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The shortest path problem is an optimization problem in which the
best path between two considered objects is searched for in accordance with an
optimization criterion, which has to be minimized. In this paper this problem is
investigated in the case when the distances between the nodes are fuzzy numbers.
The problem is formulated as a linear optimization problem with fuzzy coefficients
in the objective function. This problem is solved using crisp parametric two-criterial
linear optimization. Special emphasis is given to the sensitivity of the solution with
respect to the fuzzy objective function coefficients.

1 Introduction

Consider a directed graph G = (V,E), where V = {v1, v2, ..., vn} is a set
of nodes and E = {(v1, w1), . . . , (vm, wm)} is a set of directed edges. Each
edge (v, w) ∈ E connects two nodes v, w ∈ V of the graph G. There is a
positive number (or a weight) c(v, w) associated with each edge (v, w) ∈ E
that can represent the length of this edge, the time needed to cover it, etc.
Given two nodes q ∈ V and s ∈ V a path from q to s is a sequence of edges
{(u0, u1), (u1, u2), . . . , (ut−2, ut−1), (ut−1, ut)} ⊆ E with u0 = q and ut = s,
where {q, u1, . . . , ut, s} ⊆ V are all distinct. In the shortest path problem a

path from q to s is searched with the minimal length
t−1∑
i=0

c(ui, ui+1).

Denote a set of arrows beginning in node v ∈ V by Γ+(v) := {(v, w) ∈ E :
v = v} and deg+(v) := |Γ+(v)| is the outdegree of v ∈ V . Similarly, the set
Γ−(w) := {(v, w) ∈ E : w = w} describes a set of arrows which are ended in
the node w ∈ V and deg−(w) := |Γ−(w)| is the indegree of node w ∈ V . Then,
the shortest path problem can be modelled as a linear optimization problem
[6, 8] as:
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∑
(v,w)∈E

c(v, w)x(v, w) → min
∑

w∈Γ+(v)

x(v, w) −
∑

u∈Γ−(v)

x(u, v) = g(v), ∀v ∈ V

x(v, w) ≥ 0, ∀(v, w) ∈ E,

(1)

where

g(v) =

⎧⎨
⎩

0, if v �∈ {q, s}
1, for v = q
−1, for v = s.

(2)

Denote the feasible set of this problem by M . Walks in graph G correspond
to integer feasible solutions of this problem. M �= ∅ whenever there is a path
from q to s. Since the coefficient matrix of the constraints of this problem is
totally unimodular [7], the vertices of M have integer components and, hence,
are the incidence vectors of the walks in G, i.e. sequences of edges starting in
q and ending in s but possibly crossing one node multiply. In this case it is
said that the walk contains cycles. If all the distances between the nodes of
the graph G are positive, optimal vertex solutions of problem (1) are paths,
they do not contain cycles. Hence, in what follows, c(v, w) > 0 for all v, w ∈ V
is assumed.

Usually it is supposed that the parameters c(v, w) in the objective func-
tion of this model are exactly known. However, in many real situations these
data can not be given exactly because of the influence of various factors of
environment. Then the problem can be appropriately modelled using a graph
with fuzzy parameters. This corresponds to a model (1) with fuzzy coefficients
in the objective function.

Focus in this paper is on the situation when the membership functions of
the distances are not precisely known in advance. This could be considered
as a realistic situation. Then, both the dependency of the optimal (fuzzy)
solution of the problem on the fuzzy distances as well as a path from q to s
in the graph being more or less equally ”good” for all possible distances are
of special interest. For related investigations of a fuzzy linear optimization
problem the interested reader is referred to the paper [4].

2 The two-criterial optimization approach

Assume now that in model (1) the weights c(v, w) are fuzzy numbers of the
type L− L [5]:

c̃(v, w) = (c(v, w); c(v, w);α(v, w);β(v, w))L−L , ∀ (v, w) ∈ E (3)

where c(v, w), c(v, w) - are the left and right borders of the fuzzy number
c̃(v, w) corresponding to the maximal reliability level (λ = 1) and α(v, w) and
β(v, w) are non-negative real numbers (cf. Figure 1). To guarantee that c̃(v, w)
is positive it is assumed that c(v, w) − α(v, w) > 0 for all edges (v, w) ∈ E.
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Fig. 1. Used type of fuzzy numbers

A fuzzy number c̃(v, w) is defined as a fuzzy set in the space of real numbers
with the following membership function [5]:

μc̃(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if c ≤ z ≤ c,

L

(
c− z

α

)
if z ≤ c,

L

(
z − c

β

)
if z ≥ c,

(4)

where L is a shape function, which satisfies to following conditions:
- L is a continuous non-increasing function on [0,∞) with L(0) = 1;
- L is strictly decreasing on that part of [0,∞) on which it is positive.

The shortest path problem in a directed graph with fuzzy weights (or
”fuzzy shortest path problem” for short) is problem (1) with c(v, w) being
replaced with the fuzzy weights c̃(v, w) in the objective function. In analogy
with [3, 2] this problem can be associated with a set of the following problems,
which depend on a parameter θ ∈ (0, 1):

f1(x, θ) =
∑

(v,w)∈E

(c(v, w) − α(v, w)θ)x(v, w) → min

f2(x, θ) =
∑

(v,w)∈E

(c(v, w) + β(v, w)θ)x(v, w) → min
∑

w∈Γ+(v)

x(v, w) −
∑

u∈Γ−(v)

x(u, v) = g(v), ∀v ∈ V,

x(v, w) ≥ 0, ∀(v, w) ∈ E.

(5)

This model is based on the preference relation

a ≤ b ⇐⇒ a ≤ b ∧ a ≤ b,

a < b ⇐⇒ a ≤ b ∧ a �= b,

between intervals a = [a, a] and b = [b, b] [2].
Thus, to find a shortest path between the nodes q and s problem (5) has

to be solved for all θ ∈ (0, 1).
Problem (5) is a two-criterial optimization problem. One solution concept

for such problems is to find one (or better all) Pareto-optimal solution(s).
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Definition 1. A point x∗ ∈ X is a Pareto-optimal solution of a two-criterial
optimization problem

f1(x, θ) → min
f2(x, θ) → min
x ∈ X

at θ = θ∗ if there does not exist another point x ∈ X with f1(x, θ∗) ≤ f1(x∗, θ∗)
and f2(x, θ∗) ≤ f2(x∗, θ∗) with at least one strict inequality.

Hence, the sets of Pareto-optimal solutions Ψ(θ) of problem (5) are searched
for all θ ∈ [θ, θ].

As result a number of different paths in the graph G are computed and
each such path is Pareto-optimal for problem (5). All these paths can now
be used to compose the fuzzy optimal solution x̃ of the initial fuzzy shortest
path problem. Let Ψ(θ) denote the set of Pareto-optimal solutions of problem
(5) for fixed θ. Then the frequency of x ∈ Ψ(θ) for θ ∈ [0, 1] can be used to
determine a membership function for x̃ [3]:

μFS(x) =
∣∣∣∣
{
λ ∈ [0, 1] : x is a Pareto-optimal vertex

of the problem (5) for θ = L−1(λ)

}∣∣∣∣ .
Here, |Q| means the geometric measure of the set Q. Since the set of Pareto-
optimal points can be computed using parametric linear programming, Ψ(θ)
equals the union of faces of M . By parametric linear programming, too,
Pareto-optimal solutions for one parameter value θ0 remain Pareto-optimal
for all parameter values within some interval [θ, θ]. This implies that

μFS(x) =
l∑

i=1

(L(θ2i−1) − L(θ2i)) (6)

where {θi}2l
i=1 is such that x is Pareto-optimal for problem (5) for all θ ∈

[θ2i−1, θ2i], i = 1, . . . , l.

3 Sensitivity analysis

Usually the fuzzy numbers c̃(v, w) have been determined by a group of ex-
perts. Asking other experts other fuzzy numbers will result. Hence, it is an
interesting question to consider the dependency of the solutions obtained from
the parameters of the fuzzy numbers c̃(v, w). In the following only the spe-
cial case of the question is considered in which these numbers are perturbed
by an additive number δ(v, w), ∀ (v, w) ∈ E (cf. Figure 2). Applying such
perturbations to the problem (5) the following model arises:
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Fig. 2. Perturbed fuzzy numbers

f1(x, θ) =
∑

(v,w)∈E

[c(v, w) − α(v, w)θ + δ(v, w)] x(v, w) → min

f2(x, θ) =
∑

(v,w)∈E

[c(v, w) + β(v, w)θ + δ(v, w)] x(v, w) → min
∑

w∈Γ+(v)

x(v, w) − ∑
u∈Γ−(v)

x(u, v) = g(v), ∀v ∈ V,

x(v, w) ≥ 0, ∀(v, w) ∈ E.

(7)

The interesting point here is the determination of the range in which the
δ(v, w) may vary without violating Pareto-optimality of some path in G. Let

R(x, θ) := {δ : x ∈ Ψ δ(θ)}

denote this set and call it region of stability of the path in G with incidence
vector x. Here, Ψ δ(θ) denotes the set of Pareto-optimal vertices of problem
(7).

Theorem 1. For fixed θ and each feasible point x the set cl R(x, θ) is a
convex polyhedron.

Proof. Abbreviate the coefficient matrix of the constraints in M by A such
that

M = {x : Ax = g, x ≥ 0}.
The matrix A is the incidence matrix of G, having exactly two nonzero entries
in each column. The columns correspond to the edges (v, w) ∈ E of G with a
1 in the row v and a -1 in row w. In this notation, the vector x is determined
by x(v,w) := x(v, w).

Then, the normal cone to M at some incidence vector x to a path in G is

NM (x) = {z : ∃ y, ∃t ≥ 0 with z = A�y + It, x�t = 0},

where I denotes the unit matrix. An incidence vector x is Pareto-optimal for
problem (7) iff there exists γ ∈ (0, 1) such that x is an optimal solution of the
problem
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γf1(x, θ) + (1 − γ)f2(x, θ) → min
Ax = g
x ≥ 0

⎫⎬
⎭ (8)

cf.e.g. [10]. A necessary and sufficient optimality condition for this problem is

−γ∇f1(x, θ) − (1 − γ)∇f2(x, θ) ∈ NM (x) (9)

by linear programming. Here,

∇f1(x, θ) =
(
c(v, w) − α(v, w)θ + δ(v, w)

)
(v,w)∈E

and

∇f2(x, θ) =
(
c(v, w) + β(v, w)θ + δ(v, w)

)
(v,w)∈E

are independent of x. This implies that (9) is a system of linear equalities and
inequalities in δ, y, t, γ. Hence, the projection of the solution set of this system
onto the δ–space is a convex polyhedron.

Formula (9) can be used both to compute the bounds θi in (6) by setting δ ≡ 0
and the dependency of θi from δ in a neighborhood of δ ≡ 0. The θi are the
bounds of θ for which x enters the set of Pareto-optimal solutions respectively
leaves this set. Note, that this system is no longer linear if θ is not constant.
This results in nonconvex regions of stability which is also reflected by the
results in [3].

4 Robust optimization

In contrast to sensitivity analysis where the dependency of shortest paths on
variations of the membership functions of the distances is investigated, robust
optimization intends to find paths in G which are at the same time ”equally
good” with respect to all membership functions in a certain set [1]. For that,
let P denote a set of all possible realizations of membership functions for the
distances between the nodes of the graph G and assume that the membership
functions in P are composed by the elements in a convex bounded polyhedron
for simplicity. Hence, this polyhedron is given by

Q = conv

{(
ck(v, w), αk(v, w), ck(v, w), βk(v, w)

)
(v,w)∈E

: k = 1, . . . , K

}
,

the convex hull of its K vertices(
ck(v, w), αk(v, w), ck(v, w), βk(v, w)

)
(v,w)∈E

.
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This results in the two-criterial optimization problem

z1 → min
z2 → min∑
(v,w)∈E

(c(v, w) − α(v, w)θ) x(v, w) ≤ z1 ∀ (c, α, c, β) ∈ Q

∑
(v,w)∈E

(c(v, w) + β(v, w)θ) x(v, w) ≤ z2 ∀ (c, α, c, β) ∈ Q

Ax = g
x ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

where (c, α, c, β) is an abbreviation of the matrix
(
c(v, w), α(v, w)c(v, w), β(v, w)

)
(v,w)∈E

.

It is easy to see that the first and second group of inequalities in (10) are
satisfied if and only if

f̃1(x, θ) := max
(c,α,c,β)∈Q

∑
(v,w)∈E

(c(v, w) − α(v, w)θ) x(v, w) ≤ z1

and

f̃2(x, θ) := max
(c,α,c,β)∈Q

∑
(v,w)∈E

(c(v, w) + β(v, w)θ) x(v, w) ≤ z2.

For fixed θ linear functions are maximized over a convex bounded polyhedron
which implies that the maximum is attained at a vertex of Q. Hence,

f̃1(x, θ) := max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) − αk(v, w)θ

)
x(v, w) ≤ z1

and

f̃2(x, θ) := max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) + βk(v, w)θ

)
x(v, w) ≤ z2

which are convex, piecewise linear functions. Summing up, for computing a
robust solution of the fuzzy linear optimization problem, the set of Pareto-
optimal solutions of the following problem has to be determined:

f̃1(x, θ) = max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) − αk(v, w)θ

)
x(v, w) → min

f̃2(x, θ) = max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) + βk(v, w)θ

)
x(v, w) → min

Ax = g
x ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)
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To compute Pareto-optimal solutions for (11) the problem

γf̃1(x, θ) + (1 − γ)f̃2(x, θ) → min
Ax = g
x ≥ 0,

⎫⎬
⎭ (12)

is solved for γ ∈ [0, 1]. The following result is a consequence of convex (mul-
ticriterial) optimization [9, 10].

Theorem 2. Let problem (12) has unique optimal solutions for γ = 0 and
γ = 1. Then, an incidence vector x0 of a path in G can have a positive
membership function value for the robust fuzzy shortest path problem only if
there is θ ∈ [0, 1] such that

0 ∈ γ∂f1(x0, θ) + (1 − γ)∂f2(x0, θ) +NM (x0).

Here, ∂fi(x0, θ) equals the subdifferential of the function fi(x0, θ).
Analogously to the proof of Theorem 1 this makes the computation of

bounds {θi}2l
i=1 possible such that an incidence vector x0 is Pareto-optimal

for problem (11) for all θ ∈ ∪l
i=1[θ2i−1, θ2i]. This implies that the membership

function of such a point can be computed in a similar manner to (6).
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