= X

∼
= H2. 
�

As pointed out above, a sufficient condition for confluence of a GTS is the
property that each pair of direct (typed) graph transformations G

∗
⇒ H1 and
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G
∗
⇒ H2 is parallel independent. However, this condition is not necessary, and

we shall now consider the general case including parallel dependence.
However, we only have to study the weak version of confluence, called

local confluence, where the given (typed) graph transformations G
∗
⇒ H1 and

G
∗
⇒ H2 are direct (typed) graph transformations, but H1

∗
⇒ X and H2

∗
⇒ X

are still general. According to a general result for rewriting systems, it is
sufficient to consider local confluence, provided that the GTS is terminating.

A GTS is defined to be terminating if there is no infinite sequence of graph

transformations (tn : G
n
⇒ Gn)n∈N with tn+1 = G

tn⇒ Gn ⇒ Gn+1. This allows
us to show the following result.

Lemma 3.32 (termination and local confluence imply confluence).
Every terminating and locally confluent (typed) graph transformation system
is also confluent.

Proof. This follows from Lemma 6.25. 
�

In the following, we discuss how to verify local confluence; termination
criteria will be discussed in the next subsection.

The main idea used in verifying local confluence is the study of critical

pairs. A pair P1
p1,o1
⇐= K

p2,o2
=⇒ P2 of direct (typed) graph transformations is

called a critical pair if it is parallel dependent, and minimal in the sense that
the pair (o1, o2) of matches o1 : L1 → K and o2 : L2 → K is jointly surjective.
This means that each item in K has a preimage in L1 or L2. In other words,
K can be considered as a suitable gluing of L1 and L2.

The following lemma shows that every pair of parallel dependent direct
(typed) graph transformations is an extension of a critical pair. This is a
special case of Lemma 6.22 in Part II.

Lemma 3.33 (completeness of critical pairs). For each pair of parallel

dependent direct (typed) graph transformations H1
p1,m1
⇐= G

p2,m2
=⇒ H2, there is

a critical pair P1
p1,o1
⇐= K

p2,o2
=⇒ P2 with extension diagrams (1) and (2) and an

injective (typed) graph morphism m:

P1

H1

K

G

P2

H2

(1) (2)m

p1,o1 p2,o2

p1,m1 p2,m2

Proof. This follows from Lemma 6.22. 
�

If the set of all critical pairs of a GTS is empty, this lemma implies already
local confluence of the GTS. Otherwise, in order to show local confluence, it
is sufficient to show strict confluence of all its critical pairs. As discussed
above, confluence of a critical pair P1 ⇐ K ⇒ P2 means the existence of a
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(typed) graph K ′ together with (typed) graph transformations P1
∗
⇒ K ′ and

P2
∗
⇒ K ′.
Strictness is a technical condition (see Definition 6.26 in Part II) which

means, intuitively, that the largest subgraph N of K which is preserved by
the critical pair P1 ⇐ K ⇒ P2 is also preserved by P1

∗
⇒ K ′ and P2

∗
⇒ K ′. In

[Plu95], it has been shown that confluence of critical pairs without strictness
is not sufficient to show local confluence.

This leads to the following Local Confluence Theorem, which is a special
case of Theorem 6.28 in Part II.

Theorem 3.34 (Local Confluence Theorem and Critical Pair Lem-
ma). A (typed) graph transformation system is locally confluent if all its crit-
ical pairs are strictly confluent.

Proof. This follows from Theorem 6.28. 
�

Example 3.35 (critical pairs and local confluence). We analyze our
typed graph grammar MutualExclusion from Example 3.6. We take a closer
look at the typed graph productions setF lag and setTurn1. For a graph
G that may lead to a critical pair, we have to consider overlappings of the
left-hand sides L1 of setF lag and L2 of setTurn1. The typed graph transfor-

mations G
setF lag
=⇒ P1 and G

setTurn1
=⇒ P2 are parallel dependent if the loop in

L2 typed non-active is deleted by setF lag. This leads to the two critical over-

lappings G1 and G2, and we have the critical pairs P1
setF lag
⇐= G1

setTurn1
=⇒ P2

and P ′
1

setF lag
⇐= G2

setTurn1
=⇒ P ′

2. We show only the corresponding graphs in the
following diagram, not the complete typed graph transformations:

P

T

F1P

R P

T

P

R P

T

P

R

setTurn

active non−active

start

setTurnsetTurn

non−active

start

check

P1 G1 P2

setF lag setTurn1

P

T

F1P

R

R

P

T

P

R

R R

P

T

P

R

setTurn

active non−active

start

setTurnsetTurn

non−active

start

check

P ′
1 G2 P ′

2

setF lag setTurn1
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There are many more critical pairs for other pairs of typed graph transfor-
mations in our grammar. All these critical pairs are strictly confluent. There-
fore the typed graph transformation system is locally confluent. However, as
we can see in the derivation graph in Example 3.6, the typed graph grammar
is not terminating; nevertheless, it is confluent. 
�

3.4.4 Functional Behavior of GT Systems and Termination
Analysis

As pointed out in the Introduction, (typed) graph transformation systems can
show two kinds of nondeterminism: first, several (typed) graph productions
might be applicable to a given (typed) graph G and one of them is chosen
arbitrarily, and, second, given a certain (typed) graph production, several
matches might be possible and one of them has to be chosen. In addition to
these two kinds of nondeterminism, a (typed) graph transformation system
GTS is, in general, nonterminating (see Subsection 3.4.3).

If we consider a (typed) graph transformation system GTS as a compu-
tation device for (typed) graphs, where each (typed) graph transformation

G
∗
⇒ H is a partial computation for G, then this computation device is, in

general, nondeterministic and partial. If the (typed) graph transformation

G
∗
⇒ H is terminating, i.e. no (typed) graph production in GTS is applicable

to H anymore, then H can be considered as the result of G. But different
terminating (typed) graph transformations G

∗
⇒ H1 and G

∗
⇒ H2 may lead

to different, nonisomorphic results H1 and H2. This, however, can be avoided
if the GTS is confluent (see Subsection 3.4.3). If the GTS is terminating and
locally confluent, then the GTS has a functional behavior, as stated in the
following theorem. The functional behavior of typed graph transformation
systems is an important property in several application domains. A typical
example is that of model transformations, which will be studied in Chapter
14.

Theorem 3.36 (functional behavior of GT systems). Given a termi-
nating and locally confluent (typed) graph transformation system GTS, then
GTS has a functional behavior in the following sense:

1. For each (typed) graph G, there is a (typed) graph H together with a

terminating (typed) graph transformation G
∗
⇒ H in GTS, and H is

unique up to isomorphism.
2. Each pair of (typed) graph transformations G

∗
⇒ H1 and G

∗
⇒ H2 can be

extended to terminating (typed) graph transformations G
∗
⇒ H1

∗
⇒ H and

G
∗
⇒ H2

∗
⇒ H with the same (typed) graph H.

Proof. By Lemma 3.32, GTS is also confluent.

1. The existence of a terminating (typed) graph transformation G
∗
⇒ H

follows from the termination of GTS, and the uniqueness of H follows
from the confluence of GTS.
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2. This follows from the confluence of GTS.

�

In order to analyze the termination of typed graph transformation systems,
let us consider the following kind of layered typed graph grammar. A layered
typed graph grammar is a finite typed graph grammar where the typed graph
productions are distributed over different layers. In each layer, the typed graph
productions are applied for as long as possible before going to the next layer.
Moreover, it makes sense to distinguish between deletion and nondeletion
layers. All typed graph productions in a deletion layer delete at least one
item. The typed graph productions in nondeletion layers do not delete any
items, but they have negative application conditions to prohibit an infinite
number of applications of the same typed graph production (see Section 3.5
for negative application conditions). Finally, a layered typed graph grammar
has a number of deletion and nondeletion layer conditions which have to be
satisfied by the typed graph productions. For a precise definition of layered
typed graph grammars, see Definition 12.15 in Part III, where we use typed
attributed graphs and grammars instead of typed graphs and grammars, and
the condition “finitary” instead of “finite”. A typed graph grammar GG =
(TG, P, G0) is called “finite” if the graphs TG and G0, the graphs in each
typed graph production p ∈ P , and the set P are all finite. As a special case
of Theorem 12.26 in Part III, we obtain the following theorem.

Theorem 3.37 (termination of layered typed graph grammars). Ev-
ery layered typed graph grammar GG = (TG, P, G0) with injective matches
terminates, provided that it is layered in the following sense:

1. P is layered, i.e. for each p ∈ P there is a production layer pl(p) with
0 ≤ pl(p) ≤ k0 (pl(p), k0 ∈ N), where k0 + 1 is the number of layers of
GG, and each typed graph production p ∈ P has a set NACp of negative
application conditions NAC(n : L → N) (see Definition 3.47); the latter
is abbreviated as n ∈ NACp.

2. The type set TY PE of GG is given by all graph nodes and edges of the

type graph TG, i.e. TY PE = VTG

�

∪ ETG.
3. GG is finite.
4. For each type t ∈ TY PE there is a creation layer cl(t) ∈ N and a deletion

layer dl(t) ∈ N, and each production layer k is either a deletion layer or a
nondeletion layer, satisfying the following layer conditions for all p ∈ Pk:
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Deletion layer conditions Nondeletion layer conditions
1. p deletes at least one item. 1. p is nondeleting, i.e. K = L such that

p is given by r : L → R injective.
2. 0 ≤ cl(t) ≤ dl(t) ≤ k0 2. p has n ∈ NACp with n : L → N ,
for all t ∈ TY PE. and there is an injective n′ : N → R

with n′ ◦ n = r.
3. p deletes an item of type t 3. x ∈ L with type(x) = t
⇒ dl(t) ≤ pl(p). ⇒ cl(t) ≤ pl(p).
4. p creates an item of type t 4.p creates an item of type t
⇒ cl(t) > pl(p). ⇒ cl(t) > pl(p).

Proof. This follows from Theorem 12.26. 
�

Example 3.38 (nontermination). The derivation graph in Example 3.6
shows that the typed graph grammar MutualExclusion is not terminating.
Therefore the termination criterion stated in Theorem 3.37 is not fulfilled.

Indeed, we cannot find a set of layers for our typed graph productions
such that all the conditions are fulfilled. If we analyze the productions of our
grammar, we see that all typed graph productions are deleting, i.e. have to
belong to a deletion layer. However, each typed graph production also creates
an item – at least a loop at a process node. Now the deletion layer conditions
imply the following inequalities:

dl(start) ≤ pl(setF lag) < cl(setTurn) ≤ dl(setTurn) ≤
pl(setTurn1) < cl(check) ≤ dl(check) ≤ pl(enter) <
cl(crit) ≤ dl(crit) ≤ pl(exit) < cl(start) ≤ dl(start),

which cannot be fulfilled. 
�

3.5 Graph Constraints and Application Conditions

Now we are going to extend the theory by introducing graph constraints and
application conditions. Graph constraints allow us to formulate properties for
graphs. In particular, we are able to formulate the condition that a graph
G must (or must not) contain a certain subgraph G′. Beyond that, we can
require that G contains C (conclusion) if it contains P (premise). Applica-
tion conditions, similarly to the gluing condition in Definition 3.9, allow us
to restrict the application of productions. Both concepts are important for
increasing the expressive power of graph transformation systems.

Application conditions for graph productions were introduced in [EH86].
In a subsequent paper [HHT96], special kinds of application conditions were
considered which can be represented in a graphical way. In particular, con-
textual conditions such as the existence or nonexistence of certain nodes and
edges or certain subgraphs in the given graph can be expressed. Conditional
application conditions were introduced in [HW95]. Our presentation is based
on [EEHP04].
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Definition 3.39 (graph constraint). An atomic (typed) graph constraint
is of the form PC(a), where a : P → C is a (typed) graph morphism.

A (typed) graph constraint is a Boolean formula over atomic (typed) graph
constraints. This means that true and every atomic (typed) graph constraint
are (typed) graph constraints, and, for (typed) graph constraints c and ci with
i ∈ I for some index set I, ¬c, ∧i∈Ici, and ∨i∈Ici are (typed) graph con-
straints:

P C

G

=

a

p q

A (typed) graph G satisfies a (typed) graph constraint c, written G |= c, if

• c = true;
• c = PC(a) and, for every injective (typed) graph morphism p : P → G,

there exists an injective (typed) graph morphism q : C → G such that
q ◦ a = p;

• c = ¬c′ and G does not satisfy c′;
• c = ∧i∈Ici and G satisfies all ci with i ∈ I;
• c = ∨i∈Ici and G satisfies some ci with i ∈ I.

Two (typed) graph constraints c and c′ are equivalent, denoted by c ≡ c′,
if for all (typed) graphs G, G |= c if and only if G |= c′.

Remark 3.40. Note that we require injectivity for p and q in the definition
of G |= PC(a), but not for a. In fact, we can require a to be injective without
changing the expressive power (see Remark 3.42).

On the other hand, we could instead drop the requirement that p and q
must be injective, which would change the notion of satisfaction. This case
is discussed in Chapter 7, where we require that p and q belong to a specific
class M′ of morphisms.

In the categories Graphs and GraphsTG, the empty (typed) graph ∅ is
initial. This means that for each graph G, there is exactly one (typed) graph
morphism p : ∅ → G. Hence G |= PC(∅ → C) means that G contains C
as a subgraph (up to isomorphism). (Typed) graph constraints of the form
PC(∅ → C) are abbreviated as PC(C). The (typed) graph constraint of the
form PC(∅) is equivalent to true, and ¬true is abbreviated as false.

Example 3.41 (graph constraints). We consider the typed graph con-
straint PC(a : P → C), as shown below, for the typed graphs of the graph
grammar in Example 3.6:

P C

R P T Ra
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A typed graph G satisfies this constraint if, for each resource node R, there
is a turn variable that connects it to a process. The start graph S obviously
satisfies this constraint – there is only one resource, which is connected to the
first process node.

Some more general examples of graph constraints are:

• PC( → ): There exists at most one node.

• PC(∅ → ): There exists a node with a loop.

• PC( → ): Every node has a loop.

• ¬PC(∅ → ): The graph is loop-free.

• ¬PC( → ): There exists a node without a loop.
•

∧∞
k=1 ¬PC(∅ → Ck): The graph is acyclic (Ck denotes a cycle of length

k).

Let us explain the first constraint PC(a : P → C), where P consists of two
nodes, which are mapped by a to the one node in C. If the graph G contains
two nodes, we shall have an injective morphism p : P → G, but no injective
q : C → G with q ◦ a = p.

In the last graph constraint above, we use an infinite conjunction.
Analogously, given a type graph TG, typed graph constraints make state-

ments about nodes or edges of a special type (where the label of the node or
edge denotes its type):

• PC( t t → t ): There exists at most one node of type t.

• PC(∅ → t
e

): There exists a node of type t with a loop of type e.
•

∧
t∈VT G

PC(∅ → t ): There is at least one node of each node type.

•
∨

t∈VT G
PC(∅ → t ): There is at least one node (of any type).


�

In most of our examples, the (typed) graph morphism a : P → C of a graph
constraint PC(a) is injective. Actually, concerning the expressive power, it is
sufficient to use an injective a, as shown in the next Remark.

Remark 3.42. In Definition 3.39, we have not required that a in PC(a) is
injective. But (typed) graph constraints with noninjective (typed) graph mor-
phisms do not give additional expressive power. For every (typed) graph con-
straint, there is an equivalent (typed) graph constraint with injective (typed)

graph morphisms. In particular, for a noninjective a, PC(P
a
→ C) ≡ ¬PC(P ):

if there exists an injective p : P → G, then there does not exist an injective
q : C → G with q◦a = p, otherwise a would have to be injective, since injective
morphisms are closed under decomposition. This means that G �|= PC(a) and
G |= PC(P ). If there does not exist an injective p : P → G, then G |= PC(a)
and G �|= PC(P ).

Let us now consider negative atomic graph constraints in order to express
the absence of C in G. A negative atomic graph constraint is of the form
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NC(a), where a : P → C is a graph morphism. A graph G satisfies NC(a)
if, for every injective morphism p : P → G, there does not exist an injective
morphism q : C → G with q ◦ a = p.

Remark 3.43. Negative atomic graph constraints do not give more expressive
power. For every negative atomic graph constraint, there is an equivalent
constraint: if a is injective, then NC(P

a
→ C) ≡ ¬PC(C); otherwise NC(P

a
→

C) ≡ true (see Fact 7.5).

Example 3.44 (negative graph constraint). For valid graphs of the typed
graph grammar in Example 3.6, each resource node should be connected to
exactly one process node. We have expressed the property that the node is
connected by means of a graph constraint in Example 3.41. The following
negative atomic graph constraint NC(a′ : ∅ → C′) is satisfied by a graph G
if each resource node in G is connected to at most one process node:

C′

∅
P

P T

T

Ra′


�

Now we introduce application conditions for a match m : L → G, where
L is the left-hand side of a (typed) graph production p. The idea is that the
production cannot be applied at m if m violates the application condition.

Definition 3.45 (application condition). An atomic application condition
over a (typed) graph L is of the form P (x,∨i∈Ixi), where x : L → X and
xi : X → Ci with i ∈ I for some index set I are (typed) graph morphisms.

An application condition over L is a Boolean formula over atomic appli-
cation conditions over L. This means that true and every atomic application
condition are application conditions, and, for application conditions acc and
acci with i ∈ I, ¬acc, ∧i∈Iacci, and ∨i∈Iacci are application conditions:

L X

G

Ci

= =

x

m p

xi

qi

A (typed) graph morphism m : L → G satisfies an application condition
acc, written m |= acc, if

• acc = true;
• acc = P (x,∨i∈Ixi) and, for all injective (typed) graph morphisms p : X →

G with p ◦ x = m, there exists an i ∈ I and an injective (typed) graph
morphism qi : Ci → G with qi ◦ xi = p;
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• acc = ¬acc′ and m does not satisfy acc′;
• acc = ∧i∈Iacci and m satisfies all acci with i ∈ I;
• acc = ∨i∈Iacci and m satisfies some acci with i ∈ I.

Two application conditions acc and acc′ over a (typed) graph L are equivalent,
denoted by acc ≡ acc′, if for all (typed) graph morphisms m : L → G for some
G, m |= acc if and only if m |= acc′.

The application condition ¬true is abbreviated as false.

Remark 3.46. Application conditions with noninjective (typed) graph mor-
phisms in the second component of the atomic application condition do not
give more expressive power. For every application condition, there is an equiv-
alent application condition with injective (typed) graph morphisms in the sec-
ond component: P(x,∨i∈Ixi) ≡ P(x,∨i∈I′xi) with I ′ = {i ∈ I | xi injective}.
For an injective p : X → G and an i ∈ I, the existence of an injective
qi : Ci → G with qi ◦ xi = p implies that xi is injective, since injective
morphisms are closed under decomposition.

Now we consider negative application conditions, where the simple form
NAC(x) is especially important and has been used already to deal with ter-
mination in Theorem 3.37.

Definition 3.47 (negative application condition). A simple negative ap-
plication condition is of the form NAC(x), where x : L → X is a (typed) graph
morphism. A (typed) graph morphism m : L → G satisfies NAC(x) if there
does not exist an injective (typed) graph morphism p : X → G with p◦x = m:

L X

G

= |

x

m p

L X

G

Ci

= = |

x

m p

xi

qi

An atomic negative application condition is of the form N(x,∧i∈Ixi),
where x : L → X and xi : X → Ci, with i ∈ I, are (typed) graph mor-
phisms. A (typed) graph morphism m : L → G satisfies N(x,∧i∈Ixi) if, for
all injective (typed) graph morphisms p : X → G with p ◦ x = m, there does
not exist an i ∈ I and an injective (typed) graph morphism qi : Ci → G with
qi ◦ xi = p.

Remark 3.48. The notation N(x,∧i∈Ixi) expresses the condition that, for
all p with p ◦ x = m and for all i ∈ I, there is no qi with qi ◦ xi = p. Negative
application conditions do not give more expressive power. A simple negative
application condition NAC(x) is equivalent to an application condition of the
form P(x,∨i∈Ixi) with an empty index set I: if a (typed) graph morphism m
does not satisfy NAC(x), then there is a morphism p : X → G with p◦x = m,
but no index i ∈ I to obtain the required (typed) graph morphism qi, i.e. m
does not satisfy P(x,∨i∈Ixi). If m satisfies NAC(x), then there does not exist
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an injective (typed) graph morphism p : X → G with p ◦ x = m, and for
P(x,∨i∈Ixi) there is nothing to show.

For every atomic negative application condition, there is an equivalent
application condition: N(x,∧i∈Ixi) ≡ ∧i∈IP(xi◦x, e), where e is an expression
with an empty index set (see Fact 7.9).

In analogy to NAC(x) ≡ P(x, e), we write PAC(x) (positive application
condition) for an application condition ¬P(x, e), i.e. PAC(x) = ¬P(x, e) =
¬NAC(x). According to Definition 3.45, we have, for m : L → G and x : L →
X , that m |= PAC(x) iff there exists an injective (typed) graph morphism
p : X → G with p ◦ x = m.

Example 3.49 (application conditions). Some examples of application
conditions of graphs and their meanings for an injective match morphism
m are given below:

• PAC(
1 2

→
1 2

): There is some edge from m(1) to m(2).

• NAC(
1 2

→
1 2

): There is no edge from m(1) to m(2).

• PAC(
1

→
1

) ∨ PAC(
1

→
1

): m(1) is not isolated.

• NAC(
1

→
1

) ∧ NAC(
1

→
1

): m(1) is isolated.

• P(
1 2

→
1 2

,
1 2

→
1 2

): If there is an edge from m(1) to m(2), then

there is an edge from m(2) to m(1).
• P(

1

→
1 2

,
1 2

→
1 2

∨
1 2

→
1 2

): m(1) is connected directly to all

other nodes.
•

∧∞
k=1 NAC(

1 2

→ Pk): There is no path connecting m(1) and m(2) (Pk

denotes a path of length k connecting 1 and 2).

�

Up to now, we have considered application conditions over L, where L
is the left-hand side of a production. Similarly, we can consider application
conditions over R, where R is the right-hand side of a production. In the
following, we combine both concepts.

Definition 3.50 (application condition for a production). Given a

(typed) graph production p = (L
l
← K

r
→ R), an application condition

A(p) = (AL, AR) for p consists of a left application condition AL over L
and a right application condition AR over R.

A direct (typed) graph transformation G
p,m
⇒ H with a comatch n : R → H

satisfies the application condition A(p) = (AL, AR) if m |= AL and n |= AR.

Example 3.51 (graph production with application condition). We
add a new production addResource to our typed graph grammar
MutualExclusion from Example 3.6, as shown in the following diagram. This
production inserts a new resource node and a new turn node, connected to
this resource and a given process:
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addResource:

P P P T R

For the application of this production, we define an application condition
A(addResource). The left application condition NAC(x) and the right appli-
cation condition P(x1, y1) are depicted below. With NAC(x), we forbid the
possibility that the process that the turn will be connected to is already ac-
tive. P(x1, y1) makes sure that after the application of addResource, only one
turn is assigned to the process. Note that y1 is not injective, but instead maps
both turn nodes together.

P

active

P
xNAC(x)

P (x1, y1)
X1

Y1

P T R
P T

T

R
P T Ry1x1

To apply the production addResource to the start graph S, there are two
possible matches: the process node in the left-hand side may be mapped to
the first process node in S, leading to the match m1, or to the second process
node in S, leading to the match m2. Both matches satisfy the left application
condition NAC(x), because both processes are nonactive.

The application of addResource to S via m2 leads to the following typed
graph H2 with a comatch n2; n2 satisfies P (x1, x2), because there is no injec-
tive morphism p : X1 → H2:

X1
Y1R

P T R
P T

T

R
P T Ry1x1

P
2

T

TP
1

R

R

non−active

start

non−active

start

n2

p inj.H2

\
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If we apply the production addResource to S via the match m1, we
obtain the typed graph H1 with a comatch n1; n1 does not satisfy the
right application condition P (x1, y1), because there is an injective morphism
p : X1 → H1 such that p ◦ x1 = n1, as depicted below, but there is no in-
jective morphism q : Y1 → H1 such that q ◦ y1 = p. Therefore the direct

transformation S
addResource,m1

=⇒ H1 does not satisfy the application condition
A(addResource).

X1
Y1R

P T R
P T

T

R
P T Ry1x1

P
2

T

TP
1

R

R

non−active

start

non−active

start

n1

p
q

H1

\


�

In Chapter 7, we shall extend graph constraints and application conditions
to the framework of adhesive HLR categories and systems. In this framework,
we shall show how to construct an equivalent right application condition for
each graph constraint and an equivalent left application condition for each
right application condition. This allows us to make sure that the derived graph
H satisfies a given graph constraint PC(a), provided that the match m : L →

G of the direct graph transformation G
p,m
=⇒ H satisfies the corresponding left

application condition acc.
For an even more general concept of graph constraints and application

conditions, we refer to [HP05], where nested constraints and application con-
ditions are used in the sense of [Ren04]. A typical nested example is the fol-
lowing: “For all nodes, there exists an outgoing edge such that, for all edges
outgoing from the target, the target has a loop”.
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In the second Part of this book, we generalize the algebraic approach of graph
transformation from classical graphs to high-level structures. This allows us
to apply the concepts and results of graph transformation to high-level struc-
tures such as hypergraphs, Petri nets, algebraic signatures and specifications
and, especially, typed attributed graphs, as is done in Part III. The concepts of
graph grammars and transformations presented in Chapters 2 and 3 are now
formulated in the categorical framework of adhesive high-level replacement
(HLR) categories and systems in Chapters 4 and 5. Together with several
instantiations of the categorical framework, we present some more advanced
concepts and results in Chapters 6 and 7. The proofs of the basic and ad-
vanced results are presented in the framework of adhesive HLR categories.
This implies the validity of the basic results in Chapter 3 for the classical case
of graph transformations.

The theory of HLR systems was started in [EHKP91a, EHKP91b] in or-
der to have a common framework for different types of graph and Petri net
transformation systems. The theory of transformation systems for Petri nets
extends the classical theory of Petri nets based on the token game by al-
lowing also a rule-based modification of the structures of Petri nets (see
[PER95, Pad96]). The HLR framework has also been applied to algebraic
specifications (see [EM85, EM90]), where the interface of an algebraic module
specification can be considered as a production of an algebraic specification
transformation system (see [EGP99]). More recently, the concept of adhesive
categories developed by Lack and Sobociński [LS04] has been combined with
HLR categories and systems in [EHPP04], leading to the new concept of ad-
hesive HLR categories and systems. The concepts and results in the present
Part II are based on [EHPP04, Pra04] and [EEHP04] concerning Chapters
4–6 and Chapter 7, respectively.

For those readers who are interested mainly in the concepts and results of
transformation systems for classical and typed attributed graphs, but not so
much in the general theory and in the proofs, it is advisable to skip Part II
and continue immediately with Parts III and IV after Part I.
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Adhesive High-Level Replacement Categories

In this chapter, we generalize the basic concepts of the algebraic approach
from graphs to high-level structures and instantiate them with various kinds of
graphs, Petri nets, algebraic specifications, and typed attributed graphs. The
concepts of adhesive categories and adhesive high-level replacement (HLR)
categories are introduced as a suitable categorical framework for graph trans-
formation in this more general sense. The necessary axioms for this generaliza-
tion are stated. They rely on the concepts of pushouts and pullbacks and their
compatibility which are essential for the Van Kampen squares and adhesive
categories described in Section 4.1 and introduced by Lack and Sobociński in
[LS04]. While adhesive categories are based on the class M of all monomor-
phisms, we introduce adhesive and weak adhesive HLR categories (C,M) in
Section 4.2 based on a suitable subclass M of all monomorphisms. This more
flexible class M is essential for the typed attributed graphs considered in
Part III to be an adhesive HLR category. An important result in Section 4.2
shows how to construct new (weak) adhesive HLR categories from given ones.
Finally, in Section 4.3, we show that (weak) adhesive HLR categories satisfy
several HLR properties, originally considered in [EHKP91a] to prove the main
results for graph transformation systems in a categorical framework. The con-
cepts of adhesive HLR categories and systems were introduced in [EHPP04].
In this chapter, we also introduce the slightly weaker concept of weak HLR
categories, because some interesting examples such as place/transition nets
satisfy only the weaker version.

4.1 Van Kampen Squares and Adhesive Categories

The intuitive idea of adhesive categories is that of categories with suitable
pushouts and pullbacks which are compatible with each other. More precisely,
the definition is based on van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is sta-
ble under pullbacks, and, vice versa, that pullbacks are stable under combined
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pushouts and pullbacks. The name “van Kampen” is derived from the rela-
tionship between these squares and the Van Kampen Theorem in topology
(see [BJ97]).

Definition 4.1 (van Kampen square). A pushout (1) is a van Kampen
square if, for any commutative cube (2) with (1) in the bottom and where
the back faces are pullbacks, the following statement holds: the top face is a
pushout iff the front faces are pullbacks:

A′

B′

A

B

C′

D′

C

D

(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

(1)

m

f

n

g

It might be expected that, at least in the category Sets, every pushout is
a van Kampen square. Unfortunately, this is not true (see Ex. 4.4). However,
at least pushouts along monomorphisms (injective functions) are VK squares.

Fact 4.2 (VK squares in Sets). In Sets, every pushout along a monomor-
phism is a VK square. Pushout (1) above is called a pushout along a monomor-
phism if m (or, symmetrically, f) is a monomorphism.

Proof. Consider the pushout (1) above, where m is a monomorphism, i.e.
injective. We have to show that, given a commutative cube (2) as above with
(1) in the bottom, where the back faces are pullbacks, the following holds:

the top face is a pushout ⇔ the front faces are pullbacks.

If m is a monomorphism, we also have the result that n, m′, and n′ are
monomorphisms, since monomorphisms in Sets are closed under pushouts
and pullbacks (see Facts 2.17 and 2.23). Now we show the statement.

Part 1 (“⇒”). Assume that the top face in (2) is a pushout. Since pull-
backs are unique up to isomorphism, it is sufficient to prove that B′ and C′

are isomorphic to the corresponding pullback objects.
We have to show that:

1. B′ ∼
= PB1 :=

⋃
d1∈D d−1(d1) × g−1(d1).

2. C′ ∼
= PB2 :=

⋃
d1∈D d−1(d1) × n−1(d1).

1. Since PB1 is the pullback object over d and g and d ◦ g′ = g ◦ b, there
is an induced morphism i : B′ → PB1 with i(b′) = (g′(b′), b(b′)) for all
b′ ∈ B′.
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• i is injective.
Suppose that there are b′1 �= b′2 ∈ B′ with i(b′1) = i(b′2). Then we

have g′(b′1) = g′(b′2) and b(b′1) = b(b′2).

– Since the top is a pushout and m′ is injective, there exist
a′
1 �= a′

2 ∈ A′ with m′(a′
1) = b′1, m′(a′

2) = b′2, and f ′(a′
1) = f ′(a′

2)
(property 1).

– The back right face commutes, and, since m is injective, it follows
that a(a′

1) = a(a′
2) (property 2).

– The back left face is a pullback, and therefore we have the result
that a(a′

1) �= a(a′
2) or f ′(a′

1) �= f ′(a′
2).

This is a contradiction of properties 1 and 2.

a′
1

a′
2

b′1

b′2

�

�

�

�

�

�
�
�
�
���

				
�

�
�

�

�
�

�

�

�
�
�
�
���

				
�

• i is surjective.
Suppose that i is not surjective. Then there exist d′1 ∈ D′ and

b1 ∈ B with d(d′1) = g(b1); therefore (d′1, b1) ∈ PB1, but i(b′) =
(g′(b′), b(b′)) �= (d′1, b1) for all b′ ∈ B′.

We consider the following case distinctions:
Case 1. For all b′ ∈ B′, it holds that g′(b′) �= d′1.

– Then there exists a c′1 ∈ C′ such that n′(c′1) = d′1, and for all
a′ ∈ A′ we have f ′(a′) �= c′1, because the top is a pushout.

– Since the back left face is a pullback, we have f(a1) �= c(c′1) for all
a1 ∈ A (property 3).

– The front left face commutes, which means that n(c(c′1)) =
d(n′(c′1)) = d(d′1) = g(b1).

– Since the bottom is a pushout, there exists an a1 ∈ A with m(a1) =
b1 and f(a1) = c(c′1).

This is a contradiction of property 3.

d′
1

c′1

c(c′1)

b1

�

�

�

�

�

�

�

�

�
�
�

�
�

�

�

�

����

����

����
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Case 2. There is a b′2 ∈ B′ with g′(b′2) = d′1, but b(b′2) = b2 �= b1.

– The front right face commutes, and therefore g(b2) = d(d′1) =
g(b1).

– Since the bottom is a pushout and m and n are injective, we have
a1 �= a2 ∈ A with m(a1) = b1, m(a2) = b2 and f(a1) = f(a2).

– The back right face is a pullback with m(a2) = b2 = b(b′2), which
means that there is an a′

2 ∈ A′ with a(a′
2) = a2 and m′(a′

2) = b′2.
– The back left face is a pullback, and since c(f ′(a′

2)) = f(a2) =
f(a1), there is an a′

1 ∈ A′ with a(a′
1) = a1 and f ′(a′

1) = f ′(a′
2).

– Since the back right face is a pullback, we obtain a b′1 ∈ B′ with
m′(a′

1) = b′1 and b(b′1) = m(a1) = b1.
– The top commutes, and since f ′(a′

1) = f ′(a′
2), we obtain g′(b′1) =

g′(b′2). This means that i(b′1) = (g′(b′1), b(b
′
1)) = (g′(b′2), b1) =

(d′1, b1).

This is a contradiction of the assumption that i is not surjective.

a′
1

a′
2

b′1

b′2

a1

a2

b1

b2

d′
1

�

�

�

�
�

�
�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�

�
�

�

�

�

�

�

					


					


					


					


• We have shown that i is both injective and surjective, i.e. isomorphic;
therefore the front right face of the cube (2) is a pullback.

2. Since PB2 is the pullback object over d and n and d ◦ n′ = n ◦ c, there
is an induced morphism j : C′ → PB2 with j(c′) = (n′(c′), c(c′)) for all
c′ ∈ C′.

• j is injective.
Monomorphisms, i.e. injective functions, are closed under pullbacks

and decomposition. Since n is injective, n̂ : PB2 → D′ is also injective.
Since n̂ ◦ j = n′ and n′ is injective, so is j:

PB2 D′

C D

C′

d

n

c

n′

n̂

j
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• j is surjective.
Suppose that there exist d′1 ∈ D′ and c1 ∈ C with d(d′1) = n(c1);

therefore (d′1, c1) ∈ PB2, but j(c′) = (n′(c′), c(c′)) �= (d′1, c1) for all
c′ ∈ C′.

We consider the following case distinctions:
Case 1. For all c′ ∈ C′, it holds that n′(c′) �= d′1.

– Since the top is a pushout, there exists a b′1 ∈ B′ with g′(b′1) = d′1
and m′(a′) �= b′1 for all a′ ∈ A′.

– Since the back right face is a pullback, we have m(a1) �= b(b′1) for
all a1 ∈ A (property 4).

– The front right face commutes, which means that g(b(b′1)) =
d(g′(b′1)) = d(d′1) = n(c1), where the last equality holds by as-
sumption.

– The bottom is a pushout with an injective m and hence is a pull-
back. Therefore there exists an a1 ∈ A with f(a1) = c1 and
m(a1) = b(b′1).

This is a contradiction of property 4.

d′
1

c1

b′1

��

��

�

�

�

�
�

�

�
�

�

�
�

�

�
�

� ��

����

����

����

Case 2. There is a c′2 ∈ C′ with n′(c′2) = d′1, but c(c′2) = c2 �= c1.

– The front left commutes; therefore n(c1) = d(d′1) = d(n′(c′2)) =
n(c(c′2)) = n(c2).

This is a contradiction of the fact that n is injective.
• j is both injective and surjective, i.e. isomorphic, and therefore the

front left face of the cube (2) is a pullback.

Part 2 (“⇐”). Assume that the front faces of cube (2) are pullbacks.
Pushouts are unique up to isomorphism. Since m′ is injective, we can assume,

from property 4 of Fact 2.17, that PO is given by PO := C ′
�

∪ B′\m′(A′),
and it remains to show that:

3. D′ ∼
= PO.

3. Since PO is the pushout object over f ′ and m′, and g′ ◦m′ = n′ ◦f ′, there
is an induced morphism k : PO → D′ with

k(p) =

{
n′(p) if p ∈ C′

g′(p) otherwise
.
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• k is injective.

Let p1, p2 ∈ C′
�

∪ B′\m′(A′) with k(p1) = k(p2); we have to show
that p1 = p2. Assume that p1 �= p2, and then we have the following
case distinctions:

Case 1. For p1 �= p2 ∈ C′, we have n′(p1) �= n′(p2) because n′ is
injective, which contradicts n′(p1) = k(p1) = k(p2) = n′(p2).

Case 2. For p1 �= p2 ∈ B′\m′(A′), we have g′(p1) = k(p1) =
k(p2) = g′(p2).

– For all a′ ∈ A′, we have m′(a′) �= p1 and m′(a′) �= p2.
– Since the front right face is a pullback with d(g′(p1)) = d(g′(p2)),

there are b1 �= b2 ∈ B with b(p1) = b1, b(p2) = b2, and g(b1) =
g(b2).

– The back right face is a pullback with m′(a′) �= p1 and m(a′) �= p2

for all a′ ∈ A, and therefore m(a1) �= b1 and m(a2) �= b2 for all a1,
a2 ∈ A (property 5).

– The bottom is a pushout, and since g(b1) = g(b(p1)) = d(g′(p1)) =
d(g′(p2)) = g(b(p2)) = g(b2) and m is injective, there have to exist
a1 �= a2 ∈ A with m(a1) = b1 and m(a2) = b2.

This is a contradiction of property 5.

p1

p2

b1

b2

�

�

�

�

�

� �
��

�
�
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�
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�
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Case 3. For p1 ∈ C′, p2 ∈ B′\m′(A′), we have n′(p1) = k(p1) =
k(p2) = g′(p2).

– For all a′ ∈ A′, we have m′(a′) �= p2 (property 6).
– The front right and the front left face commute; therefore n(c(p1)) =

d(n′(p1)) = d(g′(p2)) = g(b(p2)).
– Since the bottom is a pushout with m injective and hence is a

pullback, we obtain an a1 ∈ A with f(a1) = c(p1) and m(a1) =
b(p2).

– Since the back right face is a pullback, there exists an a′
1 ∈ A′ with

a(a′
1) = a1 and m′(a′

1) = p2.

This is a contradiction of property 6.
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• k is surjective.
Suppose that there exists a d′1 ∈ D′ with k(p) �= d′1 for all p ∈ PO,

which means that n′(c′) �= d′1 for all c′ ∈ C′ and g′(b′) �= d′1 for all
b′ ∈ B′. If there were a b′1 ∈ m′(A′) with g′(b′1) = d′1, then there
would also be a c′1 ∈ C′ and an a′

1 ∈ A′ with n′(c′1) = n′(f ′(a′
1)) =

g′(m′(a′
1)) = g′(b′1) = d′1, which would contradict n′(c′) �= d′1 for all

c′ ∈ C′.

– The front faces are pullbacks; therefore n(c1) �= d(d′1) for all c1 ∈ C
and g(b1) �= d(d′1) for all b1 ∈ B (property 7).

– The bottom is a pushout; therefore there exists, for d(d′1) ∈ D, a
c1 ∈ C with n(c1) = d(d′1) or a b1 ∈ B with g(b1) = d(d′1).

This is a contradiction of property 7.
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• k is both injective and surjective, i.e. isomorphic, and therefore the
top face of the cube (2) is a pushout.


�

Remark 4.3 (proof techniques for Fact 4.2). The proof of Fact 4.2 looks
quite complicated, and it raises the question of the possibility of a simpler
proof. The first idea would be to use only the composition and decomposition
properties of POs (Fact 2.20) and of PBs (Fact 2.27). If the top face is a PO,
then the top and bottom are POs and PBs by Remark 2.25. This implies that
all faces in the cube (2) except for the front faces are PBs. However, Fact 2.27
cannot be applied to conclude that the front faces are also PBs.

An alternative way to show part 1 of the proof would be to use the prop-
erties of PBs in Sets in Fact 2.23 directly to show that the front faces are
PBs. Concerning part 2, an alternative would be to show first that the top
diagram in (2) is a PB using the fact that the bottom PO, with an injective
m, is also a PB. In this case, Fact 2.27 could be applied to show that the top
is a PB. In a second step, Remark 2.25 could be used to show that the top is
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also a PO. It would remain to show that m′ and that g′ are jointly surjective
and g′ is injective up to m′.

Example 4.4 (van Kampen square in Sets). In the following diagram a
VK square along an injective function in Sets is shown on the left-hand side.
All morphisms are inclusions, or 0 and 1 are mapped to ∗ and 3 to 2.

Arbitrary pushouts are stable under pullbacks in Sets. This means that
one direction of the VK square property is also valid for arbitrary morphisms.
However, the other direction is not necessarily valid. The cube on the right-
hand side is such a counterexample, for arbitrary functions: all faces commute,
the bottom and the top are pushouts, and the back faces are pullbacks. But,
obviously, the front faces are not pullbacks, and therefore the pushout in the
bottom fails to be a VK square.

{0, 1}

{0, 1, 2, 3}

{0, 1}

{0, 1, 2}

{∗}

{∗, 2, 3}

{∗}

{∗, 2}

{0, 1} × {0, 1}

{0, 1}

{0, 1}

{∗}

{0, 1}

{∗}

{∗}

{∗}

π2

+mod2

π1


�

In the following definition of adhesive categories, only those VK squares
(as defined in Definition 4.1) where m is a monomorphism are considered. Fol-
lowing Lack and Sobociński [LS04], we define an adhesive category as below.

Definition 4.5 (adhesive category). A category C is an adhesive category
if:

1. C has pushouts along monomorphisms (i.e. pushouts where at least one
of the given morphisms is a monomorphism).

2. C has pullbacks.
3. Pushouts along monomorphisms are VK squares.

In [Sob04] and related work, adhesive categories are used as the categorical
framework for deriving process congruences from reaction rules. This is closely
related to deriving bisimulation congruences in the DPO approach with a bor-
rowed context, introduced in [EK04]. We shall not discuss these applications
in this book, where adhesive categories are used only as a first step towards
adhesive HLR categories in Section 4.2.

Let us first consider some basic examples and counterexamples of adhesive
categories.
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Theorem 4.6 (Sets, Graphs, and GraphsTG as adhesive categories).
Sets, Graphs, and GraphsTG are adhesive categories.

Proof. As shown in Facts 2.17 and 2.23, Sets has pushouts and pullbacks
over arbitrary morphisms. In Fact 4.2, we have shown that pushouts along
monomorphisms are VK squares. Therefore Sets is an adhesive category.

The result that Graphs and GraphsTG are adhesive categories follows
from Theorem 4.15 and is shown in Fact 4.16. 
�

Counterexample 4.7 (nonadhesive categories). The category Posets of
partially ordered sets (see Example A.3) and the category Top of topological
spaces and continuous functions are not adhesive categories. In the following
diagram, a cube in Posets is shown that fails to be a van Kampen square.
The bottom is a pushout with injective functions (monomorphisms) and all
lateral faces are pullbacks, but the top square is not a pushout in Posets.
The proper pushout over the corresponding morphisms is the square (1):

3

2 → 3

1 → 3

1 → 2 → 3

0 → 3

0 → 2 → 3

0 → 1 → 3

0 → 1 → 2 → 3

3 2 → 3

0 → 3
0 ↘

2 ↗ 3

(1)


�

Remark 4.8 (quasiadhesive categories). In [LS05], Lack and Sobociński
have also introduced a variant of adhesive categories, called quasiadhesive
categories, where the class of monomorphisms in Definition 4.5 is replaced
by regular monomorphisms. A monomorphism is called “regular” if it is the
equalizer of two morphisms. For adhesive and also quasiadhesive categories,
Lack and Sobociński have shown that all of the HLR properties shown for ad-
hesive HLR categories in Thm. 4.26 (see below) are valid. This allows one to
prove several important results for graph transformation systems, presented
in Chapter 3, in the framework of both adhesive and quasiadhesive cate-
gories. On the other hand, adhesive and quasiadhesive categories are special
cases of the adhesive HLR categories (C,M) (see Def. 4.9 below), where the
class M is specialized to the class of all monomorphisms and of all regular
monomorphisms, respectively. For this reason, we shall not develop the theory
of adhesive and quasiadhesive categories in this section, but instead continue
with adhesive HLR categories in the next section.
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4.2 Adhesive HLR Categories

In this section, we consider high-level structures, including, especially, various
kinds of graphs and Petri nets, as objects of a suitable high-level replacement
category of the kind introduced in [EHKP91a, EHKP91b]. By combining these
structures with the concept of adhesive categories described in Section 4.1 we
obtain adhesive HLR categories.

The main difference between adhesive HLR categories and adhesive cate-
gories is that a distinguished class M of monomorphisms is considered instead
of all monomorphisms, so that only pushouts along M-morphisms have to be
VK squares. Moreover, only pullbacks along M-morphisms, not over arbitrary
morphisms, are required.

The step from adhesive to adhesive HLR categories is justified by the fact
that there are some important examples – such as algebraic specifications and
typed attributed graphs – which are not adhesive categories. However, they
are adhesive HLR categories for a suitable subclass M of monomorphisms.

In addition to adhesive HLR categories, we introduce a slightly weaker
notion, called weak adhesive HLR categories, because another important ex-
ample – the category PTNets of place/transition nets with the class M of
injective morphisms – fails to be an adhesive HLR category, but is a weak
adhesive HLR category.

The main result in this section shows that (weak) adhesive HLR categories
are closed under product, slice, coslice, functor, and comma category construc-
tions. This result is important because we only have to verify the conditions
of adhesive HLR categories explicitly for some basic categories such as Sets
with the class M of injective functions, and can then apply Theorem 4.15 to
show that several other important categories are also (weak) adhesive HLR
categories.

Definition 4.9 (adhesive HLR category). A category C with a morphism
class M is called an adhesive HLR category if:

1. M is a class of monomorphisms closed under isomorphisms, composition
(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M), and decomposition
(g ◦ f ∈ M, g ∈ M ⇒ f ∈ M).

2. C has pushouts and pullbacks along M-morphisms, and M-morphisms
are closed under pushouts and pullbacks.

3. Pushouts in C along M-morphisms are VK squares.

Remark 4.10. A pushout along an M-morphism is a pushout where at least
one of the given morphisms is in M. Pushouts are closed under M-morphisms
if, for a given pushout (1), m ∈ M implies that n ∈ M. Analogously, pullbacks
are closed under M-morphisms if, for a pullback (1), n ∈ M implies that
m ∈ M:
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A B

C D

(1)

m

n

f g

Note that the decomposition property of M is a consequence of the closure
of M under pullbacks. In fact, the following diagram (2) with g ◦ f ∈ M and
g ∈ M is a pullback, because g is a monomorphism. Hence the closure of M
under pullbacks implies f ∈ M:

A B

A C

(2)

f

g◦f

idA g

Example 4.11 (adhesive HLR categories).

• All adhesive categories (see Section 4.1) are adhesive HLR categories for
the class M of all monomorphisms.

• The category (HyperGraphs, M) of hypergraphs for the class M of
injective hypergraph morphisms is an adhesive HLR category (see Fact
4.17).

• Another example of an adhesive HLR category is the category (Sig, M)
of algebraic signatures for the class M of all injective signature morphisms
(see Fact 4.19).

• The category (ElemNets, M) of elementary Petri nets for the class M
of all injective Petri net morphisms is an adhesive HLR category (see Fact
4.20).

• An important example is the category (AGraphsATG, M) of typed at-
tributed graphs with a type graph ATG, where M is the class of all in-
jective morphisms with isomorphisms on the data part. We introduce this
category and show that it has the properties of an adhesive HLR category
explicitly in Chapter 8.


�

Counterexample 4.12 (nonadhesive HLR categories). The categories
(PTNets, M) and (Spec, M), where M is the class of all monomorphisms,
fail to be adhesive HLR categories (see Example 4.23 and Fact 4.24). 
�

For a weak adhesive HLR category, we soften only item 3 in Definition 4.9,
so that only special cubes are considered for the VK square property.

Definition 4.13 (weak adhesive HLR category). A category C with a
morphism class M is called a weak adhesive HLR category if:

1. M is a class of monomorphisms closed under isomorphisms, composition
(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M), and decomposition
(g ◦ f ∈ M, g ∈ M ⇒ f ∈ M).
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2. C has pushouts and pullbacks along M-morphisms, and M-morphisms
are closed under pushouts and pullbacks.

3. Pushouts in C along M-morphisms are weak VK squares, i.e. the VK
square property holds for all commutative cubes with m ∈ M and (f ∈ M
or b, c, d ∈ M) (see Definition 4.1).

Example 4.14 (weak adhesive HLR categories).

• The category (PTNets, M) of Petri nets for the class M of all monomor-
phisms is a weak adhesive HLR category (see Fact 4.21).

• An interesting example of high-level structures that are not graph-like is
that of algebraic specifications (see [EM85]). The category (Spec, Mstrict)
of algebraic specifications, where Mstrict is the class of all strict injective
specification morphisms, is a weak adhesive HLR category (see Fact 4.24).

• Similarly, the category AHLNets(SP,A) of algebraic high-level nets with
a fixed specification SP and algebra A, considered with the class M of
injective morphisms, is a weak adhesive HLR category (see Fact 4.25).


�

By definition, every adhesive HLR category is also a weak adhesive HLR
category, but not vice versa. In our main results (Theorems 4.15 and 4.26),
it makes no difference whether we consider adhesive or weak adhesive HLR
categories. Hence, for our present purposes, it would have been sufficient to
consider only weak adhesive HLR categories. However, our idea of adhesive
HLR categories is closer to that of the adhesive categories introduced in [LS04].
In the following, the phrase “(weak) adhesive HLR category” means that we
can take either an adhesive or a weak adhesive HLR category.

(Weak) adhesive HLR categories are closed under product, slice, coslice,
functor, and comma category constructions (see Sections A.2 and A.6). This
means that we can construct new (weak) adhesive HLR categories from given
ones.

Theorem 4.15 (construction of (weak) adhesive HLR categories).
(Weak) adhesive HLR categories can be constructed as follows:

1. If (C,M1) and (D,M2) are (weak) adhesive HLR categories, then the
product category (C ×D,M1 ×M2) is a (weak) adhesive HLR category.

2. If (C,M) is a (weak) adhesive HLR category, so are the slice category
(C\X,M ∩ C\X) and the coslice category (X\C,M ∩ X\C) for any
object X in C.

3. If (C,M) is a (weak) adhesive HLR category, then for every category X
the functor category ([X,C],M− functortransformations) is a (weak)
adhesive HLR category. An M-functor transformation is a natural trans-
formation t : F → G, where all morphisms tX : F (X) → G(X) are in
M.

4. If (A,M1) and (B,M2) are (weak) adhesive HLR categories and F :
A → C, G : B → C are functors, where F preserves pushouts along
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M1-morphisms and G preserves pullbacks (along M2-morphisms), then
the comma category (ComCat(F, G; I),M) with M = (M1 × M2) ∩
MorComCat(F,G;I) is a (weak) adhesive HLR category.

Proof.

1. The product category (C × D, M1 ×M2) is a (weak) adhesive category
under the given assumptions, because M1 × M2 inherits the required
monomorphism composition and decomposition properties from M1 and
M2. Moreover, pushouts and pullbacks along M1×M2-morphisms can be
constructed componentwise according to Facts A.19 and A.23. In order
to show that pushouts in C × D along M1 × M2-morphisms are VK
squares, we note that general pullbacks, which are used in the VK cube
of Definition 4.1, can also be constructed componentwise in a product
category.

2. The same is true for the slice category (C\X , M∩C\X) and the coslice
category (X\C, M∩X\C), where M∩C\X and M∩X\C are monomor-
phisms in C\X and X\C, respectively. Note that monomorphisms in C
are also monomorphisms in C\X and X\C, but monomorphisms in X\C
are not necessarily monomorphisms in C.

3. The functor category ([X, C], M-functor transformations) is a (weak)
adhesive HLR category, provided that (C, M) is a (weak) adhesive HLR
category. By Fact A.37, M-functor transformations are monomorphisms
in [X, C], and the required monomorphism composition and decomposi-
tion properties are inherited from M. Moreover, pushouts and pullbacks
along M-functor transformations, and general pullbacks are constructed
pointwise (i.e. for each object X ∈ ObX) in [X, C].

4. The comma category (ComCat(F, G; I), M) is a (weak) adhesive HLR
category under the given assumptions, using Fact A.43. In the case of
general adhesive HLR categories, we require that F preserves pushouts
along M1-morphisms, but for G we require that general pullbacks are
preserved. This makes sure that in the VK cube of Definition 4.1, the
general pullbacks can also be constructed componentwise, which allows us
to inherit the VK properties of (ComCat(F, G; I), M) from (A, M1) and
(B, M2). In the case of weak adhesive HLR categories, it is sufficient to
require that F preserves pushouts along M1-morphisms and G preserves
pullbacks along M2-morphisms.


�

In the following, we use Theorem 4.15 in order to verify that Graphs and
GraphsTG are adhesive categories and that the examples given in Examples
4.11 and 4.14 are (weak) adhesive HLR categories.

Fact 4.16 (Graphs and GraphsTG are adhesive categories). The cate-
gories Graphs and GraphsTG are adhesive categories, where the monomor-
phisms in Graphs and GraphsTG are exactly the injective graph morphisms
and typed graph morphisms, respectively.
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Proof. The characterization of monomorphisms follows from Fact 2.15. Ac-
cording to Fact A.46, the category Graphs of graphs is isomorphic to the
functor category [S, Sets]. Now, (Sets, M) for the class M of all injective
functions, i.e. monomorphisms, is an adhesive HLR category, because Sets
is an adhesive category by Theorem 4.6. This implies that (Graphs, M′)
for the class M′ of all injective graph morphisms, i.e. monomorphisms, is an
adhesive HLR category by Theorem 4.15, part 3. Since Graphs has general
pullbacks, it is an adhesive category.

A similar argument using Theorem 4.15, part 2, implies that the slice
category GraphsTG = (Graphs\TG) over Graphs is an adhesive category.


�

As a variant of graphs, we now consider hypergraphs, where each edge no
longer has one source and one target, but an arbitrary sequence of vertices
used as attachment points.

Fact 4.17 (HyperGraphs is an adhesive HLR category). The category
(HyperGraphs, M) of hypergraphs is an adhesive HLR category.

A hypergraph G is given by G = (V, E, s, t), with source and target func-
tions s, t : E → V ∗, and a hypergraph morphism f : G → G′ is given by
f = (fV : V → V ′, fE : E → E′), compatible with the source and target
functions, i.e. s′ ◦ fE = f∗

V ◦ s and t′ ◦ fE = f∗
V ◦ t. Here, M is the class of

all injective hypergraph morphisms (i.e. fV and fE are injective).

Proof. The category HyperGraphs is isomorphic to the comma category
ComCat(IDSets, �

∗; I), where �∗ : Sets → Sets assigns to each set A and
function f the free monoid A∗ and the free monoid morphism f∗, respectively,
and I = {1, 2}. According to Theorem 4.15, part 4, it suffices to note that
G = �∗ : Sets → Sets preserves pullbacks (see Lemma A.38), using the fact
that (Sets, M) is an adhesive HLR category. 
�

Graphs, typed graphs or hypergraphs can also be used to construct triple
graphs G1 ← G0 → G2, where graphs G1 and G2 of different languages L1

and L2 are linked by an intermediate graph G0 ∈ L0 and graph morphisms
G0 → G1 and G0 → G2. The concept of triple graph grammars for another
graph grammar approach was introduced by Schürr in [Sch94] in order to
specify graph translators.

The category TripleGraphs is the base category to define triple graph
grammars in the DPO approach; it can be defined as the functor category
[S3,Graphs], where the “schema category” S3 is given by the schema S3 :
· ← · → ·, which consists only of three objects and two morphisms.

Fact 4.18 (TripleGraphs is an adhesive HLR category). The functor
categories TripleGraphs = [S3,Graphs], TripleGraphsTG =
[S3,GraphsTG] and TripleHyperGraphs = [S3,HyperGraphs] of triple
graphs, triple typed graphs and triple hypergraphs, respectively, together with
the class M of morphisms which are componentwise injective, are adhesive
HLR categories.
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Proof. This is a direct consequence of Facts 4.16, 4.17 and Fact 4.15 item 3.

Next, we consider algebraic signatures in the framework of algebraic spec-
ifications (see [EM85] and Fact 4.24).

Fact 4.19 (algebraic signatures are an adhesive HLR category). The
category (Sig, M) of algebraic signatures is an adhesive HLR category.

An algebraic signature is given by SIG = (S, OP, dom : OP → S∗, cod :
OP → S) with a set S of sorts, a set OP of operation symbols, and domain
and codomain functions dom and cod; op ∈ OP , with dom(op) = s1 . . . sn

and cod(op) = s, is usually written op : s1 . . . sn → s (see [EM85]). An
algebraic signature morphism f : SIG → SIG′ is given by a pair of functions
f = (fS : S → S′, fOP : OP → OP ′) compatible with dom and cod, i.e.
f∗

S ◦ dom = dom′ ◦ fOP and fS ◦ cod = cod′ ◦ fOP , and M is the class of all
injective morphisms.

Proof. The category Sig is isomorphic to a variant of the comma category
ComCat(F, G; I) with I = {1, 2}, F = IDSets, and with G replaced by
G1 = �∗ : Sets → Sets as in Fact 4.17, and G2 = IDSets. Similarly to
Fact 4.17, it is sufficient to note that G1 = �∗ and G2 = IDSets preserve
pullbacks. 
�

In the following, we consider two kinds of Petri nets. Elementary Petri
nets, also called condition/event nets, have arc weights restricted to one, while
place/transition nets allow arbitrary finite arc weights. Instead of the original
set-theoretical notations used in [Rei85, NRT92], we use a more algebraic
version based on a power set or monoid construction, as introduced in [MM90].

Fact 4.20 (elementary Petri nets are an adhesive HLR category).
The category (ElemNets, M) of elementary Petri nets is an adhesive HLR
category.

An elementary Petri net is given by N = (P, T, pre, post : T → P(P )) with
a set P of places, a set T of transitions, and predomain and postdomain func-
tions pre, post : T → P(P ), where P(P ) is the power set of P . A morphism f :
N → N ′ in ElemNets is given by f = (fP : P → P ′, fT : T → T ′) compati-
ble with the predomain and postdomain functions, i.e. pre′ ◦ fT = P(fP ) ◦ pre
and post′ ◦ fT = P(fP ) ◦ post, and M is the class of all injective morphisms.

Proof. The category ElemNets is isomorphic to the comma category
ComCat(IDSets,P ; I), where P : Sets → Sets is the power set functor
and I = {1, 2}. According to Theorem 4.15, part 4, it suffices to note that
P : Sets → Sets preserves pullbacks (see Lemma A.39), using the fact that
(Sets, M) is an adhesive HLR category. 
�

As pointed out in Counterexample 4.12, the categories (PTNet, M) of
place/transition nets and (Spec, M) of algebraic specifications, where M
is the class of injective morphisms in both cases, are not adhesive HLR
categories, but we can obtain the following weak adhesive HLR categories
(PTNets, M) and (Spec, Mstrict) defined below.
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Fact 4.21 (place/transition nets are a weak adhesive HLR category).
The category (PTNets, M) of place/transition nets is a weak adhesive HLR
category, but not an adhesive HLR category.

According to [MM90], a place/transition net N = (P, T, pre, post : T →
P⊕) is given by a set P of places, a set T of transitions, and the predomain and
postdomain functions pre, post : T → P⊕, where P⊕ is the free commutative
monoid over P . A morphism f : N → N ′ in PTNets is given by f =
(fP : P → P ′, fT : T → T ′), compatible with the predomain and postdomain
functions, i.e. pre′ ◦ fT = f⊕

P ◦ pre and post′ ◦ fT = f⊕
P ◦ post, and M is the

class of all injective morphisms.

Proof. The category PTNets is isomorphic to the comma category
ComCat(IDSets, �

⊕; I) with I = {1, 2}, where �⊕ : Sets → Sets is the free
commutative monoid functor. According to Theorem 4.15, part 4, it suffices
to note that �⊕ : Sets → Sets preserves pullbacks along injective morphisms
(see Lemma A.40), using the fact that (Sets, M) is a (weak) adhesive HLR
category. This implies that (PTNets, M) is a weak adhesive HLR category.

It remains to show that (PTNets, M) is not an adhesive HLR category.
This is due to the fact that �⊕ : Sets → Sets does not preserve general
pullbacks. This would imply that pullbacks in PTNets are constructed com-
ponentwise for places and transitions. In fact, in Example 4.23 we present a
noninjective pullback in PTNets, where the transition component is not a
pullback in Sets, and a cube which violates the VK properties of adhesive
HLR categories. 
�

Remark 4.22 (pullbacks in comma categories). The category PTNets
in Fact 4.21 is an example of a comma category ComCat(F, G; I) where the
functor G : B → C does not preserve general pullbacks. This means that
we cannot conclude from Fact A.43 that pullbacks in ComCat(F, G; I) are
constructed componentwise.

However, it is interesting to note that in the case where A has an initial
object IA and F : A → C preserves initial objects, we can conclude that
every pullback in the comma category is also a pullback in the B-component.
In fact, given a pullback (1) in ComCat(F, G; I) with Cj = (Aj , Bj ; opj) for
j = 0, . . . , 3, we are able to show that the B-component of (1) is a pullback
in B. Given B, with morphisms h1B : B → B1 and h2B : B → B2 in B, and
g1B ◦ ◦h1B = g2B ◦ h2B, we consider the object C = (IA, B; op) with initial
morphisms opi : F (IA) → G(B) in C, using the fact that F (IA) is initial in C.
We then have morphisms h1 : C → C1 and h2 : C → C2 in ComCat(F, G; I),
where h1A : IA → A1 and h2A : IA → A2 are the initial morphisms in A, and
h1B, h2B as above satisfy g1 ◦ h1 = g2 ◦ h2:

C0 C1

C2 C3

(1)

f1

g2

f2 g1
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The pullback property of (1) in ComCat(F, G; I) implies a unique h : C →
C1 with f1 ◦ h = h1 and f2 ◦ h = h2. But this also implies that hB : B → B0

in B is unique, with f1B ◦ hB = h1B and f2B ◦ hB = h2B , using again the
initialiy of IA and F (IA).

This general result can be applied to show that pullbacks in PTNets
have pullbacks in the P -component, because F = IDSets preserves the initial
object ∅ in Sets. An example of a pullback in PTNets with this property
is shown in Example 4.23, where the P -component is a pullback in Sets, but
not the T -component.

Example 4.23 (non-VK square in PTNets). The following diagram
(1), with noninjective morphisms g1, g2, p1, p2, is a pullback in the category
PTNets (see Fact A.24), where the transition component is not a pullback
in Sets:

t0

t′0

1,1′

1,2′

2,2′

2,1′

t1

1 2

t2

1′ 2′

t3

p

2

(1)

A B

C D

p1

p2

g2

g1

For the construction of the pullback over g1 and g2 in PTNets according
to the general construction in Fact A.24, we first construct the pullback over
the places in Sets and obtain the places PA = {(1, 1′), (2, 2′), (1, 2′), (2, 1′)}
and the morphisms p1,P : PA → PB with p1,P (x, y) = x and p2,P : PA → PC

with p2,P (x, y) = y.
We have only one transition t3 ∈ TD, with preD(t3) = 2p and postD(t3) =

λ, and the tuple (t1, t2) ∈ TB ×TC of transitions that are mapped to t. So the
set L(t1,t2) is given by

L(t1,t2) = {((1, 1′), (2, 2′)), ((2, 2′), (1, 1′)), ((1, 2′), (2, 1′)), ((2, 1′), (1, 2′))}.

By the definition of the relation ∼(t1,t2), we have the result that

((1, 1′), (2, 2′)) ∼(t1,t2) ((2, 2′), (1, 1′)) and
((1, 2′), (2, 1′)) ∼(t1,t2) ((2, 1′), (1, 2′));

therefore we define t0 = t
(t1,t2)
[((1,1′),(2,2′))], t′0 = t

(t1,t2)
[((1,2′),(2,1′))], and TA = {t0, t

′
0}.
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In the following cube the bottom square is a pushout in PTNets along an
injective morphism m ∈ M, all side squares are pullbacks, but the top square
is not a pushout in PTNets. Hence we have a counterexample for the VK
property.

t0

t′0

1,1′

1,2′

2,2′

2,1′

t1

1 2

t2

1′ 2′ t3

p

2

1,1′

1,2′

2,2′

2,1′

1 2

1′ 2′

1m

p1

p2

g2

g1


�

The next example is the category of algebraic specifications in the sense
of [EM85].

Fact 4.24 (algebraic specifications are a weak adhesive HLR cate-
gory). The category (Spec,Mstrict) of algebraic specifications, for the class
Mstrict of strict morphisms, is a weak adhesive HLR category. However,
(Spec,M), for the class M of all injective morphisms, is not a weak ad-
hesive HLR category.

An algebraic specification SP = (SIG, E) consists of a signature SIG =
(S, OP ) (see Fact 4.19) and a set E of equations e = (X, L, R) over SIG with
L, R ∈ TSIG(X)s for some s ∈ S (see [EM85]). A morphism f : SP → SP ′ in
Spec is a signature morphism f : SIG → SIG′ (see Fact 4.19) with f#(E) ⊆
E′, where f#(E) are the translated equations. A morphism f : SP → SP ′ in
Spec is strict if it is injective and f#−1(E′) ⊆ E.

Proof. According to Fact 4.19, pushouts and pullbacks can be constructed
componentwise for the signature part of an algebraic specification. Given f1
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and f2 in diagram (1) below in Spec, the pushout object (SIG3, E3) is given

by SIG3, as the pushout object in Sig, and E3 = g#
1 (E1) ∪ g#

2 (E2):

(SIG0, E0) (SIG1, E1)

(SIG2, E2) (SIG3, E3)

(1)

f1

g2

f2 g1

Vice versa, given g1 and g2 in diagram (1), the pullback object (SIG0, E0) is

given by SIG0, as the pullback object in Sig, and E0 = f#−1
1 (E1)∩f#−1

2 (E2).
Moreover, it can be shown that pushouts and pullbacks in Spec preserve

strict morphisms and that pushouts in Spec along strict morphisms are weak
VK squares in the sense of Definition 4.13 (see Section C.1). This implies that
(Spec, Mstrict) is a weak adhesive HLR category.

However, this is not true for (Spec, M), where M is the class of all
injective morphisms. In fact, the following pushout (2) in Spec, with E �= ∅
and all morphisms in M, is not a pullback. By Theorem 4.26, this implies
that (Spec, M) is not a weak adhesive HLR category.

(SIG, ∅) (SIG, E)

(SIG, E) (SIG, E)

(2)


�

In the following, we combine algebraic specifications with Petri nets, lead-
ing to algebraic high-level (AHL) nets (see [PER95]). For simplicity, we fix
the corresponding algebraic specification SP and the SP -algebra A. For the
more general case, where morphisms between different specifications and al-
gebras are also allowed, we refer to [PER95]. Under suitable restrictions on
the morphisms, we also obtain a weak adhesive HLR category in the more
general case (see [Pad96] for the HLR properties of high-level abstract Petri
nets).

Fact 4.25 (AHL nets are a weak adhesive HLR category). Given an
algebraic specification SP and an SP -algebra A, the category
(AHLNets(SP,A),M) of algebraic high-level nets over (SP, A) is a weak
adhesive HLR category.

An AHL net over (SP, A), where SP = (SIG, E, X) has additional vari-
ables X and SIG = (S, OP ), is given by N = (SP, P, T, pre, post, cond, type,
A), where P and T are the sets of places and transitions;
pre, post : T → (TSIG(X) ⊗ P )⊕ are the predomain and postdomain func-
tions; cond : T → Pfin(Eqns(SIG, X)) assigns to each t ∈ T a finite set
cond(t) of equations over SIG and X; type : P → S is a type function; and
A is an SP -algebra.
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Note that TSIG(X) is the SIG-term algebra with variables X, (TSIG(X)⊗
P ) = {(term, p) | term ∈ TSIG(X)type(p), p ∈ P}, and �⊕ is the free commu-
tative monoid functor.

A morphism f : N → N ′ in AHLNets(SP,A) is given by a pair of
functions f = (fP : P → P ′, fT : T → T ′) which are compatible with the
functions pre, post, cond, and type as shown below. M is the class of all
injective morphisms f , i.e. fP and fT are injective.

Pfin(Eqns(SIG, X))

T (TSIG(X) ⊗ P )⊕

T ′ (TSIG(X) ⊗ P ′)⊕

P

P ′

S

pre

post

pre′

post′

cond

cond′

fT (id⊗fP )⊕

type

type′

fP

Proof. From the fact that (SP, A) is fixed, the construction of pushouts and
pullbacks in AHLNets(SP,A) is essentially the same as in PTNets, which
is also a weak adhesive HLR category. We can apply the idea of comma cate-
gories ComCat(F, G; I), where in our case the source functor of the operations
pre, post, cond, and type is always the identity IDSets, and the target func-
tors are (TSIG(X) ⊗ )⊕ : Sets → Sets and two constant functors. In fact
(TSIG(X) ⊗ ) : Sets → Sets, the constant functors, and �⊕ : Sets → Sets
preserve pullbacks along injective functions (see Lemma A.40). This implies
that (TSIG(X) ⊗ )⊕ : Sets → Sets also preserves pullbacks along injective
functions, which is sufficient to verify the properties of a weak adhesive HLR
category. 
�

4.3 HLR Properties of Adhesive HLR Categories

In this section, we show several important properties of (weak) adhesive HLR
categories, which are essential to prove the main results in the following
chapters. These properties were required as HLR properties in [EHKP91a,
EHKP91b] to show the classical results for HLR systems. In [LS04], it was
shown that these HLR properties are valid for adhesive categories. These prop-
erties were extended to adhesive HLR categories in [EHPP04]; we now extend
them to weak adhesive HLR categories also.

Theorem 4.26 (properties of (weak) adhesive HLR categories). Given
a (weak) adhesive HLR category (C, M), then the following properties hold:

1. Pushouts along M-morphisms are pullbacks. Given the following pushout
(1) with k ∈ M, then (1) is also a pullback.

2. M pushout–pullback decomposition lemma. Given the following commu-
tative diagram, where (1) + (2) is a pushout, (2) is a pullback, w ∈ M,
and (l ∈ M or k ∈ M), then (1) and (2) are pushouts and also pullbacks.
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3. Cube pushout–pullback lemma. Given the following commutative cube (3),
where all morphisms in the top and in the bottom are in M, the top is a
pullback, and the front faces are pushouts, then the bottom is a pullback
iff the back faces of the cube are pushouts:

A′

B′

A

B

C′

D′

C

D(3)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

E

F

(1) (2)

k

l

u

s

r

w

v

4. Uniqueness of pushout complements. Given k : A → B ∈ M and s : B →
D, then there is, up to isomorphism, at most one C with l : A → C and
u : C → D such that (1) is a pushout.

For the proofs, we need the following fact.

Fact 4.27. For any morphism f : A → B, the square (PO) below is a pushout
and a pullback, and for any monomorphism m : A → B, (PB) is a pullback.
Since in a (weak) adhesive HLR category M is a class of monomorphisms,
this holds in particular for M-morphisms.

A B

A B

(PO)

f

idA

f

idB

A A

A B

(PB)

idA

idA

m

m

Proof. This follows from standard category theory. 
�

Proof (Theorem 4.26). We shall show these properties for weak adhesive HLR
categories. In the nonweak case, we have to verify fewer of the M-morphisms.

1. Consider the following cube (4):

A

A

A

B

C

C

C

D

(4)

idA

idA

l

l

k

k
l

idC

idC

u

u
s
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Since the bottom is the pushout (1) along the M-morphism k, it is a weak
VK square with k, u, idc ∈ M. From Fact 4.27, we have the result that:

• the back left face is a pullback;
• the back right face is a pullback;
• the top is a pushout.

From the VK square property, we conclude that the front faces (and there-
fore (1)) are pullbacks.

2. Since w ∈ M, we have, from Definition 4.9, the result that r ∈ M also.
If k ∈ M, then r ◦ k ∈ M also, since M-morphisms are closed under
composition. Consider the following cube (5) over the given morphisms:

A

A

C

C

B

B

B

E

D

D

D

F

(5)
idA

l k

kl

u

idC

u

idB

idB

s

s

r

rs

idD

idD

w

w v

Since the bottom is a pushout along the M-morphism l or along the
M-morphism r ◦ k, it is a weak VK square with w, r, idB , idC , idD ∈ M.
We then have:

• the back left face is a pullback;
• the back right face, since it is a composition of pullbacks (since r ∈ M),

is a pullback;
• the front left face, since it is a composition of pullbacks (since w ∈ M),

is a pullback;
• the front right face is a pullback, by assumption.

From the VK square property, we conclude that the top, corresponding to
square (1), is a pushout, and the pushout decomposition gives us the result
that (2) is also a pushout. 1 implies that both (1) and (2) are pullbacks.

3. Since the front faces are pushouts along M-morphisms, they are also
pullbacks.

“⇒”. Let the bottom be a pullback. Consider the turned cube (6):
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A′

A

B′

B

C′

C

D′

D(6)

a

m′

f ′

f

m

b
g′

c

n′

n

d
g

A′

B′

C′

D′

A

B

C

D(7)

m′

f ′

a

b

g′

n′
c

m

f

g

n
d

The following properties then apply:

• the bottom is a pushout along the M-morphism g′, and therefore a
weak VK square with n′, n, m ∈ M;

• the front right face is a pullback;
• the front left face is a pushout along the M-morphism n′, and therefore

a pullback;
• the back left face is a pullback;
• the back right face is a pullback (by composition and decomposition

of pullbacks).

From the VK square property, it follows that the top is a pushout; this
means that the back left face in the original cube (3) is a pushout.

By turning the cube once more, we obtain the same result for the back
right face of the original cube (3). Hence the back faces are pushouts.

“⇐”. Let the back faces be pushouts in the original cube (3). By
turning the cube again, we obtain cube (7), where the bottom, top, back
left face, and front right face are pushouts along M-morphisms, and the
back right face is a pullback.

Since the bottom is a weak VK square with f, g, g′ ∈ M and the top is
a pushout, the front faces must be pullbacks; this means that the bottom
of the original cube is a pullback.

4. Suppose that (8) and (9) below are pushouts with k ∈ M. It follows that

u, u′ ∈ M. Consider the cube (10), where C′ x
← U

y
→ C is the pullback

over C′ u′

→ D
u
← C with x, y ∈ M. h is the resulting morphism for this

pullback in comparison with the object A and the morphisms l and l′, and
it holds that x ◦ h = l′ and y ◦ h = l.
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A

U

A

C

A

C′

B

D(10)

h

idA

idA

x

y

l
k

l′

k

u′

s
u

A B

C D

(8)

k

l

u

s

A B

C′ D

(9)

k

l′

u′

s

Pullbacks are closed under composition and decomposition, and since
the left faces and the front right face are pullbacks and y ◦h = l, the back
right face is a pullback.

The following properties then apply:

• the bottom is a pushout along the M-morphism k, and therefore a
weak VK square with k, u′, y ∈ M;

• the back left face is a pullback (with k ∈ M);
• the front left face is a pushout along the M-morphism k, and therefore

a pullback;
• the front right face is a pullback by construction;
• the back right face is a pullback.

Hence it follows from the VK square property that the top is a pushout.
Since idA is an isomorphism and pushouts preserve isomorphisms x is

also an isomorphism. For similar reasons we can conclude by exchanging
the roles of C and C′ that y is an isomorphism. This means that C and
C′ are isomorphic. 
�



5

Adhesive High-Level Replacement Systems

Adhesive high-level replacement (HLR) systems can be considered as abstract
graph transformation systems based on the adhesive or weak adhesive HLR
categories introduced in Chapter 4. More precisely, this chapter is an abstract
categorical version of Sections 3.1–3.3 in Part I, which dealt with the case of
(typed) graphs. The motivation behind the concepts of adhesive HLR systems
is essentially the same as that behind the concepts of (typed) graph transfor-
mation systems considered in Part I. Hence there is little description of our
motivation in this chapter, but we present the proofs of all our results.

In Section 5.1, we introduce the basic concepts of adhesive HLR systems,
similarly to Section 3.1 for the classical case of graph transformation systems.
Various kinds of graph and Petri net transformation systems are introduced as
instantiations in Section 5.2. The Local Church–Rosser and Parallelism The-
orems introduced for the graph case in Section 3.3 are formulated and proven
for adhesive HLR systems in Section 5.3. Finally, we present in Section 5.4
another classical result mentioned in Section 3.4, the Concurrency Theorem,
where the construction of dependent transformation sequences is based on the
concept of pair factorization introduced in [EHPP04] for critical pair analysis.

5.1 Basic Concepts of Adhesive HLR Systems

In general, an adhesive HLR system is based on productions, also called rules,
that describe in an abstract way how objects in the system can be transformed.
The main difference from the graph productions considered in Definition 3.1
is the fact that graphs and injective graph morphisms are replaced by objects
in a category C and by morphisms in the class M of (weak) adhesive HLR
categories defined in Definitions 4.9 and 4.13.

Definition 5.1 (production). Given a (weak) adhesive HLR category (C,

M), a production p = (L
l
← K

r
→ R) (also called a rule) consists of three
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objects L, K, and R, called the left-hand side, gluing object, and right-hand
side, respectively, and morphisms l : K → L and r : K → R with l, r ∈ M.

Given a production p = (L
l
← K

r
→ R), the inverse production p−1 is

given by p−1 = (R
r
← K

l
→ L).

Similarly to the graph case in Definition 3.2, an application of a produc-
tion is called a direct transformation and describes how an object is actually
changed by the production. A sequence of these applications yields a trans-
formation.

Definition 5.2 (transformation). Given a production p = (L
l
← K

r
→ R)

and an object G with a morphism m : L → G, called the match, a direct

transformation G
p,m
=⇒ H from G to an object H is given by the following

diagram, where (1) and (2) are pushouts:

L K R

G D H

(1) (2)

l r

m k n

f g

A sequence G0 ⇒ G1 ⇒ . . . ⇒ Gn of direct transformations is called a trans-
formation and is denoted by G0

∗
⇒ Gn. For n = 0, we have the identical

transformation G0
id
⇒ G0, i.e. f = g = idG0 . Moreover, for n = 0 we allow

also isomorphisms G0
∼
= G′

0, because pushouts and hence also direct transfor-
mations are only unique up to isomorphism.

Remark 5.3. Similarly to the graph case considered in Section 3.2, we discuss
below under what conditions a production p can be applied to G with a match
m : L → G (see Definitions 5.6 and 6.3, Fact 5.8, and Theorem 6.4).

As stated in Fact 3.3 for the graph case, there is, for each direct transforma-

tion G
p,m
=⇒ H with a comatch morphism n : R → H , a direct transformation

H
p−1,n
=⇒ G over the inverse production.

If, in Definition 3.4 for GT systems, we replace the category Graphs with
injective morphisms by a (weak) adhesive HLR category (C, M), we obtain a
definition of adhesive HLR systems. Note that we do not distinguish between
adhesive and weak adhesive HLR systems, because, for all our results, we need
only the properties of weak adhesive HLR categories (see Theorem 4.26).

Definition 5.4 (adhesive HLR system, grammar, and language). An
adhesive HLR system AHS = (C,M, P ) consists of a (weak) adhesive HLR
category (C,M) and a set of productions P .

An adhesive HLR grammar AHG = (AHS, S) is an adhesive HLR system
together with a distinguished start object S.

The language L of an adhesive HLR grammar is defined by

L = {G | ∃ transformation S
∗
⇒ G}.
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Example 5.5 (adhesive HLR grammar ExAHG and transformations).
In the following, we introduce as an example the adhesive HLR gram-
mar ExAHG based on graphs (see Section 2.1). We define ExAHG =
(Graphs,M, P, S). M is the class of all injective graph morphisms, and S is
the following start graph:

S

P = {addV ertex, addEdge, deleteV ertex, del1of2Edges} is defined by the
following productions, where all morphisms are inclusions (and therefore are
in M):

addV ertex : ∅ ∅l1 r1

L1 K1 R1

addEdge : l2 r2

L2 K2 R2

deleteV ertex : ∅ ∅l3 r3

L3 K3 R3

del1of2Edges : l4 r4

L4 K4 R4

The production addV ertex adds a single vertex to a graph, and with addEdge,
a directed edge between two vertices can be inserted. On the other hand,
deleteV ertex deletes a single vertex, and del1of2Edges deletes one of two
parallel edges.

There are various options for transforming our start graph S by applying
one of the given productions. For example, we can use the production addEdge
to insert an additional edge, as shown in the following diagram. The node
labels indicate the mapping m between L2 and S, and the graph marked by
a bold outline is the source for the transformation:

l2 r2

f g

m k n

(1) (2) (1) (2) (1) (2)

(1)

(2)

(1)

(2)

(1)

(2)

L2 K2 R2

S D G
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In the resulting graph G, we delete one of the two edges between the upper
nodes by applying the production del1of2Edges:

(2)

(1) (1)(1)

(1) (1)(1)

(2)

l4 r4

f ′ g′

m′ k′ n′

L4 K4 R4

G D′ H

The direct transformations S
addEdge,m

=⇒ G and G
del1of2Edges,m′

=⇒ H together
form the transformation S

∗
⇒ H . 
�

As indicated in Section 3.2, a production p = (L
l
← K

r
→ R) can only be

applied via a match m : L → G to G if there is a pushout complement K
k
→

D
f
→ G for K

l
→ L

m
→ G (see Remark 3.12), where D is the context introduced

in Definition 3.7. Moreover, a gluing condition is introduced in Definition 3.9
which is necessary and sufficient for the existence of the pushout complement.
For adhesive HLR systems, we can define a gluing condition if we are able
to construct initial pushouts, which will be introduced in Section 6.1. Note,
however, that the existence of initial pushouts is an additional requirement,
which does not follow from the axioms of (weak) adhesive HLR categories.
The construction of initial pushouts, together with the gluing condition in
Definition 6.3, leads in Theorem 6.4 directly to a construction of the context
D and the pushout complement discussed above.

Definition 5.6 (applicability of productions). Let p = (L
l
← K

r
→ R) be

a production. For an object G and a match m : L → G, p is applicable via m

if the pushout complement for K
l
→ L

m
→ G exists.

Example 5.7 (nonapplicability of a production in ExAHG). In Exam-
ple 5.5, the productions addEdge and del1of2Edges are applicable via m and
m′, respectively.

The production deleteV ertex with a match n, as depicted in the following
diagram, is a counterexample. Since there is no pushout complement for l3 and
n, the production deleteV ertex is not applicable via n. This is clear because
deleting the node would result in two dangling edges without a source node.
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∅ ∅l3 r3

n

(1)

(1)

L3 K3 R3

S


�

Similarly to Fact 3.13 for the graph case, we now obtain a fact about how
to construct direct transformations.

Fact 5.8 (construction of direct transformations). Given a production

p = (L
l
← K

r
→ R) and a match m : L → G such that p is applicable to G via

m, then a direct transformation can be constructed in two steps:

1. Construct the pushout complement K
k
→ D

f
→ G of K

l
→ L

m
→ G in

diagram (1) below.

2. Construct the pushout D
g
→ H

n
← R of D

k
← K

r
→ R in diagram (2).

This construction is unique up to isomorphism.

L K R

G D H

(1) (2)

l r

m k n

f g

Proof. Since we have l, r ∈ M, the construction of a pushout complement (1)
and of a pushout (2) is unique up to isomorphism (see Theorem 4.26, part 4,
and Remark A.18). 
�

5.2 Instantiation of Adhesive HLR Systems

In Chapter 4, we presented several examples of adhesive and weak adhesive
HLR categrories. For each of these examples, we can obtain an instantiation
of the adhesive HLR systems introduced in Section 5.1. In particular, we can
obtain the graph and typed graph transformation systems introduced in Part
I, and typed attributed graph transformation systems, which will be studied
in Part III in more detail. In the following, we discuss some other interesting
instantiations.
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5.2.1 Graph and Typed Graph Transformation Systems

In order to obtain graph and typed graph transformation systems in the sense
of Part I (see Definition 3.4), we use the adhesive HLR categories (Graphs,
M) and (GraphsTG, M), respectively, where M is the class of all injective
graph morphisms or of all injective typed graph morphisms, respectively. In
fact, (Graphs, M) and (GraphsTG, M) are already adhesive categories (see
Fact 4.16), because M is in both cases the class of all monomorphisms. An
example of a typed graph grammar has been given already in Part I as a
running example (see Example 3.6), and in Example 5.5 we have presented a
graph grammar, which will be used as a running example in the present Part
II.

5.2.2 Hypergraph Transformation Systems

The category (HyperGraphs, M) is an adhesive HLR category (see Fact
4.17). The corresponding instantiation of adhesive HLR systems and gram-
mars leads to hypergraph transformation systems. As a specific example, we
shall consider a simple hypergraph grammar HGG from [BK02]. In fact, this
hypergraph grammar is edge-labeled (and hence also typed, as in the graph
case). However, typed hypergraph grammars are also adhesive HLR gram-
mars, because (HyperGraphsTG, M) is a slice category of (Hypergraphs,
M) and hence also an adhesive HLR category (see Theorem 4.15).

Let us consider the following hypergraph grammar HGG, with the start
graph S and the two productions useCon and createCon depicted below:

S :

Sprv

Pint

C

Spub

Pext

useCon:

Pint C
(1) (2)

C
(1) (2)

PintC
(1) (2)

createCon:

Spub

(1) (1)

SpubC
(1)

The edge labels have the following meanings: C, connection; Spub, public
server; Sprv, private server; Pint, internal process; and Pext, external pro-
cess. Using the production useCon, internal processes can move around the
network. With createCon, public servers can extend the network by creat-
ing new connections. The aim of the paper [BK02] was to present verification
techniques. For this example, it is possible to verify with these techniques that
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the external process is never connected to a private server and thus never has
access to classified data. Note that in this example all hyperedges have arity
1, except for those of type C, which have arity 2.

For other examples of hypergraph transformation systems in the area of
term graph rewriting, we refer to [Plu93, Plu95].

5.2.3 Petri Net Transformation Systems

Petri net transformation systems were introduced in [EHKP91a, EHKP91b]
for the case of low-level nets and in [PER95] for the case of high-level nets. The
main idea is to extend the well-known theory of Petri nets based on the token
game by general techniques which allow one to change also the net structure of
Petri nets. In [Pad96], a systematic study of Petri net transformation systems
was presented in the categorical framework of abstract Petri nets, which can be
instantiated to different kinds of low-level and high-level Petri nets. In Chapter
4, we have shown that the category (ElemNets, M) of elementary Petri nets
is an adhesive HLR category (see Fact 4.20) and that the categories (PTNets,
M) of place/transition nets and (AHLNets(SP,A), M) of algebraic high-
level nets over (SP, A) are weak adhesive HLR categories (see Facts 4.21
and 4.25). The corresponding instantiations of adhesive HLR systems lead to
various kinds of Petri net transformation systems, as discussed above.

In the following, we present a simple grammar ENGG for elementary
Petri nets, which allows one to generate all elementary nets. The start net S
of ENGG is empty. Note that we have to restrict the matches to injective
morphisms to ensure the creation of valid elementary nets. We have a pro-
duction addP lace to create a new place p, and productions addTrans(n, m)
for n, m ∈ N to create a transition with n input and m output places:

addP lace:

∅ ∅ p

addTrans(n, m):

p1 ... pn

q1 ... qm

p1 ... pn

q1 ... qm

p1 ... pn

q1 ... qm

The grammar ENGG can be modified to a grammar PTGG for place/tran-
sition nets if we replace the productions addTrans(n, m) by productions
addTrans(n, m)(i1, . . . , in, o1, . . . , om), where i1, . . . , in and o1, . . . , om corre-
spond to the arc weights of the input places p1, . . . , pn and the output places
q1, . . . , qm, respectively.

For a more interesting example, we refer to [BEU03]. In this paper, a rule-
based stepwise development of a simple communication-based system is con-
structed as an interconnection of three components: a buffer with two tasks,
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a printer, and a communication network between the buffer and the printer.
All these components are represented by marked place/transition nets, which
satisfy suitable safety and liveness properties. In addition, four productions
are given, which allow one to transform the basic components to a more de-
tailed final model. It can be shown that the final model inherits the safety
and liveness properties of the initial model, because the productions can be
shown to be safety- and liveness-preserving. In fact, the productions are Q-
productions in the sense of [Pad96], where Q-productions were introduced to
preserve certain properties.

Concerning examples of algebraic high-level net transformation systems,
we refer to [PER95, EKMR99, EGP99].

5.2.4 Algebraic Specification Transformation Systems

Transformation systems for algebraic specifications have been considered es-
pecially in connection with algebraic module specification (see [EM90]). The
import and export interfaces IMP and EXP , with a common parameter
part PAR, of an algebraic module specification can be considered as a pro-
duction IMP ← PAR → EXP . This was the motivation for presenting
algebraic specifications as an HLR category in [EHKP91a, EHKP91b]. In
Chapter 4, we have shown that algebraic signatures (Sig, M) and algebraic
specifications (Spec, Mstrict) are adhesive and weak adhesive HLR cate-
gories, respectively. The corresponding instantiations are signature and al-
gebraic specification transformation systems, respectively, as considered in
[EHKP91a, EHKP91b, EGP99]. In [EGP99], a detailed example is presented
of how to transform a modular airport schedule system (see [EM90]) into a
library system using an algebraic transformation system.

As a specific example of a transformation of algebraic specifications, we
consider the following transformation:

stack(data) data

stack(nat) nat

queue(data)

queue(nat)

(1) (2)h

The production in the upper row corresponds to the parameterized specifi-
cation of stacks on the left-hand side and of queues on the right-hand side,
which are given explicitly in [EM85]. The pushouts (1) and (2) correspond
to parameter-passing diagrams in the sense of algebraic specifications, where
the formal parameter data is replaced by the actual parameter nat using the
parameter-passing morphism h : data → nat (see [EM85] for more detail).

5.2.5 Typed Attributed Graph Transformation Systems

In Example 4.11, we have mentioned that there is a category (AGraphsATG,
M) of typed attributed graphs which is an adhesive HLR category. This will
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be shown in full detail in Part III where also a detailed introduction to the
concepts and theory of typed attributed graph transformation systems and
some examples are given. In particular, we present detailed examples con-
cerning modeling and model transformations as running examples in Part III
and Part IV, respectively.

5.3 The Local Church–Rosser and Parallelism Theorems

In this section, we study the parallel and sequential independence of direct
transformations, leading to the Local Church–Rosser and Parallelism Theo-
rems mentioned in Section 3.3 in Part I.

Intuitively, independence means that the intersection of the corresponding
matches or the intersection of comatch and match consists of common gluing
points (see Definition 3.15). In our categorical framework, however, we use
the characterization via morphisms (see Fact 3.18) as definition.

Definition 5.9 (parallel and sequential independence). Two direct

transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel independent if there

exist morphisms i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1 and
f1 ◦ j = m2:

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

l1r1

m1k1n1

f1g1

l2 r2

m2 k2 n2

f2 g2

ij

Two direct transformations G
p1,m1
=⇒ H

p2,m2
=⇒ G′ are sequentially independent

if there exist morphisms i : R1 → D2 and j : L2 → D1 such that f2 ◦ i = n1

and g1 ◦ j = m2:

L1 K1 R1 L2 K2 R2

G D1 H D2 G′

l1 r1

m1 k1 n1

f1 g1

l2 r2

m2 k2 n2

g2f2

ij

Remark 5.10. G1
p1
⇒ G2

p2
⇒ G3 are sequentially independent iff G1

p
−1
1⇐ G2

p2
⇒

G3 are parallel independent.
Two direct transformations that are not parallel (or sequentially) indepen-

dent, are called parallel (or sequentially) dependent.

Example 5.11 (parallel and sequential independence in ExAHG). In
our adhesive HLR grammar ExAHG, we consider the two direct transforma-

tions S
addEdge,m

=⇒ G and S
deleteV ertex,m′

=⇒ G′. The left part of the diagram
below depicts the application of the production addEdge, and the right part
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shows the application of the production deleteV ertex. The two direct trans-
formations are parallel independent. The matches m and m′ and the required
morphisms i and j are again indicated by the node labels. In this case, the
intersection of m and m′ is empty, and therefore no common gluing points
have to be preserved:

∅ ∅l2r2

mkn

fg

l3 r3

m′ k′ n′

f ′ g′

ij

(3) (3)(1) (1)

(2) (2)

(1) (2) (3)(1) (2)(1) (2)

(1)

(2)

(1)

(2)

(1)

(2)

R2 K2 L2 L3 K3 R3

G S G′

An example of parallel dependence is shown in the following diagram. We
have used the same productions addEdge and deleteV ertex, but have changed
the match from m′ to m′′:

∅ ∅l2r2

mkn

fg

l3 r3

m′′ k′′ n′′

f ′′ g′′

�i

(2)

(1)(3)

(2)

(1) (2) (3)(1) (2)(1) (2)

(1)(3)

(2)

(1)(3)

(2)

R2 K2 L2 L3 K3 R3

G S G′′

The common gluing point is the node labeled with (1) and (3). This node is
necessary for adding the edge with the production addEdge, but it is deleted
by applying the production deleteV ertex. Thus no suitable i can be found
such that f ′′ ◦ i = m. Therefore the transformations are parallel dependent.

In the next diagram, we show two sequentially independent direct trans-
formations. We look at the graph G′, which is similar to our start graph S
except for one missing node. First, we apply the production addV ertex to
obtain the start graph S. In a second step, we add another edge to derive

the graph G. The direct transformations G′ addV ertex,m
=⇒ S

addEdge,m′

=⇒ G are
sequentially independent:
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∅ ∅ r1l1

nkm

fg

l2 r2

m′ k′ n′

f ′ g′

j i

(2) (1)

(3) (3)(3) (3)

(2) (1)

(3)

(2) (2) (2) (1)

(1) (2) (3) (2) (3) (2) (3)

L1 K1 R1 L2 K2 R2

G′ S G

An example of sequentially dependent transformations can be found by
choosing the match m′′ instead of m′. Again we apply the productions
addV ertex and addEdge:

∅ ∅ r1l1

nkm

fg

l2 r2

m′′ k′′ n′′

f ′′ g′′

�j

(3) (3) (3)(3)

(1)(2) (1)(2) (1)(2)

(3)

(1) (2) (3) (2) (3) (2) (3)

L1 K1 R1 L2 K2 R2

G′′ S G

In this case, the direct transformations are sequentially dependent. No j can
be found with f ◦ j = m′′, because addV ertex creates one of the vertices
required to apply addEdge with the given match m′′. 
�

The Local Church–Rosser Theorem states that the productions of parallel
independent direct transformations G ⇒ H1 and G ⇒ H2 can be applied in
any order to G to obtain sequentially independent direct transformations G ⇒
H1 ⇒ X and G ⇒ H2 ⇒ X that lead to the same object X . For sequentially
independent direct transformations G ⇒ H1 ⇒ X , there is a transformation
G ⇒ H2 ⇒ X over the same productions applied in the opposite order.

The following version of the Local Church–Rosser Theorem for adhesive
HLR systems can be obtained from Theorem 3.20 for GT systems by abstrac-
tion, i.e. by replacing graphs and graph transformations by high-level struc-
tures, called objects, and corresponding transformations. Vice versa, Theorem
3.20 can be obtained from Theorem 5.12 by instantiation to the adhesive HLR
categories (Graphs,M) and (GraphsTG,M) (see Subsection 5.2.1).

Theorem 5.12 (Local Church–Rosser Theorem). Given an adhesive

HLR system AHS and two parallel independent direct transformations G
p1,m1
=⇒

H1 and G
p2,m2
=⇒ H2, there are an object G′ and direct transformations H1

p2,m′
2=⇒



112 5 Adhesive High-Level Replacement Systems

G′ and H2
p1,m′

1=⇒ G′ such that G
p1,m1
=⇒ H1

p2,m′
2=⇒ G′ and G

p2,m2
=⇒ H2

p1,m′
1=⇒ G′

are sequentially independent.

Given two sequentially independent direct transformations G
p1,m1
=⇒ H1

p2,m′
2=⇒

G′, there are an object H2 and direct transformations G
p2,m2
=⇒ H2

p1,m′
1=⇒ G′ such

that G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel independent:

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

Proof.

1. Consider the following two parallel independent direct transformations

G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 with pi = (Li

li← Ki
ri→ Ri) for i = 1, 2:

L1 K1 R1

G D1 H1

(1) (2)

l1 r1

m1 n1

f1 g1

L2 K2 R2

G D2 H2

(3) (4)

l2 r2

m2 n2

f2 g2

Combining the pushouts (1) and (3), we obtain the following diagram
on the left-hand side, where i1 and i2 are the morphisms obtained by
parallel independence. Since f1, f2 ∈ M, we can construct the pullback
(5) and obtain morphisms j1 : K1 → D and j2 : K2 → D. Since (1)
= (6) + (5) and f2, l1 ∈ M, Theorem 4.26, item 2, implies that (6)
and (5) are pushouts and, analogously, that (7) is a pushout. Note that
Theorem 4.26 requires us to have a (weak) adhesive HLR category, while
all other constructions are valid in any category with suitable pushouts
and pullbacks.

L1

K1

K2

D2

D1

L2

G

l1

i1 f2

l2

f1

i2

L1

K1

K2

D2

D1

L2

G

D

(6) (5)

(7)

l1

j1

i1

k2

k1

f2

f1

l2

j2 i2

Now we construct the pushout (8) over j1 and r1 ∈ M, the pushout (9)
over j2 and r2 ∈ M, and, finally, the pushout (10) over h1, h2 ∈ M:
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R1

K1

K2

D′
2

D′
1

R2

G′

D

(8) (10)

(9)

r1

j1

t1

h1

h2

r2

j2 t2

K1 R1

D D′
2

D1 H1

(11)

(8)

r1

j1 t1

h1

k1

g1

s1

K2 R2

D D′
1

D2 H2

(12)

(9)

r2

j2 t2

h2

k2

g2

s2

From pushout (8), we obtain a morphism s1 : D′
2 → H1 such that (11)

commutes and (2) = (8) + (11). From pushout decomposition, (11) is
also a pushout. An analogous construction leads to the pushout (12).

Combining all these pushouts, we obtain the direct transformations H1
p2
⇒

G′ and H2
p1
⇒ G′:

L2 K2 R2

D1 D D′
1

H1 D′
2 G′

(11)

(7)

(10)

(9)

s1

g1

i2

L1 K1 R1

D2 D D′
2

H2 D′
1 G′

(12)

(6)

(10)

(8)

s2

g2

i1

Since s1 ◦ t1 = n1 and s2 ◦ t2 = n2, the transformations G ⇒ H1 ⇒ G′

and G ⇒ H2 ⇒ G′ are sequentially independent.

2. Given sequentially independent direct transformations G
p1,m1
=⇒ H1

p2,m′
2=⇒

G′ with comatches n1 and n′
2, respectively, from Remark 5.10 we obtain

parallel independent direct transformations G
p
−1
1 ,n1
⇐= H1

p2,m′
2=⇒ G′. Now

part 1 of the proof gives us sequentially independent direct transforma-

tions H1
p
−1
1 ,n1
=⇒ G

p2,m2
=⇒ H2 and H1

p2,m′
2=⇒ G′ p

−1
1 ,n′

1=⇒ H2, as shown in the
diagram below. Applying Remark 5.10 to the first transformation means

that H1
p1,m1
⇐= G

p2,m2
=⇒ H2 are the required parallel independent direct

transformations.

G

H1 H2

G′

p
−1
1 ,n1 p2,m2

p2,m′
2 p

−1
1 ,n′

1


�

Example 5.13 (Local Church–Rosser Theorem in ExAHG). Consider
the parallel independent direct transformations S ⇒ G and S ⇒ G′ from
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Example 5.11. We can find a match m1 : L3 → G for the production
deleteV ertex and a match m2 : L2 → G′ for the production addEdge, such

that G
deleteV ertex,m1

=⇒ X and G′ addEdge,m2
=⇒ X lead to the same object X ,

as shown in the following diagram. S ⇒ G ⇒ X and S ⇒ G′ ⇒ X are
sequentially independent.

∅ ∅ l2r2

m2k2n2

g1f1

l3 r3

m1 k1 n1

g2 f2

(3)

(1) (2)

(3)

(2)

(3)

(2)

(3)

(2)

(3)

(2)

(1) (2) (3)(2) (3)(2) (3)

L3 K3 R3 R2 K2 L2

G X G′

Now we consider the sequentially independent direct transformations G′ ⇒
S ⇒ G. As shown in the following diagram, we find a sequence of direct

transformations G′ addEdge,m1
=⇒ X

addV ertex,m2
=⇒ G by applying the productions

in the reverse order. G′ ⇒ S and G′ ⇒ X are parallel independent.

∅ ∅ r1l1

n2k2m2

g1f1

l2 r2

m1 k1 n1

f2 g2

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1) (2) (1) (2) (1) (2) (3)

(3)

L2 K2 R2 L1 K1 R1

G′ X G


�

In analogy to Part I, we now present the Parallelism Theorem for adhe-
sive HLR systems. For this purpose, we have to replace the disjoint unions of
graphs and injective graph morphisms in Definition 3.22 by binary coprod-
ucts which are compatible with M. This allows us to construct the parallel
production p1 + p2 for adhesive HLR systems.

Definition 5.14 (coproduct compatible with M). A (weak) adhesive
HLR category (C,M) has binary coproducts compatible with M if C has
binary coproducts and, for each pair of morphisms f : A → A′, g : B → B′

with f, g ∈ M, the coproduct morphism is also an M-morphism, i.e. f + g :
A + B → A′ + B′ ∈ M.
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Example 5.15 (coproducts compatible with M). In Sets, Graphs, and
GraphsTG, binary coproduct objects are the disjoint unions of the elements
of the sets or of the nodes and edges, respectively. If f and g are injective,
then so is the coproduct morphism f + g. 
�

On the basis of the compatibility of binary coproducts with M, we can
define parallel productions. These are well defined because the coproduct mor-
phisms are also in M.

Definition 5.16 (parallel production and transformation). Let AHS =
(C,M, P ) be an adhesive HLR system, where (C,M) has binary coproducts

compatible with M. Given two productions p1 = (L1
l1← K1

r1→ R1) and p2 =

(L2
l2← K2

r2→ R2), the parallel production p1 + p2 is defined by the coproduct
constructions over the corresponding objects and morphisms: p1 + p2 = (L1 +

L2
l1+l2←− K1 + K2

r1+r2−→ R1 + R2).
The application of a parallel production is called a parallel direct transfor-

mation, or parallel transformation, for short.

Example 5.17 (parallel production in ExAHG). In our example adhesive
HLR grammar ExAHG, the parallel production of two productions p1 and p2

is the componentwise coproduct of the objects and morphisms. For example,
combining the productions addV ertex and addEdge results in the following
parallel production; it inserts an edge between two given nodes and a new
node at the same time:

L1 + L4 K1 + K4 R1 + R4

l1+l4 r1+r4
(1) (2) (1) (2) (1) (2)


�

Now we are able to prove the Parallelism Theorem for adhesive HLR sys-
tems, which is obtained from the graph case considered in Theorem 3.24 by
abstraction. Vice versa, Theorem 3.24 is an instantiation of Theorem 5.18.

Theorem 5.18 (Parallelism Theorem). Let AHS = (C,M, P ) be an ad-
hesive HLR system, where (C,M) has binary coproducts compatible with M.

1. Synthesis. Given a sequentially independent direct transformation se-
quence G ⇒ H1 ⇒ G′ via productions p1 and p2, then there is a con-
struction leading to a parallel transformation G ⇒ G′ via the parallel
production p1 + p2, called a synthesis construction.

2. Analysis. Given a parallel transformation G ⇒ G′ via p1 + p2, then there
is a construction leading to two sequentially independent transformation
sequences G ⇒ H1 ⇒ G′ via p1 and p2 and G ⇒ H2 ⇒ G′ via p2 and p1,
called an analysis construction.

3. Bijective correspondence. The synthesis and analysis constructions are
inverse to each other up to isomorphism:
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G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

p1+p2

Proof.

1. Given the sequentially independent direct transformations G
p1,m1
⇒

H1
p2,m2
⇒ G′, using Theorem 5.12, we obtain parallel independent direct

transformations H2
p2,m′

2⇐ G
p1,m1
⇒ H1 and obtain morphisms i and j as

shown in the following diagram:

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

l1r1

m1k1n1

f1g1

l2 r2

m′
2 k2 n2

f2 g2

ij

As in the proof of Theorem 5.12, we obtain the following diagrams, where
all squares are pushouts:

R1

K1

K2

D′
2

D′
1

R2

G′

D

(8) (10)

(9)

r1

j1

t1

h1

h2

q1

q2

r2

j2 t2

L1

K1

K2

D2

D1

L2

G

D

(6) (5)

(7)

l1

j1

i1

k2

k1

f2

f1

l2

j2 i2

From Lemma A.29, part 1, we conclude that (11) and (12) are also

pushouts; therefore we have a parallel transformation G
p1+p2,[f2◦i1,f1◦i2]

=⇒
G′ via the parallel production:

L1 + L2 K1 + K2 R1 + R2

G D G′

(11) (12)

l1+l2 r1+r2

[f2◦i1,f1◦i2] [j1,j2] [q1◦t1,q2◦t2]

f1◦k1 q1◦h1

2. Given the parallel direct transformation G
p1+p2,[m1,m2]

=⇒ G′ via the parallel
production p1+p2 as shown in diagrams (13) and (14), by applying Lemma
A.29 we obtain the pushouts (5)–(7) and (8)–(10) with m1 = f2 ◦ i1,
m2 = f1 ◦ i2, n1 = q1 ◦ t1, n2 = q2 ◦ t2, f1 ◦ k1 = d and q1 ◦ h1 = e:
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L1 + L2 K1 + K2 R1 + R2

G D G′

(13) (14)

l1+l2 r1+r2

[m1,m2] [j1,j2] [n1,n2]

d e

By applying p1 to G via the match m1 with the pushout complement

(6) + (5), we obtain a direct transformation G
p1,m1
=⇒ H1. Analogously,

using p2 and the match m2 with the pushout complement (7) + (5), we

obtain the direct transformation G
p2,m2
=⇒ H2. G ⇒ H1 and G ⇒ H2 are

parallel independent; therefore we can apply Theorem 5.12, leading to the
sequentially independent transformations G ⇒ H1 ⇒ G′′ and G ⇒ H2 ⇒
G′′. By applying part 1 of the proof to this transformation, and using the
uniqueness of pushouts and pushout complements, we have G′′ ∼

= G′.
3. Because of the uniqueness of pushouts and pushout complements, the

above constructions are inverse to each other up to isomorphism. 
�

Example 5.19 (Parallelism Theorem). We can apply Theorem 5.18 to the

sequentially independent direct transformations G′ addV ertex,m
=⇒ S

addEdge,m′

=⇒ G
of Example 5.11, leading to the parallel production addV ertex + addEdge
that we have constructed already in Example 5.17, and the parallel direct
transformation G′ ⇒ G via this parallel production. 
�

5.4 Concurrency Theorem and Pair Factorization

The Concurrency Theorem handles general transformations, which may be se-

quentially dependent. Roughly speaking, for a sequence G
p1,m1
=⇒

H
p2,m′

2=⇒ G′ there is a production p1 ∗E p2, called a concurrent produc-
tion, which allows one to construct a corresponding direct transformation

G
p1∗Ep2
=⇒ G′, and vice versa (see Section 3.4 for more detailed discussion).
In contrast to the version of the Concurrency Theorem presented in

[EHKP91a, EHKP91b], where an explicit dependency relation R1 ← D → L2

between productions p1 and p2 is considered, we use an E-dependency rela-
tion R1

e1→ E
e2← L2, which, in most examples, will be a jointly epimorphic

pair (e1, e2) (see Definition A.16). This makes an essential difference to the
construction of an E-related transformation sequence in Fact 5.29, in contrast
to the D-related transformation sequences in [EHKP91a, EHKP91b]. We use
only an E ′–M′ pair factorization, which will also be used for critical pairs
in Section 6.3, in contrast to [EHKP91a, EHKP91b], where general POs and
PBs and a complicated triple PO–PB lemma are needed.

Definition 5.20 (E-dependency relation). Given a class E ′ of morphism

pairs with the same codomain, and two productions p1 and p2 with pi = (Li
li←

Ki
ri→ Ri) for i = 1, 2, an object E with morphisms e1 : R1 → E and e2 :
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L2 → E is an E-dependency relation for p1 and p2 if (e1, e2) ∈ E ′ and the

pushout complements (1) and (2) over K1
r1→ R1

e1→ E and K2
l2→ L2

e2→ E
exist:

L1 K1 R1 L2 K2 R2

C1 E C2

(1) (2)

l1 r1 l2 r2

e1 e2

Definition 5.21 (E-concurrent production and E-related transfor-
mation). Given an E-dependency relation (e1, e2) ∈ E ′ for the productions p1

and p2, the E-concurrent production p1 ∗E p2 is defined by p1 ∗E p2 = (L
l◦k1←−

K
r◦k2−→ R) as shown in the following diagram, where (3) and (4) are pushouts

and (5) is a pullback:

L1 K1 R1 L2 K2 R2

C1 E C2L R

K

(3) (4)

(5)

l1 r1 l2 r2

e1 e2

l r

k1 k2

A transformation sequence G
p1,m1
=⇒ H1

p2,m2
=⇒ G′ is called E-related if there

exists h : E → H1 with h ◦ e1 = n1 and h ◦ e2 = m2 and there are morphisms
c1 : C1 → D1 and c2 : C2 → D2 such that (6) and (7) commute and (8) and
(9) are pushouts:

L1 K1 R1 L2 K2 R2

C1 E C2

G D1 H1 G′D2

(6) (7)

(8) (9)

n1 m2

l1 r1 l2 r2

c1 c2

e1 e2

m1 n2

h

Example 5.22 (E-concurrent production and E-related transforma-
tion). Consider the sequentially dependent direct transformations G′′ ⇒ S ⇒
G in Example 5.11. The following diagram shows the construction of the E-

concurrent production addV ertex ∗E addEdge = (L
l◦k1←− K

r◦k2−→ R) for the

given dependency relation R1
e1→ E

e2← L2:
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∅ ∅ r1l1

l

l2 r2

r

e1 e2

k1 k2

(2)

(1) (1) (1)(2) (2) (2) (2) (2)

(1) (1) (1)(1) (2) (2) (2)

L

L1

C1

K1 R1

E

K

L2 K2

C2

R2

R

It can be verified that G′′ ⇒ G is an E-related transformation. In the fol-
lowing diagram, the transformation of G′′ over the E-concurrent production
addV ertex ∗E addEdge is depicted:

l◦k1 r◦k2

m n′′

(2) (2) (1) (2)

(2) (2) (2)

(1)

L

G′′

K R

G


�

The following Concurrency Theorem for adhesive HLR systems is an ab-
straction from Theorem 3.26 for the graph case. Vice versa, Theorem 3.26
can be obtained from Theorem 5.23 by instantiation, where (C, M) and E ′

(see Definition 5.20) are specialized to (Graphs, M) and (GraphsTG, M),
respectively, where M is the class of injective (typed) graph morphisms and
E ′ is the class of pairs of jointly surjective (typed) graph morphisms.

Theorem 5.23 (Concurrency Theorem). Let AHS = (C,M, P, S) be an

adhesive HLR system, R1
e1→ E

e2← L2 an E-dependency relation for the pro-
ductions p1 and p2 for a given class E ′ of morphism pairs, and p1 ∗E p2 the
corresponding E-concurrent production.

1. Synthesis. Given an E-related transformation sequence G ⇒ H ⇒ G′

via p1 and p2, then there is a synthesis construction leading to a direct
transformation G ⇒ G′ via p1 ∗E p2.

2. Analysis. Given a direct transformation G ⇒ G′ via p1∗E p2, then there is
an analysis construction leading to an E-related transformation sequence
G ⇒ H ⇒ G′ via p1 and p2.

3. Bijective correspondence. The synthesis and analysis constructions are
inverse to each other up to isomorphism, provided that every (e1, e2) ∈ E ′

is an epimorphic pair (see Definition A.16):
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G

H

G′

p1 p2

p1∗Ep2

Proof.

1. Synthesis. Consider the following E-related direct transformations G
p1,m1
=⇒

H
p2,m2
=⇒ G′ and the E-concurrent production p1 ∗E p2:

L1 K1 R1 L2 K2 R2

C1 E C2

G D1 H G′D2

L R

K

(3) (4)(1) (2)

(8) (9)

n1 m2

l1 r1 l2 r2

c1 c2

e1 e2

m1 n2

h

g1f1 f2 g2

s1 s2

From pushouts (3) and (4), we obtain morphisms L → G and R → G′, re-
spectively, and by pushout decomposition, (10) and (11) are also pushouts:

L1 K1 R1 L2 K2 R2

C1 E C2

G D1

H

G′D2

L R

K

D

(3) (4)(1) (2)

(10) (11)

(12)

l1 r1 l2 r2

c1 c2

e1 e2

m1 n2

h

g1

f1

f2
g2

s1 s2

k

Now we construct the pullback (12) and obtain a morphism k : K → D.
Applying the cube PO–PB lemma in Theorem 4.26 to the cube in the
diagram, where the top and bottom are pullbacks and the back faces are
pushouts, it follows that the front faces are also pushouts, which leads to
the direct transformation G ⇒ G′ via p1 ∗E p2.

2. Analysis. Consider an E-dependency relation E and the E-related trans-
formation G ⇒ G′ via the E-concurrent production p1 ∗E p2:
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L1 K1 R1 L2 K2 R2

C1 E C2

G G′

L R

K

D

(3) (4)(1) (2)

l1 r1 l2 r2

e1 e2

c1 c2

k

First we construct the pushouts (13) and (14) over c1, k and c2, k, respec-
tively, and obtain the induced morphisms D1 → G and D2 → G′; by
pushout decomposition, (10) and (11) are also pushouts:

L1 K1 R1 L2 K2 R2

C1

E

C2

G
D1

G′D2

L R

K

D

(3) (4)(1) (2)

(10) (11)
(13) (14)

l1 r1 l2 r2

e1 e2

c1 c2

k

Now we construct pushout (8), leading to the object H , and obtain from
pushout (14) the induced morphism D2 → H ; by pushout composition
and decomposition applied to the resulting cube, (9) is also a pushout.

L1 K1 R1 L2 K2 R2

C1

E

C2

G
D1

H

G′D2

L R

K

D

(3) (4)(1) (2)

(8) (9)
(10) (11)

l1 r1 l2 r2

e1 e2

h

c1 c2

k

3. The bijective correspondence follows from the fact that pushout and pull-
back constructions are unique up to isomorphism and that the pair
(e1, e2) ∈ E ′ is jointly epimorphic, leading to a unique h in Definition
5.21. 
�
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Example 5.24 (Concurrency Theorem). In Example 5.22, we have shown
that the transformation G′′ ⇒ S ⇒ G in Example 5.11 is E-related. Apply-
ing Theorem 5.23, we obtain a direct transformation G′′ ⇒ G via the E-
concurrent production addV ertex ∗E addEdge considered in Example 5.22,
and vice versa. 
�

In order to apply the Concurrency Theorem to a transformation sequence,
it remains to construct an E-related transformation sequence (see Fact 5.29).
For this purpose, we need a pair factorization of the comatch of the first
direct transformation and the match of the second direct transformation (see
Definition 5.27). This kind of pair factorization is a variant of the epi–mono
factorization (see Definition A.15), which is well known from set theory: each
function f : A → B can be decomposed, uniquely up to bijection, as f = m◦e,
where e is an epimorphism, i.e. surjective, and m is a monomorphism, i.e.
injective.

For two morphisms f1 and f2 with the same codomain, we now define a
pair factorization over a class of morphism pairs E ′ and a class of morphisms
M′.

Definition 5.25 (E ′–M′ pair factorization). Given a class of morphism
pairs E ′ with the same codomain, a (weak) adhesive HLR category has an E ′–
M′ pair factorization if, for each pair of morphisms f1 : A1 → C and f2 :
A2 → C, there exist an object K and morphisms e1 : A1 → K, e2 : A2 → K,
and m : K → C with (e1, e2) ∈ E ′ and m ∈ M′ such that m ◦ e1 = f1 and
m ◦ e2 = f2:

A1

A2

K C

e1

e2

m

f1

f2

Remark 5.26. The intuitive idea of morphism pairs (e1, e2) ∈ E ′ is that of
jointly epimorphic morphisms (see Definition A.16). This can be established in
categories with binary coproducts and an E0–M0 factorization of morphisms,
where E0 is a class of epimorphisms and M0 a class of monomorphisms. Given

A1
f1
→ C

f2
← A2, we take an E0–M0 factorization f = m ◦ e of the induced

morphism f : A1 + A2 → C and define e1 = e ◦ ι1 and e2 = e ◦ ι2, where ι1
and ι2 are the coproduct injections:

A1 A2A1 + A2

K

C

ι1 ι2

e

ff1 f2

e1 e2

m
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Similarly to the pushout–pullback decomposition (see Theorem 4.26, item
2), we need a decomposition property for pushouts that consist of a pullback
and special morphisms in M and M′. This property is necessary for proving
the construction of E-related transformation sequences below and the com-
pleteness of the critical pairs in Section 6.3.

Definition 5.27 (M–M′ PO–PB decomposition property). A (weak)
adhesive HLR category (C,M) with a morphism class M′ has the M–M′

pushout–pullback decomposition property if the following property holds.
Given the following commutative diagram with l ∈ M and w ∈ M′, and
where (1)+(2) is a pushout and (2) a pullback, then (1) and (2) are pushouts
and also pullbacks:

A B

C D

E

F

(1) (2)

k

l s

u

r

w

v

Remark 5.28. If M′ ⊆ M, this property follows from Theorem 4.26, item 2.
This means that for the case of (typed) graphs with M = M′, this property is
satisfied. The E ′–M′ pair factorization in the (typed) graph case is obtained
when E ′ is the class of pairs of jointly surjective (typed) graph morphisms and
M = M′ is the class of all injective (typed) graph morphisms. This allows us
to apply the following construction of an E-related transformation sequence
in the (typed) graph case.

Fact 5.29 (construction of E-related transformations). Consider a
(weak) adhesive HLR category (C,M) with an E ′–M′ pair factorization such
that the M–M′ PO–PB decomposition property holds. We then have, for each

pair of direct transformations G
p1,m1
=⇒ H1

p2,m2
=⇒ G′, an E-dependency relation

E such that G
p1,m1
=⇒ H1

p2,m2
=⇒ G′ is E-related.

Proof. Given the direct transformations G
p1,m1
=⇒ H1 with comatch n1 : R1 →

H1 and H1
p2,m2
=⇒ G′, let (e1, e2) ∈ E ′, h ∈ M′ be an E ′–M′ pair factorization

of n1 and m2 with h ◦ e1 = n1 and h ◦ e2 = m2.
Now we construct the pullbacks (8) and (9) over g1, h and f2, h, respec-

tively. Since h ◦ e1 ◦ r1 = n1 ◦ r1 = g1 ◦ k1, we obtain from pullback (8) a
morphism s1 : K1 → C1 such that (1) and (6) commute. Since h ∈ M′,
r1 ∈ M, (8) is a pullback and (1) + (8) is a pushout, from the M–M′ PO–
PB decomposition property (1) and (8) are pushouts. Analogously, we obtain
from pullback (9) a morphism s2 with c2 ◦ s2 = k2, i.e. (7) commutes, and (2)
and (9) are pushouts:
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L1 K1 R1 L2 K2 R2

C1 E C2

G D1 H1 G′D2

(1) (2)

(6) (7)

(8) (9)

n1 m2

l1 r1 l2 r2

c1 c2

e1 e2

m1 n2

h

k2k1

g1f1 f2 g2

s1 s2

Altogether, E with (e1, e2) ∈ E ′ is an E-dependency relation, and G
p1,m1
=⇒

H1
p2,m2
=⇒ G′ is E-related. 
�

Example 5.30. We follow this construction for the sequentially dependent
direct transformations G′′ ⇒ S ⇒ G of Example 5.11. The first step is to
construct an E ′–M′ pair factorization of the comatch n and the match m′′,
leading to the E-dependency relation (E, e1, e2). In this case E ′ consists of
pairs of jointly surjective graph morphisms and M′ consists of injective graph
morphisms.

n m′′

e1 e2

m

(1)(2)

(3)

(1)(2) (3)

(1) (2) (3)

R1

E

L2

S

Constructing the pullbacks (8) and (9) as in the proof of Fact 5.29 leads
to the pullback objects C1 and C2 in Example 5.22, which means that the
transformation G′′ ⇒ S ⇒ G is indeed E-related. 
�
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Embedding and Local Confluence

In this chapter, we continue to present important results for adhesive HLR
systems which have been introduced in Section 3.4 of Part I already. The
Embedding Theorem is one of the classical results for the graph case presented
in [Ehr79]. For the categorical presentation of most of the results in this
chapter, we introduce in Section 6.1 the concept of initial pushouts, which
is a universal characterization of the boundary and the context, discussed in
Section 3.2 for the graph case. This allows us to present the Embedding and
Extension Theorems in Section 6.2, which characterize under what conditions
a transformation sequence can be embedded into a larger context. The main
ideas of the Embedding and Extension Theorems and of the other results in
this chapter have been explained already in Section 3.4.

The concepts of critical pairs and local confluence were motivated origi-
nally by term rewriting systems, and were studied for hypergraph rewriting
systems in [Plu93] and for typed attributed graph transformation systems in
[HKT02]. The general theory of critical pairs and local confluence for adhesive
HLR systems according to [EHPP04] is presented in Sections 6.3 and 6.4.

We start this chapter with the concept of initial pushouts in Section 6.1,
because they are needed in the Extension Theorem. Initial pushouts and the
Extension Theorem are both needed in the proof of the Local Confluence
Theorem, which is the most important result in this chapter, because it has
a large number of applications in various domains.

6.1 Initial Pushouts and the Gluing Condition

An initial pushout formalizes the construction of the boundary and the context
which were mentioned earlier in Subsection 3.4.2. For a morphism f : A → A′,
we want to construct a boundary b : B → A, a boundary object B, and a
context object C, leading to a pushout. Roughly speaking, A′ is the gluing of
A and the context object C along the boundary object B.
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Definition 6.1 (initial pushout). Given a morphism f : A → A′ in a
(weak) adhesive HLR category, a morphism b : B → A with b ∈ M is called
the boundary over f if there is a pushout complement of f and b such that
(1) is a pushout which is initial over f . Initiality of (1) over f means, that
for every pushout (2) with b′ ∈ M there exist unique morphisms b∗ : B → D
and c∗ : C → E with b∗, c∗ ∈ M such that b′ ◦ b∗ = b, c′ ◦ c∗ = c and (3) is a
pushout. B is then called the boundary object and C the context with respect
to f .

B

C

A

A′

(1)

b

f

c

B

C

D

E

A

A′

(3) (2)

b∗

c∗

b′

c′

f

b

c

Example 6.2 (initial pushouts in Graphs). The boundary object B of
an injective graph morphism f : A → A′ consists of all nodes a ∈ A such that
f(a) is adjacent to an edge in A′\f(A). These nodes are needed to glue A to
the context graph C = A′\f(A)∪ f(b(B)) in order to obtain A′ as the gluing
of A and C via B in the initial pushout.

Consider the following morphism f : A → A′ induced by the node labels.
Node (3) is the only node adjacent to an edge in A′\f(A) and therefore has
to be in the boundary object B. The context object C contains the nodes (3)
and (4) and the edge between them. All morphisms are inclusions.

b

c

f

(3)

(3) (4) (3) (4)(2)(1)

(3)(2)(1)

In Graphs, initial pushouts over arbitrary morphisms exist. If the given
graph morphism f : A → A′ is not injective, we have to add to the boundary
object B all nodes and edges x, y ∈ A with f(x) = f(y) and those nodes that
are the source or target of two edges that are equally mapped by f . 
�

The concept of initial pushouts allows us to formulate a gluing condition
analogous to that in the graph case (see Definition 3.9), leading to the exis-
tence and uniqueness of contexts in Theorem 6.4, which generalizes the graph
case considered in Fact 3.11.

Definition 6.3 (gluing condition in adhesive HLR systems). Given an
adhesive HLR system AHS over a (weak) adhesive HLR category with initial
pushouts, then a match m : L → G satisfies the gluing condition with respect
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to a production p = (L
l
← K

r
→ R) if, for the inital pushout (1) over m, there

is a morphism b∗ : B → K such that l ◦ b∗ = b:

B

C

L K

G

R

(1)

b

m

c

b∗

l r

In this case b, l ∈ M implies b∗ ∈ M by the decomposition property of M.

Theorem 6.4 (existence and uniqueness of contexts). Given an ad-
hesive HLR system AHS over a (weak) adhesive HLR category with initial
pushouts,a match m : L → G satisfies the gluing condition with respect to a

production p = (L
l
← K

r
→ R) if and only if the context object D exists, i.e.

there is a pushout complement (2) of l and m:

B

C

L K

G

R

D

(1) (2)

b

m

c

b∗

l r

k

f

c∗

If it exists, the context object D is unique up to isomorphism.

Proof. If the gluing condition is fulfilled, then we can construct from b∗ ∈ M
and B → C a pushout (3) with the pushout object D and the morphisms k
and c∗, where (3) is hidden behind (1) and (2). This new pushout (3), together
with the morphisms c and m ◦ l, implies a unique morphism f with f ◦ c∗ = c
and m ◦ l = f ◦ k, and by pushout decomposition of (3), (2) is also a pushout,
leading to the context object D.

If the context object D with the pushout (2) exists, the initiality of pushout
(1) implies the existence of b∗ with l ◦ b∗ = b.

The uniqueness of D follows from the uniqueness of pushout complements
shown in Theorem 4.26. 
�

We shall now show an interesting closure property of initial pushouts,
which we need for technical reasons (see the proof of Theorem 6.16). The
closure property shows that initial pushouts over M′-morphisms are closed
under composition with double pushouts along M-morphisms. In the (typed)
graph case, we can take as M′ the class of all (typed) graph morphisms or
the class of all injective (typed) graph morphisms.

Lemma 6.5 (closure property of initial POs). Let M′ be a class of mor-
phisms closed under pushouts and pullbacks along M-morphisms (see Remark
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6.6), with initial pushouts over M′-morphisms. Then initial pushouts over
M′-morphisms are closed under double pushouts along M-morphisms.

This means that, given an initial pushout (1) over h0 ∈ M′ and a double-
pushout diagram (2) with pushouts (2a) and (2b) and d0, d1 ∈ M, we have
the following:

1. The composition of (1) with (2a), defined as pushout (3) by the initiality
of (1), is an initial pushout over d ∈ M′.

2. The composition of the initial pushout (3) with pushout (2b), leading to
pushout (4), is an initial pushout over h1 ∈ M′.

B

C

G0

G′
0

(1)

b0

h0

G0

G′
0

D

D′

G1

G′
1

(2)(2a) (2b)

d0

d

d1

h0 h1

B

C

D

D′

(3)

b

d

B

C

G1

G′
1

(4)

d1◦b

h1

Remark 6.6. The statement that M′ is closed under pushouts along M-

morphisms means that, for a pushout C
n
→ D

g
← B over C

f
← A

m
→ B with

m, n ∈ M and f ∈ M′, it holds also that g ∈ M′. There is an analogous
definition for pullbacks.

Proof. We prove this lemma in three steps.

Step I. Initial pushouts are closed under pushouts (in the opposite direc-
tion) in the following sense.

Given an initial pushout (5) over a ∈ M′ and a pushout (6) with m ∈ M,
then there is an initial pushout (7) over d ∈ M′ with m◦ b′ = b and n◦ c′ = c:

B

C

A

A′

D

D′

(5) (6)

b m

a d

c n

B

C

D

D′

(7)

b′

d

c′

Since (5) is an initial pushout, there are unique morphisms b′ and c′ with
b′, c′ ∈ M such that (7) is a pushout. It remains to show the initiality and
that d ∈ M′.

For any pushout (8) with m′ ∈ M, we have the result that the composition
(8) + (6) is a pushout, with m◦m′ ∈ M. Since (5) is an initial pushout, there
are morphisms b∗ : B → E and c∗ : C → E′ ∈ M with m◦m′ ◦b∗ = b = m◦b′

and n ◦ n′ ◦ c∗ = c = n ◦ c′, and (9) is a pushout:
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B

C

A

A′

D

D′

E

E′

(5) (6) (8)

b m

a d

c n

m′

n′

b′

c′

B

C

E

E′

(9)

b∗

c∗

Since m and n are monomorphisms, it holds that b′ = m′ ◦ b∗ and c′ = n′ ◦ c∗.
Therefore (7) is an initial pushout. Finally, pushout (6) is also a pullback by
Theorem 4.26, part 1, with a ∈ M′ such that the closure property of M′

implies d ∈ M′.

Step II. Initial pushouts are closed under pushouts (in the same direction)
in the following sense.

Given an initial pushout (5) over a ∈ M′ and a pushout (10) with m ∈ M,
then the composition (5) + (10) is an initial pushout over d ∈ M′:

B

C

A

A′

D

D′

(5) (10)

b m

a d

c n

Since M′-morphisms are closed under pushouts along M-morphisms, we
have d ∈ M′. The initial pushout (11) over d then exists. Comparing (5) +
(10) with (11), we obtain unique morphisms l′ : B′ → B and k′ : C′ → C ∈ M
with m ◦ b ◦ l′ = b′and n ◦ c ◦ k′ = c′, and (12) is a pushout:

B′

C′

BD

C

l′

k′

D′

(11)

b′ m◦b

d

c′ n◦c

B′

C′

B

C

A

A′

B

C

(12) (5) (5)

l′ b

a

k′ c

b

c

l

k

(12) + (5) is then also a pushout and, from the initial pushout (5), we obtain
unique morphisms l : B → B′ and k : C → C′ ∈ M with b ◦ l′ ◦ l = b
and c ◦ k′ ◦ k = c. Since b and c are monomorphisms, we obtain l′ ◦ l =
idB and k′ ◦ k = idC , and since l′ and k′ are monomorphisms they are also
isomorphisms. This means that (5) + (10) and (11) are isomorphic, and (5)
+ (10) is an initial pushout over d ∈ M′.then also

Step III. Initial pushouts are closed under double pushouts.
Square (3) is an initial pushout over d ∈ M′, which follows directly from

Step I.
(1) is a pushout along the M-morphism b0 and therefore a pullback by

Theorem 4.26, part 1, and since M′ is closed under pullbacks, we have B →
C ∈ M′. We then have d ∈ M′ and h1 ∈ M′ with M′ closed under pushouts,
and by applying Step II we also have the result that (4) is an initial pushout
over h1 ∈ M′. 
�
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6.2 Embedding and Extension Theorems

We now present the Embedding and Extension Theorems, which allow us to
extend a transformation to a larger context. The ideas behind these theorems
were given in Section 3.4 in Part I.

An extension diagram describes how a transformation t : G0
∗
⇒ Gn can

be extended to a transformation t′ : G′
0

∗
⇒ G′

n via an extension morphism
k0 : G0 → G′

0 that maps G0 to G′
0.

Definition 6.7 (extension diagram). An extension diagram is a diagram
(1), as shown below,

G0

G′
0

Gn

∗

G′
n

∗

k0 kn

t

t′

(1)

where k0 : G0 → G′
0 is a morphism, called an extension morphism, and t :

G0
∗
⇒ Gn and t′ : G′

0
∗
⇒ G′

n are transformations via the same productions
(p0, . . . , pn−1) and matches (m0, . . . , mn−1) and (k0 ◦ m0, . . . , kn−1 ◦ mn−1)
respectively, defined by the following DPO diagrams:

Li

Gi

G′
i

Ki

Di

D′
i

Ri

Gi+1

G′
i+1

pi :

(i = 0, . . . , n − 1), n > 0

li ri

jimi ni

fi gi

diki

f ′
i

ki+1

g′
i

For n = 0, the extension diagram is given up to isomorphism by

G0

G′
0

G0

G′
0

G0

G′
0

idG0
idG0

k0k0

id
G′

0

k0

id′
G0

Example 6.8 (extension diagram). Consider the transformation sequence
t : S ⇒ G ⇒ H from Example 5.5 and the extension morphism k : S → S′

as shown in the following diagram. The complete diagram is an extension
diagram over t and k.
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(1) (2) (1) (2) (1) (2)

(3) (4) (3) (4) (3) (4)

(2)(3) (4)

(1)

(2)(3) (4)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

(2)(3) (4)

(1)

(2)(3) (4)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

(4)(2)(3)

(1)

l2 r2

f g

m k n

k

l4 r4

f ′ g′

m′ k′ n′

S′ G′ H ′

S G H

L2 K2 R2

L4 K4 R4


�

The consistency condition given in Definition 6.12 for a transformation
t : G0

∗
⇒ Gn and an extension morphism k0 : G0 → G′

0 means intuitively
that the boundary object B of k0 is preserved by t. In order to formulate this
property, we use the notion of a derived span der(t) = (G0 ← D → Gn) of
the transformation t, which connects the first and the last object.

Definition 6.9 (derived span). The derived span of an identical transfor-

mation t : G
id
⇒ G is defined by der(t) = (G ← G → G) with identical

morphisms.

The derived span of a direct transformation G
p,m
=⇒ H is the span (G ←

D → H) (see Def. 5.2).

For a transformation t : G0
∗
⇒ Gn ⇒ Gn+1, the derived span is the

composition via the pullback (P) of the derived spans der(G0
∗
⇒ Gn) = (G0

d0←

D′ d1→ Gn) and der(Gn ⇒ Gn+1) = (Gn
fn
← Dn

gn
→ Gn+1). This construction

leads to the derived span der(t) = (G0
d0◦d2←− D

gn◦d3
−→ Gn+1):

G0

D′

D

Gn Dn Gn+1

(P )

d0

d2

d1

d3

fn gn

In the case t : G0 ⇒∗ Gn where n = 0, we have either G0 = Gn and

t : G0
id
⇒ G0 (see above) or G0

∼= G′
0 with der(t) = (G0

id
← G0 → G′

0).

Remark 6.10. The derived span of a transformation is unique up to isomor-
phism and does not depend on the order of the pullback constructions.
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Example 6.11 (derived span). Consider the direct transformation sequence
t : S ⇒ G ⇒ H from Example 5.5. The following diagram shows the construc-

tion of the derived span der(t) = (S
f◦k1
←− K

g′◦k2
−→ H) with the pullback (P ):

(P )

k1 k2

g

f

f ′

g′

S D D′ H

G

K


�

Definition 6.12 (consistency). Given a transformation t : G0
∗
⇒ Gn with

a derived span der(t) = (G0
d0← D

dn→ Gn), a morphism k0 : G0 → G′
0 is called

consistent with respect to t if there exist an initial pushout (1) over k0 and a
morphism b ∈ M with d0 ◦ b = b0:

B

C

G0

G′
0

D Gn

(1)

b0

k0

d0 dn

b

Example 6.13 (consistency). Consider the direct transformation sequence

t : S ⇒ G ⇒ H from Example 5.5 with the derived span der(t) = (S
f◦k1
←−

K
g′◦k2
−→ H) as constructed in Example 6.11. The extension morphism k : S →

S′ given in Example 6.8 is then consistent with respect to t.
We can construct the initial pushout (1) over k as shown in the following

diagram. For the morphism b depicted, it holds that f ◦ k1 ◦ b = b0:
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(1)

f◦k1 g′
◦k2

k

b0

b

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

B S K H

C S′


�

Using the following Embedding and Extension Theorems, we can show that
consistency is both sufficient and necessary for the construction of extension
diagrams. Both theorems are abstractions of the corresponding Theorems 3.28
and 3.29 for the graph case.

Theorem 6.14 (Embedding Theorem). Given a transformation t : G0
∗
⇒

Gn and a morphism k0 : G0 → G′
0 which is consistent with respect to t, then

there is an extension diagram over t and k0.

Proof. We prove this theorem by induction over the number of direct trans-
formation steps n.

Consider a transformation t : G0
n
⇒ Gn with a derived span (G0

d0← Dn
dn→

Gn), the initial pushout (1) over k0 : G0 → G′
0, and a morphism b : B → Dn

with d0 ◦ b = b0. We show that there is a suitable extension diagram and
suitable morphisms bn = dn ◦ b : B → Gn and cn : C → G′

n, such that (Pn) is
a pushout:

B

C

G0

G′
0

(1)

b0

c0

k0

B

C

Gn

G′
n

(Pn)

bn

cn

kn

Basis. n = 0. Consider the transformation t : G0
id
⇒ G0 with the derived

span (G0 ← G0 → G0) and the morphism k0 : G0 → G′
0, consistent with

respect to t. There is then the initial pushout (1) over k0 and a morphism
b = b0 : B → G0, and we have the following extension diagram:

B

C

G0

G′
0

G0

G′
0

G0

G′
0

(1)

b0

c0

k0

idG0
idG0

b0

k0 k0

id
G′

0
id

G′
0
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n = 1. Given the solid arrows in the following diagram, we can construct

the pushout object D′
0 over C ← B

b
→ D0, derive the induced morphism

d′0 from this constructed pushout and, by pushout decomposition, conclude

that (2) is also a pushout. Finally, we construct the pushout (3) over D′
0

h0←

D0
d1→ G1 and obtain the required extension diagram, and the morphisms

b1 = d1 ◦ b : B → G1 and c1 = d′1 ◦ c : C → G′
1. By pushout composition, (P1)

is a pushout.

B

C

G0

G′
0

D0

D′
0

G1

G′
1

L0 K0 R0

(1) (2) (3)

b0

k0

d0 d1

m0

l0 r0

j0 n0

b

h0 k1

d′
0 d′

1

c

Induction step. Consider the transformation t : G0
n
⇒ Gn

pn,mn
=⇒ Gn+1

with a derived span der(t) = (G0
d0←− Dn+1

dn+1
−→ Gn+1). There is then a

transformation t′ : G0
n
⇒ Gn with der(t′) = (G0

d′
0← Dn

dn→ Gn) such that (P )
is the pullback obtained from the construction of the derived span, and we
have the result that d′0 ◦ d′1 = d0 and gn ◦ d′2 = dn+1:

G0

Dn

Dn+1

Gn D Gn+1

(P )

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

Since k0 : G0 → G′
0 is consistent with respect to t, we have an initial

pushout (1) over k0 and a morphism b : B → Dn+1 with b0 = d0◦b = d′0◦d′1◦b.
This means that k0 is also consistent with respect to t′, using the morphism
b′ = d′1 ◦ b. We can apply the induction assumption, obtaining an extension
diagram for t′ and k0 and morphisms bn = dn ◦ b′ : B → Gn and cn : C → G′

n

such that (Pn) is a pushout. This is denoted by the dotted arrows in the
following diagram:
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B

C

G0

G′
0

Dn

Dn+1

Gn D Gn+1

G′
n

...

...

(P )

(1)

b0

c0

k0

b

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

b′

cn

kn

Now we construct the pushout object D′ over C ← B
d′
2◦b
−→ D and derive the

induced morphism f ′
n by applying kn ◦ fn and cn to this constructed pushout.

Since (Pn) is a pushout and it holds that fn ◦d′2 ◦ b = dn ◦d′1 ◦ b = dn ◦ b′ = bn,
it follows by pushout decomposition that (2) is also a pushout. Finally, we

construct the pushout (3) over D′ h
← D

gn
→ Gn+1 and obtain the required

extension diagram and the morphisms bn+1 = dn+1 ◦ b : B → Gn+1 and
cn+1 = g′n ◦ c : C → G′

n+1. By pushout composition, (Pn+1) is a pushout.

B

C

G0

G′
0

Dn

Dn+1

Gn D Gn+1

G′
n D′ G′

n+1

...

...

(P )

(1) (2) (3)

b0

c0

k0

b

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

b′

cn

kn h

f ′
n

kn+1

g′
n

c


�

Example 6.15 (Embedding Theorem in ExAHS). Consider the trans-
formation sequence t : S ⇒ G ⇒ H in Example 5.5 and the extension mor-
phism k : S → S′ given in Example 6.8. In Example 6.13, we have verified
that k is consistent with respect to t. We can conclude, from the Embedding
Theorem, that there is an extension diagram over k and t. Indeed, this is the
diagram presented in Example 6.8. 
�

Similarly to the graph case considered in Section 3.4, the next step is to
show, in the following Extension Theorem, that the consistency condition is
also necessary for the construction of extension diagrams, provided that we
have initial pushouts over M′-morphisms. Moreover, we are able to give a
direct construction of G′

n in the extension diagram (1) below. This avoids the

need to give an explicit construction of t′ : G′
0

∗
⇒ G′

n.
For technical reasons, we consider again, in addition to the class M of

the (weak) adhesive HLR category, a class M′ with suitable properties; such
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a class has already been used in Lemma 6.5. In the (typed) graph case, we
can take M′ as the class of all (typed) graph morphisms or as the class of all
injective (typed) graph morphisms.

Theorem 6.16 (Extension Theorem). Given a transformation t : G0
∗
⇒

Gn with a derived span der(t) = (G0
d0← Dn

dn→ Gn) and an extension diagram
(1),

B

C

G0

G′
0

Gn

∗

G′
n

∗

(2) (1)

b0

k0

t

t′

kn

with an initial pushout (2) over k0 ∈ M′ for some class M′, closed under
pushouts and pullbacks along M-morphisms and with initial pushouts over
M′-morphisms, then we have the following, shown in the diagram below:

1. k0 is consistent with respect to t : G0
∗
⇒ Gn, with the morphism b : B →

Dn.
2. There is a direct transformation G′

0 ⇒ G′
n via der(t) and k0 given by the

pushouts (3) and (4) with h, kn ∈ M′.
3. There are initial pushouts (5) and (6) over h ∈ M′ and kn ∈ M′, respec-

tively, with the same boundary–context morphism B → C.

G0

G′
0

Dn

D′
n

Gn

G′
n

(3) (4)

d0

h

dn

k0 kn

B

C

Dn

D′
n

(5)

b

h

B

C

Gn

G′
n

(6)

dn◦b

kn

Proof. We prove this theorem by induction over the number of direct trans-
formation steps n.

Basis. n = 0, n = 1. Given the solid arrows in the following diagram, for

n = 1 and t : G0
p0,m0
=⇒ G1 with der(t) = (G0

d0← D0
d1→ G1), we conclude that:

1. k0 is consistent with respect to t, since (1) is an initial pushout over k0,
and, since (7) is a pushout, we have b : B → D0 with d0 ◦ b = b0.

2. (7) and (8) correspond to the required pushouts (3) and (4). In fact, (7) is
a pushout along the M-morphism d0 and therefore a pullback. Since M′

is closed under pullbacks along M-morphisms, with k0 ∈ M′, it follows
that h0 ∈ M′ also. (8) is a pushout along the M-morphism d1, and since
M′ is closed under pushouts along M-morphisms, k1 ∈ M′ follows.

3. The initial pushouts corresponding to (5) and (6) follow directly from
Lemma 6.5, where d0 ◦ b = b0 has already been shown in item 1.
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B

C

G0

G′
0

D0

D′
0

G1

G′
1

L0 K0 R0

(1) (7) (8)

b0

k0

d0 d1

m0

l0 r0

j0 n0

b

h0 k1

d′
0 d′

1

The case n = 0 can be dealt with analogously by substituting D0 and G1 by
G0, and d0 and d1 by idG0 .

Induction step. Consider the transformation t : G0
n
⇒ Gn

pn,mn
=⇒ Gn+1

with a derived span der(t) = (G0
d0←− Dn+1

dn+1
−→ Gn+1), the following exten-

sion diagram, and the initial pushout (1) over k0 : G0 → G′
0. There is then

a transformation t′ : G0
n
⇒ Gn with der(t′) = (G0

d′
0← Dn

dn→ Gn) such that
(P ) is the pullback obtained from the construction of the derived span, and
we have the result that d′0 ◦ d′1 = d0 and gn ◦ d′2 = dn+1:

B

C

G0

G′
0

Dn

Dn+1

Gn D Gn+1

G′
n D′ G′

n+1

...

...

(P )

(1)

b0

c0

k0

d′
0

d′
1

dn

d′
2

fn gn

dn+1
d0

kn h

f ′
n

kn+1

g′
n

By the induction assumption, k0 is consistent with respect to t′, with a
morphism b′ : B → Dn such that d′0◦b′ = b0, and there exists a transformation
G′

0 ⇒ G′
n via der(t′) with initial pushouts (9) over hn ∈ M′ and (10) over

kn ∈ M′:

B

C

G0

G′
0

Dn

D′
n

Dn+1

Gn D Gn+1

G′
n D′ G′

n+1

(P )

(1)

b0

c0

k0

d′
0

d′
1

dn

d′
2

fn gn

hn

b

b′′

dn+1
d0

b′

kn h

f ′
n

kn+1

g′
n
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B

C

Dn

D′
n

(9)

b′

hn

B

C

Gn

G′
n

(10)

dn◦b′

kn

We then have the following:

1. The initiality of (10) implies a morphism b′′ : B → D with fn◦b′′ = dn◦b′.
Since (P ) is a pullback, there is an induced morphism b : B → Dn+1 with
d′2 ◦ b = b′′ and d′1 ◦ b = b′. We then have the result that d′0 ◦ d′1 ◦ b =
d′0 ◦ b′ = b0. Thus k0 is consistent with respect to t.

2. Since k0 is consistent with respect to t we can easily construct the trans-
formation G′

0 ⇒ G′
n+1 via der(t). First we construct the pushout (13)

and obtain the induced morphism h : D′
n+1 → G′

0. By pushout decom-
position, (11) is also a pushout. Lemma 6.5, with the initial pushout
(10) over kn ∈ M′, implies that there is an initial pushout (14). Since
gn ◦ b′′ = gn ◦ d′2 ◦ b = dn+1 ◦ b (see item 1), we obtain from the
pushout (13), in comparison with the object G′

n+1, a unique morphism
h′ : D′

n+1 → G′
n+1, with h′ ◦ c = c′ and h′ ◦ hn+1 = kn+1 ◦ dn+1. By

pushout decomposition, it follows that (12) is a pushout.

B

C

Dn+1

D′
n+1

(13)

c

b

hn+1

B

C

G0

G′
0

Dn+1

D′
n+1

Gn+1

G′
n+1

(1) (11) (12)

b0

k0

d0 dn+1

b

c

hn+1 kn+1

h h′

B

C

Gn+1

G′
n+1

(14)

c′

gn◦b′′

kn+1

3. Lemma 6.5 states that (13) is an initial pushout over hn+1 and (14) is an
initial pushout over kn+1 with gn ◦ d′2 ◦ b = gn ◦ b′′ (as shown in items 1
and 2).


�

Example 6.17 (Extension Theorem in ExAHS). For the extension di-

agram in Example 6.8 with the derived span der(t) = (S
f◦k1
←− K

g′◦k2
−→ H)

constructed in Example 6.11, we have shown in Example 6.13 that an initial
pushout over k exists and that k is consistent with respect to t. Applying
Theorem 6.16, we can conclude further that:

• There is a transformation S′ ⇒ H ′ via der(t) and k, with d and k′ being
injective:
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f◦k1 g′
◦k2

k d k′

S K H

S′ H ′

• There are initial pushouts over d and k′:

d

K

k′

H

H ′


�

In the following, we present a restriction construction which is in some
sense inverse to the embedding construction in the Embedding Theorem (The-
orem 6.14). The Restriction Theorem, however, is formulated only for direct
transformations, in contrast to Theorem 6.14, which is formulated for general
transformations. In [Ehr79], it was shown for the graph case that there is a
corresponding theorem for the restriction of general graph transformations;
however, this requires a consistency condition similar to Definition 6.12. It is
most likely that such a general Restriction Theorem can also be formulated for
adhesive HLR systems. However, in the following we need only the Restriction
Theorem for direct transformations.

Theorem 6.18 (Restriction Theorem). Given a direct transformation

G′ p,m′

=⇒ H ′, a morphism s : G → G′ ∈ M, and a match m : L → G such

that s ◦ m = m′, then there is a direct transformation G
p,m
⇒ H leading to the

following extension diagram:



140 6 Embedding and Local Confluence

L K R

G D H

G′ D′ H ′

(1)

(2) (3)

(4)

l r

f g

f ′ g′

m k n

s d h

m′ k′ n′

Remark 6.19. In fact, it is sufficient to require s ∈ M′ for a suitable mor-
phism class M′, where the M–M′ pushout–pullback decomposition property
holds (see Definition 5.27).

Proof. First we construct the pullback (1) over s and f ′ and obtain the in-
duced morphism k from (1) in comparison with m◦ l and k′. From the PO–PB
decomposition, both (1) and (2) are pushouts using l, s ∈ M. Now we con-
struct the pushout (3) over k and r and obtain the induced morphism h; by
pushout decomposition, (4) is also a pushout. 
�

6.3 Critical Pairs

We now present the concept of critical pairs, which leads in the next section
to the Local Confluence Theorem. The ideas behind this have already been
given in Section 3.4 of Part I.

Throughout this section, let M′ be a morphism class closed under pushouts
and pullbacks along M-morphisms. This means that, given (1) with m, n ∈
M, we have the results that:

• if (1) is a pushout and f ∈ M′, then g ∈ M′ also and
• if (1) is a pullback and g ∈ M′, then f ∈ M′ also:

A B

DC

(1)

n

g

m

f

For the completeness of critical pairs considered in Lemma 6.22 and the
Local Confluence Theorem given in Theorem 6.28, we need in addition the
M–M′ pushout–pullback decomposition property (see Definition 5.27). In the
(typed) graph case we take M′ = M as the class of all injective (typed) graph
morphisms, but in Part III, for typed attributed graphs, we shall consider
different morphism classes M and M′.

On the basis of the E ′–M′ pair factorization in Definition 5.25, we can
define a critical pair as a pair of parallel dependent direct transformations,
where both matches are a pair in E ′.
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Definition 6.20 (critical pair). Given an E ′–M′ pair factorization, a criti-
cal pair is a pair of parallel dependent direct transformations

P1
p1,o1
⇐= K

p2,o2
=⇒ P2 such that (o1, o2) ∈ E ′ for the corresponding matches

o1 and o2.

Example 6.21 (critical pairs in ExAHS). Consider the adhesive HLR sys-
tem ExAHS introduced in Example 5.5. We use an E ′–M′ pair factorization,
where there are pairs of jointly epimorphic morphisms in E ′, and M′ is the
class of all monomorphisms. We then have the following five critical pairs (up
to isomorphism).

The first critical pair consists of the productions addEdge and
deleteV ertex, where deleteV ertex deletes the souce node of the edge inserted
by addEdge. Therefore these transformations are parallel dependent. The
choice of the matches and their codomain object makes sure that they are
jointly surjective:

∅ ∅l2r2 l3 r3

(1) (3) (2)(1) (3) (2) (1) (3) (2)

(1) (2)(1) (2) (1) (2)

(2) (2)

(3)

R2 K2 L2 L3 K3 R3

The second critical pair has the same productions addEdge and
deleteV ertex, but deleteV ertex deletes the target node of the edge inserted
by addEdge:

∅ ∅l2r2 l3 r3

(1) (2) (3)(1) (2) (3) (1) (2) (3)

(1) (2)(1) (2) (1) (2)

(1) (1)

(3)

R2 K2 L2 L3 K3 R3

The third critical pair contains the production deleteV ertex twice: the
same vertex is deleted by both transformations:

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

l3r3 l3 r3

R3 K3 L3 L3 K3 R3

The fourth critical pair contains the production del1of2edges twice. The
same edge is deleted by both transformations:



142 6 Embedding and Local Confluence

R4 K4 L4 L4 K4 R4

The last critical pair consists also of the production del1of2edges twice.
In this case, different edges are deleted by the transformations. However, to
apply del1of2edges, both edges are necessary:

R4 K4 L4 L4 K4 R4


�

The following lemma shows that every pair of parallel dependent direct
transformations is an extension of a critical pair. It generalizes Lemma 3.33
from graphs to high-level structures.

Lemma 6.22 (completeness of critical pairs). Consider an adhesive HLR
system with an E ′–M′ pair factorization, where the M–M′ pushout–pullback
decomposition property holds (see Definition 5.27). The critical pairs are then
complete. This means that for each pair of parallel dependent direct transfor-

mations H1
p1,m1
⇐= G

p2,m2
=⇒ H2, there is a critical pair P1

p1,o1
⇐= K

p2,o2
=⇒ P2 with

extension diagrams (1) and (2) and m ∈ M′:

P1

H1

K

G

P2

H2

(1) (2)m

Proof. From the E ′–M′ pair factorization, for m1 and m2 there exists an
object K and morphisms m : K → G ∈ M′, o1 : L1 → K, and o2 : L2 → K,
with (o1, o2) ∈ E ′ such that m1 = m ◦ o1 and m2 = m ◦ o2:
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R1

H1

K1

D1

L1

K

G

L2 K2

D2

R2

H2

r1 r2l1 l2

o1 o2

m

f1 g1 g2 f2

m1 m2
n1 k1 n2k2

We can construct the required extension diagram. First we construct the
pullback (1) over g1 and m and derive the induced morphism t1. By apply-
ing the M–M′ pushout–pullback decomposition property, we find that both
squares (1) and (2) are pushouts, because l1 ∈ M and m ∈ M′:

R1

H1

K1

N1

D1

L1

K

G

L2 K2

D2

R2

H2

(1)

(2)

r1 r2l1 l2

o1 o2

m

f1 g1 g2 f2

t1

v1

s1

m1 m2
n1 k1 n2k2

We then construct the pushout (3) over r1 and t1 and derive the induced
morphism z1. By pushout decomposition, the square (4) is a pushout. The
same construction is applied to the second transformation. This results in
the following extension diagrams, where the lower part corresponds to the
required extension diagrams (1) and (2) with m ∈ M′:

R1

P1

H1

K1

N1

D1

L1

K

G

L2 K2

N2

D2

R2

P2

H2

(4)

(3)

r1 r2l1 l2

o1 o2

m

f1 g1 g2 f2

t1

v1

s1

t2

v2

s2

w1

u1

z1

w2

u2

z2

m1 m2
n1 k1 n2k2

Now we show that P1 ⇐ K ⇒ P2 is a critical pair. We know that (o1, o2) ∈

E ′, by construction. It remains to show that the pair P1
p1,o1
⇐= K

p2,o2
=⇒ P2 is

parallel dependent. Otherwise, there are morphisms i : L1 → N2 and j : L2 →
N1 with v2◦i = o1 and v1◦j = o2. Then g2◦s2◦i = m◦v2◦i = m◦o1 = m1 and

g1 ◦ s1 ◦ j = m ◦ v1 ◦ j = m ◦ o2 = m2, which means that H1
p1,m1
⇐= G

p2,m2
=⇒ H2
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are parallel independent, which is a contradiction. Thus, P1
p1,o1
⇐= K

p2,o2
=⇒ P2

is a critical pair. 
�

Example 6.23 (completeness of critical pairs). The pair of parallel de-
pendent direct transformations G ⇐ S ⇒ G′′ in Example 5.11 leads, by the
construction in the proof, to the first critical pair from Example 6.21 and the
following extension diagrams. We have not shown the productions, but only
the actual extensions.

fg f ′′ g′′

(1) (2) (1) (2) (1) (2) (2) (2)

(1)

(2)

(1)

(2)

(1)

(2) (2) (2)

G S G′′


�

6.4 Local Confluence Theorem

We now present the Local Confluence Theorem for adhesive HLR systems.
This theorem has been considered in Section 3.4 in Part I for graph trans-
formation systems. As shown in Section 3.4 for graphs and in the following
for adhesive HLR systems, local confluence and termination imply confluence,
which is the main property of interest. Termination is discussed for the case
of graphs in Section 3.4 and analyzed in more detail for the case of typed
attributed graph transformation systems in Chapter 12 in Part III.

Definition 6.24 (confluence). A pair of transformations H1
∗
⇐ G

∗
⇒ H2 is

confluent if there are transformations H1
∗
⇒ X and H2

∗
⇒ X:

G

H1 H2

X

∗ ∗

∗ ∗

An adhesive HLR system is locally confluent if this property holds for each
pair of direct transformations. The system is confluent if this holds for all
pairs of transformations.

Lemma 6.25 (termination and local confluence imply confluence).
Every terminating and locally confluent adhesive HLR system is confluent.
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Proof. See Section C.2. 
�

It remains to show local confluence. Roughly speaking, we have to re-
quire that all critical pairs are confluent. Unfortunately, however, confluence
of critical pairs is not sufficient to show local confluence. As discussed in Sub-
section 3.4.3, we need strict confluence of critical pairs, which is defined in
the following.

Definition 6.26 (strict confluence of critical pairs). A critical pair

K
p1,o1
=⇒ P1, K

p2,o2
=⇒ P2 is called strictly confluent, if we have the following:

1. Confluence.: the critical pair is confluent, i.e. there are transformations

P1
∗
⇒ K ′, P2

∗
⇒ K ′ with derived spans der(Pi

∗
⇒ K ′) = (Pi

vi+2
← Ni+2

wi+2
→

K ′) for i = 1, 2.

2. Strictness. Let der(K
pi,oi
=⇒ Pi) = (K

vi← Ni
wi→ Pi) for i = 1, 2, and let N

be the pullback object of the pullback (1). There are then morphisms z3

and z4 such that (2), (3), and (4) commute:

K

P1 P2

K ′

(p1,o1) (p2,o2)

∗ ∗

P1

N3

N1

K ′

N

K

N4

N2

P2
(2)

(1)

(4)

(3)

w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

Example 6.27 (strict confluence in ExAHS). In our adhesive HLR sys-
tem ExAHS, all critical pairs defined in Example 6.21 are strictly confluent.
The confluence of the first and the second critical pair is established by apply-
ing no further transformation to the first graph and applying addV ertex and
addEdge to the second graph. This is shown in the following diagram for the
first critical pair, and works analogously for the second pair. The strictness
condition holds for the morphisms z3 and z4 shown:



146 6 Embedding and Local Confluence

(2) (3)

(1)

(4)

z3 z4

(1) (2)

(1) (2)

(1) (2)

(1) (2)

(1) (2)

(2)

(2)

(2)

(2)

The third critical pair is also confluent, since both transformations result
in the empty graph. In the strictness diagram, all graphs except for K are
empty, and therefore the strictness condition is fulfilled. Similarly, for the
fourth critical pair, both transformations result in the same graph, with two
nodes and one edge between them. This is the graph for all objects in the
strictness diagram except K, which has two edges between the two nodes.

For the last critical pair, we can reverse the deletion of the edges by ap-
plying the production addEdge to both graphs. The following diagram shows
that the strictness condition holds, since all morphisms are inclusions:

(2) (3)

(1)

(4)

z3 z4


�

Now we are able to prove the following Local Confluence Theorem for
adhesive HLR systems, which generalizes Theorem 3.34 for the graph case. In
the special case of graphs, E ′ is the class of pairs of jointly surjective (typed)
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graph morphisms and M′ = M is the class of all injective (typed) graph
morphisms. In the case of typed attributed graphs considered in Part III, we
shall consider different choices for E ′, M′, and M.

Theorem 6.28 (Local Confluence Theorem and Critical Pair Lem-
ma). Given an adhesive HLR system AHS with an E ′–M′ pair factorization,
let M′ be a morphism class closed under pushouts and pullbacks along M-
morphisms, with initial pushouts over M′-morphisms and where the M–M′

pushout–pullback decomposition property is fulfilled. AHS is then locally con-
fluent if all its critical pairs are strictly confluent.

Proof. For a given pair of direct transformations H1
p1,m2
⇐ G

p2,m2
⇒ H2, we

have to show the existence of transformations t′1 : H1
∗
⇒ G′ and t′2 : H2

∗
⇒ G′.

If the given pair is parallel independent, this follows from Theorem 5.12.
If the given pair is parallel dependent, Lemma 6.22 implies the existence

of a critical pair P1
p1,o1
⇐= K

p2,o2
=⇒ P2 with the extension diagrams (5) and (6)

below, and m ∈ M′. By assumption, this critical pair is strictly confluent,
leading to transformations t1 : P1

∗
⇒ K ′, t2 : P2

∗
⇒ K ′ and the following

diagrams:

G

H1 H2

K

P1 P2

K ′

(5) (6)

∗ ∗
t1 t2

m

q1 q2

G

H1 H2

D1 D2

P1

N3

N1

K ′

N

K

N4

N2

P2
(2) (3)

(1)

(4)

(10)

(11) (12)

(13)
w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

m

q1 q2

s1 s2

g1

f1 f2

g2
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Since v1, v2 ∈ M, (1) is a pullback, and M is closed under pullbacks, we
have the result that z1, z2 ∈ M. The fact that w1, w2, v3, v4 ∈ M, (2) and (3)
are commutative, and M is closed under decomposition gives us z3, z4 ∈ M.

Now let (7) be an initial pushout over m ∈ M′, and consider the double
pushouts (10) and (11) corresponding to the extension diagram (5):

B

C

K

G

N1

D1

P1

H1

(7) (11) (10)m′

b

c

m s1 q1

v1

f1 g1

w1

b1

c1

The initiality of (7), applied to the pushout (11), leads to unique morphisms
b1, c1 ∈ M such that v1 ◦b1 = b, f1 ◦c1 = c, and (14) is a pushout. By Lemma
6.5, (14) is an initial pushout over s1 and (15) is an initial pushout over q1:

B

C

N1

D1

P1

H1

B

C

P1

H1

(14) (15)(10)m′ s1 q1

g1

w1b1

c1

m′

w1◦b1

q1

g1◦c1

Dually, we obtain morphisms b2, c2 ∈ M with v2 ◦ b2 = b from (12) and
(13). Using the pullback property of (1) with v1 ◦ b1 = b = v2 ◦ b2, we obtain
a unique b3 : B → N with z1 ◦ b3 = b1 and z2 ◦ b3 = b2. Moreover, b1, z1 ∈ M
implies b3 ∈ M by the decomposition property of M:

C

BG

H1 H2

D1 D2

P1

N3

N1

K ′

N

K

N4

N2

P2
(2) (3)

(1)

(4)

(10)

(11) (12)

(13)

(7)

w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

m

q1 q2

s1 s2

g1

f1 f2

g2

m′

b

c

b1 b2
b3

In order to show the consistency of q1 with respect to t1, with the initial
pushout (15) over q1, we have to construct b′3 : B → N3 ∈ M such that
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v3 ◦ b′3 = w1 ◦ b1. This holds for b′3 = z3 ◦ b3, since then v3 ◦ b′3 = v3 ◦ z3 ◦ b3
(2)
=

w1 ◦ z1 ◦ b3 = w1 ◦ b1. It holds that b′3 ∈ M, by the composition of M-
morphisms.

Dually, q2 is consistent with respect to t2, using b′4 = z4 ◦ b3 ∈ M and the
commutativity of (3). By Theorem 6.14, we obtain extension the diagrams (8)
and (9), where the morphism q : K ′ → G′ is the same in both cases:

G

H1 H2

K

P1 P2

K ′

G′

(5) (6)

(8) (9)∗ ∗

∗ ∗

t1 t2

t′1 t′2

m

q

q1 q2

This equality can be shown using part 3 of Theorem 6.16, where q is deter-
mined by an initial pushout of m′ : B → C and w3 ◦ b′3 : B → K ′ in the first
case and w4 ◦ b′4 : B → K ′ in the second case, and we have w3 ◦ b′3 = w4 ◦ b′4
given by the commutativity of (4). 
�

Example 6.29 (local confluence of ExAHS). In ExAHS, we have M′

= M and initial pushouts over injective graph morphisms. Therefore all pre-
conditions for the Local Confluence Theorem are fulfilled. Since all critical
pairs in ExAHS are strictly confluent, as shown in Example 6.27, ExAHS is
locally confluent. 
�



7

Constraints and Application Conditions

Similarly to the graph constraints considered in Part I, we now consider con-
straints for high-level structures. In particular, we are able to formulate the
condition that an object in a (weak) adhesive HLR category must (or must
not) contain a certain subobject. We also introduce application conditions for
productions in adhesive HLR systems which allow one to restrict the appli-
cation of productions, similarly to the gluing condition described in Section
6.1.

Constraints and application conditions have already been considered for
the graph case in Section 3.5. In this chapter, we present the correspond-
ing abstract version for adhesive HLR systems in Section 7.1. In Sections 7.2
and 7.3, we prove two main results which show how to construct, for each
constraint, an equivalent application condition, and for each right applica-
tion condition an equivalent left application condition. Similar results have
been presented for the graph case in [HW95] and for high-level structures in
[EEHP04]. In Section 7.4, we combine these results to show the guaranteeing
and preservation of constraints.

General Assumptions for Chapter 7

In this chapter, we assume that we have an adhesive HLR system based on a
(weak) adhesive HLR category (C, M). In view of the applications to typed
attributed graphs considered in Part III, we also consider an additional class
M′ of morphisms in C corresponding to the injective graph morphisms in
Section 3.5 (and to various choices of typed attributed graph morphisms in
Chapter 12) in order to define satisfiability.

For the results in this chapter, we need the following properties:

1. C has binary coproducts (see Definition A.26).
2. C has a (weak) epi–M′ factorization (see Definition A.15).
3. M′ is closed under composition and decomposition, i.e. f : A → B ∈ M′,

g : B → C ∈ M′ ⇒ g ◦ f ∈ M′, and g ◦ f ∈ M′, g ∈ M′ ⇒ f ∈ M′.
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4. M′ is closed under pushouts and pullbacks along M-morphisms, i.e., given
a pushout or a pullback (1) with m ∈ M, f ∈ M′ or n ∈ M, g ∈ M′,
respectively, then we also have g ∈ M′ or f ∈ M′, respectively:

A B

DC

(1)

n

g

m

f

5. The M–M′ PO–PB decomposition property (see Definition 5.27).

More precisely, we need only the following:

• in Section 7.1, property 3;
• in Section 7.2, properties 1–4;
• in Section 7.3, properties 3–5;
• in Section 7.4, properties 1–5.

Remark 7.1. Note that all of these properties 1–5 are satisfied for the cate-
gories of graphs (Graphs, M) and typed graphs (GraphsTG, M) considered
in Part I, where M = M′ is the class of all injective (typed) graph morphisms.
Moreover, for any (weak) adhesive HLR category (C, M), properties 3–5 are
satisfied for M′ = M.

Alternatively, we can take M′ to be the class of all C-morphisms in Sec-
tions 7.1 and 7.2, because properties 2–4 are satisfied for arbitrary morphisms.
This choice allows us to express satisfiability not only via injective but also
via arbitrary morphisms. In Sections 7.3 and 7.4, this does not work, because
in general the M–M′ PO–PB decomposition property is not fulfilled for ar-
bitrary morphisms.

7.1 Definition of Constraints and Application Conditions

In this section, we consider structural constraints and application conditions
in our general framework. Structural constraints, or “constraints” for short,
correspond to the graph constraints in Definition 3.39. While injective graph
morphisms were used in Definition 3.39 to define satisfiability we now use M′-
morphisms. In this section, we assume property 3 of the general assumptions
for this chapter.

Definition 7.2 (constraint). An atomic constraint is of the form PC(a),
where a : P → C is a morphism.

A constraint is a Boolean formula over atomic constraints. This means
that true and every atomic constraint are constraints, and, for constraints c
and ci with i ∈ I for some index set I, ¬c, ∧i∈Ici, and ∨i∈Ici are constraints:
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P C

G

=

a

p q

Similarly to Definition 3.39 for graphs, the satisfiability of arbitrary con-
straints is defined as follows: an object G satisfies a constraint c, written
G |= c, if

• c = true;
• c = PC(a) and, for every morphism p : P → G in M′, there exists a

morphism q : C → G in M′ such that q ◦ a = p;
• c = ¬c′ and G does not satisfy c′;
• c = ∧i∈Ici and G satisfies all ci with i ∈ I;
• c = ∨i∈Ici and G satisfies some ci with i ∈ I.

Two constraints c and c′ are equivalent, denoted by c ≡ c′, if for all objects
G, G |= c if and only if G |= c′.

The constraint ¬true is abbreviated as false.

For examples of constraints in the case of (typed) graphs, we refer to
Example 3.41.

For a (weak) adhesive HLR category with an initial object O (see Definition
A.30), corresponding to the empty graph ∅ in Graphs, constraints of the
form PC(O → C) are abbreviated as PC(C). They ensure the existence of a
subobject C in G. In this case PC(O) is equivalent to true.

Remark 7.3. In Definition 7.2 we have required that p and q are in M′, but
the morphism a in PC(a) is arbitrary. However, in the case q ◦ a = p, we
can conclude from property 3 of the general assumptions for this chapter that
we also have a ∈ M′. This implies that, for a /∈ M′, we have PC(a : P →
C) ≡ ¬PC(P ), provided that we have an initial object O and that the initial
morphisms p : O → G are in M′ (see Remark 3.42). In this case atomic
constraints PC(a) with a /∈ M′ do not give additional expressive power.

In order to express the property that a certain structure C is not in G,
although a structure P is in G, we introduce negative atomic constraints. In
Fact 7.5, however, we shall see that in most cases negative constraints can be
expressed by negation of positive constraints.

Definition 7.4 (negative atomic constraints). A negative atomic con-
straint is of the form NC(a), where a : P → C is a morphism. G satisfies
NC(a) if, for every morphism p : P → G in M′, there does not exist a
morphism q : C → G in M′ with q ◦ a = p.

Fact 7.5 (negative atomic constraints). Consider a (weak) adhesive HLR
category with an initial object such that the initial morphisms are in M′.
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Then negative atomic constraints do not give more expressive power. For every
negative atomic constraint NC(a), there is an equivalent constraint: NC(P

a
→

C) ≡ ¬PC(C), if a is in M′, and NC(P
a
→ C) ≡ true otherwise.

Proof. If a is in M′, G |= NC(a) iff for all p : P → G in M′ there does not
exist q : C → G in M′ such that q ◦ a = p. This means that there does not
exist a q : C → G in M′, otherwise we would have p := q ◦ a ∈ M′, i.e.
G �|= NC(a). There does not exist a q : C → G ∈ M′ iff G |= ¬PC(C).

If a is not in M′, assume that G �|= NC(a) for some G. Then there exist
morphisms p : P → G in M′ and q : C → G in M′ with q ◦ a = p. Now
p ∈ M′ implies a ∈ M′ by the decomposition property of M′, which is a
contradiction. 
�

Application conditions in the general framework correspond to the appli-
cation conditions in Definition 3.45. The general definition may be obtained
from Definition 3.45 by replacing “graph” by “object” and “injective mor-
phism” by “morphism in M′”. In the following, L can be considered as the
left-hand side of a production, and m : L → G as a match. Similarly, L and
m can be replaced by R and a comatch n : R → H .

Definition 7.6 (application conditions). An atomic application condition
over an object L is of the form P (x,∨i∈Ixi), where x : L → X and xi : X →
Ci, with i ∈ I for some index set I, are morphisms.

An application condition over L is a Boolean formula over atomic appli-
cation conditions over L. This means that true and every atomic application
condition are application conditions, and, for application conditions acc and
acci with i ∈ I, ¬acc, ∧i∈Iacci, and ∨i∈Iacci are application conditions:

L X

G

Ci

= =

x

m p

xi

qi

Similarly to Definition 3.45 for graphs, the satisfiability of arbitrary con-
straints is defined as follows: a morphism m : L → G satisfies an application
condition acc, written m |= acc, if

• acc = true;
• acc = P (x,∨i∈Ixi) and, for all morphisms p : X → G ∈ M′ with p◦x = m,

there exist an i ∈ I and a morphism qi : Ci → G ∈ M′′ with qi ◦ xi = p;
• acc = ¬acc′ and m does not satisfy acc′;
• acc = ∧i∈Iacci and m satisfies all acci with i ∈ I;
• acc = ∨i∈Iacci and m satisfies some acci with i ∈ I.

Two application conditions acc and acc′ over L are equivalent, denoted by
acc ≡ acc′, if, for all morphisms m, m |= acc if and only if m |= acc′.

The application condition ¬true is abbreviated as false.
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Remark 7.7. Application conditions of the form P (x,∨i∈Ixi) with an empty
index set I are equivalent to negative application conditions in the sense of
Definition 7.8 (see Fact 7.9).

Examples of application conditions in the case of graphs are given in Ex-
ample 3.49.

In analogy to the negative application conditions in Definition 3.47 for the
graph case, we now introduce negative application conditions in our general
framework, where the simple version NAC(x) is especially important. Again,
M′-morphisms correspond to injective (typed) graph morphisms.

Definition 7.8 (negative application condition). A simple negative ap-
plication condition is of the form NAC(x), where x : L → X is a morphism.
A morphism m : L → G satisfies NAC(x) if there does not exist a morphism
p : X → G in M′ with p ◦ x = m:

L X

G

= |

x

m p

L X

G

Ci

= = |

x

m p

xi

qi

A negative atomic application condition is of the form N(x,∧i∈Ixi), where
x : L → X and xi : X → Ci, with i ∈ I, are morphisms. A morphism
m : L → G satisfies N(x,∧i∈Ixi) if, for all morphisms p : X → G in M′ with
p ◦ x = m, there does not exist an i ∈ I and a morphism qi : Ci → G in M′

with qi ◦ xi = p.

Fact 7.9 (negative application condition). Negative application condi-
tions do not give more expressive power. For every negative application con-
dition, there is an equivalent application condition. For NAC(x) and negative
atomic application conditions, we have

NAC(x) ≡ P (x, e) and N(x,∧i∈Ixi) ≡ ∧i∈I′NAC(xi ◦ x),

where e is an expression with an empty index set and I ′ = {i ∈ I | xi ∈ M′}.

Proof. For every m : L → G, m |= NAC(x) iff there does not exist p : X → G
in M′ with m = p ◦ x. This means that for all p : X → G in M′, m = p ◦ x
implies the existence of i ∈ ∅, i.e. m |= P (x,∨i∈Ixi) with I = ∅.

For the second statement, we show that N(x,∧i∈Ixi) ≡ ∧i∈I′NAC(xi ◦x)
with I ′ = {i ∈ I | xi ∈ M′}. From the first statement, we obtain the desired
property. For every m : L → G, m |= N(x,∧i∈Ixi) iff for all p : X → G in
M′ with p ◦ x = m there does not exist an i ∈ I and qi : Ci → G in M′

with qi ◦ xi = p. This means that for all p : X → G in M′, we have the result
that p ◦ x �= m or there do not exist an i ∈ I and qi : Ci → G in M′ with
qi ◦ xi = p. This is equivalent to the statement that there do not exist an
i ∈ I and p : X → G in M′ with p ◦ x = m, and qi : Ci → G in M′ with
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qi ◦ xi = p. This means, using the decomposition property of M′, that there
do not exist an i ∈ I ′ and qi : Ci → G in M′ with qi ◦ xi ◦ x = m. Therefore,
for all i ∈ I ′, there does not exist a qi : Ci → G in M′ with qi ◦ xi ◦ x = m,
i.e. m |= ∧i∈I′NAC(xi ◦ x). 
�

Similarly to Definition 3.50, we now define application conditions for pro-
ductions.

Definition 7.10 (application condition for a production). Given a pro-

duction p = (L
l
← K

r
→ R), an application condition A(p) = (AL, AR) for

p consists of a left application condition AL over L and a right application
condition AR over R.

A direct transformation G
p,m
⇒ H with comatch n : R → H satisfies the

application condition A(p) = (AL, AR) if m |= AL and n |= AR.

For an example in the case of graphs, we refer to Example 3.51.

7.2 Construction of Application Conditions from

Constraints

In this section, we shall show that for each atomic constraint PC(a) with

a : P → C ∈ M, there is an equivalent application condition. If G
p,m
=⇒ H is a

direct transformation and PC(a) is an atomic constraint for H with a ∈ M,
then we are able to construct a right application condition Acc(PC(a)) such
that the comatch n satisfies Acc(PC(a)) if and only if H satisfies PC(a).
Taking this together with the main result of the next section, we can construct
a left application condition Lp(Acc(PC(a))) such that the match m : L → G
satisfies Lp(Acc(PC(a))) if and only if H satisfies PC(a). This result is most
important for all kinds of applications.

In this section, we assume properties 1–4 of the general assumptions for
this chapter.

First, we describe the construction of application conditions from con-
straints. In our terminology, R corresponds to the right-hand side of a pro-

duction and PC(a) is intended to be a constraint for H , where G
p,m
=⇒ H is

a direct transformation with comatch n. Acc(PC(a)) is intended to be the
equivalent right application condition for the comatch n. However, by replac-
ing R by L, H by G, and n by m, we can also consider the construction as a
left application condition corresponding to a constraint for G.

Definition 7.11 (construction of application conditions from
constraints). For atomic constraints PC(a) with a morphism a : P → C ∈ M
and an object R, we define

Acc(PC(a)) = ∧SP(R
s
→S,∨i∈IS

ti◦t
→ Ti),
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where P(R
s
→S,∨i∈IS

ti◦t
→ Ti) is an atomic application condition over R (see

Definition 7.6) and I depends on the choice of S:

R

P

S

C

T Ti

(1)

s t

p

a

q

ti

• The conjunction ∧S ranges over all “gluings” S of R and P . More pre-
cisely, it ranges over all triples 〈S, s, p〉 with arbitrary s : R → S and
p : P → S in M′ such that the pair (s, p) is jointly epimorphic (see Def-
inition A.16). For each such triple 〈S, s, p〉, we construct the pushout (1)
of p and a, leading to t : S → T ∈ M and q : C → T ∈ M′.

• For each S, the disjunction ∨i∈I ranges over all S
ti◦t
→ Ti with an epi-

morphism ti such that ti ◦ t and ti ◦ q are in M′. For I = ∅, we have

P(R
s
→S,∨i∈IS

ti◦t
→ Ti) = NAC(R

s
→S).

The construction can be extended to Boolean formulas over atomic con-
straints: Acc(true) = true and for constraints c, cj with j ∈ J , Acc(¬c) =
¬Acc(c), Acc(∧j∈J cj) = ∧j∈JAcc(cj), and Acc(∨j∈J cj) = ∨j∈JAcc(cj).

Remark 7.12. In the special case of (typed) graphs in the sense of Section
3.5, we have M = M′ as the class of all injective (typed) graph morphisms
and “jointly epimorphic” means “jointly surjective”.

The requirement a ∈ M makes sure that the pushout (1) exists. It can be
avoided if the existence of pushout (1) can be guaranted by other means, for
example in the case M′ = M, because we have p ∈ M′.

Theorem 7.13 (construction of application conditions from
constraints). There is a construction Acc such that for every constraint c
built up from atomic constraints a : P → C ∈ M and every object R, Acc(c)
is an application condition over R with the property that, for all morphisms
n : R → H,

n |= Acc(c) ⇐⇒ H |= c.

Proof. The main part of the proof is to show that the statement holds for
atomic constraints.

If. Let n |= Acc(PC(a)). We have to show that H |= PC(a), i.e., for all
morphisms p′ : P → H in M′, there is a morphism q′ : C → H in M′ with
q′ ◦ a = p′.

We have n |= Acc(PC(a)) = ∧SP(R
s
→S,∨i∈IS

ti◦t
→ Ti), and therefore for

each gluing S of R and P we have n |= P(R
s
→S,∨i∈IS

ti◦t
→ Ti) .

First we construct the coproduct R + P with injections inR and inP in
the following diagram. From the universal property of coproducts, for a given
morphism p′ : P → H in M′ and n there is a unique morphism f : R+P → H
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with f ◦inR = n and f ◦inP = p′. Now let f = p′′◦e be an epi–M′ factorization
of f with an epimorphism e and p′′ ∈ M′.

R

R + P P

S

C

T Ti H

(1)

s t

p

a

qeinR

inP

ti q′′

q′

n

p′′

h

f

p′

We define s = e ◦ inR and p = e ◦ inP . The pair (s, p) is then jointly
epimorphic, because e is an epimorphism, and p is in M′, because p′′ ◦ p =
p′′ ◦ e ◦ inP = f ◦ inP = p′ is in M′ and M′-morphisms are closed under
decomposition.

Hence 〈S, s, p〉 belongs to the conjunction ∧S of Acc(PC(a)), and we con-
struct the pushout (1) with pushout object T and morphisms t ∈ M and
q ∈ M′. Moreover, we have p′′ ◦ s = p′′ ◦ e ◦ inR = f ◦ inR = n.

In the case I �= ∅, n |= Acc(PC(a)) implies the existence of i ∈ I and
q′′ : Ti → H ∈ M′ with q′′ ◦ ti ◦ t = p′′. Now let q′ = q′′ ◦ ti ◦ q. Then q′

is in M′, because q′′ ∈ M′ by construction, ti ◦ q ∈ M′ by step 2 in the
construction, and M′-morphisms are closed under composition. Finally, we
have H |= PC(a), because q′ ◦ a = q′′ ◦ ti ◦ q ◦ a = q′′ ◦ ti ◦ t ◦ p = p′′ ◦ p = p′.

In the case I = ∅, the existence of p′′ ∈ M′ with p′′ ◦ s = n contradicts
n |= Acc(PC(a)) = ∧SNAC(s). Hence our assumption that we have a p′ : P →
H ∈ M′ is false, which implies H |= PC(a).

Only if. Let H |= PC(a). We have to show that n |= Acc(PC(a)), i.e.,
for all triples 〈S, s, p〉 constructed in the first step of Definition 7.11 and all
p′′ : S → H ∈ M′ with p′′ ◦ s = n, we have to find an i ∈ I and a morphism
q′′ : Ti → H ∈ M′ with q′′ ◦ ti ◦ t = p′′.

Given 〈S, s, p〉 and p′′ in M′ as above, we define p′ = p′′ ◦ p : P → H .
Then p′ ∈ M′, because p and p′′ are M′-morphisms and M′ is closed under
composition.

H |= PC(a) implies the existence of q′ : C → H ∈ M′ with q′ ◦ a = p′.
Hence p′′ ◦ p = p′ = q′ ◦ a. The universal property of pushout (1) implies the
existence of a unique morphism h : T → H with h ◦ t = p′′ and h ◦ q = q′.

Now let h = q′′ ◦ e′ be an epi–M′ factorization of h with an epimorphism
e′ and q′′ ∈ M′. The decomposition property of M′ and q′′ ◦ e′ ◦ t = h ◦ t =
p′′ ∈ M′ then imply that e′ ◦ t ∈ M′, and q′′ ◦ e′ ◦ q = h ◦ q = q′ ∈ M′

implies e′ ◦ q ∈ M′. Hence, according to the second step of the construction

in Definition 7.11, e′ ◦ t belongs to the family (S
ti◦t
→ Ti)i∈I of Acc(PC(a)) such

that e′ = ti : T → Ti for some i ∈ I.
In the case I �= ∅, we have q′′ ∈ M′, and q′′ ◦ ti ◦ t = q′′ ◦ e′ ◦ t = h◦ t = p′′

implies n |= Acc(PC(a)).
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In the case I = ∅, we have a contradiction. This means that our as-
sumption that we have p′′ ∈ M′ with p′′ ◦ s = n is false. This implies
n |= ∧SNAC(s) = Acc(PC(a)).

Thus, the statement holds for atomic constraints. For arbitrary constraints,
the proof of the statement is straightforward. 
�

Example 7.14 (construction of application conditions for graphs).
In the category Graphs of graphs, we take M = M′ as the class of all
monomorphisms. Now consider the atomic graph constraint c = PC( → )
and the right-hand side of the production p = 〈 ← → 〉. According
to Definition 7.11, the graph constraint c can be transformed into the following
conjunction of five atomic application conditions:

Acc(c) = ∧4
j=1P( → Sj , Sj → Tj) ∧ P( → S5,∨

2
i=1S5 → T5i),

where Sj , Tj, T5i are shown below, and the set I in the disjunction of Definition
7.11 has cardinality 1 for j = 1, . . . , 4 and cardinality 2 for j = 5. Note
that S1, . . . , S5 are all possible gluings of R and P , and T1, . . . , T5 are the
corresponding gluings of S1 and C via P . For j = 1, . . . , 4, the identical
morphism ti = idTi

: Ti → Ti is the only possible epimorphism ti such that
ti ◦ t and ti ◦ q are injective. For j = 5, we have t5i : T5 → T5i (i = 1, 2), with
the corresponding property.

P

C

R

S1

T1

T1

P

C

R

S2

T2

T2

P

C

R

S3

T3

T3

P

C

R

S4

T4

T4

P

C

R

S5

T5

T51 T52

This condition expresses the application condition “Every node outside
(see T1, T4) and inside (see T2, T3, T51, T52) the morphism must have a loop”,
where S1, S2, S3 correspond to injective and S4, S5 to noninjective morphisms.
This means that, for every morphism n : R → H , every node of H must have
a loop, which is equivalent to H |= PC( → ). 
�

Example 7.15 (construction of application conditions for Petri nets).
In the category PTNets of place/transition nets, we take M′ = M as the
class of all injective morphisms in PTNets (see Fact 4.21). Now consider
the net constraint c = ¬PC(∅ → ), where ∅ is the empty net, and the

right-hand side of a production p = 〈 ← → 〉. A net H
satisfies the constraint c if the net H does not contain a subnet of the form

; we call such a place a “sink place”. According to Definition 7.11, the
net constraint c can be transformed into the application condition

Acc(c) = ¬( P(R → S1,∨
3
i=1S1 → T1i ) ∧ P(R → S2,∨

2
i=1S2 → T2i)),
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where R, S1, S2, and Tij are given below. This condition means “No sink
place is allowed to be outside or inside the morphism, i.e. no sink place is
allowed in H”; here S1 takes care of injective and S2 of noninjective morphisms
n : R → H .

T11

∅ P

C

R

S1

T11

T12 T13

id

T21

∅ P

C

R

S2

T21

T22

id


�

An example with M′ �= M will be discussed for typed attributed graphs
in Example 12.10.

7.3 Construction of Left from Right Application

Conditions

In this section, we show that application conditions can be transformed from
the right-hand side of a production to the left-hand side and vice versa. As
discussed in the introduction to Section 7.2, this result is especially interesting
in connection with the main result in Section 7.2.

In this section, we assume properties 3–5 of the general assumptions for
this chapter.

Definition 7.16 (construction of left from right application con-

ditions). For each right atomic application condition acc = P(R
x
→X,

∨i∈IX
xi→Ci) of a production p = (L ← K → R), let

Lp(acc) = P(L
y
→Y,∨i∈I′Y

yi
→Di) with I ′ ⊆ I or Lp(acc) = true,

where y, yi, and I are constructed as follows:

L K R

Y Z X

Di Zi Ci

l r

l∗ r∗

y x

yi zi xi

(2) (1)

(4) (3)
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• If the pair (K
r
→R, R

x
→X) has a pushout complement, we define (K →

Z, Z
r∗

→ X) as the pushout complement (1). We then construct pushout (2)
with the morphism y : L → Y . Otherwise, Lp(acc) = true.

• For each i ∈ I, if the pair (Z
r∗

→X, X
xi→Ci) has a pushout complement,

then i ∈ I ′, and we define (Z
zi→ Zi, Zi → Ci) as the pushout complement

(3). We then construct pushout (4) with morphism yi : Y → Di. Otherwise,
i /∈ I ′.

According to Chapter 4, pushout complements of M-morphisms (if they
exist) are unique up to isomorphism. Therefore, the construction of a left
application condition is unique up to isomorphism. The transformation can
be extended to arbitrary right application conditions as follows: Lp(true) =
true, Lp(¬acc) = ¬Lp(acc), Lp(∧i∈Iacci) = ∧i∈ILp(acci), and Lp(∨i∈Iacci) =
∨i∈ILp(acci).

Theorem 7.17 (construction of left from right application condi-
tions). For every production p, and for every right application condition acc
for p, Lp(acc) as defined in Definition 7.16 is a left application condition for

p with the property that, for all direct transformations G
p,m
=⇒ H with comatch

n,
m |= Lp(acc) ⇔ n |= acc.

Proof. The main part of the proof is to prove the statement for right atomic

application conditions. Let G
p,m
=⇒ H be any direct transformation with co-

match n. We then have the following cases:

Case 1. The pair (r : K → R, x : R → X) has no pushout complement.
Then Lp(acc) = true and m |= Lp(acc). We have to show that n |= acc. This
is true because there is no p : X → H with p ∈ M′ and p ◦ x = n.

Otherwise, since the pair (r, n) has a pushout complement, the pair (r, x)
would have a pushout complement (M–M′ pushout–pullback decomposition,
with r ∈ M and p ∈ M′). This is a contradiction.

Case 2. The pair (r : K → R, x : R → X) has a pushout complement and
I �= ∅.

Case 2.1. m |= Lp(acc). We have to show that n |= acc, i.e., given a
morphism p : X → H ∈ M′ with p ◦ x = n, we have to find an i ∈ I and a
morphism q : Ci → H ∈ M′ with q ◦ xi = p.

Using Theorem 6.18, we obtain from the double pushout for G
p,m
=⇒ H

(more precisely, from the inverse transformation) with p ◦x = n a decomposi-
tion into pushouts (1), (2), (5), and (6) shown below with r, r∗, d1, l, l

∗, d2 ∈ M
and p, z, p′ ∈ M′. (1) and (2) are the same pushouts as in the construction in
Definition 7.16 because of the uniqueness of pushouts and pushout comple-
ments.

In the case I ′ = ∅, we have no p : X → H with p ∈ M′ and p ◦ x = n,
because this would imply the existence of a p′ : Y → G with p′ ∈ M′ and
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p′ ◦ y = m, violating m |= Lp(acc). Having no p with p ◦ x = n, however,
implies that n |= acc.

In the case I ′ �= ∅, the assumption m |= Lp(acc) implies the existence
of an i ∈ I ′ ⊆ I with a morphism yi : Y → Di, and q′ : Di → G in M′

with q′ ◦ yi = p′. Now we are able to decompose pushouts (6) and (5) into
pushouts (4) + (8) and (3) + (7), respectively, using Theorem 6.18 again and

interpreting (Y
l∗

←− Z
r∗

−→ X) as a production. This leads to a morphism
q : Ci → H ∈ M′ with q ◦ xi = p, and therefore n |= acc.

L K R

Y Z X

G D H

l r

l∗ r∗

d2 d1

y x

p′ z p

m n

(2) (1)

(6) (5)

Y Z X

Di Zi Ci

G D H

l∗ r∗

l∗∗ r∗∗

d2 d1

yi xi

q′ z q

p′ p

(4) (3)

(8) (7)

Case 2.2. n |= acc. We have to show that m |= Lp(acc). From the statement
above that defines Case 2, we have Lp(acc) �= true. Hence, for each morphism
p′ : Y → G ∈ M′ with p′ ◦ y = m, we have to find an i ∈ I ′ and a morphism
q′ : Di → G ∈ M′ with q′ ◦ yi = p′.

Given a morphism p′ ∈ M′ with p′ ◦y = m, we can construct the pushouts
(1), (2), (5), and (6) as above using Theorem 6.18, leading to a morphism
p : X → H ∈ M′ with p ◦ x = n. Now n |= acc implies the existence of i ∈ I
and morphisms q : Ci → H ∈ M′ and xi : X → Ci with q ◦ xi = p. Owing to
pushout (5), the pair (r∗, p) has a pushout complement, so that this is also
true for (r∗, xi) by decomposition. Hence we have an i ∈ I ′ and can decompose
the pushouts (5) and (6) into the pushouts (3) + (7) and (4) + (8) from right
to left, leading to a morphism q′ : Di → G ∈ M′ with q′ ◦yi = p′. This implies
that m |= Lp(acc).

Case 3. The pair (r, x) has a pushout complement, but I = ∅. Then
n �|= acc = NAC(x) implies that p ∈ M′ with p ◦ x = n. As shown for Case
2.1, we obtain p′ ∈ M′ with p′ ◦y = m, which implies that m �|= NAC(y). Vice
versa, m �|= Lp(acc) = NAC(y) implies in a similar way that n �|= NAC(x),
using the construction in Case 2.2.

Thus, the statement holds for right atomic application conditions. For
arbitrary right application conditions, the proof of the statement is straight-
forward. 
�

Example 7.18 (construction of left from right application condi-
tions). For the adhesive HLR category Graphs of graphs, where M = M′ is
the class of all injective graph morphisms, consider the right application con-
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dition acc = NAC(
1 2

→
1 2

) for the production p = (
1 2

←
1 2

→
1 2

),

meaning that an edge between the nodes in the comatch must not exist. We
have NAC(R → X) ≡ P (R → X, e), where e has an empty index set I = ∅.

Now we construct Z and the pushout complement (1), and then construct
Y as the pushout object of pushout (2) as shown below. In accordance with
Definition 7.16, acc is transformed into the left atomic application condition
Lp(acc) = P (L → Y, e) ≡ NAC(

1 2

→
1 2

) with I ′ = ∅, meaning that two

parallel edges between the nodes in the match must not exist.

L K R

Y Z X

(1)(2)


�

Example 7.19 (construction of left from right application condi-
tions for Petri nets). For the weak adhesive HLR category PTNets of
place/transition nets, where M = M′ is the class of all injective morphisms in
PTNets, consider the right application condition acc = ¬P(R → X, X → C)

for the production p = ( ← → ) in Example 7.15, where
R → X = R → S2 and X → C = S2 → T22. This means that we consider
only a subcase of the right application condition constructed in Example 7.15.

H |= acc means that for each noninjective comatch n : R → H , the place in
n(R) must not be a sink place. In accordance with Definition 7.16, we obtain
the left application condition Lp(acc) = ¬P(L → Y, Y → D) shown below.
G |= Lp(acc) means that for each noninjective match m : L → G, the place in
m(L) must not be a sink place. Note that a noninjective match m : L → G
can only identify the places, because otherwise the gluing condition would be
violated.

L R

Y X

D C

(1)(2)

(3)(4)


�

Remark 7.20. For the double-pushout approach with match and comatch
morphisms in M′, there is a result similar to Theorem 7.17: for every pro-
duction p, there is a construction Lp, as given in Definition 7.16, such that
for every right application condition acc for p, Lp(acc) is a left application

condition for p. For all direct transformations G
p,m
=⇒ H with m ∈ M′ and a

comatch n ∈ M′, we have
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m |= Lp(acc) ⇐⇒ n |= acc.

Remark 7.21. For every production p, there is also a transformation Lp−1

such that for every left application condition acc for p, Lp−1(acc) is a right
application condition for p with the property that, for all direct transforma-

tions G
p,m
=⇒ H with comatch n, n |= Lp−1(acc) ⇔ m |= acc. A left applica-

tion condition acc of p is the right application condition of the inverse rule
p−1 = (R ← K → L) of p. By Theorem 7.17, acc can be transformed into a
left application condition Lp−1(acc) of p−1, being a right application condition
of p. Then Lp−1 has the wanted property.

7.4 Guaranteeing and Preservation of Constraints

In this section, we use the results in Theorems 7.13 and 7.17 for integrating
constraints into application conditions of productions such that every direct
transformation satisfying the application condition is constraint-guaranteeing
and constraint-preserving, respectively. We consider productions with inte-
grated application conditions. Every production in the sense of Definition 5.1
is a production. If p is a production and A an application condition for p,

then (p, A) is an extended production. A direct transformation G
(p,A),m
=⇒ H is

a direct transformation G
p,m
=⇒ H that satisfies the application condition A.

In this section, we assume properties 1–5 of the general assumptions for
this chapter.

Definition 7.22 (guaranteeing and preservation of constraints). Given
a constraint c, an extended production (p, A) is

• c-guaranteeing if, for all direct transformations G
(p,A),m
=⇒ H, it holds that

H |= c; and

• c-preserving if, for all direct transformations G
(p,A),m
=⇒ H, we have the

condition that G |= c implies H |= c.

Theorem 7.23 (guaranteeing and preservation of constraints). There
are constructions A and A′ such that, for every constraint c and every produc-
tion p, A(c) and A′(c) are left application conditions for p such that (p, A(c))
is c-guaranteeing and (p, A′(c)) is c-preserving.

Proof. This theorem follows immediately from Theorems 7.13 and 7.17. Let
p = (L ← K → R) and let AccL(c) and AccR(c) be the left and the right
application condition, respectively, of c, where AccR(c) = Acc(c) as given in
Definition 7.11 and AccL(c) is defined similarly with R replaced by L.

Now let Lp(AccR(c)) be the left application condition corresponding to
AccR(c), as given in Definition 7.16. Let A(c) = Lp(AccR(c)) and A′(c) =
(AccL(c) ⇒ Lp(AccR(c))), where A ⇒ B denotes ¬A∨B. Then the left appli-
cation conditions A(c) and A′(c) have the required properties, from Theorems
7.13 and 7.17:
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• Given G
(p,A(c)),m

=⇒ H with a comatch n, we have H |= c iff n |= AccR(c) iff
m |= Lp(AccR(c)) iff m |= A(c), which is true by assumption.

• Given G
(p,A′(c)),m

=⇒ H with a comatch n, G |= c implies that H |= c is
equivalent to ¬(G |= c) ∨ H |= c. This is true iff ¬(m |= AccL(c)) ∨ n |=
AccR(c), which means that ¬(m |= AccL(c)) ∨ m |= Lp(AccR(c)), i.e.
m |= ¬AccL(c) ∨ Lp(AccR(c)). This is equivalent to m |= A′(c), which is
true by assumption. 
�



Part III

Typed Attributed Graph Transformation

Systems
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In Parts I and II, we have presented an introduction to the classical case of
graph and typed graph transformation systems and a general categorical the-
ory based on adhesive high-level replacement (HLR) categories and systems,
respectively. This categorical theory can be instantiated not only to the clas-
sical case, but also to graph transformations based on several other kinds of
graphs, such as hypergraphs and attributed graphs, and various kinds of Petri
nets. Several of these instantiations have been discussed in Section 5.2.

In the present Part, we study typed attributed graph transformation sys-
tems in full detail. The concept of typed attributed graph transformation is
most significant for modeling and metamodeling in software engineering and
visual languages. Hence it is important to have an adequate theory for this
approach to graph transformation.

The main purpose of Part III is to provide the basic concepts and results
of graph transformation for typed attributed graphs; these concepts and re-
sults correspond to those already known for the case of graphs [Ehr79]. The
straightforward way would be to extend the classical theory in Part I step by
step, first to attributed graphs and then to typed attributed graphs. Follow-
ing [EPT04], however, we propose the more elegant solution of obtaining the
theory of typed attributed graph transformation as an instantiation of the
“adhesive HLR categories and systems” presented in Part II.

In Chapter 8, we give a formalization of typed attributed graphs, which
allows node and edge attribution, and we show how to construct pushouts and
pullbacks in the corresponding category AGraphsATG of typed attributed
graphs. In Chapters 9 and 10, we present the main concepts of typed at-
tributed graph transformation, providing as fundamental results the Local
Church–Rosser, Parallelism, Concurrency, Embedding, and Extension Theo-
rems and a Local Confluence Theorem known as the Critical Pair Lemma
in the literature. These results are presented without explicit proofs, because
they can be obtained as special cases of the corresponding results in Part II.
For this purpose, we show in Chapter 11 that the category AGraphsATG

is isomorphic to the category of algebras over a specific kind of attributed
graph structure signature. This allows us to show that the category of typed
attributed graphs is an instance of an adhesive HLR category in the sense
of Part II and that the corresponding results can be specialized to those of
Chapters 9 and 10.

In Chapter 12, we extend the concept of constraints and application con-
ditions from the graph case presented in Chapter 3 to typed attributed graph
transformation, by instantiation of the general theory presented in Chapter 7.
In Chapter 13, we study attributed type graphs with inheritance, motivated
by the concept of class inheritance in object-oriented modeling. The concepts
and results in Chapters 8–11 are based on [HKT02, EPT04], and Chapters 12
and 13 are based on the papers [EEHP04] and [BEdLT04, EEPT05], respec-
tively.
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Hints for reading:
For those readers who are interested mainly in the concepts and results of
typed attributed graph transformation, we advise them to start with Part I
and continue directly to Parts III and IV. The main part of the theory of
typed attributed graphs and graph transformation is presented independently
of Part II in Chapters 8–10, while Chapter 11 bridges the gap between Parts II
and III. Chapters 12 and 13 can be read independently of each other, directly
after Chapter 8.
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Typed Attributed Graphs

Within the last decade, graph transformation has been used as a modeling
technique in software engineering and as a metalanguage to specify and imple-
ment visual modeling techniques such as UML. Especially for those applica-
tions, it is important to use not only labeled graphs, as considered in the classi-
cal approach presented in Part I, but also typed and attributed graphs. In fact,
there are already several different concepts for typed and attributed graph
transformations in the literature (see e.g. [LKW93, HKT02, BFK00, EPT04]).
However, for a long period there was no adequate theory for this important
branch of graph transformation.

The key idea in [HKT02] is to model an attributed graph with node attri-
bution as a pair AG = (G, A) of a graph G and a data type algebra A. In this
chapter, we follow the approach of [EPT04], where this idea is used to model
attributed graphs with node and edge attribution. However, G is now a new
kind of graph, called an E-graph, which allows edges from edges to attribute
nodes also. This new kind of attributed graph, combined with the concept of
typing, leads to a category AGraphsATG of attributed graphs typed over an
attributed type graph ATG. This category seems to be an adequate formal
model not only for various applications in software engineering and visual
languages but also for the internal representation of attributed graphs in our
graph transformation tool AGG [ERT99].

In this chapter, we introduce typed attributed graphs and the correspond-
ing graph morphisms, leading to the category AGraphsATG. In analogy to
Chapter 2 for the case of graphs, we show how to construct pushouts and pull-
backs for typed attributed graphs, which are the basis for typed attributed
graph transformations and transformation systems described in Chapter 9.

Throughout Chapters 8 and 9, we use a simple running example from
the area of model transformation to illustrate the main concepts and results.
We have selected a small set of model elements that is basic for all kinds of
object-oriented models. It describes the abstract syntax, i.e. the structure of
the method signatures. These structures are naturally represented by node-
and edge-attributed graphs, where node attributes store names, for example,
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while edge attributes are useful, for example, for keeping the order of parame-
ters belonging to one method. Typed attributed graph transformation is used
in Chapter 9 to specify simple refactorings such as adding a parameter or
exchanging two parameters.

8.1 Attributed Graphs and Typing

In order to model attributed graphs with attributes for nodes and edges, we
have to extend the classical notion of graphs (see Definition 2.1) to E-graphs.

An E-graph has two different kinds of nodes, representing the graph and
data nodes, and three kinds of edges, the usual graph edges and special edges
used for the node and edge attribution. The differences between E-graphs,
graphs, and labeled graphs are discussed below.

Definition 8.1 (E-graph and E-graph morphism). An E-graph G with
G = (VG, VD, EG, ENA, EEA, (sourcej , targetj)j∈{G,NA,EA}) consists of the
sets

• VG and VD, called the graph and data nodes (or vertices), respectively;
• EG, ENA, and EEA called the graph, node attribute, and edge attribute

edges, respectively;

and the source and target functions

• sourceG : EG → VG, targetG : EG → VG for graph edges;
• sourceNA : ENA → VG, targetNA : ENA → VD for node attribute edges;

and
• sourceEA : EEA → EG, targetEA : EEA → VD for edge attribute edges:

EG VG

EEA ENA

VD

sourceEA

targetEA

sourceNA

targetNA

sourceG

targetG

Consider the E-graphs G1 and G2 with Gk = (V k
G , V k

D, Ek
G, Ek

NA, Ek
EA,

(sourcek
j , targetkj )j∈{G,NA,EA}) for k = 1, 2. An E-graph morphism f : G1 →

G2 is a tuple (fVG
, fVD

, fEG
, fENA

, fEEA
) with fVi

: V 1
i → V 2

i and fEj
: E1

j →

E2
j for i ∈ {G, D}, j ∈ {G, NA, EA} such that f commutes with all source

and target functions, for example fVG
◦ source1

G = source2
G ◦ fEG

.

Remark 8.2. The main difference between E-graphs and graphs is that we
allow edge attribute edges, where the source of these edges is not a graph
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node but a graph edge. The main difference between E-graphs and labeled
graphs (see Definition 2.8) is the fact that we use node and edge attribute
edges instead of labeling functions lV : VG → VD and lE : EG → VD. This
allows us to change attributes in going from the left- to the right-hand side
of a production, whereas, in the case of labeled graphs, the labels of common
items in the left- and right-hand sides are preserved.

Definition 8.3 (category EGraphs). E-graphs and E-graph morphisms
form the category EGraphs.

An attributed graph is an E-graph combined with an algebra over a data
signature DSIG. In the signature, we distinguish a set of attribute value sorts.
The corresponding carrier sets in the algebra can be used for the attribution.

Definition 8.4 (attributed graph and attributed graph morphism).
Let DSIG = (SD, OPD) be a data signature with attribute value sorts
S′

D ⊆ SD. An attributed graph AG = (G, D) consists of an E-graph G to-

gether with a DSIG-algebra D such that
�

∪s∈S′
D

Ds = VD.

For two attributed graphs AG1 = (G1, D1) and AG2 = (G2, D2), an at-
tributed graph morphism f : AG1 → AG2 is a pair f = (fG, fD) with an E-
graph morphism fG : G1 → G2 and an algebra homomorphism fD : D1 → D2

such that (1) commutes for all s ∈ S′
D, where the vertical arrows below are

inclusions:

D1
s

V 1
D

D2
s

V 2
D

(1)

fD,s

fG,VD

Example 8.5 (attributed graphs). Given suitable signatures CHAR,
STRING, and NAT (see Example B.3), we define the data signature DSIG
by

DSIG = CHAR + STRING + NAT+

sorts : parameterDirectionKind

opns : in, out, inout, return :→ parameterDirectionKind

with attribute value sorts S′
D = {string, nat, parameterDirectionKind}.

Now we consider as the DSIG-algebra D the standard algebras for charac-
ters, strings, and natural numbers (see Example B.10), together with the set
DparameterDirectionKind = {in, out, inout, return} and constants inD = in,
outD = out, inoutD = inout, and returnD = return. The graph AG = (G, D)
is then an attributed graph, with G defined as follows:

• VG = {m, c, par1, par2, par3},
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• VD = Dnat

�

∪ Dstring

�

∪ DparameterDirectionKind,
• EG = {mpar1, mpar2, mpar3, par1c, par2c, par3c},
• ENA = {mname, noOfPars, cname, pname1, pname2, kind1, kind2,

kind3},
• EEA = {order1, order2, order3},

• sourceG : EG → VG : x 	→

{
m : x = mpar1, mpar2, mpar3

pari : x = paric, i = 1, 2, 3
,

• targetG : EG → VG : x 	→

{
pari : x = mpari, i = 1, 2, 3
c : x = par1c, par2c, par3c

,

• sourceNA : ENA → VG : x 	→

⎧⎪⎪⎨⎪⎪⎩
m : x = mname, noOfPars
c : x = cname
pari : x = pnamei, i = 1, 2
pari : x = kindi, i = 1, 2, 3

,

• targetNA : ENA → VD : x 	→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

add : x = mname
3 : x = noOfPars
Nat : x = cname
pi : x = pnamei, i = 1, 2
in : x = kind1, kind2

return : x = kind3

,

• sourceEA : EEA → EG : orderi 	→ mpari, i = 1, 2, 3,
• targetEA : EEA → VD : orderi 	→ i, i = 1, 2, 3.

In the diagram below, we have omited the edge names and all unreachable
data nodes (inout, out, 0, numbers greater than 3, and all unused string
representations) for clarity. The solid nodes and arrows are the graph nodes
VG and edges EG, respectively. The dashed nodes are the (used) data nodes
VD, and dashed and dotted arrows represent node and edge attribute edges
ENA and EEA, respectively:

m par1

par2

par3 c

add

return

1

23

Nat

p1

in

p2


�

Definition 8.6 (category AGraphs). Given a data signature DSIG as
above, attributed graphs and attributed graph morphisms form the category
AGraphs.

For the typing of attributed graphs, we use a distinguished graph at-
tributed over the final DSIG-algebra Z (see Definition B.11). This graph
defines the set of all possible types.
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Definition 8.7 (typed attributed graph and typed attributed graph
morphism). Given a data signature DSIG, an attributed type graph is an
attributed graph ATG = (TG, Z), where Z is the final DSIG-algebra.

A typed attributed graph (AG, t) over ATG consists of an attributed graph
AG together with an attributed graph morphism t : AG → ATG.

A typed attributed graph morphism f : (AG1, t1) → (AG2, t2) is an at-
tributed graph morphism f : AG1 → AG2 such that t2 ◦ f = t1:

AG1

AG2

ATG
t1

t2

f

Definition 8.8 (category AGraphsATG). Typed attributed graphs over an
attributed type graph ATG and typed attributed graph morphisms form the
category AGraphsATG.

Example 8.9 (typed attributed graphs). We extend Example 8.5 by the
following type graph ATG with the data algebra Z. We have the graph nodes
Method, Parameter, and Class and the data nodes parameterDirectionKind,
string, and nat:

Method Parameter

Classstring

nat parameterDirectionKind

param

typemname

noOfPars

pname

cname

kindorder

Zchar = {char}
Zstring = {string}
Znat = {nat}
ZparameterDirectionKind = {parameterDirectionKind}
aZ = char ∈ Zchar

emptyZ = string ∈ Zstring

nextZ : Zchar → Zchar

char 	→ char
concatZ : Zstring × Zstring → Zstring

(string, string) 	→ string
...
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Each data node is named after its corresponding sort, owing to the fact
that the final DSIG-algebra Z has carrier sets Zs = {s} for all s ∈ SD. The
nodes and edges in ATG represent the types that can be used for the typing
of an attributed graph.

The graph AG given in Example 8.5 is typed over ATG by the attributed
graph morphism t : AG → ATG with t = (tG,VG

, tG,VD
, tG,EG

, tG,ENA
, tG,EEA

,
tD), defined by

tD,s(x) = s for all s ∈ SD,

tG,VG
(m) = Method, tG,VG

(par1) = tG,VG
(par2) = tG,VG

(par3) = Parameter,

tG,VG
(c) = Class,

tG,VD
(p1) = tG,VD

(p2) = tG,VD
(add) = tG,VD

(Nat) = string,

tG,VD
(return) = tG,VD

(in) = parameterDirectionKind,

tG,VD
(1) = tG,VD

(2) = tG,VD
(3) = nat,

and analogously for all unused data nodes and tG,EG
, tG,ENA

, and tG,EEA

defined by the induced edge morphisms.
In the following we use a more compact notation for typed attributed

graphs, as depicted in the following diagram and used in the AGG tool en-
vironment (see Chapter 15). Each node and edge inscription describes at the
top a (facultative) name and the type, and at the bottom it describes the
attributes as a list of types and values. For each type we may have none, one,
or more values (i.e. attribute edges in the graph):

m:Method

mname=add
noOfPars=3

par1:Parameter

pname=p1

kind=in

par2:Parameter

pname=p2

kind=in

par3:Parameter

kind=return

c:Class

cname=Nat

:param

order=1

:param

order=2

:param

order=3
:type

:type

:type


�
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8.2 Pushouts as a Gluing Construction of Attributed

Graphs

Similarly to the gluing of graphs in Section 2.3, we now study the gluing of
attributed and typed attributed graphs. This is needed for the construction
of typed attributed graph transformations in the next chapter and is defined
via pushouts in the categories AGraphs and AGraphsATG, respectively. In
fact, we need only pushouts where one of the given morphisms belongs to a
special class M of monomorphisms, which are injective on the graph part and
isomorphisms on the data type part.

Definition 8.10 (class M). An attributed graph morphism f : AG1 → AG2

with f = (fG, fD) belongs to the class M if fG is an injective E-graph mor-
phism, i.e. injective in each component, and fD is an isomorphism of DSIG-
algebras. This implies also that fVD

is bijective.
A typed attributed graph morphism f : (AG1, t1) → (AG2, t2) belongs to

the class M if f : AG1 → AG2 belongs to M.

Remark 8.11. The class M is a class of monomorphisms in AGraphs or
AGraphsATG, which is closed under composition (g◦f with f, g ∈ M implies
g ◦ f ∈ M). For f ∈ M with fG bijective, f is an isomorphism in AGraphs
or AGraphsATG, respectively.

The following pushout construction in AGraphs and AGraphsATG is
based on Fact 2.17. The main difference is in the pushout construction for
the corresponding DSIG-algebras. In general, a pushout of DSIG-algebras
cannot be constructed componentwise. However, since M-morphisms are iso-
morphisms on the DSIG-algebras, we can avoid this problem by preserving
the DSIG-algebra in the morphism opposite to the given M-morphism.

Fact 8.12 (pushouts along M-morphisms in AGraphs and
AGraphsATG).

1. Given attributed graph morphisms f : AG0 → AG1 and g : AG0 →
AG2 with f ∈ M, the pushout (1) in AGraphs with the pushout object
(AG3, f ′, g′) can be constructed as follows, where AGk = (Gk, Dk), and
Gk = (V k

G , V k
D, Ek

G, Ek
NA, Ek

EA, (sourcek
j , targetkj )j∈{G,NA,EA}) for (k =

0, 1, 2, 3):

AG0 = (G0, D0)

AG2 = (G2, D2)

(G1, D1) = AG1

(G3, D3) = AG3

g=(gG,gD)

f=(fG,fD)∈M

g=(g′
G,g′

D)

f ′=(f ′
G,f ′

D)∈M

(1)

a) (X3, f ′
X , g′X) is a pushout of (X0, fX , gX) in Sets for X ∈ {VG, EG,

ENA, EEA}.
b) (V 3

D, f ′
VD

, g′VD
) = (V 2

D, id, g′VD
) with g′VD

= gVD
◦ f−1

VD
: V 1

D → V 3
D.
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c) (D3, f ′
D, g′D) = (D2, id, g′D) with g′D = gD ◦ f−1

D : D1 → D3.
d) The source and target functions of G3 are uniquely determined by the

pushouts in a).

AG3 is unique up to isomorphism and f ′ ∈ M.
2. Given typed attributed graph morphisms f : (AG0, t0) → (AG1, t1) and

g : (AG0, t0) → (AG2, t2) with f ∈ M, then the pushout ((AG3, t3), f ′, g′)
in AGraphsATG can be constructed as a pushout (AG3, f ′, g′) of f :
AG0 → AG1 and g : AG0 → AG2 with f ∈ M in AGraphs, and t3 :
AG3 → ATG is uniquely induced by t1 and t2, using the pushout properties
of (AG3, f ′, g′) in AGraphs.

Proof.

1. The componentwise construction leads to a well-defined AG3 = (G3, D3)
and to morphisms f ′, g′ in AGraphs, where f ′ ∈ M and (1) is commu-
tative. The universal pushout property follows from the PO constructions
in Sets for each component, where the constructions in the VD and D
components are also pushouts in Sets and DSIG-Alg, respectively.

2. This follows from the construction of pushouts in slice categories (see Fact
A.19, item 5).


�

Example 8.13 (pushout in AGraphsATG). The diagram in Fig. 8.1 is a
pushout in AGraphsATG. The graph AG1 = AG has been shown in Ex-
ample 8.5. All four typed attributed graphs have the same data algebra and
therefore also the same data nodes. Since fG and gG are injective, both of the
morphisms f and g are M-morphisms. Therefore the pushout object AG3 can
be constructed componentwise. 
�

8.3 Pullbacks of Attributed Graphs

In analogy to the pullbacks of graphs described in Section 2.4, we now study
pullbacks of attributed and typed attributed graphs. The universal property
of pullbacks is dual to that of pushouts, and in fact, pushouts along M-
morphisms are also pullbacks in AGraphs and AGraphsATG. In contrast
to pushouts, which are essential for the definition of direct transformations,
pullbacks are needed mainly for technical reasons in connection with the state-
ments and proofs of several of the main results, especially for the properties
of adhesive and weak adhesive HLR categories.

The following pullback construction in AGraphs and AGraphsATG is
based on Fact 2.23. Similarly to the pushout construction, the main differ-
ence is in the pullback construction for the corresponding DSIG-algebras.
In contrast to pushouts, a pullback of DSIG-algebras can be constructed
componentwise. However, we do not need this property, because one of the
given morphisms is an M-morphism such that the opposite morphism can be
defined to preserve the DSIG-algebra.
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Fig. 8.1. Pushout and Pullback in AGraphsATG
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Fact 8.14 (pullbacks along M-morphisms in AGraphs and
AGraphsATG).

1. Given attributed graph morphisms f ′ : AG2 → AG3 and g′ : AG1 →
AG3 with f ′ ∈ M, the pullback (1) in AGraphs with the pullback object
(AG0, f, g) can be constructed as follows, where AGk = (Gk, Dk) and
Gk = (V k

G , V k
D, Ek

G, Ek
NA, Ek

EA, (sourcek
j , targetkj )j∈{G,NA,EA}) for (k =

0, 1, 2, 3):

AG0 = (G0, D0)

AG2 = (G2, D2)

(G1, D1) = AG1

(G3, D3) = AG3

g=(gG,gD)

f=(fG,fD)∈M

g=(g′
G,g′

D)

f ′=(f ′
G,f ′

D)∈M

(1)

a) (X0, fX , gX) is pullback of (X3, f ′
X , g′X) in Sets for X ∈ {VG, EG,

ENA, EEA}.
b) (V 0

D, fVD
, gVD

) = (V 1
D, id, gVD

) with gVD
= f ′−1

VD
◦ g′VD

: V 0
D → V 2

D.

c) (D0, fD, gD) = (D1, id, gD) with gD = f ′−1
D ◦ g′D : D0 → D2.

d) The source and target functions of G0 are uniquely determined by the
pullbacks in a).

The pullback object AG0 is unique up to isomorphism, and we have f ∈
M.

2. Given typed attributed graph morphisms f ′ : (AG2, t2) → (AG3, t3) with
f ′ ∈ M and g′ : (AG1, t1) → (AG3, t3), then the pullback ((AG0, t0), f, g)
in AGraphsATG can be constructed as a pullback (AG0, f, g) of f, g with
f ∈ M in AGraphs, and t0 : AG0 → ATG is given by t0 = t1◦f = t2◦g.

Proof.

1. The componentwise construction leads to a well-defined (AG0, f, g) in
AGraphs, where f ∈ M and (1) is commutative. The universal pullback
property follows from the pullback constructions in each component.

2. This follows from the construction of pullbacks in slice categories (see Fact
A.23, item 4).


�

Remark 8.15. The categories AGraphs and AGraphsATG also have gen-
eral pullbacks. This follows from the existence of pullbacks in Alg(Σ) (see Fact
A.19, item 3) and the isomorphism AGraphsATG

∼= AGSIG(ATG) − Alg
(see Theorem 11.3).

Fact 8.16 (pushouts along M-morphisms are pullbacks). Pushouts
along M-morphisms in AGraphs and AGraphsATG are also pullbacks.

Proof. This follows from the fact that pushouts along injective functions in
Sets are also pullbacks. See also Theorem 4.26 and 11.11. 
�

Example 8.17. Fact 8.16 implies that the pushout in Fig. 8.1 is also an
example of a pullback in AGraphsATG. 
�
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Typed Attributed Graph Transformation

Systems

On the basis of the concepts of attributed graphs and typing introduced in
Chapter 8, we present the theory of typed attributed graph transformation
(AGT) systems in this chapter. The main idea used to obtain this theory is
to instantiate the general theory for adhesive HLR systems given in Part II
with the category (AGraphsATG,M) of typed attributed graphs, which will
be shown to be an adhesive HLR category in Chapter 11. On the other hand,
we consider it to be important that the concepts and results presented in this
chapter also make sense for readers not interested in the general categorical
theory of Part II. For this purpose, we follow the style of Part I and introduce
directly the basic concepts and results for typed attributed graph transforma-
tion in this and the next chapter. We postpone the verification of the main
results to Chapter 11.

9.1 Basic Concepts for Typed AGT Systems

In this section, we define typed attributed graph transformation systems on
the basis of the concepts of attributed graphs and typing described in Section
8.1.

For a typed attributed graph transformation system, we fix a category
AGraphsATG over an attributed type graph ATG and the class M, as de-
fined in the last chapter. The productions are restricted to graphs attributed
over a term algebra with variables.

The example of typed attributed graphs introduced in Chapter 8 is ex-
tended to a typed attributed graph transformation system called Method-
Modeling.

A typed attributed graph production is a typed graph production (see
Definition 3.1) where typed graphs are replaced by typed attributed graphs
which share the same termalgebra TDSIG(X) with variables X (see Def. B.15)
as algebra.



182 9 Typed Attributed Graph Transformation Systems

Definition 9.1 (typed attributed graph production). Given an at-
tributed type graph ATG with a data signature DSIG, a typed attributed graph

production, or “production” for short, p = (L
l
← K

r
→ R) consists of typed

attributed graphs L, K, and R with a common DSIG-algebra TDSIG(X), the
DSIG-termalgebra with variables X, and l, r ∈ M. This means that we have
injective typed attributed graph morphisms l : K → L, r : K → R, where the
DSIG-part of l and r is the identity on TDSIG(X).

A typed attributed graph transformation is a typed graph transformation
(see Definition 3.2) where pushouts in the category GraphsTG are replaced
by pushouts in AGraphsATG.

Definition 9.2 (typed attributed graph transformation). Given a pro-

duction p = (L
l
← K

r
→ R) as defined above and a typed attributed graph G

with a typed attributed graph morphism m : L → G, called match, a direct
typed attributed graph transformation, or “direct graph transformation” for

short, G
p,m
=⇒ H from G to a typed attributed graph H is given by the following

double pushout (DPO) diagram in the category AGraphsATG, where (1) and
(2) are pushouts:

L K R

G D H

(1) (2)

l r

m k n

f g

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct graph transformations is
called a typed attributed graph transformation, or “graph transformation”
for short, and is denoted by G0

∗
⇒ Gn. In the case n = 0, we have an iden-

tical transformation on G0 or an isomorphism G0
∼= G′

0, because direct graph
transformations are only unique up to isomorphism.

Notation. We shall use the short form “(typed) AGT system” for “(typed)
attributed graph transformation system”.

Remark 9.3. Similarly to the construction of graph transformations in Sec-
tion 3.2, the construction of typed attributed graph transformations is also
based on the construction of two pushouts, but now in the category
AGraphsATG.

In Section 9.2, we analyze the construction of a direct typed attributed
graph transformation in more detail.

At this point, let us discuss the difference concerning match morphisms in
the attributed case compared with the classical case. The match morphism
m : L → G has an E-graph part mG – which corresponds to the classical case
– and also a data type part mD : TDSIG(X) → DG. In fact, the DSIG homo-
morphism mD is completely determined by an assignment asg : X → DG of
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variables (see Section B.3 and [EM85]). Since lD and rD are the identities on
TDSIG(X), we can assume without loss of generality that fD and gD are the
identities of the data algebra DG of G. This implies that the data algebras
DG, DD, and DH of G, D, and H are all equal, i.e. DG = DD = DH , and
that the data type parts kD and nD of k and n in (1) and (2) are equal to
mD, i.e. mD = kD = nD.

At first glance this may seem strange, because the variables var(L) oc-
curring in the terms of the node and edge attributes of L may not coincide
with var(K) of K and var(R) of R. We only have var(K) ⊆ var(L) ⊆ X and
var(K) ⊆ var(R) ⊆ X . But the definition of the match mD : TDSIG(X) →
DG already requires an assignment for all variables X , and not only for
var(L) ⊆ X .

From the practical point of view, to find a match m : L → G we first have
to find an assignment for the variables var(L) such that the corresponding
term evaluation matches the corresponding attributes of G. In a second step,
we can choose an appropriate assignment for var(R)\var(L) which determines
the corresponding attributes of H . In general it makes sense to have X =
var(L)∪var(R), but this is not necessarily required for arbitrary productions.

Finally, we define typed attributed graph transformation systems, gram-
mars, and languages by analogy with the corresponding concepts in the graph
case (see Definition 3.4).

Definition 9.4 (typed AGT system, grammar and language). A typed
attributed graph transformation system (or “graph transformation system”
for short) GTS = (DSIG, ATG, P ) consists of a data type signature DSIG,
an attributed type graph ATG, and a set P of typed attributed graph produc-
tions.

GG = (GTS, S), with a typed attributed start graph S, is called a typed
attributed graph grammar. The language L generated by GG is given as usual
by L = {G | S ⇒∗ G}.

Remark 9.5. A typed attributed graph transformation system is an adhesive
HLR system in the sense of Definition 5.4, based on the adhesive HLR category
(AGraphsATG, M). The category AGraphsATG is determined by the data
signature DSIG and the attributed type graph ATG, the morphism class M,
as defined in Definition 8.10, is fixed.

To illustrate this definition, we present an example that comes from the
area of model transformation. It describes the signatures of method declara-
tions.

Example 9.6 (graph grammar MethodModeling). In the following, we
define the typed attributed graph grammar MethodModeling.

We use the data signature DSIG presented in Example 8.5 and the at-
tributed type graph from Example 8.9. The start graph S is the empty graph.
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All graphs occurring in the productions are attributed over the term al-
gebra TDSIG(X) with variables X = Xint∪XString∪XParameterDirectionKind,
where Xint = {n, x, y}, XString = {m, p, ptype, P1, P2}, and
XParameterDirectionKind = {k}.

We present the productions in a shorter notation showing only the left-
hand and the right-hand side of each production. The gluing object is the
intersection of both graphs, where a partial mapping is given by the names of
the nodes.

Using the productions addMethod and addClass with an empty left-hand
side and a single method or class, respectively, on the right-hand side, new
methods and classes can be inserted:

addMethod : ∅
:Method

mname=m

noOfPars=0

=⇒

addClass :
∅

:Class

cname=ptype
=⇒

The production addParameter adds a parameter of a special type to a
method. It is inserted as the last element in the list of parameters for this
method:

addParameter :

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

:param

order=n+1

:type=⇒

With checkNewParameter, we can delete the last parameter if it is al-
ready in the list of parameters. The name, kind, and type of the last parameter
have to match with those of the parameter that is used for the comparison:
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checkNewParameter :

1:Method

noOfPars=n

2:Class

3:Parameter

pname=p

kind=k

:Parameter

pname=p

kind=k

4:param

:param

order=n

5:type

:type

1:Method

noOfPars=n−1

2:Class

3:Parameter

pname=p

kind=k

4:param

5:type=⇒

The production exchangeParameter exchanges the order of two parame-
ters:

exchangeParameter :

1:Parameter

2:Parameter

3:Method

4:param

order=x

5:param

order=y

1:Parameter

2:Parameter

3:Method

4:param

order=y

5:param

order=x

=⇒

Altogether, the typed attributed graph grammar is given by
MethodModeling = (DSIG, ATG, S, P ), where P = {addMethod, addClass,
addParameter, exchangeParameter, checkNewParameter}.

The typed attributed graph AG in Example 8.9 can be derived from
the empty start graph S by applying first the productions addMethod and
addClass and then the production addParameter three times. The matches
have to assign the corresponding value to each variable.
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The first step S
addMethod,m1

=⇒ AG1 of this transformation, using the pro-
duction addMethod, is shown in the following diagram, where the match m1

assigns the string add to m and arbitrary values to the other variables:

∅ ∅
:Method

mname=m

noOfPars=0

m1

∅ ∅
:Method

mname=add
noOfPars=0S AG1

Analogously, in the second step we use the production addClass, and the
match m2 assigns Nat to the variable ptype, leading to the direct transfor-

mation AG1
addClass,m2

=⇒ AG2 shown in the following diagram:

∅ ∅
:Class

cname=ptype

m2

:Method

mname=add
noOfPars=0

:Method

mname=add
noOfPars=0

:Method

mname=add
noOfPars=0

:Class

cname=Nat

AG1 AG2

Now, applying the production addParameter for the first time, with the
match m3, where p1 is assigned to p, in to k, and 0 to n, we obtain the

following direct transformation AG2
addParameter,m3

=⇒ AG3:
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1:Method

noOfPars=n

2:Class

1:Method

2:Class

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

:param

order=n+1

:type

m3

:Method

mname=add
noOfPars=0

:Class

cname=Nat

:Method

mname=add

:Class

cname=Nat

:Method

mname=add
noOfPars=1

:Class

cname=Nat

:Parameter

pname=p1

kind=in

:param

order=1

:type

AG2 AG3

We apply addParameter two more times similarly, and obtain the graph AG:

m:Method

mname=add
noOfPars=3

par1:Parameter

pname=p1

kind=in

par2:Parameter

pname=p2

kind=in
par3:Parameter

kind=return
pname=p3

c:Class

cname=Nat

:param

order=1

:param

order=2:param

order=3
:type

:type

:type


�
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9.2 Construction of Typed Attributed Graph

Transformations

Similarly to Section 3.2 for the graph case, we now analyze the question of
under what conditions a production p = (L ← K → K) can be applied
to a typed attributed graph G via a match m : L → G. Corresponding to
Definition 3.7, we have the following definition:

Definition 9.7 (applicability of a production for typed AGTs). A
typed attributed graph production p = (L ← K → K) is applicable to a typed
attributed graph G with a match m : L → G if there exists a typed attributed
context graph D such that (1) is a pushout in AGraphsATG:

L K R

G D

(1)

l r

m k

f

Similarly to the graph case considered in Section 3.2, we now present a
gluing condition for typed attributed graphs which is necessary and sufficient
for the application of a production (see Fact 9.9). The essential part of the
gluing condition is, again, that all identification and dangling points are glu-
ing points. Only the definition of gluing, identification, and dangling points
is slightly more complicated for attributed graphs than that for graphs in
Definition 3.9.

Definition 9.8 (gluing condition in AGraphs and AGraphsATG).

1. Given an attributed graph production p = (L ← K → R), an at-
tributed graph G, and a match m : L → G in AGraphs with X =
(V X

G , V X
D , EX

G , EX
NA, EX

EA, (sourceX
j , targetXj )j∈{G,NA,EA}, D

X) for all
X ∈ {L, K, R, G}, we can state the following definitions:
• The gluing points GP are those graph items in L that are not deleted

by p, i.e. GP = lVG
(V K

G ) ∪ lEG
(EK

G ) ∪ lENA
(EK

NA) ∪ lEEA
(EK

EA).
• The identification points IP are those graph items in L that are iden-

tified by m, i.e. IP = IPVG
∪ IPEG

∪ IPENA
∪ IPEEA

, where

IPVG
= {a ∈ V L

G |∃a′ ∈ V L
G , a �= a′, mVG

(a) = mVG
(a′)},

IPEj
= {a ∈ EL

j |∃a′ ∈ EL
j , a �= a′, mEj

(a) = mEj
(a′)},

for all j ∈ {G, NA, EA}.

• The dangling points DP are those graph items in L, whose images are
the source or target of an item (see Definition 8.1) that does not belong
to m(L), i.e. DP = DPVG

∪ DPEG
, where
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DPVG
= {a ∈ V L

G |(∃a′ ∈ EG
NA \ mENA

(EL
NA),

mENA
(a) = sourceG

NA(a′)) ∨ (∃a′ ∈ EG
G \ mEG

(EL
G),

mEG
(a) = sourceG

G(a′) or mEG
(a) = targetGG(a′))},

DPEG
= {a ∈ EL

G|(∃a′ ∈ EG
EA \ mEEA

(EL
EA),

mEEA
(a) = sourceG

EA(a′)};

p and m satisfy the gluing condition in AGraphs if all identification
and all dangling points are also gluing points, i.e. IP ∪ DP ⊆ GP .

2. Given p and m in AGraphsATG, they satisfy the gluing condition in
AGraphsATG if p and m, considered in AGraphs, satisfy the gluing
condition in AGraphs.

Fact 9.9 (existence and uniqueness of typed attributed context
graphs). For a typed attributed graph production p, a typed attributed graph
G, and a match m : L → G, the typed attributed context graph D with the
PO (1) exists in AGraphsATG iff p and m satisfy the gluing condition in
AGraphsATG. If D exists, it is unique up to isomorphism:

L K

G D

(1)

l∈M

m k

f∈M

Proof. “⇒”. Given the PO (1), then the properties of the gluing condition
follow from the properties of pushouts along M-morphisms in AGraphs and
AGraphsATG (see Fact 8.12; this is similar to the proof of Fact 3.11).

“⇐”. If the gluing condition is satisfied, we can construct
D = (V D

G , V D
D , ED

G , ED
NA, ED

EA, (sourceD
j , targetDj )j∈{G,NA,EA}, D

D), k, f ,
and typeD : D → ATG as follows:

• V D
G = (V G

G \ mVG
(V L

G )) ∪ mVG
◦ lVG

(V K
G );

• V D
D = V G

D ;
• ED

j = (EG
j \ mEj

(EL
j )) ∪ mEj

◦ lEj
(EK

j ), j ∈ {G, NA, EA};

• sourceD
j = sourceG

j |D, targetDj = targetGj |D j ∈ {G, NA, EA};

• DD = DG;
• k(x) = m(l(x)) for all items x in K;
• f is an inclusion;
• typeD = typeG|D.


�

Remark 9.10. This fact corresponds to Theorem 6.4 in the general theory
given in Part II. This implies that the context graph D can be constructed
as the gluing D = C +B K of C and K along B, where B and C are the
boundary and context objects of m, as defined in Definition 10.5.
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Similarly to the graph case considered in Section 3.2, we now have the follow-
ing result:

If a typed attributed production is applicable to a typed attributed graph
via a match, i.e. the gluing condition is satisfied, then we can construct a
direct transformation as follows.

Fact 9.11 (construction of direct typed attributed graph transfor-
mation). Given a typed attributed graph production p and a match m : L → G
such that p is applicable to G via m, then a direct typed attributed graph trans-
formation can be constructed in two steps:

1. Delete all graph items from G that are reached by the match m, but keep
those which come from K. More precisely, construct the typed attributed
context graph D and the pushout (1) below in AGraphsATG such that
G = L +K D.

2. Add new graph items to D that are newly created in R. More precisely,
construct the pushout (2) of D and R via K such that H = R +K D.

This construction is unique up to isomorphism.

L K R

G D H

(1) (2)

l r

m k n

f g

Proof. Since p is applicable to G via m, we have the existence of the con-
text graph D, leading to pushout (1), where D is also called the pushout
complement. Pushout (2) exists according to the construction in Fact 8.12.
Moreover, the construction of pushout complements in (1) and pushouts in (2)
in AGraphsATG is unique up to isomorphism. For pushouts, this is true in
any category, for pushout complements with l ∈ M, because AGraphsATG

is an adhesive HLR category. 
�

9.3 Local Church–Rosser and Parallelism Theorem for

Typed AGT Systems

In this section we present the Local Church–Rosser and Parallelism Theorems
for typed attributed graph transformation systems as defined in Definition 9.4.

In order to present the Local Church–Rosser Theorem similarly to the
classical graph case considered in Section 3.3 we first have to define parallel
and sequential independence of two direct typed attributed graph transforma-
tions. We use the categorical version of independence defined by the existence
of suitable morphisms as the definition, which corresponds to the characteri-
zation that we have given in the classical graph case (see Fact 3.18).
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Here, we use the short forms “graph” and “graph transformation” intro-
duced in Section 9.1 to mean “typed attributed graphs” and “typed attributed
graph transformation”, respectively. When we speak of morphisms, we always
mean morphisms in the category AGraphsATG.

Definition 9.12 (parallel and sequential independence). Two direct

graph transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel independent if

there exist morphisms i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1

and f1 ◦ j = m2:

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

l1r1

m1k1n1

f1g1

l2 r2

m2 k2 n2

f2 g2

ij

Two direct graph transformations G
p1,m1
=⇒ H

p2,m2
=⇒ G′ are sequentially

independent if there exist morphisms i : R1 → D2 and j : L2 → D1 such that
f2 ◦ i = n1 and g1 ◦ j = m2:

L1 K1 R1 L2 K2 R2

G D1 H D2 G′

l1 r1

m1 k1 n1

f1 g1

l2 r2

m2 k2 n2

g2f2

ij

Remark 9.13 (characterization of parallel and sequential indepen-
dence). Two direct transformations that are not parallel or sequentially in-
dependent are called parallel or sequentially dependent, respectively.

Intuitively speaking, parallel independence means that the intersection of
the match m1(L1) and the match m2(L2) in G consists of common gluing
points only, i.e. it is included in m1 ◦ l1(K1) ∩ m2 ◦ l2(K2) (see Section 3.3
for the classical graph case, where the set theoretical version is used as a
definition and the categorical version as a characterization).

Similarly, sequential independence means that the first rule does not pro-
duce anything needed by the second one.

Note that this condition is trivially satisfied for the algebras of attributed
graphs, because Ki and Li have the same algebra TDSIG(Xi), which is pre-
served by li : Ki → Li for i = 1, 2.

This implies that the condition is also trivially satisfied for the VD compo-
nent. For the components VG, EG, ENA, and EEA, independence means, more
precisely:

• m1(L1) ∩ m2(L2) ⊆ l1 ◦ m1(K1) ∩ l2 ◦ m2(K2) (parallel independence);
• n1(R1) ∩ m2(L2) ⊆ r1 ◦ n1(K1) ∩ l2 ◦ m2(K2) (sequential independence).

Similarly to Theorem 3.20 for the classical case, we are now able to present
the Local Church–Rosser Theorem for typed AGT systems.
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Theorem 9.14 (Local Church–Rosser Theorem for typed AGT sys-

tems). Given two parallel independent direct graph transformations G
p1,m1
=⇒

H1 and G
p2,m2
=⇒ H2, there are a graph G′ and direct graph transforma-

tions H1
p2,m′

2=⇒ G′ and H2
p1,m′

1=⇒ G′ such that G
p1,m1
=⇒ H1

p2,m′
2=⇒ G′ and

G
p2,m2
=⇒ H2

p1,m′
1=⇒ G′ are sequentially independent.

Given two sequentially independent direct graph transformations G
p1,m1
=⇒

H1
p2,m′

2=⇒ G′, there are a graph H2 and direct graph transformations G
p2,m2
=⇒

H2
p1,m′

1=⇒ G′ such that G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2 are parallel independent:

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

Proof. See Theorem 11.14 in Section 11.3. 
�

Example 9.15 (independence and Local Church–Rosser Theorem).

The first two direct transformations S
addMethod,m1

=⇒ AG1
addClass,m2

=⇒ AG2

in Example 9.6 are sequentially independent. Applying Theorem 9.14, we
can change the order of the application of the two productions, leading to

a transformation S
addClass,m′

2=⇒ AG′
1

addMethod,m′
1=⇒ AG2, where AG′

1 contains
only the class node with the attribute cname = Nat. Furthermore, the direct
transformations S ⇒ AG1 and S ⇒ AG′

1 are parallel independent.

The second direct transformation AG1
addClass,m2

=⇒ AG2 and the third one

AG2
addParameter,m3

=⇒ AG3 are sequentially dependent. In the first step, we
create the class that is needed in the second step. Therefore we cannot change
the order in which we apply the productions addClass and addParameter.


�

Similarly to the classical graph case considered in Section 3.3, we now de-
fine parallel productions and transformations in order to formulate the Par-
allelism Theorem for typed AGT systems.

Definition 9.16 (parallel production and transformation). Given two

productions p1 = (L1
l1← K1

r1→ R1) and p2 = (L2
l2← K2

r2→ R2), the parallel
production p1 + p2 is defined by the coproduct constructions over the corre-

sponding objects and morphisms: p1 + p2 = (L1 + L2
l1+l2←− K1 + K2

r1+r2−→
R1 + R2) (see Remark 9.17).

The application of a parallel production is called a parallel direct transfor-
mation, or parallel transformation for short.
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Remark 9.17. The coproduct L1+L2 (and similarly for K1+K2 and R1+R2)
in AGraphs with Li = (LE

i , TDSIG(Xi)) (i = 1, 2), where LE
i is the E-graph

for Li, is given by L1 + L2 = ((L1 + L2)
E , TDSIG(X1 + X2)), where

• (L1 +L2)
E
j = LE

1,j

�

∪ LE
2,j for the components j = VG, EG, ENA, and EEA;

• (L1 + L2)
E
VD

=
�

∪s∈S′
D

TDSIG(X1 + X2)s.

Note that TDSIG(X1 + X2) is the coproduct of TDSIG(X1) and TDSIG(X2)
in Alg(DSIG), because TDSIG(X) is a free construction which preserves

coproducts. For the VD-component, we have (L1 + L2)
E
VD

�= LE
1,VD

�

∪ LE
2,VD

in
general, but the compatibility with the DSIG-component TDSIG(X1 + X2)
leads to the equation stated above for attributed graphs in AGraphs. For
li : Ki → Li ∈ M for (i = 1, 2), we have (l1 + l2) ∈ M and, similarly
(r1 + r2) ∈ M.

The coproduct L1 + L2 in AGraphsATG for typed attributed graphs L1

with type1 : L1 → ATG and L2 with type2 : L2 → ATG is constructed like
the coproduct L1 + L2 in AGraphs as above, where the coproduct property
of L1 + L2 in AGraphs leads to a unique typing morphism type : L1 + L2 →
ATG, with type◦ i1 = type1 and type◦ i2 = type2 for the coproduct injections
i1 : L1 → L1 + L2 and i2 : L2 → L1 + L2.

The following Parallelism Theorem for typed AGT systems corresponds
to Theorem 3.24 for the typed graph case, where direct transformations are
now direct typed attributed graph transformations (see Definition 9.2).

Theorem 9.18 (Parallelism Theorem for typed AGT systems).

1. Synthesis. Given a sequentially independent direct transformation se-
quence G ⇒ H1 ⇒ G′ via productions p1 and p2, then there is a con-
struction leading to a parallel transformation G ⇒ G′ via the parallel
production p1 + p2, called a synthesis construction.

2. Analysis. Given a parallel transformation G ⇒ G′ via p1 + p2, then there
is a construction leading to two sequentially independent transformation
sequences, G ⇒ H1 ⇒ G′ via p1 and p2 and G ⇒ H2 ⇒ G′ via p2 and p1,
called an analysis construction.

3. Bijective correspondence. The synthesis and analysis constructions are
inverse to each other up to isomorphism.

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

p1+p2

Proof. See Theorem 11.14 in Section 11.3. 
�
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Example 9.19 (Parallelism Theorem). We have shown in Example 9.15

that the direct transformations S
addMethod,m1

=⇒ AG1 and S
addClass,m2

=⇒ AG′
1

are parallel independent. In the following diagram, we show the parallel pro-
duction addMethod + addClass. Note that we use the term algebra over the

disjoint union X
�

∪ X for the data part, because both productions have data
algebras TDSIG(X). We use the following representation of the disjoint union:

X
�

∪ X = X × {1} ∪ X × {2} (see Example A.28).

addMethod + addClass : ∅

:Method

mname=(m,1)
noOfPars=0

:Class

cname=(ptype,2)

=⇒

The application of the parallel production addMethod + addClass to the
start graph S with the match m1 + m′

2, where add is assigned to (m, 1) and
Nat to (ptype, 2), leads to the parallel direct transformation

S
addMethod+addClass,m1+m′

2=⇒ AG2.


�

9.4 Concurrency Theorem and Pair Factorization for

Typed AGT Systems

In this section, we present the Concurrency Theorem for typed AGT systems,
as discussed for the graph case in Subsection 3.4.1. For technical reasons,
we start by considering pair factorizations which will be used later for the
Concurrency Theorem in this section and for the consideration of critical
pairs and local confluence for typed AGT systems in the next chapter.

9.4.1 Pair Factorizations

In this subsection, we define E ′–M′ pair factorizations of two morphisms in
AGraphsATG with the same codomain and give several examples. The idea
of a pair factorization is similar to that of the epi–mono factorization of a
morphism (see Definition A.15). On the basis of this pair factorization, we
define E-related transformation sequences in this section and critical pairs
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over E ′-morphisms for parallel dependent direct transformations in the next
chapter, and show that these critical pairs are complete.

Throughout this section, let M′ be a morphism class closed under pushouts
and pullbacks along M-morphisms. This means, given (1) with m, n ∈ M,
that:

• if (1) is a pushout and f ∈ M′, then g ∈ M′, and
• if (1) is a pullback and g ∈ M′, then f ∈ M′:

A B

DC

(1)

n

g

m

f

For two morphisms f1 and f2 with the same codomain, we now define a
pair factorization over a class of morphism pairs E ′ and over M′.

Definition 9.20 (E ′–M′ pair factorization in AGraphsATG). Given a
class of morphism pairs E ′ with the same codomain and a class M′ in
AGraphsATG as considered above, then AGraphsATG has an E ′–M′ pair
factorization if, for each pair of morphisms f1 : A1 → C, f2 : A2 → C, there
exist a graph K and morphisms e1 : A1 → K, e2 : A2 → K, m : K → C with
(e1, e2) ∈ E ′, m ∈ M′ such that m ◦ e1 = f1 and m ◦ e2 = f2:

A1

A2

K C

e1

e2

m

f1

f2

Remark 9.21. The intuitive idea of morphism pairs (e1, e2) ∈ E ′ is that
of jointly epimorphic morphisms (see Definition A.16). This can be estab-
lished for categories with binary coproducts and an E0–M0 factorization of
morphisms, where E0 is a class of epimorphisms and M0 a class of monomor-

phisms. Given A1
f1
→ C

f2
← A2, we take an E0–M0 factorization f = m ◦ e of

the induced morphism f : A1 + A2 → C and define e1 = e ◦ ι1 and e2 = e ◦ ι2,
where ι1 and ι2 are the coproduct injections:

A1 A2A1 + A2

K

C

ι1 ι2

e

ff1 f2

e1 e2

m
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An E0–M0 factorization in AGraphsATG is given by the classes E0 of
surjective morphisms and M0 of injective morphisms.

For the construction of E-dependency relations in the next subsection and
for the definition of critical pairs for typed AGT systems in Section 10.2, we
need a suitable E ′–M′ pair factorization in AGraphsATG. There are several
options for the choice of this factorization. For the completeness of critical
pairs only those morphisms are relevant whose domain is attributed over the
term algebra with variables, owing to the restriction of the attribution of
the rule objects. For other morphism pairs, an arbitrary choice can be made.
Therefore we concentrate on this special case.

Example 9.22 (E ′–M′ pair factorization in AGraphsATG). There are
various options for defining an E ′–M′ pair factorization of matches m1 :
AG1 → AG3 and m2 : AG2 → AG3 in AGraphsATG, with AGi =
(Gi, TDSIG(Xi), t

i : Gi → ATG) for i = 1, 2. In the following, we introduce
some of them.

1. E ′
1–M

′
1 pair factorization.

For the first pair factorization, we use the construction in Remark 9.21
for an epi–mono factorization (see Definition A.15). Let E ′

1 be the class of
jointly surjective morphisms in AGraphsATG with the same codomain,
and M′

1 the class of all monomorphisms.
We construct the binary coproduct of AG1 and AG2 (see Lemma 11.15).

For the graph nodes and all kinds of edges, the coproduct of AG1 and AG2

is the disjoint union of the graph nodes and of the edges, respectively.
On the data part, we use the construction of binary coproducts to

obtain the data part coproduct TDSIG(X1) + TDSIG(X2). Since the term
algebra with variables is a free construction, it holds that TDSIG(X1) +
TDSIG(X2)

∼
= TDSIG(X1 + X2).

For the matches m1 and m2, there is an induced morphism
[m1, m2] : AG1 + AG2 → AG3 such that [m1, m2] ◦ ιAG1 = m1 and
[m1, m2] ◦ ιAG2 = m2.

Now we factorize the morphism [m1, m2] with an epi–mono factorization
and obtain an object K, an epimorphism e : AG1 + AG2 → K, and a
monomorphism m : K → AG3 such that m◦e = [m1, m2]. We then define
e1 = e ◦ ιAG1 and e2 = e ◦ ιAG2 . It holds that m ◦ e1 = m ◦ e ◦ ιAG1 =
[m1, m2] ◦ ιAG1 = m1 and m ◦ e2 = m ◦ e ◦ ιAG2 = [m1, m2] ◦ ιAG2 = m2.
e1 and e2 are jointly surjective and m is injective, and therefore we have
an E ′

1–M
′
1 pair factorization of m1 and m2:
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AG1 AG2AG1 + AG2

K

AG3

ιAG1 ιAG2

e

[m1, m2]m1 m2

e1 e2

m

[m1, m2] maps the variables in X1 and X2 as specified by m1 and m2,
and all terms to their evaluation in AG3. In general, there are different
terms with the same evaluation, which means the data part of K must be
a quotient term algebra TDSIG(X1 + X2)|≡.

2. E ′
2–M

′
2 pair factorization. We consider another case, where the left-hand

sides of the rules are attributed only by variables, which is a very common
case. This leads to the E ′

2–M
′
2 pair factorization, where (e1, e2) ∈ E ′

2 are
jointly surjective for the graph nodes and all kinds of edges, and m ∈ M′

2

is injective for the graph nodes and all kinds of edges.
For the graph nodes and edges of the object K and the morphisms

e1, e2 and m on the graph part, we use the construction above over the
coproducts and an epi–mono factorization.

On the data part, the construction is different, as follows. The data
algebra of K is TDSIG(X1 + X2), which implies that the VD-component
of K, also consists of terms with variables over X1 + X2. For each d in
D3, the data algebra of AG3, we define Xd to be the set of all variables
x in X1 + X2 which are evaluated by m1 or m2 to d, i.e. m1(x) = d for
x ∈ X1 and m2(x) = d for x ∈ X2. Now we choose, for each Xd �= ∅,
exactly one xd ∈ Xd, and each variable x ∈ Xi with mi(x) = d is mapped
by ei to xd and xd is mapped by m to d, i.e. ei(x) = xd and m(xd) = d.
This is shown in the following example, where mi maps ai and a′

i to a3

and a′
3, respectively, for i = 1, 2. The well-definedness of this construction

is shown in Fact 9.23.

AG1 v1 v′1

x1 x′
1

a1 a′
1

AG2v2 v′2

x2 x′
2

a2 a′
2

K

v3 v′3

xd

a3 a′
3

AG3

v3 v′3

d

a3 a′
3

m1 m2

m

e1 e2
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3. The construction in item 2 is similar to the most general unifier construc-
tion σn : X → TDSIG(X) as considered in [HKT02]. There the most
general unifier for all preimages of an attribute edge is used for the attri-
bution. However, the left-hand sides can be attributed by arbitrary terms
with variables. It is not clear how to obtain the morphism m ∈ M′ in this
construction.

Consider, for example, the data signature NAT (see Example B.3) and
the graphs and morphisms in the following diagram. The graphs AG1

and AG2 are attributed over the term algebra TNAT ({x, y}), and AG3 is
attributed over the algebra A, as in Example B.10.

add(zero, x) add(y, succ(zero))

add(zero, succ(zero))

2

m1 m2

m

e1 e2

Here m1 assigns the value 2 to x, and m2 assigns the value 1 to y. This
means that add(zero, x) and add(y, succ(zero)) are evaluated to 2 by m1

and m2 respectively. The most general unifier of the terms add(zero, x)
and add(y, succ(zero)) is the term add(zero, succ(zero)). However there
is no morphism m : K → AG3 (which has to be the evaluation) such that
m(add(zero, succ(zero)) = 2. Hence, unfortunately, this construction does
not lead to an E ′–M′ pair factorization.

4. E ′
3–M

′
3 pair factorization. There is another possible pair factorization,

where (e1, e2) ∈ E ′
2 are jointly surjective for the graph nodes and graph

edges and m ∈ M′
2 is injective for the graph nodes and graph edges.

For the graph nodes and edges, we use the construction in item 1. K is
attributed over TDSIG(X1+X2). The attribute edges in K are the disjoint
unions of the corresponding sets in AG1 and AG2. For the attribute edges,
e1 and e2 are inclusions and m maps them to the value given by m1 or
m2.

Unfortunately, the E ′
3–M

′
3 pair factorization does not fulfill the M–

M′ pushout–pullback decomposition property, which is required for our
results in Sections 10.2 and 10.3. As an example, consider the following
diagram. The graphs at the bottom consist of a single graph node that is
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attributed once or twice by the same type. We have the result that (1) +
(2) is a pushout and (2) is a pullback, but neither (1) nor (2) is a pushout:

∅ ∅ ∅

1 1 2 1

(1) (2)


�

For the completeness of critical pairs and the Local Confluence Theorem,
we need in addition the condition that the class M′ is closed under pushouts
and pullbacks along M-morphisms and that the M–M′ pushout–pullback
decomposition property (see Definition 5.27) holds.

In the E ′
1–M

′
1 pair factorization, M′

1 is the class of all injective graph
morphisms. For this morphism class, the required properties are fulfilled.

For the E ′
2–M

′
2 pair factorization, the morphism class M′

2 is defined as the
class of graph morphisms that are injective on the non data part. We show in
Lemma 11.16 that the required properties are already fulfilled in the category
AGSIG-Alg over an attributed graph structure signature AGSIG for the
corresponding morphism class. Therefore these properties hold for our class
M′

2 in AGraphsATG in particular.

Fact 9.23 (E ′
2–M

′
2 pair factorization). Given AGi = (Gi, Di) for i =

1, 2, 3, where Di = TDSIG(X i) for i = 1, 2 and m1 : AG1 → AG3, and
m2 : AG2 → AG3 in AGraphs (or AGraphsATG), where AG1 and AG2

are attributed by variables only, i.e.

targetiEA(Ei
EA) ⊆ X i and targetiNA(Ei

NA) ⊆ X i for i = 1, 2.

then there is an E ′
2–M

′
2 pair factorization m1 = m ◦ e1, m2 = m ◦ e2

AG1 AG2

AG0

AG3

m1 m2

m

e1 e2

of m1 and m2 with (e1, e2) ∈ E ′
2 and m ∈ M′

2.
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Construction. Let AG0 = (G0, D0) with V 0
G = m1(V 1

G) ∪ m2(V 2
G) and V 0

D =
∪s∈S′

D
TDSIG(X1 + X2)s. For the edges, we define E0

j = m1(E1
j ) ∪ m2(E2

j )

with j ∈ {G, EA, NA}, and D0 = TDSIG(X1 + X2). This allows us to de-
fine source0

G, target0G, source0
EA, and source0

NA as restrictions of source3
G,

target3G, source3
EA, and source3

NA, respectively.
Now let Xd = {x ∈ X i | mi

VD
(x) = d, i = 1, 2} for all d ∈ V 3

D and for all
Xd �= ∅ we choose xd ∈ Xd and define XD = {xd | d ∈ V 3

D, Xd �= ∅}.
Now we define target0EA(a) = xd with d = target3EA(a) for a ∈ E0

EA ⊆
E3

EA and similarly, target0NA(a) = xd with d = target3NA(a) for a ∈ E0
NA ⊆

E3
NA.

We can then define ei by ei
j(a) = mi

j(a) for j ∈ {VG, EG, NA, EA} on non

data items a and ei
VD

(x) = xd for mi
VD

(x) = d for variables x ∈ Xi (i = 1, 2).
We define m by mj(a) = a for j ∈ {VG, EG, NA, EA} on non data items a, for
variables mVD

= (xd) = d and mVD
(x) = mi

VD
(x) for x ∈ X i \ XD (i = 1, 2).

This leads to unique homomorphisms ei
D : TDSIG(X i) → TDSIG(X1+X2)

defined by ei
D(x) = ei

VD
(x), and mD : TDSIG(X1 + X2) → D3 defined by

mD(x) = mVD
(x). 
�

Proof. We have to show the following:

1. m ◦ e1 = m1 and m ◦ e2 = m2 with (e1, e2) ∈ E ′
2 and m ∈ M′

2;
2. e1, e2, and m are well-defined morphisms in AGraphs;
3. e1, e2, and m are morphisms in AGraphsATG.

1. For j ∈ {VG, EG, ENA, EEA}, we have mj ◦ ei
j(a) = mj(m

i
j(a)) = mi

j(a)

for i = 1, 2. Furthermore, mVD
◦ ei

VD
(x) = mVD

(xd) = d for mi
VD

(x) = d
(i = 1, 2), and for xd ∈ Xd we have mVD

(xd) = d. This implies that mVD
◦

ei
VD

= mi
VD

. For the D-components, we have mD ◦ ei
D(x) = mD(xd) =

d = mi
D(x) (i = 1, 2), for x ∈ X i with mi

D(x) = d.
Moreover, (e1, e2) ∈ E ′

2 and m ∈ M′
2, because, except for the data nodes,

(e1, e2) are jointly surjective and m is injective.
2. For the well-definedness of ei (i = 1, 2) and m, we have to show, for the

EA-component (and similarly for the NA-component), that (1) and (2)
in the following diagram commute. In this diagram, (3) and (4) commute,
by item 1 of the proof, and the outer diagram commutes because mi is a
morphism in AGraphs:



9.4 Concurrency Theorem and Pair Factorization for Typed AGT Systems 201

Ei
EA

E0
EA = m1(E1

EA) ∪ m2(E2
EA)

E3
EA

V i
D =

�

∪s∈S′
D

TDSIG(X i)s

V 0
D =

�

∪s∈S′
D

TDSIG(X1 + X2)s

V 3
D =

�

∪s∈S′
D

D3
s

targeti
EA

target0EA

target3EA

ei
EEA

mEEA

ei
VD

mVD

mi
EEA

mi
VD(1)

(2)(3) (4)

(1) commutes, because for a ∈ Ei
EA, we have:

target0EA ◦ ei
EEA

(a) = target0EA(mi
EEA

(a)) = xd for d = target3EA ◦

mi
EEA

(a), and ei
VD

◦ targetiEA(a) = xd′ for mi
VD

(targetiEA(a)) = d′. Now

we have d = d′, because target3EA ◦ mi
EEA

= mi
VD

◦ targetiEA (outer dia-
gram).
The commutativity of (2) follows from that of (1), (3), and (4) and the
fact that e1

EEA
and e2

EEA
are jointly surjective.

3. In AGraphsATG, we have typing morphisms typei : AGi → ATG for
i = 1, 2, 3 by assumption, and we can define type0 = type3 ◦ m, which
implies that e1,e2, and m are type-preserving, by tem 1:

AG1 AG2

AG0

AG3

ATG

m1 m2

m

e1 e2

type3

type1 type2

=

=

=

=


�

9.4.2 Concurrency Theorem

In the following, we extend the discussion of the Concurrency Theorem from
the graph case considered in Subsection 3.4.1 to typed attributed graphs. The
following constructions can also be seen as an instantiation of the categorical
theory in Section 5.4. In fact, the notation is almost identical to that in Section
5.4. However, Section 5.4 is based on an adhesive HLR system AHS, while
this section is based on a typed attributed graph transformation system GTS.
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The Concurrency Theorem handles direct typed attributed graph transfor-
mations, which are in general not sequentially independent. Roughly speaking,

for a sequence G
p1,m1
⇒ H1

p2,m2
⇒ X there is a production p1 ∗E p2, called an

E-concurrent production, which allows us to construct a corresponding di-

rect transformation G
p1∗Ep2
=⇒ X , and vice versa. As mentioned above, the

formal definitions for the Concurrency Theorem depend on the choice of an
E ′–M′ pair factorization in AGraphsATG. We start with a definition of an
E-dependency relation based on an E ′–M′ pair factorization, which allows us
to construct an E-concurrent production.

Definition 9.24 (E-dependency relation). Given a class E ′ of morphism
pairs in AGraphsATG with the same codomain, and two productions p1 and

p2 with pi = (Li
li← Ki

ri→ Ri) for i = 1, 2, an object E with morphisms
e1 : R1 → E and e2 : L2 → E is an E-dependency relation for p1 and p2, if
(e1, e2) ∈ E ′ and the pushout complements (1) and (2) over K1

r1→ R1
e1→ E

and K2
l2→ L2

e2→ E exist:

L1 K1 R1 L2 K2 R2

C1 E C2

(1) (2)

l1 r1 l2 r2

e1 e2

Definition 9.25 (E-concurrent production and E-related transfor-
mation). Given an E-dependency relation (e1, e2) ∈ E ′ for the productions p1

and p2, the E-concurrent production p1 ∗E p2 is defined by p1 ∗E p2 = (L
l◦k1←−

K
r◦k2−→ R) as shown in the following diagram, where (3) and (4) are pushouts

and (5) is a pullback:

L1 K1 R1 L2 K2 R2

C1 E C2L R

K

(3) (4)

(5)

l1 r1 l2 r2

e1 e2

l r

k1 k2

A transformation sequence G
p1,m1
=⇒ H1

p2,m2
=⇒ G′ is called E-related if there

exists h : E → H1 with h ◦ e1 = n1 and h ◦ e2 = m2 and there are morphisms
c1 : C1 → D1 and c2 : C2 → D2 such that (6) and (7) commute and (8) and
(9) are pushouts:
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L1 K1 R1 L2 K2 R2

C1 E C2

G D1 H1 G′D2

(6) (7)

(8) (9)

n1 m2

l1 r1 l2 r2

c1 c2

e1 e2

m1 n2

h

The following Concurrency Theorem for typed AGT systems corresponds
to Theorem 3.26 for the graph case, where the transformations are now typed
attributed graph transformations (see Definition 9.2).

Theorem 9.26 (Concurrency Theorem for typed AGT systems). Let

GTS be a typed attributed graph transformation system, let R1
e1→ E

e2← L2

be an E-dependency relation for the productions p1 and p2 for a given class
E ′ of morphism pairs, and let p1 ∗E p2 be the corresponding E-concurrent
production.

1. Synthesis. Given a E-related transformation sequence G ⇒ H ⇒ G′ via
p1 and p2, then there is a synthesis construction leading to a direct trans-
formation G ⇒ G′ via p1 ∗E p2.

2. Analysis. Given a direct transformation G ⇒ G′ via p1 ∗E p2, then there
is an analysis construction leading to a E-related transformation sequence
G ⇒ H ⇒ G′ via p1 and p2.

3. Bijective correspondence. The synthesis and analysis constructions are
inverse to each other up to isomorphism, provided that E ′ consists of epi-
morphic pairs only (see Definition A.16).

G

H

G′

p1 p2

p1∗Dp2

Proof. See Theorem 11.14 in Section 11.3. 
�

Finally, we show, as instantiation of Fact 5.29, how to construct E-related
transformations.

Fact 9.27 (construction of E–related transformations). Given an E ′-
M′ pair factorization in AGraphsATG, then for each pair of direct transfor-

mations G
p1,m1
=⇒ H1

p2,m2
=⇒ G′, we have an E-dependency relation E such that

G
p1,m1
=⇒ H1

p2,m2
=⇒ G′ is E-related provided that M′ is equal to M′

1 or M′
2 (see

Example 9.22).
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Proof. This follows from Theorem 11.14 in Section 11.3. 
�

Example 9.28 (E-related transformation and Concurrency Theo-
rem). We use the construction in the proof of Fact 5.29 to construct an
E-dependency relation and an E-concurrent production for the sequentially

dependent transformations AG1
addClass,m2

=⇒ AG2
addParameter,m3

=⇒ AG3 from
Example 9.6.

First we construct the E ′–M′ pair factorization of the comatch n2 and the
match m3. The corresponding typed attributed graph E is an E-dependency
relation, because the pushouts (1) and (2) exist:

... ∅
:Class

cname=ptype

1:Method

noOfPars=n

2:Class

1:Method

2:Class

...

:Method

noOfPars=(n,2)

:Class

cname=(ptype,1)

:Method

mname=add
noOfPars=0

:Class

cname=Nat

:Method

noOfPars=(n,2)

:Class

cname=(ptype,1)

:Method

e1 e2

m

n2

m3

(1) (2)(3) (4)

E

C1

C2

Now we construct the pushouts (3) and (4) with the pushout objects L∗

and R∗ and construct the pullback over C1 → E ← C2 with the pullback
object K∗, and obtain the following E-concurrent production addClass ∗E

addParameter = (L∗ ← K∗ → R∗), where K∗ (not shown explicitly) consists
of a node of type Method without attributes:
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addClass ∗E addParameter :
:Method

noOfPars=(n,2)

1:Method

noOfPars=(n,2)+1

2:Class

cname=(ptype,1)

:Parameter

pname=(p,2)
kind=(k,2)

:param

order=(n,2)+1

:type

=⇒

This construction makes sure that the transformation

AG1
addClass,m2

=⇒ AG2
addParameter,m3

=⇒ AG3

is E-related. Applying Theorem 9.26, we obtain a direct transformation
AG1 ⇒ AG3 using the constructed E-concurrent production addClass ∗E

addParameter. 
�



10

Embedding and Local Confluence for Typed

AGT Systems

In this chapter, we continue the theory of typed attributed graph transforma-
tion systems by describing the Embedding and Extension Theorems, critical
pairs and local confluence in Sections 10.1, 10.2, and 10.3, respectively. The
constructions have been considered for the graph case in Subsections 3.4.2
and 3.4.3 in Part I.

The notation for the main constructions and results in this chapter is
almost identical to that in Chapter 6. However, Chapter 6 is based on an
adhesive HLR system AHS, while the present chapter is based on a typed
attributed graph transformation system GTS.

10.1 Embedding and Extension Theorems for Typed

AGT Systems

In this section, we study the problem of under what conditions a graph trans-
formation t : G0 ⇒∗ Gn can be embedded into a larger context given by a
graph morphism k0 : G0 → G′

0. In fact, an extension of t : G0 ⇒∗ Gn to a
graph transformation t′ : G′

0 ⇒∗ G′
n is possible only if the extension morphism

k0 is consistent with the given graph transformation t : G0 ⇒∗ Gn. This will
be shown in the Embedding and Extension Theorems for typed AGT systems
below.

This problem has been discussed for the graph case in Part I and presented
in the categorical framework in Part II (see Sections 6.1 and 6.2).

First of all we introduce the notion of an extension diagram. An extension
diagram describes how a graph transformation t : G0 ⇒∗ Gn can be extended
to a transformation t′ : G′

0 ⇒ G′
n via an extension morphism k0 : G0 → G′

0.

Definition 10.1 (extension diagram for typed AGT system). An ex-
tension diagram is a diagram (1),
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G0

G′
0

Gn

∗

G′
n

∗

k0 kn

t

t′

(1)

where k0 : G0 → G′
0 is a morphism, called an extension morphism, and

t : G0
∗
⇒ Gn and t′ : G′

0
∗
⇒ G′

n are graph transformations via the same produc-
tions (p0, ..., pn−1) and via the matches (m0, ..., mn−1) and (k0 ◦m0, ..., kn−1 ◦
mn−1), respectively, defined by the following DPO diagrams in AGraphsATG:

Li

Gi

G′
i

Ki

Di

D′
i

Ri

Gi+1

G′
i+1

pi :

(i = 0, ..., n − 1), n > 0

li ri

jimi ni

fi gi

diki

f ′
i

ki+1

g′
i

For n = 0 (see Definition 6.7) the extension diagram is given up to isomor-
phism by

G0

G′
0

G0

G′
0

G0

G′
0

idG0
idG0

k0k0

id
G′

0

k0

id′
G0

The following condition for a graph transformation t : G0
∗
⇒ Gn and

an extension morphism k0 : G0 → G′
0 means intuitively that the boundary

graph B of k0 is preserved by t. In order to formulate this property, we first
introduce the notion of a derived span der(t) = (G0 ← D → Gn) of the graph
transformation t, which connects the first and the last graph, and later the
notion of a boundary graph B for k0.

Definition 10.2 (derived span). The derived span of an identical graph

transformation t : G
id
⇒ G is defined by der(t) = (G ← G → G) with identical

morphisms.

The derived span of a direct graph transformation G
p,m
=⇒ H is the span

(G ← D → H) (see Definition 9.4).

For a graph transformation t : G0
∗
⇒ Gn ⇒ Gn+1, the derived span is the

composition via the pullback (P) in the category AGraphATG (see below) of

the derived spans der(G0
∗
⇒ Gn) = (G0

d0← D′ d1→ Gn) and der(Gn ⇒ Gn+1) =

(Gn
fn
← Dn

gn
→ Gn+1). This construction leads (uniquely up to isomorphism)

to the derived span der(t) = (G0
d0◦d2←− D

gn◦d3
−→ Gn+1).
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G0

D′

D

Gn Dn Gn+1

(P )

d0

d2

d1

d3

fn gn

In the case t : G0 ⇒∗ Gn with n = 0, we have either G0 = Gn and t : G0
id
⇒ G0

(see above), or G0
∼= G′

0 with der(t) = (G0
id
← G0

∼
→ G′

0).

Remark 10.3. According to Section 8.3, we know that pullbacks in
AGraphsATG exist and that they are constructed componentwise in Sets.
For the construction in Sets, we refer to Fact 2.23. In our construction of de-
rived spans above, the given graph morphisms d1 and fn are in M such that
the resulting graph morphisms d2 and d3 are also in M. This means that the
graph D is the intersection of D′ and Dn. Altogether, D can be considered
as the largest subgraph of G0 which is preserved by the graph transformation
t : G0 ⇒∗ Gn, leading to a derived span (G0 ← D → Gn) with subgraph
embeddings D → G0 and D → Gn.

Example 10.4 (derived span). Here, we construct the derived spans of
some of the transformations presented in Example 9.6.

The derived span of the direct transformation S
addMethod,m1

=⇒ AG1 is given
by the span of this transformation, as shown below:

∅ ∅
:Method

mname=add
noOfPars=0S AG1

For the transformation S
addMethod,m1

=⇒ AG1
addClass,m2

=⇒ AG2, the derived span
is depicted in the following, where the pullback object is the empty graph:

∅ ∅

:Method

mname=add
noOfPars=0

:Class

cname=Nat

S AG2

For the transformation AG1
addClass,m2

=⇒ AG2
addParameter,m3

=⇒ AG3 with
m3(n) = 0, m3(p) = p1, and m3(k) = in, we have the following derived
span:
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:Method

mname=add
noOfPars=0

:Class

cname=Nat

:Method

mname=add

:Method

mname=add
noOfPars=1

:Class

cname=Nat

:Parameter

pname=p1

kind=in

:param

order=1

:type

AG2 AG3

The derived span for the complete transformation S
∗
⇒ AG3 is the span

∅ ← ∅ → AG3. 
�

In order to define consistency of the extension morphism k0 : G0 → G′
0

with respect to the graph transformation t : G0 ⇒∗ Gn, we have to define the
boundary graph B and, later, also the context graph C for k0. Intuitively, the
boundary B is the minimal interface graph that we need in order to be able
to construct a context graph C such that G′

0 can be considered as a pushout
of G0 and C via B, written G′

0 = G0 +B C. This construction is given by an
“initial pushout over k0” according to Definition 6.1, and can be constructed
explicitly in the category AGraphsATG as follows. This construction is given
by the initial pushout over k0 in AGraphsATG as defined in Fact 10.7.

The main idea of the construction is similar to that of initial pushouts in
the graph case (see Section 6.2).

Definition 10.5 (boundary and context for typed attributed graph
morphisms).

1. Given an attributed graph morphism f : G → H, the boundary–context
diagram (1) over f in AGraphs is constructed as follows, where B and
C are called the boundary graph and the context graph, respectively, of f ,
and b, c ∈ M:

B G

C H

g

b∈M

c∈M

f (1)

2. Given a typed attributed graph morphism f : (G, tG) → (H, tH), the
boundary–context diagram (2) over f in AGraphsATG is given by the
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boundary–context diagram (1) over f in AGraphs, where tB = tG ◦ b and
tC = tH ◦ c:

(B, tB) (G, tG)

(C, tC) (H, tH)

g

b∈M

c∈M

f (1)

Construction (boundary–context diagram (1)). In the following, we denote
an attributed graph X by

X = (V X
G , V X

D , EX
G , EX

NA, EX
EA, (sourceX

j , targetXj )j∈{G,NA,EA}, D
X),

where DX is the DSIG-algebra of X , and we denote an attributed graph
morphism f by f = (fVG

, fVD
, fEG

, fENA
, fEEA

, fD), where fD is the DSIG-

homomorphism of f with fVD
=

�

∪s∈S′
D

fDs
.

In order to clarify the construction of the boundary graph B, let us recall
the signature of an E-graph (see Definition 8.1):

EG VG

EEA ENA

VD

sourceEA

targetEA

sourceNA

targetNA

sourceG

targetG

The boundary graph B is the intersection of suitable attributed subgraphs
B′ of G,

B = ∩{B′ ⊆ G|DG = DB′

, V G
D = V B′

D , V ∗
G ⊆ V B′

G , E∗
G ⊆ EB′

G ,

E∗
NA ⊆ EB′

NA, E∗
EA ⊆ EB′

EA},

where the sets V ∗
G, E∗

G, E∗
NA, and E∗

EA built up by the dangling and identifi-
cation points (see Definition 9.8) are defined as follows:

• V ∗
G = {a ∈ V G

G | ∃a′ ∈ EH
G \ fEG

(EG
G) with fEG

(a) = sourceH
G (a′) or

fEG
(a) = targetHG (a′)}

∪ {a ∈ V G
G | ∃a′ ∈ EH

NA \ fENA
(EG

NA) with fENA
(a) = sourceH

NA(a′)}
∪ {a ∈ V G

G | ∃a′ ∈ V G
G with a �= a′ and fVG

(a) = fVG
(a′)};

• E∗
G = {a ∈ EG

G | ∃a′ ∈ EH
EA \ fEEA

(EG
EA) with fEEA

(a) = sourceH
EA(a′)}

∪ {a ∈ EG
G | ∃a′ ∈ EG

G with a �= a′ and fEG
(a) = fEG

(a′)};
• E∗

NA = {a ∈ EG
NA | ∃a′ ∈ EG

NA with a �= a′ and fENA
(a) = fENA

(a′)};
• E∗

EA = {a ∈ EG
EA | ∃a′ ∈ EG

EA with a �= a′ and fEEA
(a) = fEEA

(a′)}.

The context graph C is the attributed subgraph of H defined by
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• V C
G = (V H

G \ fVG
(V G

G )) ∪ fVG
(V B

G );
• V C

D = V H
D ;

• EC
j = (EH

j \ fEj
(EG

j )) ∪ fEj
(EB

j ), j ∈ {G, NA, EA};

• DC = DH .

The attributed graph morphisms b, c ∈ M, and g are given by

• b : B → G, inclusion with bVD
= id and bD = id;

• c : C → H , inclusion with cVD
= id and cD = id;

• g : B → C, by gj(x) = fj ◦ bj(x), j ∈ {VG, VD, EG, ENA, EEA, D}.

�

Remark 10.6. Note that B∗ = (V ∗
G, V G

D , E∗
G, E∗

NA, E∗
EA, (s∗j , t

∗
j )j∈{G,NA,EA},

DG) with restrictions s∗j (t
∗
j ) of sG

j (tGj ), where s and t are abbreviations for
source and target, respectively, is in general not an attributed subgraph of
G, such that the subgraph B has to be constructed as the intersection of all
subgraphs B′ ⊆ G defined above. However, we have the following for B:

• V ∗
G ⊆ V B

G ⊆ V G
G ,

• V B
D = V G

D ,
• E∗

G ⊆ EB
G ⊆ EG

G ,
• E∗

NA ⊆ EB
NA ⊆ EG

NA,
• E∗

EA ⊆ EB
EA ⊆ EG

EA,
• DB = DG.

In fact, V B
G and EB

G are target domains of operations in B which are proper
extensions of V ∗

G and E∗
G, respectively, if sG

G(E∗
G) �⊆ V ∗

G, tGG(E∗
G) �⊆ V ∗

G,
sG

NA(E∗
NA) �⊆ V ∗

G and sG
EA(E∗

EA) �⊆ E∗
G, respectively. Note that tGNA(E∗

NA) ⊆
V B

D and tGEA(E∗
EA) ⊆ V B

D because V B
D = V G

D .
The above constructions are all well defined, leading to an initial pushout

over f in AGraphsATG (see Definition 6.1).

Fact 10.7 (initial pushouts in AGraphs and AGraphsATG).

1. Given an attributed graph morphism f : G → H, the boundary–context
diagram (1) over f in Definition 10.5 is well defined and is an initial
pushout over f in (AGraphs,M).

2. Given a typed attributed graph morphism f : (G, tG) → (H, tH), the
boundary–context diagram (2) over f is well-defined and is an initial
pushout over f in (AGraphsATG,M).

Proof. The construction of the boundary–context diagrams in AGraphs and
AGraphsATG is a special case of the initial-pushout construction in the cate-
gory AGSIG-Alg (see Lemma 11.17) using the isomorphism
AGSIG(ATG)-Alg ∼= AGraphsATG of categories, which will be shown in
Chapter 11. Note that an explicit proof of initial pushouts for (AGraphsATG,
M) is more difficult than the general proof for (AGSIG-Alg, M). 
�
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Example 10.8 (initial pushout). In the following diagram, the boundary–
context diagram of the match morphism m3 in Example 10.4 is depicted. We
have no identification points, but the boundary object B consists of the two
dangling points – the Method and the Class node – because in both cases a
node attribute edge is added in AG2.

1:Method

2:Class

1:Method

noOfPars=n

2:Class

m3

:Method

mname=add

:Class

cname=Nat

:Method

mname=add
noOfPars=0

:Class

cname=Nat

AG2

B

C


�

Now we are able to define the consistency of a morphism k0 with respect
to a graph transformation t. The main idea is that the boundary B of k0,
defined by the initial pushout over k0, is preserved by the transformation t.
This means that there is a suitable morphism b : B → D, where D, defined
by the derived span of t, is the largest subgraph of G0 which is preserved by
t : G0 ⇒∗ Gn.

Definition 10.9 (consistency). Given a graph transformation t : G0
∗
⇒ Gn

with a derived span der(t) = (G0
d0← D

dn→ Gn), a morphism k0 : G0 → G′
0 in

AGraphsATG with the initial PO (1) over k0 is called consistent with respect
to t if there exists a morphism b ∈ M with d0 ◦ b = b0:

B

C

G0

G′
0

D Gn

(1)

b0

k0

d0 dn

b

With the following Embedding and Extension Theorems, we can show that
consistency is both necessary and sufficient for the construction of extension
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diagrams. These theorems correspond exactly to the corresponding Theorems
3.28 and 3.29 for the graph case and to Theorems 6.14 and 6.16 for the general
case.

Theorem 10.10 (Embedding Theorem for typed AGT systems).

Given a graph transformation t : G0
∗
⇒ Gn and a morphism k0 : G0 → G′

0

which is consistent with respect to t, then there is an extension diagram over
t and k0.

Proof. See Section 11.3. 
�

Theorem 10.11 (Extension Theorem for typed AGT systems). Given

a graph transformation t : G0
∗
⇒ Gn with a derived span der(t) = (G0

d0←

Dn
dn→ Gn) and an extension diagram (1),

B

C

G0

G′
0

Gn

∗

G′
n

∗

(2) (1)

b0

k0

t

t′

kn

with an initial pushout (2) over k0 ∈ M′ for some class M′ closed under
pushouts and pullbacks along M-morphisms and with initial pushouts over
M′-morphisms, then we have:

1. k0 is consistent with respect to t : G0
∗
⇒ Gn with the morphism b : B →

Dn.
2. There is a graph transformation G′

0 ⇒ G′
n via der(t) and k0 given by the

pushouts (3) and (4) below with h, kn ∈ M′.
3. There are initial pushouts (5) and (6) over h ∈ M′ and kn ∈ M′, respec-

tively, with the same boundary–context morphism B → C:

G0

G′
0

Dn

D′
n

Gn

G′
n

(3) (4)

d0

h

dn

k0 kn

B

C

Dn

D′
n

(5)

b

h

B

C

Gn

G′
n

(6)

dn◦b

kn

Proof. See Section 11.3. 
�

Example 10.12 (Embedding and Extension Theorems). If we embed
the start graph S from Example 10.4 via a morphism k0 into a larger context
H , k0 is consistent with respect to the transformation t : S

∗
⇒ AG3. This is

due to the fact that S is the empty graph, and therefore the boundary graph is
also empty and no items have to be preserved by the transformation. Applying
Theorem 10.10 allows us to embed the transformation S

∗
⇒ AG3, leading to

an extension diagram over t and k0. From Theorem 10.11, we conclude that
there is a direct transformation H ⇒ H ′ via the derived span der(t) shown in
Example 10.4. The resulting graph H ′ is the disjoint union of H and AG3. 
�
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10.2 Critical Pairs for Typed AGT Systems

In order to study local confluence in Section 10.3, we now introduce criti-
cal pairs, as discussed in Section 3.4 and used for adhesive HLR systems in
Chapter 6.

For the definition of critical pairs, we need the concept of an E ′–M′ pair
factorization introduced in Section 9.3.

Definition 10.13 (critical pair). Given an E ′–M′ pair factorization in
AGraphsATG, a critical pair is a pair of parallel dependent direct trans-

formations P1
p1,o1
⇐= K

p2,o2
=⇒ P2 such that (o1, o2) ∈ E ′ for the corresponding

matches o1 and o2.

In analogy to the graph case considered in Lemma 3.33 and the general
case considered in Lemma 6.22, we now show the completeness of critical pairs
in AGraphsATG.

Lemma 10.14 (completeness of critical pairs in AGraphsATG). Given
an E ′–M′ pair factorization where the M–M′ pushout–pullback decomposition
property holds (see Definition 5.27), then the critical pairs in AGraphsATG

are complete. This means that for each pair of parallel dependent direct trans-

formations H1
p1,m1
⇐= G

p2,m2
=⇒ H2, there is a critical pair P1

p1,o1
⇐= K

p2,o2
=⇒ P2

with extension diagrams (1) and (2) and m ∈ M′:

P1

H1

K

G

P2

H2

(1) (2)m

Remark 10.15. The requirements above are valid in particular for the E ′
1–

M′
1 and E ′

2–M
′
2 pair factorizations given in Definition 9.20.

Example 10.16 (critical pairs in MethodModeling). In the following, we
analyze the critical pairs in our graph grammar MethodModeling from Ex-
ample 9.6. We use the E ′

2–M
′
2 pair factorization given in Definition 9.20.

For the underlying category AGraphsATG with the given type graph
ATG (see Example 8.9), there is a large number of critical pairs. We have
counted 88 different possibilities for only the application of the production
checkNewParameter in two different ways that lead to a critical pair.

If we analyze all these pairs, we see that most of them are strange in some
way and do not meet our intentions for the graph grammar MethodModeling.
We have aimed at modeling the signatures of method declarations, and our
productions reflect this. However, in the critical pairs, often graph nodes have
multiple occurrences of the same attribute, or parameters have multiple types
or belong to more than one method. All these things are allowed in our general
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theory of typed attributed graphs, but they do not lead to a consistent method
declaration, and cause a high number of critical pairs.

Therefore we analyze only those critical pairs which are of interest for
the language of MethodModeling, which means that we consider only those
graphs that can be derived from the empty graph by applying our productions.

With this restriction, we obtain the following critical pairs P1
p1,m1
⇐= K

p2,m2
=⇒

P2:

1. p1 = p2 = addParameter: 2 critical pairs. In this case, two parameters
are added to the same method, which increases the number of parameters
in the method, i.e. changes the attribute noOfPars and causes a conflict.
There are two possible cases: the classes of the two new parameters are
the same or different.

2. p1 = addParameter, p2 = checkNewParameter: 2 critical pairs. One
parameter is added to a method, and another one is deleted. Adding a
parameter increases the value of noOfPars and the deletion decreases
this value, which leads to a conflict. Again there are two possible cases:
the classes of the new and deleted parameters are the same or different.

3. p1 = p2 = checkNewParameter: 2 critical pairs. We delete the last pa-
rameter with both transformations. There are then two cases: the param-
eters that we use for the comparison (which means checking that the last
parameter is already in the list) are the same or different.

4. p1 = checkNewParameter, p2 = exchangeParameter: 5 critical pairs.
The last parameter of a method is deleted by one transformation, but
the other transformation exchanges it with another parameter. There are
several different ways in which the parameters involed can be matched.

If one of the exchanged parameters is deleted, the other one can be
the same as or different from the parameter we use for the comparison in
checkNewParameter. This leads to four critical pairs. The fifth critical
pair is obtained if both exchanged parameters are mapped together with
the deleted one. This is possible, since matches do not have to be injective.

5. p1 = p2 = exchangeParameter: 11 critical pairs. If the same parameter
is exchanged by both transformations, this leads to a conflict. There are
11 cases of how to map at least one parameter of one left-hand side to
one parameter of the other left-hand side (including the cases where the
matches are not injective).

Other combinations of productions do not result in critical pairs with overlap-
ping graphs being generated by our productions; therefore, altogether, there
are 22 critical pairs.

In the following diagram, the two critical pairs P1 ⇐ K ⇒ P2 and P ′
1 ⇐

K ′ ⇒ P ′
2 for the case p1 = p2 = addParameter are represented. In the top

part of the diagram, we show only the left-hand sides of the productions, and
the graphs K and K ′. In the bottom part, the resulting direct transformations
are depicted. The matches are shown by the names of the nodes. The value
of the attribute noOfPars is changed, which means that in the gluing object
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(not shown explicitly) of the direct transformations P1 ⇐ K ⇒ P2 and P ′
1 ⇐

K ′ ⇒ P ′
2, there is no node attribute edge between the method and the variable

n. Therefore these transformations are parallel dependent. The matches are
jointly surjective on the graph part, and both transformation pairs are critical
pairs.

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n

2′:Class

1:Method

noOfPars=n

2:Class 2′:Class

K K ′

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

:param

order=n+1

:type

1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

:param

order=n+1

:type

P1 P2

K

⇐ ⇒
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1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

2′:Class

:param

order=n+1

:type

1:Method

noOfPars=n

2:Class 2′:Class

1:Method

noOfPars=n+1

2′:Class

:Parameter

pname=p

kind=k

2:Class

:param

order=n+1

:type

P ′
1 P ′

2

K ′

⇐ ⇒


�

10.3 Local Confluence Theorem for Typed AGT Systems

A typed AGT system is confluent if, for all pairs of graph transformations
starting from the same graph, there are graph transformations that bring the
resulting graphs back together. Confluence based on critical pairs has been
studied for hypergraphs in [Plu93] and for typed node attributed graphs in
[HKT02]. The main result is, that strict confluence of all critical pairs implies
local confluence of the whole system. These concepts have been discussed
already in Section 3.4 and used for adhesive HLR systems in Chapter 6. Now
we instantiate them to typed AGT systems.

With a suitable E ′–M′ pair factorization, such as one of those given in
Definition 9.20, a graph transformation system is locally confluent if all its
critical pairs are strictly confluent.

In Section 3.4, we have shown that local confluence together with termi-
nation implies the confluence of the whole system. The termination of typed
attributed graph transformation systems will be studied in Section 12.3.

In analogy to the graph case considered in Theorem 3.34 and the general
case considered in Theorem 6.28, we are now able to formulate the Local
Confluence Theorem for typed AGT systems, based on the concept of strict
confluence of critical pairs.

Definition 10.17 (strict confluence of critical pairs). A critical pair

K
p1,o1
=⇒ P1, K

p2,o2
=⇒ P2 is called strictly confluent if we have the following

conditions:
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1. Confluence. the critical pair is confluent, i.e. there are transformations

P1
∗
⇒ K ′, P2

∗
⇒ K ′ with derived spans der(Pi

∗
⇒ K ′) = (Pi

vi+2
← Ni+2

wi+2
→

K ′) for i = 1, 2.

2. Strictness. Let der(K
pi,oi
=⇒ Pi) = (K

vi← Ni
wi→ Pi) for i = 1, 2, and let N

be the pullback object of the pullback (1). There are then morphisms z3

and z4 such that (2), (3), and (4) commute:

K

P1 P2

K ′

(p1,o1) (p2,o2)

∗ ∗

P1

N3

N1

K ′

N

K

N4

N2

P2
(2)

(1)

(4)

(3)

w1

z1

v1

z3
v3

w3

v2

z2

z4

w2

v4

w4

Theorem 10.18 (Local Confluence Theorem for typed AGT sys-
tems). Given a graph transformation system GTS based on (AGraphsATG,
M) with an E ′–M′ pair factorization such that M′ is closed under pushouts
and pullbacks along M-morphisms and the M–M′ pushout–pullback decom-
position property holds, then GTS is locally confluent if all its critical pairs
are strictly confluent.

Proof. See Theorem 11.14 in Section 11.3. 
�

Remark 10.19. The language L of a graph transformation system GTS is
locally confluent if we consider only those critical pairs P1 ⇐ K ⇒ P2, where
K is an M′-subgraph of a graph G which can be derived from the start graph
S. “K is M′-subgraph of G” means that there is an M′-morphism m : K → G.

In Section 11.3, we show that the Local Confluence Theorem is valid for
a typed AGT system over the category AGSIG-Alg with a well-structured
AGSIG and a suitable E ′–M′ pair factorization. This implies Theorem 10.18.
The requirements for M′ are valid for M′ = M′

1 and M′ = M′
2 as considered

in Example 9.22.

Example 10.20 (local confluence in MethodModeling). The task of ana-
lyzing the local confluence of our graph grammar MethodModeling is exten-
sive owing to the fact that there are so many critical pairs, even if we consider
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only the language of MethodModeling (see Example 10.16). Therefore we
only give arguments for local confluence here, and do not prove it.

The confluence of the critical pairs can be shown relatively easily. In the
following we describe how to find suitable productions and matches for a

critical pair P1
p1,m1
⇐= K

p2,m2
=⇒ P2 that lead to confluence.

1. p1 = p2 = addParameter. In this case two parameters are added to the
same method, which increases the number of parameters in the method.
We can apply p2 to P1 with a match m′

2 slightly different from m2, where
only the value of the attribute numberOfPars is increased by 1. This
works similarly if p1 is applied to P2 with a match m′

1. We then obtain

transformations P1
p2,m′

2=⇒ X and P2
p1,m′

1=⇒ X .
2. p1 = addParameter, p2 = checkNewParameter. Here a parameter is

added and deleted in the same method. In P1, we can use the production
exchangeParameter to swap the last two parameters and then apply p2

to this graph with a match m′
2 similar to m2, where only the value of the

attribute numberOfPars in this method is increased by 1. Applying p1 to
P2 results in a common graph. This means that we have transformations

P1
exchangeParameter

=⇒ X ′ p2,m′
2=⇒ X and P2

p1,m′
1=⇒ X .

3. p1 = p2 = checkNewParameter. We have deleted the same (last) pa-
rameter with both transformations, and therefore it already holds that
P1 = P2 or P1

∼
= P2.

4. p1 = checkNewParameter, p2 = exchangeParameter. In K, a parame-
ter is deleted by p1, but p2 exchanges it with another one. In this case,
we can restore the old order by applying p2 once again to P2, result-
ing in the graph K. Applying p1 with the match m1 leads to a com-

mon object. Altogether, we obtain the transformations P1
id
⇒ P1 and

P2
exchangeParameter

=⇒ K
p1,m1
=⇒ P1.

5. p1 = p2 = exchangeParameter. Exchanging parameters can be reversed,

so there are transformations P1
p2

=⇒ K and P2
p1

=⇒ K.

In all these cases, the common part of K that is preserved by applying p1

and p2 is also preserved by the further transformations and mapped equally to
the resulting common object. Therefore the critical pairs are strictly confluent.

By Theorem 10.18, this means that the graph grammar
MethodModeling is locally confluent. 
�



11

Adhesive HLR Categories for Typed

Attributed Graphs

In Chapters 8–10, we have presented the main concepts and results for typed
attributed graph transformation systems. However, we have postponed most
of the proofs, because they have been given already for adhesive HLR sys-
tems in Part II. It remains to instantiate them for typed attributed graph
transformation systems.

For this purpose, we have to show that the category AGraphsATG of
typed attributed graphs is an adhesive HLR category. In Theorem 11.3, we
show that the category AGraphsATG is isomorphic to a category of alge-
bras over a suitable signature AGSIG(ATG), which is uniquely defined by
the attributed type graph ATG. In fact, it is much easier to verify the cat-
egorical properties of adhesive HLR categories for the category of algebras
AGSIG(ATG)-Alg and to show the isomorphism between AGSIG(ATG)-
Alg and AGraphsATG than to show the categorical properties directly for
the category AGraphsATG.

In Theorem 11.11, we show that AGSIG(ATG)-Alg, and hence also
AGraphsATG, is an adhesive HLR category. In fact, we show this result for
the category AGSIG-Alg, where AGSIG is a more general kind of attributed
graph structure signatures in the sense of [LKW93, CL95, FKTV99]. This al-
lows us to obtain the results of our theory for other kinds of attributed graphs,
also. However, we shall not discuss these other instantiations in more detail.
By combining the results given in Sections 11.1 and 11.2 with those in Part
II, we are able to verify in Section 11.3 that the following basic results stated
in Chapters 9 and 10 are valid for typed attributed graph transformations:

1. The Local Church–Rosser, Parallelism, and Concurrency Theorems.
2. The Embedding and Extension Theorems.
3. The completeness of critical pairs and the Local Confluence Theorem.

An alternative way to show that AGraphsATG is an adhesive HLR cat-
egory is given at the end of Section 11.2, where AGraphs is represented as
a subcategory of a comma category and AGraphsATG as a slice category of
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AGraphs. However, for showing the existence of initial pushouts, it is eas-
ier to give the corresponding construction in the more general context of the
category AGSIG-Alg. Moreover, this allows us to apply the results to the
general attributed graph structure signatures mentioned above.

11.1 Attributed Graph Structure Signatures and Typed

Attributed Graphs

Attributed graph structure signatures were introduced in [LKW93] to model
attributed graphs and the corresponding transformations. In fact, this con-
cept is general enough to model various kinds of attributed graphs, especially
attributed graphs with node attributes only, as presented in [HKT02], and
our concept with node and edge attributes introduced in Chapter 8.

In this section, we review attributed graph structure signatures and
show that, for each type graph ATG, there is a graph structure signature
AGSIG(ATG) such that the category AGraphsATG of attributed graphs
typed over ATG and the category AGSIG(ATG)-Alg of AGSIG(ATG)-
algebras are isomorphic.

We start with the definition of attributed graph structure signatures.

Definition 11.1 (attributed graph structure signature). A graph struc-
ture signature GSIG = (SG, OPG) is an algebraic signature with unary oper-
ations op : s → s′ in OPG only.

An attributed graph structure signature AGSIG = (GSIG, DSIG) con-
sists of a graph structure signature GSIG and a data signature DSIG =
(SD, OPD) with attribute value sorts S′

D ⊆ SD such that S′
D = SD ∩ SG and

OPD ∩ OPG = ∅.

AGSIG is called well structured if, for each op : s → s′ in OPG, we have
s /∈ SD.

The next steps are to introduce the category AGSIG-Alg of attributed
graph structure signatures and the special case AGSIG(ATG)-Alg, which
allows us to construct an isomorphism with the category AGraphsATG. In
Example 11.4, we construct an explicit attributed graph structure signature
AGSIG(ATG) for the attributed type graph in Example 8.9.

Definition 11.2 (category AGSIG-Alg). Given an attributed graph struc-
ture signature AGSIG = (GSIG, DSIG), the category of all AGSIG-algebras
and AGSIG-homomorphisms is denoted by AGSIG-Alg, where AGSIG-
Alg corresponds to the category Alg(Σ) (see Definition B.9) with

Σ = GSIG ∪ DSIG.
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Theorem 11.3 (isomorphism AGraphsATG
∼
= AGSIG(ATG)-Alg). For

each attributed type graph ATG, there is a well-structured attributed graph
structure signature AGSIG(ATG) such that the category AGraphsATG is
isomorphic to the category AGSIG(ATG)-Alg:
AGraphsATG

∼
= AGSIG(ATG)-Alg.

Proof. For a given attributed type graph ATG, we suppose that SD∩V TG
G = ∅

and SD∩ETG
j = ∅ for all j ∈ {G, NA, EA}. This means that data sorts cannot

be graph node types or the type of any kind of edge. Otherwise, we would
rename them accordingly.

We first construct the corresponding attributed graph structure signature
AGSIG(ATG). Then we find a functor F : AGraphsATG →AGSIG(ATG)-
Alg and an inverse functor F−1: AGSIG(ATG)-Alg → AGraphsATG that
show the isomorphism.

For an attributed type graph ATG = (TG, Z) with a final DSIG-
algebra Z, a type graph TG = (V TG

G , V TG
D , ETG

G , ETG
NA, ETG

EA , (sourceTG
j ,

targetTG
j )j∈{G,NA,EA}) and S′

D ⊆ SD, we define AGSIG(ATG) = (GSIG,

DSIG), where GSIG = (SG, OPG), SG = SV

�

∪ SE , SV = V TG
G

�

∪ V TG
D ,

SE = ETG
G

�

∪ ETG
NA

�

∪ ETG
EA , and OPG =

�

∪e∈SE
OPe, with OPe = {srce, tare}

defined by

• srce : e → v(e) for e ∈ ETG
G with v(e) = sourceTG

G (e) ∈ V TG
G ,

• tare : e → v′(e) for e ∈ ETG
G with v′(e) = targetTG

G (e) ∈ V TG
G ,

• srce, tare for e ∈ ETG
NA and e ∈ ETG

EA are defined analogously.

AGSIG(ATG) is a well-structured attributed graph structure signature,

since we have only unary operations and, from V TG
D =

�

∪s∈S′
D

Zs = S′
D,

V TG
G ∩ SD = ∅ and ETG

j ∩ SD = ∅ for all j ∈ {G, NA, EA}, we have

SD ∩ SG = SD ∩ V TG
D = S′

D and the well-structuredness follows.
The functor F : AGraphsATG → AGSIG(ATG)-Alg is defined, for

objects (AG, t : AG → ATG) with AG = (G, D), tG : G → TG and tD : D →
Z, by F (AG, t) = A, with the following AGSIG(ATG)-algebra A:

• As = t−1
G,Vi

(s) ⊆ Vi for s ∈ V TG
i ⊆ SV , i ∈ {G, D};

• Ae = t−1
G,Ej

(e) ⊆ Ej for e ∈ ETG
j ⊆ SE , j ∈ {G, NA, EA};

• As = t−1
Ds

(s) = Ds for s ∈ SD;

• srcA
e (a) = sourceG(a) for e ∈ ETG

G ⊆ SE , a ∈ t−1
G,EG

(e) = Ae ⊆ EG;

• tarA
e (a) = targetG(a) for e ∈ ETG

G , a ∈ t−1
G,EG

(e) = Ae ⊆ EG;

• analogously for srcA
e (a), tarA

e (a), with e ∈ ETG
j , a ∈ t−1

G,Ej
(e), j ∈

{NA, EA};
• opA = opD for all op ∈ OPD.

For a typed attributed graph morphism f : (AG1, t1) → (AG2, t2), we
have F (f) = h : F (AG1, t1) = A → F (AG2, t2) = B; h is an algebra homo-
morphism defined by
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• hs(a) = fG,Vi
(a) for s ∈ V TG

i ⊆ SV , a ∈ As, i ∈ {G, D},
• he(a) = fG,Ej

(a) for e ∈ ETG
j ⊂ SE , a ∈ Ae, j ∈ {G, NA, EA},

• hs = fD,s for s ∈ SD.

In the other direction, the functor F−1 is defined for an AGSIG(ATG)-
algebra A by F−1(A) = (AG = (G, D), t : AG → ATG), with

• Vi =
�

∪s∈V T G
i

As, Ej =
�

∪e∈ET G
j

Ae for i ∈ {G, D}, j ∈ {G, NA, EA};

• sourcej(a) = srcA
e (a) for e ∈ ETG

j , a ∈ Ae, j ∈ {G, NA, EA};

• targetj(a) = tarA
e (a) for e ∈ ETG

j , a ∈ Ae, j ∈ {G, NA, EA};

• tG,Vi
(a) = s for a ∈ As, s ∈ V TG

i , i ∈ {G, D};
• tG,Ej

(a) = e for a ∈ Ae, e ∈ ETG
j , j ∈ {G, NA, EA};

• D = A|DSIG;
• tD,s(a) = s for a ∈ As, s ∈ SD.

For a homomorphism h : A → B, we define F−1(h) = f : F−1(A) →
F−1(B) by

• fG,Vi
(a) = hs(a) for a ∈ As, s ∈ V TG

i , i ∈ {G, D};
• fG,Ej

(a) = he(a) for a ∈ Ae, e ∈ ETG
j , j ∈ {G, NA, EA};

• fD = h|DSIG.

The constructed morphisms F and F−1 are well defined; they are actually
functors and isomorphisms (as proven in Section C.3). 
�

Example 11.4 (corresponding AGSIG(ATG) and algebra). We present
the corresponding signature AGSIG(ATG) for the the type graph ATG de-
fined in Example 8.9 and the resulting AGSIG(ATG)-algebra for the typed
attributed graph (AG, t).

AGSIG(ATG) = (GSIG, DSIG) for type graph ATG = (TG, Z) has the
same data signature DSIG. GSIG has the following structure:

GSIG : sorts : Method, Parameter, Class,
string, nat, parameterDirectionKind,
param, type, noOfPars, mname, pname, cname,
kind, order

opns : srcparam : param → Method
tarparam : param → Parameter
srctype : type → Parameter
tartype : type → Class
...
srcorder : order → param
tarorder : order → nat

All node and edge types in the type graph correspond to a sort, and for all
edge types we define operation symbols that describe the types of the source
and target.
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The corresponding AGSIG(ATG)-algebra A for AG = (G, D) is defined
as follows:

A : AMethod = {m}
AParameter = {par1, par2, par3}
AClass = {c}
Anat = Dnat

...
Aparam = {mpar1, mpar2, mpar3}
Atype = {par1c, par2c, par3c}

...
Aorder = {order1, order2, order3}
As = Ds for all s ∈ SD

srcA
param : Aparam → AMethod : mpari 	→ m

tarA
param : Aparam → AParameter : mpari 	→ pari

srcA
type : Atype → AParameter : paric 	→ pari

tarA
type : Atype → AClass : paric 	→ c

...
srcA

order : Aorder → Aparam : orderi 	→ mpari

tarA
order : Aorder → Anat : orderi 	→ i

opA = opD for all op ∈ OPD


�

11.2 Definition of Concrete Adhesive HLR Categories

In this section, we consider a fixed attributed graph structure signature
AGSIG = (GSIG, DSIG). We prove that the category AGSIG-Alg over
AGSIG with a distinguished class M (defined in the following) fulfills all
properties of an adhesive HLR category. By Theorem 11.3, AGraphsATG is
also an adhesive HLR category.

Finally, we sketch an alternative way to show that AGraphsATG is an
adhesive HLR category using comma categories.

Definition 11.5 (class M in AGSIG-Alg and AGraphsATG). The class
M in AGSIG-Alg is the class of all algebra homomorphisms f = (fGSIG,
fDSIG), where fGSIG is injective and fDSIG is an isomorphism. The notation
f = (fGSIG, fDSIG) means that fGSIG and fDSIG are the restrictions of
f to GSIG and DSIG, respectively, where the two restrictions coincide on
S′

D = SD ∩ SG.
In AGraphsATG, the morphism class M is the class of all morphisms

f = (fG, fD), where fG is injective and fD is an isomorphism on the data
part (see Definition 8.10).
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Remark 11.6. We use the same notation for the morphism classes M in
AGraphsATG and in AGSIG(ATG)-Alg because they correspond to each
other, owing to the construction of the functors F and F−1 in the proof of
Theorem 11.3.

We prove step by step the properties necessary for an adhesive HLR cat-
egory. First we check the closure properties of M.

Lemma 11.7 (properties of M). The class M in AGSIG-Alg as defined
in Definition 11.5 is closed under isomorphisms, composition, and decompo-
sition.

Proof. An algebra homomorphism is injective or isomorphic if all its compo-
nents are injective or isomorphic, respectively, in Sets. In Sets, the class of
injective morphisms and the class of isomorphic morphisms are closed under
isomorphism, composition and decomposition. Therefore this property holds
for the class M of injective homorphisms with an isomorphic data part. 
�

For the second property, we need to the prove existence and closedness
of pushouts and pullbacks along M-morphisms. This is done with the fol-
lowing lemmas, where we show that pushouts along M-morphisms and pull-
backs can be constructed componentwise in Sets. Note that general pushouts
in AGSIG-Alg exist, but in general cannot be constructed componentwise,
which is essential for the proof of the VK property in Lemma 11.10. On the
other hand, general pullbacks in AGSIG-Alg can be constructed componen-
twise.

Lemma 11.8 (POs in AGSIG-Alg along M-morphisms). For given
morphisms m : A → B ∈ M and f : A → C, there is a pushout (1) in
AGSIG-Alg with n ∈ M:

A B

C D

(1)

m

f

n

g

Moreover, given that (1) is commutative with m ∈ M, then (1) is a pushout
in AGSIG-Alg iff (1) is a componentwise pushout in Sets. Then m ∈ M
implies n ∈ M.

Proof. Part 1. If (1) is commutative, m ∈ M, and (1)s are componentwise
pushouts in Sets, we can show that (1) is a pushout in AGSIG-Alg. Consider
an object X with morphisms k : B → X and l : C → X such that k◦m = l◦f :
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A B

C D

X

(1)

m

f

n

g

l

k

x

Then, for each s ∈ SG ∪ SD, there exists a unique xs : Ds → Xs such that
xs ◦ gs = ks and xs ◦ ns = ls.

We show that x = (xs)s∈SG∪SD
is a homomorphism as follows:

1. op ∈ OPD. For s ∈ SD, ms being an isomorphism implies that ns is an
isomorphism. This gives the compatibility of x with op ∈ OPD, because l
is a homomorphism.

2. op ∈ OPG. Since (1)s is a pushout, ns and gs are jointly surjective.
This means that for every d ∈ DS there is a b ∈ Bs with gs(b) = d
or a c ∈ Cs with ns(c) = d. Then, for op : s → s′ ∈ OPG it
holds that opX(xs(d)) = opX(xs(gs(b))) = opX(ks(b)) = ks′(opB(b)) =
xs′ (gs′(opB(b))) = xs′ (opD(gs(b))) = xs′(opD(d)) or opX(xs(d)) =
opX(xs(ns(c))) = opX(ls(c)) = ls′(opC(c)) = xs′ (ns′(opC(c))) =
xs′(opD(ns(c))) = xs′ (opD(d)).

x is unique, since all its components are unique, and therefore (1) is a pushout
in AGSIG-Alg.

Part 2. Now we construct a pushout object D with morphisms n and g for

given objects and morphisms C
f
← A

m
→ B, with m ∈ M. For all s ∈ SD, let

Ds = Cs, gs = fs ◦m−1
s , and ns = idCs

. For op ∈ OPD, we define opD = opC .
Since ms is an isomorphism and ns is the identity, (1)s is obviously a pushout
in Sets.

For s ∈ SG\SD, let Bs
gs
→ Ds

ns← Cs be the pushout over Cs
fs
← As

ms→ Bs

in Sets, and for op : s → s′ ∈ OPG we define

opD(d) =

⎧⎨⎩ns′ ◦ fs′(opA(a)) : ∃a ∈ As : ns(fs(a)) = d
gs′(opB(b)) : ∃b ∈ Bs\ms(As) : gs(b) = d
ns′(opC(c)) : ∃c ∈ Cs\fs(As) : ns(c) = d

We have to show that these operations are well defined. Since (1)s is a
pushout, exactly one of the cases above applies. In the second or the third case
b or c, respectively, must be unique. In the first case we have the result that ms

being injective implies that ns is injective. For a1, a2 ∈ As with ns(fs(a1)) =
ns(fs(a2)) = d, it holds that fs(a1) = fs(a2). Then ns′ ◦ fs′(opA(a1)) =
ns′(opC(fs(a1))) = ns′(opC(fs(a2))) = ns′ ◦ fs′(opA(a2)) follows.

n = (ns)s∈SG∪SD
is a homomorphism. This is clear for all op ∈ OPD .

Consider an operation op : s → s′ ∈ OPG. Then, for all c ∈ Cs, it holds that
opD(ns(c)) = ns′(opC(c)): if c ∈ Cs\fs(As), then opD(ns(c)) = ns′(opC(c)) by
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definition. Otherwise, c ∈ fs(As). There then exists an a ∈ As with fs(a) = c,

and it holds that opD(ns(c)) = opD(ns(fs(a)))
Def.
= ns′(fs′(opA(a))) =

ns′(opC(fs(a))) = ns′(opC(c)). Obviously, we have n ∈ M. That g =
(gs)s∈SG∪SD

is a homomorphism follows analogously.
Since g ◦ m = n ◦ f and we have componentwise pushouts, it follows by

part 1 that (1) with the constructed D, n, and g is a pushout in AGSIG-Alg.

Part 3. Let (1) be a pushout in AGSIG-Alg with m ∈ M. By the
construction in part 2 and the uniqueness of pushouts up to isomorphism,
it follows directly that n ∈ M and that (1) is a componentwise pushout in
Sets. 
�

Lemma 11.9 (PBs in AGSIG-Alg). Given g : B → D and n : C → D,
then there is a pullback (1) in AGSIG-Alg:

A B

C D

(1)

m

f

n

g

Moreover, given that (1) is commutative, then (1) is a pullback in AGSIG-
Alg iff (1) is a componentwise pullback in Sets. If n ∈ M, then m ∈ M
also.

Proof. Part 1. If (1) is commutative and (1)s are componentwise pullbacks in
Sets, we can show that (1) is a pullback in AGSIG-Alg. Consider an object
X with morphisms k : X → B and l : X → C such that n ◦ l = g ◦ k:

A B

C D

X

(1)

m

f

n

g

l

kx

Then, for each s ∈ SG ∪ SD, there exists a unique xs : Xs → As such that
ms ◦ xs = ks and fs ◦ xs = ls.

We show that x = (xs)s∈SG∪SD
is a homomorphism. For each operation

op : s1...sn → s ∈ OPG ∪ OPD and yi ∈ Xsi
, it holds that

• fs(xs(opX(y1, ..., yn))) = ls(opX(y1, ..., yn)) = opC(ls1(y1), ..., lsn
(yn)) =

opC(fs1(xs1 (y1)), ..., fsn
(xsn

(yn))) = fs(opA(xs1(y1), ..., xsn
(yn))) and

• ms(xs(opX(y1, ..., yn))) = ks(opX(y1, ..., yn)) = opB(ks1(y1), ..., ksn
(yn)) =

opB(ms1(xs1(y1)), ..., msn
(xsn

(yn))) = ms(opA(xs1(y1), ..., xsn
(yn))).
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Since (1)s is a pullback in Sets, ms and fs are jointly injective (see Fact
2.23). This means that if ms(a1) = ms(a2) and fs(a1) = fs(a2), it follows
that a1 = a2. Therefore xs(opX(y1, ..., yn)) = opA(xs1(y1), ..., xsn

(yn)), and x
is a homomorphism.

x is unique, since all its components are unique. Therefore (1) is a pullback
in AGSIG-Alg.

Part 2. Now we construct a pullback object A with morphisms f and m

for given objects and morphisms C
n
→ D

g
← B.

For s ∈ SG ∪ SD, let Bs
ms← As

fs
→ Cs be the pullback over Cs

ns→ Ds
gs
← Bs

in Sets. For op : s1...sn → s ∈ OPG ∪ OPD , we define opA(a1, ..., an) =
a, with opB(ms1(a1), ..., msn

(an)) = ms(a) and opC(fs1(a1), ..., fsn
(an)) =

fs(a). This a exists and is unique, since (1)s is a pullback in Sets.
f = (fs)s∈SG∪SD

and m = (ms)s∈SG∪SD
are homomorphisms by construc-

tion. Since g ◦ m = n ◦ f and we have componentwise pullbacks, it follows by
part 1 that (1), with the constructed object A and morphisms f and m is a
pullback in AGSIG-Alg.

Part 3. Let (1) be a pullback in AGSIG-Alg. By the construction in
part 2 and the uniqueness of pullbacks up to isomorphism, it follows directly
that (1) is a componentwise pullback in Sets.

Part 4. If n ∈ M, we have the result that ns is injective for all s ∈ SG,
and it is an isomorphism for s ∈ SD. Since pullbacks in Sets are closed under
monomorphisms and isomorphisms, it follows that ms is injective for s ∈ SG

and is an isomorphism for s ∈ SD, which means that m ∈ M. 
�

Lemma 11.10 (VK property of POs along M-morphisms). A pushout
in AGSIG-Alg along an M-morphism is a VK square.

Proof. Consider the pushout (1) below with m ∈ M, and the commutative
cube (2), where (1) is in the bottom and the back faces are pullbacks.

Part 1. If the front faces are pullbacks, then the top is a pushout.
Let the front faces be pullbacks. By applying Lemmas 11.8 and 11.9, we can

decompose the cube for every component s ∈ SG ∪ SD such that the bottom
is a pushout with ms ∈ M, and the front and back faces are pullbacks in
Sets. Then (1)s is a VK square in Sets. From the VK square property, we
obtain the top as a componentwise pushout. The fact that m ∈ M and the
back right square is a pullback implies that m′ ∈ M, owing to Lemma 11.9.
By Lemma 11.8, the top of cube (2) is a pushout in AGSIG-Alg.
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A′

B′

A

B

C′

D′

C

D

(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

(1)

m

f

n

g

Part 2. If the top is a pushout, then the front faces are pullbacks.
Let the top be a pushout. The fact that m ∈ M and the back right is a

pullback implies, from Lemma 11.9, that m′ ∈ M. By applying Lemmas 11.8
and 11.9, we can decompose the cube for every component s ∈ SG ∪ SD such
that the bottom and the top are pushouts, ms ∈ M and the back faces are
pullbacks in Sets. Then (1)s is a VK square in Sets. From the VK square
property, we obtain the result that the front faces are componentwise pull-
backs. By Lemma 11.9, the front faces of cube (2) are pullbacks in AGSIG-
Alg. 
�

Theorem 11.11 (AGSIG-Alg and AGraphsATG are adhesive HLR
categories). The categories (AGSIG-Alg, M) and (AGraphsATG, M)
with morphism classes M as defined in Definition 11.5 are adhesive HLR
categories.

Proof. In AGSIG-Alg, M is a class of monomorphisms since monomor-
phisms in AGSIG-Alg are componentwise monomorphisms in Sets, which
means that they are componentwise injective (and isomorphisms are both in-
jective and surjective). The closure properties of M are explicitly proven in
Lemma 11.7.

The existence and closedness of pushouts and pullbacks along M-morph-
isms follow from Lemmas 11.8 and 11.9.

In Lemma 11.10, it is shown that pushouts along M-morphisms are VK
squares.

Therefore (AGSIG-Alg, M) is an adhesive HLR category.
For each attributed type graph ATG there is by Theorem 11.3, a corre-

sponding graph structure signature AGSIG(ATG) such that AGraphsATG

is isomorphic to AGSIG(ATG)-Alg. The morphism classes M in
AGraphsATG and AGSIG(ATG)-Alg are isomorphic. Therefore
(AGraphsATG, M) is also an adhesive HLR category. 
�

Finally, let us sketch an alternative way to show that (AGraphs, M)
and (AGraphsATG, M) are adhesive HLR categories. First we use a comma
category construction to show this for AGraphs, and then we use a slice
category construction for AGraphsATG.

Fact 11.12 (comma category construction for AGraphs). The category
AGraphs is isomorphic to a subcategory ComCat(V1,V2; Id) of the comma
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category ComCat(V1,V2; I) defined below, where I = {1}, which implies that
(AGraphs, M) with M as defined in Definition 8.10 is an adhesive HLR
category.

Construction. Let V1 and V2 be the forgetful functors defined by

• V1 : E-Graphs → Sets with V1(G) = V G
D and V1(fG) = fG,VD

;

• V2 : DSIG-Alg → Sets with V2(D) =
�

∪s∈S′
D

Ds and V2(fD) =
�

∪s∈S′
D

fDs
.

ComCat(V1,V2; Id) is the subcategory of ComCat(V1,V2; I) where I =
{1} and the objects (G, D, op : V1(G) → V2(D)) satisfy V1(G) = V2(D) and
op = id. 
�

Proof. For attributed graphs AG = (G, D), we have, by Definition 8.10,
�

∪s∈S′
D

Ds = V G
D , and for morphisms f = (fG, fD) : AG1 → AG2, we have

commutativity of (1) for all s ∈ S′
D, which is equivalent to commutativity of

(2):

D1
s D2

s

V 1
D V 2

D

(1)

fDs

fG,VD

�

∪s∈S′
D

D1
s

�

∪s∈S′
D

D2
s

V 1
D V 2

D

(2)

�

∪fDs

id

fG,VD

id

Using V1(G) = V2(D), we have V i
D =

�

∪s∈S′
D

Di
s for i = 1, 2, and

(2) expresses exactly the compatibility of the morphisms fG and fD in

ComCat(V1,V2; ID), because V1(fG) = fG,VD
and V2(fD) =

�

∪s∈S′
D

fD1 .
This implies that
AGraphs ∼= ComCat(V1,V2; ID).

Let M1 be the class of injective E-graph morphisms and M2 the class
of DSIG-isomorphisms. Then (E-Graphs, M1) is a functor category over
(Sets, M1) and hence an adhesive HLR category by Theorem 4.15, item
3. Moreover, each category (C, Miso) with the class Miso of all isomor-
phisms is an adhesive HLR category; hence, so is (DSIG-Alg, M2). This
implies, by Theorem 4.15 item 4, that ComCat(V1,V2; I) with I = {1} and
M = (M1×M2)∩MorComCat(V1,V2;I) is an adhesive HLR category, provided
that V1 preserves pushouts along M1-morphisms and V2 preserves pullbacks.
But pushouts in E-graphs are constructed componentwise in Sets; hence V1

preserves pushouts. Also, pullbacks in DSIG-Alg are constructed componen-

twise, and the disjoint union functor
�

∪s∈S′
D

: SetsS′
D → Sets preserves pull-

backs; therefore V2 preserves pullbacks. This implies that ComCat(V1,V2; I)
with I = {1} and M as above, which corresponds to M in AGraphs, is
an adhesive HLR category. Finally, it can be shown that a special choice of
pushouts and pullbacks in E-graphs and DSIG-Alg leads also to pushouts
and pullbacks in the subcategory ComCat(V1,V2; ID), which allows us to
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conclude that (ComCat(V1,V2; ID),M) and hence also (AGraphs, M)
are adhesive HLR categories. 
�

Fact 11.13 (slice category construction for AGraphsATG). The cate-
gory (AGraphsATG, M) is a slice category of (AGraphs, M) with M as
defined in Definition 8.10, and hence it is an adhesive HLR category.

Proof. This is a direct consequence of Theorem 4.15, item 2, and Fact 11.12.

�

11.3 Verification of the Main Results for Typed AGT

Systems

In this section, we give proofs for the results in Chapters 9 and 10 based on
the corresponding results for adhesive HLR categories and systems in Part II.
In Section 11.2, we have shown that the categories (AGSIG-Alg, M) (see
Definition 11.2) and (AGraphsATG,M) are adhesive HLR categories with a
morphism class M as defined in Definition 11.5.

This is already sufficient to prove the Local Church–Rosser and Embedding
Theorems. For the Parallelism Theorem, we need binary coproducts compat-
ible with M in addition. For the construction of the boundary and context
and the Extension Theorem, we also use initial pushouts. Finally, we need an
E ′–M′ pair factorization for the Concurrency Theorem, the completeness of
critical pairs, and the Local Confluence Theorem. We show all these proper-
ties for the category AGSIG-Alg, where in some cases we need to require
that AGSIG is well structured. By Theorem 11.3, the results are also true for
the category AGraphsATG.

Theorem 11.14 (main results for typed AGT systems). Given a typed
attributed graph transformation system GTS = (DSIG, ATG, P ), we have the
following results:

1. Local Church–Rosser Theorem (Theorem 9.14);
2. Parallelism Theorem (Theorem 9.18);
3. Concurrency Theorem (Theorem 9.26);
4. E-related transformations (Fact 9.27);
5. Embedding Theorem (Theorem 10.10);
6. Extension Theorem (Theorem 10.11);
7. completeness of critical pairs (Theorem 10.14);
8. Local Confluence Theorem (Theorem 10.18).

Proof.

1. This follows from Theorems 5.12 and 11.11.
2. This follows from Theorems 5.18 and 11.11 and Lemma 11.15 below.
3. This follows from Theorems 5.23 and 11.11.
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4. This follows from Fact 5.29, Theorem 11.11, and Lemma 11.16 below.
5. This follows from Theorems 6.14 and 11.11.
6. This follows from Theorems 6.16 and 11.11 and Lemma 11.17 below.
7. This follows from Lemma 6.22 and Theorem 11.11.
8. This follows from Theorems 6.28 and 11.11 and Lemma 11.17.


�

It remains to state and prove all the lemmas which are needed in the proof
of Theorem 11.14 above.

Lemma 11.15 (binary coproducts compatible with M). Given a well-
structured attributed graph structure signature AGSIG, then the categories
AGSIG-Alg and AGraphsATG have binary coproducts compatible with M.
This means that f , g ∈ M implies f + g ∈ M.

Proof. By Theorem 11.3, it suffices to show the property for AGSIG-Alg.
Given algebras A and B in (AGSIG-Alg, M) with a well-structured at-
tributed graph structure signature AGSIG, for all sorts s ∈ SG\SD we con-
struct the componentwise coproduct (A + B)s = As + Bs with coproduct
injections ιA,s and ιB,s in Sets. For the data part, we construct the algebra
coproduct (A + B)D = A|DSIG + B|DSIG with coproduct injections ιA,D and
ιB,D.

For the coproduct A + B, we combine these components into the co-
product object A + B = (((A + B)s)s∈SG\SD

, (A + B)D) with morphisms
ιi = ((ιi,s)s∈SG\SD

, ιi,D) for i = A, B. For op : s → s′ ∈ OPG the operation
opA+B is defined by

opA+B : (A + B)s → (A + B)s′ : x 	→{
ιA,s′(opA(y)) : ∃y ∈ As : ιA,s(y) = x
ιB,s′(opB(y)) : ∃y ∈ Bs : ιB,s(y) = x

.

This is well defined, since AGSIG is well structured and therefore it holds

that s ∈ SG\SD and (A + B)s = As

�

∪ Bs. If s′ ∈ SD, we know that As′

�

∪

Bs′ ⊆ (A+B)D,s′ ; otherwise, s′ ∈ SG\SD and we have (A+B)s′ = As′

�

∪ Bs′ .
We have to show that the constructed object A+B is indeed a coproduct.

Consider morphisms f : A → X and g : B → X as in the following diagram.
There then has to be a unique morphism [f, g] : A + B → X such that
[f, g] ◦ ιA = f and [f, g] ◦ ιB = g:

A A + B B

X

f g

ιA ιB

[f,g]
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Since (A+B)D is the coproduct for the data part, there is a morphism [f, g]D :
(A+B)D → X |DSIG with [f, g]D ◦ιA,D = f |DSIG and [f, g]D ◦ιB,D = g|DSIG.
Similarly, we have for each s ∈ SG\SD a morphism [f, g]s : (A + B)s → Xs

such that [f, g]s ◦ ιA,s = fs and [f, g]s ◦ ιB,s = gs.
For the data operations, it is clear that [f, g]D is a homomorphism.

Consider an operation op : s → s′ ∈ OPG. Since s ∈ SG\SD, it holds

that (A + B)s = As

�

∪ Bs. For an x ∈ (A + B)s, suppose without loss
of generality that there is a y ∈ As with ιA,s(y) = x. We then have
the result that [f, g]s′(opA+B(x)) = [f, g]s′(ιA,s′(opA(y))) = fs′(opA(y)) =
opX(fs(y)) = opX([f, g]s(ιA,s(y))) = opX([f, g]s(x)). Therefore [f, g] =
(([f, g]s)s∈SG\SD

, [f, g]D) is a homomorphism.
The result that [f, g] ◦ ιA = f and [f, g] ◦ ιB = g follows by definition,

and [f, g] is unique, since all its components are unique. Therefore [f, g] is the
required morphism, and A + B is the coproduct of A and B in AGSIG-Alg.

It remains to show the compatibility with M. Given f : A → A′ and g :
B → B′ with f, g ∈ M, we construct the coproduct morphism f +g : A+B →
A′+B′. In Sets, binary coproducts are compatible with monomorphisms, and
therefore (f + g)s = [ιA′,s ◦ fs, ιB′,s ◦ gs] is injective for all s ∈ SG\SD.

The coproduct can be considered as a functor and hence preserves isomor-
phisms. Therefore, if f |DSIG and g|DSIG are isomorphisms, (f + g)|DSIG =
[(ιA′ ◦ f)|DSIG, (ιB′ ◦ g)|DSIG] = f |DSIG + g|DSIG is also an isomorphism.

If AGSIG is not well structured, we still have binary coproducts in
AGSIG-Alg, but they may not be compatible with M. 
�

Lemma 11.16 (closure properties of M–M′ and PO–PB decomposi-
tions). Let M′ = M′

1 or M′ = M′
2 in AGraphsATG as given in Example

9.22 or consider the corresponding morphism classes in AGSIG-Alg. We
then have:

1. M′ is closed under pushouts and pullbacks along M-morphisms in
AGSIG-Alg and AGraphsATG.

2. The M–M′ pushout–pullback decomposition property holds in the cate-
gories AGSIG-Alg and AGraphsATG.

3. M′ is closed under composition and decomposition.

Proof. It suffices to prove the lemma for AGSIG-Alg with the class M′
2.

For the class M′
1 = M of all monomorphisms, the lemma follows from the

properties of adhesive HLR categories.

1. Given the pushout (1) below, with m, n ∈ M and f ∈ M′
2, Lemma 11.8

implies that (1) is a componentwise pushout in Sets. In Sets, if fs is
injective, so is gs. This means that gs is injective for all s ∈ SG\SD, and
therefore g ∈ M′

2.
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A

C

B

D

(1)

m

f g

n

It follows analogously, by Lemma 11.9, that if (1) is a pullback with m, n ∈
M and g ∈ M′

2, then f ∈ M′
2 also.

2. Consider the following diagram, where l ∈ M, w ∈ M′
2, (1) + (2) is a

pushout, and (2) is a pullback. It follows that v, s ∈ M and r ∈ M′
2,

since M is closed under pushouts and pullbacks and M′
2 is closed under

pullbacks along M-morphisms.

A B

C D

E

F

(1) (2)

k

l s

u

r

w

v

We have to show that (1) and (2) are pushouts in AGSIG-Alg.
Using Lemmas 11.8 and 11.9, we can split up this diagram componen-

twise and obtain a pushout (1)s + (2)s and a pullback (2)s in Sets for
each s ∈ SG ∪ SD.
a) For s ∈ SD, l is an isomorphism. In Sets, a commmutative square

along an isomorphism is a pushout. Therefore (1)s is a pushout.
b) For s ∈ SG\SD, we have the fact that l, s, v, w, and r are injective.

Since Sets is an adhesive HLR category, we can conclude from The-
orem 4.26 that (1)s is a pushout in Sets.

By Lemma 11.8, (1) is a pushout in AGSIG-Alg. By pushout decompo-
sition, (2) is also a pushout.

3. By the definition of M′ = M′
2, we have the result that f : A → B ∈ M′,

and g : B → C ∈ M′ implies g◦f ∈ M′ and g◦f, g ∈ M′ implies f ∈ M′,
since injectivity is preserved componentwise.


�

Lemma 11.17 (initial POs in AGSIG-Alg). The categories (AGSIG-
Alg, M), where AGSIG and (AGraphsATG, M) are well structured, have
initial pushouts over general morphisms.

Construction. By Theorem 11.3, it suffices to show the construction and
property for (AGSIG-Alg, M). For an explicit construction in
(AGraphsATG, M), see Definition 10.5 and Fact 10.7.

Consider a well-structured AGSIG, which means that for all op : s′ → s
in OPG we have s′ /∈ SD. Given f : A → A′, the initial pushout over f is
constructed by the following diagram:
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B

C

A

A′

(1)

b

g f

c

Here, the objects B, and C and the morphisms b, c, and g are defined as
follows:

• B = ∩{B′ ⊆ A | B′
DSIG = ADSIG and A∗

s ⊆ B′
s for all s ∈ SG\SD} with

A∗
s = {a ∈ As | ∃op : s′ → s ∈ OPG ∃a′ ∈ A′

s′\fs′(As′) : fs(a) = opA′(a′)}
∪ {a ∈ As | ∃a′ ∈ As, a �= a′ : fs(a) = fs(a

′)},

• Cs =

{
A′

s : s ∈ SD

A′
s\fs(As) ∪ fs(Bs) : s ∈ SG\SD

,

opC =

{
opA′ : op ∈ OPD

opA′ |Cs
: op : s → s′ ∈ OPG

,

• b : B → A, c : C → A′ are inclusions with identical data type parts and
hence b, c ∈ M. g : B → C is defined by gs = fs|Bs

for all s ∈ SG ∪ SD.

Initial pushouts are closed under double pushouts (see Lemma 6.5).

Proof. It can be shown that this construction is well defined and is indeed an
initial pushout over f (see the proof in Section C.4). 
�
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Constraints, Application Conditions and

Termination for Typed AGT Systems

In this chapter we make a first attempt to extend the theory of typed at-
tributed graph transformation (AGT) systems by considering various kinds
of execution control for AGT systems, such as graph constraints, applica-
tion conditions, and application layers for productions, and also termination
criteria.

In Section 12.1, we present the basic concepts of constraints and applica-
tion conditions for typed AGT systems. The corresponding idea in the classical
case of graphs was introduced in Section 3.4 and considered in the framework
of adhesive HLR systems in Chapter 7. We instantiate the main results of
Chapter 7 concerning equivalence of constraints and application conditions
in Section 12.2. Finally, we present termination criteria for layered graph
grammars based on typed AGT systems in Section 12.3; these criteria were
introduced for the graph case in Section 3.4.

12.1 Constraints and Application Conditions for Typed

AGT Systems

In this section, we extend graph constraints and application conditions from
the case of classical graphs considered in Section 3.4 to typed attributed
graphs, where the injective graph morphisms in Section 3.4 are replaced by a
morphism class M′ in AGraphsATG, which has to be closed under composi-
tion and decomposition. In particular, we can take M′ as the class of all typed
attributed graph morphisms, i.e. M′ = M (see Definition 11.5), M′ = M′

1,
or M′ = M′

2 (see Example 9.22), where f ∈ M′
1 means that f is injective

and f ∈ M′
2 means that f is injective on graph nodes and all kinds of edges.

General Assumptions for Section 12.1

We consider the adhesive HLR category (AGraphsATG, M) of typed at-
tributed graphs with an additional class M′ of morphisms in AGraphsATG,
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which is closed under composition and decomposition (see the general assump-
tion 3 for Chapter 7). Graphs and graph morphisms are now – unlike the case
in Section 3.4 – objects and morphisms in AGraphsATG.

First of all, we introduce graph constraints for AGraphsATG, in analogy to
Definition 3.39 in Part I and Definition 7.2 in Part II.

Definition 12.1 (graph constraint for AGraphsATG). An atomic graph
constraint for AGraphsATG is of the form PC(a), where a : P → C is a
morphism in AGraphsATG.

A graph constraint for AGraphsATG is a Boolean formula over atomic
graph constraints. This means that true and every atomic graph constraint
for AGraphsATG is a graph constraint for AGraphsATG, and given graph
constraints c and ci for AGraphsATG with i ∈ I for some index set I, ¬c,
∧i∈Ici, and ∨i∈Ici are graph constraints for AGraphsATG:

P C

G

=

a

p q

A graph G in AGraphsATG satisfies a graph constraint c, written G |= c, if

• c = true;
• c = PC(a) and, for every graph morphism p : P → G in M′, there exists

a graph morphism q : C → G in M′ such that q ◦ a = p;
• c = ¬c′, and G does not satisfy c′;
• c = ∧i∈Ici, and G satisfies all ci with i ∈ I;
• c = ∨i∈Ici, and G satisfies some ci with i ∈ I.

Two graph constraints c and c′ are equivalent, denoted by c ≡ c′, if for all
graphs G, G |= c if and only if G |= c′.

The constraint ¬true is abbreviated as false.

Example 12.2 (graph constraint for AGraphsATG). We extend the
graphs based on the type graph ATG in Example 8.9 by the following graph
constraints PC(a1) and PC(a2):

:Method
:Method

mname=m

noOfPars=n

a1

:Class :Class

cname=ptype
a2
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A graph G satisfies the first graph constraint, if every graph node of type
Method has attributes of type mname and noOfPars. Analogously, the sec-
ond graph constraint is fulfilled if each Class node has an attribute cname.

On the basis of the following graph constraint PC(a), we shall analyze the
effects of the various choices of the class M′. ∅ represents the initial graph,
which means the graph that has the term algebra as its data part, but no
graph nodes or any kinds of edges. The graph C looks strange at first sight
because of the double attribute mname, but remember that we allow multiple
attributes of the same type in the general theory. This means that we have
two node attribute edges of type mname in C, one connecting the Method
node to the data node m and one connecting it to the data node p. Note that
the data part of the morphism a is the inclusion of the term algebra TDSIG

to the term algebra with variables TDSIG(X), which is the data part of C:

∅
:Method

mname=m
mname=p

a

C

In the following, we discuss four different choices of the class M′:

1. In the case where M′ = M′
1 is the class of all monomorphisms, the mor-

phism ∅ → G is in general not in M′, because the evaluation of terms is
not necessarily injective. This means that a graph G satisfies PC(a) if the
evaluation of the term algebra TDSIG into the data part DG of G is not
injective. If ∅ → G is injective, and there is also an injective morphism
q : TDSIG(X) → DG, then G satisfies PC(a) if there is a method with two
different names, i.e. two node attribute edges mname linking the same
method to different data nodes.

2. In the case M′ = M′
2, a graph G satisfies the constraint PC(a) if G has

a method with two node attribute edges mname, which may link to the
same data node, because we allow non injectivity for the data part in M′.

3. If M′ is the class of all morphisms, G satisfies PC(a) if it contains a
method with a name, because both data nodes m and m′, as well as the
node attribute edges, may be mapped together.

4. In the case M′ = M, each graph G whose data part is not isomorphic to
the term algebra satisfies the graph constraint, because we do not find a
morphism ∅ → G ∈ M. A graph G′ whose data type is isomorphic to the
term algebra does not satisfy PC(a), because ∅ → G′ is an M-morphism,
but we do not find a morphism q : C → G′ ∈ M since the data parts are
not isomorphic.


�

Remark 12.3. Similarly to Chapter 7, we can also consider negative atomic
constraints of the form NC(a), with a : P → C as above. G satisfies NC(a)
if, for every morphism p : P → G in M′, there does not exist a morphism
q : C → G in M′ with q ◦ a = p.
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From Fact 7.5, we can conclude, in the case where M′ = M′
2 or where

M′ is the class of all morphisms, that negative atomic constraints do not give
more expressive power. In fact, we have NC(P

a
→ C) ≡ ¬PC(∅ → C) for

the initial graph ∅ in AGraphsATG if a ∈ M′, and NC(P
a
→ C) ≡ true

otherwise.

Now we shall introduce application conditions for AGraphsATG in anal-
ogy to Definition 3.50 in Part I and Definition 7.6 in Part II. In the following,
L can be seen as the left-hand side of a production and m : L → G as a
match. Similarily, L and m can be replaced by R and a comatch n : R → H .

Definition 12.4 (application condition for AGraphsATG). An atomic
application condition for AGraphsATG over a graph L in AGraphsATG is
of the form P(x,∨i∈Ixi), where x : L → X and xi : X → Ci with i ∈ I (for
some index set I) are graph morphisms in AGraphsATG.

An application condition for AGraphsATG over L is a Boolean formula
over atomic application conditions for AGraphsATG over L. This means
that true and every atomic application condition for AGraphsATG is an
application condition for AGraphsATG and, for application conditions acc
and acci for AGraphsATG with i ∈ I, ¬acc, ∧i∈Iacci, and ∨i∈Iacci are
application conditions for AGraphsATG:

L X

G

Ci

= =

x

m p

xi

qi

A graph morphism m : L → G in AGraphsATG satisfies an application
condition acc, written m |= acc, if

• acc = true;
• acc = P (x,∨i∈Ixi) and, for all graph morphisms p : X → G ∈ M′ with

p ◦ x = m, there exist an i ∈ I and a graph morphism qi : Ci → G ∈ M′′

such that qi ◦ xi = p;
• acc = ¬acc′, and m does not satisfy acc′;
• acc = ∧i∈Iacci, and m satisfies all acci with i ∈ I;
• acc = ∨i∈Iacci, and m satisfies some acci with i ∈ I.

Two application conditions acc and acc′ over a graph L in AGraphsATG

are equivalent, denoted by acc ≡ acc′, if for all graph morphisms m, m |= acc
if and only if m |= acc′.

The application condition ¬true is abbreviated as false.
An application condition A(p) = (AL, AR) for a production p = (L ←

K → R) consists of a left application condition AL over L and a right appli-

cation condition AR over R. A direct transformation G
p,m
=⇒ H with a comatch

n satisfies an application condition A(p) = (AL, AR) if m |= AL and n |= AR.
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A special kind of atomic application condition with an empty index set I
is the negative application condition NAC(x). In fact, this kind of negative
application condition is most important for modeling and metamodeling using
typed AGT systems, especially to show termination (see Section 12.3).

Definition 12.5 (negative application condition NAC for
AGraphsATG). A simple negative application condition NAC for
AGraphsATG is of the form NAC(x), where x : L → X is a morphism
in AGraphsATG. A (match) morphism m : L → G satisfies NAC(x) if there
does not exist a morphism p : X → G in M′ with p ◦ x = m:

L X

G

= |

x

m p

Example 12.6 (negative application condition). We express negative
application conditions here for some of the productions in Example 9.6.

The following negative application condition for the production addClass
makes sure that we do not add a new class with the same name as an existing
one; here x1 ∈ M, which means that the data part is preserved. Note that
this interpretation is only valid for the choice M′ = M′

2 or where M′ is the
class of all morphisms.

addClass :
:Class

cname=ptype
∅

:Class

cname=ptype
=⇒x1

L RX1

Analogously, the following negative application condition for the produc-
tion
addParameter guarantees that each method has at most one return param-
eter. In this case the morphism x2 : L → X2 is not an M-morphism, but
instead maps the data node p in L to the data node p, and maps k to return
in X2. This means that if we apply this production to a graph G via a match
m and insert a parameter whose kind is not return, there is no morphism
q : X2 → G such that q ◦ x2 = m. Otherwise, the existence of a parameter of
kind return prevents the production being applied.
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addParameter :

1:Method

noOfPars=n

2:Class

:Parameter

kind=return

:param 1:Method

noOfPars=n

2:Class

1:Method

noOfPars=n+1

2:Class

:Parameter

pname=p

kind=k

:param

order=n+1

:type

=⇒x2

L
RX2


�

Remark 12.7 (negative application condition). A negative atomic ap-
plication condition for AGraphsATG is of the form N(x,∧i∈Ixi), where
x : L → X and xi : X → Ci are morphisms in AGraphsATG. Satisfaction
is defined as in Definition 7.8. According to Fact 7.9, negative application
conditions do not give more expressive power, because they are equivalent to
application conditions for AGraphsATG:

NAC(x) ≡ P(x, e) and N(x,∧i∈Ixi) ≡ ∧i∈I′NAC(xi ◦ x)

where e is an expression with an empty index set and I ′ = {i ∈ I | xi ∈ M′}.

12.2 Equivalence of Constraints and Application

Conditions

In this section, we show two main results. The construction of (right) applica-
tion conditions from graph constraints, and the construction of left from right
application conditions for AGraphsATG. The results are obtained as instan-
tiations of the corresponding results for adhesive HLR systems in Sections 7.2
and 7.3, respectively. In addition to the general assumptions for Section 12.1,
we have to satisfy the following general assumptions for Chapter 7:

1. AGraphsATG has binary coproducts (see Theorem 11.3 and Lemma
11.15).

2. AGraphsATG has a weak epi–M′ factorization (see Definition A.15).
3. The additional class M′ must be closed under composition and decom-

position, and under pushouts and pullbacks along M-morphisms, and we
need the M–M′ PO–PB decomposition property (see Definition 5.27) in
AGraphsATG.
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This means that we cannot take M′ = M, because we have no epi–M
factorization for all morphisms f in AGraphsATG, but only such a factor-
ization for f with a surjective data type part. However, all the conditions
above are satisfied if we take M′ = M′

1 or M′ = M′
2, where M′

1 is the class
of injective morphisms in AGraphsATG and f ∈ M′

2 is injective for graph
nodes and all kinds of edges (see Example 9.22). In fact, we have an epi–M′

1

and a weak epi–M′
2 factorization in AGraphsATG. The other properties for

M′
1 and M′

2 are shown in Lemma 11.16.
According to the general assumptions for Section 7.2, we do not need the

M–M′ PO–PB decomposition property for Theorem 7.13, which corresponds
to Theorem 12.8 in our context. This means that Theorem 12.8 is also valid
for the class M′ of all morphisms in AGraphsATG. For simplicity, however,
we require M′ = M′

1 or M′ = M′
2 in the general assumptions for this section.

General Assumptions for Section 12.2

We consider the adhesive HLR category (AGraphsATG, M) with an addi-
tional class M′ = M′

1 or M′ = M′
2 (see above) and a graph transformation

system GTS with a production p (see Definition 9.4). Graphs and graph mor-
phisms are again objects and morphisms in AGraphsATG.

First, we construct, as an instantiation of Definition 7.11 for each atomic
constraint PC(a) with a : P → C ∈ M, an equivalent application condition.

Concerning the underlying ideas and the terminology, we refer to the in-
troduction to Section 7.2 in Part II.

Definition 12.8 (construction of application conditions from graph
constraints in AGraphsATG). For atomic graph constraints PC(a) with a
morphism a : P → C ∈ M and a graph R in AGraphsATG, we define

Acc(PC(a)) = ∧SP(R
s
→S,∨i∈IS

ti◦t
→ Ti),

where P(R
s
→S,∨i∈IS

ti◦t
→ Ti) is an atomic application condition over R in

AGraphsATG (see Definition 12.4), and I depends on S:

R

P

S

C

T Ti

(1)

s t

p

a

q

ti

• The conjunction ∧S ranges over all “gluings” S of R and P , or, more
precisely, over all triples 〈S, s, p〉 with arbitrary s : R → S and p : P → S
in M′ such that the pair (s, p) is jointly surjective. For each such triple
〈S, s, p〉 we construct the pushout (1) of p and a in AGraphsATG, leading
to t : S → T in M and q : C → T .
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• For each S, the disjunction ∨i∈I ranges over all S
ti◦t
→ Ti with epimorphisms

ti such that ti ◦ t and ti ◦ q are in M′. For I = ∅, we have Acc(PC(a)) =

∧SNAC(R
s
→S).

The construction can be extended to Boolean formulas over atomic con-
straints in AGraphsATG: Acc(true) = true and, for constraints c, cj in
AGraphsATG with j ∈ J , Acc(¬c) = ¬Acc(c), Acc(∧j∈J cj) = ∧j∈JAcc(cj),
and Acc(∨j∈J cj) = ∨j∈JAcc(cj).

Note that the pushout (1) of p and a exists in AGraphsATG, because we
have a ∈ M. Now we are able to show the first main result as an instantiation
of Theorem 7.13.

Theorem 12.9 (construction of application conditions from graph
constraints in AGraphsATG). For every graph constraint c for
AGraphsATG, where c is built up from atomic constraints PC(a) with
a ∈ M, and every graph R and morphism n : R → H, we have

n |= Acc(c) ⇔ H |= c.

Proof. This follows directly from Theorem 7.13 and the general assumptions
for this section. 
�

Example 12.10 (construction of application conditions from graph
constraints in AGraphsATG). We follow the construction of application
conditions from constraints for the production addParameter and the graph
constraint ¬PC(a : P → C), which forbids a method to have two parameters
of kind return:

1:Method

1:Method 2:Parameter

kind=return

3:Parameter

kind=return

:param

:param
a

P C

First we have to compute all gluings S of R and P with morphisms s :
R → S and p : P → S ∈ M′ such that s and p are jointly surjective, where R
is the right-hand side of the production addParameter. For the graph part,
this means that there are only two possible gluings: both Method nodes can
be mapped together or not. This leads to the graph gluings S1 in Fig. 12.1,
and S2 (not shown). On the data part, the gluing depends on the choice of
M′. The data parts of R and P are the same, namely the term algebra with
variables TDSIG(X). In the case where M′ = M′

1, this means that we can
glue together two copies of TDSIG(X) as long as p is injective. For M′ = M′

2,
an arbitrary gluing is allowed. For simplicity, we have shown only the graph
part, but one should keep in mind that each graph represents all possible
gluings of the data part.
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Now we construct the pushout over a and p1, and obtain the epimorphisms
t11, t12, and t13, which fulfill the required properties on the graph part. This

leads to one component acc1 = P (R
s
→ S1,∨i=1,..,5 S1

t1i◦t
→ T1i) of the con-

junction ∧S , which is shown in part in Fig. 12.1. The remaining objects T14

and T15 are similar to T12 and T13 but the Parameter node 6 has two at-
tributes of type kind, one with the value k and one with the value return.

An analogous construction for the second gluing S2 leads to an applica-

tion condition acc2 = P (R
s
→ S2,∨i=1,...,5S2

t2i◦t
→ T2i) that consists of five

disjunctions; we shall not analyze it explicitly. Since the original constraint
was a negation, the resulting right application condition is also negated and
we have Acc(¬PC(a : P → C)) = ¬(acc1 ∧ acc2).

If we choose M′ = M′
1, ti ◦ t and ti ◦ q have to be monomorphisms, i.e.

injective. This is only the case if S, T , and Ti have the same data part, which
is preserved by the morphisms. Therefore, in the first construction the objects
T12 and T13 do not fulfill the required properties, because the variable k and
the value return are mapped together. For M′ = M′

2, the data parts of these
morphisms may be arbitrary, and therefore there are also different choices of
the data part for each Ti in addition to those for S.


�

As the second main result, we show that for each right application condi-
tion we can construct an equivalent left application condition in AGraphsATG

(see Definition 7.16 and Theorem 7.17 for the general framework).

Definition 12.11 (construction of left from right application condi-
tion in AGraphsATG). For each right atomic application condition acc =

P(R
x
→X,∨i∈IX

xi→Ci) of a production p = 〈L ← K → R〉, let

Lp(acc) = P(L
y
→Y,∨i∈I′Y

yi
→Di) with I ′ ⊆ I or Lp(acc) = true,

where y, yi and I ′ are constructed as follows:

L K R

Y Z X

Di Zi Ci

l r

l∗ r∗

y x

yi zi xi

(2) (1)

(4) (3)

• If the pair 〈K
r
→R, R

x
→X〉 has a pushout complement in AGraphsATG,

define y : L → Y by the two pushouts (1) and (2); otherwise, Lp(acc) =
true.
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Fig. 12.1. Construction of application condition for the gluing S1



12.2 Equivalence of Constraints and Application Conditions 247

• For each i ∈ I, if the pair 〈Z
r∗

→X, X
xi→Ci〉 has a pushout complement in

AGraphsATG, then i ∈ I ′, and yi : Y → Di is defined by the two pushouts
(3) and (4); otherwise, i /∈ I ′.

Since pushout complements of M-morphisms (if they exist) are unique
up to isomorphism (see Theorem 4.26), the construction of a left application
condition is also unique up to isomorphism.

The transformation can be extended to arbitrary right application con-
ditions as follows: Lp(true) = true, Lp(¬acc) = ¬Lp(acc), Lp(∧i∈Iacci) =
∧i∈ILp(acci), and Lp(∨i∈Iacci) = ∨i∈ILp(acci).

Theorem 12.12 (construction of left from right application condi-
tions in AGraphsATG). For every production p of a typed attributed graph
transformation system and for every right application condition acc for p in
AGraphsATG, Lp(acc) as defined in Definition 12.11 is a left application
condition for p in AGraphsATG, with the property that, for all direct trans-

formations G
p,m
=⇒ H with a comatch n,

m |= Lp(acc) ⇐⇒ n |= acc.

Proof. This follows directly from Theorem 7.17 and the general assumptions
for this section. 
�

Example 12.13 (construction of left from right application condi-
tions in AGraphsATG). Here, we construct a left application condition
from the right application condition that we constructed in Example 12.10.

The first part of the conjunction ∧S is the application condition P (R
s
→

S1,∨i=1,..,5 S1
t1i◦t
→ T1i). The graph parts of R and S1 are equal, and since

the data parts of K and R are equal too, the pushout complement Z exists.
Z consists of the graph part of K and the data part of S. Similarly, we can
now construct the pushout object Y , which has the same data part, but its
graph part is equal to L.

Now we have to analyze the disjunction ∨i=1,..,5. For T14 and T15 there
does not exist the pushout complement (3), because in T14 and T15 we add
a node attribute edge of type kind to the Parameter node 6 in S1 which is
not in the interface Z. For T12 and T13, the results are isomorphic and are
shown in the following diagram, where we depict only the pushouts (3) and
(4). Note that in the data parts of t12, z12, and y12 the variable k is mapped
to the value return:
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4:Method

noOfPars=n

5:Class

4:Method

5:Class

4:Method

noOfPars=n+1

5:Class

6:Parameter

pname=p

kind=k

:param

order=n+1

:type

4:Method

noOfPars=n

5:Class

3:Parameter

kind=return

:param

4:Method

5:Class

3:Parameter

kind=return

:param
4:Method

noOfPars=n+1

5:Class

6:Parameter

pname=p

kind=return

:param

order=n+1

:type

3:Parameter

kind=return

:param

l∗ r∗

y12 z12

t12◦t

(4) (3)

Y Z S1

T12Z12D12

The analogous result for T11 is shown in the following, where the data
parts of D11, Z11, and T11 are the same, and we show only the bottom line of
the pushouts (3) and (4):
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4:Method

noOfPars=n

5:Class

2:Parameter

kind=return

3:Parameter

kind=return

:param

:param

4:Method

5:Class

2:Parameter

kind=return

3:Parameter

kind=return

:param

:param

4:Method

noOfPars=n+1

5:Class

6:Parameter

pname=p

kind=k

:param

order=n+1

:type

2:Parameter

kind=return

3:Parameter

kind=return

:param :param

T11

Z11D11

For the second part of the conjunction, concerning the gluing S2, we have
a very similar construction. Since the original right application condition is
negated, we also have to negate the resulting left application condition.

Note that the part of the application condition constructed from T12 is very
similar to the one that we presented in Example 12.6 for the same problem: it
prohibits the addition of a second return parameter. The other parts of the
left application condition Lp(¬(acc1 ∧ acc2)) only make sure that the graph
G does not already contain a method that violates this constraint. 
�

Remark 12.14 (guaranteeing and preservation of constraints). Sim-
ilarly to the general theory in Chapter 7, we can define the guaranteeing
and preservation of constraints (see Definition 7.22) and show that for every
constraint c in AGraphsATG (built up from atomic constraints PC(a) with
a ∈ M) and every production p, there are left application conditions A(c) and
A′(c) for p in AGraphsATG such that the extended production (p, A(c)) is
c-guaranteeing and (p, A′(c)) is c-preserving (see Theorem 7.23).

12.3 Termination Criteria for Layered Typed Attributed

Graph Grammars

In this section, we introduce and prove termination criteria for typed AGT
systems, as presented in [EEdL+05]; these criteria were introduced for the
graph case in Section 3.4. For proving termination, the productions are dis-
tributed among different layers, and the productions in one layer are applied
for as long as possible before going on to the next layer. The termination
criteria for deletion layers are not specific to the algebraic approach. They are
also applicable to all other kinds of graph grammars based on typed graphs.
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However, the termination of layers consisting only of non deleting productions
relies on negative application conditions, as presented in Definition 12.5.

We have the following general assumptions for this section.

General Assumptions for Section 12.3

We consider typed attributed graph grammars based on the adhesive HLR
category (AGraphsATG, M). In addition to the class M (see Definition
8.10), we consider a class M′ of morphisms which includes M, i.e. M ⊆ M′,
and is closed under composition and pushouts along M-morphisms. This is
required for all nondeleting layers, i.e. productions in these layers are non-
deleting and can hence be represented by a morphism r : L → R ∈ M. In
these layers, productions have negative application conditions (NACs) and we
allow only transformations where all match morphisms m : L → G are in M′.
The assumptions about M′ are valid in particular for M′ = M, M′ = M′

1,
or M′ = M′

2 as considered in Example 9.22. For the deleting layers, i.e.
where productions in these layers delete at least one item, we have no restric-
tions concerning productions and matches. In fact, we could use any kind of
graph transformation or high-level replacement system where at least one of
the items in the left- and right-hand sides of the productions is typed by a
set of types TY PE in the traditional way or by a subset of types for typed
attributed graphs.

First, we define layered graph grammars with deletion and nondeletion layers
in analogy to the graph case considered in Theorem 3.37. Informally, the
deletion layer conditions express the condition that the last creation of a node
with a certain type should precede the first deletion of a node with the same
type. On the other hand, the nondeletion layer conditions ensure that if an
element of type t occurs in the left-hand side (LHS) of a production then all
elements of the same type have already been created in previous layers.

Definition 12.15 (layered typed attributed graph grammar). A typed
attributed graph grammar GG = (DSIG, ATG, P, G0) with an attributed type
graph ATG, a set of productions P , and a start graph G0 is called a layered
typed attributed graph grammar if:

1. P is layered, i.e. for each p ∈ P there is a production layer pl(p) with
0 ≤ pl(p) ≤ k0 (pl(p), k0 ∈ N), where k0 + 1 is the number of layers in
GG, and each production p ∈ P has a set NACp of negative application
conditions NAC(n : L → N) (see Definition 12.5), or n ∈ NACp for
short.

2. The type set TY PE of GG is given by the graph nodes, graph edges, node
attributes, and edge attributes of the type graph ATG = (TG, Z), i.e. all
items of TG except the data nodes, where Z is the final DSIG-algebra.
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3. GG is finitary, i.e. G0 and all graphs G derivable in layer k with produc-
tions Pk = {p ∈ P | pl(p) = k} for 0 ≤ k ≤ k0 are finitary, which means
that card{x ∈ G | type(x) ∈ TY PE} is finite, and for each nondeletion
layer k and p ∈ Pk with left-hand side L, there is only a finite number of
matches m : L → G with m |= NACp.

4. For each type t ∈ TY PE, there is a creation layer cl(t) ∈ N, and a
deletion layer dl(t) ∈ N, and each production layer k is either a deletion
layer or a nondeletion layer, satisfying the following conditions for all
p ∈ Pk:

If k is a deletion layer: If k is a nondeletion layer:
deletion layer conditions nondeletion layer conditions

1. p deletes at least one item x 1. p is nondeleting, i.e. K = L
with type(x) ∈ TY PE such that p is given

2. 0 ≤ cl(t) ≤ dl(t) ≤ k0 by r : L → R ∈ M
for all t ∈ TY PE 2. p has n ∈ NACp with n : L → N

3. p deletes t ⇒ dl(t) ≤ pl(p) and there is an n′ : N → R ∈ M′

4. p creates t ⇒ cl(t) > pl(p) with n′ ◦ n = r
3. x ∈ L with type(x) ∈ TY PE
⇒ cl(type(x)) ≤ pl(p)

4. p creates t ⇒ cl(t) > pl(p)

Remark 12.16.

1. Note that in the layer conditions above, the notation “p deletes (or creates)
t” means that for productions p = (L ← K → R, NACp) there is an item
x in L (or x in R, respectively) with type(x) = t ∈ TY PE, which is
deleted (or created) by p. In addition, x ∈ L means that x is an item of
L with type(x) ∈ TY PE, i.e. a graph node, graph edge, node attribute,
or edge attribute.

2. The deletion layer conditions 2–4 imply that a type t ∈ TY PE cannot
be created by some production p and deleted by some p′ in the same
layer k, because this would imply cl(t) > pl(p) = k = pl(p′) ≥ dl(t), in
contradiction to cl(t) ≤ dl(t).

3. If GG is finite, i.e. DSIG, ATG, P , each p ∈ P , and G0 are finite, then
GG is finitary. In general, however, the term algebra TDSIG(X) of the
productions and the algebra A of G0 will not be finite. In this case we
have to restrict the number of matches m : L → G with n |= NACp to
being finite in order to achieve termination. If X and the algebra A are
finite, or at least all domains As are finite for all s ∈ S with Xs �= ∅, then
we have only a finite number of homomorphisms h : TDSIG(X) → A.
If in addition all graph nodes, graph edges, node attributes, and edge
attributes of G0 and all graphs within the productions are finite, then GG
is finitary. An example which violates the condition of being finitary, and
is in fact a non-terminating GG, is given below; however, it satisfies the
nondeletion layer conditions above.
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Example 12.17 (non-terminating typed attributed graph grammar).
We consider a graph grammar GG = (DSIG, ATG, P, G0), where

• DSIG = NAT (see Example B.3);
• ATG = (TG, Z) with V TG

G = {v}, ETG
G = ∅, ETG

NA = {a}, and ETG
EA = ∅;

• P = {p}, attributed over TDSIG(X) and the variables X = {x}, where p

is the nondeleting production p = (L
r
→ R, NACp = {n : L → N}) shown

in Fig. 12.2, with a data-type-preserving morphism n;
• G0 = (G, NAT ), where G consists of one graph node only.

Note that L contains terms with variables as data nodes; however, in general,
we only show explicitly those nodes which are the target of a node or edge
attribute edge. As an exception, we have shown the data node with the vari-
able x (by a dashed circle) in L in Fig. 12.2, to make it clear that this node
is not only in N and R, but also in L.

N L R

n r
p:

x

v

a

v

x

v

a

x

Fig. 12.2. Counterexample production

We then have the infinite transformation sequence shown in Fig. 12.3,
where the match mk in step k for (k ≥ 0) is given by mk(x) = k ∈ N.

G0

v v

a0
(p,m  )

0

v

a1

0 1

a

v

a(p,m  )

0 1

a2
(p,m  )

...
2

a

Fig. 12.3. Counterexample transformation sequence

Note that GG is almost a layered graph transformation system in the sense
of Definition 12.15 (k0 = 0, pl(p) = 0, TY PE = {v, a}, cl(v) = 0, dl(v) =
0, cl(a) = 1, dl(a) = 0), but it is not finitary and is non-terminating, owing to
an infinite number of matches m : L → G0. 
�

The assignment of the creation and deletion layers for the types t ∈ TY PE
is not fixed in Definition 12.15 above, but in several applications the following
automatic assignment is useful; it leads to the reduced layer conditions in
Lemma 12.19, which are sufficient to show termination.
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Definition 12.18 (layer assignments). Given a layered typed attributed
graph grammar GG with a start graph G0 and start types T0 ⊆ TY PE,
i.e. each typed item x in G0 has type(x) ∈ T0, then we can define for each
t ∈ TY PE the creation and deletion layers as follows:

cl(t) = if t ∈ T0 then 0 else max{pl(p) | p creates t} + 1,
dl(t) = if t is deleted by some p then min{pl(p)|p deletes t} else k0+1.

Lemma 12.19 (reduced conditions for layer assignment). Consider a
layered typed attributed graph grammar GG with the layer assignment of Def-
inition 12.18 such that the following general layer conditions are satisfied:

1. p creates t ⇒ t /∈ T0.
2. 0 ≤ cl(t) ≤ dl(t) ≤ k0 + 1 for all t ∈ TY PE.

The following reduced deletion and nondeletion layer conditions then imply
the deletion and nondeletion layer conditions given in Definition 12.15:

Reduced deletion layer conditions Reduced nondeletion layer conditions
1. p deletes at least 1. p is nondeleting with

one item x with r : L → R ∈ M
type(x) ∈ TY PE 2. p has NAC n : L → N with

n′ : N → R ∈ M′ and n′ ◦ n = r
3. x ∈ L with type(x) ∈ TY PE
⇒ cl(type(x)) ≤ pl(p)

Proof. It remains to show the deletion layer conditions 3 and 4 and the non-
deletion layer condition 4.

Deletion layer condition 3: p deletes t ⇒ dl(t) ≤ pl(p), by the definition of
dl(t).

Deletion and nondeletion layer conditions 4: p creates t ⇒ cl(t) > pl(p),
by the definition of cl(t). 
�

Remark 12.20. Note that, in order to show termination, in addition to en-
suring that the reduced layer conditions are satisfied, we also have to make
sure that GG is finitary. This means that, in particular, for each p ∈ Pk for a
nondeletion layer k, there is only a finite number of matches m : L → G (see
Definition 12.15, item 3).

The termination of a layered graph grammar expresses the condition that
no infinite derivation sequences exist starting from the start graph if produc-
tions are applied within layers as long as possible.

Definition 12.21 (termination of layered typed attributed graph
grammars). A layered typed attributed graph grammar as given in Defini-
tion 12.15 terminates if there is no infinite transformation sequence from G0

via P , where, starting with the layer k = 0, productions p ∈ Pk are applied
for as long as possible before going on to the layer k + 1 ≤ k0.
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The termination of layered graph grammars will be shown separately for
the deletion and the nondeletion layers.

Lemma 12.22 (termination of layered typed attributed graph gram-
mars with deletion). Every layered typed attributed graph grammar that
contains only deletion layers terminates.

Proof.
Step 0. Let c0 = card{x ∈ G0 | dl(type(x)) = 0}. c0 is finite because GG is
finitary.

By the deletion layer conditions 1 and 3, the application of a production p
to G0 with pl(p) = 0 deletes at least one item x ∈ G0 with type t = type(x) ∈
TY PE and dl(t) = 0.

Moreover, by the deletion layer condition 4, each of the productions p
can create only items x with type(x) = t, where cl(t) > 0. This means, by
using the deletion layer condition 2, that only items x with type(x) = t and
dl(t) ≥ cl(t) > 0 can be created. Hence at most c0 applications of productions

p ∈ P0 are possible in layer 0, leading to G0
∗
⇒ G1 via P0.

Step k. Given a graph Gk as the result of step (k − 1) for 1 ≤ k ≤ k0, we
define ck = card{x ∈ Gk | dl(type(x)) ≤ k}. Note that ck is finitary because
GG is finitary.

Using now a production p with pl(p) = k, each p ∈ Pk deletes at least
one item x ∈ Gk with dl(type(x)) ≤ k by the deletion layer conditions 1 and
3, and creates at most items x with cl(type(x)) > k by the deletion layer
condition 4, which implies dl(type(x)) ≥ cl(type(x)) > k by the deletion layer
condition 2. Hence at most ck applications of productions p ∈ Pk are possible
in layer k, leading to Gk

∗
⇒ Gk+1 via Pk.

After step n, we have at most c =
k0∑

k=0

ck applications of productions p ∈ P ,

leading to G0
∗
⇒ Gk0+1, which implies termination. 
�

Before proving termination for nondeletion layers, we need to define the
notion of an essential match. Informally, an essential match m0 of a match
m1 : L → H1 for a transformation G0

∗
⇒ H1 with G0 ⊆ H1 means that m1

can be restricted to m0 : L → G0.

Definition 12.23 (tracking morphism and essential match). Given a
nondeleting layered typed attributed graph grammar with matches m ∈ M′,
nondeleting production p given by a morphism r : L → R ∈ M and a match

m : L → G ∈ M′ lead to a direct transformation G
p,m
=⇒ H via (p, m), defined

by the pushout (1) of r and m, where d : G → H is called the tracking

morphism of G
p,m
=⇒ H:
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L R

G H

m∗

d

r

m (1)

L

G0 H1

m0

d1

m1

Since we have r ∈ M and m ∈ M′, our general assumptions imply for the
pushout (1) that d ∈ M and m∗ ∈ M′, also.

Given a transformation G0
∗
⇒ H1, i.e. a sequence of direct transformations

with an induced tracking morphism d1 : G0 → H1 ∈ M, a match m1 : L → H1

of L in H1 has an essential match m0 : L → G0 of L in G0 if we have
d1 ◦ m0 = m1. Note that there is at most one essential match m0 for m1,
because d1 ∈ M is injective.

The following lemma states that productions can be applied at most once
with the same essential match.

Lemma 12.24 (essential match). In every transformation starting from
G0 of a nondeleting layered typed attributed graph grammar with matches
m ∈ M′, each production p ∈ P0 with r : L → R can be applied at most once
with the same essential match m0 : L → G0 and where m0 |= NAC.

Proof. Assume that in G0
∗
⇒ H1, the production p has already been applied

with the same essential match m0. This means that we can decompose G0
∗
⇒

H1 into G0
∗
⇒ G ⇒ H

∗
⇒ H1 with the pushout (1) and injective morphisms

G0
g
→ G

d
→ H

h1→ H1 in M satisfying d1 = h1 ◦ d ◦ g and d1 ◦ m0 = m1, as
shown in the following diagram:

L R

HG0 G

L R

H1 N

m0 m

r

m∗ m1 n

r

n′

g d h1 q1

m1

d1

(1)

In order to prove the lemma, it is sufficient to show that m1 : L → H1

does not satisfy the NAC of p, i.e. m1 �|= NAC, where the NAC is given by a
morphism n : L → N ∈ M′ with n′ : N → R ∈ M′ satisfying n′ ◦ n = r by
the nondeletion layer condition 2.

In fact, we are able to construct a morphism q1 : N → H1 ∈ M′ with
q1 ◦ n = m1, as follows. Let q1 = h1 ◦ m∗ ◦ n′. Then q1 ∈ M′, because M′

is closed under composition, n′, m∗ ∈ M′, and h1 ∈ M ⊆ M′ by our general
assumptions; m∗ ∈ M′ follows from the match m ∈ M′ and M′ is closed
under pushouts along M-morphisms. Moreover, we have

q1◦n = h1◦m∗◦n′◦n = h1◦m∗◦r = h1◦d◦m = h1◦d◦g◦m0 = d1◦m0 = m1


�
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Lemma 12.25 (termination of nondeleting layered typed attributed
graph grammars). Every layered typed attributed graph grammar GG that
contains only nondeleting layers and matches m ∈ M′ terminates.

Proof.
Step 0. Given the start graph G0, we count for each p ∈ P0 with r : L → R
and NAC the number of possible matches m : L → G0 with m |= NAC:

c0
p = card{m0 | m0 : L → G0 match with m0 |= NAC}.

Note that c0
p is finite, because GG is finitary.

The application of a production p ∈ P0 creates, by the nondeletion layer
condition 4, only new items x with cl(type(x)) > pl(p) = 0, while each item
x ∈ L with type(x) ∈ TY PE for any production p ∈ P0 has cl(type(x)) ≤
pl(p) = 0, by the nondeletion layer condition 3. This means that for each

transformation G0
∗
⇒ H1 via P0 with matches m ∈ M′ and morphism d1 :

G0 → H1 ∈ M, induced from G0
∗
⇒ H1 by the nondeletion layer condition

1, each match m1 : L → H1 of a p ∈ P0 must have an essential match
m0 : L → G0 with d1 ◦ m0 = m1.

From Lemma 12.24, we conclude that in step 0 we have at most

c0 =
∑
p∈P0

c0
p

applications of productions p ∈ P0 leading to G0
∗
⇒ G1 via P0, where c0

p is
the number of different matches of p in G0 as defined above.

Step k. Given a graph Gk as the result of step (k − 1) for 1 ≤ k ≤ k0, we
define, for each p ∈ Pk with r : L → R and NAC,

ck
r = card{mk | mk : L → Gk match with m |= NAC}.

Note that ck
r is finite, because GG is finitary.

Similarly to step 0, each p ∈ Pk creates only new items x with cl(type(x)) >
pl(p) = k, while each item x ∈ L with type(x) ∈ TY PE has cl(type(x)) ≤
pl(p) = k. Now we can apply Lemma 12.24 for Gk, Pk, and mk instead of
G0, P0, and m0 and can conclude that we have at most ck =

∑
p∈Pk

ck
r applica-

tions of productions leading to Gk
∗
⇒ Gk+1 via Pk.

After step n, we have at most c =
k0∑

k=0

ck applications of productions p ∈ P

leading to G0
∗
⇒ Gk0+1, which implies termination. 
�

Combining Lemmas 12.22 and 12.25, we obtain the termination of layered
typed attributed graph grammars, which generalizes Theorem 3.37 for the
case of typed graph grammars.

Theorem 12.26 (termination of layered typed attributed graph
grammars). Every layered typed attributed graph grammar with matches
m ∈ M′ terminates.
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Proof. Starting with k = 0 we can apply the deletion layer conditions for
each deletion layer (see Lemma 12.22) and the nondeletion layer conditions
for each nondeletion layer (see Lemma 12.25), leading to termination in each
layer 0 ≤ k ≤ k0 and hence to termination of the layered typed attributed
graph grammar. 
�

For a detailed example for the termination of a layered typed attributed
graph transformation system we refer to the termination analysis of the model
transformation from statecharts to Petri nets in Subsection 14.2.4. Although
the model transformation is a graph transformation system it can be consid-
ered as a family of grammars, where each statechart is the start graph of a
corresponding grammar.



13

Typed Attributed Graph Transformation with

Inheritance

The concepts of typed attributed graph transformation developed in Chap-
ters 8 and 9 are most significant for modeling and metamodeling in software
engineering. However, up to now we have not considered the concept of in-
heritance, which is especially important for the object-oriented approach to
metamodeling. It can be combined with graph transformation, as shown in
[BEd+03, BEdLT04]. In this chapter, we combine both concepts, leading to
attributed type graphs with inheritance (ATGIs).

The visual alphabet of a visual language corresponds roughly to the type
graph of a graph grammar. While constraints describe additional require-
ments on this alphabet, productions formulate a constructive procedure. In the
object-oriented approach, classes can be inherited, meaning that their fields
and their associations are also present in all their descendants. In the approach
of graph transformation, on the other hand, an additional type graph is used
to ensure a certain kind of type safety on nodes and edges. Supporting node
type inheritance in addition leads to a denser form of graph transformation
system, since similar productions can be abstracted into one production. In
[BEdLT04], this was shown for typed graph transformation, and in [EEPT05]
this approach was extended to typed attributed graph transformation (typed
AGT, for short). A solid formal framework for typed AGT with attributes
for nodes and edges has been presented in Chapters 8 and 9. In this chapter,
we show how to extend this approach to a formal integration of node type
inheritance with typed AGT. For this purpose, we introduce AGT based on
attributed type graphs with inheritance and show how this can be flattened
to typed AGT without inheritance.

In this chapter, we focus on the formal framework concerning typed AGT
with inheritance. The main results show that, for each graph transformation
and grammar GG based on an attributed type graph with inheritance ATGI,
there is an equivalent typed attributed graph transformation and grammar
GG without inheritance. Hence there is a direct correspondence to typed
attributed graph transformation without inheritance, for which some funda-
mental theory has already been presented in Chapters 9–12.
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In Section 13.1, we introduce attributed type graphs with inheritance, and
define ATGI-clan morphisms in Section 13.2. Abstract and concrete graph
transformations as well as typed attributed graph transformation with inheri-
tance are presented in Section 13.3. Finally, we show in Section 13.4 the main
results concerning the equivalence of transformations and attributed graph
grammars with and without inheritance.

13.1 Attributed Type Graphs with Inheritance

The concepts of node type inheritance [BEdLT04] and typed attributed graph
transformation [EPT04, HKT02] are most significant for modeling and meta-
modeling in software engineering and have been combined in [EEPT05].

In this section, we start by combining the two concepts, which results
in a general concept of attributed type graphs with inheritance and a close
relationship between typing with and without inheritance.

For clarity in this construction, we repeat the description of the signature
of an E-graph and the definition of an attributed graph, both presented in
Chapter 8.

Let G be an E-graph G = (GVG
, GVD

, GEG
, GENA

, GEEA
, ((sourcei),

(targeti))i∈{G,NA,EA}), where G refers to the graph parts, NA to node attri-
bution, and EA to edge attribution, according to the following signature:

EG VG

EEA ENA

VD

sourceEA

targetEA

sourceNA

targetNA

sourceG

targetG

An attributed graph AG over a data signature DSIG = (SD, OPD) with
attribute value sorts S′

D ⊆ SD is given by AG = (G, D), where G is an E-graph

as described above and D is a DSIG-algebra such that
.
∪s∈S′

D
Ds = GVD

.
An attributed type graph with inheritance is an attributed type graph in

the sense of Definition 8.7, with a distinguished set of abstract nodes and
inheritance relations between the nodes. The inheritance clan of a node rep-
resents all its subnodes.

Definition 13.1 (attributed type graph with inheritance). An
attributed type graph with inheritance ATGI = (TG, Z, I, A) consists of an
attributed type graph ATG = (TG, Z) (see Definition 8.7), where TG is an
E-graph

TG = (TGVG
, TGVD

, TGEG
, TGENA

, TGEEA
, (sourcei, targeti)i∈{G,NA,EA})
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with TGVD
= S′

D and final DSIG-algebra Z; an inheritance graph I =
(IV , IE , s, t) with IV = TGVG

; and a set A ⊆ IV , called the abstract nodes.
For each node n ∈ IV , the inheritance clan is defined by

clanI(n) = {n′ ∈ IV | ∃ path n′ ∗
→ n in I} ⊆ IV with n ∈ clanI(n).

The inheritance graph I could be defined to be acyclic, but this is not
necessary for our theory.

Remark 13.2. x ∈ clanI(y) implies clanI(x) ⊆ clanI(y).

Example 13.3 (attributed type graph with inheritance). The running
example that will be used in this chapter is a very small section of a notational
model for diagrams. We start with the presentation of an attributed type
graph with inheritance. In Fig. 13.1 we show the compact notation and in
Fig. 13.2 the explicit notation for an example of an attributed type graph with
inheritance. The dashed and solid arrows represent the edges of the attributed
graph, and the solid arrows with open heads belong to the inheritance graph.
A Screen with a resolution (width, height) has geometrical Figures, which
have a position and a visibility (x, y, visible). The Figures are abstract, i.e.
before they can be used it has to be specified which kind of figure is to be
used. Therefore there is an inheritance relation to the concrete figures Circle,
Rectangle, and Line. A Circle has the additional attribute radius, a Rectangle
the additional attributes width and height, and a Line has the end points
(endx, endy) as additional attributes. The edge attribute id : Nat is added to
demonstrate the behavior of edge attributes in attributed type graphs with
inheritance. 
�

Circle
radius: Nat width: Nat

height: Nat

Line
endx: Nat
endy: Nat

Rectangle

height: Nat

Screen
width: Nat

Figure
x: Nat
y: Nat
visible: Bool

{abstract}

id: Nat
has

Fig. 13.1. Example of an attributed type graph with inheritance (compact nota-
tion).

In order to benefit from the well-founded theory of typed attributed graph
transformation (see Chapters 8–12), we flatten attributed type graphs with
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Circle

Rectangle

Line

Screen Figure

{abstract}

Bool
visible

Nat

height
width

id

radius

width

height

endx

endy

x y

has

Fig. 13.2. Example of an attributed type graph with inheritance (explicit notation).

inheritance to ordinary attributed type graphs. We define the closure of an
attributed type graph with inheritance, leading to an (explicit) attributed
type graph, which allows us to define instances of attributed type graphs with
inheritance.

Definition 13.4 (closure of attributed type graphs with inheritance).
Given an attributed type graph with inheritance ATGI = (TG, Z, I, A) with
ATG = (TG, Z) as above, the abstract closure of ATGI is the attributed
type graph ATG = (TG, Z), where TG = (TGVG

, TGVD
, TGEG

, TGENA
,

TGEEA
, (sourcei, targeti)i∈{G,NA,EA}). Here,

• TGEG
= {(n1, e, n2) | n1 ∈ clanI(source1(e)), n2 ∈ clanI(target1(e)), e ∈

TGEG
};

• source1((n1, e, n2)) = n1 ∈ TGVG
;

• target1((n1, e, n2)) = n2 ∈ TGVG
;

• TGENA
= {(n1, e, n2) | n1 ∈ clanI(source2(e)), n2 = target2(e), e ∈

TGENA
};

• source2((n1, e, n2)) = n1 ∈ TGVG
;

• target2((n1, e, n2)) = n2 ∈ TGVD
;

• TGEEA
= {((n11, e1, n12), e, n2) | e1 = source3(e) ∈ TGEG

, n11 ∈
clanI(source1(e1)), n12 ∈ clanI(target1(e1)), n2 = target3(e) ∈ TGVD

, e ∈
TGEEA

};
• source3((n11, e1, n12), e, n2) = (n11, e1, n12);
• target3((n11, e1, n12), e, n2) = n2.

The attributed type graph ÂTG = (T̂G, Z), where T̂G = TG|TGVG
\A ⊆ TG,

is called the concrete closure of ATGI, because all abstract nodes are removed:
T̂G = TG|TGVG

\A is the restriction of TG to TGVG
\ A, given by

• T̂GVG
= TGVG

\ A, T̂GVD
= TGVD

,
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• T̂GEG
= {(n1, e, n2) ∈ TGEG

| n1, n2 ∈ TGVG
\ A},

• T̂GENA
= {(n1, e, n2) ∈ TGENA

| n1 ∈ TGVG
\ A},

• T̂GEEA
= {(n1, e, n2) ∈ TGEEA

| n1 ∈ T̂GEG
};

̂sourcei and ̂targeti are restrictions of sourcei and targeti, respectively, for
i ∈ {G, NA, EA}.

The distinction between the abstract and the concrete closure of a type
graph is necessary. The left-hand side and the right-hand side of the abstract
productions considered in Section 13.3 are typed over the abstract closure,
while the ordinary host graphs and concrete productions are typed over the
concrete closure.

Remark 13.5.

1. We have TG ⊆ TG with TGVi
for i ∈ {G, D} and TGEi

⊆ TGEi
if

we identify e ∈ TGEi
with (sourcei(e), e, targeti(e)) ∈ TGEi

for i ∈
{G, NA, EA}. Owing to the existence of the canonical inclusion TG ⊆
TG, all graphs typed over TG are also typed over TG.

2. Note that there are no inheritance relations in the abstract and concrete
closures of an ATGI, and hence no inheritance relations in the instance
graphs defined below.

Instances of attributed type graphs with inheritance are attributed graphs.
Here again, we can notice a direct correspondence to metamodeling, where
models consisting of symbols and relations are instances of metamodels con-
taining the correspondent classes and associations.

Now we are able to define instances of attributed type graphs with inher-
itance using the closure defined above, i.e. typing morphisms type : AG →
ATG. In the next section, we show that such typing morphisms are equivalent
to a new concept called clan-morphisms.

Definition 13.6 (instance of ATGI). An abstract instance of an ATGI is
an attributed graph typed over ATG, i.e. (AG, type : AG → ATG).
Similarly, a concrete instance of an ATGI is an instance of an attributed

graph typed over ÂTG, i.e. (AG, type : AG → ÂTG).

Example 13.7 (abstract and concrete closures of an ATGI). Fig. 13.3
shows the compact notation for the abstract and concrete closures of the ATGI
example shown in Fig. 13.1, which follows from the explicit notation in Fig.
13.4. The node NAT is depicted twice for clarity.

Fig. 13.4 shows the explicit notation for the abstract closures of the ATGI
example shown in Fig. 13.2, which can be calculated from Definition 13.4 as
follows:

• clan(Figure) = {Figure, Circle, Rectangle, Line},
• clan(X) = {X}, for X = Circle, Rectangle, Line, Screen,
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x: Nat
y: Nat
visible: Bool

Circle
radius: Nat width: Nat

height: Nat

Line
endx: Nat
endy: Nat

Rectangle

x: Nat
y: Nat x: Nat

y: Nat
visible: Bool

x: Nat
y: Nat
visible: Bool

visible: Bool

id: Nat
has

id: Nat
has

id: Nat
has

id: Nat
has

height: Nat

Screen
width: Nat

Figure

{abstract}

closure
only in abstract

Fig. 13.3. Abstract and concrete closures of the ATGI example shown in Fig. 13.1
(compact notation)

Circle

Rectangle

Line

Screen Figure

{abstract}

Bool
visible

Nat

height
width

radius

width

height

endx

endy

has

has

has

has

x
y

id

id
id

visible visible

Nat

x

x

x

y

y

y

id
visible

only in abstract closure

Fig. 13.4. Abstract and concrete closures of the ATGI example shown in Fig. 13.2
(explicit notation)

• TGVi
= TGVi

, (i ∈ {G, D}),
• TGEG

= {has} implies TGEG
= {(Screen, has, F igure), (Screen, has,

Circle), (Screen, has, Rectangle), (Screen, has, Line)},
• TGENA

= {visible, height1, width1, x, y, radius, width2, height2, endx,
endy};
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where the indices of height and width corresponding to different edges are
dropped in the following. This implies

TGENA
= {(Figure, visible, Bool), (Circle, visible, Bool),

(Rectangle, visible, Bool), (Line, visible, Bool), (Screen, height, Nat),

(Screen, width, Nat), (Figure, x, Nat), (Circle, x, Nat),

(Rectangle, x, Nat), (Line, x, Nat), (Figure, y, Nat),

(Circle, y, Nat), (Rectangle, y, Nat), (Line, y, Nat),

(Circle, radius, Nat), (Rectangle, width, Nat), (Rectangle, height, Nat),

(Line, endx, Nat), (Line, endy, Nat)}.

TGEEA
= {id} implies

TGEEA
= {((Screen, has, F igure), id, Nat), ((Screen, has, Circle), id, Nat),

((Screen, has, Rectangle), id, Nat), ((Screen, has, Line), id, Nat)}.

The explicit notation for the concrete closure, according to Definition 13.4,
is given by:

• T̂GVG
= TGVG

\ {Figure},

• T̂GVD
= TGVD

= TGVD
,

• T̂GEG
= TGEG

\ {(Screen, has, F igure)},

• T̂GENA
= TGENA

\ {(Figure, visible, Bool), (Figure, x, Nat),
(Figure, y, Nat)},

• T̂GEEA
= TGEEA

\ {((Screen, has, F igure), id, Nat)};

which leads to the compact notation for the concrete closure shown in Fig.
13.3. 
�

13.2 Attributed Clan Morphisms

For the formal definition of the instance–type relation, we introduce attributed
clan morphisms. The choice of triples for the edges of a type graph’s closure
described in the previous section allows one to express a typing property with
respect to the type graph with inheritance. The instance graph can be typed
over the type graph with inheritance (for convenience) by means of a pair of
functions, one assigning a node type to each node and the other one assigning
an edge type to each edge. Both are defined canonically. A graph morphism
is not obtained in this way, but a similar mapping, called a clan morphism,
uniquely characterizing the type morphism into the flattened type graph, is
obtained.

We introduce ATGI-clan morphisms in this section. An ATGI-clan mor-
phism type : AG → ATGI, where ATGI is an attributed type graph with
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inheritance, corresponds uniquely to a normal type morphism type : AG →
ATG, where ATG is the abstract closure of ATGI as discussed in the previous
section.

Definition 13.8 (ATGI-clan morphism). Given an attributed type graph
with inheritance ATGI = (TG, Z, I, A) with TGVD

= S
′

D and ATG =
(TG, Z) and an attributed graph AG = (G, D), where

G = ((GVi
)i∈{G,D}, (GEi

, sGi
, tGi

)i∈{G,NA,EA}) and
�

∪
s∈S

′

D

Ds = GVD
,

then type : AG → ATGI, where type = (typeVG
, typeVD

, typeEG
, typeENA

,
typeEEA

, typeD) and

• typeVi
: GVi

→ TGVi
(i ∈ {G, D}),

• typeEi
: GEi

→ TGEi
(i ∈ {G, NA, EA}),

• typeD : D → Z, unique final DSIG-homomorphism,

is called an ATGI-clan morphism, if

1. ∀s ∈ S
′

D the following diagram commutes;

Ds Zs = {s}

GVD TGVD
= S′

D
typeVD

typeD,s

=

i.e. typeVD
(d) = s for d ∈ Ds and s ∈ S

′

D.
2. typeVG

◦ sGG
(e1) ∈ clanI(srcG ◦ typeEG

(e1)) ∀e1 ∈ GEG
.

3. typeVG
◦ tGG

(e1) ∈ clanI(tarG ◦ typeEG
(e1)) ∀e1 ∈ GEG

.
4. typeVG

◦ sGNA
(e2) ∈ clanI(srcNA ◦ typeENA

(e2)) ∀e2 ∈ GENA
.

5. typeVD
◦ tGNA

(e2) = tarNA ◦ typeENA
(e2) ∀e2 ∈ GENA

.
6. typeEG

◦ sGEA
(e3) = srcEA ◦ typeEEA

(e3) ∀e3 ∈ GEEA
.

7. typeVD
◦ tGEA

(e3) = tarEA ◦ typeEEA
(e3) ∀e3 ∈ GEEA

.

In the above, we have used the abbreviations “src” and “tar” for “source” and
“target”, respectively.

An ATGI-clan morphism type : AG → ATG is called concrete if
typeVG

(n) /∈ A for all n ∈ GVG
.

The following technical properties of ATGI-clan morphisms are needed to
show the results in Section 13.3, which are based on double-pushout trans-
formations in the category AGraphs of attributed graphs and morphisms in
the sense of Definition 8.6.

In order to show the bijective correspondence between ATGI-clan mor-
phisms and normal type morphisms type : AG → ATG, we first define a
universal ATGI-clan morphism.
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Definition 13.9 (universal ATGI-clan morphism). Given an
attributed type graph with inheritance ATGI = (TG, Z, I, A), then the uni-
versal ATGI-clan morphism uATG : ATG → ATGI with ATG = (TG, Z) is
defined by

• uATG,VG
= id1 : TGVG

→ TGVG
;

• uATG,VD
= id2 : TGVD

→ TGVD
;

• uATG,EG
: TGEG

→ TGEG
, uATG,EG

[(n1, e, n2)] = e ∈ TGEG
;

• uATG,ENA
: TGENA

→ TGENA
, uATG,ENA

[(n1, e, n2)] = e ∈ TGENA
;

• uATG,EEA
: TGEEA

→ TGEEA
, uATG,EEA

[((n11, e1, n12), e, n2)] = e ∈
TGEEA

;
• uATG,D = idZ : Z → Z.

Below, we prove a universal ATGI-clan property in Theorem 13.12. For
that theorem, we need the following facts, where we show that uATG is an
ATGI-clan morphism and that ATGI-clan morphisms are closed under com-
position with attributed graph morphisms.

Fact 13.10 (universal ATGI-clan morphism). The universal morphism
uATG : ATG → ATGI is an ATGI-clan morphism.

Proof. We check conditions 1–7 of Definition 13.8 for uATG:

1. This is clear because uATG,VD
and uATG,D are identities.

2. uATG,VG
◦ srcG[(n1, e, n2)] = uATG,VG

(n1) = n1 ∈ clanI(srcG(e)).
= clanI(srcG ◦ uATG,EG

[(n1, e, n2)]).
3. uATG,VG

◦ tarG[(n1, e, n2)] = uATG,VG
(n2) = n2 ∈ clanI(tarG(e)), =

clanI(tarG ◦ uATG,EG
[(n1, e, n2)]).

4. uATG,VG
◦ srcNA[(n1, e, n2)] = uATG,VG

(n1) = n1 ∈ clanI(srcNA(e)),
= clanI(srcNA ◦ uATG,ENA

[(n1, e, n2)]).
5. uATG,VD

◦ tarNA[(n1, e, n2)] = uATG,VNA
(n2) = n2 = tarNA(e),

= tarNA ◦ uATG,ENA
[(n1, e, n2)].

6. uATG,EG
◦ srcEA[((n11, e1, n12), e, n2)] = uATG,EG

((n11, e1, n12)) = e1,
srcEA ◦ uATG,EEA

[((n11, e1, n12), e, n2)]) = srcEA(e) = e1.
7. uATG,VD

◦ tarEA[((n11, e1, n12), e, n2)] = uATG,VD
(n2) = n2,

tarEA ◦ uATG,EEA
[((n11, e1, n12), e, n2)]) = tar3(e) = n2.


�

Fact 13.11 (composition). Given an attributed graph morphism, or AG-
morphism for short, f : AG′ → AG, and an ATGI-clan morphism f ′ : AG →
ATGI, then f ′ ◦ f : AG′ → ATGI is an ATGI-clan-morphism.

If f ′ is concrete, so is f ′ ◦ f .

Proof. We check conditions 1–7 of Definition 13.8 for f ′ ◦ f with AG′ =
(G′, D′), AG = (G, D) and ATGI = (TG, Z, I, A):

1. (f ′ ◦ f)VD
(d′) = f ′

VD
(fVD

(d′)) = f ′
VD

(d) = s,
because d′ ∈ D′

s, s ∈ S′
D implies d = fVD

(d′) = fDs
(d′) ∈ Ds.
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2. (f ′ ◦ f)VG
◦ sG′

G
(e′1) = f ′

VG
[fVG

◦ sG′
G
(e′1)] = f ′

VG
[sGG

◦ fEG
(e′1)]

= f ′
VG

◦ sGG
(fEG

(e′1)) ∈ clanI [srcG ◦ f ′
EG

(fEG
(e′1))]

= clanI(srcG ◦ (f ′ ◦ f)EG
(e′1)).

3. (f ′ ◦ f)VG
◦ tG′

G
(e′1) = f ′

VG
[fVG

◦ tG′
G
(e′1)] = f ′

VG
[tGG

◦ fEG
(e′1)]

= f ′
VG

◦ tGG
(fEG

(e′1)) ∈ clanI [tarG ◦ f ′
EG

(fEG
(e′1))]

= clanI(tarG ◦ (f ′ ◦ f)EG
(e′1)).

4. (f ′ ◦ f)VG
◦ sG′

NA
(e′2) = f ′

VG
[fVG

◦ sG′
NA

(e′2)] = f ′
VG

[sGNA
◦ fENA

(e′2)]
= f ′

VG
◦ sGNA

(fENA
(e′2)) ∈ clanI [srcNA ◦ f ′

ENA
(fENA

(e′2))]
= clanI(srcNA ◦ (f ′ ◦ f)ENA

(e′2)).
5. (f ′ ◦ f)VD

◦ tG′
NA

(e′2) = f ′
VD

[fVD
◦ tG′

NA
(e′2)] = f ′

VD
[tGNA

◦ fENA
(e′2)]

= f ′
VD

◦ tGNA
(fENA

(e′2)) = tarNA ◦ f ′
ENA

(fENA
(e′2))

= tarNA ◦ (f ′ ◦ f)ENA
(e′2).

6. (f ′ ◦ f)EG
◦ sG′

EA
(e′3) = f ′

EG
[fEG

◦ sG′
EA

(e′3)] = f ′
EG

[sGEA
◦ fEEA

(e′3)]
= f ′

EG
◦ sGEA

(fEEA
(e′3)) = srcEA ◦ f ′

EEA
(fEEA

(e′3))
= srcEA ◦ (f ′ ◦ f)EEA

(e′3).
7. (f ′ ◦ f)VD

◦ tG′
EA

(e′3) = f ′
VD

[fVD
◦ tG′

EA
(e′3)] = f ′

VD
[tGEA

◦ fEEA
(e′3)]

= f ′
VD

◦ tGEA
(fEEA

(e′3)) = tarEA ◦ f ′
EEA

(fEEA
(e′3))

= tarEA ◦ (f ′ ◦ f)EEA
(e′3).

If f ′ is concrete, then f ′
VG

(n) /∈ A for all n ∈ GVG
and also f ′

VG
(fVG

(n)) /∈ A
for all n ∈ G′

VG
. 
�

The following theorem is the key property relating ATGI-clan morphisms
and AG-morphisms, and is essential for showing the main results in this chap-
ter.

Theorem 13.12 (universal ATGI-clan property). For each ATGI-clan
morphism type : AG → ATGI, there is a unique AG-morphism type : AG →
ATG such that uATG ◦ type = type:

AG

ATG ATGI

type type

uATG

=

Construction. Given type : AG → ATGI with AG = (G, D), we construct
type : AG → ATG as follows (see Fig. 13.5):

• typeVG
= typeVG

: GVG
→ TGVG

= TGVG
;

• typeVD
= typeVD

: GVD
→ TGVD

= TGVD
;

• typeEG
: GEG

→ TGEG
, typeEG

(e1) = (n1, e
′
1, n2) with e′1 = typeEG

(e1) ∈
TGEG

, n1 = typeVG
(sGG

(e1)) ∈ TGVG
, n2 = typeVG

(tGG
(e1)) ∈ TGVG

;
• typeENA

: GENA
→ TGENA

, typeENA
(e2) = (n1, e

′
2, n2) with e′2 =

typeENA
(e2) ∈ TGENA

, n1 = typeVG
(sGNA

(e2)) ∈ TGVG
, n2 =

typeVD
(tGNA

(e2)) ∈ TGVD
;

• typeEEA
: GEEA

→ TGEEA
, typeEEA

(e3) = ((n11, e
′′
3 , n12), e

′
3, n2) with

e′3 = typeEEA
(e3) ∈ TGEEA

, (n11, e
′′
3 , n12) = typeEG

(sGEA
(e3)) ∈ TGEG

,
n2 = typeVD

(tGEA
(e3)) ∈ TGVD

;
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• typeD = typeD : D → Z.

Fact 13.11 implies that the composition uATG ◦ type is an ATGI-clan-
morphism. 
�
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Fig. 13.5. Construction of the universal ATGI-clan property

Proof. See Section C.5. 
�

The univeral property shown above allows us to prove important properties
of pushouts for ATGI-clan morphisms.

Lemma 13.13 (PO property of ATGI-clan morphisms).

1. A pushout in AGraphs is also a pushout with respect to (concrete) clan
morphisms. This means, more precisely, the following: given a pushout
PO in AGraphs as shown in the following diagram with AG-morphisms
g1, g2, g′1, g′2 and ATGI-clan morphisms f1, f2 with f1 ◦g1 = f2 ◦g2, then
there is a unique ATGI-clan morphism f : G3 → ATGI with f ◦ g′1 = f1

and f ◦ g′2 = f2:
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G1

G0

G2

G3 ATGI

g1

g2 g′
2

g′
1

f1

f2

fPO

(1)

(2)

2. Double pushouts in AGraphs can be extended to double pushouts for at-
tributed graphs with typing by concrete ATGI-clan-morphisms with re-
spect to the match morphism and the production. This means, more pre-
cisely, the following: given pushouts (1′) and (2′) in AGraphs as shown in
the following diagram, and concrete ATGI-clan morphisms typeL, typeK,
typeR, and typeG for the production and the match graph G such that
(3′), (4′), and (5′) commute, then there are also unique concrete ATGI-
clan morphisms typeD and typeH such that (6′) and (7′) commute:

L

G

K

D

R

HATGI

m

l

d

r

m′

l′ r′

typeL

typeG

typeK

typeR

typeD

typeH

(1′) (2′)

(3′)

(4′)

(5′)

(6′) (7′)

Proof.

1. Given a pushout in AGraphs of g1 : G0 → G1, g2 : G0 → G2 with
g′1 : G1 → G3 and g′2 : G2 → G3, we shall show that, for each pair
of ATGI-clan morphisms f1 : G1 → ATGI and f2 : G2 → ATGI with
f1 ◦ g1 = f2 ◦ g2, there is a unique ATGI-clan morphism f : G3 → ATGI
such that (1) and (2) in the following diagram commute:

G1

G0

G2

G3 ATGIATG

g1

g2 g′
2

g′
1

f uAT G

f1

f2

f1

f2

PO

(6)

(5)

(4)

(3)

Using Theorem 13.12, we have unique graph morphisms f1, f2 such that
(3) and (4) commute. Moreover, f1 ◦ g1 = f2 ◦ g2 implies uATG ◦ f1 ◦ g1 =
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uATG ◦ f2 ◦ g2 and hence f1 ◦ g1 = f2 ◦ g2 by the uniqueness described
in Theorem 13.12. Now the PO property of G3 in AGraphs implies a
unique f : G3 → ATG such that (5) and (6) commute. We define f =
uATG ◦ f : G3 → ATG, where commutativity of (3)–(6) implies that of
(1) and (2).

The uniqueness of f in (1) and (2) can be shown using the existence
and uniqueness described in Theorem 13.12 and the uniqueness of f in
(5) and (6) according to the PO property of G3 in AGraphs.

Finally, let us discuss the case of concrete ATGI-clan morphisms. If
f1, f2 are concrete, then f : G3 → ATG is also concrete. In fact, for each
x ∈ G3,VG

we have x1 ∈ G1,VG
with fVG

(x) = f1VG
(x1) /∈ A, or x2 ∈ G2,VG

with fVG
(x) = f2VG

(x2) /∈ A.
2. Given a double pushout (1′), (2′) in AGraphs and concrete ATGI-clan

morphisms typeL, typeK , typeR, and typeG such that the diagrams (3′)–
(5′) commute, we need concrete clan morphisms typeD : D → ATGI with
typeD = typeG ◦ l′ and typeH : H → ATGI, where

(8′) typeH ◦ r′ = typeD and typeH ◦ m′ = typeR.

In fact, we define typeD as the composition typeG◦ l′. This implies typeD ◦
d = typeR ◦r using the commutativity of (1′) and (3′)–(6′). Now Theorem
13.12 can be applied to the pushout (2′), yielding a unique typeH with
the property (8′).


�

13.3 Productions and Attributed Graph Transformation

with Inheritance

In this section, we show how to adapt the concept of inheritance to the con-
cepts of typed attributed graph transformation, graph grammars and graph
languages. The use of abstract types in graph transformation is helpful in
formulating concise graph productions.

Our goal is to allow abstract typed nodes in productions, such that these
abstract productions actually represent a set of structurally similar produc-
tions, which we call concrete productions. To obtain all concrete productions
for an abstract production, all combinations of node types of the correspond-
ing clans in the production’s left-hand side (LHS) (whether of concrete or
abstract type) must be considered. Nodes which are preserved by the pro-
duction have to keep their type. Nodes which are created in the right-hand
side (RHS) have to have a concrete type, since abstract types should not be
instantiated.

We define abstract and concrete transformations for abstract and concrete
productions based on attributed type graphs with inheritance. The first main
result shows the equivalence of abstract and concrete transformations. This
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allows us to use safely the more efficient presentation of abstract transfor-
mations with abstract productions, because they are equivalent to the cor-
responding concrete transformations with concrete productions. The second
main result, presented in the next section, shows the equivalence of attributed
graph grammars with and without inheritance.

In the following, we consider productions and graph transformations in
the sense of Chapter 9, i.e. typed attributed graph transformation extended
by negative application conditions (NACs) (see Definition 12.5).

As we have done for type graphs with inheritance, we define a flattening
of abstract productions to concrete ones. The concrete productions are struc-
turally equal to the abstract production, but their typing morphisms are finer
than those of the abstract production and are concrete clan morphisms. A typ-
ing morphism is said to be finer than another one if it is distinguished from
the other one only by the presence of more concrete types in corresponding
clans.

First we introduce the notion of type refinement in order to formalize the
relationship between abstract and concrete productions, to be defined below.

Definition 13.14 (ATGI-type refinement). Given an attributed graph
AG = (G, D) and ATGI-clan morphisms type : AG → ATGI and type′ :
AG → ATGI, then type′ is called an ATGI-type refinement of type, written
type′ ≤ type, if

• type′VG
(n) ∈ clanI(typeVG

(n)) ∀n ∈ GVG
,

• type′X = typeX for X ∈ {VD, EG, ENA, EEA, D}.

Remark 13.15. Given ATGI-clan morphisms type, type′ : AG → ATGI with
type′ ≤ type and an AG-morphism g : AG′ → AG, then type′◦g ≤ type◦g also.
Note that “AG-morphism” means a morphism in the category AGraphs.

Definition 13.16 (abstract and concrete productions). An abstract

production typed over ATGI is given by p = (L
l

←− K
r

−→ R, type, NAC),
where l and r are AG-morphisms, type is a triple of typing morphisms,
i.e. ATGI-clan morphisms type = (typeL : L → ATGI, typeK : K →
ATGI, typeR : R → ATGI), and NAC is a set of triples nac = (N, n, typeN)
with an attributed graph N , an AG-morphism n : L → N , and a typing ATGI-
clan morphism typeN : N → ATGI, such that the following conditions hold:

• typeL ◦ l = typeK = typeR ◦ r;
• typeR,VG

(R′
VG

) ∩ A = ∅, where R′
VG

:= RVG
− rVG

(KVG
);

• typeN ◦ n ≤ typeL for all (N, n, typeN ) ∈ NAC;
• l, r, and n are data-preserving, i.e. lD, rD, and nD are identities:
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N L K R

ATGI

n l r

typeL
tL

typeN

tNi
typeK

tK

typeR

tR

A concrete production pt with respect to an abstract production p is given

by pt = (L
l

←− K
r

−→ R, t, NAC), where t is a triple of concrete typing ATGI-
clan morphisms t = (tL : L → ATGI, tK : K → ATGI, tR : R → ATGI),
such that

• tL ◦ l = tK = tR ◦ r;
• tL ≤ typeL, tK ≤ typeK, tR ≤ typeR;
• tR,VG

(x) = typeR,VG
(x) ∀x ∈ R′

VG
;

• for each (N, n, typeN) ∈ NAC, we have all (N, n, tN ) ∈ NAC for concrete
ATGI-clan morphisms tN satisfying tN ◦ n = tL and tN ≤ typeN .

The set of all concrete productions pt with respect to an abstract production p
is denoted by p̂.

The application of an abstract production can be defined or expressed
directly by using the idea of flattening, i.e. of applying one of its concrete
productions. Both the host graph and the concrete production are typed by
concrete clan morphisms such that we can define the application of a con-
crete production. Later, we shall also define the application of an abstract
production directly and show the equivalence of the two.

Definition 13.17 (application of concrete production). Let pt = (L
l

←−

K
r

−→ R, t, NAC) be a concrete production, let (G, typeG) be a typed at-
tributed graph with a concrete ATGI-clan morphism typeG : G → ATGI, and
let m : L → G be an AG-morphism. Then m is a consistent match with respect
to pt and (G, typeG) if

• m satisfies the gluing condition (see Definition 9.8) with respect to the

untyped production L
l

←− K
r

−→ R and the attributed graph G;
• typeG ◦ m = tL; and
• m satisfies the negative application conditions NAC, i.e., for each

(N, n, tN ) ∈ NAC, there exists no AG-morphism o : N → G in M′ such
that o ◦ n = m and typeG ◦ o = tN . M′ is a suitable class of morphisms
for application conditions (see Section 12.1).

Given a consistent match m, the concrete production can be applied to the
typed attributed graph (G, typeG), yielding a typed attributed graph (H, typeH)
by constructing the DPO of l, r, and m and applying Lemma 13.13.2. We

write (G, typeG)
pt,m
=⇒ (H, typeH) for such a direct transformation:
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N L

G

ATGI

tN

n

o m

typeG

tL

/

The classical theory of typed attributed graph transformations relies on
typing morphisms which are normal graph morphisms, i.e. not clan mor-
phisms. To show the equivalence of abstract and concrete graph transfor-
mations, we first have to consider the following statement: The application
of a concrete production typed by concrete clan morphisms is equivalent to
the application of the same production correspondingly typed over the con-
crete closure of the given type graph. This lemma is formulated and proven
in Lemma 13.13 for productions without NACs.

Although the semantics of the application of an abstract production can
be given by the application of its concrete productions, this solution is not
efficient at all. Imagine a tool which implements graph transformation with
node type inheritance; it would have to check all concrete productions of an
abstract production to find the right one to apply to a given instance graph.

Thus, as the next step, we want to examine more direct ways to apply
an abstract production. Since abstract and concrete productions differ only
in this typing, but have the same structure, a match morphism from the
left-hand side (LHS) of a concrete production into a given instance graph is
also a match morphism for its abstract production. But, of course, the typing
morphisms differ. Using the notion of type refinement, however, we can express
a compatibility property.

Definition 13.18 (application of abstract production). Let p = (L
l

←−

K
r

−→ R, type, NAC) be an abstract production typed over an attributed type
graph with inheritance ATGI, let (G, typeG) be a typed attributed graph with
a concrete ATGI-clan morphism typeG : G → ATGI, and let m : L → G be
an AG-morphism. Then m is called a consistent match with respect to p and
(G, typeG) if

• m satisfies the gluing condition (see Definition 9.8) with respect to the

untyped production L
l

←− K
r

−→ R and the attributed graph G, i.e. the
PO (1) in the following diagram exists;

• typeG ◦ m ≤ typeL;
• tK,VG

(x1) = tK,VG
(x2) for tK = typeG ◦ m ◦ l and all x1, x2 ∈ KVG

with
rVG

(x1) = rVG
(x2);

• m satisfies NAC, i.e., for each nac = (N, n, typeN) ∈ NAC, exists no
AG-morphism o : N → G in M′ (see Definition 13.17) such that o◦n = m
and typeG ◦ o ≤ typeN .
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Given a consistent match m, the abstract production can be applied to

(G, typeG), yielding an abstract direct transformation (G, typeG)
p,m
=⇒

(H, typeH) with a concrete ATGI-clan morphism typeH as follows:

1. Construct the (untyped) DPO of l, r, and m in AGraphs given by the
pushouts (1) and (2) in the following diagram:

N L

G

K

D

R

H

ATGI

m

n

o

l

d

r

m′

l′ r′
typeL

typeG

typeN

typeD

typeH

(1) (2)
/

2. Construct typeD and typeH as follows:
• typeD = typeG ◦ l′;
• typeH,X(x) = if x = r′X(x′) then typeD,X(x′) else typeR,X(x′′), where

m′(x′′) = x and X ∈ {VG, VD, EG, ENA, EEA, D}.

Remark 13.19. typeH is a well-defined ATGI-clan morphism with typeH ◦
r′ = typeD and typeH ◦m′ ≤ typeR. Moreover, we have typeG ◦m ≤ typeL (as
required) and typeD ◦ d ≤ typeK (see Lemma 13.20, item 3). The third match
condition is not needed if rVG

is injective (as is the case in most examples).

Now we are able to construct concrete and abstract transformations from
an abstract production with a consistent match. This is the basis for the
equivalence results in the next section.

Lemma 13.20 (construction of concrete and abstract transforma-

tions). Given an abstract production p = (L
l
← K

r
→ R, type, NAC),

where NAC = {(Ni, ni, typeNi
) | i ∈ I}, a concrete typed attributed graph

(G, typeG : G → ATGI), and a consistent match morphism m : L → G with
respect to p and (G, typeG), we have the following:

1. There is a unique concrete production pt ∈ p̂ with pt = (L
l
← K

r
→

R, t, NAC) and tL = typeG ◦ m. In this case, tK and tR are defined by:

• tK = tL ◦ l;
• tR,VG

(x) = if x = rVG
(x′) then tK,VG

(x′) else typeR,VG
(x) for x ∈ RVG

;
• tR,X = typeR,X for X ∈ {VD, EG, ENA, EEA, D};
• NAC = ∪i∈I{(Ni, ni, tNi

) | tNi
is a concrete ATGI-clan morphism

with tNi
≤ typeNi

and tNi
◦ ni = tL}.

2. There is a concrete direct transformation (G, typeG)
pt,m
=⇒ (H, typeH) with

a consistent match m with respect to pt, where typeD = typeG ◦ l′ and
typeH is uniquely defined by typeD, tR, and the pushout properties of (2)
below (see Lemma 13.13); typeH : H → ATGI is a concrete ATGI-clan
morphism given explicitly by
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typeH,X(x) = if x = r′X(x′) then typeD(,Xx′) else tR,X(x′′)

where m′(x′′) = x and X ∈ {VG, VD, EG, ENA, EEA, D}:

Ni L

G

K

D

R

H

ATGI

m

ni l

d

r

m′

l′ r′

typeL

tL

typeG

typeNi

tNi

typeD

typeH

typeK

tK

typeR

tR

(1) (2)

3. The concrete direct transformation becomes an abstract direct transfor-

mation (see Definition 13.18): (G, typeG)
p,m
=⇒ (H, typeH) with typeD =

typeH ◦r′, typeG◦m ≤ typeL, typeD◦d ≤ typeK , and typeH ◦m′ ≤ typeR,
where the typing t = (tL, tK , tR) of the concrete production pt is replaced
by type = (typeL, typeK , typeR) of the abstract production p.

Proof. See Section C.6. 
�

Example 13.21 (abstract and concrete productions and transforma-
tions). Fig. 13.6 shows sample productions for the ATGI example shown in
Fig. 13.1. The production moveFigure(dx, dy : Nat) is an example of an
abstract production; for example, the production moveFigure has to be de-
fined only once and could be applied to the concrete graphical objects Circle,
Rectangle, and Line. Owing to the positive values of dx and dy, the figures
can only be moved up and to the right.

LHS RHS

LHS RHS
1:Screen 1:Screen Circle

x = x’
y = y’
radius = r
visible = v

1:Figure1:Figure

y = y1
x = x1
visible=true

has
id=id’createCircle(id’,x’,y’,r: Nat; v:Bool)

moveFigure(dx,dy: Nat)

y = y1+dy
x = x1+dx
visible=true

Fig. 13.6. Example productions for the ATGI example in Fig. 13.1

createCircle(id′, x′, y′, r : Nat; v : Bool) is an example of a concrete pro-
duction and creates a Circle graphical object. Note that the production has to
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take care of the abstract attributes x, y, visible derived from the abstract class
Figure, as well as the concrete attribute radius and the edge attribute id. A
rule createF igure is not possible, because instances of abstract classes can-
not be created. Fig. 13.7 shows the concrete production for moving a Circle
graphical object derived from the abstract production moveFigure in Fig.
13.6.

LHS RHS
1:Circle1:Circle moveCircle(dx,dy: Nat)

y = y1
x = x1
visible=true

radius = r

visible=true
x = x1+dx
y = y1+dy
radius = r

Fig. 13.7. Concrete Production moveCircle Derived from moveF igure.

Fig. 13.8 shows a sample transformation sequence for the productions
createCircle and moveCircle starting with an empty Screen with a reso-
lution width = 100 and height = 100. First a new circle is created at the
position (10, 10) by application of the production createCircle. Then the pro-
duction moveFigure(50, 0) instantiates the attributes x1 and y1 with values
x1 = 10 and y1 = 10. After the results x = x1+dx and y = y1+dy have been
calculated using the input parameters dx = 50 and dy = 0, the attributes x
and y are assigned new values. Note that the abstract production moveFigure
can be applied directly to the instance of the concrete class Circle derived
from the abstract class Figure.

createCircle(1,10,10,5,true)

moveCircle(50,0)

Circle
x = 60
y = 10
radius = 5
visible=true

Screen

height=100
width=100

Screen

height=100
width=100

Screen

height=100
width=100

Circle
x = 10
y = 10
radius = 5
visible=true

has
id=1

has
id=1

Fig. 13.8. Sample transformation sequence


�



278 13 Typed Attributed Graph Transformation with Inheritance

13.4 Equivalence of Concepts with and without

Inheritance

Now that we have defined concrete and abstract transformations, the ques-
tion arises of how these two kinds of graph transformations are related to
each other. Theorem 13.22 will answer this question by showing that for each
abstract transformation that applies an abstract production p there is a con-
crete transformation that applies a concrete production with respect to p,
and vice versa. Thus an application of an abstract production can also be
flattened to a concrete transformation. The result allows us to use the dense
form of abstract productions in graph transformations on the one hand, and
to reason about this new form of graph transformation by flattening it to the
usual typed attributed graph transformation, which is accompanied by a rich
theory, on the other hand.

Furthermore, we show the equivalence of typed attributed graph grammars
with and without inheritance.

In the following, all typing morphisms type : AG → ATGI are ATGI-
clan morphisms, unless stated otherwise. We denote the corresponding graph
morphism by type : AG → ATG (see Theorem 13.12).

Theorem 13.22 (equivalence of transformations). Given an abstract

production p = (L
l

←− K
r

−→ R, type, NAC) over an attributed type graph
ATGI with inheritance, a concrete typed attributed graph (G, typeG), and a
match morphism m : L → G which satisfies the gluing condition with respect
to the untyped production (L ←− K −→ R), then the following statements are
equivalent, where (H, typeH) is the same concrete typed graph in both cases:

1. m : L → G is a consistent match with respect to the abstract production

p, yielding an abstract direct transformation (G, typeG)
p,m
=⇒ (H, typeH).

2. m : L → G is a consistent match with respect to the concrete production

pt = (L
l
← K

r
→ R, t, NAC) with pt ∈ p̂ and tL = typeG ◦ m (where

tK , tR and NAC are uniquely defined by Lemma 13.20, item 1, yielding

a concrete direct transformation (G, typeG)
pt,m
=⇒ (H, typeH).

Proof. “1 ⇒ 2”. This follows directly from Lemma 13.20.
“2 ⇒ 1”. If m is a consistent match with respect to pt and (G, typeG)

with tL = typeG ◦ m we have tL = typeG ◦ m ≤ typeL. For x1, x2 ∈ KVG

with rVG
(x1) = rVG

(x2) it follows that tK,VG
(x1) = tR,VG

◦ rVG
(x1) = tR,VG

◦
rVG

(x2) = tL,VG
(x2). The match m satisfies NAC, i.e. for all (N, n, tN ) ∈

NAC there is no morphism o ∈ M′ with o ◦ n = m and typeG ◦ o = tN .
It follows that m also satisfies NAC. Otherwise, there would exist an nac =
(N, n, typeN) ∈ NAC, where o ∈ M′ with o ◦ n = m and typeG ◦ o ≤ typeN .
This would contradict the requirement that m satisfies nac = (N, n, tN ) ∈
NAC with tN = typeG ◦ o ≤ typeN . This means that m is a consistent match
with respect to p and (G, typeG).
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Now we apply Lemma 13.20, where the induced concrete production in
item 1 coincides with the given production, and obtain the abstract direct

transformation (G, typeG)
p,m
=⇒ (H, typeH). 
�

Theorem 13.22 allows us to use the dense form of abstract productions for
model manipulation instead of generating and holding all concrete rules, i.e.
abstract derivations are much more efficient than concrete derivations. This
means that, on the one hand, we have an efficient procedure and, on the other
hand, we are sure that the result will be the same as that obtained using con-
crete rules. Moreover, as a consequence of Theorem 13.22, graph languages
built over abstract productions and mechanisms are equivalent to graph lan-
guages that are built over a corresponding set of concrete productions. In
addition, graph grammars with inheritance are equivalent to the correspond-
ing grammars without inheritance, where, however, the type graph ATGI has
to be replaced by the closure ATG. Before showing this main result, we define
graph grammars and languages in our context.

Definition 13.23 (ATGI graph grammar and language). Given an at-
tributed type graph ATGI and an attributed graph G typed over ATGI with
a concrete ATGI-clan morphism typeG, an ATGI-graph grammar is denoted
by GG = (ATGI, (G, typeG : G → ATGI), P ), where P is a set of abstract
productions that are typed over ATGI.

The corresponding graph language is defined by the set of all concrete
typed graphs which are generated by an abstract transformation (see Defini-
tions 13.17 and 13.18):

L(GG) = {(H, typeH : H → ATGI) | ∃ abstract transformation (G, typeG)
∗
⇒ (H, typeH)},

where typeH is always concrete, by Lemma 13.20, item 2.

Theorem 13.24 (equivalence of attributed graph grammars). For
each ATGI-graph grammar GG = (ATGI, (G, typeG), P ) with abstract pro-
ductions P , there are:

1. An equivalent ATGI-graph grammar ĜG = (ATGI, (G, typeG), P̂ ) with

concrete productions P̂ , i.e. L(GG) = L(ĜG).
2. An equivalent typed attributed graph grammar without inheritance GG =

(ATG, (G, typeG), P ) typed over ATG where ATG is the closure of ATGI,
and with productions P , i.e. L(GG)

∼
= L(GG), which means

that (G, typeG) ∈ L(GG) ⇔ (G, typeG) ∈ L(GG).

Construction.

1. The set P̂ is defined by P̂ = ∪p∈P p̂, where p̂ is the set of all concrete
productions with respect to p.
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2. typeG : G → ATG is the graph morphism corresponding to the ATGI-clan
morphism typeG (see Theorem 13.12). P is defined by P = ∪p∈P {pt | pt ∈

p̂}, where, for pt ∈ p̂ with pt = (p, t, NAC), we define pt = (p, t, NAC
′
)

with uATG ◦ tX = tX for X ∈ {L, K, R}, and NAC
′
is defined as follows:

for each (N, n, tN ) ∈ NAC, we have (N, n, tN ) ∈ NAC
′
with uATG ◦ tN =

tN .

�

Remark 13.25. In the grammar GG of item 2 of Theorem 13.24 using the
abstract closure ATG of ATGI, only graphs with concrete typing are gener-
ated. In fact, there is also an equivalent grammar GG′ over the type graph

ÂTG, the concrete closure of ATGI.

Proof.

1. From Theorem 13.22, the abstract direct transformation (G1, typeG1)
p,m
=⇒ (G2, typeG2) and the concrete direct transformation (G1, typeG1)

pt,m
=⇒

(G2, typeG2) with tL = typeG ◦m are equivalent, and if one exists, so does

the other one. This means that, if (G1, typeG1) ∈ L(GG) ∩ L(ĜG), then

(G2, typeG2) ∈ L(GG) ∩ L(ĜG). Since we start in both grammars with

the same start graph, L(GG) = L(ĜG).
2. We show that (a) for a concrete direct transformation

(G1, typeG1)
pt,m
=⇒ (G2, typeG2) in ĜG, there is a corresponding direct

transformation (G1, typeG1)
pt,m
=⇒ (G2, typeG2)) in GG with

uATG ◦ typeGi
= typeGi

for i = 1, 2, and (b) if a production pt can
be applied to (G1, typeG1) via m in GG, then pt can be applied to

(G1, uATG ◦ typeG1) via m in ĜG.

(a) For all objects (X, typeX) in the DPO diagram corresponding to the

concrete direct transformation (G1, typeG1)
pt,m
=⇒ (G2, typeG2), Theo-

rem 13.12 gives us a morphism typeX : X → ATG. The DPO diagram
with these new morphisms corresponds to the direct transformation

(G1, typeG1)
pt,m
=⇒ (G2, typeG2) in GG.

It remains to show that pt can be applied to G1 via m, i.e. m satisfies

the negative application condition NAC
′
. Suppose that this is not the

case, and we have a negative application condition (N, n, tN ) ∈ NAC
′

that is not satisfied by m and corresponds to (N, n, tN ) ∈ NAC with
uATG◦tN = tN . There is then a morphism o : N → G1 with o◦n = m,
and since o is a typed attributed graph morphism, typeG1 ◦ o = tN .
Then typeG1 ◦ o = uATG ◦ typeG1 ◦ o = uATG ◦ tN = tN . According to
Definition 13.18, this means that m does not satisfy NAC, which is a
contradiction.

(b) The application of pt to G1 via m leads to a direct transformation

(G1, typeG1)
pt,m
=⇒ (G2, typeG2). For all objects (X, typeX) in the corre-
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sponding DPO diagram, we define typeX = uATG◦typeX and obtain a
new DPO diagram corresponding to the concrete direct transformation

(G1, typeG1)
pt,m
=⇒ (G2, typeG2).

We have to check that m satisfies NAC. Suppose that is not the case;
there is then a negative application condition (N, n, tN ) ∈ NAC and
an AG-morphism o : N → G such that o ◦ n = m and typeG1 ◦ o =

tN . Then the negative application condition (N, n, tN ) ∈ NAC
′
with

tN = typeG1 ◦ o is not satisfied by m. This is a contradiction.

For a concrete transformation (G, typeG)
∗
⇒ (H, typeH) in ĜG, item

(a) gives us the corresponding transformation (G, typeG)
∗
⇒ (H, typeH)

in GG. Item (b) guarantees that, for a transformation (G, typeG)
∗
⇒

(H, typeH) in GG, there is a corresponding concrete transformation

(G, typeG)
∗
⇒ (H, typeH) in ĜG. Combining (a) and (b), we have L(ĜG) ∼=

L(GG). By part 1, we have L(GG) = L(ĜG), which implies L(GG) ∼=
L(GG) as required.


�



Part IV

Case Study on Model Transformation, and

Tool Support by AGG
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In Parts I–III, we have presented the algebraic theory of graph transforma-
tions on the level of graphs and typed graphs, in adhesive HLR categories,
and on the level of typed attributed graphs respectively. In each Part, we
have illustrated the concepts and results with a specific running example.
In this Part, we shall show, with a case study on model transformation in
Chapter 14, how the concepts of typed attributed graph transformation can
be applied in an important application area: model transformation between
visual languages. In addition, it is most important, in all application domains,
to have suitable tool support. For this purpose, we show in Chapter 15 how
typed attributed graph transformation has been implemented at TU Berlin
by means of the language and tool environment AGG in the last decade. The
initial ideas concerning Chapters 14 and 15 were presented in [EEdL+05] and
[AGG, ERT99], respectively.



14

Case Study on Model Transformation

In this chapter, we show in a case study how typed attributed graph transfor-
mation can be used to define a model transformation from a simple version
of UML statecharts to Petri nets. In Section 14.1, we introduce the general
idea of model transformation by graph transformation, and we present the
case study in Section 14.2. One of the main basic properties of model trans-
formation is its functional behavior. A graph transformation system shows
functional behavior if it is locally confluent and terminates. In this chapter,
we show the termination of the corresponding layered graph transformation
system. The local confluence is discussed in the following chapter. In Sec-
tion 14.3, we briefly discuss two other case studies of model transformations
presented in the literature using the same approach.

14.1 Model Transformation by Typed Attributed Graph

Transformation

When a model transformation by typed attributed graph transformation is
described, the source and target models have to be given as typed attributed
graphs. This is not a restriction, since the underlying structure of any model,
especially visual models, can be described by typed attributed graphs, owing
to their multi-dimensional extension. Performing model transformation by
typed attributed graph transformation means taking the underlying structure
of a model as a typed attributed graph and transforming it according to
certain transformation productions. The result is a typed attributed graph
which shows the underlying structure of the target model.

A model transformation can be precisely defined by a typed attributed
graph transformation system GTS = (ATG, P ) consisting of an attributed
type graph ATG and a set of productions P for the model transformation.
The abstract syntax graphs of the source models can be specified by all in-
stance graphs (or a subset of them) over an attributed type graph ATGS .
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Correspondingly, the abstract syntax graphs of the target models are speci-
fied by all instance graphs (or a subset of them) over an attributed type graph
ATGT . Both type graphs ATGS and ATGT have to be subgraphs of the model
transformation type graph ATG (see Fig. 14.1). Starting the model transfor-
mation with instance graph GS typed over ATGS, it is also typed over ATG.
During the model transformation process, the intermediate graphs are typed
over ATG. This type graph may contain not only ATGS and ATGT , but
also additional types and relations which are needed for the transformation
process only. The result graph GT is automatically typed over ATG. If it is
also typed over ATGT , it fulfills one main requirement for being syntactically
correct. Data types are preserved during the transformation process.

In general, the correctness of model transformation is an important issue.
This includes syntactical correctness, functional behavior, and semantical cor-
rectness. As discussed in Subsection 3.4.4, functional behavior is based on local
confluence and termination. We shall show termination in our case study in
the next section, and confluence based on critical pair analysis will be dis-
cussed in Section 15.2. Note, however, that our criteria have only worked in
simple cases up to now, and work will have to be done in the future to support
all aspects of the correctness of model transformations in more general cases.

ATGS

incS 		 ATG ATGT

incT��

GS

typeS

��

pi ��

typeGS

���������������������
...

pj �� Gi

typeGi

��

pk �� ... pl �� GT

typeT

��

typeGT

���������������������

Fig. 14.1. Typing in the model transformation process

14.2 Model Transformation from Statecharts to Petri

Nets

In order to illustrate the idea of model transformation by graph transfor-
mation, we introduce a model transformation from a simple version of UML
statecharts into Petri nets. Similar transformations into various classes of Petri
nets could be used to carry out dependability and performance analysis for
the system model in the early stages of design, and the properties of UML
statecharts could be validated by means of the model transformation and the
corresponding analysis techniques for Petri nets.
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14.2.1 Source Modeling Language: Simple Version of UML
Statecharts

UML statecharts are an object-oriented variant of the classical Harel state-
charts [Har87], which describe behavioral aspects of (any instance of) a class
in the system under design. The statechart formalism is an extension of that
of finite-state machines to allow a decomposition of states into a state hierar-
chy with parallel regions that greatly enhance the readability and scalability
of state models.

StateMachine

String

Conf Step Event

State

Cond

Transition Action
stname

Boolean

isInit

from

to

trigger

String

ename
smname sm2conf

sm2step

conf2state

cond2state

trans2act

act2event

trans2cond

step2trans

begin

end

Fig. 14.2. Statechart type graph shown as an E-graph

The statechart type graph TS is shown as an E-graph (see Definition 8.1) in
Fig. 14.2, where the graph nodes are represented by rectangles, the data nodes
by rounded rectangles, the graph edges by solid arrows with inscriptions, and
the node attribute edges by dashed arrows with inscriptions. In this example,
there are no edge attributes. The data type signature DSIG = Sig(string)+
Sig(boolean) is given by the signatures of strings and booleans, where only
the sorts “String” and “Boolean” are shown in Fig. 14.2. The type graph TS

together with the final DSIG-algebra Z defines the attributed type graph
ATGS = (TS , Z).

This type graph has some similarities to the standard UML metamodel.
The type graph explicitly introduces several ideas from the area of statecharts
that are only implicitly present in the standard metamodel (such as state
configurations). In fact, we consider a network of state machines StateMachine.
A single state machine captures the behavior of any object of a specific class by
flattening the state hierarchy into state configurations and grouping parallel
transitions into steps. A Configuration is composed of a set of States that can
be active at the same time.

A Step is composed of non conflicting Transitions (which are, in turn, binary
relations between states) that can be fired in parallel. A step leads from a
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configuration from to a configuration to, and it is triggered by a common
Event for all its transitions. The effect of a step is a set of Actions.

The Generating Syntax Graph Grammar for the Statecharts
Source Modeling Language

The type graph of the statechart in Fig. 14.2 allows not only valid state-
charts, but also other graphs. For example, a Step could be connected to
two StateMachines by an edge sm2step. For this reason we use the generating
syntax grammar given in Figs. 14.3 and 14.4 to define precisely the source
modeling language, which defines a simple subclass of UML statecharts. In
general, we require injective matches for the generating syntax grammar. Note
that the production morphisms are given by corresponding numbers at nodes.
Edges between mapped nodes are also mapped although not explicitly indi-
cated by numbers.

Starting with an empty start graph, the production createStateMachine(sm:
String, initSt: String) inserts a new StateMachine with name sm, containing
exactly one initial State with name initSt. This implies that X = {sm :
String, initSt : String} is the set of variables for this production. The NAC
does not allow the creation of a StateMachine if another StateMachine with the
same name (i.e. the same value of the attribute smname) already exists. The
production addState(st:String) inserts a new configuration (a Conf node with a
State node) to an existing StateMachine if a configuration with the same name
does not exist already. The production addStep() inserts a new Step with a
Transition between two existing States. The Transition is connected to a new
Step. addEvent(en: String) inserts a new Event with name en; addCond() inserts
a condition Cond between a Transition and a State of two different StateMa-
chines. In the same way, an Action can only be placed between two different
StateMachines using the production addAction(), i.e. conditions and actions
are used only for communication between different state machines here.

The syntax grammar productions given in Fig. 14.3 are sufficient to cre-
ate the sample statechart shown in Fig. 14.8. They realize the generation of
simplified statecharts.

Fig. 14.4 contains three additional syntax grammar productions addTran-
sition(), addTransitionLeftState(), and addTransitionRightState(), which create
Transitions to existing steps such that they are connected to additional States
belonging to the configurations Conf related to the step. These productions
allow us to generate some more general statecharts, which can be considered
as the core subset of the statecharts defined in UML 2.0.

14.2.2 Target Modeling Language: Petri Nets

Petri nets are widely used to formally capture the dynamic semantics of con-
current systems, owing to their easy-to-understand visual notation and the
wide range of analysis tools available.
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NAC

smname = sm
StateMachine

RHSLHS

RHSLHS

1:Step 1:Step

RHSLHS

1:StateMachine :sm2conf
Conf

:conf2state1:StateMachine State

stname = st
isInit = false

Event

ename=en

:trigger

addEvent(en: String) [X={en: String}]

NAC=RHS

RHSLHS

NAC=RHS

addCond() [X={}]

2:Step 5:Conf

3:Transition 6:State

1:StateMachine 4:StateMachine

:step2trans

:sm2conf

:conf2state

Cond

:trans2cond:cond2state

RHSLHS

NAC=RHS 1:StateMachine

2:Conf 3:Conf

:sm2conf :sm2conf

4:State 5:State

:conf2state
Step

:sm2step

from to

Transition

addStep() [X={}]

RHSLHS

NAC=RHS

addAction()

2:Step 5:Step

3:Transition 6:Event

1:StateMachine 4:StateMachine

Action2:Step 5:Step

3:Transition

1:StateMachine 4:StateMachine

:step2trans

:sm2step :sm2step

:trigger

2:Step 5:Conf

3:Transition 6:State

1:StateMachine 4:StateMachine

:step2trans

:sm2step :sm2conf

6:Event

[X={}]
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2:Conf 3:Conf
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:conf2state :conf2state

:step2trans

:conf2state

end

:conf2state

:sm2step

:trigger

:sm2step:sm2step

:step2trans:trans2act :act2event

Fig. 14.3. Generating syntax graph grammar for the source modeling language (1)

In the following, we consider place/transition nets with initial marking,
also called place/transition systems in the Petri net literature [NRT92, Rei85].
Roughly speaking, Petri nets are bipartite graphs, with two disjoint sets of
nodes: Places and Transitions. In our case the initial marking allows each
place to contain at most one token. A token distribution defines the state of
the modeled system. The state of the net can be changed by firing enabled
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RHSLHS
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State State
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:begin

[X={}]

:to
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2:Conf

:sm2conf :sm2conf

3:Conf

4:Step
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:sm2step:from

:end

:step2trans

:from :sm2step

:step2trans

:conf2state

:sm2conf :sm2conf

:from
:sm2step

:step2trans

Fig. 14.4. Generating syntax graph grammar for the source modeling language (2)

transitions. A transition is enabled if each of its input places contains a token.
When firing a transition, we remove the tokens from all input places (con-
nected to the transition by PreArcs) and add a token to all output places (as
defined by PostArcs). The Petri net type graph is shown in Fig. 14.5 as an
E-graph (see Definition 8.1).

String

Boolean PostArc

Place Trans

PreArc

plname

token

presrc

posttgt postsrc

pretgt

Fig. 14.5. Petri net type graph shown as an E-graph
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SC type graph PN type graph

PostArc

Trans
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Place
plname: String
token: Boolean

RefEvent

RefState

RefStep

Transition

smname: String

isInit: Boolean

sm2conf

sm2step

trans2act

cond2state

act2event

conf2state
to

from

trans2cond

r4r3 r5 r6r2r1

posttgt

presrc pretgt

postsrc

end

step2trans

begin

Fig. 14.6. Integration of attributed type graphs

14.2.3 Model Transformation

Integration of Attributed Type Graphs

In order to interrelate the source and target modeling languages, we use ref-
erence types [VVP02] to construct an integrated attributed type graph, as
shown in Fig. 14.6. For instance, the reference node type RefState relates the
source type State to the target type Place.

In the notation of Fig. 14.6, type graphs on the left- and right-hand sides
correspond to Figs. 14.2 and 14.5, respectively; data node types and node
attribute types are listed in a box below the corresponding graph node type,
for example, the node attribute types stname and isInit of State, with tar-
gets String and Boolean, respectively, in Fig. 14.2 are given by the attributes
stname: String and isInit: Boolean of State in Fig. 14.6.

Example Statechart: Producer–Consumer System

As an example, we shall apply our model transformation to a producer–
consumer system. Fig. 14.7 shows the concrete syntax of the producer–
consumer system statechart in the upper part and the concrete syntax of
the transformed Petri net in the lower part. The abstract syntax graph of
the corresponding statechart is shown in Fig. 14.8, and Fig. 14.9 shows the
abstract syntax of the transformed Petri net. Note that Fig. 14.9 is typed over
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the Petri net type graph in Fig. 14.6 and that Fig. 14.8 is typed over the stat-
echart type graph in Fig. 14.6. In the concrete syntax of the statechart shown
in Fig. 14.7, the arc inscription [buff.empty]/buffer++ means that under the
condition [buff.empty] we have an event buffer++. The condition [buff.empty]
is modeled by an arrow from Condition to the state empty of the state ma-
chine Buffer, and the event buffer++ by the arrow from Action to the event
buffer++ in Fig. 14.8.

Fig. 14.7. Example statechart: concrete syntax graph of producer–consumer system
(upper part) and concrete syntax graph of the transformed Petri net (lower part)

Fig. 14.8. Abstract syntax graph of producer–consumer system statechart
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Fig. 14.9. Abstract syntax graph of the transformed producer–consumer system
Petri net

Productions for Model Transformation

The model transformation from statecharts into Petri nets is mainly given by
the transformation productions shown in Figs. 14.11–14.13. In order to obtain
a target graph typed over the Petri net type graph, the abstract syntax graph
of the statechart and the reference nodes and edges are deleted after applying
these productions of the model transformation.

The model transformation is done in the following three steps. In our
example, starting with the statechart graph in Fig. 14.8, we obtain the graph in
Fig. 14.10 as an intermediate step, leading to the Petri net graph in Fig. 14.9.
The productions are typed over TDSIG(X) with different sets X of variables
and with DSIG = Sig(Strings) + Sig(Boolean), as discussed above.

• Each state in the statechart is transformed to a corresponding place in
the target Petri net model, where a token in such a place denotes that
the corresponding state is active initially (productions InitState2Place and
State2Place). A separate place is generated for each valid event Event2Place
(see the graph in Fig. 14.10), after these productions have been applied
for as long as possible to the sample statechart graph in Fig. 14.8.

• Each step in the statechart is transformed into a Petri net transition
(Step2Trans). Naturally, the Petri net should simulate how to exit and
enter the corresponding states in the statechart, and therefore input
and output arcs of the transition have to be generated accordingly (see
StepFrom2PreArc and StepTo2PostArc). Furthermore, firing a transition
should consume the token of the trigger event (Trigger2PreArc), and should
generate tokens to (the places related to) the target event indicated as the
action (Action2PostArc).

• Finally, we clean up the joint model by removing all model elements from
the source language and the reference types. This can be done either by
restriction or by using another set of graph transformation productions.
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Fig. 14.10. Model Transformation after applying the productions of layer 0
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RefStateRefState

RefStateRefState
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1: State

stname = n
isInit = false

Place

plname = n
token = false

1: State

isInit = true

1: State
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token = false
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[layer = 0, X={n: String}]
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isInit = false

[layer = 0, X={n: String}]

:r1

:r1:r1

:r2 :r2

:r3 :r3 :r4

:r6

:r5

:r5:r1

Fig. 14.11. Transformation productions (1)

In fact, there are general schemes for deletion productions as shown in Fig.
14.14:
– DeleteEA attr deletes an edge attribute of type attr ∈ EATG

EA \ EATGT

EA

of an edge with edge type e ∈ EATG
G , with T1 = src(e), T2 = tar(e),

and T3 = tar(attr);
– Delete e deletes an edge typed over e ∈ EATG

G \ EATGT

G , and T1 =
src(e), T2 = tar(e);

– DeleteNA attr deletes a node attribute of type attr ∈ V ATG
NA \ V ATGT

NA

of a node with node type T1 ∈ V ATG
G , with T2 = tar(attr);

– Delete T deletes a node typed over T ∈ V ATG
G \ V ATGT

G .
The set of deletion productions for a given model transformation con-
sists of all possible productions DeleteEA attr, Delete e, DeleteNA attr, and
Delete T in the schemes given above.
Fig. 14.15 shows three sample deletion productions derived from the
schemes: Delete sm2step corresponds to schema Delete e, DeleteNA smname
corresponds to schema DeleteNA attr, and Delete StateMachine corresponds
to schema Delete T. In the type graph of our model transformation in Fig.
14.6 we do not have edge attribute edges, therefore we do not present an
example production corresponding to schema DeleteEA attr.
Restriction of a graph G typed over ATG by type : G → ATG to the type
graph ATGT shown in Fig. 14.1 with the inclusion incT : ATGT → ATG
means the construction of the pullback
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:r2 :r2

:to
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:conf2state :presrc

:postsrc

:posttgt

:r1:r1

Fig. 14.12. Transformation productions (2)

GT G

ATGT ATG

inc

typeT type

incT

leading to a subgraph GT of G, typed over ATGT by typeT : GT → ATGT .
After applying the restriction construction, or alternatively, applying all
deletion productions for as long as possible, we obtain the target graph
GT shown in Fig. 14.9.

In the following diagram we show the alternative to Fig. 14.1 where the
deletion productions are replaced by a restriction construction:
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Fig. 14.13. Transformation productions (3)
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Fig. 14.14. Schemes for deletion productions
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Delete_sm2step
LHS RHS

1:StateMachine
:sm2step

2:Step 1:StateMachine 2:Step
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Fig. 14.15. Sample deletion productions

ATGS

incS 		 ATG ATGT

incT��

GS

typeS

��

pi ��

typeGS
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...

pj �� Gi

typeGi

��

GT
��

typeT

��

We have simulated the model transformation using deletion productions
with our tool AGG (see Chapter 15). In particular, the abstract syntax graph
of the producer–consumer system statechart in Fig. 14.8 has been transformed
into the abstract syntax graph of the Petri net in Fig. 14.9.

In the following, we investigate the functional behavior of this model trans-
formation to certain extent. The following subsection contains a formal proof
of the termination of the model transformation considered, based on the ter-
mination criteria presented in Section 12.3.

The first step in showing local confluence is the analysis of critical pairs.
Although the theoretical results for local confluence have been restricted to
productions without NACs up to now, the AGG tool performs an initial step
by analyzing the critical pairs for productions with NACs (see Section 15.2.2).

However, we do not have a formal proof of local confluence of our model
transformation in the sense of Section 10.2, because the theory of local con-
fluence presented in Chapter 10 is restricted to productions without NACs at
present. The AGG tool, however, allows us to analyze the critical pairs for
productions with NACs. Since there are no relevant critical pairs here, the
model transformation is locally confluent (see Section 15.2). Together with
termination (see below), this implies confluence and functional behavior (see
Subsection 3.4.4).
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Finally, let us note that the restriction construction discussed above, or
alternatively using the general schemes of deletion productions, implies weak
syntactical correctness by construction. Weak syntactical correctness means
that the result graph is typed over the type graph in Fig. 14.5. In our example,
however, syntactical correctness requires in addition that the result graph is
a Petri net, which means that there is at most one PreArc and at most one
PostArc between each pair of Place and Trans. This constraint is satisfied
according to the NACs of the transformation productions in Figs. 14.12 and
14.13.

14.2.4 Termination Analysis of the Model Transformation

Now we shall apply the termination criteria of Section 12.3 to prove the termi-
nation of the model transformation from statecharts to Petri nets. Note that
for each statechart the model transformation can be considered as a gram-
mar with the statechart as its start graph. First, we assign the productions of
Figs. 14.11–14.13 to two creation layers and the deletion productions derived
from the schemes in Fig. 14.14 to one deletion layer. Then, the creation and
deletion layers of the types contained in the type graph in Fig. 14.6 are set.
Finally, a check of the conditions in Definition 12.15 yields the termination of
the transformation according to Theorem 12.26.

Assigning Production Layers

Let us define three layers for the model transformation productions, as shown
in Fig. 14.16. Productions in Fig. 14.11 are assigned to layer 0, productions
in Figs. 14.12 and 14.13 to layer 1, and deletion productions corresponding
to the schemes in Fig. 14.14 to layer 2. The type graph ATG is shown in
Fig. 14.6; ATGT is the Petri net part, shown as an E-graph in Fig. 14.5.

Assigning Layers to Types

According to Definition 12.15, the type set TY PE is given by all graph nodes,
graph edges, node attribute edges, and edge attribute edges of the type graph
in Fig. 14.6, which are presented in Fig. 14.17. Note that we have no edge
attributes in Fig. 14.6 and hence no edge attribute edges in TY PE.

According to Section 12.3, we can automatically assign creation and dele-
tion layers to each type t ∈ TY PE in the type graph on the basis of the
previous layer definitions for productions. Let us recall the general procedure.

Since, initially, only the elements in the source language are present, ex-
actly those types are included in the start types T0. (Compare this with the
start graph G0 in Fig. 14.8.) The creation and deletion layers of types are now
assigned as shown in Fig. 14.17, following the layer assignment in Definition
12.18 for k0 = 2.
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Layer 0 Layer 1 Layer 2

Nondeletion Nondeletion Deletion

pl(p) = 0 pl(p) = 1 pl(p) = 2

InitState2Place Trigger2PreArc DeleteEA attr with

State2Place StepFrom2PreArc attr ∈ EATG
EA \ E

ATGT
EA

Step2Trans StepTo2PostArc (not used in the example);
Event2Place Action2PostArc Delete e with

Condition2PrePostArc e ∈ EATG
G \ E

ATGT
G ;

DeleteNA attr with

attr ∈ V ATG
NA \ V

ATGT
NA ;

Delete T with

T ∈ V ATG
G \ V

ATGT
G .

Fig. 14.16. Production layers

Source type ts cl(t) dl(t) Reference type tr cl(t) dl(t) Target type tt cl(t) dl(t)

StateMachine 0 2 RefState 1 2 Place 1 3
State 0 2 RefStep 1 2 Trans 1 3
Step 0 2 RefEvent 1 2 PreArc 2 3
Event 0 2 r1 1 2 PostArc 2 3
Conf 0 2 r2 1 2 presrc 2 3
Transition 0 2 r3 1 2 pretgt 2 3
Action 0 2 r4 1 2 postsrc 2 3
Cond 0 2 r5 1 2 posttgt 2 3
sm2step 0 2 r6 1 2 plname 1 3
sm2conf 0 2 token 1 3
conf2state 0 2
cond2state 0 2
step2trans 0 2
trans2act 0 2
trans2cond 0 2
act2event 0 2
smname 0 2
stname 0 2
ename 0 2
isInit 0 2
from 0 2
to 0 2
trigger 0 2
begin 0 2
end 0 2

Fig. 14.17. Creation and deletion layers for types

Verification of Termination Criteria

First of all, we note that it is enough to verify the reduced layer conditions in
Lemma 12.19, because the following conditions are satisfied:
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1. p creates t ⇒ t /∈ T0;
2. 0 ≤ cl(t) ≤ dl(t) ≤ k0 + 1 for all t ∈ TY PE.

Next, we observe that our graph transformation system GTS is finitary
(see Definition 12.15, item 3), i.e., for G = G0 and all graphs G derivable from
G0, the cardinality card{x ∈ G|type(x) ∈ TY PE} is finite. Moreover, for all
productions p of the non deleting layers 0 and 1, there is only a finite number
of matches m : L → G with m |= NACp. For productions p with X = ∅ and
m : L → G, this is obvious because G is finitary. The remaining productions
InitState2Place, State2Place, and Event2Place in Fig. 14.11 have one variable
n or e of type String, and the domain of String in the DSIG-algebra A
is infinite. However, for each match m : L → G, the node attribute edge
eNA of type stname or ename in G has targetGNA(eNA) = w ∈ AString. This
implies, for the variable n or e in an LHS in Fig. 14.11, that mD(n) = w or
mD(e) = w, respectively, showing also that the number of matches m : L → G
is finite in these cases. Hence GTS is finitary.

Now it suffices to verify the reduced layer conditions in Lemma 12.19:

• Reduced nondeletion layer conditions. First, we notice that the correspond-
ing conditions 1 and 2 in Lemma 12.19 are straightforwardly guaranteed
by the construction (as NAC is isomorphic/identical to the right-hand side
or a subgraph of the right-hand side). Now, we shall show the validity of
condition 3 for a single production only, namely p = StepFrom2PreArc (the
rest of the productions can be checked similarly). In condition 3, for each
graph element x in the left-hand side with type(x) ∈ TY PE, we need to
check cl(type(x)) ≤ pl(p), which is valid because of the layer assignments
above (since maxx∈L{cl(type(x)} = 1 and pl(p) = 1).

• Reduced deletion layer conditions. The reduced deletion layer condition is
satisfied, because each deletion production derived from the schemes in
Fig. 14.14 deletes at least one item x with type(x) ∈ TY PE.

14.3 Further Case Studies

In the following, we briefly discuss two other case studies of model transfor-
mations which have been described in the literature.

14.3.1 From the General Resource Model to Petri Nets

For the treatment of Petri-net-based simultaneous optimization and verifica-
tion of resource allocation problems, we refer to [Var04], where an application-
specific Petri net model was generated from a variant of the General Resource
Modeling (GRM) framework (GRM) [Gro] using typed attributed graph trans-
formation. The graph grammar (implemented in AGG [AGG]) for this model
transformation consists of five production layers as follows (where layers 0 and
2 are nondeletion layers, and the others are deletion layers):
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0. Target model elements are derived from core GRM elements such as re-
source types, activities, and control flow elements,

1. Petri net transitions and arcs are created between the transformed Petri
net items according to the control flow in the source model,

2. The start and end points of the process are marked by auxiliary edges,
3. The quantitative attributes of the Petri net elements are set,
4. All the auxiliary edges and the source model elements are deleted.

14.3.2 From Process Interaction Diagrams to Timed Petri Nets

In [dLT04], a model transformation from a Process Interaction notation to
Timed Transition Petri nets is specified using graph transformation. The
source language is customized towards the area of manufacturing and allows
the building and simulation of networks of machines and queues through which
pieces can flow. In the mapping, timed transitions depict service times of ma-
chines, places are used to model queues and machine states, and, finally, pieces
are mapped to tokens. The transformation is divided into four layers, the first
one being non deleting, while the others are deleting. The first layer creates
Petri net elements connected to the source elements. Productions in the sec-
ond layer delete the pieces in the model, creating tokens in the appropriate
places. In the third layer, we connect the Petri net elements, following the
connectivity of the source language elements. In addition, the connectivity
of the Process Interaction elements is deleted. Finally, the last layer deletes
the Process Interaction elements. The languages and the transformation were
defined with the AToM3 tool [dLV02b], and then analyzed using AGG.

14.4 Conclusion

In this chapter, we have shown how typed attributed graph transformations
can be used to define model transformations between models of different visual
languages. It is interesting to note that typed attributed graph transformation
systems can be used not only for the model transformation but also as gen-
erating grammars for the source and target languages. Moreover, in several
cases an interpreter semantics for the source and/or target languages can be
obtained from another typed attributed graph transformation system. For ex-
ample, the token game of Petri nets can be modeled by graph transformations.
As pointed out in Section 14.1, the theory of typed attributed graph transfor-
mation described in Part III provides a good basis for defining and verifying
the correctness of model transformations. For a more detailed discussion of
this problem, we refer to [EE05].
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Implementation of Typed Attributed Graph

Transformation by AGG

In the previous chapter, we showed how the comprehensive theory of typed
attributed graph transformation can be used to describe and analyze visual
model transformations. Now, we present an account of how this theory can
be implemented in an integrated development tool for typed attributed graph
transformation that supports the development of graph grammars, as well as
their testing and analysis. The tool environment presented is called the At-
tributed Graph Grammar (AGG) system and is implemented in Java. Since
the theoretical concepts are implemented as directly as possible – but, nat-
urally, respecting necessary efficiency considerations – AGG offers clear con-
cepts and sound behavior concerning the graph transformation part. The run-
ning example in this chapter is the model transformation example presented
in the previous chapter, but here it is treated as an AGG graph grammar.

Since graph transformation can be applied on very different levels of ab-
straction, it can be non-attributed, attributed by simple computations, or
attributed by complex processes, depending on the abstraction level. To re-
flect this wide application area for attributed graph transformation, we have
decided to attribute AGG graphs by use of Java objects. On the one hand,
this design decision certainly allows a large variety of applications to graph
transformation, but on the other hand it is clear that the Java semantics is
not covered by the formal foundation.

Owing to its formal foundation, AGG offers validation support in the form
of graph parsing, consistency checking of graphs and graph transformation
systems, critical pair analysis, and analysis of the termination of graph trans-
formation systems.

15.1 Language Concepts of AGG

In the following, we step through the whole list of basic concepts for typed at-
tributed graph transformation based on the adhesive HLR category
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(AGraphsATG,M), and present for each concept how it is defined in AGG
and to what extent it conforms to the corresponding theoretical concept.

15.1.1 Graphs

A graph in AGG consists of two (disjoint) sets containing the nodes and the
edges of the graph. Considered together, the nodes and edges are called the
objects of a graph. Every edge represents a directed connection between two
nodes, which are called the source and target nodes of the edge. Note that
in our idea of a graph, we can have multiple edges between a single pair of
nodes, because every edge has an identity of its own, just as a node does.
This fact distinguishes our view from another popular idea of a graph, where
an arc is described just as a relation between nodes. Our concept of a graph
corresponds exactly to that in the theory (see Definition 8.7). Examples of
AGG graphs have been given in Figs. 14.8 and 14.9 within the case study.

Note that in our idea of a graph, the position of a node or an edge in the
plane does not store syntactic or semantic information, i.e. the layout of a
graph is just a matter of presentation for the sake of readability to the user.
Obviously, the layout of a graph may be considered as the equivalent of the
indentation (or “pretty-printing”) of a program in a conventional textual pro-
gramming language such as C. It is a well-known fact that a program which is
properly indented according to its logical structure is far more comprehensible
to the human reader than the same program put into one line; whereas, to
the compiler, both versions are equivalent. This experience is perfectly trans-
ferable to the layout aspect of a graph, and makes it clear that the layout is
of considerable importance for a human user, even though it does not carry
any relevant information itself. Unfortunately, the problem of automatically
computing a reasonable layout of a graph is much more complex than that of
pretty-printing a textual program, but it is solved in AGG in quite a simple
way.

15.1.2 Typing Facilities

To allow for further classification of graph objects, each graph object is asso-
ciated with exactly one type from a given type set. This type set is structured
into two subsets: the set of node types and the set of edge types. Non-typed
nodes or edges are not allowed in AGG. The type information is given by a
type name (which may be empty) and a graphical representation that spec-
ifies the shape, color, and kind of line used to represent the node or edge. If
two type names are equal but the graphical representations differ, the corre-
sponding types are considered to be different.

AGG supports not only type sets, but also type graphs. As in the theory,
nodes and edges of the type graph represent node and edge types. In addition,
an AGG type graph may contain multiplicity constraints on edge types that
constrain how many objects may be connected by an instance of a certain edge
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type. For each edge type, two multiplicity constraints can be given, one for
the source and one for the target nodes. Moreover, a node type may have
a multiplicity constraint, restricting the number of instances of this node
type. In the theory, multiplicities can be expressed by graph constraints, as
presented in Chapter 12. Upper bounds are expressed by negative constraints,
and lower bounds by positive constraints.

Example: Transformation from Statecharts to Petri Nets

Taking up the case study from Chapter 14, we can create an AGG graph
grammar from it. Here, we start with the type graph shown in Fig. 14.6.
Note that in the corresponding AGG type graph (in Fig. 15.1), some of the
edge type names have been shortened or omitted. Furthermore, owing to the
possibility in AGG of adding multiplicities to node and edge types, the type
graph has been extended by multiplicities at the source and target ends of
type edges. Multiplicities of node types have not been used, i.e. all node types
are marked with an asterisk at their upper right corner, allowing arbitrary
numbers of instances.

Fig. 15.1. Type graph of Fig. 14.6 extended by multiplicities

15.1.3 Node and Edge Attributes

In AGG, an attribute is declared just like a variable in a conventional pro-
gramming language: we specify a name and a certain type for the attribute,
and we may then assign any value of the specified type to it. As in the theory,
all graph objects of the same type also share their attribute declarations, i.e.
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the list of attribute types and names; only the values of the attributes may be
chosen individually. From a conceptual point of view, attribute declarations
have to be considered as an integral part of the definition of a type.

Slightly differently from the general definition of attributed graphs in
Chapter 8, each attributed node and edge has exactly one value for each at-
tribute declared in its type. Consequently, AGG allows neither graphs which
are only partially attributed, nor several values for one attribute. This restric-
tion is natural, since in many respects, the concept of a type with integral at-
tribute declarations resembles the notion of a class with its member variables
or class attributes in the paradigm of object-oriented programming. In the
theory, this restriction can be expressed by adding positive graph constraints
which require at least one value, and negative constraints forbidding more
than one value.

A further important question that we have to deal with is the following:
What types are actually available for the declaration of attributes? The answer
is short and simple, but emphasizes the affinity of the graphical AGG approach
to the object-oriented paradigm: the attributes may be typed with any valid
Java type. This means that not only it is possible to annotate graph objects
with simple types such as strings or integers, but we can also utilize arbitrary
Java classes to gain maximal flexibility in attribution. Apart from the standard
Java library JDK,1 user-defined classes can also be used for attribution.

It is an open research issue to check how far this attribution by Java
objects conforms to the formal concepts of attribution by algebras which is
required in the definition of an attributed graph in Chapter 8. We use Java
primitive types such as “int”, “float”, and “boolean”, and Java classes as
possible attribute types. Pre-defined operations and methods will be used
later in Java expressions to compute new attribute values. Java is a strongly
typed language, and thus the general attribution scheme, where each attribute
has a type, a name, and a value, can be used. Further algebraic properties are
not required in AGG. In the following, we shall discuss the consequences of
this design decision whenever the theoretical concept of attribution is relevant.

15.1.4 Rules and Matches

First of all, it has to be noted that productions are called “rules” in AGG.
Internally, AGG follows the single-pushout approach, and thus rules are rep-
resented by a left- (LHS) and a right-hand side (RHS), together with a partial
graph morphism r : LHS → RHS. However, this morphism can be considered
as a span of two total graph morphisms with the morphism’s domain as the
gluing graph, i.e. LHS ← dom(r) → RHS, the way DPO rules are denoted.
AGG supports both approaches to graph transformation. The approach is
chosen on the level of graph grammars, i.e. the approach is the same for all
rules of one grammar.

1 Java Development Kit.
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The partial graph morphism r : LHS → RHS is not necessarily injective,
i.e. non injective rules are also supported. Negative application conditions
(NACs) can be added to a rule, as many as are needed. They are allowed
to contain the LHS only partially. We shall discuss below the fact that this
relaxation does not affect the satisfaction of NACs. Usually, we have consid-
ered NACs with injective mappings from the LHS to the NAC to express the
context in which the rule must not be applied. However, there is a special
situation where it is very useful that we are not restricted to injectivity: if we
allow non injective matches for rules in general, the use of non injective NACs
allows us to enforce injective matching just for particular objects. Recall this
rule of thumb: by mapping two objects in the LHS to the same object in the
NAC, we can specify that we do not allow this identification to happen in an
actual match.

The rule’s LHS or NACs may contain constants or variables as attribute
values, but no Java expressions. This restriction allows attribute matching
by simply comparing constant values or instantiating variables. However, the
RHS of a graph rule may contain Java expressions in addition. NAC may
use the variables declared in the LHS or new variables declared as an input
parameters. The scope of a variable is its rule, i.e. each variable is globally
known in its rule. The Java expressions occurring in the RHS may contain any
variable declared within the LHS or as an input parameter. Multiple usage of
the same variable is allowed and can be used to require equality of values.

Moreover, rules may have a set of attribute conditions which are Boolean
Java expressions. These conditions can also be expressed by attributed graph
rules that add a new Boolean attribute to some graph object which con-
tains the conjunction of all these conditions as a value. Vice versa, attributed
graph rules with expressions in the LHS can be converted into AGG rules by
inventing new variables for each of the expressions in the LHS, replacing each
expression by its corresponding variable, and adding new conditions which
state the equality of each variable with its corresponding condition.

In general, we may find multiple matches of the LHS into the host graph,
and, on the other hand, there may be no matches at all. In the later case,
the rule is not applicable to the given graph. The same is true in the DPO
approach, if the match does not satisfy the gluing condition (see Subsection
15.1.5). In the case of multiple matching possibilities, one match has to be
chosen. It depends entirely on the application context whether this selection
is done randomly or by preference, for example by user interaction.

Moreover, the rule matches may also be non injective, i.e. two or more
graph objects in the LHS of a rule may be mapped to one single object in
the host graph. Note that non injective matches may cause conflicts between
deletion and preservation: we could have, for instance, two graph objects in
the LHS, one to be deleted and one to be preserved, and both mapped to the
same image object in the host graph. Conflicts such as this can be resolved
either by giving deletion precedence over preservation (SPO approach) or by
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nonapplicability of the rule (DPO approach), since the gluing condition is not
fulfilled.

When a match has been fixed, the rule’s NACs have to be checked. A
match satisfies an NAC if there exists no morphism from the NAC to the host
graph that extends the match and maps objects not coming from the LHS
injectively. This satisfaction relation differs slightly from that in the theory,
where a NAC is satisfied if there is no injective morphisms from the NAC to
the host graph.

Moreover, AGG allows NACs which contain their LHS only partially. The
NAC is satisfied if there is a total graph morphism from the NAC to the
host graph that extends the match. In the formal approach, NACs have to
include their LHS completely. Clearly, every possible NAC n which contains
its LHS only partially can be completed to some NAC n′ such that the LHS is
totally included. It is obvious that a match satisfies n if and only if it satisfies
n′. Within AGG, the partial representation of NACs on one hand is more
compact and intuitive, and hence is more user-friendly. On the other hand, it
is equivalent to the theory in the DPO approach as discussed above.

Example: a Model Transformation Rule

Considering the case study in Chapter 14 again, we shall pick one of the
rules in Fig. 14.11 and discuss how it can be defined in AGG. We take the
rule InitState2Place for our small comparison. Except for the layout, the only
difference is the attribute list of the “State” node in the NAC. This list does
not have to contain the whole attribute list, but only those attributes that
are interesting for the NAC. In our example, the attribute list is empty. The
NAC is shown on the left, the LHS in the middle, and the RHS on the right
in Fig. 15.2.

Fig. 15.2. Rule InitState2Place of Fig. 14.11, represented in AGG

15.1.5 Graph Transformations

The effect of applying a rule r : LHS → RHS in AGG with a given match
is a graph transformation. The basic idea of what happens during a graph
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transformation in AGG is the following: the pattern found for the LHS is
taken out of the host graph and replaced by the RHS of the rule. Since a
match m : LHS → G is a total morphism, any object o in the LHS has a
proper image object m(o) in the host graph G. Now, if o also has an image r(o)
in the RHS, its corresponding object m(o) in the host graph is preserved during
the transformation; otherwise, it is removed. Objects appearing exclusively in
the RHS without an original object in the LHS are newly created during the
transformation. Finally, the objects of the host graph which are not covered
by the match are not affected by the rule application at all; they form the
context, which is always preserved during derivations. If the gluing condition
is not set, AGG supports the SPO approach. In this case dangling arcs are
implicitly removed by the transformation as well, even though they belong
to the context which is normally to be preserved. On the other hand, if the
gluing condition is set, AGG supports the DPO approach (see Subsection
1.2.3). AGG offers the possibility to set a number of transformation options:
(1) matches can be arbitrary or restricted to injective ones, (2) the dangling
condition can be active or not, (3) the identification condition can be active
or not, and (4) the NACs can be active or not. Every combination of these
options is possible. Choosing the dangling and the identification condition (or
injective matches) corresponds to the DPO approach to graph transformation.

Besides manipulating the nodes and edges of a graph, a graph rule may
also perform attribute computations. During rule application, expressions are
evaluated with respect to the instantiation of variables induced by the current
match. However, in AGG, we are not limited to applying simple arithmetic
operations on attributes. In fact, we may call arbitrary Java methods in at-
tribute expressions, as long as the overall type of the expression matches the
type of the attribute whose value it represents. From interfacing databases
to calling sophisticated mathematical libraries or invoking interactive dialogs,
everything is possible. Actual invocation of a method occurs whenever the
expression is evaluated, i.e. every time the corresponding rule is applied.

To summarize, the effect of the transformation is

• complete: any effect specified in the rule is actually performed in the con-
crete transformation;

• minimal: nothing more is done than what is specified in the rule;2

• local: only the fraction of the host graph covered by the match is actually
affected by the transformation.3

In this way, AGG graph transformations with the gluing condition cor-
responds strongly to the typed attributed graph transformations defined in
Chapter 9.

2 With the well-defined exception of the implicit removal of dangling edges and
conflicting objects, if the gluing condition is not set (SPO approach).

3 In the SPO approach, the coverage has to be extended to include potentially
dangling edges.
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15.1.6 Graph Grammars

A graph grammar in AGG consists of a start graph and a rule set. Graph
objects in the graphs and rules are classified by two type sets, one for nodes
and one for edges. Optionally, a type graph with multiplicity constraints can
be defined in addition.

AGG supports the possibility to set rule layers and thus to define layered
graph grammars. The layers fix an order on how rules are applied. The inter-
pretation process first has to apply all rules of layer 0 for as long as possible,
then all rules of layer 1, etc. After the rules of the highest layer have been ap-
plied for as long as possible, the transformation process stops. To summarize,
rule layers allow one to specify a simple control flow on graph transformation,
and they correspond exactly to those defined in Section 12.3.

15.2 Analysis Techniques Implemented in AGG

Several analysis techniques have already been implemented in AGG. They rely
on the language concepts of AGG. Not all theoretical constructions introduced
in Part III have been implemented in AGG, but the main ones are available.
On the other hand, the practical application of certain analysis techniques has
led to new ideas for presenting the results of the analysis in a suitable way.
Layout and filtering play important roles here.

15.2.1 Graph Constraints

AGG provides the possibility to formulate consistency conditions which can be
tested on single graphs, but which can also be checked for a whole graph trans-
formation system. Generally, consistency conditions describe basic (global)
properties of graphs such as the existence or nonexistence of certain substruc-
tures, independent of a particular rule.

An atomic graph constraint in AGG is a total injective morphism c : P →
C, the left graph P is called the premise and the right graph C is called the
conclusion. An atomic graph constraint is satisfied by a graph G if for all total
injective morphisms p : P → G there is a total injective morphism q : C → G
such that q ◦ c = p. Here, we restrict the atomic graph constraints presented
in Chapter 12 to injective ones. It is left to future work to extend AGG to
general graph constraints.

While the default number of conclusions is equal to 1, an atomic graph con-
straint can also have more than one conclusion in AGG. The graph constraint
is then defined by a set of total injective morphisms {ci : P → Ci|i ∈ I}. Such
an extended atomic graph constraint is satisfied if at least one morphism ci

fulfills the above condition. This extension was not presented in Chapter 12,
but has been introduced in [HW95] for labeled graphs and in [RT05] for typed
graphs. It extends the expressiveness of atomic graph constraints. As presented
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in Chapter 12, we can build up formulas over atomic graph constraints, using
the operators ¬, ∨, and ∧. Atomic graph constraints and formulas are called
graph constraints.

If GC is a set of graph constraints, we say that G satisfies GC if G satisfies
all constraints in GC.

It is possible to generate postapplication conditions for a rule from graph
constraints such that the constraints are always ensured when the rule is ap-
plied. A rule extended in this way is applicable to a consistent graph if and
only if the derived graph is also consistent. A graph grammar is consistent
if the start graph satisfies all graph constraints and the rules preserve this
property. Thus, AGG realizes the transformation of graph constraints to ap-
plication conditions of rules, but the transformation from postconditions to
preconditions (from right to left application conditions) is left for future work
(see Section 12.2).

15.2.2 Critical Pair Analysis

AGG supports critical pair analysis, which is one of the main analysis tech-
niques for rewrite systems. Critical pair analysis is known from term rewriting
and is used there to check if a term rewriting system is locally confluent. It has
been generalized to graph rewriting by Plump [Plu95]. Critical pairs formalize
the idea of a minimal example of a conflicting situation. From the set of all
critical pairs, we can extract the objects and links which cause conflicts or
dependencies. Recall that two graph transformations G ⇒ H1 and G ⇒ H2

are in conflict if they are parallel dependent (see Definition 9.12).

A critical pair is a pair of transformations G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2

which are in conflict, such that, roughly speaking (see Definition 10.13), the
graph G is minimal, i.e., G is the gluing of the left-hand sides L1 and L2 of the
rules p1 and p2. It can be computed by overlapping L1 and L2 in all possible
ways, such that the intersection of L1 and L2 contains at least one item that
is deleted or changed by one of the rules and that both rules are applicable
to G at their respective occurrences.

The set of critical pairs represents precisely all potential conflicts. This
means that a critical pair for rules p1 and p2 exists iff there is an application
of p1 which disables that of p2 or vice versa.

There are three main reasons why rule applications can be conflicting. The
first two are related to the structure of the graph, whereas the third concerns
its attributes.

1. One rule application deletes a graph object which is in the match of an-
other rule application (delete–use conflict).

2. One rule application generates graph objects in such a way that a graph
structure would occur which is prohibited by a negative application con-
dition of another rule application (produce–forbid conflict).
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3. One rule application changes attributes that are in the match of another
rule application (change–attribute conflict).

Two rule applications are in conflict if at least one of the conditions above
is fulfilled. To find all conflicting rule applications, minimal critical graphs
to which rules can be applied in a conflicting way are computed. Basically,
we consider all overlapping graphs in the LHSs of two rules with the obvious
matches and analyze these rule applications. All conflicting rule applications
that we find are called critical pairs. This construction follows the definitions
in Chapter 9, except of rules with NACs, which are not handled in the theory
of critical pairs up to now. If one of the rules contains negative application
conditions, the graphs of one LHS that overlap with a proper part of the NAC
have to be considered in addition. We are currently extending the theoreti-
cal foundation to support this construction, which is already implemented in
AGG.

Example: Critical Pairs for Sample Model Transformation

As an example of critical pair analysis, we consider the transformation rules
in the case study, depicted in Fig. 14.11–14.13. In Fig. 15.3, a table is shown
which gives an overview of all critical pairs for these rules, found by AGG
separately for the rule layers 0 and 1; critical pairs of transformations with
the same rule and the same match are not shown because they are isomorphic
and hence locally confluent. Fig. 15.3 just shows the critical pairs of layers 0
and 1. Layer 2 contains all deletion rules schematically described in Fig. 14.14.
Considering layer 2 containing the deletion rules, it is obvious that only trivial
critical pairs exist, i.e. critical pairs using the same rule and the same match,
which always lead to a confluent situation.

Fig. 15.3. Critical pairs of transformation rules in Figs. 14.11–14.13
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Now we shall consider one pair of rules more closely: the rules Trig-
ger2PreArc and StepFrom2PreArc (depicted in Fig. 14.12). The upper part of
Fig. 15.4 shows the LHS of the rules involved. Below, the overlapping graph,
is shown which causes a conflict of the following sort: both rules use the same
Place. The first rule approaches it via a RefEvent node, while the second
rule does so via a RefState node. This possible conflict situation cannot oc-
cur during the model transformation that we described in Chapter 14, since
events and states are always translated to different places according to the
rules State2Place and Event2Place, which generate a new Place in each case.
Moreover, there are no rules which can identify different Places. If we were
to add a graph constraint forbidding this situation, the critical pair analysis
would not report this conflict anymore (see the extensions below).

Fig. 15.4. Overlapping graph for the rules Trigger2PreArc and StepFrom2Arc in
Fig. 14.12

As a second example, we consider the pair of rules Condition2PrePostArc
(depicted in Fig. 14.13) and StepFrom2PreArc (depicted in Fig. 14.12). The
upper part of Fig. 15.5 shows the LHS of the rules involved. Below, the over-
lapping graph is shown, which depicts a situation where both rules refer to the
same Trans and Place nodes. Between the Trans and the Place, the first rule
inserts a PreArc and a PostArc, while the second rule inserts a PreArc (see
the RHS of the corresponding rules in Figs. 14.12 and 14.13). The NACs of
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Fig. 15.5. Overlapping graph for the rules Condition2PrePostArc and
StepFrom2PreArc in Fig. 14.12 and 14.13

the two rules (with NAC = RHS in both cases) forbid the second application
of these rules owing to a produce-forbid-conflict. This conflict situation cannot
appear in our case study, because the rules of the generating syntax grammar
of the source language in Figs. 14.3 and 14.4 allow a condition Cond between
Transition and State nodes of different StateMachines only. However, a Conf
node is allowed between a Step and a State node of the same StateMachine
only. Hence the two situations depicted in Fig. 15.5 cannot appear in the
same host graph generated by the syntax grammar. Note that this restriction
cannot be expressed with the model transformation type graph itself, shown
in Fig. 14.6.

We have now shown for two of the critical pairs in Fig. 15.3 that they
cannot occur during the model transformation, owing to the restriction of the
source language given by the generating syntax grammar in Figs. 14.3 and
14.4. In fact, the same is true for the other critical pairs in Fig. 15.3. Since
there are no critical pairs left, the model transformation is locally confluent.
Together with the termination of the model transformation shown in Chap-
ter 14, the implemented analysis techniques of AGG imply that the model
transformation is also confluent and has functional behavior, as discussed in
Section 3.4.2.
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Extensions

Practical experience with critical pair analysis has shown that, often, critical
situations which cannot occur in the system are shown. Moreover, often too
many similar critical pairs are computed, which all show essentially the same
conflicts. We have implemented the following additional filtering possibilities
in AGG, which can reduce the number of critical pairs drastically:

• To rule out unwanted conflict situations, the user can enforce a check of
multiplicity and graph constraints for all overlapping graphs. Only those
constraints are taken into account which remain true for all possible em-
beddings of critical graphs into larger contexts. These are mainly those
constraints which forbid certain parts of a graph.

• The set of critical pairs can be reduced by ruling out similar critical pairs
that report essentially the same conflict. If one critical pair includes an-
other one, only that with the smallest overlapping graph is kept.

• If the graph grammar is layered, critical pairs are sought for rules in the
same layer only.

Automatic conflict resolution analysis in AGG is left to future work.

15.2.3 Graph Parsing

AGG provides a graph parser which is able to check if a given graph belongs
to a particular graph language determined by a graph grammar. In formal
language theory, this problem is known as the membership problem. Here, the
membership problem is lifted to graphs. This problem is undecidable for graph
grammars in general, but for restricted classes of graph grammars it is more
or less efficiently solvable.

Usually, a graph grammar is given to generate all graphs of a graph lan-
guage. For parsing, all rules of the graph grammar have to be inverted. By
applying the inverted rules in the right way, all graphs of the corresponding
graph language can be reduced to the start graph of the grammar.

In AGG not all kinds of rules can be automatically inverted. For this
reason, the graph parser expects, instead of a generating grammar, a “parse
grammar” containing reducing parsing rules and a stop graph. Given an ar-
bitrary host graph, AGG tries to apply the parsing rules in such a way that
the host graph is reduced to the stop graph. If this is possible, the host graph
belongs to the graph language determined by the grammar, and there is a
transformation sequence from the host graph to the stop graph; otherwise,
this is not the case.

AGG offers three different parsing algorithms, all based on backtracking,
i.e. the parser builds up a derivation tree of possible reductions of the host
graph with dead ends, called leaf graphs (i.e. where no rule can be applied
anymore), but the leaf graph is not isomorphic to the stop graph. Since simple
backtracking has exponential time complexity, the simple backtracking parser
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is accompanied by two further parser variants exploiting critical pair analysis
for rules.

Critical pair analysis can be used to make the parsing of graphs more ef-
ficient: decisions between conflicting rule applications are delayed as far as
possible. This means that nonconflicting rules are applied first and the graph
is reduced as much as possible. Afterwards, the conflicting rules are applied,
first in noncritical situations and, when this is not possible, in critical ones.
In general, this optimization reduces the derivation tree constructed, but does
not change the worst-case complexity.

15.2.4 Termination

In AGG, termination criteria are implemented for layered graph transforma-
tion systems (see Chapter 12). In general, termination is undecidable for graph
grammars. However, if graph grammars with negative application conditions
meet suitable termination criteria, we can conclude that they are terminating.
We have implemented the following termination criteria:

• Deletion layer conditions (1). If k is a deletion layer, then one of the
following applies:

1. Each rule decreases the number of graph items.
2. Each rule decreases the number of graph items of one special type.

The termination of attributed graph transformation systems using these
termination criteria has been shown in [BKPT05].

• Deletion layer conditions (2). See Definition 12.15.
• Nondeletion layer conditions. See Definition 12.15.

In AGG, the rule layers can be set by the user or generated. The creation
and deletion type layers will be generated automatically, such that for each
layer one set of layer conditions is satisfied, if this is possible.

Example: Termination of Model Transformation

In Fig. 15.6, the termination dialog is shown for the case study in Chapter 12.
For the given rule layers, creation and deletion layers of node and edge type
are generated such that the termination criteria are fulfilled. As shown in
Fig. 15.6, the termination criteria are fulfilled for the case study, i.e. the
model transformation always terminates.

15.3 Tool Environment of AGG

AGG is an integrated development environment for graph transformation sys-
tems. It contains several visual editors for graph grammars, graphs and rules;
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Fig. 15.6. Termination dialog

a visual interpreter that performs graph transformations step by step or for as
long as possible; and a validation tool which supports the analysis techniques
described in the previous section. The internal graph transformation engine
can also be used by a Java API and thus can be integrated into other tool
environments.
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15.3.1 Visual Environment

The AGG development environment provides a comprehensive functional-
ity for the input and modification of typed attributed graph grammars by
a mouse/menu-driven user interface.

There is a variety of visual editors available:

• a type editor for node and edge types, with the possibility to name and
set a simple graphical layout for each node and edge type,

• a graphical editor for graphs (host graphs and type graphs),
• a graphical editor for rules that supports the editing of rules consisting

of a left- and a right-hand side and (optionally) one or more negative
application conditions;

• an attribute editor which allows the definition and modification of at-
tributes, variables, and parameters, as well as attribute conditions;

• a tree view to edit graph grammars;
• dialogs for setting rule layers and graph grammar attributes.

In Fig. 15.7, the main perspective of AGG’s visual environment is shown.
The figure depicts a tree view of the current graph grammars on the left, the
rule editor in the upper right part, and the graph editor in the lower right
part.

Fig. 15.7. The visual environment of AGG
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Graph transformations are also performed in a visual manner. After a rule
and a match have been chosen interactively, the result of the rule application
is displayed using a simple layout algorithm which changes the given graph
layout as little as possible. When the automatic selection of rules and matches
is chosen and the rules are applied for as long as possible, the intermediate
graphs can be optionally shown. It is also possible for a graph transformation
sequence to be stopped by the user.

For a detailed description of the graphical user interface, see the user
manual at the AGG home page [AGG].

AGG is designed according to the model–view–controller architecture. It
distinguishes between graphs with a concrete layout and graphs without a
layout. The model is formed by the graph transformation engine, which ma-
nipulates graphs without a layout.

15.3.2 Graph Transformation Engine

The graph transformation engine is the internal model of the AGG system,
which is also usable without the visual environment. The engine’s API directly
reflects the concepts of graph transformation described in Section 15.1.

Rule applications can be performed in two different modes: an interaction
mode and an interpreter mode. In the interaction mode, the rule selection
and match definition can be done interactively. After a rule has been cho-
sen, the match can either be given elementwise by clicking on LHS and host
graph elements alternately, or be computed automatically. If several matches
are possible, they are computed one after the other. A third possibility is the
manual definition of a partial match, which is completed automatically after-
wards. Again, if several completions exist, they are shown sequentially. The
automatic match completion computes the possible matches in an arbitrary
order, which will certainly differ from the order that will be used if the com-
putation of all possible matches is repeated. After the rule and match have
been fixed, the rule is applied to the current host graph.

To ensure compliance with the formal definition of graph transformation,
AGG’s transformation engine is based on a library designed to perform arbi-
trary colimit computations [Wol98], where pushouts fit in as a special case.
Note, however, that AGG will never face you with an explicit pushout di-
agram, i.e. the rules modify the host graph directly. However, owing to the
freedom to use arbitrary Java expressions for attribute computations, a graph
transformation might yield unexpected results; for example, when a method
throws an exception, it might happen that the attribute values are not set.

The second possible mode of rule application is the interpreter mode, where
rules are applied for as long as possible. The selection orders for the rules and
matches are nondeterministic, except for layered graph grammars or other
kind of rule control such as by Java programs using the AGG API.
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15.3.3 Tool Integration

Since graphs are a very general data structure which is used in various fields
of computer science, a variety of graph-based tools exist. To increase their
interoperability, GXL [GXL], a common exchange format for graphs, has been
developed on the basis of XML. GXL allows one to store the logical structure
of nearly all kinds of graphs, for example typed and attributed graphs with
hyperedges, and also hierarchical graphs. GXL is used not only by graph
transformation tools, but also by graph-drawing tools, reengineering tools,
etc.

AGG supports the exchange of graphs by GXL, i.e. the current host graph
of a graph grammar can be stored in GXL or a GXL graph can be read in
and set as a new host graph in AGG. Input graphs which use graph concepts
not supported by AGG, such as hyperedges, cannot yet be loaded. It is left to
future work to support various kinds of style sheet transformations between
GXL graphs and advanced graph concepts.

To support model transformation by AGG graph transformation, some
CASE tool (with subsequent XSL transformation if needed) could produce a
GXL graph, which would be the input graph for a model transformation in
AGG. The resulting graph could be exported in GXL again and prepared for
further processing.

Graph grammars are currently stored in a proprietary XML format of
AGG. It is planned to replace this format by GTXL [Tae01, Lam04], the fu-
ture exchange format for graph transformation systems, which is build on top
of GXL. If graph transformation is to be used as a semantic model domain,
it is intended that GTXL will be used as the target format for model trans-
formations and thus as the input format for graph transformation tools that
perform validations.

15.4 Conclusion

This chapter has given a short overview of the graph transformation environ-
ment AGG and its relation to the theory of graph transformation. AGG is an
integrated development environment for graph transformation systems which
supports standard validation techniques for graph transformation. The appli-
cations of AGG may have a large variety, because of its very flexible concept
of attribution, which relies on Java objects and expressions.

AGG has become one of the standard development environments for graph
transformation systems and has been applied in a variety of contexts. For
example, the following applications of AGG have been considered:

• visual language parsing [BST00], implemented in GenGEd [Bar02];
• conflict detection in functional requirement specifications [HHT02];
• conflict detection in model refactorings [MTR04]; and
• termination checks for model transformations [EEdL+05].



15.4 Conclusion 323

The AGG development group at the Technical University of Berlin will
continue implementing concepts and results concerning the validation and
structuring of graph transformation systems in order to continue implement-
ing concepts from the theory of graph transformation. AGG is available from
the AGG Homebase [AGG].
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Appendices A and B are short introductions to category theory and to signa-
tures and algebras, respectively, to the extent needed for understanding the
main part (Parts I–IV) of the book. Appendix C contains selected proofs not
presented in the main part of the book.



A

A Short Introduction to Category Theory

In this appendix, we give a short summary of the categorical terms used
throughout this book. We introduce categories, show how to construct them,
and present some basic constructions such as pushouts, pullbacks, and binary
coproducts. In addition, we give some specific categorical results which are
needed for the main part of the book. For a more detailed introduction to
category theory see [Mac71, EM85, EM90, AHS90, EMC+01].

A.1 Categories

In general, a category is a mathematical structure that has objects and mor-
phisms, with a composition operation on the morphisms and an identity mor-
phism for each object.

Definition A.1 (category). A category C = (ObC , MorC , ◦, id) is defined
by

• a class ObC of objects;
• for each pair of objects A, B ∈ ObC , a set MorC(A, B) of morphisms;
• for all objects A, B, C ∈ ObC , a composition operation ◦(A,B,C) :

MorC(B, C) × MorC(A, B) → MorC(A, C); and
• for each object A ∈ ObC , an identity morphism idA ∈ MorC(A, A),

such that the following conditions hold:

1. Associativity. For all objects A, B, C, D ∈ ObC and morphisms f :
A → B, g : B → C and h : C → D, it holds that (h ◦ g) ◦ f = h ◦ (g ◦ f).

2. Identity. For all objects A, B ∈ ObC and morphisms f : A → B, it holds
that f ◦ idA = f and idB ◦ f = f .

Remark A.2. Instead of f ∈ MorC(A, B), we write f : A → B and leave
out the index for the composition operation, since it is clear which one to use.
For such a morphism f , A is called its domain and B its codomain.
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Example A.3 (categories).

1. The basic example of a category is the category Sets,, with the object
class of all sets and with all functions f : A → B as morphisms. The
composition is defined for f : A → B and g : B → C by (g ◦ f)(x) =
g(f(x)) for all x ∈ A, and the identity is the identical mapping idA : A →
A : x 	→ x.

2. Another category based on sets is the category Rels, where the objects
are sets and the morphisms are relations R ⊆ A × B between two sets.
The composition is defined for R ⊆ A × B and Q ⊆ B × C by (a, c) ∈
Q ◦ R ⇔ ∃b ∈ B : (a, b) ∈ R ∧ (b, c) ∈ Q. The identity on a set A is the
diagonal relation ΔA = {(a, a)| a ∈ A}.

3. The category Posets consists of partially ordered sets as objects, i.e.
tuples (M, O) of a set M and a relation O ⊆ M × M that is reflexive,
antisymmetric, and transitive; a morphism f : (M1, O1) → (M2, O2) is
a mapping f : M1 → M2 that is order-preserving, i.e. (x, y) ∈ O1 ⇒
(f(x), f(y)) ∈ O2. Composition and the identities are the same as in
Sets.

4. The class of all graphs (as defined in Definition 2.1) as objects and the class
of all graph morphisms (see Definition 2.4) form the category Graphs;
the composition is given in Fact 2.5 and the identities are the pairwise
identities on nodes and edges.

5. Typed graphs and typed graph morphisms (see Section 2.2) form the
category GraphsTG (see Example A.6).

6. The category Alg(Σ) has as its objects algebras over a given signature
Σ, and the morphisms are homomorphisms between these Σ-algebras.
The composition is defined componentwise for homomorphisms, and the
identities are componentwise identities on the carrier sets (see Appendix
B).


�

A.2 Construction of Categories, and Duality

There are various ways to construct new categories from given ones. The first
way that we describe here is the Cartesian product of two categories, which
is defined by the Cartesian products of the class of objects and the sets of
morphisms with componentwise composition and identities.

Definition A.4 (product category). Given two categories C and D, the
product category C × D is defined by

• ObC×D = ObC × ObD;
• MorC×D((A, A′), (B, B′)) = MorC(A, B) × MorD(A′, B′);
• for morphisms f : A → B, g : B → C ∈ MorC and f ′ : A′ → B′,

g′ : B′ → C′ ∈ MorD, we define (g, g′) ◦ (f, f ′) = (g ◦ f, g′ ◦ f ′);
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• id(A,A′) = (idA, idA′).

Another construction is that of a slice or a coslice category. Here the
objects are morphisms of a category C, to or from a distinguished object
X , respectively. The morphisms are morphisms in C that connect the object
morphisms so as to lead to commutative diagrams.

Definition A.5 (slice category). Given a category C and an object X ∈
ObC , then the slice category C\X is defined as follows:

• ObC\X = {f : A → X | A ∈ ObC , f ∈ MorC(A, X)},
• MorC\X(f : A → X, g : B → X) = {m : A → B| g ◦ m = f},
• for morphisms m ∈ MorC\X(f : A → X, g : B → X) and

n ∈ MorC\X(g : B → X, h : C → X), we have n ◦ m as defined in C
for m : A → B and n : B → C:

A B C

X

nm

f g h

• idf :A→X = idA ∈ MorC .

Example A.6 (slice category GraphsTG). Given a type graph TG, the
category GraphsTG can be considered as the slice category Graphs\TG.
Each typed graph is represented in this slice category by its typing mor-
phism, and the typed graph morphisms are exactly the morphisms in the slice
category. 
�

Definition A.7 (coslice category). Given a category C and an object X ∈
ObC , then the coslice category X\C is defined as follows:

• ObX\C = {f : X → A| A ∈ ObC , f ∈ MorC(X, A)};
• MorX\C(f : X → A, g : X → B) = {m : A → B| g = m ◦ f};
• for morphisms m ∈ MorX\C(f : X → A, g : X → B) and

n ∈ MorX\C(g : X → B, h : X → C), we have n ◦ m as defined in
C for m : A → B and n : B → C:

A B C

X

nm

f g h

• idf :X→A = idA ∈ MorC .

As the last construction in this section, we introduce the dual category.
For the dual category, we use the objects of a given category, but reverse all
arrows, i.e. morphisms.
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Definition A.8 (dual category). Given a category C, the dual category
Cop is defined by

• OBCop = ObC ;
• MorCop(A, B) = MorC(B, A);
• f ◦Cop

g = g ◦C f for all f : A → B, g : B → C;
• idCop

A = idC
A for all A ∈ ObCop .

The duality principle asserts that for each construction (statement) there
is a dual construction. If a statement holds in all categories, then the dual
statement holds in all categories too. Some examples of dual constructions
are monomorphisms and epimorphisms, pushouts and pullbacks, and initial
and final objects, which will be described in the following sections.

A.3 Monomorphisms, Epimorphisms, and Isomorphisms

In this section, we consider a category C and analyze some important types
of morphisms, namely monomorphisms, epimorphisms, and isomorphisms.

Intuitively speaking two objects are isomorphic if they have the same struc-
ture. Morphisms that preserve this structure are called isomorphisms.

Definition A.9 (isomorphism). A morphism i : A → B is called an iso-
morphism if there exists a morphism i−1 : B → A such that i ◦ i−1 = idB and
i−1 ◦ i = idA:

A Bi
i−1

Two objects A and B are isomorphic, written A
∼
= B, if there is an iso-

morphism i : A → B.

Remark A.10. If i is an isomorphism, then i is both a monomorphisms and
an epimorphism. For every isomorphism i, the inverse morphism i−1 is unique.

Example A.11 (isomorphisms).

• In Sets, Graphs, GraphsTG, and Alg(Σ), the isomorphisms are exactly
those morphisms that are (componentwise) injective and surjective.

• In product, slice, and coslice categories, the isomorphisms are exactly those
morphisms that are (componentwise) isomorphisms in the underlying cat-
egory.


�

Definition A.12 (monomorphism and epimorphism). Given a category
C, a morphism m : B → C is called a monomorphism if, for all morphisms
f, g : A → B ∈ MorC , it holds that m ◦ f = m ◦ g ⇒ f = g:

A B Cmf
g
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A morphism e : A → B ∈ MorC is called an epimorphism if, for all
morphisms f, g : B → C ∈ MorC , it holds that f ◦ e = g ◦ e ⇒ f = g:

A B Ce f
g

Remark A.13. Monomorphisms and epimorphisms are dual notions, i.e. a
monomorphism in a category C is an epimorphism in the dual category Cop

and vice versa.

Fact A.14 (monomorphisms and epimorphisms).

• In Sets, the monomorphisms are all injective mappings, and the epimor-
phisms are all surjective mappings.

• In Graphs and GraphsTG, the monomorphisms and epimorphisms are
exactly those morphisms that are injective and surjective, respectively.

• In Alg(Σ), the monomorphisms are the injective homomorphisms. Injec-
tive homomorphisms are componentwise injective. Analogously, the epi-
morphisms are the surjective homomorphisms, which means that they are
componentwise surjective.

• In a product category C× D, monomorphisms and epimorphisms are com-
ponentwise monomorphisms and epimorphisms in C and D, respectively.

• In a slice category, the monomorphisms are exactly the monomorphisms
of the underlying category. The epimorphisms of the underlying category
are epimorphisms in the slice category, but not necessarily vice versa.

• In a coslice category, the epimorphisms are exactly the epimorphisms of
the underlying category. The monomorphisms of the underlying category
are monomorphisms in the slice category, but not necessarily vice versa.

Proof. For Sets, Graphs, and GraphsTG, the above characterization of
monomorphisms, epimorphisms, and isomorphisms have been proven explic-
itly in Fact 2.15. These proofs can be extended to Alg(Σ). For product, slice,
and coslice categories, the results stated above can be shown directly from the
definitions. However, the characterization of epimorphisms in slice categories
and of monomorphisms in coslice categories is an open problem. 
�

In general, a factorization of a morphism decomposes it into morphisms
with special properties. In an epi–mono factorization, these morphisms are an
epimorphism and a monomorphism.

Definition A.15 (epi–mono and (weak) E–M factorizations). Given a
category C and morphisms f : A → B, e : A → C, and m : C → B with
m ◦ e = f , if e is an epimorphism and m is a monomorphism then e and m
are called an epi–mono factorization of f :

A B

C

f

e m
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If for every morphism f we can find such morphisms e and m, with f = m◦e,
and this decomposition is unique up to isomorphism, then the category C is
said to have an epi–mono factorization.

C has an E–M factorization for given morphism classes E and M if for
each f there is a decomposition, unique up to isomorphism, f = m ◦ e with
e ∈ E and m ∈ M. Usually E is a subclass of epimorphisms and M is a
subclass of monomorphisms.

If we require only f = m ◦ e with e ∈ E and m ∈ M, but not necessarily
uniqueness up to isomorphism, we have a weak E–M factorization.

The categories Sets, Graphs, GraphsTG, and Alg(Σ) have epi–mono
factorizations.

Definition A.16 (jointly epimorphic). A morphism pair (e1, e2) with ei :
Ai → B (i = 1, 2) is called jointly epimorphic if, for all g, h : B → C with
g ◦ ei = h ◦ ei for i = 1, 2, we have g = h.

In the categories Sets, Graphs, GraphsTG, and Alg(Σ), “jointly epi-
morphic” means “jointly surjective”.

A.4 Pushouts and Pullbacks

Intuitively, a pushout is an object that emerges from gluing two objects along
a common subobject. In addition, we introduce the dual concept of a pullback
and the construction of both in specific categories.

Definition A.17 (pushout). Given morphisms f : A → B and g : A → C ∈
MorC , a pushout (D, f ′, g′) over f and g is defined by

• a pushout object D and
• morphisms f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f ,

such that the following universal property is fulfilled: for all objects X with
morphisms h : B → X and k : C → X with k ◦ g = h ◦ f , there is a unique
morphism x : D → X such that x ◦ g′ = h and x ◦ f ′ = k:

A B

C D

X

f

g

k

h
f ′

g′

x

Remark A.18 (pushout object). The pushout object D is unique up to
isomorphism. This means that if (X, k, h) is also a pushout over f and g, then
x : D

∼
→ X is an isomorphism with x ◦ g′ = h and x ◦ f ′ = k. Vice versa,
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if (D, f ′, g′) is a pushout over f and g and x : D
∼
→ X is an isomorphism,

then (X, k, h) is also a pushout over f and g, where k = x ◦ f ′ and h =
x ◦ g′. Uniqueness up to isomorphism follows directly from the corresponding
universal properties (see Fact 2.20).

Fact A.19 (pushout constructions).

1. In Sets, a pushout over morphisms f : A → B and g : A → C can be
constructed as follows. Let

∼f,g= t({(a1, a2) ∈ A × A| f(a1) = f(a2) ∨ g(a1) = g(a2)})

be the transitive closure of Kern(f) and Kern(g); ∼f,g is an equivalence
relation. We define the object D and the morphisms as:

• D = A|∼f,g

�

∪ B\f(A)
�

∪ C\g(A),

• f ′ : C → D : x 	→

{
[a] : ∃a ∈ A : g(a) = x
x : otherwise

,

• g′ : B → D : x 	→

{
[a] : ∃a ∈ A : f(a) = x
x : otherwise

.

2. In Graphs and GraphsTG, pushouts can be constructed componentwise
in Sets.

3. In Alg(Σ), pushouts over arbitrary morphisms exist. However, in general,
the pushouts cannot be constructed componentwise.

4. If the categories C and D have pushouts, the pushouts in the product
category can be constructed componentwise.

5. If the category C has pushouts, the pushouts in the slice category C\X
can be constructed over the pushouts in C. Given objects f : A → X,
g : B → X, and h : C → X, and morphisms m and n in C\X as in (1)
below, it holds that g ◦ m = f = h ◦ n by the definition of morphisms in
C\X. We construct the pushout (2) in C over C

n
← A

m
→ B. From (2),

we obtain the induced morphism d : D → X as the pushout object, and
morphisms s and t with d ◦ s = g and d ◦ t = h, leading to the pushout (1)
in C\X:

f : A → X g : B → X

h : C → X d : D → X

(1)

m

n

t

s

A B

C D

X

(2)

m

n

t

s

g

h d

This construction works analogously for the coslice category X\C.

Proof idea. The construction of a pushout in Sets is equivalent to that given
in Fact 2.17. For Graphs and GraphsTG, pushouts can be constructed com-
ponentwise in Sets for nodes and edges, respectively. The source and target
functions are uniquely determined by the universal pushout properties. For
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more details concerning Alg(Σ), we refer to [EM85], but we do not give an
explicit proof here. For product, slice, and coslice categories, the proofs can
be obtained directly from the constructions. 
�

In various situations, we need a reverse construction of a pushout. This is
called the pushout complement.

Definition A.20 (pushout complement). Given morphisms f : A → B

and n : B → D, then A
m
→ C

g
→ D is the pushout complement of f and n if

(1) below is a pushout:

A B

C D

(1)

f

m

g

n

Pushout squares can be decomposed if the first square is a pushout, and
can be composed, preserving their pushout properties.

Lemma A.21 (pushout composition and decomposition). Given the
following commutative diagram,

A B

C D

E

F

(1) (2)

then the following hold:

• Pushout composition. If (1) and (2) are pushouts, then (1) + (2) is also
a pushout.

• Pushout decomposition. If (1) and (1) + (2) are pushouts, then (2) is also
a pushout.

Proof. See Fact 2.20. 
�

The dual construction of a pushout is a pullback. Pullbacks can be seen
as a generalized intersection of objects over a common object.

Definition A.22 (pullback). Given morphisms f : C → D and g : B → D,
a pullback (A, f ′, g′) over f and g is defined by

• a pullback object A and
• morphisms f ′ : A → B and g′ : A → C with g ◦ f ′ = f ◦ g′,

such that the following universal property is fulfilled: for all objects X with
morphisms h : X → B and k : X → C, with f ◦ k = g ◦ h, there is a unique
morphism x : X → A such that f ′ ◦ x = h and g′ ◦ x = k:
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A B

C D

X

g

f

k

h

f ′

g′

x

Fact A.23 (pullback constructions).

1. In Sets, the pullback C
πg

← A
πf

→ B over morphisms f : C → D and
g : B → D is constructed by A =

⋃
d∈D f−1(d) × g−1(d) with morphisms

f ′ : A → B : (x, y) 	→ y and g′ : A → C : (x, y) 	→ x.
2. In Graphs and GraphsTG, pullbacks can be constructed componentwise

in Sets.
3. In Alg(Σ), for given morphisms f : C → D and g : B → D, the carrier

sets of the pullback object A and the morphisms can be constructed com-
ponentwise for all s ∈ S. For an operation op : s1 . . . s2 → s ∈ OP , we
define opA((x1, y1), . . . (xn, yn)) = (opC(x1, . . . , xn), opB(y1, . . . , yn)).

4. In a product, slice, or coslice category, the construction of pullbacks is dual
to the construction of pushouts if the underlying categories have pullbacks.

Proof idea. The proof for Sets is given in Fact 2.23 and can be extended com-
ponentwise to Graphs and GraphsTG, where the source and target functions
are uniquely determined by the universal pullback properties. For Alg(Σ), the
componentwise construction described above can be shown to satisfy the pull-
back properties. The results for product, slice, and coslice categories follow by
duality from Fact A.19. 
�

In the following, we present a category where general pullbacks exist, but
cannot be constructed componentwise.

Fact A.24 (pullbacks in PTNets). The category PTNets has pullbacks.

Construction. In contrast to pushouts, the construction of pullbacks in
PTNets cannot be done componentwise for places and transitions in gen-
eral (see Example 4.23). If, however, at least one of the given morphisms is
injective, then the construction can be done componentwise (see Fact 4.21).
If both morphisms are noninjective, the places of pullbacks for PTNets are
constructed as pullbacks in Sets (see Remark 4.21), but the construction for
the transitions is quite complicated, as shown below.

Given Petri nets B, C, D with X = (PX , TX , preX , postX) for X =
B, C, D, we assume, without loss of generality, that PD = {p1, . . . , pd} and
define pi ≤ pj ⇔ i ≤ j. For given Petri net morphisms f : B → D and g :
C → D, we want to construct the pullback object A = (PA, TA, preA, postA)
and morphisms f ′ : A → C and g′ : A → B.

We define PA := {(i, j) ∈ PB × PC | f(i) = g(j)} as the pullback in Sets
over the places.
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Consider t ∈ TD and a tuple (tB , tC) ∈ TB × TC with f(tB) = t and
g(tC) = t.

Without loss of generality, let preD(t) =
n∑

k=1

pk and postD(t) =
m∑

k=1

pn+k

with pk ∈ PD for k = 1, . . . , m + n, and pk ≤ pk+1 for k = 1, . . . , n − 1 and
k = n + 1, . . . , m + n − 1.

We define a set of lists of possible matches for the preplaces and postplaces

L(tB ,tC) = {((ik, jk)k=1,...,n+m) ⊆ P n+m
A | f(ik) = pk,

n∑
k=1

ik = preB(tB),

n∑
k=1

jk = preC(tC),
m∑

k=1

in+k = postB(tB),
m∑

k=1

jn+k = postC(tC)}.

We define the relation ∼(tB ,tC) on L(tB ,tC) by ((i1k, j1
k)) ∼(tB ,tC) ((i2k, j2

k))
if

1. for l1, l2 ∈ {1, . . . , n}, we have pl1
= pl2

, (i1l1 , j
1
l1

) = (i2l2 , j
2
l2

), (i1l2 , j
1
l2

) =
(i2l1 , j

2
l1

), and (i1k, j1
k) = (i2k, j2

k) for k �= l1, l2;
2. for l1, l2 ∈ {n + 1, . . . , n + m}, we have pl1

= pl2
, (i1l1 , j

1
l1

) = (i2l2 , j
2
l2

),
(i1l2 , j

1
l2

) = (i2l1 , j
2
l1

), and (i1k, j1
k) = (i2k, j2

k) for k �= l1, l2;

and the equivalence relation ≡(tB ,tC) on L(tB,tC) is the transitive closure of
∼(tB ,tC).

Now TA := {t
(tB ,tC)
[l] | t ∈ TD, (tB, tC) ∈ TB × TC , f(tB) = g(tC) = t, [l] ∈

L(tB ,tC)|≡(tB ,tC )
}, preA(t

(tB ,tC)
[((ik,jk))]) =

n∑
k=1

(ik, jk), and postA(t
(tB ,tC)
[((ik,jk))]) =

m∑
k=1

(in+k, jn+k).

With this definition, the preplaces and postplaces of t
(tB ,tC)
[l1] and t

(tB ,tC)
[l2]

are exactly the same iff [l1] = [l2].

For the morphism f ′, we define f ′
P ((i, j)) = j and f ′

T (t
(tB ,tC)
[l] ) = tC , and,

analogously, g′P ((i, j)) = i and g′T (t
(tB ,tC)
[l] ) = tB. 
�

Proof. 1. Well-definedness and commutativity. A is well defined, since
preA and postA are well defined.

f ′ is well defined, because for all t
(tB ,tC)
[((ik,jk))] ∈ TA we have:

• f ′⊕
P (preA(t

(tB ,tC)
[((ik,jk))])) = f ′⊕

P (
n∑

k=1

(ik, jk)) =
n∑

k=1

f ′
P (ik, jk) =

n∑
k=1

jk =

preC(tC) = preC(f ′
T (t

(tB ,tC)
[((ik,jk))]));

• f ′⊕
P (postA(t

(tB ,tC)
[((ik,jk))])) = f ′⊕

P (
m∑

k=1

(in+k, jn+k)) =
m∑

k=1

f ′
P (in+k, jn+k) =

m∑
k=1

jn+k = postC(tC) = postC(f ′
T (t

(tB ,tC)
[((ik,jk))])).

The well-definedness of g′ follows analogously.
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Now we have, for all (i, j) ∈ PA, the result that gP (f ′
P (i, j)) = gP (j) =

fP (i) = fP (g′P (i, j)), and for all t
(tB ,tC)
[((ik,jk))] ∈ TA, gT (f ′

T (t
(tB ,tC)
[((ik,jk))])) = gT (tC) =

t = fT (tB) = fT (g′T (t
(tB ,tC)
[((ik,jk))])). Therefore the diagram commutes.

2. Pullback properties. Given a Petri net X and morphisms h : X → B,
l : X → C with g ◦ l = f ◦ h, we have to show that there exists a unique
morphism x : X → A with f ′ ◦ x = l and g′ ◦ x = h.

Suppose that PX = {q1, . . . , qx} such that fP (hP (qk)) ≤ fP (hP (qk+1))
with respect to the order on PD defined above, and we define qi ≤ qj ⇔ i ≤ j
analogously. This order is not unique if f or g is not injective.

Now we define xP (q) = (hP (q), lP (q)); and, for tX ∈ TX , where hT (tX) =

tB, lT (tX) = tC , g(tC) = T , preX(tX) =
n∑

k=1

qk, and postX(tX) =
m∑

k=1

qn+k,

with qk ∈ PX for k = 1, . . . , m + n and qk ≤ qk+1 for k = 1, . . . , n − 1 and

k = n + 1, . . . , m + n − 1, we define xT (tX) = t
(tB ,tC)
[((hP (qk),lP (qk))].

Then x⊕
P (preX(tX)) = x⊕

P (
n∑

k=1

qk) =
n∑

k=1

xP (qk) =
n∑

k=1

(hP (qk), lP (qk)) =

preA(t
(tB ,tC)
[((hP (qk),lP (qk))]) = preA(xT (tX)) and x⊕

P (postX(tX)) = x⊕
P (

m∑
k=1

qn+k) =

m∑
k=1

xP (qn+k) =
m∑

k=1

(hP (qn+k), lP (qn+k)) = postA(t
(tB ,tC)
[((hP (qk),lP (qk))]) =

postA(xT (tX)).
For the well-definedness of x, we have to show that (hP (qk), lP (qk)) ∈

L(tB ,tC). We check the necessary properties:

• We know that f⊕
P (h⊕

P (preX(tX))) =
n∑

k=1

fP (hP (qk)) =
n∑

k=1

pk. Since

pk ≤ pk+1, qk ≤ qk+1, and fP (hP (qk)) ≤ fP (hP (qk+1)), it follows that
fP (hP (qk)) = pk for k = 1, . . . , n. Analogously, fP (hP (qn+k)) = pn+k for
k = 1, . . . , m.

•
n∑

k=1

hP (qk) = h⊕
P (

n∑
k=1

qk) = h⊕
P (preX(tX)) = preB(hT (tX)) = preB(tB).

•
n∑

k=1

lP (qk) = l⊕P (
n∑

k=1

qk) = l⊕P (preX(tX)) = preC(lT (tX)) = preC(tC).

• Analogously for post.

The equivalence class for tX is independent of the chosen order on PX , i.e.
if fP (hP (qk)) ≤ fP (hP (qk+1)), exchanging the roles of qk and qk+1 leads to
an exchange of ((hP (qk), lP (qk))) and ((hP (qk+1), lP (qk+1))) and therefore to
the same equivalence class.

We then have f ′
P (xP (q)) = f ′

P (hP (q), lP (q)) = lP (q) and f ′
P (xP (tX)) =

f ′
P (t

(hT (tX ),lT (tX ))
[l] ) = lT (tX), which means that f ′ ◦ x = l. Analogously,

g′P (xP (q)) = g′P (hP (q), lP (q)) = hP (q) and g′P (xP (tX)) =

g′P (t
(hT (tX ),lT (tX ))
[l] ) = hT (tX), and therefore g′ ◦ x = h.
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Now we show that x is unique. For any x′ : X → A with f ′ ◦ x′ = l and
g′ ◦ x′ = h, we have the following:

• Let x′
P (q) = (i, j). Since lP (q) = f ′

P (x′
P (q)) = f ′

P (i, j) = j and
hP (q) = g′P (x′

P (q)) = g′P (i, j) = i, we have x′(q) = (i, j) =
(hP (q), lP (q)) = xP (q).

• For xT (tX) = gT (lT (tX))
(hT (tX),lT (tX))
[((hP (qk),lP (qk)))] and x′(tX) = t

(tB ,tC)
[s] , we have:

1. lT (tX) = f ′
T (x′

T (tX)) = f ′(t
(tB ,tC)
[l] ) = tC .

2. hT (tX) = g′T (x′
T (tX)) = g′(t

(tB ,tC)
[l] ) = tB.

3. gT (lT (tX)) = gT (tC) = t.
4. Suppose that [s] �= [((hP (qk), lP (qk)))]; then x(tX) �= x′(tX), but we

have the same preplaces and postplaces (defined by xP ), which is a
contradiction.

It follows that x = x′. 
�

Pullback squares can be decomposed if the last square is a pushout, and
can be composed, preserving their pullback properties.

Lemma A.25 (pullback composition and decomposition). Given the
following commutative diagram,

A B

C D

E

F

(1) (2)

then the following hold:

• Pullback composition. If (1) and (2) are pullbacks, then (1) + (2) is also
a pullback.

• Pullback decomposition. If (2) and (1) + (2) are pullbacks, then (1) is
also a pullback.

Proof. See Fact 2.27. 
�

A.5 Binary Coproducts and Initial Objects

Binary coproducts can be seen as a generalization of the disjoint union of
sets and graphs in a categorical framework. Analogously, initial objects are
the categorical representation of the empty set and the empty graph. Note,
however, that the construction of binary coproducts and initial objects of
algebras is much more difficult.

Definition A.26 (binary coproduct). Given two objects A, B ∈ ObC , the
binary coproduct (A + B, iA, iB) is given by
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• a coproduct object A + B and
• morphisms iA : A → A + B and iB : B → A + B,

such that the following universal property is fulfilled: for all objects X with
morphisms f : A → X and g : B → X, there is a morphism [f, g] : A+B → X
such that [f, g] ◦ iA = f and [f, g] ◦ iB = g:

A A + B B

X

f g

iA iB

[f,g]

Remark A.27. Given two morphisms f : A → A′ and g : B → B′, there is a
unique coproduct morphism f + g : A + B → A′ + B′, induced by the binary
coproduct A + B and the morphisms iA′ ◦ f and iB′ ◦ g:

A A + B B

A′ A′ + B′ B′

f gf+g

iA

iA′

iB

iB′

Example A.28 (binary coproduct constructions).

• In Sets, the coproduct object A + B is the disjoint union A
�

∪ B of A and
B, and iA and iB are inclusions. For A∩B = ∅, we use the representation

A
�

∪ B = A ∪ B, and for A ∩ B �= ∅, we use A
�

∪ B = A × {1} ∪ B × {2}.
• In Graphs and GraphsTG, the coproduct can be constructed component-

wise in Sets.
• In a product or slice category, coproducts can be constructed component-

wise if the underlying categories have coproducts.
• In a coslice category, the coproduct of objects f : X → A and g : X → B

is constructed as the pushout of f and g in the underlying category.

�

In the following, we give an example where binary coproducts exist, but
in general cannot be constructed componentwise in Sets.

Construction (binary coproducts in Alg(Σ)). Given a signature Σ = (S, OP )
and objects A, B ∈ Alg(Σ), for the construction of the coproduct A + B

we extend Σ to a signature Σ(A + B) = (S, OP
�

∪ OPA

�

∪ OPB), where
OPA = {xA :→ s|s ∈ S, x ∈ As} and OPB = {xB :→ s|s ∈ S, x ∈ Bs}.

Consider the set of equations E = {(t, t′)|s ∈ S, t, t′ ∈ TΣ(A+B),s :
evalA,s(t) = evalA,s(t

′)} ∪ {(t, t′)|s ∈ S, t, t′ ∈ TΣ(A+B),s : evalB,s(t) =
evalB,s(t

′)} over the term algebra TΣ(A+B) with evali(x
i) = x for xi :→

s ∈ OPi, i = A, B. This results in a specification SPEC = (Σ(A + B), E).
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We then define the coproduct object of A and B by A + B = TSPEC |Σ
and the morphism families iA,s : As → (A + B)s : x 	→ [xA] and iB,s : Bs →
(A + B)s : x 	→ [xB].

For morphisms f : A → X and g : B → X , the induced morphism
[f, g] : A + B → X is defined by

[f, g]s([t]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
opX([f, g]s1([t1]), : t = op(t1, . . . , tn),

. . . , [f, g]sn
([tn])) op : s1 . . . sn → s ∈ OP

cX : t = c, c :→ s ∈ OP
fs(x) : t = [xA], xA :→ s ∈ OPA

gs(x) : t = [xB ], xB :→ s ∈ OPB

.

This definition guarantees that [f, g] preserves the operations and the unique-
ness of [f, g].

For a ∈ As, we have the result that [f, g]s(iA,s(a)) = [f, g]s([a
A]) = fs(a)

and, analogously, [f, g]s(iB,s(b)) = gs(b) for all b ∈ Bs; therefore [f, g]◦ iA = f
and [f, g] ◦ iB = g. 
�

The following lemma combines pushouts and binary coproducts in a cate-
gory. It is used in the proof of the Parallelism Theorem (Theorem 5.18) and is
called Butterfly Lemma in [Kre78] because the pushouts (1)–(3) below have
the shape of a butterfly.

Lemma A.29 (Butterfly Lemma). Consider a category with pushouts and
binary coproducts. We then have:

1. If (1), (2), and (3) below are pushouts with e1 = d1 ◦ b1, e2 = d2 ◦ b2, and
c = d1 ◦ c1 = d2 ◦ c2, then (4) is also a pushout.

2. Given that (4) is a pushout and given morphisms f1 : A1 → B1 and
f2 : A2 → B2, then there exists a decomposition into diagrams (1)–(3)
such that (1), (2), and (3) are pushouts with e1 = d1 ◦ b1, e2 = d2 ◦ b2,
and c = d1 ◦ c1 = d2 ◦ c2:

A1 + A2 B1 + B2

C E

f1+f2

[a1,a2]

c

[e1,e2](4)

A2 B2

A1 C D2

B1 D1 E

(1) (3)

(2)

f2

a2 b2

a1 c2

f1 c1 d2

b1 d1

e1

e2

c

Proof.

1. Given the pushouts (1), (2), and (3) with e1 = d1 ◦ b1, e2 = d2 ◦ b2, and
c = d1 ◦ c1 = d2 ◦ c2, consider an object X and morphisms h : C → X and
k : B1 + B2 → X with h ◦ [a1, a2] = k ◦ (f1 + f2):
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A1 + A2 B1 + B2

C E

X

f1+f2

[a1,a2]

c

[e1,e2](4)

h

k

Comparing pushout (1) with the morphisms h and k ◦ iB1 , where h ◦ a1 =
h◦[a1, a2]◦iA1 = k◦(f1+f2)◦iA2 = k◦iB1◦f1, we obtain a unique morphism
x1 : D1 → X , where x1◦c1 = h and x1◦b1 = k◦iB1 . Analogously, we obtain
from pushout (2) a unique morphism x2 : D2 → X , where x2 ◦ c2 = h and
x2 ◦ b2 = k ◦ iB2 :

A1

B1

C

D1

B1 + B2 X

f1

a1

c1

b1

(1)

k

h

iB1
x1

A2 B2

C D2

B1 + B2

X

f2

a2

c2

b2(2)

k

h

iB2

x2

Now x1 ◦ c1 = h = x2 ◦ c2, and we obtain from pushout (3) a unique
morphism x : E → X , where x ◦ d1 = x1 and x ◦ d2 = x2.
From x◦e1 = x◦d1 ◦ b1 = x1 ◦ b1 = k and x◦e2 = x◦d2 ◦ b2 = x2 ◦ b2 = k,
it follows that x◦ [e1, e2] = k, and we have x◦ c = x◦d2 ◦ c2 = x2 ◦ c2 = h.
This means that x is the required unique morphism and (4) is a pushout.

2. Given the pushout (4) and f1 and f2, we define a1 = [a1, a2] ◦ iA1 and
a2 = [a1, a2]◦iA2, and, analogously, e1 = [e1, e2]◦iB1 and e2 = [e1, e2]◦iB2 .
In the first step, we construct the pushouts (1) and (2) over f1 and a1 and
over f2 and a2, respectively. Since c◦a1 = c◦ [a1, a2]◦ iA1 = [e1, e2]◦ (f1 +
f2)◦ iA1 = [e1, e2]◦ iB1 ◦f1 = e1 ◦f1, we obtain from pushout (1) a unique
morphism d1, where d1 ◦ b1 = e1 and d1 ◦ c1 = c. Analogously, we obtain
from pushout (2) a morphism d2, where d2 ◦ b2 = e2 and d2 ◦ c2 = c. It
remains to show that (3) is a pushout.
Given an object X and morphisms h1 : D1 → X , h2 : D2 → X , where
h1◦c1 = h2◦c2, we have the following result for k1 = h1◦b1 and k2 = h2◦b2:
k1 ◦ f1 = h1 ◦ b1 ◦ f1 = h1 ◦ c1 ◦ a1 and k2 ◦ f2 = h2 ◦ b2 ◦ f2 = h2 ◦ c2 ◦ a2.
Therefore [k1, k2]◦(f1+f2) = h1◦c1◦[a1, a2]. From pushout (4), we obtain a
unique morphism x : E → X , where x◦c = h1◦c1 and x◦[e1, e2] = [k1, k2]:

C

D1

D2

E

X

c1

c2

d2

d1

(1)

h1

h2

A1 + A2 B1 + B2

C E

X

f1+f2

[a1,a2]

c

[e1,e2](4)

h1◦c1

[k1,k2]

x

Because of the pushout (1), the morphism h1 is unique with respect to k1

and h1 ◦ c1. Now we have x ◦ d1 ◦ c1 = x ◦ c = h ◦ c1 and x ◦ d1 ◦ b1 =
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x ◦ e1 = x ◦ [e1, e2] ◦ iB1 = [k1, k2] ◦ iB1 = k1, and therefore x ◦ d1 = h1.
Analogously, we obtain from pushout (2) the result that x ◦ d2 = h2, and
therefore x is the required unique morphism. 
�

Definition A.30 (initial object). In a category C, an object I is called
initial if, for each object A, there exists a unique morphism iA : I → A.

Example A.31 (initial objects).

• In Sets, the initial object is the empty set.
• In Graphs and GraphsTG, the initial object is the empty graph.
• In Alg(Σ), the initial object is the term algebra TΣ .
• In a product category A×B, the initial object is the tuple (I1, I2), where

I1, I2 are the initial objects in A and B (if they exist).
• If C has an initial object I, the initial object in a slice category C\X is

the unique morphism I → X .
• In general, a coslice category has no initial object.


�

Remark A.32. The dual concept of an initial object is that of a final object,
i.e. an object Z such that there exists a unique morphism zA : A → Z for each
object A. Each set Z with card(Z) = 1 is final in Sets, and each algebra Z
in Alg(Σ) with card(Zs) = 1 for all s ∈ S is final in Alg(Σ) (see Definition
B.11).

Initial objects are unique up to isomorphism.

A.6 Functors, Functor Categories, and Comma

Categories

Functors are mappings between different categories which are compatible with
composition and the identities. Together with natural transformations, this
leads to the concept of functor categories. Another interesting construction
for building new categories is that of comma categories.

Definition A.33 (functor). Given two categories C and D, a functor F :
C → D is given by F = (FOb, FMor), with

• a mapping FOb : ObC → ObD and
• a mapping FMor(A,B) : MorC(A, B) → MorD(FOb(A), FOb(B)) of the

morphisms for each pair of objects A, B ∈ ObC ,

such that the following apply:

1. For all morphisms f : A → B and g : B → C ∈ MorC , it holds that
F (g ◦ f) = F (g) ◦ F (f).

2. For all objects A ∈ ObC , it holds that F (idA) = idF (A).
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Remark A.34. For simplicity, we have left out the indices and have written
F (A) and F (f) for both objects and morphisms.

To compare functors, natural transformations are used. Functors and nat-
ural transformations form a category, called a functor category.

Definition A.35 (natural transformation). Given two categories C and
D and functors F, G : C → D, a natural transformation α : F ⇒ G is a family
of morphisms α = (αA)A∈ObC

with αA : F (A) → G(A) ∈ MorD, such that,
for all morphisms f : A → B ∈ MorC , it holds that αB ◦ F (f) = G(f) ◦ αA:

F (A) F (B)

G(A) G(B)

αB

F (f)

αA

G(f)

Definition A.36 (functor category). Given two categories C and D, the
functor category [C,D] is defined by the class of all functors F : C → D as the
objects, and by natural transformations as the morphisms. The composition of
the natural transformations α : F ⇒ G and β : G ⇒ H is the componentwise
composition in D, which means that β◦α = (βA◦αA)A∈ObC

, and the identities
are given by the identical natural transformations defined componentwise over
the identities idF (A) ∈ D.

Fact A.37 (constructions in functor categories).

• In a functor category [C,D], natural transformations are monomorphisms,
epimorphisms, and isomorphisms if they are componentwise monomor-
phisms, epimorphisms, and isomorphisms, respectively, in D.

• If the category D has pushouts, then pushouts can be constructed “point-
wise” in a functor category [C,D] as follows. Given functors F, G, H : C
→ D and natural transformations α : F → G and β : F → H, for every ob-

ject A ∈ ObC we construct the pushout (PA) below as H(A)
γA
→ KA

δA← G(A)

over H(A)
βA
← F (A)

αa→ G(A) in D. Now we define the functor K : C → D
by K(A) = KA for objects in C. For a morphism f : A → B ∈ MorC , we
obtain an induced morphism K(f) from the pushout (PA) in comparison
with γB ◦ H(f) and δB ◦ G(f). K is the pushout object in [C,D], and
(γA)A∈ObC

and (δA)A∈ObC
are the required morphisms:

F (B) G(B)

H(B) KB

F (A) G(A)

H(A) KA

(PA)

αB

βB

γB

δB

αA

βA

γA

δA

F (f) G(f)

H(f) K(f)
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• The construction of pullbacks is dual to the construction of pushouts if the
underlying category D has pullbacks.

Proof idea. It follows directly from the definition that a natural transforma-
tion is monomorphism, an epimorphism, or an isomorphism if it has that
property componentwise in D. The construction of pushouts in the functor
category [C,D] can be shown directly to satisfy the properties of pushouts
in [C,D] using the corresponding properties in D. The result for pullbacks
follows by duality. 
�

In the following, we show that some explicit functors preserve pullbacks
(along injective morphisms).

Lemma A.38 (�∗ preserves pullbacks). The free monoid functor �∗ :
Sets → Sets preserves pullbacks, i.e., given a pullback (P ) in Sets, then also
(P ∗) is also a pullback in Sets:

A B

C D

(P)

f1

g2

f2 g1

A∗ B∗

C∗ D∗

(P∗)

f∗
1

g∗
2

f∗
2 g∗

1

Proof. Given a pullback (P ) in Sets, we have to show that (P ∗) is also a
pullback in Sets:

X

A∗ B∗

C∗ D∗

(P∗)

(1)

(2) f∗
1

g∗
2

f∗
2 g∗

1

h h1

h2

Given h1, h2, where (3) g∗1 ◦ h1 = g∗2 ◦ h2 we have to show that there exists a
unique h : X → A∗ such that (1) and (2) commute, i.e.

(4) ∀x ∈ X : h1(x) = f∗
1 ◦ h(x) and h2(x) = f∗

2 ◦ h(x).

Let h1(x) = b1 . . . bn ∈ B∗ and h2(x) = c1 . . . cm ∈ C∗ with n, m ≥ 0,
where n = 0 means that b1 . . . bn = λ. (3) implies that g∗1 ◦ h1(x) =
g1(b1) . . . g1(bn) = g2(c1) . . . g2(cm) = g∗2 ◦ h2(x). Therefore we have n = m
and g1(bi) = g2(ci) for all i = 1, . . . , n. In the case n = m = 0, we have
h1(x) = λ ∈ B∗ and h2(x) = λ ∈ C∗, and define h(x) = λ ∈ A∗, leading to
f∗
1 ◦ h(x) = h1(x) and f∗

2 ◦ h(x) = h2(x). For n = m ≥ 1, the fact that (P )
is a pullback implies the existence of ai ∈ A with f1(ai) = bi and f2(ai) = ci

for all i = 1, . . . , n. Let h(x) = a1 . . . an ∈ A∗. We have to show (4):
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f∗
1 ◦ h(x) = f∗

1 (a1 . . . an) = f1(a1) . . . f1(an) = b1 . . . bn = h1(x) and
f∗
2 ◦ h(x) = f∗

2 (a1 . . . an) = f2(a1) . . . f2(an) = c1 . . . cn = h2(x).

It remains to show that h is unique. Let h′ : X → A∗ satisfy (4) with
h′(x) = a′

1 . . . a′
m ∈ A∗.

Case 1. If m ≥ 1, we have that:

1. h1(x) = f∗
1 ◦ h′(x) ⇒ f1(a

′
1) . . . f1(a

′
m) = b1 . . . bn ⇒ n = m and f1(a

′
i) =

bi (i = 1, . . . , n),
2. h2(x) = f∗

2 ◦ h′(x) ⇒ f2(a
′
1) . . . f2(a

′
m) = c1 . . . cn ⇒ f2(a

′
i) = ci (i =

1, . . . , n).

The uniqueness of the pullback (P ) implies that a′
i = ai for i = 1, . . . , n, and

therefore h′(x) = h(x).

Case 2. In the case m = 0, the commutativity of (1) implies that h′(x) =
λ = h(x). 
�

Lemma A.39 (P preserves pullbacks). The power set functor P : Sets →
Sets preserves pullbacks, i.e., given a pullback (P ) in Sets, then (P(P )) is
also a pullback in Sets:

A B

C D

(P )

π1

f2

π2 f1

P(A) P(B)

P(C) P(D)

(P(P ))

P(π1)

P(f2)

P(π2) P(f1)

Proof. Given a pullback (P ) in Sets, we have to show that (P(P )) is also a
pullback in Sets:

X

P(A) P(B)

P(C) P(D)

(P(P ))

(1)
(2) P(π1)

P(f2)

P(π2) P(f1)

g g1

g2

Since (P ) is a pullback, we know that A = {(b, c) ∈ B×C | f1(b) = f2(c)},
and the power set functor gives us P(f1)(B

′) = f1(B
′) ∈ P(D) for all B′ ⊆ B.

Given g1 and g2, where (3) P(f1) ◦ g1 = P(f2) ◦ g2, we have to show that
there exists a unique g : X → P(A) such that (1) and (2) commute, i.e.

(4) X = ∅ or ∀x ∈ X : g1(x) = P(π1) ◦ g(x) and g2(x) = P(π2) ◦ g(x).

For all x ∈ X , we define g(x) = {(b, c) ∈ A | b ∈ g1(x), c ∈ g2(x)}.
This definition implies that P(π1)(g(x)) ⊆ g1(x), but we have to show that
P(π1)(g(x)) = g1(x).
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This is true for g1(x) = ∅. For g1(x) �= ∅ and b ∈ g1(x), (3) implies
that g2(x) �= ∅ and P(f1) ◦ g1 = P(f2) ◦ g2, i.e. f1(g1(x)) = f2(g2(x)). This
means that f1(b) ∈ f2(g2(x)), and therefore there exists a c ∈ g2(x) with
f1(b) = f2(c). It follows that (b, c) ∈ A and (b, c) ∈ g(x), and therefore
b ∈ P(π1)(g(x)). This implies that P(π1)(g(x)) = g1(x). Similarly, we have
P(π2)(g(x)) = g2(x) as required in (4).

It remains to show that g is unique. Let g′ : X → P(A) satisfy (4). For
g′(x) = ∅, we have g1(x) = ∅ and g2(x) = ∅, and hence g(x) = ∅. Otherwise,
for (b, c) ∈ g′(x), we have from (4) the result that b ∈ g1(x) and c ∈ g2(x),
and therefore (b, c) ∈ g(x). This means that g′ = g. 
�

Lemma A.40 (�⊕ preserves pullbacks along injective morphisms).
The free commutative monoid functor �⊕ : Sets → Sets preserves pullbacks
along injective morphisms, i.e., given a pullback (P ) in Sets, where f2 and
g1 are injective, then (P⊕) is also a pullback in Sets:

A B

C D

(P )

f1

g2

f2 g1

A⊕ B⊕

C⊕ D⊕

(P⊕)

f
⊕
1

g
⊕
2

f
⊕

2 g
⊕

1

Note that �⊕(A) = A⊕ is the free commutative monoid over A, given by

A⊕ = {w | w =
n∑

i=1

λiai in normal form, λi ≥ 0, ai ∈ A, n ≥ 0}, where

“w in normal form” means that λi > 0 and the ai are pairwise distinct.

On morphisms, �⊕(f) = f⊕ is defined by f⊕(
n∑

i=1

λiai) =
n∑

i=1

λif(ai) for

f : A → B.

Proof. Given a pullback (P ) in Sets, where g1 and f2 are injective, we have
to show that (P⊕) is also a pullback in Sets:

X

A⊕ B⊕

C⊕ D⊕

(P⊕)

(1)

(2) f
⊕
1

g
⊕
2

f
⊕
2 g

⊕
1

h h1

h2

Given h1, h2, where

(3) g⊕1 ◦ h1 = g⊕2 ◦ h2,

we have to show that there exists a unique h : X → A⊕ such that (1) and (2)
commute, i.e.

(4) X = ∅ or ∀x ∈ X : h1(x) = f⊕
1 ◦ h(x) and h2(x) = f⊕

2 ◦ h(x).
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Let h1(x) =
n∑

j=1

λ1
jbj ∈ B⊕ and h2(x) =

m∑
i=1

λ2
i ci ∈ C⊕, in normal form,

i.e. the bj and ci are pairwise distinct, and λ1
j �= o and λ2

i �= 0, respectively.

(3) implies that g⊕1 ◦ h1(x) =
n∑

j=1

λ1
jg1(bj) =

m∑
i=1

λ2
i g2(ci) = g⊕2 ◦ h2(x). Since

g1 is injective, the g1(bj) are pairwise distinct for j = 1, . . . , n. Therefore
n∑

j=1

λ1
jg1(bj) is in normal form, and we have pairwise disjoint index sets Ij for

j = 1, . . . , n with ∪n
j=1Ij = {1, . . . , m} such that

(5) ∀i ∈ Ij : g1(bj) = g2(ci) and λ1
j =

∑
i∈Ij

λ2
i .

(5) and the fact that (P ) is a pullback imply, for each pair (i, j) with i ∈ Ij ,
the existence of aij ∈ A with f1(aij) = bj and f2(aij) = ci.

Let h(x) =
n∑

j=1

∑
i∈Ij

λ2
i aij ∈ A⊕. We have to show the following, i.e. (4):

f⊕
1 ◦ h(x) = f⊕

1

(
n∑

j=1

∑
i∈Ij

λ2
i aij

)
=

n∑
j=1

∑
i∈Ij

λ2
i f1(aij) =

n∑
j=1

∑
i∈Ij

λ2
i bj =

n∑
j=1

λ1
jbj = h1(x)

and

f⊕
2 ◦ h(x) = f⊕

2

(
n∑

j=1

∑
i∈Ij

λ2
i aij

)
=

n∑
j=1

∑
i∈Ij

λ2
i f2(aij) =

n∑
j=1

∑
i∈Ij

λ2
i ci =

m∑
i=1

λ2
i ci = h2(x),

where
n∑

j=1

∑
i∈Ij

λ2
i ci =

m∑
i=1

λ2
i ci, using ∪n

j=1Ij = {1, . . . , m}.

The uniqueness of h with respect to (4) follows from the injectivity of f⊕
2 .

In fact, we have f2 injective ⇒ f⊕
2 injective, as we now show.

Let f⊕
2 (w) = f⊕

2 (
n∑

i=1

λiai) = f⊕
2 (

m∑
j=1

λ′
ja

′
j) = f⊕

2 (w′), with w and w′ in nor-

mal form. It follows that
n∑

i=1

λif2(ai) =
m∑

j=1

λ′
jf2(a

′
j) and, since f2 is injective,

the f2(ai) are pairwise distinct, and also the f2(a
′
j). This means that n = m.

Without loss of generality, let f2(ai) = f2(a
′
i). It follows that λi = λ′

i and,

since f2 is injective, ai = a′
i. Therefore we have w =

n∑
i=1

λiai =
m∑

j=1

λ′
ja

′
j = w′,

which means that f⊕
2 is injective. 
�

In the following, we define comma categories and show under what condi-
tions pushouts and pullbacks can be constructed.
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Definition A.41 (comma category). Given two functors F : A → C and
G : B → C and an index set I, the comma category ComCat(F,G; I)
is defined by the class of all triples (A, B, op), with A ∈ ObA, B ∈ ObB,
and op = [opi]i∈I , where opi ∈ MorC(F (A), G(B)), as objects; a morphism
f : (A, B, op) → (A′, B′, op′) in ComCat(F,G; I) is a pair f = (fA : A →
A′, fB : B → B′) of morphisms in A and B such that G(fB)◦opi = op′i◦F (fA)
for all i ∈ I:

F (A) G(B)

F (A′) G(B′)

=

opi

op′
i

F (fA) G(fB)

The composition of morphisms in ComCat(F,G; I) is defined component-
wise, and identities are pairs of identities in the component categories A and
B.

Remark A.42. The short notation (F, G) for ComCat(F,G; I), where |I| =
1, explains the name “comma category”.

Note that we have ComCat(F,G; ∅) = A × B.

Fact A.43 (constructions in comma categories).

1. In a comma category ComCat(F,G; I) with F : A → C, G : B → C,
and an index set I, morphisms are monomorphisms, epimorphisms and
isomorphisms if they are componentwise monomorphisms, epimorphisms
and isomorphisms, respectively, in A and B.

2. If the categories A and B have pushouts and F preserves pushouts, then
ComCat(F,G; I) has pushouts, which can be constructed componentwise.

3. If the categories A and B have pullbacks and G preserves pullbacks, then
ComCat(F,G; I) has pullbacks, which can be constructed component-
wise.

Proof idea. All constructions can be done componentwise in A and B and
then lifted to the comma category using the given properties. Note that these
properties are sufficient, but in general are not necessary.

More precisely, we have the following pushout construction: given objects
Xj = (Aj , Bj , opj) in ComCat(F,G; I) for j = 0, 1, 2 and morphisms f1 :
X0 → X1 and f2 : X0 → X2, then the pushout object X3 = (A3, B3, op3) is
given by A3 = A1+A0 A2 and B3 = B1+B0B2; op3

i : F (A3) → G(B3) for i ∈ I
is uniquely defined by the pushout properties of F (A3) = F (A1)+F (A0)F (A2)
in C. 
�

A.7 Isomorphism and Equivalence of Categories

In the following, we define the isomorphism and equivalence of categories.



A.7 Isomorphism and Equivalence of Categories 351

Definition A.44 (isomorphism of categories). Two categories C and D
are called isomorphic, written C

∼
= D, if there are functors F : C → D and

G : D → C such that G ◦ F = IDC and F ◦ G = IDD, where IDC and IDD

are the identity functors on C and D, respectively.

Remark A.45. Isomorphisms of categories can be considered as isomor-
phisms in the “category of all categories” Cat, where the objects are all
categories and the morphisms are all functors. Note, however, that the collec-
tion of all categories is, in general, no longer a “proper” class in the sense of
axiomatic set theory. For this reason, Cat is not a “proper” category.

Fact A.46 (isomorphic categories). The category Graphs of graphs is
isomorphic to the functor category [S,Sets], where the “schema category” S
is given by the schema S : · ⇒ ·.

Proof. Let us denote the objects amd morphisms of S by v, v′, e, and e′, i.e.
S : v v′

e
e′ .

The functor F : Graphs → [S,Sets] is given by the following:

1. For a graph G = (V, E, s, t), let F (G) : S → Sets, defined by F (G)(v) =
V , F (G)(v′) = E, F (G)(e) = s, and F (G)(e′) = t.

2. For f = (fV , fE), let F (f) : F (G1) ⇒ F (G2) be a natural transformation
defined by F (f)(v) = fV and F (f)(v′) = fE .

Vice versa, the functor F−1 : [S,Sets] is given by the following:

1. For a functor D : S → Sets, let F−1(D) = G = (V, E, s, t), where V =
D(v), E = D(v′), s = D(e), and t = D(e′).

2. For a natural transformation α : D1 ⇒ D2, let f = (fV , fE) : F−1(D1) →
F−1(D2), defined by fV = α(v) : D1(v) → D2(v) and fE = α(v′) :
D1(v

′) → D2(v
′).

It is easy to verify that F and F−1 are functors satisfying F−1 ◦ F =
IdcatGraphs and F ◦ F−1 = Id[S,Sets], which implies that the categories
Graphs and [S,Sets] are isomorphic. 
�

Definition A.47 (equivalence of categories). Two categories C and D
are called equivalent, written C ≡ D, if there are functors F : C → D
and G : D → C and natural transformations α : G ◦ F ⇒ IDC and
β : F ◦ G ⇒ IDD that are componentwise isomorphisms, i.e. αA :
G(F (A))

∼
→ A and βB : F (G(B))

∼
→ B are isomorphisms for all A ∈ C

and B ∈ D, respectively.

Remark A.48. If C and D are isomorphic or equivalent then all “categor-
ical” properties of C are shared by D, and vice versa. If C and D are iso-
morphic, then we have a bijection between objects and between morphisms
of C and D. If they are only equivalent, then there is only a bijection of
the corresponding isomorphism classes of objects and morphisms of C and
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D. However, the cardinalities of corresponding isomorphism classes may be
different; for example all sets M with cardinality |M | = n are represented by
the set Mn = {0, . . . , n − 1}. Taking the sets Mn (n ∈ N) as objects and all
functions between these sets as morphisms, we obtain a category N, which is
equivalent – but not isomorphic – to the category FinSets of all finite sets
and functions between finite sets.



B

A Short Introduction to Signatures and

Algebras

In this appendix, we give a short introduction to algebraic signatures and
algebras, including terms and term evaluation, together with some illustrative
examples. For a deeper introduction, see [EM85].

B.1 Algebraic Signatures

A signature can be considered on the one hand as a syntactical description
of an algebra, and on the other hand as a formal description of the interface
of a program. Algebraic signatures consist of sorts and operation symbols. In
contrast to various kinds of logical signatures, they do not include predicate
symbols.

Definition B.1 (algebraic signature). An algebraic signature Σ =
(S, OP ), or signature for short, consists of a set S of sorts and a family OP =
(OPw,s)(w,s)∈S∗×S of operation symbols.

Remark B.2. For an operation symbol op ∈ OPw,s, we write op : w → s or
op : s1 . . . sn → s, where w = s1 . . . sn. If w = λ, then op :→ s is called a
constant symbol.

As some basic examples, we present algebraic signatures for natural num-
bers, characters, and, based on characters, strings. We give these examples in
a user-friendly notation as a list of sorts and operation symbols instead of in
the set-theoretical notation.

Example B.3 (algebraic signatures).

• We describe the interface for natural numbers with our first signature.
We have a sort nat, representing the numbers, a constant symbol zero,
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and operation symbols for a successor, an addition, and a multiplication
operation:

NAT =
sorts : nat
opns : zero :→ nat

succ : nat → nat
add : nat nat → nat
mult : nat nat → nat

• The signature for characters is really simple; we have only a sort char,
a constant a, and an operation symbol next implying something like an
ordering on characters:

CHAR =
sorts : char
opns : a :→ char

next : char → char

• The signature for strings imports the signature for characters. This means
that all sorts and operation symbols over characters can be used in the new
signature. We define a new sort string, a constant for the empty string,
and operations for the concatenation of two strings, for adding a character
to a string, and for returning a character from a string:

Signature STRING = CHAR+
sorts : string
opns : empty :→ string

concat : string string → string
ladd : char string → string
first : string → char


�

Finally, we present signature morphisms, which lead to the category Sig
of signatures.

Definition B.4 (signature morphism). Given signatures Σ = (S, OP )
and Σ′ = (S′, OP ′), a signature morphism h : Σ → Σ′ is a tuple of mappings
h = (hS : S → S′, hOP : OP → OP ′) such that hOP (f) : hS(s1) . . . hS(sn) →
hS(s) ∈ OP ′ for all f : s1 . . . sn → s ∈ OP .

Example B.5 (signature morphism). Consider the signatures NAT and
STRING from Example B.3. Then h = (hS , hOP ) : STRING → NAT , with
hS(char) = hS(string) = nat, hOP (a) = hop(empty) = zero, hOP (next) =
hOP (first) = succ, and hOP (concat) = hOP (ladd) = add, is a signature
morphism. 
�

Definition B.6 (category Sig). Algebraic signatures (see Definition B.1)
together with signature morphisms (see Definition B.4) define the category
Sig of signatures.
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B.2 Algebras

An algebra is a semantical model of a signature and can be seen to represent
an implementation. In this sense, an algebra implements the corresponding
signature.

Definition B.7 (Σ-algebra). For a given signature Σ = (S, OP ), a Σ-
algebra A = ((As)s∈S , (opA)op∈OP ) is defined by

• for each sort s ∈ S, a set As, called the carrier set;
• for a constant symbol c :→ s ∈ OP , a constant cA ∈ As;
• for each operation symbol op : s1 . . . sn → s ∈ OP , a mapping

opA : As1 × . . . × Asn
→ As.

Many different algebras can implement the same signature, correspond-
ing to different semantics. To analyze relations between algebras, we define
homomorphisms.

Definition B.8 (homomorphism). Given a signature Σ = (S, OP ) and Σ-
algebras A and B, a homomorphism h : A → B is a family h = (hs)s∈S of
mappings hs : As → Bs such that the following properties hold:

• for each constant symbol c :→ s ∈ OP , we have hs(cA) = cB;
• for each operation symbol op : s1 . . . sn → s ∈ OP , it holds that

hs(opA(x1, . . . , xn)) = opB(hs1(x1), . . . , hsn
(xn)) for all xi ∈ Asi

.

Definition B.9 (category Alg(Σ)). Given a signature Σ, Σ-algebras and
homomorphisms define the category Alg(Σ) of Σ-algebras.

Example B.10 (algebras). Here, we present algebras for the signatures de-
fined in Example B.3.

• The standard implementation of the signature NAT for natural numbers
is the following algebra A:

Anat = N
zeroA = 0 ∈ Anat

succA : Anat → Anat

x 	→ x + 1
addA : Anat × Anat → Anat

(x, y) 	→ x + y
multA : Anat × Anat → Anat

(x, y) 	→ x · y
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• Since a signature gives us only the syntax, we can implement the signature
NAT with a completely different algebra B, which describes operations
on words that consist of the characters a, b, and c:

Bnat = {a, b, c}∗

zeroB = λ ∈ Bnat

succB : Bnat → Bnat

w 	→ aw
addB : Bnat × Bnat → Bnat

(v, w) 	→ vw
multB : Bnat × Bnat → Bnat

(v, w) 	→ vn with |w| = n

• Now we can look for a homomorphism h : A → B or g : B → A. Consider
h : A → B, hnat : Anat → Bnat : x 	→ ax. The properties of a homomor-
phism can be easily verified. Indeed, this is the only homomorphism from
A to B. Since h is not surjective, the two algebras are not isomorphic.

In the other direction, g : B → A, defined by gnat : Bnat → Anat : w 	→
|w|, is the only homomorphism, that exists.

• An implementation of the CHAR-algebra C can be defined as follows:

Cchar = {a, . . . , z, A, . . . , Z, 0, 1, . . . , 9}
aC = A ∈ Cchar

nextC : Cchar → Cchar

a 	→ b, . . . , z 	→ A, A 	→ B, . . . , Y 	→ Z, Z 	→ 0, 0 	→ 1, . . . , 9 	→ a

• The STRING-algebra D is defined on the character part like the algebra
C. Strings are words over characters, and we implement the remaining
operations as follows:

Dchar = {a, . . . , z, A, . . . , Z, 0, 1, . . . , 9}
Dstring = D∗

char

aD = A ∈ Dchar

emptyD = λ ∈ Dstring

nextD : Dchar → Dchar

a 	→ b, . . . , z 	→ A, A 	→ B, . . . , Y 	→ Z, Z 	→ 0, 0 	→ 1, . . . , 9 	→ a
concatD : Dstring × Dstring → Dstring

(s, t) 	→ st
laddD : Dchar × Dstring → Dstring

(x, s) 	→ xs
firstD : Dstring → Dchar

λ 	→ A, s 	→ s1 with s = s1 . . . sn


�

The final algebra, which we use for the attribution of an attributed type
graph, is a special algebra.

Definition B.11 (final algebra). Given a signature Σ = (S, OP ), the final
Σ-algebra Z is defined by:
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• Zs = {s} for each sort s ∈ S;
• cZ = s ∈ Zs for a constant symbol c :→ s ∈ OP ;
• opZ : {s1} × . . . × {sn} → {s} : (s1 . . . sn) 	→ s for each operation symbol

op : s1 . . . sn → s ∈ OP .

For an arbitrary Σ-algebra A, there is a unique homomorphism zA : A → Z
defined by zA,s : As → {s} : x 	→ s for all s ∈ S. This is the reason why Z
is called the final algebra. In fact, it is the unique (up to isomorphism) final
algebra in the category Alg(Σ).

Example B.12 (final STRING-algebra). As an example, we show the final
algebra Z for the signature STRING given in Example B.3. Z is defined as
follows:

Zchar = {char}
Zstring = {string}
aZ = char ∈ Zchar

emptyZ = string ∈ Zstring

nextZ : Zchar → Zchar

char 	→ char
concatZ : Zstring × Zstring → Zstring

(string, string) 	→ string

ladd : Zchar × Zstring → Zstring

(char, string) 	→ string
first : Zstring → Zchar

string 	→ char

�

B.3 Terms and Term Evaluation

Terms with and without variables can be constructed over a signature Σ and
evaluated in each Σ-algebra.

Definition B.13 (variables and terms). Let Σ = (S, OP ) be a signature
and X = (Xs)s∈S a family of sets, where each Xs is called the set of variables
of sort s. We assume that these Xs are pairwise disjoint, and disjoint with
OP .

The family TΣ(X) = (TΣ,s(X))s∈S of terms (with variables) is inductively
defined by:

• x ∈ TΣ,s(X) for all x ∈ Xs;
• c ∈ TΣ,s(X) for all constants c :→ s ∈ OP ;
• f(t1, . . . , tn) ∈ TΣ,s(X), for each operation symbol f : s1 . . . sn → s ∈ OP

and all terms ti ∈ TΣ,si
(X) for i = 1, . . . , n.

The family TΣ = (TΣ,s)s∈S of terms without variables, also called ground
terms, is defined for the empty sets Xs = ∅ for all s ∈ S, i.e. TΣ,s = TΣ,s(∅).
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Definition B.14 (evaluation of terms). Let Σ = (S, OP ) be a signature
with variables X, and let A be a Σ-algebra. The evaluation of the ground
terms evalA : TΣ → A with evalA = (evalA,s : TΣ,s → As)s∈S is defined by:

• evalA,s(c) = cA for all constants c :→ s ∈ OP ;
• evalA,s(f(t1, . . . , tn)) = fA(evalA,s1(t1), . . . , evalA,sn

(tn)) for all terms
f(t1, . . . , tn) ∈ TΣ,s and operation symbols f : s1 . . . sn → s ∈ OP .

An assignment asg : X → A is a family of assignment functions asgs :
Xs → As for all s ∈ S. The extended assignment asg : TΣ(X) → A of the
assignment asg, where asg = (asgs : TΣ,s(X) → As)s∈S , is defined by:

• asgs(x) = asgs(x) for all x ∈ Xs;
• asgs(c) = cA for all constants c :→ s ∈ OP ;
• asgs(f(t1, . . . , tn)) = fA(asgs1

(t1), . . . , asgsn
(tn)) for all terms

f(t1, . . . , tn) ∈ TΣ,s(X) and operation symbols f : s1 . . . sn → s ∈ OP .

Definition B.15 (term algebra TΣ(X)). The algebra TΣ(X) =
((TΣ,s(X))s∈S , (opTΣ(X))op∈OP ), where the carriers sets consist of terms with
variables, and with operations defined by

• cTΣ(X) = c ∈ TΣ,s(X) for all constants c :→ s ∈ OP ,
• fTΣ(X) : TΣ,s1(X)× . . .×TΣ,sn

(X) → TΣ,s(X); (t1, . . . , tn) 	→ f(t1, . . . , tn)
for all f : s1 . . . sn → s ∈ OP ,

is called the term algebra over Σ and X.

Fact B.16 (freeness of TΣ(X)). Let Σ = (S, OP ) be a signature with vari-
ables X, and let A and B be Σ-algebras. We then have the following:

1. If asg : X → A is an assignment, then asg : TΣ(X) → A is the unique Σ-
homomorphism such that the following diagram commutes for all s ∈ S,
where us(x) = x for all x ∈ Xs:

Xs As

TΣ,s(X)

asgs

us asgs

2. evalA : TΣ → A is the unique Σ-homomorphism between TΣ and A, i.e.
TΣ is an initial algebra.

3. Given a Σ-homomorphism f : A → B, then f ◦ evalA = evalB:

A B

TΣ

f

evalA evalB

4. If f : A → B is a Σ-homomorphism, and asgA : X → A and asgB : X →
B are assignments with f ◦ asgA = asgB, then f ◦ asgA = asgB.

Proof. See Chapter 3 of [EM85]. 
�



C

Detailed Proofs

In this appendix, we present detailed proofs of some results which have been
postponed from Parts II and III.

C.1 Completion of Proof of Fact 4.24

For the proof of Fact 4.24, it remains to show the following:

1. Strictness is preserved by POs.
2. Strictness is preserved by PBs.
3. The weak VK property is satisfied.

We know that f : (SIG1, E1) → (SIG2, E2) ∈ Mstrict iff f is injective
and f#−1(E2) ⊆ E1.

1. Strictness is preserved by POs, i.e. if f1 is strict, so is g2:

(SIG0, E0) (SIG1, E1)

(SIG2, E2) (SIG3, E3)

(1)

f1

g2

f2 g1

Given that f1 is strict, we know from Fact 4.19 that g2 is injective. It
remains to show that g#−1

2 (E3) ⊆ E2. This is true for E3 = ∅. Otherwise,

let e ∈ E3 and let g#−1
2 be defined for e; otherwise g#−1

2 (e) = ∅ and

we have finished. We have E3 = g#
1 (E1) ∪ g#

2 (E2); therefore either e ∈

g#
2 (E2), which implies g#−1

2 (e) ⊆ E2, or e ∈ g#
1 (E1). In the second case,

e = g#
1 (e1) for some e1 ∈ E1. The requirement that g#−1

2 is defined for
e implies that all operator symbols in e are in the image of g1 and g2.
By the PO construction, all operator symbols in e must have preimages
in SIG0. Hence f#−1

1 (e1) is defined and e1 = f#
1 (e0) for some e0 ∈ E0,

because f1 is strict. Finally, e = g#
1 (e1) = g#

1 (f#
1 (e0)) = g#

2 (f#
2 (e0)), and
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therefore g#−1
2 (e) = f#

2 (e0) ∈ E2 because g#
2 is injective. This means that

g#−1
2 (E3) ⊆ E2.

2. Strictness is preserved by PBs, i.e. if g2 is strict, so is f1.
Given that g2 is strict, we know from Fact 4.19 that f1 is injective.

Let e0 ∈ f#−1
1 (E1) for e0 ∈ Eqns(SIG0). We have to show that e0 ∈ E0.

By assumption, e1 = f#
1 (e0) ∈ E1. Since g1 is a Spec morphism, we

have e3 = g#
1 (e1) ∈ E3 and e3 = g#

1 (f#
1 (e0)) = g#

2 (f#
2 (e0)). This means

that e2 = f#
2 (e0) ∈ Eqns(SIG2) and g#

2 (e2) = e3 ∈ E3, and, since g2 is

strict, e2 ∈ E2. Finally, f#
1 (e0) ∈ E1 and f#

2 (e0) = e2 ∈ E2; therefore

e0 ∈ f#−1
1 (E1) ∩ f#−1

2 (E2) and, since (1) is a pullback, e0 ∈ E0.
3. The weak VK property is satisfied.

Consider the following commutative cube, with f1 ∈ Mstrict and (f2 ∈
Mstrict or h1, h2, h3 ∈ Mstrict):

(SIG′
0, E

′
0)

(SIG′
1, E

′
1)

(SIG0, E0)

(SIG1, E1)

(SIG′
2, E

′
2)

(SIG′
3, E

′
3)

(SIG2, E2)

(SIG3, E3)

f ′
1

h0

f ′
2

g′
1

h1

f1
f2

g′
2

h2

h3

g2 g1

Part 1. If the bottom is a PO and all side faces are PBs, then the top
is a PO.

This follows from Fact 4.19 for the signature component. It remains to
show that E′

3 = g′#1 (E′
1)∪g′#2 (E′

2). We know that E3 = g#
1 (E1)∪g#

2 (E2).

For e′3 ∈ E′
3, we have h#

3 (e′3) ∈ E3. First, let h#
3 (e′3) ∈ g#

1 (E1), i.e.

h#
3 (e′3) = g#

1 (e1) for e1 ∈ E1. The front right face is a pullback, and

therefore there exists e′1 ∈ E′
1 with h#

1 (e′1) = e1 and g′#1 (e′1) = e′3; there-

fore e′3 ∈ g′#1 (E′
1). In the case h#

3 (e′3) ∈ g#
2 (E2), we can conclude that

e′3 ∈ g′#2 (E′
2).

Vice versa, for e′3 ∈ g′#1 (E′
1) we have e′3 ∈ E′

3 because g#
1 (E′

1) ⊆ E′
3,

using g′1 ∈ Spec, and for e′3 ∈ g′#2 (E′
2) we have e′3 ∈ E′

3 using g′2 ∈ Spec.

Part 2. If the bottom and the top are POs and the back faces are
PBs, then the front faces are PBs.

This follows from Fact 4.19 for the signature component. It remains to
show that E′

1 = h#−1
1 (E1) ∩ g′#−1

1 (E′
3) and E′

2 = h#−1
2 (E2) ∩ g′#−1

2 (E′
3).

For e′1 ∈ E′
1, since h1 ∈ Spec, we have h#

1 (e′1) ∈ E1, and therefore

e′1 ∈ h#−1
1 (E1). Analogously, since g′1 ∈ Spec, we have g′#1 (e′1) ∈ E′

3, and

therefore e′1 ∈ g′#−1
1 (E′

3). Altogether, e′1 ∈ h#−1
1 (E1) ∩ g′#−1

1 (E′
3).

Vice versa, let e′1 ∈ h#−1
1 (E1) ∩ g′#−1

1 (E′
3). We have to show that

e′1 ∈ E′
1. By assumption, f2 or h1 is strict; this implies that g′1 or h1 is
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strict, because strictness is preserved by pushouts and pullbacks. There-
fore g′#−1

1 (E′
3) ⊆ E′

1 or h#−1
1 (E1) ⊆ E′

1, which means that e′1 ∈ E′
1.

It follows analogously that E′
2 = h#−1

2 (E2) ∩ g′#−1
2 (E′

3).

�

C.2 Proof of Lemma 6.25

To prove Lemma 6.25, we use the principle of Noether’s induction concerning
properties of terminating relations. We call a relation > ⊆ M×M terminating
if there is no infinite chain (mi)i∈N with mi ∈ M and mi > mi+1.

Lemma C.1 (Noether’s induction). Given a terminating relation
> ⊆ M × M and a property P : M → {true, false} then we have

(∀n ∈ M : (∀k ∈ M : n > k → P (k)) → P (n)) ⇒ ∀m ∈ M : P (m).

Proof. Suppose that ∀n ∈ M : (∀k ∈ M : n > k → P (k)) → P (n) and that
there is an m0 ∈ M : ¬P (m0). We then have ¬(∀k ∈ M : m0 > k → P (k)),
i.e. there is an m1 ∈ M with m0 > m1 and ¬P (m1). Analogously, we have
¬(∀k ∈ M : m1 > k → P (k)) and an element m2 ∈ M with m1 > m2

and ¬P (m2) . . . , leading to an infinite chain m0 > m1 > m2 . . ., which is a
contradiction of > being terminating. 
�

Proof (of Lemma 6.25). Consider an adhesive HLR system AHS, which is
terminating and locally confluent, i.e. the relation ⇒ is terminating and lo-
cally confluent. We shall use this relation ⇒ for > and show, by Noether’s
induction for all graphs G, the following property P (G): for transformations

H1
∗
⇐ G

∗
⇒ H2 there exist transformations H1

∗
⇒ G′ ∗

⇐ H2. Note that we
use as the relation > not the relation

∗
⇒, but only the relation ⇒ of direct

transformations.
Given H1

∗
⇐ G

∗
⇒ H2, we consider the following cases:

Case 1. If H1
∼
= G, we have the diagram (1) below, which gives the con-

fluence; here, G
0
⇒ H1 means G = H1 or G

∼
= H1 (see Definition 5.2):

G

H1 G

H2

H2

(1)

∗

∗0

0 0

Case 2. If H2
∼
= G, this is symmetric to case 1.

Case 3. If ¬(H1
∼
=G), ¬(H2

∼
=G), we have transformations H1

∗
⇐ H ′

1 ⇐

G ⇒ H ′
2

∗
⇒ H2. Because of local confluence, there are an object G′′ and

transformations H ′
1

∗
⇒ G′′ ∗

⇐ H ′
2.
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We have G ⇒ H ′
1; therefore, by the induction assumption, we have the

property P (H ′
1), i.e. for all transformations K1

∗
⇐ H ′

1
∗
⇒ K ′

1 there are trans-

formations K1
∗
⇒ H ′′

1
∗
⇐ K ′

1. In our case, this means that for H1
∗
⇐ H ′

1
∗
⇒ G′′

there are transformations H1
∗
⇒ G1

∗
⇐ G′′:

G

H1 H2

H ′
1 H ′

2

G′′

G1

G′

∗

∗

∗

∗

∗∗

∗

∗

Moreover, we have G ⇒ H ′
2, and hence, by the induction assumption, we

have the property P (H ′
2). This implies that for G1

∗
⇐ H ′

2
∗
⇒ H2 we obtain

transformations G1
∗
⇒ G′ ∗

⇐ H2.
Altogether, we have H1

∗
⇒ G′ ∗

⇐ H2, which shows the confluence of H1
∗
⇐

G
∗
⇒ H2. 
�

C.3 Completion of Proof of Theorem 11.3

In this section, we show that the morphisms F and F−1 constructed in the
proof of Theorem 11.3 are well defined, and that they are actually functors
and isomorphisms.

C.3.1 Well-Definedness

We have to show that the morphisms F and F−1 are well defined.

1. F (AG, t) = A, where AG = (G, D), is an AGSIG(ATG)-algebra.
We have to show that all operations are well defined. For all e ∈ ETG

G ⊆ SE

and a ∈ Ae = t−1
G,EG

(e) ⊆ EG, the following holds:

• tG,VG
(srcA

e (a)) = tG,VG
(sourceG(a)) = sourceTG

G (tG,EG
(a)) =

sourceTG
G (e),

• tG,VG
(tarA

e (a)) = tG,VG
(targetG(a)) = targetTG

G (tG,EG
(a)) =

targetTG
G (e).

Therefore we have srcA
e (a) ∈ t−1

G,VG
(sourceTG

G (e)) = AsourceT G
G

(e) and

tarA
e (a) ∈ t−1

G,VG
(targetTG

G (e)) = AtargetT G
G (e). This works analogously for

e ∈ ETG
NA ⊆ SE and e ∈ ETG

EA ⊆ SE . This means that the graph part of
A is well defined.
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For all s ∈ SD\SG, we have As = t−1
D,s(s) = Ds. Since t : (G, D) → (TG, Z)

is a typing morphism with V TG
D = S′

D and Zs = {s}, we have commutativity
of (1) below for all s ∈ S′

D. It follows that As = t−1
G,VD

{s} = Ds = t−1
D,s{s}.

Therefore all data operations are well defined (as they are in D).

Ds {s}

VD S′
D

(1)

tD,s

tG,VD

2. F (f : (AG1, t1) → (AG2, t2)) = h : A → B with F (AG1, t1) = A and
F (AG2, t2) = B is an algebra homomorphism.

For all s ∈ SG ∪ SD and a ∈ AS , we have hs(a) ∈ Bs, as shown in the
following case distinctions:

1. s ∈ V TG
i ⊆ SV for i ∈ {G, D}. Since t2G,Vi

(hs(a)) = t2G,Vi
(fG,Vi

(a)) =

t1G,Vi
(a) = s, we have hs(a) ∈ t2 −1

G,Vi
(s) = Bs.

2. e ∈ ETG
j ⊆ SE for j ∈ {G, NA, EA}. Since t2G,Ej

(he(a)) =

t2G,Ej
(fG,Ej

(a)) = t1G,Ej
(a) = e, we have he(a) ∈ t2 −1

G,Ej
(e) = Be.

3. s ∈ SD. By construction, we have As = D1
s , Bs = D2

s , and hs = fD,s :
As → Bs.

It remains to show that h is a homomorphism. Since hD = fD, this is
obviously true for the data part. For all e ∈ ETG

G ⊆ SE and a ∈ Ae =
t−1
G,EG

(e) ⊆ EG, we have

• hsourceTG
G

(e)(src
A
e (a)) = fVG

(source1
G(a)) = source2

G(fEG
(a)) =

srcB
e (he(a)),

• htargetT G
G

(e)(tarA
e (a)) = fVG

(target1G(a)) = target2G(fEG
(a)) =

tarB
e (he(a)).

This can be shown analogously for e ∈ ETG
NA ⊆ SE and e ∈ ETG

EA ⊆ SE .
Therefore h is a homomorphism.

3. F−1(A) = (AG, t : AG → ATG), where AG = (G, D), is an attributed
graph typed over ATG.

It is obvious that G is an E-graph. It holds that
�

∪s∈S′
D

Ds =
�

∪s∈V T G
D

As =
VD. Thus, AG is an attributed graph.

t is well defined, since tD,s(a) = s = tVD
(a) for s ∈ S′

D, a ∈ As. It then
holds that t−1(s) = As for all s ∈ S′

D, and (1) commutes.

4. F−1(h : A → B) = f : (AG1, t1) → (AG2, t2) with F−1(A) = (AG1, t1)
and F−1(B) = (AG2, t2) is a typed attributed graph morphism with t1 =
t2 ◦ f .

Obviously, fD is an algebra homomorphism. We have to show that fG

preserves the source and target functions. For all e ∈ ETG
G and a ∈ Ae, we

have
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• fG,VG
(source1

G(a)) = hsourceT G
G

(e)(src
A
e (a)) = srcB

e (he(a)) =

source2
G(fG,EG

(a)),
• fG,VG

(target1G(a)) = htargetT G
G

(e)(tarA
e (a)) = tarB

e (he(a)) =

target2G(fG,EG
(a)).

This holds analogously for all e ∈ ETG
NA and e ∈ ETG

EA . The following diagram
(2) commutes for each s ∈ S′

D, and therefore fG is a graph morphism:

D1
s D2

s

�

∪s∈S′
D

D1
s

�

∪s∈S′
D

D2
s

(2)

fDs =hs

fG,VD
=(hs)

s∈S′
D

For i ∈ {G, D}, s ∈ V TG
i , and a ∈ As, it follows that t1G,Vi

(a) = s =

t2G,Vi
(hs(a)) = t2G,Vi

(fG,Vi
(a)). This holds for j ∈ {G, NA, EA} and e ∈ ETG

j

analogously. Since t1D = t2D ◦ fD and since Z is the final algebra, it follows
that t1 = t2 ◦ f .

C.3.2 Functors

We show that F and F−1 are functors by verifying the necessary functor
properties.

1. F (g ◦ f) = F (g) ◦ F (f). Consider the following case distinctions:

1. i ∈ {G, D}, s ∈ V TG
i ⊆ SV , a ∈ As. We have F (g ◦ f)s(a) =

(g ◦ f)G,Vi
(a) = gG,Vi

◦ fG,Vi
(a) = F (g)s ◦ F (f)s(a).

2. j ∈ {G, NA, EA}, e ∈ ETG
j ⊆ SE , a ∈ Ae. We have F (g ◦ f)e(a) =

(g ◦ f)G,Ej
(a) = gG,Ej

◦ fG,Ej
(a) = F (g)e ◦ F (f)e(a).

3. s ∈ SD. We have F (g◦f)D,s = (g◦f)D,s = gD,s◦fD,s = F (g)D,s◦F (f)D,s.

2. F (id(AG,t)) = idF (AG,t). Consider the following case distinctions:

1. i ∈ {G, D}, s ∈ V TG
i ⊆ SV , a ∈ As. We have F (idAG)s(a) = idG,Vi

(a) =
a = idAs

(a).
2. j ∈ {G, NA, EA}, e ∈ ETG

j ⊆ SE , a ∈ Ae. We have F (idAG)e(a) =
idG,Ej

(a) = a = idAe
(a).

3. s ∈ SDWe have F (idAG)s = idD,s.

3. F−1(g ◦h) = F−1(g)◦F−1(h). Consider the following case distinctions:

1. i ∈ {G, D}, s ∈ V TG
i ⊆ SV , a ∈ As. We have F−1(g ◦ h)G,Vi

(a) =
(g ◦ h)s(a) = gs ◦ hs(a) = F−1(g)G,Vi

◦ F−1(h)G,Vi
(a).

2. j ∈ {G, NA, EA}, e ∈ ETG
j ⊆ SE , a ∈ Ae. We have F−1(g ◦ h)G,Ej

(a) =

(g ◦ h)e(a) = ge ◦ he(a) = F−1(g)G,Ej
◦ F−1(h)G,Ej

(a).
3. s ∈ SD. We have F−1(g ◦ h)D,s = (g ◦ h)s = gs ◦ hs = F−1(g)D,s ◦

F−1(h)D,s.

4. F−1(idA) = idF−1(A). Consider the following case distinctions:
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1. i ∈ {G, D}, s ∈ V TG
i ⊆ SV , a ∈ As. We have F−1(idA)G,Vi

(a) =
idAs

(a) = a = idG,Vi
(a).

2. j ∈ {G, NA, EA}, e ∈ ETG
j ⊆ SE , a ∈ Ae. We have F−1(idA)G,Ej

(a) =
idAe

(a) = a = idG,Ej
(a).

3. s ∈ SD. We have F−1(idA)D,s = idA,s = idF−1(A),D,s.

We conclude that F and F−1 fulfill the necessary properties and are there-
fore functors.

C.3.3 Isomorphism

Finally, we show the isomorphism of the categories considered by proving that
F−1 ◦ F = IDAGraphsATG

and F ◦ F−1 = IDAGSIG(ATG)-Alg.

1. For an object (AG, t) in AGraphsATG, we show that, for the object
(AG′, t′) = F−1(A) = F−1 ◦ F (AG, t), it holds that (AG, t) = (AG′, t′).

• For i ∈ {G, D}, we have V ′
i =

�

∪s∈V TG
i

As =
�

∪s∈V T G
i

t−1
G,Vi

(s) = Vi.

• For j ∈ {G, NA, EA}, we have E′
j =

�

∪e∈ET G
j

Ae =
�

∪e∈ETG
j

t−1
G,Ej

(e) = Ej .

• For e ∈ ETG
G and a ∈ EG with tG,EG

(a) = e, it holds that source′G(a) =
srcA

e (a) = sourceG(a) and target′G(a) = tarA
e (a) = targetG(a), and anal-

ogously for e ∈ ETG
NA and e ∈ ETG

EA .
• For s ∈ SD, we have D′

s = As = Ds.
• For op ∈ OPD, we have opD′ = opA = opD.
• For i ∈ {G, D}, s ∈ V TG

i , and a ∈ As, it holds that t′G,Vi
(a) = s = tG,Vi

(a).

• For j ∈ {G, NA, EA}, e ∈ ETG
j , and a ∈ Ae, we have t′G,Ej

(a) = e =

tG,Ej
(a).

• t′D = tD follows, since Z is the final algebra.

This means that (AG, t) = (AG′, t′).

2. For a morphism f : (AG1, t1) → (AG2, t2) in AGraphsATG, we show
that, for the morphism f ′ = F−1(h : A → B) = F−1 ◦ F (f), it holds that
f = f ′.

Consider the following case distinctions:

1. i ∈ {G, D}, s ∈ V TG
i ⊆ SV , a ∈ As. We have f ′

G,Vi
(a) = hs(a) = fG,Vi

(a).

2. j ∈ {G, NA, EA}, e ∈ ETG
j ⊆ SE , a ∈ Ae. We have f ′

G,Ej
(a) = he(a) =

fG,Ej
(a).

3. s ∈ SD. We have f ′
D,s = hs = fD,s.

Therefore f = f ′.

3. For any algebra A in AGSIG(ATG)-Alg, we show that, for the object
A′ = F (AG, t) = F ◦ F−1(A), it holds that A = A′.

• For i ∈ {G, D} and s ∈ V TG
i , we have A′

s = t−1
G,Vi

(s) = As.
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• For j ∈ {G, NA, EA} and e ∈ ETG
j , we have A′

e = t−1
G,Ej

(e) = Ae.

• For e ∈ ETG
G and a ∈ Ae, it holds that srcA′

e (a) = sourceG(a) = srcA
e (a)

and tarA′

e (a) = targetG(a) = tarA
e (a), and analogously for e ∈ ETG

NA and
e ∈ ETG

EA .
• For s ∈ SD, we have A′

s = Ds = As.
• For op ∈ OPD, we have opA′ = opD = opA.

This means that A = A′.

4. For a morphism h : A → B in AGSIG(ATG)-Alg, we show that, for
the morphism h′ = F (f) = F ◦ F−1(h), it holds that h = h′.

Consider the following case distinctions:

1. i ∈ {G, D}, s ∈ V TG
i ⊆ SV , a ∈ As. We have h′

s(a) = fG,Vi
(a) = hs(a).

2. j ∈ {G, NA, EA}, e ∈ ETG
j ⊆ SE , a ∈ Ae. We have h′

e(a) = fG,Ej
(a) =

he(a).
3. s ∈ SD. We have h′

s(a) = fD,s(a) = hs(a).

Therefore h = h′.
Altogether, the functors F and F−1 are isomorphisms, and therefore the

categories AGraphsATG and AGSIG(ATG)-Alg are isomorphic. 
�

C.4 Proof of Lemma 11.17

In this section, we show that the construction in Lemma 11.17 is well de-
fined and is indeed an initial pushout over f , which means that the square
constructed is a pushout with b ∈ M and the initiality property holds.

C.4.1 Well-Definedness

B is defined as the intersection of the subalgebras of A, and hence it is a
subalgebra of A and therefore well defined.

For the algebra C, the data part is obviously well defined. For the graph
part, we have to show that, for an operation op : s′ → s ∈ OPG and for a
c′ ∈ Cs′ , we have opC(c′) ∈ Cs. If s ∈ SD, we have Cs = As, and this is
clear. Consider the case where s ∈ SG\SD. Since AGSIG is well structured
we know also that s′ ∈ SG\SD.

Suppose there is a c′ ∈ Cs′ = A′
s′\f′s(As′ ) ∪ fs′(Bs′) such that opC(c′) /∈

Cs. Since Cs = A′
s\fs(As) ∪ fs(Bs), there is an a ∈ As with fs(a) = opC(c′)

and a /∈ Bs. The following cases may occur:

1. c′ ∈ A′
s′\fs′As′ . In this case a ∈ A∗

s follows from the first part of the
definition of A∗

s. Therefore A∗
s ⊆ Bs implies that a ∈ Bs, which is a

contradiction.
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2. c′ ∈ fs′(Bs′). In this case there is an a′ ∈ Bs′ ⊆ As′ with fs′(a′) =
gs′(a′) = c′, and we have fs(a) = opC(c′) = opC(gs′(a′)) = opA′(fs′(a′)) =
fs(opA(a′)). Since opA(a′) = opB(a′) ∈ Bs and a /∈ Bs, we conclude that
a �= opA(a′). Then a ∈ A∗

s ⊆ Bs follows from the second part of the
definition of A∗

s, which is a contradiction.

We conclude that, for every operation op : s′ → s ∈ OPG and c′ ∈ Cs′ , we
have opC(c′) ∈ Cs. This means that C is well defined.

b and c are inclusions and g is a restriction of f , and therefore they are
homomorphisms and the square commutes.

C.4.2 Pushout Property

Consider the following diagram with an object X and morphisms l : C → X
and k : A → X such that l ◦ g = k ◦ b:

B A

C A′

X

b

g

l

k
c

f

x

We have to show that there is a unique morphism x : A′ → X with x◦c = l
and x ◦ f = k. We define xs : A′

s → Xs by

xs(a
′) =

⎧⎨⎩ ls(a
′) : s ∈ SD

ks(a) : s ∈ SG\SD, ∃a ∈ As : fs(a) = a′

ls(a
′) : otherwise

and prove that x = (xs)s∈SG∪SD
is the required homomorphism.

First we show that all components xs are well defined. For s ∈ SD, we have
the result that As = Bs, A′

s = Cs, fs = gs, and bs and cs are the identities.
Therefore xs = ls is well defined, xs ◦ cs = xs = ls, and, for an a ∈ As, it
holds that xs(fs(a)) = ls(fs(a)) = ls(gs(a)) = ks(bs(a)) = ks(a).

Consider s ∈ SG\SD and a′ ∈ A′
s. The following cases can then occur:

1. ∃a ∈ As : fs(a) = a′. We define xs(a
′) = ks(a). This is well defined:

if there is an a1 ∈ As, a1 �= a with fs(a1) = fs(a) = a′, then we have
a1, a ∈ A∗

s ⊆ Bs from the first part of the definition of A∗
s . It holds

that ks(a) = ks(bs(a)) = ls(gs(a)) = ls(fs(a)) = ls(a
′) = ls(fs(a1)) =

ls(gs(a1)) = ks(bs(a1)) = ks(a1).
2. �a ∈ As : fs(a) = a′. In this case xs(a

′) = ls(a
′) is obviously well defined.

xs(fs(a)) = ks(a) holds by definition for all a ∈ As with s ∈ SG\SD. For
c′ ∈ Cs ⊆ A′

s, consider the following case distinctions:
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1. ∃a ∈ As : fs(a) = c′. In this case c′ ∈ fs(Bs) from the definition of
Cs. This means that there is an a′ ∈ Bs with fs(a

′) = c′ = fs(a). If
a = a′, then it follows directly that a ∈ Bs; otherwise, a ∈ A∗

s ⊆ Bs, and
a ∈ Bs follows from the second part of the definition of A∗

s. We then have
xs(cs(c

′)) = xs(c
′) = ks(a) = ks(bs(a)) = ls(gs(a)) = ls(fs(a)) = ls(c

′).
2. �a ∈ As : fs(a) = c′. In this case xs(cs(c

′)) = xs(c
′) = ls(c

′) holds by
definition.

Now we show that x is a homomorphism. The compatibility with opera-
tions in the data part follows from the fact that l is a homomorphism.

For an operation op : s′ → s ∈ OPG, s′ /∈ SD follows from the well-
structuredness of AGSIG. For a′ ∈ A′

s′ , we have to show that xs(opA′(a′)) =
opX(xs′ (a′)), and we prove this for the following cases:

1. ∃a ∈ As′ : fs′(a) = a′. In this case we have xs(opA′(a′)) = xs(opA′(fs′(a)))
= xs(fs(opA(a))) = ks(opA(a)) = opX(ks′(a)) = opX(xs′(fs′(a))) =
opX(xs′ (a′)).

2. �a ∈ As′ : fs′(a) = a′. In this case a′ ∈ Cs′ follows from the def-
inition of Cs′ , and it holds that xs(opA′(a′)) = xs(opA′(cs′(a′))) =
xs(cs(opC(a′))) = ls(opC(a′)) = opX(ls′(a′)) = opX(xs′ (cs′(a′))) =
opX(xs(a

′)).

Therefore x is a homomorphism.
It remains to show that x is unique. Suppose that there is a homomorphism

x̂ : A′ → X with x̂ ◦ c = l and x̂ ◦ f = k. Then xs(a
′) = x̂s(a

′) for each sort
s ∈ SG ∪ SD and a′ ∈ A′

s, as shown in the following case distinctions:

1. s ∈ SD. Since cs = idCs
, we have x̂s = x̂s ◦ cs = ls = xs.

2. s ∈ SG\SD, ∃a ∈ As : fs(a) = a′. In this case it holds that x̂s(a
′) =

x̂s(fs(a)) = ks(a) = xs(a
′).

3. s ∈ SG\SD, �a ∈ As : fs(a) = a′. It follows that a′ ∈ Cs, and then we
have x̂s(a

′) = x̂s(cs(a
′)) = ls(a

′) = xs(a
′).

Hence it follows that x = x̂, which means that x is unique.

C.4.3 Initial Pushout

Consider the pushout (2) below, with d, e ∈ M. We have to show that there
are morphisms b∗ : B → D and c∗ : C → E such that d ◦ b∗ = b, e ◦ c∗ = c,
and (3) is a pushout:

B

C

D

E

(3)

b∗

g h

c∗

B

C

A

A′

D

E

(2)

b

g

c

d

f

e

h

b∗

c∗
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We define

c∗s(c
′) =

{
e−1

s (cs(c
′)) : s ∈ SD

e′ : s ∈ SG\SD, ∃e′ ∈ Es : es(e
′) = cs(c

′) = c′
.

We shall show that c∗ = (c∗s)s∈SG∪SD
is one of the required homomorphisms.

First, we show that c∗ is well defined. For s ∈ SD, es is an isomorphism;
therefore the inverse morphism e−1 exists and, for each c′ ∈ Cs, e−1

s (cs(c
′)) =

e−1
s (c′) is uniquely defined.

For s ∈ SG\SD, we have to show that for each c′ ∈ Cs there is a unique
e′ ∈ Es such that es(e

′) = c′. Since es is injective, the uniqueness follows.
Suppose that there is a c′ ∈ Cs and no e′ ∈ Es such that es(e

′) = c′. Since
(2) is a pushout, es and fs are jointly surjective. There is then an a ∈ As with
fs(a) = c′. It follows that a ∈ Bs, from the construction of B and C. Now the
following cases may occur:

1. a ∈ A∗
s, ∃op : s′ → s ∈ OPG ∃a′ ∈ A′

s′\fs′(As′) : fs(a) = opA′(a′). Since
(2) is a pushout, there is an e1 ∈ Es′ such that es′(e1) = a′. It then
holds that es(opE(e1)) = opA′(es′(e1)) = opA′(a′) = fs(a) = c′. This is a
contradiction; we have found an e′ = opE(e1) ∈ Es with es(e

′) = c′.
2. a ∈ A∗

s, ∃a′ ∈ As, a �= a′ : fs(a) = fs(a
′). Since (2) is a pushout, we find

elements d1, d2 ∈ Ds with ds(d1) = a, ds(d2) = a′, and hs(d1) = hs(d2). It
then follows that es(hs(d1)) = fs(ds(d1)) = fs(a) = c′. This means that
for e′ = hs(d1) ∈ Es it holds that es(e

′) = c′, which is a contradiction.
3. a /∈ A∗

s. Since a ∈ Bs and B is the smallest subalgebra of A that contains
A∗

s , there must be a chain of operations opi : si → si+1 ∈ OPG and
elements ai ∈ Asi

for i = 1, . . . , n such that a1 ∈ A∗
s1

and opi,A(ai) = ai+1

with sn+1 = s and an+1 = a. We have s1 ∈ SG\SD because AGSIG is well
structured. Then a1 ∈ A∗

s1
, and, from the proofs above in items 1 and 2, it

follows that there is an e1 ∈ Es1 such that es1(e1) = fs1(a1). We then have
c′ = fs(a) = fs(opn,A(. . . (op1,A(a1)))) = opn,A′(. . . (op1,A′(fs1(a1)))) =
opn,A′(. . . (op1,A′(es1(e1)))) = es(opn,E(. . . (op1,E(e1)))).

For e′ = opn,E(. . . (op1,E(e1))) ∈ Es, it holds that es(e
′) = c′, which is a

contradiction.

This means that c∗s is well defined for each s ∈ SG ∪ SD and, obviously,
es ◦ c∗s = cs.

For the data part, it is clear that c∗ is a homomorphism. For op : s′ →
s ∈ OPG, we have s′ ∈ SG\SD since AGSIG is well structured. It then
holds for c′ ∈ Cs′ that es(opE(c∗s′(c′))) = opA′(es′(c∗s′(c′))) = opA′(cs′(c′)) =
cs(opC(c′)) = es(c

∗
s(opC(c′))). Since es is injective, opE(c∗s′(c′)) = c∗s(opC(c′))

follows. Hence c∗ is a homomorphism.
The square (2) above is a pushout along the M-morphism d and therefore

also a pullback. Comparing this pullback (2) with the morphisms b and c∗ ◦ g,
we have f ◦b = c◦g = e◦c∗ ◦g, and obtain the induced morphism b∗ : B → D
with d ◦ b∗ = b and h ◦ b∗ = c∗ ◦ g.
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It remains to show that (3) is a pushout. Consider the commutative cube
(4) below. Since the bottom is the pushout (1) along the M-morphism b, it
is a VK square. We then have the following:

• the back left face is a pullback;
• the back right face, being a composition of pullbacks (since d ∈ M), is a

pullback;
• the front left face, being a composition of pullbacks (since e ∈ M), is a

pullback;
• the front right face, being the square (2), is a pullback.

From the VK square property, we conclude that the top, corresponding to
square (3), is a pushout.

B

B

C

C

D

D

D

A

E

E

E

A′

(4)

idB

g
b∗

b∗
g

c∗

idC

c∗

idD

idD

h

h

d

d
h

idE

idE

e

e
f

Altogether, this means that (1) is an initial pushout over f : A → A′. 
�

C.5 Proof of Theorem 13.12

In this section, we show that the following hold for the constructed morphism
type:

1. type : AG → ATG is a well-defined AG-morphism.
2. uATG ◦ type = type.
3. For each AG-morphism f : AG → ATG with uATG ◦ f = type, we have

f = type.

1. We have to show that type : AG → ATG is a well-defined AG-morphism.

(a) Well-definedness means that typeEi
(ei) ∈ TGEi

for i ∈ {G, NA, EA}.

i. For typeEG
(e1) = (n1, e

′
1, n2) ∈ TGEG

, we have to show that
e′1 ∈ TGEG

, n1 ∈ clanI(srcG(e′1)), and n2 ∈ clanI(tarG(e′1)).
From the definition of typeEG

, we have

e′1 = typeEG
(e1) ∈ TGEG

,
n1 = typeVG

(sGG
(e1)) = typeVG

(sGG
(e1))

∈ clanI(srcG ◦ typeEG
(e1)) = clanI(srcG(e′1)),

n2 = typeVG
(tGG

(e1)) = typeVG
(tGG

(e1))
∈ clanI(tarG ◦ typeEG

(e1)) = clanI(tarG(e′1)).
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ii. For typeENA
(e2) = (n1, e

′
2, n2) ∈ TGENA

, we have to show that
e′2 ∈ TGENA

, n1 ∈ clanI(srcNA(e′2)), and n2 = tarNA(e′2). From
the definition of typeENA

, we have

e′2 = typeENA
(e2) ∈ TGENA

,
n1 = typeVG

(sGNA
(e2)) = typeVG

(sGNA
(e2))

∈ clanI(srcNA ◦ typeENA
(e2)) = clanI(srcNA(e′2)),

n2 = typeVD
(tGNA

(e2)) = typeVD
(tGNA

(e2))
= tarNA ◦ typeENA

(e2) = tarNA(e′2).

iii. For typeEEA
(e3) = ((n11, e

′′
3 , n12), e

′
3, n2) ∈ TGEEA

, we have
to show that e′3 ∈ TGEEA

, e′′3 = srcEA(e′3) ∈ TGEG
, n11 ∈

clanI(srcG(e′′3 )), n12 ∈ clanI(tarG(e′′3)), and n2 = tarEA(e′3) ∈
TGVD

. From the definition of typeEEA
, we have

e′3 = typeEEA
(e3) ∈ TGEEA

,
(n11, e

′′
3 , n12) = typeEG

(sGEA
(e3)) ∈ TGEG

according to step (i), where we have shown that e′′3 = srcEA(e′3),
n11 ∈ clanI(srcG(e′′3)), and n12 ∈ clanI(tarG(e′′3 )), and

n2 = typeVD
(tGEA

(e3)) = typeVD
(tGEA

(e3))
= tarEA(typeEEA

(e3)) = tarEA(e′3).

(b) The AG-morphism property of type : AG → ATG requires us to show
the following properties i–vii:

i. typeVD
(d) = s for d ∈ Ds and s ∈ S′

D. This is true because the
corresponding property holds for typeVD

, and typeVD
= typeVD

.
ii. typeVG

◦ sGG
(e1) = srcG ◦ typeEG

(e1) ∀e1 ∈ GEG
. From the defi-

nition of typeEG
, we have typeEG

(e1) = (n1, e
′
1, n2) with

n1 = typeVG
(sGG

(e1)) ∈ TGVG
⇒

srcG◦typeEG
(e1) = srcG[(n1, e

′
1, n2)] = n1 = typeVG

(sGG
(e1)).

iii. typeVG
◦ tGG

(e1) = tarG ◦ typeEG
(e1) ∀e1 ∈ GEG

. From the defi-
nition of typeEG

, we have typeEG
(e1) = (n1, e

′
1, n2) with

n1 = typeVG
(tGG

(e1)) ∈ TGVG
⇒

tarG◦typeEG
(e1) = tarG[(n1, e

′
1, n2)] = n1 = typeVG

(tGG
(e1)).

iv. typeVG
◦ sGNA

(e2) = srcNA ◦ typeENA
(e2) ∀e2 ∈ GENA

. From the
definition of typeENA

, we have typeENA
(e2) = (n1, e

′
2, n2) with

n1 = typeVG
(sGNA

(e2)) ∈ TGVG
⇒

srcNA ◦ typeENA
(e2) = srcNA[(n1, e

′
2, n2)] = n1 =

typeVG
(sGNA

(e2)).

v. typeVD
◦ tGNA

(e2) = tarNA ◦ typeENA
(e2) ∀e2 ∈ GENA

. From the
definition of typeENA

, we have typeENA
(e2) = (n1, e

′
2, n2) with

n2 = typeVD
(tGNA

(e2)) ∈ TGVD
⇒

tarNA ◦ typeENA
(e2) = tarNA[(n1, e

′
2, n2)] = n2 =

typeVD
(tGNA

(e2)).
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vi. typeEG
◦ sGEA

(e3) = srcEA ◦ typeEEA
(e3) ∀e3 ∈ GEEA

. From the
definition of typeEEA

, we have typeEEA
(e3) = ((n11, e

′′
3 , n12), e

′
2, n2)

with

(n11, e
′′
3 , n12) = typeEG

(sGEA
(e3)) ⇒

srcEA ◦ typeEEA
(e3) = srcEA[((n11, e

′′
3 , n12), e

′
3, n2)] =

(n11, e
′′
3 , n12) = typeEG

(sGEA
(e3)).

vii. typeVD
◦ tGEA

(e3) = tarEA ◦ typeEEA
(e3) ∀e3 ∈ GEEA

. From the
definition of typeEEA

, we have typeEEA
(e3) = ((n11, e

′′
3 , n12), e

′
3, n2)

with

n2 = typeVD
(tGEA

(e3)) ⇒
tarEA ◦ typeEEA

(e3) = tarEA[((n11, e
′′
3 , n12), e

′
3, n2)] = n2 =

typeVD
(tGEA

(e3)).

2. We have to show that uATG ◦ type = type.

(a) uATG,VG
◦ typeVG

= typeVG
= typeVG

.
(b) uATG,VD

◦ typeVD
= typeVD

= typeVD
.

(c) For typeEG
(e1) = (n1, e

′
1, n2) ∈ TGEG

with e′1 = typeEG
(e1), we have

uATG,EG
◦ typeEG

(e1) = uATG,EG
[(n1, e

′
1, n2)] = e′1 = typeEG

(e1).

(d) For typeENA
(e2) = (n1, e

′
2, n2) ∈ TGENA

with e′2 = typeENA
(e2),

we have uATG,ENA
◦ typeENA

(e2) = uATG,ENA
[(n1, e

′
2, n2)] = e′2 =

typeENA
(e2).

(e) For typeEEA
(e3) = ((n11, e

′′
3 , n12), e

′
3, n2) ∈ TGEEA

with e′3 =
typeEEA

(e3), we have the result that uATG,EEA
◦ typeEEA

(e3) =
uATG,EEA

[(n11, e
′′
3 , n12)] = e′3 = typeEEA

(e3).
(f) uATG,D ◦ typeD = typeD = typeD.

3. Given an AG-morphism f : AG → ATG with uATG ◦ f = type, we have
to show that f = type, which is shown in (a)–(f) below.

(a) fVG
= uATG,VG

◦ fVG
= typeVG

= typeVG
.

(b) fVD
= uATG,VD

◦ fVD
= typeVD

= typeVD
.

(c) Let fEG
(e1) = (n1, e

′
1, n2) ∈ TGEG

. Now type = uATG ◦ f implies
that typeEG

(e1) = uATG,EG
◦ fEG

(e1) = uATG,E1[(n1, e
′
1, n2)] = e′1.

The fact that f is an AG-morphism implies

typeVG
◦ sGG

(e1)
(a)
= fVG

◦ sGG
(e1) =

srcG ◦ fEG
(e1) = srcG[(n1, e

′
1, n2)] = n1,

typeVG
◦ tGG

(e1)
(a)
= fVG

◦ tGG
(e1) =

tarG ◦ fEG
(e1) = tarG[(n1, e

′
1, n2)] = n2

(∗)
⇒ typeEG

(e1) = (n1, e
′
1, n2) = fE1(e1)

⇒ fEG
= typeEG

.

(∗) follows from the definition of typeEG
.

(d) Let fENA
(e2) = (n1, e

′
2, n2) ∈ TGENA

. Now type = uATG ◦ f implies
that typeENA

(e2) = uATG,ENA
◦ fENA

(e2) = uATG,ENA
[(n1, e

′
2, n2)] =
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e′2. The fact that f is an AG-morphism implies

typeVG
(sGNA

(e2)) = fVG
◦ sGNA

(e2) =
srcNA ◦ fENA

(e2) = srcNA[(n1, e
′
2, n2)] = n1,

typeVD
(sGNA

(e2)) = fVD
◦ tGNA

(e2) =
tarNA ◦ fENA

(e2) = tarNA[(n1, e
′
2, n2)] = n2

⇒ typeENA
(e2) = (n1, e

′
2, n2) = fENA

(e2)
⇒ fENA

= typeENA
.

(e) Let fEEA
(e3) = ((n11, e

′′
3 , n12), e

′
3, n2) ∈ TGEEA

. Now type = uATG◦f
implies that typeEEA

(e3) = uATG,EEA
◦ fEEA

(e3) =
uATG,EEA

[((n11, e
′′
3 , n12), e

′
3, n2)] = e′3. The fact that f is an AG-

morphism implies

typeEG
(sGEA

(e3)) = fEG
◦ sGEA

(e3) = srcEA ◦ fEEA
(e3) =

srcEA[((n11, e
′′
3 , n12), e

′
3, n2)] = (n11, e

′′
3 , n12),

typeVD
(tGEA

(e3)) = fVD
◦ tGEA

(e3) = tarEA ◦ fEEA
(e3) =

tarEA[((n11, e
′′
3 , n12), e

′
3, n2)] = n2

⇒ typeEEA
(e3) = ((n11, e

′′
3 , n12), e

′
3, n2) = fEEA

(e3)
⇒ fEEA

= typeEEA
.

(f) fD = uATG,D ◦ fD = typeD = typeD.

�

C.6 Proof of Lemma 13.20

1. We have to show that (a) pt is a concrete production and (b) pt is unique.
Let R′

VG
= RVG

\rVG
(KVG

).

(a) We show that tL, tK , and tR are well-defined concrete ATGI-clan
morphisms and fulfill the properties in Definition 13.16.

• From Fact 13.11 and the fact that typeG is concrete, tL and tK
are well-defined concrete ATGI-clan morphisms, and we have by
definition, tK = tL ◦ l. In addition, m is a match with respect to p
and (G, typeG), and therefore tL = typeG ◦ m ≤ typeL and, from
Remark 13.15, we also have tK = tL ◦ l ≤ typeL ◦ l = typeK .

• tR is well defined: from Definition 13.18, we know that tK,VG
(x1) =

tK,VG
(x2) for x1, x2 ∈ KVG

with rVG
(x1) = rVG

(x2).
• tR fulfills the properties of a concrete ATGI-clan morphism in Def-

inition 13.8:

– (0), (4), (5), and (6) follow from tR,X = typeR,X for X ∈
{VD, EG, ENA, EEA, D}.
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– For (1), we show tR,VG
(sGG

(e1)) ∈ clanI(srcG(tR,G(e1))) using
the properties of type.

Case 1. If sGG
(e1) ∈ R′

VG
, we have, from Definition 13.16,

tR,VG
(sGG

(e1)) = typeR,VG
(sGG

(e1)) ∈
clanI(srcG(typeR,EG

(e1))) = clanI(srcG(tR,EG
(e1))).

Case 2. If sGG
(e1) = rVG

(v) ∈ rVG
(KVG

), we have, using
tK ≤ typeK , typeR ◦ r = typeK , and Definition 13.8,

tR,VG
(sGG

(e1)) = tK,VG
(v) ∈ clanI(typeK,VG

(v)) =
clanI(typeR,VG

(rVG
(v))) = clanI(typeR,VG

(sGG
(e1))) ⊆

clanI(srcG(typeR,EG
(e1))) = clanI(srcG(tR,EG

(e1))).

– (2) and (3) follow analogously.
– We show that tR is concrete: ∀x ∈ rVG

(KVG
), x = rVG

(x′) :
tR,VG

(x) = tK,VG
(x′) /∈ A, since tK is concrete, and ∀x ∈ R′

VG
:

tR,VG
(x) = typeR,VG

(x) /∈ A, since p is an abstract production.

• All tNi
are concrete by construction. Furthermore, tNi

≤ typeNi

and tNi
◦ ni = tL by construction.

(b) Given a concrete production pt′ with concrete ATGI-clan morphisms
t′ = (t′L, t′K , t′R), where t′L = typeG ◦ m = tL, then we have, from
Definition 13.16,

• t′K = t′L ◦ l = tL ◦ l = tK ;
• ∀x ∈ R′

VG
: t′R,VG

(x) = typeR,VG
(x) = tR,VG

(x);
• ∀x ∈ rVG

(KVG
), ∃x′ ∈ KVG

: rVG
(x′) = x : t′R,VG

(x) = t′K,VG
(x′) =

tK,VG
(x′) = tR,VG

(x);
• t′R,X = typeR,X = tR,X for X ∈ {VD, EG, ENA, EEA, D}, since

t′R, tR ≤ typeR.

This means that t = t′ and rt = rt′ .
For NAC

′
of pt′ and NAC of pt, we have NAC

′
= NAC be-

cause NAC
′
and NAC are uniquely determined by NAC and t′L and

by NAC and tL, respectively, and we have t′L = tL. Therefore pt is
unique.

2. We have to show that m is a consistent match with respect to pt and
(G, typeG).

By assumption, m is a consistent match with respect to p and
(G, typeG), and we have typeg◦m = tL. It remains to show that m satisfies
NAC. Assume the contrary: There then is an (N, n, tN ) ∈ NAC that is
not satisfied by m. This means that we have i ∈ I and (Ni, ni, typeNi

) ∈
NAC with N = Ni, n = ni, and tN ≤ typeNi

. There is then an AG-
morphism o : N → G ∈ M′ with o ◦ n = m and typeG ◦ o = tN . Hence
it follows that typeG ◦ o = tN ≤ typeNi

, which means that m does not
satisfy NAC. This is a contradiction.

Therefore m is a consistent match with respect to pt and (G, typeG),
and we can apply pt to (G, typeG) as defined in Definition 13.17. The
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result is a direct transformation (G, typeG)
pt,m
=⇒ (H, typeH). The explicit

definition of typeH follows from the construction of typeH as the induced
morphism of typeD and tR in AGraphs, and therefore it is well defined.

3. Given the abstract direct transformation (G, typeG)
p,m
=⇒ (H ′, typeH′)

according to Definition 13.18 and the concrete direct transformation

(G, typeG)
pt,m
=⇒ (H, typeH) constructed in step 2 of this proof, obviously

we have H = H ′ (or, at least, they are isomorphic and we can replace H ′

by H), since they are constructed as the same pushout in AGraphs.
We have to show that typeH = typeH′ from the definition of typeH in

step 2 and of typeH′ in Definition 13.18. For X ∈ {VG, VD, EG, ENA, EEA,
D}, the following holds:

• ∀x ∈ r′X(DX), ∃x′ ∈ DX : x = r′X(x′) : typeH,X(x) = typeD,X(x′) =
typeH′,X(x).

• ∀x ∈ HX\r′X(DX) : typeH,X(x) = tR,X(x′′) = typeR,X(x′′) =
typeH′,X(x) with m′(x′′) = x.

Therefore typeH = typeH′ .

�
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[BST00] P. Bottoni, A. Schürr, and G. Taentzer. Efficient Parsing of Visual Lan-
guages Based on Critical Pair Analysis and Contextual Layered Graph
Transformation. In Proceedings of VL 2000, pages 59–60. IEEE, 2000.

[CEKR02] A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Pro-
ceedings of ICGT 2002, Lecture Notes in Computer Science, No. 2505.
Springer, 2002.
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Adhesive HLR category, 86

AGraphsATG, 230

AGSIG-Alg, 230

properties, 96

Adhesive HLR grammar, 102

Adhesive HLR system, 102

AGG

critical pair analysis, 313

graph, 306

graph constraints, 312

graph grammar, 312

graph parsing, 317

graph transformation, 310

language concepts, 305

node and edge attributes, 307

rule and match, 308

typing, 306

Algebra, 355

final, 356

Applicability, 44, 104

Application condition, 67, 154

construction from constraint, 156

in AGraphsATG, 243

construction from right to left, 160

in AGraphsATG, 245

for a production, 69, 156

for AGraphsATG, 240

negative, see Negative application
condition

ATGI, 260

graph grammar and language, 279

Attributed graph grammars, equiva-
lence, 279

Attributed graph structure signature,
222

Attributed graph with inheritance, 260
Attributed type graph with inheritance,

see ATGI

Binary coproduct, 340
Boundary, 56, 126

for typed attributed graph mor-
phisms, 210

Category, 25, 329
adhesive, 84
adhesive HLR, see Adhesive HLR

category
AGraphs, 174
AGraphsATG, 175
AGSIG-Alg, 222
AHLNets(SP,A), 95
Alg(Σ), 26, 330
coslice, 331
dual, 332
EGraphs, 173
ElemNets, 91
functor, 345
Graphs, 26, 330
GraphsTG, 26, 330
HyperGraphs, 90
product, 330
PTNets, 92
quasiadhesive, 85
Rels, 330
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Sets, 26, 330
Sig, 91
slice, 331
Spec, 94
weak adhesive HLR, see Weak

adhesive HLR category
Clan morphism

ATGI, 266
universal ATGI, 267

Class M, 177
AGSIG-Alg, 225

Closure of ATGI, 262
Codomain, 25, 329
Concurrency Theorem, 54, 119, 203

proof, 120
Confluence, 59, 144

local, 144
strict, 145, 218

Consistency, 132, 213
Constraint, 152

graph, 65
guaranteeing of, 164
negative, 66, 153
preservation of, 164
typed graph, 65

Context graph, 44
existence and uniqueness, 189

Context, for typed attributed graph
morphisms, 210

Coproduct, compatible with M, 114
Critical pair, 60, 141

completeness, 60, 142, 215
definition, 215
strict confluence, 145, 218

Critical Pair Lemma, 61, 147
proof, 147

Dangling points, 45
Derived span, 131, 208
Domain, 25, 329

E-dependency relation, 117, 202
E ′–M′ pair factorization, 122

in AGraphsATG, 195
Embedding Theorem, 56, 133

for typed AGT systems, 214
proof, 133

Epi−mono factorization, 333
Epimorphism, 26, 332

in Graphs, 27
in GraphsTG, 27
in Sets, 27

Essential match, 254
Extension diagram, 130, 207
Extension Theorem, 57, 136

for typed AGT systems, 214
proof, 136

Functional behavior, 62
Functor, 344

Gluing condition, 44, 126
in AGraphs, 188
in AGraphsATG, 188

Gluing points, 45
Grammar

adhesive HLR, 102
graph, see Graph grammar
typed graph, 38

Graph, 21
attributed, 173
context, see Context graph
E-graph, 172
labeled, 23
morphism, 22
typed, 22
typed attributed, 175

Graph constraint, 65
in AGraphsATG, 238

Graph grammar, 38
layered typed, 63
typed, 38

Graph language, 38
typed, 38

Graph transformation system, 38
functional behavior, 62
global determinism, 59
terminating, 60
typed, 38
typed attributed, 183

GTS, see Graph transformation system

Homomorphism, 355

Identification points, 45
Independence

parallel, 47, 109, 191
sequential, 47, 109, 191



Index 387

Inheritance clan, 261
Initial object, 344
Initial pushout, 126

closure property, 127
in AGraphs, 212
in AGraphsATG, 212
in Graphs, 126

Instance of ATGI, 263
Isomorphism, 26, 332

AGraphsATG

∼

= AGSIG(ATG)-
Alg, 223

in Graphs, 27
in GraphsTG, 27
in Sets, 27

Jointly surjective, 29

Label alphabet, 23
Labeled graph, 23
Language, 102

graph, 38
typed graph, 38

Layer assignments, 253
reduced conditions, 253

Layered typed attributed graph
grammar, 250

Local Church−Rosser Theorem, 50,
111, 192

proof, 112
Local Confluence Theorem, 61, 147, 219

proof, 147

M pushout−pullback decomposition,
96

M−M′ pushout−pullback decomposi-
tion, 123

Model transformation
by typed attributed graph transfor-

mation, 287
from statecharts to Petri nets, 288
further case studies, 303
generating syntax graph grammar,

290
Monomorphism, 26, 332

in Graphs, 27
in GraphsTG, 27
in Sets, 27

Morphism, 25
graph, 22

labeled graph, 23
typed graph, 23

NAC, see Negative application
condition

Natural transformation, 345
Negative application condition, 68, 155

in AGraphsATG, 241
Negative constraint, 67, 153
Negative graph constraint, 66
Nondeterminism, 62

Pair factorization, 122, 199
Parallelism Theorem, 53, 115, 193

proof, 116
PB, see Pullback
PO, see Pushout
Production, 37, 101

abstract, 272
applicability, 44, 104
application, 188, 273, 274
concrete, 272
E-concurrent, 54, 118, 202
graph, 37
inverse, 37, 102
parallel, 52, 115, 192
typed attributed, 182
typed graph, 37

Pullback, 33, 336
along M-morphism, 180
in comma category, 92
in Graphs, 34
in GraphsTG, 34
in Sets, 34

Pushout, 29, 334
along M-morphism, 177
in AGraphsATG, 178
in Graphs, 29
in GraphsTG, 29
in Sets, 29
initial, see Initial pushout

Pushout complement, 45, 336

Refinement, ATGI-type, 272
Restriction Theorem, 139
Rule, see Production

Signature, 353
attributed graph structure, 222
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well-structured, 222
Signature morphism, 354
Strict confluence, 145, 218

Termination, 63
analysis, 301
of layered typed attributed graph

grammar, 253, 256
with deletion, 254

of layered typed graph grammar, 63
of nondeleting layered typed

attributed graph grammar, 256
Tracking morphism, 254
Transformation, 38, 102

construction, 46, 105, 190
direct, 38, 102
E-related, 54, 118, 202

construction, 123, 203

equivalence, 278
graph, 38
parallel, 52, 115, 192
terminating, 59
typed attributed, 182
typed graph, 38

Type graph, 22

Universal ATGI-clan property, 268

Van Kampen square, 78
in AGSIG-Alg, 229
in Sets, 78

VK square, see Van Kampen square

Weak adhesive HLR category, 87
properties, 96
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