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Preface

For the 8th time since 1991 we invite researchers to participate in the Dort-
mund Fuzzy-Days. I am very glad that our conference has established itself as
an international forum for the discussion of new results in the field of Compu-
tational Intelligence. Again all papers had to undergo a thorough review: each
one was judged by five referees to guarantee a solid quality of the programme.

From the beginning of the Fuzzy-Days on, Lotfi A. Zadeh felt associated
with the conference. I would like to express my gratitude for his encouragement
and support and I am particularly glad that he once again delivers a keynote
speech. Much to my pleasure Janusz Kacprzyk, Jong-Hwan Kim, Enrique
Trillas and Eyke Hüllermeyer have also agreed to present new results of their
work as keynote speakers.

and Technology (KAIST) a colleague takes part in this year’s Fuzzy-Days
to whom I am indebted because he has inspired me and my colleagues to
turn our attention towards the exciting field of Robot Soccer. Within a few
years Robot Soccer has become an accepted test field for robotic research and
the development of Multi Agent Systems. The importance of Computational
Intelligence for these applications is evident. We address this topic not only
with a dedicated session, but we will also organise a robot soccer match to
demonstrate to the participants the entertaining quality of robot soccer as
well as the challenging scientific problems.

I wish to thank all participants of the Dortmund Fuzzy-Days for their
commitment to the conference and the organisers, namely Mrs Ulrike Lippe,
for the excellent job they did. Last but not least, I am obliged to the German
research council for their valuable financial support.

July 2004 Bernd Reusch

With Prof Jong-Hwan Kim of the Korean Advanced Institute of Science.
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Radim Bělohlávek, Funioková, and Vilém Vychodil . . . . . . . . . . . . 205

Fuzzy Transforms in Removing Noise
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An Evolutionary Algorithm for the

István Borgulya

University of Pécs, Faculty of Business and Economics, H-7621 Pécs, Rákóczi út

Abstract. In this paper a new evolutionary algorithm (EA) is described for the
unconstrained Binary Quadratic Problem, which is to be used with small, medium
and large scale problems as well. This method can be divided into two stages, where
each stage is a steady-state EA. The first stage improves the quality of the initial
population. The second stage uses concatenated, complex neighbourhood structures
for the mutations and improves the quality of the solutions with a randomized
k-opt local search procedure. The bit selection by mutation is based on an explicit
collective memory (EC-memory) that is a modification of the flee-mutation operator
(Sebag et al. 1997). We tested our algorithm on all the benchmark problems of the
OR-Library. Comparing the results with other heuristic methods, we can conclude
that our algorithm belongs to the best methods of this problem scope.

Keywords: Binary quadratic programming; Large-size problems; Evolution-
ary algorithm.

1 Introduction

The general formulation the unconstrained binary quadratic programming
problem (BQP) is the following:

Max f(x)= xT Q x + cT x

where x∈{0, 1}n, Q∈Rnxn is an n × n symmetric rational matrix.
BQP has a central role in combinatorial optimization. A large number of

problems can be formulated as maximization of quadratic real values function
in 0-1 variables. For that reason, BQP has been referred to as “the mother of
all the combinatorial problems” (Bjorndal et al. 1995). E.g. BQP is equivalent
to many classical combinatorial optimization problems such as maximum cut,
maximum clique, maximum vertex packing, and maximum vertex cover. As
important application we can see e.g. machine scheduling, capital budgeting,
financial analysis and molecular conformation problems.

I. Borgulya: An Evolutionary Algorithm for the Binary Quadratic Problems,
Advances in Soft Computing 2, 3–16 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

Unconstrained Binary Quadratic Problems

80, Hungary.
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4 I. Borgulya

The techniques which can be used to find the exact optimal solution are
the branch and bound and branch and cut methods (e.g. (Helmberg and
Rendl 1998), (Horst et al.2000), Pardalos and Rodgers 1990)). We can also use
linearization techniques as well (e.g. the reformulation-linearization technique
(Sherali and Adams 1998)), which converts nonlinear mixed-integer or zero-
one problems into linear ones. This technique can be used not only to construct
exact solution algorithms, but also to design powerful heuristic procedures.

Generally problems of sizes larger then n=100 cannot be solved in an ac-
ceptable time. Since most real-world problems are large-size problems, heuris-
tics are used to find good solutions within a reasonable time (Glover et al.
2002). A large number of heuristic methods have been developed for solving
the BQP. Various heuristic methods are also frequently used, such as one-
pass heuristics (Glover et al. 2002), simulated annealing (SA) (Beasley 1999),
(Katayama and Narihisa 2001), tabu search (TA) (Beasley 1999), (Glover et
al. 1998), evolutionary algorithm (EA) and versions (e.g. genetic algorithm
(GA), evolutionary strategy (ES)) (Lodi et al. 1999), (Merz and Freisleben
1999), scatter search (Glover 1997), memetic algorithms (MA) (Merz and
Katayama 2001), as well as differently iterated search techniques (e. g. the
parthenogenetic algorithms (PA) (Katayama and Narihisa 2001) or various
subgradient-type methods (Shor 1998).

In this paper, we present a new heuristic method to solve the BQP. This
heuristic is an EA that consists of 2 consequent stages. The first stage improves
the quality of the initial population. The second stage uses concatenated,
complex neighbourhood structures for the mutations, improves the quality
of the solutions with a randomized k-opt local search procedure and uses a
special filter and restart technique. The bit selection by mutation is based on
an explicit collective memory (EC-memory) that is a modification of the flee-
mutation operator (Sebag et al. 1997). The efficacy of the method was studied
on the OR-Library benchmarks: the small, medium and large scale problems
were all successfully solved. Comparing the results to others methods, we
can state that our algorithm belongs to the best heuristic’s methods of this
problem scope.

In section 2, we describe our EA in general. Section 3 includes implementa-
tion details of our EAs. In Section 4, we present our computational experience,
and we compare our results with other heuristic’s results. Section 5 contains
concluding remarks.

2.1

Hybrid EAs are frequently used for solving combinatorial problems. These
methods improve the quality of the descendent solution for example with the
application of a local search procedure, SA, or TS. The constitution of these

2 The principle of the new evolutionary algorithm

The structure of the algorithm
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systems corresponds to an extension of an EA: for instance a local search
procedure is applied at every step of the EA cycle.

The new EA unlike former hybrid EAs based on a single stage, uses a
2-stage algorithm structure in order to speed up convergence and to produce
higher quality results. The first stage is a quick “preparatory” stage that is
designated to improve the quality of the initial population. The second stage
is a hybrid EA with some special operators.

Let us discuss the 2 EAs (stages) in more detail:

1. The first stage forms some solutions at random and then tries to improve
them by randomly generating descendents. The descendent may replace
the most similar one of the former solutions.

2. The second stage is a hybrid ES. The algorithm uses two different recom-
bination operations, and concatenated, complex neighbourhood structures
for the mutations. The recombination operation is a uniform or single-point
recombination or otherwise simple copy-making. In selecting the parents,
priority is given to the best, highest objective/fitness function value: the
algorithm selects the fittest solution with 0.5 probability and another so-
lution with 0.5/t probability (where t is the size of the population). By
mutation we applied varying number of bit-flip and a special bit-flip (bit-
flip-flop). We form the neighbourhood structure using: some bit-flip-flops
+ some bit-flips.
The quality of the solutions is improved with a local search procedure. We
applied the randomized k-opt local search (Merz and Katayama 2001). Fi-
nally in order to keep the diversity of the population we use a filter and
a restart procedure. The filter selects only the best of the solutions close
to each other, the other ones are deleted. The restart begins the second
stage again, if the fittest solution didn’t change in the last generations. It
replaces the weakest solutions with new ones (70% of the population), and
it applies the local search procedure on a part of the new individuals.

2.2 EC-memory

There are many variants of EC-memory methods that memorises the past
events and/or past successes of the evolution process. We choose to adopt the
method of (Sebag et al. 1997) that memorises the past failures of evolution
through a virtual individual, the virtual loser. Let us see the principle of this
method.

Let X, Y, Z and T be individuals, where X has a high fitness, and Y, Z
and T all have a low fitness. Let the average of Y, Z and T be noted VL
for virtual loser. The probability of mutating bit i in individual X should
reflect how much it discriminates Xifrom VL, that is, it should increase with
1 − |V Li − Xi|.
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The EC memory is updated by relaxation from a fraction of the worse
individuals in the current population. If α denotes some relaxation factor, it
is the number of generation and dVL is the average of these worse individuals,

VLit+1 = (1-α) VLit + α dVL (e.g. α=0.2).

(Sebag et al. 1997) use a flee-mutation operator based on VL. In this muta-
tion operator each bit to mutate is selected by tournament and the probability
of mutating of one bit depends on both the bit itself and the individual at
hand.

In our algorithm we use the virtual loser too. We don’t apply the flee-
mutation operator, but in our mutation structure we use the virtual loser by
bit selection. We use two variants of the bit selection:

• The bit to mutate is selected randomly and its probability of mutating
depends on the quantity pi.(pi = 1 − |V Li − Xi|.)

• Only the bits with the highest pi values are selected and their probability
of mutating depends on the quantity pi.

Applied to the same problem, different bit selection mutations generally
succeed with different efficacies. Even though their concurrent random appli-
cation might increase computational cost with some of the problems, on av-
erage it increases efficacy. Therefore our algorithm randomly selects between
the two types of bit selections for each mutation.

The new algorithm constructed this way, named EBQP (Evolutionary al-
gorithm for the BQP) may be used both for small, medium and large scale
BQP. Its structure and function are different from the former methods used to
solve the BQP, as it uses an evolutionary framework, and it applies a special
transformation for the mutations.

The EBQP got its final form after a number of assays. We tested the 1-opt
and k-opt local search procedures, and tested the mutation operation with and
without the EC-memory. The test results made us conclude that the usage of
the randomized k-opt local search yields 10 times better results (more accu-
rate) than the 1-opt local search. With the new mutation operator based on
EC-memory the efficiency of the algorithm proved to be better than without
EC-memory: on the benchmark set the quality of the solutions was improved
by 6-7 %, and the computational cost (measuring the average running time)
was decreased by 25 %.

3 The new algorithm

3.1 The characteristics of the EAs

The main functions and characteristics of the EAs are the following:
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Initial population. The same population and individuals are used in all
stages. The first individuals of the P population are randomly generated from
S. These are the first “solutions”.

Fitness function. The algorithm uses the objective function f(x) as fitness
function.

Selection operator. In the first stage descendents are randomly selected
from S, without the application of any further operators (recombination, mu-
tation). In the second stage the algorithm selects two different parents from
the population: the first of them is the most appropriate solution with 0.5
probabilities.

Recombination operator. In the second stage the algorithm chooses from
two options:

• With 0.8 probability it chooses the two parents from the mating pool and
the descendent is constructed with uniform or single-point recombination.

• With 0.2 probability it chooses the best parent from the mating pool and
the descendent is built by copy-making.
Mutation operator. In the second stage the algorithm has two options:

• After discrete or single-point recombination it applies the mutation operator
with prm probabilities. The value of prm is adjusted by the user, and it is
low by easy and high by difficult problems (e.g. prm is 0.05 or 0.95)

• After copy-making it applies the mutation operator.

The applied transformations are the following: bit-flip a single bit (vari-
able) is flipped randomly in the descendent; bit-flip-flop if there are two ran-
domly chosen bits, the ith and jth variables in the descendent having different
values, the bits i and j will be flipped.

The bit-flip is to be considered as the random succession of sequential flips.
The path of the flips follows the hypotenuses of the hypercube of n dimensions,
and it gets from one vertex to another one step by step through the neigh-
bouring vertexes. At each step the Hamming distance between the vertexes is
1. The bit-flip-flop is a special variant of the bit-flip transformation. Its path
follows the diagonal lines of the hypercube, and instead of the neighbouring
vertexes it flips to the transversal points. At each step the Hamming distance
between the vertexes is 2.

The complex, multiple transformation is as follows:

some bit − flip − flops + some bit − flips

where the bit-flip-flop transformation is executed only with the probability
of 0.5, and the bit-flip and bit-flip-flop transformations are executed varying
times.

Our algorithm applies the two variants of bit selection with 0.5-0.5 proba-
bility. Therefore a bit-flip-flop transformation is executed when the probability
of mutation for the first selected variable is higher than pi (pi= 1-(VLi−Xi)).
At the bit-flip transformation, the chosen variable will also be flipped by the
probability of pi.



8 I. Borgulya

Begin
 calculate gains gi for all I in {1,…,n} 

repeat
     xprev=x, Gmax=0, G=0,C={1,…,n} 
     repeat
  Generate a random permutation RP[] of the set {1,…,n} 

For j=1 to n
   k=RP[j] 
   if gk>0 then
       G=G+gk,Gmax=g
       xk=1-xk, xbest=x, update gains gi for all i 
       C=C/{k} 
   fi

end for 
  find j with gj=maxi∈C gi

  G=G+gi

If G>Gmax then Gmax=G, xbest=x fi
  xj=1-xj,C=C/{j}, update gains gi for all i 
     until C=∅
     if Gmax>0 then x=xbest else x=xprev fi

until Gmax≤0
end   

Fig. 1. The randomized k-opt-local-search algorithm (Merz and Katayama 2001)

The virtual loser is defined after the termination of the first stage. It
is periodically updated by using the weakest individuals. In the updating
procedure we use 20% of the population

Local-search. In the EBQP we applied the randomized k-opt-local-search
algorithm (Merz and Freisleben 2002), (Merz and Katayama 2001). The algo-
rithm is shown in Figure 1, x is a given solution vector of length n and g is a
gain vector of length n, that is stored with x. The kth gain of g denotes the
cost of the neighbour solution, when a single bit k is flipped in the current
solution:

gk = qkk (xk − xk) +
n∑

i=1,i �=k

qik (xk − xk)

where xk = 1 − xk

Moreover, g is efficiently updated each time a bit is flipped. The gains gi

do not have to be recalculated each time. Instead, it is sufficient to calculate
the difference of the gains Δg i :
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g
′
i =

{
−gi if i = k

gi + Δgi(k) otherwise

with Δgi(k) = 2qik(x̄i − xi)(xk − x̄k)

Reinsertion. In the first stage, the algorithm compares the descendent with
the most similar solution. If the descendent is better then the former solution,
it is replaced by the descendent. In the second stage the algorithm compares
the descendent with the best parent from the mating pool, or if the number
of the individuals is less then the population size, it increases the number of
the individuals (after restart).

Filtering. We added a check to the EBQP (in every knth generation). In
order to keep the diversity of the population we select only the best of the
solutions close to each other, the other ones are deleted (x and x′ are close
to each other if the dH(x, x′) is less than a predefined value, e.g. n/4). This
filtering speeds up the convergence, too. The new individuals substituting the
deleted ones are generated from the old individuals with 10 bit-flip mutation.

Restart strategy. If no new best individual in the population was found
for more than 20 generations, the EBQP begins the second stage with an
other population. The individuals excepting the best 30 % of the population
are deleted, and new individuals are generated. The first kn individuals are
generated in the same way as the descendents and one individual is generated
in a generation. The rest of the new individuals are generated from the old
individuals with 10 bit-flip mutations in the next knth generation. So the
population size will be full again at the time of the next check (at the next
knth generation).

Stopping criteria.The algorithm is terminated if the running time (in CPU
seconds) is more than a prefixed time limit.

3.2 The main steps of the algorithm

Let us introduce the following notations:

• Let us denote the 2 stages as EA1 and EA2.
• Let the population of the itth generation be denoted by P(it), and let x1, x2,

. . . ,x t be the individuals of the P(it) population.
• Let us denote the complex neighbourhood transformation based on the vir-

tual loser (some bit-flip-flops+some bit-flips) of the q descendent by Nhs(q).
The two transformations are executed randomly, maximum min(n/2, 50)
times. The probability of applying the first transformation is 0.5.

• The measure of the similarity of the two solutions x and z is given by
H(x, z)= 1/(1 + dH(x, z)) where dH(x, z) is the Hamming distance of the
solutions.

• Let us denote the procedure, which filters out and deletes the close solu-
tions (dH(x, x′) < n/4) by Filter. At the end, the procedure generates new
solutions to replace the deleted ones.
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Parameters

6 parameters affect the run of the algorithm:

• t – the size of the population.
• itt – a parameter of the second stage. If the number of iterations (it) reaches

itt, the second stage begins.
• kn – a parameter which determines the timing of checks. We use the Filter

and Restart procedure only at every knth iteration.
• m a parameter of the k-opt local search. The outer repeat loop can run

only m times.
• prm a parameter of the second stage. The probability of the mutation

operator after recombination.
• timelimit a parameter for the stopping condition. The procedure is finished

if the running time (in CPU seconds) is more than timelimit.

Variables:
it the number of the iterations.

Procedure EBQP(t, itt, kn, prm, timelimit, opt, optp)
it:=0
Let xi ∈{0,1}n (i=1,. . . ,t), P(it) ← {x1 , . . . , x t }.

Compute f(x1), . . . , f(xt).
Do itt times

Selection of a q ∈ S.
Compute f(q).
Let H(q, xz:):=max jH(q, xj); j, z ∈ {1,2,. . . ,t}

If f(q) > f(xz) then xz := q fi.
it :=it+1, P(it) ← P(it-1).
od.

Initial value of VL
/* second stage:
Repeat

Do kn times
Two parents xi, xj selection
Generation of the q descendant.
Nhs(q). Local search.
Compute f(q).
If |P(it)|<t then P(it)= P(it) ∪ q

else
if f(q) > f(xi) then xi := q fi.

fi
it :=it+1, P(it) ← P(it-1).

od.

–

–

–

–
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Update of VL
Filter, Restart .
until “running time” > timelimit.
optp= the best x individual, opt=f(optp)

end

3.3 Details of the implementation

When describing the algorithm, some heuristic solutions and the shortcuts of
the computations were not described. Let us see them now one-by-one.

Speeding-up the computation.

The algorithm speeds up calculating the value of the objective function values
faster. The base of the reduction of the computing time is the possibility, that
the recombination and the mutation operators change only a certain fragment
of the variables. The descendents are produced by some consequential bit
transformations from one of the parents. Therefore it is enough to know the
f(x) function value of the x parent only, and the f (x’) function value of the x’
descendent could be constructed from the former one by bit transformations.
In summary, the algorithm calculates the f(x’) function values from f(x) by
using the gk gain values of consequential bit transformations.

Speeding-up the local search.

To reduce the running time of the randomized k-opt local search (Figure 1),
the terminal condition of the inner repeat loop can be modified so that the
loop is terminated if there were no new xbest values for more than 50 iterations
and the outer repeat loop can repeat only 1 or 5 times (the m value is 1 by
easy and 5 by difficult problems).

Heuristic in the mutation

The EBQP executes the first element of the bit-flip-flop + bit-flip with the
given probability, and the two transformations are repeated by a mutable
number of times. After testing numerous possible alternatives, using the test
problems from the OR-Library, we found bit-flip-flop transformation to be
the most efficient at 0.5 probabilities. Defining the number of the transfor-
mations arouses a more complex problem. To demonstrate its complexity we
can choose a parthenogenetic algorithm (Katayama and Narihisa 2001) as
an example. This algorithm uses a parameter dependent on the task for the
maximal number of bit transformations in a mutation. We found that the best
results were attained at different parameter values at different task groups,
with the algorithm proving most efficient when the maximum number was
between 40 and 80.
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We did not wish to choose the maximal number of the transformations
as a parameter. Instead, we searched for a maximal number giving a result
of average acceptability, but applicable at each task. After testing several
options, two and fifty proved to be as the most apt number of maximal bit
transformations. At the 5-10 element problem groups glov500, B1000 and
B2500 of the OR-Library the average relative percentage deviation of the
solution from the best known solution was individually calculated (The test
problems are detailed in Section 4). Subsequently, the results were averaged
for both the groups and individual tasks. Based on the comparative tests, we
found 50 bit transformations to be the most apt.

4 Solutions of test problems

Test problems

We tested the EBQP with the benchmark set of the OR-Library
(http://www.ms.ac.uk/info.html). Although we managed to solve each indi-
vidual BQP problem in the OR-Library, we wish to show only three bench-
mark sets. This are two sets from Beaslay with 1000 and 2500 dimensions and
the set from (Glover et al. 1998) with 500 dimension (notation: B1000, B2500,
glov500). In each sets there are 5 or 10 instances.

Parameter selection

To achieve a quick and accurate solution we need appropriate parameter val-
ues. Studying some of the more complex problems of the benchmark set we
analyzed the process of the convergence how the parameter values were af-
fecting the convergence, the finding of the global optimum and the speed of
the calculation.

So we analyzed the size of the population which should be used in EBQP
to achieve a good trade-off between the probability of finding best-known
solutions and the necessary run-time to do so. In general, best behaviour was
obtained with a size of population (t) between 30 and 60. The size of the
population of 30 was found appropriate for the small - medium (≤1000) and
the size of the population of 60 was found appropriate for larger (>1000)
number of dimensions.

As a next step, we studied the frequency of checks (kn parameter) and the
prm probabilities of the mutation. At the time of the check several functions
are executed. This means running the VL update, the Filter and eventually
the Restart procedure. It is inexpedient to run them often, because then the
VL looses efficacy and we waste too much time on filtering. We found that
the frequency of the checks is optimal around every 10 generations (kn=10 ).
There were many possible values found for the prm probabilities. We found,
that for the half of the test problems, namely the easier tasks prm =0 was
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suitable. In the other half of the problems, especially the difficult and 2500
dimension problems prm = 1 was more appropriate. We can further refine
parameter settings with the mparameter of the k-opt local search. The m
value can be chosen 1 by easy and 5 by difficult problems.

Finally, we studied the number of iterations of the first stage. We found the
first stage to be necessary, because improving the first solutions is beneficial
to the quality of the results and usually decreases the scatter of the result.
However, 30 iterations are enough for improving the initial population.

Computation results

We tested the algorithm on the test problems from the OR-Library. The algo-
rithm managed to find solutions which are either best known or within 0.03
% of the best known solutions for 100% of the test problems. Table 1 includes
the results of the chosen test-problems. The table presents mean values calcu-
lated from a number of runs: all problems (tasks) were run 10 times. We used
a predefined time limit of 60 seconds for each instance of the set glov500, 300
seconds for each of B1000 and 2000 seconds for each of B2500 (The EBQP
was implemented in Visual Basic and ran on a Pentium 4 1.8 GHz with 256
MB RAM).

The Table 1 and 2 show the average solution values for large scale prob-
lems. In Table 1 we give the problem name, the task number in the problem
group, the best known solution, the average relative percentage deviation of
the solution from the best known solution (AD). The Table 2 shows the av-
erage running time in seconds to the best solutions.

Table 1. Average solution values for the large scale problems

Task
Glov500 B1000 B2500

Best known AD Best known AD Best known AD

1 61194 0 371438 0.0064 1515944 0

2 100161 0 354932 0 1471392 0.0240

3 138135 0 371236 0 1414192 0

4 172771 0 370675 0 1507701 0

5 190507 0 352760 0.0015 1491816 0

6 359629 0 1469162 0

7 371193 0 1479040 0.0025

8 351994 0.0042 1484199 0.0011

9 349337 0.0011 1482413 0.0009

10 351415 0 1483355 0.0231

Comparative results

As for comparison, we chose different methods: the TS and SA heuristics
by Beasley (TS B, SA B) [1], the SA heuristic by Katayama and Narihisa
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Table 2. Average running time for the large scale problems

task Glov500 B1000 B2500

1 27.6 62 821

2 14.0 22 1825

3 26.3 84 697

4 37.5 170 634

5 10.5 152 945

6 95 1509

7 115 1612

8 210 844

9 241 1254

10 151 1288

(SA KN), the genetic local search by Merz and Freisleben (GLS MF), the
parthenogenetic algorithm by Katayama and Narihisa (PA), and the memetic
algorithm by Merz and Katayama (MA).

The comparison was encumbered by the use of various programming lan-
guages, operating systems and computers. Only one appropriate aspect of
comparison could be found, namely the average relative percentage deviation
of the solution from the best known solution, so our table of comparison (Ta-
ble 3) is based on the results of comparable accuracies. (The TA B and SA B
program ran on Silicon Graphics, R4000 CPU with 100 MHz. The GLS MF
ran on Pentium II PC, 300MHz. The SA KN algorithm was implemented in
C and ran on a Sun Ultra 5/10, UltraSPARC-IIi 440 MHz under OS Solaris 7.
The PA and MA programs ran on Sun a Ultra 5/10 UtlraSPARC-IIi 440MHz,
too).

We compared the average results. Analyzing the results of Table 3 we can
confirm that the MA algorithm has the best, and the PA has the second best
results in general. In case of the B2500 problems the PA has the best, and at
the B1000 problems the MA has the best results. The EBQP has also good
results: his result is the second at the B1000 problems, and the third at the
B2500 problems.

Regarding that the MA and PA are the most effective methods of BQP; we
can conclude that the EBQP also belongs to the best available methods. The
results of the EBQP we can improve probably. Chosen a more appropriate
recombination operator, or other local search procedure, probably we can
improve the quality of the solution, and we can reduce the running time. The
choice of the prm probability and the m parameter of the k-opt local search
we can automize too. With the help of competing subpopulations we can
use different prm and m values parallel, and the algorithm searches the most
appropriate values.
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Table 3. Comparative results for large scale problems

Method
Glov500 B1000 B2500

AD AD AD

SA B (best) (Beasley 1999) 0.0720 0.0860 0.0640

TS B (best) (Beasley 1999) 0.0020 0.0370 0.0920

GLS MF (Merz and Freisleben 1999) - 0.0290 0.0610

SA KN (Katayama and Narihisa 2001) 0.0220 0.0290 0.0210

EBQP 0 0.0013 0.0051

PA (Katayama and Narihisa 2001a) 0 0.0022 0.0002

MA (Merz and Katayama 2001) 0 0.0000 0.0004

5 Summary

In this paper we presented a new heuristic algorithm, named EBQP for solving
the BQP problem. The concept of the EBQP differs from the previous ones:
the structure of the new algorithm is an evolutionary framework consisting of
2 stages, for the solution of BQP we introduce a problem-specific mutation
operator and we use a k-opt local search procedure. So we use a complex
neighbourhood structure for the mutations, where we can concatenate differ-
ent neighbourhoods, and the bit selection by mutation is based on an explicit
collective memory (EC-memory). The progression of the algorithm is influ-
enced by 6 parameters, more of which have the same value for the different
problems.

We can conclude that the EBQP was successfully tested with different
kinds of BQP. The algorithm managed to find solutions which are either best-
known or within 0.03% of the best known solutions for 100% of the bench-
mark problems of the OR-Library. Comparing the results with other heuristic
methods, we can conclude that the EBQP belongs to the best evolutionary
algorithms of this problem scope.
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Application of Genetic Algorithms by Means
of Pseudo Gradient
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Introduction

Genetic algorithms (GA) and their capabilities for solving optimization prob-
lems have been thoroughly investigated recently in a number of application
areas. These algorithms represent a class of stochastic algorithms based on
methods of biological evolution. The chromosome is one of the smallest parti-
cles in the kernel of every cell and it defines the genetics of living organisms.
Nature has the ability of finding suitable chromosomes through natural selec-
tion. Analogically, genetic algorithms can find optimal solutions by means of
rational computational iterations [1, 2, 3, 4].

The iterations associated with genetic algorithms can be represented
through a series of populations of arguments of the optimization task. The lat-
ter are called “computer implemented chromosomes” or only “chromosomes”.
Every new population of chromosomes (values of arguments of the optimiza-
tion task) can be derived analogically to biological procedures in nature,
known as crossover, mutation and selection.

For the first two procedures, there aren’t routine methods for a reasonable
choice. In this case, methods for random search are applied and selection is
based on an operation for comparing the values of the fitness functions for the
separate chromosomes in populations. Besides this, genetic algorithms usually
remove chromosomes with lower values of their fitness function. [5]

This is a drawback of these algorithms because the removal of such chro-
mosomes implies some loss of information received so far.

The purpose of this paper is to keep this kind of information for a limited
number of iterations, as it is the case in nature.
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For the purpose of more objective assessment of the new chromosomes, the
information received from previous generations of chromosomes, including the
ones with lower values of their fitness function has to be kept. When hereditary
information is used successfully from previous generations of chromosomes, it
is normal to expect an acceleration of the speed of genetic algorithms due to
a reduction of the number of iterations.

1 Essence of the Method

In most genetic algorithms, the initial population is generated through random
selection. After a limited number of initial iterations based on crossover and
mutation operators, an assessment is done for the less perspective sub-domains
of definition area and their rapid discharge from chromosomes. These chro-
mosomes are replaced by chromosomes in the more perspective sub-domains.
It is possible to generate logical rule in the algorithm which will determine
the future concentration of chromosomes in the perspective sub-domains by
calculating the values of the pseudo gradient of optimization function. It is
assumed in this case that the chromosomes in the next populations will be
concentrated in sub-domains of all local optimums. In this way, an additional
genetic algorithm must ensure that the chromosomes leave the sub-domains
in which local optimums are not perspective candidates for a global optimum.

Every population of chromosomes in genetic algorithms is based on a random
choice which includes crossover probability PC and mutation probability PM.

This peculiarity is taken from nature but the probability for a reasonable
choice is not very high, especially in the case of mutation. This implies a low
speed of movement of chromosomes to the optimum of the function.

The choice of every next generation of chromosomes has to be made wisely.
This can be done by means of an additional operator which can direct chro-
mosomes very fast to a local, and after that, to the global optimum. This
operator will calculate the gradient of the function on the basis of available
information about previous populations.

Given the gradient of a function grad f(x,y,z,. . .), after a certain number of
populations, e.g. 3 or 4, the next population is regenerated from the following
pseudo grad algorithm:

xs+1 = xs + ksgrad∗fs(xs, ys, zs, . . .) (2.1)
ys+1 = ys + ksgrad∗fs(xs, ys, zs, . . .)

zs + 1 = zs + ksgrad∗fs(xs, ys, zs, . . .)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Pseudo-Gradient Function

B.Vatchova
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where

grad∗fs(xs, ys, zs, . . .) = [(Δf∗s (xs, ys, zs, . . .)/Δxs, (2.2)
Δf∗s (xs, ys, zs, . . .)/Δys, Δ f∗s (xs, ys, zs, . . .)/Δzs), . . .]T

is “pseudo gradient” of a fitness function:

Δfs(xs, ys, zs) = fs(xs, ys, zs) − fs−1(xs−1, ys−1, zs−1) (2.3)

Δxs = xs − xs−1,Δys = ys − ys−1,Δzs = zs − zs−1

The symbol “T” means transposition of a vector, s is the current iteration of
the chromosomes xs, ys, zs, . . . . and ks is the variation step of the chromosomes;

By means of the operator for assessment of the pseudo gradient, the choice
of new chromosomes is done on purpose and not randomly. The values of the
pseudo gradient function are calculated on the basis of the finite differences
of the variation of chromosomes and the corresponding finite differences of
their fitness function. The calculation of the pseudo gradient function for the
above statements does not match classical definition for a gradient (some
chromosomes of some operations do not have variation).

The “pseudo gradient” is a vector whose components are calculated on
the basis of the information about the variation of the fitness function and
the chromosomes for the last 3–4 populations (iterations). For example, for
the last 3 populations (marked as 1, 2, 3), the elements of the vector gradient
are calculated by means of the finite variations of the fitness function and the
corresponding chromosomes for the last 3–4 populations (iterations).

For the last three populations, the values of pseudo gradient vector are
calculated by means of the finite variations of the fitness function and the
corresponding chromosomes between populations 2–1, 3–1, 3–2.

grad21f(x, y) = [Δf21/Δx21,Δf21/Δy21]T (2.4)

grad31f(x, y) = [Δf31/Δx31,Δf31/Δy31]T

grad32f(x, y) = [Δf32/Δx32,Δf32/Δy32]T

where grad21f(x, y), grad31f(x, y) and grad32f(x, y) are local gradients of the
pseudo gradient grad*f(x,y) of the function f(x,y).

The pseudo gradient grad∗fs(xs, ys), which is derived from inherited infor-
mation about the last three generations of chromosomes, can be derived as
the average arithmetic value of the elements of local gradients in accordance
with expressions (2.4).

The proposal method is a combination between genetic algorithms and
gradient methods. In this case, the joint application of these two methods is
superior to most situations when they are used on their own due to the fact
that their individual drawbacks are well inhibited.

Classical gradient methods are usually based on sequential and indepen-
dent variation of the arguments of the function that is to be optimized. In
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this case, the iterations may take a long time. As opposed to this, the random
search method is based on similar operations that are carried out simultane-
ously, and is therefore much faster.

When new generations of chromosomes are derived randomly, no heredi-
tary information is used for the purposeful variation of the new values of the
function that is to be optimized.

This variation is obtained by calculating the pseudo gradient for newly
generated chromosomes using expression (2.1).

3 Application of the Method

An example is shown below for finding the optimal solution of a function with
two arguments f(x,y).

In this case, the function is the fitness function of chromosomes. It is pre-
sented graphically in the figure and possesses one local optimum and a global
optimum. Following the approach presented above, the definition domain of
the function is separated in two sub-domains. Each of these subdomains pos-
sesses a centre around which one initial chromosome is located as shown with
the point in the figure. Each chromosome is noted with values of arguments
x and y.

a0s a1s a2s a3s a4s b0s b1s b2s b3s b4s

Here a0s , a1s , . . . , a4s b0s ,b1s , . . . ,b4sare binary symbols 0 and1,and they
form together a binary coded definition for one chromosome from population
s = 0, 1, 2, 3, . . .. The junior bits of the elements x and y of the chromosomes
are a0s and b0s . The binary symbols are “artificial genes” and carry the values
of the characteristics of the chromosomes. The mutation has to be done mainly
with junior bits.

When the definition domain of the function f(x,y) is disintegrated from the
sub-domain that is uniformly distributed over the whole definition area, the
approach above has to be followed. The number of chromosomes for the initial
population is 49 and after a limited number of populations it is reduced when
the chromosomes start moving towards local optimums of the fitness function.
The local optimum in this case is slightly over 35, f(x = 20, y = 22) ≈ 35 and
the global optimum is f(x = 15, y = 18) ≈ 40 (see fig. 1).

There is one sub-domain in the figure that is denoted by a square, in whose
centre the chromosome H (x=8 y=12) is located. The artificial chromosome
is presented by the binary values of x and y, and it is entered in the computer
program as a structure of x, y:

and
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0 0 0 1 0 0 0 1 1 0 
←                     x             →←                y  →

0.20 + 0.21 + 0.22 + 1.23 + 0.24 = 8
0.20 + 0.21 + 1.22 + 1.23 + 0.24 = 12

The fitness function of this chromosome is 23, f (8, 12) = 23.
For the initial populations of this chromosome and its “mutants” pre-

sented in the figure by small circles, the crossover with chromosomes and its
“mutants” can form the neighborhood sub-domains. Once iteration has been
executed by means of the crossover and mutation operators, all fitness func-
tions are calculated for every active chromosome in associated sub-domain.
The pseudo gradient of the optimization function is then calculated for each
chromosome of the current population. After the generation of the first 3–4

Fig. 1. Iteration procedure for finding extremum of function by means genetic
algorithm and pseudo gradient
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populations, a data base is created for calculating pseudo gradients with suf-
ficient reliability. They generate the next population of chromosomes. From
this example, it can be seen that after the fitness functions for the new popu-
lation have been compared, a significant number of chromosomes are will not
appear to be perspective and they will removed. These are the chromosomes
from the peripheral subdomains, as it is shown in the figure.

The chromosomes that are removed are replaced with new chromosomes by
means of crossover and mutation operators. This increases the concentration
of chromosomes in sub-domains where the values of the fitness function are
meaningful. Thus, the genetic algorithm becomes faster due to the higher
concentration of chromosomes in the sub-domains of the global optimum.

4 Numerical Example

Lets the object which is investigated to be in the random state, expressed
through artificial chromosome H1(x1 = 8; y1 = 12) with fitness function f(H1) =
23. During crossover and mutation probabilities and selection of genetic
algorithms, the object passes in to state 2(H2(x2 = 9, y2 = 11.2); f(H2) =
22), after that in to state 3(H3(x3 = 8, y3 = 13.5), f(H3) = 26.5), state 4
(H4(x4 = 7; y4 = 9), f(H4) = 16) and e.g. After selection operator has been
implemented it has being fallen away state H4(f(H4) = min). The presented
state H3f(H3)) = 26, 5 is the most suitable, but there isn’t guarantee to in-
crease the value of fitness function in to next implementation of crossover and
mutation probabilities.

When it is executed random selection of the basic genetic algorithm is
enough the state 5 (H5(x5 = 6.5, y5 = 13.6; f(H5) = 22.5), but this state is less
suitable from H3. It is considered that the next population is derived from the
above state, during crossover and mutation probabilities. The basic variable
state of the object will evaluate towards local and after that global extreme,
but the achievement of this is hardly and long.

By means of calculation of “pseudo gradient” on the basic of initial states
H1,H2,H3,H4 is achieved purposeful choice of the state H∗

5, which guaranties
higher fitness of the state H5. The parameters of “pseudo grad” function are
calculated accordance variables of coordinates and the corresponding fitness
function.

For the transition H1 → H2:

Δf21 = |22 − 23| = 1 (4.1)

Δx21 = |9 − 8| = 1

Δy21 = |11, 2 − 12| = 0, 8

grad21f(x, y) = [1/1 = 1 1/0, 8 = 1, 25]T
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For the transition H2 → H3

Δf32 = |26, 5 − 22| = 4, 5 (4.2)

Δx32 = |8 − 9| = 1

Δy32 = |13, 5 − 11, 2| = 2, 3

grad32f(x, y) = [4, 5/1 = 4, 5 4, 5/2, 3 = 1, 95]T

For the transition H3 → H4

Δf43 = |16 − 26, 5| = 10, 5 (4.3)

Δx43 = |7 − 8| = 1

Δy43 = |9 − 13, 5| = 4, 5

grad43f(x, y) = [10, 5/1 = 10, 5 10, 5/4, 5 = 2, 33]T

The “pseudo gradient” of fitness function is calculated as average value of
the values of local grad functions grad21f(x, y), grad32f(x, y), grad43f(x, y):

grad∗f(x, y) = [(1 + 4, 5 + 10, 5)/3(1, 25 + 1, 95 + 2, 33)/3]T = (4.4)

= [5, 33 1, 84]T

The new state of the object H∗
5 will receive through purposeful variable

of the coordinates according expression (2.1):

X∗
5 = x1 + 0, 5.5, 3 = 8 + 0, 5.5, 33 = 10, 65 (4.5)

Y∗
5 = y1 + 0, 5.1, 84 = 12 + 0, 5.1, 84 = 12, 92

where variation step of the chromosomes Ks = 0, 5.
The fitness function for object f∗5(H5

∗) = 26

5 Conclusion

Combining of the methods of GA and pseudo gradient decreases the number of
experiments, as a result large number of arguments, which are changed at the
same time. When it is used “pseudo gradient” is achieved directly looking for
the extreme. The numerical example follows that after three casual iterations
have been implemented of the basic genetic algorithm is achieved absolutely
logical variation of the object towards local extreme. In this case not only
the direction and also the speed of the coordinates of the states are modified
purposeful accordance of the coordinates for the looking extreme.
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This work explores the utilization of the island-model within the con-

evolutionary algorithms are extended to this context, resulting in the definition of a
multi-swarm. The influence that different parameterizations of the model, namely,
the number of swarms, their interconnection topology, the policy for selecting par-
ticles to migrate, and the policy for accepting incoming particles is studied. Four
continuous optimization problems are used for this purpose. The experimental re-
sults indicate that a moderate number of swarms arranged in a fully-connected
topology provide the best results.

1 Introduction

Particle Swarm Optimization (PSO) is one of the most impetuously emerging
paradigms of evolutionary computation (EC). Initially proposed by Kennedy
and Eberhart [1], PSO is inspired in the processes that give rise to the creation
of shoals of fishes, flock of birds, or swarms of insects [2, 3, 4]. A PSO algorithm
is based on using a population (or swarm) of particles that traverse the search
space. These particles have a local memory of the best point of the search
space they have visited, and have a tendency to return to it. Similarly, a
global memory of the best solution visited by any particle of the swarm –with
the subsequent attraction for all particles– is used. As a consequence, social
behavior emerges; the swarm starts exploring the search space, and whenever a
particle discovers a new incumbent, it collectively moves to the region around
it.

This appealing scheme has revealed itself as a competitive approach
for optimization, owing to its simplicity and relatively low computational
cost. Several extensions have been proposed in order to further improve its
performance. Examples of such extensions are the consideration of attrac-
tion/repulsion forces among particles [5], and the hybridization with local

J.F. Romero and C. Cotta: Optimization by Island-Structured Decentralized Particle Swarms,
Advances in Soft Computing 2, 25–33 (2005)
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text of Particle Swarm Optimization (PSO). The well-known notions of decentralized

Abstract.



search or other EC mechanisms [6, 7]. In this work, we propose the use of
multiple cooperative swarms, each of which tries to solve the original prob-
lem in partial isolation following the philosophy of island-model evolutionary
algorithms [8]. The novelty of this approach relies in attaining swarm coopera-
tion via migration of memory states, i.e., regularly synchronizing the memory
states of some swarms. The parameters and strategies governing this cooper-
ation will be analyzed below. As it will be shown, this multi-swarm approach
can lead to improved optimization performance.

2 Background

A PSO algorithm can be regarded as a hybrid between population-based
search and trajectory-based search. As in the latter, paths across the search
space are constructed by individual agents (the particles); as in the former,
these agents interact. This interaction is not direct as in genetic algorithms
though. On the contrary, it takes place indirectly through the use of a shared
memory. More precisely, let S � Dn be the search space, where D is some
domain. As it is typically the case, we will assume D ≡ R, i.e., the search
is conducted in a n−dimensional continuous space. Let f : S −→ R be the
objective function (to be minimized, without loss of generality). A swarm is a
collection of μ particles p1 · · · pμ. Each particle pi is specified by a pair (xi,vi),
where xi ∈ Rn is the position of the particle (a point in the search space),
and vi ∈ Rn is the velocity of the particle. This latter value indicates the
trajectory that the particle will follow. Initially, both positions and velocities
are selected at random. Subsequently, the particles evolve using the following
equations:

vi(t + 1) = ω · vi(t) + α1 ·
[
xl

i(t) − xi(t)
]
+ α2 · [xg(t) − xi(t)] (1)

xi(t + 1) = xi(t) + vi(t) (2)

where
xl

i(t) = argmin {f (xi(τ)) | 0 � τ � t} (3)

is the local memory of the best point visited by particle pi, and

xg(t) = argmin
{
f
(
xl

i(t)
)
| 0 � i � μ

}
(4)

is the global memory of the best solution found by the swarm. Thus, each
particle has a local tendency to return to its best known location. Simulta-
neously, all particles are attracted by the best solution known by the swarm
(hence, the emergence of collective behavior). The coefficients α1 and α2 are
typically selected at random in each step to introduce some variability in the
velocity behavior. As to ω, it is a parameter termed inertia weight, used to
control the balance between exploration (high ω) and exploitation (low ω).
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3 An Island Model of PSO

As it is the case in most populational metaheuristics, convergence to a sub-
optimal solution can be problematic in PSO, i.e., the swarm may find a local
optimum with a large basin of attraction, and get trapped in it. In the context
of classical EC techniques such as genetic algorithms, this problem is treated
in several ways: on one hand, once it is detected it can be remedied by trig-
gering high mutation rates, or restarting the population; on the other hand,
it can be prevented by using for example decentralized populations [9], i.e.,
using multiple interconnected subpopulations that evolve in partial isolation
(as opposed to a single panmictic population). We will precisely translate this
latter approach to PSO.

A multi-swarm is defined as a triplet 〈P, T , C〉, where P = {P1, · · · , Pm}
is a collection of m particle swarms, T : P → 2P is the topology of the
multi-swarm (that is, how the different swarms are interconnected), and C is
a communication policy. The latter is a four-tuple 〈ν, ξ, σ, ψ〉, where ν ∈ N in-
dicates the communication frequency, ξ ∈ N indicates the number of particles
that will migrate from one swarm to another, σ is a function for selecting the
migrating particles, and ψ is a replacement function used to decide what to do
with incoming particles. We have considered two alternatives for σ, that we
call RANDOM and BEST. The former refers to randomly selecting a particle for
migrating; the latter corresponds to migrating the particle whose local mem-
ory contains the current incumbent of the swarm. As to ψ, two options are
possible: ALWAYS (the worst particle of the swarm is replaced by the incoming
particle), and BETTER (the replacement of the worst particle is done only if it
is worse than the incoming one). The functioning of the multi-swarm would
thus be as follows:

1. repeat
a) parfor i ∈ [1..m] do

i. Iterate swarm Pi for ν steps.
ii. parfor Pj ∈ T (Pi) do

A. send particles in σ(Pi) to Pj .
iii. foreach Pj such that Pi ∈ T (Pj) do

A. receive particles sj from Pj .
B. insert particles sj in Pi using ψ.

until TerminationCriterion is met.

We have considered two choices of T : RING, and COMPLETE. The former is
T (Pi) =

{
P(iMODm)+1

}
, i.e., swarms are arranged in a unidirectional ring;

the latter is T (Pi) = P, i.e., each swarm broadcasts its particles to the remain-
ing swarms. This complete topology ensures a global synchronization of the
best position identified in the multi-swarm. The dissemination of this global
incumbent is slower in the ring model, since it has to jump gradually from
swarm to swarm. The two topologies are illustrated in Figure 1.
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Fig. 1. Swarms are arranged in a unidirectional ring (RING topology – left) or in a
clique (COMPLETE topology – right).

4 Experimental Results

The experiments have been done with four continuous functions: Sphere, Ras-
trigin, Rosenbrock and Griewank. Table 1 shows the mathematical expressions
of these functions. The model has been run with 400 particles organized in 1, 2,
4, 8 and 16 swarms, for a total number of 500,000 evaluations of the objective
function. In all cases, we have considered the values ν = 50 and ξ = 1. Also,
particles are always initialized at a corner of the search space, so as to make
harder the optimization task. Finally, the inertia weight ω decreases linearly
during the run within certain limits. Table 2 shows the particular parameters
for each function.

Table 1. Test functions used in the experimentation.

Sphere f(x) =
∑n

i=1 x2i

Rastrigin f(x) = nA +
∑n

i=1

[
x2i − A cos(θxi)

]
) A = 10, θ = 2π

Rosenbrock f(x) = K
∑n−1

i=1

(
xi+1 − x2i

)2
+
∑n

i=1 (xi − 1)2 K = 100

Griewank f(x) = K
∑n

i=1 x2i −∏n
i=1 cos

(
xi√

i

)
+ 1 K = 1

4000

Table 2. Parameters for each test function.

n variable range initial range max vi ω
Sphere 40 [−100, 100] [50, 100] 100 (0.9, 0.3)

Rastrigin 40 [−5.12, 5.12] [2.56, 5.12] 5.12 (0.9, 0.3)

Rosenbrock 40 [−100, 100] [15, 30] 100 (0.9, 0.3)

Griewank 100 [−600, 600] [300, 600] 600 (0.7, 0.4)
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Fig. 2. Evolution of fitness (averaged for 30 runs) for different number of swarms
in the Sphere function. The left graph corresponds to the RING topology, and the
right one to the COMPLETE topology. Notice the use of a log-scale in the Y-axis.

The initial tests are devoted to assess the influence of the migrant selection
and replacement policies. To this end, 30 runs of the multi-swarm algorithm
have been performed for each combination of values of T (topology), σ (mi-
grant selection), ψ (replacement), and m (number of swarms). A run is consid-
ered successful if a solution better than a certain threshold (10−6 for Sphere,
Rastrigin, and Griewank, and 40 for Rosenbrock) is obtained. The number
of successful runs for each problem and configuration is shown in Table 3.
As it can be seen, BEST migrant selection tends to be better than RANDOM se-
lection. The difference between ALWAYS replacement and BETTER replacement
is not so marked. Nevertheless, it seems clear that the best combination is
ALWAYS+BEST, especially in connection with the COMPLETE topology (whose
superiority over RING is very evident).

Subsequent experiments thus concentrate on σ=BEST, and ψ=ALWAYS.
This means that synchronization of swarm incumbents (global or local by dif-
fusion according to the chosen topology) is performed every ν steps. Figures 2
through 5 show the outcome of the experimentation for these problems. Con-
sider firstly the results for the Rastrigin function (Figure 3). As it can be seen,
the mono-swarm is incapable of advancing to the optimal solution (fopt = 0),
and gets stagnated at some suboptimal region. However, the algorithm can
progress toward the optimal when the particles are structured in more swarms
(at least 2 for the COMPLETE topology, and more than 2 in the case of the RING
topology). Partial isolation thus helps avoiding local optima. Notice that in
general, a high number of swarms results in lower convergence, since the dif-
ferent swarms do not coordinate their efforts between synchronization events,
and hence diversify their search. Progress is also quicker for the COMPLETE
topology than for the RING topology. In this problem, global synchronization
of swarm incumbents makes the search focus in the more promising regions
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Table 3. Number of successful runs (out of 30) of the multi-swarm for different
configurations.

T σ ψ m Sphere Rastrigin Rosenbrock Griewank

RING RANDOM BETTER 1 5 8 8 0
2 29 28 10 0
4 30 30 16 0
8 20 30 6 0
16 0 30 1 0

ALWAYS 1 5 8 8 0
2 26 27 10 0
4 30 30 9 0
8 19 30 5 0
16 0 30 0 0

BEST BETTER 1 5 8 8 0
2 27 27 12 0
4 30 30 7 0
8 30 30 6 0
16 0 30 3 0

ALWAYS 1 5 8 8 0
2 24 24 6 0
4 30 30 4 0
8 22 30 9 0
16 0 30 0 0

COMPLETE RANDOM BETTER 1 5 8 8 0
2 29 30 12 2
4 30 30 18 7
8 29 30 5 7
16 23 30 11 1

ALWAYS 1 5 8 8 0
2 30 30 23 19
4 30 30 2 22
8 30 30 0 22
16 29 30 3 0

BEST BETTER 1 5 8 8 0
2 29 30 21 0
4 30 30 20 0
8 30 30 16 15
16 25 30 6 9

ALWAYS 1 5 8 8 0
2 30 30 26 0
4 30 30 23 23
8 30 30 0 26
16 30 30 11 13
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Fig. 3. Evolution of fitness (averaged for 30 runs) for different number of swarms
in the Rastrigin function. The left graph corresponds to the RING topology, and the
right one to the COMPLETE topology. Notice the use of a log-scale in the Y-axis.

Fig. 4. Evolution of fitness (averaged for 30 runs) for different number of swarms
in the Rosenbrock function. The left graph corresponds to the RING topology, and
the right one to the COMPLETE topology. Notice the use of a log-scale in the Y-axis.

at a faster pace than synchronization by diffusion does. The latter is a more
exploratory strategy, due to the lower coupling of swarms. The behavior in the
Sphere function is essentially the same as described before for the Rastrigin
function (cf. Figure 2). This outcome is consistent with the fact that both
functions are non-epistatic.

The results are somewhat similar for the Rosenbrock function (Figure 4).
Again, the mono-swarm cannot advance too much, and ends up at a low-
quality suboptimal solution. The multi-swarms can progress further though.
As for the Rastrigin function, the COMPLETE topology converges faster (and
to better solutions) than the RING topology. In this case, the configuration
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Fig. 5. Evolution of fitness (averaged for 30 runs) for different number of swarms
in the Griewank function. The left graph corresponds to the RING topology, and the
right one to the COMPLETE topology. Notice the use of a log-scale in the Y-axis.

with 4 swarms performs at least as good as 2 swarms. This owes to the higher
difficulty of the problems, that causes a shift in the ideal balance between
exploration and exploitation. In this sense, notice the results for the Griewank
function (Figure 5). The gradual diffusion of local incumbents in the RING
topology requires a higher number of swarms for achieving the same results
than an intermediate number of swarms provide in the COMPLETE topology.
In this latter case, the smallest swarms result in lower performance, probably
due to not strong enough exploitation.

5 Conclusions

An island-model of PSO has been proposed and evaluated here. The results
obtained have been encouraging since multi-swarms have been capable of out-
performing panmictic swarms. Regarding the parameters of the model, the
complete topology seems to provide better results than the ring topology. As
to the number of swarms, an intermediate value (2–4) seems to be more ad-
equate. This latter setting is obviously connected to the precise swarm sizing
chosen; in this sense, more experiments with diverse swarm sizes will be done
in the future to ascertain the influence of this parameter.

In addition to this latter issue, future work will also consider more com-
plex models in which local search is embedded in individual swarms –i.e.,
memetic swarms, cf. memetic algorithms [10]– as well as the deployment of
the algorithm on distributed systems. The algorithm is inherently amenable
for parallel computing, and hence can greatly benefit from the use of these
techniques.

32 J.F. Romero and C. Cotta

m=1

m=2

m=16

m=4

m=8

m=1

m=16

m=8

m=4

m=2
101

102

103

104

B
es

t F
itn

es
s

10−1

100

101

102

103

104

B
es

t F
itn

es
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105Evaluations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 105Evaluations

Complete TopologyRing Topology



Acknowledgement

The second author is partially supported by Spanish MCyT and FEDER
under contract TIC2002-04498-C05-02.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
the Fourth IEEE International Conference on Neural Networks, Piscataway NJ,
IEEE Press (1995) 1942–1948

2. Kennedy, J., Eberhart, R.: The particle swarm: Social adaptation in information
processing systems. In Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in
Optimization. McGraw-Hill IK (1999) 379–387

3. Eberhart, R., Shi, Y.: Particle swarm optimization: development, applications
and resources. In: Proceedings of the 2001 Congress on Evolutionary Compu-
tation, Piscataway NJ, IEEE Press (2001) 81–86

4. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann Publishers,
San Francisco CA (2001)

5. Riget, J., Vesterstrøm, J.: A diversity-guided particle swarm optimizer – the
ARPSO. Technical Report 2002-02, EVALife Project Group, Department of
Computer Science, Universit of Aahrus (2002)

6. Krink, T., Løvbjerg, M.: The lifecycle model: Combining particle swarm optimi-
sation, genetic algorithms and hillclimbers. In Merelo, J., Adamidis, P., Beyer,
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Directed Mutation by Means of the
Skew-Normal Distribution

Stefan Berlik

Dortmund University, Department of Computer Science I, 44221 Dortmund,
Germany.
stefan.berlik@uni-dortmund.de

Directed mutation can improve the efficiency of processing many opti-
mization problems. The directed mutation operator presented in this paper is based
on the Skew-Normal Distribution. It is the first one that is not defined by case dif-
ferentiation. Its expectation as well as its variance are convergent for all degrees of
skewness and random number generation is simple and fast. An appropriate recom-
bination scheme is given, and experimental results using this directed mutation are
presented.

Keywords: Skew-normal distribution, evolutionary algorithm, directed mu-
tation, mutation operator.

1 Introduction

The main idea of the directed mutation is to mutate with random numbers
that lie preferably on the side the optimum is expected. This implies expected
values unequal to zero and contrasts the classical mutation operators. Using
this method the optimization strategy can adopt the most promising direction
over the generations. To do so a customizable skewed distribution is needed.

2 Directed Mutation

To be able to do directed mutation one needs to generate skew distributed
random numbers. Thus one has to introduce expected values unequal to zero.
Of course this means that the mutation operator is not compliant to stan-
dard evolution strategy any longer postulating an expected value of zero, so
mutating around the origin. On the other hand it has to be ensured that the
expected value is convergent, thereby forcing the mutation operator to con-
tinue mutating near by the origin. It should be pointed out that convergence

S. Berlik: Directed Mutation by Means of the Skew-Normal Distribution, Advances in Soft
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in the symmetrical case only is not enough. Also for all skewed cases conver-
gence is needed. This demand is violated by mutation operators based on the
Ξ-distribution proposed by Hildebrand [5]. Diverging expected values caused
by increasing skewness parameters here can lead to wide jumps.

Of even greater interest is the variance. It can be seen as a measure for the
mutation strength and is a strategy parameter in most evolution strategies.
Because of this it should not be modified by the skewness parameter. In the
ideal case the variance is a constant, independent of the skewness parameter.
At least convergence is necessary and a small spread between minimal and
maximal value is desired to limit the impact of the skewness on the mutation
strength. Again, the Ξ-distribution violates this demand.

3 Skew-Normal Distribution

The class of distributions that is used to build the directed mutation operator
is closely related to the skew-normal (SN, hereafter) distribution introduced
by Azzalini [1]. Its density function is defined as

f(z;λ) = 2φ(z)Φ(λz) z ∈ R , (1)

where φ and Φ represents the probability density function (p.d.f.) and the
cummulative distribution function (c.d.f.) of the standard Normal density, re-
spectively. λ is a real parameter that controls the skewness, where positive
(negative) values indicate positive (negative) skewness. In the case λ = 0 the
SN density gets back to the Normal density (see Fig. 1). With Z ∼ SN(λ)
one denotes a random variable (r.v.) that has density (1). The SN class en-
joys remarkable properties in terms of mathematical tractability. Some results
found by Azzalini [1] will be given in the following.
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��z;Λ�

Λ�0
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Λ��1

Λ��10

Fig. 1. The density functions SN(−10), SN(−1), SN(0), SN(1), and SN(10)
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3.1 Moments

The first four Moments are given as

E(Z) = bδ , (2)
V (Z) = 1 − (bδ)2 (3)

γ1(Z) =
1
2
(4 − π)sign(λ)

((
E(Z)

)2
V (Z)

)3/2

(4)

γ2(Z) = 72(π − 3)

((
E(Z)

)2
V (Z)

)2

(5)

where

b =

√
2
π

and δ =
λ√

1 + λ2
.

γ1(Z) and γ2(Z) denote the third and fourth standardized cumulants. As
desired, both expectation and variance converge. The limits are

lim
λ→±∞

(
E(Z)

)
= sign(λ)

√
2
π

(6)

lim
λ→±∞

(
V (Z)

)
= 1 − 2

π
. (7)

Their graphs are depicted in Figs. 2 resp. 3. One can see that the variance
is convergent, but still spreads about 0.64. To make the variance constant, a
linear transformation has to be applied to the SN distributed r.v. leading to
the standardized SN distribution.
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Fig. 2. The expectation (solid) and skewness (dashed) of a SN(λ) distributed ran-
dom variable
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Fig. 3. The variance (solid) and kurtosis (dashed) of a SN(λ) distributed random
variable

3.2 Random Variate Generation

A r.v. Z with density (1) can be generated by an acceptance-rejection method.
Therefore sample X and Y from Φ′ and φ, respectively until the inequality
X < λY is satisfied. Then put Z = Y . On average, two pairs (X,Y ) are
necessary to generate Z.

4 Standardized Skew-Normal Distribution

The transformation that has to be applied obviously depends of the skewness
parameter λ. Taking into account that V (a + bZ) = b2V (Z), s2V (Z) != 1 and
(3) lead to

s =
1√

V (Z)
=

1√
1 − (bδ)2

=

√
π(1 + λ2)

π + (π − 2)λ2
. (8)

4.1 Probability Density Function

If F is the distribution function of a random variable Z, then aZ + b has dis-
tribution function F

(
(z−b)/a

)
, provided a > 0. If the corresponding densities

exist, they are f(z) and 1
af

(
(z − b)/a

)
. Thus the density of the Standardized

Skew-Normal distribution (SSN) takes the following form

f(z;λ) =
2
s
φ
(z

s

)
Φ
(

λz

s

)
z ∈ R . (9)

Due to the standardization the densities are widened and flattened, see Fig. 4.
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Fig. 4. The density functions SSN(−10), SSN(−1), SSN(0), SSN(1), and SSN(10)

4.2 Moments

With (8), E(a + bZ) = a + bE(Z), and V (a + bZ) = b2V (Z) one can de-
duce the first four moments of SSN distribution from the moments of the SN
distribution (2)-(5):

E(Z) = sbδ , (10)
V (Z) = 1 , (11)

γ1(Z) =
1
2
(4 − π)

(
E(Z)

)3
, (12)

γ2(Z) = 2(π − 3)
(
E(Z)

)4 (13)

where

b =

√
2
π

and δ =
λ√

1 + λ2
.

The limits of the SNN class are

lim
λ→±∞

(
E(Z)

)
= sign(λ)

√
2

π − 2
(14)

lim
λ→±∞

(
V (Z)

)
= 1 . (15)

Graphs of the first four moments of the SSN are shown in Figs. 5 resp. 6.

5 Building the Directed Mutation Operator

The SSN distribution is a sound basis to construct a directed mutation oper-
ator. Two things are sill missing. The self adaptation of the skewness para-
meters has to be designed and an appropriate recombination scheme has to
be build.
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Fig. 5. The expectation (solid) and skewness (dashed) of a SSN(λ) distributed
random variable

�4 �2 2 4
Λ

0.2

0.4

0.6

0.8

1
V�Z�, Γ2

Fig. 6. The variance (solid) and kurtosis (dashed) of a SSN(λ) distributed random
variable

5.1 Operators for the Mutation of the Strategy Parameters

Mutation of the mutation strengths is done as usual with the log-normal
operator [6]. The actual mutation strength is multiplied with random number
ξ that is obtained by an exponential transformation of a normally distributed
random number

σ̃ := ξσ, ξ := eτN(0,1) . (16)

The variable τ is an exogenous strategy parameter and called learning pa-
rameter. To prevent deadlocks from overfitted skewness damping has to be
introduced into the mutation operator for the skewness parameters. This can
be done via a damping factor d which leads to the damped log-normal operator

λ̃ := dξλ, ξ := eN(0,1), 0 ≤ d ≤ 1 . (17)

The variable d is also an exogenous strategy parameter. The right choice of d
depends on the individual optimization problem. Experimental results show
that d ≈ 0.95 is a good choice for most problems.
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5.2 Coupled Recombination

To use directed mutation one also has to consider the recombination operator
(cf. e.g. [4]. The statement by Bäck [2] that independent recombination on
object variables and strategy parameters is justified by experimental obser-
vations could not be approved for the use of directed mutations. When doing
so all directed mutation variants yield significantly worse results compared to
the classical variants.

The reason for this could be seen in the higher grade of localization that
arises from the togetherness of object variable, mutation strength, and skew-
ness parameter. In fact they have to be treated as a unit. Thus coupled re-
combination assures that the strategy parameters are chosen from the same
parent where the object variable at hand is taken from when recombining
parents. In the case of intermediate recombination the same weight ought to
be used for the different components.

6 Experimental Studies

6.1 Analyzed Mutation Operators

Six mutation operators have been analyzed. Three of them realize directed
mutation:

• Standardized Skew-Normal mutation
The operator presented in this paper has been used with coupled recombi-
nation. A damping factor of 0.95 has been used when mutating the skew-
ness parameters.

• Simple directed mutation
This operator is defined in sections and has convergent expectation and
variance [3]. Also here coupled recombination and a damping factor of 0.95
have been used.

• Asymmetrical mutation
This was the first operator that introduced directed mutation to the field of
evolutionary algorithms. Like the simple directed mutation it is defined in
sections but has divergent expectation and variance. The operator has been
used as proposed by Hildebrand [5], i.e. with classical recombination and
skewness parameters being mutated the same way the mutation strengths
are.

The other three operators are the classical ones:

• Simple mutation with one mutation strength
Only one mutation strength is used that is applied in turn to every object
variable.

• Simple mutation with n mutation strengths
n mutation strengths are used, a separate mutation strength for each ob-
ject variable.
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• Correlated mutation
Besides the control of the n mutation strengths, correlated mutation allows
to rotate the coordinate pane arbitrarily by supporting a full covariance
matrix.

6.2 Test Functions

Seven well-known test functions [7] have been examined, see Table 1. All
functions are high dimensional problems and have here been treated with
30 dimensions. Except for function f7 they all are unimodal. This is due to
the fact that the local behavior of the mutation operator should be studied.
The number of local mimima in f7 increases exponentially with the function
dimension. All but function f6 are continuous functions.

Table 1. The test functions used in the experimental studies. n is the dimension of
the function, fmin its minimum value, and S ⊆ Rn the object variable space

Test function n S fmin

f1(x) =
∑n

i=1 x2
i 30 [−100, 100]n 0

f2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| 30 [−10, 10]n 0

f3(x) =
∑n

i=1

(∑ i
j=1 xj

)2
30 [−100, 100]n 0

f4(x) = max{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]n 0

f5(x) =
∑n−1

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30, 30]n 0

f6(x) =
∑n

i=1 (	xi + 0.5
)2 30 [−100, 100]n 0

f7(x) = −20 exp

(
−0.2

√
1
n

∑n
i=1 x2

i

)
− exp

( 1
n

∑n
i=1 cos (2πxi)

)
+ 20 + e 30 [−32, 32]n 0

6.3 Experimental Setup

The experiments have been done using a (30,200)-ES with self-adaptive stan-
dard deviations. The same initial populations were used. All object variables
have been set by random. The mutation strengths haven been set to 0.1, the
skewness and correlation parameters have initial values of 0. All experiments
have been carried out 50 times.

6.4 Experimental Results

According to the following Figs. 7–20 the SSN mutation outperforms the other
mutation operators. Very significantly this is the case for the functions f4 and
f5. One can also see that the simple directed mutation performs nearly as
good, even slightly better for the functions f1,f2, and f7. SSN and the simple
directed mutation form the group of best performing operators. The third
directed mutation operator, i.e. the asymmetrical mutation clearly performs
worse. Compared to the classical variants it yields no gain.
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f1 Sphere Model

f1(x) =
30∑

i=1

x2
i

−100 ≤ xi ≤ 100, min(f1) = f1(0, . . . , 0) = 0
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f2 Problem 2.22

f2(x) =
30∑

i=1

∣∣xi

∣∣ +
30∏

i=1

∣∣xi

∣∣
−10 ≤ xi ≤ 10, min(f2) = f2(0, . . . , 0) = 0
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Fig. 9. Averages of the results
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f3 Schwefel’s Problem 1.2

f3(x) =
30∑

i=1

⎛⎝ i∑
j=1

xj

⎞⎠2

−100 ≤ xi ≤ 100, min(f3) = f3(0, . . . , 0) = 0
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Fig. 11. Averages of the results
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f4 Schwefel’s Problem 2.21

f4(x) = max{|xi|, 1 ≤ i ≤ 30}
−100 ≤ xi ≤ 100, min(f4) = f4(0, . . . , 0) = 0
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f5 Generalized Rosenbrock’s Function

f5(x) =
29∑

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
−30 ≤ xi ≤ 30, min(f5) = f5(1, . . . , 1) = 0
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f6 Step Function

f6(x) =
30∑

i=1

(xi + 0.5�)2

−100 ≤ xi ≤ 100, min(f6) = f6(0, . . . , 0) = 0
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f7 Ackley’s Function

f7(x) = −20 exp

⎛⎝−0.2

√√√√ 1
30

30∑
i=1

x2
i

⎞⎠− exp

(
1
30

30∑
i=1

cos (2πxi)

)
+ 20 + e

−32 ≤ xi ≤ 32, min(f7) = f7(0, . . . , 0) = 0
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7 Conclusions

With the directed mutation by means of the SN distribution a mutation oper-
ator is given that clearly outperforms the other mutation operators. It is the
only directed mutation with the density function not being defined by case
differentiation. Its expectation as well as its variance are convergent for all
degrees of skewness. Random number generation is simple and fast. Taking
into account that the algorithm itself is quit fast, e.g. compared to the corre-
lated mutation, the use of the directed mutation might be quite beneficial for
many problems.
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In order to extend fuzzy if-then rules bases, we propose to make use of
a method which has been developed for the interpolation of crisp data – the mul-
tivariate spline interpolation. Among the various possibilities of how to accomplish
the necessary generalisations, we describe here the probably simplest method: We
apply spline interpolation to fuzzy data which itself is approximated by vectors of
a finite-dimensional real linear space.

1 The Problem

We consider in this paper the question how to extend a fuzzy if-then rule base
to a total function, requiring that this function is, in some reasonable sense,
as smooth as possible. Roughly speaking, we assume to be in a situation of
the following kind: We are given two variables both of which may take sharp
or unsharp values in a bounded subset of a finite-dimensional real Euclidean
space; the first of these variables uniquely determines the second one; and
we know about this dependence only from a few special cases. The problem
is then how to determine a function which maps the whole domain of the
first variable to the domain of the second one, thereby comprising not only
the known cases, but also minimising a parameter which measures in some
reasonable sense the function’s curvature.

Leaving the smoothness requirement aside, the problem is well-known,
and various methods have been proposed. Before comparing our approach
to already existing ones, we shall first specify the formal background of our
considerations, so as to be able to clarify the idea of this paper.

We shall work with what could be called standard fuzzy sets according to
[DiKl]. However, rather than working with functions from a base set to the
real unit interval, we prefer to have fuzzy sets defined level-wise. Besides, all
fuzzy sets will be assumed to be contained in one fixed bounded region of an
Rp.

53–59 (2005)
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Definition 1.1. By a domain, we mean a regularly closed, convex, bounded
subset of Rp for some p ≥ 1. Let Ω be a domain, and let K(Ω) be the set
of non-empty convex and closed subsets of Ω. We partially order K(Ω) by
the subset relation ⊆; and we endow K(Ω) with the topology induced by the
Hausdorff metric dn dH .

Let [0,1] be the real unit interval, endowed with the natural ordering and
usual topology. A fuzzy vector in Ω is then meant to be a decreasing and left-
continuous function v: [0,1] → K(Ω); by F(Ω), we denote the set of all fuzzy
vectors in Ω. We partially order F(Ω) pointwise; and we endow F(Ω) with
the metric d(v,w) = sup

α∈[0,1]

dH(v(α), w(α)), v, w ∈ F(Ω).

Clearly, F(Ω) may be identified with those elements of En from [DiKl]
whose support is within the domain Ω [DiKl], Proposition 6.1.6/7].

We will embed F(Ω) in the usual way into a function space; see e.g. [DiKl].
In what follows, Sp–1 denotes the unit sphere of Rp, and (·, ·) is the usual scalar
product in Rp; p ≥ 1.

Definition 1.2. Let Ω ⊆ Rp a domain, and let v : [0, 1] → K(Ω) be a fuzzy
vector in Ω. We call

sv : [0, 1] × Sn–1 → R, (α, e) → sup {(r, e) : r ∈ v(α)}

the support function of v.
Moreover, let L∞([0, 1] × Sn–1) be the linear space of bounded real-valued

functions on [0, 1]×Sn–1, endowed with the supremum norm. Let L∞([0, 1]×
Sn–1) be pointwise partially ordered.

Proposition 1.3. Let Ω ⊆ Rp be a domain. Then the mapping F(Ω) →
L∞([0, 1] × Sn–1), v → sv is injective, isometric, and order preserving.

Moreover, s ∈ L∞([0, 1] × Sn–1 is the support function of some fuzzy
vector v ∈ F(Ω) iff (i) for all α ∈ [0, 1], e, e1, e2 ∈ Sn–1, λ1, λ2 ≥ 0 such
that e = λ1e1 + λ2e2, we have s(α, e) ≤ λ1s(α, e1) + λ2s(α, e2), (ii) for all
e ∈ Sn–1, s(·, e) is decreasing and left-continuous, and (iii) v ≤ sΩ.

Note that under (iii), we considered Ω as a crisp element of F(Ω) in the
usual way.

By Proposition 1.3, we may identify F(Ω) with a closed subset of the
Banach function space L∞([0, 1] × Sn–1).

We next have to specify which functions between sets of fuzzy sets are
taken into account for interpolation.

Definition 1.4. Let Ξ ⊆ Rm and Υ ⊆ Rn be domains, and let X ⊆ F(Ξ).
Then a function f : X → F(Υ ) is called fuzzy if f may be extended to
a function f : F(Ξ) → F(Υ ) which preserves the order, that is, for which
f(v) ≤ f(w) whenever v ≤ w for v, w ∈ F(Ξ).

In case that X is finite, we call f a fuzzy if-then rule base.
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It is now possible
Assume first that our data is crisp, that is, that we are given finitely many
pairs from a bounded, closed subset Ω of Rm and from Rn. Then a degree of
smoothness of a function Ω → Rn is given by the integral of the norm of the
second derivative over Ω; under certain assumptions, this value exists and we
are lead to a uniquely determined interpolating function.

Now, in the fuzzy case, we wish to calculate functions from F(Ξ), viewed as
a subset of the Banach space L∞([0, 1]×Sm–1), to F(Υ ), viewed as a subset of
L∞([0, 1]×Sn–1). Proceeding analogously to the crisp case leads apparently to
difficult requirements. First of all, an interpolating fuzzy function must possess
its second Fréchet derivative; second, its norm must be integrable with respect
to some measure on F(Ξ); third, this measure should be a metrically invariant
one.

Unfortunately, this program fails: a metrically invariant measure does not
exist on F(Ξ). A way out of this first difficulty is to restrict F(Ξ) in a way
such that a measure of this kind does exist.

On the other hand, the program simplifies dramatically if we replace the
spaces L∞([0, 1]×Sp–1) by finite-dimensional ones – simply by restricting the
function domain to a finite subset. This is how we proceed in Section 3.

2 Known Approaches

Like in many areas of the theory of fuzzy sets, also in the present one a quite
active research is to be noted. We would like to mention three directions–
those we know about. It is (i) the logical approach; (ii) the usage of fuzzy
relations; (iii) interpolation based on linearity notions. Let a fuzzy if-then
rule base (u1, v1), . . . , (uk, vk) of pairs from F(Ξ)×F(Υ ) for domains Ξ and
Υ be given, and let us in this section adopt the usual notion of a fuzzy set as
a function from a base set to [0,1].

(i) First of all, an entry (ui, vi) of the rule base may be considered as
a proposition like “if ui then vi” and may be formalised on the base of a
logical calculus. For instance, some version of Hájek’s Basic Predicate Logic
[Haj] may be used. The difference to our setting is easily stated: In the logical
framework, we investigate what is expressed by the rule base as it stands, not
taking into account what is not derivable. Put into the language of logics, we
may say that it is our aim to properly extend a given rule base, that is, adding
statements which are not part of the information provided by the rules. To
this end, we work so-to-say “horizontally” – by using features of the base
set –, and not “vertically” – by considering various ways of how to connect
truth values. – However, we would like to mention the work of Nov́ak, see e.g.
[Nov], where the “horizontal” viewpoint is used also in logics; namely, certain
logical connectives are defined which do refer to the structure of the base set.

(ii) Concerning the second point, it is clear that there are in principle lots
of possibilities of what to require from a function f : F(Ξ) → F(Υ ) such that

to formulate the aims towards which we are working.
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f(u1) = v1, . . . , f(uk) = vk. A rather popular condition is that f is induced by
a fuzzy relation between Ξ and Υ ; this means in the simplest case that there
is a fuzzy relation R : Ξ × Υ → [0, 1] such that fR(ui) = vi for all i, where
fR(u)(y) = sup

x∈Ξ
(u(x) ∧ R(x, y)) for u ∈ F(Ξ) and y ∈ Υ . It is clear that this

requirement dramatically restricts the possible choices of f. In particular, f is
then already determined by the fuzzy singletons, i.e. those fuzzy sets having a
one-point support, because f preserves all suprema. Another point is the fact
that a fuzzy relation R such that fR maps the ui to vi may not exist at all;
conditions are listed e.g. in [Got].

(iii) In connection to the third line of research, we should mention the
well-known work of Kóczy and Hirota at the first place; see e.g. [KoHi]. His
and several others’ work comes closest to what we have in mind. For a review
of methods developed so far, the article [Jen] can be recommended. Let us
mention the idea behind the method which also is contained in [Jen]; it deals
with rule bases ((u1, v1), . . . , (uk, vk) of pairs of convex fuzzy sets over R. To
calculate the image f(u) of some value u in the domain under the interpolating
function f, one has first to determine two “neighbouring” entries u1 and u2;
then, roughly spoken, f(u) is constructed in the analogous way from v1 and
v2 as u may be constructed from u1 and u2. – This approach as well as
comparable ones are based on a clear geometric intuition, and their common
advantage is that their technical realization is straightforward. A disadvantage
is that their applicability is usually restricted; it seems that ill-behaved cases
can mostly not be excluded. Besides, the transition to fuzzy sets of higher
dimensions, if possible at all, requires often new ideas, like also in [JeKlKo],
the paper subsequent to [Jen]. Finally, when we have a look what happens
in the case that our data are crisp, we realize that we have to do with the
easiest possible method; in the one-dimensional case, the methods reduce to
the linear interpolation between neighbouring points.

3 Interpolation of Crisp Data – Splines

When trying to make use of methods which have been developed for the
interpolation of crisp data, we have to overcome the problem that we no longer
have to do with finite-dimensional spaces: even F(Ω), where Ω ⊆ R, embeds
into an infinite-dimensional space. So there are in principle two possible ways:
either, we generalise the existing methods to the infinite-dimensional case;
or we reduce our spaces to finite-dimensional ones. In this paper, we shall
describe a method according to the second way.

We first have to review the crisp case; so assume that we are given pairs
(x1, y1) . . . , (xk, yk) ∈ Rm ×Rn and that we want to determine the smoothest
possible function f : Rm → Rn which interpolates the given data. This prob-
lem is made precise, and has its unique solution, according to the following
method, developed in the multidimensional case first by Atteia [Att]. We shall
use the following variant of it.
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Definition 3.1. Let m, n ≥ 1, and let Ω ⊆ Rn be bounded and regularly
closed. Then set

F
def= {f : Ω → Rn :

Df

D2 f isL1} ;

let ||f ||∞ = sup
x∈Ω

f(x), ||Df ||∞ = sup
x∈Ω

||Df(x)||, and ||D2f ||1 =

fΩ ||D2f(x)||dx; endow F with the norm

||f || = ||f ||∞ + ||Df ||∞ + ||D2f ||1, f ∈ F .

Here, the derivatives Df,D2f are understood to have
o

Ω as their domains.
F, together with || · ||, is a Banach space. The key fact which we need is

now the following [Att, Hol].

Theorem 3.2. Let m, n ≥ 1, and let Ω ⊆ Rm be bounded and regularly closed.
Let K be a non-empty closed, convex subset of F; and for f ∈ F, set

m(f) =
∫

Ω

||D2f(x)||dx .

Let N = {f ∈ F : m(f) = 0}, and CK = {f ∈ F : f + K = K}. Assume that
N is finite-dimensional and that N ∩CK = {0}. Then there is a unique f ∈ K
minimising m(f).

With respect to the notation of this theorem, we see that if x1, . . . , xk ∈ Ω
such that there is no non-trivial affine function mapping all xi to 0, and
y1, . . . yk ∈ Rn, we may set K = {f ∈ F : f(x1) = y1, . . . , f(xk) = yk} to
conclude that there is a uniquely determined function f ∈ K for which the
integral over the norm of the second derivative is smallest.

4 Interpolation of Fuzzy Data

Assume now that we have to solve a problem analogous to the one of the last
section, with the difference that both the data from the domain and from the
range are fuzzy vectors. Our fuzzy data is, according to Section 1, represented
by real-valued functions on [0, 1]×Sn–1. To reduce the interpolation problem
to a finite-dimensional one, we shall, according to the pragmatic approach an-
nounced, approximate these functions by their values in finitely many points.

Accordingly, we work with the following structure, modeled upon Defini-
tion 1.2 and Proposition 1.3.

is continuous and of class C1,

is bounded and Lipschitz continuous,
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Definition 4.1. Let Ω ⊆ Rp be a domain, let If be a finite subset of [0, 1] and
Sf a finite subset of Sp–1. We call a function s: If ×Sf → R an approximative
support function w.r.t. Ω, If , Sf if (i) for all e ∈ Sf , there is an x ∈ Rp such
that (x, e) = s(e) and (x, f) ≤ s(f) for all f ∈ Sf\{e}; (ii) for all e ∈ Sf ,
s(·,e) is decreasing; and (iii) s ≤ sΩ |If×Sf

.
Moreover, let L(If × Sf ) be the space of real-valued functions on If × Sf ,

endowed with the supremum norm and the pointwise order.

In an analogous way, also the notion of an interpolating function and of a
fuzzy if-then rule base is adapted from Definition 1.4.

Let us fix domains Ξ ⊆ Rm and Υ ⊆ Rn, and finite subsets Sd ⊆
Sm–1, Sr ⊆ Sn–1, If ⊆ [0, 1].

Definition 4.2. Let D be the set of approximative support functions w.r.t
Ξ, If , Sd, and R those w.r.t. Υ, If , Sr. Set

F
def= {f : D → R :

Df

D2 f isL1, f

For a subset X of D, a function f : X → R is called fuzzy approximative if
there is an f̄ ∈ F extending f.

In case X if finite, we call f an approximative fuzzy if-then rule base.

We may now apply Theorem 3.2.

Theorem 4.3. Let (u1, v1), . . . , (uk, vk) ∈ D×R be an approximative fuzzy if-
then rule base such that there is no non-trivial affine function D → L(If ×Sr)
which maps u1 . . . , uk to 0. Set

m(f) =
∫
D
||D2f(x)||dx .

Then there is a unique f: D → R such that f(u1) = v1, . . . , f(uk) = vk which
minimises m(f).

Proof. The set K of all functions f ∈ F such that f(u1) = v1, . . . , f(uk) = vk

is convex and closed. Furthermore, by definition of an approximative fuzzy
if-then rule base, K is not empty. So the claim follows from Theorem 3.2.
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1 Introduction

Many papers propound algorithms for extraction of knowledge from numerical
data. But, few works have been developed for design of experiments and datum
plane’s cover.

This paper tries to measure the impact of datum plane’s cover on the
outcome of a fuzzy inference system. We propose a measure used to pre-
validate a fuzzy model.

This pre-validation takes place after design of the inference system. So,
when the model is not pre-validated, we have not to carry out the next steps,
optimisation and validation.

The structure of the paper is as follows : In the second section, we present
the inference system. In the next section, we analyse a measure of datum
plane’s coverage. We propound, using this measure, a pre-validation of the
fuzzy model.

In section 4, we emphasize, with two examples, the importance of this
criterion to estimate the performance of a fuzzy inference system.

2 The Inference Fuzzy System

In a zero-order Takagi-Sugeno model (T-S model) [3], the rule basis are of the
form :

If x1 is A1i and x2 is A2i . . . and xp is Api

then y is Ci
(1)

where Xj are input variables, Aij are linguistic labels on the universe of
discourse Y represented by a fuzzy set μAij , y is the inferred output and Ci

are constant values. The output y is, given an input vector x1, . . . , xp:

Pre-validation of aFuzzy Model, Advances in Soft Computing 2, 61–64 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

Farida Benmakrouha1

F. Benmakrouha:
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y(x)i=1 = αi

∑n(x) × Ci∑n
j=1 αj(x)

(2)

where the truth value of rule i αi(x) = μAi1 . . . μAip and n the number of
rules. This truth value is the product of the membership degree of x to Aip

The conclusions Ci can be initialized by an algorithm described in [1]. But,
when data don’t cover the whole input space, some rules are never learned
and methods for determining conclusions don’t work very well.

3 Pre-validation of a fuzzy system

We suppose that there exists a learning set L = {(xi, di)}, where Xi is an
input vector and di, the corresponding output.

We assume also that the desired function f is defined in

V = [a1, b1] × [a2, b2] × . . . × [ap, bp]

Usually, to validate a fuzzy inference system, the mean square error (MSE) is
calculated on a test set. If the MSE exceeds a threshold, then training is made,
using a gradient method. This consists in modifying Ci at each presentation
of examples from the error (y(xi) − di).

Unfortunately, in case of model’s invalidation, we can’t determine rules
never learned that cause the gap between the model and the real system.
Moreover, if there is an insufficient coverage of datum plane, training and
finer splitting of input space are inefficient and useless.

With this criterion proposed below, we estimate the datum plane’s cover-
age and we are able to isolate unactivated rules. Then, partial remodelling of
the fuzzy inference system is possible.

For each rule, we define intervalls

Ii = {x|αi(x) > β}
On some conditions, these intervalls are disjoined and formed a partion of V.
We note

Pi = probability associated to Ii under the hypothesis H0 ( X follows an
uniform distribution)

Ni = number of x such that αi(x) > β

U =
∑

i=1,m

(Ni − mPi)2

mPi

(m is the number of data).
n is the number of rules.

We apply the χ2 test on U. If the hypothesis is accepted, the fuzzy model
is pre-validated, otherwise, it is not.

F. Benmakrouha
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4 Experiments

We compare, using two examples, output inferred by fuzzy systems :

• when datum plane is “sufficiently” covered
• when datum plane is not well covered

The mean squarre error, performance index of the approximate system, is
calculated on measures of the test set(V), before optimization step.

We take P= 0.90, the threshold to reject hypothesis H0(UP = 117.4)
with m − 1 = 99 degrees of freedom and β = 0.3.

4.1 First Example

This example has been shown in [4].

y =
sin(x)

x

In this paper, the authors propose a method to improve Takagi-Sugeno’ ap-
proximation, under assumption that datum plane is covered. If this assump-
tion no longer holds, we see that this method can’t work, since it implies that,
before optimization, the fuzzy system gives acceptable results.

Table 1. First Table

n Training set Test interval MSE U

7 [0.2 3.5] [0.2 11.0] 0.117 131.01

7 [0.2 11.0] [0.2 11.0] 0.002 10.67

4.2 Second example

This example has been shown in [2]:

g(x1, x2) = 1.9(1.35 + ex1 sin(13(x1–.6)2)
e−x2 sin(7x2)) + 4 .

(3)
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Table 2. Second Table

n Training set Test interval MSE U

49 [0.2 0.6] [0.0 1.0] 1.07 475.08

49 [0.5 1.0] [0.0 1.0] 0.97 349.0

5 Conclusion

We have proposed a measure for pre-validation of a fuzzy inference system.
When the model is not pre-validated, we have not to carry out next steps,
particularly optimization step.

We have shown that this criterion is a good measure for datum plane’s
coverage.

From these experiments, we remark that coverage rate is correct under
two conditions :

• (i) datum plane and test interval are not disjoined.
• (ii) the ratio number of rules / card(T) is acceptable.

We also note that training is useless when the model is not pre-validated.
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This paper describes the modelling of fuzzy rule systems using a mul-
tiresolution strategy that handles the problem of granularization of the input space
by using multiresolution linguistic terms. Models of different resolutions are chained
by antecedents because linguistic terms of a level j are obtained by refinements of
linguistic terms of a superior level j + 1. The models can also be chained by conse-
quents using aggregation procedures. The family of models are called Multiresolution
Fuzzy Rule Systems.

A metasemantics based on linguistic operators is proposed for the interpretation
of the refinements as a rule specialization. Interesting models result allowing local
refinement of rules that preserve the semantic interpretation.

Keywords: Fuzzy Rule Systems, Rules Hierarchies, Learning Algorithms,
Multiresolution Analysis.

1 Introduction

Fuzzy logic provides an inference morphology that enables approximate hu-
man reasoning capabilities to be applied to knowledge-based systems [6]. Mak-
ing use of this framework, fuzzy rule-based systems establish a map from a
feature space to an output space by aggregation of fuzzy IF-THEN rules each
one representing a partial knowledge of the universe of discourse. Rigorous
theoretical works have proved that several types of fuzzy models are univer-
sal approximators in the sense that these fuzzy models could approximate
any real continuous function to any degree of accuracy on a compact domain
[2], [8]. The problem with this results is that they are non-constructive and
therefore the practical construction of fuzzy models,the model identification
problem, requires more solid foundations.

1This research was partially supported by Research Grant Fondecyt 1040365 and
Research Research Grant DGIP-UTFSM 240425. Partial support was also received
from the German Ministry for Education and Research under Grant CHL 03-Z13.
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Basically, there are two ways to solve the identification problem: from the
expert knowledge or learning from sample data. The former exploits the fuzzy
sets capability to represent linguistic terms, while the latter utilizes the uni-
versal approximation property of these systems. Usually the two approaches
cooperate in a hybrid system that use heuristic information codified in a form
of linguistic variables to generate an initial model structure and then learning
procedures for tuning the free parameters.

The task of building a fuzzy system involves at least the following three
subtasks:

• A Granularization Task, i.e., to identify an appropriate partition of the
input and output spaces. This procedure can be viewed as determination
of a collection of subspaces C = {V1, V2, . . . , Vr} whose organization (in
form of a rule-system) allows us to handle the complexity of the entire
universe of discourse by means of local pieces of information.

• Variables Morphology Setting, i.e., to select the morphology of the lin-
guistic variables taking part in the problem modelling. For example we
can choose trapezoidal functions as reference functions for each linguistic
term and put them together with a normalization constraint over the par-
tition structure. The morphology of these variables determines the way
of representing the knowledge contained in the subspaces of information
generated by the granularization structure and together they distribute a
set of elastic constraints over the universe of discourse.

• Selection of an Inference Mechanism, i.e. to choose a fuzzy inference pro-
cedure that allows us to propagate the partial acquired knowledge and
obtain new knowledge from it in a coherent and “common sense” way that
mimics human reasoning mechanisms.

When doing this we must preserve the interpretable capacity of the model as
well as reasonable approximation capabilities. The first claims that the system
must be able to explain how it reaches its decisions while the last, that these
decisions must be good.

Our approach to fuzzy modelling consists in using a granularization strat-
egy based on the complexity decomposition that the multiresolution analysis
makes over a data space. Seminal ideas in this field are introduced in [4], [5]
and [16]. The space decomposition procedure automatically induces the mor-
phology of the linguistic variables by refinements procedures; or viceversa, the
choice of a basic suitable mother function induces the overall granularization
structure. The resulting fuzzy model is a stratified set of rules, each level
representing a given resolution. Metasemantic operators will give a semantic
interpretation of global and partial refinements.

Let us begin by introducing the multiresolution framework.
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2 Multiresolution Framework

Given a function or signal we can think of representing it on a function space
generated by some basis functions. The function can be viewed as composed
of a local background that is representable in terms of these basis functions
and some fluctuations or details on top of it that are loosed by the approx-
imation on this space. The distinction between the representable part and
the details is given obviously by the approximation capacity of the function
space. We can name this degree of discernibility a resolution level j. If we
are able to establish an order over a set of approximation spaces in terms of
their resolution, we can imagine progressively increasing the resolution level
adding finer details to the coarser description, providing a successively better
approximation to the function. We will say that a function is more complex
that another if we need a greater level of resolution for representing the first
one. The hierarchy established for the approximation spaces is then a hier-
archy for the complexity that they can handle. The mathematical framework
that puts these ideas in order is the multiresolution analysis. The references
[14], [7] contain an introduction to the concept of multiresolution analysis in
the context of wavelet theory. We state here the following definition1 [10], [3].

Definition 1. A multiresolution analysis (M.A.) of L2(�) consist of a se-
quence of embedded closed subspaces {Vj}j∈Z de L2(�) such that the following
conditions hold ∀j ∈ Z

1. Vj ⊂ Vj+1,
2. ∪j∈Z is dense in L2(�) and ∩j∈Z = 0,
3. f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1 (dilation)
4. f(t) ∈ V0 ⇔ f(t − k) ∈ V0 (traslation invariance)
5. ∃ a function ϕ(t) ∈ V0 with a non-vanishing integral, called scaling func-

tion such that the collection {ϕ(t − k)}k∈Z is a Riesz basis of V0.

The third condition is the key requirement of dyadic refinement. It says that
all spaces {Vj} are scaled versions of the central space V0 and defines the
scales of all these subspaces. A key consequence of this property is that since
ϕ ∈ V0 ⊂ V1 must exist a sequence {hk} ∈ l2(Z) such that the scaling function
satisfies

ϕ(t) = 2
∑

k

hϕ(2t − k) (1)

This functional equation 2 is known as the refinement equation. It is imme-
diate that the collection of functions {ϕjk/k ∈ Z} with ϕjk = 2j/2ϕ(2jt − k)

1In the following we will refer to one-dimensional multiresolution analysis of
L2(�) that can be extended to more dimensions and to more general spaces.

2When the basis of functions is not orthogonal it is necessary define this equation
in terms of a dual basis.
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and a scaled family {ϕ̆jk = cjϕjk}jk are both Riesz bases of Vj . The partic-
ular scaling factor cj = 2j/2 in the definition of ϕjk keeps the l2-norm of the
functions equal to one in every scale. In other contexts, fuzzy modelling for
example, may be desirable that other norms, such as the supremum norm,
keeps constant. In these cases we choose the normalization coefficient cj ap-
propriately.

The difference Wj between two successive spaces Vj and Vj+1 are called the
complementary space of Vj . We write Vj+1 = Vj ⊕ Wj . As well as the scaling
function defines a family of bases for all the approximation spaces Vj it is
would be very useful to have a compact representation of their complementary
spaces Wj . In this context the wavelet function is introduced. A function ψ
is a wavelet if the collection of functions {ψ(t − k); k ∈ Z} is a Riesz basis of
W0. In this case the set of functions {ψjk = 2j/2ψ(2jt − k); k ∈ Z} is a Riesz
basis of Wj and the family {ψjk; j, k ∈ Z} is a Riesz basis of L2(�).

Given such function ψ, the wavelet spaces Wj are usually enough for carry
out the multiresolution representation. In many other problems however, the
scaling function have analytic and operational properties that make preferable
to work with the spaces Vj explicitly. For example, the scaling function is
usually non-negative while for the mother wavelet it is not the case. Moreover,
when we find to protect the transparency of the approximation of a function
at different levels of resolution, it is preferable to work explicitly in the spaces
Vj more than only on the wavelet spaces.

Wavelet spaces provides a convenient way of handle the details information
that we gain or loose when we change the resolution level. The convenience
of the representation is in the good analytic and computational properties of
the so called wavelet transforms. Let Pj+1 be the projection of f(t) on the
space Vj+1. Then we have

Pj+1f = fj+1 = Pjf + dj =
∑

k

cj,kϕj,k(t) +
∑

k

dj,kψj,k(t) (2)

The wavelet transform is an algorithm to compute the coefficients cj,k and
dj,k from the coefficients cj+1,k and viceversa. In the orthogonal case, the
transform takes the form

cj,l =
∑

k hk−2lcj+1,k

dj,l =
∑

k gk−2lcj+1,k
(3)

This transform can be inverted as

cj+1,k =
∑

l

hk−2lcj,l +
∑

l

gk−2ldj,l (4)

The first direction of equations (from finer to coarser) is called decomposition
or analytic process. The second (from coarser to finer) is named reconstruction
or synthesis. The analytic and synthetic processes are equally simple (or com-
plex) only if we are looking for a multiresolution representation of a function
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having a perfect knowledge of the dyadic points that refinement equations
need. Of course when our proposes involve learning an unknown function
from a set of examples we cannot demand such exhaustive and homogeneous
knowledge.

3 Multiresolution Fuzzy Rules Systems

In this section we study the use of the space decomposition strategy provided
by multiresolution analysis for building fuzzy rule systems.

3.1 Multiresolution Takagi-Sugeno Hierarchy

Let us observe the definition of Multiresolution Analysis again. In each space
Vj we can reach an approximation to a function f(t) by a decomposition in
terms of the basis functions of this space, i.e.

f ≈ Pjf = fj =
∑

k

cj,kϕj,k(t) (5)

where Pj is the projector on the space, {ϕj,k; k ∈ Z} is the base of the space
and cj,k are the decomposition coefficients. We want to use a Takagi-Sugeno
fuzzy system to represent the approximation in this space. The Takagi Sugeno
system was introduced by [15], [9] and is described by a set of the following
if-then rules

F =
{

F (k)
}

k
=
{

If t is Ak then y = fk(t)
}

k
(6)

where Ai stands for linguistic terms in antecedent while yi = fi(x) is a crisp
function in the consequent, usually constants or n-order polynomials.

When we are modelling these type of systems we need to specify a parti-
tion strategy of the input space that gives us the regions of operation for the
local models that implement the consequents of the local rules. The region of
operation of the i -th model is determined by the support of the (multidimen-
sional) fuzzy relation μA(i)(t) implementing the antecedent of the correspond-
ing rule. An adequate partition of the inputs space is a key process for the
performance of the fuzzy model because it establishes the way in which the
knowledge about the problem is organized. We propose to use the multires-
olution decomposition strategy to determine the subspaces where the local
models defined by each rule must be located. It can be achieved by relating a
model Fj to each space Vj .

The approximation given by the Takagi-Sugeno system (6) can be related
to the multiresolution approximation (5) if we identify the decomposition
coefficients cj,k with the crisp function consequent fi(x) and the family {ϕj(·−
k); k ∈ Z} with fuzzy sets Ai. We denote Fj the fuzzy system corresponding
to Vj and write
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Fj =
{

F
(k)
j

}
k

= { If x is ϕj,k then y = fj,k = cj,k}k (7)

whose operational output, choosing the classical aggregation method, is

y0,j =
∑

k ϕj,k(t)cj,k∑
k ϕj,k(t)

(8)

If the normalization factor
∑

k ϕj,k(t) is equal to 1, the output of (7) and the
multiresolution output (5) are the same. Otherwise the results differ only by
the normalization operation, which obeys to a difference between the fuzzy
modelling approach and the multiresolution analysis approach. While in the
fuzzy modelling approach each rule gives an expert opinion (complete answer)
about the approximated function by a local map, the multiresolution analy-
sis only calculates projections (partial answers) on some basis functions. In
the first case the basis functions act as similarity measures of the function
with the local approximation while in the second they are pieces of the func-
tion. Of course, the two approaches can become compatible and operationally
equivalent if the rule experts are taken as augmented approximators of the
decomposition coefficients cj,k.

Fj =
{

F
(k)
j

}
k

= { If x is ϕj,k then y = c̃j,k}k (9)

where c̃j,k = cj,k

∑
k ϕj,k(t). Now we state the following definition:

Definition 2. A Multiresolution Takagi-Sugeno Hierarchy is an or-
dered sequence of fuzzy models . . . Fj ⊂ Fj+1 ⊂ . . . each one defined by (7) and
where the relation ⊂ is defined in terms of the existing order relation among
their corresponding multiresolution spaces . . . Vj ⊂ Vj+1 ⊂ . . ..

For the model defined above each rule will be defined by a dilation and
translation of the scaling function ϕ(·) and a crisp consequent. Then, the
morphology of the linguistic terms involved in the modelling of the problem
as well as the induced partition of the universe of discourse will be fully
specified by the properties of the selected scaling function, now named mother
linguistic term. Of course, the selection of an appropriate scaling function is
crucial because it defines the behavior of the fuzzy model. For example the
overlapping degree of {ϕjk(·); k ∈ Z} (fuzzy sets from the premises in the scale
j) defines the degree of smooth switching between models from consequents.

Selected the mother linguistic term ϕ(·) the linguistic terms {ϕj+1,k(·); k ∈
Z} of a level j + 1 are related to the linguistic terms {ϕj,k(·); k ∈ Z} of level
j by the refinement equation of multiresolution analysis

ϕj+1,l(t) = 2
∑

k

ϕj,k(·t − l) (10)
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As the set of functions on level j + 1 is obtained by squeezing the set
of functions on level j, the former have a major capacity to discriminate
fine behaviors. In each dimension the number of information pieces (basis
functions) is duplicated and then each segment is covered by the double of
entities available for describing the behavior in this region. For this reason
we say that rules implemented on level j are specialized rules of rules on the
higher level j + 1. The equation (10) is the key procedure for obtain higher
level linguistic terms for refined lower level ones.

The order established in definition (2) is a complexity hierarchy for the
fuzzy models Fj because each one implements a coarser or finer partition of the
input space given by the resolution j, determining the structural complexity
of the model. We can put this hierarchy operative defining the output of each
level yj,0 as (8) and the way in that they are agregated. The most natural
way of doing it is thinking in an weighted average of the partial results yj,0

proportional to the activation of the corresponding level generated by an input
x. The total activation of a level j given a input x is

∑
k ϕj,k(x) and then the

total output of a hierarchy can be given by

y0 =

∑
j

∑
k ϕj,k(x)cj,k(x)∑
j

∑
k ϕj,k(x)

(11)

The aggregation operation (11) seems natural. However we can also follow
Yager [1], [17] in the sense of establishing a relation of preference for the rules.
Suppose we have the collection X of all rules corresponding to all the resolu-
tion levels. Then we can define a relation S over X×X where S(x, y) = 1 says
that x is preferable to y. If the relation S(x, y) = 1 and S(y, x) = 1 means that
x and y are equally preferable. Then the ordering generating the Multiresolu-
tion Takagi-Sugeno Hierarchy can be S(ϕi,k, ϕj,l) = �max(i, j)/min(i, j)� that
considers the resolutions as a rule-clustering principle, leading the rules of the
same resolution in the same pseudo-equivalence class. Of course the relation
S(ϕi,k, ϕj,l) = �min(i, j)/max(i, j)� generates essentially the same hierarchy.
For hierarchies built using this relation Yager proposes to calculate the output
ỹ0,j in the layer j and use the interlevel aggregation operator HEU defined
as

ỹ0,j = HEU(ỹ0,j−1, y0,j) = ỹ0,j−1 + (1 − αj−1y0,j) (12)

Where ỹ0,j and y0,j are the inter-layer aggregated and non aggregated output
of layer j, respectively, while αj−1 = maxk[ϕj−1,k(x)]. In particular, if some
level j obtains a membership close to one in some rule, the process of adding
information slows and possible stops. Then, it is important to define where
we starts to aggregate: from the high resolution levels or from the lower which
is equivalent to select S(ϕi,k, ϕj,l) = �min(i, j)/max(i, j)� or S(ϕi,k, ϕj,l) =
�max(i, j)/min(i, j)� respectively.
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Up to here we are making use of the spaces Vj but not the complementary
spaces Wj . Unfortunately, the wavelet functions are not suitable for using
them as fuzzy sets implementing linguistic terms because in the majority
of the cases they are not non-negative and have a very irregular behavior.
Then we cannot think in a complementary fuzzy residual model catching the
approximation details non representable in terms of the model Fj . However
the wavelet spaces Wj can be useful to handle the error in switching between
different scales.

3.2 Multiresolution Takagi-Sugeno System

In the proposed system the layers are chained by the antecedents from the
refinement of multiresolution analysis but each one computes their output in-
dependently. Different resolution levels provide different views of the problem,
more local or more global, approximating more local or global tendencies. If
we think of the consequents of each rule as local experts we could say that
each expert gives an opinion more specific or locally supported if it takes as
a base of decision a more reduced section of the space, i.e., it works at a
more fine resolution level. Then, experts working at different horizons of view
(resolutions) provided useful information for solving the problem.

However, it is natural to think that the consequents fj,k(t) = cj,k should be
related in some operative way. We can chain the different resolution levels by
the lifting scheme imposed by wavelet transform.The non-normalized output
of the system Fi is

y0,i =
∑

k

ϕi,k(t)ci,k (13)

As this approximation to f(t) is corresponding with the approximation pro-
vided by (5) in the space Vj , each consequent cj,k could be obtained from the
system Fj+1 by the wavelet transform as

cj,l = 2
∑

k

hk−2lcj+1,k (14)

We define now a multiresolution fuzzy rule system considering the output
dependency relation defined by the last equation

Definition 3. 1. Each Takagi-Sugeno System Fi with output (13) is a Mul-
tiresolution Takagi-Sugeno System named root model.

2. Each root model Fi and a finite ordered sequence of models Fi+1, . . . Fi+I

form a Multiresolution Takagi-Sugeno System if all the consequents
of the models Fi, . . . Fi+I−1 satisfy the lifting equation (14) and the model
Fi+I is a typical Takagi-Sugeno model whose consequents are functions of
t (ususally these functions are constants or simple parametric models of
local support)
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The system of rules takes the form

(Fi) If x is ϕi,1 then
(Fi+1) If x is ϕi+1,1 then

(Fi+2) If x is ϕi+2,1 then
· · ·
(Fi+I) If x is ϕI,1 then cI,1

If x is ϕI,2 then cI,2

· · ·
If x is ϕi+2,2 then

· · ·
· · ·

(15)

The action of the lifting scheme leading the consequents cj,k from the conse-
quents cj+1,k can be viewed as a (lifting) aggregation operator that can be
defined directly from the coefficients hl of the scaling function

cj,l = 2
∑

k

hk−2lcj+1,k (16)

Alternatively we can define an operator
⊕

that projects the output y0,j+1

of the rule system Fj+1 over the corresponding rule system Fj . From the
properties of the scaling function we have

cj,l = 2
∑

k

ϕj+1(t − k)

〈
ϕj(t − l),

∑
k

cj+1,kϕj+1(t − k)/
∑

k

ϕj+1(t − k)

〉
cj,l =

⊕
j,l y0,j+1

(17)

3.3 Locally Refined Systems

A problem with the proposed Multiresolution Fuzzy Rule Systems is that
Fj+1 duplicates the number of rules of the system Fj and if we want to use
it in a learning scheme we expect an explosive growing of rules while the
system is refined. Fortunately, the aggregation operation (16) that defines the
dependence of a rule in Rj

k from rules in j + 1 has a non-null effect only over
the support of the linguistic term ϕj,k(t). If it had a compact support we can
restrict the dependence over a finite number of linguistic terms in the finer
resolution level. The family of n-th order B-Splines for example, is n + 1-
compact and the dependence of the rule Rj

k is limited to n+2 rules of the
finer system Fj .

This motivates the definition of locally refined systems, where only a few
refined rules of the level j +1 are activated (and built) for implementing some
rules of the level j that depend of them. We will consider subsets of rules F̃K

i

of Fi selecting only some set of shifts K of the mother linguistic term ϕi,0 of
Fi.
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Definition 4. A Partial Multiresolution Takagi-Sugeno Hierarchy is
an ordered sequence of subsets of rules . . . F̃K

j ⊂ F̃K
j+1 ⊂ . . . where F̃K

i is built
selecting from Fi only some set of shifts K of the mother linguistic term ϕi,0.
The relation ⊂ is defined in terms of the existing order relation among their
corresponding multiresolution systems . . . Fj ⊂ Fj+1 ⊂ . . ..

The last hierarchy of systems can be made operative by defining the same
outputs and aggregation strategies considered for the (Global) Takagi-Sugeno
Hierarchy with the restriction that we take only the rules indexed by shifts
k contained in the corresponding set Ki. Now we define the partial refined
version of the Multiresolution Takagi-Sugeno System, where the layers are
linked also by the consequents.

Definition 5. Each Subset of Rules F̃K
i of a Takagi-Sugeno System Fi cor-

responding with Vi is a Partial Multiresolution Takagi-Sugeno System
on the level i if

1. There exist two disjoint subsets of K, K1 and K2 where each existing
consequent ci,k, k ∈ K1 is a simple function of the input, such a constant
or an n-th order polynomial and each ci,k, k ∈ K2 is obtained from a
Partial Multiresolution Takagi-Sugeno System on the level i + 1 by the
lifting equation (14).

2. The number or embedded Partial Multiresolution Takagi-Sugeno Systems
F̃

Ki+1
i+1 , F̃

Ki+2
i+2 , . . . is finite.

3. Each rule contained in the embedded Partial Multiresolution Takagi-
Sugeno Systems F̃

Ki+j

i+j , j = 1, 2, . . . I have consequents required by a rule

of F̃
Ki+j−1
i+j−1 for implementing its consequent ci+j−1,k, k ∈ Ki+j−1,2. In

other words each active consequent in F̃i+j j = 1, 2, . . . I participates in
the refinement procedures.

Then, we only implement refined linguistic terms in F̃j+1 if are needed for
implementing consequents in the system F̃j . The consequents ci,k, k ∈ K1

are called simple consequents and ci,k, k ∈ K2 multiresolution consequents.
The last level F̃I of an embedded structure of Partial Multiresolution Takagi-
Sugeno Systems, containing only simple consequents is called terminal level
and the first F̃i is named root level if it computes

yi
0 =

∑
k∈K ϕi,k(t)ci,k∑

i ϕi,k(t)
(18)

The other levels, all having at least one multiresolution consequent, are called
internal levels.
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3.4 Linguistic Splines

A well known family of scaling functions suitable for interpretation as fuzzy
sets are the B-splines introduced in [12] jointly with the cardinal spline inter-
polation theory. The zeroth-order B-Spline is the box function β0(t) = χ[0,1]

wich is a usual first choice when designing linguistic terms and generates the
Haar-Multiresolution analysis. The B-splines of higher order can be defined
by a repetitive convolution of the zeroth-order B-spline β0(t)

βn(t) = β0∗ n+1. . . ∗β0(t) (19)

The family {βn(x − k)}k∈Z has many interesting properties [12], [13]: for
example, they are compactly supported. In any interval, only n+1 translations
of βn(t) are not null. They can also be normalized to guarantee that the
supremum is 1 or that the system {βn(x− k)}k∈Z is a partition of the unity.

The B-Splines family generate the n-th order multiresolution analysis
{V n

j }j∈Z where each V n
j is defined as the closed span of βn(t). Since the

B-Splines forms a basis for the splines, the linguistic variables implemented
by B-Spline linguistic terms are called Linguistic Splines [11]. For this family
the refinement equation takes the form [7].

βn(t) = 2−n
n+1∑
k=0

(−1)k

(
n
k

)
βn(2t − k) (20)

3.5 Semantic Interpretation of Global and Partial Refinements

In Multiresolution Fuzzy Rule Systems each fuzzy set implementing a lin-
guistic term in a rule is generated by squeezing a basic linguistic term. If the
original morphology have a meaning it seem natural to associate to the refined
terms a meaning related to the original semantics. For this meaning deduction
procedure we will use the term metasemantics [11]. A study of metasemantic
operators to relate the meaning of refined linguistic terms from non-refined
ones is presented in [11] for hat functions. Now we generalize the results for
B-Splines of any order.

The key operators are the linguistic modifier [18]“very” denoted v(·) and
the metasemantic operator “between” denoted b(·, ·). As proposed by Zadeh
[18], v(·) takes a fuzzy set implementing a linguistic term named “w” and
build the linguistic term “very w” implemented by a fuzzy set with the half
of the support and the same core. The operator b(·, ·)) for two morphologically
equivalent fuzzy sets build a morphologically equivalent fuzzy set centered at
the middle point between the original terms i.e., for two fuzzy sets T (t − α)
and T (t − β), α ≤ β its effect is b(T (t − α), T (t − β)) = T (t − (α + β)/2).
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In the case of general spline linguistic variables the same metasemantic
structure can be applied. The splines linguistic variables {βn

jk(t); k ∈ C ⊂ Z}j

of odd order have linguistic terms centered at the points Co
j = {pk = k/2j ; k ∈

Z}, j denoting the resolution level, while the even order are centered at points
Ce

j = {pk = 2k + 1/2j+1; k ∈ Z}. When we refine all the linguistic terms on a
dimension of level j we obtain new terms on level j which have the half of the
original support and cover more densely the space of the linguistic variable.
In the case of odd order B-Splines if on the first scale we have a term centered
at c ∈ Co

j corresponding to a shift k, on the new scale we always obtain a new
term centered at c that correspond to the shift 2k in Co

j+1 and additional terms
appearing centered at the middle points between points of Co

j , corresponding
to shifts 2k + 1 or 2k − 1 in Co

j+1. Then if the original terms βn
j (t − k + 1),

βn
j (t−k) and βn

j (t−k−1) have labels “u”, “v” and “w” respectively, the new
terms βn

j+1(t − 2k + 1) βn
j+1(t − 2k) and βn

j+1(t − 2k) can be interpreted as
“between very u and very v”,“very v”, and “between very v and very
w” respectively.

In the case of even order B-Splines the core points of j are not core points in
the refined level j+1 because the structure of center points Co

j is generated by
odd multiplies of 1/2j+1 that cannot be simplified to other odd factor by the
denominators. Then we build a modified set of functions β̃j+1,k(t) = βj+1,k(t−
1/2) which have core points at k/2j+1, k ∈ Z. When k is an odd integer the
last core points match with the core points of the family βj,k(t) and when k is
a even integer the corresponding linguistic terms are centered between the first
ones. Then we can apply the metasemantics applied in the case of odd order
for interpreting the meaning of β̃j+1,k(t) in terms of the labels of β̃j,k(t). If the
terms β̃n

j (t− k + 1), β̃n
j (t− k) and β̃n

j (t− k − 1) have labels “u”, “v” and “w”
respectively, the new terms βn

j+1(t−2k+1) βn
j+1(t−2k) and βn

j+1(t−2k) can be
interpreted as “u’” = “between very u and very v”, “very v”, and “v’”
= between very v and very w” respectively. Finally the terms βn

j+1(t−2k)
and βn

j+1(t − 2k) can be interpreted from the modified family β̃j+1,k(t) as
“between u’ and very v” and “between very v and w’” respectively.

If we work with finite domain linguistic variables we must scale data to an
interval [a, b] covered with an appropriate number of initial linguistic terms
belonging to the initial model Fi. The only precaution that we take is that the
right-last linguistic term is modelled with the left part of the B-spline that we
are considering

β̂n,left
i (t) =

{
βn

i (t − a) t ≥ a
1 otherwise

(21)

and similarly with the left-last term. Now, suppose they have labels “u” and
“v” respectively. If the considered B-Spline is of odd order in the next scale
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i + 1 the refined extreme terms can be interpreted conventionally from the
labels of the original final terms as “very u” and “very v” respectively. It
seems obvious that the interpretation of the central terms remains the same.
If the linguistic terms correspond to B-Splines of even order the refinement
procedure do not lead to linguistic terms centered in the extreme points of the
interval. We can take as left extreme term the last term whose right half is
completely contained in the interval and extend its core to the left extreme of
the interval. Similarly for the right extreme. It seems natural to interprete the
new linguistic terms as “very u” and “very v” respectively because although
the core is extended, it is made in the direction of increasing membership of
the high level linguistic terms with labels “u” and “v”.

The subsequent refinements from j to j+1 affecting the extreme linguistic
terms are made from the non-corrected terms of the superior level j as if the
family of functions would exist beyond the limits of the interval [a, b].

In our approach the refined rules work independently or they are created to
implement the consequents of the original high level rules. When we partially
refine a system F̃K

j we generate all the linguistic terms needed for covering
the support of the original terms. We propose interpreting this new linguistic
terms with the metasemantic operators “very” and “between” as if the re-
finement were global although some linguistic terms corresponding to Fj do
not exist in FK

j , that is, they are not activated for operating.
If we can obtain a semantic for the linguistic terms on a scale, the metase-

mantic procedures exposed above works very well to obtain the meaning of
refined terms of the next scale. Semantic problems can appear however when
the refinements involves several scales. In this case the predicates associated
to the new refined linguistic terms can loose sense because they put linguistic
modifiers over already modified predicates and so on. Even in these cases the
refinement procedures can be interpreted as an explanation of the decisions
that the system Fj are taking. We say that a reasoning rule of Fj can con-
clude something if specialized neighbors rules support this decision concluding
something else related to the original conclusion by the aggregation procedure
(17). The metasemantic operators working on abstract labels associated to the
linguistic terms involved in the refinement work for explaining how the system
takes decisions of increasing complexity.

Finally we must say that when the data is purely numerical the semantic
problems can be relaxed associating to each linguistic term centered at c the
predicate “around c”. Then, metasemantic operators can explain what means
the refinements from the semantic point of view when passing from one scale
to another.

4 Remarks

A family of models called Multiresolution Fuzzy Rule Systems was proposed
for handling the problem of granularization of the input space. Interesting
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models result allowing local refinement of rules for handling the problem of
explosive growing of rules when the space is multidimensional. When doing
this we have preserved the interpretability of the model. The structure can be
viewed as a strategy for hierarchically mixing experts, probably heterogenous.
Each expert provides different views of the problem, more local or more global,
approximating more local or global tendencies depending of the support of
the linguistic term associated to it. The structure of learning algorithms for
building globally and partially refined systems has been studied beyond the
scope of this paper.

References

1. L. Valverde B. Bouchon-Meunier and R. Yager (eds.), Hierarchical representa-
tion of fuzzy if-then rules, Springer, 1993.

2. J.J. Buckley, Universal fuzzy controllers, Automatica 28 (1977), 1245-1248.
3. I. Daubechies, Orthonormal bases of compactly supported wavelets, Communi-

cations on Pure and Applied Mathematics 41 (1988), 909-996.
4. A. de Soto, Building a hierarchical set of fuzzy rules using wavelet theory, Inter.

Conference on Information processing and Management of Uncertainty Knowl-
edge -Based Systems 3 (2000), 1764-1769.

5. ——–, Uniform fuzzy partitions with cardinal splines and wavelts: Getting in-
terpretable linguistic fuzzy models, Inter. Conference on Information processing
and Management of Uncertainty Knowledge -Based Systems 3 (2002), 1-20.

6. R. Fullr, Introduction to neuro-fuzzy systems, Advances in Soft Computing,
Springer-Verlag, 2000.

7. B. Jawerth and W. Sweldens, An overview of wavelet based multiresolution
analyses, SIAM Rev. 36 (1994), no. 3, 377-412.

8. B. Kosko, Fuzzy systems as universal approximators, IEEE Trans. Computers
43 (1994), no. 11, 1329-1333.

9. G. Kang M. Sugeno, Structure identification of fuzzy model, Fuzzy Sets and
Systems 28 (1988), 15-33.

10. S. Mallat, Multifrequency channel decompositions of images and wavelet models,
IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 2091-2110.

11. C. Moraga, A metasemantics to refine if-then rules, Proc. 34th Int. IEEE Sym-
posium on Multiple-valued Logic (2004).

12. I.J. Schoenberg, Contribution to the problem of approximation of equidistant
data by analytic functions, Quart. Appl. Math. 4 (1946), 4599, 112-141.

13. ——–, Cardinal spline interpolation, Soc. for Industr. Appl. Math. (1973).
14. G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev.

31(1989), no. 4, 614-627.
15. M. Sugeno T. Takagi, Fuzzy identification of systems and its application to mod-
elling and control, IEEE Trans. System, Man and Cybernetics 15 (1985), no. 1,
116-132.

16. S. Tan Y. Yu, Complementary and equivalence relationships between convex fuzzy
systems with symmetry restrictions and wavelets, Fuzzy Sets and Systems 101
(1999), 423-438.



Multiresolution Fuzzy Rule Systems 79

17. R.R. Yager, On the construction of hierarchical fuzzy systems models, IEEE
Transactions on Systems, Man and Cybernetics-PARTC:Applications and Re-
views 28 (1998), no. 1, 1245-1248.

18. L. Zadeh, Outline of a new approach to the analysis of complex system and
desision process, IEEE Trans. Systems, Man and Cybernetics 1 (1972), no. 1,
28-44.



Invited Session

Data Characterization through Fuzzy
Clustering

Session Organiser:
Bernadette Bouchon-Meunier



Fuzzy Clustering of Macroarray Data

Olga Georgieva1, Frank Klawonn2, and Elizabeth Härtig3
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1 Introduction

The complete sequence of bacterial genomes provides new perspectives for
the study of gene expression and gene function. DNA array experiments al-
low measuring the expression levels for all genes of an organism in a single
hybridization experiment.

Computational analysis of the macroarray data is used extensively to ex-
tract groups of similarly expressed genes. The aim is to organize DNA array
data so that the underlying structures can be recognized and explored. The
gene groups identified as clusters are searched for genes known to be involved
in similar biological processes, implying that genes of unknown functions may
be involved in the same processes. Commonly used computational techniques
include hierarchical clustering, K-means clustering and self-organizing maps.
These share many features, particularly the distance metric, which measures
the relationship between samples or genes in the data space formed by the
expression values. The output from different clustering algorithms usually de-
pends more on the type of distance metric used than on any other factor.

The central limitation of most of the commonly used algorithms is that
they are unable to identify genes whose expression is similar to multiple, dis-
tinct gene groups, thereby masking the relationships between genes that are
coregulated with different groups of genes in response to different conditions.
For example, the K-means clustering partitions genes into a defined set of dis-
crete clusters, attempting to maximize the expression similarity of the genes
in each cluster assigning each gene to only one cluster, obscuring the relation-
ship between the conditionally coregulated genes. The recently implemented
heuristic variant of Fuzzy C-Means (FCM) clustering [4] shows the advantage
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of the fuzzy clustering technique as a valuable tool for gene expression analysis
as it presents overlapping clusters, pointing to distinct features of each gene’s
function and regulation.

The paper presents a methodology to deal with macroarray data analysis.
Each step of the data processing is described in detail. First, the crucial pre-
processing step on the raw data to transform the data set into an appropriate
and reliable form for clustering is applied. Secondly, subtractive clustering is
implemented in order to obtain a good initial data partition. The obtained
cluster centres are used to initialize the fuzzy C-means clustering algorithm
by which the optimal values of the cluster centres and partition matrix are
obtained. The partition matrix is used to determine the gene groups that be-
long to a given cluster with a prescribed membership degree. The proposed
procedure is applied to macroarray data of B. subtilis. The obtained results
show that informative clusters are obtained. The extracted gene clusters are
overlapping, pointing to distinct aspects of the gene function and regulation.

2 Data Set

Here we used data obtained from the soil bacterium B. subtilis grown under
different growth conditions. B. subtilis is able to grow in the absence of oxygen
using nitrate as alternative electron acceptor or fermentation processes. The
switch between aerobic and anaerobic metabolism in B. subtilis is regulated
mainly at the transcriptional level. To investigate the global changes in gene
expression under various anaerobic conditions we used DNA macroarrays con-
taining DNA fragments of all 4107 genes of B. subtilis. We analysed mRNA
from cells grown aerobic, anaerobic with nitrate, anaerobic with nitrite and
under fermentative conditions. When the mRNA levels were compared during
exponential growth, several hundred genes were observed to be induced or
repressed under the various conditions tested. The data of the macroarrays
are obtained by autoradiography using phosphorimaging and the intensities
representing the expression levels are transformed into a table. In the ob-
tained numerical table each row corresponds to a gene and each column to
one growth condition analyzed.

The considered macroarray data set is a data matrix that consists of the
expression levels (ratios) of 4107 genes of B. subtilis defining each matrix
raw. The cells have been carried out on four different environment condition
namely aerobic (A), fermentative (B), nitrite (C) and nitrate (D). The inten-
sities obtained in each experiment are organized in the columns. The ratio
in each environment condition has been measured twice. Thus, the original
macroarray matrix Z = (zkj)(k = 1, . . . , N, j = 1, . . . , n) is a large sized data
matrix with N = 4107 rows and n = 8 columns.
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Two distinct data sets of the type described above have been obtained in
different time instants. The first data set, named identification data set, was
used for data partition and determination of the searched gene groups. The
second one, named the validation data set, was used only for verification of
the obtained clusters.

3 Fuzzy Clustering of B. subtilis Macroarray Data

In order to identify the gene clusters and simultaneously to evaluate the level
of relationships of genes that are coregulated with different groups, the Fuzzy
C-Means clustering technique [2, 5] is applied. It is an objective function-based
clustering method. It aims at minimizing an objective function that indicates
a kind of fitting error of the clusters to the data. The underlying objective
function for most of the clustering algorithms is:

J =
c∑

i=1

N∑
k=1

(uik)md2
ik (1)

where N is the number of data points; c is the number of clusters; uik and dik

denote the membership degree and the distance of the point xk, k = 1, . . . , N ,
to the i -th cluster prototype (centre), i = 1, . . . , c, respectively, m ∈ [1,∞)
is the weighted exponent coefficient (fuzzifier) which determines how much
clusters may overlap. In order to avoid the trivial solution assigning no data
to any cluster, i.e. setting all uik to zero, and to avoid empty clusters, the
constraints

uik ∈ [0, 1], 1 ≤ i ≤ c, l ≤ k ≤ N (2)
c∑

i=1

uik = 1, 1 ≤ k ≤ N (3)

0 <
N∑

k=1

uik < N, 1 ≤ i ≤ c (4)

are introduced. When the fuzzifier value m = 1 is chosen, then uik ∈ {0, 1} will
hold at a minimum of the objective function (1), i.e. the resulting partition
will be crisp.

The parameters to be optimized are the membership degrees uik and the
cluster parameters which finally determine the distance values dik. In the
simplest case, a single vector named cluster centre represents each cluster
For FCM clustering the distance of a data point to a cluster is simply the
Euclidean distance between the cluster centre vik and the corresponding data
point:

υi.
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d2
ik = ‖xk − υi‖2 = (xk − υi)�(xk − υi) , (5)

where xk = [xk1, . . . , xkn] is the k -th data point defined as a vector in the
feature space and υi = [xi1, . . . , xin] is the i -th cluster prototype vector.

The minimization of the functional (1) represents a nonlinear optimization
problem that is usually solved by means of Lagrange multipliers, applying an
alternating optimization scheme [2]. This optimization scheme alternatively
considers one of the parameter sets, either the membership degrees or the
cluster parameters as fixed, while the other parameter set is optimized, until
the algorithm finally converges.

The main problem of the macroarray data clustering is the badly struc-
tured data space that lacks well separated (distinguished) data groups. Most
of the points are found to be located in one small area close to the zero value.
Thus, two important problems arise in applying the FCM clustering algo-
rithm. The first one arises from the specific characteristics of the data set
mentioned above. The data set should be presented in an appropriate form in
order to guarantee the reliability and authenticity of the extracted informa-
tion. The second problem concerns the initialization of the FCM algorithm. In
the objective function (1), the number of clusters has to be fixed in advance.
Since the number of clusters is usually unknown, an additional scheme has
to be applied to determine the number of clusters and their prototypes. Both
problems are considered in detail and an effective solution for the macroarray
data set is described.

3.1 Preprocessing Step

The preprocessing step is a preliminary step of the whole data processing
(clustering) which aimed to transform the data set into an appropriate and
reliable form for clustering. In most situations, the data obtained after scan-
ning must be transformed and normalized before they can be analyzed. By
applying several operations on the identification data set the data represen-
tation is improved and the quality of the clustering is increased.

One main problem of the macroarray data processing is connected to the
data noise. Differences occurred quite frequently in the repeated measure-
ments of the same gene under the same conditions. For this, an average value
of the gene expression within every environment condition is determined. In
case one of the expressions is zero or invisible (no measured value is provided)
the other one is taken into account. Thus, in the considered particular case
the data matrix is transformed from an eight to a four column matrix. This
in practice means that the clusters will be searched for in a four-dimensional
data space.

Since empirical evidence shows that low-intensity spots (low gene expres-
sion measurements) are more likely to be noisy, eliminating those spots is a
fairly safe option [6]. However, as the most of the data values are close to
the zero value it is rather difficult to distinguish the noisy values from the
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informative ones. That is why only genes that have one or more zero average
expression value are taken out from the data set. Eleven genes having a zero
average value and by that three of them at two environment conditions were
defined and removed from the considered data set.

The second specificity of the illuminated macroarray matrix is that there
are so bright spots that some of the surrounding ones could not be distin-
guished. Their expression levels can not be measured and they are considered
as invisible. Genes that have at least one invisible average expression should
also be removed from the data set. However, in the particular case under
consideration it two invisible expressions for one gene in one condition never
occurred.

The upper extreme of the filtered group consists of genes that have large
expression that differ drastically from the rest of the data. Normally, they
form a small group that is far away from the other data in the data space. In
this situation every clustering algorithm will separate both the large and small
group of outliers, but this partition will be not informative as the important
clusters are within the large amount and narrow spread data points. Genes
that have an average expression of over 100 are taken out from the data
set. Both cutting values for lower and upper data filtering are subjectively
determined. They are subject to an expert choice depending on the concrete
data configuration.

The results in many DNA macroarray experiments are ratios. The fact
that the output is not symmetric, i.e. twofold change has a ratio of either
2 (up-regulation) or 0.5 (down- regulation), presents a problem for analysis
because most distance metrics treat a ratio change differently depending on
the direction. Thus, it is essential to convert ratio data into a form that is
not sensitive to the direction of the change. The solution of this problem
usually applied is a log transform of all ratio values [6]. Here, the natural
logarithm was applied but all logarithm bases are equivalent for this task.
By this transformation the high ratios are compressed while the small ratios
increase their importance by stretching their distances. This effect is very
beneficial as it increases the distinguishability among the data due to the fact
that the largest amount of expression ratios lies between zero and one.

Generally, the expression ratios are obtained by a comparison to a com-
mon reference sample. For each gene the series of ratio values are relative to
the expression level of that gene in the reference sample. Thus, in case the
uncentred correlation matrix is used, two genes whose expression patterns
are identical to each across a range of samples, but different in the reference
sample, will not cluster together. Since the reference sample has nothing to
do with the experiment, the expression levels should be transformed to be
independent from the reference sample. This problem can be solved by sub-
tracting the average (mean) or median log ratio for a gene from the log value
for each value for that gene. Median centring the data for columns and rows is
applied consequently ten times to the processed identification data set. This
transformation removes certain types of biases.
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The applied FCM clustering method uses the Euclidean distance metric,
which imposes data normalization before clustering in order to ensure reliable
clustering results.

These operations are not associative, so the order in which they are applied
is very important. The series of operations for the raw data are:

1. Average of the expression values within every environment condition
ZN×8 → ZN×4;

2. Filtering by removing:

zki > 100 (to high expression)
zki = 0 (no expression)
zki = −1 (invisible expression)

3. Log transform all values: log(ZN1×4) = (log Zki), k = 1, . . . , N1, i =
1, . . . , 4, where Ni, is the revised number of the genes in the data set;

4. Median centring through data columns and rows consequently ten times;
5. Normalization of the data.

Figure 1 shows the data transformations carried out by the described pro-
cedure in the three (A-B-C) dimensional data space.

The data preprocessing does not change the structure of the data set. It
only makes it more reliable and informative for the applied clustering algo-
rithm.

3.2 Initialization of the Clustering Algorithm

The number of clusters and the initial partition matrix should be provided in
advance for all objective function-based clustering algorithms. Since, by the
clustering optimization scheme usually a local minimum is found, the provided
initialization parameters are of a major importance, especially in the case of
extreme large data set. An effective solution can be achieved only, if the correct
number of clusters and a suitable initial data partition are defined.

The main drawback of the fuzzy clustering algorithm is the lack of an
initialization procedure. There is no reliable technique for determining the
number of clusters and an initial data partition. In the standard objective
function-based clustering additional strategies have to be applied in order to
define the number of clusters. There are two commonly applied strategies.
Through the first one the clustering is carried out with different numbers
of clusters and the partition is evaluated by some global validity measure
like average within-cluster distance, fuzzy hypervolume or average partition
density [5, 1]:

1. Average within-cluster distance (AWCD)

AWCD =
1
c

c∑
i=1

∑N
k=1 um

ikd2
ik∑N

k=1 um
ik

, (6)
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? ?

Fig. 1. Data transformations: averaging, filtering, log transform, median centred
data

This measure monotonically decreases with the number of clusters c. A
“knee” in the graph will indicate a suitable partition.

2. Fuzzy hypervolume (Vh)

V h =
c∑

i=1

[det(Fi)]
1
2 , (7)

where F ,i = 1, . . . , c, are the cluster covariance matrices. Good partitions
are indicated by small values of Vh.

3. Average partition density (APD)

APD =
1
c

c∑
i=1

Si

[det(Fi)]
1
2

, (8)

where Si is the sum of the membership degrees of the data vectors that
lie within a hyperellipsoid whose radius is the standard deviation of the
cluster features:

Si =
N∑

k=1

uik, for every k, such that (zk − υi)F−1
i (zk − υi)T < 1 . (9)

i
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Good partitions are indicated by large values of APD.

The clustering procedure is started several times for a given number of
clusters and a randomly set partition matrix. The procedure is repeated for
different numbers of clusters, varying from a sufficiently small to a sufficiently
large amount. Best initial values are those that optimize the chosen cluster
validity measures. Normally more then one cluster validity measure should
be incorporated. Another strategy is based on compatible cluster merging [1]
that starts with a high number of clusters and then deletes bad clusters as
well as merges similar clusters together step by step. Both strategies require
high computational costs.

In this paper another strategy for a good initialization of the objective
function clustering has been applied. A subtractive clustering algorithm [3] is
used to partition the identification data set. This algorithm determines the
number of clusters and estimates their cluster centres. Then the cluster cen-
tres are used as a good initialization for the FCM clustering. As a result by
the FCM the optimal cluster centres’ coordinates and the partition matrix are
obtained. The partition matrix is very useful as its elements are the member-
ship degrees indicating how much each gene belongs to each cluster. So, one
obtains not only a partition, but the intensity of the gene’s partition. Thus,
by defining some cutting level, it is easy to determine groups of those genes
that belong to the clusters with desired level of membership.

There are four important parameters of the subtractive clustering algo-
rithm that are responsible for the data partition. The cluster radius ra is a
vector that specifies a cluster centre’s range of influence in each data dimen-
sion, assuming the data lie within the unit hyperbox. However, after the pre-
processing step the transformed data set is fit to assuming spherical clusters,
i.e. data points are bounded by a hypercube. Thus, we use the same cluster
radius for all data space dimensions. A squash factor sq is used to multiply
the ra value to determine the neighbourhood of a cluster centre within which
the existence of other cluster centres are to be discouraged. The accept ratio
εa sets the potential, as a fraction of the potential of the first cluster centre,
above which another data point will be accepted as a cluster centre. The reject
ratio εr sets the potential, as a fraction of the potential of the first cluster
centre, below which a data point will be rejected as a cluster centre. As the
first two parameters are more decisive to the clustering results, they are varied
to obtain a good initial partition in terms of the cluster measures AWCD, Vh
and APD. The remaining two factors are set to a constant value εa = 0.5
and εr = 0.15 as it is prescribed in the originally proposed algorithm [3]. The
calculated cluster measures by varying first the cluster radii and constantly
maintaining the squash factor and after that varying the squash factor while
cluster radii have been set to a constant value, are presented in Fig. 2. It
is difficult to define exactly the best values for ra and sq in terms of these
cluster measures as there are discrepancies. We can only define an appropri-
ate interval where the best partition is realized. The influential point of both
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Fig. 2. Cluster measures: -o- ra varies and sq = 1; -x- ra = 0.05 and sq varies

curves in the top of Fig. 2 is defined in the interval for c ∈ [20, 40]. In the
same interval for the corresponding ra and sq values a local minimum can be
found in the curves for Vh and APD, respectively. As a reasonable compro-
mise between the optimal values of the cluster measures and a good initial
solution for FCM clustering the data partition is chosen that is obtained by
the subtractive clustering with parameters ra = 0.05 and sq = 1.

4 Results and Discussion

By the procedure described above 27 clusters and their cluster centres are
identified. They are used to calculate the initial partition matrix by applying
the membership calculation formula of the FCM algorithm. By running the
FCM algorithm 27 fuzzy clusters are identified such that genes having similar
profiles are assigned to a cluster with highest membership degrees. The degree
of membership of each gene to each cluster is given in the partition matrix.
It is used to determine the clusters by cutting the membership degrees on a
desired level.

The obtained results show that informative clusters are obtained. The
extracted gene clusters are overlapping, which enables us to reveal distinct
aspects of the gene function and regulation (Table 1). The number of the
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Table 1. Number of clustered genes for different membership level cut

Cutting level of the membership degree 0.6 0.5 0.4 0.3 0.2 0.1
Number of all clustered genes 274 447 720 1180 2361 6589

clustered genes for the 0.1 cutting level is rather bigger then the number
of the clustered genes. This means that a large overlapping of the obtained
clusters occurs. By increasing the cutting level the number of the clustered
genes decreases.

Fig. 3. Profiles of genes (given by numbers) belonging to cluster no. 17

Some typical gene clusters are presented in Figures 3–5. The expression
profiles belong to genes that are assigned to the given cluster with a member-
ship degree greater than 0.5 (upper curves in the figures). In order to verify
the obtained partition the verification data set is also used. The expression
profiles of the genes belonging to this cluster but extracted from the verifi-
cation data set are shown in the bottom of the figures. The gene expression
is changed during the time. This means that it could be expected that the
profiles in both data sets could be different. The fact that the extracted genes
from the identification data set are still a group with similar profiles in the
verification data set proofs the reliability of the obtained partition.

Cluster 17, 26 shows the typical expression pattern: A-low, B-high, C-low
and D-high and a lot of genes known to be important for anaerobic life are
represented in this cluster. The genes of this cluster are almost not expressed
under the A and C conditions (aerobic and anaerobic with nitrate) whereas
under the conditions B and D (fermentative and anaerobic with nitrite) the
expression of the genes is induced. This expression pattern shows that the
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Fig. 4. Profiles of genes (given by numbers) belonging to cluster no. 26

Fig. 5. Profiles of genes (given by numbers) belonging to cluster no. 19

condition A and B are more similar to each other than the anaerobic conditions
C and D. Under condition A and B the electron transport chain is needed and
different electron endacceptors are used: Oxygen in the case of condition A
and nitrate at condition B.

Also in cluster 17 we found a lot of genes with unknown functions. Since
the expression pattern is similar, we may postulate that they are also needed
for anaerobic adaptation. This has to be analyzed in further experiments.

The opposite expression pattern is visible in cluster 19 (A-high, B-low,
C-high, D-low), indicating that now genes are expressed that are mainly



94 O. Georgieva et al.

needed for conditions A and C. Here we found a lot of genes encoding ri-
bosomal proteins.

5 Conclusions

In this paper, we have demonstrated how fuzzy clustering can be applied to
the analysis of DNA array data using B. subtilis as an example. Since the
raw data are not suitable for clustering, especially since they contain a high
proportion of noise, appropriate transformations have to applied to the data in
a preprocessing step. Furthermore, we used a subtractive clustering strategy to
determine the number of clusters and to find a good initialization for the fuzzy
clustering step. We have used two data sets that were generated independently,
but under the same conditions. We have carried out the cluster analysis only
in the first data set, whereas the second data set served for verification of the
clusters. Assigning the data from the verification set to the clusters derived
from the first data set has shown that the clusters group genes together with
similar expression characteristics despite the inherent noise.

Taking a closer look at the clusters, we could verify some known correla-
tions between gene expression as well as find some new interesting groups of
genes with unknown function which show a similar expression pattern. This
might provide some further hints to their function which has to be analysed
in further biological experiments.
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We introduce in this paper a new formulation of the regularized

fuzzyc-means (FCM) algorithm which allows us to

number of clusters. The approach is based on the minimization of an

function which mixes, via a particular parameter, a classic al FCM term and

an entropy regularizer. The method uses a new exponential form of the fuzzy

memberships which ensur es the consistency of their bounds and makes it possible

to interpr et the mixing parameter as the varianc e (or scale) of the clusters. This

variance closely related to the number of clusters, provides us with a more intuitive

and an easy to set parameter .

We wil l discuss the proposed approach from the regularization point-of-view

and we wil l demonstr ate its validity both analytic al ly and experimental ly. We

conducted preliminary experiments both on simple toy examples as wel l as

chal lenging image segmentation problems .

1 Introduction

Define a training set {x1, . . . , xN} being for instance images in database cat-
egorization or colors in image segmentation. A clustering algorithm finds a
function which assigns each training example xi to one class, resulting into
a final partition of C subsets. Basically, a simple hierarchical agglomeration
algorithm can do this task [1, 2, 3], but sometimes the decision as whether a
training example belongs to one or another cluster can be fuzzy and a family
of algorithms dealing with fuzziness exist in the literature [4, 5, 6].

The main issue in the existing clustering methods remains setting the
appropriate number of classes for a given problem. The well-studied fuzzy
c-mean (FCM) algorithm [4] has proven to perform well when the application
allows us to know a priori the number of clusters or when the user sets it
manually. Of course, the estimation of this number is application-dependent,
for instance in image segmentation it can be set a priori to the number of
targeted regions.
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Unfortunately, for some applications such as database categorization, it is not
always possible to predict automatically and even manually the appropriate
number of classes.

Several methods exist in the literature in order to set automatically the
number of classes for clustering; among them the well studied competitive
agglomeration (CA) [5] and recently a new original approach based on kernel
methods [7]. The former attempts to set automatically the relevant number
of classes using regularization. The underlying objective function usually in-
volves an FCM term which measures the fidelity of the data to the clusters
and a regularization term which reduces the number of classes, i.e., the com-
plexity. Solving such a problem implies finding the membership degrees of
each training example to the different classes and assigning the former to the
class which maximizes its membership. Nevertheless, the constraints on the
bounds and the consistency of the membership degrees are difficult to carry.
In this work, we introduce a new simple formulation which guarantees the
consistency of the membership degrees and provides a solid connection and
interpretation in terms of regularization.

In the remainder of this paper i stands for data indices while k, c stand
respectively for a particular and a given cluster indices. Other notations will
be introduced as we go along through different sections of this paper which is
organized as following: in §2 we review the basic formulation of the regularized
FCM while in §3 we introduce our entropy regularizer. In sections 4, 5, we
discuss the consistency of our solution, the technical issues, limitations and
in §6 we show the experimental validity of the method for 2D toy examples
as well as for image segmentation. We conclude in §7 and we provide some
directions for a future work.

2 A short reminder on regularized FCM

A variant of the regularized version of FCM [4] consists in the minimization
problem:

J (C, μ) =
C∑

k=1

N∑
i=1

μik d2
ik + α(t) R(C, μ) (1)

under the constraints that μ = {μi1, . . . , μiC} is the probability distribution
of the fuzzy memberships of xi to C clusters and dik is the distance of xi to
the kth cluster. Let X and Y be two random variables standing respectively
for the training examples and their different possible classes {Y1, . . . , YC}. A
membership degree μik can be expressed as:

μik = P (Y = Yk/X = xi) (2)
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which leads to
∑

k μik = 1 since:

∑
k

μik =
∑

k

P (Y = Yk/X = xi) =
∑

k P (Y = Yk, X = xi)
P (X = xi)

= 1 (3)
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Fig. 1. FCM clustering (i.e., α = 0). The number of clusters C is set manually
and respectively to 3 and 5. It is clear that the distribution of the data is not well
captured by 3 centers but well captured with 5.

The first term of the objective function (1), referred to as the FCM term,
measures the fidelity of each training example to its cluster and vanishes when
each example is a cluster by it self. When α = 0, the function (1) is equivalent
to the FCM formulation. The later requires the appropriate setting of the
number of clusters and when this number is difficult to predict the algorithm
may fail to capture the relevant distribution of the data (see. Figure 1).

The regularization term R(C, μ) measures the complexity or the spread
of the clusters and reaches its minimum when all the training examples are
assigned to only one cluster. Among possible regularizers R(C, μ) we can find
the quadratic and the Kullback-Leibler functions [5, 8]. The tradeoff between
the fidelity and the regularization terms makes it possible to define the optimal
number of clusters automatically for a given application. The FCM and the
regularization terms are mixed via a coefficient α which controls this tradeoff.
In the different existing formulations, this coefficient is proportional to the
ratio between the FCM term and the regularizer R(C, μ) and decreases with
respect to iterations:

α(t) ∼ fτ (t) × O

(∑C
k=1

∑N
i=1 μik d2

ik

R(C, μ)

)
(4)

where fτ is a decreasing function which can be:
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fτ (t) = e−t/τ (5)

Initially, the algorithm selects a large value of α, so the objective function
will pay more attention to the regularization term and this makes it possible
to decrease the number of clusters. As we go along different iterations of
the clustering process, the decrease of α according to (4) ensures that the
clustering process will pay more attention to the fidelity term, so the centers
will be updated to minimize the distances to their training data.

The population of a cluster, defined as pk = 1
N

∑
i μik makes it possi-

ble to identify and remove the clusters for which the membership values are
weak (i.e., below a given threshold). This threshold referred to as the minimal
population can be set a priori depending on the application. For instance, in
image segmentation, the minimal population can be related to the minimal
size of a region.

3 Entropy regularization

Following the framework in [9], we consider the entropy regularization term:

R(C, μ) = − 1
N

N∑
i=1

−
C∑

k=1

μik log2(μik)︸ ︷︷ ︸
The entropy term

If the memberships of all the training examples to m clusters (m < C) are
similar, the later overlap, R decreases and reaches its global minimum when
m = C. On the other hand, when each training example is a cluster by it self,
the distribution of the memberships will be peaked, so the entropies will vanish
and R will reach its global maximum 0. Let’s consider a new definition of the
membership degrees as {μik = e−U2

ik , Uik ∈ R} which per construction
ensures the consistency of their bounds. If we plug these memberships in the
FCM term and in the regularizer R(C, μ), we can show that the underlying
constrained minimization problem becomes:

Minimize

J (C, U) =
C∑

k=1

N∑
i=1

e−U2
ikd2

ik + α
K

N

N∑
i=1

−
C∑

k=1

e−U2
ikU2

ik︸ ︷︷ ︸
The new entropy term

s.t.
C∑

k=1

e−U2
ik = 1, i = 1, . . . , N

(6)

where K = log10(e)/ (2) and U = {Uik}. Using Lagrange [10, 11], the
minimization problem can be written as:

log10
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Minimize

L(C, U, λ) =
C∑

k=1

N∑
i=1

e−U2
ikd2

ik − α
K

N

c∑
k=1

e−U2
ikU2

ik

+
∑

i

λi

(∑
k

e−U2
ik − 1

) (7)

When the gradient of L(C, U, λ) with respect to {Uik} and {λi} vanishes, we
obtain respectively:

−U2
ik = N

−Kα (d2
ik + λi) − 1

e−U2
ik = e

N
−Kα

(d2
ik+λi)

e

(8)

and ∑
c

e−U2
ic = 1 =

1
e

∑
c

e−
N

Kα d2
ic e−

N
Kα λi

e−
N

Kα λi = e 1∑
c

e−
N

Kα d2
ic

(9)

Now, the conditions for optimality lead to the very simple solution:

μik = e−U2
ik =

e−(N/K α)d2
ik∑

c

e−(N/K α)d2
ic

(10)

4 Consistency and Interpretation

4.1 Regularization

It is easy to see that this solution is consistent with the role of the coefficient
α. When α → ∞, the limit of μik will go to 1/C, the distribution of the
memberships will be uniform and the entropies will take high values, so the
regularization term R will reach its global minimum. It follows that the centers
of the C clusters {ck = 1

N

∑N
i μik xi, k = 1, . . . , C} will converge to only

one cluster. Notice that the overlapping clusters can be detected at the end of
the algorithm using a simple criteria such as the distance between their centers
is below a given threshold ε 3 or by using more sophisticated tests such as the
Kullback-Leibler divergence in order to detect similar cluster distributions.
Overlapping clusters are removed and replaced by only one cluster. Of course,
the memberships can be updated using (10).

3In practice, ε is set to 1% the radius of the ball enclosing the data.
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On the other hand, when α → 0, the effect of the regularization term
vanishes, so each training example xi will prefer the closest cluster as shown
using (11):

limα→0 e−U2
ik = limα→0

1
1 +

∑
c �=k

e−(N/Kα){d2
ic−d2

ik}

=
{

1 if dik = min{dic, c �= k}
0 if dik > min{dic, c �= k}

(11)

or will be a cluster by it self if the number of clusters C is equal to N.

4.2 Cardinality of the Training Set

Notice also that the size of the training set N plays an important role in
the precision of our model. When N → ∞, each membership term μik will
go either to 1 or 0 depending respectively on the fact that the kth center is
the closest or not to the training example xi, so the degree of uncertainty
decreases as the size of the training set N increases.

4.3 Scaling

If the training examples are assumed to be Gaussian distributed then it is
possible to use the Mahalanobis distance which takes into account the spread
of the data. For some σ2 = αK/N , we can rewrite the membership coefficients
(10) as:

μik =
e
− 1

σ2 (xi−ck)t
−1∑
k

(xi−ck)

∑
c

e
− 1

σ2 (xi−cc)t
−1∑
c

(xi−cc)

(12)

Here ck and
∑−1

k denote respectively the center and the covariance matrix
of the kth cluster. Now, σ acts as a scaling factor; when it is underestimated,
each ck will be a center of a Gaussian which vanishes everywhere except in ck

and each example will form a cluster by it self if C = N (cf. figure 2, top-left).
On the contrary, when σ is overestimated the Gaussian will be quasi-constant,
so no difference will be noticed in the memberships of the training examples
to the clusters and this results into one big cluster (cf. figure 2, bottom-right).

Figure (3) shows clustering results on other 2D toy examples using our
method. It is easy to see that the number of classes is respectively 5 and 4,
so setting either the variance or the number of classes and using respectively
our method and FCM will lead to the same results (cf. figure 3, left and
figure 1, right). However, when data live in high dimensional spaces, it may
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Fig. 2. Location of the centers with respect to the value of the regularization para-
meter σ. As the regularization parameter increases, the membership degrees will be
uniform, the regularization term decreases, so the centers overlap and the number
of clusters decreases. The parameters C and N are respectively equal to 20 and 33
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Fig. 3. Results of the clustering algorithm using our new regularizer (σ = 60)

be easier to predict4 the variance rather than the number of classes as the
pre-visualization of the data is usually difficult.

Figure (4, top) shows the entropy and the fidelity terms with respect to the
variance σ. As expected, low variance implies high entropy, so the resulting
number of classes is high (cf. figure 4, bottom-left). On the other hand, high
variance implies low entropy, so the underlying number of classes decreases.
The best variance σ is of course application-dependent, but it may exist a
trivial σ when the classes are linearly separable.

4.4 Uniqueness of the Solution

Even though the objective function (7) is not convex (see. figure 5), we will
show that the above formulation leads to a unique membership solution.
The vector of parameters U = {Uik}N,C

i,k=1 live in the Euclidean space Rp(p =
C ×N) where {eik}N,C

i,k=1 is assumed to be its canonical orthogonal basis. For
{cik} ∈ {−1,+1}p, we define an n-quadrant Sc11,...,cNC

, in the span of {cikeik},
as:

Sc11,...,cNC
=

⎧⎨⎩U s.t U =
N,C∑
i,k=1

aik cik eik, aik ∈ R+

⎫⎬⎭ (13)

It is clear that:
Rp =

⋃
c11,...,cNC

∈{−1,+1}
Sc11,...,cNC

(14)

Uniqueness of the local solutions: the objective function (7) has a unique
local minimum per n-quadrant. Indeed, when the gradient vanishes in a given
n-quadrant Sc11,...,cNC

, the local solution can be written:

4The variance may be predicted by sampling data from different classes, esti-
mating their variances and averaging the later through these classes.
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Fig. 4. (Top) variation of the entropy and the fidelity terms with respect to the
variance σ. Both the entropy and the fidelity values are shown in the log-base
10 scale. (Bottom-left) the decrease of the number of clusters with respect to the
variance. (Bottom-right) The convergence process is shown through the localization

error
∑

k ‖c(n)k −c
(n−1)
k ‖2, where c

(n)
k is the kth center estimated at the nth iteration.

These results are related to the clustering problem shown in figure (2)

Uik = cik

√
N

Kα
(d2

ik + λi) + 1, i = 1, . . . , N, k = 1, . . . , C (15)

Uniqueness of the memberships: let {Uik} and {U ′
ik} be two local solu-

tions belonging respectively to two n-quadrants Sc11,...,cNC
and Sc′11,...,c′NC

. It
is easy to see that these two local solutions expressed as:

Uik = cik

√
N

Kα (d2
ik + λi) + 1

U ′
ik = c′ik

√
N

Kα (d2
ik + λi) + 1

, i = 1, . . . , N, k = 1, . . . , C (16)

lead to the same value of both the objective function L(C, U, λ) and the mem-
bership degrees, i.e., e−U2

ik = e−U ′2
ik , i = 1, . . . , N, k = 1, . . . , C. Hence, any

local solution is also global.
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Fig. 5. Plot of the objective function for a trivial case: one class and one training
example. (α = 5, d11 = 0.5). It is clear that the function is not convex but has a
unique solution in each n-quadrant

5 Discussion

It is known that the initialization process in FCM requires C to be exactly
the actual number of clusters. When C random centers are selected initially,
it may happen that two (or more) of them will lie in the same cluster while
other separate clusters will be captured with only one center, hence FCM
may result into over/under-clustering problems (cf. fig. 1, left). In contrast,
we consider in our approach C to be far larger than the actual number of
classes in order to guarantee that each cluster will be captured, at least,
with one center. This may result into several overlapping clusters, so the
underlying populations will become week5 but at the end of the algorithm,
simple tests, such as thresholding the distances between the centers or more
sophisticated Kullback-Leibler divergence, can be used in order to detect and
remove overlapping clusters and replace them with few others (cf. §4.1).

The use of the exponential form (10) makes the memberships relatively
high for data belonging to a given cluster and vanishing for the others, so
the influence of the data on the centers is local and depends of course on
the chosen variance σ. Therefore, since the estimation of the centers relies
strongly on the data intervening in the underlying clusters, this results into
better localization of the centers as shown in figure (3, left) with respect to
figure (1, right).

It may be easier for some applications to predict the variance σ rather
than the number of clusters. Let’s consider clustering face images by their
identities. Predicting the variance σ can be achieved by sampling manually
face images from some persons, estimating their variances, then setting σ to
the expectation of the variance through these persons. While this setting is

5Many clustering techniques rely on the notion of minimal population in order
to eliminate weak clusters. Usually this destroys clusters having few data even with
strong memberships.
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not automatic, it has at least the advantage of introducing a priori knowledges
on the variance of the data at the expense of few interaction and reasonable
effort from the user. Furthermore, this is easier than trying to predict the
actual number of clusters, mainly for huge databases living in high dimensional
spaces.

6 Applications

6.1 Toy examples

Figure (6) shows some results of our clustering algorithm on 2D toy examples.
Different clusters are shown using various colors. The left-hand side picture
shows three clusters with different cardinalities well-captured with three cen-
ters. The mid-picture shows three other clusters with three different scales
(approximately 30, 60 and 90 pixels). After the application of the clustering
process with σ = (30 + 60 + 90)/3, the three classes are well-captured with
three centers. The right-hand side picture shows a non-trivial case, where the
clusters are non-linearly separable.

 0  100  200  300  400  500  600  700

class 1 
class 2 
class 3 
centers

 0  50  100 150 200 250 300 350 400 450

class 1 
class 2 
class 3 
centers

 0  100  200  300  400  500  600  700  800 900

class 1 
class 2 
class 3 
class 4 
class 5 
centers

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

400

450

Fig. 6. Some 2D toy examples. The variances are set respectively (from left-to-right)
to 50, 60 and 140

6.2 Image segmentation

Clustering methods have proven to be very useful for many applications in-
cluding image segmentation and partial queries. The idea is based on cluster-
ing the distribution of colors in an image using a suitable color space such
as HSV, LUV, etc. In our experiments, the color of each pixel in an image is
defined as the average RGB color in a local neighborhood of 10×10 pixels; this
makes the color distribution of neighboring pixels smooth and the resulting
blobs homogeneous. We applied our clustering algorithm on this distribution
and each color is assigned to its class center using a simple Euclidean dis-
tance (see. figure 7). One possible application of image segmentation is partial
queries [12, 9] where the user selects a region of homogeneous color or texture
distribution and the system will display similar images according only to the
selected region.
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Fig. 7. Some segmentation results. The variances are set, resp. from the top-left to
the bottom-right, to 0.2, 0.2, 0.26, 0.11, 0.3 and 0.2.
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7 Conclusion

We introduced in this paper a new formulation of regularized FCM which
is simple, consistent and easy to interpret in terms of regularization. Open
issues are several; one of them is the use of isomap [13, 14] in order to capture
non-linearly separable clusters. This approach relies on transductive learning
which requires the interaction of the user in order to have a priori knowledges
on the cluster manifolds. An other issue will be a new formulation of the
objective function (6) which takes into account data with large variations in
scale. Intuitively, if we consider, in the objective function (6), different mixing
parameters α for different classes then it might be possible to capture clusters
with large variation in scale.
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Time series forecasting is often done “one step ahead” with statistical
models or numerical machine learning algorithms. It is possible to extend those
predictive models to a few steps ahead and iterate the predictions thus allowing
further forecasting. However, it is not possible to do this for thousands of data points
because cumulative error tends to make the long term forecasting unreliable. Such
uncertainty can be conveied by the use of fuzzy forecasting where the forecasted value
is a fuzzy set rather than a number. The end-user can only appreciate the uncertainty
of the forecast if the forecasting model is easy to understand. Contrary to common
“black-box” models, we use symbolic machine learning on symbolic representations
of time-series. In this paper, we tackle the real-world issue of forecasting electric
load for one year, sampled every ten minutes, with data available for the past few
years. In this context, future values are not only related to their short term previous
values, but also to temporal attributes (the day of the week, holidays ...). We use a
symbolic machine learning algorithm (decision tree) to extract this kind of knowledge
and predict future pattern occurences. Those patterns are learnt when building a
symbolic representation of the time series, by clustering episodes showing similar
patterns and making the cluster a symbolic attribute of the episodes. Intra-class
variations result in forecasting uncertainty that we model through fuzzy prototypes.
Those prototypes are then used to construct a fuzzy forecasting easily understood
by the end-user.

1 Introduction

Time series forecasting used to be concerned mostly with short-term estima-
tions. Being short-term is relative to the number of predicted values and not
to the time frame, so predicting the yearly values for the next ten years could
be considered short-term. Time series databases are ubiquitous and often very
large as it is now easy to accumulate such data: datawarehouses can nowadays
be filed by sensors without human intervention. However, being able to store

B. Hugueney et al.: Fuzzy Long Term Forecasting through Machine Learning and Symbolic
Representations of Time Series, Advances in Soft Computing 2, 109–120 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

Abstract.



those time series of hundreds of thousands of data points is one thing, being
able to predict thousands of points ahead in the future is another.

Our research was triggered by the need to forecast electric consumptions
of individual customers for a whole year at Electricite de France (EDF). Some
customers have had their power consumption sampled every ten minutes for a
few years and we strive to forecast consumptions for the next year. This goal
is somewhat related to the EUnite challenge of 2001 (forecasting a month of
daily maximum power consumption) but even more ambitious. Furthermore,
we wish to express forecasting uncertainty with a model that is intelligible.

Our challenge is both to bring forecasting algorithms to truly data-mining
scales and to use a forecasting model that makes sense to the end-users.
This is done by bringing the data within the grasp of usual forecasting al-
gorithms through data aggregation. Simple aggregations over the usual time
scales (weeks or days for example) are possible but usually incur a sever loss
of precision. We illustrate this by applying existing algorithms to our data
set at increasing scales, from yearly aggregates to raw data sampled every ten
minutes. Statistical models are the first to fail, but we show that even machine
learning algorithms (whether numerical or symbolic) are not sufficient either.
To overcome those limitations, we propose a novel algorithm based on a sym-
bolic representation of time series, as an information preserving aggregation.

We will first present the usual forecasting methods, and the ad-hoc meth-
ods that were in use at EDF, along with their respective limitations regarding
long term forecasting. We will then present our symbolic forecasting algorithm:
the model, the algorithms used to compute the model and the forecasting re-
sults. The last part of this paper will also show how symbolic representations
allow to express uncertainty through fuzzy forecasting.

2 Long term forecasting

Generally, long term forecasting is achieved by extending short-term fore-
casting statistical and machine learning models. Amongst statistical models,
Box-Jenkins seasonal ARMA models and exponential smoothing with linear
trend [4] and seasonality [17] are the most popular. Those models often require
expert knowledge and enforce stringent constraints on the time series, hence
the use of more data-driven and less restrictive machine learning algorithms
such as neural networks and support vector machines.

Throughout this paper, we will use the same time series data set to illus-
trate our point. The data set is typical in many aspects:

• large: seven years of data, sampled every ten minutes
• noisy and with missing values
• showing patterns at different scales (yearly or daily)
• related to human activities
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The last point is important because it suggests that days and weeks are rel-
evant scales. It does not imply that the time series exhibit periodicities, but
we can expect some kind of patterns at this scales. For example, there can be
low comsumption days at regular intervals (for example weekends) or not (for
example holidays). Figure 1 shows the raw data set consisting of more than
3.105 data points. At this scale, it is only possible to see the yearly pattern,
however, the excerpt shown at Figure 2 exhibits some daily patterns. The last
year of complete data will be used to compare the forecasting accuracy of the
algorithms. Rather than to evaluate our algorithm on numerous data sets, we
will explain how and why it works on our reference data set and what kind of
time series one can expect to successfully forecast through symbolic represen-
tation. It is, of course, not possible to evaluate every forecasting methodology
for our needs, but we display what we believe to be shortcomings of the usual
statistical and machine learning (both numerical and symbolic) methodologies
for such time series long term forecasting.
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Fig. 1. Our time series: seven years sampled every ten minutes.

2.1 Iterated N-steps ahead forecasting

Principle

Time series forecasting relies on the autocorrelation of the time series. Most
models are based on the following decomposition:

• trend
• seasonalities
• short-term correlation

One must first identify the trend and the seasonalities and remove them to
work on stationary time series. Parameters estimation is then an optimization
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Fig. 2. Excerpt of the data set showing daily patterns.

problem than cannot always be solved optimally. For statistical models such as
in the Box-Jenkins methodology, expert knowledge is used to set the parame-
ters. Neural networks and Support Vector Machines can learn the parameters
from the data but some hyperparameters must still be set.

The Holt-Winters model [15] stands as a simple statistical model taking
into account the local autocorrelation (with exponentially decreasing impor-
tance), the trend and an additive seasonality. The forecast Ŷt+h for period t+h

on a variable level â with a trend component b̂ and a seasonal component ŝ

over period p is given by:

Ŷt+h= ât + h.b̂t + ŝt

As the time series display other seasonalities that the yearly one, we have
tried to substract the yearly pattern computed at the monthly scale. The
residuals are shown at Figure 3. Having successfully forecasted the yearly
trend and seasonality with a Holt-Winters model, from now on we will focus
on those residuals and try to forecast them.

According to our hypothesis on the time series, our data set exhibits less
regularities at a daily scale and the Holt-Winters model fails to provide any
meaningful forecasts of the residuals. Once again, this is to be expected be-
cause of the greater variability at those time scales. On Figure 3, we show
that the points on a daily period can have very different values. More com-
plex statistical models such as Basic Structural Model, which is a restricted
ARIMA(0,2,2) with an additional seasonal component, are not practical be-
cause the size of the data set is out of reach of the optimization algorithms
used to compute the parameters.
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Fig. 3. Residuals with weekly and daily patterns.

Support Vector Regression

We can attempt to learn the daily and weekly patterns of the residuals with
Support Vector Regressors (SVR). SVR [16] try to learn a non-linear function
in the embedded space that maps the n previous values yt−n, ..., yt−1 to the
value yt at time t. This is done by learning a linear function in a feature space
F of higher dimensionnality than the embedded space E. φ being the non
linear mapping from E to F :

f(x) = (w.φ(x)) + b with φ : Rn → F, w ∈ F

φ is fixed and w is computed from the data by minimizing a regression
risk R which is the sum of the empirical risk Remp[f ] and a complexity term
||w||2:

R = Remp[f ]+λ||w||2 =
∑l

i=1 C(f(xi)−yi)+λ||w||2, where l is the sample
size and C is the cost function, and λ a regularization constant.

We used Support Vector ε-regression which is based on a loss function with
a parameter ε that defines a tube around the linear function in the embedded
space. This defines a cost function C as:

C(f(x) − y) =
{
|f(x) − y| − ε for |f(x) − y| > ε

0 otherwise

Machine learning algorithms such as Support Vector Regressors appear
to be more robust than the algorithms used for the Holt-Winters parame-
ters estimation. Thus it was possible to have meaningful forecasts at lower
scales, but below the daily scale, we reached the limits of our computational
resources. It was still not possible to go below daily scale for our data set,
using the R binding to the award winning (EUnite 2000 and IJCNN 2001 [3]
challenges) libSVM regressors implementation, without using too many giga-
bytes of memory. Parameters tuning (such as the value of ε) is tricky, or at
least computationally very intensive. One could select the values in the input
space to have far reaching memory without such a memory complexity. How-
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ever, to meet our requirement, such a selection should be possible without
user intervention.

Figure 4 shows the result of Support Vector Regressors trained at daily
scale using an embedded space with a two-years memory. The resulting sum
of square errors is 838.109 and the mean absolute error is 2994. The more
commonly used mean absolute percent error is not meaningful because we
are forecasting residuals around 0 (the relative error can take arbitrary large
values).
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Fig. 4. Real residuals and their forecast through SVM regressors.

Limitations

We have seen that it is not possible to forecast at very precise scales with the
statistical models, whether because they cannot model the changing patterns,
or because of the computational complexity. As the precision grows, so does
the amount of data points. Consider, for example, a weekly cycle in our data
set: a week is made of 1008 points, so taking past weeks into account implies
taking thousands of points into account. Those iterating one-step-ahead fore-
cast algorithms use the newly predicted values to predict further ahead, and
thus fail to take enough past values into account. This means that at some
point all information from the data is forgotten by the model and nothing
remains but the trend and seasonalities.

The main limitation of those approaches lies in the fact that they rely
entirely on past values to predict future values. As we have seen in our case, the
number of past values to take into account grows beyond our computational
power.

To overcome this limitation, one should not only take past values into
account, but also temporal attributes, such as the day of the week and the
month of the year, because they are available throughout the year to forecast.
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2.2 Taking temporal attributes into account

Using a regression tree

As an extension to the aforementioned machine learning algorithms, one can
include other attributes than the previous values. Any available information
can be considered: temperature, for example, is commonly used when fore-
casting electric consumption. For the sake of generality, we restrict ourselves
to information that can be extracted from the temporal attributes, such as
the day of the week and holidays. The following attributes have been used:

• Hour of the day,
• Day of the week,
• Month of the year,
• Holidays or working day,
• Week of the year,
• and one attribute for each Holidays.

We can build a regression tree [2] with (only) 17 nodes, an excerpt of which
being:

1. If month in {Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct}
a) If month in {Jan,Feb,Mar,Apr} Then Y = 468
b) Else

i. If Hour < 0.302083 Then Y = −1989
ii. Else Y = 488

2. Else Y = 1764

Figure 5 shows the resulting forecast. It was possible to handle the whole
data set at the most precise scale and the sum of square errors is 528.109 and
the mean absolute error is 2309, which is 23% better than the forecast at daily
scale that we could compute with Support Vector Regressors.

Limitations

The forecasting accuracy is limited by the fact that the data set is noisy and
that local correlation is ignored. According to our hypothesis of daily patterns,
illustrated by the excerpt in Figure 3, we seek to take the intra-day correlation
into account. Forecasting one pattern at a time, instead of one point at a time,
not only would we use the local autocorrelation but, as an added bonus, we
would have orders of magnitude less data to process, which can be desirable
when processing many large time series.
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Fig. 5. Long term forecasting of the residuals with a regression tree.

2.3 An ad-hoc method

Before introducing our algorithm, it is interesting to study a very simple
forecasting method that was used at EDF (somewhat) effectively to meet our
goal. When facing the need to forecast as precisely as possible next year’s
electricity comsumption, people used the simplest forecasting “methodology”
possible: next year shall be the same as this year !

Under the hypothesis that daily patterns are strongly correlated to the
days of the week, the time series from the past year are shifted to match the
week days of the next year. For example, 1998-01-01 was a thursday, and 1999-
01-01 was a friday, so consumption for the year 1999 would be predicted to be
the same as for the year 1998, starting from 1998-01-02 which is a friday, the
same week day as 1999-01-01. When taking yearly linear trend into account
(as we have seen in 2.1), the results can be quite good. However, this method
is not reliable because:

• only one past year is used: if it was not typical the results turn out highly
skewed,

• each daily pattern is predicted using only one previous daily pattern: any
variability in those patterns will skew the forecast,

• there are other factors as well that should be taken into account (for ex-
ample holidays).

All those drawbacks can be overcome by human intervention, which is te-
dious and time consuming. Our algorithm tackles those weaknesses by making
use of a symbolic representation.
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3 A symbolic approach to long term forecasting

3.1 Principles of the symbolic representation

Symbolic representation of times series, as we introduced it in [7] and pre-
sented in more details in [8], is a very general framework. Intuitively, symbolic
representation aims at representing time series, such as the excerpt shown in
Figure 3, by

• a sequence of episodes and symbols such as
{([100075, 100219[,∧) , ([100219, 100363[,∧)
, ([100363, 100507[,∧) , ([100507, 100651[,×),
([100651, 100795[,×), ([100795, 100939[,×)}

• an interpretation of each symbol: ∧ would be interpreted as a propotypical
day with two maxima and × as a prototypical day with one extremum.

To be useful, a symbolic representation should be of:

• minimal complexity, with regard to the number of episodes, number of
symbols and interpretation of each symbol

• maximal accuracy: it should be possible to reconstruct time series from
their symbolic descriptions with minimal distorsion.

Formally, we use the following definitions for a symbolic representation of
time series TS with a set of episodes E, a set of symbols Λ and a function
(symbolic description SD) from E to Λ:

Raw time series over a time domain D:
TS = {(timei, vi)}i∈{1,···,N} , with timei ∈ D and vi ∈ R

Model with M episodes and K symbols:
Λ = {sj}j∈{1,···,K}

E = {el = (ml, al, bl, nl)}l∈{1,···,M},
with ml ≤ al ≤ bl ≤ nl

SD : E → Λ, el �→ SD(el)
The interpretation EpisodeModel of the sj symbols is such that for each

(ei, si), it is possible to reconstruct a pattern.
In the most generic framework, the episodes and patterns could be fuzzy. It

would allow to express overlap between episodes as well as a level of confidence
(or lack thereof) in accuracy of the patterns. Using fuzzy sets, as introduced
by [1], to build manageable chunks of information is the idea driving granular
computing[14]. However, for this application, we only consider what we call
regular episodes: crisp episodes, all the same size, with no overlaps nor gaps
between them. Using the previous notations, we can express this restrictions
by: bl = nl = ml+1 = al+1.

3.2 Learning and forecasting patterns

The first step is to build a symbolic representation of the time series. For a
simple set of regular episodes, there are only two parameters: the length of
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the episodes and the offset. The offset is the instant at which the first episode
begins, after the start of the time series. A complete discussion on how to
compute those parameters is beyond the scope of this paper and can be found
in [8]. However, an appropriate size (most of the time, the length of a day
or a week), can be chosen by studying the autocorrelation function or the
periodogram of the time series. For the offset, we select it so as to maximize
the time series local variations around the cut-points between episodes, in
order to minimize the variations inside each episode. In our example, daily
episodes do not start at midnight, but at eight o’clock in the morning. It allows
us to have a whole working day and a whole night in the same episode, which
would be important if the nightly consumptions showed interesting patterns
that should not be split across episodes. On Figure 6, we have tried each
possible value for this parameter (start episodes at 00h00, 00h10, ..., 23h50):
while not the global optimum, the computed offset is satistactory.
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Fig. 6. Forecasting Sum of Square Errors for each of the possible values of the offset.

Once the episodes are chosen, we cluster the patterns to find some pro-
totypical patterns. [6] is also using unsupervised clustering to build a “sym-
bolic representation” as a preprocessing step to enhance neural networks stock
market forecasts. Having a stronger hypothesis, we can use non-overlapping
episodes instead of a sliding window. This allows us to avoid the pitfalls ex-
plained in [12] and having meaningful clusters for windows of a much greater
size (144 points in our example instead of 2 ou 3). We use a k-means algorithm
in order to minimize the sum of the intra-class sum of square errors. This er-
ror is exactly the same that would be made when replacing the time series
by the interpretation of their symbolic representation: each pattern would be
replaced by the prototypical pattern of its cluster.

After building a symbolic representation of the time series, it is then pos-
sible to use a decision tree algorithm to learn the relationships between at-
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tributes and symbols. We use the same attributes as in 2.2 except for the hour
of the day which is meaningless for daily episodes.

We split the available past days into a training set and a validation set.
The parameters (clusters of the numerical unsupervised clustering algorithm
and splitting criteria for the decision tree) are learnt on the training set. To set
the hyperparameters (number of clusters and pruned tree size), we split the
set of past days between a training set and a validation set. We exhaustively
search the hyperparameters space to minimize the sum of square errors of the
interpretation of the forecast symbolic representation over the validation set.

After computing the clusters and the decision tree, it is easy to do the
long term forecasting. Splitting the year to forecast into episodes (with the
same length and offset that were used to build the symbolic representation of
past data), it is straightforward to compute the temporal attributes of those
episodes. The decision tree can then forecast a symbolic representation by
computing the symbol for each episode. Each symbol representing a cluster, we
compute the predicted time series by choosing the prototypical pattern of the
represented cluster for every episode of the forecast symbolic representation.

The results can be seen on Figure 7 (whole year) and Figure 8 (detail). This
last figure clearly shows the advantage of the symbolic forecasting method:
whereas a regression tree could only learn constant levels, the symbolic repre-
sentation allows to describe the time series with more complex patterns. The
sum of square errors is 421.109 and the mean absolute error is 2024 which is
12% better than the forecast at the same scale with a regression tree.
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Fig. 7. Forecasting through symbolic representation (whole year).

3.3 Expressing uncertainty through fuzzy forecasting

Representing the episodes with the barycenter of their clusters enables us to
use the variability of the clusters to estimate the accuracy of the represen-
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Fig. 8. Forecasting through symbolic representation (detail).

tation. As we have seen in 3.1, we defined the most generic symbolic repre-
sentation framework to allow fuzzy interpretations of the symbols. End-users
required fuzzy numbers that would be easy to understand. Thus, we decided
to use fuzzy sets Fi, representing values encountered at time i, defined by a

trapezoidal membership function dFi
: dFi

(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < m

x−m
a−m

if x ∈ [m, a[
1 if x ∈ [a, b]

n−x
n−b

if x ∈ ]b, n]
0 si x > n

where a (resp. b) is the lower (resp. upper) 10% bound of the set of values
encountered at time i and m (resp. n) the minimum (resp. maximum) value
of this set.

Figure 9 shows an excerpt of the fuzzy interpretation of the forecast sym-
bolic representation of the time series. The time series in bold are the real
values that we tried to forecast. The other four time series are, from lower to
upper series:

1. lb0 lower bound of membership values > 0: no data point was encountered
below this curve,

2. lb1 lower bound of membership value = 1: 90% of the data points were
above this curve,

3. ub1 upper bound of membership value = 1: 90% of the data points were
below this curve,

4. ub0 upper bound of membership value > 0: no data point was above this
curve.

On our data set, the true data distribution verifies the expected meaning
of the fuzzy interpretation:

< lb0 < lb1 > ub1 > ub0
2.3% 14.2% 9.67% 0.94%
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Fig. 9. Excerpt of the fuzzy forecast and the real consumption values (in bold).

4 Conclusions and future works

To effectively handle very large databases, some kind of data aggregation is
often required. For time series databases, data aggregation has been used with
success, mainly for indexing [10] [18] and clustering[11]. Under the hypothesis
that the time series are generated by an underlying process with a finite
number of states which can be inferred from temporal attributes, we have
shown that it is advantageous to:

1. learn patterns
2. learn relationships between temporal attributes and patterns

We have illustrated this approach under the hypothesis of patterns of equal
length. Although very restrictive, this hypothesis is true for many real-world
time series databases with daily or weekly patterns. However, the principles
of symbolic time series forecasting still hold for less regular patterns.

The patterns clustering could be improved with a better distance function
than the euclidian distance in the k-means algorithm. Time Wrapping [19],
especially when adapted to data-mining scales by [5] could be promising,
assuming that the distance still allows to compute a prototype pattern by
gradient descent.

Relaxing the hypothesis of regular patterns would make pattern mining a
difficult problem, as explained in [12]. But clustering is not the only way to
build symbolic representations of time series. [9] and [13] show how to build
symbolic representations of time series using segmentation and discretization.
We intend to use those symbolic representations to extend our symbolic fore-
casting to encompass time series exhibiting patterns at irregular intervals.
Furthermore, other means of building fuzzy prototypes will have to be inves-
tigated while keeping their interpretation as straightforward as possible.
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This paper considers the task of constructing fuzzyprototypes for
numerical data in order to characterize the data subgroups obtained after a
clustering step. The proposed solution is motivated by the will of describing
prototypes with a richer representation than point-based methods, and also
to provide a characterization of the groups that catches not only the common
features
sposes a method that has been designed for fuzzy data to numerical data,
based on a prior computation of typicality degrees that are defined according
to concepts used in cognitive science and psychology. The paper discusses the
construction of prototypes and how their desirable semantics and properties
can guide the selection of the various operators involved in the construction
process.

1 Introduction

Clustering [9, 8] provides a simplified representation of a dataset by decompos-
ing it into homogeneous and distinct subgroups called clusters. Each cluster
can then be described by a prototype: it is a unique individual which char-
acterizes the data subgroup; the set of prototypes can be used to summarize
the initial dataset. Our paper focuses on the prototype construction.

Most of the time, each cluster is mapped to a unique point, called its
center. It can be defined in various ways, for instance as the group average
– as in the k-means algorithm – or as a weighted average – as in the fuzzy c-
means. This choice is based on the assumption that the average characterizes
the group, which is not always the case; other points can be chosen, as for
instance the median or the Most Typical Value [5].

Our hypothesis is that a prototype intrinsically is a fuzzy concept: hu-
man reasoning is not based on precise numerical values, but rather on impre-
cise notions. For instance, considering data describing the height of persons
from various countries, it cannot be said that the typical French person is
1.6834m tall (fictitious value), which is the kind of result one would get using
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of the data pertaining to a group, but also their specificity. It tran-



an average-based definition. It seems more appropriate to say that the typi-
cal French person is “rather tall”. This linguistic term conveys an imprecise
notion which is best modelled using the fuzzy subset framework: the latter
makes it possible to formalize categories with flexible and unclear boundaries,
and thus prototypes as naturally handled by human beings.

Therefore, we consider the task of building fuzzy prototypes, defined as
individuals described by fuzzy attribute values. The problem is then to con-
struct, for each group, a fuzzy set describing the typical values of the numerical
data pertaining to the group.

Rifqi [16, 15] proposes a method to build fuzzy prototypes for fuzzy data,
i.e. data described by a set of attributes with values defined by fuzzy sets. This
method rests on a definition of typicality inspired from cognitive science and
psychology: Rosch [18] showed that all members of a category do not have the
same representativeness and that the typicality of an instance depends both
on its resemblance to the individuals pertaining to the same group and its
dissimilarity with the individuals pertaining to the other groups. Our aim is
to adapt this method to crisp data.

The paper is organized as follows: section 2 describes methods that pro-
vide enriched representatives for data subgroups, as compared to point-based
descriptions. Section 3 presents the method we propose to handle crisp data
and it discusses the notion of prototype and its associated properties. Lastly
section 4 illustrates the results obtained on a real dataset.

2 State of the Art

2.1 Enriching Point Description

A first approach to obtain rich cluster descriptions is to apply fuzzy cluster-
ing algorithms [8]: they provide fuzzy subsets for each cluster. Yet these fuzzy
subsets represent an imprecise decomposition of the database and model data-
points which have unclear membership and partially belong to several clusters
simultaneously. Fuzzy prototypes are to be described by other fuzzy subsets:
they do not aim at describing the cluster as a whole and representing all
its points, but at extracting its most typical features and defining a relevant
summary to provide a characterization of the subgroup. As a consequence,
prototypes are expected to be more specific fuzzy subsets than the fuzzy clus-
ters.

Thus fuzzy clustering methods provide a distribution in addition to the
cluster centers, but this distribution cannot be applied directly to define fuzzy
prototypes. Likewise, other point-based prototypes can be extended to distri-
butions, but these distributions do not describe prototypes: one can associate
a gaussian distribution to the arithmetic mean; yet, it is defined in such a way
that each point in the cluster has a sufficiently high probability and it does
not aim at defining a representative characterizing the group itself.
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Table 1. Typicality-based algorithm to build a fuzzy prototype for a cluster g [15].

Given a resemblance measure r and a dissimilarity measure d [16],

1. Compute the typicality degree of each individual x in the group g
a) Compute the internal resemblance Rg(x) as the aggregation of the re-

semblance of x to the other individuals pertaining to the same group:
Rg(x) = agy∈g(r(x, y))

b) Compute the external dissimilarity Dg(x) as the aggregation of the dis-
similarity of x to the individuals pertaining to the other groups: Dg(x) =
agy �∈g(d(x, y))

c) The typicality Tg(x) is the result of the aggregation of Rg(x) and Dg(x)
2. The prototype is constructed by aggregating the individuals that are “typical

enough”, i.e. individuals whose typicality degree is higher than a pre-defined
threshold.

More generally, fuzzy subset elicitation methods [1, 13] are techniques
that are explicitely designed to provide fuzzy subsets describing the data.
Some of them involve interaction with a human expert, others are based on
partitioning methods [12, 6, 7]. Many belong to the parametric framework,
i.e. consist in deciding on a desired form for the membership function, e.g.
trapezoidal, gaussian or fuzzy c-means like, and optimizing its parameters
so as to obtain a satisfying representative; the difficulty is then to define an
appropriate cost function.

The prototype construction method we propose belongs to the elicitation
technique framework, but it considers a specific characterization task: it aims
at building a membership function which summarizes the data subgroup and
does not describe it globally. It is based on the definition of typicality degrees:
the membership functions are not directly constructed from the data but from
an abstraction of the data in the form of typicality degrees.

2.2 Typicality-Based Approach

The method proposed in [16, 15] to construct fuzzy prototypes for fuzzy data
uses the notion of typicality defined by Rosch [18]: the typicality of a datapoint
is a function of both its within-class resemblance and its dissimilarity to other
classes, as detailed in table 1. In the sequel, we refer to it as Rosch typicality.
The prototype is then defined as an aggregation of the most typical datapoints.

It is to be noted that other typicality definitions exist, as the one used by
Pal et al. [14] or the one underlying the Most Typical Value [5]. Yet these
definitions are closer to “exceptionality” coefficients than typicality degrees,
insofar as they are only based on the notion of a deviation with respect to
a center. They can be interpreted as internal resemblance measures, which
makes them a special case of the Rosch typicality.
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3 Typicality-Based Prototype for Crisp Data

In this section, we discuss a method based on the Rosch typicality for crisp
data. Considering crisp data makes a major difference with fuzzy data: in the
latter case indeed, a fuzzy prototype is described with the same “language”
as the considered data, i.e. fuzzy sets. In the case of crisp data, the prototype
has a richer description than the datapoints.

After some general remarks on the typicality approach to fuzzy prototypes,
we discuss the three steps of the algorithm described in table 1, with regard
to the desired semantics and properties of the prototype. At each step, we
discuss the parameters and the choices that have to be made and we illustrate
their consequences on the classic iris database1 [4]. In the first place, the
resemblance and dissimilarity definitions must be defined for the crisp case.
Then, their aggregation to compute the typicality degree has to be studied.
The last step consists in determining how typical values are aggregated so as
to obtain the prototype.

3.1 General Remarks

In the following, we consider that each group can be represented by a single
prototype. This assumption is valid in our clustering framework: groups cor-
respond to clusters and are thus homogeneous enough to be associated with
a single representative.

It is to be noticed that the definition of a fuzzy prototype based on typi-
cality degrees entails the definition of three different distributions:

• the membership function which indicates the extent to which a datapoint
belongs to a cluster; this distribution is only available if clusters are ob-
tained using a fuzzy clustering algorithm;

• the typicality distribution which indicates the extent to which a datapoint
is typical of a group;

• the membership function describing the prototype itself.

Relationships between these distributions can be established: for instance,
it seems natural to consider that for each group and each datapoint, the
typicality is lower than the membership degree to the cluster. This expresses
the fact that a datapoint which has a low membership cannot be typical; it
also imposes that a point which is totally typical of a group totally belongs
to it.

Lastly, prior to the prototype construction, one must decide between two
approaches : the algorithm can be performed either on the individual as a
whole, or it can be applied attribute by attribute. Taking into account all at-
tributes makes it possible to represent correlations between attributes, which

1Note that for this database, labels are provided, so a preliminary clustering
phase is not necessary, we construct one prototype for each of the three classes.
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Table 2. Some examples of resemblance and dissimilarity measures for two vectors
x and y; dist(x, y) denotes a distance between x and y, Z is a normalizing factor, z
a normalizing function, γ, σ, dM and Γ are hyperparameters.

Resemblance measures, R

scalar product (x · y)

distance-based 1 − 1

Z
dist(x, y)

polynomial

(
(x · y)

Z
+ 1

)γ

gaussian exp
(
− 1

2σ2
dist(x, y)2

)
Fermi-Dirac [17] z

(
1

1 + exp dist(x,y)−dM
Γ

)
Dissimilarity measures, D

normalized distance
1

Z
dist(x, y)

measures depending on a
resemblance measure

1 − r(x, y)

1

1 + r(x, y)

can provide useful information about the prototype. On the other hand, work-
ing attribute by attribute can emphasize attributes that have no typical values
for a given group, and can therefore be removed from the prototype descrip-
tion, thereby simplifying the group description.

3.2 Similarity and dissimilarity measures

In the case of fuzzy data, the resemblance and dissimilarity measures involved
in the first step of prototype construction apply to fuzzy sets. They are defined
in the formal framework of comparison measures [16] as functions with values
in the interval [0, 1] depending on a triple characterization of the relative
position of the two compared subsets A and B: they depend on their common
elements (i.e. a fuzzy set measure of the intersection A ∩ B) and on their
distinctive elements (a fuzzy set measure of their set differences A−B and B−
A). For crisp data, the range of possibilities is reduced because the information
on the relative positions of two points can only be measured with one quantity
corresponding to a distance (or equivalently a dot product). Table 2 mentions
some possibilities.

Figure 1 illustrates three types of measures, using the iris database. For
visualization sake, we only consider a single attribute, the petal length (third
one); the histograms represent the datapoint distribution. On the graphs on
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Fig. 1. Examples of comparison measures for the third attribute of the iris database.
(1) Internal resemblance (a) Fermi-Dirac [17], (b) gaussian, (c) distance-based; (2)
External dissimilarity (a) Fermi-Dirac, (b) gaussian, (c) normalized distance.

the first (resp. second) row, the y-axis represents the internal resemblance
(resp. external dissimilarity) measure for each datapoint. One can observe
that the three measures lead to different values, but usually to the same
datapoint ranking within subgroups. These graphs show that the resemblance
is maximal for a central point, whereas the most dissimilar points correspond
to extreme values. Whichever measure is used, the middle subgroup does not
appear very dissimilar as it is too close to the other clusters.

As in any learning problem, the choice of a distance measure has a major
influence on the results. It seems natural to select it according to the distance
used in the clustering step, but the choice may also be guided by the problem
at hand, which may impose the semantics of the resemblance or the dissimilar-
ity. Each measure has its own semantics: the Fermi-Dirac measure [17] enables
the user to monitor the decrease speed as a function of the distance increase
using two hyperparameters, which makes it a flexible comparison measure;
in the multi-dimensional case, the polynomial resemblance takes into account
correlations between attributes.

Another interesting issue is the duality of the resemblance and the dis-
similarity measures. In the comparison measure framework [16], dissimilarity
measures are defined independently from the resemblance measures; in partic-
ular, they are not necessarily dual, i.e. defined as the complement to 1 of each
other. In the crisp case, both are defined as a function of a single quantity (a
distance), thus duality seems a natural property of the couple. Yet it is still
possible to define non-dual measures, the difference can simply come from
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normalizing factors: two datapoints of the same class can be considered to be
totally similar at a distance d1 which differs from the distance d2 at which
points from two classes have a null dissimilarity. Such a choice implies defin-
ing a double semantics for the problem, and two different approaches to data
comparison. On the contrary, duality can be justified considering the case of a
datapoint x situated at an equal distance both to a point y pertaining to the
same group and a point z belonging to another class: duality then expresses
the fact that x is as similar to y as it is dissimilar to y.

3.3 Aggregation Operators

The second step of prototype construction consists in aggregating the internal
resemblance and external dissimilarity to obtain a typicality degree. The ag-
gregation has a strong impact on the semantics of the prototype. There exist
many works on aggregation operators [3, 2], we consider here some properties
which may be desired and their consequences on the aggregator choice.

Classic methods such as the mean, the Most Typical Value [5] or the
probabilistic approach, only take into account data pertaining to the group
to determine the group representative. They all choose the central element to
represent the group, with varying definitions of “centrality”. In our framework,
this behavior can be obtained in the degenerate case where the aggregator only
takes into account the internal resemblance and not the external dissimilarity.
In this case, the typicality degree corresponds to the resemblance measure as
illustrated by the first row on Fig. 1. In the same way, although this is not as
intuitive, it is conceivable to choose a degenerate aggregator that only takes
the external dissimilarity into account: a datapoint is considered typical if it
makes it possible to conclude about the class membership; the typicality no-
tion can then be interpreted as some kind of discrimination power (cf. second
row on Fig. 1).

In real data applications, the central and the discriminative elements often
coincide insofar as the center of a class is a discriminative element [18]. Yet
if the prototype is constructed attribute by attribute, a non discriminative
center may be encountered. The relative weight given to the centrality and to
the discrimination power in the typicality degree computation can be tuned
thanks to the aggregation operator.

In the sequel, we study the impact of the aggregation operator on the pro-
totype semantics taking up the aggregator categorization from [3] which dis-
tinguishes between constant and variable attitude aggregators. We illustrate
their effects on Fig. 2, considering the iris third attribute and the Fermi-Dirac
comparison measures (graphs (1a) and (2a) on Fig. 1).

Constant Behavior Operators

Constant attitude operators can be categorized into three groups, distinguish-
ing conjunctive operators, such as the logical and, disjunctive ones, such as
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the logical or, and intermediate ones, also called tradeoff operators, such as
weighted means.

Choosing a conjunctive operator (graph (a) on Fig. 2) implies that a dat-
apoint can be considered typical if and only if it is both similar to the points
of its cluster and distinct from other classes. This is a severe definition of
typicality which leads to low values on average.

On the contrary, choosing a disjunctive operator implies that a datapoint
can be considered typical either if it is discriminative or if it is central to the
group. This leads to two kinds of typical points, as shown on graph (b) on
Fig. 2: the extreme right points have a high typicality degree despite their low
internal resemblance because of their high dissimilarity, the central point is
typical for another reason, namely its high internal resemblance.

Lastly, tradeoff operators (graph (c) on Fig. 2) have an intermediate be-
havior, in particular, they possess the compensation property: a decrease in
one criterion can be offset by an increase in another one for a constant result
value. For instance, the extreme right point has a higher typicality degree
than on graph (a) (min operator): its high dissimilarity compensates for its
low resemblance.

Variable Behavior Aggregators

Variable behavior aggregators are conjunctive, disjunctive or tradeoff depend-
ing on the values that are aggregated as for instance the mica operator [10]:

mica(x, y) = max(0,min(1, k + (x − k) + (y − k))) (1)

where k ∈ [0, 1] is a hyperparameter which determines the position of the
change in behavior: if both values are high, i.e. higher than the neutral value
k, mica(x, y) ≥ max(x, y), so the operator has a disjuntive behavior; if both
values are lower than k, the operator has conjunctive behavior. As the mica
operator is disjunctive for high scores and conjunctive for low scores, it pos-
sesses the full reinforcement property [2]: two low values are aggregated into
an even lower value and two high values lead to an even higher result. This
is illustrated on graph (d) obtained with k = 0.6, where many points have
a typicality of 1, due to their internal resemblance and external dissimilarity
higher than the threshold value k. On the contrary, for the extreme left point
of the right cluster, the obtained value is lower than the one obtained with
the min operator.

The symmetric sum [19] is another example of variable attitude aggregator:

symSum(x, y) =
g(x, y)

g(x, y) + g(1 − x, 1 − y)
(2)

where g is a continuous, increasing, positive function satisfying g(0, 0) = 0.
For this non-linear operator, the change in behavior occurs at threshold 0.5.
For some choices of g, one also observes the full reinforcement property. Graph
(e) on Fig. 2 illustrates this property with g(x, y) = x · y.
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Fig. 2. Examples of aggregators applied with the Fermi-Dirac comparison measures
on the 3rd attribute of the iris database. (a) t = min(R, D), (b) t = max(R, D), (c)
t = 0.7R + 0.3D, (d) t = mica(R, D) cf. (1) with k = 0.6, (e) t = symSum(R, D)
cf. (2) with g(x, y) = x · y.

There is no way to define a priori which aggregation operator to choose:
this choice depends on the considered application and the intended use of the
constructed prototype.

3.4 Typical Data Aggregation

The last step consists in building the prototype itself; the objective is to define
it as an aggregation of the most typical datapoints. Thus one must aggregate
crisp values into a fuzzy subset, which is similar to the initial problem of
building fuzzy prototypes characterizing crisp data. The difference is that
the typicality degrees extracted from the initial data provide some kind of
abstraction. Thus they may justify simple solutions, which are not applied to
raw data, but to enriched data containing more information than the initial
ones.

We propose to define two thresholds, τk and τs, that indicate the minimum
typicality required to be included respectively in the prototype kernel and
in the support. To perform the in-between interpolation, different solutions
can be considered: one can simply use a parametric approach and build the
trapezoidal membership function having the previous kernel and support. One
can also perform a linear rescaling of the interval [τs, τk] to [0, 1] to get the
membership degrees to the prototype. Note that in the attribute by attribute
construction, both methods lead to the same prototypes.
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Fig. 3. Fuzzy prototype for the third attribute of the iris database, using Fermi-
Dirac comparison measures and mica aggretator.

Figure 3 illustrates the three prototypes obtained for the third attribute
of the iris database. For this example, as the classes are quite homogeneous
and well separated, almost all values have high membership degrees to the
prototype of their class. The exceptions are located in the overlapping zone
between two classes.

4 Experimental results

In this section, we consider a real two-dimensional dataset which describes
the results of 150 students after two exams, shown on Fig. 4. We illustrate
the construction of prototypes characterizing the various groups of students
with the previously presented method. The prototypes have been constructed
globally (not attribute by attribute) because there were obvious correlations
between the two attributes.

Table 3 sums up the various notations and measures used in the sequel.

Clustering

The first step consists in clustering the dataset so as to decompose it into
homogeneous subgroups. We applied the fuzzy c-means with an automatic
choice of c based on the stability of the objective function [11], which led to
c = 5. The results are shown on Fig. 4.

Resemblance and Dissimilarity Measures

The second step consists in computing the comparison measures. It was nat-
ural to base our resemblance and dissimilarity measures on the euclidian dis-
tance used in the clustering step, but they had to be normalized so as to take
their values in [0, 1]. The normalization factor chosen for the dissimilarity
measure indicates the distance from which two values are considered totally
dissimilar; it is set to half the data diameter, the data diameter being the
maximal distance between pairs of datapoints in the dataset.
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Table 3. Notations and measures, where X denotes the set of examples, and ||x−y||
the euclidian distance between x and y.

dissimilarity normalization factor Zd = 1
2

maxx,y∈X ||x − y||

dissimilarity measure d(x, y) = min
(
1, ||x−y||

Zd

)
cluster diameter for cluster g diam(g) = maxx,y∈g ||x − y||

resemblance normalization factor Zr = maxg diam(g)

resemblance measure r(x, y) = max
(
0, 1 − ||x−y||

Zr

)
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Fig. 4. Clustering results obtained on a 2D dataset. Each symbol depicts a different
cluster.

The normalization factor chosen for the resemblance measure is the maxi-
mal cluster diameter, the diameter of a cluster g being defined as the maximal
distance between pairs of datapoints pertaining to g.

The first two columns of Fig. 5 illustrate these choices for two clusters,
the central and lower left ones (depicted by ∗ and ◦ on Fig. 4) and represent
contour plots of the resemblance and dissimilarity measures respectively. The
resemblance contours appear circular, which is due to the point distribution
and the measure choice; the point maximizing the internal resemblance is the
cluster average. The dissimilarity is maximal for extreme points, it is slightly
higher for the left lower cluster than for the central one, which is too close to
the four other clusters.

Typicality Degree Computation

We chose a variable behavior operator, the symmetric sum, introduced in (2),
with g(x, y) = x · y. This aggregator rewards datapoints that have a high
internal resemblance (greater than the neutral value 0.5) and a high external
dissimilarity; if both values are significantly high, they reinforce each other.
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Fig. 5. Internal resemblance, external dissimilarity and typicality distribution for
the central cluster (first row), depicted ∗ on Fig. 4, and the left lower cluster (second
row), depicted by ◦.

Simultaneously, it sanctions datapoints that have a low internal resemblance
(lower than 0.5) and a low external dissimilarity. In-between, a low internal
resemblance can be offset by a high external dissimilarity and vice versa.

The results are illustrated on the last column of Fig. 5. It appears that
the typicality distribution reflects the resemblance, modified to a certain ex-
tent by the dissimilarity influence. Thus typical values are not central values
(maximizing the internal resemblance), but close values determined taking
into account the external dissimilarity. These observations are consistent with
the cognitive science results.

Typical Values Aggregation

The last step consists in aggregating the most typical values of each cluster
into a fuzzy subset which characterizes the cluster. We consider that a dat-
apoint whose typicality degree is higher than τk = 0.9 totally belongs to the
prototype, and we exclude from the prototype support the points having a
typicality lower than τs = 0.7. The interpolation between the so-defined ker-
nel and support is performed through a linear rescaling of the interval [τs, τk]
on the interval [0, 1].

The obtained results are illustrated on Fig. 6 which shows the contour
plots of the five prototype membership functions. Their kernels contain val-
ues which simultaneously have a high internal resemblance and a low exter-
nal dissimilarity. Our method enabled us to extract characterizations for the
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Fig. 6. Superimposition of the 5 obtained fuzzy prototypes.

five groups revealed by the clustering step. We think that these results can
be improved if all the datapoints are not taken into account with the same
importance in the typicality degrees computations: fuzzy clustering provides
membership functions that indicate to what extent a datapoint belongs to
several clusters. Intuitively, a datapoint that completely belongs to a group
has to have more importance in the prototype computation than a datapoint
that poorly belongs to it.

5 Conclusion

We propose a parametric fuzzy prototype construction method that consists in
aggregating typical individuals to represent an homogeneous data subgroup.
This method involves a certain number of parameters that must be chosen
according to the desired semantics and properties of the prototype. Although
these depend on the data and the application of the prototypes, it is possible to
give insights on the methodology for choosing the appropriate parameters. For
instance, if the prototype is used to classify new examples, its discrimination
power should be emphasized, whereas if it is used to provide an explanation
of the data, its centrality should be favored.

Our perspectives are to study in more detail the interrelations between
the parameters and their possible redundancy. Another interesting issue is
to study how the method can take into account fuzzy clusters: if they are
provided by the clustering algorithm, the membership degrees to the various
clusters could be used in the process, for instance to reduce the weight of
datapoints that only partially belong to the cluster.
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Abstract. Recently, in many of his in.uential and stimulating talks, Zadeh has
been advocating the concept of a protoform, which stands for a prototypical form,
as a crucial tool for the formalization of human consistent reasoning, deduction
capabilities of search engines, etc.

A protoform is de.ned as an abstract prototype. For instance, if we have a
linguistically quanti.ed statement (which is relevant in our context), say “most
experts are convinced” or “most of the competent experts are convinced”, then
they may lead to the following protoforms, respectively: “Most R’s are S” and
“Most BR’s are S”. Evidently, as protoforms may form a hierarchy, we can
de.ne higher level (more abstract) protoforms, for instance replacing most by

“QBR’s are S”, respectively. Protoforms can then be used for, e.g. devising
general inference schemes, models, etc.

Basically, Zadeh points out the relevance of protoforms in the formal-
ization of problems related to broadly perceived information technology and
knowledge engineering. Examples of implementation of protoforms have been
given by Kacprzyk and Zadrożn
summaries and fuzzy queries.

In this talk we extend the area of application and relevance of Zadeh’s

that the use of protoforms may lead to general classes of models
of fuzzy multistage (optimal) control, and group decision making and voting.

In particular, we discuss in the context of protoforms and their hierarchies
a class of general multistage fuzzy control models, introduced by Kacprzyk,
in which an optimal sequence of (fuzzy) controls is sought that maximizes a
performance function over, for example, “most of the control stages” or “most
of the earlier control stages”. We show that if we use a more abstract form
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of such a problem formulation, i.e. a more abstract protoform, then we can
arrive at various problems with di.erent stage score aggregation schemes and
di.erent discounting strategies.

In the context of group decision making, we consider .rst the case of a
general model of group decision making under fuzzy preferences and fuzzy
majority (given by a fuzzy linguistic quanti.er) proposed by Kacprzyk in which
a solution (an option and/or fuzzy or non-fuzzy set of options) is sought that is
“best accepted by most of the competent individuals”. This new concept may
lead to various fuzzy tournament base solutions as proposed by Kacprzyk and
Nurmi, new measures of consensus given by Fedrizzi, Kacprzyk and Zadrożny,
and was extensively developed by other people, notably Delgado, Verdegay,
Herrera, etc.

We show that the replacement of such a group decision making choice func-
tion by its protoform can lead to many new classes of group decision making
and consensus formation models. Notably, using some results of Kacprzyk
and Zadrożny, we show that a wide majority of voting procedure (e.g. Borda,
the Nurmi’s minimax degree set, plurality voting, quali.ed plurality voting,
approval voting, simple majority (Condorcet), Pareto, Copeland, Kacprzyk’s
Qminimax set, Kramer’s minimax set, Condorcet-looser, Pareto inferior op-
tions, etc) can be represented by a protoform of a choice function. Presumably,
this protoform may also represent other meaningful choice procedures.

The purpose of this paper is to present some classes of fuzzy multistage
control and group decision making models from the point of view of Zadeh’s
concept of a protoform, and show that an additional insight into the existing
models may be gained, and even new classes of models may be obtain that
may grasp some other aspects that are di.cult to re.ect. We are sure that the
power of Zadeh’s protoforms may be proven in many other areas too.
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In this study, a fuzzy logic system developed to control fluid balance during RT
by changing in blood pressure (BP), heart rate (HR) and CVP value. Currently, the

expertise of the anesthesiologist as there is no analytical method available to estimate the
transplant patient’s fluid level. The development of a control system to assist the
anesthesiologist, so that he or she can devote attention to other tasks that can’t yet be
adequately automated during RT. To increase kidney viability in transplant surgery,
patient safety and comfort during RT is one of the most important potential benefits of the
system. For this project, 30 kidney transplantation operations, performed in Akdeniz
University Organ Transplantation Center were completely followed and all physiological
data recorded during last year. This data base is used for contribution of the fuzzy system
membership functions and determine to base variable intervals. Also the developed system
was tested with these operations records.

1
Transplantation may be considered one sign of a country’s development level.

The successful melding of legal, ethical, medical, social, psychological,
technological, economical, and religious aspects is mandatory for any
transplantation organization. Like all similar programs in the world,
transplantation activities in Turkey began with operations that broke new ground.
Solid organ transplantation in Turkey began with two heart transplants in 1969,
both of which, unfortunately, were unsuccessful. By the early 1970s, experimental
studies on liver transplantation had already been initiated by Dr. Haberal and his
team. On November 3, 1975 they performed the first renal transplantation in
Turkey, with a kidney donated from mother to son. This was followed by the first
cadaver kidney transplantation on October 10, 1978 using an organ supplied by the
Euro Transplant Foundation.

Improved understanding and treatment of the comorbid conditions associated
with ESRD and improved perioperative and intraoperative treatment of patients
undergoing kidney transplantation have resulted in increased long-term graft
survival, and have reduced morbidity and mortality. Kidney transplantation is
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administration of intravascular volume is carried out primarily based on the experience and



becoming a possibility for wider population of high-risk patients who were, until
recently, considered at prohibitive risk. Improved anaesthetic management with
tight hemodynamic control and fluid management contribute to improved short-
and long-term outcome of renal transplantation. Over half of the patients
undergoing kidney transplant surgery have at least one comorbid condition, most
commonly diabetes mellitus, hypertension, congestive heart failure (CHF),
coronary artery disease (CAD), pulmonary disease, or a previous malignancy
[1,2,3]. The preoperative evaluation of the kidney transplant recipient is complex,
and must include screening for potential dysfunction of multiple organ systems.
Better understanding of disease mechanisms, improvements in diagnostic tools,
and advances in therapeutic modalities over the last several decades have resulted
in a measurable reduction in perioperative morbidity and mortality for patients
with uremia [4].

In a typical human being around 55% to %60 of the body weight is fluid. The
fluids plays important role in maintaining a healthy body. A normal person can
regulate his/her own body fluid volume to an appropriate level through daily
physiological activities. However, in a patient especially under kidney
transplantation, because of the fluid abnormalities usually found in patients with renal
failure, balancing the body’s fluid volume level is carried out by mainly the
anesthesiologist. Maximal hydration during renal transplantation is of utmost
importance. The new kidney must have adequate perfusion to ensure optimal
function. Intraoperative fluid balance is important because adequate intravascular
volume is essential for maintaining perfusion to the new kidney. There is a definite
relationship between renal graft perfusion and the incidence of acute tubular
necrosis. A central venous pressure line is an essential intraoperative and
postoperative monitor. A central venous pressure of 10 – 15 mm Hg at the time the
arterial clamps are released is recommended. Delayed primary function of the
transplanted kidney has been studied extensively. There is overwhelming
consensus that the “filling effect” is important for immediate graft function.
Usually, anesthesiologist manage patients with chronic renal failure by keeping
them “dry” to prevent fluid overload and to avoid the need for postoperative
dialysis. In contrast, the transplant patient must be “wet” with a supernormal
intravascular volume to ensure luxury flow to the new renal graft. Anesthesia for
the uremic patient undergoing transplantation is unique in this respect, and the
anesthesiologist must be aware of this extremely important difference [20,9,13]. At
present, the input/output conceptual model acquired by the anesthesiologist
through experience and observations is the main guideline for determining the
fluid infusion rate, as there is no analytical approach available to model the
dynamics of the process. The input variables of this conceptual model are
physiological variables of the patient associated with the body fluid level. The
output is the required liquid infusion rate.

2 RT Monitoring

Monitoring of recipients of renal transplants includes standard American Society
of Anesthesiologists (ASA)–recommended 5-lead ECG-arterial blood pressure,
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oxyhemoglobin saturation by pulse oximeter, end-tidal CO2 , temperature, and
urinary output. Because of the fluid abnormalities usually found in patients with
renal failure, the high incidence of cardiac disease, and the importance of graft
perfusion and early function, central venous pressure monitoring is recommended.
Monitoring of the central venous pressure lowers the risk for acute tubular necrosis
and transplant failure caused by hypovolemia [11,17]. If the patient is positioned
in the Trendelenburg position, the absolute values of central venous pressure may
not be accurate; however, central venous pressure trends and the response of the
central venous and arterial pressure to volume loading provide equally as useful
clinical information. Direct arterial pressure monitoring also may be used,
especially when easy access to frequent blood gas analysis is warranted [4].

Pulmonary artery catheters are seldom required during renal transplantation.
Their use is limited to patients with poorly controlled hypertension, CAD with left
ventricular dysfunction, valvular heart disease, and severe chronic obstructive
pulmonary disease. In cases of unexplained refractory hypotension, more precise
assessment of intravascular volume status can be performed by using
transesophageal echocardiography. Transesophageal echocardiography can be
used to differentiate between hypotension caused by hypovolemia or hypotension
caused by decreased myocardial contractility (i.e., cardiac failure).
The viability of the renal allograft depends on immediate and adequate renal blood
flow. High blood flow through the graft immediately on clamp release is
associated with early renal function, a decreased mortality rate, and increased graft
survival [7].

3 IntravascularVolume Factor Affecting Kidney Viability In
Transplant Surgery

The most important intraoperative measure that improves the likelihood of
immediate graft function is to maintain an adequate intravascular volume and

A central venous pressure of 10 mm Hg to 15 mm Hg has been recommended
to maintain optimal intravascular volume. Aggressive intraoperative volume
expansion is warranted because delayed renal function is associated with a 20% to
40% decrease in transplant graft survival and increased patient mortality [11,12]
Postoperative acute tubular necrosis can result from inadequate hydration.
Maintaining the mean pulmonary artery pressure over 20 mm Hg has been shown
to reduce the occurrence of acute postoperative tubular necrosis [10]. While
pursuing adequate hydration, however, the patient should be monitored for signs of
fluid overload to avoid pulmonary edema, because many recipients have pre-
existing cardiac disease (e.g., hypertensive cardiomyopathy, CHF, CAD).

4 Crystalloids and Colloids

Isotonic crystalloid solutions (Ringer's lactate solution and 0.9% saline solution)
are very commonly used to compensate for general losses of water and electrolytes
and are usually the first choice for fluid replacement. Isotonic crystalloid solutions
do not contain oncotically active macromolecules. Therefore, their effect on
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plasma volume expansion of approximately 200 ml for every 1000 ml
administered, with an intravascular half-life of 20 to 30 min, is very limited [3] .
To substitute for blood loss, crystalloid solutions must be infused in four- to
fivefold greater amount, compared with colloid solutions, to exert the same volume
effects. Moreover, it was demonstrated that crystalloids could not effectively
restore microcirculatory blood flow in several organs in models of hemorrhagic
shock. In the dynamic processes of systemic inflammatory response syndrome
(SIRS) or sepsis, with increased transmembrane fluid flux and low plasma COP,
fluid shift from the intravascular compartment to the interstitial compartment is
promoted if crystalloids are exclusively infused. In addition to their ineffectiveness
in restoring sufficient tissue perfusion, this phenomenon increases the risk for
tissue edema, particularly in the lung and gut mucosa [3]. However, despite these
results from experimental trials, an ongoing controversy exists regarding the use of
crystalloids or colloids for adequate fluid replacement. To date, there has been no
clinical trial with sufficient statistical power to compare the different fluids with
respect to mortality rates.

Crystalloids have no specific nephrotoxic effects and are the basic fluids to
fulfill the requirements for water and electrolytes in critically ill patients. In cases
of major intravascular hypovolemia or severe sepsis, the exclusive administration
of crystalloids is not appropriate because they are not able to sufficiently restore
microcirculation, which is the major pathogenic factor in the development of
multiple organ failure. Therefore, crystalloids should be used in conjunction with
colloids to restore intravascular volume.

The controversy regarding the use of colloid or crystalloid solutions for volume
resuscitation in critically ill patients has been reinitiated by the meta-analyses
mentioned above. Because of their content of macromolecules, colloids are
retained within the intravascular space to a much greater extent, resulting in a
greater intravascular volume effect. The volume effect exerted by colloids and
their volume-supporting capacity with time depend on their concentration, mol wt,
molecular structure, COP, metabolism, and elimination rate.

5 Patients and Methods
The study was approved by the Hospital Ethics Committee. In Akdeniz

University, in the operating room of the Organ Transplantation Center, for a year,
data were collected from the patients, who underwent kidney transplantation
operation, and who were administered isoflurane. For this project, 30 kidney
transplantation operations, performed in Akdeniz University Organ
Transplantation Center were completely followed and all physiological data
recorded. All recorded operation data evaluated for the system. The data base was
constructed of the records from a total of 30 patients (10 females, 20 males) who
were asked permission in advance of the operation and were informed about the
study. The patients mean age is 34.4 (range 15-57) yr, mean weight is 63.6 (37-85)
kg and mean height is 164.4 (148-191) cm. During the operation every five
minutes the BP, HR, and CVP were recorded. This data base is used for
contribution of the fuzzy system membership functions and determine to base
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variable intervals. Also the developed system was tested with these operations
records.

6 FuzzyLogic Fluid Infusion Rate Control System
Since the 1980s new techniques have appeared from which fuzzy-based has been

applied extensively in medical systems. Although medicine is a science which isn’t
related to control engineering, it is being affected to such an extent that it is now
possible to use available control techniques for on-line devices, especially during
surgical operations and in intensive care units [16]. Nevertheless, no standard
methods exist for transforming human experience into the rule base of the fuzzy
inference control system. Beside this the shape of the membership functions
associated with the linguistic expressions are determined by trial and error
methods so that the performance index is optimised.

Because a biological process has a non-linear, time-varying structure and time-
varying parameters, modelling it suggests the use of rule-based controllers like
fuzzy controllers [23,24,25]. Fuzzy rule-based systems include many aspects of
fuzzified values, such as the rules antecedents and consequence. The rules
structure are usually of the form of if... then. In its basic form this type of the
control is equivalent linguistically to a PI controller, and depending on the output,
whether it is incremental or absolute, the controller is known as PI or PD
respectively.

Blood pressure is most conveniently measured using a cuff, which should be of
the right size for the patient. Systolic pressure can be detected by palpation of the
brachial or radial artery or by auscultation. In anaesthetic practice, the systolic
pressure has greater significance than the diastolic pressure, which isn’t frequently
recorded, particularly if access to the arm is difficult No "normal" blood pressure
can be specified for the anaesthetized patient; in general the systolic pressure
should be stable in the range 90-140 mmHg (12.0-18.7 kPa) [5,6]. But we can not
say this range is valid for kidney transplant patients. Because, remember that, over
half of the patients undergoing kidney transplant surgery have at least one
comorbid condition, most commonly diabetes mellitus, hypertension, CHF,
coronary artery disease CAD, pulmonary disease, or a previous malignancy. So,
special BP, HR and CVP membership functions have to be contributed by
anesthesia specialists. The membership functions and the rule base of the fuzzy
logic system were determined under the inspection of specialists by abiding by the
data base information.

6.1 System Structure
FuzzyTECH 5.52f MP Explorer, MPLAB 3.01 and MATLAB 6.01 programs

were used for this application. But the main program has written by us.
The system structure identifies the fuzzy logic inference flow from the input

variables to the output variables. The fuzzification in the input interfaces translates
analog inputs into fuzzy values. The fuzzy inference takes place in rule blocks
which contain the linguistic control rules. The output of these rule blocks is
linguistic variables. The defuzzification in the output interfaces translates them
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into analog variables. The following figure shows the whole structure of the Fuzzy
Logic Liquid Infusion Rate Control System (FLLIRCS) including input interfaces,
rule block and output interface. The connecting lines symbolize the data flow.

Figure 1. Structure of the FLLIRCS

6.2 Variables and membership functions

Linguistic variables are used to translate real values into linguistic values. The
possible values of a linguistic variable are not numbers but so called 'linguistic
terms'. Five linguistic variables and their associated membership functions are
defined for each input variable, namely very_low, low, normal, high and
very_high. They are also called fuzzy zones of the variables. The output variable is
also divided into five fuzzy zones with the zone names zero, low, normal, high,
very_high. The defined membership functions of the zones are shown in Figure 2. ,
3. , 4. and 5. As mentioned before, these definitions are based on the consultation
made with the anesthesia specialists.

Figure 2. MBF of "Blood_Pressure"
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Figure 3. MBF of "CVP"

Figure 4. MBF of "Heart_Rate"

Figure 5. MBF of "Liquid_Rate"

6.3 Rule Base
The rule base contains the control strategy of a fuzzy logic system. The rules' 'if'

part describes the situation, for which the rules are designed. The 'then' part
describes the response of the fuzzy system in this situation. The degree of support
(DoS) is used to weigh each rule according to its importance.
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There are three inputs to the FLLIRCS and each has 5 fuzzy zones. Hence the
number of rules in the rule base is equal to 125 (5 x 5 x 5). But, FLLIRCS Rule
base includes 121 rules. 4 rules are eliminated by specialist. Eliminated rules are
related to conditions which never happened. The rule base built based on the
input/output data obtained from the RT operation records.

All the rules are extracted from the input/output vector obtained from the patient
during RT. An input/output vector is the real data recorded for the input/output
variables at an instant of time. For example, say, in the nth minutes of a RT, the
readings of the variables BP, HR, CVP and LR are a mmHg, b beats per minute, c
mmHg and d milliliter per hour. These four values (a, b, c, d) form a vector of
input/output data which represents one of the existing relationships between the
input and output variables. The rule specified by an input and output vector has
strength proportional to the degree of the membership of each variable to its fuzzy
set. This strength is referred to as Rule Degree in this work and is defined as the
product of the degrees of membership of the variables in the rule. It should be
noted that in fuzzy theory that an element of a universe of discourse can be the
member of more than one fuzzy set and membership function. For the gauss (S
shape) membership function used in this work, each value of a variable is typically
covered by two membership functions. This situation can be shown at Figure 3. , 4. ,
5. , 6.

The processing of the rules starts with calculating the 'if' part. The operator type
of the rule block determines which method is used. The characteristic of each
operator type is influenced by an additional parameter.
For example:
MIN-MAX, parameter value 0=Minimum Operator (MIN)
MIN-MAX, parameter value 1=Maximum Operator (MAX)
GAMMA, parameter value 0=Product Operator (PROD)

The minimum operator is a generalization of the Boolean 'and'; the maximum
operator is a generalization of the Boolean 'or'. The fuzzy composition eventually
combines the different rules to one conclusion. If the BSUM method is used all
firing rules are evaluated, if the MAX method is used only the dominant rules are
evaluated.

Most fuzzy logic based application solutions use production rules to represent
the relationship between the linguistic variables and to derive actions from sensor
inputs. Production rules consist of a precondition (IF-part) and a consequence
(THEN-part). The IF-part can consist of more than one condition linked by
linguistic conjunctions like AND and OR. The computation of fuzzy rules is called
fuzzy rule inference. The software which we used for this application FuzzyTECH,
calculates the inference in two steps: input aggregation and composition with
degree of support (DOS). Aggregation uses fuzzy logic operators to calculate the
result of the IF part of a production rule when the rule consists of more than one
input conditions. One of the linguistic conjunctions, AND or OR, links multiple
input conditions. Composition uses the fuzzy logic operator, PROD, to link the
input condition to the output condition.
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Composition links the validity of the entire condition with the DOS. Thus,
composition, the second calculation step of each production rule, uses the validity
of the condition to determine the validity of the consequence. In standard MAX-
MIN or MAX-PROD inference methods, the consequence of a rule is considered
equally as true as the condition.

The defuzzification approach employed in this study is the Tsukamato’s model.
The mathematical expression of this model is shown in (1), in which crisp value Z
is calculated by;
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where n is the the number of rules in the rule base. Wi is the degree of membership
of the output variable in the ith rule. Zi is the value of that output variable when the
degree of membership is equal to 1 in the ith rule. This method is common and
simple.

This method can be shown as identical to Center-of-Area (CoA) using
singleton membership functions when each membership function for the linguistic
variable to be defuzzified has been defined so that its maximum is 1 and is located
at the position of the respective singleton. In these systems, the membership
function overlap in the result is ignored. Thus the individual membership function
areas can be calculated during compilation time and therefore these areas only
need to be multiplied with the inference results at runtime.

To check the performance of fuzzy system lets look an example; the process of
rule extraction from a vector with BP, CVP, HR, LR values of 120, 9, 74, 0.544
respectively, is illustrated in Tables 1 and 2. Figure 6 shows this data inputs on the
membership functions. The membership functions and corresponding membership
degrees for each variable are given Table 5. In this table

)2,1(),(),(),(),( =iiDiCiBiA are the membership functions respectively the fuzzy

values of variables BP, CVP, HR and LR. The parameters
)2,1(),(),(),(),( =iiZiYiXiW are the membership degrees produced by membership

functions of each variable. The 8 rules obtained from the input/output vector are
provided Table 6.

Table 6. The corresponding membership degrees of the data vector
Variable Readings Covered degrees
BP 120 mmHg A(1)=low, W(1)=0,21 A(2)=normal, W(2)=0,79
CVP 9 mmHg B(1)=low, W(1)=0,69 B(2)=normal, W(2)=0,31
HR 74 bpm C(1)=low, W(1)=0,88 C(2)=normal, W(2)=0,12
LR 0,544 lt/hr D(1)=low, W(1)=0,31 D(2)=normal, W(2)=0,21 D
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Figure 6. System inputs for a sample example120mmHg
BP, 9mmHg CVP and 74 bpm HR, System LR out 0.544

lt/hour

Table 7. Eight rules yielded from one data pair vector

BP CVP HR Inp. Agg. LR

low low low 0,20524 high

low low norm 0,11678 high

low norm low 0,20524 norm

low norm norm 0,11678 norm

norm low low 0,69232 high

norm low norm 0,11678 high

norm norm low 0,30768 low

norm norm norm 0,11678 low

Solution is obtained by using Formula 2.

LRHLRNLRL
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...

)....()....()....(
_

++
×+×+×=

Where:
Liquid_rate: Crisp out value (produced by CoM defuzzification),
Low.Inp.Agg.: Input Aggregation for low linguistic value,
L.LR: Liquid rate for low output linguistic value,
Norm.Inp.Agg.: Input Aggregation for normal linguistic value,
N.LR: Liquid rate for normal output linguistic value,
High.Inp.Agg.: Input Aggregation for high linguistic value,
H.LR: Liquid rate for high output linguistic value,
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This example is also solved with Matlab 6.01 software for comparison. The
comparison is showed each program gives same response under same input
conditions.

PIC16C771 microcontroller was used for this system. This powerful CMOS
OTP-based 8-bit microcontroller packs Microchip's powerful PIC architecture into
an 20-pin package and is upwards compatible with the PIC16C5X and
PIC12CXXX devices The PIC16C771 features 6 channels of 12-bit Analog-to-
Digital (A/D) converter giving designers the ability to discriminate smaller signal
changes and eliminate the need for external circuitry for high precision
measurement of analog signals. With 2 additional timers and an enhanced
capture/compare/PWM function that make it ideal for the most sophisticated
applications requiring higher levels of A/D in medical applications.

7. System simulation and test results
In order to test the system, simulation studies have to be carried out to validate

the system and also to test its reliability. Test results are reported for different
types of simulations. These results were produced by real recorded data. Figure 7.,
8. and 9. shows the compare between the system response and manual response
during the operations. Figure 7., shows a sensitive the oldest transplant patient’s
liquid infusion rate depending the changing in his BP, CVP and HR values that
were occurred in every five minutes during his operation. Figure 8.., shows a
nominal transplant patient’s, who was in mean age (33 yrs) in this study’s patients
group, operation results. Figure 9., show a resistive the youngest transplant
patient’s (15 yrs) operation results.
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Figure 7. System’s and manual LR responses for the oldest transplant patient
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Figure 8. System’s and manual LR responses for the nominal transplant patient
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Figure 9. System’s and manual LR responses for the youngest transplant patient

8 Conclusion
Resuscitation of intravascular volume and fluid replacement are cornerstones

during the RT for transplant patients. Restoration of macrocirculation and
microcirculatory perfusion is the primary goal of volume therapy, to prevent
deleterious consequences such as organ dysfunction or multiple organ failure. For
patients, who undergoing renal transplantation, careful monitoring of renal
functions is required. The risk of renal failure can be further reduced by the
administration of adequate intravascular volume by crystalloid solutions.

At the same time, careful balancing of intraoperative fluids is necessary against
cardiovascular problems frequently encountered in patients with uremia. Close
intraoperative monitoring, optimization of intravascular fluid volume status to
maximize kidney perfusion, and prompt correction of electrolyte disturbances
(especially potassium) are key to short- and long-term success of renal transplants.

The measurement of BP, CVP and HR facilitate safe fluid management in these
cases. On the basis of the currently very limited data regarding the specific
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situation of kidney transplantation, a fuzzy logic fluid therapy system should be
used for management of transplant patient’s fluid balance during RT.
Fuzzy logic simplifies the design of a control strategy by providing an easy to
understand and intuitive approach to solve this fluid management and control
problem. The potential benefits which are aimed at the beginning of the study were
achieved. The Fuzzy Logic Fluid Therapy Control System can be used as an
equipment which controls the liquid rate during RT. If it doesn’t seem to ensure
the transplant patient’s safety as an equipment which works independently without
the anesthesiologist, it can easily be used as a monitor or decision support system
to assist the anesthesiologist to estimate the required liquid infusion rate more
objectively. The system is release the anesthesiologist so that he or she can devote
attention to other tasks that can not yet be adequately automated during RT.
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1 Introduction

In behaviour-based control systems (a good overview can be found in [3]), the 
actual behaviour of the system is formed as one of the existing behaviours (which 
fits best the actual situation), or as a kind of fusion of the known behaviours 
appeared to be the most appropriate to handle the actual situation. Beyond the 
construction of the behaviours, this structure has two other important tasks. The 
first is the decision, which behaviour is needed, or in case of behaviour fusion the 
determination of the necessity levels for each behaviour in solving the actual 
situation. The second is the way of the behaviour fusion. The first task, the 
behaviour coordination can be viewed as an actual system state approximation, 
where the actual system state is the set of the necessities of the known behaviours 
needed for handling the actual situation. The second is the fusion of the known 
behaviours based on their necessities. In case of fuzzy behaviour based control 
structures both tasks are solved by fuzzy logic controllers. If the behaviours are 
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Abstract. Some difficulties emerging during the construction of fuzzy behaviour-
based control structures are inherited from the type of the applied fuzzy reason-
ing. The fuzzy rule base requested for many classical reasoning methods needed
to be complete. In case of fetching fuzzy rules directly from expert knowledge e.g.
for the behaviour coordination module, the way of building a complete rule base
is not always straightforward. One simple solution for overcoming the necessity
of the complete rule base is the application of interpolation-based fuzzy reason-
ing methods, since interpolation-based fuzzy reasoning methods can serve usable
(interpolated) conclusion even if none of the existing rules is hit by the observa-
tion. These methods can save the expert from dealing with derivable rules and
help to concentrate on cardinal actions only. For demonstrating the applicability of
the interpolation-based fuzzy reasoning methods in behaviour-based control struc-
tures a simple interpolation-based fuzzy reasoning method and its adaptation for
behaviour-based control will be introduced briefly in this paper.
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also implemented on direct fuzzy logic controllers, the behaviours together with 
the behaviour fusion modules form a hierarchical fuzzy logic controller. Since the 
classical fuzzy reasoning methods (e.g. compositional rule of inference) are 
demanding complete rule bases, all these rule bases have to build taking care to 
fill all the possible rules. In case if there is some rules are missing, there are 
observations may exist which hit no rule in the rule base and therefore no 
conclusion is obtained. Having no conclusion at any level of the fuzzy behaviour 
based control structure is hard to explain. E.g. one solution could be to keep the 
last real conclusion instead of the missing one, but applying historical data 
automatically to fill undeliberately missing rules could cause unpredictable side 
effects. Another solution for the same problem is the application of the 
interpolation-based fuzzy reasoning methods, where the derivable rules are 
deliberately missing. Since the rule base of a fuzzy interpolation-based controller, 
is not necessarily complete, it could contain the most significant fuzzy rules only 
without risking the chance of having no conclusion for some of the observations. 
In other words, during the construction of the fuzzy rule base, it is enough to 
concentrate on the cardinal actions; the “filling” rules (rules could be deduced 
from the others) can be omitted.  

In the followings, first an approximate fuzzy reasoning method based on 
interpolation in the vague environment of the fuzzy rule base [4], [5], [6] will be 
introduced. The main benefit of the proposed method is its simplicity, as it could 
be implemented to be simple and quick enough to be applied in practical direct 
fuzzy logic control too. Then its adaptation to behaviour-based control structures 
together with a simple example will be discussed briefly. 

2    Interpolation-based Fuzzy  Reasoning 

One way of interpolative fuzzy reasoning is based on the concept of vague 
environment [2]. Applying the idea of the vague environment the linguistic terms 
of the fuzzy partitions can be described by scaling functions [2] and the fuzzy 
reasoning itself can be simply replaced by classical interpolation. The concept of 
vague environment is based on the similarity or indistinguishability of the 
elements. Two values in the vague environment are -distinguishable if their 
distance is grater than . The distances in vague environment are weighted 
distances. The weighting factor or function is called scaling function (factor) [2]. 
Two values in the vague environment X are -distinguishable if 

1

2

21,>
x

x
s dxxsxx  , (1)

where 
21, xxs

 is the vague distance of the values x1, x2 and s(x) is the scaling 
function on X. For finding connections between fuzzy sets and a vague 
environment we can introduce the membership function )(xA  as a level of 
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similarity a to x, as the degree to which x is indistinguishable to a [2]. The -cuts
of the fuzzy set )(xA  are the sets which contain the elements that are (1 )-
indistinguishable from a (see fig.1.): 

1)b,a(s
 ,   1,min11),b,a(min1)(

b

a

dxxsx sA  . 
(2)

Fig. 1. The -cuts of )(xA  contains the elements that are (1 )-indistinguishable from a

This case (Fig.1.) the vague distance of points a and b ( )b,a(s ) is basically the 
Disconsistency Measure (SD) of the fuzzy sets A and B (where B is a singleton): 

)b,a(sup1 sBA
Xx

D xS  if 1,0)b,a(s
 , (3)

where BA  is the min t-norm, xxx BABA ,min x X.
It means that we can calculate the disconsistency measures between member 

fuzzy sets of a fuzzy partition and a singleton, as vague distances of points in the 
vague environment of the fuzzy partition. The main difference between the 
disconsistency measure and the vague distance is, that the vague distance is a 
crisp value in range of [0, ], while the disconsistency measure is limited to [0,1]. 
Therefore if it is possible to describe all the fuzzy partitions of the primary fuzzy 
sets (the antecedent and consequent universes) of our fuzzy rule base by vague 
environments, and the observation is a singleton, we can calculate the “extended” 
disconsistency measures of the antecedent primary fuzzy sets of the rule base, and 
the “extended” disconsistency measures of the consequent primary fuzzy sets and 
the consequence (we are looking for) as vague distances of points in the 
antecedent and consequent vague environments.  

The vague environment is described by its scaling function. For generating a 
vague environment of a fuzzy partition we have to find an appropriate scaling 
function, which describes the shapes of all the terms in the fuzzy partition. A 
fuzzy partition can be characterised by a single vague environment if and only if 
the membership functions of the terms fulfill the following requirement [2]: 

dx
dxxs )(')(   exists iff  )(')('0>)(),(min xxxx jiji

, (4)

Iji, , where s(x) is the vague environment we are looking for. 
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Generally the above condition is not fulfilling, so the question is how to 
describe all fuzzy sets of the fuzzy partition with one “universal” scaling function. 
For this reason we propose to apply the concept of approximate scaling function,
as an approximation of the scaling functions describes the terms of the fuzzy 
partition separately [4], [5], [6]. If the vague environment of a fuzzy partition (the 
scaling function or the approximate scaling function) exists, the member sets of 
the fuzzy partition can be characterised by points in the vague environment. (In 
our case the points are characterising the cores of the terms, while the shapes of 
the membership functions are described by the scaling function itself.) If all the 
vague environments of the antecedent and consequent universes of the fuzzy rule 
base are exist, all the primary fuzzy sets (linguistic terms) used in the fuzzy rule 
base can be characterised by points in their vague environment. So the fuzzy rules 
(build on the primary fuzzy sets) can be characterised by points in the vague 
environment of the fuzzy rule base too. This case the approximate fuzzy reasoning 
can be handled as a classical interpolation task. Applying the concept of vague 
environment (the distances of points are weighted distances), any interpolation, 
extrapolation or regression methods can be adapted very simply for approximate 
fuzzy reasoning [4], [5], [6]. 

We suggest adapting the Kóczy-Hirota interpolation [7]. This method 
generates the conclusion as a weighted sum of the vague consequent values, 
where the weighting factors are inversely proportional to the vague distances of 
the observation and the corresponding rule antecedents: 

r

k
k

r

k
kk

w

w

1

1
0

0

b,ydist
y,ydist  ,   

p
k

kw
ax,dist

1  , 
(5)

where wk is a weighting factor inversely proportional to the vague distance of 
the observation and the kth rule antecedent, 
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y
Y0

0

yyb,ydist  ,
(6)

where s
iX  is the ith scaling function of the m dimensional antecedent universe, 

sY  is the scaling function of the one dimensional consequent universe, x is the 
multidimensional crisp observation, ak are the cores of the multidimensional fuzzy 
rule antecedents A

k
, bk are the cores of the one dimensional fuzzy rule 

consequents Bk, Ri = Ai Bi are the fuzzy rules, p is the sensitivity of the 
weighting factor for distant rules, y0 is the first element of the one dimensional 
universe (Y: y0 y  y Y), y is the one dimensional conclusion we are looking 
for.

A simple one-dimensional example for the approximate scaling function and 
the Kóczy-Hirota (K-H) interpolation (6) is introduced on Fig. 2 and on Fig. 3.  
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Fig. 2. Interpolation of two fuzzy rules (Ri: Ai Bi) (see fig. 3. for notation) 

Fig. 3. Interpolation of three fuzzy rules (Ri: Ai Bi) in the approximated vague 
environment of the fuzzy rule base, using the K-H interpolation (p=1) (Approx.) and the 
min-max. CRI with the centre of gravity defuzzification (CRI), where  is the membership 
grade, and s is the scaling function 
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For comparing the crisp conclusions of the K-H interpolation and the classical 
methods, the conclusions generated by the max-min compositional rule of 
inference (CRI) and the centre of gravity defuzzification for the same rule base is 
also demonstrated on the example figures (Fig. 2, Fig. 3). More detailed 
description of the proposed approximate fuzzy reasoning method can be found in 
[4], [5], [6]. 

3 The Applied Fuzzy Behaviour-based Structure

The main benefit of the interpolation-based fuzzy reasoning method, introduced in 
the previous chapter, is its simplicity. Applying look-up tables for pre-calculating 
the vague distances, it could be implemented to be simple and quick enough to fit 
the speed requirements of practical real-time direct fuzzy logic control systems, 
e.g. the requirements of fuzzy behaviour-based control too. The calculation efforts 
of many other interpolation-based fuzzy reasoning methods “wasted” for 
determining the exact membership shape of the interpolated fuzzy conclusion 
prohibits their practical application in real-time direct fuzzy logic control. The 
lack of the fuzziness in the conclusion is a disadvantage of the proposed method, 
but it has no influence in common applications where the next step after the fuzzy 
reasoning is the defuzzification.  

In the followings a pure fuzzy behaviour-based control structure and the 
adaptation of the proposed interpolation-based fuzzy reasoning method will be 
discussed more detailed. 

In case of pure fuzzy behaviour-based control structures all the main tasks of 
the behaviour-based control – the behaviour coordination, the behaviour fusion, 
and the behaviours themselves – are implemented on fuzzy logic controllers. 
(Such a structure is introduced on Fig.3.) Any of these controllers can apply the 
proposed interpolation-based approximate fuzzy reasoning method. 

For demonstrating the main benefits of the interpolation-based fuzzy reasoning 
in behaviour-based control, in this paper we concentrate on the many cases most 
heuristic part of the structure, on the behaviour coordination. 

The task of behaviour coordination is to determine the necessities of the known 
behaviours needed for handling the actual situation. In the suggested behaviour-
based control structure, for this task the finite state fuzzy automaton is adapted 
(Fig.4.) [9]. This solution is based on the heuristic, that the necessities of the 
known behaviours for handling a given situation can be approximated by their 
suitability. And the suitability of a given behaviour in an actual situation can be 
approximated by the similarity of the situation and the prerequisites of the 
behaviour. (Where the prerequisites of the behaviour is the description of the 
situations where the behaviour is valid (suitable itself)). This case instead of 
determining the necessities of the known behaviours, the similarities of the actual 
situation to the prerequisites of all the known behaviours can be approximated. 
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Fig. 4. The suggested fuzzy behaviour-based control structure 

Thus the first step of this kind of behaviour coordination is determining the 
similarities of the actual situation to the prerequisites of all the known behaviours 
– applying the terminology of fault classification; it is the symptom evaluation 
(see e.g. Fig.4.). The task of symptom evaluation is basically a series of similarity 
checking between an actual symptom (observations of the actual situation) and a 
series of known symptoms (the prerequisites – symptom patterns – of the known 
behaviours). These symptom patterns are characterising the systems states where 
the corresponding behaviours are valid. Based on these patterns, the evaluation of 
the actual symptom is done by calculating the similarity values of the actual 
symptom (representing the actual situation) to all the known symptoms patterns 
(the prerequisites of the known behaviours). There are many methods exist for 
fuzzy logic symptom evaluation. For example fuzzy classification methods e.g. 
the Fuzzy c-Means fuzzy clustering algorithm [1] can be adopted, where the 
known symptoms patterns are the cluster centres, and the similarities of the actual 
symptom to them can be fetched from the fuzzy partition matrix. On the other 
hand, having a simple situation, the fuzzy logic symptom evaluation could be a 
fuzzy rule based reasoning system itself.  

One of the main difficulties of the system state approximation in behaviour 
coordination is the fact, that most cases the symptoms of the prerequisites of the 
known behaviours are strongly dependent on the actual behaviour of the system. 
Each behaviour has its own symptom structure. In other words for the proper 
system state approximation, the approximated system state is also needed. A very 
simple way of solving this difficulty is the adaptation of fuzzy automaton. This 
case the state vector of the automaton is the approximated system state, and the 
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state-transitions are driven by fuzzy reasoning (Fuzzy state-transition rule base on 
Fig.4.), as a decision based on the previous actual state (the previous iteration step 
of the approximation) and the results of the symptom evaluation. 

4 Application Example

For demonstrating the simplicity of defining rule base for interpolation-based 
fuzzy reasoning, as an example, the state-transition rule base of the previously 
introduced fuzzy automaton style behaviour coordination module applied for user 
adaptive information retrieval system in [10] and [11] will be introduced briefly in 
the followings. In our user adaptive information retrieval system example 
(introduced in [10] and [11] in more details) the user adaptivity is handled by 
combination of existing (off-line collected) human opinions (user models) in the 
function of their approximated similarity to the actual user opinions. As an 
analogy to the behaviour-based control applications, the different behaviours are 
the different existing user models, and the actual situation is the similarity of the 
actual user to the evaluators, originally gave the existing user models. Based on 
the observations (inputs) – the conclusion of the user feedback (the symptom 
evaluation about the state-transition to state i, SSi for all the possible states 

N,1i ) and the previous state values Si – we have to somehow estimate the 
new state values, the vector of the suitability of the existing user models. The 
heuristic we would like to implement in our example is very simple. If we already 
found a suitable model (Si) and the user feedback is still supporting it (SSi), we 
have to keep it even if the user feedback began to support some other models too. 
If there were no suitable model, but the user feedback began to support one, we 
have to pick it at once. In case of interpolation-based fuzzy reasoning, the above 
heuristic can be simply implemented by the following state-transition rule base 
[10], [11]. For the ith state variable Si, N,1i of the state vector S:

If Si=One And SSi=One Then Si=One (7.1)

If Si=Zero And SSi=Zero Then Si=Zero (7.2)

If Si=One And SSi=Zero
And SSk=Zero Then Si=One k,N,1k

(7.3)

If Si=Zero And SSi=One
And Sk=Zero And SSk=Zero Then Si=One k,N,1k

(7.4)

If Si=Zero And SSi=One
And Sk=One And SSk=One Then Si=Zero k,N,1k

(7.5)

where SSi is the conclusion of the symptom evaluation about the state-
transition to state i, N,1i ; N is the number of known behaviours (state 
variables). The structure of the state-transition rules is similar for all the state 
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variables. Zero and One are linguistic labels of fuzzy sets (linguistic terms) 
representing high and low similarity. The interpretations of the Zero and One
fuzzy sets can be different in each Si, SSi universes. 

Please note that rule base (7) is sparse. It contains the main rules for the 
following straightforward goals only: Rule (7.1) simply keeps the previously 
chosen state values in the case if the symptom evaluation also agrees. The rule 
(7.2) has the opposite meaning, if the state values were not chosen, and moreover 
the symptom evaluation is also disagrees the state value should be suppressed. 
The rule (7.3) keeps the already selected state values (previous approximation), 
even if the symptom evaluation disagrees, if it has no better “idea”. Rules (7.4) 
and (7.5) have the task of ensuring the relatively quick convergence of the system 
to the sometimes unstable (changeable) situations, as new state variables which 
seem to be fit, can be chosen in one step, if there is no previously chosen state, 
which is still accepted by the symptom evaluation (7.4). (Rule (7.5) has the task to 
suppress this selection in the case if exists a still acceptable state which has 
already chosen.) The goal of this heuristic is to gain a relatively quick 
convergence for the system to fit the opinions of the actual user, if there is no state 
value high enough to be previously accepted. This quick convergence could be 
very important in many application areas e.g. in case of an on-line user adaptive 
selection system introduced in [10], where the user feed-back information needed 
for the state changes are very limited. 

Some state changes of the fuzzy automaton in the function of the conclusion of 
the symptom evaluation (SS1, SS2) for the two states case (applying the state-
transition rule base (7)) are visualised on Fig.5. and Fig.6. 

Fig. 5. Do not “pick up” a new state if the previous approximation is still adequate 

Counting the rules of the classical (e.g. compositional) fuzzy reasoning for the 
same strategy we find, that in the two state case the complete rule base needs 16 
rules (as we have four observation universes (S1, SS1, S2, SS2) each with two 
terms fuzzy partitions (Zero, One) - 24 rules), while the sparse rule base (7) 
contains 5 rules only (see table 1 for the state-transition rule base of state S1). 
Taking into account that in the proposed behaviour-based control structure a 
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separate rule base is needed for each state variables, the behaviour coordination 
needs 32 rules, while 10 is enough in case of applying the proposed interpolation-
based fuzzy reasoning method. Increasing the number of the state variables the 
situation became even worse. In case of three state variables (S1, S2, S3) the rate 
become 623  ( nn 22 , where n is the number of the states) and 63  ( 3nn ) up 
to the interpolation-based method (see table 2).  

Fig. 6. But “pick it up” if it seems better, or at least as good as the previous was 

Table 1. State-transition rule base of state S1 in case of two state variables (S1,S2)
according to rule base (7) 

RS1: S1 SS1 S2 SS2 S1
1., One One   One    (according to (7.1)) 
2., Zero Zero   Zero    (according to (7.2)) 
3., One Zero  Zero One    (according to (7.3)) 
4., Zero One Zero Zero One    (according to (7.4)) 
5., Zero One One One Zero    (according to (7.5)) 

Table 2. State-transition rule base of state S1 in case of three state variables (S1,S2,S3)
according to rule base (7) 

RS1: S1 SS1 S2 SS2 S3 SS3 S1
1., One One     One  (7.1) 
2., Zero Zero     Zero  (7.2) 
3., One Zero  Zero  Zero One  (7.3) 
4., Zero One Zero Zero Zero Zero One  (7.4) 
5., Zero One One One   Zero  (7.5) 
6., Zero One   One One Zero  (7.5) 
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The exponential rule number “explosion” in case of increasing the number of 
the input variables makes many heuristic ideas unimplementable and therefore 
useless. E.g. in the case of the original source of the example application of this 
paper (introduced in [10]), the behaviour coordination module applied for user 
adaptive information retrieval system had 4 state variables (one for each 
emotional models), which makes our simple rule base (7) practically 
unimplementable as a complete rule base ( 102424 8  rules). While our working 
demonstrational example had only 28 rules thanks to the applied interpolation-
based fuzzy reasoning method. 

4 Conclusions

The goal of this paper was to introduce an interpolation-based fuzzy reasoning 
method, which could be implemented to be simple and quick enough to fit the 
requirements of behaviour-based control structures in real-time direct fuzzy logic 
control systems. The suggested approximate fuzzy reasoning method based on 
interpolation in the vague environment of the fuzzy rule base gives an efficient 
way for designing direct fuzzy logic control applications. The lack of the 
fuzziness in the conclusion is a disadvantage of the proposed method, but it has no 
influence in common applications where the next step after the fuzzy reasoning is 
the defuzzification. For demonstrating the efficiency of the interpolation-based 
fuzzy reasoning in behaviour-based control, a fuzzy behaviour-based control 
structure based on fusion of different known behaviours in the function of their 
actual necessities approximated by fuzzy automaton is introduced briefly in this 
paper. To give some guidelines for interpolation-based fuzzy reasoning rule base 
design, some highlights of the behaviour coordination rule base of a user adaptive 
information retrieval system application ([10], [11]) is also introduced in this 
paper. The implementation of interpolation-based fuzzy reasoning methods in 
behaviour-based control structures simplifies the task of fuzzy rule base creation. 
Since the rule base of a fuzzy interpolation-based controller is not necessarily 
complete, it could contain the most significant fuzzy rules only without risking the 
chance of having no conclusion for some of the observations. In other words, 
during the construction of the fuzzy rule base, it is enough to concentrate on the 
cardinal actions; the “filling” rules (rules could be deduced from the others) could 
be deliberately omitted. Thus, compared to the classical fuzzy compositional rule 
of inference, the number of the fuzzy rules needed to be handled during the design 
process could be dramatically reduced. 

The necessity of the complete rule base in many classical fuzzy reasoning 
methods (e.g. max-min CRI) and hence the exponential rule number “explosion” 
in case of increasing the number of the input variables makes numerous rule base 
ideas unimplementable and therefore useless. The application of interpolation-
based fuzzy reasoning methods could provide some implementation chances for 
many of them (see e.g. our simple example in section 3). 
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1 Introduction

The figure of air combat in the future depends heavily on automatic 
systems that will be integrated into the fighter's cockpit. The complexity 
and sophistication of flight automation is the result of these automatic 
systems. While in early days of air combat, pilots had to gather all 
necessary information and data through their senses, nowadays a large 
number of electronic and computer systems help the pilots in data 
acquisition and processing, and the trend is toward more automation of air 
combats. 
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Because of the growing amount of information received by pilots during 
combat tasks and the capabilities of modern fighters, there will be an 
emerging need to systems that help pilots in making decisions or evaluate 
them during an air-to-air engagement [1,2]. The technology improvements 
will further make possible the realization of unmanned air vehicles (UAV). 
Thus, complete automation of pilot's actions will be required in near 
future.

This work might finally help the study for automation of maneuvering 
decisions in an air-to-air combat. The resulting system can be used in 
unmanned air fighters as well as flight training simulators. 

Development of fuzzy guidance law for planar maneuvers has been also 
done by the authors using an approach to mimic the human operator’s 
performance [15,16]. This paper is an extension of that research to include 
a three-dimensional maneuvering task. 

The literature on the subject is not so vast. Two approaches to the 
problem of maneuvering automation could obviously be recognized. The 
first approach relies heavily on optimization theory especially differential 
game theory. The research on this line was triggered mainly by the work of 
Isaacs [3] on differential game theory. The theory -since its main purpose 
is to deal with conflict tasks- has been widely used for combat modeling. 
The theory provides optimal strategies for both pursuer and evader in air 
combat scenarios. The references [4,5,6] used differential game to obtain 
best maneuvers for pursuer and evader in special occasions of air combat. 

The second approach is based on AI and computational intelligence 
methods. This approach mostly leads to expert system structures for the 
decision-making model, which in turn would be a part of a very large and 
complex system. The method usually formalizes the expert's knowledge 
and experiences in some ways and then builds the model from the 
formalization. The structures and formalization methods are quite different 
[7,8,9]. 

While each of the above approaches has their own limitations, the 
optimization approach to the problem suffers from some severe 
drawbacks. The main drawback is that it is very difficult to include 
realistic combat situations in the formulation. To keep the problem 
mathematically tractable and solvable as well, some simplifications are 
necessary; this makes the solution far from what is indeed done in real 
combat situations by experienced pilots. Furthermore, this approach 
seldom pays attention to the structure of the performance criterion that 
models the preferences of a human decision-maker. 

The chapter is organized as follows. Section 2 describes the problem 
under study. The solution method rooted in qualitative knowledge 
discovery is introduced in section 3. This section presents also the 
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structure of the proposed model in details. The simulation results are given
in Section 4. Finally, Section 5 concludes the paper.

Here we consider the situation shown in Fig.2.1. Two aircrafts (P and E)
are engaged in a pursuer-evader combat task. The initial position is such
that one of them (P) is in an offensive and the other (E) is in a defensive 
position.

Fig. 2.1. Initial Encounter Situation

The aircraft E has a constant speed and can maneuver in the horizontal 
plane. P can move in the three-dimensional space and is further able to 
change its speed. The flight dynamics of both aircrafts are governed by 
point mass equations. The aircraft P has an energy advantage. This
assumption determines the tactics used by human experts. 

The problem is to find a suitable maneuver for aircraft P by which it will
be placed in a shooting position. By shooting position we mean the 
position in which the distance between two aircrafts lies in a range of 
maximum and minimum values and the heading of P is toward E. 

In addition to reaching a suitable position, the maneuver should avoid to 
place the offensive aircraft P in bad positions. A bad position means a 
relative position of the two aircrafts that allows the offensive aircraft E to 
gain enough advantage to turn to an offensive or a threatening position.
For simulation purposes, we consider the aircrafts to be simplified
aircrafts.

The point mass model is used to represent aircraft's flight dynamics. The 
equations of motion are as follows [10]:

sin cossin , , ( cos )
sin

T D L g L
V g

m mV V mg
, (2.1a)

173Fuzzy Modeling of Offensive Maneuvers in an Air-to-Air Combat

2 The Problem Statement



cos cos , cos sin , sinx V y V z V (2.1b)

In the above, V is the aircraft speed, T, , L are thrust, bank angle and
lift respectively, D is drag, m is the mass and (x, y, z) are the position 
vector of the aircraft,  is the heading angle (the angle between velocity 
vector and horizontal plane) and  is the pitch angle. 

The method used in this research for deriving the rule bases is rooted in 
qualitative knowledge discovery breifly discussed below.

3.1 Qualitative Knowledge Discovery

The main goal here is to extract the rules governing pilot's decisions 
(maneuvers) from a set of varying, contradicting, uncertain and vague 
information obtained through questioning individual fighter pilots about 
their actions when they faced special situations in a dogfight combat. The
approach consists of two steps. In the first step the aforementioned
knowledge through a process will be converted to a fuzzy rule base. The 
main problem in this step is to specify inputs and outputs of the rule-bases 
as well as the rules relating the inputs to outputs.

In the second step, the membership functions or in other words fuzzy 
sets that cluster each input and output in the rule base shall be computed.
The fuzzy sets are arbitrarily assumed trapezoidal and triangular.
Therefore, the problem is reduced to computing the boundary and corners 
of each membership function. The second step is resolved through 
extensive simulations described in detail in the following sections. 

3.2 The Model Development

Here, we use the approach based on artificial intelligence methods. To
relate the suitable maneuver or action to combat situation, the human
expert's reaction to the situation is used. The knowledge about these 
reactions is obtained through some fighter training books and manuals
[11,12] as well as through interviews with human experts. Then, the 
reaction is represented as fuzzy if … then … rules. The block diagram of
figure 2 shows the basic structure of our model.
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3.2.1 Fuzzy Rule Bases

These are the main parts of the model. As stated above these fuzzy rule
bases have been derived from expert's knowledge. The main feature of 
these rule bases is that their outputs are not control inputs imposed to the 
fighter (like the regular guidance laws). But, according to the decision 
process of the expert, the outputs of the rule bases are the desired values of 
heading angle, pitch angle and velocity in the next time step. 

Fig. 3.1 Block Diagram of the Model

To facilitate the derivation of the rule bases and according to the expert's 
action, it is supposed that the desired heading and pitch angles are 
determined independently. It means that evaluation of parameters may be
done independently for vertical and horizontal components of each
maneuver. This results in two separate groups of rule bases. The first 
group will determine the desired heading while the second will determine
the desired pitch angle. 

Furthermore, it is supposed that each vertical maneuver shall be divided 
into two sub-maneuvers: climb and dive.  The experienced pilot applies the 
climb part of the maneuver in order to decrease speed, closure rate and
turn radius in the horizontal plane. The dive part is the final phase of the
maneuver in which the pilot dives back to the plane of opponent's turn
toward a shooting position. Each of these parts has their own rule base:
Climb and Dive Rule base.

Inputs to the Climb rule base are distance in the horizontal plane, z-
distance, and the pursuer to evader velocity ratio. A sample of the rules is 
shown below:
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if xy distance is vs and altitude-difference is nm and vptovr
is one then gama is almost 45.

The Climb rule base includes 75 rules. The membership functions are 
arbitrarily chosen as triangular and trapezoidal. The membership function
parameters have been derived experimentally through a large amount of 
simulations.

Inputs to the Dive rule base are the x-distance and y-distance. A sample
of the rules is shown below:

if altitude-difference/distance is nvb then gama is near
vertical.

This rule base has 7 rules. Thus, three rule bases are involved in 
determining the desired heading and pitch angles for aircraft P in each time
step.

The third rule base determines the desired pitch angle in each instant of 
the maneuver. 

3.2.2 The Interpreter

Knowing that the outputs of the rule bases are either desired values or 
commands, it is necessary to convert these commands to physical inputs of
the aircraft's dynamics (e.g. thrust, lift and bank angle). These parameters
can be found through the following optimization problem:

222
des ))(())(()-t)(t(

L,T,
min desdes VttVtt (3.1)

To make it simpler, the assumption "The (specific) energy of the P 
remains constant" is made; this is natural for an aircraft with an energy
advantage. This assumption makes sense because the energy advantage is
crucial in a combat and thus the aircraft with a greater energy tries to
maintain its energy level. By this assumption the value for thrust will be 
obtained as follows:

cte
g

V
HcteES 2

2
(3.2)

Take the derivative of (3.2) to obtain 

g

VV
H

g

VV
H 0

2
2 . (3.3)
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From point mass equations (Eqs. 2.1), we may write 

sinVH . (3.4)

This leads to 

sinsin gV
g

VV
V .

(3.5)

Again from the point mass equations, we may write 

sing
M

DT
V . (3.6)

And finally from equations 3.5 and 3.6, we obtain 

DTDT 0 . (3.7)

Hence, the optimization problem of Eq.3.1 reduces to the following one: 
22

L,
min desdes tttt (3.8)

Due to the fact that point mass equations relate  and  to L and  and 
they are able to solve the above minimization problem, it is necessary to
rewrite it in terms of the derivatives of  and . It is straightforward to 
show that the following minimization problem is equivalent to the one 
given in Eq. 3.8.

22

L,
))(()-)((min desdes tt (3.9)

des  and des  can be approximately computed from des  and des .This
optimization problem is subjected to some restrictions on L and . The
structural limits of the P imposes an upper bound on L, however a more
restrictive upper bound is forced by the assumption of the aforementined
constant energy . To derive this upper bound, we should note that any
aircraft could produce a limited thrust. This and Eq.3.7 will impose an 
upper bound on the drag, maxmax TD .

Knowing that Lift and drag are related through the following equation
[11],

SV

kLV
SCD D 2

22

0
2

2
(3.10)

the upper bound of L will be found as: 
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Hence, The optimization problem will then be of the following form:

2
max

222 coscos.

,
L,
min

LmgmVmVLts

Lf
(3.12)

where,
22, desdesLf (3.13)

Use the point mass equations (Eq.2.1) in (4.13) to obtain
22

coscos
cos

sin, desdes V

g

mV

L

mV

L
Lf . (3.14)

By solving the minimization problem (Eq.3.12), the values for control
parameters (L, ) will be easily determined.

3.2.3 The Rule Base Selector

As it was stated earlier, each maneuver is divided into two climb and dive 
phases:. Determination of the active phase in each time step is done in the 
rule-base-selector block. A Rule base selector is itself a fuzzy rule base 
obtained from an expert's knowledge. The inputs of this rule base are the
closure rate, distance in the horizontal plane, altitude difference and off 
angle (angle between the velocity vector of P and the Line-Of-Sight).

In the basic model given in sections 3.2.1 to 3.2.2 an implicit
assumption in computing the control parameters of the aircraft was made. 
To elaborate this assumption, we take another look at the minimization
problem as follows: 

-,LL.
L,
min

max

22

ts

desdes

(3.15)

It could be obviously seen that there was no distinction in how to vary
and . In the other words, no matter what the combat situation is, the errors 
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in heading and in pitch angles have the same weight. But it is not true in a 
real combat. In fact, there is always a degree of importance between them.

As the dynamics of the aircraft will not allow the pitch and heading 
angles to change arbitrarily, the pilot in any instant of the maneuver
decides which of the two,  and  is more important to modify. Therefore,
to satisfy this concern in our model, the minimization problem is modified
as follows. 

-,

)w(
L,
min

max

22

LL

desdes

(3.16)

In the above w is the weighting factor and shows the relative importance of 
heading and pitch changes. A big w indicates the importance of pitch angle 
variations while small values of w give more weights on heading angle 
variations.

The solution to the minimization problem of Eq.3.16 is found by
numerical methods.The only remaining point is how to calculate a proper 
w in each combat situation. Again, the expert knowledge and qualitative 
knowledge discovery provide us the general insight to develop the proper
method to solve the problem. The result of the process is a fuzzy rule base 
with two inputs- lead angle and distance. The lead angle is the angle 
between the velocity vector and the line of sight. The rule base has 6 rules 
relating these inputs to the linguistic variables (fuzzy term sets) of w. It is 
supposed that w varies between 0.5 and 2.5. A sample rule is as follows: 

If lead-angle is about 45 and distance is sma ll then w is small

This means that if we are near the opponent while heading almost toward
it, it is better to change our heading angle and moves vertically.

This section is devoted to show and compare the performance of the basic
and modified models. To do so, many simulations have been performed
with the following flight parameters chosen for P and E.

Tmax=100000N, m=10000kg, Cd0=0.0169, k=0.179, s=26 , =0.8,
Vp=200 m/sec, Ve=120 m/sec.

2m

Simulation results show the capability of the proposed model to produce 
maneuvers leading to a combat superiority against maneuvering and non-
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maneuvering opponents. The resulting maneuvers are shown in Figs. 4.1, 
and 4.2, respectively for the basic and modified models. In these cases the 
aircraft E performed in-plane maneuver turning toward P to increase off-
angle. This maneuver is a typical one for the aircraft with energy (speed) 
disadvantage. The control parameters of aircraft P are shown in Fig. 4.3. 
The control parameters are of Bang-Bang nature that is in line with the 
experiences from real combats and indicates the near-optimality of the 
models. 

The maneuver of Fig. 4.4 shows a great resemblance to the classic Lag-
roll maneuver and indicates the capability of the model to generate 
maneuvers of real combats. 

Fig. 4.5 shows the flight path for the modified model when the 
measurements of the opponent’s position were noisy. The noise level was 
10% of the distance between P and E. 

To measure the efficiency of the models in different situations, a total of 
216 initial positions were tested for the model; 6 test points for the initial 
position of the pursuer aircraft P and for each of these points, 36 initial 
heading angles were considered. Without loss of generality, it was 
supposed that the aircraft E was initially at the location (500,0,1000). For 
the basic model, the rate of capture when the evader aircraft E doesn't 
change its flight path is 100% while a capture rate of near 80% obtained 
for a maneuvering aircraft E. Using the modified model, a small increase 
in capture rate was observed for E. 

6 Conclusion

In this chapter, an AI based model has been presented mainly using fuzzy 
set theory to model the maneuvering in a human like pursuer-evader 
combat automation problem. In this regard, the theory of fuzzy set allows 
us to simply and efficiently employ the expert's knowledge. The simulation 
results show a good and human-like performance of the proposed model. 
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Fig. 4.1.Flight path produced by the basic model against a maneuvering opponent

Fig. 4.2.Flight path produced by the modified model against the maneuvering
opponent
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Fig. 4.3.Thrust, Lift and bank angle variation of  the aircraft P during a maneuver
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Fig. 4.4. Classic high Yo-Yo maneuver produced by the proposed model

Fig. 4.5. Flight path in a noisy environment
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A fuzzy approximation method called fuzzy transforms for approxima
of continuous function is presented in this paper. It is shown how can be fuzzy
transforms naturally generalized for functions with more variables. A fuzzy function
as an approximated mapping is considered. This leads to an extension of fuzzy trans-
forms for fuzzy function as well as to an extension of generalized fuzzy transforms
for fuzzy functions with more variables. It is shown how the proposed method can
be used as so called learning to obtain a fuzzy rule base for fuzzy control.

Key words: Fuzzy sets, Approximation, Fuzzy approximation, Fuzzy trans-
forms, Normal forms, Fuzzy control

1 Introduction

Fuzzy transforms (in short F-transforms) have been already several times
introduced in a number of publications. Perfilieva I. presented this technique
of approximate representation of continuous functions in [4], its application to
numeric methods of integrations and solution of ordinary differential equations
in [1, 2]. Another application has been published in [6].

The main idea consists in the replacement of an continuous function
on a real closed interval by its discrete representation (using the direct F-
transform). Afterwards, the discrete representation is transformed back to
the space of continuous functions (using the inverse F-transform). The result,
obtained by applying both F-transforms is a good simplified approximation
of an original function.

In fuzzy control we work with imprecise data and a crisp function describ-
ing some proces is described by a fuzzy relation. And any fuzzy relation can
be viewed as a fuzzy function. This leads to an idea to extend the method of
F-transforms for fuzzy functions to be able to apply it in fuzzy control.

ˇ
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2 Fuzzy Transforms

This section is devoted to Fuzzy transforms - fuzzy approximation method,
first published by Perfilieva I. and Chaldeeva E. in [4]. This technique belongs
to the area called numerical methods on the basis of fuzzy approximation
models. An interval [a, b] of real numbers will be considered as a common
domain of all functions in this section.

Definition 1. Let xi = a + h(i − 1) be nodes on [a, b] where h = (b − a)(n −
1), n ≥ 2 and i = 1, ..., n. We say that functions A1(x), . . . An(x) defined on
[a, b] are basic functions if each of them fulfills the following conditions:

• Ai : [a, b] → [0, 1], Ai(xi) = 1,
• Ai(x) = 0 if x �∈ (xi−1, xi+1) where x0 = a, xn+1 = b,
• Ai(x) is continuous,
• Ai(x) strictly increases on [xi−1, xi] and strictly decreases on [xi, xi+1],
• ∑n

i=1 Ai(x) = 1, for all x,
• Ai(xi − x) = Ai(xi + x), for all x ∈ [0, h], i = 2, . . . , n − 1, n > 2,
• Ai+1(x) = Ai(x − h), for all x, i = 2, . . . , n − 2, n > 2.

We can say that functions Ai(x) determine a fuzzy partition of real interval
[a, b].

The technique of fuzzy transforms is based on two transforms - the direct
one and the inverse one. The direct fuzzy transform is a mapping which maps
continuous functions on [a, b] into the space of real vectors. The inverse F-
transform maps a real vector back to the space of continuous functions. We
repeat definitions given in [4].

Definition 2. 1. Let f(x) be arbitrary continuous function on [a, b] and
A1, . . . , An basic functions determining a fuzzy partition of [a, b]. We say
that an n-tuple of real numbers [F1, . . . Fn] is the direct F-transform of f
with respect to A1, . . . , An if

Fi =

∫ b

a
f(x)Ai(x)dx∫ b

a
Ai(x)dx

. (1)

2. Let f(x) be a function known at nodes x1, . . . xr ∈ [a, b] and A1, . . . , An

basic functions determining a fuzzy partition of [a, b]. We say that an n-
tuple of real numbers [F1, . . . Fn] is the direct F-transform of f with respect
to A1, . . . , An if

Fi =

∫ b

a
f(x)Ai(x)dx∫ b

a
Ai(x)dx

. (2)
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Remark: When the basic functions are fixed we denote the direct F-transform
of f by F [f ] and write F [f ] = [F1, . . . Fn].

Definition 3. Let F [f ] = [F1, . . . , Fn] be a direct F-transform of a function
f(x) with respect to A1(x), . . . , An(x). The function

fF
n (x) =

n∑
i=1

FiAi(x) (3)

will be called an inverse F-transform.

Function fF
n given by (3) may be considered as an approximation of func-

tion f(x). It has been proved (See e.g. [4],[2]) that the sequence of such ap-
proximations given by the inverse F-transforms uniformly converges to the
original function.

Moreover, it has been shown that components F1, ..., Fn given by (2), min-
imize the following piecewise integral least square criterion

Ψ(c1, ..., cn) =
∫ b

a

(
n∑

i=1

(f(x) − ci)2Ai(x)

)
dx (4)

and therefore determine the best approximation of f(x) in the following class
of approximating functions:

n∑
i=1

ciAi(x), (5)

where c1, ..., cn are arbitrary real coefficients.
It is worth to mention, that a natural generalization of F-transforms for

functions with two and more variables has been done in [7]. This generalization
preserves all properties and is based on the following idea.

For simplicity, let us consider a function f(x, y) with two variables which
is continuous on [a, b] × [c, d]. At first, we choose basic functions A1, ..., An

determining a fuzzy partition of [a, b] and analogously B1, ..., Bm determining
a fuzzy partition of [c, d].Then, formulas for the direct F-transform and the
inverse F-transform are as follows:

Fij =

∫ d

c

∫ b

a
f(x, y)Ai(x)Bj(y)dxdy∫ d

c

∫ b

a
Ai(x)Bj(y)dxdy

, (6)

fF
n,m(x, y) =

n∑
i=1

m∑
j=1

FijAi(x)Bj(y), (7)

respectively.
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3 Extension for Fuzzy Functions

In fuzzy control, we work with an imprecise data in fuzzy control and a crisp
control function f : X → Y is described by a binary fuzzy relation Φ :
X × Y → [0, 1] where X, Y are closed real intervals.

Any binary fuzzy relation can be viewed as a mapping (fuzzy function)

Φ : X → [0, 1]Y , (8)

which assigns a fuzzy set Φ(x) on Y to each node on x ∈ X.
It is a natural idea to extend the technique of F-transforms for approximate

representation of control functions to be able to use it in fuzzy control.
At first, let us put some requirements on fuzzy function Φ. We restrict the

usage of extended F-transforms only for fuzzy functions with “some” conti-
nuity and convexity.

Definition 4. Let Φ : X × Y → [0, 1] be a fuzzy function where X, Y are
closed real intervals. Moreover, let Φ(x) be a convex fuzzy set for all x ∈ X.
Then Φ will be called α-continuous if for all α ∈ [0, 1] : ϕ+

α (x) and ϕ−
α (x) are

continuous on X where

ϕ+
α (x) =

∨
y∈Y

{y | y ∈ Φ(x)α} (9)

ϕ−
α (x) =

∧
y∈Y

{y | y ∈ Φ(x)α}. (10)

Moreover, if Φ(x) is a fuzzy set with one-element kernel for all x ∈ X then
ϕ+

1 (x) = ϕ−
1 (x) and we write only ϕ(x).

Applying Zadeh’s extensional principal we obtain the following formula
for components of extended fuzzy transforms.

Definition 5. Let Φ : X → [0, 1]Y be an α-continuous fuzzy function and
A1(x), . . . , An(x) basic functions forming fuzzy partition of X. We say that
n-tuple of fuzzy sets [F1(y), . . .Fn(y)] on Y is an extended direct F-transform
of Φ with respect to A1(x), . . . , An(x) if

Fi(y) =
∨

ξ∈Y X∫
X

ξ(x)Ai(x)dx∫
X

Ai(x)dx
=y

( ∧
x∈X

Φ(x)(ξ(x))

)
. (11)
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Approximation of Fuzzy Functions by Extended Fuzzy Transforms

Fig. 1. α-continuity of a fuzzy function

Remark: Due to the fact that in Def 5 we require α-continuity of Φ, it is not
necessary to consider all functions ξ ∈ Y X . It is sufficient to consider functions
ξ which are either equal to ϕ+

α (x) or ϕ−
α (x) for some α ∈ [0, 1].

This simplifies the formula (11), and we obtain

Fi(y+) = α where y+ =

∫
X

ϕ+
α (x)Ai(x)dx∫

X
Ai(x)dx

, (12)

Fi(y−) = α where y− =

∫
X

ϕ−
α (x)Ai(x)dx∫

X
Ai(x)dx

. (13)

Fig. 2. α-continuity of a fuzzy function with one-element kernel and additional
smoothness

Below, we suggest two special simplified cases where we require not only
α-continuity, but also some smoothness we additionally require and again one-
element kernel of Φ(x). In the first case, for all α ∈ (0, 1): ϕ+

α (x) = ϕ(x) + ε+
α

and ϕ−
α (x) = ϕ(x) + ε−α where ε+

α , ε−α are real numbers.
From which the following implies (See Figure 2)

y+ =

∫
X

ϕ+
α (x)Ai(x)dx∫

X
Ai(x)dx

=

∫
X

ϕ(x)Ai(x)dx∫
X

Ai(x)dx
+

∫
X

ε+
α Ai(x)dx∫

X
Ai(x)dx

= Fi+ε+
α , (14)
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Fig. 3. α-continuity of a fuzzy function with one-element kernel and additional
symmetry

where Fi =

∫
X

ϕ(x)Ai(x)dx∫
X

Ai(x)dx
.

Similarly, y− = Fi − ε−α .
The second case assumes the same conditions as the first one and moreover,

the symmetry should hold truth which means ε+
α = ε−α (see Figure 3).

Finally, we have to define an extended inverse F-transform to obtain an
approximate representation of the original fuzzy function Φ.

Definition 6. Let F1, . . . ,Fn be an extended direct F-transform of fuzzy func-
tion Φ w.r.t given basic functions A1, . . . , An. Then the fuzzy function

ΦF
n (x)(y) =

n∑
i=1

Fi(y)Ai(x) (15)

is called an extended inverse F-transform.

4 Fuzzy Functions with More Variables

In fuzzy control, we usually meet the situation where control function depends
on more than one variable. That is why we have to generalize extended F-
transforms for fuzzy functions with more variables.

For the simplicity we introduce the case of fuzzy functions with two vari-
ables. Let us be given an α-continuous fuzzy function Φ : U × V → Y where
U, V, Y are closed real intervals.

The extension is constructed in the same way as in the case of fuzzy
functions with one variable. Having in mind the generalization of F-transform
for functions with more variables presented in [7], we construct basic functions
A1, . . . , An and B1, . . . , Bm determining fuzzy partitions of U, V , respectively.
Then, we obtain the following formula
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Fij(y) =
∨

ξ∈Y U×V∫
V

∫
U

ξ(u,v)Ai(u)Bj(v)dudv∫
V

∫
U

Ai(u)Bj(v)dudv
=y

⎛⎝ ∧
(u,v)∈U×V

Φ(u, v)(ξ(u, v))

⎞⎠ , (16)

for the extended direct F-transform of Φ(u, v).
For the extended inverse F-transform of Φ(u, v) we use the following for-

mula

ΦF
n,m(u, v)(y) =

n∑
i=1

m∑
j=1

Fij(y)Ai(u)Bj(v). (17)

5 Data-Based Model

As we have mentioned above and it is published e.g. in [1] it is possible to
construct approximate representation of the original function given by the
inverse F-transform even if we do not have the full knowledge of the original
function. Suppose that f is known at some nodes x1, . . . , xr.

This can be viewed as a data-based model with data (xk, f(xk)) where
k = 1, . . . , r. Then we compute the direct F-transform as follows

Fi =
∑r

k=1 f(xk)Ai(xk)∑r
k=1 Ai(xk)

. (18)

Similarly, we can construct the extended F-transforms based on given data.
Let us be given the following sequence of ordered pairs (xk, Φ(xk)) where
k = 1, . . . , r and Φ(xk) is a fuzzy set on Y . Moreover, let A1(x), . . . , An(x) be
basic functions determining a fuzzy partition. In that case we construct the
extended direct F-transform as follows

Fi(y) =
∑r

k=1 Φ(xk)(y)Ai(xk)∑r
k=1 Ai(xk)

. (19)

Of course, the extended inverse F-transform is defined in the same way as
formula (15).

Analogously, we construct data-based model for approximation of fuzzy
function with more variables. For the case n = 2 and data (uk, vl, Φ(uk, vl)),
k = 1, . . . , r and l = 1, . . . s, we continue as follows

Fij(y) =
∑r

k=1

∑s
l=1 Φ(uk, vl)(y)Ai(uk)Bj(vl)∑r
k=1

∑s
l=1 Ai(uk)Bj(vl)

. (20)

Let us stress, that data where uk, vl are real numbers and Φ(uk, vl) are
fuzzy sets are quite natural. These data may be obtained by questioning some
expert. For example in fuzzy control of a dynamic robot we know distance E
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between the robot and the wall at each moment and we know its derivation dE.
We ask some expert about control action. Answer could be either a linguistic
expression or a fuzzy number.

Because of this, we obtain the following n × m fuzzy rules

IF E is Ai AND dE is Bj THEN y is Fij (21)

comprising a fuzzy rule base for fuzzy control of a dynamic robot. This implies
that this method can be used as a learning method.

The model of these IF-THEN rules can be constructed according to for-
mula (17). Due to the choice of basic functions and properties of fuzzy func-
tions, ordinary sums in formula (17) can be replaced by �Lukasiewicz sums.
Moreover, because basic functions can be represented with fuzzy similarity
relation with finite number of fixed, this formula can be taken as an additive
normal form with orthogonal condition. It lies between well known conjunctive
and disjunctive normal forms (see [3], [5]).

6 Conclusions

We have recalled a numerical method on the basis of fuzzy approximating
model called fuzzy transforms. The construction of basic functions (special
fuzzy sets determining a fuzzy partition) has been repeated as well. The
method of fuzzy transforms has been introduced as a universal approximation
method which is possible to use for a (discrete) data-based model.

This method has been successfully extended for fuzzy functions what can
be useful in fuzzy control. Furthermore, a generalized F-transforms for func-
tions with more variables have been similarly extended as well. Moreover, a
discrete case of extended fuzzy transforms as a data-based model has been
introduced. It has been also shown how extended F-transforms can be used
as a learning method.
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ˇ194 M. Stěpnička and S. Lehmke



Approximation of Fuzzy Functions by Extended Fuzzy Transforms
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Fuzzy Control as a General Interpolation
Problem
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The general mathematical problem of fuzzy control is an interpolation
problem: a list of fuzzy input-output data, usually provided by a list of linguis-
tic control rules, should be realized as argument-value pairs for a suitably chosen
fuzzy function. However, contrary to the usual understanding of interpolation, in
the actual approaches this interpolation problem is considered as a global one: one
uniformly and globally defined function should realize all the fuzzy input-output
data.

In standard classes of functions thus this interpolation problem often becomes
unsolvable. Hence it becomes intertwined with an approximation problem which
allows that the given fuzzy input-output data are realized only approximately by
argument-value pairs.

In this context the paper discusses some quite general sufficient conditions for the
true solution of the interpolation problem, as well as similar conditions for suitably
modified data, i.e. for a quite controlled approximation.

1.1 Introduction

The standard paradigm of fuzzy control is that one supposes to have given,
as an incomplete and fuzzy description of a control function Φ from an input
space X to an output space Y, a family

D = (〈Ai, Bi〉)1≤i≤n (1.1)

of (fuzzy) input-output data pairs to characterize this function Φ.
In the usual approaches such a family of input-output data pairs is pro-

vided by a finite list

IF x is Ai THEN y is Bi, i = 1, . . . , n (1.2)

of linguistic control rules, also called fuzzy if-then rules.
� The present work has partly been supported by the German-Czech cooperation

project CZE 01/022 of the BMBF.
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The main mathematical problem of fuzzy control, besides the engineering
problem to get a suitable list of linguistic control rules for the actual control
problem, is therefore the interpolation problem to find a function Φ∗ : F(X) →
F(Y) which interpolates these data, i.e. which satisfies

Φ∗(Ai) = Bi for each i = 1, . . . , n , (1.3)

and which in this way gives a fuzzy representation for the control function Φ.
Actually the standard approach is to look for one single function which

should interpolate all these data, and which should be globally defined over
F(X).

This “global” interpolation problem, presented by such a finite family (1.1)
of input-output data only, in general has different solutions. However, the main
approach toward this global interpolation problem is to search for a solution
in a restricted class IF of functions. And such a restriction of the class of
interpolating functions offers also the possibility that within such a class IF
of interpolating functions the interpolation problem becomes unsolvable.

Interpolation in numerical mathematics for functions f over the reals, i.e.
over a linearly ordered domain, usually is understood as a local representation
of the given data via functions of some predetermined type, e.g. by polyno-
mials, which are supposed to realize some “few” neighboring argument-value
pairs for f . And this means that some such “few” neighboring argument-value
pairs determine the domains of these local representations of the interpolating
function. Contrary to this standard usage, in fuzzy control up to now one has
not discussed any version of a “localized” interpolation approach.

Instead, the global interpolation problem becomes in a natural way in-
tertwined with an approximation problem: one may be interested to look for
a function Ψ∗ ∈ IF which does not really interpolate, but which “realizes”
the given fuzzy input-output data “suitably well”. Such an approximative ap-
proach is completely reasonable if one has in mind that even a true solution
Φ∗ of the interpolation problem (1.3) only gives a fuzzy representation for the
crisp control function Φ.

1.2 Two standard interpolation strategies

More or less the standard theoretical understanding for the design of a fuzzy
controller is the reference to the compositional rule of inference (CRI) first
discussed by Zadeh [10].

A suitable general context for the structure of the corresponding mem-
bership degrees, which at the same time are truth degrees of a corresponding
many-valued logic, is a lattice ordered abelian monoid enriched with a fur-
ther operation �, which is connected with the semigroup operation ∗ by the
adjointness condition

x ∗ z ≤ y iff z ≤ (x � y) .

S. Gottwald198



Fuzzy Control as a General Interpolation Problem

The resulting structure often is called a residuated lattice. Its correspond-
ing formalized language has besides the (idempotent) conjunction ∧ which is
provided by the lattice meet a further (in general not idempotent) “strong”
conjunction &, which has the semigroup operation ∗ as its truth degree func-
tion.

This formalized language may be further enlarged by a suitable class term
notation for fuzzy sets by writing {x ‖ H(x)} to denote that one fuzzy set
A which has as its membership degree A(a) in the point a of the universe of
discourse just the truth degree of the formula H(a).

This context yields for the CRI-based strategy, which was first applied to
a control problem by Mamdani/Assilian [7], the following formulation:

From the data (Ai, Bi) one determines a fuzzy relation R in such a way
that the approximating function Ψ∗

R for Φ∗ becomes “describable” as

Ψ∗
R(A) = A ◦ R = {y ‖ ∃x(A(x) & R(x, y))} , (1.4)

which means, for the membership degrees, the well known definition

Ψ∗
R(A)(y) = sup

x∈X

(
A(x) ∗ R(x, y)

)
.

Of course, the most preferable situation would be that the function Ψ∗
R really

interpolates the given input-output-data.
In general we shall call functions which can, according to (1.4), be repre-

sented by a fuzzy relation R simply CRI-representable.
A closer look at fuzzy control applications shows that one has, besides

this approach via CRI-representable functions and a final application of the
CRI to fuzzy input data, also a competing approach: the method of activation
degrees which first was used by Holmblad/Ostergaard [6] in their fuzzy control
algorithm for a cement kiln.

This method of activation degrees changes the previous CRI-based ap-
proach in the following way:

For each actual input fuzzy set A and each single input-output data pair
(Ak, Bk) one determines a modification B∗

k of the corresponding “local”
output Bk, characterized only by the local data (Ak, Bk) and the actual
input A, and finally aggregates all these modified “local” outputs into one
global output:

Ξ∗(A) =
n⋃

i=1

B∗
i . (1.5)

The particular choice of Holmblad/Ostergaard for B∗
k has been

B∗
k(y) = hgt (A ∩ Ak) · Bk(y) . (1.6)
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In general terms, this modification of the first mentioned approach does not
only offer one particular diverging approach toward the general interpolation
problem, it also indicates that besides those both CRI-related approaches
other ones with different inference and perhaps also with different aggregation
operations could be of interest – as long as they are determined by finite lists
of input-output data (Ai, Bi) and realize mappings from F(X) to F(Y).

This has not been done up to now in sufficient generality. Further on in
this paper we shall present some considerations which point in this direction.

1.3 Some general interpolation strategies

There is the well known distinction between FATI and FITA strategies to
evaluate systems of linguistic control rules w.r.t. arbitrary fuzzy inputs from
F(X).

The core idea of a FITA strategy is that it is a strategy which First Infers
(by reference to the single rules) and Then Aggregates starting from the actual
input information A. Contrary to that, a FATI strategy is a strategy which
First Aggregates (the information in all the rules into one fuzzy relation) and
Then Infers starting from the actual input information A.

From the two standard interpolation strategies of the last section, obvi-
ously (1.4) offers a FATI strategy, and (1.5) provides a FITA strategy.

Both these strategies use the set theoretic union as their aggregation op-
erator. Furthermore, both of them refer to the compositional rule of inference
(CRI) as their core tool of inference.

In general, however, the interpolation operators we intend to consider de-
pend more generally upon some inference operator(s) as well as upon some
aggregation operator.

By an inference operator we mean here simply a mapping from the fuzzy
subsets of the input space to the fuzzy subsets of the output space.2

And an aggregation operator A, as explained e.g. in [1, 2], is a family
(fn)n∈N of operations, each fn an n-ary one, over some partially ordered set
M with a bottom element 0 and a top element 1, such that each operation
fn is non-decreasing, maps the bottom to the bottom: fn(0, . . . ,0) = 0, and
the top to the top: fn(1, . . . ,1) = 1. Such an aggregation operator A =
(fn)n∈N is a commutative one iff each operation fn is commutative. And A
is an associative aggregation operator iff e.g. for n = k + l one always has
fn(a1, . . . , an) = f2(fk(a1, . . . , ak), f l(ak+1, . . . , an)) and in general

fn(a1, . . . , an) = fr(fk1(a1, . . . , ak1), . . . , f
kr (am+1, . . . , an))

for n =
∑r

i=1 ki and m =
∑r−1

i=1 ki.

2 This terminology has its historical roots in the fuzzy control community. There
is no relationship at all with the logical notion of inference intended here.
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Our aggregation operators further on are supposed to be commutative as
well as associative ones.3

If we now consider interpolation operators Φ of FITA-type and interpola-
tion operators Ψ of FATI-type then they have the abstract forms

ΨD(A) = A(θ1(A), . . . , θn(A)) , (1.7)

ΞD(A) = Â(θ1, . . . , θn)(A) . (1.8)

Here we assume that each one of the “local” inference operators θi is deter-
mined by the single input-output pair 〈 Ai, Bi〉. Therefore we occasionally
shall write θ〈 Ai,Bi〉 instead of θi only. And we have to assume that the aggre-
gation operator A operates on fuzzy sets, and that the aggregation operator
Â operates on inference operators.

With this extended notation the formulas (1.7), (1.8) become

ΨD(A) = A(θ〈A1,B1〉(A), . . . , θ〈An,Bn〉(A)) , (1.9)

ΞD(A) = Â(θ〈A1,B1〉, . . . , θ〈An,Bn〉)(A) . (1.10)

Some particular cases of these interpolation procedures have been dis-
cussed in [8]. These authors consider four different cases. First they look at
the FITA-type interpolation

Ψ1
D(A) =

⋂
i

(
A ◦ (Ai � Bi)

)
, (1.11)

using as in [4] the notation Ai � Bi to denote the fuzzy relation with mem-
bership function

(Ai � Bi)(x, y) = Ai(x) � Bi(y) .

Their second example discusses a FATI-type approach given by

Ξ2
D(A) = A ◦

⋂
i

(
(Ai � Bi)

)
, (1.12)

and is thus just the common CRI-based strategy of the S-pseudo-solution,
used in this general form already in [3], cf. also [4].

Their third example is again of FITA-type and determined by

Ψ3
D(A) =

⋂
i

{y ‖ δ(A, Ai) → Bi(y)} , (1.13)

using besides the previously mentioned class term notation for fuzzy sets the
activation degree

δ(A, Ai) =
∧

x∈X

(A(x) → Ai(x)) (1.14)

3 It seems that this is a rather restrictive choice from a theoretical point of view.
However, in all the usual cases these restrictions are satisfied.
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which is a degree of subsethood of the actual input fuzzy set A w.r.t. the i-th
rule input Ai.

And the fourth one is a modification of the third one, determined by

Ψ4
D(A) =

⋂
∅	=J⊆N

{y ‖ δ(A,
⋃
j∈J

Aj) →
⋃
j∈J

Bi(y)} , (1.15)

using N = {1, 2, . . . , n}.

1.4 Stability conditions for the given data

If ΘD is a fuzzy inference operator of one of the types (1.9), (1.10), then the
interpolation property one likes to have realized is that one has

ΘD(Ai) = Bi (1.16)

for all the data pairs 〈Ai, Bi〉. In the particular case that the operator ΘD
is given by (1.4), this is just the problem to solve the system (1.16) of fuzzy
relation equations.

Definition 1 In the present generalized context let us call the property (1.16)
the D-stability of the fuzzy inference operator ΘD.

To find D-stability conditions on this abstract level seems to be rather
difficult in general. However, the restriction to fuzzy inference operators of
FITA-type makes things easier.

It is necessary to have a closer look at the aggregation operator A =
(fn)n∈N involved in (1.7) which operates on F(Y), of course with inclusion
as partial ordering.

Definition 2 Having B, C ∈ F(Y) we say that C is A-negligible w.r.t. B iff
f2(B, C) = f1(B) holds true.

The core idea here is that in any aggregation by A the presence of the fuzzy
set B among the aggregated fuzzy sets makes any presence of C superfluous.

Proposition 1 Consider a fuzzy inference operator of FITA-type

ΨD = A(θ〈A1,B1〉, . . . , θ〈An,Bn〉) .

It is sufficient for the D-stability of ΨD to have

ΦD(Ak) = Bk

that one has θ〈Ak,Bk〉(Ak) = Bk and that for each i �= k the fuzzy set
θ〈Ak,Bk〉(Ai) is A-negligible w.r.t. θ〈Ak,Bk〉(Ak).

The proof follows immediately from the corresponding definitions.
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Corollary 2 It is sufficient for the D-stability of a fuzzy inference operator
ΨD of FITA-type that one has

ΨD(Ai) = Bi for all 1 ≤ i ≤ n

and that always θ〈Ai,Bi〉(Aj) is A-negligible w.r.t. θ〈Ai,Bi〉(Ai).

1.5 Stability conditions for modified data

The combined approximation and interpolation problem, as previously ex-
plained, sheds new light on the standard approaches toward fuzzy control via
CRI-representable functions originating from the works of Mamdani/Assilian
[7] and Sanchez [9] particularly for the case that neither the Mamdani/Assilian
relation RMA, determined by the membership degrees

RMA(x, y) =
n∨

i=1

Ai(x) ∗Bi(y) , (1.17)

nor the Sanchez relation R̂, determined by the membership degrees

R̂(x, y) =
n∧

i=1

(Ai(x) � Bi(y)) , (1.18)

offer a solution for the system of fuzzy relation equations. In any case both
these fuzzy relations determine CRI-representable fuzzy functions which pro-
vide approximate solutions for the interpolation problem.

In other words, the consideration of CRI-representable functions deter-
mined by (1.17) as well as by (1.18) provides two methods for an approximate
solution of the main interpolation problem. As is well known and explained
e.g. in [4], the approximating interpolation function CRI-represented by R̂
always gives a lower approximation, and that one CRI-represented by RMA

gives an upper approximation for normal input data.
Extending these results, in [5] the iterative combination of these meth-

ods has been discussed to get better approximation results. For the iterations
there, always the next iteration step consisted in an application of a prede-
termined one of the two approximation methods to the data family with the
original input data and the real, approximating output data which resulted
from the application of the former approximation method.

A similar iteration idea was also discussed in [8], however restricted always
to the iteration of only one of the approximation methods explained in (1.11),
(1.12), (1.13), and (1.15).

Therefore let us now, in the general context given earlier in this paper,
discuss the problem of D-stability for a modified operator Θ∗

D which is deter-
mined by the kind of iteration of ΘD just explained.
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Let us consider the ΘD-modified data set D∗ given as

D∗ = (〈Ai, ΘD(Ai)〉)1≤i≤n , (1.19)

and define from it the modified fuzzy inference operator Θ∗
D as

Θ∗
D = ΘD∗ . (1.20)

For these modifications, the problem of stability reappears. Of course, the
new situation here is only a particular case of the former. And it becomes a
simpler one in the sense that the stability criteria now refer only to the input
data Ai of the data set D = (〈Ai, Bi〉)1≤i≤n. We give only the adaption of
Corollary 2.

Proposition 3 It is sufficient for the D∗-stability of a fuzzy inference oper-
ator Ψ∗

D of FITA-type that one has

Ψ∗
D(Ai) = ΨD∗(Ai) = ΨD(Ai) for all 1 ≤ i ≤ n

and that always θ〈Ai,ΨD(Ai)〉(Aj) is A-negligible w.r.t. θ〈Ai,ΨD(Ai)〉(Ai).
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1 Prologue: (Fuzzy) Galois Connections and Their
Applications, and the Need for Further Development

Galois connections appear in several areas of mathematics and computer sci-
ence, and their applications. A Galois connection between sets X and Y is
a pair 〈↑, ↓〉 of mappings ↑ assigning subcollections of Y to subcollections of
X, and ↓ assigning subcollections of X to subcollections of Y . By definition,
Galois connections have to satisfy certain conditions. Galois connections can
be interpreted in the following manner: For subcollections A and B of X and
Y , respectively, A↑ is the collection of all elements of Y which are in a certain
relationship to all elements from A, and B↓ is the collection of all elements
of X which are in the relationship to all elements in B. From the very many
examples of Galois connections in mathematics, let us recall the following.
Let X be the set of all logical formulas of a given language, Y be the set of
all structures (interpretations) of the same language. For A ⊆ X and B ⊆ Y ,
let A↑ consist of all structures in which each formula from A is true, let B↓

denote the set of all formulas which are true in each structure from B. Then,
↑ and ↓ is a Galois connection.

As an example of applications of Galois connections, consider the following
example which is the main source of inspiration for the present paper. Let X
and Y denote a set of objects and attributes, respectively, Let I denote the
relationship “to have” between objects and attributes. Then X, Y , and I can
be seen as representing an object-attribute data table (for instance, organisms
as objects, and their properties as attributes). If, for subcollections A of X and
B of Y , A↑ denotes the collection of all attributes shared by all objects from
A, and B↓ denotes the collection of all objects sharing all attributes from B,
then ↑ and ↓ form a Galois connection. These connections form the core of so-
called formal concept analysis (FCA) of object-attribute data, see [18]. Fixed
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points of these connections, i.e. pairs 〈A, B〉 for which A↑ = B and B↓ = A,
are called formal concepts and represent interesting clusters found in the data
table (formal concepts in the above-mentioned table with organisms and their
properties may be mammals, warm-blooded organisms, etc.). Formal concepts
can be partially ordered by subconsept-superconcept hierarchy (a concept can
be more general or more particular than a given concept). For instance, the
concept “mammal” is more general than “dog”. The hierarchically ordered
set of all formal concepts, so-called concept lattice, provide us with a derived
conceptual information hidden in the data. Formal concept analysis can be
thought of as directly formalizing the ideas on what are concepts as developed
by so-called Port-Royal logic [1]. FCA has found applications in several areas
(software engineering, psychology, text classification, reengineering).

Galois connections have been explicitly introduced in [26]. After some sug-
gestions to use Galois connections for data analysis by Birkhoff, the first
systematic paper on data analysis using Galois connections is [3], see also
[4]. Probably the most influential paper in FCA is Wille’s [29] which started
an intensive research on FCA. In basic setting, FCA deals with bivalent at-
tributes, i.e. each object either has (degree 1) or does not have (degree 0) a
given attribute. In order to deal with fuzzy (graded) attributes, FCA has been
generalized in several papers, see e.g. [5, 16, 27]. A fuzzy attribute can apply
to an object to a degree in between 0 and 1 (e.g. 0.3), i.e not only 0 or 1 as
in case of bivalent attributes. Galois connections generalized from the point
of view of fuzzy approach so that they correspond to FCA of data with fuzzy
attributes have been introduced in [6]; fuzzy concept lattices, i.e. fixed points
of fuzzy Galois connections, have been studied in [7, 13].

The main motivation of the present paper stems from [14] where the au-
thors showed a way to reduce the number of formal concepts in FCA with
fuzzy attributes by considering only so-called crisply generated formal con-
cepts. Crisply generated concepts can be considered as natural concepts with
clear interpretation. Moreover, as shown in [14], they can be efficiently gener-
ated (without the need to generate all formal concepts and to test whether a
particular concept is crisply generated). Now, the question is whether crisply
generated formal concepts are fixed points of structures analogous to Galois
connections. The present paper gives a positive answer to this question, and
elaborates more on the presented topic and some related problems.

2 Preliminaries

We pick complete residuated lattices as the structures of truth values. Com-
plete residuated lattices, being introduced in the 1930s in ring theory, were
introduced into the context of fuzzy logic by Goguen [19]. Various logical
calculi were investigated using residuated lattices or particular types of resid-
uated lattices. A thorough information about the role of residuated lattices in
fuzzy logic can be obtained in [20, 21, 25]. Recall that a (complete) residuated
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lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a (com-
plete) lattice with the least element 0 and the greatest element 1, 〈L,⊗, 1〉 is
a commutative monoid (i.e. ⊗ is a commutative and associative binary oper-
ation on L satisfying a⊗ 1 = a), and ⊗, → form an adjoint pair, i.e. a⊗ b ≤ c
if and only if a ≤ b → c is valid for each a, b, c ∈ L. In the following, L denotes
an arbitrary complete residuated lattice (with L being the universe set of
L). All properties of complete residuated lattices used in the sequel are well-
known and can be found e.g. in [11]. Note that particular types of residuated
lattices (distinguishable by identities) include Boolean algebras, Heyting alge-
bras, algebras of Girard’s linear logic, MV-algebras, Gödel algebras, product
algebras, and more generally, BL-algebras (see [21, 23]).

Of particular interest are complete residuated lattices defined on the
real unit interval [0, 1] or on some subchain of [0, 1]. It can be shown (see
e.g. [11]) that L = 〈[0, 1],min, max,⊗,→, 0, 1〉 is a complete residuated
lattice if and only if ⊗ is a left-continuous t-norm and → is defined by
a → b = max{c | a⊗ c ≤ b}. A t-norm is a binary operation on [0, 1]
which is associative, commutative, monotone, and has 1 as its neutral ele-
ment, and hence, captures the basic properties of conjunction. A t-norm is
called left-continuous if, as a real function, it is left-continuous in both ar-
guments. Most commonly used are continuous t-norms, the basic three of
which are �Lukasiewicz t-norm (given by a⊗ b = max(a + b − 1, 0) with the
corresponding residuum a → b = min(1 − a + b, 1)), minimum (also called
Gödel) t-norm (a⊗ b = min(a, b), a → b = 1 if a ≤ b and = b else), and
product t-norm (a⊗ b = a · b, a → b = 1 if a ≤ b and = b/a else). It can be
shown (see e.g. [24]) that each continuous t-norm is composed out of the three
above-mentioned t-norms by a simple construction (ordinal sum). Any finite
subchain of [0, 1] containing both 0 and 1, equipped with restrictions of the
minimum t-norm and its residuum is a complete residuated lattice. Further-
more, the same holds true for any equidistant finite chain {0, 1

n , . . . , n−1
n , 1}

equipped with restrictions of �Lukasiewicz operations. The only residuated
lattice on the two-element chain {0, 1} (with 0 < 1) has the classical conjunc-
tion operation as ⊗ and classical implication operation as →. That is, the
two-element residuated lattice is the two-element Boolean algebra of classical
logic.

A fuzzy set with truth degrees from a complete residuated lattice L (also
simply an L-set) in a universe set X is any mapping A : X → L, A(x) ∈ L
being interpreted as the truth value of “x belongs to A”.

Analogously, an n-ary L-relation on a universe set X is an L-set in the
universe set Xn, e.g. a binary relation R on X is a mapping R : X × X → L. A
singleton is a fuzzy set { a

/
x} for which { a

/
x}(x) = a and { a

/
x}(y) = 0 for

y �= x. A fuzzy set A is called normal if A(x) = 1 for some x ∈ X. For a ∈ L,
the a-cut of a fuzzy set A ∈ LX is the ordinary subset aA = {x ∈ X | A(x) ≥
a} of X. For L-sets A and B in X we define (A ≈ B) =

∧
x∈X(A(x) ↔ B(x))

(degree of equality of A and B) and S (A, B) =
∧

x∈X(A(x) → B(x)) (degree
of subsethood of A in B). Note that ↔ is defined by a ↔ b = (a → b)∧(b → a).
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Clearly, (A ≈ B) = S (A, B) ∧ S (B, A). Furthermore, we write A ⊆ B (A is a
subset of B) if S (A, B) = 1, i.e. for each x ∈ X, A(x) ≤ B(x). A ⊂ B means
A ⊆ B and A �= B. The set of all L-sets in X will be denoted by LX . Note
that the operations of L induce the corresponding operations on LX . For
example, we have intersection

⋂
on LX induced by the infimum

∧
of L by

(
⋂

i∈I Ai)(x) =
∧

i∈I Ai(x), etc. A fuzzy set A in X is called crisp if A(x) = 0
or A(x) = 1 for each x ∈ X. In this case, we write also A ⊆ X since A may
be obviously identified with an ordinary subset of X.

3 Galois Connections with Truth Stressers

3.1 Coming to Galois Connections with Truth Stressers

Fuzzy Galois connections and concept lattices

Let X and Y be sets of objects and attributes, respectively, I be a fuzzy
relation between X and Y . That is, I : X ×Y → L assigns to each x ∈ X and
each y ∈ Y a truth degree I(x, y) ∈ L to which object x has attribute y (L is
a support set of some complete residuated lattice L). The triplet 〈X, Y, I〉 is
called a formal fuzzy context.

For fuzzy sets A ∈ LX and B ∈ LY , consider fuzzy sets A↑ ∈ LY and
B↓ ∈ LX (denoted also A↑I and B↓I ) defined by

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) (1)

and
B↓(x) =

∧
y∈Y

(B(y) → I(x, y)). (2)

Using basic rules of predicate fuzzy logic [11], one can easily see that A↑(y) is
the truth degree of the fact “y is shared by all objects from A” and B↓(x) is
the truth degree of the fact “x has all attributes from B”. Putting

B (X, Y, I) = {〈A, B〉 | A↑ = B, B↓ = A},

B (X, Y, I) is the set of all pairs 〈A, B〉 such that (a) A is the collection of
all objects that have all the attributes of (the intent) B and (b) B is the
collection of all attributes that are shared by all the objects of (the extent) A.
Elements of B (X, Y, I) are called formal concepts of 〈X, Y, I〉; B (X, Y, I) is
called the concept lattice given by 〈X, Y, I〉. Both the extent A and the intent
B of a formal concept 〈A, B〉 are in general fuzzy sets. This corresponds to
the fact that in general, concepts apply to objects and attributes to various
intermediate degrees, not only 0 and 1.

Putting
〈A1, B1〉 ≤ 〈A1, B1〉 iff A1 ⊆ A2(iff B1 ⊇ B2) (3)
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for 〈A1, B1〉, 〈A2, B2〉 ∈ B (X, Y, I), ≤ models the subconcept-superconcept
hierarchy in B (X, Y, I). That is, being more general means to apply to a
larger collection of objects and to cover a smaller collection of attributes.
Characterization of B (X, Y, I) is presented in [13], see also [7, 27].

Given 〈X, Y, I〉, the pair 〈↑, ↓〉 induced by (1) and (2) satisfies the following
natual properties [6]:

S (A1, A2) ≤ S (A↑
2, A

↑
1) (4)

S (B1, B2) ≤ S (B↓
2 , B↓

1) (5)
A ⊆ A↑↓ (6)
B ⊆ B↓↑, (7)

for each A, A1, A2 ∈ LX and B, B1, B2 ∈ LY . A pair 〈↑, ↓〉 satisfying (4)–
(7) is called a fuzzy Galois connection. It was proved in [6] that each fuzzy
Galois connection is induced by some 〈X, Y, I〉 by (1) and (2). Note that fuzzy
Galois connection obey several further properties which are often used, e.g.
A↑ = A↑↓↑ and B↓ = B↓↑↓.

Crisply generated formal concepts

An important problem in FCA is a possible large number of formal concepts
in B (X, Y, I). A way to cope with this problem in case of data with fuzzy
attributes was proposed in [14]. The following are the basics. A formal concept
〈A, B〉 consists of a fuzzy set A and a fuzzy set B such that A↑ = B and
B↓ = A which directly captures the verbal definition of a formal concept
inspired by Port-Royal logic. However, this definition might actually allow
for formal fuzzy concepts which seem not natural. For example, there may
exist a formal fuzzy concept 〈A, B〉 such that for any x ∈ X and y ∈ Y we
have A(x) = 1/2 and B(y) = 1/2. A verbal description of such a concept
is “a concept to which each attribute belongs to degree 1/2”. In general, “a
concept to which each attribute belongs to degree 1/2” might be difficult to
interpret. This is because people expect concepts to be determined by “some
attributes”, i.e. by an ordinary set of attributes. This leads to the following
definition.

Definition 1. A formal fuzzy concept 〈A, B〉 ∈ B (X, Y, I) is called crisply
generated if there is a crisp set Bc ⊆ Y such that A = B↓

c (and thus B = B↓↑
c ).

We say that Bc crisply generates 〈A, B〉.

By Bc (X, Y, I) we denote the collection of all crisply generated formal
concepts in 〈X, Y, I〉, i.e.

Bc (X, Y, I) = {〈A, B〉 ∈ B (X, Y, I) | there is Bc ⊆ Y : A = B↓
c }.

That is, Bc (X, Y, I) = {〈B↓
c , B↓↑

c 〉 | Bc ⊆ Y }.
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For further information on crisply generated fuzzy concepts, demonstration
of the reduction of the number of formal concepts, and an algorithm for listing
all crisply generated concepts we refer to [14].

To better understand the structure of crisply generated concepts and their
further properties, the following question arises:

Is there some “Galois-connection-like” structure behind crisply gen-
erated concepts which plays the role analogous to the role of Galois
connections in FCA?

In the following, we elaborate the basic answer, some partial answers, and
outline some open problems and directions.

3.2 Case One: Galois Connections Behind Crisply Generated
Formal Concepts

Galois connections with truth stressers

First, we provide another view on crisply generated concepts which turns out
to be suitable for our purposes. We will need the notion of a truth stresser.
A truth stresser is a unary function ∗ on the set L of truth degrees with the
following interpretation: For a truth degree a ∈ L, the value a∗ ∈ L is the
degree to which a can be considered as very true. Formally, a truth stresser
on a structure L of truth degrees is a unary function which is required to
satisfy some natural properties, e.g. a∗ ≤ a; a ≤ b implies a∗ ≤ b∗; 1∗ = 1;
a∗ = a∗∗. Functions with properties of truth stressers were used in [28]. In
the context of fuzzy logic, truth stressers go back to [2] and were further
elaborated in [21, 22]. For simplicity and because of our motivation by crisply
generated concepts, we use only a particular type of a truth stresser in the
present paper. Namely, we use what we call a Baaz operator [2] which is a
function ∗ : L → L defined by

a∗ =
{

1 for a = 1
0 for a �= 1. (8)

Throuhgout the rest of the paper, ∗ denotes the Baaz operator (8).
Consider now the mappings  : LX → LY and � : LY → LX resulting

from 〈X, Y, I〉 by
A(y) =

∧
x∈X

(A(x) → I(x, y)) (9)

and
B�(x) =

∧
y∈Y

(B(y)∗ → I(x, y)). (10)
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Remark 1. (1) Note that we have A = A↑ and B� = (B∗)↓ where B∗(y) =
(B(y))∗, and ↑ and ↓ are defined by (1) and (2).

(2) With regard to the interpretation of a truth stresser ∗, B�(x) is the
truth degree of “for each y: if it is very true that y belongs to B then x has
(attribute) y”. The particular meaning depends on the truth stresser ∗. For
Baaz operator (8), this reads “for each y: if y fully belongs to B (i.e., belongs
in degree 1) then x has y”.

(3) Although we do not consider other truth stressers than (8) in this
paper, let us note that another example of a truth stresser is the identity
on L, i.e. a∗ = a. For this choice we clearly have A = A↑ and B� = B↓.
Therefore, fuzzy Galois connections result by a particular choice of a truth
stresser.

The main points we are going to show in the rest of this section are, first,
that crisply generated concepts are exactly fixed points of 〈,�〉, and, second,
that  and � can be defined axiomatically.

Crisply generated concepts as fixed points of 〈,�〉

For ∗ defined by (8) denote by B (X, Y ∗, I) the set of all fixed points of 〈,�〉,
i.e.

B (X, Y ∗, I) = {〈A, B〉 ∈ LX × LY | A = B, B� = A}.
The following theorem shows that B (X, Y ∗, I) are exactly the crisply gener-
ated concepts in 〈X, Y, I〉.

Theorem 1. For a truth stresser ∗ defined by (8), B (X, Y ∗, I) = Bc (X, Y, I).

Proof. “⊆”: If 〈A, B〉 ∈ B (X, Y ∗, I) then A = B and B� = A, i.e. A↑ = B
and B∗↓ = A. From (8) we get that B∗ is crisp (i.e. B∗(y) is 0 or 1 for each
y ∈ Y ). Therefore, 〈A, B〉 ∈ Bc (X, Y, I), by definition.

“⊇”: Let 〈A, B〉 ∈ Bc (X, Y, I), i.e. A↑ = B, B↓ = A, and A = D↓ for some
D ⊆ Y . We need to verify A = B and B� = A, for which it clearly suffices
to check B� = A, i.e. B∗↓ = A. Since A = D↓ and B = B↓↑, we need to

check D↓ = D↓↑∗↓. Now observe that we have D↓ = D∗↓ = D∗↓↑∗↓. Indeed,
the first equality follows from the fact that D is crisp and thus D∗ = D. For

the second equality, D∗↓ ⊆ D∗↓↑∗↓ follows from F ⊆ F ↑∗↓ for F = D∗↓ (easy

to verify), while D∗↓ ⊇ D∗↓↑∗↓ follows from D = D∗, from D∗ ⊆ D∗↓↑, and
from the fact that if E ⊆ F then E∗↓ ⊇ F ∗↓ (just put E = D and F = D∗↓↑).
We showed 〈A, B〉 ∈ B (X, Y ∗, I), finishing the proof.

Galois connections with truth stressers:  and � defined axiomatically

We now turn to the investigation of the properties of  and � with the aim
to provide a simple axiomatic characterization.
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Lemma 1. Let ∗ be defined by (8). Then  and � defined by (9) and (10)
satisfy

S (A, B�) = S (B∗, A) (11)

(
⋃
j∈J

Aj) =
⋂
j∈J

A
j (12)

for every A, Aj ∈ LX and B ∈ LY .

Proof. We have

S (A, B�) =
∧

x∈X

A(x) → (
∧

y∈Y

B∗(y) → I(x, y)) =

=
∧

x∈X

∧
y∈Y

A(x) → (B∗(y) → I(x, y)) =

=
∧

y∈Y

∧
x∈X

B∗(y) → (A(x) → I(x, y)) =

=
∧

y∈Y

B∗(y) → (
∧

x∈X

A(x) → I(x, y)) =

= S (B∗, A),

proving (11). As  = ↑, (12) is a consequence of properties of fuzzy Galois
connections [6].

Definition 2. A pair 〈,�〉 of mappings satisfying (11) and (12) is called a
fuzzy Galois connection with truth stresser ∗.

The following are some consequences of (11).

Lemma 2. If for ∗ defined by (8) mappings  : LX → LY and � : LY → LX

satisfy (11) then

(
⋃
j∈J

Bj
∗)� =

⋂
j∈J

B�
j (13)

B� = B∗� (14)
{ a

/
x}(y) = a → { 1/x}(y) (15)

{ a
/
y}�(x) = a → { 1/y}�(x) (16)

for any B, Bj ∈ LY , x ∈ X, y ∈ Y , a ∈ L.

Proof. We show (13) by showing that S (A, (
⋃

i B∗
i)�) = 1 iff S (A,

⋂
i B∗�

i ) =
1 for each A ∈ LX . First note that using (11) we have

S (A, (
⋃
i

B∗
i)�) = S ((

⋃
i

B∗
i)

∗
, A) = S ((

⋃
i

B∗
i), A).
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As a results, we have S (A, (
⋃

i B∗
i)�) = 1 iff S ((

⋃
i B∗

i), A) = 1 iff for each
i we have B∗

i ⊆ A iff for each i we have S (B∗
i, A

) iff for each i we have
S (A, B�

i ) iff S (A,
⋂

i B�
i ), showing (13).

(14) follows from (13) for |J | = 1.
(15) and (16) follow from b∗ → { a

/
x}(y) = a → { b

/
y}�(x) and

{ 1/x}(y) = { 1/y}�(x) which we now verify. First,

b∗ → { a
/
x}(y) = S ({ b∗/y}, { a

/
x}) = S ({ b

/
y}∗, { a

/
x}) =

= S ({ a
/
x}, { b

/
y}�) = a → { b

/
y}�(x).

Second, { 1/x}(y) = { 1/y}�(x) is a consequence of the first equality for
a = b = 1.

Lemma 3. Let ∗ be defined by (8). Let 〈,�〉 be a fuzzy Galois connection
with ∗. Then there is a fuzzy relation I ∈ LX×Y such that 〈,�〉 = 〈I ,�I 〉
where I and �I are induced by I by (9) and (10).

Proof. Let I be defined by I(x, y) = { 1/x}(y) = { 1/y}�(x). Then using
(15)

A(y) = (
⋃

x∈X

{ A(x)/x})(y) =

= (
⋂

x∈X

{ A(x)/x})(y) =
∧

x∈X

{ A(x)/x}(y) =

=
∧

x∈X

A(x) → { 1/x}(y) =
∧

x∈X

A(x) → I(x, y) = AI (y).

Furthermore, using (13) and (14), and (16) we get

B�(x) = B∗�(x) = (
⋃

y∈Y

{ B∗(y)/y})�(x) =

= (
⋃

y∈Y

{ B(y)/y}∗)�(x) = (
⋂

y∈Y

{ B(y)/y}�)(x) =
∧

y∈Y

{ B(y)/y}�(x) =

=
∧

y∈Y

B∗(y) → { 1/y}�(x) =
∧

y∈Y

B∗(y) → I(x, y) = B�I (x).

The following theorem shows that there is a one-to-one correspondence
between fuzzy Galois connections with ∗ defined by (8).

Theorem 2. Let I ∈ LX×Y be a fuzzy relation, let I and �I be defined by
(9) and (10). Let 〈,�〉 be a fuzzy Galois connection with ∗ defined by (8).
Then

(1) 〈I ,�I 〉 satisfy (11) and (12).
(2) I〈�,�〉 defined as in the proof of Lemma 3 is a fuzzy relation and we have
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(3) 〈,�〉 = 〈I〈�,�〉 ,
�I〈�,�〉 〉 and I = I〈�I ,�I 〉.

Proof. Due to the previous results, it remains to check I = I〈�I ,�I 〉. We have

I〈�I ,�I 〉(x, y) = { 1/x}I (y) =

=
∧

z∈X

{ 1/x}(z) → I(z, y) = I(x, y).

Let us consider conditions (4)–(7). These are the defining conditions for
fuzzy Galois connections. However, for Galois connections with truth stresser
(8), (5) and (7) are not satisfied, as shown by the following example.

Example 1. Take X = {x}, Y = {y}, I(x, y) = 0.3, B1(y) = 1, B2(y) = 0.8,
take L = [0, 1] equipped with the �Lukasiewicz structure, and ∗ defined by (8).
(5): We have 0.8 = S (B1, B2) �≤ S (B�

2 , B�
1 ) = 0.3, a counterexample to (5).

(7): We have B(y) = 0.8 �≤ 0.3 = B�(y), i.e. 〈,�〉 does not satisfy (7).

The next lemma shows properties of Galois connections with ∗ which are
analogous to (4)–(7).

Lemma 4. If a pair 〈,�〉 is a fuzzy Galois connection with ∗ defined by (8)
then

S (A1, A2) ≤ S (A
2 , A

1 ) (17)

S (B1
∗, B2

∗) ≤ S (B�
2 , B�

1 ) (18)
A ⊆ A� (19)
B∗ ⊆ B� (20)

Proof. The assertion follows from the properties of 〈↑, ↓〉, Remark 1 (1), and
from the fact that A↑ ⊆ A (we omit details).

3.3 Case Two, Three, . . . , and Others

Placement of the truth stresser

The particular case of fuzzy Galois connection with a truth stresser ∗ may be
considered just one out of several further possibilities. Namely, the placement
of the truth stresser ∗, inspired by [14] is not the only possible. The aim of
this section is to outline some possibilities with some results. However, due to
the limited scope of the paper, this section is to be considered only a sketch
of a more detailed study which is under preparation and is to be published.

From the epistemic point of view, various placements of truth stressers in
formulas which define  and � lead to various interpretations of concepts. For
instance, the concepts determined by the placement introduced in Section 3.2
can be interpreted as “crisply generated by attributes”. In much the same
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way we can define concepts (i) “crisply generated by objects”, (ii) “crisply
generated by object and atributes”, etc. In general, it seems reasonable to
consider  and � defined by

A(y) =
∧

x∈X

A∗1(x) → I∗2(x, y),

B�(x) =
∧

y∈Y

B∗3(y) → I∗4(x, y),

where ∗1 , . . . , ∗4 are appropriate truth stressers. Taking ∗3 to be the Baaz
operator (8) and taking the identity for ∗1 , ∗2 , ∗4 , we obtain Galois connections
defined studied in Section 3.2.

A problem that offers itself is to take systems of all formal concepts (fixed
points) determined by various placements and study their relationships. The
problem is especially interesting for applications of FCA, because some place-
ments can lead to smaller (and yet natural) sets of formal concepts—this
might be understood as a purely logical way to reduce the size of the result-
ing conceptual structure.

Note first that taking other truth stresser than the identity for ∗2 and ∗4 ,
we lose the possibility to obtain I back from suitable axiomatic properties of
 and �. Suppose for simplicity ∗2 = ∗4 = ∗. Then the same  and � are
clearly induced by any fuzzy relation J for which I∗ = J∗. Therefore, if one
wants to keep the one-to-one relationship between I’s and 〈,�〉, one has to
restrict the attention to fuzzy relations for which I∗ �= J∗ for I �= J (a natural
choice in case of idempotent ∗ seems to be the set {I∗ | I ∈ LX×Y }).

Crisply generated concepts, by attributes, objects, and both

In the following we present some preliminary results for the case when both
∗2 and ∗4 are identities, and ∗1 and ∗3 are either the identity or the Baaz
operator (8). Given a fuzzy context 〈X, Y, I〉, we consider the following subsets
of LX × LY :

B (X, Y ∗, I) = {〈A, B〉 | A↑ = B, B∗↓ = A},
B (X∗, Y, I) = {〈A, B〉 | A∗↑ = B, B↓ = A},

B (X∗, Y ∗, I) = {〈A, B〉 | A∗↑ = B, B∗↓ = A}.

Clearly, the above definition of B (X, Y ∗, I) coincides with that one presented
in Section 3.2. On the verbal level, we can call B (X, Y ∗, I), B (X∗, Y, I), and
B (X∗, Y ∗, I) collections of all formal concepts crisply generated by attributes,
objects, and attributes and objects, respectively.

Theorem 3. For a truth stresser ∗ defined by (8), we have

(i) if 〈A, B〉 ∈ B (X, Y ∗, I) ∩ B (X∗, Y, I) then 〈A, B〉 ∈ B (X∗, Y ∗, I);
(ii) if 〈A, B〉 ∈ B (X∗, Y ∗, I) then

〈A, A↑〉 ∈ B (X, Y ∗, I) and 〈B↓, B〉 ∈ B (X∗, Y, I);
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(iii) |B (X∗, Y ∗, I)| ≤ min(|B (X, Y ∗, I)|, |B (X∗, Y, I)|).

Proof. (i) follows directly by definition.
(ii): Assuming 〈A, B〉 ∈ B (X∗, Y ∗, I), we have A∗↑ = B and B∗↓ = A.

We show that 〈A, A↑〉 ∈ B (X, Y ∗, I). It suffices to check A↑∗↓ = A since
the rest follows easily. The monotony gives A ⊆ A↑↓ ⊆ A↑∗↓. Conversely,
by the idempotency of ∗ we have A↑∗↓ = B∗↓↑∗↓ ⊆ B∗↓ = A, showing that
〈A, A↑〉 ∈ B (X, Y ∗, I). Dually, one can prove 〈B↓, B〉 ∈ B (X∗, Y, I).

(iii) is a consequence of (ii). ��

Note that (iii) of Theorem 3 says that the collection of all concepts crisply
generated by attributes and objects cannot be strictly greater than the col-
lection of all concepts crisply generated by attributes (objects). If ∗ were not
idempotent this property would not hold in general.

Given a fuzzy context 〈X, Y, I〉 and ∗ defined by (8) the formal concepts
contained in B (X∗, Y ∗, I) are in a correspondence with the classical formal
concepts [18] of the crisp formal context 〈X, Y, I∗〉 (recall that crisp L-sets
can be identitifed with the ordinary sets). Denoting the collection of classical
formal concepts of 〈X, Y, I∗〉 by B (X, Y, I∗), we have

Theorem 4. For a truth stresser ∗ defined by (8), we have

(i) if 〈A, B〉 ∈ B (X∗, Y ∗, I) then 〈A∗, B∗〉 ∈ B (X, Y, I∗);
(ii) if 〈C, D〉 ∈ B (X, Y, I∗) then 〈C↑∗↓, D↓∗↑〉 ∈ B (X∗, Y ∗, I).

Proof. First, observe that if A ∈ LX is crisp then A↑∗(y) = 1 iff for any x ∈ X:
if A(x) = 1 then I∗(x, y) = 1. Analogously for crisp B ∈ LY . Hence, we can
identify the ordinary Galois connection induced by 〈X, Y, I∗〉 with 〈↑∗, ↓∗〉.

(i) Let A = B∗↓ and B = A∗↑, i.e. A∗ = B∗↓∗ and B∗ = A∗↑∗ which give
〈A∗, B∗〉 ∈ B (X, Y, I∗).

(ii) For crisp L-sets C ∈ LX and D ∈ LY with 〈C, D〉 ∈ B (X, Y, I∗) we
have C = D↓∗ and D = C↑∗. Thus, C↑∗↓∗↑ = D↓∗↑ and D↓∗↑∗↓ = C↑∗↓,
proving the assertion. ��

Theorem 4 yields that the 1-cuts of concepts contained in B (X∗, Y ∗, I)
are exactly the classical concepts of 〈X, Y, I∗〉 (I∗ itself is an 1-cut of the
original I ∈ LX × LY ). But unlike the concepts in B (X, Y, I∗), the concepts
in B (X∗, Y ∗, I) can contain an additional “fuzzy information” which is lost
when considering the crisp context 〈X, Y, I∗〉.

Automatic generation of statements

The exploration of possible placements of truth stressers bring up the following
aspect: we often construct proofs in which we use inequalities of the form
A... ⊆ A... (and dually for B), where “. . .” stand for sequences of ↑, ↓, and ∗.
Such inequalities themselves are assertions that should be proven. The proofs
of these inequalities are usually purely combinatorial and tedious. On the other
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hand a large “database” of such assertions can provide us with an essential
insight into the modified Galois connections. For this purpose, we designed a
computer program to find the proofs automatically.

For illustration, we present a segment of the assertions, found by the pro-
gram, which is limited only to inequalities B... ⊆ B... whose left and right
side of “⊆” contain at most four symbols and we also skip trivial formulas
like B↓ ⊆ B↓, B↓↑↓ ⊆ B↓, etc. Restricted by this limitation, the program
generated 210 formulas from which 37 were proven (a table follows); for the
remaining 173 ones the engine found a counterexample.

B ⊆ B↓∗↑ B↓ ⊆ B↓↑∗↓ B∗↓↑ ⊆ B↓∗↑ B∗↓↑∗ ⊆ B∗↓∗↑

B ⊆ B↓↑ B↓∗ ⊆ B↓ B∗↓↑∗ ⊆ B↓↑ B∗↓↑∗ ⊆ B↓∗↑∗

B∗ ⊆ B B∗↓∗ ⊆ B∗↓ B↓↑∗ ⊆ B↓∗↑∗ B↓∗↑∗ ⊆ B↓∗↑

B∗ ⊆ B↓↑ B↓∗ ⊆ B∗↓∗ B↓↑∗ ⊆ B↓↑ B↓∗↑↓ ⊆ B∗↓

B∗ ⊆ B∗↓↑ B∗ ⊆ B↓∗↑ B∗↓↑∗ ⊆ B∗↓↑ B↓∗↑↓ ⊆ B↓↑∗↓

B∗ ⊆ B↓↑∗ B↓∗ ⊆ B∗↓ B∗↓∗↑ ⊆ B↓∗↑ B↓∗↑↓ ⊆ B↓

B∗ ⊆ B∗↓↑∗ B↓∗ ⊆ B↓∗↑↓ B∗↓↑∗ ⊆ B↓↑∗ B↓↑∗↓ ⊆ B∗↓

B↓ ⊆ B∗↓ B↓∗ ⊆ B↓↑∗↓ B∗↓↑ ⊆ B∗↓∗↑

B∗ ⊆ B∗↓∗↑ B∗↓↑ ⊆ B↓↑ B↓↑∗ ⊆ B↓∗↑

B∗ ⊆ B↓∗↑∗ B↓↑ ⊆ B↓∗↑ B∗↓↑∗ ⊆ B↓∗↑

A large database of 375 assertions (with the proofs attached) can be
found at http://vychodil.inf.upol.cz/res/devel/aureas. The general
inference engine is still under construction [17] and will be available soon
at the same Internet address.

4 Epilogue: Applications and Further Development

We presented motivations and introductory results on fuzzy Galois connec-
tions with truth stressers. We showed that for Baaz truth stresser, Galois
connections with truth stressers are exactly the “Galois-like-connections” be-
hind the so-called crisply generated formal concepts obtained from object-
attribute data with fuzzy attributes. Let us now demonstrate the reduction of
the number of extracted concepts from the object-attribute data 〈X, Y, I〉—
the main effect of considering B (X, Y ∗, I) (crisply generated concepts) instead
of B (X, Y, I) (all formal concepts).

The following experiment is taken from [14]. The experiment demonstrates
the factor of reduction, i.e. the ratio r = |B (X, Y ∗, I)|/|B (X, Y, I)| (the
smaller, the larger the reduction). Tab. 1 shows the values of r for 10 ex-
periments (columns) run over randomly generated formal contexts 〈X, Y, I〉
(rows) with the number of objects equal to the number of attributes (from 5
to 25 objects/attributes) and with |L| = 11 (11 truth degrees). Moreover, we
show average and dispersion of r. We can see that the dispersion is relatively
low and that r decreases with growing size of data.

The future research is needed in the following directions:
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1 2 3 4 5 6 7 8 9 10 Av Var

5 0,58 0,4 0,38 0,53 0,48 0,38 0,43 0,41 0,48 0,33 0,441 0,0733
6 0,31 0,31 0,38 0,43 0,38 0,32 0,43 0,42 0,36 0,38 0,372 0,0443
7 0,46 0,37 0,31 0,48 0,45 0,27 0,41 0,43 0,4 0,37 0,395 0,0635
8 0,35 0,26 0,32 0,33 0,29 0,3 0,27 0,34 0,3 0,31 0,308 0,0270
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 0,1 0,09 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,097 0,0038
23 0,09 0,11 0,1 0,1 0,1 0,1 0,1 0,09 0,1 0,11 0,099 0,0066
24 0,1 0,09 0,08 0,1 0,09 0,1 0,09 0,09 0,09 0,08 0,090 0,0079
25 0,08 0,07 0,09 0,08 0,09 0,09 0,08 0,07 0,09 0,08 0,081 0,0074

Table 1. Behavior of r (its average Av and dispersion Var) in dependence on size
of input data table (rows; the numbers 5 . . . 25 denote the number of objects, this is
equal to the number of attributes); columns correspond to experiments.

• more detailed investigation of fuzzy Galois connection with truth stressers
with other placement of ∗ than in (9) and (10);

• extension of the results to other truth stressers than (8);
• study of the systems of fixed points of fuzzy Galois connections with truth

stressers (i.e. restricted concept lattices) with various placements of ∗, and
their relationship (e.g. show the analogy/generalization of Wille’s main
theorem of concept lattices [29], see also [13] for fuzzy setting);

• algorithms for generating fixed points, i.e. formal concepts, of Galois con-
nections with truth stressers.

As already demonstrated, better understanding of the presented issues
can enhance the applicablity of formal concept analysis of data with fuzzy
attributes.
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7. Bělohlávek R.: Lattices of fixed points of fuzzy Galois connections. Math. Logic
Quarterly 47,1 (2001), 111–116.
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21. Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
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1 Introduction

The technique of fuzzy transform (F-transform for short) has been introduced
in [6, 5]. It consists of two phases: direct and inverse. We have proved that the
inverse F-transform has good approximation properties and is very simple to
use.

A special interest in this paper is paid to the problem of removing noise
which relates to nonlinear signal processing methods. The latter have devel-
oped rapidly in recent decades to address various problems characterized by
heavy tailed distribution and/or nonstationary statistics. The utilization of
nonlinear methods has also been advanced by the increasing complexity of
multimedia and communication applications, as well as the still increasing
computational power of computers and signal processing hardware. Among
nonlinear methods, filters have been widely used due to their robustness to
outliers and detail preservation characteristics [1, 2]. In fact, the inverse F-
transform can be considered as a special fuzzy identity filter (cf. [3]) which
can be utilized, e.g., in image processing to preserve true image edges. In
this contribution we characterize an additive noise which can be removed by
applying the inverse F-transform to the original function.

2 Fuzzy Partition Of The Universe

We take an interval [a, b] of real numbers as a universe. That is, all (real-
valued) functions considered in this chapter have this interval as a common
domain. Let us introduce fuzzy sets (given by their membership functions)
which are subsets of the universe [a, b] and which form a fuzzy partition of the
universe.
� This paper has been partially supported by grant IAA1187301 of the GA AV ČR.
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Definition 1. Let x1 < . . . < xn be fixed nodes within [a, b], such that x1 = a,
xn = b and n ≥ 2. We say that fuzzy sets A1, . . . , An identified with their mem-
bership functions A1(x), . . . , An(x) defined on [a, b], form a fuzzy partition of
[a, b] if they fulfil the following conditions for k = 1, . . . , n:

1. Ak : [a, b] −→ [0, 1], Ak(xk) = 1,
2. Ak(x) = 0 if x �∈ (xk−1, xk+1),
3. Ak(x) is continuous,
4. Ak(x) monotonically increases on [xk−1, xk] and monotonically decreases

on [xk, xk+1],
5.

∑n

k=1 Ak(x) = 1, for all x ∈ [a, b],

where for the uniformity of denotation, we put x0 = a and xn+1 = b. The
membership functions A1(x), . . . , An(x) are called basic functions.

The following formulas give the formal representation of triangular mem-
bership functions:

A1(x) =

{
1 − (x−x1)

h1
, x ∈ [x1, x2],

0, otherwise,

Ak(x) =

⎧⎪⎨⎪⎩
(x−xk−1)

hk−1
, x ∈ [xk−1, xk],

1 − (x−xk)
hk

, x ∈ [xk, xk+1],
0, otherwise,

An(x) =

{
(x−xn−1)

hn−1
, x ∈ [xn−1, xn],

0, otherwise.

where k = 2, . . . n − 1, and hk = xk+1 − xk.
We say that a fuzzy partition A1(x), . . . , An(x), n > 2, is uniform if the

nodes x1, . . . , xn are equidistant, i.e. xk = a + h(k − 1), k = 1, . . . , n, where
h = (b− a)/(n− 1), and two more properties are fulfilled for k = 2, . . . , n− 1:

6. Ak(xk − x) = Ak(xk + x), for all x ∈ [0, h],
7. Ak(x) = Ak−1(x − h), for all x ∈ [xk, xk+1] and

Ak+1(x) = Ak(x − h), for all x ∈ [xk, xk+1]

In the case of a uniform partition, h is a length of the support of A1 or
An while 2h is the length of the support of the other basic functions Ak,
k = 2, . . . , n− 1. An example of uniform partition by sinusoidal shaped basic
functions is given below:

I. Perfilieva and R. Valášek222
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A1(x) =

{
0.5(cos π

h
(x − x1) + 1), x ∈ [x1, x2],

0, otherwise,

Ak(x) =

{
0.5(cos π

h
(x − xk) + 1), x ∈ [xk−1, xk+1],

0, otherwise,

where k = 2, . . . n − 1, and

An(x) =

{
0.5(cos π

h
(x − xn) + 1), x ∈ [xn−1, xn],

0, otherwise.

The following lemma shows that in the case of a uniform partition, the
definite integral of a basic function does not depend on its concrete shape.
This property will be further used to simplify the direct F-transform.

Lemma 1. Let the uniform partition of [a, b] be given by basic functions
A1(x), . . . , An(x). Then∫ x2

x1

A1(x)dx =
∫ xn

xn−1

An(x)dx =
h

2
, (1)

and for k = 2, . . . , n − 1 ∫ xk+1

xk−1

Ak(x)dx = h (2)

where h is the length of the support of A1.

3 F-transform

In this section, we introduce the technique of two F-transforms: direct and
inverse (see also [6, 5]). The direct F-transform takes the original function
(which should be at least integrable) and converts it into n-dimensional vec-
tor. The inverse F-transform converts the n-dimensional vector into specially
represented function which approximates the original one. The advantage of
the direct F-transform is that it produces a simple and unique representation
of an original function which enables us to use the former instead of the latter
in complex computations. After finishing the computations, the result can be
brought back to the space of ordinary functions by the inverse F-transform.
To be sure that this can be done we need to prove a number of theorems.

3.1 Direct F-transform

The following two definitions introduce the direct F-transform (or fuzzy trans-
form) of a given function.
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Definition 2. Let f(x) be any continuous (real-valued) function on [a, b] and
A1(x), . . . , An(x) be basic functions which form a fuzzy partition of [a, b]. We
say that the n-tuple of real numbers [F1, . . . , Fn] is the direct (integral) F-
transform of f w.r.t. A1, . . . , An if

Fk =

∫ b

a
f(x)Ak(x)dx∫ b

a
Ak(x)dx

(3)

Suppose that the basic functions A1, . . . , An are fixed. Denote the direct
F-transform of f with respect to A1, . . . , An by Fn[f ]. Then according to
Definition 2, we can write

Fn[f ] = [F1, . . . , Fn]. (4)

The elements F1, . . . , Fn are called components of the F-transform. Moreover,
F2, . . . , Fn−1 are regular components and F1, Fn are singular components.

If the partition of [a, b] by A1, . . . , An is uniform then the expression (2)
for components of the direct F-transform may be simplified on the basis of
Lemma 1:

F1 =
2
h

∫ x2

x1

f(x)A1(x)dx, (5)

Fn =
2
h

∫ xn

xn−1

f(x)An(x)dx, (6)

Fk =
1
h

∫ xk+1

xk−1

f(x)Ak(x)dx, k = 2, . . . , n − 1. (7)

It is easy to see that if a fuzzy partition (and therefore, basic functions) is
fixed then the direct F-transform being a mapping from C[a, b] (the set of all
continuous functions on [a, b] ) to R

n is linear, so that

Fn[αf + βg] = αFn[f ] + β Fn[g] (8)

for α, β ∈ R and functions f, g ∈ C[a, b].
The following theorem shows that components of the direct F-transform

are the weighted mean values of the given function where the weights are given
by the basic functions.

Theorem 1. Let f(x) be a continuous function on [a, b] and A1(x), . . . , An(x)
be basic functions which form a fuzzy partition of [a, b]. Then the k-th compo-
nent of the direct F-transform gives minimum to the following function:

Φ(a) =
∫ b

a

(f(x) − a)2Ak(x)dx (9)
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3.2 Inverse F-transform

A reasonable question is the following: can we reconstruct the function by
means of its F-transform? The answer is clear: in general not precisely, because
we are losing information when changing to the direct F-transform. However,
the function which can be reconstructed (by the inverse F-transform) approx-
imates the original one in such a way that a universal convergence can be
established. Moreover, the inverse F-transform fulfils the best approximation
criterion which can be called the piecewise integral least square criterion.

Definition 3. Let Fn[f ] = [F1, . . . , Fn] be the direct integral F-transform of
a function f(x) with respect to A1, . . . , An. Then the function

fF,n(x) =
n∑

k=1

FkAk(x) (10)

is called the inversion formula or the inverse integral F-transform.

The theorem below [6, 5] shows that the inverse integral F-transform fF,n

may approximate the original continuous function f with an arbitrary preci-
sion.

Theorem 2. Let f(x) be any continuous function on [a, b]. Then for any ε >

0 there exist nε and a fuzzy partition A1, . . . , Anε
of [a, b] such that for all

x ∈ [a, b]
|f(x) − fF,nε

(x)| < ε (11)

where fF,nε
is the inverse integral F-transform of f with respect to the fuzzy

partition A1, . . . , Anε
.

4 Removing Noise

In Subsection 3.1, we have claimed that components of the direct F-transform
are the weighted mean values of the given function. As a consequence of this
fact, we suppose that applying both F-transforms (direct and inverse) to a
function, we may remove a certain noise. By this we mean that the inverse
F-transform of a noised function is “almost equal” to the inverse F-transform
of the original function. In this section we investigate which noise can be
removed.

We will consider a noise, represented by a function s(x) and such that
f(x) + s(x) is the representation of the noised function f . We will refer to
this type of a noise as additive noise. On the basis of linearity of the direct
F-transform, this noise can be removed if its regular components of the direct
F-transform are equal to zero. This simple fact is proved in the following
lemma.
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Lemma 2. Let f(x) and s(x) be continuous functions on [a, b] and A1(x), . . .,
An(x), n > 2, be basic functions which form a fuzzy partition of [a, b]. Assume
that the regular components of the direct F-transform of s w.r.t. A1, . . . , An

are equal to zero. Then

fF,n(x) = (f + s)F,n(x), x ∈ [x2, xn−1]

where are the inverse F-transforms of functions f and f + s respectively.

Proof. Let us denote [S1, . . . , Sn] the direct integral F-transform of s with
respect to A1, . . . , An. By the assumption, S2 = · · · = Sn−1 = 0. Then for
arbitrary x ∈ [x2, xn−1]

(f + s)F,n(x) =
n∑

k=1

(Fk + Sk)Ak(x) =
n−1∑
k=2

(Fk + Sk)Ak(x) =

=
n−1∑
k=2

FkAk(x) = fF,n(x).

Let us call an additive noise removable if it fulfils the assumption of
Lemma 2. It is easy to see that a linear combination of removable noises
is also a removable noise. This statement is formulated in the lemma given
below.

Lemma 3. Let A1, . . . , An be a fuzzy partition of interval [a, b] such that h =
(b−a)/(n−1) and n > 2. Let functions s1(x), s2(x), defined on [a, b], represent
a removable noise, i.e.∫ xk+1

xk−1

Ak(x)si(x)dx = 0, for k = 2, . . . , n − 1.

where i = 1, 2. Then for arbitrary reals α, β, the function αs1(x) + βs2(x)
represents a removable noise too, i.e.

xk+1∫
xk−1

Ak(x)(αs1(x) + βs2(x))dx = 0, for k = 2, . . . , n − 1

Below, we describe properties of an additive noise which guarantee that
the noise is removable. Then examples of the removable noise will be given
and illustrated in pictures.

Theorem 3. Let A1, . . . , An be a uniform fuzzy partition of interval [a, b] such
that h = (b − a)/(n − 1) and n > 2. Let moreover, s(x) be a continuous
periodical function with the period 2h and such that

s(xk − x) = −s(xk + x) on interval [xk−1, xk+1]
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where k = 2, . . . , n − 1 and x ≤ h. Then the regular components of the direct
F-transform of s w.r.t. A1, . . . , An are equal to zero, i.e.

xk+1∫
xk−1

Ak(x)s(x)dx = 0, for k = 2, . . . , n − 1.

Proof. Let us fix some k, 2 ≤ k ≤ n − 1. Then

xk+1∫
xk−1

Ak(x)s(x)dx =

xk∫
xk−1

Ak(x)s(x)dx +

xk+1∫
xk

Ak(x)s(x)︸ ︷︷ ︸
x=xk+y

dx =

xk∫
xk−1

Ak(x)(x)dx −

h∫
0

Ak(xk − y)s(xk − y)︸ ︷︷ ︸
Ak(xk+y)s(xk+y)=−Ak(xk−y)s(xk−y)

dy =

xk∫
xk−1

Ak(x)s(x)dx +

xk−1∫
xk

Ak(z)s(z)︸ ︷︷ ︸
z=xk−y

dz =

xk∫
xk−1

Ak(x)s(x)dx −

xk∫
xk−1

Ak(z)s(z)dz = 0.

Theorem 4. Let A1, . . . , An be a uniform fuzzy partition of interval [a, b] such
that h = (b − a)/(n − 1) and n > 2. Let us consider a function s(x) defined
on [a, b] and such that

s(x + h) = s(x), x ∈ [x1, xn−2]

and ∫ x2

x1

s(x)dx = 0

Then the regular components of the direct F-transform of s w.r.t. A1, . . . , An

are equal to zero, i.e.

xk+1∫
xk−1

Ak(x)s(x)dx = 0, k = 2, . . . , n − 1.

Proof. Let us fix some k, 2 ≤ k ≤ n − 1. Then
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xk+1∫
xk−1

Ak(x)s(x)dx =

xk∫
xk−1

Ak(x)s(x)dx +

xk+1∫
xk

Ak(x)s(x)︸ ︷︷ ︸
x=y+h

dx =

xk∫
xk−1

Ak(x)(x)dx +

xk∫
xk−1

Ak(y + h)s(y + h)︸ ︷︷ ︸
Ak(y+h)=Ak−1(y)=1−Ak(y)

dy =

xk∫
xk−1

Ak(x)s(x)dx +

xk∫
xk−1

s(y)dy −

xk∫
xk−1

Ak(x)s(x)dx = 0

Fig. 1. Fuzzy transform of the removable noise s(x) = sin(2x) + 0.6 sin(8x) +
0.3 sin(16x) with zero regular components. Bold line is the inverse F-transform of s.

Remark 1. Let us remark that the properties, guaranteeing that the noise
is removable (see Theorems 3, 4), are fully determined by a uniform fuzzy
partition of interval [a, b]. This means that if we are given a partition then
we can characterize the removable noise. Vice versa, if we are given a noised
function then we can find the partition with respect to which the noise is
removable.

5 Conclusion

We have introduced the technique of direct and inverse F-transforms and
investigated approximating properties of the inverse F-transform. A special
interest has been paid to the problem of removing noise which relates to
nonlinear signal processing methods. We showed that the inverse F-transform
can be considered as a special fuzzy identity filter which can be utilized, e.g.,
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Fig. 2. The upper figure shows the original function f(x) = 10 ∗ e
−(x−π)2 and its

inverse F-transform (bold line). The lower figure shows the noised function f(x) +
s(x) and its inverse F-transform (bold line). The noise s(x) is removable and is
illustrated on Fig. 1. Both inverse F-transforms of f(x) and f(x) + s(x) are equal
up to the first and the last subintervals.

in image processing to preserve true image edges. In the present contribution
we characterized an additive noise which can be removed by applying the
inverse F-transform to an original function.
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1 Introduction

Nowadays, it is not necessary to advocate in favor of systems of fuzzy IF–
THEN rules, because they are widely used in applications of fuzzy set theory
such that fuzzy control, identification of dynamic systems, prediction of dy-
namic systems, decision-making, etc. The reason is in the fact that these
systems can be effectively used as an instrument for representation of con-
tinuous dependencies. Therefore, the continuity property of a model of fuzzy
IF–THEN rules is expected.

In this contribution, we suppose that a system of fuzzy IF–THEN rules is
modelled by a fuzzy relation. Each concrete model (relation) is considered as
an appropriate formal representation of a dependence which is given partially
by a finite set of input-output pairs (joined by IF ... THEN). In order to
use this formal representation in further computations with other than given
inputs, the compositional rule of inference is applied.

Informally speaking, the continuity of a model of fuzzy IF–THEN rules
means that whenever an input fuzzy set is close to a given one (presented on
the left-hand side of the rules), the computed output of the model is close to
the respective fuzzy set presented on the right-hand side of the rules.

In many research papers dealing with modelling of systems of fuzzy IF–
THEN rules, the problem of continuity has been investigated with respect to
a concrete (specially constructed) model. In our contribution, we consider this
problem in general for an arbitrary model.

We show that under certain assumptions about a model of fuzzy IF–THEN
rules, the problem of its continuity is connected with the problem of solvability
� This paper has been partially supported by grants IAA1187301 of the GA AV

ČR, 201/04/1033 of the GA ČR, and by the Deutsche Forschungsgemeinschaft as
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of the respective system of fuzzy relation equations. Theoretical results on the
topic of solvability with necessary and sufficient conditions, and with sufficient
conditions only can be found in [1, 5, 6, 7].

2 Fuzzy Relation as a Model of Fuzzy IF–THEN Rules

By a system of fuzzy IF–THEN rules we mean the following set of formal
expressions:

R1 : IF X is A1 THEN Y is B1

. . . . . . . . . . . . . . . . . . . . . . . . .
Rn : IF X is An THEN Y is Bn

(1)

where Ai ∈ F(X), Bi ∈ F(Y) and F(X), F(Y) are universes of fuzzy subsets
on X, respectively Y.

Let us agree to model this system of fuzzy IF–THEN rules in a class of
fuzzy relations on F(X×Y). To be able to express the relationship between
system (1) and its model, we need to choose an appropriate algebra of opera-
tions over fuzzy subsets. For this purpose, let us choose a complete residuated
lattice on [0, 1]:

L = 〈[0, 1],∨,∧, ∗,→,0,1〉 (2)

with four binary operations and two constants (see [2] for details) extended
by the binary operation ↔ of equivalence:

x ↔ y = (x → y) ∧ (y → x).

Let us remark that in the considered case of a lattice with the support
[0, 1], the monoidal operation ∗ is a left continuous t-norm. Moreover,

F(X) = [0, 1]X and F(Y) = [0, 1]Y.

Saying that a fuzzy relation R ∈ F(X×Y) is a model of fuzzy IF–THEN
rules (and therefore, of a dependence, partially given by them), we specify
how this model can be used in computations.

Definition 1. We say that a fuzzy set B ∈ F(Y) is an output of the (fuzzy)
model R ∈ F(X × Y) given input A ∈ F(X) if

B(y) =
∨

x∈X

(A(x) ∗ R(x, y))

(in short, B = A ◦ R).

Till now, we did not put any restriction on a fuzzy relation which models a
set of fuzzy IF–THEN rules. We are going to do it below, considering different
connections between the original data containing in IF–THEN rules and their
model.
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Definition 2. We say that a model R ∈ F(X × Y) is a safe model of fuzzy
IF–THEN rules (1) if for all i = 1, . . . , n

Ai ◦ R = Bi. (3)

It is easy to see that a model is safe if and only if it gives a solution to
the system of fuzzy relation equations expressed by (3) where the fuzzy sets
Ai and Bi are given by (1). In this point we may refer to different criteria of
solvability (see Introduction) which tell us when we may expect to have a safe
model. We recall the following one to which we will refer later.

Proposition 1. If system (3) is solvable with respect to an unknown fuzzy
relation R then the relation

R̂(x, y) =
n∧

i=1

(Ai(x) → Bi(y)) (4)

is the greatest solution to (3) (see [1, 7]).

Let us also remark that the notion of a safe model has been investigated
under the name correct interpretation [3].

3 Continuity of Model of Fuzzy IF–THEN Rules

The safeness seems to be a natural property of a model of fuzzy IF–THEN
rules. On the other side, it implies a solvability of a corresponding system
of fuzzy relation equations which is a rather strong requirement. We may
try to weaken the property of safeness requiring a continuity of a model of
IF–THEN rules with respect to the given data. This notion is defined in a
restrictive meaning which we explain in the following definition.

Definition 3. A model R ∈ F(X×Y) of fuzzy IF–THEN rules (1) is contin-
uous with respect to the given data {(Ai, Bi)}, i = 1, . . . , n, if for each i and
for each input A ∈ F(X) the following inequality holds true:∧

y∈Y

(Bi(y) ↔ (A ◦ R)(y)) ≥
∧

x∈X

(Ai(x) ↔ A(x)). (5)

By (5), whenever an input fuzzy set A is close to a fuzzy set Ai, presented
on the left-hand side of the rules, the computed output A ◦R of the model R

is close to the respective fuzzy set Bi, presented on the right-hand side of the
rules. Comparing to the property of safeness, continuity with respect to the
given data is weaker because we replace the strict equality in (3) by the fuzzy
equivalence in (5). Nevertheless, the safeness and continuity properties of a
model of IF–THEN rules turn out to be equal. This is proved in the following
theorem and its corollary.
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Theorem 1. Let R ∈ F(X × Y) be a model of fuzzy IF–THEN rules (1).
Then for any A ∈ F(X) and all y ∈ Y it is true that

Bi(y) ↔ (A ◦ R)(y) ≥ δi(y) ∗
∧

x∈X

(Ai(x) ↔ A(x)) (6)

where
δi(y) = Bi(y) ↔ (Ai ◦ R)(y)

is the degree of solvability (cf. [1]) of the i-th rule of the system (3).

Proof. Let R ∈ F(X × Y) be a fuzzy relation and A ∈ F(X) a fuzzy set.
Denote

B = A ◦ R (7)

and observe, that B ∈ F(Y). By transitivity of operation ↔, we obtain

B ↔ Bi ≥ (B ↔ (A ◦ R̂)) ∗ ((A ◦ R̂) ↔ (Ai ◦ R̂)) ∗ ((Ai ◦ R̂) ↔ Bi) (8)

where i ∈ {1, . . . , n} and R̂ is given in (4). Let us estimate each of three
multiplicands in the right-hand side of (8).

By (7), the first one is equal to 1:

(B ↔ (A ◦ R̂)) ≡ 1.

The second one may be estimated from below for arbitrary y ∈ Y as follows:

(A◦ R̂)(y) ↔ (Ai ◦ R̂)(y) = (
∨

x∈X

(A(x)∗ R̂(x, y))) ↔
∨

x∈X

(Ai(x)∗ R̂(x, y)) ≥

∧
x∈X

(A(x) ∗ R̂(x, y) ↔ Ai(x) ∗ R̂(x, y)) ≥
∧

x∈X

(A(x) ↔ Ai(x)).

Here, we used the facts∧
i∈I

(ai ↔ bi) ≤ (
∨
i∈I

ai ↔
∨
i∈I

bi)

and
(a ↔ b) ∗ (c ↔ d) ≤ (a ∗ c ↔ b ∗ d)

that are valid in any complete residuated lattice and, therefore, in a complete
BL-algebra as its particular case.

The third multiplicand

(Ai ◦ R̂)(y) ↔ Bi(y)

is equal to δi(y). Summarizing all three estimations, we come to the conclusion
of the theorem.
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Theorem 1 estimates a deviation (via equivalence) of a computed output
of a model from the known one given on the right-hand side of the rules. The
estimation uses the deviation between the respective inputs (again expressed
via equivalence) and the so called degree of solvability of the i-th rule of the
system (3. Taking into account that the system (3) is solvable if and only if
δi(y) = 1 for all i = 1, . . . , n and for all y ∈ Y, we easily obtain the following
corollary.

Corollary 1. The model R ∈ F(X × Y) is a safe model of fuzzy IF–THEN
rules (1) if and only if it is continuous.

Proof. ⇒ Suppose that R ∈ F(X × Y) is a safe model of fuzzy IF–THEN
rules (1), then R solves the system (3) and therefore, δi(y) = 1 for all i =
1, . . . , n and for all y ∈ Y. By (6), R is continuous.

⇐ Suppose that R ∈ F(X × Y) is a continuous model of (1) so that
(5) holds for each i = 1, . . . , n and for each A ∈ F(X). Let us take some
i ∈ {1, . . . , n} and apply (5) for A = Ai. We obtain∧

y∈Y

(Bi(y) ↔ (Ai ◦ R)(y)) ≥ 1

which implies that
Bi(y) ↔ (Ai ◦ R)(y) = 1

for each y ∈ Y.
Therefore, R solves the system (3) and is safe by the definition.

It is worth noticing that besides the equivalence between safeness and
continuity, Corollary 1 establishes the new criterion of solvability of a system
of fuzzy relation equations.

4 Conclusion

We have contributed to the problem of modelling of fuzzy IF–THEN rules.
Two new notions, namely a safe model of fuzzy IF–THEN rules and a contin-
uous model of fuzzy IF–THEN rules with respect to a given data have been
introduced. Both notions characterize a model of fuzzy IF–THEN rules from
the point of view of its further utilization in a computation of an output value
for some arbitrary input.

We have connected the problem of constructing of a safe model of fuzzy
IF–THEN rules with the problem of solvability of the respective system of
fuzzy relation equations. We showed that in the case of unsolvable system,
its degree of solvability stands as a coefficient in the characteristic inequality
of a continuity. Therefore, the decrease of a degree of solvability causes the
proportional break of continuity. This means that a model does not match
well the given data.
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1 Introduction

In this paper, we will formalize the way, how people make inferences on the
basis of the, so called, linguistic description which is a set of fuzzy IF-THEN
rules understood as expressions of natural language. We will explain our idea
on the following example.

Let us consider a simple linguistic description consisting of two rules

R1 := IF X is small THEN Y is very big

R2 := IF X is big THEN Y is very small.

The variables X, Y formally replace the meaning of some nouns; in technical
applications, which are most common in the applications of fuzzy logic, these
may be temperature, pressure, angle, size of throttle, electrical current, etc.
Such rules are used in a concrete situation (control, decision-making, classi-
fication) and so, the expressions “small, big” are used in a certain context
— we will call it linguistic context. Furthermore, the expressions “small, big”
characterize the given situation (what is spoken about) and so, they form a
topic of the linguistic description.

Let us, for simplicity, consider the linguistic context of both variables X, Y
as an interval [0, 1]. Then “small” are some values around 0.3 (and smaller)
and “big” are some values around 0.7 (and bigger). The linguistic description
tells us that small input values should lead to very big output ones and big
� The paper has been supported by grants 201/04/1033 of the GA ČR, A1075301 of

the GA AV ČR and Deutsche Forschungsgemeinschaft as part of the Collaborative
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input values to very small output ones. Therefore, given an input, say X = 0.3,
we expect the output Y ≈ 0.9 due to the rule R1 since we evaluate the input
value as small, and thus, in this case the output should be very big. Similarly,
for X = 0.75 we expect the output Y ≈ 0.15 due to the rule R2.

After closer look at this way of reasoning, we may see that each rule
provides us with a certain knowledge (related to the concrete application)
and though vague, we may distinguish between both rules. Therefore, the
input value of X is evaluated by some linguistic expression from the topic of
the linguistic description. The latter expression, which in our case is “small”,
can be taken as a perception of the value X = 0.3. Based on this perception
and the rule R1, we conclude that Y should be “very big” which, in the given
context, corresponds to the mentioned value Y ≈ 0.9. Selection of a concrete
output value of Y is partly random but it should be in correspondence with the
truth degree of the statement “X=0.3 is small”. This means that the greater
is this degree, the greater must the truth of the statement “the output value
of Y is very big”. In practice this means that, if the value of X increases then
the value of Y decreases because the truth of “X is small” also decreases.

Of course, finding a perception is bound by the way how are the rules
specified. For example, if the rule R1 were replaced by

R′
1 := IF X is very big THEN Y is big

then there is no linguistic expression in the topic of the linguistic description
which could be taken as a perception of the value 0.3. Therefore, no value of
Y would correspond to 0.3.

Our goal is to develop a formal theory which will give results in accordance
with the above intuition. We will call the just described way of finding a con-
clusion on the basis of the linguistic description the perception-based logical
deduction. Successful solution of this fact depends on the way of interpreta-
tion of the linguistic description. In the literature, two principal kinds of this
interpretation are described. The first one is called relational. Its main idea is
to find a good approximation of some function which is known only roughly.
Therefore, the function is divided into imprecise “parts” using fuzzy relations
constructed from fuzzy sets with continuous membership functions of more
or less arbitrary shape. Each such membership function is assigned a name
to be able to get better orientation in the rules, but without real linguistic
meaning. Formally, linguistic descriptions are assigned one of two kinds of
normal forms: the disjunctive or conjunctive normal form (see [21]). The re-
sulting fuzzy relation then depends on the choice of the underlying algebra of
truth values. A conclusion is derived on the level of semantics rather than on
the level of syntax. Note that the relational interpretation is the most often
considered interpretation used in applications.

The second interpretation of the linguistic description is logical. This has
been presented, e.g. in [8, 13, 20] and elsewhere. The main idea is that the
fuzzy IF-THEN rules are genuine linguistic expressions interpreted in a way
which mimics human understanding to them and the linguistic description is
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a specific text. Components of the fuzzy IF-THEN rules are usually the, so
called, evaluating linguistic expressions. We argue that logical interpretation
is a good basis for the perception-based deduction. In [6, 7, 20], we have tried
to use first order predicate fuzzy logic with evaluated syntax for this task.
However, the problem goes behind the first order level and therefore, in this
paper, we describe the perception-based logical deduction using the means of
fuzzy intensional logic. Let us also stress that we have practical experiences
with this method, described, e.g. in [5, 18].

2 Fuzzy intensional logic

The main tool for the logical analysis is extension of the fuzzy type theory
(FTT) to fuzzy intensional logic (FIL), see [14]. The detailed explanation
of FTT can be found in [17, 16] and the classical type theory is in details
described in [1].

2.1 Syntax of FIL

FIL is obtained from FTT by adding an additional type ω, which will represent
possible worlds or contexts to the basic elementary types o (truth values) and
ε (objects). In this section, we will very briefly touch some of the main points
of FTT and FIL.

Let ε, o, ω be distinct objects. The set of types is the smallest set Types
satisfying:

(i) ε, o, ω ∈ Types,
(ii) if α, β ∈ Types then (αβ) ∈ Types.

The set Formα is a set of formulas of type α ∈ Types, which is the smallest
set satisfying:

(i) xα ∈ Formα and cα ∈ Formα,
(ii) if B ∈ Formβα and A ∈ Formα then (BA) ∈ Formβ ,
(iii) if A ∈ Formβ then λxα A ∈ Formβα,

If A ∈ Formα is a formula of the type α ∈ Types then we write Aα. To simplify
the notation, we will omit brackets wherever it will not lead to misunderstand-
ing. We will also use the “dot” notation: starting with the dot, the rest of the
formula is considered to be closed in the brackets.

The structure of truth values is supposed to form a complete IMTL-
algebra, i.e. a complete residuated lattice with involutive negation defined
by ¬a = a → 0 and fulfilling the prelinearity condition .

We define a special formula which determines a nonzero truth value:

Υoo := λzo(¬¬¬(ΔΔΔ(¬¬¬zo)).

The following properties of FTT will be used in the sequel.
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Lemma 1. (a) Let T � (∃xα)ΔΔΔB. Then T ∪ Bxα
[uα] where uα �∈ J(T ) is a

conservative extension of T (rule C).
(b) Let T � (∃xα)ΔΔΔBoαxα. Then T � Boα · ια(oα)Boα.
(c) � (∃x)ΔΔΔAo ⇒⇒⇒ (∃x)Ao.
(d) Let T � Υzo &&&(zo ⇒⇒⇒ yo). Then T � Υyo.
(e) � ΔΔΔ(xo &&& yo) ≡ (ΔΔΔxo &&&ΔΔΔyo).
(f) (∃xα)(Ao &&& Bo) ⇒⇒⇒ (∃xα)Ao &&&(∃xα)Bo.

2.2 Semantics of FIL

Let D be a set of objects, L be a set of truth values and W be a set of possible
worlds.

A basic frame based on D, L, W is a family of sets (Mα)α∈Types where

(i) Mε = D is a set of objects,
(ii) Mo = L is a set of truth values,
(iii) Mω = W is a set of possible worlds,
(iv) for each type γ = βα, the corresponding set Mγ ⊆ MMα

β .

A frame is
M = 〈(Mα, =α)α∈Types ,LΔ〉 (1)

where (Mα)α∈Types is a basic frame such that LΔ is a structure of truth values
being a complete, linearly ordered IMTLΔ algebra and =α is a fuzzy equality
on Mα for every α ∈ Types. Namely, =o is the biresiduation ↔, and if β = ε
or β = ω then =β ⊂∼ Mβ × Mβ is a fuzzy equality on the set Mβ . Otherwise,
=α is the fuzzy equality

[m =βα m′] =
∧

nα∈Mα

[m(n)) =β m′(n′)] (2)

for every m, m′ ∈ Mβα (the square brackets denote truth value of the fuzzy
equality). Recall that each function F ∈ Mβα is weakly extensional w.r.t
=α and =β , i.e. [m =α m′] = 1 implies that [F (m) =β F (m′)] = 1 for all
m, m′ ∈ Mα.

Interpretation of formulas in the frame is defined recursively starting from
elementary objects. A general model is an interpretation IM such that

IM
p (Aα) ∈ Mα (3)

holds true for every formula Aα, α ∈ Types and every assignment p ∈ Asg(M)
of elements to variables. This means that the value of each formula is always
defined in the general model. As a special case, interpretation IM

p (ια(oα)) of
the description operator ια(oα) is some operation assigning to each normal
fuzzy set en element from its kernel (cf. [16]). In fuzzy set theory, such an
operation is called defuzzification. In the case of evaluating linguistic expres-
sions, it is reasonable to use the DEE defuzzification method (see [15]). We
also define a special operator
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ιzαAo := ια(oα)(λzαAo).

A theory T is a set of formulas Ao of type o (i.e. their interpretation is a
truth value). Recall that FIL includes predicate IMTL fuzzy logic. Moreover,
it is possible to consider other structure of truth values, namely �Lukasiewicz
MV-algebra with Δ and some other ones.

3 Logical structure of linguistic description

3.1 Fuzzy IF-THEN rules

In this paper, we suppose that the fuzzy IF-THEN rules consist of linguistic
expressions and they are themselves taken also as special (conditional) linguis-
tic expressions. In [13, 15, 20], the theory of evaluating linguistic expressions
has been developed. The fuzzy IF-THEN rules were supposed to consist only
of them. In this paper, we present our theory in a more general setting.

A simple linguistic predication is a linguistic expression of the form

〈noun〉 is A (4)

where A is a linguistic expression (not predication). A compound linguistic
predication is obtained when joining simple linguistic predications by connec-
tives. Namely, the following are compound linguistic predications:

RA := X is A AND Y is B, (5)

RI := IF X is A THEN Y is B. (6)

Either of (5) or (6) will be call fuzzy IF-THEN rule in the sequel.
When speaking about meaning of a linguistic expression, we must distin-

guish its intension and extension (cf. [10]). We will formalize these concepts as
follows. To simplify notation, we will use special variables (formulas) for spe-
cific types only. Namely, w ∈ Formω, x ∈ Formα, y ∈ Formβ where α, zbeta
are some arbitrary, possibly different types.

Let A be a linguistic expression and A ∈ Form(oα)ω be a formula assigned
to it. The intension and extension of A are the formulas

Int(A) := λw λx · A(oα)ωwx, (7)
Extw(A) := Int(A)w (8)

respectively. Interpretation of Int(A) is a function which assigns to each pos-
sible world a fuzzy set in the universe of type α.

Using λ-conversion we get

� Extw(A) ≡ λx · A(oα)ωwx. (9)
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Thus, interpretation of Extw(A) in a possible world w is the corresponding
fuzzy set.

Intension of a fuzzy IF-THEN rule R is

Int(R) := λw λw′ · λx λy · A(oα)ωwx��� B(oβ)ωw′y (10)

where ��� is either of the connectives &&&, ∧∧∧ or ⇒⇒⇒.
To simplify the notation, we will introduce the symbol ϕ := (oγ)ω for the

type of intension. It represents a function assigning to each possible world a
fuzzy set. The type γ can be arbitrary and, therefore, though we write the
same ϕ for different formulas, their types may differ in the position of γ. If
necessary, we will explicitly stress that it should be the same. However, since
we fixed above the types for x and y, writing Aϕwx means, in fact, the formula
A(oα)ωwx and similarly, Bϕwy means the formula B(oβ)ωwy.

We say that the intension Int(A) is normal if

T � (∀w)(∃x)ΔΔΔA(oα)ωwx. (11)

This means that in each possible world we can find an element that surely
has the property named by A. The normality assumption seems to be quite
natural. Namely, it says that in each possible world there is an element typical
for the given property (it is the prototype of the latter). Indeed, we can always
find a typical “red colour”, “small distance”, “high tree”, “good car”, etc.

On the basis of (11),

Lemma 2. Let intensions Int(A), Int(B) be normal. Then:

(a) T � (∀w)(∀w′)(∀x)(∃y)ΔΔΔ(A(oα)ωwx ⇒⇒⇒ B(oβ)ωw′y),
(b) T � (∀w)(∀w′)(∃x)(∃y)ΔΔΔ(A(oα)ωwx��� B(oβ)ωw′y)

where ��� is either of the connectives &&& or ∧∧∧.

Proof. (a) Let v �∈ FormT , be a new constant of type α. It follows from
Lemma 1(a) that T ′ = T ∪ {B(oβ)ωw′v} is a conservative extension of T .
Then T ′ � A(oα)ωwx ⇒⇒⇒ B(oβ)ωw′v and so, T ′ � ΔΔΔ(A(oα)ωwx ⇒⇒⇒ B(oβ)ωw′v)
and finally, T � (∀x)(∃y)ΔΔΔ(A(oα)ωwx ⇒⇒⇒ B(oβ)ωw′y) by properties of FIL and
conservativeness of T ′, which implies (a) using generalization.

(b) Similarly as above, let u,b �∈ FormT be new constants of type α.
Then T ′ = T ∪{A(oα)ωwu, B(oβ)ωw′v} is a conservative extension of T . Using
Lemma 1(e) and properties of FIL, we prove T ′ � ΔΔΔ(A(oα)ωwu��� B(oβ)ωw′v).
Then we obtain (b) by similar arguments as in the case of (a).

The formulas (a) and (b) of this lemma characterize normality of intension
of fuzzy IF-THEN rules (depending on their form). By Lemma 1(c), normality
of fuzzy IF-THEN rules imply either of

T �(∀w)(∀w′)(∀x)(∃y)(A(oα)ωwx ⇒⇒⇒ B(oβ)ωw′y),
T �(∀w)(∀w′)(∃x)(∃y)(A(oα)ωwx��� B(oβ)ωw′y).

V. Novák242



Perception-Based Logical Deduction

3.2 Structure of linguistic description

A system of fuzzy IF-THEN rules

IF X is A1 THEN Y is B1,

IF X is A2 THEN Y is B2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . (12)
IF X is Am THEN Y is Bm.

will be called a linguistic description and denoted by L . As mentioned, it can
be understood as a special text. If all A,B’s are evaluating linguistic expres-
sions then this system can be understood as a description of some strategy
(e.g. control or decision-making), behaviour of a system, etc.

On the formal level, the linguistic description is a set of intensions

L = {Int(R1), . . . , Int(Rm)},

each of them defined in (10) and formed within a language J(T ) of some
theory T . We will write L I if all rules R are implications and L A if they
are conjunctions. If all the rules are normal then the linguistic description
is called normal. On the basis of the normality assumption, the linguistic
description L provides a list of formulas of the form of Lemma 2(a) or (b)
which must be provable in T .

A text written in natural language is a set of sentences. Therefore, we may
distinguish topic and focus of each sentence (cf. [9, 22]) which then form topic
and focus of the whole text. Namely, the topic of a linguistic description is a
set of linguistic expressions

{Aj | j = 1, . . . , m}. (13)

This means that the topic is determined by the set of linguistic predications,
each of them occurring in the left part of the respective fuzzy IF-THEN rule.
Similarly, its focus is

{Bj | j = 1, . . . , m}. (14)

Note that the common characteristics both for the topic as well as for the
focus of the linguistic description, which ties together all its fuzzy IF-THEN
rules, is the variable X or Y , respectively.

On the basis of Lemma 2(a), we get the following theorem.

Theorem 1. Let T be the theory corresponding to a linguistic description
L I . Let u0 ∈ Formα be a formula. Then

T � (∀w)(∀w′) · Aj,ϕ wu0 ⇒⇒⇒ ·Bϕ,j w′( ιy · Aϕ,j wu0 ⇒⇒⇒ Bϕ,j w′y),

j = 1, . . . , m.

Proof. For all j = 1, . . . , m we can write the following proof:
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(L.1) T � (∀x)(∃y)ΔΔΔ(Aj,ϕ wx ⇒⇒⇒ Bj,ϕ w′y) (assumption in T , substitution)
(L.2) T � (∃y)ΔΔΔ(Aj,ϕ wu0 ⇒⇒⇒ Bj,ϕ w′y) (L.1, substitution)
(L.3) T ′ � (∀w)(∀w′) · Aj,ϕ wu0 ⇒⇒⇒ Bϕ,j w′y( ιy · Aϕ,j wu0 ⇒⇒⇒ Bϕ,j w′y)

(L.2, Lemma 1(b), generalization)

It follows from this theorem that replacing the variable x ∈ Formα by a
formula u0, each rule from the given linguistic description holds for the latter
and the typical element ιy · Aϕ,iwu0 ⇒⇒⇒ Bϕ,iw

′y which replaces the variable
y. Note that u0 can be arbitrary (substitutable) formula, i.e. also a constant
or a variable not occurring in Aj,ϕ.

Let us put

Evalo(ϕαω) := λw λxα λzϕ (∃zo)(Υzo &&& ·zo ⇒⇒⇒ zϕwxα). (15)

Let Int(A) be intension of some evaluating expression A. We say that an
element x in the possible world w is evaluated by the expression A if the
following formula is provable:

T � Evalo(ϕαω) ·wx Int(A). (16)

Recall that Υzo is a formula stating that zo is a non-zero truth value. Then
(16) means that the truth value of the statement “x in the possible world w
is evaluated by A”, (i.e. the truth value of the formula Int(A)wx), is at least
as big as some non-zero truth value zo. Hence, (16) means that “an element
x is evaluated in the possible world w by the linguistic expression A”.

3.3 Formal theory of perception-based logical deduction

In this section, we will work with a linguistic description L I , i.e. it consists
of intensions (10) and determines the theory T discussed above.

Theorem 2. Let u0 ∈ Formα be a formula representing an object of type α,
w0 be a formula representing a possible world and let b0

i , i = 1, . . . , m be
formulas of type o such that T � b0

i ≡ Aϕ,iw0u0. Furthermore, let T � Υb0
i

and put ŷ := ιy · b0
i ⇒⇒⇒ Bϕ,iw

′y. Then

T �(∀w′) · Evalo(ϕαω) w′ŷ · Bϕ,i,

and

T �(∀w′)Υ (Bϕ,iw
′ŷ).

Proof. (L.1) T � Υb0
i &&&(b0

i ⇒⇒⇒ Bϕ,iw
′ŷ) (assumption, Theorem 1)

(L.2) T � Int(Bi) ≡ λw′ λy Bϕ,iw
′y (definition of intension)

(L.3) T � (∃zo) · Υzo &&&(zo ⇒⇒⇒ Bϕ,iw
′ŷ) (L.1, substitution, modus ponens)

(L.4) T � Bϕ,iw
′ŷ ≡ (λw̄′ λy Bϕ,iw̄

′y)w′ŷ (λ-conversion)
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(L.5) T � (∃yo) · Υzo &&&(zo ⇒⇒⇒ Int(Bi)w′ŷ)
(L.3, L.4, properties of FTT, definition of Int(Bi))

(L.6) T � (∀w′) · Evalo(ϕαω) w′ŷ · Bϕ,i

(L.5, definition of Eval , generalization)
The rest follows from Lemma 1(d).

This theorem has the following interpretation. Let us consider a linguistic
description L I (i.e., the fuzzy IF-THEN rules are implications). If we find
a formula Int(Ai) of an expression from the topic of L I and an element
u0 in the possible world w0 such that Aϕ,iw0u0 has a non-zero truth degree
then we conclude that the element ŷ, typical for the formula b0

i ⇒⇒⇒ Bϕ,iw
′y,

is evaluated by the linguistic expression Bi in every possible world w′, where
Int(Bi) belongs to the focus of L I .

In other words, it follows from Theorems 1 and 2 that, when learning
that some element u0 is evaluated by a concrete antecedent Int(Ai) of an
expression from the topic of L I , we derive an element ŷi about which we
know that it is evaluated by Bi from the corresponding focus. This element is
the result of our reasoning based on the linguistic description.

Now, let us define a partial ordering of sharpness between formulas of type
ϕ:

�(oϕ)ϕ:= λzϕ λz′ϕ (∀w)(∀x)(zϕwx ⇒⇒⇒ z′ϕwx). (17)

This ordering means that the meaning of the formula zϕ is sharper than that
of z′ϕ in the following sense: if zϕwx is true in some (nonzero) degree for
arbitrary x in arbitrary possible world w than z′ϕwx is true at least in the
same degree as well. For example, if x is, at least partly, “very big” in all
possible worlds then it is also “big” in them.

Furthermore, we define a sharp ordering of sharpness:

≺(oα)α:= λzα λz′α · (zα �(oα)α z′α)&&&¬¬¬ΔΔΔ(zα ≡ z′α) (18)

where α = ϕ or α = o. In the latter case, ≺ is a sharp ordering of truth values.

Lemma 3. (a) � is a partial ordering on intensions, i.e. zϕ � zϕ,
zϕ � z′ϕ &&& z′ϕ � zϕ ⇒⇒⇒ zϕ ≡ zϕ and zϕ � z′ϕ &&& z′ϕ � z′′ϕ ⇒⇒⇒ zϕ � z′′ϕ.

(b) T � ¬¬¬(zα ≺(oα)α zα) where α = ϕ or α = o.

Proof. (a) Is a straightforward consequence of the properties of implication
⇒⇒⇒, equality ≡, and ΔΔΔ.

(b)

(L.1) T � � ≡ zαwx ⇒⇒⇒ zαwx (properties of FTT)
(L.2) T � ⊥ ≡ ¬¬¬(zαwx ⇒⇒⇒ zαwx) (L.1., properties of FTT)
(L.3) T � ¬¬¬¬¬¬ΔΔΔ(zα ≡ zα) (properties of FTT)
(L.4) T � �∇∇∇⊥ (properties of FTT)
(L.5) T � ¬¬¬¬¬¬ΔΔΔ(zα ≡ zα)∇∇∇¬¬¬(zαwx ⇒⇒⇒ zαwx)

(L.2, L.3, L.4, properties of FTT)
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(L.6) T � ¬¬¬(zα ≺(oα)α zα) (L.5, properties of FTT)

The following is a formula of incomparability of intensions:

|(oϕ)ϕ := λzϕλz′ϕ · ¬¬¬(zϕ � z′ϕ)&&&¬¬¬(z′ϕ � zϕ). (19)

We will define a formula of type oϕ characterizing the topic of L :

TopicLD := λzϕ

m∨
i=1

(zϕ ≡ Int(Ai)). (20)

The following formula expresses that zϕ is a perception of x ∈ Formα with
respect to the given linguistic description:

Perc(oϕ)α := λx λzϕ ·ΔΔΔTopicLDzϕ &&&(∃w)ΔΔΔ(Eval wx zϕ &&&

(∀z′ϕ)(ΔΔΔ(Eval wx z′ϕ &&&TopicLDz′ϕ) ⇒⇒⇒ ·z′ϕwx ≺ zϕwx∨∨∨ zϕ ≺ z′ϕ ∨∨∨ z′ϕ|zϕ))
(21)

The meaning of this formula is the following: the intension zϕ is a perception
of x ∈ Formα with respect to the topic of the given linguistic description if
there is a possible world w such that xα is evaluated by zα in it, and every
other z′ϕ which also evaluates xα in w is either less sharp than zϕ, or it is
incomparable with it.

We will also define local perception in a possible world w as follows:

LPerc(oϕ)αω := λw λx λzϕ ·ΔΔΔTopicLDzϕ &&&ΔΔΔ(Eval wx zϕ &&&

(∀z′ϕ)(ΔΔΔ(Eval wx z′ϕ &&&TopicLDz′ϕ) ⇒⇒⇒ ·z′ϕwx ≺ zϕwx∨∨∨ zϕ ≺ z′ϕ ∨∨∨ z′ϕ|zϕ))
(22)

Clearly, T � LPerc · wxzϕ implies T � Perc · xzϕ.
Let u0 ∈ Formα,w0Formω be formulas. We say that the intension Int(A)

is a perception of u0, or local perception of u0 in w0 if

T �Perc · u0 Int(A), (23)

T �LPerc · w0u0 Int(A), (24)

respectively. Obviously, Int(A) is intension of an expression which must belong
to the topic of L to be a perception.

Unfortunately, we cannot assure that there is only one perception of the
given element u0. This depends on the choice of linguistic expressions forming
L and a general solution within a formal theory does not exist. However, we
may confine to a certain class of linguistic expressions, namely the evaluating
ones, where the uniqueness of (18) can be assured (unless the very specific
cases).

The following is an easy consequence of Theorem 2.
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Theorem 3. Let L I , T and u0 be as in Theorem 2. If T � Perc ·u0 Int(Ai)
for some i ∈ {1, . . . , m} then

T � (∀w′) · Evalo(ϕαω) ·w′ ŷ Bϕ,i

where ŷ := ιy · Aϕ,iw0u0 ⇒⇒⇒ Bϕ,iw
′y and w0 �∈ J(T ) is a new constant for a

possible world.

Proof. Using Lemma 1(a),(e) and (f) we derive from T � Perc · u0 Int(Ai)
that

T � Eval ·w0u0 Int(Ai)

from which we conclude that T � ΥAϕ,jw0u0. Realizing that T � b0
i ≡

Aϕ,i w0u0, we may now apply Theorem 2.

This theorem is a formalization of the perception-based logical deduction.
According to it, if an element represented by the constant u0 is given and
the linguistic expression Aj is a perception of it then we derive an element ŷ
which is evaluated by the linguistic expression Bj .

This theorem has an easy corollary concerning local perception in some
possible world w0.

Corollary 1. Let L I , T , u0 and w0 be as in Theorem 2. If T � LPerc ·
w0u0 Int(Ai) for some i ∈ {1, . . . , m} then

T � (∀w′) · Evalo(ϕαω) ·w′ ŷ Bϕ,i

where ŷ := ιy · Aϕ,iw0u0 ⇒⇒⇒ Bϕ,iw
′y.

3.4 Semantics of perception-based logical deduction

In this section, we will characterize the semantics of perception-based logical
deduction.

Theorem 4. Let M |= T be a model of T and p be an assignment to variables
such that p(w) = w0 ∈ Mω and p(x) = u0 ∈ Mε. Let

IM
p (LPerc · wx Int(Ai)) = 1

for some i ∈ {1, . . . , m}. Then

(a) the corresponding linguistic expression Ai is the sharpest among all the
expressions from the topic of L (in the sense of ≺) with the highest
membership degree IM

p (Aϕ,i)(w0, u0), or it is incomparable with them.
(b) IM

p (Evalo(ϕαω) ·w′ŷBϕ,i) = 1 holds for all assignments p(w′) ∈ Mω where

IM
p (ŷ) ∈ {v | IM

p (Aϕ,i)(w0, u0) ≤ IM
p (Bϕ,i)(p(w′), v), v ∈ Mε} (25)

is an element obtained by a defuzzification operation IM
p (ια(oα)).
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Proof. The proof is based on the proof of Theorem 3.
(a) Let

IM
p (LPerc · wx Int(Ai)) = 1.

Because IM
p (ΔΔΔTopicLD Int(Ai)) = 1, Ai clearly belongs to the topic of L .

Let IM
p (Aϕ,j)(w0, u0) > 0 for some Aj from the topic of L . This means

that u0 is evaluated in the possible world w0 by Aj , too. But then at least
one of the following relations holds true:

IM
p (Aϕ,j)(w0, u0) < IM

p (Aϕ,i)(w0, u0), (26)

IM
p (Aϕ,i ≺ Aϕ,j) = 1, (27)

IM
p (Aϕ,i|Aϕ,j) = 1. (28)

If (26) holds then the evaluation of u0 by Ai is better than that by Aj . If (26)
does not hold then either (27) or (28) holds (but not both) — cf. (19). This
means that Ai is either sharper than Aj , or it is incomparable with it.

(b) It follows from the assumption that

IM
p (Aϕ,i wx) = IM

p (Aϕ,i)(w0, u0) > 0.

But then

IM
p (Aϕ,i)(w0, u0) → IM

p (Bϕ,i)(p(w′), v) = IM
p (Aϕ,iwx ⇒⇒⇒ Bϕ,iw

′y) = 1

for some v ∈ Mε (such v must exist because of the normality assumption on
Int(Bi)) which altogether means that

IM
p (Evalo(ϕαω) ·w′y Int(Bi)) = 1

for an assignment p(y) = v and all assignments p(w′) ∈ Mω. Then IM
p (ŷ) =

IM
p ( ιy · Aϕ,i wx ⇒⇒⇒ Bϕ,i w′y) is some element v0 ∈ Mε from the kernel of the

fuzzy set{
a
/
v
∣∣ a = IM

p (Aϕ,i)(w0, u0) → IM
p (Bϕ,i)(p(w′), v), v ∈ Mε

}
(this kernel is just the set (25)). Clearly, the element v0 is obtained using the
defuzzification operation IM

p (ια(oα)) (interpretation of the description opera-
tor).

The practical procedure of the perception-based deduction can now be
described as follows. Let a linguistic description L be given and let us observe
a concrete value u0, which can be, e.g. result of some measurement in a given
situation (this can be decision-making, control, observing environment, etc.).
To relate the situation with the linguistic description, we must first find a
model M |= T , M = 〈(Mα, =α)α∈Types ,LΔ〉 where T is a theory raised by
L . Then the situation corresponds with some possible worlds w0 for the
topic, and w̄ for the focus of L . On the basis of Theorem 4, we take an
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assignment p to variables such that p(x) = u0, p(w) = w0 and p(w′) = w̄
and find a local perception Ai of u0 in the topic of L (if it exists). Using
Theorem 4, we find in the possible world w̄ an element v0 = IM

p (ŷ). This is
the result of the perception-based logical deduction.

Note that in case of, e.g., fuzzy control, the possible worlds w0 and w̄ are
constant and only the observation u0 is changed, say to u1. Then we must
change the assignment p so that p(x) = u1. The rest of the procedure remains
the same.

Recall that the described procedure is implemented in the software LFLC
2000. For more details, see [5, 18].

4 Conclusion

In this paper, we have discussed a logical theory of fuzzy IF-THEN rules and
linguistic descriptions and formally characterized the concept of perception-
based logical deduction. The formal calculus is fuzzy intensional logic which
is extension of the fuzzy type theory by a special elementary type for possible
worlds.

We have introduced special formulas representing meaning of linguistic
expressions and fuzzy IF-THEN rules. Furthermore, we formally defined the
concept of linguistic description and a perception of the given value. We proved
theorems, using which it is possible to find a conclusion on the basis of the
given linguistic description and observation. We have also demonstrated se-
mantics of the perception-based deduction and proposed a practical procedure
which can be used in various applications.

In the subsequent paper, we will study the formal theory of perception-
based deduction for the special case when the fuzzy IF-THEN rules consist of
evaluating linguistic expressions (cf. [15]).
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1 Introduction

Object-oriented programming techniques have progressively taken over purely
procedural programming techniques. Most computer applications currently un-
der development are expressed in terms of classes and objects. Since the appear-
ance of the object-oriented programming paradigm, new programming languages
and development platforms have emerged to assist programmers in building com-
plex applications.

An important group of software applications can use soft computing tech-
niques to manage real world problems where information is affected by impre-
cision or uncertainty. Soft computing techniques have proved to be a suitable
solution for the management of imperfect information. More and more efforts are
being directed towards what researchers call “computing with words”. And, soft
computing craves for new tools to expand its influence within object-oriented
programming platforms.
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Abstract. The development of many soft computing applications asks for mech-
anisms which allow the representation and management of fuzziness in the object-
oriented data model. This paper proposal allows the management of imprecision
in the description of objects. Moreover, it responds to programmers’ needs by pro-
viding an easy-to-use transparent mechanism that can be used to develop appli-
cations which deal with fuzzy information. We present a framework which enables
the development of object classes with imprecise attributes in modern programming
languages such as C. Our framework includes generic code for the comparison of
fuzzily described objects and its implementation makes use of advanced features of
the .NET platform, reflection and metadata attributes, in particular. Our frame-
work makes the implementation of fuzzy user-defined classes easier and it can be
used without interfering with the usual object-oriented software development tasks.
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During the last few years, some researchers have focused their efforts in
this direction. Zadeh’s Fuzzy Subsets Theory [1] has been used to extend data
models in order to allow the representation of imperfect data. Proposals can be
found for both the relational [2] and the object-oriented [3, 4] database models.
Fuzzy database management tools allow the storage and retrieval of data with
imprecision and uncertainty. Nevertheless, programmers have no assistance when
they have to develop applications which deal with imperfect data. Therefore,
an easy-to-use transparent mechanism to cope with this kind of applications is
highly desirable.

In this paper, we present a framework which allows programmers to han-
dle imprecision in the description of objects, responding to the aforementioned
need. Our framework provides a whole hierarchy of built-in classes which can
be transparently used to develop user-defined classes with imprecise attributes
in any .NET-enabled programming language (such as C�) and it also includes
the capability of comparing fuzzily-described objects. Our framework implemen-
tation takes advantage of advanced features included in the .NET platform in
order to facilitate its use. In particular, it makes extensive use of reflection and
metadata attributes.

The paper is organized as follows: Section 2 is devoted to the kind of pro-
gramming platforms where our proposal is applicable, describing the advanced
features that allow our framework usage to be non-intrusive. Section 3 presents
some notes on the use of Fuzzy Subsets theory to describe imprecise objects. Sec-
tion 4 describes the framework we have developed for the .NET platform, while
Section 5 presents a case study in C� which illustrates our framework usage.
Finally, some conclusions and guidelines for future work close our paper.

2 Object-orientation and modern programming platforms

Due to the popularity the object-oriented data paradigm enjoys, many pro-
gramming platforms have appeared to develop object-oriented code. Sun’s Java
Platform1 and Microsoft’s .NET Platform2 are leaders in this area. Both share
some important characteristics:

– The use of an compiled intermediate language which is interpreted or com-
piled into machine language at runtime. Since a stack-based virtual machine
is used, the development of truly portable applications is allowed. In the case
of Java, you can run an application anywhere provided that you have a Java
Virtual Machine for your operating system. The .NET Framework, initially
targeted at Windows systems, also provides an standard common language
runtime. This enables the use of .NET in non-Windows platforms and some
projects are under way in this direction

– Both the Java and the .NET platforms provide an unified and extensive set
of class libraries. The .NET framework allows the use of different program-
ming languages for the development of different parts of a system, making

1 http://java.sun.com
2 http://www.microsoft.com/net/
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software interoperability a breeze within .NET and allowing cross-language
inheritance, error handling, and debugging.

– Both Java and .NET provide standardized web application programming
models as part of their class libraries: JSP and servlets on the Java side,
ASP.NET on the .NET side.

These two programming platforms currently lead the current software de-
velopment market. In some sense, the .NET framework (with its C� flagship
programming language [5]) has been Microsoft’s response to the rise of Sun Mi-
crosystem’s Java [6].

Our research is mainly focused on the development of tools which can be
transparently used within current software development platforms in order to
build soft computing applications.

To accomplish this task using C� in the .NET Platform, we have made use
of the following advanced programming features:

– Metadata definition through attributes: Here, metadata is informa-
tion about the programming structures that conform a software system (i.e.
classes, methods, and fields).. Attributes are the mechanism provided by the
.NET platform for adding user-defined metadata to user-defined classes.

– Reflection: This feature allows a program to introspect or seek information
from its own structure. Software can use this introspection to inform its users
or, what is more interesting, to modify its own behavior.

3 Fuzziness and object-orientation

Fuzzy Subsets Theory has been used to enhance object-orientation at many lev-
els, allowing the representation of fuzzily-described objects and providing fuzzy
extensions of conventional object-oriented features like instantiation and inher-
itance [3, 4]. In this paper, we focus on the use of fuzziness to represent and
manage imprecise objects.

In order to deal with fuzzily-described objects in our programs, we have to
accomplish the following tasks:

– Providing support for the representation of special domains which allow
fuzzy attribute values with different semantics.

– Providing support for the comparison of complex objects which can be de-
scribed using values of the these special domains.

For instance, consider that we want to develop some application code to deal
with classrooms and students. We have two main classes, Room and Student.
Every room is characterized by its quality, its extension, the floor where it is, and
a set of students. Every student is, in turn, characterized by the set of attributes
{name,age,height}. In our context, the description of the objects belonging to
these classes may be imprecise due to the following reasons:

– The quality attribute is expressed by an imprecise label (e.g. high, regular).
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Fig. 1. Fuzzily-described rooms and students

– The floor,extension, age, and height attributes can be expressed using a
numerical value or an imprecise label (e.g. high, big, young, and tall, respec-
tively).

– The collection of students can also be fuzzy. The membership degree of a
student in a given room can be set according to the time the student spends
taking lessons in that room.

Figure 1 depicts two rooms and six students which are fuzzily described
according to the previous guidelines.

With respect to the first task we mentioned at the beginning of this section,
we must provide a suitable set of domains for the attributes corresponding to
rooms and students. These attributes can take imprecise values. Their domains,
therefore, must be defined according to the different semantic interpretations
those imprecise values may have.

With respect to the second task, the complex object comparison capability,
we must provide a technique for comparing fuzzily-described rooms and students.
This comparison involves an aggregation problem:

– First, we have to measure the resemblance between attributes values. This
step comprises the following cases:
• Comparison of basic crisp attribute values.
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Quality: regular
Extension: big
Floor: high
Students: 1/stu1+1/stu5+

0.75/stu3+0.6/stu6

Room2

Quality: high
Extension: 30 m2
Floor: 4
Students: 1/stu1+1/stu2+

0.8/stu3+0.5/stu4

Room1

Name: Tom
Age: 24
Height: tall

Student4

Name: Peter
Age: young
Height: 1.7m

Student2
Name: John
Age: young
Height: 1.85 m

Student1

Name: Mary
Age: middle-aged
Height: short

Student3

Name: Peter
Age: 25
Height: medium

Student5

Name: Tom
Age: young
Height: 1.9m

Student6



• Comparison of imprecise attribute values.
• Comparison of (crisp or fuzzy) collections of objects.
• Comparison of objects, in case the attribute values are themselves full-

fledged objects.
– Then, we need to aggregate the particular resemblance values we have col-

lected from comparing particular attributes in order to compute a global
resemblance opinion for the whole objects. An importance degree can be
used to give different weights to different attributes in the aggregation pro-
cess. For instance, in the previous example, we can use the weights {0.5,
0.8, 1.0, 1.0} to set the relative importance of the room attributes {quality,

extension, set of students, floor}, while the weights {1.0, 0.75, 0,75} might
be sensible for student attributes {name, age, height}.

The implementation of this comparison process is complex and needs a re-
cursive computation which might involve cycle resolution (i.e. for comparing
rooms, student resemblance must be computed, which itself might involve the
comparison of the rooms the students are associated to). A complete theoretical
formulation of this object comparison problem can be found in [7], including
suitable operators for the comparison situations mentioned above and the ag-
gregation of resemblance opinions.

We provide programmers with a framework which enables the application of
the ideas described above in real applications. Our fuzzy objects library simpli-
fies the creation of special domains to represent fuzzy attribute values, as well
as the implementation of user-defined classes which use those values. It also pro-
vides the infrastructure which allows the comparison of fuzzily-described objects
by making use of well-known object-oriented design principles. Our framework
includes all these novel capabilities and the programmer can use them without
writing sophisticated code nor creating complex structures, as will be described
in the following section.

4 A supporting framework in C�

Our framework incorporates a predefined class hierarchy that supports the rep-
resentation of fuzzily-described objects, as part of a more general fuzzy object-
oriented model [8].

The root in this hierarchy is a generic FuzzyObject class which serves as a
basis for any class requiring fuzzy comparison capabilities. This class implements
a generic FuzzyEquals method which performs the fuzzy object comparison
described in the previous sections. This method can be used to compare objects
belonging to any subclass of FuzzyObject. Since the comparison it performs
requires access to the particular fields of the objects being compared and, in
order to be reusable, it must not be fitted to any particular class structure, the
method implementation uses reflection to perform the object comparison. As we
mentioned in the previous section, the comparison algorithm is recursive in order
to manage complex objects and is designed so that it seamlessly deals with the
cyclic structures which are common in object graphs.
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FuzzyObject

fuzzyEquals(fuzzyObject)

DomainWithoutRepresentation

fuzzyEquals(fuzzyObject)

DisjunctiveDomain

fuzzyEquals(fuzzyObject)

ConjunctiveDomain

fuzzyEquals(fuzzyObject)

DisjunctiveFiniteObject

fuzzyEquals(fuzzyObject)

ConjunctiveFiniteObject

fuzzyEquals(fuzzyObject)

BasicObject

fuzzyEquals(fuzzyObject)

TrapezoidalObject

fuzzyEquals(fuzzyObject)

Fig. 2. Our framework class hierarchy

Below the FuzzyObject class in our framework class hierarchy, shown in Fig-
ure 2, other predefined classes represent common kinds of domains for impreci-
sion, such as linguistic labels without an underlying representation (Domain-
WithoutRepresentation), domains where labels are possibility distributions
over an underlying basic domain (DisjunctiveDomain), and fuzzy collections
of fuzzy objects (ConjunctiveDomain). Disjunctive domains include subclasses
to represent labels with finite support-set, basic domain values, and functional
representations of labels with infinite support-set (e.g. trapezoidal). All these
classes define their own FuzzyEquals method, whose implementation uses the
suitable operators depending on the semantics of the domains they represent.

5 An example

A soft computing application dealing with rooms and students can be easily
developed in C� using the framework we introduced in the previous section.

public class Age : AbstractDisjunctiveDomain
{

// Redefined constructors
public Age (int basicValue): base(basicValue) {}
public Age (Label label, ArrayList semantic): base (label, semantic, typeof(int)) {}
public Age (Label label, float a, float b, float c, float d): base (label, a, b, c, d) {}

}

Fig. 3. C� definition of the Age domain
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public class Student : FuzzyObject
{

// Instance variables

private string name;
private Age age;
private Height height;

// Constructor

public Student (String name, Age age, Height height) {
this.name = name;
this.age = age;
this.height = height;

}

// Properties

[FuzzyImportance(1.0f)]
public string Name {

get { return name; }
set { name = value; }

}

[FuzzyImportance(0.75f)]
public Age StudentAge {

get { return age; }
set { age = value; }

}

[FuzzyImportance(0.75f)]
public Height StudentHeight {

get { return height; }
set { height = value; }

}
}

Fig. 4. C� definition of the Student class

Room and Student imprecise attributes can be easily implemented just by
extending the classes provided by our framework without having to worry about
the FuzzyEquals implementation.

For instance, Figure 3 shows the code needed the Age domain for students.
The implementation just extends the predefined DisjunctiveDomain class. The
Height domain can be similarly defined. Once these domains are defined, the
Student class can be easily implemented using FuzzyObject as its base class,
as shown in Figure 4. As you can see, the programmer does not have to write
any code for object comparison. That feature is automatically provided by the
FuzzyObject base class.

Our framework defines a metadata attribute, FuzzyImportance, which can
be used in accessor methods to indicate the weight of a property in the compar-
ison process.

Once the Student class is defined, the programmer can create a class to
represent rooms with students. The StudentCollection domain can be created
just by extending our framework ConjunctiveDomain. The Quality attribute
is represented by a class inheriting from DomainWithoutRepresentation, while
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public class Room : FuzzyObject
{

// Instance variables

private Quality quality;
private Extension extension;
private Floor floor;
private StudentCollection students;

// Constructor

public Room (Quality quality, Extension extension,
Floor floor, StudentCollection students) {

this.quality = quality;
this.extension = extension;
this.floor = floor;
this.students = students;

}

// Properties

[FuzzyImportance(0.5f)]
public Quality RoomQuality {

get { return quality; }
set { quality = value; }

}

[FuzzyImportance(0.8f)]
public Extension RoomExtension {

get { return extension; }
set { extension = value; }

}

[FuzzyImportance(1.0f)]
public Floor RoomFloor {

get { return floor; }
set { floor = value; }

}

[FuzzyImportance(1.0f)]
public StudentCollection Students {

get { return students; }
set { students = value; }

}
}

Fig. 5. C� definition of the Room class
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// Students

Age young = new Age ( new Label("young"), 0, 0, 23, 33 );
Age middle = new Age ( new Label("middle-aged"), 23, 33, 44, 48 );

Height shortHeight = new Height ( new Label("short"), 0, 0, 150, 160);
Height mediumHeight = new Height ( new Label("medium"), 150, 160, 170, 180);
Height tall = new Height ( new Label("tall"), 170, 180, 300, 300);

Student student1 = new Student ( "John", young, new Height(185) );
Student student2 = new Student ( "Peter", young, new Height(170) );
Student student3 = new Student ( "Mary", middle, shortHeight );
Student student4 = new Student ( "Tom", new Age(24), tall );
Student student5 = new Student ( "Peter", new Age(25), mediumHeight );
Student student6 = new Student ( "Tom", young, new Height(190) );

// Rooms

ArrayList highSemantics = new ArrayList();
Quality highQuality = new Quality ( new Label("high"), false, highSemantics);

ArrayList mediumSemantics = new ArrayList();
mediumSemantics.Add ( 0.8f );
Quality mediumQuality = new Quality ( new Label("medium"), false, mediumSemantics);
Extension big = new Extension ( new Label("big"), 21, 31, 100, 100);
ArrayList highFloorSemantics = new ArrayList();

highFloorSemantics.Add ( new MembershipDegree (0.0f, 1 ) );
highFloorSemantics.Add ( new MembershipDegree (0.0f, 2 ) );
highFloorSemantics.Add ( new MembershipDegree (0.7f, 3 ) );
highFloorSemantics.Add ( new MembershipDegree (1.0f, 4 ) );

Floor highFloor = new Floor ( new Label("high"), highFloorSemantics );
ArrayList vector1 = new ArrayList();
vector1.Add ( new MembershipDegree (1.0f, student1 ) );
vector1.Add ( new MembershipDegree (1.0f, student2 ) );
vector1.Add ( new MembershipDegree (0.8f, student3 ) );
vector1.Add ( new MembershipDegree (0.5f, student4 ) );
StudentCollection set1 = new StudentCollection ( vector1 );

ArrayList vector2 = new ArrayList();
vector2.Add ( new MembershipDegree (1.0f, student1 ) );
vector2.Add ( new MembershipDegree (1.0f, student5 ) );
vector2.Add ( new MembershipDegree (0.75f, student3 ) );
vector2.Add ( new MembershipDegree (0.6f, student6 ) );
StudentCollection set2 = new StudentCollection ( vector2 );

Room room1 = new Room ( highQuality, new Extension(30), new Floor(4), set1 );
Room room2 = new Room ( mediumQuality, big, highFloor, set2 );

Fig. 6. Room and student object instantiations.
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Extension and Floor are DisjunctiveDomains. The resulting code for the Room
class appears in Figure 5. Once more, it should be noted that the programmer
does not have to write any particular code to enable the fuzzy object comparison
provided by our framework. She just defines the application classes as she would
do when building standard applications.

Figure 6 shows how the rooms and students depicted in Figure 1 can be
created using standard C� code. Our framework reflective implementation auto-
matically enables object comparison by means of the FuzzyEquals method. In
order to compare two rooms, the user just needs to invoke this method:

Console.WriteLine ( "room1 fvs. room2 = " + room1.FuzzyEquals(room2) );

Console.WriteLine ( "room2 fvs. room1 = " + room2.FuzzyEquals(room1) );

6 Conclusions

This paper has presented a framework which allows the implementation of soft
computing applications dealing with fuzzy objects in C�. In order to maximize
our framework user-friendliness, we have taken advantage of advanced capabili-
ties provided by the .NET framework, namely reflection and metadata attributes.

Our framework fuzzy object comparison capability is based on previous the-
oretical work [7] and is currently being generalized to allow the use of different
operators in the comparison logic, let them be predefined or even user-defined.
This allowing ad hoc comparison policies at run time, depending on the execu-
tion context. Finally, we are also extending our framework with more flexible
ways to express the type of a class.
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Abstract. The present article aims to explore various situations when the three
coefficients in the intuitionistic fuzzy triple ( , , ) form different majorities. Besides
the detailed geometrical representation, the article presents four new extended modal
operators V , , V’ , , W ,  and W’ ,  for adjusting the intuitionistic fuzzy estimations.
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1 Ideas of decision making in the conditions of intuitionistic
fuzziness

Whenever a choice between two or more options has to be made, the
subjective intention vested with pursued strategy is the major factor for
decision making. We shall also take into consideration the options’ nature and
tools for their evaluation, since these are the objective factors that conduct the
process of selection.

If we are only given the instrumentation of standard Boolean logic, we will
select only these of the objects, which satisfy our criterion; the rest will fail.
Correspondence to the imposed criterion is expressed by the truth-value 1 of
the predicate articulating the criterion.

On a higher level of mathematical experience, where we are able to handle
fuzzy objects, our choice strategy involves setting some thresholds, which
represent the requirements stated in our criteria. It can be one threshold for the
degree of membership only, or there can be two thresholds, respectively for
the degrees of membership and non-membership. Objects here are associated
with fuzzy pairs ( , ), where  +  = 1, which means that  is the degree of
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the object’s relevance to the criterion, and  is the degree of its irrelevance. A
possible strategy is to have a preference for options with their  being higher
than the first threshold, and their  being lower than the second one. However,
without restrictions, we can conclude that the essence of this sole choice
strategy here is: “the higher option’s degree of membership, the higher chance
to choose this option”.

The fact that we are handling fuzzy objects still does not change the picture
at all: there are two parameters, depending on each other, whose behaviour is
hence predictable.

But how to react when options are associated with intuitionistic fuzzy
estimations? In this case  +  1, but the interesting case is  +  < 1, which
allows a third parameter  = 1 to appear on the scene. In the literature
this parameter is called intuitionistic fuzzy index, expressing our lack of
knowledge in either membership or non-membership (sort of a degree of
ignorance), on the contrary to both and , which are the positive and
negative coefficients of our knowledge.

At this place decision making gets more complicated. We have to consider
these three factors for each option. It is obvious that sticking to the higher
values of or to the higher values of is reciprocal, hence it constitutes one
and the same choice strategy. Our confidence in this statement is based on the
standard negation in the theory of intuitionistic fuzzy sets: ( , ) = ( , ). It
is equivalent to taking the negation of the imposed criterion, and selecting the
options with the highest degrees of non-membership, because we only deal
with the degrees of our knowledge. And here comes the more interesting
question: Are there any occasions when considering the higher degrees of 
proves better abidance to the imposed criterion?

Let us articulate the three possible choice strategies when handling intuitio-
nistic fuzzy options:

1. First, choose the items with largest degrees of membership. Then sift out
these with the highest degrees of non-membership. The case is:  >  > .
(It is equivalent to considering the negation:  >  > ).

2. First, choose the items with largest degrees of membership. Then sift out
these with the highest degrees of ignorance. The case is:  >  > . (It is
equivalent to considering the negation:  >  > ).

3. First, choose the items with largest degrees of ignorance. Then sift out these
with the highest degrees of membership. The case is:  >  > . (It is
equivalent to considering the negation:  >  > ).
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The visual distribution of these strategies over the intuitionistic fuzzy triangle,
[1], is more than beautiful: each of the strategies corresponds to a sub-triangle
formed by the sides of the intuitionistic fuzzy triangle and the three medians
(see Fig. 1).

Fig. 1. Distribution of the choice strategies over the intuitionistic fuzzy triangle

2 Examples of the proposed strategies

The first of the proposed strategies is applicable when we insist on the smallest
possible degree of ignorance , which means that the sum of the two degrees
describing sure, either positive or negative aspects of our knowledge,
expressed via membership and non-membership shall be as large as
possible. It holds in situations when preciseness is decisive.

For instance, a lecturer examines his students, assessing them with
intuitionistic fuzzy scores: corresponds to the number of correct answers, 

 to the incorrect ones, and corresponds to the number of hesitant or ill-
formulated answers. The lecturer’s strategy is determining the exact level of
student’s knowledge. He is not biased towards or against the student, hence

(0,1)

(0,0) (1,0)
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both strategies (  >  > ) and (  >  > ) hold, depending on the student’s
good or bad performance at the examination.

The second strategy supports high membership degree versus low non-
membership degree. It is admissible that the chosen options are characterized
by an average , as long as  >  > .

This peculiar connivance may be observed when we endeavour to retrieve
as much as possible relevant information. Imagine a search engine, which
retrieves Internet documents, using intuitionistic fuzzy coefficients for each
document with respect to the keywords of the inquiry. Having retrieved some
amount of documents, the engine shall undertake the so important task of
ranking them, naturally utilizing their intuitionistic fuzzy coefficients of rele-
vance, irrelevance and ignorance. It is not necessary to be a narrow specialist,
in order to evaluate that the problem of ranking documents by relevance to
some key words is fundamental in the area of information retrieval. Internet
consumers often use web search engines but rarely survey all retrieved
documents. Search engines are expected to to expel the fully irrelevant
documents, and present the best relevant documents on the top of the retrieved
list. As far as there are no irrelevant documents in the top hits, users are prone
to admit documents whose intuitionistic fuzzy estimation vacillates between
the degree of relevance and the degree of lack of knowledge.

The last strategy is the most peculiar one. Intuitionistic fuzzy sets have been
created as a tool to account the lack of knowledge, but yet all attempts in this
direction have been focused in reducing its percent, since its presence prevents
from taking the most informative decisions. In defiance of these attempts,
there are still many situations in real life when choosing the least informative
option proves to yield the best results.

Let us consider some intricate case of medical diagnostics. A patient indic-
ates symptoms that may correspond to various maladies requiring mutually
incompatible treatments. Before all medical investigations and analyses have
given their results, the doctors shall purposefully avoid any hurried diagnoses
and abide to prognoses with predominant degrees of uncertainty:  >  > .

3 Extended modal operators adjusting the IF estimations

In [1] there have been formulated the following operators, which extend the
well-known modal logic operators “necessity”, denoted in the theory of intui-
tionistic fuzzy sets by , and “possibility”, denoted by :
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Ex|)x(1),x(,xA AA ,
Ex|)x(),x(1,xA AA .

The extended modal operators have respectively the following formula repre-
sentation:

Ex|)x(.)x(),x(.)x(,x)A(F AAAA, ,

Ex|)x(.),x(.,x)A(G AA, ,

Ex|)x(.)x(),x(.,x)A(H AAA, ,

Ex|))x()x(.1.()x(),x(.,x)A(*H AAAA, ,

Ex|)x(.),x(.)x(,x)A(J AAA, ,

Ex|)x(.)),x(.)x(1.()x(,x)A(*J AAAA, ,

where A is a given intuitionistic fuzzy set, E is the universe, ,  [0,1] and
only in F , ,  +  1. Operators F , G , H , H* J  and J*  have been
illustrated in Figs. 2a and 2b.

Fig. 2a. Operators F , G , H , J Fig. 2b. Operators F , G , H* , J*

The appearance of these extended modal operators in 1988 coincided in time
with the occurrence of the geometrical interpretation of intuitionistic fuzzy sets
as a triangle, which contributed to the operators’ better understanding and gave
rise to the invention of other extended modal operators and related properties.

The modal operators presented above can be used for external intervention,
somewhat adjustment of the objects’ intuitionistic fuzzy estimations, due to
the subjective intention expressed in the pursued strategy. But these are not the
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only operators that realize these functionalities. The rest of the present article
will be devoted to introduction of four brand new extended modal operators
that also enable the movement of the point inside the intuitionistic fuzzy trian-
gle, and explain the motives for this adjustment.

First of all, let us observe that there is one more possible splitting of the
intuitionistic fuzzy triangle. When the idea for this new splitting appeared, it
was initiated by the possible strategies that shift the point into the triangle.
Depending on which of the intuitionistic fuzzy degrees weighs down (or up),
there are six figures that describe the regions of action of the new modal
operators. They correspond to the three mirroring choice strategies, articulated
in the first section of the present article, and are illustrated in Fig. 3.

Fig. 3. Distribution of the new extended modal operators V , , V’ , , W ,  and W’ ,
over the intuitionistic fuzzy triangle
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The formulae that correspond to each of the four modal operators are given
below (operators F ,G  have already been formulated):

Ex|)x(.),x(.)x(,x)A(V AAA, ,

Ex|)x(.),x().1()x(.)x(,x)A('V AAAA, ,

Ex|)x(.)x(),x(.,x)A(W AAA, ,

Ex|)x().1()x(.)x(),x(.,x)A('W AAAA, .

It is easy to prove that Morgan’s Law holds for these operators:

)A(W)A(V ,, , )A('W)A('V ,, ,
)A(V)A(W ,, , )A('V)A('W ,, .

The following property, relating all of the four new operators, is also valid:

)A('V)A(VA)A(W)A('W ,,,, .
In a future research, there shall be studied the interrelations between operators
the old operators H , H* J  and J* , and the new ones V , , V’ , , W ,

and W’ , , as far as their graphic representation over the intuitionistic fuzzy
triangle reports that their regions of action overlay.

It is easy to prove that Morgan’s Law holds for these operators:

)A(W)A(V ,, , )A('W)A('V ,, ,
)A(V)A(W ,, , )A('V)A('W ,, .

The following property, relating all of the four new operators, is also valid:

)A('V)A(VA)A(W)A('W ,,,, .

In a future research, there shall be studied the interrelations between operators
the ‘old’ operators H , H* J  and J* , and the ‘new’ ones V , , V’ , ,
W ,  and W’ , , as far as their graphic representation over the intuitionistic
fuzzy triangle reports that their regions of action overlay.
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 The paper concerns one of relevant issues related to the handling of 
textual information, that is the dominant form of information in many real world 
problems, for providing support for decision making. We discuss the issue of text 
document categorization that is a prerequisite for further analyses. We indicate 
how the use of fuzzy linguistic summaries for text categorization may help the de-
cision maker to have documents classified in a human consistent way into catego-
ries, which in turn should greatly help him or her extract relevant information and 
knowledge from textual documents available, and then use them to arrive at a bet-
ter decision in a more effective and efficient way. We indicate that the solutions 
proposed can be of use for enhancing the power of so-called document driven de-
cision support systems. 

1. Introduction

Decision making is now becoming more and more sophisticated, time consuming 
and difficult for human beings who require some decision support, notably in the 
form of a computer based decision support system (DSSs). DSSs are heavily 
based on data, information and knowledge. Their importance is growing in recent 
times in particular in view of a transition to knowledge centered economy, that is a 
dominant tendency in virtually all developed countries, and a need of a better 
knowledge management. 

We can distinguish the following basic types of DSSs: 

• Data driven,
• Communication driven and group DSSs, 
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• Document driven, 
• Model driven, 
• Knowledge driven, 
• Web based and interorganizational. 

Roughly speaking: 

• Data Driven DSSs emphasize access to and manipulation of internal company 
data and sometimes external data, and may be based –from the low to high 
level – first on simple file systems with query and retrieval tools, then data 
warehouses, and finally with On-line Analytical Processing (OLAP) or data 
mining tools. 

• Communications Driven DSSs use network and communications technologies 
to facilitate collaboration and communication. 

• Group GDSSs are interactive, computer-based systems that facilitate solution 
of unstructured problems by a set of decision-makers working together as a 
group.

• Document Driven DSSs integrate a variety of storage and processing tech-
nologies for a complete document retrieval and analysis; documents may con-
tain numbers, text, multimedia. 

• Model Driven DSSs emphasize access to and manipulation of a model, e.g., 
statistical, financial, optimization and/or simulation; use data and parameters, 
but are not usually data intensive. 

• Knowledge Driven DSSs are interactive systems with specialized problem-
solving expertise consisting of knowledge about a particular domain, under-
standing of problems within that domain, and "skill" at solving some of these 
problems. 

• Web based DSSs are computerized system that deliver decision support re-
lated information and/or tools to a manager/analyst using a "thin-client" Web 
browser (Explorer); TCP/IP protocol, etc. 

and one should bear in mind that this classification should not be considered as a 
chronology of development of DSSs but as a classification with respect to what a 
particular system is meant for, as well as which aspect of decision support it fo-
cuses on.  

In this paper we concentrate on the document driven DSSs, and in particular on-
how to effectively and efficiently retrieve, from various documents available in 
the company or organization, information and knowledge that may be of use to the 
decision maker while making decisions. We concentrate on the problem of how to 
categorize (classify) text documents, and to attain a higher human consistency. We 
propose the use of fuzzy linguistic summaries (cf. Yager, 1982, Kacprzyk and 
Yager, 2001, Kacprzyk, Yager and Zadrozny, 2000, 2001) dealt with by fuzzy 
logic with linguistic quantifiers. 
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2. Linguistic Summarization

Text categorization is one of the tasks considered within information retrieval 
(IR). It may be meant in a more general context - not necessarily limited to a pure 
classification problem. For example, a concise description of a collection of text 
documents may be sought within the same framework. On a more sophisticated, 
semantic level this is related to information extraction and text summarization. As 
soon as we assume some numerical representation of documents, e.g., based on 
the widely accepted vector space model, we may try to apply quantitative tech-
niques of data mining. In respect to a concise description of a set of objects (here: 
documents) such a relatively new and promising technique is the linguistic sum-
marization. This paper discusses some possibilities of application of this new 
technique for the purposes of information retrieval.  

The main idea of linguistic summarization is to provide means for an intuitive, 
human-consistent description of a group of objects. A linguistic summary may be 
exemplified in the context of a corporate database by: 

“Many orders have low commisssion”    (1) 

“Most of the young employees have high salary”   (2) 

The concept has been introduced by Yager (cf., e.g., [14]) and further developed 
by many authors including Kacprzyk and Zadro ny [8,9]. The elements empha-
sized in the examples (1) and (2) are linguistic terms typically used by humans to 
assess values of some features (“low”, “young”, “high”) and quantify some cardi-
nalities (“many”, “most”). Thus, formally, such linguistic summaries may be con-
veniently expressed using the language of the linguistically quantified proposi-
tions due to Zadeh [16], as follows: 

SQy ares'        (3) 

for (1) and the following for (2) 

SsQRy are'        (4) 

In Yager’s approach the following notation related to linguistic summaries is as-
sumed. Y={y1,…,yn} is a set of objects to be summarized, e.g. the set of workers. 
A={A1,…, Am} is a set of attributes characterizing the objects from Y, e.g. salary, 
age etc. Aj(yi) denotes value of attribute Aj for object yi. A linguistic summary of 
data set Y consists of: 

• a quantity in agreement Q, i.e., a linguistic quantifier (e.g. “many”), 
• a summarizer S, i.e., an attribute together with a linguistic term defined on 

domain of an attribute Aj (e.g. “low commission” for attribute “commission”), 
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• optionally, a qualifier R, i.e., another attribute together with a linguistic term 
defined on domain of an attribute Ak determining a (fuzzy) subset of Y (e.g. 
“young” for attribute “age”) 

• truth (validity) T of the summary, i.e., a number from the interval [0,1] assess-
ing truth (validity) of the summary (e.g. 0.7), 

and may be, therefore, represented as a quadruple (Q, S, R, T).

Using Zadeh's [16] fuzzy-logic-based calculus of linguistically quantified proposi-
tions, a (proportional, nondecreasing) linguistic quantifier Q is assumed to be a 
fuzzy set in the interval [0,1] as, e.g. 

≤
<<−

≥
=

3.0for0
8.03.0for6.02

8.0for1
)(

x
xx

x
xQμ    (5) 

Then, the truth (validity) of (3) and (4) are calculated, respectively, as  

== n
i iSnQ ySsQy 1

1 )]([)are'(truth μμ
        

= =∧= n
i

n
i iRiSiRQ yyySsQRy 1 1 ])(/))()(([)are'(truth μμμμ

Both the summarizer (S) and qualifier (R) are assumed above as referring to just 
one attribute. They can be extended to cover more sophisticated summaries in-
volving some confluence of various attribute values as, e.g, "young and well 
paid".

Kacprzyk and Zadro ny [10] review a number of approaches proposed in the lit-
erature for the derivation of linguistic summaries in a more or less general form. 
They include the use of efficient algorithms for association rules mining. It seems 
to be quite a promising direction. It makes it possible to derive linguistic summa-
ries in a slightly simplified form (basically, both qualifiers and summarizers have 
to be conjunctions of atomic conditions), however it offers efficient algorithms 
elaborated in the area of traditional association rule mining.  

Briefly stating, in this approach an interpretation of the following generalized and 
fuzzified form of an association rule: 

A1 IS f1∧...∧An IS fn An+1 IS fn+1∧...∧An+m IS fn+m   (6) 

as a linguistic summary of type (4) represented by the following quadruple: 

 (Q, An+1 IS fn+1∧...∧An+m IS fn+m, A1 IS f1∧...∧An IS fn, T)

is employed. In the above, fi’s denote linguistic terms defined in the domain of at-
tributes Ai, while Q and T are determined by a so-called confidence measure of the 
association rule (6). For more details on this approach, see [10] and references 
therein.
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The number of derived linguistic summaries, may be huge, and hence some prun-
ning scheme should be used to eliminate unnecessary summaries. This leads to a 
substantial, lossless  reduction of the number of rules. 

3. Text categorization

The task of text categorization is a special case of the general problem of classifi-
cation. Usually, the following or similar notation is assumed: D = {di}i=1,N - a set 
of text documents, C = {ci}i=1,S - a set of categories, Ξ: D×C→{0,1} - assignment 
of categories to documents, T = {tj}j=1,M - a set of terms. Additionally, a set of 
training documents is considered, i.e., such a set D1 ⊂ D that Ξ(d,c) is known for 
d∈D1 and any c∈C. Then the documents are usually represented via a function: 

F: D × T → [0, 1]                   (7) 

i.e. a document is represented as a vector: di → [w1,...,wM], wj = F(di,tj) di ∈ [0,1]M,
where each dimension corresponds to a term and the value of wj (weight) deter-
mines to what extent a term tj∈T is important for the description of the document. 
A popular version of function F used for the automatic processing of documents is 
a tf×idf function F(di,tj)=fij∗ log(N/nj) where fij is the frequency of a term tj in a 
document di and nj is a number of documents containing term tj. As a starting 
point, in this work we assume a normalized version of tf×idf.

Having a numerical representation of documents (7) any algorithm of classifier 
construction may be applied, including rule-based systems, decision trees, artifi-
cial neural networks, etc, cf., e.g., [11]. The common feature of such algorithms is 
a need to aggregate partial results obtained when particular terms are taken into 
account separately. This provides an opportunity to apply linguistic quantification, 
especially in cases when transparency, easy interpretability of obtained rules is re-
quired. For example, in [19] we have employed the classical Rocchio algorithm 
developed in the area of IR. The learning phase consists in computing a centroid 
vector for each category of documents. Then, in the classification phase, a docu-
ment is classified to a category whose centroid is most similar to this document. 
The similarity may be meant in several ways – in the original Rocchio’s approach 
it corresponds to the Euclidean distance.  

As the categories (their centroids) represent many documents, then one should not 
expect a match between a centroid and a document along all dimensions of their 
representation. More reasonable is to formulate a requirement that along most of 
these dimensions there is a match. This may be formalized using the following 
linguistically quantified proposition: 

“A document belongs to a category if most of the important terms present  
in the document are also present in the centroid of the category”.  
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Another aspect of text categorization pertinent to the application of linguistic 
quantifiers is the following. Usually the classifiers considered in a given context 
compute for each document and category a matching degree that yields an ordered 
list of categories for each document. If just one category is to be assigned to a 
document a reasonable way is to choose one with the highest rank. 

However, in case of multilabel categorization the classifier has to decide how 
many of top ranked categories should be assigned to a document. This is referred 
to as a thresholding strategy problem (cf.., e.g., [15]). The following strategies 
may be adopted: choosing a fixed number of top ranked categories for each docu-
ment; assigning such a number of documents to each category so as to preserve a 
proportion of the cardinalities of particular categories in the training set; or assign-
ing a category only if its matching score is higher than a fixed threshold. In 
[19,18] we proposed a number of approaches based on linguistic quantification. 
One consists in choosing such a threshold r that  

most of the important categories had a number of sibling categories  
similar to r in the training data set  

and by the sibling category for a category ci we mean a category that is assigned to 
the same document as category ci.

Another approach may be expressed as follows: select such a threshold r that: 

“most of the important categories are selected and most of the selected  
categories are important  

A threshold r is selected for each document d separately. 

4. Linguistic summaries for text categorization

It is easy to see that the above problem formulations correspond to linguistic 
summaries that should be mined. Linguistic summaries were originally meant in 
the context of databases. Databases usually feature strictly determined structure 
with clearly identified attributes with their domains. Thus, summaries are well-
defined knowing the schema with additional metadata in the form of a dictionary 
of relevant linguistic terms (cf., e.g., [8,9]). Text documents usually lack such a 
strict structure and thus are much less suitable for standard mining techniques, in-
cluding linguistic summaries. However, as we focus here on the text documents 
available in the Internet, the situation is more promising. This is due to the fact, 
that most of the Internet based text documents reveal some structure. The most 
popular format of the Web is HTML which secures a certain degree of structure of 
compliant documents (especially in case of XHTML). More and more documents 
available and exchanged via Internet follow XML specification, which supports 
quite a rich and well defined structure. These makes it possible to distinguish dif-
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ferent parts of documents that may be important for the purposes of text categori-
zation.

In our work we assume the model of Internet-based documents as proposed by 
Bordogna and Pasi (cf. e.g., [4]). Basically, a document is assumed to be divided 
into sections (parts). Depending on the application area one may assume a more or 
less rich structure. For example, for a set of XML documents based on the same 
schema a very rich structure may be taken into account. For typical HTML docu-
ments at least TITLE and BODY sections are usually present. Let P={pk}k∈[1,K] a 
set of sections (parts) distinguished in documents. Then, a document is repre-
sented as the vector di=(di11,...,diMN), where dikj denotes the weight of term tj in sec-
tion k of document di. Thus, the weights dikj are computed by a function (instead of 
(7)):

F: D × P × T → [0, 1]                 (8) 

Thus, we convert a set of the original textual documents into the vectors of terms 
weights belonging to the interval [0,1]. These may be accompanied by the infor-
mation on category (class) belonginess of given document, if available. In order to 
reduce the term set we perform typical operations of stopwords elimination and 
stemming. What we obtain is, formally, a counterpart of a set of numerical data 
typically dealt with using data mining techniques, including linguistic summariza-
tion.

Depending on the goal of the linguistic summarization we derive a set of linguistic 
summaries for a set of documents representing one category or various categories. 
The former may be useful in case of simple filtering of information, while the lat-
ter for a regular categorization of documents. Linguistic summaries derived in the 
former scenario may be also useful per se – as a description of given set of docu-
ments, not necessarily assigned to a specific category. Due to their human consis-
tency and readability, linguistic summaries may be easier manipulated and han-
dled by a human expert leading possibly to even better categorization rules. 

In this paper, we discuss an application based on vector space model whereas 
documents are represented as vectors of keywords. However, even more attractive 
from the point of view of manual manipulations of description of categories is a 
representation referring to the concepts dealt with in a document. In such a case, 
linguistic summaries may take into account hierarchies of concepts.  

Numerical experiments on some well-known text corpora are encouraging, and 
will be presented in next papers along with a more detailed analysis of algorithmic 
and programming solutions adopted in the study. 
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4. Concluding remarks

The paper concerned one of relevant issues related to the handling of textual in-
formation, that is the dominant form of information in many real world problems, 
for providing support for decision making. We discussed the issue of text docu-
ment categorization that is a prerequisite for further analyses. This provides for an 
effective and efficient management of knowledge that is present in textual docu-
ments. Such documents are a primary form of knowledge sources in many practi-
cal situations. 

We indicated how the use of fuzzy linguistic summaries for text categorization 
may help the decision maker to have documents classified in a human consistent 
way into categories, which in turn should greatly help him or her extract relevant 
information and knowledge from textual documents available, and then use them 
to arrive at a better decision in a more effective and efficient way. 
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Boyan Kolev1, Panagiotis Chountas2, Ilias Petrounias3,
Vassilis Kodogiannis2

We use intuitionistic fuzzy SQL (IFSQL) and intuitionistic fuzzy relational 
databases (IFRDB) to store and manage data about football matches and 
predictions. We take advantage of intuitionistic fuzzy sets by relating the degree of 
indefiniteness to an uncertainty about the estimation for a team’s capabilities. The 
uncertainty is produced by insufficient statistical data.

1. Introduction

In [1, 3] we presented an IFRDB model and described the IFSQL used for 
querying in intuitionistic fuzzy databases. The IFRDB model extends the 
classical and fuzzy relational database models [7, 8] by introducing the 
usage of intuitionistic fuzzy sets. In this paper we present an application of 
this model, which develops a system for prediction of football matches, 
which we introduced in [2]. The system computes and stores ratings for the 
teams, which are similar to the Elo ratings [4]. The system takes advantage 
of the theory of the intuitionistic fuzzy sets [5, 6] in the following way: At 
a certain moment each team has a rating which is the answer of the 
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question “Is the team good?” The rating is an intuitionistic fuzzy value
with degree of indefiniteness, which corresponds to the uncertainty about
our estimation for the team’s capabilities. This uncertainty decreases as we
get more statistical data for the team. Initially the indefiniteness is equal to 
1 as we don’t know anything about the team. The system adjusts a team’s
rating after each match following these steps:

- computes the win expectancy using the ratings of the two teams
- evaluates the match result with a number in the interval [0, 1]
- computes the new ratings taking into account the difference between 

the expectancy and the result. The degrees of truth and falsity of the
new rating are modified considering the a.m. difference but in a way
that decreases the degree of indefiniteness. 

The paper emphasizes on the advantage of using the intuitionistic fuzzy
sets theory in game prediction models and proposes a concrete model for 
prediction of football league matches, described in details in the next 
chapter.

In Chapter 3 we describe the structure and functionality of the IFRDB,
which implements the football prediction model. The database uses IFSQL 
statements to satisfy the needs of the prediction model.

2. Description of the prediction model

Let us define an alternative form of an intuitionistic fuzzy value, which
represents the value with a couple of numbers < , > in the interval [0, 1],
where  represents the truth degree (do not confuse it with ) and 
represents the definiteness. In other words,  is the degree of truth in the
terms of classical fuzzy sets (falsity is 1- ) and  answers the question “at 
what degree our estimation for  is correct”. The formulae for conversion
between < , > and < , > representations are the following: 

< , > to < , > < , > to < , >

0,5.0

0,

if

if

1
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2.1. Prerequisites

hR0  is the current rating of the home team.  is the current rating of the 

away team.

aR0

R (see Eq. 1) is the difference between ratings of the home and away
teams. The coefficient CH is used for adjustment of the strength of the
home team rating in the computation of win expectancy. It artificially 
increases the rating of the home team. It may depend on the championship
or even on the certain match and is usually greater than 1. 

)(R)(RR a
0

C

1

h
0

H (1)

2.2. Computing the win expe ctancy

The win expectancy we is an intuitionistic fuzzy value, which answers the 
question “Do we expect the home team to win?”. It is computed by the
following formulae:

EC

1

e |R|R)sg(
2
1

0.5)(w

2

)(R)(R
)(w

a
0

h
0

e
,

where sg (x) is a sign function (see Eq. 2) and CE is a coefficient for 
adjustment of the strength of the rating difference in the computation of 
we.

0,1

0,1
)(

xif

xif
xsg (2)

The win expectancy can be used for prediction, i.e. the system claims that
the match result (see below) will be most probably in the interval [ (we),
1- (we)].

2.3. Evaluating the match result

This consists of computing a number w in the interval [0, 1], which 
represents the result of the match. Consider the scores of the home and
away teams, respectively SH and SA.

Let S = SH – SA be the goal difference. Then: 

283An Application of Intuitionistic Fuzzy Relational Databases



0Sif,
2S

1
1

0S0.5,

0Sif,
2S

1

w

Here are some examples for the computation of this parameter:

S w

-3 0.2
-2 0.25
-1 0.333
0 0.5
1 0.667
2 0.75
3 0.8

2.4. Computing the new ratings

For the new ratings we will take into account the difference between the 
result and the expectancy:

w = w - (we)
Now we will compute the modification parameters  and , which 

will be added respectively to the degrees of truth and falsity of the home
team rating. They will also be used for modification of the away team 
rating but in reverse order, i.e.  will be added to the degree of truth and 

 - to the degree of falsity. We must make sure that the following 
condition is observed: 

+  = ,
where  is a constant representing the decrease of the degree of 
indefiniteness of the ratings after each match. It depends on the certain
championship. For example, if the league consists of 20 teams, each team
must play 38 matches, so must not be greater than 1/38 otherwise the
sum of truth and falsity of each team after the last match will be greater
than 1 (assuming that all the teams begin the championship with full 
indefiniteness degree). 
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We use the following formulae for computation of  and :

)|w|w).sg(
2

1
0.5( RC

1

)|w|w).sg(
2

1
0.5( RC

1

,

where CR is a coefficient for adjustment of the strength of w in the
computation of the new ratings 

Considering the rating modification parameters, the new ratings of the

home and away teams (  and  respectively) are computed the
following way:

hR1
aR1

)()( 01
hh RR

)()( 01
hh RR

)()( 01
aa RR

)()( 01
aa RR

Repeating the above steps with each round of the championship we 
adjust the ratings of the teams taking into account the results from the 
matches they have played. Thus, at the end of the championship each team
has a rating with minimal degree of indefiniteness. We can use this rating
as a base for the initial rating of the team for the next championship 
season. Of course, we should increase the degree of indefiniteness 
(however reserving the ratio between the truth and falsity degrees),
because of many reasons, e.g. a team may have changed its management,
or some of the players, etc. Doing so, we will have to select a proper value 
for  for the next season, because this time the ratings won’t be
initialized with full indefiniteness.

3. IFRDB representation of the model

The structure of the model is organized in the following tables: 

- table team (id, name) contains a list of the teams in the 
championship

- table match (id, date, home_team_id, away_team_id, home_score,
away_score) contains the matches in the championship;
home_team_id and away_team_id are references respectively to the
records in team for the home and away teams; home_score and 
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away_score contain the result of the match, initially before the 
match they are NULL 

- table good_teams (team_id, truth, falsity) is an intuitionistic fuzzy 
set of the good teams (contains the current ratings of the teams) 

- table rating (team_id, match_id, truth, falsity) contains a history of 
the teams’ ratings 

Assume that intuitionistic fuzzy predicate is a function, which returns a 
couple of numbers in the interval [0, 1] representing the truth and falsity 
degrees of the predicate value. The following stored functions are defined 
in the database model: 

- an intuitionistic fuzzy predicate is_team_good (team_id), which 
makes a lookup in the table good_teams to obtain the current rating 
of a team 

- an intuitionistic fuzzy predicate is_team_good (team_id, match_id),
which makes a lookup in the table rating to obtain the rating of a 
team at a certain match 

- an intuitionistic fuzzy predicate is_team_good (team_id, date),
which makes a lookup in the table rating to obtain the rating of a 
team at a certain date 

- explanatory database with translation rules for the above three 
predicates

- an intuitionistic fuzzy predicate win_expectancy (home_rating, 
away_rating), which computes the expectancy for the home team to 
win

- a function match_result (home_score, away_score), which evaluates 
the result of the match with a number in the interval [0, 1] 

- a function delta_mu (win_expectancy, match_result), which 
computes 

- a function delta_nu (win_expectancy, match_result), which 
computes 

- an intuitionistic fuzzy modifier ADD (delta_mu, delta_nu), which 
adds delta_mu and delta_nu respectively to the degrees of truth and 
falsity 

- a translation rule in the explanatory database for the modifier 

Now we will describe the steps, which the model follows, with the terms 
of intuitionistic fuzzy SQL: 
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3.1. Compute the win expectancy for a set of matches

The following SELECT returns an intuitionistic fuzzy relation, which 
answers the query “Find matches, for which the home team is expected to 
win”:

SELECT m.id, h.name AS home_team, a.name AS 
away_team
FROM match m 

JOIN team h ON m.home_team_id = h.id 
JOIN team a ON m.away_team_id = a.id 

WHERE win_expectancy (is_team_good (home_team_id), 
is_team_good (away_team_id)); 

For the translation of the intuitionistic fuzzy SQL statement to a 
standard SQL we use the explanatory database to find the translation rule 
for the predicate is_team_good (team_id). The translator adds two more 
joins in the FROM clause in order to obtain the values of the predicates 
is_team_good (home_team_id) and is_team_good (away_team_id). The 
translated statement is the following: 

SELECT m.id, h.name AS home_team, a.name AS 
away_team

, win_expectancy (if_value (hr.truth, 
hr.falsity), if_value (ar.truth, ar.falsity)).truth 
AS _mship 

, win_expectancy (if_value (hr.truth, 
hr.falsity), if_value (ar.truth, 
ar.falsity)).falsity AS _nmship 
FROM match m

JOIN team h ON m.home_team_id = h.id 
JOIN team a ON m.away_team_id = a.id 
JOIN good_teams hr ON m.home_team_id = hr.team_id 
JOIN good_teams ar ON m.away_team_id = 
ar.team_id;

Here if_value (truth, falsity) is a function, which encapsulates the two 
number parameters into a composite object with two fields. 

3.2. Compute the new ratings

For each match we perform the following steps to adjust the new ratings of 
the teams, as we already know the result of the match: 

- a variable we stores the winning expectancy for the home team 
- a variable mr stores match_result (home_score, away_score)
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- variables home_team_id and away_team_id store the corresponding 
columns from the match table 

UPDATE good_teams MODIF ADD [delta_mu (we, mr), 
delta_nu (we, mr)] 

WHERE team_id = home_team_id; 
UPDATE good_teams MODIF ADD [delta_nu (we, mr), 
delta_mu (we, mr)] 

WHERE team_id = away_team_id; 

According to the translation rule for the intuitionistic fuzzy operator ADD
these statements are translated to the following standard SQL statements: 

UPDATE good_teams SET truth = truth + delta_mu(we, 
mr), falsity = falsity + delta_nu(we, mr)

WHERE team_id = home_team_id; 
UPDATE good_teams SET truth = truth + delta_nu (we, 
mr), falsity = falsity + delta_mu (we, mr) 

WHERE team_id = away_team_id; 

The new ratings are added to the rating table. 

4. Conclusions

We presented a model for prediction of football match results based on the 
theory of intuitionistic fuzzy sets. The benefits of this model are the 
following:

- it takes into account the uncertainty in the computation of the rating 
of a given team 

- when the match wins a team, which is expected to lose, its rating is 
increased significantly and so is decreased the rating of the other 
team 

- the model provides an easily configurable system using the 
parameters described below 

The values of the parameters CH, CE and CR may be specific for each 
championship or even for a certain match. For example, in some 
championships we can take into account the fact that the audience gives 
more support to the home team than usual, so for these ones the coefficient 
CH should be greater. In some championships, however, there are no home 
teams in fact (international leagues), so the audience support is not 
significant and CH should be equal to 1. An exception makes only the host 
of the championship. The value of the parameter CR may vary depending 
on the rating of the championship. For example, the results from the 

B. Kolev et al.288



champion’s league matches are more significant than those from the 
domestic leagues, so the value of CR for the first ones should be greater. 
These parameters may be adjusted experimentally for a certain 
championship in order to achieve a maximal prediction success. We made 
some experiments with the results from the English premiership and 
concluded that the systems gives good prediction results with values for 
the parameters CH, CE and CR respectively 3, 1 and 10. 

The IFRDB implementation of the model gives the opportunity to easily 
store and manage data for football matches results and retrieve 
intuitionistic fuzzy query results with simple IFSQL statements. We can 
use this model for prediction of football matches as well as for making 
intuitionistic fuzzy queries using the history about teams’ performance. 
Examples for such queries can be: “How often Manchester Utd. was 
approximately as good as Liverpool as a home team lately?”, “Find teams, 
which seldom were stronger than comparatively good teams?”, etc. 
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Abstract. A generalized net model with intuitionistic fuzzy estimations has been
constructed in order to simulate electronic adaptive assessment of students. The
final mark is determined on the basis of a set of such assessment units as the
problem, the test, or the examination. Each assessment unit has been associated
with weight coefficients, represented by intuitionistic fuzzy estimations,
determining the unit’s importance.
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1 Introduction

With the present article we aim to model the process of adaptive dynamic
assessment during the process of e-learning. We have chosen generalized
nets for our modelling tool.

The training materials can be classified as:
information units (for acquiring of knowledge and skills);
assessment units – problem, test, examination

Trainees may also utilize the library resources.
In this paper we shall use the apparatus of the Intuitionistic Fuzzy Sets

(see [1]) and Generalized Nets (GNs; see [2]).
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The estimations, rendering account of the students’ knowledge, are formed
on the basis of a set of intuitionistic fuzzy estimations < , >, related to
the respective assessment units. These intuitionistic fuzzy estimations
reflect the degree of student’s good performance  or bad performance  at
each assessment unit.

We introduce fuzzy coefficients < , >, setting weights of each
assessment unit that participates in forming the final mark. Coefficient  is
shaped on the basis of the number of the successive assessment units, and
coefficient  is shaped on the basis of the number of the preceding
assessment units. For instance, a trainee shall sit for eight assessment units,
divided in three levels of difficulty (easy, middle, difficult). Let there be
three assessment units from the first level, three assessment units from the
second level, and two assessment units from the third level. Then the

weight coefficients will be distributed as follows: from first level: 0,
8
5 ,

from second level: 
8
3,

8
2  and from third level: 

8
6,0 . In this way,

(k+1)-st estimation 1k1k , , for k  0, is calculated on the basis of
the preceding estimations kk ,  due to the formula:

1k1k ,  = <
1k

m.n.k.
,

1k
n.m.k. iikiik >,

where <m, n> is the estimation of the current assessment unit, m,n  [0, 1]
and m + n  1, and < i, i> is the weight coefficients of the i-th assessment
unit, for i + i  1.

2 Short Remarks on Generalized Nets

The way of defining the GNs is principally different from the ways of
defining the other types of Petri nets. The first basic difference between
GNs and the ordinary Petri nets is the “place – transition” relation. Here,
the transitions are objects of a more complex nature.

Formally, every transition (see Fig. 1) is described by a seven-tuple, but
here we shall use only five of them:

Z = L', L'', r, M, ,
where:

(a) L' and L'' are finite, non-empty sets of places (the transition's input and
output places, respectively). For the transition in Fig. 1 these are

L' = { l'1, l'2,…, l'm} and L'' = { l''1, l''2,…, l''n};
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Fig. 1. GN-transition

(b) r is  the  transition's condition determining which tokens will pass (or
transfer) from the transition's inputs to its outputs; it has the form of an
Index Matrix (see [2]):

)nj,mi(
)predicater(

r

'l

'l

'l
"l"l"l

R

j,i

j,i

m

i

nj

11

1

1

ri,j is the predicate which corresponds to the i-th input and j-th output
places. When its truth value is “true”, a token from the i-th input place can
be transferred to the j-th output place; otherwise, this is not possible;

(c) M is an index matrix of the capacities of transition's arcs:

)nj,mi(
)numbernaturalm(

m

'l

'l

'l
"l"l"l
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j,i

j,i

m

i

nj

11
0
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1

(d)  is an object having a form similar to a Boolean expression. It may
contain as variables the symbols which serve as labels for transition's input
places, and is an expression built up from variables and the Boolean
connectives  and  whose semantics is defined as follows:

),...,,(
21 uiii lll – every place 

uiii lll ,...,,
21

 must contain at least one token,

),...,,(
21 uiii lll – there must be at least one token in all places 

uiii l,...,l,l
21

,

where Llll
uiii },...,,{

21
.
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When the value of a type (calculated as a Boolean expression) is “true”,
the transition can become active, otherwise it cannot.

The ordered four-tuple (here also use a reduced GN-form)
E = A, c , K, X,

is called a reduced Generalized Net (GN) if:
A is a set of transitions;
c  is a function giving the capacities of the places, i.e., c : L  N;
K is the set of the GN's tokens;
X is the set of all initial characteristics the tokens can receive
when they enter the net;

 is a  characteristic function  which assigns new characteristics
to every token when it makes a transfer from an input to an output
place of a given transition.

It is also convenient to assume that the functions  have other forms.
For our needs we will use the above form only of function  as follows:

IQL

i
i

1

,

where i calculates the characteristics which the tokens  will receive in the
i-th GN place and |X| is the cardinality of the set X.

3 Generalized Net model

The so-developed generalized net model of e-learning assessment module
has been represented in Fig. 2.

Fig. 2. Generalized net model of e-learning assessment module
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The places in the generalized net fall in three categories: S – identifiers of
the appraised subjects (students), I – assessment units, and K – criteria for
assessment. The generalized net contains the following types of tokens: -
tokens, representing the subjects of appraisal, -tokens, interpreting the
separate assessment units, and -tokens, related to the criteria for evalu-
ation. The set contains the following set of transitions

 = <Z1, Z2, Z3, Z4, Z5>,

where the transitions stand for the following processes:

Choice of an assessment unit and a student for evaluation – transit-
ions Z1 and Z2;
Forming the student’s answers at the chosen assessment unit – transit-
ion Z3;
Evaluation of the student’s performance at the current assessment unit
– transition Z4;
Forming the final mark– transition Z5.

Initially, place I1 contains q in number t-tokens with the characteristic
“assessment unit t”, where t = 1, 2,…q. In a certain moment of time, each
of these tokens may split in several new tokens. The original tokens will
remain in place I1, and the new ones will pass via transition Z1.

The appraised students (interpreted by v-tokens, v = 1, 2, …, p), enter
the net via place S1. The evaluation criteria (interpreted by w tokens,
w = 1, 2, …,r) enter the net via place  K1.

The transitions have the respective representation, given below. Let
everywhere t be the number of assessment units (for t = 1, 2,…q), and v be
the number of evaluated students (for v = 1, 2, …, p).

Z1 = <{I1, S9}, {I1, I2}, R1, M1,  (L1, S9 )> ,

,
0pS
q0I
II

M
;

falseWS
WfalseI
II

R

9

1

21
1

1,99

11

21
1

where
W1 = “An assessment unit has been chosen”,
W9,1 = “The successive assessment unit shall be assigned”.

The tokens, entering place I2, obtain the characteristic:
“assessment unit t, mark kk , ”.

Z2 = <{S0, I2, S1, S5 }, {S1, S2, S3}, R2, M2,  ( ( I2, S0), S1, S5)> ,
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00pS
pp0S
00qI
00pS

SSS
M

;

falsefalseWS
WWfalseS
falsefalseWI
falsefalseWS
SSS

R

5

1

2

0

321
2

1,55

3,12,11

1,22

1,00

321
2

where
W0,1 = “There is a student to be appraised”,
W2,1 = “An assessment unit has been chosen”,
W1,2 = “An assessment unit for the student has been chosen”,
W1,3 = “There is a student who has given up examination”,
W5,1 = “The successive assessment unit shall be assigned”.

The t-tokens originate from place S0 and when the respective predicate
W0,1 values “true”, the tokens enter place S1 with the characteristic

“student v, estimation kk , ”.

Place S1 may contain v-tokens from place I2 with the characteristic
“assessment unit t”, in case the respective predicate W2,1 values “true”.
Initially, when the student has not been submitted to any assessment unit,
his estimation is 0,0 . The tokens entering places S2 and S3 obtain
respective characteristics: “student v, assessment unit t, mark kk , ”
and “student v, mark kk , ”.

Z3 = <{ S2, S7}, {S4 }, R3, M3,  (S2)> , 
pS
pS

S
M

;
WS
WS
S

R

7

2

4
3

4,77

4,22

4
3

where
W2,4 = “The student has formulated an answer to the assessment unit”,
W7,4 = “The answer to the assessment unit shall be formulated again”.

The tokens entering place S5 obtain characteristic:
“student v, assessment unit t, answer, mark kk , ”.

Z4 = <{ S4, K1, K2 }, {S5, S6, S7, K2 }, R4, M4,  ( ( K2, S4), K1)> ,

,

0pppK
r000K
p000S

KSSS
M

,

falseWWWK
WfalsefalsefalseK

WfalsefalsefalseS
KSSS

R

2

1

4

2765
4

7,26,25,22

21

2,44

2765
4
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where
W4,2 = W2,4,
W2 = “The criteria for answers’ evaluation are available”,
W2,5 = “The formulated answer is incorrect”,
W2,6 = “The formulated answer is correct”,
W2,7 = “The formulated answer is ill defined, or there is a technical error”.

The tokens entering places S5, S6 and S7 obtain the characteristic:
“student v, assessment unit t, answer, mark kk , ”.

Z5 = <{ S6 }, {S8, S9 }, R5, M5, ( S6 )> ,

,
ppS

SS
M,

WWS
SS

R
6

98
5

9,68,66

98
5

where
W6,8 = “The final mark has been formed”,
W6,9 = “The successive assessment unit shall be retrieved”.

The tokens entering place S9 obtain characteristic:
“student v, mark kk , ”.

The tokens entering place S8 obtain characteristic “student v, final mark
< , >”, where  and  are the estimations due to the levels of the
students’ ability or disability to assimilate the module, which is calculated
on the basis of the number of tokens in places S6 and S5. In the cases when
the answer has been ill defined or a technical error has been committed,
the degree of indeterminacy depends on the number of tokens in place S7.

Conclusion

The so-formed final mark obtained by the proposed generalized net model
of e-learning assessment module, using intuitionistic fuzzy estimations,
can be utilized for analysis of students’ knowledge and performance at
examinations.
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1 Introduction

AHP (Analytic Hierarchical Process) is a useful method in multi-criteria de-
cision making problems. The priority weights of the items are obtained from
a pairwise comparison matrix by eigenvector method [1]. The elements of
the matrix called pairwise comparisons are relative measurements given by a
decision maker. Therefore, the weights obtained from the given matrix can
reflect his/her attitude in actual decision problem. The weights obtained by
the conventional AHP lead to a linear order of items. Uncertainty of an order
of items in AHP is discussed in [2].

We extend crisp pairwise comparisons to fuzzy ones. Fuzzy pairwise com-
parisons are more rational to represent decision maker’s uncertain judgements
than crisp ones. The width of each fuzzy comparison represents uncertainty

T. Entani et al.: Analytic Hierarchy Process Based on Fuzzy Analysis, Advances in Soft Com-
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Analytic Hierarchy Process Based
on Fuzzy Analysis

Abstract. Analytic Hierarchical Process(AHP) is proposed to give the priority
weight with respect to many items. The priority weights are obtained from the
pairwise comparison matrix whose elements are given by a decision maker as crisp
values. We extend the crisp pairwise comparisons to fuzzy ones based on uncertainty
of human judgement. To give uncertain information as a fuzzy value is more rational
than as a crisp value. We assume that the item’s weight is a fuzzy value, since the
comparisons are based on human intuition so that they must be inconsistent each
other. We propose a new AHP, where the item’s weight is given as a fuzzy value, in
order to deal with inconsistency in the given matrix. The purpose is to obtain fuzzy
weights so as to include all the given fuzzy pairwise comparisons, in the similar way
to the upper approximation in interval regression analysis.



of the judgement. In this paper, it is assumed that the esitmated weights
are fuzzy values in order to reflect inconsistency in pairwise comparisons. We
deal with fuzzy weights as intervals by considering their h-level sets. The fuzzy
weights are determined so as to include the given fuzzy pairwise comparisons
at h-level. This concept is similar to the upper approximation in interval
regression analysis [5]. Instead of solving the eigenvector problem in the con-
ventional AHP, we can obtain the weights by solving one QP problem. Then,
inconsistency in the given matrix is shared with all items to some extent.

2 Crisp priority weights by conventional AHP

AHP is a method to deal with the weights with respect to many items and
proposed to determine the weights of each item [1]. When there are n items,
a decision maker compares a pair of items for all possible pairs then we can
obtain a comparison matrix A as follows.

A = [aij ] =

⎛
⎜⎝

1 · · · a1n

... aij

...
an1 · · · 1

⎞
⎟⎠

where aij shows the priority weight of item i comparing to j. The diagonal
elements are all 1, that is aii = 1 and other elements are reciprocal, that is
aij = 1/aji.

From the given comparison matrix by eigenvector method, the priority
weights w∗

i are obtained. The eigenvector problem is formulated as follows.

Aw = λw (1)

where the eigenvalue λ and the eigenvector w are the decision variables.
Solving (1), the eigenvector (w∗

1 , . . . , w∗
n) corresponding to the principal

eigenvalue λmax is obtained as the weight of each item. The sum of the ob-
tained weights w∗

i is normalized to be 1.
Using the obtained weights w∗

i the estimated pairwise comparison a∗
ij can

be denoted as follows.
a∗

ij =
w∗

i

w∗
j

If the pairwise comparison matrix is perfectly consistent, aij = a∗
ij hold

for all pairs of (i, j). However, a decision maker gives pairwise comparisons
intuitively so that they usually are inconsistent, that is aij �= a∗

ij . The larger
the number of compared items is, the more difficult it becomes to give consis-
tent pairwise comparisons, since a decision maker compares only two items at
one time. Therefore, it seems more pragmatic to give items interval, instead
of crisp, weights which reflect inconsistency in the given comparison matrix.
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In this paper, each pairwise comparison is given as a fuzzy value to reflect
uncertainty of a decision maker’s judgement. Then, considering inconsisntency
of a human judgements, the items’ weights are obtained as fuzzy values from
the given fuzzy pairwise comparisons. We use a QP problem instead of eigen-
vector problem so that the weights of all items are obtained as uncertain to
some extent.

3 Fuzzy weights with fuzzy matrix by AHP

3.1 Fuzzy pairwise comparison matrix

Since decision maker’s judgements are uncertain, it is easier for him/her to give
a pairwise comparison as a fuzzy value than a crisp value. When a decision
maker compares a pair of items for all possible pairs with n items, we can
obtain a fuzzy comparison matrix Ã as follows.

Ã = [ãij ] =

⎛
⎜⎝

1 · · · ã1n

... ãij

...
ãn1 · · · 1

⎞
⎟⎠

where ãij is a fuzzy value and shows the priority weight of item i comparing
to item j. The diagonal elements are all 1, that is ãii = 1.

We denote a fuzzy value ãij as parametrically (acij , adij) where acij and
adij are the center and width respectively as follows.

μãij (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (x ≤ acij − adij , acij + adij ≤ x)
x − (acij − adij)

adij
(acij − adij ≤ x ≤ acij)

x − (acij + adij)
adij

(acij ≤ x ≤ acij + adij)

where μãij (x) is the membership function of a fuzzy value ãij , and shown in
Figure 1.

We deal with a fuzzy value considering its h-level sets [4]. A fuzzy value
can be represented by intervals as

B = ∪h[B]h, 0 ≤ h ≤ 1

where B is a fuzzy value and h is a real value. h-level set of B, [B]h, is defined
as follows.

[B]h = {x|μB(x) ≥ h}

where μB(x) is the membership function of B. Then [B]h is considered as an
interval.

In the same way, h-level set of the fuzzy pairwise comparison is considered
as follows.
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Fig. 1. Membership function of fuzzy pairwise comparison ãij

[ãij ]h = [aij , aij ] = [acij − (1 − h)adij , acij + (1 − h)adij ]

The above interval pairwise comparison satisfies the following reciprocal
property.

acij + (1 − h)adij =
1

acji − (1 − h)adji

3.2 Fuzzy priority weights

We estimate the priority weights assumed as a triangular fuzzy values, w̃i =
(ci, di) ∀i, which are defined as the following membership function.

μw̃i(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (x ≤ ci − di, ci + di ≤ x)
x − (ci − di)

di
(ci − di ≤ x ≤ ci)

x − (ci + di)
di

(ci ≤ x ≤ ci + di)

where ci and di are the center and width, respectively.
Considering that a fuzzy value is represented by intervals [4], a fuzzy weight

can be dealt with its h-level set denoted as follows.

[w̃i]h = [wi, wi] = [ci − (1 − h)di, ci + (1 − h)di]

Then, the pairwise comparison with respect to items i and j is approxi-
mated as an interval ratio as follows.

aij ≈
[w̃i]h
[w̃j ]h

=
[

wi

wj
,
wi

wj

]

where [w̃i]h and [w̃j ]h are h-level sets of the estimated fuzzy weights and the
interval ratio [w̃i]h/[w̃j ]h is defined as the maximum range.

Based on the upper approximation in interval regression analysis, the fuzzy
weights are determined to include the given fuzzy pairwise comparisons.

T. Entani et al.304
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ãij ∈
w̃i

w̃j
↔ [ãij ]h ∈

[w̃i]h
[w̃j ]h

↔
wi

wj
≤ aij , aij ≤

wi

wj

(2)

3.3 Formulation as QP problem

We note that the sum of weights obtained by the conventional AHP is normal-
ized to be one. We consider interval probability functions proposed in [6] so
as to normalize the interval weights. Their conditions are defined as follows.

Definition 1. h-level sets of fuzzy priority weights ([w̃1]h, ..., [w̃n]h) where
[w̃i]h is denoted as an interval [wi, wi] is called interval probability if and
only if ∑

i�=j wi + wj ≥ 1 ∀j∑
i�=j wi + wj ≤ 1 ∀j.

It can be said that the conventional normalization is extended to the in-
terval normalization in the above definition. This is effective to reduce redun-
dancy under the condition that the sum of crisp weights within the interval
weights is equal to one.

The problem to obtain h-level sets of fuzzy weights, [w̃i]h = [wi, wi] ∀i,
are formulated as the following QP problem.

min
∑n

i=1(wi − wi)
2

s.t.
wi

wj
≤ aij ∀(i, j)

aij ≤
wi

wj

∀(i, j)∑
i�=j wi + wj ≥ 1 ∀j∑
i�=j wi + wj ≤ 1 ∀j

wi ≥ wi ∀i
wi ≥ 0 ∀i

(3)

where the first and second constraint conditions are the inclusion relation (2)
and the third and forth ones are the interval normalization in Definition 1. In
order to obtain the least upper approximation, the sum of squared widths of
interval weights is minimized in the similar way of least square method.

The widths of fuzzy weights reflect some inconsistency in the given fuzzy
pairwise comparison matrix. In other words, the obtained weights can be re-
garded as the possible ranges estimated from the given pairwise comparisons.
The estimated fuzzy weights are obtained so as to include all the given fuzzy
pairwise comparisons.

The problem to obtain the priority weights has also been formulated as
the following LP problem.

min
∑n

i=1(wi − wi)
s.t. constraint conditions in (3) (4)
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The width of the obtained weight illustrates the degree of uncertainty of
the item’s weight and reflects inconsisntency of corresponding pairwise com-
parisons. The degree of uncertainty of each item can be considered to some
extent by the first and second constraint conditions in both formulations (3)
and (4). The diffrence of the objective functions is explained as follows. In the
case of LP problem (4) such that the sum of widths is minimized, it happens
that the widths of some items are quite large while others are small. The
variance of widths tends to become large. Such a result indicates that incon-
sistency contained in the given comparison matrix is caused only by the items
whose widths are obtained as large. In the case of the QP problem (3) such
that the sum of squared widths is minimized, not only the special items but
also all items have certain widths. Then, inconsistency in the given matrix is
shared by all items. Since it is not easy to find the exact items which cause
inconsistency in the given comparisons, QP prolbem is more suitable to real
situation than LP problem.

We introduce accuracy measure, in order to compare the results from
QP and LP problems. The accuracy measure can be defined as the average
coverage rate of the given pairwise comparisons to the approximated ones as
follows.

Accur cy measure =
1
m

∑n
i=1

∑n
j �=i,j>i

aij − aij

a∗
ij − a∗

ij
(5)

where m is the number of the given pairwise comparisons and the approx-
imated comparison consists of the obtained weights, w∗

i and w∗
i , by (3) and

(4) denoted as follows.

a∗
ij =

w∗
i

w∗
j

, a∗
ij =

w∗
i

w∗
j

If all the given and approximated comparisons are the same, the accuracy
measure becomes one. When the more consistent matrix is given, the larger
the accuracy measure becomes. Accuracy measure represents the deviation of
the approximated and given pairwise comparisons, therefore, it depends on
inconsisntency in the given comparisons.

4 Numerical example

There are 5 items in this numerical example and a decision maker compares
all pairs of items to give their priority weights. The given fuzzy pairwise
comparison matrix Ã = [ãij ] where ãij = (acij , adij) is as follows.

Ã =

⎛
⎜⎜⎜⎜⎝

1 (1/2, 1/6) (1/3, 1/6) (1/4, 1/6) (1/5, 1/6)
1 (2/3, 1/2) (1/2, 1/6) (2/5, 1/6)

1 (3/4, 1/6) (3/5, 1/6)
1 (4/5, 1/6)

1

⎞
⎟⎟⎟⎟⎠
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The 0.5-level sets of the given fuzzy matrix [Ã]0.5 = [[ãij ]0.5] where
[ãij ]0.5 = [aij , aij ] is as follows.

[Ã]0.5 =

⎛
⎜⎜⎜⎜⎝

1 [0.417, 0.583] [0.250, 0.417] [0.167, 0.333] [0.117, 0.283]
1 [0.417, 0.917] [0.417, 0.583] [0.317, 0.483]

1 [0.667, 0.833] [0.517, 0.683]
1 [0.717, 0.883]

1

⎞
⎟⎟⎟⎟⎠

The fuzzy weights obtained from the given fuzzy comparison matrix at
0.5-level by QP problem (3) and LP problem (4) are shown in Table 1 and
Figure 3. Figure 2 illustrates the widths of the obtained fuzzy weights by the
QP and LP problems. A decision maker gives each pairwise comparison as a
fuzzy value and each item’s weight are also obtained as a fuzzy value.

QP LP
[w̃i]0.5 w̃i [w̃i]0.5 w̃i

1 [0.041,0.069] (0.055,0.029) [0.041,0.086] (0.064,0.046)
2 [0.090,0.152] (0.121,0.063) [0.087,0.165] (0.126,0.078)
3 [0.166,0.215] (0.191,0.049) [0.180,0.208] (0.194,0.029)
4 [0.249,0.278] (0.264,0.029) [0.250,0.269] (0.260,0.019)
5 [0.315,0.348] (0.331,0.033) [0.305,0.349] (0.327,0.044)

Accuracy measure 0.836 0.769

Table 1. Fuzzy weights and their 0.5-level sets

The width of the fuzzy comparison adij represents uncertainty of a decision
maker’s judgement and it might be reflected to uncertainty of the compared
items i and j, denoted as their widths di and dj . In this example, the width
of ã23, which is the comparison with respect to items 2 and 3, is larger than
others. Therefore, the widths of w̃2 and w̃3 are expected to be large. From
Figure 2, in the case of the LP problem (4), the width of w̃2 is the maximum
of all weights, while that of w̃3 is small. This result indicates that the given
matrix is inconsistent almost because of item 2. Using the LP problem, the
special items tend to have large widths comparing to others. On the other
hand, in the case the QP problem (3), both the widths of w̃2 and w̃3 are
larger than others. The deviation of the maximam and minimum widths by
the QP problem is 0.033 which is smaller than that by the LP problem 0.058.
Then, the variance of the widths obtained by the QP problem are smaller
than that by the LP problem. It is difficult to find the exact items which
cause inconsistency in the fuzzy pairwise comparisons. Formulating as a QP
problem is suitable to a real situation, since all items share the inconsistency
in the given matrix to some extent and the degree of uncertainty of each
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pairwise comparison can be reflected to the widths of the comapared two
items’ weights.

The accuracy measures obtained by (5) are shown at the bottom row of
Table 1. The accuracy measure by the QP problem is larger than that by
the LP problem. It indicates that the approximated comparisons calculated
with the obtained fuzzy weights by the QP problem are similarer to the the
given ones than by the LP problem. Therefore, formulating as a QP problem
is suitable to this example in view of approximating the given comparisons.

Fig. 2. Widths of 0.5-level sets of fuzzy weights

Fig. 3. Fuzzy weights by QP and LP problems

5 Concluding remarks

We extended crisp pairwise comparisons to fuzzy ones so that a decision
maker’s uncertain judgements can be represented by fuzzy pairwise compar-
isons. Then, we proposed the model to obtain fuzzy weights which reflect
inconsistency in the given pairwise comparisons. Since human judgements are
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usually inconsistent to each other, it is rational to give items priority weights
as fuzzy values. We dealt with fuzzy pairwise comparisons and fuzzy weights
as intervals by considering their h-level sets. The fuzzy weights are obtained
so as to include the given fuzzy pairwise comparisons and its concept is similar
to the upper approximation in interval regression analysis. Using a QP prob-
lem, inconsisntecy in the given comparison matrix is shared by all items. It is
difficult to find exact items which cause inconsistency so that QP problem is
suitable to real situation.
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1. Introduction

The entire motivation of our research is the fact that many highly motivated students, with learning 
difficulties, are “falling through the cracks” in our education system. There are simply not enough 
resources to give them the “help” they need. What is required is a support system for tutors - an
intelligent learning system able to adapt to the unique needs of each student, helping them learn in 
the quickest possible time with the best possible results. (Negoita and Pritchard, 2003). 
The main problem that we are dealing with in our work is the vital requirement that “learning
systems to be able to change to fit the student needs. (Negoita and Pritchard, 2003a). It’s important
to deliver “the right content to the right user in the right form at the right time”. (Smyth, 2003). 
The system needs to always take into account the psychological learning characteristics of the
student. We wish to take, for example, the work done by Chen in using multi-agent technology, 
providing advice to students and instructions, one step further. (Chen, 2003). We though our
system would generate the advice and then give it to another agent in the system to help its work

. 

Ongoing study of the work being done with adaptive ITSs is continuing to influence our work and
provide the “spark” for new innovative ideas. (Park, Kim, 2003),  (Kosba, Dimitrova, Pope,

  

2003). A great amount of this work is done with static models – the parameters are set at the
beginning and stay fixed. We are looking at a more dynamic model. Interesting work has been
done by comparing dynamic versus static student models using Bayesian Networks. (Millan,
Pertez-de-la-Cruz, Garcia, 2003). Fuzzy logic and fuzzy reasoning on the knowledge structures in
the student model was given in (Nkambou, 1999). This gave one suggestion for developing an 
adaptable student model. Such adaptive hypermedia systems also provided good input. (Lascio, 
Fischetti, Gisolfi, 1999). An interesting development (Papanikolaou, Grigoriadou, Kornilakis, 
Masgoulas, 2003) refers “to make a shift towards a more ‘learning-focused’ paradigm of
instruction”.  
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Abstract. Many highly motivated students fail because of a lack of resources to
help them overcome learning obstacles. A possible solution is to produce more in-
telligent tutoring systems to support the tutors work in the classroom. In our paper
we first give an overview of our previous work on ITS systems and follow with a
summary of the complete ITS system that we are developing. We relate how the
student model developed in previous work is now used with an optimiser agent to
“fine-tune” the linguistic variables of a fuzzy rule decision structure that is used
by a tutor model to decide on “what” should be presented next to a student and
“how” it should be presented. There is a detailed description of how our concept of
an “optimiser” works followed by concluding remarks.
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2. An Overview of our previous work on ITS

In one previous paper (Negoita and Pritchard, 2003a), we worked on the beginnings of an 
important component of the system – the student model – an intelligent agent that reflects the key 
learning characteristics of a human student. At this point we made the deliberate decision to keep 
certain components of the system (e.g. student and knowledge models) very simple so that we 
could concentrate on the complexities and dynamics of the Fuzzy-GA components. However, the 
student model we produced can learn and forget just like its human counter-part, producing a 
typical learning curve when asked by the system to learn a knowledge item. Our previous work 
clearly showed that we could create different classifications of student, each having its own unique 
learning curve. (Negoita and Pritchard, 2003b).  

ITS.

In our current paper we place our student model into the typical ITS system configuration 
(McTaggart, 2001), and add an agent we call the “Optimiser”. The system, as a whole, works in 
the following way. 

-  The human student interacts with the system, which presents a sequence of 
learning activities that result in the student learning the knowledge structure. 
The key to this learning sequence is the fuzzy rule decision structure used by 
the tutor agent to decide on “what” to present and “how” to present it. 
However the “shape” of the linguistic variables held in these fuzzy rules 
doesn’t guarantee optimal learning. Each student learns differently so what we 
need is the system to find the best “shape” for the linguistic variables, for that 
particular student. Hence our motivation for an  “Optimiser” agent. 

-  When the student first logs onto the system, the Optimiser agent makes its own 
copy of the main agents (student, tutor and knowledge), including the current 
fuzzy rule structure. While the student is working with the main system, the 
Optimiser works in the background, trying different “shapes” to the linguistic 
variables in an effort to improve the current fuzzy rule structure. This would 
result in the tutor deciding on a quicker, higher quality learning sequence. 

The Optimiser sends its “shape refined” linguistic variables back to the main tutor, replacing its 
fuzzy rule structure     with a more efficient one. The Optimiser then starts over, taking the latest 
information about how the student is performing, and works to find an even better “shape” to the 
linguistic variables. 

4. The Optimiser Agent

The Optimiser works in the following way: 

Step 1 – The systems creates the Optimiser, which in turn, creates copies of the student, tutor and 
knowledge agents from the main system. ( see key 1 in Fig 1 ). It also copies the current fuzzy rule 
decision structure. ( see key 2 in Fig 1 ). It then creates an initial GA population of 20 
chromosomes. Each chromosome represents changes that can be made – (possibility be made), to 
the shape of the basic linguistic variables ( see key 3 in Fig 1 ). 
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Step 2 – Each chromosome can have up to 10 genes in it. Each activated gene represents a change 
that can be made ( possibly be made ) to the shape of any of the linguistic variables. ( see key 4 in 
Fig 1 ). 

Step 3 – A chromosome is passed to the tutor and used to modify the “shapes” of the linguistic 
variables resulting in a different variation of the current fuzzy rule structure. ( see key 5  in Fig 1 ). 

Step 4 – The tutor uses this modified version of its fuzzy rules to (a) take learning activities from 
the knowledge agent and (b) present them to the student ( see key 6a and key 6b in Fig 1 ). 

Step 5  - Keys 6b and 6b are iteratively repeated until the student has learnt the whole knowledge 
structure. ( see key 7 in Fig 1 ). 

Step 6 – The student is tested to see how well the knowledge has been learnt. The chromosome is 
evaluated using a Fitness Function of the following form. ( see key 8  in Fig 1 ): 

  f( t,q ) = t x q  
 Where: 
  f( t,q ) = fitness value of the chromosome. 
  t = number of steps taken to learn content. 
  Q = number of errors student makes in the test. 

The population of chromosomes is ranked in descending order by fitness value, the top 20 
individuals are kept and the rest discarded. ( see key 9 in Fig 1 ). Each new generation is operated 
on using GA operators of selection, cross-over and mutation, to arrive at approximately 40 
chromosomes. The whole process then goes back to step 5. ( see key 10 in Fig 1 ). A number of 
generations are produced until the stop condition has been meet. The best chromosome is passed 
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back to the main tutor agent where it is used to modify the “shapes” of the linguistic variables. 
This gives a more efficient fuzzy rule decision structure for this particular student. ( see key 11 in 
Fig 1 ). 

Selection is done using the “roulette wheel” method and the parents retained, meaning that both 
parents and children must “compete” to stay in the population. Ten breeding couples are selected 
and the same chromosome may be selected more than once. Breeding is done using a two-point 
cross-over point. ( See Fig 2 ). These two cross-over points produce an inner zone (shaded area in 
Fig 2 ) and an external zone (unshaded area). Each breeding couple produce two children. An 
example is shown in Fig 3. The first child inherits the outer zone from parent A and the inner zone 
from parent B. With the second child the process is reversed.  

Once the breeding process is finished the GA undergoes mutation. Whereas the unit for operating 
the GA selection is the whole gene, in mutation it is the internal structure of the gene, which is 
being modified. Two kinds of mutation occur. The first is used to try and allow for slight changes 
within a narrow volume in the solution space. It is an effort to encourage convergence onto a 
possible solution. Each gene within the chromosome has a slight probability to be chosen for 
mutation and only one node of the 4 nodes within the gene will possibility be mutated. This type-A 
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mutation is only carried out on the parents involved in breeding. In the second type of mutation 
increasing the probability of a gene being selected for mutation encourages a wide expansion of 
volume in the solution space and if this happens, all nodes of the linguistic variable may be 
changed. This type-B mutation is carried out on those chromosomes not selected as parents. No 
mutation is carried out on the children. 

To allow for the fact volumes of the solution space that have not been investigated might hold the 
optimal solution – five new chromosomes are created at the beginning of each new generation. If 
they turn out to be bad creations they will simply be eliminated during evaluation and sorting of 
the chromosome structure. – If however they show promise they will be allowed to “complete” 
with the other possibilities. Of course, more details regarding observations on the experiment will 
be presented in the final paper. 

5. Concluding Remarks

This paper offers a new line of thinking in developing intelligent tutor systems or learning 
environments that can dynamically adapt its scheduling of teaching to result in quicker, more 
efficient tutoring of an individual student. The full results of the experiment will be published in 
the final paper. However there is much work still to do in the future before we can come close to a 
real-life intelligent tutoring system. More study must be done on analysing the cost of the system 
in terms of processing resources. How well will the system perform when confronted with a real-
life situation - real students and a more complex knowledge structure? We have already started to 
develop a student model that represents more accurately any student who works with the system. 
These improved knowledge structures and student models will, for sure, add greater efficiency to 
the system.  While we are, at the moment, concentrating on a Fuzzy-GA hybrid method we still 
need to look at the possibility of other hybrid intelligent techniques to be used in making our ITS 
more efficient.
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We introduce the consistency conditions Fα, Fβ, Fδ as fuzzy
forms of Sen’s properties α, β and δ. One first result shows that a fuzzy
choice function satisfies Fα, Fβ if and only if the congruence axiom
WFCA holds. The second one shows that if h is a normal fuzzy choice
function then Fδ holds if and only if the associated preference relation R is
quasi-transitive.

1 Introduction

The revealed preference theory for a competitive consumer was developed by
Samuelson [15] and Houthakker [11] and extended to an axiomatic framework
by Uzawa [21], Arrow [1], Sen [16, 17, 18] and many others.

If X is a universal set of alternatives then the rationality of a choice func-
tion C on X is expressed in terms of a preference relation R on X. C has
the meaning of selecting the R-best alternatives from a conceivable set of al-
ternatives. Consistency and rationality of a consumer are considered to have
distinct meaning [6]: “Consistency is concerned with what happens to choices
when the set of available alternatives expands or contracts. Rationality is
concerned with how the choices are related to a binary relation on the set of
alternatives.”

We distinguish contraction consistency conditions and expansion consis-
tency conditions. The first ones give “information on what elements are chosen
from subsets from information of what are chosen from supersets” while the
second ones give “information on what is chosen from supersets from infor-
mation on what is chosen from subsets” ([12], pp. 30-31).

Banerjee [3] studies choice functions with a fuzzy behaviour. The domain
of a Banerjee choice function consists of all non-empty finite subsets of X and
the range consists of non-zero fuzzy subsets of X.
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In this paper we consider fuzzy choice functions defined on a family of non-
zero fuzzy subsets of X with the range consisting of non-zero fuzzy subsets
of X. Banerjee fuzzifies only the range of a choice function; in our approach
both the domain and the range of a choice function are fuzzified – in this case
the results on fuzzy choice functions get a much deeper meaning.

This paper contains generalizations to fuzzy choice functions of results
in [16, 17, 18]. Our investigation is focused on the consistency conditions
concerning the behaviour of fuzzy choice functions.

Section 2 contains some generalities on fuzzy relations. In Sect. 3 we recall
the fuzzy revealed preference axioms WAFRP , SAFRP , the fuzzy congru-
ence axioms WFCA, SFCA and we discuss the framework of this paper
under two natural hypotheses on fuzzy choice functions. Section 4 deals with
consistency conditions Fα, Fβ, the fuzzy forms of Sen’s properties α, β [16].
The formulation of Fα uses the subsethood function I(., .) defined in Sect. 2
and Fβ is stated in terms of ∧ and →. We prove that a fuzzy choice function
satisfies Fα, Fβ if and only if WFCA holds for h. Section 5 is concerned with
condition Fδ, a fuzzy version of Sen’s condition δ. The main result shows that
for a normal fuzzy choice function, the associated fuzzy preference relation R
is quasi-transitive if and only if condition Fδ holds.

2 Basic Facts on Fuzzy Relations

The results of this paper will be formulated and proved in the framework of
the fuzzy set theory based on the Gödel t-norm. Let us consider the residuated
lattice ([0, 1],∨,∧,→, 0, 1) where a∨b = max (a, b), a∧b = min (a, b), a → b =∨{c ∈ [0, 1]|a∧ c ≤ b}. We also define the negation ¬ by putting ¬a = a → 0.
The biresiduum ↔ is a binary operation on [0, 1] defined by a ↔ b = (a →
b) ∧ (b → a).

Let X be a non-empty set . A fuzzy subset of X is a function A : X → [0, 1].
We denote by P(X) the crisp subsets of X and by F(X) the fuzzy subsets of
X. For any A,B ∈ F(X) we write A ⊆ B if A(x) ≤ B(x) for all x ∈ X. A
fuzzy subset A of X is non-zero if A(x) 	= 0 for some x ∈ X; a fuzzy subset
A of X is normal if A(x) = 1 for some x ∈ X.

The support of A ∈ F(X) is defined by suppA = {x ∈ X|A(x) > 0}. If
x1, . . . , xn ∈ X then [x1, . . . , xn] denotes the characteristic function of the set
{x1, . . . , xn}.

A fuzzy relation R on X is a fuzzy subset of X2, i.e. a function R : X2 →
[0, 1]. Let R be a fuzzy relation on X. R will be called

◦ reflexive if R(x, x) = 1 for any x ∈ X;
◦ transitive if R(x, y) ∧ R(y, z) ≤ R(x, z) for all x, y, z ∈ X;
◦ total if R(x, y) > 0 or R(y, x) > 0 for all distinct x, y ∈ X;
◦ strongly total if R(x, y) = 1 or R(y, x) = 1 for all distinct x, y ∈ X.
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A fuzzy preference relation on X is a binary fuzzy relation R on X. A
regular preference on X is a fuzzy preference relation on X which is reflexive,
transitive and strongly total.

The transitive closure of a fuzzy relation R is the intersection T (R) of all
transitive fuzzy relations on X including R. Of course R is transitive if and
only if T (R) = R.

For any A,B ∈ F(X) we shall denote I(A,B) =
∧

x∈X

(A(x) → B(x)).

The number I(A,B) ∈ [0, 1] is called the subsethood degree of A in B and
expresses the truth value of the statement “each element of A is an element
of B.” (see [5]). Note that for any A,B ∈ F(X), I(A,B) = 1 if and only if
A ⊆ B.

Besides I(., .), there exist plenty of indicators expressing the inclusion of
one fuzzy set into another. A large class of such indicators was axiomatically
developed by Sinha and Dougherty [7, 19].

3 Fuzzy Choice Functions

A rich literature is dedicated to fuzzy preference relations [2]. Most authors
consider that the social choice is governed by fuzzy preferences but the act of
choice is exact [4]. They study crisp choice functions associated with a fuzzy
preference relation.

In [3] Banerjee admits the vagueness of the act of choice and studies choice
functions with a fuzzy behavior. The domain of a Banerjee choice function is
made of finite sets of alternatives and the range is made of fuzzy sets.

In [8, 9] we have considered a larger class of fuzzy choice functions: the
domain and the range of a fuzzy choice function is made of fuzzy sets of
alternatives.

A fuzzy choice space is a pair < X,B > where X is a non-empty set and B
is a non-empty family of non-zero fuzzy subsets of X. A fuzzy choice function
on a fuzzy choice space < X,B > is a function h : B → F(X) such that for
each B ∈ B, h(B) is non-zero and h(B) ⊆ B.

Although a part of fuzzy choice functions theory can be developed in
this general setting, in order to obtain deeper results we need some natural
hypotheses. In this paper we work under the following hypotheses:

(H1) Every B ∈ B and h(B) are normal fuzzy subsets of X;
(H2) B includes all functions [x1, . . . , xn], n ≥ 1, x1, . . . , xn ∈ X.
For the crisp case (B ⊆ P(X)) the hypothesis (H1) asserts that any B ∈ B

and h(B) are non-empty, hence (H1) is automatically fulfilled in accordance
with the definition of a choice function; for the same case, (H2) asserts that
B includes all finite subsets of X.

We remark that for crisp choice functions, the results in [1, 16, 17] are
proved in the hypothesis that B ⊆ P(X) contains all non-empty finite subsets
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of X. Thus (H2) appears as a very natural extension of this hypothesis in the
crisp case.

Let < X,B > be a choice space and Q a fuzzy preference relation on X. We
define a function hQ : B → F(X) by hQ(S)(x) = S(x)∧

∧
y∈X

(S(x) → Q(x, y))

for any S ∈ B and x ∈ X. In general hQ is not a fuzzy choice function. A
fuzzy choice function h is rational if h = hQ for some fuzzy preference relation
Q on X; in this case Q is called the rationalization of h.

We recall the definitions of the following fuzzy relations on X [8].
Let h : B → F(X) be a fuzzy choice function on < X,B >.

Definition 1. (i) R(x, y) =
∨

S∈B
(h(S)(x) ∧ S(y));

(ii) P (x, y) = R(x, y) ∧ ¬R(y, x);
(iii) I(x, y) = R(x, y) ∧ R(y, x)

for any x, y ∈ X.

Definition 2. (i) R̄(x, y) = h([x, y])(x);
(ii) P̄ (x, y) = R̄(x, y) ∧ ¬R̄(y, x);
(iii) Ī(x, y) = R̄(x, y) ∧ R̄(y, x)

for any x, y ∈ X.

Definition 3. (i) P̃ (x, y) =
∨

S∈B
(h(S)(x) ∧ S(y) ∧ ¬h(S)(y));

(ii) R̃(x, y) = ¬P̃ (y, x);
(iii) Ĩ(x, y) = R̃(x, y) ∧ R̃(y, x)

for any x, y ∈ X.

We denote by W the transitive closure of R and by P ∗ the transitive
closure of P̃ .

Remark 1. For any fuzzy choice function h : B → F(X) let us consider its
“image” ĥ = hR. h(S) ⊆ ĥ(S) for each S ∈ B (see [8], Proposition 4.5); thus
ĥ is always a fuzzy choice function.

A fuzzy choice function h is normal if h = ĥ.
Now we shall consider the following axioms of fuzzy revealed preference:
WAFRP (Weak Axiom of Fuzzy Revealed Preference)
P̃ (x, y) ≤ ¬R(y, x) for all x, y ∈ X;
SAFRP (Strong Axiom of Fuzzy Revealed Preference)
P ∗(x, y) ≤ ¬R(y, x) for all x, y ∈ X.
and the axioms of congruence for fuzzy choice functions:
WFCA (Weak Fuzzy Congruence Axiom)
For any S ∈ B and x, y ∈ X: R(x, y) ∧ h(S)(y) ∧ S(x) ≤ h(S)(x).
SFCA (Strong Fuzzy Congruence Axiom)
For any S ∈ B and x, y ∈ X: W (x, y) ∧ h(S)(y) ∧ S(x) ≤ h(S)(x).
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Remark 2. Axioms WAFRP , SAFRP , WFCA, SFCA are fuzzy versions of
axioms WARP , SARP , WCA, SCA in classical consumer theory.

Remark 3. Since P̃ (x, y) ≤ P ∗(x, y) and R(x, y) ≤ W (x, y) for any x, y ∈
X the following implications hold true for any fuzzy choice function h:
SAFRP ⇒ WAFRP ; SFCA ⇒ WFCA.

If P̃ (resp. R) is transitive then P̃ = P ∗ (resp. R = W ), therefore in this
case SAFRP ⇔ WAFRP (resp. SFCA ⇔ WFCA).

Theorem 1. For a fuzzy choice function h the following assertions are equiv-
alent:

(i) R is a regular preference and h is normal;
(ii) R̄ is a regular preference and h is normal;
(iii) h verifies WFCA;
(iv) h verifies SFCA.

The previous theorem is a part of a more complete result of [8] that gen-
eralizes to fuzzy choice functions an important theorem of Sen [16].

4 Conditions α and β

Conditions α and β were introduced by Sen [16] for crisp choice functions.
In this section we will consider fuzzy versions Fα and Fβ of these conditions
and we will prove, for the Gödel t-norm ∧, that a fuzzy choice function h
satisfies Fα and Fβ if and only if h satisfies WFCA. We consider a class of
fuzzy choice function satisfying a new hypothesis (U). In the crisp case (U)
expresses that h(S) is a singleton for each S. Among results under hypothesis
(U) there is the equivalence between Fα and WFCA.

We recall the (crisp) conditions α and β. Let h : B → P(X) be a crisp
choice function.

Condition α. For any S, T ∈ B and for any x ∈ X, we have the implication
x ∈ S, x ∈ h(S) and S ⊆ T ⇒ x ∈ h(S).

Condition β . For any S, T ∈ B and for any x, y ∈ X, we have the impli-
cation x, y ∈ h(S) and S ⊆ T ⇒ x ∈ h(T ) if and only if y ∈ h(T ).

These two conditions can be extended to the fuzzy case.
Let h : B → F(X) be a fuzzy choice function on a choice space < X,B >.
Condition Fα. For any S, T ∈ B and x ∈ X, I(S, T ) ∧ S(x) ∧ h(T )(x) ≤

h(S)(x).
Condition Fβ. For any S, T ∈ B and x, y ∈ X, I(S, T )∧h(S)(x)∧h(S)(y) ≤

h(T )(x) ↔ h(T )(y) where ↔ is the biresiduum of the minimum t-norm.
Obviously conditions Fα, Fβ generalize α, β.

Proposition 1. If h is a normal fuzzy choice function then Fα is verified.

Theorem 2. For a fuzzy choice function h the following are equivalent:



322 I. Georgescu

(1) h verifies conditions Fα, Fβ;
(2) WFCA holds for h.

Remark 4. The previous theorem generalizes to fuzzy choice functions a result
of Sen (see [16], (T8)).

In classical consumer theory a special case are choice functions h : B →
P(X) with the property that h(S) is a singleton for any S ∈ B. We generalize
this case considering fuzzy choice functions h : B → F(X) that verify (U):

For any S ∈ B, h(B) = [x], for some x ∈ X.
For fuzzy choice functions h that verify U there is a unique x ∈ X such

that

h(S)(y) =
{

1 if y = x
0 if y 	= x.

Proposition 2. If a normal fuzzy choice function h verifies (U) then R is a
regular preference.

Proposition 3. Let h be a fuzzy choice function satisfying (U). The following
assertions are equivalent:

(1) WFCA holds for h;
(2) h satisfies condition Fα.

5 Quasi-transitivity and Condition Fδ

This section deals with a fuzzy form Fδ of Sen’s condition δ. For a normal
fuzzy choice function h we prove that the associated fuzzy relation R is quasi-
transitive if and only if condition Fδ holds.

Let Q be a fuzzy relation on X and PQ be the fuzzy relation on X defined
by PQ(x, y) = Q(x, y) ∧ ¬Q(y, x) for any x, y ∈ X. If R is the fuzzy relation
associated with a fuzzy choice function h then PR = P .

Recall that a fuzzy relation Q on X is quasi-transitive if PQ(x, y) ∧
PQ(y, z) ≤ PQ(x, z) for any x, y, z ∈ X.

Proposition 4. Let Q be a reflexive and strongly total fuzzy relation on X.
If Q is transitive then Q is quasi-transitive.

Definition 4. We say that the fuzzy choice function h satisfies the condition
Fδ if for any S = [a1, . . . , an], T = [b1, . . . , bm] in B and for any x, y ∈ X,
I(S, T ) ≤ (h(S)(x) ∧ h(S)(y)) → ¬(h(T )(x) ∧

∧
t�=x

¬h(T )(t)).

In case of crisp choice functions condition Fδ is exactly condition δ.

Theorem 3. If h is a normal fuzzy choice function, then R is quasi-transitive
if and only if condition Fδ is verified.

Remark 5. Theorem 3 is the generalization for fuzzy choice functions of a Sen
result. (see [16], (T10))
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6 Concluding Remarks

In the real world most of the preferences are fuzzy, consequently they are more
adequately modelled by binary fuzzy relations. Banerjee’s thesis in [3] is that
“If preferences are permitted to be fuzzy it seems natural to permit choice
functions to be fuzzy as well. This also tallies with the experience”.

In an abstract setting this leads to a mathematical treatment of fuzzy
choice functions. Then we must define what we mean by a rational behavior
of a fuzzy choice function. The rationality of a fuzzy choice function was
defined in [8, 9]. There this concept was investigated by developing a revealed
preference theory for fuzzy choice functions.

This paper completes the results of [8, 9]. Our main contribution is to
study consistency conditions Fα, Fβ and Fγ, fuzzy forms of Sen’s conditions
α, β, γ. [16, 17, 18]. We generalize in a fuzzy framework some important
theorems of Sen from [17, 18].

Consistency conditions for fuzzy choice functions assure a knowledge com-
plementary to the one realized by properties of congruence and revealed pref-
erence. They show to what extent the act of fuzzy choice is perturbed when
varying between fuzzy subsets and supersets. Diverse in their content, con-
sistency conditions sometimes offer equivalences for properties of rationality.
For example, Weak Fuzzy Congruence Axiom (WFCA) is equivalent to the
conjunction of Fα and Fβ. In other cases, a consistency condition establishes
the nature of the preference relation that defines the rationality (see Theorem
3).

Consistency properties Fα, Fβ and Fδ are formulated in terms of residual
structure of the interval [0, 1]. The use of the inclusion operator I(., .) is more
adequate to the fuzzy context. This is certified by the way the proofs of the
classical theory of choice functions are converted in their fuzzy versions.

Open problem 1 Consistency conditions Fα, Fβ, Fδ can also be formu-
lated in terms of Sinha–Dougherty indicators. Which of the results proved in
this paper are still valid in this axiomatic context?

Open problem 2 The definitions and the properties of this paper can
be easily stated in a fuzzy set theory based on a continuous t-norm. Which
results might be proved for an arbitrary continuous t-norm?

Open problem 3 In the treatment of consistency conditions Fα, Fβ, Fγ,
is it possible to eliminate or to relax hypotheses (H1) and (H2)?

Open problem 4 Investigate the fuzzy version of Sen’s consistency con-
dition γ [16].
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5. Bělohlávek R (2002) Fuzzy relational systems. Foundations and principles.

Kluwer
6. Bordes G (1976) Rev Ec Studies 43:451–457
7. Cornelis C, Van der Donck C, Kerre E (2003) Fuzzy Sets Syst 134:283–295
8. Georgescu I (2004) J Syst Sci Syst Eng, forthcoming
9. Georgescu I (2004) Rationality and congruence axioms for fuzzy choice func-

tions. In Proceedings of ESTLYF 2004, Jaén, Spain, forthcoming
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quality management is an important issue of
relevance in the context of present times. Water quality indices are
computed for classification of water wherein the integration of
parametric information on water quality data and the expert’s
knowledgebase on their importance & weights are considered.
Considerable uncertainties are involved in the process of defining
water quality for specific usage. Antalya City, located along the
coasts of Mediterranean Sea in Turkey, is famous worldwide due to
its tourism potential. Antalya City has a beautiful landscape
composed of mountains, forests, beautiful beaches and the sea. In
order to apply sustainable tourism principles in Antalya, the
protection of valuable environmental resources gains a particular
importance. A land survey study was carried out to determine the
pollution loads of Bogacay Stream, an important land-based
pollution source of Antalya City, for one year duration. According to
the water quality classifications obtained from Fuzzy Logic, water
quality changes temporally in Bogacay Stream and an occasional
critical level of water quality was determined in July which
coincides with the peak use of the beach for recreational activities.
Goksu Stream is the main source of Bogacay Stream. It always
carries main part of water to Bogacay. So, on a large scale Goksu
Stream determines the Bogacay Stream’s water quality.

In this study, both field measurements and lab analyses have been
realized and pollution loads of the polluting parameters have been
calculated for Goksu Stream. A recent study has been realized to
assess the water quality of Goksu Stream using Fuzzy Logic
approach.
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1 Introduction
Antalya province has more than 600-km coastal line on the Turkish

Mediterranean Sea. The cleanest coasts in Turkey are found in Antalya Bay.
Antalya is one of the most popular tourism places in Turkey for both the local and
foreign tourists. The city has two important beaches namely Lara Beach in the east
and Konyaaltı Beach in the west of the city. There are a few streams discharging
their water to Konyaaltı Beach and affect the water quality for recreational
purposes along the beach. Among these streams, Bo açay is the most important
one in terms of the flow rate and pollution load. Goksu Stream is the main source
of Bo açay. In summer, many beach visitors prefer to swim at the outlet of
Bo açay Stream to the Mediterranean Sea because of its relatively cooler water.

A recent research study has been carried out to assess the water quality of
Goksu Stream. An extensive monthly field measurement and lab analyses have
been realized for one year to determine the physical, chemical and biological
characteristics of Goksu Stream (O uz, 2001). Many parameters such as flow rate,
salinity, conductivity, Biochemical Oxygen Demand (BOD), Chemical Oxygen
Demand (COD), total suspended solids, nitrogen and phosphorous compounds,
total and fecal coliforms have been determined. The results show temporal
variations with somewhat high total and fecal coliform content. The results of
measurements and analyses have been used to assess the water quality level
according to water quality classifications used for inland waters in Turkey.

In this study, the Fuzzy Logic, has been utilized for the assessment of Goksu
Stream water quality. Fuzzy theory emerged in the second half of this century
by challenging basic assumptions of three classical theories: the assumption of
sharp boundaries in classical set theory; the assumption of classical (Aristotelian)
logic that each proposition must either be true or false; and the assumption of
additivity in classical measure theory and, in particular, probability theory. The
Fuzzy Logic has been recently applied to assess the water quality of rivers and
other water systems.

2 Fuzzy Logic Application to Bogacay Stream
In this study, a fuzzy logic control was used to evaluate to the water quality of

Goksu Stream before the discharge point to the Bogacay Stream. Dissolved
oxygen saturation percent (DO), fecal coliform (FCol), chemical oxygen demand
(COD) and total phosphorus (TP) parameters have been selected to define the
water quality level. The adopted water quality evaluation system is presented in
Figure 1. All of the input membership functions have three linguistic terms (good,
normal, bad). The water quality output membership function has four linguistic
terms (I, II, III, IV) being identical to inland water quality classifications used in
Turkey (Ref.).

Water quality experts are identified and relevant field data. Rule base was
prepared by the collaboration of water quality experts. The membership functions
(MBF) of the selected water quality parameters; DO, FCol, COD, TP an WQI are
shown in Figure 2.a, 2.b, 2.c, 2.d and 2.e.
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Figure 1. The adopted water quality evaluation system

Figure 2.a. MBF of "COD"

Figure 2.b. MBF of "DO"
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Figure 2.c. MBF of "FCol"

Figure 2.d. MBF of "TP"

Figure 2.e. MBF of "Water Quality"

The computation of fuzzy rules is called fuzzy rule inference. The inference is
a calculus consisting of the steps: aggregation, composition and result aggregation.
The first step of the fuzzy inference aggregation, determines the degree to which
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the complete part of the rule is fulfilled. The minimum operator has been utilized
for computation of the fuzzy rule.

AND: μIF = mini (μi)...................................... (2)

The result produced from the evaluation of fuzzy rules is still fuzzy. Out
membership function is used to retranslate the fuzzy output into a crisp value. This
translation is known as defuzzification and can be performed using several
methods. To obtain clear evaluation of water quality classified as Class I, II, II and
IV, Mean of Maximum (MoM) defuzzification method was preferred. The Mean
of Maximum method, computes a system output only for the term with the highest
resulting degree of support. If the maximum is not unique, the mean of
maximizing interval is computed. The MoM procedure evaluates the most
significant of the different terms j of a linguistic output variable then obtain Y by
using maximum Yj of the each term j.

Y = Yj (μResult, Term, Max).........................(3)

Hypothetical example

Before applying the Fuzzy logic to the measured concentrations of Goksu
Stream, an explanatory hypothetical example is described below to explain clearly
how the water quality evaluation system works. In this example, the selected water
quality parameters are assigned the following values;

• DO (Dissolved oxygen saturation percent, %): 85
• FCol (Fecal coliform number, No/100 ml): 600
• COD (Chemical oxygen demand concentration, mg/l): 20
• TP (Total phosphorus concentration, mg/l as PO4-P): 0.0525

The water quality classification of the given example will be done using two
different approaches, firstly the classical one and secondly the Fuzzy Logic.

Classical approach

First of all, a general water quality classification will be done using the
assigned values of the four water quality parameters, according to the inland water
quality classification levels used in Turkey (TÇV, 2002). The inland water quality
classifications are presented in Table 1 and definitions of the water quality classes
used in Table 1 are described below. According to the classification described in
Table 1, the classification of the pre-assigned water quality levels is given in Table
2.

• Class I : very clean water (requires only disinfection to be used for water
supply, suitable for recreational activities, trout production, animal
husbandry and farms)
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• Class II: slightly polluted water (requires an adequate treatment to be
used for water supply, suitable for recreational activities, not suitable for
trout production, may be used as irrigation water if the related standards
are met)

• Class III: polluted water (requires an adequate treatment to be used for
industrial supply except food and textile industries)

• Class IV: very polluted water (describes a poorer water quality class
being worse than the above mentioned classes)

Table 1. Inland water quality classification levels
Water Quality

Parameters
Water Quality Classes

I II III IV
DO (Sat. %) 90 70 40 <40

FCol (No/ 100 ml) 10 200 2000 >2000
COD (mg/l) 25 50 70 >70
TP (mg/l) 0.02 0.16 0.65 >0.65

Table 2. Classification of the pre-assigned water quality levels
Water Quality

Parameters
Value Water Quality Class

DO (Sat. %) 85 I
FCol (No/ 100 ml) 600 II

COD (mg/l) 20 I
TP (mg/l) 0.0525 I

As can be observed from the above example, the values used as limits for
different water quality classes do not present a range and most of the time, the
values of the parameters lie in between two water quality classes. As an example,
when we want to classify a water quality class for 85% dissolved oxygen
saturation, the real water quality class is between I and II but to give a definite
class, we define it as Class I. The same situation is valid for Fecal Coliform as
well. Additionally, if we want to define overall water quality class from the results
of four parameters, there is again a difficulty because three parameters are
classified as Class I, while the fourth parameter is classified as Class II. Again
using our judgment, we conclude that, the water quality can be described as first
class (Class I) according to the assigned values of the four parameters. As a result
of this classical water quality classification practice, we observe that there is an
ambiguity in the definition of the different classes and we need to use our
judgment to reach an overall evaluation.
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Fuzzy Logic approach

In the second approach, the Fuzzy Logic is used to describe the water quality
for the given example. Figure 4 shows the selected input values and the calculated
output related to these inputs. As a result of the analysis, the water quality is
calculated as Class I (the first class) according to inland water quality
classifications in Turkey. The output degree was obtained by MoM method. As
mentioned before, this result has been produced from the evaluation of fuzzy rules
and passed defuzzication stage, using out membership function, to retranslate the
fuzzy output into a crisp value. Now, the question is, what are the mathematical
operations being performed by this process. To find the answer, we should look at
the rule base to see which rules are valid under this circumstance. Table 3 shows
the running rules on the system for the defined input variables as mentioned
above. Degree of support for all the running rules is given in Table 4.

Figure 4. The evaluation of water quality for the assigned input values
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Table 3. Valid rules for the solution of the given example
DO FCol COD TP WQ

good norm good good I
good norm good norm II
good bad good good II
good bad good norm II
norm bad good good II
norm bad good norm III
norm norm good good II
norm norm good norm II

Table 4. Degree of support (DoS) for all the running rules

DO FCol COD TP DoS
Water

Quality
Classes

Good
0.83

Norm
0.75

Good
1

Good
0.77

0.75 I

Good
0.83

Norm
0.75

Good
1

Norm
0.23

0.23 II

Good
0.83

Bad
0.25

Good
1

Good
0.77

0.25 II

Good
0.83

Bad
0.25

Good
1

Norm
0.23

0.23 II

Norm
0.17

Bad
0.25

Good
1

Good
0.77

0.17 II

Norm
0.17

Bad
0.25

Good
1

Norm
0.23

0.17 III

Norm
0.17

Norm
0.75

Good
1

Good
0.77

0.17 II

Norm
0.17

Norm
0.75

Good
1

Norm
0.23

0.17 II

As can be observed from Table 3, there are eight different cases to define the
valid rules of the given example. These running rules end up with different values
of degree of support as presented in Table 4. The most interesting point in this
example is that, according to the values of degree of support, water quality is
defined as Class II in six cases out of eight, and only one case defines the water
quality as either Class I or Class III. However, according to the rules of
defuzzification method, the highest value of degree of support becomes dominant
and governs the decision. As a result, the water quality is obtained as Class I.
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Application to Bogacay Stream

The Fuzzy Logic has been applied for the classification of water quality of
Bo açay Stream using the water quality measurement results of four parameters as
used in the previous example. The selection of the number of parameters included
in the fuzzy logic approach is mostly dependent on the type of application. When
the number of selected parameters is four, as used in this application, the total
number of rule bases reaches up to 81, which is a manageable combination.
However, when the number of selected parameters is chosen as five, the total
number of rule bases rises up to 243 and this selection creates an ambiguity in the
decision making process which may lead to confusion. The results of the water
quality measurements and the analysis for some selected parameters are given in
Table 5 (O uz, 2001). The water quality classes (WQ) of Bo açay Stream are
shown in Figure 5 for each month, for one year duration of the measurement and
sampling period. In this figure, the linguistic terms, I, II, III and IV are showed as
different water quality classes. The first monthly record belongs to the first
measurement session, which was in March 2000, and the last monthly record
belongs to the measurement session in February 2001. Figure 6 depicts the fuzzy
results of water quality (FRWQ) and the measured parameters along the months of
the year.

Table 5. The results of water quality measurements
and analysis for Goksu Stream

Month DO Sat.
(%)

Turb.
(NTU)

TS
(mg/l)

TN
(mg/l)

TP
(mg/l)

COD
(mg/l)

Fecal
Coliform

(No/100 ml)
March 98.5 35.3 480 0.90 0.13 8 110
April 90.2 32.2 460 1.00 0.10 28 100
May 91.7 15.1 460 3.00 0.10 56 180
June 70.1 4.1 400 1.20 0.80 24 260
July 70.6 19.2 480 1.40 0.30 20 400
Aug. 76.1 3.3 420 2.00 0.35 8 600
Sept. 67.5 6.1 420 1.00 0.10 20 300
Oct. 99.4 40.2 420 1.00 0.10 16 480
Nov. 99.3 29.3 380 0.70 0.02 24 320
Dec 100.3 40.2 490 1.90 0.31 14 410
Jan. 100.6 42.5 520 1.20 0.35 40 310
Feb. 100.4 36.5 500 1.11 0.14 12 120
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Figure 5. Changes of fuzzy results of water quality (FRWQ) versus the months of the year
for Bo açay Stream

When the fuzzy results of water quality classes are observed carefully, it can
be easily noticed that the 5th month, corresponding to July, has the worst water
quality classification being Class III. This is a significant result of Fuzzy Logic
approach as July represents nearly the most important month within the year,
when Bo açay stream water is highly used for swimming. Apart from this month,
the water quality class changes between Class I and Class II for the other months.
Additionally, it is observed from Figure 6 that, there is a good agreement between
the water quality classes and the values of water quality parameters. In other
words, when the water quality is classified as polluted, the measured water quality
parameters also indicate water quality pollution. In this respect, the water quality
classification of Bo açay Stream using Fuzzy Logic approach can be considered
as a successful case study.
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Figure 6.a.b.c.d Monthly changes of fuzzy results of water quality (FRWQ) and the
parameter values of DO, FCol, COD and TP for Bo açay Stream
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3 Conclusion
Bo açay Stream is an important land-based pollution source of Antalya City

discharging its water to Antalya Bay through Konyaaltı Beach, which is a famous
Blue Flag awarded beach. In order to assess the water quality of Bo açay Stream
and its pollution impacts on the sea environment, a land survey study has been
carried out. During this one year study, monthly field measurements and lab
analyses have been realized and the pollution loads of the polluting parameters
have been calculated. Due to the existence of many factors influencing water
quality, it was rather difficult to determine the water quality status of the stream.
The Fuzzy Logic is a new approach which can analyze these factors by defining
fuzzy expressions of degree of importance. In this study, the Fuzzy Logic
approach has been applied to evaluate the water quality of Bo açay Stream which
exhibits high temporal variations. The values of dissolved oxygen saturation
percent, chemical oxygen demand, fecal coliform and total phosphorus were
included in the Fuzzy Logic approach. The number of selected parameters was
restricted to four in order to avoid confusion in the decison making process. The
output degree was obtained by MoM method. The fuzzy results have been
produced from the evaluation of fuzzy rules and passed defuzzication stage, using
out membership function, to retranslate the fuzzy output into a crisp value. The
monthly changes of fuzzy results of Bo açay Stream water quality have been
obtained according to the inland water quality classifications used in Turkey.
There was a good agreement between the fuzzy results and the values of the
selected water quality parameters. The fuzzy results indicated a poor water quality
for Bo açay Stream for the month of July, which coincides with the intensive use
of the stream water for recreational activities.

The authors acknowledge financial support from the Akdeniz University Unit of
Scientific Research Projects Managements.
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1. Introduction

Currently, many computer assisted medical systems have been devel-
oped [1, 2]. Especially, computer assisted surgery systems, computer as-
sisted diagnosis systems have been received much considerable attention. 
In it, imaging systems with Magnetic Resonance Imaging (MRI) and X-ray 
Computed Tomography Images have used to disclose the inside informa-
tion of human body [2]. For these systems, the primary goal is supporting 
for medical diagnosis. In our previous works [3, 4], we defined a normal 
degree in the human body by employing theory of hierarchical definability 
(THD) [5, 6] by Zadeh. We represented a tree structure of the fuzzy infor-
mation granularity of the normal degree, and we then proposed a calcula-
tion method of the normal degree. We then described an automated medi-
cal diagnosis system (AMDS), which automatically determines the normal 
degree of a medical sign for a patient. AMDS requires database of rules 
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and medical data for every user since the normal degree should be inde-
pendently calculated by the personal rules of a user. That is, the system de-
termines different degrees for different patients even if the examined 
medical signs are of the same. However, in these, there is no discussion on 
fundamental combination rule of the normal degree.

This paper describes two fundamental properties of combination rule for 
calculating the normal degree. In medical images of MR meniscus, we can 
examine meniscal tears by observing these three-dimensional shapes [7, 8]. 
This combination rule of the normal degrees is determined as fuzzy max or 
min operators. Secondly, the combination rule of two normal degrees of 
Glycemia and Hb-A1c are considered for a patient of diabetes. This rule is 
determined as fuzzy min operator. Finally, we conclude our technical re-
sults.

2. Normal Degree and AMDS

The normal degree is defined as follows [3]. 

Definition: Let X be a space of objects (points), with a generic element 
of X denoted by x. Thus X={x}. The normal degree, N(x), in X is charac-
terized by a membership function N(x) which associates with each point in 
X a real number in the interval [0, 1]. The 0 stands for the no normality, 
i.e., abnormal, and 1 stands for the full normality. 

We can calculate the normal degree with respect to a granule of medical 
data as follows [3]. For a granule, G; 

Step 1) Determine sets in G with degree 1, i.e., full normal sets in G by 
medical experts.

Step 2) Extract enough features for the full normal sets to identify the 
full normality.

Step 3) Calculate the normal degrees for the remaining sets by compar-
ing the features of full normal sets with those of remaining sets.

Next we describe automated medical diagnosis system (AMDS) [4]. 
AMDS consists of two parts: one is construction of AMDS and the other is 
determination of normal degrees. 

Suppose a granule, G, which is one of medical signs, clinical data, 
medical images and so on. For G, first, we collect the clinical/medical 
data, and do statistical analysis. Then we can obtain statistical results for 
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G. From these results and personal data for a user, we extract features 
enough to determine fuzzy if-rules for calculating a normal degree for G 
on a user. We construct fuzzy inference system using these fuzzy if-then 
rules. The system specification depends on the user. That is, a normal de-
gree for G is different from user to user. Then, the fuzzy if-then rules and 
the features are stored in a database. That is, the database consists of these 
features and fuzzy if-then rules. 

Daily personal data for G is provided to AMDS. AMDS extracts this 
feature, and it calculates a normal degree by the fuzzy inference system for 
a user. Then, the provided data is also stored in the database. 

3. Combination Rule of Normal Degrees

3.1 Representation of Normal degree

First, we consider normal degree for an attribute, such as items in blood 
test. For a granule, X, let xi (i=1, 2, …, n) be an attribute, where n is the 
number of these attributes xi. Then N(X) can be represented by, 

N(X)=N(x1)/x1 + N(x2)/x2 +... +N(xn)/xn. (1)

For example, consider diabetes in blood test. Glycemia and Hb-A1c are 
the signs. Then, set X= diabetes, and

N(diabetes)=N(Glycemia)/ Glycemia + N(Hb-A1c)/ Hb-A1c. (2) 

Second, we have many medical scanner modalities, such as MRI, X-ray 
CT, Ultrasound, MEG and so on. Especially MRI can produce exactly 
matched images compared with human internal organs and lesions [9]. 
Figure 1 shows the illustrations of MR meniscus images. Consider the ex-
amination of the meniscal tear. Figure 1(a) shows a typical tear state in 
natural objects. Anyone can understand the tear. Figure 1(b) shows the ex-
amination region, i.e., almost always meniscal tear happens inside region 
of meniscus shown in the circle. The MR three-dimensional images seg-
mented by our proposed method in Refs. [7, 8] are shown in the upper fig-
ures of Figures 1 (c), (d) and (e). These contours are shown in the lower 
figures. Then, we can distinguish the normal case (Cases 2 and 3) with in-
jured case (Case 1) by observing these figures.
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Fig. 1 Examination of meniscal tears. 

Let X be the meniscal tear on the 3D MR image and let xi (i=1, 2, …, n) 
be exact meniscal state on location xi in the 3D image, where n is the loca-
tion number of the 3D MR image. Then N(x) can be represented by, 

N(X) = N(x1)/x1 + N(x2)/x2 + ... + N(xn)/xn. (3) 

Here, we determine the normal degrees in Figure 1. Figure 1(c) has a 
tear in the location of inside center in the right meniscus, whose location is 
denoted by xcr. Then, 

N(Case 1) = 0.2/xcr + 1/other place (4) 

For Figures 1(d) and (e), we can determine them by 

N(Cases 2 and 3) = 1/xcr + 1/other place. (5) 

(a) Tear            (b) Examination region
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3.2 Combination Rule

First, we consider normal degree for diabetes in blood test. Many stud-
ies on diabetes are done. The following facts are known in Japanese on 
blood test. 

 <Statistical Result>
The standard values in Japanese are as follows. 
Glycemia: 60-110mg/dl under fasting glycemia 
Hb-A1c: 4.3-5.8% 
For diabetes: when both glycemia is larger than 140mg/dl under fasting 

glycemia and Hb-A1c is larger than 7%, there is high probability of a pa-
tient being retinopathy and nephropathy. 

Here, we consider a patient (74 years old, female, ten years passed after 
diabetes). The clinical data of glycemia and Hb-A1c of the patient is 
shown in Figures 3(a) and (b). For the patient, we make two membership 
functions, Gmf, and Hmf for her glycemia and Hb-A1c, respectively, as 
shown in Figure 2. Let G(x) and H(x) be the normal degrees for her gly-
cemia and Hb-A1c to diagnose her diabetes. For a single value a in a do-
main x, a fuzzy singleton function s(x) is defined as s(x)=1; if x=a, s(x)=0; 
otherwise. Then, G(x) and H(x) are calculated by, 

G(x) = minimum (Gmf, s(x)). (6)

H(x) = minimum (Hmf, s(x)). (7)

These calculated normal degrees are shown in Figures 3 (c) and (d). 
Here, we consider a combination method between two normal degrees. 
Figure 3(e) shows the three graphs by using maximum(MAX), mini-
mum(MIN) and product(Product) combination rules. We can agree that the 
intersection rule such as minimum or product is appropriate for combina-
tion rule in this case, i.e., let X be diabetes of the human. Then we can 
agree that

N(X) = minimum(G(x), H(x)) or product(G(x), H(x)). (8) 

Second, we consider the meniscal images in Section 3.1. Usually, me-
niscal tear is cut and removed by the endoscope operation. Figure 1(c) is 
the image of meniscal tear for a patient. Figure 1(d) is the image removed 
by the operation for the same patient. We have already assigned these 
normal degrees by Equations (4) and (5). We can combine the normal de-
grees for the meniscal tear for the patient by 
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N(tear)= maximum(0.2, 1)/xcr +maximum (1, 1)/other place. 

 = 1/xcr + 1/ other place 

(9)

1.0 

0.5 

0

           140           300             (mg/dl) 

Norma l degree 

(a) Fuzzy membership function Gmf. 

1.0 

0.5 

0

Normal degree 

(b) Fuzzy Membership function Hmf. 

Fig. 2 Fuzzy Membership functions. 

Thus, we can agree that a maximum combination rule is appropriate for 
the case. Considering this type of cases, we can derive the following rules. 
Let Ai be the normal degree at a time t on domain X, and let Ai’ be the 
normal degree at the time t+d on the same domain, then

N(X) = maximum (N(Ai), N(Ai’)) if Ai  Ai’ 

= minimum (N(Ai), N(Ai’)) if Ai > Ai’ 
(10)

That is, generally, N(X) = N(Ai’) holds. 
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Fig. 3 Blood test and the normal degrees. 

4. Conclusions

This paper has described the combination rules of normal degree for the 
case of MR image of meniscal tear and blood test on diabetes. For the 
combination rules; 

Let X be a disease (granule) and let Ai( i=1, 2, …, n) be a state of same 
sign at different time, where n is the number, Then 

N(X) = UNION or INTERSECTION of N(A1) and N(A2) and …, and 
N(An).
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Let X be a disease (granule) and let Ai( i=1, 2, …, n) be a state of dif-
ferent signs, where n is the number, Then 

N(X) = INTERSECTION of N(A1) and N(A2) and …, and N(An). 
Theses rules are fundamental combination rules for fusion of normal 

degree. Practically, a problem appears in the case of a complex disease. A 
disease examination consists of two or more different signs whose condi-
tions are not independent. We will then introduce the conditioned normal 
degree. Moreover, when we consider the progress of the disease, the alge-
bra with no commutativity or no associativity and so on takes into account. 
It thus remains as future studies to investigate these complex combination 
rules.
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1 Introduction

Consider the following so called incidence matrix RSP = {rij}, i = 1 . . . 4,
j = 1 . . . 5:

p1 p2 p3 p4 p5

s1 1 0 1 0 0
s2 1 1 0 1 0
s3 1 1 1 1 1
s4 0 1 0 1 1

(1)

which defines the relation of connectivity between a set of people P = {p1, p2,
p3, p4, p5} and a set of symptoms S = {s1, s2, s3, s4}, where rij = 1 denotes
that person pj has the symptom si and rik = 0 denotes that person pk does not
have it. Notice that this information concerns one diagnosis and can be taken
from the patient records with the already proven diagnosis [5],[3], [4].

The level of connection among patients may be defined as the number of
common symptoms they exhibit minus one. Similarly, the level of connection
among symptoms is the number of common patients affected by those symp-
toms minus one. For instance, persons p3 and p4 have in common only s3 and
hence they are connected at level 0, meanwhile patients p1, p2 and p4 have in
common symptoms s2 and s3, i.e., they are connected at level 1. Similarly for
the connectivity of symptoms.
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Abstract. It is very challenging and interesting task in medicine to find a set of rep-
resentative symptoms for the disease, i.e., the set of symptoms that best characterizes
a disease. In this paper we propose a method for constructing such representative
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krajci@science.upjs.sk

3 Ivane Javakhishvili Tbilisi State University
Chavchavadze, av. 1., 380028 Tbilisi, Republic of Georgia

and Stanislav Krajči



q-connectivity Qp-chains q-connectivity Qs-chains

q = 2 {p1}, {p2, p4} q = 4 {s3}
q = 1 {p1, p2, p3, p4} q = 3 {s3}
q = 0 {p1, p2, p3, p4} q = 2 {s2, s3, s4}

q = 1 {s1, s2, s3, s4}
q = 0 {s1, s2, s3, s4}

Table 1. Groups of representative symptoms and patients

The connectivity between people Qp and symptoms Qs are given by the
following formulas:

Qp = RTR − Ω (2)

Qs = RRT − Ω (3)

where Ω is simply the matrix with unit elements. Connections between elements
in (2) and (3) can be presented as in the Table 1. The information, contained
in this table can be interpreted. For instance, symptoms {s2, s3, s4} are more
representative for the considered disease, because they are connected at the
level q = 2 (one-element set is not interesting from the medical point of view,
although the level of connection is higher).

So far so good, but if we consider the following incidence matrix

p1 p2 p3 p4

s1 1 1 1 1
s2 0 0 1 1
s3 1 1 1 1

then, due to (2) p1 and p3 are connected (via s1 and s2) at the same level
(q = 1) as p1 and p2 (via s1 and s2). But obviously, p1 is more like p2 than
p3. Moreover, the problem of measuring the ”likeness” of the patients becomes
more interesting and complicated if the connection of symptoms and patients
are described as fuzzy sets.

2 Fuzzy concept lattices for symptoms clustering

We present the approach using so-called (one-sided) fuzzy concept lattices [1]:
Consider a matrix RSP = {rij}, i = 1 . . . n, j = 1 . . . m with values rij between
0 and 1 (how these values are introduced, we say later) with rows si, i = 1 . . . n
from the set S and columns pj , j = 1 . . . m, from the set P , i.e., RSP : S ×P →
[0, 1]. For example,

p1 p2 p3 p4 p5

s1 1 0.8 0.2 0.3 0.5
s2 0.8 1 0.2 0.6 0.9
s3 0.2 0.3 0.2 0.3 0.4
s4 0.4 0.7 0.1 0.2 0.3
s5 1 0.9 0.3 0.2 0.4

(4)
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where s1, s2, s3, s4, s5 can be symptoms such cough, fever, ruddy checks, low
blood pressure, pain, walking dyspnoea accordingly.

Denote the family of all crisp subsets of the set S by P(S), and the family of
all fuzzy subsets of the set P (i.e., all functions from P to [0, 1]) by F(P ). Then
values in the row i can be understood as a function in F(P ), which says about
pj belonging to si.

The interpretation of belonging can be different. For example, these values
can show the severity, strength of expressiveness, the importance of the symptom
si for the patients for the considered disease.

Define the pair of mappings τRSP
: P(S) → F(P ) and σRSP

: F(P ) → P(S)
in the following way:

If X ∈ P(S) then τRSP
(X) will be the function which value pj in P is defined

by
τRSP

(X)(pj) = min{RSP (si, pj) : si ∈ X}, i = 1 . . . n, j = 1 . . . m

(i.e. τRSP
(X) is the greatest lower bound of above mentioned belonging-functions

of rows from X). The medical explanation is that taking the group of symptoms
X for the patient pj the function τRSP

chooses the value τRSP
(X)(pj) that defines

how strong the symptoms in the set X (together) are present in the person pj .
If g ∈ F(P ) then σRSP

(g) will be the set defined by

σRSP
(g) = {si ∈ S : (∀pj ∈ P ) RSP (si, pj) ≥ g(pj)}, i = 1 . . . n, j = 1 . . . m

(i.e., σRSP
(g) is a set of all rows, above mentioned belonging-functions of which

dominates over g). It means that taking into account a kind of threshold g(pj)
one can consider the symptoms that are more important for the particular disease
than the others.

These two mappings make a Galois connection (i.e., the properties
X1 ⊆ X2 → τRSP

(X1) ≥ τRSP
(X2), f1 ≤ f2 → τRSP

(f1) ⊇ τRSP
(f2), X ⊆

τRSP
(τRSP

(X)) and f ≤ τRSP
(τRSP

(f)) are fulfilled). We will use their compo-
sition

clRSP
: P(S) → P(S)

that is a closure operator, i.e., the following properties are fulfilled:

1. X ⊆ clRSP

2. if X1 ⊆ X2 then clRSP
(X1) ⊆ clRSP

(X2)
3. clRSP

(clRSP
(X)) = clRSP

(X)

If X is a set of symptoms, all patients with symptoms from X may have some
other symptoms from set S (with some grade). It probably means that these
”other” symptoms are related to symptoms from X. The closure of the set X
tries to express this idea. So we can consider only these sets which are the same as
their closure because they have no other related symptoms, i.e. they are complete
in such sense and therefore they are good candidates for clusters. Hence define

LRSP
= {X ∈ P(S) : clRSP

(X) = X}
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This set is a (one-sided) fuzzy concept lattice and its ordering is the ordinary
inclusion. Elements of this lattice are called (fuzzy) concepts.

In our case (see example (4)) LRSP
contains these 12 concepts: ∅, {s1},

{s2}, {s5}, {s1, s2}, {s1, s5}, {s2, s5}, {s1, s2, s5}, {s1, s2, s4, s5}, {s1, s2, s3},
{s1, s2, s3, s5}, and {s1, s2, s3, s4, s5} (all symptoms). They can be depicted in
the following hierarchical way (by a so-called Hasse diagram). The first line in
every vertex is a concept and the second (tiny) line is its τRSP

(a corresponding
belonging function):

•
∅

(p1/1, p2/1, p3/1, p4/1, p5/1)

•
{s1}

(p1/1, p2/.8, p3/.2, p4/.3, p5/.5)
•

{s2}

(p1/.8, p2/1, p3/.2, p4/.6, p5/.9)

•
{s5}

(p1/1, p2/.9, p3/.3, p4/.2, p5/.4)

•
{s1, s2}

(p1/.8, p2/.8, p3/.2, p4/.3, p5/.5)
•

{s1, s5}

(p1/1, p2/.8, p3/.2, p4/.2, p5/.3)

•
{s2, s5}

(p1/.8, p2/.9, p3/.2, p4/.2, p5/.4)

•
{s1, s2, s5}

(p1/.8, p2/.8, p3/.2, p4/.2, p5/.4)

•
{s1, s2, s4, s5}

(p1/.4, p2/.7, p3/.1, p4/.2, p5/.3)

•
{s1, s2, s3}

(p1/.2, p2/.3, p3/.2, p4/.3, p5/.4)

•
{s1, s2, s3, s5}

(p1/.2, p2/.3, p3/.2, p4/.2, p5/.4)

•
{s1, s2, s3, s4, s5}

(p1/.2, p2/.3, p3/.1, p4/.2, p5/.3)
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This Hasse diagram can be considered as a good structure for navigation
when looking for the best characterization of the disease, i.e., for the set of
representative symptoms for this disease.The heuristic procedure such as starting
from the high levels of the Hasse diagram, that concept is chosen, which has the
maximum number of incoming edges and contains not less than 2 elements. From
more than one chosen concepts at the different levels, those are taken, which have
maximum outcoming edges. For the Hasse diagram shown above, {s1, s2, s5} can
be taken as a set of representative symptoms.

The original, crisp version of this approach is described in [2] and it is a
special case of ours if sets and their characteristic functions are identified. It

T. Kiseliova and S. Krajči352



can be used for our crisp example (1) and it produces the 7 concepts: {s3},
{s1, s3}, {s2, s3}, {s3, s4}, {s1, s2, s3}, {s2, s3, s4}, and {s1, s2, s3, s4}. They can
be depicted by a Hasse diagram too. The first line in every vertex is a concept
again and the second (tiny) line is its set of common pj .

•
{s3}

{p1, p2, p3, p4, p5}

•
{s1, s3}
{p1, p3}

•
{s2, s3}

{p1, p2, p4}
•

{s3, s4}
{p2, p4, p5}

•
{s1, s2, s3}

{p1}
•

{s2, s3, s4}
{p2, p4}

•
{s1, s2, s3, s4}

∅
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Using the heuristic procedure described above, {s2, s3} can be taken as a set of
representative symptoms.

3 Conclusions

In this paper we present a concept lattice as another possible method for clus-
tering symptoms of diseases. It is based on common presence of symptoms in
patients and it expresses the idea that a common presence of symptoms in pa-
tients may means their common cause. We use the classical crisp version and a
rather new fuzzy version of a concept lattice in a case that presence of a symptom
in a patient is expressed by number from the interval [0, 1]. The new one-side
fuzzy concept lattice introduced in this paper is demonstrated to be very useful
in medicine, in particular, in establishing the representative symptoms. ”Crisp”
and ”fuzzy” examples illustrate this observation.
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1 Introduction

In fuzzy logic, connectives AND ,OR and NOT are usually modelled by t-
norms , t-conorms and strong negations on [0, 1], respectively [7, 14]. Based
on these logical operators on [0, 1], three fundamental classes of fuzzy im-
plications on [0, 1] (i.e. S-,R-,and QL-implication on [0, 1]) were defined and
studied [3, 5, 6, 8, 9, 11, 14, 15]. Ma and Wu [9] introduced the notion
of t-norms on a complete lattice L and discussed the relation between the
t-norms and the implications on L.

In [13], Wang and Yu established a unitive algebraic theory of logical
operators based on a complete Brouwerian lattice L, introduced the con-
cept of pseudo-t-norms on L and, discussed the relation between the set of
all infinitely ∨-distributive pseudo-t-norms and the set of all infinitely ∧-
distributive implications on L in detail.

On the Direct Decomposability of Fuzzy
Connectives, Negations and Implications Based

Funda Karaçal

Abstract. In this paper, we study and discuss the direct products of fuzzy con-
nectives, negations and implications based on t-norms and t-conorms and give a
necessary and sufficient condition for their direct decomposability.
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The concept of the direct product of t-norms on product lattice (external
direct product) was introduced by De Baets and Mesiar [2].They character-
ized ∨-distributive t-norms on a product lattice that are a direct product of
t-norms.

In [13], Wang and Yu studied the pseudo-t-norms and implication opera-
tors on a complete Brouwerian lattice L , and discussed their direct products
and direct product decompositions.

In this paper, we give a necessary and sufficient condition to direct decom-
posability for pseudo- t-norms and implication operators on product lattices.
We study the direct products of t-conorms, strong negations, implication
operators on product lattice. Furthermore we discuss the direct decom-
posability of S-implications and R-implications. Finally, we formulate our
conjecture about the direct decomposability of OL-implication operators.

Let (L,≤) be a complete lattice with top and bottom elements 1,0 re-
spectively.

2 Preliminaries

In this section, we shall briefly recall some definitions about t-conorms, strong
negations, pseudo- t-norms and implication operators on L , and a property
of strong negations on L.

Definition 1 ([7, 9]) A triangular conorm (t-conorm, for short) is a com-
mutative, associative,non-decreasing function S : L × L → L such that
S(x, 0) = x∀x ∈ L.
Moreover, if S satisfies the conditions commutative, associative,non-decreasing
and S(x, 1) = x for all x ∈ L, then S is called a triangular norm (t-norm).

Definition 2 A t-conorm S on L is said to be ∧-distributive if

x, y, z ∈ L ⇒ S(x, y ∧ z) = S(x, y) ∧ S(x, z).

Definition 3 ([12, 13]) An implication I on L is a binary operation on L
that satisfies the following two conditions:

(I.1)I(1, y) = y and I(0, y) = 1∀y ∈ L;
(I.2)x, y, z ∈ L, y ≤ z ⇒ I(x, y) ≤ I(x, z)
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Definition 4 ([12]) A binary operation T on L is called a pseudo-t-norm if
it satisfies the following conditions:

(T.1)T (1, y) = y and T (0, y) = 0∀y ∈ L;
(I.2)x, y, z ∈ L, y ≤ z ⇒ T (x, y) ≤ T (x, z)

Definition 5 An implication operator I on a lattice L is called ∧-distributive
if

I(a, b1 ∧ b2) = I(a, b1) ∧ I(a, b2)∀a, b1, b2 ∈ L.

Definition 6 A pseudo-t-norm T on a lattice L is called ∨-distributive if
T (a, b1 ∨ b2) = T (a, b1) ∨ T (a, b2)∀a, b1, b2 ∈ L.

Definition 7 ([9]) A mapping n : L → L is called a strong negation if
(N.1)n(n(x)) = x∀x ∈ L
(N.2)x ≤ y, x, y ∈ L ⇒ n(y) ≤ n(x).
Obviously,if n is a strong negation on L, then n(0)=1 and n(1)=0.

Theorem 1 ([12]) Let xj ∈ L, j ∈ J . If n is a strong negation on L, then
(1)n(

∨
j∈J

xj) =
∧

j∈J
n(xj).

(2)n(
∧

j∈J
xj) =

∨
j∈J

n(xj).

i.e. , De Morgan laws hold.

Definition 8 ([3, 6]) S-implications are based on the classical idea of im-
plication ( P → Q is defined as ¬P ∨ Q ) and are given by

IS(x, y) = S(n(x), y)∀x, y ∈ L,

where S is a t-conorm and n is a strong negation on L.

Definition 9 ([3, 6, 7]) R-implications are based on a residuation concept
in lattice structures equipped with a semigroup operation T that may stand
for a conjunction, namely

IR(x, y) =
∨

{u ∈ L : T (x, u) ≤ y} ∀x, y ∈ L.

where T is an t-norm on L and R stands for ”residuated” .
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Definition 10 ([3, 6]) QL-implications have the form used in quantum logic
and are based on an ”if ...then...else...” view of a fuzzy rule, and are defined
by

IQL(x, y) = S(n(x), T (x, y))∀x, y ∈ L,

where S and T are, respectively t-conorm on L and t-norm on L, and n is
a strong negation on L.

3 The direct decomposability of strong nega-

tions on the product lattices

In this section, we shall examine the direct products and direct decomposi-
tions of strong negations.

Definition 11 Let L1 and L2 be lattices, n1 a strong negation on L1 and n2

a strong negation on L2 . By the direct product of n1 and n2 , denoted by
n1 × n2 , we mean the mapping , defined by (n1 × n2)(x, y) = (n1(x), n2(y)).

Proposition 1 The direct product n1 ×n2 of n1 and n2 is a strong negation
on the product lattice L1 × L2 .

Now we give the following proposition to define the internal direct product
of strong negations.

Proposition 2 Let L1 ,L2 be complete sublattices of L, and n1 a strong
negation on L1 and n2 a strong negation on L2. Suppose that for each x ∈ L
there exist x1 ∈ L1 and x2 ∈ L2 uniquely defined such that x=x1∧x2 . Then
the mapping n : L → L, defined by

n(x) := n1(x1) ∧ n2(x2), where x = x1 ∧ x2,

is a strong negation on L.

Definition 12 The strong negation constructed in Proposition 2 will be called
the internal direct product of n1 and n2, and it will be denoted by n1

⊗
n2.
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Definition 13 Strong negations n on a lattice L and n∗ on a lattice M will
be called isomorphic if there exists a lattice isomorphism H : L → M such
that

H(n(a)) = n∗(H(a))∀a ∈ L.

Proposition 3 Let L1, L2 be complete lattices, L = L1 ×L2 and n a strong
negation on L. Then

(i) n(0, 1) = (1, 0) if and only if n(1, 0) = (0, 1).
(ii)n(0, 1) = (0, 1) if and only if n(1, 0) = (1, 0).

Theorem 2 Let L1 and L2 be two complete lattices, and their direct product
lattice L = L1 × L2 , and n be a strong negation on L = L1 × L2. The
following conditions are equaivalent:

(i) n(0,1)=(1,0) ( or n(1,0)=(0,1) );
(ii) n is the direct product of a strong negation n1 on L1 and n2 on L2;
(iii) n is the internal direct product of a strong negation n∗

1 on L1 × {1}
and a strong negation n∗

2 on {1} × L2 .

4 The direct decomposability of t-conorms

and implication operators on product lat-

tices

Proposition 4 Consider a t-conorm S1 on a complete lattice L1 and a t-
conorm S2 on a complete lattice L2 , then the direct product S1 × S2 of S1

and S2 , defined by

(S1 × S2)((x1, x2), (y1, y2)) = (S1(x1, y1), S2(x2, y2))

is a t-conorm on the product lattice L1 × L2 .

Remark 1 The concept of the direct product of implication operators was
introduced in [13].

Now we give the following proposition to define the internal direct product
of t-conorms( implication operators).
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Proposition 5 Consider two complete sublattices L1 and L2 of L, and a
t-conorm (implication operator) S1 on L1 and a t-conorm (implication oper-
ator) S2 on L2. Suppose that for each x ∈ L there exist x1 ∈ L1 and x2 ∈ L2

uniquely defined such that x = x1∧x2 . Then the function S : L × L → L,
defined by

S(x, y) := S1(x1, y1) ∧ S2(x2, y2), where x = x1 ∧ x2, y = y1 ∧ y2,
is a t-conorm (implication operator) on L.

A t-norm S(implication operator) constructed as in Proposition 5, will
be called the internal direct product of S1 and S2, and will be denoted by
S1

⊗
S2 .

Let L be a complete lattice, S be a t-conorm(implication operator) on L
and L1 ⊆ L. The notation S ↓ L1 stands for the restriction of S to L1.

Definition 14 Triangular conorms (implication operators) S on a lattice
L and P on a lattice M will be called isomorphic if there exists a lattice
isomorphism H : L → M such that

H(S(x, y)) = P (H(x), H(y))∀x, y ∈ L.

The following proposition gives the connection between external and internal
direct products of t-conorms.

Theorem 3 Let L = L1 × L2 and S = S1 × S2, where Si is a t-conorm
on the lattice Li for i ∈ {1, 2}.Then S ↓ (L1 × {1} and S ↓ ({1} × L2 are
t-conorms on L1×{1} and {1}×L2 respectively,and,they are also isomorphic
to S1 and S2, respectively.Furthermore S = S ↓ (L1 × {1}) ⊗

S ↓ ({1} × L2)

Conversely, let S = S ↓ (L1×{1}) ⊗
S ↓ ({1}×L2).Then S = S1×S2, where

S1 on L1and S2 on L2 are t-conorms such that S1 and S2 are isomorphic to
t-conorms S ↓ (L1 × {1}) and S ↓ ({1} × L2) on L1 × {1} and {1} × L2,
respectively.

A similar theorem to Theorem 3 can be given for t-norms dually.

Corollary 1 A t-conorm S on a product lattice L = L1 × L2 is the di-
rect product of a t-conorm on L1 and a t-conorm on L2 if and only if for
(x, y), (z, t) ∈ L

S((x, y), (z, t)) = S((x, 1), (z, 1)) ∧ S((1, y), (1, t))(∗)
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Remark 2 When working with t-conorms on product lattices, we have the
freedom to use t-conorms that do not act coordinatewisely. But if we want
the direct decomposability of a t-conorm S on product lattice, S must act
coordinatewisely.

Remark 3 If a t-conorm S is a ∧-distributive t-conorm on a product lattice
L = L1 ×L2 , then S satisfies the equality (∗).The converse of this statement
is not true: It is not necessary for a t-conorm satisfying the equality (*) to
be ∧-distributive t-conorm. For example,let L1 and L2 be non-distributive
lattices. Let L = L1 × L2 and, let S = ∨ on L. Then S satisfies the equality
(∗), but it is not a ∧-distributive t-conorm.

Theorem 4 Let L = L1 × L2 and I = I1 × I2, where Ii is an implica-
tion operator on the lattice Li for i ∈ {1, 2}.Then I ↓ (L1 × {1}) and
I ↓ ({1}×L2) are implication operators on L1×{1}and {1}×L2, respectively,
and, they are also isomorphic to I1 and I2, respectively. Furthermore
I = I ↓ (L1 × {1}) ⊗

I ↓ ({1} × L2).
Conversely, let I = I ↓ (L1 × {1}) ⊗

I ↓ ({1} × L2). Then I = I1 × I2,
where I1 on L1 and I2 on L2 are implication operators such that I1 and I2

are isomorphic to implication operators I ↓ (L1 ×{1}) and I ↓ ({1}×L2) on
L1 × {1} and {1} × L2, respectively.

A similar theorem to Theorem 4 can be given for pseudo-t-norms.

Corollary 2 (i)An implication operator I on a product lattice L = L1 × L2

is the direct product of an implication operator on L1 and an implication
operator on L2 if and only if for all (x, y), (z, t) ∈ L

I((x, y), (z, t)) = I((x, 1), (z, 1)) ∧ I((1, y), (1, t))(∗∗)

and, L1 × {1} and {1} × L2 are closed under I on L1 × L2.
(ii) A pseudo t-norm T on a product lattice L = L1 × L2 is the direct

product of an implication operator on L1 and an implication operator on L2

if and only if for all (x, y), (z, t) ∈ L

T ((x, y), (z, t)) = T ((x, 0), (z, 0)) ∨ T ((0, y), (0, t))

and L1 × {0} and {0} × L2 are closed under T on L1 × L2.
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1 = {0, x, 1}, 0 < x < 1 and L2 = {0, 1},
0 < 1 . We define I on L1 2

I((x, y), (z, t)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 1) , (x, y) = (0, 0)
(1, t) , (x, y) = (0, 1)
(z, 1) , (x, y) = (1, 0)
(0, 0) ,

1 × L2 and satisfies
the equality (**). I ↓ (L1 × {1}) is not implication operator on L1 × {1} ,
since L1 ×{1} is not closed under I. Thus by Theorem 4, I is not be a direct
product of an implication operator on L1 and an implication operator on L2.

Theorem 5 Let I be a ∧-distributive implication operator on a product lat-
tice L = L1 × L2. If I satisfies the following conditions:

i) I((x, y), (z, t) ∨ (k, l)) = I((x, y), (z, t)) ∧ I((z, t), (k, l))
∀(x, y), (z, t), (k, l) ∈ L;
ii) I((0, 1), (0, 0)) = (1, 0), I((1, 0), (0, 0)) = (0, 1),
then there exist an implication operator I1 on L1 and an implication op-

erator I2 on L2 such that I = I1 × I2 .

Theorem 6 Let T be a ∨-distributive pseudo-t-norm on a product lattice
L = L1 × L2. If T satisfies the following conditions:

i) T ((x, y), (z, t) ∧ (k, l)) = T ((x, y), (z, t)) ∧ T ((z, t), (k, l)),
∀(x, y), (z, t), (k, l) ∈ L;
ii)T ((0, 1), (1, 0)) = T ((1, 0), (0, 1)) = (0, 0),
then there exist a pseudo-t-norm T1 on L1 and a peudo-t-norm T2 on L2

such that T = T1 × T2 .

Remark 4 The first parts of Theorem 3.4 and Theorem 3.5 in [13] can be
obtained as corollaries of Theorem 5 and Theorem 6, respectively.

5 The direct decomposability of R-implications

and S-implications on product lattices

Theorem 7 An R-implication operator IR on a product lattice L = L1 ×L2

is the direct product of an R-implication operator on L1 and an R-implication
operator on L2 if and only if for all (x, y), (z, t) ∈ L

IR((x, y), (z, t)) = IR((x, 1), (z, 1)) ∧ IR((1, y), (1, t)).
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Let IS((x, y), (z, t)) = S(n(x, y), (z, t)),∀(x, y), (z, t) ∈ L = L1 × L2 , be
an S-implication operator on L, where S is a t-conorm and n is a strong
negation on L.

Lemma 1 Let IS be an S-implication operator satisfying the equality (∗∗)
on a product lattice L1 × L2. Then n(0, 1) = (1, 0).

Lemma 2 Let IS be an S-implication operator satisfying the equality (∗∗)
on a product lattice L1 × L2 . Then

S(n(x, 1), (z, 1)) = S(n(x, 0), (z, 1))∀x, z ∈ L1

and

S(n(1, y), (1, t)) = S(n(0, y), (1, t))∀y, t ∈ L2.

Using Lemma 1 and Lemma 2, we obtain the following theorem.

Theorem 8 Consider two complete lattices L1 and L2, and an S-implication
operator IS((x, y), (z, t)) = S((n(x, y), (z, t)) on the product lattice L1 × L2 .
Then the following conditions are equivalent:

(i) n is the direct product of a strong negation n1 on L1 and a strong
negation n2 on L2, and S is the direct product of a t-conorm S1 on L1 and
a t-conorm S2 on L2;

(ii) IS is the direct product of an S1-implication operator on L1 and an
S2-implication operator on L2 ;

(iii) IS is the internal direct product of an S ↓ (L1 × {1})-implication
operator IS ↓ (L1×{1}) on L1×{1}and an S ↓ ({1}×L2-implication operator
IS ↓ ({1} × L2) on {1} × L2.

Corollary 3 An implication operator IS on a product lattice L = L1 ×L2 is
the direct product of an S-implication operator on L1 and an S-implication
operator on L2 if and only if for all (x, y), (z, t) ∈ L

IS((x, y), (z, t)) = IS((x, 1), (z, 1)) ∧ IS((1, y), (1, t))

Remark 5 A similar theorem to Theorem 8 is not true for QL-implication
operators. For example: Let L1 be the lattice {0, 1}, where 0 < 1 and
L = L1 × L1. We consider the implication operator

IQL((x, y), (z, t)) = SM(n(x, y), T ((x, y), (z, t)))
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on L, where

SM((x, y), (z, t)) =

⎧⎪⎨⎪⎩
(z, t) , (x, y) = (0, 0)
(x, y) , (z, t) = (0, 0)
(1, 1) ,

,

is the t-conorm, T = ∧ is the t-norm, n is the strong negation defined by

n(0, 1) = (1, 0), n(1, 0) = (0, 1), n(0, 0) = (1, 1), n(1, 1) = (0, 0)

on L. IQL is a direct product of two QL-implication operators on L1. But
SM ↓ (L1 × {1}) is not a t-conorm on L1 × {1}.

6 Conjecture

We formulate the following conjecture about the direct decomposability of
QL-implication operators.

Conjecture.
An QL- implication operator IQL on a product lattice L = L1 × L2 is the

direct product of an QL- implication operator on L1 and an QL- implication
operator on L2 if and only if for all (x, y), (z, t) ∈ L

IQL((x, y), (z, t)) = IQL((x, 1), (z, 1)) ∧ IQL((1, y), (1, t))
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The cancellativity A ⊕T B = A ⊕T C ⇒ B = C means that
the equation A ⊕T X = D has unique solution. The cancellation law for
sum of fuzzy quantities based on the strongest t-norm TM holds for arbitrary
fuzzy interval A, see e.g. [2, 7, 8]. For the weakest t-norm TD the cancellation
law holds only for very special fuzzy intervals. Based on our results from [1]
and Zagrodny’s results [10] we will present conditions for validity of the
cancellation law for addition based on a continuous Archimedean t-norm.

1 Introduction

The addition of fuzzy quantities A and B is based on the generalized version
of Zadeh’s extension principle

A ⊕T B(x) = sup
y+z=x

T (A(y), B(z)), z ∈ R

where T is a t-norm.

Definition 1. A fuzzy quantity A is called a fuzzy interval if it is continuous
and its u-cuts

A(u) = {x,A(x) ≥ u} ,

u ∈ ]0, 1], are convex closed subsets of R, i.e., A(u) = [a(u)
1 , a

(u)
2 ].

A special subclass of fuzzy intervals is formed by the LR-fuzzy intervals. In
fact, LR-fuzzy intervals are fuzzy intervals with a bounded support.

Definition 2. Consider two strictly decreasing, continuous transformations
L and R of [0, 1] such that L(0) = R(0) = 1 and L(1) = R(1) = 0, and
(l, r, α, β) ∈ R4 such that l ≤ r, α > 0 and β > 0. The fuzzy quantity A
defined by

A. Stupňanová.: The Cancellation Law for Addition of Fuzzy Intervals, Advances in Soft Com-
puting 2, 369–375 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

Abstract.
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A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , if x ≤ l − α

L
(

l−x
α

)
, if l − α ≤ x ≤ l

1 , if l ≤ x ≤ r

R
(

x−r
β

)
, if r ≤ x ≤ r + β

0 , if r + β ≤ x

is called an LR-fuzzy interval, and is denoted by A ≡ (l, r, α, β)LR.

Consider an LR-fuzzy interval (l, r, α, β)LR. l and r are called the left and
right peak, α and β are called the left and right spread, and L and R are
called the left and right shape function, respectively. A special type of LR-
fuzzy intervals, called trapezoidal (or linear) fuzzy intervals A = (l, r, α, β) is
obtained when L and R are linear: L(x) = R(x) = 1 − x.

The unimodal fuzzy interval Aa (i.e. ker(A) = A(1) = {a}) is called a fuzzy
number.

As far as for arbitrary fuzzy intervals A, B, C and t-norm T holds the
following property

A ⊕T B = A ⊕T C ⇒ ker(B) = ker(C),

when discussing the cancellation law it’s enough to investigate the fuzzy num-
bers with zero’s peak, (i.e., A0).

2 The cancellation law for sum based on the strongest
and the weakest t-norm

Theorem 1. Consider the strongest t-norm TM . Let A, B, C be fuzzy inter-
vals. Then the cancellation law holds, i.e.

A ⊕TM
B = A ⊕TM

C ⇒ B = C .

Proof. By formula for addition of fuzzy quantities based on the min

(A ⊕TM
B)(u) = A(u) + B(u)

we can easily verify the validity of the cancellation law.
Let A ⊕TM

B = A ⊕TM
C. Then

[a(u)
1 , a

(u)
2 ] + [b(u)

1 , b
(u)
2 ] = [a(u)

1 , a
(u)
2 ] + [c(u)

1 , c
(u)
2 ] for all u ∈]0, 1]. Thus

[a(u)
1 + b

(u)
1 , a

(u)
2 + b

(u)
2 ] = [a(u)

1 + c
(u)
1 , a

(u)
2 + c

(u)
2 ] ⇒ b

(u)
1 = c

(u)
1 and b

(u)
2 = c

(u)
2

⇒ B(u) = C(u) for all u ∈]0, 1] ⇒ B = C,

i.e., the cancellation law holds. �

for any u ∈ [0, 1]
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Remark 1. The cancellation law with respect to TM fails if A is fuzzy quantity
with supA < 1 or inf A > 0. See [8].

On the other hand, consider the weakest t-norm TD. Then the cancellation
law holds only in special cases.

Theorem 2. Consider the addition based on the TD. Let Aa, Bb, Cc be fuzzy
numbers. Then the cancellation law is valid if and only if

(i) Aa(x − b) ≤ Bb(x − a)

(ii) Aa(x − c) ≤ Cc(x − a) .

Proof. Using the formula for addition based on the drastic product from [7]

Aa ⊕TD
Bb(x) = max

(
Aa(x − b), Bb(x − a)

)
we can easily get conditions for cancellativity. �

3 The cancellation law for sum based on an
Archimedean continuous t-norm

In this section at first we describe some Zagrodny’s results [10]. Further we
will apply them for investigation of validity of cancellation law for addition of
fuzzy numbers based on an Archimedean continuous t-norm.

3.1 The cancellation law for inf-convolution - Zagrodny’s results

Definition 3. Let g, h : R → R ∪ {∞}. The inf-convolution of g and h at
x ∈ R is defined by

g �h(x) := inf
y+z=x

(g(y) + h(z)) .

Definition 4. Let h : R → R∪{∞}. The function h is said uniformly convex
if for ∀ε ≥ 0 ∃ δ > 0

|a − b| ≥ ε ⇒ h

(
a + b

2

)
≤ h(a) + h(b) − δ|a − b|

2
, ∀ a, b ∈ dom h .

Note that the domain of functions g, h can be restricted to some intervals.
Zagrodny in [10] deal with more general functions in Banach space.

Theorem 3. Let X be a reflexive Banach space. If q, g, h : X → R∪{∞} are
proper lower semicontinuous convex functions such that h is strictly convex
and lim

‖x‖→∞
h(x)
‖x‖ = ∞ then q �h = g �h implies q = g.

Theorem 4. Let X be a Banach space and q, g, h : X → R ∪ {∞} be proper
lower semicontinuous convex functions. Moreover, suppose h is uniformly con-
vex. Then q �h = g �h implies q = g.
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3.2 The cancellation law for sum based on a strict t-norm

Recall that addition of fuzzy quantities based on some Archimedean continu-
ous t-norm T can be expressed by

A⊕T B(x) = f [−1]( inf
y+z=x

(f(A(y)) + f(B(z))) = f [−1]f◦A � f◦B (x)), x ∈ R,

where f is additive generator of t-norm T , i.e., f : [0, 1] → [0,∞] is con-
tinuous strictly decreasing mapping verifying f(1) = 0, and pseudo-inverse
f [−1] : [0,∞] → [0, 1] of f is defined by

f [−1](x) = f−1 (min (f(0), x)) .

Archimedean continuous t-norms can be divided into two classes: strict
and nilpotent. An additive generator of a strict t-norm is unbounded, and
then

f [−1] = f−1 .

Theorem 5. Consider a strict t-norm T with an additive generator f . Let
Aa, Bb and Cc be fuzzy numbers, such that f ◦ Bb and f ◦ Cc are convex on
components of supp Bb \ {b} and supp\Cc\{c}, respectively and f ◦ Aa is
either

(i) uniformly convex on components of supp Aa \ {a} or

(ii) strictly convex on components of supp Aa \ {a}

and if suppAa is unbounded then lim
|x|→∞

f◦Aa(x)
|x| = ∞.

Then Aa ⊕T Bb = Aa ⊕T Cc implies Bb = Cc.

Proof. Assume f ◦Bb, f ◦Cc and f ◦Aa verify conditions from theorem. Let
Aa ⊕T Bb = Aa ⊕T Cc . This imply f ◦Aa � f ◦Bb = f ◦Aa � f ◦Cc and by
Zagrodny’s results f◦Bb = f◦Cc ⇒ Bb = Cc, i.e. the cancellativity is valid. �

Remark 2. If Aa is LR fuzzy number we can require only strict convexity of
f ◦ Aa on components of supp Aa \ {a}.

The strict convexity of f ◦A is necessary condition for the cancellativity. See
the following example.

Example 1. Consider the product t-norm TP with additive generator f(x) =
− lnx and fuzzy numbers A1(x) = e−x2

, A2(x) = e−|x|, Bk(x) = e−k|x|, k > 0.
Then TP -sum of A1 and Bk is given by
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A1 ⊕TP
Bk(x) =

⎧⎨⎩ e−x2
, if |x| ≤ k

2

e−k|x|+ k2
4 , elsewhere .

and TP -sum of A2 and Bk for k > 1 is given by

A2 ⊕TP
Bk(x) = e−|x| .

Evidently, A1⊕TP
Bk1(x) = A1⊕TP

Bk2(x) if and only if k1 = k2 (observe that
f ◦A1(x) = x2 is strictly convex). However, A2 ⊕TP

Bk1(x) = A2 ⊕TP
Bk2(x)

for all k1, k2 ∈]1,∞[ (observe that f ◦ A2(x) = |x| is not strictly convex).

3.3 The cancellation law for sum based on a nilpotent t-norm

The case of nilpotent t-norm is more complicated. Conditions from Theorem
5 are deficient. See Example 2.

Example 2. Consider the Lukasiewicz t-norm TL with additive generator
f(x) = 1− x and LR-fuzzy numbers A = (0, 1, 1)LL, L = 1− x2, B = (0, 1, 1)
and C = (0, 0.9, 0.9)KK ,

K =

{
1 − 0.9x, x ∈ [0, 8

9 ]

1.8 − 2x, x ∈ ( 8
9 , 1]

.

Then components of suppA\{a} are (−1, 0) and (0, 1), and f ◦ A is given on
them by formula f ◦ A(x) = x2 (i.e., strictly convex function).
The components of suppB\{b} are also (−1, 0) and (0, 1) and f ◦B(x) = −x
on (−1, 0), f ◦ B(x) = x on (0, 1) (i.e., convex functions).
Finally, the components of suppC \ {c} are (−0.9, 0) and (0, 0.9) and

f ◦ C =

{
−2x − 0.8, x ∈ (−0.9,−0.8]

−x, x ∈ (−0.8, 0)
.

respectively

f ◦ C =

{
x, x ∈ (0, 0.8]

2x − 0.8, x ∈ (0.8, 0.9)
.

(i.e., convex functions).
However, the TL-sum of A and B is the same as the TL-sum of A and C.
A ⊕TL

B(x) = A ⊕TL
C(x) = (0, 1.25, 1.25)MM

M =

{
1 − 25x2

16 , x ∈ [0, 0.4]

1.25(1 − x), x ∈ (0.4, 1]
.

Thus Theorem 5 is not valid in the case when T is a nilpotent t-norm, in
general.
For nilpotent t-norms, we have only the following special cancellation theo-
rems.
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Theorem 6. Consider a nilpotent t-norm T with normed additive generator
f . Let A, B, C be fuzzy intervals, such that f ◦A, f ◦B and f ◦C are concave
on the components of suppA \ ker(A), suppB \ ker(B) and suppC \ ker(C),
respectively. Moreover, let ker(A) = [a1, a2], ker(B) = [b1, b2], ker(C) =
[c1, c2] and

A(a2 + x) ≤ min (B(b2 + x), C(c2 + x))

A(a1 − x) ≤ min (B(b1 − x), C(c1 − x)) for all x ∈ (0,∞) .

Then A ⊕T B = A ⊕T C ⇔ B = C.

The proof follows from the fact that under requirements of the theorem,
A ⊕T B = A ⊕TD

B and A ⊕T C = A ⊕TD
C, see [ 7,4 ]. Note that the same

as support the whole real line R.

Theorem 7. Consider a nilpotent t-norm T with normed additive generator
f. Let A, B, C be LR-fuzzy intervals, such that f ◦L(x) = xp and f ◦R(x) = xq

for some p, q ∈ (1,∞). Then A ⊕T B = A ⊕T C ⇒ B = C.

Proof. Following [6], under requirements of the theorem, for A = (a1, a2, α1, α2)
LR, B = (b1, b2, β1, β2)LR, C = (c1, c2, γ1, γ2)LR, it holds

A ⊕T B = (a1 + b1, a2 + b2, δ1, δ2)LR,

where δ
1
p−1

1 = α
1
p−1

1 + β
1
p−1

1 and δ
1
q −1

2 = α
1
q −1

2 + β
1
q −1

2 .
Similarly,

A ⊕T C = (a1 + c1, a2 + c2, ε1, ε2)LR ,

where ε
1
p−1

1 = α
1
p−1

1 + γ
1
p−1

1 and ε
1
q −1

2 = α
1
q −1

2 + γ
1
q −1

2 .
Now, it is evident that A ⊕T B = A ⊕T C if and only if b1 = c1, b2 = c2,

β1 = γ1, β2 = γ2, i.e., B = C. �

Example 3. Consider the Yager’s t-norm T = T 2
Y , with additive generator

f(x) = (1 − x)2 and linear fuzzy LR-numbers A = (a, α, α), B = (b, β, β),
C = (c, γ, γ). Then f ◦ L(x) = f ◦ R(x) = x2, i.e., p = q = 2. Consequently

(a, α, α) ⊕T 2
Y

(b, β, β) = (a, α, α) ⊕T 2
Y

(c, γ, γ)

(a + b,
√

α2 + β2,
√

α2 + β2) = (a + c,
√

α2 + γ2,
√

α2 + γ2)

⇒ b = c & β = γ.

claim is true also for strict t-norms.However then A, B, C have necessarily
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4 Conclusion

We have discussed the cancellation law for T -based addition of fuzzy intervals.
This genuine property of the classical addition of reals is preserved for TM -
based addition of fuzzy intervals. Consequently, every fuzzy linear equation
(with real multiplicative constant) of one variable if solvable then it has unique
solution.
In the case of a t-norm T different from TM , the cancellation law for T -based
addition of fuzzy intervals does not hold, in general. However, it is still valid
under some specific requirements - for example in specific classes of fuzzy
numbers determined by the choice of T .
Presented resuls can be generalized also for pseudo-convolutions introduced
in [9], following the ideas presented in [3].
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1 Introduction

Triangular norms were introduced in the framework of probabilistic metric
spaces. However, they are widely applied in several other fields, e.g., in fuzzy
set theory, fuzzy logic, and their applications. Therefore, the problem of com-
pact representation of continuous t-norms using generating functions is of
permanent interest.

2 Functional Representation of Continuous t-Norms and
t-Conorms

Let I be a countable and linearly ordered family of indices and

FI = {fi, i ∈ I},

be a family of continuous and strictly monotonously increasing functions such
that

fi : [0, 1] −→ [0, ci], ci ≤ +∞, and fi(0) = 0

for all i ∈ I. Each fi, i ∈ I, determines the function

gi(x) = fi(1 − x)

which is an additive generator of some continuous Archimedean t-norm.
Therefore, we will refer to functions from FI as generating functions.

Definition 1. For a countable and linearly ordered family of indices I, let
AI = {ai}i∈I , BI = {bi}i∈I , be two families of nodes from the interval [0, 1]
such that for all i ∈ I

� This paper has been partially supported by grant IAA1187301 of the GA AV ČR.

I. Perfilieva: Generic View On Continuous T-Norms and T-Conorms, Advances in Soft Com-
puting 2, 377–382 (2005)
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ai < bi,

and for all i, j ∈ I

i < j ⇒ (ai < aj) & (bi < bj) & (bi ≤ aj).

We say that the families AI and BI determine the partition PA,B,I of [0, 1]:

[0, 1] =
⋃
i∈I

(ai, bi) ∪ D

where
D = [0, 1] \

⋃
i∈I

(ai, bi).

On each subinterval [ai, bi], i ∈ I, we define two linear transition functions
ϕi, ψi : [ai, bi] −→ [0, 1] such that

ϕi(x) =
bi − x

bi − ai
, ψi(x) =

x − ai

bi − ai
. (1)

It is easy to see that the following equalities hold true for each i ∈ I and
for each x ∈ [ai, bi]:

ϕi(x) + ψi(x) = 1,
ϕi(x) = ψi(ai + bi − x).

The inverse functions ϕ−1
i , ψ−1

i : [0, 1] −→ [ai, bi] fulfil the following equal-
ity for arbitrary x ∈ [0, 1]:

ϕ−1
i (x) + ψ−1

i (x) = ai + bi.

The following proposition immediately follows from the representation of
an arbitrary continuous t-norm (t-conorm) as an ordinal sum of continuous
Archimedean t-norms (t-conorms) (see [1]).

Proposition 1. Let I be at most countable, linearly ordered family of indices,
FI a family of generating functions, and PA,B,I be a partition of [0, 1] deter-
mined by families AI ,BI . Let transition functions be defined by (1). Then

T (x, y) =

{
ϕ−1

i (f−1
i (min(fi(ϕi(x)) + fi(ϕi(y)), fi(1)))), if (x, y) ∈ (ai, bi)2,

min(x, y), otherwise
(2)

is a continuous t-norm and

S(x, y) =

{
ψ−1

i (f−1
i (min(fi(ψi(x)) + fi(ψi(y)), fi(1))), if (x, y) ∈ (ai, bi)2,

max(x, y), otherwise
(3)

is a continuous t-conorm. Moreover, each continuous t-norm (t-conorm) can
be represented in the form (2) (resp. (3)).
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From the properties of transition functions ϕi, ψi and their inverse, it is
easy to prove that for the t-norm T and the t-conorm S given by (2) and (3),
the following relation holds true for arbitrary x, y ∈ (ai, bi):

S(x, y) = ai + bi − T (ai + bi − x, ai + bi − y).

3 Generalized Additive Generators of Continuous
t-norms and their Residua

In this section, we will focus on the representation of continuous t-norms with
help of generalized additive generators. By definition (see [1]), an additive
generator g : [0, 1] −→ [0,∞] of a t-norm T is a strictly decreasing function
which fulfils two conditions:

1. g is right-continuous at 0 and g(1) = 0,
2.

T (x, y) = g−1(min(g(0), g(x) + g(y))). (4)

It is known (cf. [1]) that it is possible to construct the representation (4)
for continuous Archimedean t-norms. Moreover, if a t-norm has an additive
generator then it is necessarily Archimedean. We will generalize representation
(4) to the case of arbitrary continuous t-norm (see Theorem 1 below).

On the basis of Proposition 1, we may claim that a continuous t-norm T

can be fully characterized by a pair (FI ,PA,B,I) and moreover, each function
fi from FI determines the additive generator

gi(x) = fi(ϕi(x)) (5)

of the respective Archimedean part on interval [ai, bi], i ∈ I. We will show that
each continuous t-norm can be represented using truncated arithmetic sum of
negative reals (see expression (7)). Furthermore, the operation of residuum of a
continuous t-norm can be represented using truncated arithmetic subtraction
of negative reals (see expression (8)).

We restrict ourselves to continuous non-Archimedean t-norms, because the
representation (4) has been constructed in ([1]) for continuous Archimedean
t-norms. Let a continuous non-Archimedean t-norm T be characterized by
the pair (FI ,PA,B,I) where |I| ≥ 2, and additive generators of the respec-
tive Archimedean parts on intervals [ai, bi] are given by (5). We consider the
following set of couples of reals:

R−
T =

⋃
a∈D

{(a, 0)} ∪
⋃
i∈I

{bi} × (0,−ci)

and define the lexicographic order on R−
T :

(x1, y1) ≤ (x2, y2) ⇔ (x1 < x2) ∨ (x1 = x2 & y1 ≤ y2)
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as well as one-to-one mapping g : [0, 1] −→ R−
T :

g(x) =

{
(x, 0), if x ∈ D,

(bi,−gi(x)), if x ∈ (ai, bi).
(6)

The construction of R−
T is fully determined by the partition PA,B,I of [0, 1]

and therefore, by the choice of the t-norm T . This dependence is marked by
the lower index in the denotation R−

T .
Let us introduce the operations of truncated sum and truncated subtrac-

tion on R−
T as follows:

(x1, y1)�(x2, y2) =

{
min((x1, y1), (x2, y2)), if x1 �= x2,

(x1,max(y1 + y2,−ci)), if (x1 = x2) & (y1, y2 ∈ (0,−ci)),

and

(x1, y1) ·− (x2, y2) =

⎧⎪⎨
⎪⎩

(x1, y1 − y2), if x1 = x2 & y1 < y2,

(1, 0), if x1 > x2 or x1 = x2 & y1 ≥ y2,

(x1, y1), if x1 < x2.

Then we can prove the following representation theorem.

Theorem 1. Let a continuous t-norm T be characterized by the pair (FI ,
PA,B,I) where |I| ≥ 2. Moreover, let IT denote the respective residuum of the
t-norm T . Then

T (x, y) = g−1(g(x) � g(y)) (7)

and
IT (x, y) = g−1(g(y) ·− g(x)) (8)

where g is the generalized additive generator (6) of the t-norm T .

We can prove even more if we consider a standard BL-algebra (see [2]) on
[0, 1]

L = 〈[0, 1],∨,∧, ∗,→,0,1〉

where ∗ is a continuous t-norm and → is its residuum.

Theorem 2. Let L be a standard BL-algebra on [0, 1] and ∗ be a continuous
t-norm characterized by the pair (FI ,PA,B,I) where |I| ≥ 2. Then additive
generator g of ∗ defined by (6) establishes an isomorphic mapping between L
and the following algebra on R−

∗ with truncated operations:

R−
∗ = 〈R−

∗ ,∨,∧,�, ·−, (0, 0), (1, 0)〉.
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4 Generalized Additive Generators of Continuous
t-conorms

In this section, we will suggest the representation of continuous t-conorms with
help of generalized additive generators. In Proposition 1, we have presented
the representation of an arbitrary continuous t-conorm as an ordinal sum of
continuous Archimedean t-conorms. Let us recall (see [1]) that the additive
generator g : [0, 1] −→ [0,∞] of a t-conorm S is a strictly increasing function
g : [0, 1] −→ [0,∞] which fulfils two conditions:

1. g is left-continuous at 1 and g(0) = 0,
2.

S(x, y) = g−1(min(g(0), g(x) + g(y))). (9)

Similar to t-norms, it is known [1] that it is possible to construct the
representation (9) for continuous Archimedean t-conorms. We will generalize
this kind of representation to the case of arbitrary continuous t-conorm (see
Theorem 3 below).

Let a continuous t-conorm S be characterized by the pair (FI ,PA,B,I)
where |I| ≥ 2, and moreover, each function fi from FI determines the additive
generator

gi(x) = fi(ψi(x)) (10)

of the respective Archimedean part on interval [ai, bi], i ∈ I.
We consider the following set of couples of reals:

R+
T =

⋃
a∈D

{(a, 0)} ∪
⋃
i∈I

{bi} × (0, ci).

and define the lexicographic order on R+
T :

(x1, y1) ≤ (x2, y2) ⇔ (x1 < x2) ∨ (x1 = x2 & y1 ≤ y2)

as well as the one-to-one mapping g : [0, 1] −→ R+
T :

g(x) =

{
(x, 0), if x ∈ D,

(ai, gi(x)), if x ∈ (ai, bi).
(11)

Let us introduce the operations of truncated sum on R+
T as follows:

(x1, y1) +· (x2, y2) =

{
max((x1, y1), (x2, y2)), if x1 �= x2,

(x1,min(y1 + y2, ci)), if (x1 = x2) & (y1, y2 ∈ (0, ci)).

Theorem 3. Let a continuous t-conorm S be characterized by the pair (FI ,
PA,B,I) where |I| ≥ 2. Then

S(x, y) = g−1(g(x) +· g(y)) (12)

where g is the generalized additive generator (11) of the t-conorm S.
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5 Conclusion

We have suggested the representation of continuous t-norms and t-conorms
with help of generalized additive generators. This representation shows similar
origin of triangular operations (t-norms and t-conorms) as truncated sums of
negative and positive reals, respectively. Moreover, we showed that a general-
ized additive generator establishes an isomorphic mapping between a standard
BL-algebra L on [0, 1] and the algebra on the set of couples of reals R−

∗ with
truncated operations.
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1 Introduction

In this paper, we describe a technique for extracting patterns to a XML data
flow; then, we show how such patterns can be developed into an ontology of
classes. Also, we discuss the impact of different fuzzy representation techniques
for XML data on the outcome of our procedure. One might wonder why all this
is needed, since the semantics of XML data could in principle be satisfactorily
represented via their associated XML schemata ComplexTypes. Unfortunately
it turns out that standard XML schema definitions need to cover a wide
repertoire of possible attributes. For this reason, optional elements are widely
used, thus decreasing the expressiveness of XML schemata as descriptors of the
content of single instances. Our approach relies on comparing fuzzy encodings
of XML fragments. This comparison will allow us to define ”typical” sets of
attributes, that we shall consider hints to possible meaningful classes. Then,
we shall evaluate fuzzy overlapping between candidate cluster heads in order to
define a tentative class hierarchy. Our fuzzy modelling assumes that a domain
expert has associated an importance degree in the [0, 1] interval to vocabulary
elements (i.e. tag names). As we shall see in the remainder of the paper, this
burden is not excessive, since this importance assessment only needs to be
carried out once, looking at the schema. At run time, each incoming XML
fragment is mapped into a fuzzy set whose elements are the tag names [3]. Each
element membership is computed by aggregating the vocabulary importance
values of the tags lying on the path from it to the root. The topology of
the individual XML tree is modelled by using an aggregation that takes into
account nodes nesting level or nodes occurrence. Our procedure consists of
the following steps:

• Identify and choose the “right” fuzzy comparison function for a given XML
data flow;

• Classify the authentication data flow according to it;
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• Build a tentative is-a hierarchy based on classes overlapping.

The comparison function M will be based on the degree of inclusion of the
fuzzy sets modelling the XML fragments. These functions have been exten-
sively studied in the literature [1], [4], [3]. The comparison function must to
maintain a semantical coherence with assignment function adopted in evalu-
ating the nodes membership values. For this reason in Section 3 we discuss
on the right way of coupling weight assignments and comparison function.
In most cases comparison function are not symmetrical and lack the mathe-
matical properties of a distance 1 . As a consequence, no standard clustering
technique can be used. Instead, our technique:

• Periodically scans portions of the incoming flow to select typical XML
fragments as tentative ”clusterheads” representing classes.

• Computes the comparison of each incoming fragment with the current
clusterheads and add it to the class of the closest match.

After creating the classes, we evaluate the quality of the classification by
computing each class cohesion, i.e. the comparison of the elements of a class
with the elements in other classes whose distances from their own clusterhead
is maximum. If the classification is satisfactory, i.e. the cohesion of all classes
is high enough, we apply a suitable comparison measure M applied to cluster-
heads in order to estimate class overlapping. When the comparison between
two classes A and B is higher than a pre-set threshold we assume a general-
ization relation exists, directed along increasing comparison score. Finally, the
generalization hierarchy obtained in the previous steps is first converted into
a metadata format suitable for ontologies like RDF [5] of OWL [6] and then
presented to the user via a standard ontology editor. The paper is organized
as follows: in Section 2, we introduce the basic notions of fuzzy representation
of XML data and outline their application in the framework hierarchy mining.
In Section 3, we discuss in further detail the role of weighting and comparison
functions when XML data are represented as fuzzy sets. Section 4 discusses
how fragments can be used to build a class hierarchy and, eventually, a com-
plete ontology. Finally in Section 5 we draw the conclusion and give an outline
of our future work.

2 A Fuzzy Pattern Extraction Technique

In this section we represent XML data items as flat fuzzy sets. For trans-
forming an XML tree into a fuzzy set, we need to evaluate its structure for
assigning relevance values to nodes in a way reminiscent of their original posi-
tions in the XML tree topology. In other words, we use the fuzzy membership

1This lack of symmetry is reasonable, since these functions model object com-
parison rather than a generic similarity.
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degree for expressing the relevance of each XML node as it is suggested by its
structural position in the original XML tree.
In a XML Schema a node can occur repetitively and in different positions of
the tree. A collection of elements which may contain duplicates is called a bag
(also called multiset).
We use the standard notation for crisp bags, as follows: A =< a, b, b, c, d, d >=<
1 ∗ a, 2 ∗ b, 1 ∗ c, 2 ∗ d >. Extending this notation to fuzzy bags, we obtain:

A = {{0.64/2} ∗ a, {0.66/1, 0.82/1} ∗ b, {0.49/1, 0.71/1} ∗ c}
Where we used the standard notation putting each element’s member-

ship value before the slash character, followed by the number of occurrences
associated to that value. We are now ready to describe the basic steps of
our technique for comparing XML fragments; in the next sections, we shall
propose a coupling of membership functions and matching measures suitable
to take into account XML data items topology. Before computing matching
between XML fragment representations, however, we have to:

• Represent XML trees in term of fuzzy sets. During this step we need
to assign weight to nodes. Evaluating each node we assign two relevance
values to it:

- an explicit one, according to the relevance of its tag label in the current
domain vocabulary.

- an implicit one, taking into account its position in the tree structure.
• Aggregate these two values, obtaining a single membership degree.
• Match objects and get a measure of resemblance between them.

According to the application requirements, different techniques can be
used for each step. In the following Table 1 we outline the main options:

Weighting Type

Nodes Depth Topology

Fan-out Topology

Domain Expert Tag

Content Size/Type Tag

Table 1. Weight Assignment Techniques

Table 1 distinguishes among Topology- and Tag-based weight assignment
techniques. Indeed, depth and fan-out are two simple techniques for evaluating
the relevance of a node based on its topological properties. If relevance has to
be estimated based on the node content two approaches are possible. First,
one could ask a domain expert to assign the nodes weights; secondly, weights
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can be computed based on the node content size and/or according to serialized
content type [3].

Topology and Tag-based weights must be aggregated in a single value using
a standard t-norm. An aggregation function allows us to tune the relevance we
want to attribute to the tag position in the topology rather than to the node
tag itself. In [3] a list of aggregation function are proposed. In this paper, we
adopt a parametrical average-based norm, supporting fine tuning. Namely, we
set:

Fk(x, y) = k(x + y − xy) + (1 − k)(xy) (1)

Each XML data item can now be represented as a fuzzy set where elements
membership is given by the combination of weights described above. This
allows us to use a standard functions for objects comparison to compute clus-
ters to be later refined into classes (Sect. 4). Fuzzy logic versions of standard
comparison functions have been extensively studied in the literature. In [4],
Damiani, Bosc, and Fugini describe comparison measures based on different
type of implication; Bouchon-Meunier and Rifqi [1] propose a complete classi-
fication of comparison measures distinguish among measures of satisfiability,
resemblance and inclusion. In the remainder of the paper, we will discuss cou-
pling between some weighting and comparison measures depending on the
semantics of XML file structure.

3 Combining Weighting and Comparison Functions

Let us ground our discussion in an example. An XML data item describing
book references can have different structures. If you are describing a book for
an e-business service you will use a closed set of information for each instance.
If you are describing a book for a bibliography search engine you are inter-
ested in the number of citations per book, and this kind of information is not
predetermined for all instances.
Obviously, different weighting functions must be used in these two cases. Also,
comparing bibliography entries is an entirely different matter than comparing
a publisher’s book catalog entries. In this section, we will propose some as-
sociations between membership and comparison functions, depending on the
purpose of their utilization.

3.1 Focusing on Nodes Depth

In the first case, we have to compare XML files where the structure is used for
distinguishing general elements, i.e. internal nodes, from data level elements,
i.e. tree leaves. From a schema point of view, high-level elements (i.e. the ones
closer to the root) are more relevant than low-level ones. Fig. 1 shows an
example of such an XML file 2.

2For the sake of clarity we omit the XML elements content, as it is not relevant
to our discussion
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<DOC>

<BOOK>

<TITLE></TITLE>

<AUTHOR></AUTHOR>

</BOOK>

<EDITION>

<PUBLISHER></PUBLISHER>

<EDITOR></EDITOR>

<ISBN></ISBN>

<PRICE></PRICE>

</EDITION>

</DOC>

Fig. 1. The book references XML data item

Such an XML tree can be represented assigning weights to elements ac-
cording to a pre-classification of the domain vocabulary and to a weighting
function W expressing their distance from the root. The domain vocabulary
used in this example is shown in the second column of the Table 2. A simple
weighting function is the following:

W =
dmax − l

dmax

where dmax is the longest path in the tree from the root to a leaf node.
The level weighting column in Table 2 shows weight assignments according to
the nodes depth function. Now, values have to be aggregated by means of our
aggregation function Fk, as explained in Section 2. The third column of the
table shows the results of the function assuming to set parameter k to 0.4,
i.e. giving more emphasis to the tag position in the tree than to the tag name
pre-set importance stored in the vocabulary.

Element Term
Weighting

Level
Weighting

Aggregation
Function

Label

Book 1 0.67 0.8 B

Title 1 0.33 0.6 T

Author 0.9 0.33 0.55 A

Edition 0.7 0.33 0.46 En

Publisher 0.6 0 0.24 Pu

Editor 0.5 0 0.2 Er

ISBN 0.8 0 0.32 I

Price 0.6 0 0.24 Pr

Table 2. Elements Weighting to the XML in Fig. 1
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We can now provide a representation of the XML file in Fig. 1 as a fuzzy
set:

F1 = {0.8/B, 0.6/T, 0.55/A, 0.46/En, 0.24/Pu, 0.2/Er, 0.32/I, 0.24/Pr}

Following the same procedure, a second XML file (Fig. 2), with same tags
but with the element Price in a different position, would be represented as
follows:

F2 = {0.8/B, 0.6/T, 0.55/A, 0.46/En, 0.24/Pu, 0.2/Er, 0.32/I, 0.41/Pr}

<DOC>

<BOOK>

<TITLE></TITLE>

<AUTHOR></AUTHOR>

<EDITION>

<PUBLISHER></PUBLISHER>

<EDITOR></EDITOR>

<ISBN></ISBN>

</EDITION>

</BOOK>

<PRICE></PRICE>

</DOC>

Fig. 2. Another XML data item

3.2 Comparing XML Data Items Representations Based on Nodes
Depth

Comparing fuzzy sets F1 and F2, we are interested in differences due to the
different topological structures of the XML trees they encode. Disregarding
pre-set importance values of tags stored in the vocabulary3, our comparison
function has to return a different score when we compare a set generated by
a shallow XML tree to a set generated by a deeply nested one than viceversa.
In other words, we need an asymmetrical comparison. Suppose that two fuzzy
sets obtained encoding XML trees, A and B, have the same support, i.e.
their difference is only due to the original topology of the trees they encode.
Suppose also that the only difference between the two sets is due to an element
x having a higher membership value in A, e.g. because node x was positioned

3In the remainder of the section, we assume all elements have the same pre-set
importance and that all differences in membership are due to topology.
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in tree(A) closer to the root than it was in tree(B)4. Then, when x has a
higher membership in A than in B, we need M(A, B) < M(B, A). Note that
Δ = |M(A, B) − M(B, A)| should depend on the types of elements involved,
i.e. Δ should depend on the type of x5.

Specifically, measure M allows us to cluster objects aiming to a hierarchy
construction. In fact M(A, B) returns us a different value then M(B, A), and
Δ can be used to estimate a direction in the hierarchy.
Following Bouchon-Meunier [1] we can define two basic measures satisfying
our requirements.

Inclusion:

M(A, B) =
A ∩ B

A
=

A ∩ B

(A ∩ B) + (A − B)
(2)

That can be represented as follows

∑
min(μa(x), μb(x))∑

min(μa(x), μb(x)) + max(0, μa(x) − μb(x)
(3)

Note that Inclusion is a typical monotonic measure. Using for instance the
Inclusion measure for our example we get:

F1∪F2 = {0.7/B, 0.4/T, 0.36/A, 0.46/En, 0.24/Pu, 0.2/Er, 0.32/I, 0.24/Pr}

F1 − F2 = {0.1/B, 0.2/T, 0.19/A, 0/En, 0/Pu, 0/Er, 0/I, 0/Pr}
Hence

M(F1, F2) = 1.49

In order to normalize this result we can use a simple function such as 1
x ,

getting a final value equal to 0.67. At contrary M(F2, F1) produces a score
of 0.92.

4We informally write tree(X) to denote a (not unique) XML tree encoded by
fuzzy set X, given a vocabulary and a value of k

5Of course, the opposite choice could also be made under different assumptions.
For instance in a Satisfiability measure we have M(A, B) > M(B, A): M(A, B) =
A∩B

B
= A∩B
(A∩B)+(B−A)

. To put it more clearly, a Satisfiability measure represents the
fact that a phone is ”more included” in a computer than a computer in a phone,
because most phone features are also held by the computer, but the viceversa is not
true. The strategy described in the paper is the one usually adopted for O-O schema
design, i.e. the simpler structure is more general, and therefore more similar to the
more specific ones than these specializations are similar to it.
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3.3 Focusing on Nodes Fan-out

In some cases we want to compare XML files giving more emphasis to elements
occurrence than to the original trees topology. With reference to our running
example about books, we assume to work with a corpus of XML files describ-
ing bibliography information. In this application the number of citations per
book, and the number of cited books are very important. For representing
our objects we use a different domain vocabulary; also, we employ a different
function for defining nodes relevance into the XML data item. We can think
of all kind of functions taking into account the number of sub-nodes starting
from a given node. In our example, we use a very simple function, dividing
the number of children of a node on the basis of a given parameter.

F (x) =
Fanout(x)

Fanout(x) + β

Taking β equal to 1 we represent the fuzzy set version of XML files in Fig. 3
and Fig. 4 according to the Table 3.

<DOC>

<BOOK>

<TITLE></TITLE>

<AUTHOR></AUTHOR>

<CITED>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

</CITED>

<CITATION>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<CITATION>

</BOOK>

</DOC>

Fig. 3. A Book Citation XML File

It is also possible to use a fuzzy bag representation, taking into account
multiple occurrences of the same element. In this case, we can express the
XML file in Fig. 3 as follows:
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<DOC>

<BOOK>

<TITLE></TITLE>

<AUTHOR></AUTHOR>

<CITED>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

</CITED>

<CITATION>

<BOOK><TITLE></TITLE><AUTHOR></AUTHOR></BOOK>

<CITATION>

</BOOK>

</DOC>

Fig. 4. A Different Version of the Book Citation XML File

Element Term
Weighting

Level
Weighting

Aggregation
Function

Label

Book 1 0.96 0.97 B

Title 1 0 0.4 T

Author 0.9 0 0.36 A

Cited 0.8 0.86 0.8 Cd

Citation 0.7 0.92 0.78 Cn

Book 1 0.67 0.8 B

Title 1 0 0.4 T

Author 0.9 0 0.36 A

Table 3. Elements Weighting to the XML in Fig. 3

F3 = {{0.97/1, 0.8/6}∗B, {0.4/7}∗T, {0.36/7}∗A, {0.8/2}∗Cd, {0.78/4}∗
Cn}

Much in the same way, it is possible represents the XML in Fig. 4 as re-
ported below.

F3 = {{0.97/1, 0.8/7}∗B, {0.4/8}∗T, {0.36/8}∗A, {0.8/6}∗Cd, {0.78/1}∗
Cn}
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3.4 Comparing XML Files Representations Based on Nodes
Fan-out

Comparing F3 and F4 we are interested extracting a difference on the basis of
elements occurrences. An object A, represented by a bag where some elements
have a high number of occurrences, must be similar to another object B, with
the number of occurrences is roughly the same and the result of comparison
have to be equal regardless if comparing A to B or B to A. In other words
we need a symmetric measure of similarity.
Following again [1], the following measure can be used:

Similarity :

M(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

(A ∩ B) + (A − B) + (B − A)

that is, in a fuzzy representation:

∑
min(μa(x), μb(x))∑

min(μa(x), μb(x)) + max(0, μa(x) − μb(x) + max(0, μb(x) − μa(x)
(4)

Using this function, the similarity degree between our sample sets F3 and F4
is equal to 0.57.

4 Building the Hierarchy

Once a set of patterns has been identified by computing the similarity values
between all XML documents, building a hierarchy is not difficult. Similarity
allows for defining clusters composed of documents whose representation is
close to a pattern 6.

After creating the classes, we evaluate the quality of the classification we
obtained by computing each class cohesion, i.e. the comparison score of the
elements of a class with the elements in other classes whose distances from
their own clusterhead is maximum. If the classification is satisfactory, i.e. the
cohesion of all classes is high enough, we apply a suitable comparison function
M applied to clusterheads in order to estimate class overlapping. When the

6

This term is only appropriate for symmetrical comparison functions. When we use
a depth-based comparison function, our blocks are not the result of clustering, since
the chosen similarity lacks the mathematical property of a distance. Intuitively,
however, patterns within a valid cluster are more similar to each other than they
are to a pattern belonging to a different cluster
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comparison score between two classes A and B is higher than the threshold
α we assume a generalization relation exists between A and B, directed along
increasing comparison score. The next step is to assign meaning to candi-
date classes; this task is manually done by domain experts who relate derived
classes structure of data to domain theory, and, more specifically to the cur-
rent problem solving situation. This process can also lead to discovery of new
concepts that improve problem solving and extend domain theories.
We evaluate clustering validity in term of class cohesion or intra-class simi-
larity. This is defined in terms of how individual documents match the pro-
totypical description of the cluster they are assigned to by algorithm. Classes
that exhibit high class cohesion lead to a better classification.
Once obtained classes representing our domain the last task of our work is
discover relations between them. We represent classes as vertices of a direct
graph. Every edge joins the class with lower cardinality with classes with
higher cardinality. Labels associated to the edges express the average value
between the similarity values resulting from the comparison between the in-
terested classes (Fig. 5(a)).
The initial direct cyclic graph has to be converted in a direct acyclic graph
that better express inheritance relations. If it is possible, in Fig. 5(b) and
Fig. 5(c) two results of this process are shown. In Fig. 5(b) for example, we
show the Directed Acyclic Graph (DAG) corresponding to threshold α = 0.5.
This situation shows how not always is possible to obtain a tree as we can
instead see in Fig. 5(c), where choosing an higher threshold or based on a
decision by a domain expert, the edge between CH3 and CH4 is removed.

Fig. 5. (a): the DAG representing classes and relations between them. (b) and
(c): the DAG and the tree resulting from the process of extraction of inheritance
relations.

Finally, the generalization hierarchy obtained in the previous steps is (i)
converted into a metadata format suitable for ontologies like RDF [5] of OWL
[6] and (ii) presented to the user via a standard ontology editor. Clusters
are expressed as constraints on the initial XML schema7 and are provided to
the ontology engineer for a final pruning. In other words such an ontology

7If no schema is available we assume to use the domain vocabulary as a first
lossy approximation of a schema.
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schema is builded mixing top-down and bottom-up approaches, and using
semi-automated procedures, giving an important support for enabling knowl-
edge representation in fine grained access control applications [2]. Periodically
we scan portions of the incoming flow to reselect typical XML fragments as
tentative clusterheads representing classes. Computes the comparison score of
each incoming fragment with the current clusterheads and add it to the class
of the closest match.

5 Conclusions

We have outlined a knowledge extraction technique aimed at extracting
class hierarchies from flows of XML fragments. Preliminary results on sample
data are encouraging; we are now in the process of implementing our approach
and testing it on experimental data and refining the modelling of data items in
order to fully preserve the topological and cardinality information associated
with tags. This should allow us to produce hierarchies at a finer level of
granularity. To this end we plan to model our data using fuzzy bags suitably
extending the function definition.
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In this paper we introduce ALCQ+F , a fuzzy description logic with ex-
tended qualified quantification. The proposed language allows for the definition of
fuzzy quantifiers of the absolute and relative kind by means of piecewise linear func-
tions on N and Q∩ [0, 1] respectively. These quantifiers extends the usual (qualified)
∃, ∀ and number restriction. The semantics of quantified expressions is defined by
using method GD [4], that is based on recently developed measures of the cardinality
of fuzzy sets.

1 Introduction

Description logics (DL) [1] are a family of logic-based knowledge-representation
formalisms emerging from the classical AI tradition of semantic networks and
frame-based systems. DLs are well-suited for the representation of and rea-
soning about terminological knowledge, configurations, ontologies, database
schemata, etc.

The need of expressing and reasoning with imprecise knowledge and the
difficulties arising in classifying individuals with respect to an existing termi-
nology is motivating research on nonclassical DL semantics, suited to these
purposes. To cope with this problem, fuzzy description logics have been pro-
posed that allow for imprecise concept description by using fuzzy sets and
fuzzy relations. However, these approaches have paid little attention to the
quantification issue (only the semantics of ∃ and ∀ have been extended to the
fuzzy case [8]).

This is an important lack by several reasons. On the one hand, number
restriction is a kind of quantification that arises very frequently in concept
description, so it is necessary to extend it to the fuzzy case. But another
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important reason is that not only concepts, but also quantifiers are imprecise
in many cases (e.g. “around two”, “most”).

For example, suppose you are the marketing director of a supermarket
chain. You are about to launch a new line of low-calorie products. In order to
set up your budget, you need to project the sales of this new line of products.
This can be done either by means of an expensive market research, or by means
of some kind of inference based on your knowledge of customer habits. For
instance, you could expect prospective buyers of this new line of products to be
essentially faithful customers who mostly buy foods with low energy value. We
have here all the ingredients of imprecise knowledge: a “faithful customer” is a
fuzzy concept; “low” energy value is a linguistic value, which might be modeled
as a fuzzy number; to “mostly” buy a given kind of product is equivalent to
a quantified statement of the form “most of the bought products are of this
kind”, where “most” is an imprecise quantifier.

Zadeh [10] showed that imprecise quantifiers can be defined by using fuzzy
sets, and by incorporating them into the language and providing the tools to
define their semantics we can provide a very powerful knowledge representa-
tion tool, with greater expressive power, and closer to the humans’ way of
thinking. This is the objective of our work.

The paper is organized as follows: section 2 introduces briefly existing
developments on fuzzy description logics. Section 3 is devoted to fuzzy quan-
tifiers and the strongly linked issue of cardinality of fuzzy sets. Our proposal
of fuzzy description logic with extended fuzzy quantification is described in
section 4. Finally, section 5 contains our conclusions.

2 Fuzzy Description Logics

The idea of fuzzifying description logics to deal with imprecision is not new.
Recently, a quite general fuzzy extension of description logics has been pro-
posed, with complete algorithms for solving the entailment problem, the sub-
sumption problem, as well as the best truth-value bound problem [8].

2.1 Fuzzy ALC
The ALC description language is a basic yet significant representative of DLs.
The syntax of the ALC language is very simple: a concept is built out of
primitive (or atomic) concepts according to the grammar

〈concept description〉 ::= 〈atomic concept〉 |
	 | ⊥ | ¬〈concept description〉 |
〈concept description〉�〈concept description〉 |
〈concept description〉�〈concept description〉 |
〈quantification〉

〈quantification〉 ::= 〈value restriction〉 |
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〈existential quantification〉
〈value restriction〉 ::= ∀ 〈role〉.〈concept description〉
〈existential quantification〉 ::= ∃ 〈role〉.〈concept description〉
When necessary to avoid ambiguities, parentheses should be used. From a
logical point of view, concepts can be seen as unary predicates, whereas roles
can be interpreted as binary predicates linking individuals to their attributes.

A usual extension of the ALC language, called ALCN , is obtained by
allowing number restrictions of the form ≤ nR and ≥ nR. It is highly relevant
to this work since number restriction is a form of quantification. The syntax
of ALCN can be described by the following additional production rules:

〈quantification〉 ::= 〈value restriction〉 |
〈existential quantification〉
〈number restriction〉

〈number restriction〉 ::= 〈comparison operator〉〈natural number〉〈role〉
〈comparison operator〉 ::= ≤ | = | ≥

Fuzzy ALC [8] retains the same syntax as its crisp counterpart, only se-
mantics changes. Semantics for fuzzy ALCN are part of the contribution of
this paper and will be discussed in next sections.

2.2 Fuzzy Interpretation

A fuzzy interpretation I consists of a non-empty domain UI (the universe of
discourse), and an assignment ·I , which maps every atomic concept A onto
a fuzzy subset AI of UI , every atomic role R onto a fuzzy binary relation
RI ⊆ UI × UI , and every individual name a onto an element aI ∈ UI .
The special atomic concepts 	 and ⊥ are mapped respectively onto UI (the
function that maps every individual onto 1) and the empty set (the function
that maps every individual onto 0).

The semantics of the intersection, disjunction, and negation of concepts is
defined as follows: for all a ∈ UI ,

(C � D)I(a) = min{CI(a), DI(a)}; (1)
(C � D)I(a) = max{CI(a), DI(a)}; (2)

(¬C)I(a) = 1 − CI(a). (3)

For the existential quantification, there is only one possible semantics that
can be given in terms of fuzzy set theory, namely

(∃R.C)I(a) = sup
b∈UI

min{RI(a, b), CI(b)}. (4)

The value restriction construct ∀R.C of FDLs is interpreted in [9, 8] by
translating the implication of the crisp interpretation into the classical fuzzy
implication which directly maps the P ⊃ Q ≡ ¬P ∨ Q logical axiom:

(∀R.C)I(a) = inf
b∈UI

max{1 − RI(a, b), CI(b)}. (5)
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2.3 Fuzzy Assertions

An assertion can be either of the form C(a) ≤ α (respectively R(a, b) ≤ α),
or C(a) ≥ α (resp. R(a, b) ≥ α), where C is a concept, R is a role, a and b
are individual constants and α ∈ Q∩ [0, 1] is a truth degree. The two kinds of
assertions are true in I if CI(aI) ≤ α (resp. CI(aI) ≥ α), and false otherwise.

2.4 Fuzzy Terminological Axioms

Axioms and queries can be of two kinds: specializations and definitions.
A fuzzy concept specialization is a statement of the form C � D, where

C and D are concepts. A fuzzy interpretation I satisfies a fuzzy concept
specialization C � D if, for all a ∈ UI , CI(a) ≤ DI(a).

A fuzzy concept definition is a statement of the form C ≡ D, which can
be understood as an abbreviation of the pair of assertions {C � D, D � C}.

If C � D is valid (true in every interpretation), then we say that D
subsumes C.

2.5 Fuzzy Knowledge Bases

A fuzzy knowledge base comprises two components, just like its crisp coun-
terpart: a TBox and an ABox. While the TBox of a fuzzy knowledge base has
formally nothing fuzzy with it, for the syntax of the terminological part of the
fuzzy ALC language as defined in [8] is identical to the crisp ALC language,
the ABox can contain fuzzy assertions.

For example, the knowledge base describing the business of running a
supermarket chain could contain the following terminological axioms:

FaithfulCustomer � Customer � 	
FoodProduct � Product � 	

LowCalorie � EnergyMeasure � 	
LowCalorieFood ≡ FoodProduct � ∀energyValue.LowCalorie

The ABox describing facts about your supermarket chain might contain
fuzzy assertions which we might summarize as follows:

• given an individual customer c and a product p, buys(c, p) might be defined
as

buys(c, p) = f(weeklyrevenue(c, p)),

where f : R → [0, 1] is nondecreasing, and weeklyrevenue(c, p) : CustomerI×
ProductI → R returns the result of a database query which calculates the
average revenue generated by product p on customer c in all the stores
operated by the chain;
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• given an individual customer c, FaithfulCustomer(c) might be defined as

FaithfulCustomer(c) = g(weeklyrevenue(c)),

where g : R → [0, 1] is nondecreasing, and weeklyrevenue(c) : CustomerI →
R returns the result of a database query which calculates the average
revenue generated by customer c in all the stores operated by the chain;

• finally, LowCalorie(x), where x is an average energy value per 100 g of
product measured in kJ, could be defined as

LowCalorie(x) =

⎧⎪⎨⎪⎩
1 x < 1000,
2000−x

1000 1000 ≤ x ≤ 2000,

0 x > 2000.

By using this knowledge base, you would be able, for example, to deduce
the degree to which a given food product would be a low-calorie food, and
other useful knowledge implied in the TBox and ABox.

However, it would be impossible to even express the notion of a “faithful
customer who mostly buys low-calorie food”, let alone using that concept in
deductions!

3 Cardinality and Fuzzy Quantification

Crisp quantification is strongly linked to crisp cardinality since a crisp quan-
tifier Q represents a crisp subset of absolute (values in N) or relative (val-
ues in Q ∩ [0, 1]) cardinalities, we call S(Q). For example, ∃ represents the
set of absolute cardinalities N\{0} (equivalently the set of relative cardinal-
ities S(∃) = Q ∩ (0, 1])3. In the same way, S(∀) = {1} ⊆ (Q ∩ (0, 1]) and
S(≥ n) = N\{0, . . . , n − 1}.

Hence, cardinality plays a crucial role in the assessment of crisp quantified
statements. For example, let D ≡ QR.C be a concept definition and let I be
a crisp interpretation. Let RI

a be the projection of relation RI on individual
a: for all b ∈ UI ,

b ∈ RI
a ⇔ (a, b) ∈ RI .

Then D(a) is true iff
∣∣CI ∩ RI

a

∣∣ /
∣∣RI

a

∣∣ ∈ S(Q) (when Q is relative), or∣∣CI ∩ RI
a

∣∣ ∈ S(Q) (when Q is absolute).
In summary, the evaluation of the truth degree of a quantified sentence

consists in calculating the compatibility between cardinality and quantifier.
Hence, in order to extend quantification to the fuzzy case, we must discuss
first about cardinality of fuzzy sets.

3This is the only quantifier that can be represented both ways in the general
case, i.e., when the cardinality of the referential is not known.
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3.1 Fuzzy cardinality

We consider two different kinds of cardinalities: absolute and relative. “Ab-
solute cardinality”, or simply “cardinality”, measures the amount of elements
in a set, while “relative cardinality” measures the percentage of objects of one
set that are in another set.

Absolute cardinality

The most widely used definition of fuzzy set cardinality introduced in [7] is
the following: given a fuzzy set F ,

|F | =
∑
x∈U

F (x), (6)

which is, in general, a real number, and not an integer as it is the case with
classical set cardinality.

However, this definition lends itself to many objections and leads to para-
doxes. On the one hand, it is well known that the aggregation of many small
values can yield a value of cardinality that does not correspond to the amount
of elements in the set. One usual solution is to add only values over a certain
threshold, but this is not satisfactory.

Even with high membership degrees some unintuitive results can arise.
Though this is true in general for fuzzy sets, let us illustrate it with an example
in terms of FDLs: consider the fuzzy concept Blonde with the interpretation
1/MIKE + 0.5/JOHN + 0.5/TONY. According to Equation 6, there would be
exactly two instances of Blonde in this set. But, who are they? Obviously,
MIKE is Blonde (i.e., Blonde(MIKE) = 1), so the other one should be JOHN or
TONY. But if we consider JOHN is Blonde, then we must accept TONY also
is, because Blonde(JOHN) = Blonde(TONY). In other words, the cardinality
of this set could never be two.

These problems have motivated research over the last twenty years, where
several alternative definitions have been proposed. There is a wide agreement
that the absolute cardinality of a fuzzy set should be a fuzzy subset of N. In
particular, this approach is employed in the definition of the fuzzy cardinality
measure ED introduced in [3] as follows:

Definition 1 ([3]). The fuzzy cardinality of a set G is the set ED(G) defined
for each 0 ≤ k ≤ |supp(G)| as

ED(G)(k) =
{

αi − αi+1 αi ∈ Λ(G) and |Gαi
| = k

0 otherwise (7)

with Λ(G) = {α1, . . . , αp} ∪ {1} the level set of G, and αi > αi+1 for every
i ∈ {1, . . . , p}, and αp+1 = 0.

It is easy to see that ED(BlondeI)(2) = 0 since no α-cut has cardinality
2.
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Relative cardinality

In the crisp case it is easy to obtain relative cardinalities from absolute ones,
i.e., the relative cardinality of set G with respect to set F (i.e. the percentage
of elements of G that are in F ) is

RelCard(G/F ) =
|G ∩ F |
|F | (8)

However, performing this quotient between fuzzy cardinalities is not easy
and can even lead to misleading results, so it has been historically preferred
to calculate it directly from the definitions of G and F .

The scalar approach based on Equation 6 poses the same problems com-
mented before. To cope with this, a fuzzy cardinality measure called ER, that
extends ED, was also introduced in [3] as follows:

Definition 2 ([3]). The fuzzy relative cardinality of a set G with respect to a
set F is the set ER(G/F ) defined for each 0 ≤ q ≤ 1 as

ER(G/F )(q) =
∑

αi | C(G/F,αi)=q

(αi − αi+1) (9)

with Λ(F ) ∪Λ(G ∩ F ) = {α1, . . . , αp} and αi > αi+1 for every i ∈ {1, . . . , p},
and α0 = 1, αp+1 = 0.

ER is an extension of ED since, if F is crisp and |F | = n, then
ER(G/F )(k/n) = ED(G)(k) [3].

3.2 Fuzzy quantifiers

The concept of fuzzy linguistic quantifier is due to L. A. Zadeh [10]. Fuzzy
quantifiers are linguistic labels representing imprecise quantities or percent-
ages. It is usual to distinguish two basic types of fuzzy quantifiers:

• Absolute quantifiers express vague quantities (e.g., “Around 2”) or quan-
tity intervals (i.e., “Approximately between 1 and 3”). They are repre-
sented as fuzzy subsets of N. For example, we could define

“Around 2” = 0.5/1 + 1/2 + 0.5/3
“Approx. 1–3” = 0.5/0 + 1/1 + 1/2 + 1/3 + 0.5/4

• Relative quantifiers express fuzzy percentages and they are represented by
fuzzy subsets of the real unit interval, although in practice only rational
values make sense. In this category belong the standard predicate-logic
quantifiers ∃ and ∀, that can be defined as

∃(x) =
{

1 x > 0
0 x = 1 ∀(x) =

{
0 x < 1
1 x = 1
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Some other examples are

(Approx. Half)(x) =
{

2x x ≤ 0.5
2(1 − x) x ≥ 0.5

(Approx. Half or more)(x) =
{

2x x ≤ 0.5
1 x ≥ 0.5

3.3 Evaluation of quantified sentences

Quantified sentences are natural language sentences involving fuzzy linguistic
quantifiers, and therefore they express claims about the (fuzzy) quantity or
percentage of elements of a (possibly fuzzy) set that verify a certain imprecise
property.

Following Zadeh [10] there are two main types of quantified sentences,
whose general structure is the following:

Type I sentences: Q of X are G
Type II sentences: Q of F are G

where Q is a linguistic quantifier, X is a crisp finite set, and F and G are
two fuzzy subsets of X that represent imprecise properties. Examples are

Type I: Around 30 students are young
Type II: Most of the efficient students are young

Type I sentences are suitable for both absolute and relative quantifiers,
whilst type II sentences only make sense for relative quantifiers (i.e. a sentence
like “Around 2 F are G” is in fact a type I sentence “Around 2 X are F ∩G”).

The evaluation of a quantified sentence is the process of calculating its
fuzzy accomplishment degree. There are several methods available in the lit-
erature (some methods are discussed in [4], recent developments are [6, 5]).

In order to extend fuzzy DLs with absolute and relative quantifiers, we
shall employ method GD [4]. This method calculates the accomplishment
degree of a quantified sentence “Q of F are G” as the compatibility degree
between the fuzzy relative cardinality measure ER(G/F ) [3] and Q (if Q is
relative) or between its absolute counterpart ED(G ∩ F ) [3] and Q (if Q is
absolute). A convenient formulation of GD is the following [4]:

Definition 3. The method GD obtains the evaluation of a quantified sentence
“Q of F are G” as

GDQ(G/F ) =
∑

αi∈Λ(G/F )

(αi − αi+1)Q

( |(G ∩ F )αi
|

|Fαi
|

)
(10)

for relative quantifiers, and

GDQ(G/F ) =
∑

αi∈Λ(G/F )

(αi − αi+1) Q (|(F ∩ G)αi
|) (11)
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for absolute ones, where F∩G is computed using the minimum, and Λ(G/F ) =
Λ(G∩F )∪Λ(F ). We label these values as Λ(G/F ) = {α1, . . . , αp} with αi >
αi+1 for every i ∈ {1, . . . , p} and αp+1 = 0.

As discussed in [4], GDQ(G/F ) is undefined for type II sentences when F
is not normalized since Fα = ∅ for at least one α ∈ [0, 1] (in particular for
α = 1). Possible solutions to this problem are to normalize F (applying the
same factor to F ∩ G after) or to define the value of any relative quantifier
when the relative cardinality is undefined (we note this value as Q(u), by
considering |∅|/|∅| = u). In this work we shall employ this last option. In
particular, ∃(u) = 0 and ∀(u) = 1.

4 Fuzzy DLs with Fuzzy Quantification

Quantified expressions in description logics are expressions like QR.C, where
Q is a quantifier, R is a role and C is a concept, called sometimes a qualifier.
These expressions are useful for defining new concepts, like D ≡ QR.C, mean-
ing that an individual a is an instance of concept D if Q of the individuals
which fill its role R are instances of C.

In crisp description logics, quantification is limited to the classical (rela-
tive) quantifiers ∃ and ∀, as well as to the so-called number restriction, ≤ n
and ≥ n (crisp absolute quantifiers). In this section we propose a fuzzy de-
scription logic able to represent and reason with general absolute and relative
quantifiers. The goal is to be able to express such fuzzy definitions as, e.g.,
D ≡ QR.C, where Q is now a fuzzy quantifier, meaning that an individual a
is an instance of concept D to the extent that Q of the individuals which fill
its role R are instances of C.

4.1 The ALCQ+
F Language

The extended language we introduce, for which we propose the name ALCQ+
F ,

in keeping with DL naming conventions4, has the following syntax:

〈concept description〉 ::= 〈atomic concept〉 |
	 | ⊥ | ¬〈concept description〉 |
〈concept description〉�〈concept description〉 |
〈concept description〉�〈concept description〉 |
〈quantification〉

〈quantification〉 ::= 〈quantifier〉〈atomic role〉.〈concept description〉
4The superscript plus is to suggest that, in addition to qualified number re-

strictions available in the description logic ALCQ introduced by De Giacomo and
Lenzerini [2], we provide also more general fuzzy linguistic quantifiers. The sub-
script F means that the language deals with infinitely many truth-values, as in the
language ALCFM of Tresp and Molitor [9].
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〈quantifier〉 ::= ”(” 〈absolute quantifier〉 ”)” | ”(” 〈relative quantifier〉 ”)” |
∃ | ∀

〈absolute quantifier〉 ::= 〈abs point〉 | 〈abs point〉 + 〈absolute quantifier〉
〈relative quantifier〉 ::= 〈fuzzy degree〉/u | 〈fuzzy degree〉/u + 〈piecewise fn〉
〈piecewise fn〉 ::= 〈rel point〉 | 〈rel point〉 + 〈piecewise fn〉
〈abs point〉 ::= 〈val〉/〈natural number〉
〈rel point〉 ::= 〈val〉/〈[0,1]-value〉
〈val〉 ::= [〈fuzzy degree〉 � ]〈fuzzy degree〉[ � 〈fuzzy degree〉]

In this extension the semantics of quantifiers is defined by means of
piecewise-linear membership functions. In the case of absolute quantifiers, the
quantifier is obtained by restricting the membership function to the naturals.

The piecewise-linear functions are defined by means of a sequence of points.
These points are expressed as α � β � γ/x, where x is the cardinality value,
β is the membership degree of x, and α and γ are the limit when the mem-
bership function tends to x at the left and at the right, respectively. When
the function is continuous, this can be summarized as β/x (since α = β = γ),
whereas discontinuities on the left (α �= β = γ) or right (α = β �= γ) can be
summarized as α � β/x and β � γ/x, respectively.

Obviously, for a membership function definition of the form val1/x1 +
val2/x2 + · · · + valp/xp it is required xi �= xj ∀i < j.

For relative quantifiers, as pointed out in the previous section, we should
take into account the definition of a membership degree for the case “unde-
fined” that arises when the referential set with respect to which the relative
cardinality is calculated is empty5. This value could depend on the subjective
view of the user or the application at hand, though it is well known and fixed
for some quantifiers like ∃ and ∀, as we have seen.

Unless a different definition is provided explicitly, we shall assume that

• the points 0/0 and 1/1 are part of the definition of any relative quantifier,
and

• the point 0/0 is part of the definition of any absolute quantifier. Also, let
xl be the greatest natural value in the definition of an absolute quantifier
and let αl � βl � γl be the values for xl. Then, for any x > xl we assume
γl/x.

The following is a set of absolute quantifiers and their corresponding (sub-
jective) expressions using the proposed notation:

5Furthermore, the presence of the definition of a membership degree for the case
“undefined” univocally identifies a quantifier as relative, even in those rare cases in
which a doubt might arise.
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(Around 2) (1/2 + 0/4)
(Approx. between 1 and 3) (0.5/0 + 1/1 + 1/3 + 0/5)
(Exactly 3) (0 � 1 � 0/3)
> 5 (0 � 1/5)
< 8 (1/0 + 1 � 0/8)
(Around 7) (0/5 + 1/7 + 0/9)

Some examples of relative quantifiers are the following, where QM (x) = x
is a quantifier sometimes called “Most”6, and αi represent user-defined values
for the case “undefined”:

∀ (1/u + 0 � 1/1)
∃ (0/u + 0 � 1/0)
(Approx. half) (α1/u + 1/0.5 + 0/1)
(Approx. half or more) (α2/u + 1/0.5)
QM (α3/u) or (α3/u + 0/0 + 1/1)
(Around 75%) (α4/u + 0/0.25 + 1/0.75 + 0.5/1)

The definition of quantifiers we have introduced generalizes the classical
quantifiers ∃ and ∀ (particular cases of relative quantifiers), as we have just
seen, so the symbols ∃ and ∀ are included in the language only by historical
reasons and to preserve backward compatibility. In addition, the language
employed to define quantifiers generalizes number restriction (particular cases
of absolute quantifiers), since ≤ n translates to (1/0 + 1 � 0/n) and ≥ n
translates to (0 � 1/n).

Finally, in order to name quantifiers we shall employ the same notation
used to name concepts, for example

(Around 2) ≡ (1/2 + 0/4).

As for the classical quantifiers ∃ and ∀, by including them in the ALCQ+
F

language we are assuming implicitly the definitions:

∀ ≡ (1/u + 0 � 1/1);
∃ ≡ (0/u + 0 � 1/0).

When a quantifier is defined which is denoted by a single mathematical symbol
(possibly followed by a single number), the parentheses around the quantifier
name might be dropped without risk of confusion. For example,

� 2 ≡ (1/2 + 0/4);
<̃2 ≡ (1/0 + 1/2 + 0/4).

6QM could be called “Cardinal”, because the membership degree is exactly the
cardinality in the crisp case.
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4.2 Semantics

Given a fuzzy interpretation I, the semantics of the intersection, disjunction,
and negation of concepts in our language keep being those introduced in sec-
tion 2. For the general quantification, we can translate a general expression
like D ≡ (QR.C) into the usual notation of quantified sentences introduced
in the previous chapter as follows: if Q is an absolute quantifier, the degree
to which an individual a verifies concept D is the result of the evaluation of
the quantified sentence

Q of UI are RI
a ∩ CI ,

whilst for relative quantifiers, it is the result of the evaluation of the sentence

Q of RI
a are CI ,

where RI
a is the projection of fuzzy relation RI on individual a: for all b ∈ UI ,

RI
a (b) = RI(a, b).

Hence, we consider two cases depending on whether the quantifier is ab-
solute (12) or relative (13):

(QabsR.C)I(a) = GDQabs((R
I
a ∩ CI)/UI) (12)

(QrelR.C)I(a) = GDQrel(C
I/RI

a ) (13)

where GD is the evaluation method introduced in definition 3. In particular
the semantics for the quantifiers ∃ and ∀ is:

(∃R.C)I(a) =
∑

(RI
a )αi

∩(CI)αi
�=∅

(αi − αi+1) (14)

(∀R.C)I(a) =
∑

(RI
a )αi

⊆(CI)αi

(αi − αi+1) (15)

with αi ∈ Λ(G/F ). Following the properties of GD [4], the semantics of the
existential quantification keep being as usual, i.e., Equation 14 is equivalent
to

(∃R.C)I(a) = sup
b∈UI

min{RI
a (b), CI(b)}.

As a particular case, when the referential F is crisp, then GD verifies De
Morgan’s laws, i.e.,

1 − GD∀(G/F ) = GD∃(¬G/F )
1 − GD∃(G/F ) = GD∀(¬G/F )

Hence, if RI
a is crisp then Equation 15 is equivalent to

(∀R.C)I(a) = inf
b∈UI

max{1 − RI
a (b), CI(b)}.
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However, this is not true in general. In fact, in order to verify De Morgan’s
laws it is necessary that

RI
a ⊆ CI ⇔ RI

a ∩ (¬C)I = ∅

but this equivalence holds only when RI
a (or CI) is crisp. Otherwise we could

have a situation where both sets are fuzzy and RI
a ⊆ CI (and hence the

evaluation using ∀ is expected to yield 1), but RI
a ∩ (¬C)I �= ∅ (and hence the

evaluation using ∃ is expected to yield a value greater than 0). For example,
suppose

RI
a = 1/b1 + 0.6/b2 + 0.4/b3

CI = 1/b1 + 0.9/b2 + 0.5/b3

then RI
a ⊆ CI and RI

a ∩ (¬C)I = 0.1/b2 + 0.4/b3 �= ∅, consequently
GD∀(CI/RI

a ) = 1 and GD∃((¬C)I/RI
a ) = 0.4 �= 0.

4.3 An Example

Let us go back to our low-calorie product line example. By using the ALCQ+
F

language, it is now possible to express the notion of a faithful customer who
mostly buys food with low energy value as

C ≡ FaithfulCustomer � (Most)buys.LowCalorieFood,

where (Most) ≡ (0/u + 0/0.5 + 1/0.75).
A useful deduction this new axiom allows you to make is, for instance,

calculating the extent to which a given individual customer or, more precisely,
a fidelity card, say CARD0400009324198, is a C. For instance, you could know
that

FaithfulCustomer(CARD0400009324198) = 0.8,

and, by querying the sales database, you might get all the degrees to which
that customer buys each product. For sake of example, we give a small subset
of those degrees of truth in Table 1, along with the energy values of the
relevant products.

According to the semantics of ALCQ+
F ,

C(CARD0400009324198) ≈ 0.742

i.e., the degree to which most of the items purchased by this customer are
low-calorie is around 0.742. This seems to be in accordance with the data in
table 1, where we can see that four products (those products p in rows 2, 4,
5, and 6) verify

buys(CARD0400009324198, p) ≤ LowCalorieFood(p)
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Product Energy [kJ/hg] LowCalorieFood(·) buys(CARD . . . , ·)
GTIN8001350010239 1680 0.320 0.510

GTIN8007290330987 1475 0.525 0.050

GTIN8076809518581 1975 0.025 0.572

GTIN8000113004003 1523 0.477 0.210

GTIN8002330006969 498 1.000 1.000

GTIN8005410002110 199 1.000 1.000

GTIN017600081636 1967 0.033 0.184

Table 1. The energy value, membership in the LowCalorieFood, and the degree to
which customer CARD0400009324198 buys them for a small sample of products.

while for the products in rows 1 and 7 the difference between being purchased
and being low-calorie food is not so high. Only the item in row 3 seems to be
a clear case of item purchased but not low-calorie.

As another justification of why this result appears in agreement with the
data, in Table 2 we show the percentage of purchased items that are low-calorie
at α-cuts of the same level. At any other level, the percentage obtained is one
of those shown in Table 2.

Level Percentage

1.000 1.000 = 2/2

0.572 0.667 = 2/3

0.510 0.500 = 2/4

0.320 0.750 = 3/4

0.210 0.800 = 4/5

0.184 0.667 = 4/6

0.050 0.714 = 5/7

0.033 0.857 = 6/7

Table 2. Percentage of purchased items that are low-calorie at significant levels.

At many levels the percentage is above 0.75, therefore fitting the concept
of Most as we have defined it. At level 0.050 the percentage is almost 0.75.
The only level that clearly doesn’t fit Most is 0.510, but at the next level
(0.320) we have again 0.75 and Most(0.75) = 1.

5 Conclusions

ALCQ+
F allows for concept descriptions involving fuzzy linguistic quantifiers of

the absolute and relative kind, and using qualifiers. It provides also semantics
for crisp quantifiers like ∀, ∃, and number restriction in those cases where the
roles and/or qualifiers employed are fuzzy.
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Many applications deal with data which are not easy to accommodate
in conventional data models. This paper shows how the advanced features of modern
programming platforms allow the transparent implementation of lazy typing capa-
bilities which can then be easily used by programmers. As a first approximation to
the problem, we show how this capabilities can be used to develop applications with
fuzzy types.

Keywords: fuzzy types, lazy types, object-orientation.

1 Introduction

The arrival of the object-oriented data model broadened new horizons for data
modelers. Object-oriented programming platforms make the development
of complex applications easier, while object-relational and object-oriented
database systems allow for the persistent representation of sophisticated data
structures. This kind of systems can be used to represent data as complex
as needed, but the structure of data must be unvarying and it must be built
upon predefined basic data types.

Nevertheless, many applications in our current Information Society man-
age data which does not easily fit into current data models. Under some
circumstances, data should be expressed with imprecision and uncertainty,
due to their nature or just to their acquisition method. Moreover, data can
also present structural irregularities, probably caused by differences in the
representation schemata of the data sources.

Two trends have emerged to improve the modelling capability of the
object-oriented data model with respect to aforementioned problems. On
the one hand, Fuzzy Object-Oriented Data Models deal with the represen-
tation of data expressed with imprecision and uncertainty [5, 6]. On the other
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hand, Semistructured Data Management Systems extend the capabilities of
the object-oriented data model, allowing the representation of data whose
structure is not completely regular [1, 4].

Recently, we proposed a Fuzzy Object-Oriented Data Model [3] rooted on
the idea of using classical object-oriented capabilities in order to implement
fuzzy object-oriented extensions. As part of this model, we considered the
possibility of defining both the structure and the behavior of a class (i.e., its
type) in a soft or fuzzy way. In our model, objects are created by using an
appropriate α− cut of the fuzzy type definition that is associated to the class
which the object belongs to.

Modern programming platforms, such as the .NET Framework or the Java
programming platform, include advanced features that allow the implementa-
tion of proper solutions for the problems mentioned above. In this paper, we
show how these features can be used to implement lazy typing capabilities. As
a first step towards general lazy typing capabilities, we show how to develop
applications with fuzzy types.

This paper is organized as follows. Section 2 describes the concept of lazy
typing. Section 3 introduces the special case of fuzzy types. Section 4 illus-
trates the use of fuzzy types in C	. Finally, some concluding remarks and
guidelines for future work close our paper.

2 Lazy typing for data representation

Object-orientation modelling capabilities enable more flexible solutions for
data representation than previous data models. However, the handling of ir-
regular data is still difficult in the context of this (now conventional) typing
environment. Problems where entities need to be managed with different levels
of precision, or where entities can present diversity in their structures, require
the use of more expressive and powerful techniques to define the type of a
certain class of objects.

Figure 1(i) graphically explains the situation. The figure represents three
objects belonging to a given class. The data which describes each object is
conformed by the values of the attributes which are within the line that repre-
sents the object. As it can be seen, though the objects belong to the same class
and represent occurrences of the same semantic entity, their representation is
irregular, and the use of conventional data types will cause the appearance of
plenty of null values.

Using current methods, we should need to create different types in order
to solve this problem, one type for each different structure observed in data.
The size of such perfect type mapping might be quite large, which would make
its use difficult, and the resulting model would be distorted from the semantic
point of view (many artificial classes would appear in the schema). Lazy or
approximate typing techniques have begun to appear in order to improve the
representation of this kind of classes. Using these techniques, an object does
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Fig. 1. The motivation behind lazy typing.

not have to fit its type definition perfectly. The object will only incorporate
the properties it really needs from the type of its class.

3 Fuzzy Types: A particular example of lazy types

The three objects depicted in Figure 1(ii) would also benefit from lazy typing.
However, in this case, the irregularity of the structure is lower, because the
different sets of attributes fulfill an inclusion relation among them. In other
words, the class the objects belong to represents a semantic entity whose
occurrences can be expressed with different precision levels. Object o1 is de-
scribed with the lowest precision level, object o3 employs the highest precision
level, and object o2 lays in an intermediate position.

Fuzzy types [7, 8] have been introduced to handle concepts with differ-
ent levels of precision. In a fuzzy type, properties belong to the type with a
certain membership degree. This membership degree allow us to organize the
properties of the type in suitable α-cuts, each of one describing the type with
a different level of precision. A fuzzy constructor method allows the creation
of objects incorporating the desired α-cut of properties.

The use of a fuzzy type to represent the structure of classes like the one
depicted in Figure 1(ii) allows us to keep a unique type in the schema, avoiding
the multiplication of types and the appearance of null values, reasons which
make our model desirable from the semantic and the implementation points
of view, respectively.

Advanced features included in modern programming platforms make pos-
sible the implementation of frameworks which can be developed so that the
programmer of soft computing applications can use fuzzy types in a transpar-
ent way. In particular, our framework makes use of reflection -the ability of an
executing program to examine or “introspect” itself-, the dynamic creation of
types, and metadata describing user-defined classes.
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Our framework currently not only enables the use of fuzzy types in user-
defined classes, but also can include imprecise domains for the values of the
attributes which conform these types. As an example, the following section
shows how fuzzy types can be used in the C	 programming language.

4 A case study in C�

Olive oil is one of the main products obtained from the Andalusian agrarian
industry. In fact, large stretches of land are devoted to the cultivation of olive
trees. The area and the number of trees in each plot of land are of remark-
able interest for governmental agencies, since they can use that information
to forecast the annual production and estimate the necessary funds (usually
destined to the subvention of this farming activity).

Let us consider, for instance, the usual process of a survey aimed at ob-
taining information about each plot of land. First, the surveyor could obtain
the approximate area of each farm directly from the farmers. Afterwards, the
surveyor could consult the Property Registry for information about the poly-
gon describing the exact limits of the plot of land. Finally, the surveyor could
obtain an aerial image of the farms to check their current exploitation.

At a given moment during this survey process, each plot of land can be
at a different stage, so the database will contain farms described with three
different precision levels. Obviously, the way the actual area and the number
of trees in a farm can be obtained depends on the precision level it is described
with. While there is no other alternative than using the declared area of the
farm when no other information is available, the availability of its precise
perimeter allows a more accurate computation of the area. Also, an aerial
photograph can be used to perform a “visual count” of the actual number of
trees.

Our framework allows the representation of this problem by means of a
fuzzy type in C	 as figure 2 shows.

The fuzzy type Lot, representing a plot of land, is organized into three
levels of precision (with degrees 1.0, 0.9, and 0.81). C	 metadata attributes
are used to express the membership degree of each attribute and to create
alternatives for the class methods GetArea and GetTree. Our framework will
automatically determine the proper alternative to use over a given instance
analyzing the use of attributes at different precision levels.

The creation of fuzzy objects can be done just by specifying an α-cut for
the type when invoking a generic fuzzy object factory:

Lot lotObject = (Lot) FuzzyFactory.Create(typeof(Lot), degree);

1The concrete values used for α may not be very important since their only
purpose is to organize a structure in a certain number of precision levels. In some
situations, however, giving some semantics to those values might be necessary. For
example, if the structure is being inferred from a set of instances.
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[Fuzzy]

public class LotImplementation: Lot {

// Fuzzy structure

[MembershipDegree(1.0f)]

private Area observedArea;

[MembershipDegree(0.9f)]

private Polygon perimeter;

[MembershipDegree(0.8f)]

private Image photo;

// Fuzzy behavior

public Area GetArea () {

return observedArea;

}

[AlternativeImplementation("GetArea")]

public Area GetAreaFromPerimeter () {

return perimeter.GetArea();

}

public FNumber GetTrees () {

return (FNumber) ( GetArea()* AverageTreeDensity );

}

[AlternativeImplementation("GetTrees")]

public FNumber GetTreesFromPhoto () {

return ImageMorphologyAnalyzer.GetObjectCount

(photo, perimeter, AverageTreeSize);

}

... // Other standard class fields and methods

}

Fig. 2. Fuzzy type Lot.

Once the object attributes have been initialized, the lot area and its num-
ber of trees can be obtained just by invoking the corresponding methods (the
proper implementation of each method will be automatically used depending
on the object precision level):

lotObject.getArea();

lotObject.getTrees();
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5 Conclusions and further work

In this paper we have presented a framework which allows the development
of applications with fuzzy types, as a first approximation to the world of lazy
typing. As a first approximation to the problem, we show how this capabilities
can be used to develop applications with fuzzy types.

Advanced features of modern programming platforms, like reflection and
metadata attributes, allow the transparent implementation of these typing
capabilities. Programmers can easily use these capabilities without having to
change their development environment nor programming language.

This framework is currently being generalized to allow for lazy typing in a
more general range of semistructured data problems, and it can be integrated
with a previous framework which allows the management of fuzzily described
objects[2].

This paper has been supported in part by the Spanish “Comisión Interministerial

de Ciencia y Tecnoloǵıa” under grants TIC2003-08687-C02-02, TIC2002-00480, and
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Introduction and motivation

In a standard logical framework, we are restricted to representing only
facts that are true or false absolutely. Thus, this framework is unable to
represent and reason with uncertain and noisy information. Uncertainty is
unavoidable in the real world: our information is often inaccurate and al-
ways incomplete, and only a few of the "rules" that we use for reasoning
are true in all (or even most) of the possible cases. 

R. Fagin in [4] mentions a nice example: the user wants to get informa-
tion about restaurants. The user has an aggregation function that gives an
overall score to each restaurant based on how good it is, how inexpensive
it is, and how close it is – these are inherently fuzzy attributes.

This is a typical example of multifeature querying (featuring different
properties of restaurants). What is moreover specific, there are no clearly
good and bad restaurants, rather, there is a monotone hierarchy of better,
cheaper,…restaurants. The users overall preference is monotonically de-
pendent on the grade of fulfillment of single features.

Main point of interest of this paper is to learn the (user dependent) ag-
gregation function, which gives an overall score to a graded fulfillment of
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all user’s requirements. This appears also in multicriterial and/or multi-
user decision making and also in graded classification (where the
monotonicity of dependence can be more problematic).

Inductive logic programming ILP has been successfully applied to clas-
sification problems for domains with non-numerical data. We present a
method for induction of generalized annotated programs in the case of
monotonely classified data what is a special case of fuzzy ILP task. We
have chosen multivalued logic, especially GAP [5] because it provides us
with a comparative notion of truth which models user preferences. Our
construction is based on a syntactical equivalence of fuzzy logic programs
FLP [16] and a restricted class of generalized annotated programs GAP.

We formulate our induction problem as preserving the order of overall
scoring (or more relaxed, we require the learning does not invert classifica-
tion).

We show learned rules from a synthetic dataset with distribution typical
for web querying and Information Retrieval. Finally we compare our
method with other fuzzy ILP systems (methods) [8,10].

Fuzzy Logic Programming

We formulate properties of residuation.
Definition. Let C a conjunctor and I an implicator. In what follows, b, h, 

r are universally quantified and range through [0,1]. We define following
properties of C and I:

1. (a)(C,I) r ≤ I(b,h) iff C(b,r) ≤ h
2. φ 2(C,I) C(b,I(b,h)) ≤ h
3. φ 3(C,I) r ≤ I(b, C(b,r))

Observations.
• (a)(C,I) iff (φ2(C,I) and φ3(C,I))
• Assume (a)(C,I) then 

I(b,h) = sup{r: C(b,r) ≤ h} and C(b,r) = inf{h: I(b,h) ≥ r}. 
• Given C, then there is an I such that (a)(C,I) iff C is left continuous in r. 
• Given I, then there is a C such that (a)(C,I) iff I is right continuous in h.

In our computational model, we have conjunctors C1,...,Cn which are re-
sidual to above implications. These need not be truth functions of any con-
junctions in our language. We assume conjunctors are left continuous.

Any formula built from atoms using conjunctions, disjunctions and ag-
gregations is called a body. Every composition of conjunctors, disjunctors
and aggregation operators is again an aggregation operator. Hence, without
a loss of generality, we can assume that each body is of the form B =
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@(B1,... ,Bn). A rule of FLP is a graded implication (A ← (B1,...,Bn).r),
where A is an atom, @(B1,...,Bn) is a body and r ∈ Q ∩ [0,1] is a rational
number. (A ← @((B1,...,Bn)) is the logical part of the rule and r is the
quantitative part of the rule). A fact is a graded atom (B.b). 

A finite set P of positively graded FLP rules and facts is said to be a
fuzzy logic program if there are no two rules (facts) with the same logical
parts and different quantitative parts. It can be represented as a partial
mapping P: Formulas → (0,1] with the domain of P, dom(P) consisting
only of atoms and logical parts of FLP rules of the form A ← @( B1,...,Bn).
The quantitative part of the rule is r = P(A ← @((B1,...,Bn)).

Let BL be the Herbrand base. A mapping f:BL →[0,1] is said to be a
fuzzy Herbrand interpretation. Our fuzzy logic is truth functional i.e. f can
be extended to all formulas by f along the complexity of formula using the
truth function of connectives. A graded formula (ϕ.x) is true in an interpre-
tation f if f(ϕ) ≥ x. For a rule this means that

f(A ← @((B1,...,Bn)) = ←•(f(A), @• (f(B1),...,f(Bn))) ≥ r (1)

Recall the many-valued modus ponens

)),(.(

).(),.(

rbCA

rBAbB

i

i← (2)

We base our procedural semantics on the "backward usage of modus
ponens" (no refutation nor resolution is applied here). We know by the
residuality of Ci that this is a sound rule[15].

Definition.  Assume P is a fuzzy logic program. Then

TP(f)(A) = max{sup{Ci(f(B),r): (A ←i B. r) is a ground in-
stance of a rule in the program P}, sup{b: (A. b) is a ground

instance of a fact in the program P}}.

(3)

We know that this operator is continuous [14] and it's fixpoint is the
minimal model of the definite program P.

Generalized Annotated Programs

M. Kifer and V. S. Subrahmanian ([5]) introduced generalized annotated
logic programs (GAP) that unify and generalize various results and treat-
ments of multivalued logic programming (like fuzzy, possibilistic, signed,
…).
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In multivalued logic the set of truth values is modeling our set of prefer-
ences. The whole theory of GAP is developed in a general setting for truth
value set being lattices. We restrict here ourselves to finite subsets of the
unit interval of real numbers [0,1]. Namely, it can be a result of discretiza-
tion of data but also of granulation of user preferences (psychology is
learning us that user can distinguish 7 +-2 classes). Indeed for different at-
tributes the users granulation can be different (e.g. one can distinguish 5
degrees of quality of restaurants and maybe up to 10 classifications of dis-
tance). In this paper we do not concentrate on this, our training data say
what is the range of classification (which can be always embedded into [0,
1]).

Most of many valued logical systems are truth functional – i.e. assigning
the truth value to formula using truth functions of connectives along the
complexity of formula. This can cause serious problems when trying to
learn the semantics from data. There is an extensive research done in fuzzy
ILP systems, nevertheless we do not go this direction (FILP in [11]).

Annotated logic, on the other hand, appeared to associate truth values
with each component of a formula (typically implication in IF-THEN
rules) rather than the implication as a whole. This implication is inter-
preted in a "classical logic" fashion. This is a substantial improvement in
learning. We do not have to learn (an unknown) set of truth functions of
connectives, instead we learn the aggregation function.

Definition. A function a: [0,1]i → [0,1] is an annotation function if it is
left continuous and order preserving in all variables.

The language of annotated programs consists of a qualitative and a
quantitative part. The qualitative part of GAP consists of the usual lan-
guage of predicate logic (with object variables, constants, predicates and
function symbols). The quantitative part of the language has annotation
variables and annotation constants and a set of basic annotation terms of
different arity. Every basic annotation term ρ (considered as a symbol of
our alphabet) is assigned an annotation function ρ•. In [5] it is assumed
that all ρ•'s are "total continuous (hence monotonic) functions" - in the
sense of lattice theory. This lattice continuity means that all annotation
functions are nondecreasing and left continuous in the topology of real
line. More complex annotation terms (and functions) are built from these
building blocks preserving arity. Notice, that ρ• can be considered as the
truth function of an aggregation operator.
If A is an atomic formula and α is an annotation term, then A : α is an an-
notated atom. When α is an annotation variable, then A : α is said to be
variable-annotated (v-annotated).
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     Definition (FLP and GAP transformations [16]). Assume C = A:ρ ←
B1 :μ1 & ... & Bk :μk is an annotated clause. Then flp(C) is the fuzzy rule
A← ρ(B1,...,Bk).1, here ρ is understood as an n-ary aggregator operator.

Assume D = A←i @(B1,...,Bn).r is a fuzzy logic program rule. Then
gap(D) is the annotated clause A:Ci(@(x1,...,xn),r) ← B1:x1,...,Bn:xn

     Theorem. Assume C is an annotated clause, D is a fuzzy logic program
rule and F is a fuzzy Herbrand interpretation. Then 
f is a model of C iff f is a model of flp(C)
f is a model of D iff f is a model of gap(C)

In Kifer-Subrahmanian there is developed the deductive (procedural and de-
clarative part of GAP system). So far we do not know about any inductive GAP
system (also personally confirmed by V.S. Subrahmanian).

Induction of generalized annotated programs (IGAP)

In ILP, given is a set of examples E = E+ ∪ E-, where E+ contains positive
and E- negative examples, and background knowledge B. The task is to
find a hypothesis H such that ∀e ∈ E+: B∧H |= e (H is complete) and
∀e ∈ E-: B∧H |≠ e (H is consistent). This setting, introduced by Muggleton
([3, 6]), is also called learning from entailment.

In order to search the space of relational rules (program clauses) sys-
tematically, it is useful to impose some structure upon it, e.g. an ordering.
One such ordering is based on subsumption (clause C subsumes C’ if there
exist a substitution θ, such that Cθ ⊆ C’). Notice, that if C subsumes D
then C |= D. The converse does not hold always.

Our system is based on a translation of our IGAP problem to multiple
use of classical ILP system with additional monotonicity axiom in the
background knowledge. We provide experiments on synthetic benchmark
data with distribution typical for web querying and Information Retrieval.

Although our approach is multirelational, in experiments (for better
visualization) we skip this and use simplified synthetic data with two fea-
tures (although features of objects have to be joined from different rela-
tions). Aggregation functions play important role in our models. Here we
mention only some of them, the arithmetic mean, weighted average, or-
dered weighted averaging, an unordered variant of weighted mean, ad hoc
aggregation functions. For more see [12]. These aggregation operators can
be helpful in comparing composite conditions. Training data (with differ-
ent distribution as above) depicting the influence of aggregation function
@ws(x1,x2)=(x1+2x2)/3 are shown bellow (on the Fig. 1 @ is marked by y).
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Since ILP system understands numbers syntactically, we discretize the
values to several classes. Notice, that the classification (learning) is better
if we use finest discretization (we mention it later).

Because of monotonicity axioms we expect that the used ILP system
can work with rules in the background knowledge. For this purposes we
use ALEPH [1, 9], which is based on the inverse entailment [7].

Fig. 1. Training data – classes of the aggregation function after discretization: 1
means values from the interval <0;0.1), 2 means <0.1;0.2), 3 is <0.2;0,3), …, and
10 means numbers from <0.9;1>. The class 1=<0;0.1) contains no members, so it
don’t figure in the legend.

The two valued ALEPH works as follows: Given background knowl-
edge B and examples E and the hypothesis H. It must hold, that (B ∧ H) |=
E. If we rearrange the above using the law of contraposition we get the
more suitable form (B∧¬E) |= ¬H. In general B, H and E can be arbitrary
logic programs but if we restrict H and E to being single Horn clauses, ¬H
and ¬E above will be ground skolemized unit clauses. If ¬⊥ is the con-
junction of ground literals which are true in all models of B∧¬E we have
(B∧¬E) |= ¬⊥. Since ¬H must be true in every model of  B∧¬E it must
contain a subset of the ground literals in ¬⊥. Hence (B∧¬E) |= ¬⊥ |= ¬H
and so H |= ⊥. The complete set of candidates for H could in theory be
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found from those clauses which imply ⊥. A subset of the solutions for H
can then be found by considering those clauses which subsume ⊥. ALEPH
searches the latter subset of solutions for H that subsume ⊥. ⊥ is called
saturation of example.

The multipleuse of classical ILP system

We transfer the problem of annotated ILP with graded background knowl-
edge and a graded set of examples to several crisp (crisp = two valued) ILP 
problems. First, assume B is a annotated background knowledge consisting
of annotated facts (so far we do not discuss the case of annotated rules in
B). Then c(B) is the crisp knowledge acquired from B by adding an addi-
tional attribute for the truth value to each predicate (e.g. we transform
A(c).x to A(c,x)). Second, for every α ∈ [0, 1] in the range of our anno-
tated set of examples, we put Eα

+ to be the upper and Eα
- to be the lower α

cut of the annotated set E. Assume the classical ILP system for each α and
(Eα

+ , Eα
-) and c(B) returns a crisp set of hypothesis Hα . Our aim is to have

a formal model allowing us correctly to answer the annotated ILP problem
(E,B) with the annotated set of hypothesis H, such that for all α, the α cut
of H is exactly Hα. in other words, the annotated hypothesis fulfils H|Hα≡α.

Annotated ILP problem                 Annotated
given B and E    hypothesis

       crisp             annot

for every α                     Crisp ILP algorithm solutions Hα

crisp ILP problem    for every α
c(B) , Eα

+ , Eα
-

Fig. 2.  The transformation of annotated ILP task to multiple use of crisp ILP task

The ILP graded classification task

Given the annotated set of examples E and a background knowledge B
containing annotated atoms. Our task is to find a Generalized Annotated
Program H such that the following holds:
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If fm is a Herbrand interpretation which is a minimal model of both B
and the GAP program H then we have for all e1 and e2 in the domain of E:

E(e1) < E(e2) implies fm (e1)  fm (e2) (4)

and

E(e1) > E(e2) implies fm (e1)  fm (e2) (5)

That is, our classification learned by minimal model of B and H does
not contradict the original classification E, or in other words, H does not
declare an object e1 strictly better than e2 if in E is just the opposite, i.e. e2

strictly better than e1.
We can base the cover relation of our ILP system on the fixpoint seman-

tics of FLP Cover(P) = TP
ω(0) – from Eq. (3).

The monotonicity axiom in the background knowledge

We transfer the problem of graded ILP with annotated (graded) back-
ground knowledge and annotated set of examples (graded examples) to
several classical ILP problems, so that c(B) is the knowledge acquired
from B by adding an additional attribute for the truth value. The target

predicate is translated to classical ILP differently. For every ∈ T let Eα+,

Eα- are the upper and lower cuts of the graded (annotated) set E. 

     For each consider the classical ILP task with Eα+ and Eα- as positive
and negative examples and c(B). System returns a set of hypothesis Hα.
Our aim is to have a formal model allowing us correctly to answer the
GAP ILP problem (E,B) with the GAP set of hypothesis H, such that for
all , the cut of H is exactly Hα.

Qualitative constraints

There is a small problem, namely, we are learning under a qualitative con-
straint about our orderings of domains of attributes. Namely, when on a
certain level , the classical ILP system provides us with a logic program-
ming rule

H(x)  B1(x, 1),...,Bn(x, n)
we will transform it to a GAP rule

H(x):  B1(x): 1,...,Bn(x): n
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Now it can happen that in our data there is an object constant d with
body predicates annotated by constants 1, …, n such that for all i n we
have i i. Then the body of the above rule is fired for object d, and we
have to guarantee that H(d): is also true, that is, in our training data there
is constant annotated atom H(d):  with .

We offer one solution, namely it is enough to add to the classical back-
ground knowledge c(B) the monotonicity axiom. i.e. for all predicates p

p(d,y) y x , p(d,x). (6)

Assuming the is definable. Then the classical ILP is learning with

H(d) in  Eα+ and with both B1(d, 1),...,Bn(d, n) and B1(d, 1),...,Bn(d, n)
in the background knowledge.

Implementation Results

In this section we introduce an example of rules induced by repetitive us-
age of Aleph under the monotonicity axiom in the background knowledge.
The found rules (depicted on the Fig. 3) have a form (we mentioned that
we discretized the values of x1,x2 and y to ten classes):

For =9
y(A) :- x1(A,8), x2(A,9).
For =8
y(A) :- x1(A,9), x2(A,7). y(A) :- x1(A,7), x2(A,8).
y(A) :- x2(A,9).
For =7
y(A) :- x2(A,9). y(A) :- x1(A,7), x2(A,7).
y(A) :- x1(A,4), x2(A,8). y(A) :- x1(A,8), x2(A,6).
For =6
y(A) :- x1(A,7), x2(A,4). y(A) :- x1(A,4), x2(A,7).
y(A) :- x1(A,5), x2(A,6). y(A) :- x2(A,8).
For =5
y(A) :- x1(A,1), x2(A,6). y(A) :- x2(A,7).
y(A) :- x1(A,4), x2(A,4). y(A) :- x1(A,5), x2(A,3).
For =4
y(A) :- x1(A,3), x2(A,3). y(A) :- x1(A,5), x2(A,1).
y(A) :- x2(A,5).
For =3
y(A) :- x1(A,4). y(A) :- x2(A,1).

The class 10 contains only one member, so we do not learn it and the class
1 contains no member, so the lowest grade (class) we can learn is 3. Re-
garding to discretization these rules have a form:

For =0.8

Fuzzy Induction via Generalized Annotated Programs 427



y(A) :-  x1(A,0.7), x2(A,0.8). 
For =0.7
y(A) :-  x1(A,0.9), x2(A,0.6). y(A) :- x1(A,0.6), x2(A,0.7).
y(A) :-  x2(A,0.9).
For =0.6
y(A) :-  x2(A,0.8). y(A) :- x1(A,0.6), x2(A,0.6).
y(A) :-  x1(A,0.3), x2(A,0.7). y(A) :- x1(A,0.7), x2(A,0.5).
For =0.5
y(A) :-  x1(A,0.6), x2(A,0.3). y(A) :- x1(A,0.3), x2(A,0.6).
y(A) :-  x1(A,0.4), x2(A,0.5). y(A) :- x2(A,0.7).
For =0.4
y(A) :-  x1(A,0.1), x2(A,0.5). y(A) :- x2(A,0.6).
y(A) :-  x1(A,0.3), x2(A,0.3). y(A) :- x1(A,0.4), x2(A,0.2).
For =0.3
y(A) :-  x1(A,0.2), x2(A,0.2). y(A) :- x1(A,0.4), x2(A,0.1).
y(A) :-  x2(A,0.4).
For =0.2
y(A) :-  x1(A,0.3). y(A) :- x2(A,0.1).

The GAP forms of these rules are:
y(A):0.8 :- x1(A):0.7, x2(A):0.8. y(A):0.7 :- x1(A):0.9, x2(A):0.6.
y(A):0.7 :- x1(A):0.6, x2(A):0.7. y(A):0.7 :- x1(A):0, x2(A):0.9.
y(A):0.6 :- x1(A):0, x2(A):0.8. y(A):0.6 :- x1(A):0.6, x2(A):0.6.
y(A):0.6 :- x1(A):0.3, x2(A):0.7. y(A): 0.6 :- x1(A):0.7, x2(A):0.5.
y(A): 0.5 :- x1(A):0.6, x2(A):0.3. y(A): 0.5 :- x1(A):0.3, x2(A):0.6.
y(A): 0.5 :- x1(A):0.4, x2(A):0.5. y(A): 0.5 :- x1(A):0, x2(A):0.7.
y(A): 0.4 :- x1(A):0.1, x2(A):0.5. y(A): 0.4 :- x1(A):0, x2(A):0.6.
y(A): 0.4 :- x1(A):0.3, x2(A):0.3. y(A): 0.4 :- x1(A):0.4, x2(A):0.2.
y(A): 0.3 :- x1(A):0.2, x2(A):0.2. y(A): 0.3 :- x1(A):0.4, x2(A):0.1.
y(A): 0.3 :- x1(A):0, x2(A):0.4. y(A): 0.2 :- x1(A):0.3, x2(A):0.
y(A): 0.2 :- x1(A):0, x2(A):0.1.

and they mean (for example the first rule)
IF x1 is at least 0.7 AND x2 is at least 0.8 THEN y is at least 0.8
In FLP this rule is
y(A) :- ρ(x1, x2).1, where the value of ρ(0.7,0.8) is 0.8

Preprocessing

In this section we mention two preprocessing methods what have impact
on the quality of learning – discretization and monotonicity checking.

Discretization

We can understand the grades – classes - like truth values or annotated
constants (these values can be e.g. letters A,B,C,D,E like grades of stu-
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dents in the school or words LOW, MEDIUM, HIGH, our method can
work with it), important is the monotonicity (e.g. the student with grade B
fulfills teachers requirements for the grades C, D, E ( the worse) and does
not fulfill requirements for the grade A (better)). The discretization of data
set specifies the number of grades, so it is obvious that the completeness of
the hypothesis grows with the finest discretization. On the other side the
complexity of the computing grows, too. 

Fig. 3. The results for the discretization of x1,x2 and y to 10 classes for the grades
– classes (9, 8, ..., 4, 3) of aggregation function. The squares means the rules from
the hypothesis.

Checking the monotonicity

In our case (dataset) – from the selected aggregation function - it is clear
that the attribute values of x1 and x2 contribute positively to higher classi-
fication in the natural ordering of the domain. In many cases these depend-
encies are not obvious or there can be the dependence preferring medium
values and/or there is no monotone dependence at all. For checking these
dependencies we can use several techniques – statistical methods (regres-
sion, …), methods for qualitative learning [2], etc.
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We can use for this checking our method, too, only just with checked at-
tribute (and the monotonicity rules) in the background knowledge. Our
IGAP gave quite satisfactory results, violation of classification ordering
was bellow 2% and comparison to other qualitative learning (e.g. such as
[2]) showed comparable results.

Factors of complexity

The size of examples and the number of predicates in background knowl-
edge contribute to the size of the search space. Moreover the size increases
as our set of truth values (the number of classification classes) increases.

There are basically two optimization heuristics in our approach – to re-
duce the size of example (from above) set and to reduce the size of predi-
cates in the background knowledge (from bellow).

Reducing the background knowledge

In the example above, the system has found rules for class 0.4 (hence all
examples classified with 0.4 and higher)
y(A) :- x1(A,0.1), x2(A,0.5).
y(A) :- x2(A,0.6).
y(A) :- x1(A,0.3), x2(A,0.3).
y(A) :- x1(A,0.4), x2(A,0.2).

Here we see, that all rules have the condition on x2 at least 0.2. Hence
we can cut the background knowledge and delete all predicates with x2 <
0.2 in all ILP tasks for classes higher than 0.4. This is possible because we
are learning an aggregation function which is monotone in all coordinates
and all rules characterizing class E+

0.4 require x2 to be at least 0.2 (in
graphical visualization we see all data points belonging to higher classes
have x2 bigger than 0.2). Notice that on x1 there is no reduction, this is a
property of the learned function and the data set.

Moreover, notice, this optimization can be used from bellow, in general
first we learn the lowest class E+

0.1, finding the hypothesis H0.1 we can
form for every feature attribute a threshold
ti

0.1 = min{a: there is a rule y(A, 0.1) :-   xi(A,a), rest_of_body in H0.1}
Then the reduced background knowledge for further induction will be 

B0.1 = {xi(A,a): xi(A,a) ti
0.1}

and similarly for further steps. Experimental results, showing interdepend-
ence between aggregation function to be learned and optimization tech-
niques follow.
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Reducing the example set

The idea of reducing the example set resembles the ALEPH optimization
“induce”, nevertheless it differs.

For E+
a and E+

b with a < b we have inclusion E+
a ⊆  E+

b. Hence rules in
Hb cover also examples in E+

a and hence instead of learning with it we
learn only with E+

a- Hb . This is a significant help.

Reducing B and E at the same time

Combination of both reduction is not straight forward. Reduction of B-
reduction has to be applied from bellow (learning lower classifications)
whereas E-reduction has to be applied from above.

We have tried several heuristics. E.g. zigzag combination of E and B re-
duction for classes: E-reduce after learning for 1,0; then B reduce for 0,1
(learning with E+0.1- H1.0); then E-reduce (learning E+0.9- H1.0 over
B0.1), and so on. Another heuristics has shown to be useful, start from the
middle, first learn e.g. H0.6 for E+0.6 and then proceed with up and down
appropriate reduction (we have experimented with several variants of this
method, but it is out of the scope of this paper).

This methods have shown to be dependent on data and the learned ag-
gregation function (E-reduction is better for or-like aggregations, B-
reduction for and-like) and shows that some prior information on data dis-
tribution (e.g. histograms) can be useful for better learning.

All this together show substantial improvement of learning complexity,
especially when summing up the whole learning.

Conclusions and comparison

A good overview on fuzzy ILP is in [8] where a system enriching rela-
tional learning with several types of fuzzy rules was introduced based on
fuzzy FOIL. Our aim in this paper is two fold, to avoid arbitrary discretiza-
tion and it enlarges the expressive power of what is learned by considering
different types of fuzzy rules, which may describe gradual behaviors of re-
lated attributes or uncertainty pervading conclusions – this is achieved
mainly by using fuzzy linguistic variables. Second difference is that au-
thors of [8] cut the whole example set and the background knowledge by
same  (in one case examples by and background knowledge by 1- ) and
then calculate the confidence factor of the whole rule by aggregation
weights of association rules. The main difference with our approach is that
our background knowledge for learning on level  contains information for
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all possible 1, …, n in the range of predicates and our system induces
rules with different weights in body and head. Moreover, as mentioned
above, we do not have to consider many valued connectives, GAP uses for
satisfaction of complex formulas two valued logic.

To create a more suitable set of rules using ILP in [11] developed an al-
gorithm called FS-FOIL, that extends the original FOIL algorithm. While
FOIL was developed to find Horn clauses, they modified it to be able to
handle first order fuzzy predicates where cover compares confidence and
support of fuzzy predicates.

In [10] another fuzzy variant of the ILP method FOIL is used for a crisp
classification of „good arch“ in civil engineering using vague linguistic
hedges. Their system FCI uses min-max logic with Lukasiewicz implica-
tion and creates only crisp hypothesis. Our system enables to describe mo-
re general dependencies (our learned function - from the annotation - is not
expressible using min, max). FCI search of hypothesis tries to cover
positive examples with degree at least μ+ and avoid covering of negative
examples with degree bellow μ-. We can model this approach in our
method if we define the example sets as E+ = {e: E(e) μ+} and E- = {e:
E(e) < μ-} and leave out monotonicity axioms from the background
knowledge. Notice, that we have learning „with holes“ (between positive
and negative example sets) in case of μ- < μ+.

We have good results on several experiments with this our method (stu-
dent’s valuation in school, auto-mpg data from UCI repository, business
competitiveness).

We have studied aggregating multifeature querying which appears in
user preferences, rating in information retrieval, semantic web and multi-
media databases. We introduced IGAP - Inductive Generalized Annotated
Programming method based on multiple use of classical ILP method. Fur-
ther work requires full implementation of these techniques.
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In this work we propose a flexible approach to evaluate association
rules on XML documents. In particular we describe evaluation techniques in order
to assign a satisfiability degree to structural association rules, which allow one to
evaluate the similarity of the XML document with respect to a given structure, and
to value association rules which allow one to capture the similarity between the
information contained in the XML document and the required information.

1 Introduction

During the last years XML has became very popular as a standard for rep-
resenting, exchanging, and publishing information [1, 15]. XML is a markup
language which is suitable for representing semistructured data; usually in this
kind of information no pre-imposed schema or type is needed for data inter-
pretation itself. The need of describing association rules over XML documents
has arisen in some work [6, 14]. Indeed, even without a document with a fixed
structure, it could be interesting to be able to identify in an XML document
some recurrent situations: for example, in a document which describes infor-
mation about employees, it could be useful to discover that an “employee”
element usually contains a “salary” element. Moreover, it could be useful to
discover that most “salary” subelements (of the elements “employee”) have
the content “900”.

In this work we propose a flexible approach to evaluate association rules
on XML documents. In [9] we proposed two kinds of association rules: struc-
tural and value associations, which allow one to consider the structure and
the content of an XML document, respectively. The evaluation of structural
association rules returns a similarity degree taking into account the structure
of the document. The evaluation of value association rules returns a similar-
ity degree taking into account the document content. In this work we will
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propose different kinds of evaluation techniques both for structural and value
association rules.

The structure of the paper is as follows. In Section 2 we discuss related
work for the description of association rules, integrity constraints and func-
tional dependencies for XML documents. In Section 3 we first describe two
kinds of fuzzy association rules called structural and value associations rules
and then we propose several evaluation techniques in order to establish their
degree satisfaction. In Section 4 we report the conclusion and draft some fu-
ture work.

2 Related Work

In the context of semistructured data a main issue is related to the description
of functional dependencies over XML documents. The information contained
in an XML document could be partial and incomplete and moreover the doc-
ument could be without a DTD (Document Type Definition): these specific
features of XML documents make the description and the evaluation of func-
tional dependencies more complex than in the context of relational databases.
The possibility of missing information in the XML document can involve the
violation of the required dependencies. The problem of describing functional
dependencies for XML is still an open problem but in the literature there are
some proposals which deal with this topic [5, 11, 12].

In [5] the authors have proposed the first definition of functional dependen-
cies for XML documents, defining also a normal form, based on the proposed
dependencies. In [12] the authors try to overcome the problems due to the
nature of XML data and give a precise definition of functional dependencies
without assuming the existence of a DTD. In [11] an XML-based language
to define functional dependencies for XML documents have been proposed.
In these approaches functional dependencies for XML are described in term
of implication between paths (starting from the root) and their satisfaction
is evaluated taking into account the reachable values (w.r.t. the considered
paths).

Another research topic is related to the description of integrity constraints
for semistructured data and XML documents. In [8] the need of a formal def-
inition of integrity constraints have been highlighted and the most important
categories of constraints for XML have been defined. In [7] the authors study
absolute and relative keys for XML, and investigate their associated decision
problems. They also propose a new key constraint language for XML which
can handle keys with a complex structure. In general, a key is described by
means of a path on a (sub)tree with a specific root. In [10] the authors adopt
the formal definition of keys described in [7] and propose a technique to obtain
a compact set of keys from an XML document.

A recent research direction in the context of XML data is related to the
extraction of association rules from XML documents [6, 13, 14]. An association
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rule describes the co-occurrence of data items in a large amount of collected
data [4]. Rules are usually described by means of implication in the form
X ⇒ Y , where X and Y are two arbitrary sets of data items such that
X ∩ Y = ∅. The quality of an association rule is described by means of two
parameters: support and confidence. Support corresponds to the frequency of
the set X ∪ Y in the dataset, while confidence corresponds to the conditional
probability p(Y |X), i.e. the probability of finding Y having found X . Several
works deal with the problem of mining association rules in large databases
[2, 3, 4].

With respect to the XML context, in [14] the authors show a technique
which allows one to extract association rules by using XQuery. In [6] associa-
tion rules for XML documents are described by introducing an XML-specific
operator, called XMINE RULE, which is based on the use of XML query
languages.

Our approach is included in the context related to the extraction of as-
sociation rules but, unlike the previous mentioned proposals, it concerns the
description of flexible association rules for XML. In [9] we have proposed a first
approach for the description of association rules on XML documents; in this
work we will introduce a set of different evaluating techniques for the evalua-
tion of the proposed association rules by associating to each rule a similarity
degree. The similarity degree we propose is quite different from the standard
parameters used for association rules, such as support and confidence, but
we think it is important to evaluate, in a flexible way, the satisfiability of an
association rule on an XML document. The introduced flexibility is related to
the usage of different evaluation techniques which will assign a satisfiability
degree by focusing on different aspects related both to the structure and to
the content of an XML document.

3 Fuzzy association rules

In this work we will consider association rules on XML documents; their eval-
uation will be realized by taking into account their graphical forms.

As proposed in [9], we choose to represent XML documents by means of
XML graphs ; in particular, XML elements are represented by means of nodes,
and their containment relationships by means of non-labeled edges. We assume
to have general XML documents, thus we allow the presence of mixed XML
elements. The XML graphs are composed by three kinds of nodes: simple,
complex, and mixed nodes.

• A simple node is a leaf and has a specific value.
• A complex node has at least one outgoing edge.
• A mixed node is a complex node with a specific value.

In Figure 1 is reported a well-formed XML document containing informa-
tion about employees. Figure 2 shows the graphical form of the XML docu-
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ment of Figure 1. In particular, it is possible to observe that the XML graph
has a root, described by means of a complex node with name Person. The
nodes Employee, Department, and Project are mixed nodes while the nodes
Salary, Bonus, and Office are simple nodes. The Information nodes are complex
nodes because they have no specific values.

<?xml version="1.0" encoding="UTF-8" ?> <Department> Scientific and Technologic
<Person> <Employee> Ambeta McGee

<Employee> Annie Bown <Information>
<Information> <Salary> 900 </Salary>

<Salary> 800 </Salary> </Information>
<Bonus> 100 </Bonus> <Project> Pr.405

</Information> <Bonus> 200 </Bonus>
</Employee> </Project>
<Employee> Franck Copperfield </Employee>

<Salary> 750 </Salary> <Employee> Jack Tonkov
</Employee> <Information>
<Department> Computer Science <Salary> 900 </Salary>

<Employee> Roger Moore <Office> Room 74 </Office>
<Information> </Information>

<Salary> 800 </Salary> <Project> Pr.405
<Office> Room 72 </Office> <Bonus> 200 </Bonus>

</Information> </Project>
<Project> Pr.204 </Employee>

<Bonus> 200 </Bonus> </Department>
</Project> <Employee> Susan Sarandom

</Employee> <GeneralInfo>
</Department> <Phone> 033 58 56 942 </Phone>
<Employee> Marc Valjavec <WorkInfo>

<Information> <Salary> 750 </Salary>
<Salary> 900 </Salary> </WorkInfo>

</Information> </GeneralInfo>
</Employee> </Employee>

</Person>

Fig. 1. A well-formed XML document.

In our proposal, it is possible to describe two kinds of association rules on
XML documents:

• structural associations, which allow us to evaluate the similarity of an
XML document with respect to a proposed structure;

• value associations, which allow us to establish the similarity between the
information contained in an XML document and a given request.

These kinds of associations over XML documents can be described by
means of a logical notation:
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Fig. 2. The XML graph representing the XML document of Figure 1.

ElementS → ElementD

where ElementS is called starting element and ElementD is called destina-
tion element. The logical notation describes the fact that in the XML doc-
ument ElementS and ElementD are related by means of a “relationships”. In
the case of structural association the required relationship takes into account
the structure of the XML-subdocument (having as root the XML element
ElementS), while in the case of value association the relationship takes into
account the information contained in the XML-subdocument itself. In partic-
ular, it is possible to require that the destination element ElementD must have
a specific value ValueD by using the logical notation:

ElementS → ElementD(ValueD)

We choose to evaluate association rules on the graphical form of an XML
document, thus it is reasonable to consider also the graphical representation
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of the association rules themself. The graphical representation of an asso-
ciation rule is a direct graph which describes the fact that the destination
element, represented by means of a node called destination node (having as
name ElementD) can be reached by the starting element, represented by means
of a node called starting node (having as name ElementS) (Figure 3). In the
following, the starting and destination node of an association rule will be
denoted as NodeS and NodeD respectively. In the graphical form of value
associations, the value related to the destination node is reported under the
destination node (Figure 7).

3.1 Structural association rules

A structural association allows one to evaluate the similarity of an XML doc-
ument with respect to a proposed structure. With respect to the XML docu-
ment reported in Figure 1, a structural association rule could be:

Employee → Project

The proposed association rule describes the fact that an employee is associated
to a project. The graphical representation of this association is reported in
Figure 3, and describes the fact that the node Project can be reached starting
from the node Employee.

Employee Project

Fig. 3. The graphical representation of a structural association.

In order to establish the similarity degree of the XML graph with respect
to the rule, it is possible to consider several kinds of evaluation techniques.

In the case of structural associations, the suitable techniques have to con-
sider the structure of the XML graph; in particular, given a structural associ-
ation rule, it is needed to check whether the XML graph satisfies the proposed
structure in a more or less precise way. In this work we propose two kinds of
structural evaluation techniques:

• direct reachability: it allows one to evaluate whether the starting node is
directly connected to the destination node;

• undirect reachability: it allows one to evaluate whether the destination
node can be reached from the starting node with a path composed by
more than one edge.

The evaluation of a structural association rule over an XML graph can be
realized with the following steps:
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1. subgraph extraction: during this step, by means of suitable graph-
search algorithms, the subgraphs having the starting node as root and
containing the destination node are extracted.

2. subgraph weight: in the case of evaluation of a structural association
rule it is possible to assign a weight to each extracted subgraph. The
weight associated to the i-th extracted subgraph is denoted as ssdi and it
can be assigned by considering one of the different evaluation techniques
proposed above.
• Using the direct reachability, the weight associated to each subgraph

will be 1 if the destination node is directly connected to the starting
node (i.e. NodeD is a child of NodeS) and 0 otherwise. In this case,
the ssdi can be calculated by means of the function Direct-Reach:

ssdi = Direct-Reach(NodeSi
, NodeDi

) =
{

1 if NodeDi
is a child of NodeSi

0 otherwise

where NodeSi
and NodeDi

are respectively the starting node and the
destination node of the i-th retrieved subgraph.

• Using the undirect reachability, the weight associated to each subgraph
will take into account the number of edges needed to reach the des-
tination node from the starting node. In this case, the ssdi can be
calculated by means of the function Undirect-Reach, which returns the
number of edges between the starting node (NodeSi

) and the destina-
tion node (NodeDi

) of the i-th subgraph. The weight associated to a
subgraph is in inverse proportion to the number of edges in the path
between the starting node and the destination node and its precise
value is:

ssdi =
1

Undirect-Reach(NodeSi
, NodeDi

)

3. structural satisfiability degree: in this step it is possible to calculate
the structural satisfiability degree (ssd) of the XML graph with respect
to the structural association. The value of ssd is in [0, 1]; the value 0
represents the fact that the XML graph does not satisfy the proposed
structural association, while the value 1 describes the fact that the struc-
tural association is always satisfied in the XML graph, i.e. each extracted
subgraph satisfies the proposed structure. Both in the case of direct reach-
ability and in the case of undirect reachability, the ssd can be calculated
with the formula:

ssd =
n∑

i=1

ssdi ·
1
n

where n is the number of subgraphs extracted at step 1.
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The evaluation of the structural satisfiability degree is determinated in the
subgraphs which satisfy the required structure, i.e. in the subgraphs connect-
ing in some way the destination node to the starting node. Thus, we do not
compute the standard parameters such as support and confidence but it is
possible to obtain them by counting the number of subgraphs having as root
the required starting node and dividing this value for the number of subgraphs
which satisfy, both in direct and undirect way, the required structure.

As an example, we consider the structural association Employee → Project
of Figure 3 on the XML graph of Figure 2. At step 1, the graph-search returns
the subgraphs which connect the node Employee with the node Project. In
Figure 4 are shown the extracted subgraphs (included in dashed regions). In
this case, both with direct and undirect reachability techniques, the value of ssd
is 1. Indeed, in each extracted subgraph the node Project is directly connected
to the node Employee; for these reasons, both the function Direct-Reach and
Undirect-Reach assign value 1 to each extracted subgraph.
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Fig. 4. The subgraphs which satisfy the structural association rule
Employee → Project.
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As another example, let us now consider the structural association rule
Employee→ Salary of Figure 5, which describes the fact that an employee has
a salary. In Figure 6 are shown, in dashed regions, the extracted subgraphs.

Employee Salary

Fig. 5. The graphical representation of a structural association.

In order to evaluate the ssd of the XML graph reported in Figure 2, with
respect to the proposed structural association (Figure 5), we suppose to apply
the direct reachability technique. With this technique only the second retrieved
subgraph (associated to the employee Frank Copperfield) has as weight 1. In
all the other subgraphs the node Salary is not directly connected to the node
Employee and thus the related weights are 0 according to the definition of the
function Direct-Reach. In this example, the final value of ssd by using the
direct reachability technique, is:

ssd =
n∑

i=1

ssdi ·
1
n

= 1 ·
1
7

+ 0 ·
6
7

=
1
7

The value 1
7 describes the fact that one subgraph on seven satisfies the

proposed structural association, i.e. in one retrieved subgraph the node Salary
is directly connected to the node Employee.

We now evaluate the structural association rule Employee → Salary (Fig-
ure 5) by using the undirect reachability technique. In this case, the weight
associated to each extracted subgraph takes into account the number of edges
between the nodes Employee and Salary. According to the function Undirect-
Reach, the first subgraph (having value Annie Brown for the node Employee)
has weight 1

2 because the path between the considered nodes (Employee and
Salary) has length 2. For the same reason also the third, fourth, fifth, and sixth
subgraphs (associated to the employee Roger Moore, Marc Valjavec, Ambeta
McGee, and Jack Tonkov respectively) have weight 1

2 . The second subgraph
(having value Franck Copperfield for the node Employee) has weight 1, as just
described in the application of the previous technique. Finally, the seventh
subgraph (associated to the employee Susan Sarandom) has weight 1

3 because
the path between the considered nodes is composed by 3 edges. In this exam-
ple, the final value of ssd by using the undirect reachability technique, is:

ssd =
n∑

i=1

ssdi ·
1
n

=
1
2
·
1
7

+ 1 ·
1
7

+
1
2
·
4
7

+
1
3
·
1
7

=
23
42

= 0.548

The value 0.548 represents the structural satisfiability degree of the XML
graph (Figure 2) with respect to the structural association Employee → Salary
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(Figure 5). This value describes the fact that the extracted subgraphs do not
respect in exact way the required structure, i.e. there are subgraphs where the
paths between the considered nodes have length greater than 1.
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Fig. 6. The subgraphs which satisfy the structural association rule
Employee → Salary.

3.2 Value associations

A value association allows one to check the similarity of the information con-
tained in an XML document with respect to a proposed scenario. For ex-
ample, a value association on the XML graph reported in Figure 2 could be
Employee → Salary(900). The proposed association describes the fact that the
employees have a salary with value 900; the graphical representation of the
proposed value association is shown in Figure 7.

When we evaluate the satisfiability of a value association rule with respect
to an XML graph, we return the value satisfiability degree (vsd) which can
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Employee Salary

900

Fig. 7. The graphical representation of a value association.

be calculated by using several evaluation techniques. In this work we propose
the following value evaluation techniques:

• exact value technique: it allows one to check whether the values of the des-
tination nodes, in the extracted subgraphs, are equal to the value required
in the value association rule;

• shift technique: it allows one to associate a different weight to each ex-
tracted subgraph. The weight is calculated by taking into account the dis-
tance between the value of the destination node of each retrieved subgraph
and the value required by the rule;

• trend technique: it allows one to check whether the value of the destination
node of each retrieved subgraph and the value proposed by the value as-
sociation rule are in a given relationship. The considered relationships are
described by means of comparison operators in the set Θ = {<, >,≤,≥}.
Differently from the shift technique, the trend technique can be adopted
also for checking textual data. In this case, we suppose to have a suitable
set of comparison operators for the description of the lexicographical ar-
rangement: in the following, with abuse of notation, we will use an operator
θ ∈ Θ both for textual and numerical comparisons.

The evaluation of a value association rule, over an XML graph, is realized
with the same steps proposed for the evaluation of structural associations, with
a difference in the step 2: in this case the subgraph weight is determinated by
using one of the proposed value evaluation techniques.

• In the case of exact value technique, the weight associated to each subgraph
will be calculated by using the function Value:

V alue(NodeSi
, NodeDi

, val) =
{

1 if NodeDi
has value val

0 otherwise

If the destination node of the i-th subgraph is a complex node (without a
specific value), the function Value returns 0.

• In the case shift technique, the function Shift allows one to evaluate the
weight to associate to the i-th subgraph:

Shift(NodeSi
, NodeDi

, val, ) =

⎧⎪⎨
⎪⎩

valDi

val
if valDi

≤ val

�
valDi

val
�·val−valDi

val
otherwise
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The function Shift returns value 1 if and only if the value of the destination
node (valDi

) is equal to val. In the other cases, it returns a value, in
the interval [0,1], which is in direct proportion with valDi

and in inverse
proportion with val. For example, if the value required in the rule is 500
and the value retrieved in a subgraph is 250, then the value returned by
the function Shift is 0.5; the same weight is assigned to a subgraph having
value 750 (by applying the second equation of the definition).

• Finally, in the case of the trend technique it is possible to assign a weight 1
to the i-th subgraph if the value retrieved in its destination node (V alDi

)
satisfies a specific relationship with respect to the value required in the
rule. In particular, if θ is a relationship (θ ∈ Θ), then the weight associated
to the i-th subgraph can be calculated by means of the function Trend :

Trend(NodeSi
, NodeDi

, val, θ) =
{

1 if V alDi
is in θ-relation with val

0 otherwise

In the case of evaluation of a value association rule the structure of the
extracted subgraphs is not taken into account.

We now consider some examples related to the evaluation of value associ-
ation rules on the XML graph of Figure 2.

Given the value association rule Employee → Salary(900), shown in Fig-
ure 7, the related extracted subgraphs are shown, included in dashed regions,
in Figure 6. We suppose to apply the exact value technique in order to evalu-
ate the vsd of the XML graph with respect to the scenario given by the rule
in Figure 7. The function Value will assign weight 1 to each subgraph having
value 900 for the node Salary and 0 otherwise. Thus, the value satisfiability
degree is:

vsd =
n∑

i=1

vsdi ·
1
n

= 0 ·
4
7

+ 1 ·
3
7

=
3
7

= 0.428

where n is the number of the retrieved subgraphs. Note that the first,
second, third and seventh subgraphs have weight 0 because the values assumed
by the nodes Salary are not 900, while the fourth, fifth and sixth subgraphs
have weight 1. The final result describes the fact that three subgraphs (on
seven) satisfy the proposed value association in an exact way.

We now apply the shift technique in order to evaluate the value association
Employee → Salary(900) (Figure 7) on the XML graph shown in Figure 2. In
this case, the function Shift will assign a weight in the interval [0,1] to each
extracted subgraph (Figure 6) by taken into account the proportion between
the required value and the retrieved one.

For example, as shown in Figure 6, in the first and third subgraph the
value of the node Salary is 800 while the required value is 900. The weight
assigned to these subgraphs, by applying the first equation of the function
Shift, is:

800
900

= 0.8
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The weight associated to the second and seventh subgraph is 0.83, while the
weight associate to the fourth, fifth, and sixth subgraph is equal to 1. Thus,
the final value of vsd is:

vsd =
n∑

i=1

vsdi ·
1
n

= 0.8 ·
2
7

+ 0.83 ·
2
7

+ 1 ·
3
7

=
58
63

= 0.92

where n is the number of the retrieved subgraphs. Note that the value 1
for the vsd can be reached only when all the extracted subgraphs have the
requested value (900) for the node Salary.

We now consider some examples of value association rules related to the
usage of the trend technique. When we consider this kind of evaluation tech-
nique, we have to specify the relationship we want to check between the value
of the destination node and the value required in the rule.

For example, if we evaluate the value association Employee → Salary(700)
by using the relationship ≥ on the XML graph shown in Figure 2, then the
final value of vsd is 1 because in each extracted subgraph (Figure 6) the
value of the node Salary is greater than 700. In the case of the evaluation of
the value association Employee → Salary(800) by using the relationship ≤, the
final value of vsd is 4

7 ; indeed the first, second, third and seventh subgraph
have values no greater than 800.

4 Conclusions and Future Work

In this work we have propose a flexible approach to describe association rules
on XML documents. The proposed association rules can assume two forms:
structural and value associations. We have described a set of different evalu-
ation techniques in order to establish the similarity degree of an XML docu-
ment with respect to the proposed rules; the similarity degree of a rule has
a meaning quite different from the traditional parameters used for classical
association rule (such as support and confidence).

As future work we aim to study possible complex rules obtained by the
composition of structural and value association rules. For example, it could
be useful to describe a complex rule composed by value associations: in this
case the complex rule could represent a flexible functional dependency, i.e. the
satisfaction of the dependency is described by means of a parameter which
reveals its satisfiability instead of a boolean answer.
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Abstract. In the near future human beings will be living in a ubiquitous world
where all objects such as electronic appliances are networked to each other and robots
will provide us with services of every variety by any device through any network, at
any place anytime. However, current robots have a number of constraints to become
wholly ubiquitous. This research attempts to eliminate the spatial limitations by
introducing virtual robots into the physical world. Ubiquitous robot, Ubibot, is
introduced to integrate three forms of robots: software robot (Sobot), embeded robot
(Embot) and mobile robot (Mobot). Sobot is a virtual robot, which has the ability
to move to any place or connect to any device through a network, in order to
overcome the spatial limitation. It has the capability to interpret the context and
thus interact with the user. Embot is embedded within the environment or in the
Mobot. An Embot can recognize the locations of and authenticate the user or robot,
and synthesise sensing information. Mobot provides integrated mobile services. The
services that will be provided by Ubibot will be seamless, calm and context-aware.

This talk will address the basic concepts of Ubibot. A Sobot, called Rity, will be
introduced in order to investigate the usability of the proposed concepts. Rity is a
3D synthetic character which exists in the virtual world, has a unique IP address and
interacts with human beings through an Embot implemented by a face recognition
system using a USB camera.

1 Introduction

The term Ubiquitous Computing, UC, was first coined by Mark Weiser [1].
The basic concepts include the characteristics, such as every device should
be networked; user interfaces should operate calmly and seamlessly; comput-
ers should be accessible at anytime and at any place; and ubiquitous devices
should provide services suitable to the specific situation such as location,
equipment, ID, time, temperature and weather. He also addressed the evolu-
tion of computer technology in terms of the relationship between the technol-
ogy and humans [2, 3]:

J.-H. Kim: Ubiquitous Robot, Advances in Soft Computing 2, 451–459 (2005)
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– The first generation - the Mainframe Era, where a large elaborate computer
system was shared by many terminals;

– The second generation (still current) - the Personal Computer era where
a human uses a computer as a standalone or networked system, in a work
or home environment; and

– The third generation - the ubiquitous computing era, where humans use
various networked devices which pervade their environment unobtrusively.

Along with the ubiquitous revolution, robotics is also undergoing a paradigm
shift. The first generation of robotics was dominated by industrial robots fol-
lowed by the second generation in which personal robots became widespread.
As a third generation, ubiquitous robot can be thought of. Figure 1 shows the
comparison of the paradigm changes between the personal robot and ubiqui-
tous robot eras. The personal robot era is based on individual robot systems.
However, in the future multiple robot system will prevail.

Fig. 1. Comparison between the personal robot and ubiquitous robot eras

Within the ubiquitous environment, a number of robots, such as Embots,
Sobots, and Mobots, will provide a human with various services. In the current
level of second generation robotics, the application software controlling the
robots occupies the core. However, in the future, software robots will form
the core and control the hardware robots which will then take on the more
practical roles.

The intelligence of personal robots still mainly relies on a user-directed
service system, which means it functions at a very low level. Therefore, when
a user gives a command, s/he must wait until the robot understands and



Ubiquitous Robot 453

interprets the command, then acts on it. Third generation ubiquitous robots
will be able to understand what the user needs, wants or prefers and supply
continuous and seamless service. This technology will be made possible by the
use of IPv6 format and broadband wireless network technology.

The Ubibot (Ubiquitous Robot) has been developed based on UC and
robot technology [4]. For humans, the future will present a ubiquitous world
where all objects and devices are networked. In ubiquitous space, u-space, a
Ubibot will provide the user with various services anytime, at any place, by any
device, through any network. As demonstrated in the general concept of UC,
Ubibot will be seamless, calm, context-aware and networked. Ubibot could
be classified as three integrated robot systems: Sobot, Embot and Mobot.
Sobot, the Software Robot, can be transmitted and connect to any device,
at any time and any place. It is context-aware, and will automatically and
calmly provide continuous cooperation with the user. Embot, the Embedded
Robot, is embedded within the environment of a Mobot. It detects the location
of the robot or the user, recognizes and authenticates them, and collects and
synthesises the various sensing information. Mobot, the Mobile robot, provides
general users with integrated services.

In this talk, Rity, developed at KAIST’s RIT laboratory will be introduced
as an example of a Sobot. Rity is a 3D virtual pet [5]. It has its own unique
IP address and communicates and interacts with the user in the real world
through an Embot implemented by a physical device such as a USBconnected
camera.

2 Ubiquitous Robot: Ubibot

Ubibot is created and exists within ubiquitous space (uspace) which will be
developed as an essential component of Ubibot.

2.1 U-space and UbiBot

It is anticipated that, in the future, the world will consist of numerous u-
spaces, where each u-space will be based on the IPv6 or similar system and
be connected to each other through broadband, wired or wireless, networks
in real-time, Figure 2 [6]. A robot working within the u-space is defined as
a Ubibot, which, in other words, can be used for any service through any
terminal and any network by anyone at anytime and anywhere in a u-space.

Ubibot exists within u-space, Fig.3, and consists of both software and
hardware robots. Sobot is a type of a software system whereas Embot and
Mobot belong to a hardware system. Embots are located within the environ-
ment, human or otherwise, and are embedded in many devices. Their role is
to sense and communicate with other Ubibots. Mobots are mobile. They can
move both independently and cooperatively, and provide practical services.
Each ubibot has specific individual intelligence and roles, and communicates
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Fig. 2. Real world composed of billions of u-spaces

Fig. 3. Ubiquitous robot in u-space

information through networks. Sobot is capable of operating as an indepen-
dent robot. However, it can also become the master system, which controls
other Sobots, Embots and Mobots residing in other platforms as slave units.

2.2 Software Robot: SoBot

Because Sobot is software-based, it can move within the network and connect
to other systems anytime and at any place. It can assess situations and inter-
act with the user seamlessly. Sobot can be implanted into any environment
and also other robots as a core system. It can control or, at an equal level,
cooperate with Mobots. It can operate as an individual entity, without any
help from other Ubibots. Figure 4 shows three main characteristics of Sobot:
context-aware self-learning, context-aware intelligence and calm and seamless
interaction [7, 8].
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Fig. 4. Essential characteristics of SoBot

Context-aware self-learning

Sobot is autonomous and can determine and control its behaviour without
external commands. Within the u-space, it can represent the user in behaviour
and communication with others. Sobot also has the ability to “learn.” It can
assimilate objects, motions and situations. This “learning” process can be
continuously developed. When a new user is introduced, Sobot may need to
adjust behaviours within the u-space.

Context-aware intelligence

Sobots are proactive software robots. They operate with clear goals and well-
constructed plans. The plans are constantly reviewed. When new situations
arise, Sobots can adjust and react to the situation rather than use a prede-
termined reaction to a possible, or expected, situation. Sobots are able to
demonstrate rational behaviour in the fact that they do not just “repeat”
the same tasks, but can adjust to each task as necessary and produce a suit-
able outcome. Sobots remain context-aware at all times. They can modify
and adapt themselves to the context, whenever needed. When they perceive a
problem, they can locate and recognize the user automatically. By observing
the user and user behaviour, they “learn” about the user and can easily adapt
themselves to the user’s preferences and interests.



456 J.-H. Kim

Calm and seamless interaction

All activities are implemented calmly and seamlessly. Each Sobot is distrib-
uted and independent. A Sobot can be embedded and work inside an Embot
or a Mobot. However, its behaviour is often limited by the resources of the
software or hardware in which it is embedded.

Sobots can communicate with the environment and other Ubibots. There
will be a higher level communication language, which need not have a prede-
fined message or set of rules for the communication. Ubibot is omni-present.
It exists everywhere in the u-space and will provide us with seamless services,
at any time and at any place. These continuous and seamless services are
performed through the network connected to many other devices. Sobot has
continuous interface between the physical world and the virtual world.

The interaction mode used for Sobots is multi-modal. This will allow for
greater convenience and flexibility in user interactions and communications.
Because of the complexity of such a system, it is demanded to have compatible
application environment for Sobot. This will allow many different types of
robots to communicate, to continuously develop new functions and to control
the robots remotely and cooperatively.

2.3 Embedded Robot: EmBot

EmBot is implanted in the environment or Mobots. In cooperation with var-
ious sensors, Embot can detect the location of the user or a Mobot, au-
thenticate them, integrate assorted sensor information and understand the
environmental situation. An Embot may include all the objects which have
network and sensing functions, and be equipped with microprocessors to con-
trol Sobots. Embots generally have three major characteristics: calm sensing,
ucommunication and information processing, Figure 5 [9].

Fig. 5. Essential characteristics of EmBot
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Calm sensing

Using various sensors, an Embot can detect and recognize objects even in
crowded areas. This function works in cooperation with many other sensors
embedded in humans, Mobots and other devices. Embots can calmly and
unobtrusively sense human behaviour, status, preferences, relationships and
neighbouring environments.

Embots recognize the patterns of human behaviour and status. Embots
can also recognize environmental elements such as weather, time and climate
which can impact on the daily behaviour and status of a human. They can
also identify the different distances that exist between humans and may affect
their behaviours. The distances are classified as contact distance, individ-
ual distance, social distance and public distance. Embots can identify human
relationships, such as the social relationships between family members and
visitors; friendship or personality. Embots can perceive the interactions be-
tween other humans and the main user. For example an Embot will know who
is pointing, facing or gazing at the user.

Information processing

Embots can identify the location of Mobots, humans, objects and other en-
vironments. Embots can also assess and authorize a human to use a robot,
authenticate various types of robots and robot users. Embots also possess
data-mining abilities. They collect information about human behaviours, sta-
tus and environment. Data created through the datamining process can be
used to enhance the information search process.

Communication

Embots provide the user with assistance in various forms including: voice
communication, behaviour, information transfer and motion guidance. This
is done in accordance with the situation and through a network, in order to
augment the communication with humans. Embots also facilitate and help
multiple robots to cooperate, by using calm sensing and information process-
ing. They can also provide services to hundreds of people through the sensor
network.

Embots can recognize the location of humans and robots, behaviour of hu-
mans and the adjacent environment automatically. This is done using sensors
embedded in the environment together with Embots’ ability to certify, store
and use previously gathered information. These features will allow easy com-
munication between robot and humans and will be applied widely in homes,
offices, and government buildings. This will also improve security and infor-
mation searching systems, human research management and public resource
management.
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2.4 Mobile robot: Mobot

Mobot offers both essential services for general users and specific functions
which are dedicated to the u-space. On the other hand, Embot is generally
considered to have limited functions and resources. However, a Mobot will
provide mobility and service; operates in the u-space; has Embot functions,
Fig 6; and works together with Sobots neighbouring Embots.

Fig. 6. Essential characteristics of mobile robot

Figure 6 shows the characteristics of Mobots, where mobility can be imple-
mented in various types such as wheel and biped types, and action provides
personal, public, and field services using manipulator and various devices.

Mobot communicates with Sobot in order to provide practical services
based on information given by Embot. Mobot will be implemented as a multi-
purpose service robot in the u-space such as home, work, public organization,
amusement, traffic and public facilities.

3 Conclusion

In considering the Ubibots of the future, it is anticipated that, Sobots, Em-
bots and Mobots will co-exist with humans and will provide us with seamless,
calm and context-aware services anytime and at any place through the ubiq-
uitous network. Based on their own functions and intelligences, each Sobot,
Embot and Mobot will have an individual role, as well as working coopera-
tively with other Ubibots. In the new ubiquitous era, our future world will
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be composed of millions of u-spaces, each of which will be closely connected
through ubiquitous networks. The future of ubiquitous robotics has a lot to
offer. However, in order to ensure efficient and effective communication and
smooth integration of robot systems it is essential to provide a standardised
language and a uniform set of protocols.

This work was supported by the ITRC-IRRC (Intelligent Robot Research
Center) of the Korea Ministry of Information and Communication in 2003.
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We propose a fuzzy logic based punctual kriging technique for en-
hancing images corrupted by Gaussian noise. Punctual kriging is used to generate 
kernel weights employing the semivariances in the neighborhood of a pixel and 
empirically determined global semi-variogram. Semivariance is a measure of the 
degree of spatial differences between samples (pixel values).  Superiority of 
kriging over other methods for noise cancellation in 1-D signals has been estab-
lished. A quantitative analysis of the kriging technique, for image enhancement as 
compared to the Wiener filter shows that kriging performs inferior to Wiener fil-
tering for image enhancement. We have proposed a new fuzzy logic based method 
which substantially improves the performance of the kriging for image enhance-
ment. Experimental results are presented to illustrate the improvement in the re-
sults and the effectiveness of the new technique. 

1 Introduction

Kriging is an interpolation technique, named after its developer, D. G. 
Krige [4]. The method has its origin in Geostatistics. Kriging has proven to 
be a nonlinear predictor in signal processing.  

Costa et al [1] suggest kriging as an efficient tool for nonlinear filtering. 
They have shown through various simulated examples, that kriging predic-
tor gives better results than the Volterra [8] and NARMAX [5] predictors 
on a nonlinear noise-cancellation problem in underwater acoustics.  

Pham and Wagner [7] have used kriging along with fuzzy sets for Image 
Enhancement of images corrupted by Gaussian noise. They have modeled 
soft-thresholding by fuzzy sets. In their method, the pixel value in the 
processed image is a weighted sum of two values: the original (noisy) and 
the estimated (by kriging). The weighting is done using two fuzzy sets 
having S-shaped membership functions. The overlap between the member-
ship functions of the two sets is tuned by a parameter  which can be var-
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ied between 0 and 1. The authors [7] do not present any quantitative analy-
sis of their scheme.  

A number of image processing problems including image enhancement 
have been solved by employing fuzzy technique. Farbiz and Menhaj [3] 
have introduced an approach of image filtering based on fuzzy logic con-
trol. They have shown it to remove impulsive noise, smooth out Gaussian 
noise while, simultaneously, preserving image details and edges effi-
ciently. 

The remaining of this paper is organized as follows. Section 2 deals 
with kriging along with its mathematical formulation. Semi-variograms 
which are at the heart of kriging are explained, followed by a brief deriva-
tion of kriging equations. A discussion on the quantitative results of im-
plementing the suggested method by Pham and Wagner is presented in 
section 3, along with observed problematic issues. Section 4 discusses the 
problems of Pham and Wagner’s method and explains the proposed  
method of combining fuzzy logic with kriging. The results of the proposed 
method are presented in section 4.1. 

2 Kriging

Kriging gives the best linear unbiased estimate of an unknown point on a 
surface [11, 6]. This estimate is the weighted sum of the known neighbor-
ing values around the unknown point. The weights are calculated as to 
minimize the variance of the estimation-error. To achieve this, kriging uses 
the semi-variogram, a related concept from Geostatistics. Based on the 
semi-variogram model chosen, known values are assigned optimal weights 
to calculate the unknown value. 

2.1 Semi-variograms

Given a set of samples, the semivariance can be simply defined as half the 
variance, of the differences between all possible samples, spaced a con-
stant distance ‘d’ apart.  Semivariance gives a measure of spatial depend-
ence between samples. The magnitude of the semivariance between two 
points depends on the distance between them. The plot of the semivariance 
as a function of distance is referred to as a semivariogram or a variogram. 
The semivariance at d=0, is zero [1]; as there are no difference when 
points are compared to themselves.  
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The experimental variogram [1, 6] for distance ‘d’ can be estimated by 
Eq. 1 
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In Eq. 1, is the sample value at location i,iz i hz  is the sample value at a

distance ‘d’ from i. N(d) is the total number of sample-pairs in the avail-
able data that are separated by distance ‘d’

2.2 Kriging Process

Kriging uses the semi-variogram to calculate estimates. The first step in 
kriging involves finding a semi-variogram for the data at hand. Based on
this semi-variogram, the set of optimal weights for estimating the unknown
values are found. These weights give the best linear unbiased estimate of 
the unknown values [1].

Let  be the actual value at a point and be the estimate of this value.
The error  is then: 
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In Eq. 3 are the kriging weights and the  are the neighboring

known (sampled) values around .
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The variance of the error can be worked out to be: 
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(4)

In Eq. 4, dj is the distance between current point and its neighbor ‘j’.
And djk is the distance between neighbors ‘j’ and ‘k’ of the current point.
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To make the estimate unbiased, method of Lagrange multipliers is used
to minimize variance of error by the unbiased-ness condition specified by 
Eq. 5. 

1

1
n

i
i

w (5)

Differentiation of the Lagrange function obtained by combining Eqs. 4
and 5 gives a system of equations that can be written in matrix form 
[A]{w}={b} as:

1 111 12 1

2 221 22 2

1 2

( )1

( )1

( )1

11 1 1 1 0

n

n

n nn n nn

w dd d d

w dd d d

w dd d d

(6)

In Eq. 6 ‘n’ is the number of neighboring samples of the current un-
known point used in the estimation process. The above matrix ‘A’ is sym-
metric with a zero diagonal. The elements of this matrix are taken from the
semi-variogram.

Solving Eq. 6, yields {w1, w2 … wn}, which are the optimal kriging
weights to calculate the kriging estimate  by Eq. 3. ẑ

3 Issues in Pham and Wagner’s Method

3.1 Quantitative Analysis of Pham and Wagner’s method

This section presents the quantitative results of Pham and Wagner’s
method [7] and discusses the observed problematic issues in this method.

Instead of the peak signal-to-noise ratio (PSNR), a recent metric by
Wang et al. [10] has been employed for measuring quality of the processed
images. This metric is called the Structural Similarity (SSIM) Index. The 
authors have experimentally shown that, unlike PSNR, the SSIM Index is
highly consistent with the Human Visual System. Given the original image
and degraded test image, the SSIM Index returns a value between 0 and 1. 
Values of SSIM Index close to 1 indicate that the test image is close to the
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original image and vice verse. Wang et al. also demonstrate that PSNR is a 
bad measure of image quality.

The kriging based technique of Pham and Wagner [7] was implemented
in Matlab. Degraded versions of the ‘Blood-cells’ image (shown in Fig. 1),
were used to compare the performance of Wiener filter and Pham and 
Wagner’s method. The degraded versions were obtained by corrupting the
‘Blood-cells’ image with zero-mean Gaussian noise. For the degraded ver-
sions, the variance of the Gaussian noise was varied between 0.01 and 0.1. 
The degraded versions were enhanced by both the Wiener filter and Pham 
and Wagner’s method. The SSIM index values of the enhanced images are
shown in Table 1. Indeed, Wiener filtering is much ahead of Pham and 
Wagner’s method for all cases. The parameter  in Pham and Wagner’s 
method was set to 0.5. 

Fig. 1. Images used in the current work: Blood-cells and Cameraman

3.2 Discussion

This section details the observations made about the implementation and
behavior of Pham and Wagner’s method.

First, Pham and Wagner have chosen to use the experimental semi-
variogram (obtained by Eq. 1) instead of one of the model semi-
variograms: Linear, Spherical, Exponential and Gaussian. They claim to
have found that using these models over-smoothes the data and thus advo-
cate using the experimental semi-variogram.

Second, the set of equations for determining the kriging weights cannot
always be solved. For a pixel, its 3x3 neighborhood is used to find its
kriging estimate. For this case, matrix ‘A’ in Eq. 6 is a 9x9 matrix. Indeed, 
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it has been found that, at times, this matrix comes up as singular and thus 
kriging cannot be used for such pixels. 

Table 1. SSIM Index values: Enhancement of the Blood-cells image by Wiener 
Filter and Pham & Wagner’s Method. 

Noise  
Variance 

Noisy
Image 

Wiener 
Filter

P&W ’s  
Method

0.010 0.4091 0.7236 0.4548 
0.025 0.2790 0.5703 0.3201 
0.050 0.1981 0.4584 0.2314 
0.075 0.1558 0.3917 0.1829 
0.100 0.1352 0.3633 0.1587 
P&W Pham and Wagner’s Method  

Third, kriging is a computationally expensive procedure [6]. Because 
the optimal kriging weights are determined for each pixel, the system of 
equations in Eq. 6 must be solved for every pixel. However, it was ob-
served that there are pixels for which the kriging estimate is not very dif-
ferent from the mean of the neighboring values. Indeed, blindly kriging all 
pixels is quite inefficient. A better approach would be to selectively per-
form kriging only on pixels where it may give better estimates than the 
mean.

4 The New Approach

In this section, a brief explanation of the observed issues in section 3.2 is 
followed by a description of the motivation behind combining kriging with 
fuzzy logic. 

First, it must be noted that the experimental semi-variogram is just an 
estimate of, the true semi-variogram of the given data [6]. One reason may 
be that the semivariance is estimated by taking it simply a function of the 
distance between sample points. The estimation of the semi-variogram it-
self, inherently introduces an element of uncertainty in the overall process-
ing. Fuzzy logic is well-suited for dealing with such problems. Several tra-
ditional image processing techniques have been extended with fuzzy logic 
giving much improved results, without adding to the complexity of imple-
menting the overall process. In particular, Farbiz and Menhaj [3] have 
demonstrated the use of fuzzy logic to simultaneously take care of the con-
flicting tasks of noise-smoothing and edge preservation. 
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Second, the situation of singular kriging matrix is inherently unpredict-
able as it depends on the semi-variogram. But the semi-variogram itself
depends on neighboring values of a pixel. Such scenarios could be taken 
care of by processing such pixels with by ‘averaging’ or ‘median’ –filter, 
which ever makes the error variance small.

Third, the high computational cost of kriging. It should be noted that the
primary use of kriging was for estimating values of an un-sampled points
on a geological terrain [6]. The reason for not sampling some points could 
be inherent practical limitations in the sampling process. In digital images,
however, this is not the case. However, for Image enhancement blindly 
kriging all pixels may be not needed at all. It was observed that highly ho-
mogenous (smoother) regions of the image are enhanced more or less the 
same by kriging or simple averaging (mean). 

It also follows that the decision of when to use kriging or not could be 
related to the smoothness or homogeneity of a region in the image. If a re-
gion in the image is highly homogeneous, then averaging would give al-
most the same results as kriging but with much less computations. The
qualitative concept highly-homogeneous is best described using fuzzy
logic. Thus, it seems sensible to have a fuzzy logic rule-based system to 
decide when to perform kriging. 

The above suggested solutions are best described qualitatively. This 
human linguistic reasoning is efficiently and elegantly captured by a fuzzy 
logic rule-based system. The next section proposes a method that combines
kriging with fuzzy logic, based on the above discussion.

4.1 The Proposed Method

In the proposed method, all pixels are not blindly kriged. Rather, based on 
the homogeneity of its local neighborhood, a pixel is selected for kriging
by a fuzzy logic rule-based system. This fuzzy system is called the Fuzzy
Decider in our work. The inputs to the Fuzzy Decider are: a measure of 
homogeneity, mean and variance, of the 3x3 window of the current pixel.
The degree of homogeneity is estimated by Eq. 7, discussed by Tizhoosh in
[9]. The numerator in Eq. 7 is the difference of the maximum and mini-
mum gray values in the region comprised of the 3x3 local window around 
a pixel where as the denominator is the difference of the maximum and 
minimum gray values in the whole image.

max min

max min

local local

H global global

g g
g g

(7)
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The Fuzzy Decider is a basic Mamdani-type fuzzy logic system com-
prised of the rules given in Fig. 2 The DAMdistance in the rules is simply 
the difference between the gray value of current pixel and the mean gray 
value of its neighbors. Homogeneity in the rules is the value calculated by 
Eq. 7 

If Homogeneity is High or DAMdistance is Acceptable
then Do Not Perform Kriging 

If Homogeneity is Low  or DAMdistance is Very-High
then Perform Kriging 

Fig. 2. Rule base of the Fuzzy Decider. The terms in italics are explained in sec-
tion 4.1 

The proposed method has three stages. In the first stage, the noisy image 
is presented to the Fuzzy Decider which generates a binary image called 
the decision map. For a given pixel position in the decision map, a value of 
1 indicates ‘Perform Kriging’ and 0 indicates that the Fuzzy Decider’s ver-
dict is ‘Do Not Perform Kriging’. The decision maps for the noisy versions 
of the Cameraman image are shown in Figs. 3 and 4, with noise variance 
set to 0.02 and 0.06 respectively. White dots in Figs. 3 and 4 correspond to 
pixels that have been selected by the Fuzzy Decider for kriging. As shown 
in Fig. 3, few pixels are selected for kriging in the highly homogenous re-
gion of the Black Coat. As increasing the Gaussian noise variance causes 
increased degradation. For such an image, much more pixels are selected 
for kriging by the Fuzzy Decider in the originally homogeneous region of 
the Black Coat of the Cameraman. This is evident in Fig. 4.  

In the second stage, an attempt is made to find a kriging estimate for 
pixels selected by the Fuzzy Decider. If the attempt fails, the original pixel 
value is taken as the processed final value. The attempt to find a kriging 
estimate was found to fail due to two broad reasons: singular kriging ma-
trix and negative-weights. For pixels that were rejected for kriging by the 
Fuzzy Decider, the mean of 3x3 neighbors is taken as the processed value. 
After this stage the processed image contains two types of value based on 
the decision map: kriging estimate and mean value. In the third and final 
stage 3x3 averaging is applied, on the image produced by the second stage, 
to yield the final processed image 

The results of the above proposed scheme are shown in Table 2 and Ta-
ble 3 for the images Blood-cells and Cameraman, respectively. The noise 
variance was varied between 0.01 and 0.1. Clearly, the proposed scheme 
performs better than the Wiener Filter for both images.  
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Fig. 3. Decision map for Cameraman image degraded with Gaussian noise having
variance = 0.02.

Fig. 4. Decision map for Cameraman image degraded with Gaussian noise having
variance = 0.06.
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Table 2. SSIM Index values: Enhancement of the Blood-cells image by Wiener 
Filter and the Proposed  Method. 

Noise  
Variance 

Noisy
Image 

Wiener  
Filter

Proposed 
Method

0.010 0.4103 0.7240 0.8006 

0.025 0.2783 0.5688 0.6736 

0.050 0.1983 0.4549 0.5652 

0.075 0.1597 0.4023 0.5053 

0.100 0.1343 0.3581 0.4575 

Table 3. SSIM Index values: Enhancement of the Cameraman image by Wiener 
Filter and the Proposed  Method. 

Noise  
Variance 

Noisy
Image 

Wiener  
Filter

Proposed 
Method

0.010 0.3422 0.6325 0.6797 

0.025 0.2343 0.4619 0.5273 

0.050 0.1698 0.3425 0.4026 

0.075 0.1386 0.2871 0.3372 

0.100 0.1190 0.2549 0.3072 

5 Conclusions

A scheme has been presented for enhancing images corrupted by zero-
mean Gaussian noise. Punctual or Ordinary Kriging has been used to en-
hance Gaussian noise corrupted Images. The proposed method suggests a 
scheme for combining Fuzzy Logic with Kriging. For quantitative analysis 
a recent metric for measuring image qualtiy, called the SSIM Index has 
been employed. The SSIM image quality index is highly consistent with 
the Human Visual System. The experimental results show that the new 
proposed method performs better than Wiener filter for enhancing images 
corrupted by zero-mean Gaussian noise. 
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Optical Quality Control of Coated Steel Sheets
Using Fuzzy Grey Scale Correlograms

Dirk Lühning

University of Dortmund, Department Computer Science I, D-44221 Dortmund
Dirk.Luehning@udo.edu

In this paper a method for optical quality control of coated steel sheets
is proposed. A frequently used test for examining coating quality is the impact
resistance test which results in a rapid deformation of a steel sheet sample. The
quality of the coating with respect to adhesion can then be rated from an image
of the deformed region by examination of the texture on the surface of the steel
sheet. In the approach described here the texture analysis is carried out using the
fuzzy grey scale correlogram which is a modified version of the colour correlogram
developed in the context of content-based image retrieval. The correlogram data
provides the basis for a classification using a fuzzy rule base. Experimental results
indicate that the fuzzy grey scale correlogram is applicable to the problem discussed
in this paper.

Key words: Colour correlogram, fuzzy grey scale correlogram, galvanised steel,
impact resistance test, optical quality control, texture analysis.

1 Introduction

Steel sheet coatings are to protect the coated material against environmental
stress. As the steel sheets are exposed to deformation by bending or impact in
production and duty the adhesion of the coating is important. To determine
the coating quality in terms of adhesion the impact resistance test has been
developed among other test procedures [1, 4]. It comprises a steel ball with a
weight applied to it being dropped from a defined height onto the coated steel
sheet. This results in a rapid deformation of the sheet (see Fig. 1). The extent
to which the coating flakes off can be interpreted as a measure for adhesion
of the coating.

In this paper hot-dip galvanised steel sheets are considered. The coating
quality of such steel sheets is analysed based on the results of an impact
resistance test. An image (1024× 1024pixels, 8 bit grey scale) is taken of the
deformed sheet. Each tested steel sheet is then assigned to one of three quality
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Fig. 1. Steel sheets with good (left) and bad (right) adhesion of coating

classes with class I describing the best quality. Sheets from class II can still
be used for certain products while quality class III is rejected.

The steel sheets are rated with respect to the amount of flaking due to
the impact resistance test. Spots where the coating flaked off can be identified
in the image on the basis of their darker colour compared with the coating’s
lighter grey. Thus the classification has to take into account the texture of the
image, i.e. the spatial correlation of grey values in the image.

2 Texture Analysis

An image feature that describes the spatial colour correlation in an image I

is the colour correlogram proposed in [5]. It can be seen as a table indexed
by pairs of colours. The k-th entry for the colour pair (ci, cj) specifies the
probability of a pixel of colour cj within a distance of k from a pixel of colour
ci:

γ(k)
ci,cj

(I) = P(p2 ∈ Icj |p1 ∈ Ici , |p1 − p2| = k) (1)

Here Ic denotes the set of all pixels with colour c. The distance |p1 − p2|
between two pixels is calculated according to the L∞-norm.

2.1 Computation of the Colour Correlogram

The calculation of the colour correlogram described in [5] comprises three
steps. In the first step the number of pixels of a given colour c within a given
distance k from a fixed pixel p = (x, y) is determined for positive horizontal
and vertical direction. For horizontal direction the following equation holds:

λ
c,h

(x,y)(k) = λ
c,h

(x,y)(k − 1) + λ
c,h

(x+k,y)(0) (2)

with the initial condition

λ
c,h

(x,y)(0) =

{
1 if(x, y) ∈ Ic

0 else
(3)
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Again Ic denotes the set of all pixels of colour c in the image I. For the vertical
direction the calculation is similar. In the second step the number of pixels of
colour cj within distance k from some pixel of colour ci is determined:

Γ (k)
ci,cj

(I) =
∑

(x,y)∈Ic

(λcj ,h

(x−k,y+k)(2k) + λ
cj ,h

(x−k,y−k)(2k)

+ λ
cj ,v

(x−k,y−k+1)(2k − 2) + λ
cj ,v

(x+k,y−k+1)(2k − 2)). (4)

In the last step the correlogram is calculated using the following equation:

γ(k)
ci,cj

(I) =
Γ

(k)
ci,cj(I)

8khci(I)
. (5)

The factor 8k is due to the 8k pixels at distance k around any pixel while
hc(I) denotes the colour histogram of the image I which is defined as

hc(I) = |Ic|. (6)

It has to be kept in mind that the border of the image is not considered by
the algorithm in the described form.

2.2 Fuzzy Grey Scale Quantisation

Considering single grey values in the computation of the correlogram leads to
extensive calculations and high memory consumption (2562d correlogram en-
tries where d is the maximum distance considered). Therefore it is reasonable
to define classes of grey values instead. Such a definition also reflects human
perception: A member of the quality control staff will not look at single grey
values in the image. Instead he will describe the spatial correlation of grey
values using terms like light grey or very dark grey.

These vague terms lead to some kind of quantisation of the grey scale
using fuzzy sets [2, 6]. Chung and Fung proposed an algorithm for fuzzy
colour quantisation which consists basically of a uniform quantisation of each
of the RGB channels using fuzzy sets [3].

A similar approach was chosen for quantisation of the grey scale in this
paper. The grey scale [0, 255] was quantised into seven grey classes which
were defined using fuzzy sets. In contrast to [3] a non-uniform quantisation
has been chosen to match with human perception. The fuzzy sets can be
considered as representing terms of a linguistic variable [7] Grey Value. A
graphical representation of the defined fuzzy sets is shown in Fig. 2.

2.3 Fuzzy Grey Scale Correlogram

The original algorithm for the computation of the colour correlogram as de-
scribed in [5] works only with single colour values. Thus the utilisation of
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Fig. 2. Definition of classes of grey values as fuzzy sets: black, almost black, dark,
middle, light, almost white, white (from left to right)

the fuzzy grey values proposed in Sect. 2.2 requires some modifications of the
original algorithm.

Equation (3) from the first step of the calculation can also be written as

λ
c,h

(x,y)(0) = χIc(x, y) (7)

with the characteristic function χIc of the set Ic. In the calculation of the
fuzzy grey scale correlogram the characteristic function is replaced by the
membership function of the fuzzy set C of grey values:

λ
c,h

(x,y)(0) = μC(I(x, y)) (8)

Here I(x, y) denotes the grey value of a pixel p = (x, y). The second step
of the algorithm conforms to the one given in [5]. In the last step of the
calculation the color histogram is used. The definition of the histogram (6)
can also be written as

hc(I) =
∑

p=(x,y)∈I

χIc(x, y) (9)

As in the first step the characteristic function of the set Ic has to be
replaced by the membership function of the fuzzy set C:

hC(I) =
∑

p=(x,y)∈I

μC(I(x, y)) (10)

3 Automatic Image Analysis

The proposed method for automatic analysis of images of steel sheets deformed
by an impact resistance test includes several processing steps:
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• contrast enhancement,
• calculation of the fuzzy grey scale correlogram,
• classification using a fuzzy-if-then-rule base.

In the first step a contrast stretching operator is applied to the images to
compensate for different lighting conditions. Naturally, this step works on the
crisp image data as delivered by the camera system. After this step the full
range of grey values is utilised.

The second step calculates the fuzzy grey scale correlogram which was
described in Sect. 2.3. To speed up calculations the membership degrees of all
256 possible grey values to the seven fuzzy grey values are precomputed and
stored in an array for look-up.

In the last step the classification is carried out using a fuzzy-if-then-rule
base. It has turned out that it is sufficient to consider only a few significant en-
tries of the fuzzy grey scale correlogram. These are used as linguistic variables
for the formulation of fuzzy-if-then-rules of the form

IF (γ(k)
ci,cj

(I) = T1) AND (γ(l)
cm,cn

(I) = T2) AND . . . THEN Quality = Q.

Here T1 and T2 denote terms of the linguistic variables used in the rule. The
term sets include the terms VERY SMALL, SMALL, MEDIUM, BIG and
VERY BIG though the corresponding fuzzy sets differ between the linguistic
variables. Q is one of the three quality classes.

The method proposed here has been implemented and used as an experi-
mental system for classification of steel sheets with respect to coating adhe-
sion. A set of pre-classified images was used for the experiments. Half of the
images of each class were used in defining the fuzzy-if-then-rules. The other
images were then classified using the described method. At the end of the
experimental phase the system classified all evaluation images correctly.

4 Conclusions and Further Work

The colour correlogram was designed to overcome the problems with color
histograms in the field of image indexing and content-based image retrieval.
Nevertheless the experiments indicate that the fuzzy version of the correlo-
gram is also applicable to the problem discussed in this paper.

The results of the experimental phase are very promising but so far there
were only very few examples of medium or bad quality sheets. Therefore fur-
ther evaluation is necessary especially regarding the lower qualities.

Work will also be done with respect to the number of quality classes. As
mentioned in the introduction sheets of class II can still be used for certain
products. Therefore it is conceivable to define subclasses corresponding to the
product requirements regarding the coating quality. Possibly it is helpful to
include an analysis of the fissure that results from the deformation of the steel
sheet because the regularity of the fissure seems to correspond to the quality
of the coating. Also results of other test procedures can be included.
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Fuzzy Methods in Knowledge Discovery

Eyke Hüllermeier

Department of Mathematics and Computer Science
Marburg University

As a response to the progress in digital data acquisition and storage tech-
nology, along with the limited human capabilities in analyzing and exploiting
large amounts of data, the field of knowledge discovery in databases (KDD) has
recently emerged as a new research discipline, lying at the intersection of statis-
tics, machine learning, data management, and other areas. According to a widely
accepted definition, KDD refers to the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable structure in data. The
central step within the overall KDD process is data mining, the application of
computational techniques to the task of finding patterns and models in data.
Still, KDD also involves further important steps, notably data preparation, data
cleaning, incorporation of prior knowledge, and interpretation of data mining
results.

Fuzzy sets have the potential to support all of the steps comprising the
KDD process. Their capability to interface quantitative patterns with qualitative
knowledge structures expressible in terms of natural language can considerably
improve the comprehensibility of extracted patterns, which is a point of major
importance in data mining. Fuzzy information granulation allows for trading
off accuracy against efficiency and understandability of models. Amongst other
things, fuzzy sets can also be useful in data reduction, in dealing with incomplete
and heterogeneous data, in modeling prior knowledge, or in interactive data
mining, where the mining process is under partial control of the analyst.

The talk will focus on fuzzy data mining in the sense of searching for vague
(fuzzy) patterns in data. This problem will be illustrated and motivated by sev-
eral examples justifying the use of fuzzy techniques for representing and handling
patterns in a formal way. Moreover, the problem of evaluating vague patterns
will be highlighted, and a systematic approach for constructing corresponding
scoring functions will be outlined. Finally, some pitfalls and difficulties that come
along with fuzzy extensions of data mining methods will be pointed out.
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Action Games: Evolutive Experiences

Antonio J. Fernández and Javier Jiménez González
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This paper defends the employment of Evolutive Algorithms (EAs) in
action games by showing their virtues for both offline and online opponent con-
trolling. The paper proposes (and also compares) several EAs applied offline in the
solving of a classical path finding problem and used to provide intelligence to au-
tonomous agents (e.g., the opponents) in an action computer game. The paper also
presents an EA that has been successfully employed in real time (i.e., online) in an
action game in which a player controls a military vehicle in a hostile enemy region.
Keywords: Evolutive algorithms, game programming, real time.

1 Introduction and Related Work

Game programming [1] is an exciting research field because of two main rea-
sons: (1) computer games (CGs) are a business that generates millions of
dollars each year, and (2) game programming has a heterogeneous nature
that involves very different computer science techniques such as graphical
techniques, artificial intelligence algorithms, interactive music, etc.

CGs are becoming one area of increasing interest, and proof of it is the
fact that the traditional relation between cinema industry and computer game
world is now being reversed, that is to say, in the past, many CGs were directly
based on film scripts whereas nowadays, many films are directly based on
CGs stories (e.g., Resident Evil, Mortal Kombat, Final Fantasy series, Street
Fighter, Tomb Raider, Super Mario, ..., just to name a few).

The aim of CGs is to provide entertainment to the player(s), and in the
past, research on commercial CGs was mainly focused on having more real-
istic games by improving graphics and sound (i.e., having higher resolution
textures, more frames-per-second, ...etc). However, in recent years, hardware
components have experienced exponential growth and players, with higher
� This work has been partially supported by projects TIC2001-2705-C03-02, and

TIC2002-04498-C05-02 funded by both the Spanish Ministry of Science and Tech-
nology and FEDER.
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processing power computers, demand high quality opponents exhibiting intel-
ligent behavior.

In many action commercial CGs, the opponent (i.e., the enemy) atti-
tude is basically controlled by a fixed script previously programmed that of-
ten comprises hundreds of rules, in the form if condition C if true then
execute action A. This is really a problem as these scripts are often complex
programs that contain “holes” easily detected by an experienced player. As
consequence, the reality simulation is drastically reduced and thus the inter-
est of the player. This problem relies in the category of “artificial stupidity”
[2]. To solve the problem, existing games employ some kind of artificial intel-
ligence (AI) technique with the aim of giving intelligence to opponents and
making the game more attractive to increase the satisfaction of the player.

In this context, AI plays an important role in the success or failure of
a game and some major AI techniques have already been used in existing
CGs [3]. Evolutionary algorithms2 (EAs) offer interesting opportunities for
creating intelligence in strategy or in role-playing games [4] and, in Internet,
it is possible to find a number of articles related with the use of evolutive
techniques in CGs [4], although, in general, most of them are dedicated to
show the excellence of the use of EAs in Game Theory and, particularly, in
the solving of multi-person decision problems [5, 6]. E.g., [6] shows how to use
GAs for evolving control sequences for game agents although the focus is on
bot navigation (i.e., exploration and obstacle avoidance). EAs have also been
used in games for pathfinding [7].

Surely, EAs are one of the least-understood technologies in the game AI
field, and scientific literature lacks proposals of using EAs in realistic action
CGs (those in which we are interested on). For us, there are two main reasons
for it: (1) game AI and academic AI often evolve separately in spite of the fact
that game and academic communities have much to learn one from each other,
and (2) EAs are resource intensive and require much time for development and
tuning which does not make them adequate for in-game learning [7]. In fact,
in game development, each resource is very important to allow the simulation
in real time, and EAs are computationally expensive, so that traditionally,
game developers have preferred another AI techniques such as Artificial Life,
Neural Networks, Finite State, Fuzzy Logic, Learning and Expert Systems,
among others [3, 7, 8].

In spite of their cost, EAs are considered as a promising technique that
is on the forefront of game AI [9, 10, 11]. Moreover, game programming has
already made successful use of EAs offline, that is to say, the EA works on
the user computer (e.g., to improve the operational rules that guide the oppo-
nent actions) whereas the game is not being played and the results (e.g., im-
provements) can be used further online (i.e.. during the playing of the game).
Through offline evolutionary learning, the quality of opponent intelligence in
2 We use this term in a broad sense making reference to any kind of evolutive

procedure, including genetic algorithms and genetic programming.
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commercial games can be improved, and it has been proved that it is more
effective than opponent-based scripts [12]. Also, genetic algorithms have been
used to evolve combat strategies for agents or opponents between games (i.e.,
an offline learning) as it was done in the games Unreal Tournament [13] and
bSerene [14]. In this sense, some realistic CGs that have used genetic algo-
rithms are return Fire II, The Creatures Series, Sigma and Cloak, Dagger and
DNA and Quake III [15, 16].

With respect to the online use of EAs in action computer game program-
ming (i.e., EAs are executed in real time at the same time that the game is
being played and simulated graphically in a computer), literature lacks studies
about it. Perhaps the reason is that realistic action computer games require a
real time graphical simulation that consumes a lot of computational resources
(e.g., sound, music, and graphics) and EAs are cost; the direct consequence is
that their combination seems to be too expensive computationally. Thus, to
make a correct use of EAs in game programming one has to consider all these
aspects and specifically has to know that the game AI and the game graphi-
cal simulation have to be executed together in real time. Speaking about the
online evolutive learning, we have only found one paper in this sense, [17],
that proposes methods and strategies for the online coevolution of agents in
an action game.

In this paper, we encourage the use of EAs to provide, in action games,
AI to autonomous agents controlled offline as well as online. We describe our
experience on the employment of EAs on a specific military action game where
the scenario conditions change dynamically. We describe (and compare) some
EAs used for offline control in this game and, also implement an EA that can
be used online: the secret consists of simplifying the set of actions executed by
the opponents in order to reduce drastically the search space and accelerate
the computation process.

2 The Game

We have implemented a game [18] that recreates an armed forces plan to
transport a military vehicle (i.e., the user vehicle), placed in a hostile enemy
region (i.e., the scenario), from an origin position to a destination one. Each
scenario (also called indistinctly region or world) consists of a two-dimensional
non-toroidal heterogeneous hostile dynamic grid-world. The world is hetero-
geneous because the terrain is not uniform, hostile because there exist enemy
agents whose mission is to destroy the user vehicle, and dynamic because the
solution search tree continuously change depending on the actions executed
by the vehicle and the enemy agents. The purpose of the game is to move the
military vehicle from the origin location to the destination position avoiding
the natural obstacles of the world and the direct confrontation with the en-
emy agents in order to prevent the vehicle destruction. To do so, the vehicle
is capable to execute some elementary actions such as go straight ahead one
single grid square and turning 90◦ to its left or to its right.
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Initially, the vehicle has some resources that must be kept in a controlled
way until reaching the target. Another objective of the game is to optimize
the expense of these resources: fuel, resistance and time. (The multi-objective
consists of minimizing the time and maximizing both fuel and resistance at the
end of the game.) The resources decrease during the game: time continuously
decreases, fuel goes down according to the action executed by the vehicle (e.g.,
4 units to cross a flat ground, 1 unit to turn 90◦, 8 units to cross a terrain
with gravel,...,etc) and resistance decreases with the attacks from the enemies.
There exists also a timeout to limit the time to reach the target.

The game offers three kind of worlds with different sizes: 15 × 15, 30× 30
and 50× 50, and 4 scenarios for each of them. For each scenario, we have also
generated 5 test cases where the origin location and the target position differ
from one case to each other. Thus the game manages 60 different worlds; the
timeout is constant (300 units) and the fuel is variable according to the world
size; 250, 500 and 800 respectively for the worlds with size 15, 30 and 50.

The mission of the enemies is to destroy the vehicle or, alternatively, avoid
the vehicle reach the destination grid before timeout. If an enemy crashes into
the vehicle, then the vehicle is immediately destroyed. Each enemy has also
associated an area of shooting, that is to say a rectangular region around the
enemy, in which the vehicle is visible and the enemy can shoot the vehicle to
decrease its resistance.

3 Off-line Evolutive Experiences

Our first trial consisted of transforming the game in a simpler (non-interactive)
simulation in which the vehicle is an autonomous intelligent agent guided by
some EA. The simulation emulates the game on different scenarios to evaluate
the quality of our EAs to be used on action games. This means an offline
intelligence as there is no human player to control the vehicle in real time.

During the game simulation, the vehicle does not know exactly the target
position and is equipped with a position sensor that divides any world in
four zones by the current position of the vehicle and indicates the zone where
the target is (see Figure 1(left); the star points out the destination position).
The vehicle also owns a proximate sensor that provides extra information (e.g.,
enemy presence, obstacle absence and terrain nature) about the adjacent grids
located in the front of the vehicle as it is shown in Figure 1(medium).

The enemies are dynamic in the sense that they execute patrols following
the cycle North-East-South-West as it is indicated in Figure 1(right).

In the following, by simplicity, if a is a variable belonging to a data type
T , we write a : T , and if a is a value belonging to some data type T we
write a ∈ T . Also, we write T = (field1 : T1, . . . ,fieldn : Tn) to indicate
that T is the type composed by the set of all the tuples (a1, . . . , an) where
a1 ∈ T1, . . . , an ∈ Tn. Moreover, if a : T and a = (a1, . . . , an), then a.fieldi

denotes ai (1 ≤ i ≤ n). Below we show some of the data types used in the
code of our offline EAs:
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position = (val x : N, val y : N)

resources = (t : N, f : N, r : N, );

state = {success, timeout, death, withoutfuel, abort, outofrange, impassable};
terrain = {flat, target, river, fine gravel, puddle, mountain, bush, tree, hill};
grid = (nature : terrain, time cost : N, fuel cost : N)

enemy = (pos : position, . . .)

vehicle = (pos : position, res : resources, . . .)

Wn = ARRAY [1..n, 1..n] OF grid;

Fig. 1. (Left) Position sensor (Medium) Proximate sensor (Right) Patrol cycle

Basically, each world Wn is a grid bi-dimensional array of size n × n and,
abusing the notation, we write αi,j ∈ Wn to denote that αi,j is the grid po-
sitioned in row i and column j in the world Wn. Grids can be represented
as tuples or structures that contain the information about their nature (i.e.,
type of terrain) and some cost values (i.e., on time and fuel) that indicate the
amount of resources spent by the vehicle in case that this crosses a specific
grid. Each enemy has associated a position in the world that varies dynam-
ically during the game, and the vehicle is identified, in each instant of the
game, by a position inside the world and an amount of resources, i.e. time
(t), fuel (f) and resistance (r). Both the vehicle and each enemy maintain also
another information, not shown above, to register their actions for a further
visualization of the game simulation.

The game objective consists of finding one (optimal) sequence of move-
ments (i.e., a path, represented by a grid sequence associated to the vehicle)
that enables the vehicle to reach the destination position safely.

All our offline EAs were implemented without using crossover operators.
The reason is in the nature of the problem itself: observe that, in each stage of
the game, resource consumption has to be taken into account as this influences
the rest of the play. Thus, it is not easy to cross different paths since we have
to consider not only segments of the paths (e.g., as in a classical one point
or two point crossover) but also the correspondence between the resource
consumption in the crossover points. A discussion about the usefulness of the
crossover operator is beyond this paper and the reader is referred to [19].
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Our offline EAs used these parameters: pop size = 80, max generations ∈
{300, 400, 500} (depending on the world size), mutation rate = 0.01 and max-
imum length of chromosome = 250 (i.e., this parameter restricts the maximum
number of movements as it is indicated below).

3.1 A Rule-Based Prototype

Fisrtly, we implemented a rule-based prototype (RBP) that defines a fixed
script to control the vehicle. This script is composed by a set of behavior rules
obtained by following the approach3 given in [20]. The rules have the form
if direction sensor detects the target in zone i and proximate sensor informs
about the nature of adjacent grid j then do action k. Then information about
the terrain nature and the resource cost associated to a grid in the world was
used to optimize our set of behavior rules according to [20].

k ← 0

do{ v[k + 1].pos ← move vehicle according rules(v[k].pos)

en[k + 1] ← move enemies according cycles(en[k])

v[k + 1].res ← update resources(v[k].res, st)

i ← i + 1

}while (v[k − 1].pos �= (id, jd) ∧ % Success

v[k − 1].pos �= en[k − 1, j].pos (∀j ∈ {1, . . . , e}) ∧ % Death

res[k − 1].r > 0 ∧ res[k − 1].t < timeout ∧ res[k − 1].f > 0)

% Termination: some resource is exhausted

Fig. 2. Basic schema of the RBP algorithm

The basic RBP schema is shown in Figure 2. Variable k : N denotes the
iteration number and an expression a ← b indicates the assignment from
b to a; αid,jd

∈ Wn identifies the destination grid; st:state will contain the
reason of the termination of the algorithm that is identified by one of the
termination conditions of the loop do-while; v, and en are arrays of vari-
able length where v[k] and en[k,j] contain in the k’th-iteration, the infor-
mation associated, respectively, with the vehicle (i.e., position and resources
amount) and with the j’th-enemy, assuming that there are e enemies (for
1 ≤ j ≤ e). Note that v[0].pos corresponds with the starting position. Func-
tions move vehicle according rules/1, move enemies according cycles/1 and
update resources/2 should be clear from their identifiers and basically update
the state of the game in each iteration.
3 It is a modification since the EA proposed in [20] is applied on static worlds

without enemy agents i.e., basically it derives behavior rules to optimize a classical
path finding problem.
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As in the rest of all our offline EAs, we use this representation based on
arrays not only to solve the posed problem but also to keep a trace of the
movements executed by the vehicle and all the enemies in each instant of the
game with the further aim of visualizing the simulation of the game4

Results. This approach solved 29 of the 60 worlds (i.e., 48.3%), a poor
result although we also noted that this approach behaved much better on
simple worlds (i.e., those not too heterogeneous) than on complex ones.

3.2 An Evolutive Hybrid Solution

We also developed an Evolutive Program (EP) based on the RBP procedure.
Below we partially specify some new data types defined for the EP.

gen =(v : vehicle, en : ARRAY OF enemy);

chromosome = (path : ARRAY OF gen, length : N, reason : state, fitness : �);

A gen is a tuple that provides information about the vehicle and the en-
emies in certain instant of the game and a chromosome is a 4-tuple that
contains (1) a variable length sequence of genes that represents one of the
possible path associated to one of the (possibly intermediate) states of the
game5, (2) the length of this path (i.e., number of stages or instants of the
game played so far), (3) a value of termination (in case that the game is
over), and (4) a fitness value that measures the path quality with respect to
both target proximity and remaining resources amount. Note that, the last
gen stored in the path (i.e., ch.path[ch.length], for some ch : chromosome)
contains information about the last instant of the game played so far. The EP
schematic code is shown in Figure 3.

For currentGeneration ← 1 to max generations

For i ← 1 to pop size

Evaluate(pop[i],, αid,jd);

if better chromo(better,pop[i]) then better ← pop[i];

Mutate(pop);

Fig. 3. Simplified schema of the EP algorithm

The variable pop contains the chromosome population where
pop[i].path[1].v.pos identifies the origin grid (1 ≤ i ≤ pop size),
αid,jd

∈ Wn is as in the RBP, better:chromosome initially contains the best

4 E.g., the vehicle information is stored in v[0], v[1], v[2] . . . and so on.
5 In fact a chromosome represents the “story happened so far” i.e., if ch :

chromosome, then ch.path[i] and ch.path[i − 1] keep information about consec-
utive instants of the game, where an instant of the game is each of the discrete
stages that produce some change in the game state. Thus i numbers each of the
different game stages.
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path calculated by the RBP, and the procedure Evaluate/2 applies the RBP
algorithm taking as origin the last gen kept in chromosome pop[i], that is to
say, it applies the RBP procedure taking v[0] = pop[i].path[pop[i].length].v
and en[0] = pop[i].path[pop[i].length].en (see Figure 2). Observe that this
means a trial to complete the path stored so far in pop[i] in order to reach
the target. Of course, this EP is very dependant on the RBP algorithm and
thus on the quality of behavior rules used.

The fitness is calculated as the inverse of the Euclidean distance between
the position stored in the last gen of the chromosome and the destination posi-
tion6. A function call better chromo(c1,c2) defines a stratified fitness func-
tion that returns true if c1.fitness > c2.fitness, or c1.fitness = c2.fitness
and c2.path[c2.length].v.res ≤r c1.path[c1.length].v.res (i.e., c1 keeps more re-
source values than c2), and false otherwise, and where (t2, f2, r2) ≤r (t1, f1, r1)
iff t2 > t1, or t2 = t1 and f2 < f1, or t2 = t1 and f2 = f1 and r2 ≤ r1 (i.e., a
lexicographic ordering). At the end of the execution, better.path contains the
sequence of genes that compose the better path obtained, and better.reason
indicates if the simulation was successful (i.e., destination reached) or not.

The mutation is a grid offset: for some chromosome pop[i], one position
m (with 2 ≤ m ≤ pop[i].length), where pop[i].path[m].v.pos differs from the
origin location, is chosen randomly and transformed to an adjacent position
(if necessary, this is linked with the gen pop[i].path[m− 1] via the addition of
gens to the path to assure its continuity). Of course, the enemies have to be
taken into account in this mutation process. Basically, the mutation process
consists of replacing the gen pop[i].path[m] by a new gen g : gen where

g.v.pos.val x ← pop[i].path[m].v.pos.val x ± {0, 1}
g.v.pos.val y ← pop[i].path[m].v.pos.val y ± {0, 1}
g.en ← move enemies according cycles(pop[i].path[m − 1].en)

and also
pop[i].length ← m

The last sentence shown above truncates the path stored in pop[i] from
the mutated position so that, in next iterations, this can be completed by
procedure Evaluate/2 as explained above. Note that thsi is basically a path
reconstruction process.

Results. EP solved 45 worlds from 60 (i.e., 75%). Figure 3.2 shows the
time difference between the executions of the RBP (dark color line) and the EP
(light color line). The x-axis identifies the name of the distinct worlds whereas
the y-axis indicates the time (in seconds) spent in the simulation execution.
The gaps in the graphic indicate that the simulation finished unsuccessfully;
note that EP solves more cases and takes less time than RBP.
6 i.e., for some ch : chromosome, ch.fitness contains the inverse of√

(ch.path[ch.length].v.pos.val x − id)2 + (ch.path[ch.length].v.pos.val y − jd)2.
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Fig. 4. Comparison of time (measured in seconds) (RBP-EP)

Fig. 5. Comparison of time (measured in seconds): Left (RBP-EP); Right (EP-
EP+)

3.3 An Improved Evolutive Solution

We modified EP by defining a new mutation operator implemented as a
roulette wheel selection based on the number of remaining generations (i.e.,
max generations− current generation). This means that the gen to mutate
is not more chosen randomly with the same probability for all the candi-
date genes (as done in the EP algorithm), and its probability to be chosen
increases according to the relative position of the gene in the path: higher
position, higher probability. As consequence, it is likely that the first part of
the path will remain intact and the path will be reconstructed, via function
Evaluate/2, from a nearer-to-the-target gen. This technique often gives good
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results as the different paths stored in the population “differ less” in their
initial segments than in their final ones. We call this algorithm EP+.

Results. EP+ improved EP notably: from 60 worlds, 40 (i.e., 66’6%) were
improved, 15 (i.e., 25%) largely improved (we speak of an improvement about
85% or of reaching a solution in a world that previously was not solvable with
EP), 4 cases (6’6%) made worse (i.e., they needed more time although it was
only 1.09% more in the worst case) and 1 case (1’6%) exactly equal. Figure 5
shows a comparative graphic wrt. time between the EP (light color line) and
EP+ (dark color line).

3.4 Hybrid (EP+)-A*

A classical approach for solving path finding problems to optimality is the
well known A* algorithm. We applied the A* algorithm to a modified version
of the game (that we call static) where the enemies do not execute patrols
but they maintain a fix position during the game simulation. The heuristic
function used was the Euclidean distance from a grid to the target one. To
the real cost, we added the time cost to cross a grid. As it was expected, we
obtained an optimal solution to the static version of the game7.

We then proposed the (EP+)-A* algorithm that hybridizes the EP+ and
A* algorithms to combine the excellent behavior of A* in static worlds with
the flexibility of the EP+ in dynamic worlds. Initially, (EP+)-A* considers,
as starting point, the optimal static solution calculated by using A* in the
static version, and then applies an EP+ modification consisting of replacing,
in the Evaluate call in Figure 3, the application of the RBP algorithm by the
A* algorithm to re-construct the path as explained in Section 3.2. The path
variations obtained by this modification generate better paths.

Results. This proposal gave excellent results as we obtained a success-
ful simulation in 60 worlds (i.e., 100%). Figure 6 shows the time comparison
between the EP+ algorithm (dark color line) and this new hybrid algorithm
(EP+)-A* (light color line). Note that, in most of the cases, the time is also
optimized. There is just one draw case (identified as m30-4e) wrt. time; how-
ever the fuel resource was optimized using the hybrid algorithm (EP+)-A*.

We also created 10 new complex worlds with very extremely difficult cases
on which the RBP, EP and EP+ algorithms did not find a solution. However,
the (EP+)-A* algorithm returned a solution in all these cases.

Although successful our offline proposals were computationally cost (wrt.
time) to be employed online in a real game.

4 Online Evolution for the Game

The experience accumulated so far with our offline EA versions highlighted
that we had to follow an alternative strategy for using EAs online in a real
7 In fact, the static version of the game consisted in a classical path finding problem.
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Fig. 6. Comparison of time (measured in seconds): EP+ vs.(EP+)-A*

game. Firstly, we replaced the offline game simulation by an online version
where we let a human player control the vehicle and decide its actions in real
time at the same time that each of its enemies is driven by a very simple
evolutive algorithm whose purpose is to avoid, as soon as possible (i.e., by
minimizing the game time), that the (player-controlled) vehicle reaches the
target. In each stage of the game, each enemy has information about its (Eu-
clidean) distance to both the human player (i.e., the vehicle) and the target
position. This information is then translated into three degrees that depend
on the world size. For a given world Wn and distance d, the degrees are: near
(d ∈ [0.0, n/6.0]), medium (d ∈ (n/6.0, n/3.0]) and far otherwise. As conse-
quence, each enemy receives information only in three discrete degrees. For
each enemy, there are two targets (i.e., the player position and the destination
location) so that there exist only 8 combinations of rules in the form of: if
human is at degree1 and target at degree2 then the enemy does some action
A. To accelerate the calculus we only offer 4 possible actions (enough for our
action game) to be executed by the enemies. These actions are shown below:

• shot the player vehicle;
• attack the player vehicle (i.e., advance directly to destroy it by a collision);
• move nearer to the vehicle destination (in order to protect it) and,
• move randomly (i.e., move up, down, left or right). This action is added to

make the enemy behavior less predictable and introduce intentional enemy
errors in order to increase the user satisfaction (see Section 5).

A chromosome represents one of the possible actions to
be executed by the enemy and is a value of type action =
{shot, attack, move destination, random move}. Observe that actions
can be coded using just 2 bits as there are only four possibilities. The
simplified evolutive code that guides each enemy is shown in Figure 7 where
enemy : chromosome is initialized to a random move and, to the end of the
algorithm execution, enemy will contain the action to be executed by the
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enemy ← random move;

InitializePopulation(pop);

(degreev, degreed) ← CalculateDistance(αe, αv, αd, world size);

For generation ← 1 to max generations

For i ← 1 to pop size

Evaluate(pop[i],enemy, degreev, degreed, res);

if fitness(pop[i], degreev, degreed, res) < fitness(enemy, degreev, degreed, res)

enemy ← pop[i];

.............Apply the genetics operators............

Fig. 7. On-Line evolutive algorithm to control each opponent

enemy; αe, αv, αd ∈ position represent respectively, the position of the enemy,
the vehicle and the destination; pop contains the chromosome population
and the function CalculateDistance obtains the degree information of
the enemy position wrt. the player and destination positions as explained
above in the form of a tuple (degreev : degree, degreed : degree) where
degree = {near, medium, far}.

The function Evaluate receives an individual and uses the distance degree
information and the resource amount of the vehicle (stored in variable res :
resources where resources is defined as in Section 3) to compute the best
action to be executed by the enemy. The function fitness/1 calculates the
quality of a chromosome by considering all the possible situations considering
again both the distance-degrees and the remaining resource amount. This
is done by given some weights to the best actions and penalizing the worst
situations for the enemy. The lowest fitness, the best chromosome.

We use a classical one-point crossover on the actions and the swap op-
erator for mutation. The parameters used were the following: pop size=5,
max generations=10, crossover rate=0.9, mutation rate=0.01.

Surprisingly the game works fine in real time8!!. We observe two key points
for the success: the low number of generations and the small size of the popu-
lation. Figures 8 and 9 visualize two different states of the game execution in
real time. The game was implemented using the standard library OpenGL
that provides advanced 2D/3D graphics capabilities.

5 Conclusions and Future Work

This paper highlights the power of evolutive techniques to be used to pro-
gram action games that also demand a computationally expensive (graphical)

8 Note that now, it is not necessary to register the sequence of movements, as done
in our offline EAs, as the game visualization is done online together with the
execution of our EA!.
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Fig. 8. The enemy shots the vehicle

Fig. 9. Game over with vehicle destruction

simulation. We have shown, by proposing and comparing different EAs specif-
ically coded to control autonomous agents in the simulation of a war game,
that EAs are adequate for offline use. This is an expected result as EAs are
time-consuming to develop and resource intensive when they are in execution.
More surprisingly, we have also demonstrated, on reverse to the general belief,
that EAs (designed to control the opponent intelligence) can be successfully
executed online (in real time!!) during game simulation: the key for this online
use consists of evolving much quicker than offline evolution. To do this, we
have simplified the set of actions to be executed by the opponents in order to
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reduce drastically the search space and to accelerate the computation process.
In this line, [17] proposes different methods to do online coevolution of agents.

Now, the question to answer is: should we use evolutive/genetic algorithms
for game programming?. In the following we briefly discuss this question.

No, we should not. Many game programmers suggest that EAs require
too much CPU power and are very slow to produce useful results.

Yes, we should. Genetic (and evolutive) algorithms appear as one of the
most promising game AI techniques [9]. As it is well known, evolutive/genetic
algorithms are very good to find a solution in complex or poorly understood
search spaces, and require a considerable computational effort that slows down
the optimization process. Even although this is true, we defend the offline
evolutive learning that is not too dependant on the execution time.

Moreover, as it has been shown in the paper, evolutive algorithms can be
employed successfully on real-time. To do so, the evolution must happen very
much quicker than offline evolution. We have shown how, by minimizing the
set of actions to be executed by the opponent, this is possible. Of course,
one may argue that, if there are only four actions, why should there be an
EA to calculate the following action to be executed by each enemy if an easy
enumeration algorithm would find the optimal solution in more real time?
This is true although another issues have to be considered as for example the
random component and the intentional errors of the opponent that make the
game more attractive to the user. As argued in [2], it is important to provide
human intelligence to the opponent to obtain a better simulation of the reality,
but this does not correspond to make opponent necessarily smarter as, after
all, the player is supposed to win.

Game development demands more and more research in a number of very
“hot” areas such as: (1) Multiplayer computer games [21], (2) Mobile game de-
velopment (i.e., games developed to run on mobile or cellular phones) and (3)
Simulation of army forces combat strategies. With respect to (1), EAs could be
applied to solve optimization problems focused in the reduction of networking
resources requirements in distributed interactive real-time applications. With
respect to (2), the proliferation and popularization of mobiles phones have
produced the interest of game industry. This field demands professional game
developers and active research on both hardware and software. Although the
interest maybe in the local embedding of games into the phones, the area of
downloadable games from the mobile phone seems to be particularly inter-
esting [22]. With respect to (3), we think that EAs may be applied offline
to simulate the emergent behavior of individuals (e.g., soldiers) in a combat
between different army forces. Some AI techniques have already been applied
in this sense in Hollywood films.

In any case, we claim that EAs are a unexplored AI technique in game
programming and that they deserve particularly a wider study to be applied
as a game AI technique. Moreover, we also assure that the future of game
development is promising, and this paper encourages the cooperation between
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the communities of the academic computer science researchers and the game
industry programmers.
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When designing artificial neural network (ANN) it is important to opti-
mise the network architecture and the learning coefficients of the training algorithm,
as well as the time the network training phase takes, since this is the more time-
consuming phase. In this paper an approach to cooperative co-evolutionary optimi-
sation of multilayer perceptrons (MLP) is presented. The cooperative co-evolution
is performed on the MLP and training set at the same time. Results show that this
co-evolutionary model reaches an optimal MLP with generalization error compara-
ble to those presented by other authors but using a smaller training set, co-evolved
with the system.

1 Introduction

To use fully the potential of Artificial Neural Networks (ANN), we have to
search for the structure, connectivity and initial weights of the network, and
then use a training algorithm (such as QuickProp (QP) [10] or RPROP [28]).
The drawback of gradient based algorithms is that reaching the optimal solu-
tion is slow and it is not guaranteed. Moreover, it depends on the number of
training epochs and learning parameters.

Evolutionary Algorithms (EAs) are capable to design ANNs because they
are efficient searching methods. This kind of algorithm maintains a population
of solutions (coded in the individuals). Furthermore, the problem of how to
construct the training set is open and it must be done using some heuristic
rule.

Usually, ANN practitioners do not search for a network that memorises the
training patterns, but a network with generalisation abilities to classify those
patterns not included in the training set. For this reason, the initial set is
split into three sets for training, validating and testing respectively. There are
different methods to construct these sets. The most used are: Partition into
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three separate sets [4], cross-validation [14, 9] and bootstrapping [3, 31, 21].
The best method for our purpose is the first one, because we want to reduce the
training time using a smaller set (cross-validation and bootstrapping would
take more time).

A “Species” is a kind of individual that represents the same kind of solution
for one problem. Hence, two individuals with binary genome that represents a
solution for the traditional OneMax [12, 16] problem for 100 bits are included
into the same “specie”. Co-evolutionary algorithms, employing more than
one interacting “species” evolving under different evaluation functions, can
be used to solve hard optimisation problems in a more efficient way than
single species EA [18]. Moreover, the cooperative model is suitable when the
problem solution is decomposable into subcomponents and there are strong
interdependencies among them [26].

This paper describes a co-evolutionary system where two populations are
evolved. The first one is a population of MLPs and the second one is a popu-
lation of training sets, so the co-evolutionary algorithm evolves not only the
weights and structure of the MLP individual but also the training set it uses
for training.

We have used JEO [1] (Java Evolutionary Objects) for implementing the
co-evolutionary algorithm. JEO is a Java framework for Evolutionary Compu-
tation experiments. JEO is layered on a virtual distributed resources machine
named DRM [20][19]. DRM makes easier JEO experiments distribution using
Internet. Both tools, DRM and JEO are included in DREAM (Distributed
Resources Evolutionary Algorithms Machine) project [24][2].

This paper is organised as follows: section 2 presents the state of the art
of co-evolutionary algorithms; section 3 describes the co-evolutionary model
proposed in this paper. Section 4 explains the experiments and the obtained
results and section 5 presents a brief conclusion and work in progress.

2 Co-evolutionary Algorithms: State of the art

EAs [22] are global optimisation methods, based on the theory of natural
evolution. The EAs perform a multidirectional search keeping a population
of potential solutions, creating information, exchanging it and using it for
exploring the search space in any direction.

The population evolves: in each generation the best solutions mate, while
the worst, disappear. In order to distinguish between good and bad solutions,
an objective function (evaluation or “fitness” function) that measures the
quality of the solution is used. The quality of the solution is measured using
the distance between the individual and the optimal solution.

Most EAs involve a single “species”, that is, a single genetic encoding
aimed at finding solutions to one problem. Most of the authors include the
optimising parameters in the individual genome, so the search has to be ap-
plied to a bigger search space. To avoid this problem, others make a different
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proposal developing co-evolutionary systems because they are able to use very
large search spaces [18, 32].

Co-evolutionary algorithms [25] involve more than one “specie” (popula-
tions) interacting among them. Each population evolves separately in an EA,
and to obtain the fitness of an individual of a population, some individuals of
other populations are taken into account.

According to the dependency between species (interactions between pop-
ulations), the following classification could be done:

• competitive co-evolutionary algorithms [29], where the fitness of an indi-
vidual depends on competition with other individuals from other species
(each species competes with the remainder).

• cooperative co-evolutionary algorithms [26], where the goal is to find in-
dividuals from which better systems can be constructed. The fitness of an
individual depends on its ability to cooperate in solving target problem
with individuals from other species.

Many authors have combined successfully co-evolution with different meth-
ods. However, we will briefly describe some proposed models for evolving ar-
tificial neural networks.

In a first work on co-evolution, Hillis [17] addressed the problem of finding
optimal sorting networks (regarding the number of comparators). He used a
simulated evolution approach and got impressive results, given the difficulty of
the problem. However, he introduced an important bias in his search algorithm
by initializing the population with the first 32 comparators of the best known
construction. The search was limited around this local optimum and, thus,
the final solution still used these initial 32 comparators.

Then, some authors proposed to use cooperative models to design only the
network architecture, like Moriarty and Miikkulainen [23] developed a method
for designing ANNs based on two EAs: a population of nodes and another of
networks (different ways of combining nodes of the first population). The
nodes are coded using floating point vectors that represent weights.

Zhao [32] suggests to decompose a pattern recognition problem in several
functions (one per class); then assign a module-network to each function.
Thus, the whole classifier (network) consists of N sub-systems, and these sub-
systems (module-networks) are searched by evolution using several EAs. In
[33], the focus of the discussion is on the evaluation of the different population
individuals and applying the co-evolutionary model to evolutionary learning
of radial basis function ANNs.

Garćıa-Pedrajas et al. [11] developed SYMBIONT, a model that tries to
develop subnetworks (modules) instead of whole networks. These modules,
that must cooperate, are combined forming ensembles that make up a network.
The fitness assignment is based on competition within species and cooperation
among species.

Hallinan and Jackway [15] propose a cooperative feature selection algo-
rithm which utilises a genetic algorithm to select a feature subset in con-
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junction with the weights of an ANN. Each network was encoded as a single
binary string (160 bits long), with each eight bits representing a single integer
in the range 0-255 (representing either a feature or a weight). Each network
was encoded as a binary string. This coding might lead to a lack of precision,
and good solutions could be lost due to the limitations of the representation.

Other authors present non-cooperative methods, like Smalz and Conrad
[30] use two evolved separately: nodes, divided into clusters, and a population
of networks that are combinations of neurons, one from each cluster. This
method neither carries out competition among the neurons of the same cluster
nor enforces cooperation among the different clusters of neurons.

As far as we have found, there is no approach to search for both the ANN
and the minimum training set to train an ANN that solves a problem.

3 The cooperative co-evolutionary model

In this work, we are interested on optimising not only the MLP structure and
weights, but also the training set the network will be trained with.

We propose a model where two species are evolving in a cooperative way.
Both the MLP structure (architecture and weights) and the training patterns
should be optimised. Thus, our model consists of an EA with two populations:

• Population of TRNSET : individuals that represent a training set are
included in this population. One individual included in this population
represents which patterns are selected to construct a training set.

• Population of MLP: this population includes a set of MLP networks for
evolving the weights and the structure in layers. One individual represents
a MLP with its architecture and weights.

3.1 Proposed model operation

Proposed model consists of two parts (see figure 1):

Fig. 1. Proposed model operation: to obtain the fitness of an individual, some
individuals of the other population are taken into account.

EA to optimise TRNSET.
Each individual represents a training set. This training set includes patterns
randomly chosen from the original training set of the problem. Each individual
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represents trnset. The number of genes in the individual is equal to the total
training patterns included, denoted by n. Gene i will be true if the training
case i is included in the trnset, and false if it is not.

The operators used for this EA are traditional AG operators: one-point-
crossover and flip-flop mutation because the objetive is an EA as simple as
possible (and it is using a binary genome).

The TRNSET population evolves following the breeding, evaluation and
rewarding steps until a fixed number of generations have been completed.
Each step performs the following:

Breeding step breeds a new population of children using a tournament selec-
tion and the mutation and crossover operators.

Evaluation step is the point of the algorithm where MLP and TRNSET pop-
ulations exchange information. For fitness evaluation, one trnset selects
randomly two mlps (mlp1 and mlp2) from the MLP population. That
MLP is trained on the trnset and its classification ability obtained on the
validation set. The trnset fitness is the average of classification errors on
the validation set using both mlp1 and mlp2.

Rewarding step decides what individual survives for the next generation using
generational replacement. This step includes an elitist individual.

EA to optimise MLP (architecture and weights).
The proposed co-evolutionary model is based on the G-Prop method (opti-
misation of MLPs using an evolutionary algorithm); since G-Prop has been
described and analysed out in previous papers, thus we refer the reader to
[5, 6, 7] for a full description. The evolved MLP should be coded into chro-
mosomes to be handled by the genetic operators, however, G-Prop uses no
codification, instead, the initial parameters of the network are evolved using
specific variation operators such as mutation, multi-point crossover, addition
and elimination of hidden units, and QP training applied as an operator to
the individuals of the population.

The EA optimises the classification ability of the MLP and at the same
time it searches for the number of hidden units (architecture) and the initial
weight setting.

The main EA steps are the same as those for TRNSET population:

Breeding step breeds a new population of children using genetic operators.
Evaluation step evaluates each mlp using two training sets (from TRNSET

population). The mlp is trained using the trnset1 and then, its classi-
fication ability is obtained on the validation set. The process is repeat
using the trnset2. The mlp fitness is the average of both validation error
percentages.

Rewarding step decides what individual survives for the next generation using
generational replacement with the best mlp for elitism.

The collaboration steps and the rest of the algorithms may be consulted
in figure 2.
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Fig. 2. Both populations evolve on different EAs but they join to check the end of
the evolution and to calculate the fitnesses (evaluation phase).

4 Experiments and results

In these experiments, the Glass problem was used. This problem consists of
the classification of glass types [27]. The results of a chemical analysis of glass
splinters (percent content of 8 different elements) plus the refractive index
are used to classify the sample. This dataset was created based on the glass
problem dataset from the UCI repository of machine learning databases. The
data set contains 214 instances. Each sample has 9 attributes plus the class at-
tribute: refractive index, sodium, magnesium, aluminium, silicon, potassium,
calcium, barium, iron, and the class attribute (types of glass).

The main data set was divided into three disjoint parts, for training (with
107 patterns), validating(with 54 patterns) and testing(with 53 cases). In order
to obtain the fitness of an individual, the MLP is trained using the trnset
coded in an individual from the TRN population; its fitness is established
from the classification error with the validating set. Once the EA is finished
(when it reaches the limit of generations), the classification error with the
testing set is calculated: this is the result shown as Test.

Table 1 shows the average results for 20 executions using 15, 20, 25 and 30
generations as end-condition. The first column shows the number of genera-
tions. The following four columns show the results for MLP population. The
table shows the best percentage of classification error using the validation set,
column 2. The third column includes the classification error percent using the
Test set for the best MLP network. The fourth column shows the size of the
best MLP (measured as the number of weights or number of parameters) .
The fifth column shows how many training patterns includes the trnset used
for the best MLP network.
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Table 1. Co-evolutionary algorithm results using 15, 20, 25 and 30 generations.

Generations Best Validation Test Size Patterns

15 0.28 ±0.01 0.32 ±0.02 201 ±104 54 ±5

20 0.28 ±0.01 0.31 ±0.02 242 ±114 55 ±6

25 0.27 ±0.01 0.32 ±0.03 164 ±82 56 ±3

30 0.26 ±0.01 0.30 ±0.02 188 ±82 54 ±5

Results show how we can get better MLP; by using more generation, the
error classification for validation and test. Moreover, the size of the MLP
is decreased with the generation number. It decrease is because if the MLP
evolves during more time, the EA eliminates not useful neurons, so the final
size is smaller.

Let us compare this result with those of other authors. Table 2 shows the
evaluation results of several algorithms for the same problem; G-Prop in [7],
QP, those presented by Prechelt [27] and those presented by Grönroos [13].
This table shows the average classification error on the test set, the network
size (measured as number of weights or number of parameters), the error and
size corresponding to the individual that obtained a smaller error, and the
network size of the smallest individual (and its error).

Table 2. Results for the Glass problem compared with results obtained using QP and those
presented by Prechelt using RPROP, Grönroos using a GA with Kitano codification and G-Prop
with default parameters. The best result is obtained by Castillo et al. using G-Prop where the
classification error for test is 32% using a MLP with 252 weights.

Method Error Size

Prechelt 33 ± 5 350

Grönroos 32 ± 5 350

QP 40 ± 5 374

G-Prop 32 ± 1 252 ± 85

If we compare the classification error for the Test set of all algorithms,
we find 32 is the best result (G-Prop algorithm) getting a standard deviation
of 1. co-evolutionary algorithm obtaing the best error classification for test
sets using 30 generations: is 30% with standard deviation equal to 2%. That
means the co-evolutionary algorithm presents better results than G-Prop using
around 51, 4% of all training patterns. Hence, the co-evolutionary algorithm
is better than G-Prop.

If we compare now the MLPs size we find that G-Prop finds networks
bigger than the co-evolutionary algorithm. This difference is because the co-
evolutionary algorithm uses less patterns so the MLP network has to learn less
data than the original G-Prop. In any case, we could include multi-objetive
criteria to obtain even smaller networks. This kind of multiobjetive goal is an
objetive for the next version of the co-evolutionary algorithm.
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5 Conclusions and Work in Progress

This paper presents a co-evolutionary method to optimise both the MLP
architecture (number of hidden units and initial weights) and the training set
used to optimise those networks.

These new algorithms present a new way for constructing training sets
with less patterns than the original one, thus decreasing the training time we
have to use with the MLP. The new trnset may be used in other algorithms
to decrease the running time.

For this implementation we propose a simple algorithm that includes in-
teractions populations only during the evaluation step. However, it is the first
step for evolving not only the structure of the network but the training, vali-
dation and test sets.

However, a training set for good one ANN need not be the same for another
ANN, so our purpose will be to make a new implementation getting not only
the patterns that are included in the optimal training set, but the rules we
can use to get these optimal paterns.

The co-evolutionary algorithm complexity may be too much for normal
computers to process, so we are thinking too in a parallel version based on the
Deme Model [8] including two kinds of demes, one for TRNSET populations
and another one for MLP population.
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This paperdescribes a proposal for increasing performances when
using Parallel Genetic Algorithms. We apply a new operator that has been
recently described within Genetic Programming domain, the plague. By
means of a series of experiments on a benchmark problem, we show that
computational effort can be reduced when looking for solutions by means of
Parallel GAs.

1 Introduction

Genetic Algorithms (GAs) are one of the Evolutionary Algorithms (EAs) more
widely known and employed.

Gas are inspired by the natural evolution theory first presented and de-
scribed by Darwin [2]. The aim is to endow computers with the capability
for autonomously solving problems when the solution and way of solving is
unknown. They are commonly applied when no algorithm capable of solving
the problem at hand in a reasonable time is known. Many times, researchers
apply this kind of techniques to optimization problems.

Despite the advantages described for EAs in literature, all these techniques
feature a common problem: they often require large computing resources and
time for attaining their goals. This is due to both the difficulty of problems
that researchers face, and also the way EAs work, by iteratively evaluating
a large number of candidates solutions, and making them evolve until a suc-
cessful solution is found [1].

This problem can be partially alleviated by employing parallel algorithms
and parallel computing architectures. Several researchers have applied these
set of techniques to EAs for the last few years [9, 10, 3]. Nevertheless, if the
difficulty of the problem is large, any improvement on the algorithm will be
welcome to be added to the parallel model.

In this paper, we employ a Parallel Genetic Algorithm, that is improved
with a new operator with the aim of improving both, quality of solutions and
also reducing the time required for reaching those solutions.
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The paper is structured in the following way: Section 2 shows how paral-
lelism can be added to Evolutionary Algorithm. Section 3 describes the new
operator, while section 4 deals with the way of measuring results. Section 5
describe the experiments that have been performed and section 6 shows the
results obtained. Finally, we present our conclusions on section 7.

2 Evolutionary Algorithms and Parallelism

Usually, EAs require large computing resources for solving real-life problems.
This is due to the large number of individuals to be evaluated, and also the
large number of generations -iterations- required until the convergence process
leads to the solution. The time required for finding an enough useful solution
may be extremely large.

During the last few years, several proposals have been described for allevi-
ating this problem, and commonly, this solutions try to apply some degree of
parallelization to the basic algorithm. There are important differences among
the possible alternatives when applying parallelism, and usually depend on
the EA we deal with. Among the available studies on the field, we have to
mention Cantu-Paz [9] for Genetic Algorithms and Koza [10] and Fernandez
[3] for Genetic Programming (GP).

When an evolutionary algorithm is parallelized, several alternatives are
available:

- Parallelization at the level of the individual. Fitness values are computed
on different processors simultaneously.
- Parallelization at the level of the population. The population is distributed
among several smaller ones, and all of them are simultaneously run on dif-
ferent processors, so that the basic algorithm is performed within each of
the populations, and some individuals travel among populations with a given
frequency (see figure 1). This model is know as the Island Model.

There is a common opinion about the advantages of the Island Model [3, 9].
Nevertheless, any improvement for reducing the computing time required by
the algorithm, without deteriorating the quality of solutions, would be very
welcome.

In this research we apply the Island model. The basic algorithm is thus
the following one, considering a master process that is in charge of managing
communication among the subpopulations:

1. Initialize the population.
2. Evaluate all of the individuals in the population and assign a fitness value

to each one.
3. Select individuals in the population using the selection algorithm.
4. Apply genetic operations to the selected individuals.
5. Insert the result of the genetic operations into the new population.
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6. If the population is not fully populated go to step 3.
7. Select a number of good individuals and send them to the master process.
8. Receive individuals from the master proccess.
9. If the termination criterion is reached, then present the best individual

as the output. Otherwise, replace the existing population with the new
population and go to step 3.

While the master process runs the following algorithm:

1. For every population, receive individuals and send them to the next pop-
ulation.

2. Go to step 1.

This way of implementing the communication process allows to easily mod-
ify the communication topology. Each worker process sends a set of individuals
to the master, and this resends them to a different worker process, according
to the communication topology.

Although this algorithm may lack communication bottle necks, given that
the aim of this research is not to study the speedup of the algorithm, but the
quality of solutions and iterations required, this implementation is enough
useful.

Fig. 1. Island Model

3 The Plague

A novel proposal for reducing the effort required for finding solutions by means
of Genetic Programming was presented the last year: the plague [4]. The

Improving Parallel GA Performances by Means of Plagues 517



operator has also been applied to parallel GP with successful results [5], and
only very recently, the first attempt to extend the idea to GAs have been
described [6].

In this paper we try to extend the study to parallel GAs.
When a difficult problem is solved by any EA, a large population of indi-

viduals is usually required, and also a large number of generations have to be
computed. This means that the computational cost is frequently extremely
large, even when a parallel implementation is employed.

On the other hand, when populations of individuals are randomly gen-
erated, they are usually distributed along the search space, and when gen-
erations are computed, the individuals converge to a solution (may be not
optimal) [1]. The result is that after a number of generations, all the popula-
tion is located on a very narrow area of the search space. In [4], researchers
proposed the idea of reducing the size of the population as the generations
are computed, so that we avoid to have many similar individuals in the pop-
ulation -individuals located in the same area of the search space. To do so,
a new operator is described, the plague. It works by removing a fix number
of individuals from the population every generation. Although this process
cannot continue indefinitely (after a number of generations no individual is
present in the population), a series of experiments have shown the usefulness
of plagues for reducing computing time, while assuring the quality of solutions
[4].

This paper presents a study on the advantages of plagues on Parallel Ge-
netic Algorithms. We show that the parallel model can benefit from Plagues.

Plagues act on the algorithm’s main loop -shown above. It is applied after
evaluating the quality of individuals, once they are classified according to the
quality. The plague removes a number of individuals, choosing them among
those featuring worst fitness values.

4 Measuring effort in Genetic Algorithms

When Genetic Algorithms are applied results are usually compared employing
curves that show the relationship between number of generations computed
and quality of solutions obtained. Although this way of measuring results
allows us to make comparisons of results when different experiments employ
the same computing effort every generation, it is not valid when different
numbers of individuals are employed in different experiments; this is because a
generation that computes a large number of individuals will require larger time
than another evaluating a smaller population. In this case, the appropriate
measure is the total number of individuals evaluated for obtaining a given
quality of solutions.

In the experiments presented in this paper, we have employ the latter way
of measuring effort: total number of individuals evaluated from the begin-
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ning of the experiment until a given generation is reached. This value is then
compared with the fitness value obtained in that generation.

5 Experiments

For performing experiments, we have employed a well-known problem com-
monly used for comparing different GA techniques. This problem is described
in [7], and basically consists of a trap function with well-known properties and
its difficulty can be regulated easily. The values of the deceptive functions de-
pend on the number, u, of bits set to one in their kbit input substring. The
fitness increases with more bits set to zero until it reaches a local optimum,
but the global maximum is at the opposite extreme where all the bits in the
input are set to one. The order k traps are defined as:

fk(u) =

{
k − u − d if u < k,

k if u = k,
(1)

where d is the fitness difference of the two peaks, which in our case is
always set to one. The trap functions become more difficult by increasing the
number of bits k in the basin of the deceptive optimum and by reducing d.

In the experiments, we varied k from 4 to 8. The fitness functions are
formed by concatenating fully-deceptive trap functions and adding their in-
dividual contributions. We determined to set the length of the individuals to
l = 20 ∗ k bits. For example, for the 6-bit trap problem, the individuals are
l = 120 bits long and their fitness is calculated as

∑20
i=0 f6(u6i), where u6i

denotes the number of ones in the substring that starts at position 6i.
The experiments were carried out using GALib [8]. Only small modifica-

tions to the source code were necessary to include the plague operation.

6 Results

We show in this Section the results that have been obtained for the trap
function described above. We have set the difficulty of the problem, so that
experiments with different population size are required: the more difficult the
problem the larger population is required for solving it.

For each of the experiment we have performed 50 independent runs, always
employing the same set of parameters. Each of the curves presented has thus
been computed by averaging the results obtained along the 50 runs. Two
kinds of graphs are presented: one of them shows the average quality of the
best solutions in the 50 runs, when compared with the effort employed (as
described in section IV). The second kind of graphs presents the number of
times that the optimal solution is find in the 50 runs.
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We have begun the set of experiments by reducing the difficulty of the prob-
lem to K=4. We employ the Island Model using two populations and 5000
individuals (2500 individuals per population).

Figure 2 shows results obtained. We can see that when no plague is ap-
plied, the results are better than those obtained with a plague removing 100
individuals per population every generation.

Fig. 2. Island Model with and without plagues. k=4, 2 populations with 2500
individuals each (at the beginning of the process). Plagues remove 100 individuals
every generation from each of the population.

Similarly, fix-sized populations obtained the optimal value more times than
populations undergoing plagues. Nevertheless, in previous research employing
Genetic Programming, results proved that plagues were more effective with
large populations. Therefore, we decided to increase the difficulty of the prob-
lem in order to experiment with larger populations (large populations are not
justified for problems featuring small difficulty).

Our second step was thus to increase the difficulty of the problem and also
the size of the population.

Figure 3 shows results obtained with k=5. We notice that results favour
now the use of plagues. Even when the improvement of quality obtained is
slightly better than in the experiments that doesn’t employ the plague, the
number of times that the maximum value is obtained with plagues is signifi-
cantly larger than when using the classical fix-sized populations in the Island
Model.

Similar experiments have been performed employing values for k such as 6
and 8, but now using larger population sizes.
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Fig. 3. Island Model with and without plagues. k=5, 2 populations with 5000
individuals each (at the beginning of the process). Plagues remove 50 individuals
every generation from each of the population.

Figures 4 and 5 show results obtained for both values of k. We can notice
again that experiments employing plagues reach better values. Furthermore,
the difference in quality of solutions is even larger now.

Fig. 4. Island Model with and without plagues. k=6, 2 populations with 5000
individuals each (at the beginning of the process). Plagues remove 100 individuals
every generation from each of the population.

Summarising, we can say that results obtained by plagues when applied
to GAs confirms the findings for Genetic Programming previously published.
Plagues have proven to improve results also for GAs when large sizes of pop-
ulations are required, at least for the problems we have tested.

7 Conclusions

We have presented in this work an application of a new genetic operator -called
plague- to a parallel Genetic Algorithm.
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Fig. 5. Island Model with and without plagues. k=8, 2 populations with 6000
individuals each (at the beginning of the process). Plagues remove 100 individuals
every generation from each of the population.

We have taken for benchmark purposes a well-know problem from the GA
field, the trap function; this problem embodies some interesting features that
allows to modify their difficulty by means of a parameter.

We have studied the problem with different values for the difficulty. We
have specifically studied the average quality of best solutions over a set of
runs, and also the number of times that the maximum value is reached within
the set of runs. The general trend is that plagues are more useful when the
difficulty of the problem is large -larger population sizes are required. When
this is the case, both the average quality of solutions and also the number of
times that the maximum is reached significantly improve. Results obtained
for Parallel GAs are similar to those previously obtained for GAs.

Although the policy for removing individuals that have been employed in
this research is extremely simple -a fix number of individuals per generation-
we plan in the future to employ diversity measures for the population, so
that plagues only will remove individuals when maximum improvement will
be guaranteed.

Another problem that is related with the plagues as described in the pa-
per, is the problem of emptying populations when all individuals have been
removed. We will also study in the future different policies that allows to
introduce new individuals when the size of populations is under a threshold
value.

This research has been partially funded by Spanish Ministry of Science and
Technology, under Project TRACER TIC2002-04498-C05-01.
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The Protein Structure Prediction (PSP) problem is considered here.
This problem is tackled with evolutionary algorithms (EAs) using the HPNX energy
model. A classic penalty-based hybrid EAs, and two hybrid EAs are compared in this
context. These hybrid EAs are based on the utilization of backtracking-based oper-
ators for mutation and recombination. They represent two different approaches for
treating a constrained problem as the PSP: repairing infeasible solutions, and main-
taining feasibility at all times. Both hybrid EAs perform better than the penalty-
based EA, although the difference is more marked in the case of using the repairing
procedure.

1 Introduction

One of the key stones of modern Biology is the so-called Central Dogma. Ac-
cording to it, the information stored in DNA molecules is transcribed into
RNA molecules that will in turn direct the production of proteins. The latter
happen to be extremely important in all cellular processes, since they serve
multiple functions: carriers, catalysts, regulators, etc. This function is ulti-
mately determined by the spatial conformation of the protein. Like pieces
in a gigantic puzzle, molecules fit into one another, blocking or activating
different biochemical reactions.

The spatial conformation of a protein is the outcome of different concurrent
factors. First of all, a protein is a sequence of amino acids. Each of these
aminoacids can be from one out of twenty different types, and it is connected
to its neighbors in the sequence by a peptide bond. While this bond is relatively
rigid, a certain amount of rotation can take place around other atomic links.
Now, the protein sequence is subject to electrostatic forces among constituent
atoms, van der Waals forces, interaction with the solvent, etc. As a result
of these different forces, the sequence quickly folds itself, reaching a unique
low-energy state (the so-called native state).

It is not difficult to realize how important the capability of ascertaining the
native conformation of a protein from its amino acid sequence is. As mentioned
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before, it may allow determining what role it will play in the cell. Conversely,
some kind of reverse engineering can be conceived, so that proteins can be
designed to serve a certain purpose, e.g., as a drug for a target disease.

Different methods can be used to determine this spatial conformation.
On one hand, structural methods can be considered. These try to identify
several well-known topological blocks within the sequence, e.g., α−helices,
β−sheets, etc. This can be typically done using Machine Learning techniques
such as neural networks [1, 2]. Alternatively, ab initio methods are based on
the assumption that the native state of a protein is the minimum energy
conformation, and try to find this globally optimal conformation. To this
end, analytic methods are in general out of question for finding these minima:
trying to solve equations with thousands of degrees of freedom is an intractable
problem as of today.

Simplified models are thus crucial elements in this context. The simplifica-
tion arises from (i) abstracting the forces involved in the folding process, (ii)
discretizing potential amino acid locations, and (iii) simplifying the compu-
tation of the function describing the energy of the conformation. As a conse-
quence of these simplifications, it makes sense to talk about Protein Structure
Prediction (PSP) rather than about Protein Folding Problem (PFP), since it
is just the final conformation we are interested in (and not in the dynamics
of the folding process).

It turns out that solving PSP instances to optimality is a very hard prob-
lem, even when these simplified models are considered [3, 4, 5]. One of the
difficulties of the problem is the existence of geometrical constraints in the
final conformation of the protein (i.e., self-avoidance in the chain, forbidden
torsion-angles, etc.). Indeed, constraint-satisfaction approaches (based for in-
stance on exact techniques such as Branch and Bound) have been applied to
this problem, e.g., see [6, 7, 8]. Exact techniques are however inappropriate
to deal with the combinatorial explosion of the space of conformations for
increasing sequence lengths. Hence, the use of heuristic techniques such as
Evolutionary Algorithms (EAs) is appropriate.

EAs have been applied to the PSP problem in a number of works. Typi-
cally, the constraints of the problem have been treated using a penalty function
that measures to which extent these constraints are violated, e.g., see [9, 10].
Other approaches are based on repairing infeasible solutions, e.g., [11], or in
maintaining feasibility at all stages of the algorithm [12]. We precisely build
on this latter work, evaluating all three approaches on the basis of a more
general general energy model for evaluating conformations. To be precise, we
consider the HPNX model, an extension of the classical HP model of Dill [13].
In this work, those approaches not based on penalty functions rely on the
embedding of a backtracking algorithm within the EA. Hence, a hybrid EA
is obtained.
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2 Background on Lattice Models for the PSP

As mentioned before, a protein is a sequence of amino acids. Discretizing the
potential locations of these in the folded conformation is one of the typical
simplifications of the problem. To do so, the sequence is assumed to be em-
bedded in a certain regular lattice. This lattice can have different topologies.
The simplest case is the 2-dimensional one, where for instance, square, tri-
angular, and hexagonal lattices can be defined (see Figure 1). More complex
(and certainly more realistic) lattices can be defined in three dimensions. For
example, one can consider tetrahedral [14] or cube-octahedral [15] lattices.

Fig. 1. Examples of protein conformations in the square lattice (left), triangular
lattice (middle) and in the hexagonal lattice (right) under the HP model. Dark (resp.
white) polygons represent hydrophobic (resp. hydrophilic) amino acids.

Once a certain lattice is assumed, a second simplification takes place in the
energy model. In this sense, one of the most popular of such reduced models
is the Hydrophobic-Hydrophilic model (HP model) of Dill [13]. In this model,
each amino acid is classified into two classes: hydrophobic or non-polar (H), and
hydrophilic or polar (P), according to their interaction with water molecules.
Hydrophobic amino acids in the sequence tend to be packed together in a
hydrophobic core, to avoid contact with the solvent. This is modeled in the
HP model as follows: any feasible conformation (i.e., self-avoiding embedding)
is assigned a free energy level; each pair of hydrophobic amino acids being
topological neighbors in the conformation contributes a contact free energy
ε < 0 (say, ε = −1), provided that these two amino acids are not adjacent in
the sequence; any other topological contact does not contribute anything to
the total free energy. Notice that the native state of a protein is a low-energy
conformation (it is actually conjectured to be the global minimum). Thus, the
number of HH contacts is maximized in the native state.

The HP model can serve as a first, rough approximation of the free en-
ergy of a conformation. It nevertheless exhibits some problems. One of these
is degeneracy: a rather large number of different conformations can have the
same minimal energy according to the model [16]. It is thus difficult to ascer-
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Table 1. Energy function in the HPNX model.

H P N X

H −4 0 0 0

P 0 1 −1 0

N 0 −1 1 0

X 0 0 0 0

tain which the “right” native conformation is (at least, any search algorithm
based on this model would have no guidance in this sense). For this reason,
alternative models have been defined. The HPNX model [17] is one of these.
This model is an extension of the basic HP model, in which polar amino acids
are split into three classes: positively charged (P), negatively charged (N), and
neutral (X). This allows defining a more fine-grained energy model, described
in Table 1. It has been empirically shown in [7] that the degeneracy of the
HPNX model can be two orders of magnitude smaller than that of the HP
model.

3 Evolutionary Algorithms for the PSP Problem

The application of EAs to the PSP problem involves determining appropriate
representation and operators. We will proceed to discuss briefly these aspects
in this section.

3.1 Representation of Folded Conformations

According to the description of discrete models provided in Section 2, a protein
conformation is a self-avoiding embedding of the corresponding sequence in a
certain lattice. Such an embedding can be expressed in three ways:

(a) external coordinates: the position of each amino acid of the sequence is
expressed in terms of an external absolute reference frame.

(b) internal coordinates: positions are expressed in terms of an internal, vari-
able reference frame. Typically, a moving reference frame located in the
last amino acid placed is used.

(c) distance matrices: no direct representation of the positions for each amino
acid is used; on the contrary, distances between amino acids are stored.

Option (a) has the drawback of hindering the manipulation of solutions
for reproduction. For example, keeping the continuity of the sequence can be
difficult during recombination. This is also true for (c), with the additional
complexity of having to infer the actual embedding from the distance matrix.
Of course, these problems are not unsolvable, and repair mechanisms can be
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used (e.g., see [11]). Nevertheless, (b) is usually a more amenable choice for
evolutionary algorithms.

If the reference frame co-moves with the last amino acid placed, it turns
out that one only needs specifying which of the neighboring positions in the
lattice will be used for the next amino acid. Thus, the folding is expressed as a
sequence of n−1 moves with respect to the previously place amino acid, where
n is the length of the sequence (the location of the first amino acid is fixed).
Obviously this representation depends on the particular lattice topology con-
sidered; for example, each location has three neighbors in a triangular lattice,
four neighbors in a square lattice, or six neighbors in an hexagonal lattice.
This raises a second issue, i.e., the precise representation of each move.

Two major schemes for representing internal moves can be found in the
literature: absolute moves [18] and relative moves [19]. In the former, the
reference frame translates along the lattice as new amino acids are placed,
but always keep a fixed orientation. For example, in the 2D square lattice
four moves are possible: North, South, East, and West (see Figure 2–left).
Thus, a conformation is expressed as a sequence s ∈ {N, S, E, W}n−1. When
relative moves are used, not only there is a translation but also a rotation.
In the 2D square lattice, the North move is always aligned with the last two
amino acids placed. Hence, three moves are allowed: Forward, Turn Right, and
Turn Left, and conformations are expressed as sequences s ∈ {F, TL, TR}n−1

(a fixed initial orientation of the reference frame is assumed) – see Figure
2–right.

Fig. 2. (Left) Absolute moves in a 2D square lattice. The black cube represents
the current location. (Right) Relative moves in a 2D square lattice. The black cubes
represent the current location and the previous one.

Clearly, many sequences of moves violate the self-avoidance constraint,
and hence represent infeasible solutions. This issue will be treated latter.
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3.2 Reproduction as a Tree-Traversing Procedure

Let us consider the typical reproductive operations of recombination and mu-
tation from a general point of view. Beginning with recombination, assume
two solutions x = x1 · · ·xk and y = y1 · · · yk are the parents selected. Now,
the recombination itself can be regarded as a process in which information
is incrementally taken from the parents to construct the descendant. This
process starts from a completely unspecified solution, and subsequently gene
values from any of the parents are selected and assigned to the descendant
until a full solution is obtained [20]. Thus, each step involves determining from
which parent a gene value (i.e., a move in our case) is transmitted. The whole
process can then be assimilated to traversing a decision tree (Figure 3).

Fig. 3. Recombination can be assimilated to traversing a decision tree.

Any of the leaves of the tree constitutes a possible outcome of the re-
combination process. Some of them –those leaves located at depth k– are
feasible solutions (the so-called dynastic span [21] of the parents). The re-
maining ones represent failed attempts, dead-ends in the construction of the
descendant. This is generally the case, and is particularly true in the PSP
problem: given two solutions being recombined, a partial solution z = z1 · · · zi

may be constructed such that no suffix w = wi+1 · · ·wk, wj ∈ {xj , yj} exists
for which zw is a feasible solution.

A blind recombination procedure would simply take random decisions,
and ignore whether the final outcome is feasible or not. However, smarter
operators can be defined. More precisely, blind recombination can be upgraded
as follows: random decisions are taken whenever a choice is possible, but
whenever a dead-end is found, backtracking is performed, and a new decision
is attempted at a previous level. This way, it is ensured that a feasible solution
will be finally obtained (of course, as long as at least one of x and y is
feasible; if both of them are infeasible, it cannot be ensured obtaining a feasible
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solution). The process has obviously an added cost that must be taken into
account though.

The situation is slightly different in the case of mutation, although some
resemblance with the previous analysis can be found. A blind mutation oper-
ator would randomly change a certain position of the sequence of moves, and
proceed with the resulting solution, either feasible or not. A smarter procedure
can be defined whereby feasibility restoration is attempted after the random
change. The restoration process reduces to traversing another decision tree in
which all possible moves are allowed at any level, except at the point where
the random change was introduced (this change at this position is preserved).
There are two additional differences with respect to the recombination pro-
cedure: (i) the restoration process starts at the position next to the changed
one (i.e., previous moves are only affected if the backtracking takes place be-
yond the changed position), and (ii) the first decision explored at any level is
the move present in the original solution (i.e., original moves are preserved if
possible).

Notice that –unlike recombination– the smart mutation process described
before does not require the original solution to be feasible: it will produce a
feasible solution no matter this original solution. Hence, it can be conceived
not only as a mutation operator, but also as a repair mechanism.

4 Empirical Results

The experiments have been done with an elitist generational EA (popsize =
100, pc = .9, pm = 0.01) using linear ranking selection (η = 2.0). A maximum
number of 105 evaluations has been enforced. In order to provide a fair com-
parison, the internal backtracking steps performed by some operators have
been accounted and deducted from this computational limit (each backtrack-
ing step counts as 1/(n−1) evaluations). The fitness function used consists of
calculating the free energy of the conformation using the function described
in Table 1. In case the self-avoidance constraint is violated, those amino acids
involved in an overlapping do not contribute to the free energy of the con-
formation, and a penalty term is added to the fitness of the solution (2M ,
where M is the number of amino acids overlapped). The test suite considered
comprise five sequences with 27 up to 36 amino acids. These have been taken
from [7], and are shown in Table 2. A 2D square lattice has been considered
in all experiments.

Three evolutionary approaches have been tested: penalty-based EA, repair-
based EA, and feasible-space EA. The first one uses single-point crossover and
random mutation; the second one uses single-point crossover and backtracking-
based mutation; finally, the third one uses backtracking-based recombination
and mutation. The results are shown in Tables 3 through 5.

Several performance trends can be observed. First of all, the results for
absolute encoding are better than those for relative encodings. This holds
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Table 2. Sequences used in the experimentation.

S1 HXXNNHHHHXPHXHXHHHNHPPHHXPH

S2 HXXXHHHHNHXHHXXNHPHHPHXNXHP

S3 HPHHNXHHPNHHHHXXXHXPXHHHPXH

S4 HHXHHPHHXHHHHHHPPHHHHHXNHHHHHHH

S5 XHXNHXXHNPHXXHPXHXXHXNHPXHNXHPXHXPHX

Table 3. Results of the penalty-based EA (averaged for 50 runs).

Absolute Encoding Relative Encoding
sequence best mean ± σ best mean ± σ

S1 45 39.28 ± 3.42 45 36.90 ± 3.52
S2 42 34.32 ± 3.11 37 32.14 ± 3.03
S3 45 39.76 ± 2.66 46 37.02 ± 3.22
S4 72 61.52 ± 4.73 64 58.14 ± 3.95
S5 42 37.52 ± 2.28 39 31.92 ± 3.21

Table 4. Results of the repair-based EA (averaged for 50 runs).

Absolute Encoding Relative Encoding
sequence best mean ± σ best mean ± σ

S1 49 43.82 ± 2.97 49 42.70 ± 2.65
S2 42 39.78 ± 2.11 42 39.06 ± 2.12
S3 46 41.98 ± 2.12 46 42.28 ± 2.31
S4 72 67.36 ± 3.24 72 67.28 ± 2.62
S5 50 43.96 ± 2.95 47 39.26 ± 3.10

Table 5. Results of the feasible-space EA (averaged for 50 runs).

Absolute Encoding Relative Encoding
sequence best mean ± σ best mean ± σ

S1 48 39.89 ± 2.78 45 40.26 ± 2.79
S2 42 36.96 ± 2.13 42 37.42 ± 1.78
S3 46 39.50 ± 2.40 45 41.02 ± 2.13
S4 72 63.92 ± 3.15 72 65.76 ± 3.01
S5 45 38.90 ± 2.29 41 36.68 ± 2.85

for the three algorithms, and is consistent with other results for the basic
HP model [12]. Regarding the performance for a fixed type of encoding, it
can be seen that the best results are those of the repair-based EA, and the
worst results are those of the penalty-based EA. The feasible-space EA per-
forms only slightly better than the penalty-based EA. The additional cost of
backtracking recombination does not seem to be compensated by a significant
quality gain. Simply using bactracking mutation appears as the best option:
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infeasible solutions are repaired to a nearby feasible solution, and hence can
be considered as a form of local improvement, as in memetic algorithms [22].

5 Conclusions

We have studied the application of evolutionary algorithms to the PSP prob-
lem under the HPNX model. It has been shown that the typical approach
based on penalty functions can be outperformed if intelligence is deployed
on the reproductive operators. However, an EA working purely in the fea-
sible space does not provide the best results. On the contrary, temporarily
crossing the feasibility barrier yields better results. These results support pre-
vious findings by Krasnogor et al. [10] that asserted the need for allowing the
traversal of the infeasible space. The use of the repair mechanism –actually, a
local improver– appears to have a major influence in the performance though.
In some sense, the best results seem to be associated with the exploration
of the boundary between feasible and infeasible regions, in which the repair-
based EA works. This is also in full compliance with previous results of similar
approaches on the simplified HP model [12].

Future work will be directed to analyze the possibilities for using addi-
tional local improvement operators. There is a very appealing line of work in
connection with the advanced memetic algorithms developed in [23]
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68 Bratislava, Slovak Republic,

In the paper the structure of quasi-copulas on discrete scales is studied.
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1 Introduction

In fuzzy logics with the interval [0, 1] as the set of truth values the conjunctions
are usually modeled by triangular norms, disjunctions by triangular conorms
and negations by strong fuzzy negations. In practical situations the set of
truth values is often discrete. Then as logical connectives discrete analogs of
triangular norms, conorms and fuzzy negations are considered. In this contri-
bution we will deal with a finite discrete scale L(n) = {0, 1, . . . , n} and study
quasi-copulas as a special conjunctive type of operators. As disjunctive op-
erators, for example, dual quasi-copulas can be considered. Many results for
quasi-copulas and dual quasi-copulas (as well as for copulas and dual copulas)
can be studied in the framework of 1-Lipschitz aggregation operators since all
these operators are special types of 1-Lipschitz aggregation operators.
Having an information on values of an operator at diagonal points (x, x) ∈
L2

(n), we can look for all quasi–copulas with given values at these points. It
turns out that the set of all such quasi–copulas always possesses a greatest
and a smallest element. Another problem is the problem of uniqueness of a
quasi–copula with given values at diagonal points. The outlined problems are
studied in Sections 4 and 5 and form the gist of the paper. In Section 2, some
basic notions are introduced and in Section 3 the structure of quasi–copulas
on L(n) is studied.
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2 Preliminaries

We start with recalling some basic notions. Let n ∈ N be any positive integer.
Denote by L(n) the finite chain of (n + 1) elements, L(n) = {0, 1, . . . , n} (with
usual order).

Definition 1. A (binary) aggregation operator A on the set L(n) is a function
A : L2

(n) → L(n) with properties:

(A1)A(0, 0) = 0, A(n, n) = n,
(A2)A is non–decreasing, i.e., A(x, y) ≤ A(x∗, y∗) for all x, x∗, y, y∗ ∈ L(n)

such that x ≤ x∗, y ≤ y∗.

An aggregation operator A satisfying the Lipschitz property with constant 1,
i.e.,

|A(x, y) − A(x∗, y∗)| ≤ |x − x∗| + |y − y∗|

for all x, x∗, y, y∗ ∈ L(n), will be called 1-Lipschitz aggregation operator.
Distinguished classes of 1-Lipschitz aggregation operators are the classes of
copulas and quasi-copulas.

Definition 2.
A (two-dimensional) copula on the set L(n) is a function C : L2

(n) → L(n) with
properties:

(C1) C(x, 0) = C(0, x) = 0 C(x, n) = C(n, x) = x, for each x ∈ L(n),
(C2) C(x, y) + C(x∗, y∗) ≥ C(x, y∗) + C(x∗, y) for all x, x∗, y, y∗ ∈ L(n) with

x ≤ x∗, y ≤ y∗.

Definition 3.
A (two-dimensional) quasi-copula on the set L(n) is a function Q : L2

(n) → L(n)

with properties

(Q1)Q(x, 0) = Q(0, x) = 0 Q(x, n) = Q(n, x) = x, for each x ∈ L(n),
(Q2)Q is non-decreasing,
(Q3)Q is 1-Lipschitz.

Quasi-copulas and copulas on L(n) are obviously 1-Lipschitz aggregation
operators with neutral element n and annihilator 0. Evidently, each copula
on L(n) is a quasi-copula, but not vice-versa. Recall that the dual of a quasi-
copula Q on L(n) is an operator Q∗ defined by Q∗(x, y) = x+y−Q(x, y). Inde-
pendently of this definition dual quasi-copulas can be introduced as functions
D : L2

(n) → L(n) which are non-decreasing, 1-Lipschitz and satisfy properties
D(x, 0) = D(0, x) = x and D(x, n) = D(n, x) = x for each x ∈ L(n), i.e., as
1-Lipschitz aggregation operators with neutral element 0 and annihilator n.

Finally, recall that each 1-Lipschitz aggregation operator A on L(n) satis-
fies

W(n) ≤ A ≤ W ∗
(n), (1)
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where W(n) and W ∗
(n) are the �Lukasiewicz t-norm and t-conorm on L(n), re-

spectively, given by

W(n)(x, y) = max (x + y − n, 0), W ∗
(n)(x, y) = min (x + y, n).

Quasi-copulas (and also copulas) on L(n) satisfy:

W(n) ≤ Q ≤ M, (2)

where M is the minimum operator. In statistics, where copulas and quasi–
copulas play an important role, these bounds are called the Fréchet–Hoeffding
bounds.

3 Quasi–copulas on L(n)

In this section we describe the structure of quasi–copulas on L(n). The set of
all quasi-copulas on L(n) will be denoted by Q(L(n)). Recall that x ∈ L(n) is an
idempotent element of a quasi–copula Q ∈ Q(L(n)) if Q(x, x) = x. Elements
0 and n are trivial idempotents of each quasi–copula.

Lemma 1. Let a be an idempotent element of a quasi–copula Q ∈ Q(L(n)).
Then

Q(x, y) = x∧ y, (x, y) ∈ {a, . . . , n}×{0, . . . , a} ∪ {0, . . . , a}×{a, . . . , n}.

Proof. Let y ≥ a. Then from the monotonicity of Q we have a = Q(a, a) ≤
Q(a, y) ≤ Q(a, n) = a, which gives Q(a, y) = a. Similarly Q(x, a) = a for all
x ≥ a.
If y ≤ a then from the 1–Lipschitz property of Q we obtain Q(a, y) = Q(a, y)−
Q(a, 0) ≤ y, and on the other hand, a − Q(a, y) = Q(a, a) − Q(a, y) ≤ a − y

gives Q(a, y) ≥ y, i.e., Q(a, y) = y. Similarly, Q(x, a) = x for all x ≤ a.
Finally, consider any point (x, y) ∈ {a, . . . , n}×{0, . . . , a}. Due to the previous
results and properties of Q we obtain

y = Q(a, y) ≤ Q(x, y) ≤ Q(n, y) = y,

which means that Q(x, y) = y = min(x, y) = x ∧ y. The proof for points
(x, y) ∈ {0, . . . , a} × {a, . . . , n} is analogous.

Proposition 1. Let Q ∈ Q(L(n)) be a quasi–copula with idempotent elements

0 = x0 < x1 < . . . < xk−1 < xk = n. Then

Q(x, y) =

⎧⎨
⎩

xi−1 + Qi(x − xi−1, y − xi−1) if (x, y) ∈ {xi−1 + 1, . . . xi − 1}2,

for some i ∈ {1, . . . , k}
x ∧ y otherwise,

(3)
where Qi is a quasi–copula on the set {0, . . . , xi − xi−1} (i.e., on L(xi−xi−1))

for each i ∈ {1, . . . , k}.
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Proof. By the previous claim, Q(x, y) = x ∧ y at all points

(x, y) ∈ L2
(n) \

n⋃
i=1

{xi−1 + 1, . . . , xi − 1}2 .

Moreover, for each i ∈ {1, . . . , k} the function Qi given by Qi(u, v) = Q(u +
xi−1, v+xi−1)−xi−1 is a quasi–copula on the set {0, . . . , xi−xi−1}, and for all
(x, y) ∈ {xi−1+1, . . . , xi−1}2 evidently Q(x, y) = xi−1+Qi(x−xi−1, y−xi−1).

Another interesting problem is the cardinality of the set Q(L(n)). For
discrete copulas, according to Mayor and Torrens [7], it is known that
|C(L(n))| = n !. Moreover, the number of all associative copulas on L(n) (i.e.
divisible t–norms) is equal to 2n−1. However, similarly to the case of discrete t–
norms, see, e.g. [3, 5, 1], an explicit formula for the number of all quasi–copulas
on L(n) is still unknown. We have developed a program for determining all
quasi–copulas for any fixed n ∈ N. The number of all quasi–copulas, copulas
and associative copulas depending on n is illustrated in Table 1.

n Q C associat. C
1 1 1 1
2 2 2 2
3 7 6 4
4 42 24 8
5 429 120 16
6 7436 720 32
7 218348 5040 64
8 10850216 40320 128

Table 1 Number of quasi–copulas, copulas and associative copulas on
L(n).

4 Quasi-copulas with given diagonal section

Let Q be a quasi-copula on L(n). Its diagonal section, i.e., the function δQ :
L(n) → L(n), δQ(x) = Q(x, x) satisfies the following properties:

(S1) δQ(0) = 0, δQ(n) = n,
(S2) δQ(x) ≤ δQ(y) for all x, y ∈ L(n), x ≤ y,
(S3) δQ(y) − δQ(x) ≤ 2(y − x) for all x, y ∈ L(n), x ≤ y,
(S4) δQ(x) ≤ x for each x ∈ L(n).

The question arises whether for each function δ : L(n) → L(n) satisfying
properties (S1) − (S4), briefly called diagonals, there is some quasi-copula Q

such that δQ = δ, i.e., whose diagonal section coincides with δ.
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Let Δ(n) be the set of all functions δ : L(n) → L(n) satisfying properties
(S1)− (S4). It can be shown that for each δ ∈ Δ(n) the function Q̃ defined by

Q̃(x, y) = (x ∧ y) ∧
[
δ(x) + δ(y)

2

]
, (x, y) ∈ L2

(n), (4)

is a quasi-copula (also a copula) with δ
Q̃

= δ ([t] is the floor of a number t).

It turns out that the set of all quasi-copulas with diagonal section δ has
a greatest and a smallest element. In [4] these problems were studied for
1-Lipschitz aggregation operators, quasi-copulas and copulas on the interval
[0, 1]. The results obtained in [4] can also be proved by the same technique for
operators on the discrete scale L(n). Let us first state the results for 1–Lipschitz
aggregation operators, in general. Note that in that case only properties (S1)-
(S3) are considered.

Proposition 2.
Let δ : L(n) → L(n) be a function satisfying (S1) − (S3). Then

(i) The greatest 1–Lipschitz aggregation operator on L(n) with diagonal section

δ is given by

A
δ
(x, y) = x ∨ y +

∧
(δ(z) − z|z ∈ [x ∧ y, x ∨ y]). (5)

(ii)The smallest 1–Lipschitz aggregation operator on L(n) with diagonal sec-

tion δ is given by

Aδ(x, y) = x ∧ y +
∨

(δ(z) − z|z ∈ [x ∧ y, x ∨ y]). (6)

The symbols ∧, ∨ stand here instead of minimum and maximum, respectively.

Proposition 3.
Let δ : L(n) → L(n) be a function satisfying (S1) − (S4). Then

(i) The greatest quasi-copula on L(n) with diagonal section δ is given by

Q
δ
(x, y) = (x ∧ y) ∧ A

δ
(x, y)

where A
δ

is defined by (5).

(ii)The function Aδ defined by (6) is the smallest quasi-copula on L(n) with

diagonal section δ.

The mapping ϕ : Q(L(n)) → Δ(n) ϕ(Q) = δQ is surjective for each n ∈ N ,
however, for n > 2 it is not injective.

Example 1. (a) Let n = 4 and δ ∈ Δ(4) be given by δ(i) = i for i ∈ {0, 3, 4}
and δ(1) = 0, δ(2) = 1. Then there are 4 quasi-copulas whose diagonal
section is δ, see Figure 1.
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Figure 1 The values of quasi-copulas with given δ from Ex. 1(a)

(b) On the other hand, for diagonal δ ∈ Δ(4) defined by δ(i) = i for i ∈
{0, 1, 2, 4} and δ(3) = 2 there is only one quasi-copula with diagonal section
δ, given in Figure 2.
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Figure 2 The values of a quasi-copula with given δ, Ex. 1(b)

Theorem 1. Let δ ∈ Δ(n) be a diagonal. Then there exists a unique quasi-

copula with diagonal section δ if and only if for each x ∈ L(n), such that

δ(x) = x there exists an element y ∈ L(n), y 	= x with δ(y) = y such that

|y − x| < 3.

Proof. Let δ ∈ Δ(n) and let Q be a quasi-copula with diagonal section δ, i.e.,
Q(x, x) = δ(x) for each x ∈ L(n). Denote the set of all idempotent elements
of Q by IQ:

IQ = {x ∈ L(n)|Q(x, x) = x} = {x0, x1, . . . , xk−1, xk},

where 0 = x0 < x1 < . . . < xk−1 < xk = n. It means, that at all points

(x, y) ∈ L2
(n) \

k⋃
i=1

{xi−1 + 1, . . . , xi − 1}2

Q(x, y) = x ∧ y, and the considered set is determined by points xi with
δ(xi) = xi uniquely.

Sufficiency: Suppose first that max (xi − xi−1) < 3. Then for each i ∈
{1, . . . , k} either xi − xi−1 = 1 or xi − xi−1 = 2. In the first case the set
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{p ∈ L(n)|xi−1 < p < xi}
2 = ∅. Otherwise, this set is {(xi − 1, xi − 1)} and

Q(xi − 1, xi − 1) = δ(xi − 1), which means that the condition xi − xi−1 < 3
for each i, ensures the uniqueness of Q with δQ = δ.

Necessity: On the contrary, suppose that there exists i ∈ {1, . . . , k} such
that xi − xi−1 ≥ 3. For such i, for all (x, y) ∈ {xi−1 + 1, . . . , xi − 1}2 we have

Q(x, y) = xi−1 + Qi(x − xi−1, y − xi−1),

where Qi is a quasi-copula on the set {0, . . . , xi−xi−1}, such that Qi(u, u) < u

for each u.
Denote δ|{xi−1,...,xi} = δi. Without loss of generality we can suppose that

i = 1. Put a = max {x; δ1(x) = 0}. Because of 2-Lipschitz property of δ1

either δ1(a + 1) = 1 or δ1(a + 1) = 2. For δ1(a) = 0 and δ1(a + 1) = 1 we
obtain

Q
δ
(a, a + 1) = 1 and Qδ(a, a + 1) = 0,

which means Q
δ
	= Qδ. If δ1(a) = 0 and δ1(a + 1) = 2, then a > 1, and a

simple evaluation gives Q
δ
(a − 1, a + 1) = 1 and Qδ(a − 1, a + 1) = 0, which

contradicts the uniqueness of Q.
Note that under conditions of Theorem 1, for given diagonal δ the operator Q̃

given by (4) is the only quasi-copula with diagonal section δ. Moreover, this
operator is also the smallest copula with diagonal section δ, and is a discrete
analog of the Bertino copula on the interval [0, 1].

Example 2. Let n = 4. Then there exist 9 different diagonals, 5 of them satisfy
assumptions of Theorem 1, see Table 2.

L(4) 0 1 2 3 4
0 0 0 2 4
0 0 1 2 4
0 0 1 3 4

δ1 0 0 2 2 4
δ2 0 0 2 3 4

0 1 1 2 4
δ3 0 1 1 3 4
δ4 0 1 2 2 4
δ5 0 1 2 3 4

Table 2

Omitting the trivial case n = 1, we can claim:

Proposition 4. Let n ∈ N \ {1}. Then the number pn of diagonals uniquely

extendable to a quasi–copula on L(n), is

pn = pn−2 + pn−1,

where p0 = 1 by convention.
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Proof. Since p1 = 1, for n = 2 the formula holds (recall that p2=2). Let n ≥ 3.
Diagonals which can be extended to the only quasi–copula, are diagonals
δ = δI determined by sets I ⊆ L(n), I = {x0, . . . , xk}, where 0 = x0 < x1 <

. . . < xk = n and xi − xi−1 < 3 for each i = 1, . . . , k, and the condition
δI(x) = x ⇔ x ∈ I. If In is the system of all such subsets for a fixed n,
then the number of desirable diagonals is pn = |In|. Note that the values of
δI , I ∈ In, at points x ∈ L(n) \ I are also determined uniquely. Consider
a set I ∈ In. Then either xk−1 = n − 1 or xk−1 = n − 2. In the first case
I \ {n} ∈ In−1, otherwise I \ {n} ∈ In−2, which leads to the formula

pn = pn−2 + pn−1.

Hence for n ∈ N∪{0} the number of diagonals which can be uniquely extended
to a quasi–copula forms the sequence

1, 1, 2, 3, 5, 8, 13, 21, ...,

i.e., the Fibonacci sequence.
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1. T. Bart̊ušek, M. Navara (2002) Program for generating fuzzy logical operations
and its use in mathematical proofs. Kybernetika 38:235–244.
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3. B. De Baets, R. Mesiar (1999) Triangular norms on product lattices. Fuzzy Sets
and Systems 104:61–75

4. E.P. Klement, A. Kolesárová (2004) Determination of copulas and quasi-copulas
as special 1-Lipschitz aggregation operators. Preprint, submitted

5. E.P. Klement, R. Mesiar, E. Pap (2000) Triangular norms. Kluwer Academic
Publishers, Dordrecht

6. G. Mayor, J. Torrens (1993) On a class of operators for expert systems. Inter-
national Journal of Intelligent Systems, 8:771-778.

7. G. Mayor, J. Torrens (2004) Triangular norms on discrete settings, Preprint,
submitted.
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Abstract. We introduce aggregation operators acting on real interval I. We
discuss four basic classes of aggregation operators: conjunctive, disjunctive,
averaging and mixed. Several examples are given, some construction methods are
recalled. In more details we present a new method for construction of averaging
aggregation operators and the general ordinal sum method for aggregation
operators.

Keywords: aggregation operator, averaging operator, conjunctive operator,
ordinal sum

1. Introduction

Aggregation operators are mathematical models of a fusion of several input
values into a single output value. We will restrict our considerations to the
most frequent situation arising from the measurement theory when all
considered (input and output) values are from some continuous scale
represented by a real interval � � [-�, +�]. Observe that then the natural

order and topology on � is herited from the standard order and topology on

the real line. An operator�: �
��

�

�

� �� defined for any finite input vector

will be called an aggregation operator if it is non-decreasing in each
coordinate, � | � = id� and it preserves the boundaries of � in the following
sense:

�������������	�� � � � �� 	 �� �
�����������
���
�

����

���� ����

������������� � � � �� 	 �� ����������������
�

����

���� �

Note that the above definition generalizes the standard definition of
aggregation operators acting on the unit interval� = [0, 1], see [2, 7, 9].
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Sometimes the following strengthening of the above boundary
conditions (inspired by [15]) can be required:

for all n � N, a � ���i �{1, …, n}, ��������������	�
���������	����
�
�

����������������
����������������������������
�
��������

����

Basic classification of aggregation operators was discussed by several
authors. For a recent overview based on practical observations we
recommend a recent paper of Dubois and Prade [6], where 4 types of
aggregation operators are introduced: conjunctive operators, disjunctive
operators, averaging operators, mixed operators. The aim of this
contribution is a brief discussion of the above 4 types of aggregation
operators and indication of some appropriate construction methods.

2. Conjunctive operators

Conjunctive aggregation operators are characterized by the boundedness
property � � MIN. Consequently each conjunctive aggregation operator on
the unit interval [0, 1] is a monotone extension of the classical boolean
conjunction. Moreover, for symmetric operators the inequality� � MIN is

equivalent with the “downwards” attitude �(x1, …, xn, y) � �(x1, …, xn)

(for all n � N, x1, …, xn, y � �). This equivalence is not true for
nonsymmetric operators, in general. As an example recall the

compensatory operator �: �  � �
��

�
������

�

� given by the� recursive

formula

� � � �� �
������

��������
�


 �� �� �

which was introduced in [11]. Evidently, � is a monotone extension of
the boolean conjunction with “downwards” attitude, however,

��������������������������������������������

Taking into account the boundary condition (B1), we have the following
��
�� �

Proposition 1. An aggregation operator � defined on [0, 1] is a
conjunctive aggregation operator satisfying (B1) if and only if for all
n � N, x1, …, xn � [0, 1], card {i| xi � 1} � n – 1, it holds
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����������������������������

Observe that for the binary conjunctive aggregation operator �: [0, 1]2

� [0, 1], (B1) is equivalent to the fact that 1 is the neutral element of�,

� (x, 1) = � (1, x) = x for all x � [0, 1]. Note that this result need not be
true for n > 2, in general.

Among typical examples of conjunctive aggregation operators recall the
product on [0, 1], the sum on [��, 0], MIN on arbitrary interval �. Two
most typical construction methods are based on the transformation of the
above mentioned conjunctive operators (multiplicative and additive
generators of conjunctors, for more details see [9]) and on the ordinal sums
(originally introduced by Clifford [4] for semigroups, compare also [5]).

Observe that for any interval partition (�j)j�J of a given interval �, and

any corresponding system (�j)j�J of conjunctive aggregation operators

acting on intervals �j , respectively, the ordinal sum conjunctive

aggregation operator � acting on � is given by �(x1, …,xn) = �j (y1,…, yk),

where min (x1, …, xn) � �j, k = card {i | xi � �j } and ym =
�

�
 ,

� 	���������������!����!��"������������#����
$��

��

 �� .

On the other hand, let � be a conjunctive aggregation operator on

interval � and let f: � � � be an increasing surjection from interval� to �.

Let g: � � � be any function such that g � f � id� and sup g � f = sup �.

Then 	 = g � � � f, i. e., 	 (x1, …, xn) = g(� (f(x1), …, f(xn) ), is a

conjunctive aggregation operator on�.
Typical classes of conjunctive aggregation operators fulfilling (B1) are

triangular norms [9, 20], copulas [19] and quasi-copulas, i. e., 1-Lipschitz
conjunctive aggregation operators [19]. Note that all continuous t-norms
can be constructed from the standard product by the above mentioned
transformation and ordinal sum construction methods.

As an example of a conjunctive aggregation operator � on [0, 1] not

fulfilling (B1) recall, e. g.,�(x1, …, xn) = �



�

��

�

�
 .

3. Disjunctive aggregation operators.

Disjunctive aggregation operators are characterized by the boundedness
property � � MAX. Typical examples are the sum on [0, �], the product

on [1, �], MAX on arbitrary interval �. Observe that for a given interval �
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and a fixed decreasing bijection �: ���, the operator 	 = �-1
� ��� � is a

conjunctive aggregation operator whenever � is disjunctive (and vice-
versa). Consequently, all properties and construction methods for
disjunctive operators can be straightforwardly derived from the properties
and construction methods for conjunctive aggregation operators as
discussed in Section 2.

In particular, we have disjunctive counterparts of Proposition 1 and of
the ordinal sum construction method.

For any interval partition (�j)j�J of a given interval �, and any

corresponding system (�j)j�J of disjunctive aggregation operators acting on

intervals �j , respectively, the ordinal sum disjunctive aggregation operator

� acting on � is given by �(x1, …, xn) = �j (y1, …, yk), where max (x1, …,

xn) � �j, k = card{i | xi � �j } and ym= �#��������������
�

�



� 	���������������!����!��"�����������
$��

��
 � .

Proposition 2. An aggregation operator � defined on [0, 1] is a disjunctive
aggregation operator satisfying (B1) if and only if for all n� N, x1, …, xn

� [0, 1], card {i| xi � 0} � n – 1, it holds

���������������������������

Note that both above mentioned (and many other) results can be derived
from the corresponding results for conjunctive aggregation operators by
means of the standard duality of aggregation operators, �d(x1, …, xn) =

1 � �(1- x1, …, 1- xn), i. e., applying �(x) = 1 – x. However, in special case
of 1-Lipschitz binary aggregation operators, we can use other type of
duality, namely � * (x, y) = x + y – � (x, y) (for more details see [13). In

both cases, � is a disjunctive (and 1-Lipschitz) aggregation operator if and

only if � d and � * are conjunctive.

4. Averaging aggregation operators

Averaging operators were discussed already in 30-ties of the previous
century, see e. g. [11, 15]. Many nice characterization results are due to
Aczel [1], compare also [7]. An averaging aggregation operator is
characterized by the boundedness properties MIN � � � MAX and due to

the monotonicity of � also equivalently by the idempotency of �, i. e., �
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(x, …, x) = x for any x � �, n � N. Typical examples are the arithmetic

mean on any interval �, the geometric mean on any subinterval � � [0, �],
weighted means, OWA operators, quasi-arithmetic means (for details see,
e. g. [2]).

Among construction methods recall first the idempotization of
continuous jointly strictly monotone functions [2]. We propose a new
construction method based on defuzzification of fuzzy quantities. Denote


 = {K: [-�, +�] � [0, +�] | 
 is convex and 
 (x) = 0 iff x = 0},

�� = {��: �� [-�, +�] | � is continuous and strictly monotone}

 = {��: [0, �] � [0, 1] | � is decreasing bijection}.

For any input vector � = (x1, …, xn) � �n, we define a quasi-convex

fuzzy quantity on �, �� : � � [0, 1],�� ( r ) = � � � � �� �
�
�

�

�

�
�

�

�
��




�

��

����
�% �� ,

with � � , �i � �I, Ki � 
, i = 1, …, n.
For an arbitrary defuzzification method DEF compatible with the fuzzy

maximum, the operator � defined on � by �(x1, …, xn) = DEF (�� ) is non-
decreasing.

If DEF = MOM (mean of maxima), then �(x1, …, xn) = MOM (�x )

yields an averaging aggregation operator. Note that if all Ki = 
, �i = �, we
obtain a generalized version of the penalty based method introduced in
[16]. In this approach, 
 describes the penalty 
(x-y) we have to pay when
replacing an input x by another input y, i. e., it is a version of distance
(metric) function. The function � corresponds to the scale of measurement

we are dealing with. The transformation � is only an isomorphism
transforming non-negative values to the interval [0, 1], i. e., non-negative
functions into fuzzy sets membership functions. In several cases � �is
irrelevant. For example, by the MOM defuzzification the induced
aggregation operator ��depends on applied Ki and � �i but not on �. Our
proposed method allows to incorporate weights (importances) into the
aggregation easily, even in the case of non-symmetric aggregation
operators (see the last example). Indeed, it is sufficient to multiply Ki

“distance” functions by the corresponding weights wi. Moreover, from the
first of subsequent examples we see that it generalizes the classical least
square method.

�������	
�

� Ki(x) = 
(x) = x2, �i(x) = wi �(x), wi > 0,
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� Ki(x) = 
(x) =
�
�
 

!

�

������'

������"

, where c � ] 0, � [, �i = � arbitrary

increasing, � = Q" is the " - quantile with " =
"�

"

#
; if c = 1, i. e., 


(x) = |x|, � = MED is the median.

� �i = id�, wi > 0, K1(x) = |x|, K2(x) = x2,

�(x1, x2) = med �
�

�

�

�
�

�

�
#�

(

�

(

(

�

(�

&

&
�

&

&
� .

5. Mixed aggregation operators

In this class all remaining aggregation operators (i. e., not included into
conjunctive, disjunctive and averaging operators) are contained. Typical
examples are the sum on ]-�, �[, the product on ]0, �[. These operators
are often extensions of a conjunctive operator �1 acting on �1 and a

disjunctive operator �2 acting on �2, � = �1 $ �2 (for example uninorms or
nullnorms [8, 3], but also compensatory operators introduced in [16, 21]).
In fact, any nonidempotent aggregation operator possessing a neutral
element � or annihilator � �in the interior of � is necessarily a mixed
operator. Another big class of mixed aggregation operators is obtained in
the form �(�) = �(�(�), �(�) ), where � is a (binary) averaging

aggregation operator, � is a conjunctive and � is a disjunctive aggregation
operator. Recall, e. g., gamma operator of Zimmermann and Zysno [23] or
several types of compensatory operators discussed in [16].

A nice example of binary mixed aggregation operators can be derived from
[12: any 1-Lipschitz binary aggregation operator� on [0, 1] with a neutral

element � (an annihilator �) from ]0, 1[ is mixed operator. Moreover, if

� � ]0, 1[ then
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where � is some quasi-copula and � is some dual quasi-copula.

Similarly, if � � ]0, 1[ ,
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6. Concluding remarks

We have discussed four basic classes of aggregation operators and some
construction methods.

A typical general method of constructing more complex aggregation
operators from simpler ones is the standard composition method� = �(	1,

…, 	k), i. e., ���������	�����	���������	�����	���������	�	��

It is evident that any of the conjunctive, disjunctive or averaging class is
preserved by this method (this is not true for the classes of mixed
operators). Moreover, if the outer operator � is averaging, then if all 	1,

…, 	k belong to the same of four discussed classes also the composite

operator � belongs to that class.
Another general construction method is the ordinal sum of aggregation

operators as proposed in [5]: for any strictly monotone sequence 0 = a0 <

a1 < … ak = 1 and a system � �#

��� 

� of aggregation operators acting on

[ai�1, ai], respectively, their ordinal sum�: � �
	�

�

���

�

� [0, 1] is given by
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��

�������
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where �i : [0, 1] � [ai, ai-1] transforms an input x � [0, 1] to the closest
element from [ai-1, ai], i. e., �i(x) = min (ai, max (ai-1, x) ), i = 1, …, k.

Observe that this method preserves any of our four discussed classes.
Moreover, if the operators �1, …, �k are conjunctive (disjunctive) and
fulfilling (B1), then also the corresponding ordinal sum A has the same
properties and, morever, it coincide with the ordinal sum of conjunctive
(disjunctive) aggregation operators as described in Section 2 (in Section 3).
Thus the ordinal sum of aggregation operators involves in one formula two
different formulas commonly applied for t-norms (copulas, quasi-copulas)
and for t-conorms (dual copulas, dual quasi-copulas). In our future research
we will investigate another general construction methods extending the
methods known for the specific cases.
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Homogeneous Aggregation Operators

Tatiana Rückschlossová

Department of Mathematics
Slovak University of Technology
Radlinského 11, 813 68 Bratislava
Slovak Republic

Recently, the utilization of invariant aggregation operators, i.e., aggre-
gation operators not depending on a given scale of measurement was found as a
very current theme. One type of invariantness of aggregation operators is the ho-
mogeneity what means that an aggregation operator is invariant with respect to
multiplication by a constant. We present here a complete characterization of ho-
mogeneous aggregation operators. We discuss a relationship between homogeneity,
kernel property and shift-invariance of aggregation operators. Several examples are
included.

Key words: aggregation operator, homogeneity, kernel property

1 Introduction

Aggregation operators are known as tools for aggregation (fusion) processes
where from several input values one output value is required. As an exam-
ple it could be mentioned the aggregation of infinitely many inputs [5, 8, 9],
of inputs from ordinal scales [7] and also of complex inputs as distribution
functions [14] or fuzzy sets [15]. Application of these operators in mathemat-
ics, physics, engineering, economics or social and other sciences verifies their
broad utilization.

Values incoming into some aggregation process are related to a certain
scale of measurement as well as output should be. Many decisions are based
on the results of an appropriate aggregation and there is a need to realize
the same decisions independently of a chosen scale of measurement, i.e. to
apply aggregation operators reflecting this requirement. Rescaling the values
we are dealing with is modeled by the transformation of an applied operator.
An operator invariant under appropriate transformation is then an operator
not depending on a given scale. According to the type of scales we can speak
about several types of invariantnesses of aggregation operators.

Invariantness with respect to any scale which is rather restrictive has been
studied for example in [12]. If we fix the unit of measurement but not the

T. Rüc
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beginning of our scale (i.e., ”zero” is free), we have to deal with the shift-
invariant aggregation operators (recall, e.g., the temperature measurement in
degrees of Celsius and in degrees of Kelvin). These operators are completely
characterized in [11], compare also [1]. Fixing the ”zero” but letting free the
unit (recall, e.g., the length measurement in meters and in yards), we come
to the need of homogeneous aggregation operators. The aim of this paper
is their complete description. The paper is organized as follows. In the next
section we recall basic definitions. Section 3 is devoted to the characterization
of homogeneous aggregation operators. Finally, in Section 4 we discuss the
homogeneity of aggregation operators in relation to the kernel property and
shift-invariantness of some related operators.

2 Preliminaries

Following [3, 9] recall the notions of an aggregation operator and a homoge-
neous operator.

Definition 1. A mapping A :
⋃

n∈N [0, 1]n → [0, 1] is called an aggregation
operator if it fulfils the following conditions:

(A1) A(x) = x for each x ∈ [0, 1],
(A2) A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever xi ≤ yi ∀ i = 1, . . . , n, n ∈ N ,
(A3) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Definition 2. An aggregation operator A :
⋃

n∈N [0, 1]n → [0, 1] is said to be
homogeneous if ∀n ∈ N , ∀b ∈]0, 1[, ∀x1, . . . , xn ∈ [0, 1]:

A(bx1, . . . , bxn) = bA(x1, . . . , xn).

By means of an arbitrary aggregation operator C :
⋃

n∈N [0, 1]n → [0, 1],
a homogeneous operator HC :

⋃
n∈N [0, 1]n → [0, 1] can be constructed as

follows:
HC(x1, . . . , xn) = bC(

x1

b
, . . . ,

xn

b
),

where b = max(x1, . . . , xn) > 0 (and by convention we put HC(0, . . . , 0) = 0).
Notice, that by this construction each homogeneous operator is idempotent.
Typical examples of homogeneous operators are weighted arithmetic means,
including the standard arithmetic mean. However, although the homogeneity
of an operator HC is satisfied, the property of monotonicity need not be
ensured. So the operatorHC need not be an aggregation operator, see example
below.

Example 1. Take a product Π as an aggregation operator. Then the homoge-
neous operator HΠ :

⋃
n∈N [0, 1]n → [0, 1] is given by

HΠ(x1, . . . , xn) = b

n∏
i=1

xi

b
=
∏n

i=1 xi

bn−1
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with convention 0
0 = 0, i.e.,

HΠ
(n) =

Π(n)

(max(n))n−1
.

Then HΠ
(3)(0.5, 0.5, 0.5) = 0.5 > HΠ

(3)(0.5, 0.5, 1) = 0.25, what contradicts the
monotonicity of the operator HΠ

(n).

Remark 1. In the class of quasi-arithmetic means (weighted quasi-arithmetic
means), homogeneous aggregation operators form a 1-parameter subclass
(Ap)p∈]−∞,∞[ of so called power-root operators [6],

Ap(x1, . . . , xn) =
(

1
n

n∑
n=1

xi
p

) 1
p

or

Ap(x1, . . . , xn) =
( n∑

n=1

wixi
p

) 1
p

for p �= 0 and A0 = G is the geometric mean (weighted geometric mean). For
more details see [13].

Remark 2. An interesting class of homogeneous aggregation operators can be
derived by minimalization of

n∑
n=1

|xi − a|p

obtained in a = Bp(x1, . . . , xn), p ∈ [1,∞], see [4]. Note that B1 = median,
B2 = M (arithmetic mean), B∞ = min + max

2 and Bp(x1, x2) = x1+x2
2 for all

p ∈ [1,∞].

3 Characterization of Homogeneous Aggregation
Operators

The open problem to characterize all aggregation operators C such that HC

is the aggregation operator was already stated in [3]. We give here a necessary
and sufficient condition for an operator HC to be an aggregation operator (to
be monotonic).

Theorem 1. Let C :
⋃

n∈N [0, 1]n → [0, 1] be an aggregation operator. Opera-
tor HC :

⋃
n∈N [0, 1]n → [0, 1] is an aggregation operator if and only if for all

n ∈ N , x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ [0, 1]n, x ≤ y, such that there is
i ∈ {1, . . . , n} and xi = yi = 1, it holds (with convention 0

0 = 1)

C(x)
C(y)

≥ min
k

xk

yk
. (1)
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Proof. By construction, HC(0, . . . , 0) = 0, HC(1, . . . , 1) = 1 and HC(x) = x,
for x ∈ [0, 1]. To see the sufficiency it is enough to show the monotonicity of
the operator HC . Let x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ [0, 1]n and x ≤ y.
Without loss of generality we may suppose that both x and y are non-zero
vectors. Denote max

k
xk = xi and max

k
yk = yj . Put zk = min(xi, yk). Then

evidently x ≤ z ≤ y while max zk = zi = xi. Let an aggregation operator C
fulfil the condition (1). Following the definition of the homogeneous operator
we have

HC(x1, . . . , xn)= xiC

(
x1
xi
, . . . , xn

xi

)
= xiC

(
x
xi

)
,

HC(z1, . . . , zn) = xiC

(
min(xi,y1)

xi
, . . . , min(xi,yn)

xi

)
= xiC

(
min

(
1, y

xi

))
,

HC(y1, . . . , yn)= yjC

(
y1
yj
, . . . , yn

yj

)
= yjC

(
y
yj

)
.

From the monotonicity of the aggregation operator C we have HC(x) ≤
HC(z). Further, yk

yj
≤ min

(
1, yk

xi

)
for all k = 1, . . . , n and thus from the

property (1) we have

C( y
yj

)

C(min(1, y
xi

))
≥ min

k

yk

yj

min(1, yk

xi
)
,

what means that

C( y
yj

)

C(min(1, y
xi

))
≥ min

k
max

(
yk

yj
,
xi

yj

)
≥ xi

yj
,

and therefore

yjC

(
y
yj

)
= HC(y) ≥ HC(z) = xiC

(
min

k

(
1,
yk

xi

))
.

Finally we have

HC(x) ≤ HC(z) ≤ HC(y) ⇒ HC(x) ≤ HC(y),

and the monotonicity of the operatorHC is proved. ThusHC is an aggregation
operator.

To see the necessity we prove the converse assertion. Assume that an aggre-
gation operator C has not property (1), i.e., there is an index i ∈ {1, . . . , n}
and points u, v ∈ [0, 1]n, u ≤ v, ui = vi = 1 such that

C(u)
C(v)

< min
k

uk

vk
≤ 1.

Create a point w, for j = 1, . . . , n, wj = vj min
k

uk

vk
. Then evidently w ≤ u.

As the operator HC is homogeneous we obtain that HC(u) = C(u) and
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HC(w) = min
k

uk

vk
C(v), what implies HC(u) < HC(w), i.e., the operator HC

is not monotonic. 
�
Example 2. An example of a class of homogeneous aggregation operators is the
class of weighted geometric means. For fixed n a weighted geometric mean GW

is given by

GW (x1, . . . , xn) =
n∏

i=1

xwi
i ,

where w = (w1, . . . , wn) ∈ [0, 1]n denotes so called weighting vector fulfilling∑n
i=1 wi = 1, i ∈ {1, . . . , n}, n ∈ N .
For a symmetric weighting vector w = ( 1

n , . . . ,
1
n ) we obtain the standard

geometric mean G,

G(x1, . . . , xn) =
n∏

i=1

x
1
n
i ,

For the illustration in the case of n = 2 it is given by G(x1, x2) =
√
x1x2, see

Fig.1.

1

1

1

0

1

10

1x

2x

Fig. 1. 3D graph and contour plot of G(x1, x2)

For a non symmetric weighting vector w = ( 1
4 ,

3
4 ) we have corresponding

weighted geometric mean GW (x1, x2) = x1
1
4x2

3
4 illustrated by Fig.2.

Example 3. Another class of homogeneous aggregation operators is the class
of ordered weighted geometric means. Before applying an ordered weighted
geometric mean ḠW , the input n-tuple (x1, . . . , xn) is first rearranged into a
non-decreasing permutation (x̄1, . . . , x̄n) and then we have

ḠW (x1, . . . , xn) =
n∏

i=1

x̄wi
i ,

with corresponding weighting vector w = (w1, . . . , wn) ∈ [0, 1]n,
∑n

i=1 wi = 1,
i ∈ {1, . . . , n}, n ∈ N . Having for n = 2 the same weighting vector w = (1

4 ,
3
4 )

we obtain an operator ḠW different from GW , see Fig.3.
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Fig. 2. 3D graph and contour plot of GW (x1, x2)

Fig. 3. 3D graph and contour plot of ḠW (x1, x2)

4 Homogeneity and Kernel Property

A similar open problem concerning the characterization of all shift-invariant
aggregation operators has been solved in [11], where the close relation be-
tween shift-invariance of aggregation operators and the kernel property was
shown. The kernel property has been recently introduced in [2, 10], see the
next definition.

Definition 3. An aggregation operator A : n∈N [0, 1]n → [0, 1] is called a
kernel aggregation operator if for all n ∈ N , (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n,
it holds

|A(x1, . . . , xn) −A(y1, . . . , yn)| ≤ max
k

|xk − yk|. (2)

This property of an aggregation operator A is linked to the Chebychev
norm A ∞ of an aggregation operator A, where

A ∞ = sup
|A(x1, . . . , xn) −A(y1, . . . , yn)|

maxk |xk − yk|
,

for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n, corresponding namely with the case
A ∞ = 1.

Observe that the condition (1) for an aggregation operator C can be re-
formulated as

560 T. R¨

1

1

1
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1
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4
2x 3

1x4
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1

1

0
0 1

1 1x4

4
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min(C(x), C(y))
max(C(x), C(y))

≥ min
k

min(xk, yk)
max(xk, yk)

(3)

or, equivalently, ∣∣∣∣ log
C(x)
C(y)

∣∣∣∣ ≤ max
k

∣∣∣∣ log
xk

yk

∣∣∣∣,
i.e.,

| logC(x) − logC(y)| ≤ max
k

| log xk − log yk|. (4)

The property (4) of an aggregation operator C will be called log-kernel
property and as far as the property (1) deals with one coordinate fixed in
one, it can be denoted as one-log-kernel property. Let us define an operator
D :

⋃
n∈N [0,∞]n → [0,∞] as follows:

D(u1, . . . , un) = − log(C(exp(−u1), . . . , exp(−un))).

Then (4) is eqivalent to the kernel property of D,

|D(u1, . . . , un) −D(v1, . . . , vn)| ≤ max
k

|uk − vk|. (5)

Thus we can use kernel aggregation operator D (it is sufficient to deal with so
called zero-kernel property , fixing one coordinate to be zero) acting on [0,∞]
to define a homogeneous aggregation operator HC , where

C(x1, . . . , xn) = exp(D(− log(x1), . . . ,− log(xn))).

Moreover, if D is shift-invariant on [0,∞] then already C is homogeneous
aggregation operator on [0, 1].

Example 4.

a) If D is a weighted arithmetic mean, i.e., D(u1, . . . , un) =
∑n

i=1 wixi then

C(x1, . . . , xn) = exp
(
−

n∑
i=1

wi− log xi

)
=

n∏
i=1

xwi
i = HC(x1, . . . , xn)

is the weighted geometric mean. Similarly OWA operator D leads to
C = HC which is ordered weighted geometric mean.

b) Let D be any Choquet-integral aggregation operator based on fuzzy mea-
sures. For example, for n = 2,

D(u1, u2) =

⎧⎨
⎩

1
3u1 + 2

3u2 if u1 ≤ u2,

3
4u1 + 1

4u2 otherwise.

Then

C(x1, x2) = HC(x1, x2) =

⎧⎨
⎩

3
√
x1x2

2 if x1 ≥ x2,

4
√
x1

3x2 otherwise,

is a homogeneous binary aggregation operator.
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c) Finally, consider D(u1, u2) =
√

1 + |u1 − u2| + min(u1, u2) − 1. Then
C = HC ,

C(x1, x2)= exp
(

1 − min(− log x1,− log x2) −
√

1 + | − log x1 + log x2|
)

= max(x1, x2) exp
(

1 −
√

1 +
∣∣ log x2

x1

∣∣).

5 Conclusion

We have investigated homogeneous aggregation operators. Especially, we have
characterized all aggregation operators leading to homogeneous aggregation
operators by showing the relationship between homogeneity and kernel (exac-
tly one-log-kernel) property of an agregation operator. According to charac-
terization of shift-invariant aggregation operators we have stressed the fact
that it is sufficient to take into account shif-invariant aggregation operators
acting on [0,∞] to obtain homogeneous aggregation operators. Several classes
of aggregation operators as examples of classes of homogeous aggregation ope-
rators were presented.
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Copulas with given diagonal have been studied in [4, 10]. In [2, 5, 11]
smallest and greatest (quasi-)copulas with given diagonal are constructed. Both
(two-dimensional) copulas and quasi-copulas are special cases of binary 1-Lipschitz
aggregation operators [3,8], and in [7] 1-Lipschitz aggregation operators with given
diagonal (and the consequences for (quasi-)copulas) are investigated. We give con-
structions for smallest and greatest 1-Lipschitz aggregation operators with given
opposite diagonal, allowing us to obtain most results for (quasi-)copulas with given
opposite diagonal as special cases.

1-Lipschitz aggregation operator, quasi-copula, copula

1 Introduction

For the notions in this paper we refer to [3, 9], we only repeat the definitions
necessary for the understanding of the results.

Definition 1.

(i) A (binary) aggregation operator is a function A : [0, 1]2 → [0, 1] which
is non-decreasing in each component and satisfies A(0, 0) = 0 and
A(1, 1) = 1.

(ii) An aggregation operator A satisfying the Lipschitz condition with con-
stant 1, i.e.,

|A(x, y) −A(x∗, y∗)| ≤ |x− x∗| + |y − y∗| for all x, x∗, y, y∗ ∈ [0, 1],

will be called a 1-Lipschitz aggregation operator.

Many well-known binary aggregation operators, such as the arithmetic
mean, the product, the minimum, the maximum, and weighted means are
1-Lipschitz aggregation operators (for more details see, e.g., [3]).
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www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

1-Lipschitz Aggregation Operators,
Quasi-Copulas and Copulas
with Given Opposite Diagonal

Erich Peter Klement1 and Anna Kolesárová2
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Also copulas [9] and quasi-copulas [1,6] are special 1-Lipschitz aggregation
operators.

Definition 2.

(a) A (two-dimensional) copula is a function C : [0, 1]2 → [0, 1] such that
(i) C(0, x) = C(x, 0) = 0 and C(x, 1) = C(1, x) = x for all x ∈ [0, 1],
(ii) C is 2-alternating, i.e., C(x, y) + C(x∗, y∗) ≥ C(x∗, y) + C(x, y∗)

for all x, x∗, y, y∗ ∈ [0, 1] with x ≤ x∗ and y ≤ y∗.
(b) A (two-dimensional) quasi-copula is a function Q : [0, 1]2 → [0, 1] such

that
(i) Q(0, x) = Q(x, 0) = 0 and Q(x, 1) = Q(1, x) = x for all x ∈ [0, 1],
(ii) Q is non-decreasing in each compoment,
(iii) Q is 1-Lipschitz.

Obviously, each copula is a quasi-copula but not vice versa, and a 1-
Lipschitz aggregation operator A : [0, 1]2 → [0, 1] is a quasi-copula if and only
if A(0, 1) = A(1, 0) = 0.

Each 1-Lipschitz aggregation operator A satisfies W ≤ A ≤ W ∗, where
W (x, y) = max(0, x+ y− 1) and W ∗(x, y) = min(1, x+ y). Each quasi-copula
Q satisfies

W ≤ Q ≤ M (1)

with M(x, y) = min(x, y), and the same holds for copulas. To simplify some
formulas, we shall also use the infix notations x∧ y for min(x, y) and x∨ y for
max(x, y).

2 1-Lipschitz aggregation operators with given opposite
diagonal section

In this section we show that the set of 1-Lipschitz aggregation operators with
given opposite diagonal section possesses a greatest and a smallest element.

Given a 1-Lipschitz aggregation operator A, its opposite diagonal section
ωA : [0, 1] → [0, 1] is given by ωA(x) = A(x, 1−x). For an arbitrary 1-Lipschitz
aggregation operator A we can only say that ωA is a 1-Lipschitz function from
[0, 1] to [0, 1].

It is not difficult to see that, as a consequence of its monotonicity and its
1-Lipschitz property, for each 1-Lipschitz aggregation operator A and for all
(x, y) ∈ [0, 1]2 we have

A(x, y) ≤ W (x, y) +
∧

{ωA(z) | z ∈ [x ∧ (1 − y), x ∨ (1 − y)]}. (2)

We start with an arbitrary 1-Lipschitz function ω : [0, 1] → [0, 1] and look
whether there is some 1-Lipschitz aggregation operator A such that for all
x ∈ [0, 1] we have ω(x) = A(x, 1 − x), i.e., whose opposite diagonal section
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coincides with ω, and try to identify the greatest and smallest 1-Lipschitz
aggregation operators with this property, provided they exist.

Motivated by (2), we obtain the following result:

Proposition 1. For each 1-Lipschitz function ω : [0, 1] → [0, 1], the function
Fω : [0, 1]2 → R defined by

Fω(x, y) = W (x, y) +
∧

{ω(z) | z ∈ [x ∧ (1 − y), x ∨ (1 − y)]} (3)

is a non-decreasing 1-Lipschitz function with Fω(x, 1 − x) = ω(x) for all x ∈
[0, 1].

For example, for the trivial functions ω0, ω1 : [0, 1] → [0, 1] given by
ω0(x) = 0 and ω1(x) = 1 we obtain Fω0 = W and Fω1 = W + 1. Note
that Fω1 is not an aggregation operator because of Ran(Fω1) = [0, 2]. Indeed,
in general we only know Fω(0, 0) ≥ 0 and Fω(1, 1) ≥ 1. Therefore, the func-
tion Fω defined by (3) is a 1-Lipschitz aggregation operator if and only if it
satisfies the boundary conditions for aggregation operators:

Proposition 2. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function and assume
that Fω : [0, 1]2 → R is as in (3). Then the function Aω : [0, 1]2 → [0, 1] defined
by

Aω = Fω ∧W ∗ (4)

is the greatest 1-Lipschitz aggregation operator with opposite diagonal sec-
tion ω.

As an immediate consequence of Proposition 2 we get:

Corollary 1. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function. The func-
tion Fω : [0, 1]2 → [0, 1] defined by (3) is the greatest 1-Lipschitz aggre-
gation operator with opposite diagonal section ω if and only if ω satisfies∧{ω(z) | z ∈ [0, 1]} = 0.

Note that a 1-Lipschitz aggregation operator A has opposite diagonal
section ωA if and only if the 1-Lipschitz aggregation operator A∗ given by
A∗(x, y) = x+ y−A(x, y) has opposite diagonal section ωA∗ , the latter being
given by ωA∗(x) = 1 − ωA(x).

Since the transition from A to A∗ reverses the order between aggrega-
tion operators, for each 1-Lipschitz function ω : [0, 1] → [0, 1] the smallest
1-Lipschitz aggregation Aω operator with opposite diagonal section is given
by Aω =

(
Aω∗

)∗. To be precise, in analogy to Propositions 1 and 2 and Corol-
lary 1 we get:

Corollary 2. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function.
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(i) The function Gω : [0, 1]2 → R defined by

Gω(x, y) = W ∗(x, y)− 1 +
∨

{ω(z) | z ∈ [x∧ (1− y), x∨ (1− y)]} (5)

is a non-decreasing 1-Lipschitz function with Gω(x, 1 − x) = ω(x) for
all x ∈ [0, 1].

(ii) The function Aω : [0, 1]2 → [0, 1] defined by Aω = Gω ∨W is the small-
est 1-Lipschitz aggregation operator with opposite diagonal section ω.

(iii) The function Gω is the smallest 1-Lipschitz aggregation operator with
opposite diagonal section ω if and only if

∨{ω(z) | z ∈ [0, 1]} = 1.

Example 1. Consider the opposite diagonal sections ωW , ωM , ωΠ : [0, 1] →
[0, 1] of W , M and Π given by ωW (x) = 0, ωM (x) = x ∧ (1 − x) and
ωΠ(x) = x · (1 − x), respectively.

(i) W is the only 1-Lipschitz aggregation operator with opposite diagonal
section ωW .

(ii) The smallest 1-Lipschitz aggregation operator with opposite diagonal
section ωM is (〈0, 1

2 ,W 〉, 〈 1
2 , 1,W 〉), i.e., an ordinal sum of two copies

of the Fréchet-Hoeffding lower bound W . Trivially, M is the greatest
1-Lipschitz aggregation operator with opposite diagonal section ωM .

(iii) The greatest 1-Lipschitz operator AωΠ and the smallest 1-Lipschitz op-
erator AωΠ

with opposite diagonal section ωΠ are given by

AωΠ
(x, y) =

{
(x ∧ y) · (1 − x ∧ y) if x+ y ≤ 1,
W (x, y) + (x ∨ y) · (1 − x ∨ y) otherwise,

AωΠ
(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x+ y − 3
4 ) ∨ 0 if (x, y) ∈

[
0, 1

2

]2
,

(x+ y − 1) ∨ 1
4 if (x, y) ∈

]
1
2 , 1
]2
,

x(1 − x) if x ∈
[
0, 1

2

]
and y ∈

]
1 − x, 1 − x2

]
,

y(1 − y) if y ∈
[
0, 1

2

]
and x ∈

]
1 − y, 1 − y2

]
,

y − (1 − x)2 if x ∈
]
1
2 , 1
]

and y ∈
[
(1 − x)2, 1 − x

]
,

x− (1 − y)2 if y ∈
]
1
2 , 1
]

and x ∈
[
(1 − y)2, 1 − y

]
,

W (x, y) otherwise.

Example 2. Consider the 1-Lipschitz function ω : [0, 1] → [0, 1] defined by
ω(x) = x∧ (1−x)∧ 1

3 . The greatest 1-Lipschitz operator Aω and the smallest
greatest 1-Lipschitz operator Aω with opposite diagonal section ω are given
by

Aω = (〈 1
3 ,

2
3 ,W 〉),

Aω(x, y) = x ∧ y ∧ ((x+ y − 2
3 ) ∨ 0) ∧ ((x+ y − 1) ∨ 1

3 ).
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3 Consequences for quasi-copulas

Turning our attention to quasi-copulas with given opposite diagonal section,
note first that the opposite diagonal section ωQ of each quasi-copula Q must
be a 1-Lipschitz function satisfying ωW ≤ ωQ ≤ ωM because of (1). Note also
that an arbitrary 1-Lipschitz function ω : [0, 1] → [0, 1] satisfies 0 ≤ ω(x) ≤
x ∧ (1 − x) for each x ∈ [0, 1] if and only if ω(0) = ω(1) = 0.

Proposition 3. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function such that
ω(0) = ω(1) = 0. Then we have:

(i) The function Fω : [0, 1]2 → [0, 1] defined by (3) is the greatest quasi-
copula with opposite diagonal section ω.

(ii) The function Aω : [0, 1]2 → [0, 1] defined by Aω = Gω ∨ W , where
Gω : [0, 1]2 → [0, 1] is as in (5), is the smallest quasi-copula with op-
posite diagonal section ω.

Example 3. As a consequence of Proposition 3, all the greatest and smallest
1-Lipschitz aggregation operators with opposite diagonal sections ωW , ωM ,
ωΠ (considered in Example 1) and ω (considered in Example 2), respectively,
are also the greatest and smallest quasi-copulas with the respective opposite
diagonal section.

We also mention some results for duals of quasi-copulas with given opposite
diagonal section.

Proposition 4. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function such that
ω(0) = ω(1) = 1.

(i) The function Aω : [0, 1]2 → [0, 1] defined in (4) has opposite diagonal
section ω, and it is the greatest dual of some quasi-copula with this
property.

(ii) The function Gω : [0, 1]2 → [0, 1] defined in (5) has opposite diagonal
section ω, and it is the smallest dual of some quasi-copula with this
property.

4 Consequences for copulas

The greatest quasi-copula with given opposite diagonal section (given in
Proposition 3) even turns out to be a copula:

Proposition 5. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function such that
ω(0) = ω(1) = 0. Then the function Fω defined by (3) is the greatest cop-
ula with opposite diagonal section ω.
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(i) As a consequence of Propositions 3 and 5, each greatest 1-Lipschitz
aggregation operator with opposite diagonal section ωW , ωM , ωΠ (con-
sidered in Example 1) and ω (considered in Example 2), respectively, is
also the greatest copula with the respective opposite diagonal section.

(ii) The smallest 1-Lipschitz aggregation operators with opposite diagonal
sections ωW and ωM (considered in Example 1), respectively, are also
the smallest copulas with the respective opposite diagonal section.

(iii) The smallest 1-Lipschitz aggregation operator AωΠ
with opposite diag-

onal section ωΠ (considered in Example 1) is the smallest quasi-copula
with this property because of Proposition 3, but not a copula because
of

AωΠ
( 3
8 ,

7
16 ) −AωΠ

( 3
8 ,

9
16 ) +AωΠ

( 5
8 ,

9
16 ) −AωΠ

( 5
8 ,

7
16 ) < 0.

(iv) Similarly, the smallest 1-Lipschitz aggregation operator Aω with oppo-
site diagonal section ω (considered in Example 2) is the smallest quasi-
copula with this property, but not a copula because of

Aω(1
3 ,

1
3 ) −Aω( 1

3 ,
2
3 ) +Aω( 2

3 ,
2
3 ) −Aω( 2

3 ,
1
3 ) < 0.
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Abstract. This paper studies some relationships between fuzzy relations, fuzzy
graphs and fuzzy measure. It is shown that a fundamental theorem of Discrete
Convex Analysis is derived from the theory of fuzzy measures and the Choquet
integral.
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1 Introduction

Graphs are used to represent relations between objects. To include fuzziness in
such relations fuzzy graphs were introduced. At present a large number and
variety of applications have been developed that use graphs for knowledge
representation. For example, they are used in the context of inference sys-
tems (e.g. in probabilistic and possibilistic networks [6, 8] or fuzzy cognitive
graphs [17]), matching algorithms [16], or in dictionaries (as WordNet [13]),
for easing information retrieval and recommendation systems [21]. Such ap-
plications have fostered the development of new tools for graphs and fuzzy
graphs, as well as the development of other graph based formalisms (as e.g.
in [3]).

Roughly speaking, fuzzy graphs have been defined adding fuzziness either
on the vertexes or on the edges. At present several alternative definitions exists
for fuzzy graphs, some of them can be found in [7].

Several theoretical results have been obtained for fuzzy graphs. See e.g. [1,
4, 5, 9]. In this paper we propose a method to define fuzzy measures for the
subsets of vertexes in a graph. This measure is based on the fuzzy memberships
of the vertexes. In some sense, the proposed measures are to evaluate the
connectivity that a subset of vertexes can achieve.
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Choquet integral [11] (see also [10]) is a tightly related concept with fuzzy
measures. In fact, they are defined to integrate functions with respect to the
fuzzy measures. In this paper we give some results for Choquet integrals.
Namely, we show that they can be used to represent some functions.

In this paper, we assume that the universal set N is a finite set, that is,
N := {1, 2, . . . , n}.

The structure of this paper is as follows. In Section 2 we give some prelim-
inaries that are needed later on in this paper. In Section 3 the fuzzy measure
for fuzzy graphs is proposed and studied. Section 4 is devoted to the results
about the representation in terms of Choquet integrals. The paper finishes
with some conclusions.

2 Preliminaries

Definition 1. A set function μ : 2N → [0, 1] is a fuzzy measure if it satisfies
the following axioms:

(i) μ(∅) = 0, μ(N) = 1 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity) for A, B ∈ 2N

Definition 2. [11] (see also [2]) Let μ be a fuzzy measure on (N, 2N ). The
Choquet integral Cμ(x) of x : N → R+ with respect to μ is defined by

Cμ(x) =
n∑

j=1

x(as(j))(μ(As(j)) − μ(As(j+1)))

where xs(i) indicates that the indices have been permuted so that

0 ≤ x(as(1)) ≤ · · · ≤ x(as(n)), As(i) = {as(i), · · · , as(n)}, As(n+1) = ∅.

A function x : N → R+ is regarded as |N | = n -dimensional vector, that
is, x ∈ Rn

+.

Definition 1 Let x, y ∈ Rn
+. We say that x and y are comonotonic if

xi < xj ⇒ yi ≤ yj

for i, j ∈ N .

A chain of sets in 2N is a set system M ⊂ 2N which is completely ordered
with respect to set inclusion, i. e.

A,B ∈ M implies A ⊂ B or B ⊂ A.
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Definition 2 Let I be a real valued functional on Rn
+. We say:

(1) I is comonotonic additive if and only if for comonotonic x, y ∈ Rn
+,

I(x+ y) = I(x) + I(y),

(2) I is comonotonic monotone if and only if for comonotonic x, y ∈ Rn
+

x ≤ y ⇒ I(x) ≤ I(y).

As the conditions for a functional to be the Choquet integral, we have the
next theorem.

Theorem 3 [20] Let I : [0, 1]n → R+ be comonotonic monotone and
comonotonic additive functional with I(1N ) = 1. There exists a fuzzy measure
μ on (N, 2N ) such that

I(x) = Cμμ(x)

for all x ∈ Rn
+.

Next we define a pseudo-addition.

Definition 4 A binary operation ⊕ : [0,∞) × [0,∞) → [0,∞) is called a
pseudo-addition if the following properties are satisfied:

(1) (commutativity) a⊕ b = b⊕ a,
(2) (monotonicity) a ≤ a′, b ≤ b′ implies a⊕ b ≤ a′ ⊕ b′,
(3) (associativity) (a⊕ b) ⊕ c = a⊕ (b⊕ c)
(4) (continuity) an → a and bn → b imply an ⊕ bn → a⊕ b,
(5) (zero element) 0 ⊕ a = a⊕ 0,

for a, b ∈ [0,∞).

For fixed p > 0, let x ⊕ y := (xp + yp)1/p. Then ⊕ is a pseudo-addition.
Using pseudo-addition ⊕, the Choquet integral is generalized [2].

3 Fuzzy Relations and Fuzzy Measures

Let N be a finite set and R be a fuzzy relation on N , that is, R ⊂ N × N ,
where μR : N ×N → [0, 1] is its membership function. (N,R, μR) is regarded
as a fuzzy graph. Thus, the set R is defined by pairs (xi, xj) and corresponds
to the edges of the graph and μR, their membership, is defined from N ×N
into [0,1] in such a way that for the R′ = N×N−R, we have: muR((x, y)) = 0
for all (x, y) ∈ R′. We say that T ⊂ R is a fuzzy tree if there exists no xi ∈ N
(2 ≤ i ≤ n) such that (x1, x2), . . . , (xi−1, xi) ∈ R and x1 = xi. This is, there
is no cicle in the graph. TR denotes the set of all fuzzy trees of fuzzy graph
(N,R, μR).
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Definition 5 Let (N,R, μR) be a fuzzy graph. We define a set function
m : 2R → [0,∞) by

m(A) := sup{
⊕

(x,y)∈I

μ(x, y)|I ⊂ A, I ∈ TR}.

The next proposition follows from the definition.

Proposition 1. Let (N,R, μR) be a fuzzy graph and m be a set function
defined in Definition 5.

(1) m(∅) = 0
(2) (monotonicity) A ⊂ B implies m(A) ≤ m(B)
(3) (⊕submodularity) m(A) ⊕m(B) ≥ m(A ∪B) ⊕m(A ∩B).

Define a set function ν : 2R → [0, 1] by ν(A) := m(A)/m(N). Then,
conditions (1) and (2) in the proposition above imply that the set function ν
on 2R is a fuzzy measure.

Example 1 Let (N,R) be the fuzzy graph in Figure 1. That is, N :=
{A,B,C,D} and a fuzzy relation {a, b, c, b} as indicated in the figure.

A

b:0.5

a:1.0

C

c:0.6

B  d:0.4

D

Fig. 1. Fuzzy Graph

If ⊕ := +, then the fuzzy measure ν generated by the fuzzy graph in Fig-
ure 1 is the one in Table 1.

If ⊕ := ∨, then the fuzzy measure ν′ generated by the fuzzy graph in
Figure 1 is the one in Table 2.

ν′ is a possibility measure.

Let ⊕ = + and μ(x, y) = 1 for all (x, y) ∈ R, Then we have m(A) ≤ |A|,
monotonicity and submodularity. Therefore, m is a characteristic function of
matroid [14, 18].
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Table 1. Fuzzy measure generated by the fuzzy graph (⊕ = +)

set ∅ {a} {b} {c} {d} {a, b} {a, c} {a, d}
ν 0 0.5 0.25 0.3 0.2 0.75 0.8 0.7

set {b, c} {b, d} {c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} N

ν 0.55 0.45 0.5 0.8 0.95 1 0.75 1

Table 2. Fuzzy measure generated by the fuzzy graph (⊕ = ∨)

set ∅ {a} {b} {c} {d} {a, b} {a, c} {a, d}
ν′ 0 1 0.5 0.6 0.4 1 1 1

{b, c} {b, d} {c, d} {a, b, c} {a, b, d} {a, c, d} {b, c, d} N

0.6 0.5 0.6 1 1 1 0.6 1

4 Simplex and Choquet Integral

First we define a simplex and a barycentric coordinate.

Definition 6 Let P0, P1, . . . , Pk ∈ RN .

(1) We say that {P0, P1, . . . , Pk} is affinely independent if

k∑
i=0

αi = 0,
k∑

i=0

αiPi = 0

and αi ∈ R imply
α0 = α1 = · · · = αk = 0.

(2) Let us suppose that {P0, P1, . . . , Pk} is affinely independent, and define
the subset σ(P0, P1, . . . , Pk) ⊂ RN by

σ(P0, P1, . . . , Pk) := {x|x =
k∑

i=0

αiPi, αi ≥ 0,
k∑

i=0

αi = 1}.

Then, σ(P0, P1, . . . , Pk) is called a simplex.
(3) Let x ∈ σ(P0, P1, . . . , Pk). In this case, if there exists unique non-

negative real numbers α0, α1, . . . , αk such that x =
∑k

i=0 αiPi, we say
that (α0, α1, . . . , αk) is the barycentric coordinate of x.

Example 2 Consider Fig. 2 illustrated below. Triangles σ(P1, P2, P3), σ(P1, P3, P4)
and σ(P1, P4, P5) are simplex. K := {σ(P1, P2, P3), σ(P1, P3, P4), σ(P1, P4, P5)}
is a complex and |K| = σ(P1, P2, P3) ∪ σ(P1, P3, P4) ∪ σ(P1, P4, P5)}

We have the next proposition that follows immediately from the definition
above.
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P1

P2

P5

P4

P3

Fig. 2. Complex of {P1, P2, P3, P4, P5}

Proposition 7 Let C be a maximal chain, that is,

C : ∅ = C0 ⊂ C1 ⊂ . . . Cn = N,

and z is a point of integers, that is, z ∈ ZN . Let zi := z + χCi
where

χCi
is a characteristic function of Ci ∈ C (i = 0, 1, . . . , n). Then, the set

{z0, z1, . . . , zn} is affinely independent. Therefore σ(z0, z1, . . . , zn) is a sim-
plex.

Next we define the complex and simplical subdivision.

Definition 8 Let σ(P0, P1, . . . , Pk) be a simplex. Then, we say that sub-
simplexes σ(Pk0 , Pk1 , . . . , Pki

), (i < k) are faces of σ(P0, P1, . . . , Pk) and that
each Pi is a vertex.

Let K be a set of simplex in RN . We say that K is a complex if every face
of σ ∈ K belongs to K, and if for σ1, σ2 ∈ K, σ1 ∩σ2 �= ∅ implies that σ1 ∩σ2

is a face of both σ1 and σ2.
We define the polyhedra |K| by |K| := ∪σ∈Kσ.
Let X be a topological space and K be a complex. Then, if there exist a

homeomorphic map f : |K| → X, we say that (K, f) is a simplical subdivision
of X.

Proposition 9 Let K be a set of simplex σ := σ(z0, z1, . . . , zn) for all z ∈ ZN

and every maximal chain C. Then |K| = RN . Let i : |K| → RN be an identity
map. Then (|K|, i) is a simplical subdivision of RN .

Example 3 Let |K| := R2 and f := id (identity map). We illustrate the
simplical subdivision of R2.

Proposition 2. For every x ∈ RN , [x] denotes [x](i) := [x(i)](i ∈ N) where
[x(i)] is the maximal integer less than x(i).

For x̃ = x− [x], x̃(l1) ≥ x̃(l2) ≥ · · · ≥ x̃(ln) and the maximal chain

C : C0 = ∅, Ci = {l1, l2, . . . , li}(i = 1, 2, . . . n),

denote z′i := [x] + χCi
, then we have x ∈ σ(z′0, z

′
1, . . . , z

′
n) and a barycentric

coordinate of x is (1 − x̃(l1), x̃(l1) − x̃(l2), . . . , x̃(ln−1) − x̃(ln)).
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X2

X1

Fig. 3. Simplical subdivision of R2

Let f : ZN → R, then, we define the piecewise linear extension (PL
extension) f̂ of f :

Definition 10 Let x ∈ RN . Then, there exists a simplex σ(z0, z1, . . . , zn)
such that x ∈ σ(z0, z1, . . . , zn). Let (α0, α1, . . . , αn) be a barycentric coordinate
of x, that is x :=

∑n
i=0 αizi. Then we define the piecewise linear extension f̂

of f by f̂(x) :=
∑n

i=0 αif̂(zi).

Since x, y ∈ σ(z0, z1, . . . , zn) is comonotonic and f̂ is linear on σ(z0, z1, . . . , zn),
we have the next lemma.

Lemma 11 f̂ is comonotonically additive.

It follows from the previous lemma that we can apply the representation
theorem presented in [20].

Proposition 12 The PL extension can be represented by Choquet integrals.

Applying subadditivity theorem [11, 12], we have the next corollary, that
is a fundamental theorem of discrete convex analysis [19].

Corollary 13 [15] Set function f : 2N → R is submodular if and only if its
PL-extension f̂ : [0, 1]N → R is convex.

The corollary above can easily be extended to ⊕-submodular set function
and extended Choquet integral.

5 Conclusion

In this paper we have studied some aspects related with fuzzy measures and
fuzzy integrals. We show that a fuzzy relation induces a fuzzy measure. Con-
versely we can induce a fuzzy relation by some fuzzy measure. The Choquet
integral is regarded as a natural extension of some set function (fuzzy mea-
sure). These fact says that theory of discrete convex analysis can be included
in theory of theory of fuzzy measures and fuzzy integral.
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Modular artificial neural networks (MANN) have been used in the last
years as clasification/forecasting machine, showing improved generalization capabil-
ities that outperform those of single networks when the search space is stratified.

Time Series data could be generated by many unknown and different sources and
Modular Neural Networks, in particular Mixture of Experts models, are suitable for
this time series where each expert is more capable to model some region in the
input space and a gating network makes an intelligent selection of the expert that
will model the specific pattern.

Stochastical models for time series analysis are global models limited by the
requirement of stationarity of the time series and normality and independence of
the residuals. However, for most real world time series present behaviors such as
heteroscedasticity, sudden burst of activity, or outliers. Such data are very common
in finance, insurance, seismology and so on.

In this paper we propose MANN models capable of dynamically adapt their
architecture to non-stationary time series when the data is generated from sev-
eral sources and is affected by the presence of outliers. Simulation results based on
benchmark data sets are presented to support the proposed technique.

Time Series Data Mining, Modular Neural Networks, Mixtures of

Experts.

1 Introduction

In the last decade Artificial Neural Networks (ANN) have been of particu-
lar interest as a technology for data mining because they offer a means of
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efficiently modelling large and complex problems. ANN are data-driven mod-
els, i.e., they are capable of finding relationships (patterns) inductively by
the learning algorithm based on the existing data rather than requiring the
modeler to specify the functional form and interactions.

Time series analysis is fundamental for both engineering and scientific
endeavors. Several models were developed for predicting and controlling pro-
cesses as they evolve through time. Traditional methods such as the ARIMA
method [3] are limited by the requirement of stationarity of the time series
and normality and independence of the residuals. However, most real world
time series present behaviors such as heteroscedasticity, sudden burst of activ-
ity, or outliers. Such data are very common in finance, insurance, seismology
and so on. [9] and [2] consider the value of artificial neural networks (ANNs)
in solving time series forecasting problems. They demonstrate how ANNs can
improve the forecasts.

Time Series data could be generated by many unknown and different
sources and the model should exploit this stratification on the data. Finite
Mixture Models [15] are used as a statistical approach, but assumptions on
the data are required. Modular Neural Networks, in particular Mixture of
Experts models, are suitable for this time series where each expert is more
capable to model some region in the input space and a gating network makes
an intelligent selection of the expert that will model the specific pattern.

Most data mining applications involve data that is corrupted by outliers.
We understand for outliers those observations that are substantially different
to the majority of data. Outliers are of special interest in data mining because
they can be the key discovery from very large datasets [14]. The identification
of outliers can lead to the discovery of truly unexpected knowledge in areas
such as electronic commerce exceptions, bankruptcy, credit card fraud. Since
the learning process of ANN relies on the data, when data contains outliers
the model is affected by these deviations, thus obtaining a poor performance.

In this paper we propose to use modular artificial neural networks (MANN)
based on the Mixture of Experts (ME) framework as a predictive model when
the search space is stratified [10]. In order to obtain a model that is robust
to the presence of outliers we use Robust Expectation Maximization (REM)
algorithm [19] introduced as a modification of the Jordan and Jabobs [12]
algorithm. We address the characteristic of the model as a data mining tech-
nique and we propose an algorithm to detect outliers on multivariate data.
Finally we show simulations results based on real datasets.

2 Time Series Analysis

2.1 Linear Models

The statistical approach to forecasting involves the construction of stochastic
models to predict the value of an observation xt using previous observations.
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This is often accomplished using linear stochastic difference equation models,
with random input. By far, the most important class of such models is the
linear autoregressive integrate moving average (ARIMA) model. A more com-
prehensive treatment may be found for example in [3]. The seasonal ARIMA
(p, d, q) × (P,D,Q)s model for such time series is represented by

ΦP (BS)φp(B)∇D
S ∇dxt = ΘQ(BS)θq(B)εt (1)

where φp(B) is the nonseasonal autoregressive operator of order p, θq(B) is
the nonseasonal moving average operator of order q, ΦP (BS), ΘQ(BS) are the
seasonal autoregressive and moving average operator of order P and Q and the
terms xt and εt are the time series and a white noise respectively. Moreover it
is assumed that E[εt|xt−1, xt−2, ...] = 0. This condition is satisfied for example
when εt are zero mean, independent and identically distributed and indepen-
dent of past xt´s. It is assumed throughout that εt has finite variance σ2. The
backshift operator B shifts the index of a time series observation backwards,
e.g. Bxt = xt−1 and Bkxt = xt−k. The order of the operator is selected by
Akaike’s information criterion (AIC) or by Bayes information criterion (BIC)
and the values of the parameters Φ1, ..., ΦP , φ1, ..., φp, Θ1, ..., ΘQ y θ1, ..., θq

are selected from the time series data using optimization methods such as
maximum likelihood [3] or using robust methods such as recursive generalized
maximum likelihood [1]. The ARMA-model is limited by the requirement of
stationarity and invertibility of the time series, i.e. the system generating the
time series must be time invariant and stable. In addition, the residuals must
be independent and identically distributed.

The ARMA models require a stationary time series in order to be useful
for forecasting. The condition for a series to be weak stationary is that:

E[xt] = μ ; V [xt] = σ2 ; COV [xt, xt−k] = γk ∀t (2)

2.2 Non-Linear Models

Many types of non-linear models have been proposed in the literature, see for
example bilinear models [17], classification and regression trees [4], threshold
autoregressive models [18] and Projection Pursuit Regression [7]. However, on
the debit side, it is generally more difficult to compute forecasts more than
one step ahead [13].

An important class of non-linear models is that of non-linear ARMA mod-
els (NARMA) proposed by [5], which are generalizations of the linear ARMA
models to the non-linear case. A NARMA model obeys the following equa-
tions:

xt = h(xt−1, xt−2, ...., xt−p, εt−1, ...., εt−q) + εt (3)

where h is an unknown smooth function, and as in the section 2.1 it is assumed
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that E[εt|xt−1, xt−2, ...] = 0 and that variance of εt is σ2. In this case the
conditional mean predictor based on the infinite past observation is

x̂t = E[h(xt−1, xt−2, ...., xt−p, εt−1, ...., εt−q)|xt−1, xt−2, ...] (4)

Suppose that the NARMA model is invertible in the sense that there exists
a function ν such that xt = ν(xt−1, xt−2, ...) + εt. Then given the infinite
past of observations xt−1, xt−2,..., one can compute the εt−j in (3) exactly
εt−j = κ(xt−j , xt−j−1, ...), j = 1, .., q. In this case the mean estimate is

x̂t = h(xt−1, xt−2, ...., xt−p, εt−1, ...., εt−q) (5)

where the εt−j are specified in terms of present and past xu’s. The predictor
of (5) has a mean square error σ2.

Since we have only a finite observation record, we cannot compute (5). It
seems reasonable to approximate the conditional mean predictor (5) by the
recursive algorithm

x̂t = h(xt−1, xt−2, ...., xt−p, ε̂t−1, ...., ε̂t−q) (6)

ε̂t−j = xt−j − x̂t−j , j = 1, 2, ..., q (7)

with the following initial conditions x̂0 = x̂−1 = ... = x̂−p+1 = ε̂0 = ... =
ε̂−q+1 = 0.

For the special case of non-linear autoregressive model (NAR), it is easy
to check that (3) is given by

xt = h(xt−1, xt−2, ...., xt−p) + εt (8)

In this case, the minimum mean square error (MSE) optimal predictor of
xt given xt−1, xt−2,...., xt−p is the conditional mean (for t ≥ p+ 1).

x̂t = E[xt|xt−1, ...., xt−p] = h(xt−1, ...., xt−p) (9)

This predictor has mean square error σ2.

3 Nonlinear Time Series Analysis with Several Sources

In this section we suppose that a Time Series could be generated by many un-
known and different sources S1,...,SK , where K is the number of data sources.
In this work we assume that each source can be modelled by a NAR model
given by:

x
[i]
t = h(xt−1, xt−2, ..., xt−pi

) + ε
[i]
t i = 1..K (10)
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where the output x[i]
t of the source Si given the past observations xt−1, ..., xt−pi

follows the probabilistic behavior given by P [x[i]
t |xt−1, ..., xt−pi , Si]. Then, the

output of each source is combined in order to generate the observed data xt.
To combined the output of the several sources a probabilistic model is used,
where the sources si are chosen with probability P [si|xt−1, ..., xt−p] given the
past observations xt−1, ..., xt−p, and where p = maxi{pi}.

For these reason the probability of the output variable xt given the past
observation xt−1, ..., xt−p is given by

P [xt|xt−1, ..., xt−p] =
K∑

i=1

P [si|xt−1, ..., xt−p]P [x[i]
t |xt−1, ..., xt−pi , Si] (11)

As can be noted only the data xt is observed, but the output x[i]
t of each

source is not detected, we say that the data is lost or hidden, and each source
receive the observed data only.

4 Construction of Modular Neural Network for
Nonlinear Time Series Analysis with Several Sources

An Artificial Neural Network (ANN) topology and dynamics define an approx-
imator from input to output. The unknown function h : �m → � produces
the observed sample pattern pairs (x1, y1), (x2, y2), ... The sample data modify
parameters in the neural estimator and bring the neural system input-output
responses closer to the input-output responses of the unknown estimate. In
psychological terms, the neural system learns from experience”. This is why
we call the ANN estimation model-free.

In this section first we introduce the Mixture of Experts model as a Mod-
ular Neural Network, then a robust learning algorithm as a parameter estima-
tion process of the model is introduced. Finally the model is apply as Time
Series predictor.

4.1 Construction of Mixture of Experts model

Jacobs et al. proposed a technique known as Mixture of Experts (ME) [10] as
a generalization of the statistical mixture models. As shown in Figure 1, the
ME architecture consists of K modules called experts and a gating network.
The experts solve a function approximation problem over local regions of the
input space, so the architecture needs a mechanism to identify for each input
x which experts are more adequate to model the desire output, work that is
accomplished by the gating network. The gating network implements a soft
partition of the input space into regions corresponding to experts; the outputs
of the experts are weighted as dictated by the gating networks to obtain a
combined output.
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Fig. 1. Mixtures of Experts Architecture (ME): This architecture consists
of a set of experts networks and a gating network. The experts compete for the
learning of the problem and the gating mediates the competence.

The jth expert network produces as output a parameter vector μ
j

=

μ
j
(x, θj), j = 1, . . . ,K, which is the location parameter for the jth prob-

ability density. The gating network partitions the input space into regions
corresponding to the various expert networks by assigning a probability vec-
tor [g1, g2, . . . , gK ]T to each point in the input space. The output of the gating
network is given by

gj = gj(x, θ0) =
esj(x,θ0)∑K
i=1 e

si(x,θ0)
, j = 1, . . . ,K, (12)

Thus the total probability of observing y from x is given by the following
finite mixture of density

P (y|x) =
K∑

j=1

P (j|x, θ0)P (y|x, θj , Σj) =
K∑

j=1

gj(x, θ0)P (y|x, θj , Σj) (13)

So the expected value of the output will be the ME model output and is
a weighted sum of the experts outputs: μ ≡ e[y|x] =

∑K
j=1 gjμj

. The i − th

output of the model is given by:

μi =
K∑

j=1

gj(x, θ0)μj,i(x, θj) (14)

where gj(x, θ0) is the output of the gating network and μj,i(x, θj) is the i− th
output of the j−th expert network. Further details of this model can be found
in [12].
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4.2 Robust Learning Algorithm

The learning problem is treated as parameter estimation process of the ME
architecture. The parameters Θ = [θT

0 , θ
T
1 , ..., θ

T
K ]T are chosen in such a way

to maximize the likelihood function:

L(χ,Θ) = P ({y(n)}N
1 |{x(n)}N

1 ) =
∏N

n=1 P (y(n)|x(n))∏N
n=1

∑K
i=1 gi(x, θ0)P (y(n)|x(n), θi)

(15)

The MLE consists in maximize the equation (15) or equivalently, maximize
the log-likelihood function l(χ,Θ) = logL(χ,Θ). To estimate the ME model
parameters Θ∗, techniques based on gradient ascent are applied (see [10] and
[11]) or based in the expectation maximization algorithm [12].

Samples with low likelihood are likely to be regarded as outliers and they
have high influences in the estimation process. To avoid this problem we must
bound the influence of samples with low likelihood that are likely to be re-
garded as outliers. For this reason we apply a robust version of the EM algo-
rithm [19].

The Robust Expectation Maximization (REM) algorithm consists in two
steps repeated iteratively until convergence criterium is met. The two steps
are:

• Expectation step: compute the conditional expectation of the robust
version of the likelihood:

RQ(Θ|Θ(k)) =
∑N

t=1

∑K
j=1 h

(k)
j (t) ln

(
gj(x(t), θ0)

)
+
∑K

j=1

∑N
t=1 h

(k)
j (t)ρ

(
ln
[
P (y(t)|x(t), θj)

]) (16)

where Θ(k) is the expected value of the parameter vector at step k. h(k)
j (t)

is given by:

h
(k)
j (t) =

gj(x(t), θ
(k)
0 )P (y(t)|x(t), θ

(k)
j )∑K

i=1 gi(x(t), θ
(k)
0 )P (y(t)|x(t), θ

(k)
i )

(17)

• Maximization step: compute:

Θ(k+1) = arg max
Θ

RQ(Θ|Θ(k)) (18)

This objective of the ρ(·) function is to introduce a bound to the influence
of the outliers, and applied to each expert network after the natural logarithm
ln(·). The model will be robust due to the robust contribution of each expert.

To choose the ρ(·) function to accomplish the robustification task, in [8]
some special functions for M-estimation are discussed. The goal is to weight
each observation according to the magnitude of likelihood evaluated at the
observation.
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When the outlying observation is presented to the model, the magnitude
of the likelihood that each expert and the gating network evaluate are very
low (with very high absolute magnitude), so during the learning process the
step that each expert must take towards the observation is of big magnitude,
so the model gets away from the majority of data. To avoid this problem we
must downweight the influence of samples with low likelihood that are likely
to be regarded as outliers.

In particular, for the location problem, data that are far away must have a
bounded impact in the estimation algorithm, we will use the Huber function
given by

ρH(z) =
{
z + 1

2 log(2π) if z ≥ 1
2 (−k2 − log(2π))

−k{−2z − log(2π)} 1
2 − 1

2k
2 otherwise

(19)

ψH(z) =
{

1 if z ≥ 1
2 (−k2 − log(2π))

k{−2z − log(2π)}− 1
2 otherwise

(20)

The function ψ(·) will be a type of weight function that will limit the
influence of large atypical samples. In the E step, lets compute the following
quantities:

ψ
(k)
0,j (t) = ln(gj(x(t), θ0)) (21)

ψ
(k)
j (t) = ψ(ln(P (y(t)|x(t), θj))) (22)

Now the Maximization (M) step computes equation (18), by numerical
optimization method by solving the estimation equations:

∂RQ

∂θ0

|
θ0=θ

(k+1)
0

= 0
∂RQ

∂θj

|
θj=θ

(k+1)
j

= 0 (23)

In summary, the parameters update by the REM-ME algorithm are ob-
tained as follows [19]:

1. The E step: Compute the h
(k)
j (t), ψ(k)

0,j (t) and ψ
(k)
j (t), j = 1..K, by

equations (17), (21) and (22) respectively.
2. The M step: Estimate θ

(k+1)
j , j = 1, . . . ,K and θ

(k+1)
0 by solving the

estimation equations (23) or solving the maximization problem given in
equation (18).

5 Mixture of Experts for Time Series Forecasting

Finally we use the ME as stochastical model for Time Series analysis when
data are generated by different sources. The patterns introduced into the
neural network for training and prediction are obtained from the time series
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x1, x2, ..., xt, ... in the following form: the output y of the ME model is related
to the variable that we want to predict xt, and the input x with the lags
(xt−1, ..., xt−p) needed for the prediction.

In this approach, each expert μ
j

= μj is considered to model the expected
output of the data source Sj .

x̂
[j]
t = μj(xt−1, ..., xt−p, θj) = h(xt−1, ..., xt−pj

) j = 1..K (24)

And the gating network models the probabilistic behavior of the aggrega-
tion function that combines the output of the sources, i.e.,

gj(xt−1, ..., xt−p, θ0) = P [Sj ]xt−1, ..., xt−p] (25)

So, in this form, the prediction of the value xt will be given by the output
of the ME model:

x̂t = μ(xt−1, .., xt−p, Θ) =
K∑

j=1

gj(xt−1, ..., xt−p, θ0)μj(xt−1, ..., xt−p, θj) (26)

6 Outlier Detection

Most data mining applications involve data that is contaminated by outliers.
The identification of outliers can lead to the discovery of truly unexpected
knowledge in areas such as electronic commerce exceptions, bankruptcy, credit
card fraud. One approach to identify outliers is to assume that the outliers
have different distribution with respect to the remaining observations.

To detect outliers we measure the influence of a given observation over the
parameters of each expert of the ME model by using the influence function
(IF ) as was defined by Hampel [8]. The IF describes the effect of an infinites-
imal contamination at the point (xi, yi) on the estimate. The influence of the
point (xi, yi) on each expert is given by

IFj = IF (xi, yi, θj) = ψ(ri)M−1
j DμT

j (27)

where ri = yi − μj(xi, θj) is the residual of the prediction, Dμj = ∂μj

∂θj
is the

gradient of the expert network j, and under some regular condition Mj can
be estimated by Mj =

∑N
i=1 ψ

′(ri)DμjDμ
T
j . Now, we obtain the influence of

the data into the model by

IF (xi, yi, θ0, θ1, ..., θK) = [(g1IF1)T , ..., (gKIFK)T ]T (28)

We measure the influence of a particular data into to the non-robust
Q(θ|θ(k)) functional with respect to the θj parameters of each expert (i.e.
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we assume ρ(x) = id(x) in (16)). We assume that the experts networks have
a probabilistic behavior given by the gaussian distribution:

P (y|x, θj , Σj) = 1

(2π)
m
2 | j|

1
2

exp
{
− 1

2 [y − μj(x, θj)]
TΣ−1

j [y − μj(x, θj)]
}
(29)

The influence of the point (xi, yi) to each expert parameter is given by

IFj = IF (x, y, θj) =
(
Σ−1

j (y − μ
j
)Dμ

j

)T

(30)

where Dμ
j

= ∂μj

∂θj
is the gradient of the expert net. Then the standardized

influence function is applied as a measure of the impact of the observation to
the model:

SIF = SIF (xi, yi, θ1, ..., θK) =
√
IFTV (θj)−1IF (31)

where the variance of the estimator is given by, V (θj) =
∫
IF · IFT dP (x, y).

After evaluating the SIF function into the data, if SIF > δ for some fixed
δ > 0 will indicate that the data can be regarded as outlier. Further analysis
is needed to understand its cause, and possibly extract useful knowledge.

7 Experimental Results with a Real data set

In this section we analyze our method applied to sets obtained from a Bench-
mark datasets. The first set in the Balloon Time Series [6] and the second is
the Wind speed variation Time Series to measure the El Niño effect [16].

To model this Time Series we apply two different architectures: a feed-
forward neural network (FANN) [2] and the Mixture of Experts model [19].
The Feedforward Neural Network model has three layers: input, hidden and
output with (p−λ−1) neurons respectively. The ME model consists on linear
experts, i.e., μ

j
= xT θj , and linear gating network, sj(x, θ0) = xT θ0, before

applying the softmax function (non-linear) given by equation (12). In the ME
model we vary the number of experts K for the simulations. For the learning
process of the ME models four differents algorithms were used: the gradient
descent algorithm (Grad), the Expectation Maximization Algorithm (EM),
the Robust gradient descent (RGrad) and the Robust Expectation Maximiza-
tion Algorithm (REM).

Furthermore, each of the datasets were partitioned in three subsets: Train-
ing (Tr), Validation (Val) and Test (T). The Training set was used for the
learning process of the Neural Networks models while the Validation set was
used as stopping criterium, i.e., when the mean square error of the adjustment
of the model to the data in the validation set increase, the learning process is
stopped. The Test set, not yet seen by the neural models is used to compare
the generalization and prediction performance.
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7.1 Balloon Time Series

We now apply our method to a set for observed data, the Balloon Time Series
dataset, obtained from the StatLib archive

http://lib.stat.cmu.edu/datasets/balloon

It has long served as a benchmark and been well studied in the previous
literature [6]. The data set consists of 2001 observations of radiation, taken
from a balloon about 30 kilometers above the surface of the earth. In the
section of the flight shown here the balloon increases in height. As radiation
increases with height there is a non-decreasing trend in the data. The outliers
are caused by the fact that the balloon slowly rotates, causing the ropes from
which the measuring instrument is suspended to cut off the direct radiation
from the sun.

To model the Balloon Time Series we use a lag of p = 12, so the neural
networks models have as input xt−1 = (xt−1, ..., xt−12) and output xt. The
data set was partitioned in (1001-250-250) data for the training, validation
and test set respectively. Due to the lag twelve data points were lost in the
training set. We vary the number of hidden units, λ, of the Feedforward Neural
Network and the best results were obtained for 5 neurons displayed in Table 1
as FANN-5. Then we apply a Mixture of Experts model with different learning
algorithms and we vary the number of experts K. In Table 1 the best results
for each learning algorithm are displayed.

Table 1. Summary results about the mean square error performance of several
learning methods using the Balloon Data Set

Algorithm Training Validation Test

FANN-5 0.026794 0.028379 0.014731
ME-Grad-7 0.028261 0.024989 0.013562
ME-RGrad-7 0.028105 0.025108 0.012763
ME-EM-5 0.022022 0.019024 0.008107
ME-REM-2 0.023108 0.018474 0.007680

From this partial results we can infer that the REM obtained better per-
formance. By evaluating the SIF function on the test set consisting on the
last 250 data of the time series, 4 observations were detected as outliers and
could be identified for further study by the meteorologists (see figure 2).

7.2 Wind speed variation Time Series to measure the El Niño
effect

El Niño is a disruption of the ocean atmosphere system in the tropical Pacific
which has important consequences for the weather around the globe. Even
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Fig. 2. Experimetal Result: Balloon Test set modelled by the ME-REM-2 model.
With circle are marked the outliers found by the algorithm.

though the effect of El Niño is not avoidable, research on its forecast and its
impacts allows specialists to attenuate or prevent its harmful consequences
(see [16] for a detailed overview). The effect of the equatorial Pacific meridional
reheating may be measured by the deviation of the wind speed on the ocean
surface from its average. It is worth mentioning that this effect is produced
by conduction, and thus we expect the wind speed variation to be smooth.
In this section, we study the wind speed anomaly index, i.e. its standardized
deviation from the mean, in a specific region of the Pacific (12-2N, 160E-
70W). Modelling this anomaly helps to understand the effect of El Niño in
that region. The time series composed of T = 1704 monthly observations is
available at

http://tao.atmos.washington.edu/data sets/eqpacmeridwindts.

The time series has missing data, and we discard them from the training,
validation and test set. We partitioned the final 1511 data in (1511-250-250)
data for the training, validation and test set respectively. To model the Balloon
Time Series we use a lag of p = 2, so the neural networks models have as input
xt−1 = (xt−1, xt−2) and output xt. Due to the lag two data points were lost in
the training set. We vary the number of hidden units, λ, of the Feedforward
Neural Network and the best results were obtained for 5 neurons displayed in
Table 2 as FANN-2. Then we apply a Mixture of Experts model with different
learning algorithms and we vary the number of experts K. In Table 1 the best
results for each learning algorithm are displayed.

From this partial results we can infer that the REM obtained better per-
formance. By evaluating the SIF function on the test set consisting on the
last 250 data of the time series, 23 observations were detected as outliers and
could be identified for further study by the meteorologists (see figure 3).
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Table 2. Summary results about the mean square error performance of several
learning methods using the Wind speed variation Time Series to measure the El
Niño effect

Algorithm Training Validation Test

FANN-2 0.7494 0.1146 0.1608
ME-Grad-2 0.7839 0.1201 0.1609
ME-RGrad-2 0.7743 0.1379 0.1981
ME-EM-7 0.7543 0.1173 0.1566
ME-REM-6 0.7568 0.1211 0.1546
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Fig. 3. Experimetal Result: Wind Test set modelled by the ME-REM-6 model.
With circle are marked the outliers found by the algorithm.

8 Concluding Remarks

In this paper, we develop a forecasting methodology by considering a Mixture
of Experts model to forecast nonstationary time series. The idea of apply-
ing the modular neural network model is to deal with the problem of time-
changing mean and autocovariance function because the data are supposed to
be generated by different sources and the combined by some means to gener-
ated an unique output. We show that the ME model is suitable for this type
of time series.

In addition we treat the problem of presence of outliers in the data as an-
other type of nonstationary aspect of real data. We introduced an M-estimator
to downweight the influence of outliers data during the training process. We
modify the EM algorithm with the REM that is less sensitive to this type of
deviations.

Finally we introduce a methodology to detect outliers based on the robust
model. This data should be considered for further analysis.

Our algorithm was tested in a meteorological data set. The results ob-
tained compare favorable to the REM learning algorithm showing significant
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improvements when the data set comes from several data sources and contains
outliers.

In the future, we intend to derive some theoretical properties of the Robust
version of the Mixture of Experts model as a predictive model. In addition
other types of experts different than linear should be used in order to increase
the Hypothesis space and obtain better fitting quality.
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Abstract. A feedforward neural network based on multi-valued neurons is considered in the 
paper. It is shown that using a traditional feedforward architecture and a high functionality 
multi-valued neuron, it is possible to obtain a new powerful neural network. Its learning does 
not require a derivative of the activation function and its functionality is higher than the 
functionality of traditional feedforward networks containing the same number of layers and 
neurons. These advantages of MLMVN are confirmed by testing using Parity n, two spirals and 
"sonar" benchmarks, and the Mackey-Glass time-series prediction. 

1 Introduction

A multi-layered feedforward neural network (MLF, it is also often refereed as MLP) 
and a backpropagation learning algorithm for it are well studied from all point of 
views. It is possible to say that this is a classical example of a neural network. We can 
refer in this context to the hundreds of the papers and books. Let us refer, for example, 
to the book [1]. A multi-layer architecture of the network with a feedforward dataflow 
through nodes that requires full connection between consecutive layers and an idea of 
a backpropagation learning algorithm was proposed in [2]. It is well known [1] that 
MLF can be used as a universal interpolator. It is also well known that MLF is 
traditionally based on the neurons with a sigmoid activation function. MLF learning is 
based on the backpropagation learning algorithm, when the error is being sequentially 
backpropagated form the "right hand" layers to the "left hand" ones. It is important 
that the error of each neuron of the network is proportional to the derivative of the 
activation function. 

Multi-Valued Neurons
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On the other hand, it is possible to use different neurons as the basic ones for a 
network with a feedforward architecture. We will consider in this paper a multi-
layered neural network based on multi-valued neurons (MLMVN). 

A multi-valued neuron (MVN) is based on the principles of the multiple-valued 
threshold logic over the field of the complex numbers. A comprehensive observation 
of MVN and its learning is presented in [3]. Different applications of MVN have been 
considered during the last years: MVN has been successfully used, for example, as a 
basic neuron in cellular neural networks [3], as a basic neuron of neural-based 
associative memories [3], [4]-[7] and as the basic neuron of pattern recognition 
systems [7]-[8]. 

The mentioned successful applications of MVN make further extensions very 
attractive. Taking into account that a single MVN has a higher functionality than a 
single neuron with a sigmoid activation function and that learning of a single MVN is 
based on the simple linear error correction rule, it would be interesting to consider a 
neural network with a traditional feedforward architecture, but with MVN as a basic 
neuron. This network and its training are the main subjects that will be considered in 
this paper. 

We will consider a generalization of a discrete MVN to the continuous-valued 
case. It will be shown that since MVN learning is reduced to the movement along a 
unit circle, it does not require a differentiability of the activation function. We will 
also consider a backpropagation learning algorithm for MLMVN, which also does not 
require a differentiability of the activation function. Finally, to show the advantages of 
MLMVN, simulation results will be presented. These advantages in comparison with 
the different network models are confirmed experimentally using Parity n, two spirals 
and "sonar" benchmarks and the Mackey-Glass time-series prediction. 

2 Multi-Valued Neuron and its Training

2.1 Discrete-valued MVN

Let us remind some basic ideas related to MVN and its training. MVN was introduced 
in [9] as a neural element based on the principles of multiple-valued threshold logic 
over the field of the complex numbers deeply considered in [10]. A comprehensive 
observation of MVN theory, its basic properties and learning is presented in [3]. A 
single MVN performs a mapping between n inputs and a single output ([3], [9]). This 
mapping is described by a multiple-valued (k-valued) function of n variables

)(
1 n

x...,,xf  with n+1 complex-valued weights as parameters: 

)()(
1101 nnn

xw...xwwPx...,,xf (1)

where
n

x...,,x
1

 are the variables, on which the performed function depends and 

n
, ...,w,ww

10
 are the weights. The values of the function and of the variables are 
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complex. They are the kth roots of unity: )2exp(  j/ki
j , }10{ k-,j , i is an 

imaginary unity. P is the activation function of the neuron: 

/kj+zj/k, ifj/ki=zP )1(2arg2)2exp()( (2)

where j=0, 1, ..., k-1 are values of the k-valued logic, 
nn

xw...xwwz
110

 is 

the weighted sum , arg z is the argument of the complex number z. Equation (2) is 
illustrated in Fig. 1. Function (2) divides a complex plane onto k equal sectors and 
maps the whole complex plane into a subset of points belonging to the unit circle. 
This is exactly a set of kth roots of unity. 

Fig. 1. Geometrical interpretation 
of the MVN activation function

Fig. 2. Geometrical interpretation 
of the MVN learning rule

MVN learning is reduced to the movement along the unit circle. This movement 
does not require a derivative of the activation function, because it is impossible to 
move in the incorrect direction. Any direction of movement along the circle will lead 
to the target. The shortest way of this movement is completely determined by the 
error that is a difference between the "target" and the "current point", i.e. between the 
desired and actual output, respectively. This MVN property is very important for the 
further development of the learning algorithm for a multi-layered network. Let us 

consider how it works. Let T
q  be a desired output of the neuron (see Fig. 2). Let 

)(zPY
s  be an actual output of the neuron. The MVN learning algorithm 

based on the error correction learning rule is defined as follows [3]:

X-
n+

C
+WW

sqm

mm+
)(

)1(
1 , (3)

where X is an input vector, n is the number of neuron inputs, X  is a vector with the 
components complex conjugated to the components of vector X, m is the number of 

the learning iteration, 
m

W  is a current weighting vector (to be corrected), 
1m

W  is the 

following weighting vector (after correction), 
m

C  is a learning rate. The convergence 

of the learning process based on the rule (3) is proven in [3]. The rule (3) ensures such 

s

i
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1

k-2Z
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a correction of the weights that a weighted sum is moving from the sector s to the 
sector q (see Fig. 2). The direction of this movement is completely defined by the 

difference
sq

. Thus  determines the MVN error. According to (3) a 

correcting item nix-
n+

C
w

i

sqm

i
,...,1,0,)(

)1(
, which is added to the 

corresponding weight in order to correct it, is proportional to . The correction of the 

weights according to (3) changes the value of the weighted sum exactly on .

2.2 Continuous-valued MVN

The activation function (2) is discrete. More exactly, it is piece-wise 
discontinuous. It has discontinuities on the borders of the sectors. Let us modify the 
function (2) in order to generalize it for the continuous case in the following way. Let 
us consider, what will happen, when k  in (2). It means that the angle value of 
the sector (see Fig. 1) will go to zero. It is easy to see that the function (2) is 
transformed in this case as follows: 

||
))(argexp()(

z

z
ezizP

ziArg , (4)

where z is the weighted sum, Arg z is a main value of its argument and |z| is a modulo 
of the complex number z.

The function (4) maps the complex plane into a whole unit circle, while the 
function (2) maps a complex plane just on a discrete subset of the points belonging to 
the unit circle. The function (2) is discrete, while the function (4) is continuous. We 
will use here exactly the function (4) as the activation function for the MVN. Both 
functions (2) and (4) are not differentiable as functions of a complex variable, but this 
is not important, because their differentiability is not required for MVN learning. The 
learning rule (3) will be modified for the continuous-valued case in the following 
way:

X
z

z
-

n+

C
+WX-e

n+

C
+WW

qm

m

ziArgqm

mm+

||)1(
)(

)1(
1

. (5)

It is absolutely clear that convergence of the learning algorithm based on the learning 
rule (5) may be proven in the same way as it was done in [3] for the rule (3). It is also 
interesting to consider the following modification of (5): 

X
n+

C
+WW

m

mm+

~

)1(
1

, (6)

where
~

 is obtained from 
|||| z

z
T

z

zq  using a normalization by the 

factor
||

1

z
:
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||||

1

||

1~

z

z
T

zz

, (7)

Learning according to the rule (6)-(7) makes it possible to squeeze a space for the 
possible values of the weighted sum. Using (6)-(7) instead of (5), we can reduce this 
space to the respectively narrow ring, which will include the unit circle inside. Indeed, 

if 1|| z  and we correct the weights according to (6)-(7), then zz
~  and z

~  will 

be closer to the unit circle than z, approaching to the unit circle form "inside". If 

1|| z  and we correct the weights according to (6)-(7), then zz
~  and z

~  will be 

closer to the unit circle than z, approaching to the unit circle form "outside". This 
approach can be useful in order to make z more smooth as a function of the weights 
and to exclude a situation, when a small change either of the weights or the inputs will 
lead to a significant change of z. At the same time, the choice of the learning rule 
depends on a particular mapping that we want to implement. For example, if it is 
described by the smooth function, there is no reason to use (6)-(7) adding more 
calculations.

3 Multi-Layered MVN-based Neural Network and
a Backpropagation Learning Algorithm

3.1 General remarks

Let us consider a multi-layered neural network with traditional feedforward 
architecture, when the outputs of neurons of the input and hidden layers are connected 
with the corresponding inputs of the neurons from the following layer. Let us suppose 
that the network contains one input layer, m-1 hidden layers and one output layer. We 
will use here the following notations. Let 

km
T  - be a desired output of the kth neuron from the mth (output) layer;

km
Y  - be an actual output of the kth neuron from the mth (output) layer. 

Then a global error of the network for the kth neuron of the mth (output) layer can be 
calculated as follows: 

kmkmkm
YT

*
 - the error for the kth neuron from the output layer. (8)

km

*
 will denote here and further a global error of the network. We have to 

distinguish it from the local errors 
km

 of the particular neurons. 

The learning algorithm for the classical feedforward network is derived from the 
consideration that a global error of the network expressed in the terms of square error
(SE) must be minimized. The squared error is defined as follows: 
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k

km
W )()(

2*

(9)

where *

km

 is a global error of the kth neuron of the mth (output) layer and W  are the 

weighting vectors of all the neurons of the network (it is fundamental that the error 
depends not only on the weights of the neurons from the output layer, but on all 
neurons of the network).

The functional of error may be defined as follows: 
N

s

sms
E

N 1

1
, (10)

where
ms

E  is the mean square error, N is the total number of patterns in the training 

set,
s

E  is the square error of the network for the pattern number s.

The minimization of the functional (10) is reduced to the search for those weights 
for all the neurons that ensure a minimal error. Let us remind briefly how it works for 
MLF. The most important problem for network learning is to express the error of the 
each neuron through the global errors of the network. This problem is solved using the 
backpropagation of the global errors through the network: from the output layer 
through all the hidden layers (from the mth layer to the m-1st one, from the m-1st one to 
the m-2nd one, …, from the 2nd one to the 1st one). When the error is propagated from 
the layer j+1 to the layer j, the error of each neuron belonging to the j+1st layer is 
being multiplied by the weight connecting the corresponding input of this neuron 
from the j+1st layer with the corresponding output of the neuron from the jth layer. For 

example, the error 
1kj

 is propagated from the neuron kj+1 (the kth neuron from the 

j+1th layer) to the ljth neuron (the lth neuron from the jth layer) as follows: 
1kj

 is 

multiplied by the weight 1kj

l
w , namely by the weight corresponding to the lth input of 

the neuron kj+1.
It is also well known for the traditional MLF that the correction of the weights for 

all neurons is organized in such a way that each weight 
i

w  has to be corrected by a 

correcting item 
i

w , which must be proportional to the gradient 
i

w

E  of the error 

function )(wE  with respect to the weights [1].

3.2 A backpropagation learning algorithm for the MLMVN

As it was mentioned from the beginning, the MVN activation function (4) is not 
differentiable. It means that the MLF backpropagation learning algorithm cannot be 
applied for the case of MLMVN because it strongly depends on the derivative of the 
activation function.
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However, a backpropagation learning algorithm for the MVN-based network can 
be derived. As it was shown above for the single neuron, the differentiability of the 
MVN activation function is not required for learning. Since MVN learning is reduced 
to the movement along the unit circle, the correction of the weights is completely 
determined by the neuron's error. The same property is true not only for the single 
MVN, but for the network (MLMVN). The errors of all the neurons from MLMVN 
are completely determined by the global errors of the network (8). As well as MLF 
learning, MLMVN learning is based on the minimization of the error functional (10). 

Let us use the following notations. Let kj

i
w  be the weight corresponding to the ith

input of the neuron kj (kth neuron of the jth level). Let 
ij

Y  be the actual output of the ith

neuron from the jth layer (j=1,…,m). Let 
j

N  be the number of the neurons in the jth

layer. By the way, it means that the neurons from the j+1st layer have exactly 
j

N

inputs. Let 
n

xx ,...,
1

 be the network inputs (they are also the inputs of the neurons in 

the 1st layer, respectively). 
A backpropagation learning algorithm for the MLMVN is described as follows. 

The global errors of the whole network are determined by (8). 
For the errors of the mth (output) layer neurons: 

*1

km

m

km

s
, (11)

where km is a kth neuron of the mth layer; 1
1mm

Ns  (the number of all neurons 

on the previous layer (m-1, to which the error is backpropagated) incremented by 1). 
For the errors of the hidden layers neurons: 

11

1

11

1

1

1

12
1

)(
1

)(
11

jj
N

i

ij

kij

j

N

i

ij

kij
ij

k
j

kj
w

s
w

ws

, (12)

where kj specifies the kth neuron of the jth layer (j=1,…,m-1);
1;,...,2,1

11
smjNs

jj
 (the number of all neurons on the layer j-1 (the 

previous layer j, to which the error is backpropagated) incremented by 1). It should be 
mentioned that the backpropagation rule (12) is based on the same heuristic 
assumption as for the classical backpropagation. According to this assumption we 
suppose that the error of each neuron from the previous (jth) layer depends on the 
errors of all neurons from the following (j+1st) layer. 

Let us clarify a role of the factor 
j

s

1  in (11) and (12). The learning rule (5) for a 

single MVN determines that X
z

z
-

n+

C
W

qm

||)1(

. This expression contains a 

factor
)1(

1

n

 in order to share a contribution of the correction uniformly among all 
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n+1 weights 
n

www ,...,,
10

. Since all the inputs are equitable, it is natural that 

during the correction procedure W  has to be shared among all the weights 
uniformly. If we have not a single neuron, but a feedforward network, we have to take 
into account the same property. It has to be used, in order to implement properly a 
backpropagation of the error through the network. It means, that if the error of a 

neuron on the layer j is equal to 
~

 then this 
~

 must contain a factor equal to 
j

s

1 ,

where 1
1jj

Ns  is the number of neurons whose outputs are connected to the 

inputs of the considered neuron (let us remind that 
i

N  is the number of neurons on 

the layer i, and all of this neurons are connected to the considered neuron) 
incremented by 1 (the considered neuron itself). This ensures sharing of the error 
among all the neurons on which the error of the considered neuron depends. In other 
words, the error of each neuron is uniformly distributed among the neurons connected 
to it and itself. It should be mentioned that for the 1st hidden layer 1

1
s  because there 

is no previous hidden layer, and there are no neurons, with which the error may be 
shared.

The weights for all neurons of the network must be corrected after calculation of 
the errors. To do it, we can use the learning rule (5) applying it sequentially to all 
layers of the network from the first hidden layer to the output one. 

Correction rule for the neurons from the mth (output) layer (kth neuron of mth layer): 

km

kmkmkm

imkm
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kj
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(13)

Correction rule for the neurons from the 2nd till m-1st layer (kth neuron of the jth layer 
(j=2, …, m-1):
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Correction rule for the neurons from the 1st hidden layer: 
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Let us clarify the presence of the factor 
kj

z/1  in (14) and (15) and its absence in 

(13). For the output layer neurons, we have the exact errors calculated according to 
(8), while for all the hidden neurons the errors are obtained according to the heuristic 
rule. This may cause a situation, where either the weighted sum for the hidden 
neurons (more exactly, the absolute value of the weighted sum) may become a not-
smooth function with dramatically high jumps or the hidden neuron output will be 
close to some constant with very small variations around it. In both cases, thousands 
and even the hundreds of thousands of additional steps for the weights adjustment will 
be required. To avoid this situation, we can use the learning rule (6)-(7) instead of the 
rule (5) for the hidden neurons and therefore to normalize W  for the hidden 
neurons by |z| every time, when the weights are being corrected. This will make the 
absolute value of the weighted sum for the hidden neurons (considered as a function 
of the weights) more smooth. This also can avoid the concentration of the hidden 
neurons output in some very narrow interval. On the other hand, the factor 1/|z| in (7) 
can be considered as a variable part of the learning rate. While used, it provides the 
adaptation of W  on each step of learning. At the same time, it is not reasonable to 
use the rule (6)-(7) for the output layer. The exact errors and the exact desired outputs 
for the output neurons are known. On the other hand, since these errors are shared 
among all neurons of the network according to (11)-(12), there is no reason to 
normalize by 1/|z| the errors of the output neurons. The absolute value of the output 
neurons weighted sums belongs to the narrow ring, which includes the unit circle. All 
the considerations above lead us to the conclusion that the errors of the output layer 
neurons and the global errors of the network will descent after correction of the 
weights according to the rules (13)-(15). It means that the square error (9) and the 
error functional (10) will also descent step by step. In general, the learning process 
should continue until the following condition is satisfied: 

N

s

s

N

s k

skm
E

N
W

N 11

2* 1
)()(

1
, (16)

where  determines the precision of learning. In particular, it should be the case 

0 , and (16) will be transformed to 0,
*

skm
sk .

4 Simulation Results

The simulation results were obtained using the simplest network structure n S 1 (n
inputs, S neurons on a single hidden layer and 1 neuron on the output layer). The 
efficiency of the backpropagation algorithm (11)-(12) and of the learning algorithm 
based on the rules (13)-(15) has been tested by experiments with the four standard and 
popular benchmarks: parity n, two spirals, "sonar" and the Mackey-Glass time series. 
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For two spirals and "sonar" benchmarks we downloaded data from the CMU 
benchmark collection1.

The neural network was implemented using a software simulator developed on 
the Borland/Inprise Delphi 5.0 platform that was run on the PC with a Pentium III 600 
MHz processor. The real and imaginary parts of the starting weights were taken as 
random numbers from the interval [0, 1] for all experiments. For the continuous-
valued benchmarks (inputs for two spirals and sonar benchmarks and inputs/outputs 
for the Mackey Glass time series) the corresponding data were rescaled to the range 

]2,0[  in order to represent all inputs/outputs as points on the unit circle. 

The parity n functions )93( n were trained completely (see Table 1) using the 

network n S 1, where nS . It should be mentioned that parity 9 and parity 8 

functions were implemented using only 7 and 6 hidden neurons, respectively.

Table 1. Implementation of the Parity n function ( 9,...,3,2n )

Function
Configuration of 
the network 

Number of epochs 
(the median value of 15 

independent runs is taken) 

Processing time on 
P-III 600 MHz 

Parity 3 3 2 1 57 2 seconds 
Parity 4 4 2 1 109 3 seconds 
Parity 5 5 3 1 2536 15 seconds 
Parity 6 6 4 1 7235 30 seconds 
Parity 7 7 4 1 26243 2 min. 50 sec. 
Parity 8 8 7 1 21412 5 min. 20 sec. 
Parity 8 8 6 1 112397 25 min. 
Parity 9 9 7 1 24234 20 min. 

These results show advantages of MLMVN in comparison with the traditional 

solutions. Indeed, it was claimed in [12] that the most optimistic estimation for the 

number of the hidden neurons for the implementation of the n bit parity function 

using one hidden layer is n , while the realistic estimation is (n). In [13] it was 

shown up to 4n , that the minimum size of the hidden layer required to solve the 

N-bit parity is n. Using a special learning algorithm the parity 7 function was 

implemented using a 7-4-1 MLF in [14]. Using a modular network architecture, the 

parity 8 function was implemented in [15]. We did use neither some special 

architecture nor some specific learning strategy. Moreover, no adaptation of the 

constant part of the learning rate was used in all our experiments not only with the 

parity functions, but with all the benchmarks, i.e. all 1
kj

C  in (13)-(15). 

The two spirals problem is a well known classification problem, where the two 
spirals points must be classified as belonging to the 1st or to the 2nd spiral. The two 
spirals data also was trained completely without the errors using the networks 
2 40 1 (800123 epochs is a median of 11 experiments) and 2 30 1 (1590005 

                                                          
1 http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu (a number of 

references to the different experimental results and the summary of these results can be also 
found at the same directory) 
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epochs is a median of 11 experiments). For example, for MLF with an adapted 
learning algorithm there is the result with about 4% errors for the network 2 40 1
and with about 14% errors for the network 2 30 1 after about 150000 learning 
epochs [14]. It should be mentioned that after the same number of learning epochs the 
MLMVN shows not more than 2% of errors for the network 2 40 1 and not more 
than 6% errors for the network 2 30 1.

On the other hand, the two spirals data set containing 194 points was separated 
into training (98 points) and testing (96 points) subsets (the first two points were 
assigned to the training subset, while the next two points were assigned to the testing 
subset, etc). After training using the first subset, the prediction capability was tested 
using the second one. For this experiment we used the networks containing 26, 28, …, 
40 hidden neurons on the single hidden layer. The networks with the larger number of 
the hidden neurons were trained much faster, but the prediction results were 
approximately the same for all the networks. The average number of training epochs 
decreases from 1298406 for the network with 26 hidden neurons to 19781 for the 
network with 40 hidden neurons. The prediction rate obtained as a result of nine 
independent runs is 68-72% for each network. These results that were obtained using 
a simpler network are comparative with the best known results (70-74.5%) [11]. 

The same experiment was performed for the "sonar" data set, but using the 
simplest possible network 60 2 1 (the "sonar" problem initially depends on 60 
input parameters) with only two neurons in the hidden layer. The "sonar" data set 
contains 208 samples. 104 of them are recommended to be used for training and 
another 104 for testing, respectively. The training process requires 400-2400 epochs 
and a few seconds, respectively. This statistics is based on 50 independent runs. The 
prediction results are also very stable. The predictions rate from the same experiments 
is 88-93%. This result is comparative with the best known result for the fuzzy kernel 
perceptron (FKP) (94%) [11] and SVM (89.5%) [11]. However, our result is obtained 
using the smallest possible network containing only 3 neurons, while for solving the 
sonar problem FKP and SVM requires in average 167 and 82.6 supporting vectors, 
respectively [11]. On the other hand the whole "sonar" data set was trained 
completely without the errors using the same simplest network 60 2 1. This 
training process requires from 817 till 3700 epochs according to the results of 50 
independent runs. 

To test the MLMVN capabilities in time series prediction, we used the well 
known Mackey-Glass time series. This time series is generated by the chaotic 
Mackey-Glass differential delay equation defined as follows [16]: 

),()(1.0
)(1

)(2.0)(

10
tntx

tx

tx

dt

tdx
(17)

where n(t) is a uniform noise (it is possible that n(t)=0). )(tx  is quasi-periodic, and 

chosing 17  it becomes chaotic [16]-[18]. This means that only short term 
forecasts are feasible. Exactly 17  was used in our experiment. To integrate the 
equation (17) and to generate the data, we used an initial condition 2.1)0(x  and a 

time step 1t . The Runge-Kutta method was used for the integration of the 
equation (17). The data was sampled every 6 points, as it is usually recommended for 
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the Mackey Glass time-series (see e.g., [17]-[18]). Thus, we use the Mackey-Glass 
time series generated with the same parameters and in the same way as in the recently 
published papers [17]-[18]. The task of prediction is to predict )6(tx  from 

)18(),12(),6(),( txtxtxtx . We generated a 1000 points data set. The first 500 

points were used for training and the next 500 points were used for testing. The true 
values of )6(tx  were used as the target values during training. 

Since a root mean square error (RMSE) is a usual estimation of the quality for 
the Mackey-Glass time series prediction [17]-[18], we also use it here. We did not 
require a convergence of the training algorithm to the zero error. Since RMSE is a 
usual estimator for the prediction quality, it also was used for the training control. 
Thus instead of the MSE criterion (16), we used the following RMSE criterion for the 
convergence of the training algorithm: 

N
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s

N

s k

skm
E

N
W

N 11

2* 1
)()(

1
, (18)

where  determines a maximum possible RMSE for the training data. 
The results of our experiments are summarized in Table 2. For each of the three 

series of experiments we made 30 independent runs of training and prediction, like it 
was done in [18]. Our experiments show that choosing a smaller  in (18) it is 
possible to decrease the RMSE for the testing data significantly. To estimate a 
training time, one can base on the following data for the networks containing 50 and 
40 hidden neurons, respectively. 100000 epochs require 50 minutes for the first 
network and 40 minutes for the second one on the PC with the P-III 600 MHz CPU. 

Comparing the results of Mackey-Glass time series prediction using MLMVN to 
the results obtained using different solutions during last years, we have to conclude 
that the MLMVN outperforms all of them. Results comparative with the ones 
obtained using MLMVN are obtained only using GEFREX [17]. It is reported in [17] 
that using GEFREX it is possible to get RMSE equal to 0.0061 on the testing set. On 
the other hand, it is not mentioned whether the reported RMSE is the result of 
averaging over the series of experiments or it is the best result of this series. However, 
the implementation of MLMVN is strongly simpler than one of the GEFREX (for 
example, referring to the difficulty of the GEFREX implementation, a different model 
of the several neural networks ensemble was proposed in [18], but the average RMSE 
obtained using it is equal 0.009, while the corresponding ensemble contains several 
neural networks with 56 hidden neurons against the 50 ones for MLMVN).
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Table 2. The results of Mackey-Glass time series prediction using MLMVN 

# of neurons on the hidden layer 50 50 40 
 - a maximum possible RMSE in (18) 0.0035 0.0056 0.0056 

Actual RMSE for the training set (min - 
max)

0.0032 - 
0.0035

0.0053 – 
0.0056

0.0053 – 
0.0056

Min 0.0056 0.0083 0.0086 
Max 0.0083 0.0101 0.0125 

Median 0.0063 0.0089 0.0097 
Average 0.0066 0.0089 0.0098 

RMSE for the
testing set

SD 0.0009 0.0005 0.0011 

Number of training epochs
(median of 30 runs) 

145137 56295 62056 

5 Conclusions

In this paper, a multi-layered neural network based on multi-valued neurons 
(MLMVN) was proposed. This is a network with a traditional feedforward 
architecture and a multi-valued neuron (MVN) as a basic one. A single MVN has a 
higher functionality than the traditional neurons. These properties make MLMVN 
more powerful than traditional feedforward networks. The backpropagation learning 
algorithm for MLMVN that was developed in the paper also does not require the 
differentiability of the activation function. The proposed neural network outperforms 
the traditional ones in solving the traditional testing problems like parity N, two 
spirals, sonar and Mackey-Glass time series prediction. 
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Scheduling Transmission in Wireless Networks

Jerzy Martyna

Institute of Computer Science, Jagiellonian University, Nawojki 11, Cracow, Poland,
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Abstract For the scheduling transmission over a fading channel in wire-
less networks, the performance increases significantly if a specialized packet
scheduler is used. The properties of this scheduler demand a learning mech-
anism. For this purpose, a least squares support vector machine (LS-SVM)
is proposed as the learning mechanism. In the SVM methodology the num-
ber of the unknown can be infinitely dimensional. The given method is
illustrated by some numerical examples.

Key words Support vector machines (LSV), neural networks, power and
rate control in wireless networks.

1 Introduction

The support vector machine (SVM) is a new universal learning machine pro-
posed by Vapnik [15, 3], which at first was applied for both regression [10,
8] and pattern recognition [9, 15]. In this concept the data are mapped into
a higher dimensional input space and an optimal hyperplane in this space is
constructed. The data points corresponding to the non-zero weights, which
are the solution of the data point obtained by quadratic programming, are
called support vector machine. While the classical artificial neural network
tolerate the existence of many local minima [19], the SVM solutions are ob-
tained from quadratic programming concepts possessing a global minimum.
Moreover, the quality and complexity of the SVM method does not depend
directly on the dimensionality of the input space [15, 17, 18].

The main goal of this paper is to build a comprehensive model of schedul-
ing transmission in wireless networks in order to solve the problem of how
to serve the transmitted data when the delay exceeds the power cost. We
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Fig. 1 System model

obtained a dependence on the lower bound required to transmit reliably at
a given rate.

We recall that firstly the Vapnik’s SVM method was used for a supe-
rior approximation of the nonlinear function estimation problems [4, 10]. A
suggestion to use a SVM method in the learning feed-forward control was
given in the paper of [7]. The same method was used for solving the opti-
mal control problem [11], where the state vector sequence of the considered
time horizon has to be obtained as a solution for the constrained nonlinear
optimization theory.

This paper is organized as follows. In Section 2, we formulate the schedul-
ing problems over the fading channels in wireless networks. In Section 3 we
review the work on support vector machines. In Section 4 we discuss the
optimal scheduling algorithm by least squares support vector machines. In
Section 5 we present some numerical and simulation results as a solution
for our problem.

2 System Model and Problem Formulation

In this section we consider a system model adopted for our work from [5,
1].

We assume a slotted system where the higher layer sends the data that
arrives over a slot to the link layer at the end of each slot (see Fig. 1). The
link layer has an infinite capacity buffer to hold the data. The buffer length
information is transmitted to the receiver/controller. The receiver estimates
the signal to interference ratio (SIR) on the pilot channel. In our analysis we
assume that the estimates are perfect. Additionally, the receiver evaluates
the optimal transmission rate and power level in dependence on the SIR
estimation. It is possible with the help of the feedback loop. In practice,
there are some restrictions on how much these controls can work.

We assume that the time slot length is equal to τ time units and the nth
slot is the interval [nτ , (n+1)τ ], n ≥ 0. The channel power gain process H [n]
is assumed to remain fixed over a slot. The receiver can correctly estimate
the signal to interference ratio (SIR) γ. During the nth slot, the SIR γ[n]
can be given in terms of the current channel gain h[n], the receiver noise
power, σ2, and the current other interference, i[n], as
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γ[n] =
σ2 ∗ h[n]
σ2 + i[n]

(1)

If in a slot n the user transmits a signal ys[n], then the receiver gets

yr[n] =
√
h[n] ∗ ys[n] + ζ[n], (2)

where ζ[n] constitutes the Additive White Gaussian Noise (AWGN) and the
others’ interference signal. Obviously, we assume the external interference
to be independent of the system being modelled.
In our approach, the cost of scheduling r data units in a slot is the total
amount of energy required for transmission. When the SIR as defined above
is γ, by means Shannon’s formula we obtain the following equation

r =
1
θ
ln(1 +

γP

σ2
) (3)

where θ = 2ln(2)
N , N is channel symbols (it can be also related to as channel

bandwidth via Nyquist’s theorem).
Thus, the power required to transmit r data units is given by equation

p(r, x) =
σ2

γ
(eθr − 1) (4)

where x is the state of system. Given x[0] = x the scheduler’s problem is
thus to obtain the optimal r(.). We use a window size of length N . Thus, the
training data are described by the input ys[k] = ys[k] | . . . | ys[k + N − 1]
and the targets yr[k] = (yr[k] | . . . | yr[k + N − 1]). In our approach we
implemented SVM algorithms with the window size of 300.

3 The Support Vector Method of Function Estimation

In this section we present basic ideas of the support vector method of the
function estimation. More details on SVM of function estimation are avail-
able in [15, 16, 17, 18, 8, 2].

We consider a training set of N data points {xk, yk}N
k=1, where xk ∈ �n

is the input data, yk ∈ � is the k-th output data, the SVM method can be
given by means of the equation:

y(x) = wTφ(x) + b (5)

where the nonlinear mapping φ(.) maps the input data into a higher dimen-
sional feature space. The dimension of w is not specified. It means that it
can be infinitely dimensional. In least squares support vector machines for
the function estimation the following optimization problem can be given
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min
w,e

I(w, e) =
1
2
wTw + γ

1
2

N∑
k=1

e2k (6)

subject to the equality constraints

yk = wTφ(xk) + b+ ek, k = 1, 2, . . . , N. (7)

One defines the Lagrangian

L(w, b, e; a) = I(w, e) −
N∑

k=1

αk{wT
k φ(xk) + b+ ek − yk} (8)

with Lagrange multipliers αk. The conditions for optimality are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= 0 → w =
∑N

k αkφ(xk)

∂L
∂b

= 0 →∑N
k=1 αk = 0

∂L
∂ek

= 0 → αk = γ ∗ ek

∂L
∂αk

= 0 → wTφ(xk) + b+ ek − yk = 0

(9)

for k = 1, 2, . . . , N . After the elimination of ek and w the solution is pre-
sented by the following set of linear equations

[
0 1T

1v Ω + 1
γ I

] [
b
α

]
=
[

0
y

]
(10)

The parameters of LS-SVM algorithm at time k are presented by the
threshold value b[k] and the Langrangian multiplexers α[k] = (αk, . . . , αk+N−1)T .
Then, we obtain the matrix equation described by

[
0 y[k]T

y[k] U [k]

] [
b[k]
α[k]

]
=
[

0
1N

]
(11)

For large values of N this matrix equation cannot be stored in the memory,
therefore an iterative solution method for solving (11) is needed. We used
a large scale algorithm for LS-SVM’s given by Suykens in [11].
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Fig. 2 Received power in dependence of distance when the channel quality is
poor

4 Simulation study

We implemented the SVM method to recover a signal yr[n] by the receiver
in transmission over a fading channel. We used the LS-SVMlab Toolbox [14]
to simulate several tests of scheduling transmission. We considered different
situations where the power of the receiver signal depends on the distance.
Fig. 2. shows the power of the SIR received in [db] in dependence on the
distance when the channel quality is poor. Under poor conditions, the emit-
ted power may be entered to the minimum level. Fig. 3 gives the power of
the SIR received in [dB] in dependence on the distance when the channel
is noised. Hence, the interference situation becomes favorable. The receiver
noise at the base station is set to -50 dBm. It can be seen that the received
signal is the sum of many statistical properties of the Gaussian processes.

5 Conclusions

The least squares support vector machine is a very promising method. In
general, the solutions obtained by this method can be implemented via
adaptive on-line algorithms. With the help of the second-order statistics
they can solve many parametric optimization problems in the unknown
interconnections weights, in details of the wireless communications.
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Fig. 3 Received power in dependence of distance when the channel is noised

In our future research we will conduct the SIR dependence on the band-
width of transmission as well as on the varying number of receivers. By way
of tuning some parameters we can obtain the optimality of the LS-SVM
algorithm for unequal energy users.
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Abstract - In 1995 robot soccer was introduced with the purpose to develop intelligent, 

cooperative multi-robot (agents) systems. Robot soccer provides a good opportunity to test 

control strategies and methods of Multi-Agent-Systems. From the scientific viewpoint a soccer 

robot is an intelligent, autonomous agent which should carry out its task in cooperative, 

coordinated, and communicative way with other agents. The group behavior of agents and the 

behavior of a single agent should be explored. One of the single agent’s behaviors is the 

motion control. The desired velocity of each wheel is generated and sent to the robot 

comparing the desired and actual position of the robot. The mostly used motion controller 

today is the digital PID-controller. In this paper as a “modern”, intelligent control algorithm a 

neural network will be introduced and tested. 

1. Introduction
Several years ago robot soccer was introduced with the purpose to develop the 

intelligent, cooperative multi-robot (agent) systems and as one of the first examples 

for robots in entertainment, leisure and hobby. Robot soccer offers a good 

opportunity to implement and test control and cooperation algorithms of Multi-

Agent-Systems (MAS). From this viewpoint each soccer robot is an intelligent 

autonomous agent.

The whole robot soccer system (see Fig. 1.) consists of a host computer, players 

(three mobile micro robots), a vision system, communication modules etc. A color-

CCD-camera, located 2m above the playground - size 1.50m x 1.30m - delivers 

picture to the host computer. The computer generates the motion commands based 

on the implemented game strategy and submits it to each robot by wireless 

communication. Based on the location of intelligence the robot system can be 

divided in, 

remote-brainless systems   

The most intelligence is located in the host computer. 

vision-based systems   

The robot is able to generate its motion behavior, like position control, 

collision avoidance etc.

robot-based systems  

Robot is moving autonomously. The host computer delivers only the position 

data of each object to the robots. 

At the moment the most “intelligence” is located in the host computer.

Neural Networks for the Control of Soccer
Robots

Man-Wook Han and Peter Kopacek

Institute for Handling Devices and Robotics (IHRT), Vienna University

Tel.: +43-1-58801-31801, Fax: +43-1-58801 31899
e318@ ihrt.tuwien.ac.at

M.-W. Han and P. Kopacek: Neural Networks for the Control of Soccer Robots, Advances in

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
Soft Computing 2, 621–628 (2005)

of Technology, Favoritenstr. 9-11/318, A-1040 Vienna, Austria



Usually a soccer robot is a two-wheel driven mobile robot, whose size may not 

exceed 75mm in each side of a cube. It consists of a mechanical part two wheels, 

two DC motors, a micro controller, a communication module and a power supply. It 

is a very good example for a mechatronic system. The behavior and efficiency of 

such a robot depends on the mechanical construction, control algorithm, and the 

performance and accuracy of the vision system.

The soccer robot at IHRT –“ROBY-GO” (see Fig. 2.) is a two-wheel driven mobile 

robot and is built in simple, compact and modular construction.

Hostcomputer

Team B

Hostcomputer

Team A

Players

Team B

Players

Team A Communication

module Team A

Communication

module  Team B

Camera

Fig.  1. Overall system

Fig.  2.Soccer robot ROBY-GO 
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Electronic part has a modular and open architecture and consists of two boards, 

one for microcontroller board and other for power electronic and communication. 

As a controller a C167-LM from Infineon (SIEMENS) is used. C167 is a 16-Bit 

CMOS microcontroller (25MHz) with on Chip CAN module. C167 contains CAN 

bus interface, there are possibilities to connect several microcontroller boards for 

different tasks, like sensors, etc.. This microcontroller has 4 channel PWM units. 

ROBY-GO can reach maximum speed upto 2.5m/s. Each of two wheels is 

connected by a gear with a DC motor. Each DC motor receives a command value – 

desired speed - as input by the microcontroller generated PWM (Pulse-Width-

Modulation) signal.

The behavior of a robot depends on the accuracy and dynamics of the vision 

system as well as the robot itself. From the communication module each robot 

receives reference velocity and reference angle velocity. New values are transmitted 

to the robots in constant time intervals of 33 ms. Values are calculated from known 

actual position and the goal position and goal velocity of the robot. So on host 

computer implemented algorithm for planning reference velocity curve serves also 

as a position controller. Very short time period in which the robot has to reach 

reference velocity enables another simplification. It can be supposed, that the robot 

reaches reference velocity in the moment or equivalently, that the robot is moving 

with constant velocity in the 33 ms time intervals, that is between points when it 

gets a new velocities from host computer. That assumption significantly simplifies 

path planning and also tasks of another modules implemented on host computer. The 

lowest sampling time that can be used for robot’s velocity controller is 1 ms and is 

limited by encoder resolution. In the case of very complex control algorithm, also 

the computational power of the on-board processor could be limiting factor. 

Reference velocity curve is also calculated with the defined acceleration, separately 

for each of the wheels. Acceleration is set according to the actual and reference 

velocities of the wheels and available torque of the motors. In that way the actuator 

saturation and consequently increasing velocity errors are avoided.

3. A simplified Dynamical Model of the Soccer robot

The simulation study of a two wheel driven mobile robot is based on a dynamical 

model of the robot. Deriving the complete dynamical model faces many problems, 

specially determining complicated parameters of the model. One of them is inertia 

tensor matrix, especially when the parts are non-uniform and have a complicated 

shape. Additionally finding an appropriate friction model is also difficult because 

the friction can not be exactly measured. Therefore it is necessary to derive the 

model how the real robot will behave.

Simplified dynamical model of the robot : 
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m is the mass of the robot and x  is the acceleration of the robot.  is the angular 

acceleration. The torque on left and right wheel (ML, MR) can be calculated with the 

torque provided by left and right motor (MLm, MRm) and the gear ratio (N). J is the 

amount of inertia under the assumption the robot is a homogeneous cube. r is the 

radius of wheel and a is the length of a robot’s edge. 
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Fig.  3.  Soccer robot 

However getting an appropriate dynamic model of a robot near to real robot 

dynamics, some disturbance torque were added to the basic model. Disturbance 

torque should mainly compensate the absence of the friction in the simplified model, 

so it consists of a constant part referring to the Coulomb’s friction and a velocity 

dependent part referring to the viscous friction Eq. (5).

rotattransldcd
kxkMM 2                  (5) 

Velocities of both wheels (VL, VR) which are necessary for implementation of 

velocity controller, can be calculated from following: 

2

a
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a
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             (6) 
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For the simulations also a model of the DC motor (for example, Minimotor Type 

2224 006SR) is necessary. A model with following linear equations is used: 

0
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Mm is the motor torque and is calculating with a torque constant KM (6.92 

mNm/A) and the current Eq. (8). I0 is no load current (0.029 A). The terminal 

voltage U is calculated with back electro magnetic force constant, KE (0.725 

mV/rpm) multiplied with rotation speed n and with current and resistance R (0.94

Ohm). Left and right motor’s input voltages UL and UR are the controller’s outputs 

Eq. (9).

4. Model basedControllerwith NeuralNetworkDisturbance
Estimation

Presented control algorithm is based on a simplified dynamical model of robot and 

motors, stated earlier in the paper. However disturbances caused by unmodelled 

dynamics such as friction, time delays, and differences between actual and modeled 

inertia would be a reason for high velocity errors and performance that does not 

meet our demands. Problems are also frequent collisions between robots. For 

compensation of those disturbances a neural network is implemented in the control 

scheme. Combination (sum) of voltages calculated from the model and disturbance 

voltage estimated by neural network makes two reference voltages one for each 

motor of the robot. In the control scheme the actual acceleration and actual angular 

acceleration are necessary. Those actual values were replaced by estimated values 

(
C

x ,
C

), calculated from reference acceleration  (
r

x ,
r

) and velocity error: 

arxr

C
xxKxx     (11) 

arfir

C
K        (12) 

a
x  : actual velocity, 

a
 : actual angular velocity 

Implemented neural network is constructed with one hidden layer with a non-

linear transfer function and an output layer with linear transfer function. 25 neurons 

in hidden layer were used. NN inputs are reference and actual velocity, reference 

angular and actual angular velocity of the robot and velocity errors of the wheels. 

Error vector of the output layer is calculated as linear combination of velocity error 

and acceleration error of the wheels. Learning algorithm is the same as the 

traditional backpropagation learning rule.

Robot’s initial translational and angular velocity in the beginning of the 

simulation are set zero ( x 0 m/s, 0  rad/s). The desired end velocity is 1 m/s and 

desired end angular velocity 5 rad/s. It is reached in 0.32 s. Equivalently the desired 

end velocity of right wheel is 1.19 m/s and end velocity of left wheel 0.81 m/s. 

Disturbance torque (Md) were added to the model with the Coulomb’s friction (Mdc

= 0.0025) and the velocity dependent part to the viscous friction (ktransl=krotat=0.005)

Eq. (5).

For simulated movement 30% of available torque reach for the reference 

trajectory. The gains for estimation of calculated accelerations were Kx = 10 and Kfi

= 10.
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Fig.  4 presents desired and actual velocity and desired and actual angular velocity 

of the robot. Corresponding errors are shown on Fig.  5.

Fig.  6 and Fig.  7 show results for each wheel of the robot. Maximal dynamical 

velocity error of robot is 0.009 m/s and maximal dynamical angular velocity error of 

robot is 0.66 rad/s. There is no steady state error. 
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5. Conclusion

The research on robot soccer has various aspects, like 

- The robot soccer is an interdisciplinary research theme including robotics, 

image processing, communication, cooperation, intelligent control and others.

- Robot soccer is a good tool for the entertainment and leisure as well as 

education.

- Robot soccer is a good test bed to implement and test the algorithms for Multi-

Agent-Systems.
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An adaptive velocity control algorithm for the control of soccer robots was 

presented in this paper. Controller is based on a derived dynamical model of the 

robot, which is upgraded with a neural network, that compensate unmodelled 

dynamics as well as other disturbances, that arise from frequent collisions between 

robots. Based on simulation the controller result in fast error convergence and no 

steady state error.

A robot can move with maximum speed approximately 2.5 m/s. The vision 

system can detect objects at constant frame rate (30 frames per second). The exact 

position of objects can not be calculated. It is necessary to predict future locations of 

the ball. For this purpose an extended Kalman filter (EKF) is implemented.
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. A novel fuzzy neural network, called Fuzzy Kolmogorov's Network
(FKN), is considered. The network consists of two layers of neo-fuzzy neurons 
(NFNs) and is linear in both the hidden and output layer parameters, so it can be 
trained with very fast and computationally efficient procedures. Two-level struc-
ture of the rule base helps the FKN avoid the combinatorial explosion in the num-
ber of rules, while the antecedent fuzzy sets completely cover the input hyperbox. 
The number of rules in the FKN depends linearly on the dimensionality of input 
space. The validity of theoretical results and the advantages of the FKN are con-
firmed by a comparison with other techniques in benchmark problems and a real-
world problem of electrical load forecasting. 

1 Introduction

According to the Kolmogorov's superposition theorem (KST) [1], any continuous 
function of d variables can be exactly represented by superposition of continuous 
functions of one variable and addition: 
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where ],[],[ 11
max
d

min
d

maxmin xxxxx ××∈ � , )(•lg  and )(, •ilψ  are some continuous 
univariate functions, and )(, •ilψ  are independent of f. Aside from the exact repre-
sentation, the KST can be used for the construction of parsimonious universal ap-
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proximators, and has thus attracted the attention of many researchers in the field of 
soft computing. 

Hecht-Nielsen was the first to propose a neural network approximation of KST 
[2], but did not consider how such a network can be constructed. Computational 
aspects of approximate version of KST were studied by Sprecher [3], [4]. Igelnik 
and Parikh [5] proposed the use of spline functions for the construction of Kolmo-
gorov's approximation. Yam et al [6] proposed the multi-resolution approach to 
fuzzy control, based on the KST, and proved that the KST representation can be 
realized by a two-stage rule base. They demonstrated that the exponential growth 
in number of rules can be avoided via the two-stage fuzzy inference, but did not 
show how such a rule base could be created from data. Lopez-Gomez and Hirota 
developed the Fuzzy Functional Link Network (FFLN) [7] based on the fuzzy ex-
tension of the Kolmogorov's theorem. The FFLN is trained via fuzzy delta rule, 
whose convergence can be quite slow. 

We propose a novel KST-based universal approximator called Fuzzy Kolmo-
gorov's Network (FKN) with simple structure and optimal linear learning proce-
dures with high rate of convergence. 

2 Network Architecture

The FKN is comprised of two layers of neo-fuzzy neurons (NFNs) [8] and is de-
scribed by the following equations: 
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where n is the number of hidden layer neurons, )( ],1[]2[ l
l of  is the l-th nonlinear 

synapse in the output layer, ],1[ lo  is the output of the l-th NFN in the hidden layer, 
)(],1[

i
l

i xf  is the i-th nonlinear synapse of the l-th NFN in the hidden layer. 
The equations for the hidden and output layer synapses are 
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where 1m  and 2m  is the number of membership functions (MFs) per input in the 

hidden and output layers respectively, )(]1[
, ihi xμ and )( ],1[]2[

,
l

jl oμ  are the MFs, ],1[
,

l
hiw

and ]2[
, jlw  are the tunable weights. 

Nonlinear synapse is a single input-single output fuzzy inference system with 
crisp consequents, and is thus a universal approximator [9] of univariate functions. 
It can provide a piecewise-linear approximation of any functions )(•lg  and 
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)(, •ilψ  in (1). So the FKN, in turn, can approximate any function ),,( 1 dxxf �

on the input space hyperbox as in (1). 
The output of the FKN is computed as the result of two-stage fuzzy inference: 
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The description (4) corresponds to the following two-level fuzzy rule base: 

dwodwoXx n
hi

n
hihii

],1[
,

][1,]1,1[
,

[1,1]
, ANDANDTHENISIF == � ,

di ,,1�= , 1,,1 mh �= ,

(5)

nwyOo jljl
l ]2[

,,
],1[ ˆTHENISIF = , nl ,,1 �= , 2,,1 mj �= , (6)

where hiX ,  and jlO ,  are the antecedent fuzzy sets in the first and second level 
rules, respectively. Each first level rule contains n consequent terms 

dwdw n
hihi

],1[
,

]1,1[
, ,,� , corresponding to n hidden layer neurons. 
Total number of rules is 

21 mnmdN FKN
R ⋅+⋅= , (7)

i.e., it depends linearly on the number of inputs d.
The rule base is complete, as the fuzzy sets hiX ,  in (5) completely cover the 

input hyperbox with 1m  membership functions per input variable. Due to the lin-
ear dependence (7), this approach is feasible for input spaces with high dimen-
sionality d without the need for clustering techniques for the construction of the 
rule base. 

Straightforward grid-partitioning approach with 1m  membership functions per 

input requires dm )( 1  fuzzy rules, which results in combinatorial explosion and is 
practically not feasible for 4>d .

3 Learning Algorithm

The weights of the FKN are determined by means of a batch-training algorithm as 
described below. A training set containing N samples is used. The minimized error 
function is 
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where [ ]TNyyY )(,),1( �=  is the vector of target values, and 

[ ]TNtytytY ),(ˆ,),1,(ˆ)(ˆ �=  is the vector of network outputs at epoch t.
Yamakawa et al [8] proposed the use of gradient descent-based learning for the 

NFN. Although this method can be directly applied to the output layer, it would 
also require the use of the back-propagation technique [10] for the hidden layer. 
Besides that, the gradient descent-based learning procedure converges slowly. 

However, since the nonlinear synapses (3) are linear in parameters, we can em-
ploy direct linear least squares (LS) optimization instead of derivative-based 
methods. To formulate the LS problem for the output layer, re-write (4) as 
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The error function (8) is minimized when 0ˆ =−YY . Thus, we can determine 
the values of the output layer weights solving the following equation: 
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The LS solution will be 
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Now we have to determine the hidden layer weights. The use of triangular MFs 
enables the linearization of the second layer around ],1[ lo :
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where ]2[
, plw  and ]2[

, plc  are the weight and center of the p-th MF in the l-th synapse 
of the output layer, respectively. The MFs in an NFN are chosen such that only 
two adjacent MFs p and p+1 fire at a time [8]. 

With respect to (2), (4), and (12), we obtain the expression for the linearized 
FKN:
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Re-write the previous equation as follows: 
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Introducing vector [ ]TNxx ))((,)),1(( ]1[]1[]1[ θθ �=Θ  and matrix 

[ ]TNxx ))((,)),1(( ]1[]1[]1[ ϕϕ �=Φ  and noticing that ]1[]1[]1[ˆ Θ+Φ=
T

WY , we can 
formulate the LS problem for the hidden layer weights: 
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The solution of the LS problem is: 
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The solutions (11) and (17) are not unique when matrices ][][ qTq ΦΦ  are singu-
lar ( 2,1=q  is the layer number). To avoid this, instead of (11) and (17) we find 
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where η  is the regularization parameter with typical value 510−=η .
The FKN is trained via a two-stage derivative-free optimization procedure 

without any nonlinear operations. In the forward pass, the output layer weights are 
calculated. In the backward pass, calculated are the hidden layer weights. The 
number of tuned parameters in the hidden layer is nmdS ⋅⋅= 11 , in the output 
layer 22 mnS ⋅= , and total )( 2121 mmdnSSS +⋅⋅=+= . Thus, in the forward 
pass, a matrix 22 SS ×  is inverted, and in the backward pass inverted is a matrix 

11 SS × . For comparison, the nonlinear LS methods, such as the Gauss-Newton 
and Levenberg-Marquardt procedures, require the inversion of a matrix SS × .

Since the number of calculations in matrix inversion is proportional to 3S  and it 
will always hold that 3

2
3
1

3 SSS +> , the proposed training method is much faster. 
Hidden layer weights are initialized deterministically using the formula 
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broadly similar to the parameter initialization technique proposed in [5] for the 
KSN based on rationally independent random numbers. The output layer weights 
are initialized with zeros. 

4 Experiments

To verify the theoretical results and compare the performance of the proposed 
network to the known approaches, we have carried three experiments. The first 
two were the well-known benchmarks: the XOR problem and Mackey-Glass time 
series prediction [11]. The third experiment was the real-world problem of electric 
load forecasting for a region in Germany [12, 13]. 

4.1 The XOR problem

The XOR problem was solved by the FKN with 1 neuron in the hidden layer with 
2 MFs per input, 1 synapse in the output layer with 3 MFs (7 parameters alto-
gether). The FKN was trained for 1 epoch, after which it realized the XOR func-
tion with no errors. For comparison, a one-hidden layer perceptron with 2 neurons 
in the hidden layer, 1 neuron in the output layer (9 parameters), trained for 10 ep-
ochs with the Levenberg-Marquardt procedure gave 0.36 errors on average after 
10 runs. The results of the first experiment are summarized in Table 1, and visual-
ized in Fig. 1. 

Table 1. Results of the XOR problem solution 

Network Param. Epochs Runs Errors 
min 

Errors 
max 

Errors 
average

FKN 7 1 1 0 0 0 
MLP 9 10 10 0 2 0.36 

4.2 Mackey-Glass time series prediction

The time series, used in the second experiment, was generated by the chaotic 
Mackey-Glass time-delay differential equation [11]: 

)(1.0
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)(2.0)(
10 ty

ty
ty

dt
tdy −

−+
−=

τ
τ . (20)

The values of the time series (20) at each integer point were obtained by means of 
the fourth-order Runge-Kutta method. The time step used in the method was 0.1, 
initial condition 2.1)0( =y , delay 17=τ , and )(ty  was derived for 1200,...,0=t .
The values )6(),12(),18( −−− tytyty , and )(ty  were used to predict )6( +ty .
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Fig. 1. The XOR problem: learned surface (left) and decision regions (right)

From the generated data, 500 values for 617,...,118=t  were used as the train-
ing data set, and the next 500 for 1117,...,618=t  as the checking data set. The 
FKN used for prediction had 4 inputs, 9 neurons in the hidden layer with 3 MFs 
per input, and 1 neuron in the output layer with 5 MFs per synapse (153 adjustable 
parameters altogether). It demonstrated similar performance as a two-hidden layer 
perceptron with 145 parameters trained with the Levenberg-Marquardt procedure. 
Both networks were trained for 50 epochs. 

Root mean squared error on the training and checking sets (RMSETRN and 
RMSECHK) was used to estimate the accuracy of predictions. The results are listed 
in Table 2. Actual time series, the prediction provided by the FKN, and prediction 
error are shown in Fig. 2. 

Table 2. Results of Mackey-Glass time series prediction 

Network Param. Epochs RMSETRN RMSECHK
FKN 153 50 0.0028291 0.004645 
MLP 145 50 0.002637 0.003987 

4.3 Electric load forecasting

The electric load data were provided by a local supplier from Thuringia, Germany 
[13], and describe hourly electric load in that region in the years of 1996 and 1997 
(8784 and 8760 samples respectively). Sampling time of these data is 1 hour. The 
data for the year of 1996 were used for training, and for the year of 1997 for test-
ing. The forecast made by the FKN was 1 hour ahead. 
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Fig. 2. Mackey-Glass time series prediction 

The input variables to the forecasting FKN were the load a week ago and yes-
terday at the same hour as predicted, the load an hour ago, the current load, the 
change in load from the previous to the current hour, the number of the current 
hour within the current year, current week, and current day (8 inputs altogether). 

The FKN used for prediction contained 17 neurons in the hidden layer with 4 
MFs per input, and 1 neuron in the output layer with 7 MFs per synapse (663 ad-
justable parameters). 

After training for 50 epochs, the network gave 1.41% mean average percentage 
error (MAPE) of prediction for the year of 1997. In Fig. 3, the forecast for three 
weeks at the end of March and the beginning of April 1997 is shown. This period 
includes Easter holidays and the changeover from the winter to summer time, so it 
is characterized by less regularity of electricity consumption than most other 
weeks throughout a year. For this period alone, the FKN provided a prediction 
with MAPE=2.26%. For comparison, for July 1997 MAPE=1.29%, because there 
were no holidays during this month.  

These results are about 40% more accurate than those previously obtained for 
the same time series by the methods proposed in [12, 13]. However, they can be 
further improved by taking more input variables into account, such as the dates of 
holidays, air temperature, etc. 
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Fig. 3. Electric load forecast for 20.03.1997 – 09.04.1997

5 Conclusion

In the paper, a new practical and feasible approach to the construction of KST-
based universal approximators was proposed. The FKN is the first multilayer net-
work, containing the neo-fuzzy neurons in both the hidden and output layers, and 
it is not affected by the curse of dimensionality because of its two-level structure. 
The use of the neo-fuzzy neurons enabled us to develop linear training procedures 
for all the parameters in the FKN. High-performance analog hardware implemen-
tation of the pre-trained FKN is straightforward [14]. The output layer of the hard-
ware-based FKN can be adapted online via the gradient descent method using the 
onboard learning circuits. The universality of internal functions in the KST 
implies that the once-trained hidden layer can be fixed for all the problems with 
the dimensionality d.

Although the FKN demonstrated excellent results in the experiments described 
above, its performance can be further improved via the tuning of antecedent pa-
rameters of fuzzy rules, and the use of membership functions other than triangular. 
This would require the development of improved learning algorithms. 

Universal Approximator Employing Neo-Fuzzy Neurons 639



References

1.    Kolmogorov, A.N.: On the representation of continuous functions of many variables by 
superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk 
SSSR 114 (1957) 953-956 

2.    Hecht-Nielsen, R: Kolmogorov's mapping neural network existence theorem. Proc. 
IEEE Int. Conf. on Neural Networks, San Diego, CA, Vol. 3 (1987) 11-14 

3.    Sprecher, D.A.: A numerical implementation of Kolmogorov's superpositions. Neural 
Networks 9 (1996) 765-772 

4.    Sprecher, D.A.: A numerical implementation of Kolmogorov's superpositions II. Neu-
ral Networks 10 (1997) 447–457 

5.    Igelnik, B., and Parikh, N.: Kolmogorov's spline network. IEEE Transactions on Neu-
ral Networks 14 (2003) 725-733 

6.    Yam, Y., Nguyen, H. T., and Kreinovich, V.: Multi-resolution techniques in the rules-
based intelligent control systems: a universal approximation result. Proc. 14th IEEE 
Int. Symp. on Intelligent Control/Intelligent Systems and Semiotics ISIC/ISAS'99, 
Cambridge, Massachusetts, September 15-17 (1999) 213-218 

7.    Lopez-Gomez, A., Yoshida, S., Hirota, K.: Fuzzy functional link network and its appli-
cation to the representation of the extended Kolmogorov theorem. International Journal 
of Fuzzy Systems 4 (2002) 690-695 

8.    Yamakawa, T., Uchino, E., Miki, T., and Kusanagi, H.: A neo fuzzy neuron and its ap-
plications to system identification and prediction of the system behavior. Proc. 2nd Int. 
Conf. on Fuzzy Logic and Neural Networks “IIZUKA-92”, Iizuka, Japan (1992) 477-
483

9.    Kosko, B.: Fuzzy systems as universal approximators. Proc. 1st IEEE Int. Conf. on 
Fuzzy Systems, San Diego, CA (1992) 1153-1162 

10.  Rumelhart, D.E., Hinton, G.R., Williams, R.J.: Learning Internal Representation by Er-
ror Propagation. In: Rumelhart, D.E., McClelland, J.L. (Eds.): Parallel Distributed 
Processing, Vol. 1. MIT Press, Cambridge, MA (1986) 318–364 

11.  Mackey, M. C., and Glass, L.: Oscillation and chaos in physiological control systems. 
Science 197 (1977) 287-289 

12.  Otto, P. and Schunk, T.: Fuzzy based time series forecasting of electric load. Proc. 
European Control Conference (ECC’99), Karlsruhe, Germany (1999) 

13.  Otto, P., Bodyanskiy, Ye., Kolodyazhniy, V.: A new learning algorithm for a forecast-
ing neuro-fuzzy network. Integrated Computer-Aided Engineering 10 (2003) 399-409 

14.  Miki, T., and Yamakawa, T.: Analog implementation of neo-fuzzy neuron and its on-
board learning. In: Mastorakis, N.E. (Ed.): Computational Intelligence and Applica-
tions, WSES Press, Piraeus (1999) 144–149 

V. Kolodyazhniy et al.640



Combined Learning Algorithm for a

Self-Organizing Map with Fuzzy Inference

Yevgeniy Bodyanskiy1, Yevgen Gorshkov1, Vitaliy Kolodyazhniy1, and
Andreas Stephan2

1 Control Systems Research Laboratory,
Kharkiv National University of Radioelectronics,
14, Lenin Av., Kharkiv, 61166, Ukraine,
bodya@kture.kharkov.ua, ye gorshkov@ukr.net, kolodyazhniy@ukr.net

2 PSI-Tec GmbH, Grenzhammer, 8, D-98693, Ilmenau, Germany,
Stephan@psi-tec.de

. A combined learning algorithm for a self-organizing map (SOM) is pro-
posed. The algorithm accelerates information processing due to the rational choice of
the learning rate parameter, and can work when the number of clusters is unknown,
as well as when the clusters are overlapping. This is achieved via the introduction
of fuzzy inference that determines the level of membership of the classified pattern
to each of the available classes. For neighborhood and membership functions, raised
cosine is used. This function provides more flexibility and some new properties for
the self-learning and clustering procedures.

1 Introduction

SOMs, proposed by T. Kohonen [1], are widely used in the problems of data
mining and intelligent data processing, such as clustering, heteroassociation,
diagnostics, information compression, etc.

The properties of self-organization in SOMs are due to the tuning of synap-
tic weights without an external training signal, i.e. in the unsupervised mode
when each of the incoming patterns causes the tuning of certain parameters.

Decision about the membership of the incoming pattern to one of the
clusters according to the “winner-take-all” rule in the case of overlapping non-
convex clusters can result in inaccurate clustering because one pattern can
belong to several clusters at the same time with some degrees of membership.
That’s why it is reasonable to provide the SOM with the properties of fuzzy
clustering [2].

In [3, 4], a fuzzy SOM was proposed in which the neurons of the original
SOM are replaced by fuzzy sets and fuzzy rules. This network proved to be
quite effective in pattern recognition, though its learning properties deterio-
rated. In [5, 6], a fuzzy Kohonen clustering network was proposed which is
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essentially an implementation of the fuzzy c-means clustering algorithm quite
different from the classical SOM.

The goal of this work is the synthesis of a combined self-organization algo-
rithm, that would accelerate the information processing and improve cluster-
ing accuracy in the case of overlapping clusters via the use of a non-standard
neighborhood function and a fuzzy inference procedure. It is also desired to
provide an ability of operation when there is no prior information about the
number of clusters is available.

The self-organization procedure described below is based on the principles
of competitive learning. The conventional self-organization procedure is im-
plemented in three basic stages [7]: competition, co-operation and synaptic
adaptation.

2 Competition and Synaptic Adaptation

Consider a SOM, containing n receptive fields and m neurons in the Kohonen
layer. Each has its own n-dimensional vector of synaptic weights wj , j =
1, 2, . . . , m, and all the neurons during the unsupervised learning or clustering
receive the incoming patterns x(k), k = 1, 2, . . . at their inputs and generate
the signals yj(k) = wT

j (k)x(k), j = 1, 2, . . . , m at their outputs. The incoming
patterns close in the sense of the adopted metrics can activate either the same
neuron wj or a couple of neighboring neurons.

The competition process starts with the analysis of the pattern x(k) com-
ing from the receptive field layer to all the neurons of the Kohonen layer. The
distance

D(wj(k), x(k)) = ‖x(k) − wj(k)‖, (1)

is calculated for all the neurons. If the inputs and the synaptic weights are
normalized as

‖x(k)‖ = ‖wj(k)‖ = 1, (2)

and the distance measure is the Euclidean metrics then the dot product
wT

j (k)x(k) = yj(k) = cos(wj(k), x(k)) = cos θj(k) can be used as the neigh-
borhood measure for the vectors wj(k) and x(k). In this case the distance (1)
assumes the form

Dcos(wj(k), x(k)) = Dcos(yj(k)) =
√

2(1 − yj(k)),

and is shown in figure 1.
Then the winning neuron closest to the input pattern is determined, such

that
D(w∗(k), x(k)) = min

j
D(wj(k), x(k)).

After that (skipping the co-operation stage for the moment) synaptic
weights can be adjusted according to the elementary “winner-take-all” learn-
ing rule
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Fig. 1. Dependence of distance D(yj(k)) on network output

w∗(k + 1) = w∗(k) + η(k)(x(k) − w∗(k)), (3)

where w∗ is the winning neuron, and the parameter η(k) determines the step
length and is usually chosen empirically, such that it would decrease mono-
tonically in time.

It can be readily seen that such a learning rule minimizes the criterion

EK
j =

∑
k

EK
j (k) =

1

2

k∑
p=1

‖x(p) − wj‖2, (4)

i.e. the arithmetic mean

wj(k) =
1

k

k∑
p=1

x(p)

is used as the estimate of the synaptic weights.
The considered learning rule is thus a stochastic approximation procedure,

and the coefficient η(k) should be chosen according to the Dvoretzky’s condi-
tion [8], though the choice η(k) = 1/k results in obvious deterioration of the
learning rate.

The requirement of the monotonic decay of the step parameter is met in
the procedure

η(k) = r−1(k), r(k) = αr(k − 1) + ‖x(k)‖2, 0 ≤ α ≤ 1, (5)

proposed in [9]. This procedure coincides with that proposed in [10] for the
adaptive algorithm with improved rate of convergence, when the input signals
are normalized and α = 1.

Varying the forgetting factor α, a wide range of the step length

1

k
≤ η(k) ≤ 1

can be obtained.
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3 Co-operation and Synaptic Adaptation

One of the specific features of SOMs is the possible co-operation stage dur-
ing the self-organization when the winning neuron determines a local area of
topological neighborhood in which not only the winner, but also his closest
neighbors are updated. This topological area is defined by the neighborhood
function φ(l, k), dependent on the distance D(w∗(k), wl(k)) between the win-
ner w∗(k) and a neuron wl(k), l = 1, 2, . . . , m, and on a width parameter
σ(k).

Usually, φ(l, k) is a kernel function symmetric with respect to the max-
imum at w∗(k) = wl∗(k) (φ(l∗, k) = 1) and decreasing with the distance
D(w∗(k), wl(k)). The gaussian, Mexican hat, cosine, and alike functions are
used for the neighborhood function.

The use of a neighborhood function leads to the learning rule

wl(k + 1) = wl(k) + η(k)φ(l, k)(x(k) − wl(k)), l = 1, 2, . . . , m, (6)

minimizing the criterion

EK
l =

k∑
p=1

EK
l (p) =

1

2

k∑
p=1

φ(l, p)‖x(p) − wl‖2 (7)

according to the principle “winner-take-more”.
Convergence analysis of the self-organization process [11–13] shows that

during synaptic adaptation phase both learning rate η(k) and neighborhood
width parameter must decrease in time. H. Ritter and K. Schulten [12, 13]
proposed to adapt the σ parameter of the widely used Gaussian function

φ(l, k) = exp

(
−‖w∗(k) − wl(k)‖2

σ(k)2

)

with the following procedure

σ(k) = βσ(k − 1), 0 < β < 1, (8)

where β is a scalar parameter which determines the neighborhood decrease
rate.

Learning in a SOM can be realized with no competition stage at all. In
this case, the synaptic weights can be tuned according to their proximity to
the current pattern x(k). The neighborhood function φ(l) will depend not on
the winning neuron w∗(k), but on the vector x(k), and it will hold φ(j) = 1
for x(k) = wj(k). The functions φ(l) will also decrease with the distance
D(wl(k), x(k)) as a usual kernel function.

Consider the raised cosine radial basis function [14]

φ(θ) =

⎧⎨
⎩

1 + cos θ

2
, for θ ∈ [−π, π],

0, otherwise
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This leads to the neighborhood function

φl(k) =
1 + cos(wl(k), x(k))

2
=

1 + cos θl(k)

2
=

1

2
+

1

2
yl(k). (9)

α = ∠(ŵl, x)

φl(α)

π− π 0

1

Fig. 2. Raised cosine neighborhood function

The learning algorithm in this case is

wl(k + 1) = wl(k) + η(k)
1 + yl(k)

2
(x(k) − wl(k)) =

= wl(k) +
1

2
η(k)(x(k) − wl(k)) +

1

2
η(k)yl(k)(x(k) − wl(k))

(10)

and consists of two parts, the first η(k)(x(k)−wl(k)) corresponding to the Ko-
honen learning rule, and the second — η(k)yl(k)(x(k)−wl(k)) — to the Instar
rule proposed by S. Grossberg [15]. The Instar rule minimizes the criterion

EG
l =

∑
k

EG
l (k) =

1

2

k∑
p=1

(wT
l x(p))2 =

1

2

k∑
p=1

y2
l (p), (11)

when the normalization conditions are met. Thus, the learning algorithm (10)
optimizes the additive goal function

El =
1

2
EK

l +
1

2
EG

l . (12)

The capabilities of the SOM can be extended by using a more general
than (12) goal function

El = γEK
l + (1 − γ)EG

l , 0 ≤ γ ≤ 1, (13)

resulting in the following learning algorithm
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wl(k + 1) = wl(k) + η(k)(γ(x(k)−wl(k)) + (1− γ)yl(k)(x(k)−wl(k))), (14)

and the neighborhood function

y(l) = γ + (1 − γ) cos θl(k). (15)

Varying the parameter γ, we can realize a particular compromise between
the Kohonen and Grossberg learning.

To guarantee the convergence of the procedure (14), we have to provide
for a possibility of decreasing the width of the neighborhood function yl(k)
during the learning. Introducing a decreasing width parameter σ(k) into (14),
we obtain the final combined learning algorithm

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wl(k+1) = wl(k) + η(k)δ[−1,1](θl(k)σ−1(k))(x(k) − wl(k))

· (γ + (1 − γ) cos(πθl(k)σ−1(k))),

η(k) = r−1(k), r(k) = αr(k − 1) + ‖x(k)‖2, 0 ≤ α ≤ 1,

σ(k) = βσ(k − 1), 0 < β < 1,

(16)

where δ[a,b](x) is defined as δ[a,b](x) = 1, if x ∈ [a, b]; 0, otherwise.
If a data set x(1), x(2), . . . , x(N) is given (with or without the classification

of patterns), the result of the learning process will be the synaptic weights
wl(N + 1) = ŵl, l = 1, 2, . . . , m that determine the centroids of the clusters.

4 Fuzzy Inference

A trained SOM can be used for the classification of the newly incoming pat-
terns x(p), p = N+1, N+2, . . .. When the clusters are overlapping, a “winner-
take-all” decision may be incorrect. To cope with this situation, it is reasonable
to introduce an estimate of the pattern membership to each of the available
clusters using the membership function

μŵl
(x(p)) =

1 + cos(ŵl, x(p))

2
, (17)

which has the range of variation 0 ≤ μŵl
(x) ≤ 1 thus satisfying all conditions

for a fuzzy membership function.
To determine the membership level of the input pattern x(p) to all clusters

a normalized membership value is used:

μŵl
(x(p)) =

yl(x(p))∑m

l=1 yl(x(p))
. (18)

The membership function μŵl
(x) is a special case of the quadratic radial-

basis function [16, 17]
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φl(x) = max

{
0, 1 − ‖x − ŵl‖2

σ2
l

}
= max

{
0, 1 − 2

1 − ŵT
l x

σ2
l

}
, (19)

which assumes the form

φl(x) =
1 + ŵT

l x

2
. (20)

with the width of receptive field σ2
l = 4 when the normalization conditions

are met. Thus, the receptive field of the introduced membership function (17)
is a unit hypersphere as shown on figure 3.

Fig. 3. Equivalence of the raised cosine and quadratic radial-basis functions

Furthermore, if prior classification of patterns is given in the training data
set, a simple gradient descent based procedure can be used to determine clus-
ter widths more accurately, e.g. using the methods introduced in [16–18].
Adaptation of the cluster widths would result in a more accurate fuzzy clas-
sification of the patterns.

5 Experiments

We tested the proposed algorithm on a set of standard benchmarks from the
UCI repository (Iris, Wine, WBC, and Thyroid disease) [19]. The Iris data
set consists of 150 patterns with 4 attributes, which are divided into 3 classes.
The Wine data set consists of 179 patterns of 3 classes with 13 attributes.
The Wisconsin Breast Cancer (WBC) data set consists of 699 samples of 2
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classes with 10 attributes. We used only 683 of them, because 16 had missing
values. The Thyroid disease data set consists of 215 patterns with 5 attributes,
divided into 3 classes.

Our experiments show the possibility of the algorithm to determine num-
ber of clusters in the data set by finding cluster centroids. This is especially
useful when no prior classification is given.

It should be noted that the standard “winner-take-all” learning rule (3)
will not converge to the centroids of the clusters if the number of neurons
(which is set constant for the network) exceeds the number of clusters because
of undesirable competition between neighboring neurons.

For all the tests we initialized the network with 10% of patterns extracted
randomly from the learning data set. To avoid redundant computation during
the self-organization phase, we also introduced a simple network pruning pro-
cedure by replacing two of closely situated neurons with one neuron placed in
the middle.

The following initial parameters values were set for all tests: η(0) = 0.95,
r(0) = 0, σ(0) = 1.4, β ≈ 0.0015, γ = 0.45.

For test purposes all the data sets were randomly divided into the learning
and checking data sets respectively with 70% to 30% ratio.

We performed two runs of benchmarks with and without a priori classifi-
cation known to the algorithm. In the latter case the resulting class labels for
checking purposes were chosen by the nearest centroid of the full data set.

Some of the data sets (e.g. Thyroid disease) cannot be learned when no
prior classification is given, because the degree of cluster overlap is high, and
no evident cluster boundaries can be seen. We do not list these results as the
algorithm finds incorrect number of classes.

Each self-organization process lasts for 30−50 epoch, which is significantly
faster than it is needed for conventional SOMs.

We performed the tests 100 times each and the classification errors (min-
imum, average, and maximum values) on a checking data sets for all the
benchmarks are shown in table 1. Number of misclassified patterns is shown
in brackets.

Table 1. Classification error on checking data sets

Dataset Classification error
Min. Avg. Max.

Iris 2.2% (1) 10.0% (4) 15.6% (7)

Wine 0% (0) 3.7% (2) 9.2% (5)

WBC 0% (0) 1.5% (3.2) 3.4% (7)

Iris (supervised) 0% (0) 8.2% (3.7) 15.6% (7)

Wine (supervised) 0% (0) 3.7% (2) 9.3% (6)

WBC (supervised) 0% (0) 0.9% (2) 1.9% (4)

Thyroid (supervised) 0% (0) 4.9% (3) 10.8% (7)
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It can be readily seen from the test results that the classification perfor-
mance on the data sets with and without prior classification are almost equal
for our tests. This confirms high performance of the proposed algorithm in
finding cluster centroids in the case of self-organization without prior classifi-
cation available.

6 Conclusion

A combined approach to the learning in a self-organizing network is proposed.
The proposed algorithm have an improved rate of convergence, and can be
used for the training of a classifier when the clusters are overlapping. Another
advantage is the ability to determine the number of clusters in data with no
prior information available (when γ = 0.45 ÷ 0.5) in both cases of separate
or overlapping clusters. The algorithm was tested on a set of standard bench-
marks (Iris, Wine, WBC, and Thyroid) with and without the information
about classes. These experiments confirm high performance of the algorithm.
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Abstract In this paper, we propose fuzzy neural controller for a dynamic
connection admission control (CAC) that supports the cell loss requirement
and QoS parameters for multimedia traffic in Wireless ATM networks. Our
CAC algorithms explicitly compute the bandwidth required for each class
of connections based on the observed traffic statistics and the declared pa-
rameters.

Key words Connection admission control, neuro-fuzzy controller, WATM,
QoS maintenance, unsupervised learning.

1 Introduction

Wireless Asynchronous Tranfer Mode (WATM) networks have become one
of the most promising technologies for supporting broadband and mobile
multimedia services [5, 6, 15]. We recall that WATM technology has the
possibility to diversity traffic. Therefore, these networks have been designed
to support a mixture of multimedia traffic (e.g. audio, video, data, images)
with different traffic parameters (among others, peak bit rate, burst ratio,
cell delay variation, cell loss ratio) and several Quality of Services (QoS)
requirements. This concept of networks includes various traffic classes, such
as constant bit rate (CBR), real-time variable rate (rt-VBR), nonreal-time
variable bit rate (nrt-VBR), available bit rate (ABR) and unspecified bit
rate (UBR).

We recall that in the traditional approach to call admission control
(CAC) we must characterize the offered traffic a priori in terms of the pa-
rameters of stochastic or deterministic model. To these approaches belong,
among others, the model of Guerin [4] and [3]. However, none of the models
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is suitable in many not fully incompletely characterised traffic sources and
some worst case scenarios can practically appear in some situations. For
instance, if more bandwidth is allocated than needed, the ATM network is
utilized by network utilization.

To overcome the drawback of the model-based CAC schemes, some
measurement-based neural fuzzy controllers have been proposed. Among
others, Pittsillides et al. [12] have applied fuzzy explicit rate working mech-
anism to effectively control the traffic flow in ATM networks. A fuzzy con-
nection admission controller used for a possible distribution of the cell ratio
was proposed by [16]. In the paper by Youssef et al. [17] a controller for
bandwidth allocation in ATM networks was proposed.

A dynamic connection admission control algorithm based on the traffic
parameters, on-line traffic measurements and a fuzzy logic controller was
proposed in the paper by Ren and Ramamurthy [14]. A new architecture
of a fuzzy controller with a feedback loop for the traffic rate prediction and
regulation has been given by Douligeris et al. [2]. However, the given solu-
tions cannot be directly applicable to wireless ATM networks, where there
are additional situations possible such as the handoff failure, call dropping,
etc.

In this paper, we introduce a connection admission control (CAC) mech-
anism based on neuro-fuzzy network that supports ATM cell loss require-
ment and QoS parameters for multimedia traffic in Wireless ATM networks.
Additionally, our CAC controller estimates the bandwidth required for each
class of multimedia traffic, so as able to recognize of the movement direction
of the Mobile Station (MS) in a cellular environment.

The structure of the paper is as follows. In section 2, we define the
connection admission control scheme used in Wireless ATM networks. In
section 3, we introduce our fuzzy neural network controller for providing QoS
support in a variable wireless network environment in which QoS is adaptive
within the range requested by the application. Section 3 is devoted to the
learning algorithm used by our fuzzy neural network. Numerical results are
presented in section 4. Conclusions are given in section 5.

2 Connection Admission Control Scheme in Wireless ATM
Networks

In this section, we give the basic principles for bandwidth allocation scheme,
providing the QoS support in a variable wireless network environment.

For simplicity we assume that to CAC mechanism belong at least two
procedures: ”connecting a call” and ”rejecting a call”. The first procedure
must identify call’s class of service, such as CBR, rt-VBR, nrt-VBR, ABR
and UBR. In the dependence of service class and the actual channel link
capacity the bandwidth Ck (k = 1, . . . , K) is admitted, where K is the
total number od class. For all call’s class k the following condition must be
satisfied:
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K∑
k=1

Ck ≤ Clink (1)

where Clink is the bandwidth of the link. A pool of free bandwidth Cf is
defined as

Cf = Clink −
K∑

k=1

Ck (2)

In the case of lack of free bandwidth each call borrows the bandwidth
from the neighbouring cells. Additionally, thanks to the movement predic-
tion the needed bandwidth in all neighbouring cells is reserved in the direc-
tion of movement. In the opposite direction of the movement the bandwidth
is released and returned to the pool of free bandwidth for ech cells. Only in
the case of lack of free bandwidth in the neighbouring cells the connection
is rejected. Hence, the ”rejecting a call” procedure is invoked. The ”con-
necting a call” procedure estimates QoS parameters (such as cell loss ratio
(CLR), cell delay variation (CDV), etc.) and compares them with the tar-
get QoS. If the estimated QoS parameters are smaller than the target QoS
parameters, then the procedure improves the connection.

3 Fuzzy/Neural Connection Admission Controller for WATM
Networks

In this section, we introduce a fuzzy neural network CAC controller for
WATM networks that forces traffic measurements for determining the equiv-
alent bandwidth, the reserved and released bandwidth, the change of QoS
parameters, etc.

The architecture of our fuzzy neural CAC controller mechanism contains
the following functional blocks: Fuzzy Channel Allocator (FCA), Fuzzy Cell
Selector (FCS), Neural Fuzzy CAC Mechanism (NFCACM) and QoS Pa-
rameters Controller (QoSPC). The block diagram is shown in Fig. 1.

In our fuzzy/neural CAC controller mechanism, we used as input pa-
rameters: v - the speed of MS, PH - the handoff (handover) probability [11],
M (j) - the mean ATM cell rate of jth call, (σ(j))2 - the variance of the
ATM cell rate and two Quality of Service parameters for jth call, namely
QoS

(j)
1 , QoS(j)

2 . In our approach in the observed periods some measurement
parameters such as the mean cell rate M (j) and variance (σ(j))2 of jth call
are given by

M (j) =
1
Ns

Ns∑
n=1

R(j)
n (3)
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Fig. 1 The block diagram of Fuzzy/Neural Connection Admission Controler (FN-
CAC) for WATM networks

(σ(j))2 =
1

Ns − 1

Ns∑
n=1

(R(j)
n −M (j))2 (4)

where R(j)
n is a measured ATM cell rate for call j in the observed period n.

It allows us to estimate the autocovariance function CovR(τ) at sampled
points as

CovR(j) (ktm) =
1

Ns − k

Ns−k∑
n=1

(R(j)
n −M (j))(R(j)

n+k−M (j)), k = 0, 1, . . . , Ns − 1,

(5)
which is unbiased for k < Ns. We assume that the statistics M (j), σ(j)2 and
CovR(j) (τ) are updated after each update period.

The required bandwidth, C, to support all the existing connections with
the specified CLR can be given [4, 14] by means of the expression:

C = M + ξσ (6)

where M =
∑

j M
(j), σ2 =

∑
j(σ

(j))2, the parameter ξ ∼= 1.8−0.46 log10(η),

η = M
√

2π
σ ∗ εtar, εtar is the target CLR.

Now, we introduced the Fuzzy/Neural Connection Admission Controller
(FNCAC) for WATM networks that consists of three elements. The first of
them, Fuzzy Channel Alocator (FCA) chooses six input linguistic variables
for FCA (see Fig. 1): v - the mobile speed, PH - the handoff probability,
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M (j) - the mean cell rate of jth call, (σ(j))2 - the variance of the cell rate
of jth call, and two Quality of Service parameters QoS(j)

1 , QoS(j)
2 . In our

approach vector v = (vx, vy) shows the direction of movement of the MT
station. We can indicate the cell which will be visited by the MT station.
The parameter PH allows for the switching beetwen base stations (BSs)
during the movement of the MT station in the cellular environment. We
recall that the handoff probability PH depends on the distance from the
central point of each cell in which a BS station is located.

In our approach the first QoS parameter for jth call is the Cell Loss Ratio
(CLR), which is usually very small for CBR and VBR traffic class (e.g. in
the range of 10−7 and 10−10) [McDY 98]. The second QoS parameter for
call j is the Cell Delay Variation (CDV). This parameter changes for the
CBR and VBR traffic classes in the range of 10−4 and 10−2 [ms].

Now, we introduce the term set of v as
T (vx) = {Small, Large} = {Sm,La},
T (vy) = {Slow, Fast} = {Sl, Fa},
T (PH) = {Low,High} = {Lo,Hi},
T (M (j)) = {Little, Big} = {Li,Bi},
T (σ(j))2) = {Slightly, Substantial} = {Sli, Sub}.

The term sets for both QoS parameters, CLR and CDV , are respectively:
T (CLR) = T (CDV ) = {More Enough, Slightly Enough,Not Enough}

= {ME,SL,NE}.
The membership functions for

T (vx), T (vy), T (PH), T (M (j)),
T ((σ(j))2), T (CLR), T (CDV )

are defined as:
M(vx) = {μSm, μLa},
M(vy) = {μSlo, μFas},
M(PH) = {μLo, μHi},
M(M (j)) = {μLi, μBi},
M((σ(j))2) = {μSli, μSub},
M(CLR) = {μ(CLR)

ME , μ
(CLR)
SE , μ

(CLR)
NE },

M(CDV ) = {μ(CDV )
ME , μ

(CDV )
SE , μ

(CDV )
NE },

where all the membership functions as constructed in the following way, for
instance

μSm(vx) = g(vx; vx,min, vx,max, 0, vx,bound), etc.
The function g(.) is a trapezoidal function defined as

g(x;x0, x1, a0, a1)

g(x;x0, x1, a0, a1) =

⎧⎪⎪⎨
⎪⎪⎩

x−x0
a0

+ 1, for x0 − a0 < x ≤ x0

1, for x0 < x ≤ x1
x0−x

a1
+ 1, for x1 < x ≤ x1 + a1

0, otherwise.

(7)
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where x0 is the left edge of the trapezoidal function, x1 is the right edge of
the trapezoidal function; a0 (a1) is the left (right) width of the trapezoidal
function.

For the MTs that are in movement, the Fuzzy Cell Selector (FCS) decides
to choose the BS in the same cell or overtake the call to the nearest BS. The
term sets used to describe the handoff failure probability and the available
resource are defined as

T (PH) = {Few,Much} = {Fe,Mu},
T (A) = {Less, Loose} = {Le, Lo}.

The term set of the output linguistic variable S (the same cell) is defined
as

T (S) = {Reject, Weakly Accept, Accept} = {R,WA,A}.
Similarly, the term set of the output linguistic variable N (nearest BS) is
defined as

T (N) = {BS, Nearest BS} = {BS,NBS}.
The NBS variable indicates the switching between the BS stations.

For the correction of the QoS parameters for all calls that are in use, we
applied the Neural Fuzzy CAC Mechanism (NFCACM) and QoS Parameter
Controller (QoSPC). The term sets used to describe the QoS change and
eventually reject the call are defined as:

T (QoS) = {Wrong,Neutral, Good} = {Wr,Ne,Go},
T (R) = {Non-Reject, Reject} = {NR,R}.
The term set of the output linguistic variables (bandwidth and call per-

mission) are as follows:
T (C) = {To Small, Acceptable, To Large} = {TS,ACC, TL}

and
T (CP ) = {Reject call, Admit call} = {RC,AC}.
Currently, we introduce the Neural Fuzzy CAC Mechanism (NFCACM).

3.1 Neural Fuzzy CAC Mechanism (NFCACM)

Our Neural Fuzzy CAC Mechanism (NFCACM) possesses a fuzzy inference
system implemented within the framework of a the neural network. The
idea of the design of a neuro-fuzzy system is to exploit the advantages of
the fuzzy logic and a neural network’s ability to learn.

The connectionist structure of the NFCACM is based on the four-layer
Wang-Mendel neural fuzzy network [7, 8]. All the elements of the first layer
realized membership functions Ak

i , i = 1, . . . , n, k = 1, . . . , N , where n is
the number of controller inputs, N is the number of rules. To this layer are
provided input data xi, and the membership function to fuzzy sets, μAk

i
(xi).

We used the membership function given by Gauss function in the form

μAk
i
(xi) = exp[−(

xi − ak
i

bki
)2] (8)
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where ak
i and bki are the centre and the width of Gauss function. All the

parameters ak
i , bki are modified in the learning process. The number of el-

ements in the first layer is equal to the number of all the fuzzy sets in the
predecessing rules.

The second layer consists of the elements corresponding to the rules
from the database of our NFCACM controller. According to the generalized
modus ponens as the output of this inference layer we obtain the fuzzy sets
B

k
, k = 1, 2, . . . , N , with the membership function

μB′(y) = sup
x∈X

{μA′(x)T
∗ μAk→Bk(x, y)} (9)

For the fuzziness implication Ak → Bk (Larsen implication), namely

μAk→Bk(x, y) = μAk(x)μBk (y) (10)

and the definition of the Cartesian product of fuzzy sets

μA1×A2×...×An(x1,x2,...,xn) = μA1(x1)μA2(x2) . . . μAn(xn)
for each x1 ∈ X1, . . . , xn ∈ Xn (11)

we obtain the membership function for the set B
k
, namely

μ
B

k(y) = μBk(y)
n∏

i=1

μAk
i
(xi) (12)

In the defuzzification block we used the center-average defuzzication method
in which

y =

∑N
k=1 y

kμ
B

k(yk)∑N
k=1 μB

k(yk)
(13)

yk is the point in which the membership function μBk(y) of Bk set has the
maximum value, namely

μBk(yk) = max
y

{μBk(y)} (14)

By placing in Eq. (13) the dependence from Eq. (12) and by the use of
condition (14) and assuming that the fuzzy sets Bk are normal, we obtain

y =

∑N
k yk

∏n
i=1 μAk

i
(xi)∑N

k=1

∏n
i=1 μAk

i
(xi)

(15)

We can see that the whole structure of this fuzzy-neural system (see Fig. 2)
reflects the above equation.

Now, we shall present the learning scheme for the proposed NFCACM
controller. Our controller is learnt by means of a especially prepared two-
phase learning algorithm. The first phase is devoted to the construction
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Fig. 2 The connectionist structure of NFCACM controller

of rules and to the location the initial membership functions. In the sec-
ond phase (applied in the feedback loop), we used a reinforcement learning
method to optimally adjust the membership functions for the needed out-
puts.

In phase one, we find the optimal value of parameters xk
i , σk

i , yk, σk

which determine the centers and widths of the membership functions, re-
spectively. The backpropagation scheme was used as the method of this
supervised learning. The goal is to minimize the error function

E(t) =
1
2
(d(t) − y(t))2 (16)

where d(t) is the desired output, y(t) is the current output. For each training
data set, starting at the input nodes, a forward pass is used to compute the
activity levels of all the nodes in the network. Then, starting at the output
nodes, a backward pass is used to compute ∂E(t)

∂d(t) for all the hidden nodes.
Assuming that w is an adjustable parameter in a node (e.g. the center of a
membership function), the general learning rule is

Δw(t) = η
∂E(t)
∂w(t)

= η(d(t) − y(t)) · C · y′(t) (17)

where η is the learning rate, C is the predefined constant. The difference
d(t) − y(t) is substituted here by a reinforcement factor R. We define R
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Fig. 3 Relative error of learning for NFCACM controller

as equal to R = R̂C − RC (R = Î − I) if Is ≤ Î (Is > Î), where R̂C is
the required corruption ratio of the whole controller, R̂C is the required
bandwidth corruption ratio of the whole NFCACM controller when the
corruption ratio of bandwidth is equal 102 and RC is the current bandwidth
corruption ratio. The interference threshold value, Is, is given as 10−3. Thus,

Δw(t) =

{
η(R̂C −RC)C · y(t) if Is ≤ Îs
η(Îs − Is)C · y(t) if Is > Îs

(18)

Then, we can define weight w(t + 1) as equal to

w(t + 1) = w(t) + Δw(t) (19)

where t is a step in the backpropagation algorithm, t = 0, 1, . . . ,. For t = 0
all the parameters are given in a random way. Relative error of learning for
our NFCACM controller is given in Fig. 3.

4 Simulation Results

In the simulation study, we constructed a cellular cluster with 7 cells. We
assumed that a cell edge had 500 m. The probability of a handoff call was
prepared by a matrix with given a priori values. Each element of this matrix,
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P(i,j)
H , (i �= j), represented the probability of a handoff behaviour of call

originated in cell i and directed to cell j. The cell with number zero was in
the centre of our cellular system. This matrix is defined as follows

PH =

⎡
⎢⎢⎢⎢⎣

P
(0,0)
H P

(0,1)
H · · · P (0,6)

H

P
(1,0)
H P

(1,1)
H · · · P (1,6)

H
...

...
. . .

...
P

(6,0)
H P

(6,1)
H · · · P 6,6)

H

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.0 0.1 0.0 0.0 0.0 0.1
0.1 0.1 0.0 0.1 0.0 0.0 0.0
0.1 0.0 0.1 0.0 0.1 0.0 0.0
0.1 0.0 0.0 0.1 0.0 0.1 0.0
0.1 0.0 0.0 0.0 0.1 0.0 0.1
0.1 0.1 0.0 0.0 0.0 0.1 0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The interarrival times of the MTs receiving a call in each cell are ex-
ponentially distributed with parameter λnew [calls/s/cell]. Each call has a
defined cell rate R(j) which depends on the class of the ATM traffic. The
probability of a cell belonging to the traffic classes CBR, rt-VBR and others
are 0.1, 0.2 and 0.7, respectively. The call holding times are assumed to be
exponentially distributed with the average connection times: 10 min, 5 min,
3 min, for traffic classes CBR, rt-VBR and others, respectively. We also
assumed that each MT travels towards a random virtual cell chosen from
the 7 cells in the cellular cluster with equal probability. Its direction may
change with the given probability 0.2 at every position update time interval
Δt. The speeds are constants 10 [km

h ] in the first case (for low mobility
users) and 100 [km

h ] in the second case (for high mobility users).
The rule structure for the NFCACM controller was arranged according

to the experience and knowledge. The RA and RC parameters played a
dominant role in the rule structure. Some rules was omitted. All initial val-
ues of the membership functions of term sets v, PH , QoS(j) parameters are
chosen according to CBR and rt-VBR traffic classes and properly adjusted
via learning algorithm. The obtained relative error of learning for our FN-
CACM controller is given in Fig. 3. As a defuzzification strategy the center
of area method was used.

Four performance measures such as the mean number of the realized
switchings, the mean number of rejected calls, the handoff rate, and the
system utilization were studied. The mean number of realized switchings
between the BS stations, MS(t), is defined as

MSN (t) =
∑N

i=1 Ai(t)∑N
i=1 Ri(t) +

∑N
i=1 Ai(t)

(20)

where Ai(t) is the number of the accepted switchings between BSs, and
Ri(t) is the number of the rejected switchings between the adjacent BS
stations for the cell i, i = 1, . . . , N in the observed time. The mean number
of rejected calls is given by

RCN (t) =
1
N

N∑
i=1

RCi(t) (21)
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Fig. 4 Mean number of BS switchings between adjacent cells versus the mean
number of users in the cell in the observed time

where RCi(t) is the mean number of rejected calls in cell i (i = 1, . . . , N)
in the observed horizon time. The handoff rate is defined here as

HRN(t) =
∑N

i=1 ACi(t)∑N
i=1 ACi(t) +

∑N
i=1 RCi(t)

(22)

where ACi(t) is the mean number of accepted calls in cell i (i = 1, . . . , N)
in the observed time. The mean system utilization is defined as

U(t) =
∑N

i=1 BCi(t)∑N
i=1 BCi(t) +

∑N
i=1 CCi(t)

× 100% (23)

where BCi(t) is the average number of busy channels in cell i (i = 1, . . . , N),
CCi(t) is the average number of empty channels in cell i in the observed
time.

Fig. 4 shows the mean number of BS switchings between adjacent cells
versus the mean number of users in the cell for the low and high mobility
users in time t = 105 time units. It shows a much greater value of the mean
number of switchings between BSs for the higher mobile users.

Fig. 5 shows the mean number of rejected calls versus the mean number
of users in the cell for the low and high mobility users in the same time
of observation. Two cases was studied: with the NFCACM controller and
with the NFCACM without learning. It can be seen that the performance
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in the cell in the observed time
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of NFCACM controller with learning is significantly better than the per-
formance measure of the system without the NFCACM controller. Fig. 6
shows the same dependence for the high mobility users. It has been found
that the number of rejected calls is the smaller for the system with the
NFCACM controller with learning than with the same controller without
learning. Fig. 7 shows the handoff rate versus the number of users in the cell
for low and high mobility users with the NFCACM controller after learning
and without it, respectively. The Fig. 8 gives the same dependecies for the
high mobility users. The system with the learned neural fuzzy controller has
a smaller handoff rate than the conventional system (ca. 15% and 25% for
low and high mobility users, respectively). Fig. 9 shows the mean system
utilization versus the number of calls in the cell for the low and high mo-
bility users, respectively. It is shown that both systems with the NFCACM
controllers have similarly characteristics. It means that the system speed of
mobile stations (MSs) makes no difference whatsoever for the performance
of our controller.

5 Conclusions

We have developed a neuro-fuzzy connection admission controller for multi-
media traffic in WATM networks. Our mechanism is based on the declared
traffic parameters, on-line traffic statistics and movement parameters. With
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the help of the simulation experiment, we have shown how to apply a neuro-
fuzzy logic controller to measurement-based more robust CAC.

For further extension of our study, we will include the varying number of
MTs stations in the cellular environment. Thus, we will observe the varying
load of system. We will also include a very large speed of the MTs which
allows for a better adjustment of all the FNCAC parameters.
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Limits of Functional Sequences in the Concept
of Nearness Relations

Martin Kalina

813 68 Bratislava, Slovakia

This paper is a continuation of the paper [22]. It goes on investigating
a kind of ‘fuzzy limits’ based on the notion of nearness relation. We will study limits
of functional sequences.

1 Introduction

‘Fuzzy analysis’ and the concept of fuzzy continuity, fuzzy limits and similar topics,
were already studied by many authors, to mention just few of them: M. Burgin,
[3, 4], M. Burgin - M. Kalina [5], M. Burgin - A. Šostak [6], M. Demirci [8, 9], P.
Diamond - P. Kloeden [10], D. Dubois - H. Prade [14, 15, 16], V. Janǐs [17, 18, 19].
Limits in the concept of nearness relations were for the first time defined in [22].

That paper was devoted to limits of functions, having both their domain and range
in the real line. It was shown there how the basic calculus works. A generalisation
of nearness relations to Banach spaces was done in [25]. Further generalisation to
linear spaces one can find in [23]. The aim of this paper is to go on developing ‘fuzzy
mathematics’ by means of nearness relations and within this concept to define limits
of functions having their domain in linear spaces and to show how the limits work
for functional sequences.

1.1 Nearness Relation

X will denote a fixed linear space.

Definition 1 We say that N : X × X → [0; 1] is a nearness relation if and only if
the following hold

1. N (x, x) = 1 for any x ∈ X
2. N (x, y) = N (y, x) for all x, y ∈ X
3. for all x, y ∈ X, y �= 0, and all t1, t2, t3, t4 ∈ R such that t1 ≤ t2 ≤ t3 ≤ t4 the
following holds

N (x+ t1y, x+ t4y) ≤ N (x+ t2y, x+ t3y)
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4. for all x, y ∈ X, y �= 0, the following holds

lim
t→∞

N (x, x+ ty) = 0

In the whole paper we will have the following additional assumption:

5. For each nearness relation N and each x there is an α0 such that

(∀α > α0)(∃xα) (N (x, xα) = α) .

The concept of T -equivalence (fuzzy equality) is well-known, first introduced by
L. Zadeh in [27]. Relevant results can be found also in [1, 2, 26]. In fact, nearness
relation (introduced in [21]) is its generalisation. More on nearness relations, their
topological properties and relationship to T -equivalences one can find in [11, 12, 13,
24, 25]. Recently, the paper [7] appeared, introducing a notion of resemblance. The
relationship of this notion to the above defined nearness relation is given in [20].
We give some examples of nearness relations.

Example 1 a. Assume that the linear space X is equipped with a metric ρ. Then
for any x, y ∈ X

N1(x, y) = max{0, 1− ρ(x, y)}
N2(x, y) = e−ρ(x,y)

N3(x, y) =

{
1, if ρ(x, y) ≤ 1
max{0, 2− ρ(x, y)} otherwise

are nearness relations.
b. Consider the following one-dimensional nearness relation

N (x, y) = max{0, 1− |x − y|}

For any sequence of positive weights {wj}j with
∑

j=1 wj = 1 and any elements
{xj}j , {yj}j ∈ X denote

H({xj}j , {yj}j) =
1∑

j

wj

N1(xj ,yj)

Then H is a nearness relation (cf. [24]). ��

In the following D : X × X → [0, 1] and H : R × R → [0, 1] will always denote
nearness relations connected with the domain (the linear space X) and the range of
considered functions, respectively.
For nearness relations H we will assume

(H 1.) H(x, z) = H(x+ t, z + t) for each x, z, t ∈ R
(H 2.) for each x and each α ∈]0, 1[ {z;H(x, z) ≥ α} will be always a closed interval.
(H 3.) H(x, y) = 1 ⇔ x = y.
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2 Limits in the Context of Nearness Relation

2.1 Basic Definitions

Definition 2 We say that f : X → R has an (D,H, α)-limit at x if and only if for
any couple x1, x2 ∈ X such that D(x, x1) = D(x, x2) = α the following holds

H (f(x1), f(x2)) ≥ α.

The corresponding limit will be denoted by (D,H)α limz→x f(z) and defined by

(D,H)α lim
z→x

f(z) = [inf{f(z);D(z, x) = α}; sup{f(z);D(z, x) = α}] .

Roughly speaking, a function f has an (D,H, α)-limit at x, if the values of f at
points, which are near to x at the level α, are ‘near enough to each other’. In fact,
the value of the (D,H, α)-limit (if it exists) does not depend on the choice of the
nearness relation H.

f(x)−α and f(x)α will always denote the left and right endpoints, respectively,
of the (D,H, α)-limit of f at x.

By Definition 2 we get the following lemma:

Lemma 1 Let f : X → R be any function and D : X × X → [0, 1],H1 : R × R →
[0, 1],H2 : R × R → [0, 1] some nearness relations such that for all s, t ∈ R

H1(s, t) ≤ H2(s, t).

Then the existence of the (D,H1, α)-limit of f at some point x ∈ X implies the
existence of (D,H2, α)-limit of f at x ∈ X and

(D,H1)α lim
z→x

f(z) = (D,H2)α lim
z→x

f(z)

Definition 3 We say that f has a D-limit at x if and only if there exists a nearness
relation H : R×R → [0, 1] and an α0 such that, for all α > α0, f has the (D,H, α)-
limit at x. The corresponding limit will be defined by

D lim
z→x

f(z) =

[
lim inf

α↗1
f(x)−α; lim sup

α↗1
f(x)α

]
.

I.e. fuzzy limit is an interval (possibly one-point). For the completness-sake we
present the folowing theorem concerning the basic calculus. For the proof see [22].
The multiplication and addition of intervals, is defined by

[a1; b1] ∗ [a2; b2] = (1)

[min{a1 ∗ a2; a1 ∗ b2; b1 ∗ a2; b1 ∗ b2}; max{a1 ∗ a2; a1 ∗ b2; b1 ∗ a2; b1 ∗ b2}]

where ∗ means the multiplication and addition, respectively.
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Theorem 1 Let f : X → R and g : X → R be any functions having their D-limits
at a point x0 ∈ X such that

±∞ /∈ D lim
z→x0

f(z), ±∞ /∈ D lim
z→x0

g(z).

Then also fg, f + g and kf have fuzzy limits at x0, where k ∈ R and there holds

a. D limz→x0(f(z)g(z)) ⊆
(D limz→x0 f(z)

) (D limz→x0 g(z)
)

b. D limz→x0(f(z) + g(z)) ⊆ D limz→x0 f(z) + D limz→x0 g(z)
c. D limz→x0 kf(z) = k D limz→x0 f(z).

2.2 Main Results

We will focus our consideration to the limits of functional sequences.

Theorem 2 Let fn : X → R be a sequence of functions pointwise convergent to
f : X → R. Let for an x ∈ X, an α < 1 and a couple of nearness relation (D,H),
there exist (D,H, α)-limits of fn at x for each n. Then there exists a (D,H, α)-limit
of f at x and there holds

(D,H)α lim
z→x

f(z) =
[
lim

n→∞
fn(x)−α, lim

n→∞
fn(x)α

]
.

Proof. Fix some point x. Denote

a = inf{z ∈ X; z < x & D(z, x) ≥ α} b = sup{z ∈ X; z > x & D(z, x) ≥ α}

From the pointwise convergence of {fn} to f we get f(a) = limn→∞ fn(a) and
f(b) = limn→∞ fn(b). Since f(x)−α = min{f(a), f(b)}, f(x)α = max{f(a), f(b)},
from assumption (H 2.) we get the assertion in question. ��

Theorem 3 Let fn : X → R be a sequence of functions pointwise convergent to
f : X → R. Let for an x ∈ X there exist D limz→x fn(z) for each n. Assume that
there exists an α0 < 1 and a nearness relation H such that for α > α0 there exist
(D,H, α)-limits of fn at x for each n. Then there exists a D-limit of f at x.

Proof. Theorem 2 implies that for each α > α0 there exists the (D,H)α-limit of f
at the point x. By Definition 3 we get the existence of the D-limit of f at x. ��

Example 2 Let X = R2, equipped with the usual Euclidean metric ρ. Consider
the following sequence of functions:

fn(x, y) =

{
cos
(

1√
x2+y2

)
if ρ ((x, y); (0, 0)) > 1

n

0 otherwise

f(x, y) =

{
cos
(

1√
x2+y2

)
if (x, y) �= (0, 0)

0 otherwise
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Then the sequence {fn}n converges pointwise to f . Put H the one-dimensional
nearness relation N from Example 1b.
a. Let D be the nearness relation N1 from Example 1a. Then for each n we get

0 = D lim
(x,y)→(0,0)

fn(x, y) �= D lim
(x,y)→(0,0)

f(x, y) = [−1, 1]

however

(D,H)α lim
(x,y)→(0,0)

f(x, y) = lim
n→∞

(
(D,H)α lim

(x,y)→(0,0)
fn(x, y)

)
= cos

(
1
1− α

)

since N1((x, y); (0, 0)) = α if and only if
√

x2 + y2 = 1− α (for α < 1).
b. Let D = N3 from Example 1a. Then we get the following results

(D,H)α lim
(x,y)→(0,0)

f(x, y) = lim
n→∞

(
(D,H)α lim

(x,y)→(0,0)
fn(x, y)

)
= cos

(
1
2− α

)

since N3((x, y); (0, 0)) = α if and only if
√

x2 + y2 = 2− α and

lim
n→∞

(
D lim
(x,y)→(0,0)

fn(x, y)

)
= D lim

(x,y)→(0,0)
f(x, y) = cos 1

��
Definition 4 Functions f and g are called α-comonotone at x with respect to a
nearness relation D if and only if the following holds

(D(z1, x) = α & D(z2, x) = α) ⇒ (f(z1)− f(z2)) (g(z1)− g(z2)) ≥ 0.
Lemma 2 Let D be a nearness relation, x ∈ X some fixed point, α0 ∈]0, 1[, and f
and g be any functions such that they are α-comonotone at x for any α > α0 Then
for a one-dimensional nearness relation H such that there exist (D,H)α limz→x f(z),
(D,H)α limz→x g(z) the following holds:

• There exists some one-dimensional nearnes relation H1 such that
(D,H)α lim

z→x
f(z) + (D,H)α lim

z→x
g(z) = (D,H1)α lim

z→x
(f(z) + g(z))

•
D lim

z→x
f(z) + D lim

z→x
g(z) = D lim

z→x
(f(z) + g(z))

Proof. First, we construct the one-dimensional nearness relation H1. We put
H1(0, z) = sup {α ∈ [0, 1]; (∃x, y, x+ y = z)(H(x, 0) ≥ α & H(y, 0) ≥ α)}
H1(s, t) = H1(0, t − s)

The rest of the proof is just an easy excercise with the property of α-comonotonicity
of functions f and g, since

(D,H1)α lim
z→x
(f(z) + g(z)) =

[inf{f(z) + g(z);D(z, x) = α}, sup{f(z) + g(z);D(z, x) = α}]
The α-comonotonicity of the functions f and g implies

inf{f(z) + g(z);D(z, x) = α} = inf{f(z);D(z, x) = α}+ inf{g(z);D(z, x) = α}
��
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Theorem 4 Let {fn}n be a sequence of pairwise α-comonotone functions at some
point x with respect to a nearness relation D. Denote Fn =

∑n

i=1 fn. Assume that
Fn pointwise converge to F . Let the sequence {Fn}n and the function F fulfil the
assumptions of Theorem 2 at the point x for the given α, given nearness relation D
and some nearness relation H. Then

(D,H)α lim
z→x

F (z) =
∞∑

n=1

(D,H)α lim
z→x

fn(z) (2)

provided the (D,H)α limz→x fn(z) exist for all n.

Proof. The assertion of this theorem is in fact implied by Theorem 2 and Lemma
2. Really, Lemma 2 implies that there exist (D,H1)α limz→x Fn(z) for all n and
some one-dimensional nearness relation H1. Under the assumptions of this theorem
H1 = H. The existence of the (D,H, α)-limit of F at x and formula (2) is implied
by Theorem 2. ��

Lemma 2 and Theorem 4 can be generalized into the following:

Theorem 5 Assume that {fn}∞n=1 is a sequence of functions which are pairwise
comonotone at some fixed point x0 ∈ X. Denote Fn(x) =

∑n

i=1 fi(x) and F (x) =∑∞
i=1 fi(x). Assume that the function F is well defined by the sum. Let us fix some

nearness relation D : X ×X → [0, 1] and a sequence of nearness relations Hn : R×
R → [0, 1] such that for the fixed x0 ∈ X and some α ∈]0, 1[ there exist (D,Hn, α)-
limits of fn at the point x0. Then there exist some nearness relations H̃n : R×R →
[0, 1] such that the (D, H̃n, α)-limits of Fn at the point x0 do exist and the following
holds

(D,H̃n)α lim
z→x0

Fn(z) =
n∑

i=1

(
(D,Hi)α lim

z→x0
fi(z)

)
. (3)

If moreover
H(x, y) = sup

n

(
H̃n(x, y)

)
(4)

is a nearness relation fulfilling the properties H1-3, then the (D,H, α)-limit of F at
the point x0 does exist and the following holds

(D,H)α lim
z→x0

F (z) =
∞∑

i=1

(D,Hi)α lim
z→x0

fi(z) (5)

Proof. To construct the nearness relations H̃n, it is enough to put

H̃n(0, z) = sup

{
α ∈ [0, 1];

(
∃{xi}n

i=1,

n∑
i=1

xi = z

)
(∀i ≤ n) (H(xi, 0) ≥ α)

}

H̃n(s, t) = H̃n(0, t − s)

Formula (3) is implied by the comonotonicity of the functions fi and by Lemmas 1
and 2.
If Formula (4) holds, then due to Lemma 1
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(D,H̃n)α lim
z→x0

Fn(z) =
(D,H)α lim

z→x0
Fn(z).

This and Theorem 2 imply Formula (5). ��

A direct consequence of Theorem 4 is the following:

Theorem 6 Assume that there exists an α0 < 1 such that, for all α > α0, {fn}n

is a sequence of pairwise α-comonotone functions at some point x, with respect to
a nearness relation D. Denote Fn =

∑n

i=1 fn. Assume that Fn pointwise converge
to F . Let the sequence {Fn}n and the function F fulfil the assumptions of Theorem
3 at the point x for the given nearness relation D and some nearness relation H.
Then there exists D limz→x F (z).

In general, nothing can be said on the relationship between the sum of D-limits
of a sequence of functions {fn}∞n=1 and the D-limit of the sum of {fn}∞n=1. This is
illustrated in the following example:

Example 3 Take for simplicity sequences of real functions {fn}n and {gn}n defined
by

fn(x) =

{
|x|, iff x ∈

[
− 1

n
, 1

n

]
0, otherwise

, gn(x) =

{
1
2n

∣∣sin 1
x

∣∣ , iff x �= 0
0, otherwise

and put D = N , the one-dimensional nearness relation from Example 1b. Then the
following hold

D lim
x→0

fn(x) = 0,
D lim

x→0
gn(x) =

[
0,
1
2n

]

D lim
x→0

( ∞∑
n=1

fn(x)

)
=
[
1
2 , 1
]
�=

∞∑
n=1

(
D lim

x→0
fn(x)

)
= 0

D lim
x→0

( ∞∑
n=1

gn(x)

)
= [0, 1] =

∞∑
n=1

(
D lim

x→0
fn(x)

)

��
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24. Kalina, M.: Nearness relations in linear spaces, Kybernetika, in press.
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(i)f ∈ T =⇒ 1− f ∈ T ;
(ii)f, g ∈ T =⇒ f ⊕ g = min(f + g, 1) ∈ T ;
(iii)fn ∈ T (n = 1, 2, ...), fn ↗ f =⇒ f ∈ T .

Evidently, if f, g ∈ T , then also
f � g = max(f + g − 1, 0) ∈ T .

By an IFS-event ([2], [3], [4], [5])we understand any element of the family

F = {(f, g); f, g ∈ T , f + g ≤ 1}.
If A = (μA, νA), B = (μB , νB) ∈ F , then

A⊕B = (μA ⊕ μB , νA � νB),

A�B = (μA � μB , νA ⊕ νB).

If An = (μAn
, νAn

), then

An ↗ A ⇔ μAn
↗ μA, νAn

↘ νA.

Finally denote by J the family of all closed intervals [a, b] such that 0 ≤ a ≤ b.
Recall that

[a, b] + [c, d] = [a+ c, b+ d],

[an, bn]↗ [a, b]⇔ an ↗ a, bn ↗ b.

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

B. Riečan: On the Law of Large Numbers on IFS Events, Advances in Soft Computing 2, 677–
680 (2005)

On the Law of Large Numbers on IFS Events

Beloslav Riečan
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Abstract. A probability theory on IFS events has been constructed in [2], and
axiomatically in [4]. Here we use a general system of axioms for probabilities and
observables. Using analogous results of probability theory on MV-algebras (see [6])
a version of the weak law of large numbers can be proved.

Keywords: IFS-events, MV-algebras, probability, observables

We assume that a Lukasiewicz tribe is given, i.e. a non-empty family T of functions
f : Ω → [0, 1] satisfying the following conditions:

1 Introduction



two components working in MV-algebra probability theory. Therefore some known
results from the MV-algebra theory ([6]) may be used. As an illustration the weak
law of large numbers will be presented in Section 3.

Recall that the probability on T ([6]) is a function p : T → [0, 1] such that
(i)p(1Ω) = 1, p(0Ω) = 0;

(ii)p(f) + p(g) = p(f ⊕ g) + p(f � g), f, g ∈ T ;
(iii)fn ↗ f =⇒ p(fn)↗ p(f).

Observable is a mapping y : B(R)→ T satisfying the following conditions:
(i)y(R) = 1Ω;

A ∩B = ∅ =⇒ y(A)� y(B) = 0Ω, y(A ∪B) = y(A) + y(B);

An ↗ A =⇒ y(An)↗ y(A).

An observable y is integrable, if there exists

E(y) =
∫

R

tdpy(t),

where py : B(R)→ [0, 1] is defined by py(A) = p(y(A)), A ∈ B(R).
Definition 1. By an IFS-probability on F we understand any function P : F →

J satisfying the following properties:
(i)P((1Ω, 0Ω)) = [1, 1],P((0Ω, 1Ω)) = [0, 0];
(ii)P(A⊕B) + P(A�B) = P(A) + P(B);

(iii)An ↗ A =⇒ P(An)↗ P(A).
P is called separating, if P((f, g)) = [p(f), 1− q(g)] for some p, q : T → [0, 1].
Proposition 1. Let P : F → J be a separating IFS-probability. For any

(f, g) ∈ F denote P((f, g)) = [p(f), 1− q(g)] Then p, q : T → [0, 1] are probabilities
(in the sense of [6]).
Proof. [5], Section 3.
Definition 2. A mapping x : B(R) → F is called an IFS-observable, if it

satisfies the following conditions:

(i)x(R) = (1Ω, 0Ω);

(ii)A ∩B = ∅ =⇒ x(A)� x(B) = (0Ω, 1Ω), x(A ∪B) = x(A)⊕ x(B);

(iii)An ↗ A =⇒ x(An)↗ x(A).
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The basic notions of the probability theory are probability and random variable.
In the classical case the probability is a mapping from a σ-algebra S of sets to
[0,1], in IFS case it is defined axiomatically as a mapping from F to [0,1]. Random
variable is usually defined as a measurable mapping. Of course, to any random
variable ω  → ξ(ω) a mapping A  → ξ−1(A) can be assigned from the σ-algebra
B(R) of Borel sets to the given σ-algebra S. As an analogy we shall consider an
observable as a mapping from B(R) to F .
In Section 2 we shall define probability and observables in the IFS theory and

independency of a sequence of observables. Using two representations theorems
taken from [3] and [5] we can decompose problems from IFS probability theory into

2. Probability and Observation



Proposition 3. If x1, ..., xn are independent, then x

1, ..., x



n : B(R) → T are

independent as well as x�
1, ..., x

�
n : B(R)→ T .

Proof. [3], Theorem 4.3.

Definition 4. Let x1, ..., xn be independent IFS-observables, hn : Rn → F
their joint observable, gn : Rn → R, gn(u1, ..., un) = 1

n

∑n
i=1 ui. Then 1n

∑n
i=1 xi :

B(R)→ F is defined by the formula 1
n

∑n
i=1 xi = hn ◦ g−1n .

Theorem. Let (xn)∞n=1 be a sequence of independent, equally distributed ob-
servables (i.e.xn(A) = x1(A) for any n ∈ N and any A ∈ B(R)), E(x


1) = E(x�
1) =

0. Then

limn→∞P(( 1
n

n∑
i=1

xi)(−ε, ε)) = [0, 0].

Proof. Consider the sequences (x

n)

∞
n=1, (x

�
n)

∞
n=1 of observables from B(R) to R.

They are sequences of independent, equally distributed observables from B(R) to
T , E(x


n) = 0, E(x
�
n) = 0(n = 1, 2, ...). Therefore by [6] Theorem 2.15

limn→∞p((
1
n

n∑
i=1

x

i)((−ε, ε))) = 0,

limn→∞q((
1
n

n∑
i=1

x�
i)((−ε, ε))) = 0

for any ε > 0. Therefore

limn→∞P(( 1
n

n∑
i=1

xi)((−ε, ε)))

= limn→∞[p((
1
n

n∑
i=1

xi)

((−ε, ε))), 1− q(1− ( 1

n

n∑
i=1

xi)
�((−ε, ε)))]

= limn→∞[p((
1
n

n∑
i=1

x

i)((−ε, ε))), q((

1
n

n∑
i=1

x�
i)((−ε, ε)))]

= [0, 0]

.
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Proposition 2. Let x : B(R) → F be an IFS-observable. For any A ∈ B(R)
denote x(A) = (x
(A), 1 − x�(A)). Then x
, x� : B(R) → T are observables in the
sense of [6].
Proof. [5], Section 4.
Definition 3. IFS-observables x1, ..., xn : B(R)→ F are called independent, if

there exists n-dimensional IFS-observable h : BRn)→ F such that
P(h(A1 × ...×An)) = P(x1(A1))⊗ ...⊗ P(xn(An))

for any A1, ..., An ∈ B(R). Here [a1, b1] ⊗ ... ⊗ [an, bn] = [a1...an, b1...bn] for any
[ai, bi] ∈ J .
The mapping h is called the joint observable of the observables x1, ..., xn.

3. Weak Law of Large Numbers
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B. Riečan680

The problem of constructing probability theory on IFS events has been posed
by K. Atannasov ([1]). As a solution of the problem we suggest in the paper a
decomposition of a probability as well as observables into two components. There
is well known how to work with these components: probability theory on tribes
or more general on MV-algebras ([6]). As an illustration of the method we have
presented here a variant of the law of large numbers. While any observable can be
decomposed by the described method, only a type of probabilities is decomposable.
In the general case this method does not seem to be useful and another approach
must be developed. It will be realized in another paper.
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An Axiomatic Approach to Cardinalities of IF
Sets

Faculty of Economics, Matej Bel University,
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There are several approaches to the cardinality of fuzzy sets. One group
of them are constructive approaches. Following these approaches we get single num-
bers (scalar cardinalities) or convex fuzzy sets (fuzzy cardinalities) as cardinalities
of fuzzy sets. Wygralak in [8] has presented an axiomatic theory of the scalar cardi-
nality of finite fuzzy sets which contains as particular cases all standard concepts of
the scalar cardinality. In our contribution we will present possible extensions to the
case of IF sets.

Key words: cardinality, IF sets

1 Introduction

Cardinality is a very important characteristic of a crisp set. We would like to
get similar characteristic also for fuzzy sets. There is rather theoretical moti-
vation for dealing with the notion of the cardinality of fuzzy sets. Nevertheless,
measuring the cardinality of fuzzy sets has also many applications, especially
in the case of finite fuzzy sets. For instance in communication with databases
we mean the problem of satisfactory and adequate answer to queries of the
form: ”How many elements are p? ” or ”Are there more elements which are
p than elements which are q?”, where p, q are arbitrary properties. Those
queries are about cardinalities or comparisons of cardinalities of fuzzy sets.
There are several approaches to the cardinality of fuzzy sets. One group of
them are constructive approaches. Following these approaches we get a single
number alternatively fuzzy set as a cardinality of fuzzy sets. In many ap-
plications one prefers a simple scalar approximation of cardinality of fuzzy
sets. The complete axiomatic theory of scalar cardinality of fuzzy sets can be
found in Wygralak’s book [8]. The axiomatic theory of fuzzy cardinality was
introduced by Casasnovas and Torrens in [3]. We introduce here the scalar car-
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www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
681–691 (2005)

Pavol Kráĺ
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dinality for IF sets as a generalization of cardinality of fuzzy sets and a special
case of cardinality of L-fuzzy sets. We use the following basic definitions:

Definition 1. (Zadeh 1965) A fuzzy set (FS) A on a universe X is a function
A : X → [0, 1].

Definition 2. (Atanassov 1983) An IF set on a universe X is an object of
the form

A = {(x, μA(x), νA(x))| x ∈ X},
where μA and νA satisfy the following condition

(∀x ∈ X)(μA(x) + νA(x) ≤ 1).

μA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] are called the membership degree and non-
membership degree, respectively, of x ∈ A.

Definition 3. (Goguen 1967) An L-fuzzy set (LFS) A on a universe X is
a function A : X → L, where L is a complete distributive lattice equipped
with standard operations ∨,∧, bottom element 0, top element 1 and unary,
involutive, order-reversing operator N.

The union, intersection and complement for fuzzy sets, IF sets and LF sets
are defined as follows:

Definition 4. Let A, B ∈ FS. Then
A ∪B(x) = max(A(x)B(x)),∀x ∈ X
A ∩B(x) = min(A(x)B(x)), ∀x ∈ X
coA(x) = 1 −A(x),∀x ∈ X

Definition 5. Let A, B ∈ IFS. Then
A ∪B = {x,max(μA(x), μB(x)),min(νA(x)νB(x))|x ∈ X}
A ∩B = {x,min(μA(x), μB(x)),max(νA(x)νB(x))|x ∈ X}
coA = {(x, νA(x)μA(x))|x ∈ X}

Definition 6. Let A, B ∈ LFS. Then
A ∪B(x) = sup(A(x)B(x)), ∀x ∈ X
A ∩B(x) = inf(A(x)B(x)), ∀x ∈ X
coA(x) = N(A(x)),∀x ∈ X

We use the following notations. The cardinality of a crisp set B will be
denoted by |B|. The cardinality of a fuzzy set A will be denoted by card(A).
The cardinality of an IF set A will be denoted by cardI(A). The cardinality
of a LF set A will be denoted by cardL(A).
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2 Cardinality of L-fuzzy sets

The concept of LFS (introduced by Goguen [4]) is a generalization of the
concept of fuzzy sets and includes the latter as a special case when L = [0, 1].
There are several different kinds of understanding of the concept of an LF set
distinguished by how to specify the lattice L.

We use the following basic definitions:

Aα = {x ∈ X : A(x) ≥ α}

with α ∈ L\{0} (α-cut set of LFS A),

Aα = {x ∈ X : A(x) > α}

with α ∈ L\{1} (sharp α-cut set of LFS A ),

core(A) = Aα (core of A),

supp(A) = A0 (support of A ).

If supp(A) is finite, we shall say that A is a finite LF set (LFFS). Following
[8] we define the cardinality of LFF sets:

Definition 7. An element a of the lattice L is irreducible if a = b∨ c implies
b = a or c = a. An irreducible element a of the lattice L is maximal irreducible
if for each b irreducible a ≤ b implies a = b.

Definition 8. Let n be a number of maximal irreducible elements of a lattice
L. A function cardL : LFFS → [0,∞)n will be called a scalar cardinality if
the following postulates are satisfied for each a, b ∈ L, x, y ∈ X and A, B ∈
LFFS:

1. coincidence
cardL(1/x) = (1, ..., 1︸ ︷︷ ︸

n

)

2. monotonicity
a ≤ b ⇒ cardL(a/x) ≤ cardL(b/y)

3. additivity
supp(A) ∩ supp(B) = ∅ ⇒

cardL(A ∪B) = cardL(A) + cardL(B)

Proposition 1. Let A, B ∈ LFFS and Ai ∈ LFFS for each index i ∈ J(J-
finite). The following properties hold for each scalar cardinality:

1. additivity
cardL(

⋃
i∈J

Ai) =
∑
i∈J

cardL(Ai)

whenever supp(Ai) ∩ supp(Aj) = ∅ for each i �= j,
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2. coincidence cardL(A) = |core(A)| if A ∈ LFCS,
3. monotonicity cardL(A) ≤ cardL(B) if A ⊂ B,
4. boundedness |supp(A)| ≤ cardL(A) ≤ |core(A)|,
5. shiftability cardL(A) = cardL(B) iff there exists a bijection b : supp(A) →
supp(B) such that A(x) = B(b(x)) for each x ∈ supp(A).

Proof.
It is easy to see that this properties are immediate consequences of the

axioms from definition 8. 
�
The following theorem brings a useful characterization of scalar cardinality

of LF sets:

Theorem 1. Let n be a number of maximal irreducible elements of a lattice
L. A mapping cardL : LFFS → [0,∞)n is a scalar cardinality iff there exists
a function fL : L → [0, 1]n fulfilling the conditions:

1. fL(0) = (0, ..., 0︸ ︷︷ ︸
n

), fL(1) = (1, ..., 1︸ ︷︷ ︸
n

)

2. fL(a) ≤ fL(b) whenever a ≤ b and such that

cardL(A) =
∑

x∈supp(A)

fL(A(x))

for each A ∈ LFFS.

Proof.
” ⇒ ” Assume a scalar cardinality cardL : LFFS → [0,∞)n. By additivity

we obtain
cardL(A) =

∑
x∈supp(A)

cardL(A(x)/x)

for each A ∈ LFFS. Let fL : L → [0, 1]n be a function such that fL(a) =
cardL(a/x) for a ∈ L. It is easy to see that fL fulfils required conditions.

” ⇐ ” Assume that fL satisfies conditions (1), (2) and
cardL : LFFS → [0,∞)n is of the form

cardL(A) =
∑

x∈supp(A)

fL(A(x))

for each A ∈ LFFS.
Conditions (1), (2) lead to the fulfilment of coincidence and monotonicity

for cardL. Let supp(Ai) ∩ supp(Bj) = ∅. Hence

cardL(A ∪B) =
∑

x∈supp(A∪B)

fL((A ∪B)(x)) =

=
∑

x∈supp(A)

fL(A(x)) +
∑

x∈supp(B)

fL(B(x)) = cardL(A) + cardL(B),

684 P.
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Each function fL satisfying the conditions from the previous theorem will
be called a L-cardinality pattern as it expresses understanding of the scalar
cardinality of a singleton.

Example 1 Let L be a lattice (see figure 1).

Fig. 1.

Let A : {x1, x2, x3, x4, x5} → L be a LF set:

A = 1/x1 + 0/x2 + a/x3 + b/x4 + d/x5.

Irreducible elements of lattice L are a, c, d. Maximal irreducible elements are a,
d. For each element in L\{0,1} we can find a minimal partition on irreducible
elements (b = c ∨ d). We can assume following L - cardinality pattern:

fL(y) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0) if y ≥ c and y is irreducible,
(0, 1) if y ≥ d and y is irreducible,
(0, 0) if (y < c) ∧ (y < d) and y is irreducible,∑
i fL(yi) if y = ∨iyi and yi are irreducible.

The cardinality cardL(A) = (3, 3).

Important features of sets and their cardinalities are well-known valuation
property, subadditivity and complementarity rule:

Valuation property For each A,B ∈ LFFS
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cardL(A ∩B) + cardL(A ∪B) = cardL(A) + cardL(B).

Subadditivity property For each (Ai)i∈J ∈ LFFS

cardL(
⋃
i∈J

Ai) ≤
∑
i∈J

cardL(Ai).

Complementarity rule For each A ∈ LFFS

cardL(A) + cardL(coA) = |X|

with an involution N .
Cartesian product rule For each A,B ∈ LFFS

cardL(A×∧ B) = cardL(A).cardL(B)

Necessary and sufficient conditions for cardinality pattern to satisfy valuation
property, subadditivity property, complementarity rule can be found in [5]:

Proposition 2. The subadditivity property is satisfied by a cardinality pattern
fL iff for each a, b ∈ L, a, b-incomparable:

fL(a ∨ b) ≤ fL(a) + fL(b).

Proposition 3. The valuation property holds true iff a cardinality pattern fL

is such that for each a, b ∈ L, a, b-incomparable:

fL(a ∨ b) + fL(a ∧ b) = fL(a) + fL(b).

Proposition 4. The complementarity rule holds true for a L-cardinality pat-
tern fL and an order-reversing involution N iff

fL(a) + fL(N(a)) = (1, ..., 1︸ ︷︷ ︸
n

) for each a ∈ L,

where n is a number of maximal irreducible elements of a lattice L.

3 Cardinality of IF sets

The concept of IF sets (Atanassov in [1]) is a generalization of the concept of
fuzzy sets and a special case of LF sets.

Remark 1 An IF set can be understood as an L∗FS for a complete lattice
(L∗,≤L) with N defined by L∗ = {(μ, ν) ∈ [0; 1]2| μ ≤ 1 − ν}, (μ1, ν1) ≤
(μ2, ν2) ⇐⇒ μ1 ≤ μ2 ∧ ν1 ≥ ν2, N(μ, ν) = (ν, μ).

Deschrijver, Cornelis and Kerre in [2] have extended triangular norm, trian-
gular conorm a negator to the lattice L∗.
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Definition 9. [2] A negator on L∗ is any decreasing mapping N : L∗ →
L∗satisfying N(0) = 1 and N(1) = 0. A triangular norm (t-norm) on L∗ is
a mapping T : (L∗)2 → L∗ satisfying the following conditions:

- (∀x ∈ L∗)(T (x,1) = x),
- (∀(x, y)) ∈ (L∗)2(T (x, y) = T (y, x)),
- (∀(x, y, z) ∈ (L∗)3(T (x, T (y, z)) = T (T (x, y), z))),
- (∀(x, x′, y, y′) ∈ (L∗)4)(x ≤L∗ x′ andy ≤L∗ y′ ⇒ T (x, y) ≤L∗ T (x′, y′)).

A triangular conorm (t-conorm) on L∗ is a mapping S : (L∗)2 → L∗ satisfying
the following conditions:

- (∀x ∈ L∗)(S(x,0) = x),
- (∀(x, y)) ∈ (L∗)2(S(x, y) = S(y, x)),
- (∀(x, y, z) ∈ (L∗)3(S(x, S(y, z)) = S(S(x, y), z))),
- (∀(x, x′, y, y′) ∈ (L∗)4)(x ≤L∗ x′ andy ≤L∗ y′ ⇒ S(x, y) ≤L∗ S(x′, y′)).

In IF set theory negators are used to model the complement of an IF set,
t-norms are used to model the intersection and t-conorms are used to model
union of two IF sets. Let A, B ∈ IFS:

- A ∪T B(x) = T (A(x)B(x)),∀x ∈ X
- A ∩S B(x) = S(A(x)B(x)),∀x ∈ X
- coA(x) = N(A(x)),∀x ∈ X.

Definition 10. [2] A t-norm T on L∗ is called t-representable iff there exist
a t-norm T and a t-conorm S on [0,1] such that, for all x, y ∈ L∗,

T(x, y) = (T (x1, y1), S(x2, y2)).

A t-conorm S on L∗ is called t-representable iff there exist a t-norm T and
a t-conorm S on [0,1] such that, for all x, y ∈ L∗,

S(x, y) = (S(x1, y1), T (x2, y2)).

Remark 2 [2] The t-norm

TW(x, y) = (max(0, x1 + y1 − 1),min(1, x2 + 1 − y1, y2 + 1 − x1)

is an example of not t-representable t-norm on L∗. The dual t-conorm

SW(x, y) = (min(1, x2 + 1 − y1, y2 + 1 − x1),max(0, x2 + y2 − 1))

is an example of not t-representable t-conorm on L∗.

For each IF set in X, we will call πA(x) = 1 − μA(x) − νA(x), the degree of
hesitation of x in A. The following cardinalities of IF set are widely used:
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Definition 11. [6] Let A be an IF set in X. The least cardinality of A is equal
to the so-called sigma-count and is called the minCount:

minCount(A) = Σn
i=1μA(xi).

The biggest cardinality of A is called the maxCount:

maxCount(A) = Σn
i=1{μA(xi) + πA(xi)}.

Let A be an IF set. For each element (μ, ν) of a lattice L∗ we have a
partition (μ, ν) = (μ, 1−μ)∨ (0, ν). Maximal irreducible elements of a lattice
L∗ are (1, 0) and (0, 0). The cardinality of IF sets can be defined quite naturally
following way:

Definition 12. Let A be an IF set. A function cardI : X → [0,∞)2 is a
scalar cardinality of IF set A and cardI(A) = (card(μ), card(1 − ν)), where
card(μ), card(1 − ν) are cardinalities of fuzzy sets μ and 1 − ν respectively.

Some instances of cardinality patterns of IF sets we present in the next ex-
ample.

Example 2 a) Let a ∈ L∗,

fp(a) =
{

1 if a ≥ p,
0 otherwise

for p ∈ L∗.
We obtain the smallest cardinality pattern for p = 1

f∗(a) =
{

1 if a = 1,
0 otherwise.

b) Let a ∈ L∗,

f∗(a) =
{

1 if a > p,
0 otherwise

for p ∈ L∗.
We obtain the largest cardinality pattern for p = 0

f∗(a) =
{

1 if a > 0,
0 otherwise.

We can reformulate subadditivity property, valuation property, complemen-
tarity, cartesian product rule and propositions 2 - 4 using t-norms, t-conorms
and negators on lattice L∗.

Valuation property For each A,B ∈ IFFS

cardI(A ∩T B) + cardI(A ∪S B) = cardI(A) + cardI(B).

Subadditivity property For each (Ai)i∈J ∈ LFFS
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cardI(
S⋃

i∈J

Ai) ≤
∑
i∈J

cardI(Ai).

Complementarity rule For each A ∈ LFFS

cardI(A) + cardI(coA) = |X|

with an involution N.
Cartesian product rule For each A,B ∈ LFFS

cardI(A×T B) = cardI(A).cardI(B)

Proposition 5. The valuation property holds true iff a cardinality pattern fI ,
t-norm T and t-conorm S are such that for each a, b ∈ L∗:

fI(T(a, b)) + fI(S(a, b) = fI(a) + fI(b).

Proof. ” ⇐ ” Following theorem 1 we obtain

cardI(A∩TB)+cardI(A∪SB) =
∑
x∈X

(fI(T(A(x), B(x)))+fI(S(A(x), B(x))) =

=
∑

x∈X(fI(A(x)+fI(B(x)) =
∑

x∈supp(A) fI(A(x))+
∑

x∈supp(B) fI(B(x)) =

= cardI(A) + cardI(B).

” ⇒ ” The converse part of the proof is obvious. 
�

Example 3 We present examples of triples (fI ,T,S) satisfying the valuation
property:

a) (fI ,∧,∨) with any cardinality pattern
b) (id,T = (TF,λ, SF,λ),S = (SF,λ, TF,λ)), where λ ∈ [0,∞)
c) (f∗,T = (T, S),S = (S, T )), where S has no zero divisors and T (a, b) ≤

1 − S(1 − a, 1 − b) for a, b ∈ [0, 1]
d) (f∗,T = (T, S),S = (S, T )), where T has no zero divisors and T (a, b) ≤

1 − S(1 − a, 1 − b) for a, b ∈ [0, 1]

Proposition 6. The subadditivity property is satisfied by a cardinality pattern
fI and t-conorm S iff for each a, b ∈ L∗ :

fI(S(a, b)) ≤ fI(a) + fI(b).

Proof. ” ⇐ ” Following theorem 1 and the equality supp(A ∪ B) =
supp(A) ∪ supp(B), one gets

cardI(A ∪S B) =
∑

x∈supp(A∪B)

fI(S(A(x), B(x))) ≤
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≤
∑

x∈supp(A∪B)

fI(A(x)) +
∑

x∈supp(A∪B)

fI(B(x)) =

=
∑

x∈supp(A)

fI(A(x)) +
∑

x∈supp(B)

fI(B(x)) =

= cardI(A) + cardI(B)

for each A,B ∈ IFFS which implies subadditivity.
” ⇒ ” The converse part of the proof is obvious. 
�
The previous example contains instances of couples (fI ,S) satisfying the

subadditivity property.

Proposition 7. The complementarity rule holds true for a cardinality pattern
fI and an order-reversing involution N iff

fI(a) + fI(N(a)) = (1, 1) for each a ∈ L∗.

Proof. ” ⇐ ” If condition fI(a) + fI(N(a)) = (1, 1) is satisfied, then
∑
x∈X

fI(A(x)) +
∑
x∈X

fI(N(A(x))) = cardI(A) + cardI(coA) = |X|.

” ⇒ ” The converse part of the proof is obvious. 
�
We present the example of couples (fI ,N) satisfying the complementarity

rule.

Example 4 a) (f∗,N(a) = 1 for each a < 1)
b) (f∗,N(a) = 0 for each a > 0)

Proposition 8. The cartesian product rule holds true iff cardinality pattern
fI and t-norm T are such that for each a, b ∈ L∗

f(T(A(x), B(y))) = f(a).f(b)

Proof. ” ⇐ ” If condition f(T(A(x), B(y))) = f(a).f(b) is satisfied , then
∑

(x,y)∈X×X

fI(T(A(x)B(y))) =
∑

(x,y)∈X×X

fI(A(x)).fI(B(x)) =

=
∑

(x,y)∈supp(A×TB)

fI(T(A(x)B(y))) =
∑

(x,y)∈supp(A)×supp(B)

fI(A(x)).fI(B(x)) =

= cardI(A).cardI(B)

” ⇒ ” The converse part of the proof is obvious. 
�
The next example shows couples (fI ,T) which satisfy the cartesian pro-

duct rule.

Example 5 a) (f∗,∧)
b) (f∗,∧)
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4 Conclusion

We have extended the notion of cardinality to IF sets. We have proven some
important results which are a natural generalization of the axiomatic cardi-
nality theory of fuzzy sets.
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The shortest path problem is an optimization problem in which the
best path between two considered objects is searched for in accordance with an
optimization criterion, which has to be minimized. In this paper this problem is
investigated in the case when the distances between the nodes are fuzzy numbers.
The problem is formulated as a linear optimization problem with fuzzy coefficients
in the objective function. This problem is solved using crisp parametric two-criterial
linear optimization. Special emphasis is given to the sensitivity of the solution with
respect to the fuzzy objective function coefficients.

1 Introduction

Consider a directed graph G = (V,E), where V = {v1, v2, ..., vn} is a set
of nodes and E = {(v1, w1), . . . , (vm, wm)} is a set of directed edges. Each
edge (v, w) ∈ E connects two nodes v, w ∈ V of the graph G. There is a
positive number (or a weight) c(v, w) associated with each edge (v, w) ∈ E
that can represent the length of this edge, the time needed to cover it, etc.
Given two nodes q ∈ V and s ∈ V a path from q to s is a sequence of edges
{(u0, u1), (u1, u2), . . . , (ut−2, ut−1), (ut−1, ut)} ⊆ E with u0 = q and ut = s,
where {q, u1, . . . , ut, s} ⊆ V are all distinct. In the shortest path problem a

path from q to s is searched with the minimal length
t−1∑
i=0

c(ui, ui+1).

Denote a set of arrows beginning in node v ∈ V by Γ+(v) := {(v, w) ∈ E :
v = v} and deg+(v) := |Γ+(v)| is the outdegree of v ∈ V . Similarly, the set
Γ−(w) := {(v, w) ∈ E : w = w} describes a set of arrows which are ended in
the node w ∈ V and deg−(w) := |Γ−(w)| is the indegree of node w ∈ V . Then,
the shortest path problem can be modelled as a linear optimization problem
[6, 8] as:
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∑
(v,w)∈E

c(v, w)x(v, w) → min
∑

w∈Γ+(v)

x(v, w) −
∑

u∈Γ−(v)

x(u, v) = g(v), ∀v ∈ V

x(v, w) ≥ 0, ∀(v, w) ∈ E,

(1)

where

g(v) =

⎧⎨
⎩

0, if v �∈ {q, s}
1, for v = q
−1, for v = s.

(2)

Denote the feasible set of this problem by M . Walks in graph G correspond
to integer feasible solutions of this problem. M �= ∅ whenever there is a path
from q to s. Since the coefficient matrix of the constraints of this problem is
totally unimodular [7], the vertices of M have integer components and, hence,
are the incidence vectors of the walks in G, i.e. sequences of edges starting in
q and ending in s but possibly crossing one node multiply. In this case it is
said that the walk contains cycles. If all the distances between the nodes of
the graph G are positive, optimal vertex solutions of problem (1) are paths,
they do not contain cycles. Hence, in what follows, c(v, w) > 0 for all v, w ∈ V
is assumed.

Usually it is supposed that the parameters c(v, w) in the objective func-
tion of this model are exactly known. However, in many real situations these
data can not be given exactly because of the influence of various factors of
environment. Then the problem can be appropriately modelled using a graph
with fuzzy parameters. This corresponds to a model (1) with fuzzy coefficients
in the objective function.

Focus in this paper is on the situation when the membership functions of
the distances are not precisely known in advance. This could be considered
as a realistic situation. Then, both the dependency of the optimal (fuzzy)
solution of the problem on the fuzzy distances as well as a path from q to s
in the graph being more or less equally ”good” for all possible distances are
of special interest. For related investigations of a fuzzy linear optimization
problem the interested reader is referred to the paper [4].

2 The two-criterial optimization approach

Assume now that in model (1) the weights c(v, w) are fuzzy numbers of the
type L− L [5]:

c̃(v, w) = (c(v, w); c(v, w);α(v, w);β(v, w))L−L , ∀ (v, w) ∈ E (3)

where c(v, w), c(v, w) - are the left and right borders of the fuzzy number
c̃(v, w) corresponding to the maximal reliability level (λ = 1) and α(v, w) and
β(v, w) are non-negative real numbers (cf. Figure 1). To guarantee that c̃(v, w)
is positive it is assumed that c(v, w) − α(v, w) > 0 for all edges (v, w) ∈ E.
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Fig. 1. Used type of fuzzy numbers

A fuzzy number c̃(v, w) is defined as a fuzzy set in the space of real numbers
with the following membership function [5]:

μc̃(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if c ≤ z ≤ c,

L

(
c− z

α

)
if z ≤ c,

L

(
z − c

β

)
if z ≥ c,

(4)

where L is a shape function, which satisfies to following conditions:
- L is a continuous non-increasing function on [0,∞) with L(0) = 1;
- L is strictly decreasing on that part of [0,∞) on which it is positive.

The shortest path problem in a directed graph with fuzzy weights (or
”fuzzy shortest path problem” for short) is problem (1) with c(v, w) being
replaced with the fuzzy weights c̃(v, w) in the objective function. In analogy
with [3, 2] this problem can be associated with a set of the following problems,
which depend on a parameter θ ∈ (0, 1):

f1(x, θ) =
∑

(v,w)∈E

(c(v, w) − α(v, w)θ)x(v, w) → min

f2(x, θ) =
∑

(v,w)∈E

(c(v, w) + β(v, w)θ)x(v, w) → min
∑

w∈Γ+(v)

x(v, w) −
∑

u∈Γ−(v)

x(u, v) = g(v), ∀v ∈ V,

x(v, w) ≥ 0, ∀(v, w) ∈ E.

(5)

This model is based on the preference relation

a ≤ b ⇐⇒ a ≤ b ∧ a ≤ b,

a < b ⇐⇒ a ≤ b ∧ a �= b,

between intervals a = [a, a] and b = [b, b] [2].
Thus, to find a shortest path between the nodes q and s problem (5) has

to be solved for all θ ∈ (0, 1).
Problem (5) is a two-criterial optimization problem. One solution concept

for such problems is to find one (or better all) Pareto-optimal solution(s).
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Definition 1. A point x∗ ∈ X is a Pareto-optimal solution of a two-criterial
optimization problem

f1(x, θ) → min
f2(x, θ) → min
x ∈ X

at θ = θ∗ if there does not exist another point x ∈ X with f1(x, θ∗) ≤ f1(x∗, θ∗)
and f2(x, θ∗) ≤ f2(x∗, θ∗) with at least one strict inequality.

Hence, the sets of Pareto-optimal solutions Ψ(θ) of problem (5) are searched
for all θ ∈ [θ, θ].

As result a number of different paths in the graph G are computed and
each such path is Pareto-optimal for problem (5). All these paths can now
be used to compose the fuzzy optimal solution x̃ of the initial fuzzy shortest
path problem. Let Ψ(θ) denote the set of Pareto-optimal solutions of problem
(5) for fixed θ. Then the frequency of x ∈ Ψ(θ) for θ ∈ [0, 1] can be used to
determine a membership function for x̃ [3]:

μFS(x) =
∣∣∣∣
{
λ ∈ [0, 1] : x is a Pareto-optimal vertex

of the problem (5) for θ = L−1(λ)

}∣∣∣∣ .
Here, |Q| means the geometric measure of the set Q. Since the set of Pareto-
optimal points can be computed using parametric linear programming, Ψ(θ)
equals the union of faces of M . By parametric linear programming, too,
Pareto-optimal solutions for one parameter value θ0 remain Pareto-optimal
for all parameter values within some interval [θ, θ]. This implies that

μFS(x) =
l∑

i=1

(L(θ2i−1) − L(θ2i)) (6)

where {θi}2l
i=1 is such that x is Pareto-optimal for problem (5) for all θ ∈

[θ2i−1, θ2i], i = 1, . . . , l.

3 Sensitivity analysis

Usually the fuzzy numbers c̃(v, w) have been determined by a group of ex-
perts. Asking other experts other fuzzy numbers will result. Hence, it is an
interesting question to consider the dependency of the solutions obtained from
the parameters of the fuzzy numbers c̃(v, w). In the following only the spe-
cial case of the question is considered in which these numbers are perturbed
by an additive number δ(v, w), ∀ (v, w) ∈ E (cf. Figure 2). Applying such
perturbations to the problem (5) the following model arises:
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Fig. 2. Perturbed fuzzy numbers

f1(x, θ) =
∑

(v,w)∈E

[c(v, w) − α(v, w)θ + δ(v, w)] x(v, w) → min

f2(x, θ) =
∑

(v,w)∈E

[c(v, w) + β(v, w)θ + δ(v, w)] x(v, w) → min
∑

w∈Γ+(v)

x(v, w) − ∑
u∈Γ−(v)

x(u, v) = g(v), ∀v ∈ V,

x(v, w) ≥ 0, ∀(v, w) ∈ E.

(7)

The interesting point here is the determination of the range in which the
δ(v, w) may vary without violating Pareto-optimality of some path in G. Let

R(x, θ) := {δ : x ∈ Ψ δ(θ)}

denote this set and call it region of stability of the path in G with incidence
vector x. Here, Ψ δ(θ) denotes the set of Pareto-optimal vertices of problem
(7).

Theorem 1. For fixed θ and each feasible point x the set cl R(x, θ) is a
convex polyhedron.

Proof. Abbreviate the coefficient matrix of the constraints in M by A such
that

M = {x : Ax = g, x ≥ 0}.
The matrix A is the incidence matrix of G, having exactly two nonzero entries
in each column. The columns correspond to the edges (v, w) ∈ E of G with a
1 in the row v and a -1 in row w. In this notation, the vector x is determined
by x(v,w) := x(v, w).

Then, the normal cone to M at some incidence vector x to a path in G is

NM (x) = {z : ∃ y, ∃t ≥ 0 with z = A�y + It, x�t = 0},

where I denotes the unit matrix. An incidence vector x is Pareto-optimal for
problem (7) iff there exists γ ∈ (0, 1) such that x is an optimal solution of the
problem
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γf1(x, θ) + (1 − γ)f2(x, θ) → min
Ax = g
x ≥ 0

⎫⎬
⎭ (8)

cf.e.g. [10]. A necessary and sufficient optimality condition for this problem is

−γ∇f1(x, θ) − (1 − γ)∇f2(x, θ) ∈ NM (x) (9)

by linear programming. Here,

∇f1(x, θ) =
(
c(v, w) − α(v, w)θ + δ(v, w)

)
(v,w)∈E

and

∇f2(x, θ) =
(
c(v, w) + β(v, w)θ + δ(v, w)

)
(v,w)∈E

are independent of x. This implies that (9) is a system of linear equalities and
inequalities in δ, y, t, γ. Hence, the projection of the solution set of this system
onto the δ–space is a convex polyhedron.

Formula (9) can be used both to compute the bounds θi in (6) by setting δ ≡ 0
and the dependency of θi from δ in a neighborhood of δ ≡ 0. The θi are the
bounds of θ for which x enters the set of Pareto-optimal solutions respectively
leaves this set. Note, that this system is no longer linear if θ is not constant.
This results in nonconvex regions of stability which is also reflected by the
results in [3].

4 Robust optimization

In contrast to sensitivity analysis where the dependency of shortest paths on
variations of the membership functions of the distances is investigated, robust
optimization intends to find paths in G which are at the same time ”equally
good” with respect to all membership functions in a certain set [1]. For that,
let P denote a set of all possible realizations of membership functions for the
distances between the nodes of the graph G and assume that the membership
functions in P are composed by the elements in a convex bounded polyhedron
for simplicity. Hence, this polyhedron is given by

Q = conv

{(
ck(v, w), αk(v, w), ck(v, w), βk(v, w)

)
(v,w)∈E

: k = 1, . . . , K

}
,

the convex hull of its K vertices(
ck(v, w), αk(v, w), ck(v, w), βk(v, w)

)
(v,w)∈E

.
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This results in the two-criterial optimization problem

z1 → min
z2 → min∑
(v,w)∈E

(c(v, w) − α(v, w)θ) x(v, w) ≤ z1 ∀ (c, α, c, β) ∈ Q

∑
(v,w)∈E

(c(v, w) + β(v, w)θ) x(v, w) ≤ z2 ∀ (c, α, c, β) ∈ Q

Ax = g
x ≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

where (c, α, c, β) is an abbreviation of the matrix
(
c(v, w), α(v, w)c(v, w), β(v, w)

)
(v,w)∈E

.

It is easy to see that the first and second group of inequalities in (10) are
satisfied if and only if

f̃1(x, θ) := max
(c,α,c,β)∈Q

∑
(v,w)∈E

(c(v, w) − α(v, w)θ) x(v, w) ≤ z1

and

f̃2(x, θ) := max
(c,α,c,β)∈Q

∑
(v,w)∈E

(c(v, w) + β(v, w)θ) x(v, w) ≤ z2.

For fixed θ linear functions are maximized over a convex bounded polyhedron
which implies that the maximum is attained at a vertex of Q. Hence,

f̃1(x, θ) := max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) − αk(v, w)θ

)
x(v, w) ≤ z1

and

f̃2(x, θ) := max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) + βk(v, w)θ

)
x(v, w) ≤ z2

which are convex, piecewise linear functions. Summing up, for computing a
robust solution of the fuzzy linear optimization problem, the set of Pareto-
optimal solutions of the following problem has to be determined:

f̃1(x, θ) = max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) − αk(v, w)θ

)
x(v, w) → min

f̃2(x, θ) = max
k=1,...,K

∑
(v,w)∈E

(
ck(v, w) + βk(v, w)θ

)
x(v, w) → min

Ax = g
x ≥ 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)
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To compute Pareto-optimal solutions for (11) the problem

γf̃1(x, θ) + (1 − γ)f̃2(x, θ) → min
Ax = g
x ≥ 0,

⎫⎬
⎭ (12)

is solved for γ ∈ [0, 1]. The following result is a consequence of convex (mul-
ticriterial) optimization [9, 10].

Theorem 2. Let problem (12) has unique optimal solutions for γ = 0 and
γ = 1. Then, an incidence vector x0 of a path in G can have a positive
membership function value for the robust fuzzy shortest path problem only if
there is θ ∈ [0, 1] such that

0 ∈ γ∂f1(x0, θ) + (1 − γ)∂f2(x0, θ) +NM (x0).

Here, ∂fi(x0, θ) equals the subdifferential of the function fi(x0, θ).
Analogously to the proof of Theorem 1 this makes the computation of

bounds {θi}2l
i=1 possible such that an incidence vector x0 is Pareto-optimal

for problem (11) for all θ ∈ ∪l
i=1[θ2i−1, θ2i]. This implies that the membership

function of such a point can be computed in a similar manner to (6).
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Fuzzy Coloring of Fuzzy Hypergraph
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1 Introduction

Practical tasks of map coloring in case of objects groups’ allocation, not con-
nected by any binary relation, come to the problem of coloring of graph [1].
This task is closely connected to the calculation of internal stable sets of
graphs, calculation of chromatic number and a chromatic class of the graph.

Hypergraphs [2] are the generalization of graphs in case of set of multiarity
relations. It means the expansion of graph models for the modeling complex
systems.

In case of modeling systems with fuzzy binary and multiarity relations
between objects, transition to fuzzy hypergraphs, which combine advantages
both fuzzy and graph models, is more natural. It allows to realise formal
optimisation and logical procedures. On the grounds of these, of practical
interest are the tasks of various features of fuzzy hypergraphs, in particular,
some tasks of coloring of fuzzy hypergraphs.

2 A Coloring of Fuzzy Hypergraph

Let a fuzzy hypergraph H̃ = (X, Ẽ) be given, where X = {xi}, i ∈ I =
{1, 2, . . . , n} – is a finite set and Ẽ = {ẽk}, ẽk = {< μek

(x)/x >}k ∈ K =
{1, 2, . . . ,m} is a family of fuzzy subsets in X. Thus elements of set X are the
vertices of hypergraph, a family Ẽ is the family of fuzzy edges of hypergraph.
The volue μek

(x) ∈ [0, 1] is an incidence degree of a vertex x to an edge ẽk

[3].
A value μ(x, y) = ∨

ek∈Ẽ
μek

(x)& μek
(y), x, y ∈ X is called an adjacent degree

of two vertices x and y of fuzzy hypergraph H̃.
There are at least two ways of coloring fuzzy hypergraphs, as they are a

generalization of crisp hypergraphs (which value is μek
(x) ∈ {0, 1}) and fuzzy

graph (its number of vertices x incident to one edge is no more than two).

(2005)
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In the first case, considering fuzzy hypergraph as crisp hypergraph gen-
eralization, and another one as fuzzy graph generalization, which has each
edge appropriate only to two vertices, we come to the following concept of
coloring hypergraph. K -coloring hypergraph H is a partition of set X into k -
subsets so, that each edge of the hypergraph has crossing at least with two of
these subsets [2]. In other words, all vertices of hypergraph, which incidence
to one edge, should be painted not less than two colors. At such approach
the task in work [3] of coloring fuzzy H̃ is reduced to a determination of
such a partial hypergraph Hri of ri level, which supposes k -coloring. And any
hypergraph Hrj of rj level, (ri < rj) – does not suppose. In these work by
hypergraph Hri = (Xri, E) implied crisp hypergraph, for which the statement
(x ∈ Xri) ↔ (∃ẽk ∈ Ẽ)[μek

(x) ≥ ri] is true.

Example 1. Let H̃ be a fuzzy hypergraph which the incidence matrix is given
by:

ẽ1 ẽ2 ẽ3
A 1 0 0

I = B 0, 9 0, 7 0
C 0 0, 8 0, 7
D 0 0, 4 0, 6

.

Partial hypergraphsHrj are H1 = ({A}, {{A}}),H0,9 = ({A,B}, {{A,B}}),
H0,8 = ({A,B,C}, {{A,B}, {C}}),H0,7 = ({A,B,C}, {{A,B}, {B,C}, {C}}),
H0,6 = ({A,B,C,D}, {{A,B}, {B,C}, {C,D}}) and H0,4 = ({A,B,C,D}, {{A,B},
{B,C,D}, {C,D}}). A chromatic number of fuzzy hypergraph H̃ equals 2 be-
cause all vertices suppose coloring by two colors (vertices A and D are colored
by first color and B and C are colored by second color).

In this paper we consider the second case. Considering fuzzy hypergraph
as a generalization of fuzzy graph, we come to a hypergraph coloring as to
partition of set X on k subsets so, that all hypergraph vertices, which ap-
propriate to one edge, should be colored in different colors. There are two
approaches to these problem. At the first approach to each vertex of fuzzy
hypergraph is attributed one color. Such approach termed fuzzy coloring of
first order. At the second approach to each vertex of fuzzy hypergraph is at-
tributed the maximum possible number of colors (not exceeding n -number).
Such approach termed fuzzy coloring of second order.

2.1 Fuzzy Coloring of First Order

This task of fuzzy coloring is reduced to a determination of maximum possible
separation degree similar to fuzzy graph at which fuzzy hypergraphs supposes
k-painting. For formalization of such approach we shall give the following
definitions. Let X ′ ⊆ X - any subset vertices of fuzzy hypergraph H̃.
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Definition 1. An internal stability degree of vertices subset X ′ of fuzzy hy-
pergraph H̃ we shall name aX′ ∈ [0, 1], determined as:

aX′ = 1 − max
x,y∈X′

μ(x, y) .

Definition 2. Subset X ′ ⊆ X is called a maximal fuzzy internally stable set
with the degree of internal stability aX′ , if the statement (∀X ′′ ⊇ X ′)(aX′′ <
aX′) is true.

Let’s paint each vertex x ∈ X of hypergraph H̃ in one of k colors (l ≤ k ≤
n) and we shall consider a Xi, subset of vertices, colored identically.

Definition 3. The value LI = &
i≡1,k

αi = &
i≡1,k

(1 − ∨
x,y∈Xi

μ(x, y)) is called a sepa-

ration degree of first order of fuzzy hypergraph H̃ at its k-colorings.

Fuzzy hypergraph H̃ can be colored in any number of k colors and thus
separation degree LI depends on their number. Fuzzy hypergraph H̃ we shall
put in conformity family of fuzzy sets � = {ÃH̃}, ÃH̃ = {< L(k)/k|k =
1, n}, where L(k) determines a separation degree of fuzzy hypergraph H̃ at
its certain k - coloring.

Definition 4. Fuzzy set γ̃I = {< Lγ̃(k)/k|k = 1, n} we shall name fuzzy
chromatic set of the first order of hypergraph H̃, if for any other set ÃH̃ ∈ �,
it is true ÃH̃ ⊆ γ̃I .

In other words, (∀ÃH̃ ∈ �)(∀k = 1, n)[L(k) ≤ LI(k)]. Or, otherwise,
fuzzy chromatic set of the first order of hypergraph H̃ determines the greatest
separation degrees at coloring its tops in one of 1, 2 . . . n colors.

The following algorithm is proposed for finding fuzzy chromatic set:
1◦. For fuzzy hypergraph H̃ = (X, Ẽ) it is determined fuzzy vertex

graph G̃ = (X, Ũ), which set of vertices coincides with set of vertices of ini-
tial hypergraph. And the fuzzy set of nondirectional edges is determined as
Ũ = {< μ(x, y)/(x, y) >}, where value μ(x, y) is an adjacent degree of vertices
x and y which is calculated as stated above.

2◦. For fuzzy graph G̃ we determine class of all maximal fuzzy internally
stable sets {Ψ1, Ψ2, . . . , Ψr} with degrees of internal stability α1, α2, . . . , αr.[4].

3◦. From set {Ψ1, Ψ2, . . . , Ψr} it is determined such sample k internally
stable sets {Ψ1, Ψ2, . . . , Ψ

′
k}, for which it would be carried out

⋃
j=1,k′

Ψj = X,

and a value min{α′
1, α

′
2, . . . , α

′
k} accepted the maximum possible value. Thus

value LI(k) = min{α′
1α

′
2, . . . , α

′
k}.

4◦. The step 3◦ is repeated for all values k = 1,n − 1.

Example 2. We consider the example of finding of first order fuzzy chromatic
set. Let H̃ be a fuzzy hypergraph which the incidence matrix is given by:
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x1

x2

I = x3

x4

x5

x6

ẽ1 ẽ2 ẽ3 ẽ4 ẽ5

0, 8 0, 5 0 0 0
1 0 0 0 0

0, 4 1 0, 3 0, 7 0
0 0, 6 0, 4 0, 2 1
0 0 0, 7 1 0
0 0 0 0 0, 4

.

We determine an adjacent degree of vertices by:

μ(x1, x2) = ∨ek∈Ẽ μek
(x1)&μek

(x2) = 0, 8 & 1 = 0, 8;
μ(x1, x3) = ∨ek∈Ẽ μek

(x1)&μek
(x3) = 0, 8&0, 4 ∨ 0, 5 & 1 = 0, 5; . . . ;

μ(x4, x5) = ∨ek∈Ẽ μek
(x4)&μek

(x5) = 0, 4 & 0, 7 ∨ 0, 2 & 1 = 0, 4 .

Corresponding fuzzy vertex graph G̃ = (X, Ũ) is presented in Fig.1:

Fig. 1. Fuzzy vertex graph of fuzzy hypergraph H̃

We will determine all maximal internal stable sets with the highest degree
of internal stable by the method, which is considered in [4].

Let Ψ be a certain maximal internal stable set with the degree of internal
stable α(Ψ). For arbitrary vertices xi, xj ∈ X, one of the following cases may
be realised: a) xi �∈ Ψ; b) xj �∈ Ψ; c) xi ∈ Ψ and xj ∈ Ψ. In the last case the
degree α(Ψ) ≤ 1 − μU (xi, xj).
In other words, the following expression is true:

(∀xi, xj ∈ X)[xi �∈ Ψ ∨ xj �∈ Ψ ∨ (α(Ψ) ≤ 1 − μU (xi, xj))] . (1)

We connect a Boolean variable pi taking 1 when xi ∈ Ψ and 0 when xi �∈ Ψ,
with each vertex xi ∈ X. We associate the expression α(Ψ) ≤ 1 − μU (xi, xj)
with a fuzzy variable ξij = 1 − μU (xi, xj).
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Considering the expression (1) for all possible values i and j we obtain the
truth of the following expression:

ΦΨ = &
i

&
j �=i

(pi ∨ pj ∨ ξij) = 1 .

We open the parentheses and reduce the similar terms using the following
rule:

ξ′& a ∨ ξ′′& a&b = ξ′ & a, for ξ′ ≥ ξ′′ . (2)

Here, a, b ∈ {0, 1} and ξ′, ξ′′ ∈ [0,1].
Then for each disjunctive term, the totality of all vertices corresponding

to the variables missing in the totality, gives a maximal internal stable set
with the obtained degree of internal stable.
For the fuzzy vertex graph G̃ presented in Fig. 1, we obtain:

ΦΨ = (p1 ∨ p2 ∨ 0, 2)&(p1 ∨ p3 ∨ 0, 5)&(p1 ∨ p4 ∨ 0, 5)&(p2 ∨ p3 ∨ 0, 6)&
&(p3 ∨ p4 ∨ 0, 4)&(p3 ∨ p5 ∨ 0, 3)&(p4 ∨ p5 ∨ 0, 6)&(p4 ∨ p6 ∨ 0, 6) .

Completing the transformations of the fuzzy logical variables by (2), we finally
have:

ΦΨ = p1p3p4 ∨ p1p3p5p6 ∨ p2p3p4 ∨ p1p2p4p5 ∨ 0, 6p1p3 ∨ 0, 6p1p4p5 ∨
∨0, 5p2p3 ∨ 0, 5p2p4p5 ∨ 0, 4p1p5 ∨ 0, 4p2p5 ∨ 0, 3p1 ∨ 0, 3p2 ∨ 0, 2 .

It follows from the last expression that the considered fuzzy vertex graph
G̃ has 13 maximal internal stable sets:

−Ψ1 = {x2, x5, x6},Ψ2 = {x2, x4},Ψ3 = {x1, x5, x6},Ψ4 = {x3, x6}, with
the degrees of internal stability α(Ψ1) = α(Ψ2) = α(Ψ3) = α(Ψ4) = 1;

−Ψ5 = {x2, x4, x5, x6} and Ψ6 = {x2, x3, x6} with the degrees of internal
stability α(Ψ5) = α(Ψ6) = 0, 6;

−Ψ7 = {x1, x4, x5, x6} and Ψ8 = {x1, x3, x6} with the degrees of internal
stability α(Ψ7) = α(Ψ8) = 0, 5;

−Ψ9 = {x2, x3, x4, x6} and Ψ10 = {x1, x3, x4, x6} with the degrees of
internal stability α(Ψ9) = α(Ψ10) = 0, 4;

−Ψ11 = {x2, x3, x4, x5, x6} and Ψ12 = {x1, x3, x4, x5, x6} with the degrees
of internal stability α(Ψ11) = α(Ψ13) = 0, 3;

−Ψ13 = {x1, x2, x3, x4, x5, x6} (all set X ) with the degree of internal sta-
bility α(Ψ13) = 0, 2.

We construct the matrix R =
∥∥rij∥∥, i = 1,n, j = 1, t where the lines corre-

spond to the vertices of graph G̃ and columns correspond to the maximal
internal stable sets. If xi ∈ Ψj, then the value rij has the value αj, if xi �∈ Ψj,
then the value rij has the value 0. For the fuzzy vertex graph G̃ presented in
Fig.1, we obtain the table 1.

The task of finding fuzzy chromatic set γ̃ is the task of finding the covering
of all lines by k columns (k = 1,n − 1) with the maximum of the volume min
{αi1 , αi2 , . . . , αik}.
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Table 1. Vertex entering to internal stable sets

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10 Ψ11 Ψ12 Ψ13

x1 0 0 1 0 0 0 0,5 0,5 0 0,4 0 0,3 0,2
x2 1 1 0 0 0,6 0,6 0 0 0,4 0 0,3 0 0,2
x3 0 0 0 1 0 0,6 0 0,5 0,4 0,4 0,3 0,3 0,2
x4 0 1 0 0 0,6 0 0,5 0 0,4 0,4 0,3 0,3 0,2
x5 1 0 1 0 0,6 0 0,5 0 0 0 0,3 0,3 0,2
x6 1 0 1 1 0,6 0,6 0,5 0,5 0,4 0,4 0,3 0,3 0,2

We write the expression (5) for finding of such covering:

ΦC = &
l=1,n

(rl1&Ψ1 ∨ rl2&Ψ2 ∨ . . . ∨ rlt&Ψt) . (3)

Here, t is number of columns in the table 1.
We open the parentheses and reduce the similar terms using the rule (2).

Then we can rewrite the expression (3) as:

ΦC = ∨
l=1,m

(Ψ1i&Ψ2i& . . .&Ψki&ri) .

Here, ri ∈ [0, 1],Ψji ∈ [Ψ1,Ψ2, . . . ,Ψl], l ∈ 1, n.
So, for the fuzzy vertex graph G̃ presented in Fig. 1, the expression ΦC is

defined as:

ΦC = (Ψ3 ∨ 0, 5Ψ7 ∨ 0, 5Ψ8 ∨ 0, 4Ψ10 ∨ 0, 3Ψ12 ∨ 0, 2Ψ13)&
&(Ψ1 ∨ Ψ2 ∨ 0, 6Ψ5 ∨ 0, 6Ψ6 ∨ 0, 4Ψ9 ∨ 0, 3Ψ11 ∨ 0, 2Ψ13)&
&(Ψ4 ∨ 0, 6Ψ6 ∨ 0, 5Ψ8 ∨ 0, 4Ψ9 ∨ 0, 4Ψ10 ∨ 0, 3Ψ11 ∨ 0, 3Ψ12 ∨ 0, 2Ψ13)&
&(Ψ2 ∨ 0, 6Ψ5 ∨ 0, 5Ψ7 ∨ 0, 4Ψ9 ∨ 0, 4Ψ10 ∨ 0, 3Ψ11 ∨ 0, 3Ψ12 ∨ 0, 2Ψ13)&
&(Ψ1 ∨ Ψ3 ∨ 0, 6Ψ5 ∨ 0, 5Ψ7 ∨ 0, 3Ψ11 ∨ 0, 3Ψ12 ∨ 0, 2Ψ13)&
&(Ψ1 ∨ Ψ3 ∨ Ψ4 ∨ 0, 6Ψ5 ∨ 0, 6Ψ6 ∨ 0, 5Ψ7 ∨ 0, 5Ψ8 ∨ 0, 4Ψ9 ∨ 0, 4Ψ10 ∨
∨0, 3Ψ11 ∨ 0, 3Ψ12 ∨ 0, 2Ψ13) .

Using the rule (2), we finally have:

ΦC = 0, 2&Ψ13 ∨ 0, 5&Ψ6&Ψ7 ∨ Ψ2&Ψ3&Ψ4 ∨ . . . .

From the received expression follows:
If k = 1, then the covering defines the column Ψ13 by the degree LI(1) =

0, 2. If k = 2, then the covering defines the columns Ψ6 and Ψ7 by the degree
LI(2) = 0, 5. If k = 3, then the covering defines the columns Ψ2, Ψ3 and Ψ4 by
the degree LI(3) = 1.

So, the fuzzy chromatic set for the fuzzy hypergraph is

γ̃I = {< 0, 2/1 >,< 0, 5/2 >,< 1/3 >} .
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Otherwise, the fuzzy hypergraph may be colored by one color with the
degree of separation 0,2; by 2 colors with the degree of separation 0,5 (vertices
x2, x3 and x6 - first color, vertices x1, x4Hx5 - second color); by 3 colors with
the degree of separation 1 (vertices x2, and x4 - first color, vertices x1, x5 and
x6 - second color, vertex x3 - third color).

2.2 Fuzzy coloring of second order

Fuzzy coloring of second order can be formulated as follows: to appropriate to
every vertex of fuzzy hypergraph H̃ the maximum possible number of colors
from n possible so that they had the greatest separation degree on each color.

Let’s attribute to each vertex x ∈ X of the hypergraph k from n col-
ors. Let XK1, XK2, . . . , XKn - subsets of vertices by which the first, the sec-
ond,. . . , the n-th - colors are attributed with a degree of internal stability
αK1, αK2, . . . , αKn accordingly. It is obvious, that the given subsets form some
covering of a subset of vertices X, and the general number of such coverings
equally to number of combinations C(n, k) = n!

k!×(n−k)! .

Definition 5. Value LK = &
i≡1,n

αKi we shall name a separation degree of the

second order of fuzzy hypergraph H̃ at assignment to its vertices k from n
colors.

Definition 6. Fuzzy chromatic set of the second order we shall name set
γ̃II ,= {< LII(k)/k|k = 1, n} in which values LII(k) determine the greatest
separation degrees of vertices the hypergraph at assignment of each of them k
from n colors.

Let’s note some properties of fuzzy chromatic set of second order.

Property 1. A degree LII(1) = 1.
Differently, at assignment of each vertex of fuzzy hypergraph H̃ of one

color, a partibility degree of the second order is equal to each vertex 1.

Property 2. A degree LII(n) ≥ 0, and

(LII(n) = 0) ↔ (∃x, y ∈ X)(∃ei ∈ Ẽ|μi(x) = 1&μi(y) = 1) .

Differently, at assignment of each vertex of fuzzy hypergraph H̃ it is equal
n colors, a separation degree of the second order is equal 0 if there are even
two vertices, incidental to the same edge with degree 1.

Property 3. The statement is true:

(∀i, j = 1, n)(i > j → LII(i) ≤ LII(j)) .

Differently, more colors is appropriated to each vertex, less separation de-
gree of the second order.
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Property 4. The statement is true:

(∀i, j, k = 1, n)[(i > k > j)&(LII(i) = LII(j)) → (LII(k) = LII(i) = LII(j))] .

Differently, if at “optimum” coloring of fuzzy hypergraph H̃ in i and j
colors a separation degree of the second order is identical, than at each vertex
the of the hypergraph of any other number of colors, laying between values i
or j, the separation degree will not change.

Property 5. The statement is true:

(LII(i) = 1&i �= 1) ←→ (∀k ∈ 1, i− 1)(LII(k) = 1) .

Differently, if at assignment of each vertex of the hypergraph of some
number i(i �= 1) of colors the separation degree of second order is equal to
and at assignment of any other number of colors, smaller than i, the separation
degree of second order also is equal to 1.

Property 6. The statement is true:

(LII(i) = 0&i �= n) ↔ (∀k ∈ i+ 1, n)(LII(k) = 0).

Differently, if at assignment of each vertex of the hypergraph of some
number i(i �= n) of colors the separation degree of second order is equal to 0,
more than i, also does not exist coloring with a separation degree of second
order distinct from 0.

Let’s consider correlation between fuzzy chromatic set of first and second
order. Let’s denote through t =]n

k [ - the whole from division of value n on
value k, then the following property is true:

Property 7. (∀k = 1, n)(LII(k) = LI(t)).
Differently, the separation degree of the second order at assignment to

each vertex of the hypergraph of k - colors coincides with a separation degree
of first order at coloring each vertex of the hypergraph in one of t =]n

k [ colors.
The given property allows calculating fuzzy chromatic set of the second order
on fuzzy chromatic set of the first order.

Example 3. We consider an example of finding of second order fuzzy chro-
matic set. Taking into account, the first order fuzzy chromatic set, we receive
γ̃II = {< 1/1 >,< 1/2 >,< 0, 5/3 >,< 0, 2/4 >,< 0, 2/5 >,< 0, 2/6 >}.

Otherwise, the vertices of fuzzy hypergraph H̃ may be appropriated 2
colors by the degree of separation 1; 3 colors by the degree of separation 0,5;
4, 5 or 6 colors by the degree of separation 0,2.
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3 Conclusion

It is necessary to note that the considered statements of tasks of coloring
fuzzy hypergraph H on the basis of minimax criteria of determination of
fuzzy chromatic sets are not unique. Tasks of coloring fuzzy hypergraph by
other criteria also are of interest, in particular, on the basis of determination
of average fuzzy chromatic sets of the first or second order.
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1 Introduction

Fuzzy constrained optimization problems have been extensively studied since
the seventies. In the linear case, the first approaches to solve the so-called fuzzy
linear programming problem were made in [12] and [15]. Since then, important
contributions solving different linear models have been done and these models
have been recipients of a great dealt of work. In the nonlinear case the situation
is quite different, as there is a wide variety of specific and both practical
and theoretically relevant nonlinear problems, each having a different solution
method. In the following we consider a Nonlinear Programming problem with
fuzzy constraints. From a mathematical point of view the problem can be
addressed as:

Min f (x)
s.t. : gj (x) � bj , j = 1, . . . ,m

xi ∈ [li, ui] , i = 1, . . . , n, li ≥ 0
(1)

where x = (x1, . . . , xn) ∈ �n is a n dimensional real-valued parameter vector,
[li, ui] ⊂ �, bj ∈ �, f (x), gj (x) are arbitrary functions, and the symbol �
indicates a fuzzy constraint [15]. Here we will consider the following linear
membership function related to each fuzzy constraint:

μj (x) =

⎧⎪⎨
⎪⎩

0 if gj (x) ≥ bj + dj

h
(

bj+dj−gj(x)
dj

)
if bj ≤ gj (x) ≤ bj + dj

1 if gj (x) ≤ bj

(2)

which gives the accomplishment degree of gj (x), and consequently of x, with
respect to the j-th constraint (the decision maker can tolerate violations of
each constraint up to the value bj + dj , j = 1, . . . ,m). We assume that the

F. Jiménez et al.: Nonlinear Optimization with Fuzzy Constraints by Multi-Objective Evolu-
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function h is a arbitrary function which allows to represent accurately the
accomplishment degree.

Then using the results obtained in [14], the problem (1) can be easily
transformed into a parametric programming problem as follows:

Min f (x)
s.t. : gj (x) ≤ bj + dj

(
1 − h−1 (α)

)
, j = 1, . . . ,m

xi ∈ [li, ui] , i = 1, . . . , n, li ≥ 0
(3)

where α ∈ [0, 1], and h−1 is the inverse function of h.
A fuzzy solution to (1), if there is any, may be defined as the fuzzy set of

membership function:

μs (x) =

⎧⎨
⎩

sup
x∈S(α)

α if x ∈
⋃
α

S (α)

0 elsewhere
(4)

where:

S (α) =
{

x ∈ �n/z (x) = min
x′∈X(α)

f (x′)
}

with:
X (α) =

{
x ∈ �n/gj (x) ≤ bj + dj

(
1 − h−1 (α)

)}
xi ∈ [li, ui] , i = 1, . . . , n
dj ≥ 0, j = 1, . . . ,m, and
α ∈ [0, 1] .

Unfortunately, there are no much general-oriented solution methods to solve
nonlinear parametric programming problems in the literature, although it de-
serves to mention the cases of linear programming problems in which data
are continuously varied as a linear function of a single parameter. Therefore
in order to theoretically solve (3) we shall try to find an approximate solu-
tion. It is patent that Evolutionary Algorithms (EA) [1, 6, 10] could be used to
solve fuzzy nonlinear programming problems like the above one because of EA
are solution methods potentially able of solving general nonlinear program-
ming problems or, at least, of approaching theoretic solution ways that, each
case, are to be specified according to the concrete problem to be solved. An
evolutionary-parametric based approach to solve fuzzy transportation prob-
lems have been proposed in [7]. In [9] the problem (3) is solved for a finite
set of values of the parameter α by means of an EA for constrained nonlinear
optimization problems. Final solution is constructed with numerical approxi-
mation techniques. The main disadvantage of this approach arises in the need
for run an EA for each value of the parameter α. Moreover, numerical approx-
imation does not ensures the feasibility of solutions. In this paper we propose
a multi-objective approach to solve the problem (3).

With this background, the paper have been organized as follows: in sec-
tion 2 a multi-objective technique for parametric programming problems is
approached, section 3 describes an ad-hoc Pareto-based multi-objective EA

714



Optimization with Fuzzy Constraints by Evolutionary Algorithms

to solve the multi-objective problems connected with the parametric program-
ming problems, in section 4 a nonlinear fuzzy problem is considered as case
study and results of experiments are shown in section 5. Finally section 6
indicates the main conclusions and future research.

2 A multi-objective approach for nonlinear parametric
programming problems

In this section we propose a multi-objective approach to solve the problem (3).
The problem (3) can be transformed into a two-objective nonlinear program-
ming problem in which the parameter α is treated as a new decision variable
in the constrains and as a second objective to maximize.

It is clear that, ∀α, α′ ∈ [0, 1], α ≥ α′, X(α) ⊆ X(α′), and then,
S(α) ⊆ S(α′). Consequently, S(0) = { min

α∈[0,1]
S(α)}. By confronting the ob-

jectives f(x) and α, i.e., minimizing f(x) and maximizing α, we obtain a set
of non-dominated solutions (Pareto) in which the Pareto front represents the
better values of f (x) for each value of the parameter α.

The multi-objective problem is stated as follows:

Min f (x)
Max α
s.t. : gj (x) ≤ bj + dj

(
1 − h−1 (α)

)
, j = 1, . . . ,m

xi ∈ [li, ui] , i = 1, . . . , n, α ∈ [0, 1]

(5)

3 A Pareto-based multi-objective evolutionary algorithm

Multi-objective Pareto-based EA [2, 5, 8] are specially appropriated to solve
multi-objective nonlinear optimization problems because they can capture a
set of Pareto solutions in a single run of the algorithm. We propose an ad hoc
multi-objective Pareto-based EA to solve the problem (5) with the following
characteristics:

• Pareto-based multi-objective EA; it finds, in a single run, multiple non-
dominated solutions.

• The EA has a real-coded representation. Each individual of a population
contains n+ 1 real parameters to represent the solution (x1, . . . , xn, α).

• The initial population is generated randomly with a uniform distribution
within the boundaries of the search space xi ∈ [li, ui], i =, 1, . . . , n, α ∈
[0, 1].

• The variation operators act on real numbers. It has been used two cross
types, uniform cross and arithmetical cross, and three types of mutation,
uniform mutation, non-uniform mutation, minimal mutation [8].

715
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• Diversity among individuals is maintained by using an ad-hoc elitist gen-
erational replacement technique.

• It uses the min−max formulation to handle constrains.

3.1 Constraint handling

The populations generated by the algorithm are made up of both feasible
and unfeasible individuals. Guided by the multi-objective optimization Pareto
concept, the feasible individuals evolve towards optimality, while the non-
feasible individuals evolve towards feasibility guided by an evaluation function
based on the min-max formulation. See below for details. Thus the resulting
algorithm is weakly dependent on the problem to be optimized since it is the
evolutionary heuristics itself that is used to satisfy the constrains, unlike the
repair, decoding or penalty techniques which tend to be heavily dependent on
the problem.

3.2 Variation operators

Bearing in mind that the EA uses a floating point representation and given the
coexistence of feasible and unfeasible individuals within the EA populations,
the variation operators therefore act on chains (sequences) of real numbers
without any consideration regarding the feasibility of new descendants. After
experimenting for real parameter optimization with different variation oper-
ators proposed in the literature and with others, it was finally decided to
use two cross types, uniform cross and arithmetical cross, and three types of
mutation, uniform mutation, non-uniform mutation and minimal mutation.
The first four have been studied and described in depth by other authors [11].
Minimal mutation causes a minimal change in the descendant as compared to
the father, and it is especially appropriate in fine tuning real parameters [8].

3.3 Generating a new population

The algorithm performs the following steps in the generation of a new popu-
lation:

1. Two random individuals are selected.
2. Two offspring are obtained by parent crossing, mutation and repair.
3. The offspring are inserted into the population.

The insertion of the offspring is the fundamental point for maintaining diver-
sity. We use an ad hoc technique for insertion. Objectives space is distributed
into D = N/2 slots, where N is the population size. The insertion of an
individual X = (x1, . . . , xn, α) is performed as follows:

• Calculate the slot t the individual belongs to according with the following
expression t = (αD).
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• If individual is better than some individual in slot t, then replace the worse
individual in slot t by the new individual.

In order to determine if an individual is better than another, the following
criteria are established:

• A feasible individual is better than another unfeasible one.
• One unfeasible individual is better than another one if its function:

max
j=1,...,m

{
gj(x) − bj − dj

(
1 − h−1 (α)

)}
is better.

• One feasible individual is better than another one if the first dominates
the second.

It should be observed that we are using the min-max formulation to satisfy
the constrains. This method has been used in multi-objective optimization
[4] to minimize the relative deviations of each objective function from its
individual optimum, and the best compromise solution can be obtained when
objectives of equal priority are optimized. Since constrains and objectives can
be treated in a similar way, and it is assumed that all constrains have equal
priority, the min-max formulation is appropriate for satisfying constrains and
is, furthermore, a technique which is independent of the problem.

It should also be noted that insertion of the new individuals is not always
carried out, but only in those cases in which the new individual is better than
the individual replaced and the diversity is not worsened in any case. Thus
the technique simultaneously permits optimization and conservation of the
diversity. It is also an elitist technique, since an individual is only replaced by
another individual which is better than itself.

4 A case study

In this section we set out a nonlinear fuzzy optimization problem as case study
which describes a possible situation in a exporting company. The problem is
the following:

Two products for export A and B are to be produced by utilizing three
different processes (p1, p2 and p3). The production of one unit of product A
(B) requires 10 (6) minutes of processing time in the p1 department, 5 (10)
minutes in the p2 department, and 7 (10) minutes in the p3 department. The
total time available for each production process is 2500 minutes for p1, at
the most 2000 minutes for p2 (although violations up to 2064 minutes are
permitted) and at most 2050 minutes for p3 (depending on the urgency of
sending), but this total p3 time can never exceed of 2124 minutes. When sold
abroad, product A (B) yields a profit of 20 (32) per unit, although it is made
a discount increasing of 4 cent (3 cent) from each order. The managers want
to maximize the benefit.
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The fuzzy problem can be formulated as follows:

Max 20x1 + 32x2 − 0, 04x2
1 − 0, 03x2

2

s.t. :
10x1 + 6x2 ≤ 2500
5x1 + 10x2 � 2000
7x1 + 10x2 � 2050
xj ≥ 0, j = 1, 2

When we spoke about the violations of the restrictions we referred to
the user allowing in decresing way (as far as we approch the limit) the level
of violation admittion. That is to say, the behavior that we have when we
transferred the 2000 minutes border (2050 minutes) is a decreasing function,
decreasing quickly until the end. Therefore, the membership functions of the
second and third fuzzy constraint can be defined as:

μ(x1, x2) =

⎧⎨
⎩

1 5x1 + 10x2 ≤ 2000
( 2064−5x1−10x2

64
)3 2000 ≤ 5x1 + 10x2 ≤ 2064

0 otherwise

μ(x1, x2) =

⎧⎨
⎩

1 7x1 + 10x2 ≤ 2050
( 2124−7x1−10x2

74
)3 2050 ≤ 7x1 + 10x2 ≤ 2124

0 otherwise

According with (3), the fuzzy problem is transformed into the following non-
linear parametric programming problem:

Max 20x1 + 32x2 − 0, 04x2
1 − 0, 03x2

2

s.t. :
10x1 + 6x2 ≤ 2500
5x1 + 10x2 ≤ 2064 − 64 3

√
α

7x1 + 10x2 ≤ 2124 − 74 3
√
α

xj ≥ 0, j = 1, 2

where α ∈ [0, 1] is the parameter emerging in the parametric problem.
In order to solve the nonlinear parametric programming problem we con-

sider the following multi-objective nonlinear optimization problem according
to (5):

Max f1(x) = 20x1 + 32x2 − 0, 04x2
1 − 0, 03x2

2

Max f2(x) = x3

s.t. :
10x1 + 6x2 ≤ 2500
5x1 + 10x2 ≤ 2064 − 64 3

√
x3

7x1 + 10x2 ≤ 2124 − 74 3
√
x3

xj ≥ 0, j = 1, 2, 0 ≤ x3 ≤ 1

(6)
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5 Experiments and Results

In order to check out our technique, the evolutionary algorithm has been
executed on problem detailed in (6).

The parameters given in Table 1 were used in the executions.

Table 1. Parameters in the execution of the algorithm.

Population size N = 220
Cross probability pCross = 0.9
Mutation probability pMutate = 0.2
Uniform cross probability pUniformCross = 0.3
Uniform mutation probability pUniformMutate = 0.1
Non uniform mutation probability pNotUniformMutate = 0.4
Parameter c for non uniform mutation c = 2.0

The results obtained with the algorithm are shown in Fig. 1. We compare
the solutions obtained with our multi-objective evolutionary algorithm with
solutions obtained by a gradient method for 10 constant values of the α para-
meter (x3 in problem (6)) showed in Table 3 and graphically in Figure 1. It can
be observed that non dominated points are obtained by the multi-objective
evolutionary algorithm evenly distributed in the whole Pareto optimal front.

Various metrics for both convergence and diversity of the populations ob-
tained have been proposed for a more exact evaluation of the effectiveness
of the evolutionary algorithms. In his book, Deb [5] assembles a wide range
of the metrics which figure in the literature. For this paper we propose the
use of two metrics to evaluate the goodness of the algorithm. The first met-
ric, the generational distance (Υ ) proposed by Veldhuizen [13] evaluates the
proximity of the population to the Pareto optimal front by calculating the
average distance of the population Q from an ideal population P ∗ made up of
solutions distributed uniformly along the Pareto front. This metric is shown
in the following expression:

Υ =

(∑|Q|
i=1 d

p
i

)1/p

|Q|
For p = 2, parameter di is the Euclidean distance (in the objective space)
between the solution i ∈ Q and the nearest solution in P ∗:

di =
|P∗|
min
k=1

√√√√ M∑
m=1

(
fm

(i) − f∗
m

(k)
)2

where f∗
m

(k) is the value of the m-th objective function for the k-th solution
in P ∗, and M is the number of objectives. For our problem, we use the 10
solutions showed in Table 3 as ideal population P ∗.
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To evaluate the diversity of the population we use the measurement put
forward by Deb et al. [5]:

Δ =
∑M

m=1 d
e
m +

∑|Q|
i=1

∣∣di − d
∣∣∑M

m=1 d
e
m + |Q| d

where di may be any metric of the distance between adjacent solutions, and d is
the mean value of such measurements. In our case, di has been calculated using
the Euclidean distance. Parameter de

m is the distance between the extreme
solutions in P ∗ and Q corresponding to the m-th objective function.

Table 2 shows the values for convergence and diversity metrics Υ and
Δ respectively obtained with the proposed multi-objective algorithm for the
problem (6).

Table 2. Convergence and diversity values.

Υ = 0.67189927954177

Δ = 0.82661701735378

5460 5480 5500 5520 5540 5560 5580 5600 5620 5640

f2

f1

MOEA
gradient

0

0.2

0.4

0.6

0.8

1

Fig. 1. Non dominated points obtained for the problem (6).

6 Conclusions and future research

Nonlinear optimization problems with fuzzy constrains are, in general, difficult
to solve. Parametric programming techniques have been shown in literature
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Table 3. Results obtained with a gradient method for the problem (6) with x3 (f2)
constant.

x1 x2 x3 f1 f2

59.605 170.676 0.0 5637.724 0.0
58.256 168.165 0.1 5562.726 0.1
57.944 167.512 0.2 5543.147 0.2
57.703 167.054 0.3 5529.391 0.3
57.512 166.689 0.4 5518.431 0.4
57.350 166.381 0.5 5509.165 0.5
57.209 166.112 0.6 5501.058 0.6
57.083 165.872 0.7 5493.806 0.7
56.968 165.653 0.8 5487.210 0.8
56.862 165.452 0.9 5481.139 0.9
56.764 165.265 1.0 5475.503 1.0

as suitable methods to approach these kinds of problems. However, para-
metric programming problems have been solved mainly for linear case. Multi-
objective evolutionary computation provides a chance to solve nonlinear para-
metric programming problems. The set of points composing the parametric
solutions can be capture in a single run of the algorithm beside of the power of
these techniques in solving hard problems. Obtained results show a real ability
of the proposed approach to solve problems arising in exporting companies
from South of Spain. A complete set of test problems and a generalitation
of the problem to consider fuzzy costs and coefficients is being considered as
main future research.
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1 Introduction

Researchers proposed many reasoning methods. However, many of the meth-
ods are suitable neither for fuzzy control nor for fuzzy modeling. In the paper
some possible reasoning methods are compared from this point of view. The
most popular approach to fuzzy control and modeling is based on if ... then
rules. Using this approach four general problems must be solved:

• what interpretations of sentence connectives ”or“ and negation
”not“ may be used for if part

• what implication or other operation may be used for conclusion (then)
part

• what interpretation to use for rule aggregator ”also“
• what defuzzification procedure can be applied.

The widely applied reasoning as Mamdani, Larsen [13] Tsukamoto (see ex.
[14]), Takagi-Sugeno [21] uses triangular norms [12] for ”and“ , ”or“ , ”also“ .
However, it is possible to use more general B-operations [3] or mean oper-
ations [9]. The implication methods: Kleene-Dienes, early Zadeh, Willmott,
standard sharp, standard strict, standard star, Lukasiewicz, Gaines, Mamdani,
and some combination of them can be found in the literature [14]. In fuzzy con-
trol Mamdani and Larsen methods are used very often in practice. Sometimes
Tsukamoto or Takagi-Sugeno methods are applied. Mamdani used minimum
for interpretation of ”and“ , maximum for ”or“ , and minimum for conclusion.
However, other triangular norms give also good results. Larsen used product
for conclusion. Mizumoto [16] [17] are introduced product-sum-gravity and
some other methods mixing different kinds of operations. He compared also a
few reasoning methods using one practical example of fuzzy control system.
Many researchers proposed different kinds of reasoning, but no many who try
to compare them in practice. Schwartz [20], Butnariu et al. [1], Kerre [11],
Li [15], Gupta [10] compared the reasoning methods from theoretical point
of view. A practical comparison can be found in Mizumoto [17], Czogala and

”and“
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Leski [8], Cao and Kandel [7]. It was shown that dynamics of fuzzy control
system are very similar for different reasoning. This paper presents some com-
parison of the best reasoning methods possible to use in fuzzy control, choused
by the author and other researchers [7] [17] from large set of methods.

2 Fuzzy control

The methods used in fuzzy control generally are based on triangular norms,
but there are also another ideas using mean operations, as arithmetic, geomet-
ric, harmonic mean, generalized mean operations, and some others as simple
sum. The author of the paper, using three examples of fuzzy control systems,
performed a comparison of the results of fuzzy PID and PD control. The ex-
amples are simple, but can be considered as representative. Input linguistic
variables: error e, derivative d, and integral of error i have seven fuzzy sets:
NL, NM, NS, ZE, PS, PM, PL. The fuzzy PD (FPD) part of the controller has
typical rules. The fuzzy PI (FPI) part has separate rules. The output signals
of the PD and PI part are added. The membership functions are triangular.
Previous investigations [2] [4] [][6] and other researchers (see ex. [17] [18] [19]
allows to choose a collection of possible reasoning methods for fuzzy control.
In the paper as reasoning is understand sequence of operations:
Reasoning = [operation1-operation2-operation3-defuz]
where operation1 is t-norm or mean operation, operation2 is s-norm or dual
mean operation, operation3 is implication or other operation, defuz is defuzzi-
fication method. Only three defuzzification methods are compared hear: area
(AM), gravity(GM), and height (HM).
The reasoning methods were applied to the systems described below. In the
Tables some abbreviation are used:
p - product: ab
s -sum: a+ b
f - force implication: ab = a(1 − |a− b|)
bp - bounded(Lukasiewicz) product: max(0, a+ b− 1)
bs - bounded (Lukasiewicz) sum: min(1, a+ b)
dp - drastic product: a if b=1, b if a=1, 0 if a, b < 1
ds - drastic sum: a if b=0, b if a=0, 1 if a, b > 0
dpm - modified dp: a if b > α, b if a > α, 0 if a, b ≤ α; (α=0.01)
dsm - modified ds: a if b < 1 − α, b if a < 1 − α, 1 if a, b ≥ α
ep - Einstein product: ab/(1 − a− b+ ab)
es - Einstein sum: (a+ b)/(1 + ab)
hp- Hamacher product: ab/(a+ b− ab)
hs - Hamacher sum: (a+ b− 2ab)/(1 − ab)
pp - probabilistic (algebraic) product: ab
ps - probabilistic (algebraic) sum: a+ b− ab
yp - Yager product: 1 −min(1, [(1 − a)p + (1 − b)p]1/p) with p=2
ys - Yager sum: min(1, [ap + bp]1/p)
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min - logic product: min(a, b)
max - logic sum: max(a, b)
arit - arithmetic mean: (a+ b)/2 (dual arithmetic is identical)
ge - geometric mean:

√
ab

dge - dual geometric mean: 1 −
√

(1 − a)(1 − b)
ha - harmonic mean: 2ab/(a+ b)
dha - dual harmonic mean: 1 − 2(1 − a)(1 − b)/(2 − a− b)
a - area defuzzification method (AM)
g - gravity defuzzification method (GM)
h - height defuzzification method (HM)
Apart from these operations it is possible to use some others as (0 ≤ γ ≤ 1):
fuzzy and” : γmin(a, b) + (1 − γ)(a+ b)/2
fuzzy or”: γmax(a, b) + (1 − γ)(a+ b)/2

min-max: γmin(a, b) + (1 − γ)max(a, b)
comp-and: (ab)1−γ [1 − (1 − a)(1 − b)]γ

However, the results of investigations were rather negatives and are not shown
here. Comparison of reasoning was performed using system presented in the

Fig. 1. General structure of the system

Fig. 1. The system step responses were investigated. The output gain gu was
adjusted to obtain the same overshoot of 15%. Rise time (for level 0.9), value
of first minimum y1min, square and time errors were chosen as comparative
criteria. The time-error is defined as integral of product t·error(t). Every time
30..40 reasoning methods were tested. The range of discourse was found for
every step response parameter and divided into 30-33 levels. Any parameter
value was scored comparing to the levels. The best value obtained score equal
to 1. Total score is sum of scores. Three systems were investigated.

System 1. FPID with linear plant of first order with delay [17]. The plant
transfer function H(s) = e−2s/(1 + 20s).
A part of best results obtained is shown in the Table 1.

System 2. FPID controller and nonlinear plant of second order described by
equation ÿ + 2ζωnẏ + y = α1u(t) + α2|u(t)|. The parameters of the system:
ge=2, gd=2, gi=0.002, ωn=100, ζ=0.7, α1=1, α2= -0.1.
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Table 1. The results of step response for the System 1

Reasoning Rise Value Square T-err Total Rank
op1-op2-op3-def time y1min error ×103 score

dp-ds-p-g 8.10 no* 217 74.8 4 1
dp-ds-f-g 8.70 no* 223 79.0 10 2
dpm-dsm-p-g 10.80 .988 267 99.9 40 3
p-s-f-g 11.92 .989 276 101.2 45 4
bp-bs-p-g 12.01 .984 281 108.1 53 5
bp-bs-p-a 12.20 .985 284 108.9 55 6
p-s-p-g 12.76 .982 291 113.9 64 7
bp-bs-bp-g 12.89 .981 291 111.4 65 8
p-s-p-a 12.87 .981 291 113.4 66 9
bp-bs-f-g 12.94 .978 291 110.9 67 10

Table 2. The results of step response for the System 2

Reasoning Rise Value Square T-err Total Rank
op1-op2-op3-def time y1min error ×103 score

dp-ds-f-g 14.44 .874 370 128 37 1
dp-ds-p-g 13.56 .849 348 132 44 2
bp-bs-bp-g 16.41 .896 404 139 46 3-4
bp-bs-bp-a -”- -”- -”- -”- -”- 3-4
p-s-f-g 15.06 .864 377 135 51 5-7
p-s-f-a -”- -”- -”- -”- -”- 5-7
mdp-mds-p-g 15.38 .874 383 143 51 5-7
.....
min-max-p-g 19.52 .904 453 169 78 20-21
min-max-min-h -”- -”- -”- -”- -”- 20-21
min-max-min-g 21.64 .924 498 179 92 22
arit-arit-p-g 18.81 .825 449 191 97 23

System 3. FPID with non-stable fuzzy dynamical plant. The system contains
FPID controller with parameters: ge=30, gd=100, gi=0.3 and fuzzy non-stable
plant proposed by Chen [6]. The plant consists with four objects described by
differential equations:
Ob1: if y is S and ẏ is S then ÿ − 2.391ẏ + 2.484y = 1.277u
Ob2: if y is S and ẏ is L then ÿ + 0.91ẏ = 0.23u
Ob3: if y is L and ẏ is S then ÿ + 0.722ẏ − 1.425y = 2.825u
Ob4: if y is L and ẏ is L then ÿ − 0.6ẏ = 0.16u
Depending on the linguistic value (Small or Large) of y and derivative of y
objects are operative. Fuzzy sets have the membership functions with semi-
gaussian shapes [6].
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Table 3. The results of step response for the System 3

Reasoning Rise Value Square T-err Total Rank
op1-op2-op3-def time y1min error ×103 score

dp-ds-f-g 1.0709 .9625 27.75 431 23 1
dp-ds-p-a 1.0751 .9575 28.08 448 44 2
p-s-f-g 1.1230 .9658 28.81 439 47 3
bp-bs-f-g 1.1219 .9637 28.80 441 52 4
bp-bs-bp-g 1.1175 .9608 28.81 440 56 5
dp-ds-p-g 1.0692 .9546 28.01 443 62 6
bp-bs-bp-a 1.1243 .9619 28.95 444 64 7
dpm-dsm-p-g 1.0750 .9533 28.20 462 67 8
p-s-p-g 1.1214 .9552 29.10 437 70 9/10
bp-bs-p-g 1.1152 .9550 28.99 440 70 9/10
bp-bs-p-a 1.1232 .9569 29.14 447 79 11/12
p-s-p-a 1.1281 .9574 29.19 442 79 11/12
hm-dhm-p-g 1.1265 .9550 29.17 446 81 13
gm-dgm-p-g 1.1270 .9538 29.27 442 83 14
ep-es-p-g 1.1233 .9523 29.21 442 84 15
p-bs-p-g 1.1248 .9524 29.20 442 84 16
yp-ys-p-g 1.1256 .9517 29.24 443 86 17
pp-ps-p-g 1.1264 .9514 29.26 445 93 18
arit-arit-bp-g 1.1230 .9548 29.19 459 95 19
hp-hs-p-g 1.1285 .9503 29.31 449 97 20
min-max-p-g 1.1309 .9498 29.37 453 104 21
min-max-min-g 1.1428 .9524 29.69 453 107 22
arit-arit-p-g 1.1470 .9515 29.91 455 117 23

3 Comparison of the results

General comparison of the results shows that many methods give very similar
results. It can be seen first of all from graphical comparison of responses.
However, there are some methods, which in any example obtain high rank
(small score). The results show Table4. Now, the total score is the sum of
ranks.

Of course, not all combinations were tested. Example, defuzzification GM
gives generally slightly better results than AM and better than HM. Thus,
operations were tested firstly with GM. The best method is drastic product-
drastic sum-force-gravity (dp-ds-f-g). Second place takes drastic product-
drastic sum-product-gravity method. Both methods have a strange nonlinear
effect. If the output’s gain gu rises then in some regions overshoot diminishes.
Thus, the methods cannot be recommended without reserve. Good properties
have product-sum and bounded product-bounded sum operations with force
or bounded product operations.
Conventional Mamdani reasoning (min-max-min-g) and Larsen reasoning
(min-max-p-a or min-max-p-g) take very far places. Thus, there are no any
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Table 4. The comparison of results

Reasoning Syst. 1 Syst. 2 Syst. 3 Score Rank
dp-ds-f-g 2 1 1 4 1
dp-ds-p-g 1 2 6 9 2

p-s-f-g 4 6 3 13 3
bp-bs-bp-g 8 3.5 5 16.5 4

dpm-dsm-p-g 3 6 8 17 5
bp-bs-f-g 10 11 4 25 6
p-s-p-g 7 9 9.5 25.5 7

bp-bs-p-g 5 15 9.5 29.5 8
p-s-p-a 9 9 12.5 30.5 9

bp-bs-p-a 6 15 11 32 10

reasons to use them. Other investigations do not presented here show that
product-sum and bounded product-bounded sum can be recommended as
first pair of operations. For operation 3 force implication, product or bounded
product is recommended. Rarely HM is better than GM and AM, however it
happens.
Some general important remarks must be added. The author shown [2] [3]
that any stable system with FPD controller tends in steady state to the same
value independently on the pair of triangular norms used for reasoning. Sim-
ilarly, error of a system with FPID controller tends to zero independently on
the pair of triangular norms used for reasoning.
In [5] the comparison of reasoning was performed using another criteria. The
last observed value yTmax was used instead of time-error. Moreover, the scor-
ing was performed in different way. All values of the parameters were similarly
ordered monotonically, but the score value is equal to consecutive number.
The best method was prod-sum-force-gravity. Second place obtained dr.prod-
dr.sum-prod-gravity method. The scoring method proposed here, based on
partition on levels, seems more reasonable. Also, the last observed value of
yTmax used before in [5] is rather random, so the result obtained here are
more reliable.
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1 Introduction

The generation of new, useful knowledge is the mission of scientists. In the
data mining area researchers try to find interesting new knowledge about data
[1, 2]. Especially in text mining interesting knowledge is extracted from texts
[3]. Automated theorem proving aims at finding automatically theorems and
proofs [4]. Genetic programming is used for automatically generating new
programs [5]. To find new and interesting knowledge automatically, a system
should be “computational intelligent” as much as possible.

If we consider a limited field of scientific activity, a kind of “knowledge
domain”, e.g. soft computing, then most of the actual knowledge of such a
knowledge domain has been written down and is available as papers, published
in journals, books, technical reports, theses, or it is electronically published.

Our aim is to evolve a given knowledge domain to obtain new knowledge.
In Fig. 1 we show the parts that would be needed for a complete automatic
system. At first relevant “content parameters” of the elements of a knowledge
domain need to be extracted. This could be a task for text miners. Then, a
component is introduced that we call “knowledge evolution”. A final part is
the evaluation of the evolved knowledge by the domain experts.

In our paper we will focus on the second step, the knowledge evolution.
In section 2 we present the motivation behind the knowledge evolution pro-
cedure. Then, in section 3, we will give examples for knowledge evolution in
the knowledge domain of soft computing, considering neural network models
and fuzzy logic. In section 4 we discuss our ideas and give a conclusion.

2 A Motivation for Knowledge Evolution

We explain knowledge generation (“science”) partly as an evolutionary process,
and demonstrate that the principles of an evolutionary strategy can be
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Fig. 1. Knowledge extraction system using knowledge evolution.

understand as an analogy for scientific research. For an overview of evolu-
tionary strategies see [6] for example. Our insights will lead to a proposal
of automatic knowledge evolution based on scientific knowledge in the next
section.

The ambition of scientists is to create something “new” and something
“better”. Usually, a new work is based on older work where parts of the older
work are changed or combined. We state that the changes can be interpreted
as mutating knowledge to another knowledge.

Let us consider a method in the area of soft computing, e.g. a neural
network based method. Much work is done to construct better topologies and
to create better learning algorithms. When reading papers, often one gets the
impression that this goal is not reached with a significant global proof, i.e. the
new network is not the best network so far, better than all the others, but it
is better than one or several existing methods (“local improvement”). A lot
of mutations of algorithms exist, especially when applications are considered.
Then, usually some parameters are changed or added or deleted compared to
other existing methods.

In the last years the interest in hybrid methods has increased. For example
neural networks have been combined with evolutionary strategies or fuzzy
systems. This has been done in fact not really in a goal-oriented way, meaning
to find the optimal hybrid method, but one hybrid method that works well or
in some aspects better than basic single methods. This is as well discussed in
[7]. We notice that knowledge of different papers have been recombined.

Having mutated or recombined knowledge to new knowledge, its quality,
the fitness, needs to be evaluated. This is formally done by several fitness
criteria in a review process, as for this conference. Once a paper, containing
the new knowledge, is published, it may be indirectly evaluated by citation
factors of journals or directly by a high number of following applications or
following theoretical papers. But this shows as well that such a paper is a
suboptimal one.

Having reached the point that papers are mutated, recombined and eval-
uated for their fitness, it is straightforward to treat the formalized knowledge
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of a paper as an evolving individual in the knowledge domain. Now, we have
all the ingredients collected for interpreting knowledge generation by an evo-
lutionary strategy as knowledge evolution:

Algorithm 1: (Evolving Scientific Knowledge)
1. Initialization: The set of individuals contains the content parameters of
selected papers in the knowledge domain.

2. while knowledge evolution has not ended (= everything can be explained
in the knowledge domain) do

2a. Mutation: Modify the content parameters.

2b. Recombination: Combine content parameters.

2c. Evaluation: Evaluate the new content parameters, i.e. determine a fitness
for one individual.

2d. Selection: Select the individuals with the highest fitness.

end % while

The optimization by evolution in Algorithm 1 may be replaced by swarm
algorithms. Since working groups are not working without interaction or com-
munication with other working groups, content parameters of actual knowl-
edge is interchanged. This can be seen as the global optimization part in
swarm algorithms where local and global elements of optimization are com-
bined. Swarm algorithms are described in [8] for example. If we discuss this
aspect further, one may interpret the set of individuals as a swarm, optimizing
its research results.

At this point we have defined the paradigm of “evolving scientific knowl-
edge”. Before we present examples in the next section, we give additional
thoughts about knowledge evolution.

In our context the results in [9], where it is stated that a single run of an
evolutionary strategy with a higher population achieves better results than
multiple runs with smaller populations, can be seen as a demand for more
interaction between working groups: Research based on more working groups
is more successful than the sum of the research on an area done by several
distinct working groups.

Automatically mutated and recombined knowledge may be useful as a
basis for a tool for research assistance. Such a tool may found knowledge
that would not be found otherwise. Although such results may not be the
best ones, they may be helpful for the researcher for further research. Of
course, scientific knowledge that outlines new research directions, not based
on mutations or recombinations as before, is needed to extend the knowledge
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base. It is assumed that it will be far in the future that an automatic system
will become as inventive as a researcher. Surely, a knowledge generation system
is a complex system. Thus, we restrict our considerations in the next section
to knowledge that can be systematically formalized by content parameters.

3 Examples

We will give a concrete example for knowledge evolution, followed by an ex-
tension of the first example, and one example that is not as concrete as the
following one, showing the limitations of the approach.

Fig. 2. Example of knowledge evolution: model exchange in neural network ensem-
bles. The sets Ni, i = 1, . . . , 6 are the content parameters of neural network models,
published in different papers.

Example 1) Consider m not necessarily equal neural network models with
parameter sets N1, . . . , Nn as content parameters, e.g. stemming from sev-
eral papers. Then, we introduce a basic mutation of one parameter set as a
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modification of the parameter settings of the parameters in the set. As a re-
combination we can define a combination to an ensemble machine [10], Ch. 7
with a voting gate. Later on, the exchange of two models can be used as a re-
combination, cp. Fig. 2. This recombination represents a new network model
Nn+1 with a new, possibly larger, parameter set. Different voting schemes
could also be integrated in the knowledge evolution. If we consider a classi-
fication problem with the trained network models, then as a fitness operator
the classification performance on a test set can be used. After a suitable num-
ber of generations the best evolved model with its content parameters is the
result of knowledge evolution.

Example 2) If we add content parameters of similar applications or different
formulizations of a problem, given by A1, . . . , Am, then one can combine the
neural network model parameter sets N1, . . . , Nn with the application para-
meters, e.g. different representations of molecules. The optimized result is the
best solution for an application problem, i.e. a neural network ensemble for
an optimized formulation of a problem.

Example 3) The work of Zadeh [11] is an example for research, that cannot
easily performed automatically, but the definition of fuzzy sets has been the
initial point for a new successful research direction. If one would interpret
fuzzy sets as a mutation of naive sets, for example by recombining probabilities
with sets, then a fitness operator would have to evaluate this recombination
with a very high fitness, although it is not clear how the fitness should be
determined automatically in this case.

4 Conclusion

The great challenge concerning the generation of scientific knowledge is its
automization by knowledge evolution. Our insights are a first step towards a
meta-research tool, (semi-)automatically finding new and optimal knowledge
that is based on existing knowledge. Until now we have only presented ideas
and the example of ensemble machine evolution. A main problem that needs
to be solved is the determination of content parameters. Of course, there
will be scientific achievements that could not or not yet be automized, e.g.
an automatic proof of Fermat’s Last Theorem, proved in [12], [13], although
there is an analogy in the more than 350 year old history of this problem to an
evolutionary process since many approaches were modified and combined. For
modeling an automization for such extremely difficult problems with a huge
search space a much deeper understanding of brain functions is supposed to
be needed. A hypothesis could be that the brain is able to evolve knowledge
internally and unconciuosly. The next moderate step of this ongoing work is
the development of more general and useful models for knowledge evolution.
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In this paper we investigate the dynamic systems, which are
represented by recurrent Takagi-Sugeno rule bases that are widely used in
many applications. The main question to be answered is under whatconditions
the recurrent rule base can reconstruct the chaotic bit series. We use for this
purpose so-called ‘backward interval mapping’.

1 Modeling of Tent Mapping with Fuzzy Rule Base

In the simplest case the recurrent Takagi-Sugeno (TS) fuzzy rule base of 0th

order can be presented in the following form [1]

R1 : if xk is L1then xk+1 = A1,
R2 : if xk is L2then xk+1 = A2,
...
RN : if xk is LN then xk+1 = AN ,

(1)

where x is state variable, L = {L1, . . . , LN} are linguistic variables and A =
{A1, . . . , AN} are numerical constants. As was shown in [2] three rules like (1)
are necessary and sufficient for producing chaotic mapping (when normality
conditions are held for membership functions of Li and x ∈ I = [0, 1],Ai ∈
I = [0, 1]). In this case we have the transition function f : I → I, namely

f : xk → xk+1. (2)

Then mapping (2) is chaotic in sense of Li-Yorke [3]. When we have triangu-
lar membership functions the mapping (2) is isomorphic to well known tent
mapping. In such case we can rewrite the mapping (2) as the slopping tent
mapping

xk+1 =
{
f1(xk) = 1

λxk, if0 ≤ xk ≤ λ,
f2(xk) = 1

λ−1xk + 1
1−λ , ifλ < xk ≤ 1, (3)

where xk ∈ [0, 1] , λ ∈ (0, 1) (Fig. 1).
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Fig. 1. Slopping mapping

2 Reconstruction of Chaotic Bit Series with TS Models

Let us consider the following bit sequence

C = {ci}N
i=1 (4)

with length N, ci ∈ {0, 1}. It is necessary to restore the source sequence (4)
as a bit sequence

C̃ = {c̃i}N
i=M (5)

according to the rule

c̃i =
{

1, ifxi ≥ λ,
0, ifxi < λ,

(6)

fori = M,N,M ≤ N . Namely, it is necessary to find such value xM that gives
the same values for restoring sequence like in the source one. Besides, it is
important to find such value of λ that gives maximum members of restored
sequence. The best case is when M = 1.

The novelty of approach proposed consists in substitution of chaotic bit
series by initial value xM that can reconstruct original orbit with mapping (3).
Underlying methodology is based on so called backward interval mapping.

We propose the following solution of this task. First of all we propose to
use so-called backward interval mapping [2].

Let us consider
g (x) = f−1 (x) (7)

The mapping (7) is contracting mapping if f(x) is chaotic one. For (k − 1)th

step we can write

xk−1 = g (xk) (8)
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Definition[4]. Mapping f(x) : I → I is chaotic if

1. it is topologically transitive, i.e., if there exists a k > 0 such that fk(U)∩
V �= ∅ where fk(U) =

{
fk(x)

∣∣x ∈ U
}
for any pair of open sets, U, V ⊆ I.

2. it is sensitive to the initial conditions, i.e. if there exists a δ > 0 such that
x ∈ I and any neighborhood N of x there exists a y ∈ N and n > 0 such
that |fn(x) − fn(y)| > δ.

3. the periodic points of f are dense in I .

According to Definition we need to find the topological transitivity for inverse
mapping (8) as

g−n (U)
⋂

V �= ∅. (9)

We use the interval mapping instead of point mapping, namely we consider
the mapping

g (I) =
{
g1 (I) = I1 ⊂ I
g2 (I) = I2 ⊂ I

(10)

Because g(x) is contracting mapping, then

I1
⋃

I2 = I and I1
⋂

I2 = ∅. (11)

The second step of backward mapping is

g2 (I) =

⎧⎪⎪⎨
⎪⎪⎩
g (g1 (I)) =

{
g1 (g1 (I)) = I11 ⊂ I1,
g2 (g1 (I)) = I21 ⊂ I2,

g (g2 (I)) =
{
g1 (g2 (I)) = I12 ⊆ I1,
g2 (g2 (I)) = I22 ⊂ I2.

(12)

We propose the following lemma.

Lemma 1. Let there be given g (x) = (g1 (x) , g2 (x)) where gi, i = 1, 2 are
monotonous and continuous mapping on g (x) : I → I and g(x) is constructed
in the form (10) and it is contracting mapping ((11) is being satisfied) and
we have

gK+1 (I) =
{
g1

(
gK (I)

)
= I1{K}

g2
(
gK (I)

)
= I2{K}

(13)

where {K} = {11...1, 11...2, ...22...2} is set of indexes length of K that were
used for marking subset of I on Kth step and the next conditions are fulfilled

gK+1
1 (I) ⊂ gK

1 (I) ,K = 0, 1, ...,
gK+1
2 (I) ⊂ gK

2 (I) ,K = 0, 1, ...,
gK
2 (I) �= ∅,K = 0, 1, ...

then
I1{K}

⋃
I2{K} = I,( ⋂

{K}
I1{K}

) ⋂ ( ⋂
{K}

I2{K}

)
= ∅
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and g (x) = (g1 (x) , g2 (x))is contracting mapping for the set I and all of it
subsets.

If g (x) = (g1 (x) , g2 (x)) is fulfilled to Lemma conditions then f (x) =
g−1 (x) is chaotic in sense of Definition. For slopping tent mapping (3) we
have folowing backward mapping [2] (Fig. 2)

xk =
{

g1(xk+1) = λxk+1,
g2(xk+1) = (λ− 1)xk+1 + 1. (14)

Fig. 2. Backward slopping mapping

Let us consider the action of this mapping when argument of function g
is interval (Fig. 3). For initial interval I we have

g (I) =
{
g1 (I) = I1 = [0, λ] ⊂ I,
g2 (I) = I2 = [λ, 1] ⊂ I.

(15)

The following iterative procedure for backward interval mapping takes
place. Let choose initial interval according to rule

IN =
{

[λ, 1], ifcN = 1,
[0, λ], ifcN = 0. (16)

Then define the possible transitions with the backward interval mapping

ĨN−1 = g (IN ) =
{
g1 (IN ) ⊂ [0, λ] ,
g2 (IN ) ⊂ [λ, 1] . (17)

The next interval is made more precise in according to the value cN−1:
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Fig. 3. Backward interval slopping mapping

IN−1 =
{
g2 (IN ) , ifcN−1 = 1,
g1 (IN ) , ifcN−1 = 0. (18)

The procedure (17), (18) is repeated until obtaining the limit of accuracy

diam (IM−1) = ε (19)

Then any value xM ∈ IM restores the source sequence (4) with forward map-
ping (3) starting from M number of sequence. Parameter ε is machine accu-
racy. So we can not restore arbitrary sequence with backward methods (only
for moment when interval became ε - length).

To increase the quantity of restoring numbers we need to find optimal value
of λ. According to (14) total coefficient of contraction of iterative procedure
for backward interval mapping is determined as

K = λn (λ− 1)m (20)

where n is percent of ‘zeros’ in the source sequence and m is percent of ‘ones’
(Fig. 4).

It is easy to see that the following statement holds true:

arg
λ∈(0,1)

minλn (λ− 1)m = n (21)

Thus, it is possible to decrease speed of contraction of intervals for iterative
backward mapping procedure.

3 Example

Let’s consider application of the described approach to the coding and restora-
tion of bitmap image (Fig. 5). Let dark pixels of bitmap be encoded by ‘ones’
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Fig. 4. Coefficient of contraction in iterative mapping procedure

Fig. 5. Graphic presentation of the letter ‘R’

and light pixels - by a ‘zeros’. This bitmap was transformed to one-dimensional
sequence with the length N = Col ∗Row by reading all lines from top to bot-
tom. Thus we have the next example of bit sequence (4):

C = {111110010001010001011110010100110011} . (22)

Let’s define the quantity of ‘zeros’ and ‘ones’ in (22) for optimum slopping
tent mapping construction:

n = 17/36 = 0.472222222222222,m = 19/36 = 0.527777777777778.

Thus in equation (3) λ = 0.472222222222222. According to rule (16) initial
interval I36 is defined as:
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I36 = [λ, 1] = [0.472222222222222, 1].

In accordance with iterative rules (17) and (18) the next interval is:

I35 = g2 (I36) = [0.472222222222222, 0.750771604938272]

The next step of iterative procedure gives:

I34 = g1 (I35) = [0.222993827160494, 0.354531035665295].

The final result of implementation of our iterative procedure is:

I1 = [0.672604526057511, 0.672604526072895].

Now if we choose any x1 ∈ I1 we can restore a bit sequence (15) using chaotic
mapping (3) and rule (6). For example if x1 = 0.67260452606 then slopping
tent mapping (3) gives us chaotic sequence shown on Fig. 6.

Fig. 6. Chaotic mapping for letter ‘R’

We know value of λ and according to rule (6) one can restore all members
of target sequence (15).

4 Summary

Proposed approach can be used for coding and data compression as well. We
can increase the amount of encoded elements for bit sequence with few ‘ones’
or ‘zeros’ in it, because reduction of total coefficient of contraction takes place
in such case. Obviously that critical factor of the algorithm is accuracy of
software. It depends on sensitivity to initial conditions of chaotic mapping.
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Abstract. 

1 Introduction

Fuzzy modeling is regarded to be one of the possible classification archi-
tecture of machine learning and data mining. There have been a significant
number of studies devoted to generating fuzzy decision rules from sample
cases or examples.  These include attempts to extend many classical ma-
chine learning methods to learn fuzzy rules. The objective of this paper is
to employ the Dempster-Shafer theory (DST) as a vehicle supporting the
generation of fuzzy decision rules. More specifically, we concentrate on
the role of fuzzy operators, and on the problem of discretization of contin-
uous attributes and show how these can be effectively used in the quanti-
zation of attributes for the generation of fuzzy rules.

The material is arranged in the following way. First, we summarize the
underlying concepts of the Fuzzy Dempster-Shafer model and briefly dis-
cuss the nature of the underlying construction. Next we explain essential
features of our model. Finally, we report exhaustive experimental studies
concerning well-known medical data sets available on the Web.
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2 Fuzzy Dempster-Shafer Model

In Fuzzy Dempster-Shafer (FDS) model [2] we consider rules Rr as:

where Xi and D stand for input and output respectively, and mr is a fuzzy
belief structure, that is a standard belief structure with focal elements Sr,p

as fuzzy subset of frame of discernment   with basic probability assign-
ment mr (Sr,p), and mr (Sr,p) is the believe that the conclusion should be rep-
resented as class Sr,p .

2.1 Learning Rules Construction

In antecedent construction of the Fuzzy Dempster-Shafer model (FDS) [2]
let us assume that we have n features (attributes) in antecedents of testing
example. We consider a collection of m generic linguistic terms character-
ized by membership functions defined in a universe of discourse being a
domain of each attribute.

For each element of data t we build a collection:

                  (1)

where:   
Ai,j,t – the values of j-th membership function for i-th feature and for t-th

element of data.
On the base of (1), for a given data point t  we can calculate vectors:

Z.A. Sosnowski and J.S. Walijewski748
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and 

called index of membership functions . Here  is a maximum

value of all membership functions designed for the feature i and

is the number of the best membership function for feature i.
Then we have the following candidate for a rule

The firing level of the rule is calculated according to the following for-
mula

where  means the operator of fuzzy matching.

The rule candidate is added to rules set if  (where  Th

threshold value, and matching operator). This can help to eliminate the

worst rule from the final rule set.

The product is a new belief structure on X 

Focal elements are fuzzy subset given as

and appropriate distributions of new focal elements are defined as:

So we can build an aggregate:

.
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Than for each collection 

where are focal elements of  we have focal element E of m

described as

with appropriate probability distribution

.

At this point, the rule generalization process is complete.

2.2 Test

In testing we ignore the value from the last  column, that  is  decision
class number, because our goal is to calculate it.  To compute the firing
level of a rule k for a given data 

where Xi,k – feature’s value, Dk – conclusion decision class that we have
to compare with the result of inference;

we build a rule matrix  

We are interested only in active rules i. e. rows with matching value

.

For each collection of  focal elements  we define an aggregate

with basic probability assignment  

.
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The  results  of  classification  are  D  is  m,  with  focal  elements  Ek

(k=1,...,R|S|) and distribution m(Ek). These results are calculated using focal

elements and appropriate counters ct,1,.., ct,|S|.
Then we perform defuzzification according to COA method [1] 

where  are defuzzified values for focal element Ek defined as

.

In the next step, the rules structure is simplified to 

If Antecedent r Then (D is Hr),

where is a singleton fuzzy set for factor 

.

3 Genetic Tuning of the given Rules

In Table 1 we summarize  the performance of several membership func-
tions and matching operators. We start from standard solution used in in-
troduction to fuzzy modeling then we consider more complicated models.
We  compute  results  for  the  following  membership  function:  Linear,
Quadratic  and Gaussian. We concentrate on Minimum, Multiply  and Im-
plication as matching operators. In general, the most interesting is  Gaus-
sian function and  Implication operator.  The most valuable is comparing
the results of all calculations. To apply  GA methods we use standard pro-
cedures from package SUGAL [3].
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This algorithm is simplifying of  genetic algorithms(GA). The natural
way is to use GA theory to find the better division points. First we start
from base Fuzzy Dempster-Shafer model (FDS). All the intervals, that we
divide feature of data, are equal. It is not optimal, but in same situations it
is quite good. Next we generate new random division points  and then we
can test them. We  generate rules  by FDS algorithm using new division
points. The accuracy of the rules are survive function. We use accuracy on
the  training  data set. Using GA methods we generate next generation of
population. Of course instead of only one division, we can generate more
random division and then crossover them
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When we analyze the results of  the classification using the rule set, it is
easy to see that the cost of rule generation is only few times more then
base FDS.  Let us show it on the sample  of Dermatology data set.  Data
contains 366 records, 244 of then we use for learn, 122 for test. There is
no floating data, but 33 discrete and only 1 binary. The rules generated by
FDS  have the best accuracy  51,64 for function  Gaussian and operator
Multiply. After 10 generation of GA  the conclusion was good almost is
100% of cases of testing data. For function Gaussian and operator Impli-
cation the accuracy indicator set at 100%.

4 Conclusions

The study has focused on the use of Fuzzy Dempster-Shafer model for
generating of fuzzy decision rules. Fuzzy sets are useful in discretization
of continuous attributes. The approach is discussed in the concrete appli-
cations of two real medical data sets (especially to problems of identifica-
tion of diseases) and few well-known data sets available on the Web [4].
The  results  are  used  to  classify  objects.  The  vehicle  of  Genetic  Algo-
rithms, as an additional approach for generation of the rules give us better
indicator of accuracy. It can be used in the case of  features with many
possible values.

We compare our results with classification using Decision Trees [5]. In
all points we receive better accuracy.  When we use standard FSD model
then  for  Dermatology data  set  we  got  poorer  results  then  in  Decision
Trees. But after genetic tuning the rules produce much better results then
previous. Sometimes we can not get an  increase accuracy of the rules. It
means that in that cases the change points of division has no influence on
the final result.
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Table1. Experimental results for testing data sets
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1. Introduction

Packet classification is the process of categorizing packets in an internet 
router into flows [1]. All packets obey a predefined rule and must 
treated in the same manner in router belong to the same flow. Classifiers 
are the collection of rules. Based on some criteria applied to a packet 
header, each rule specifies the flow that the packet belongs to. High 
speed packet classification is also essential for providing different 
services (e.g. packet filtering, policy routing, accounting, traffic rate 
limiting, etc) to different users. A good classifier is the one has high 
speed, needs low storage requirements, could be updated fast and is able 
to handle large real-life classifications.

Although most traditional classification algorithms use hierarchical trees 
[2-6], in this paper we introduce a novel classification design benefits 
from parallel processing structure of neural networks. By introducing 
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neural networks, not only a higher processing speed could be achieved, 
but also the classifier could be updated whenever a rule has changed. 

2. Internet Packet Classifier

Internet consists of routers connected together via communication links. 
Internet nodes communicate with each other based on Internet Protocol
(IP). IP packets, in their path to final destination, are transferred from a 
router to the next router via communication links. Each router makes a 
decision to select next router. 

In addition to capability of packet transfer, an IP router may take special 
decision on an incoming packet (e.g. a packet may be blocked due to 
security reasons; a packet may require high level of priority, or a packet 
may be had to sent not later than a specified delay time). To perform 
such decisions, routers classify incoming packets to some flows. All 
packets belongs to a flow, obey a predefined rule and managed similarly 
by router (e.g. all packet with the same source address filed may belong 
to the same flow). A classifier consists of a set of rules. Every rule 
assigns a flow to every incoming packet, based on content of its header. 
Header of a packet has some fields (e.g. destination address, source 
address, destination port, source port, protocol and service type. 

Consider a classifier C with N rules Rj, 1 j N. Each Rj has three 
elements:

1. To be classified by rule Rj, every of d header fields of a packet 
must have a mathematical representation Rj[i],1 i d.

2. Priority of rule Rj is represented by pri[Rj].

3. Each rule Rj corresponds to an action. 

Packet P with d header field is shown as (p1,p2,...,pd). The d-dimensional 
classification is defined as process of assigning the rule Rj with highest 
priority to packet P, such that pi corresponds to Rj[i], 1 i d.

3. Neural network IP Classifier

Unlike most applications of neural networks, which need only limited 
precision, an internet packet classifier has to be perfect. In fact, neural 
net must learn all possible inputs and classify them based on their 
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headers. A packet header consists of few fields is normally over a 
hundred bits. So it seems impossible to present all training patterns to 
the net.
We overcame this problem by introducing a modular architecture, as 
shown in figure 1. A 112-bits header consist of destination IP address 
(32 bits), source IP address (32 bits), destination port (16 bits), source 
port (16 bits) and type of service (8 bits) has been considered[3,4]. The 
classifier assumed to have four rules. Each field is presented to its 
corresponding network, which categorizes every input pattern to at least 
one output rule. If an input pattern belongs to more than one category, 
all corresponding outputs will be selected. The next stage make an AND
operation to determine if input pattern belong to a category. The final 
stage determines the rule with higher priority among active ones.

Furthermore, each of these modules consists of simple two layer neural 
networks named ANN8. An ANN8 has eight inputs and four outputs, 
each corresponding to one of the rules (see figure 2). There are only 128 
input patterns and as there are normally much more zeros in output 
space, the learning is straightforward and requires few hidden neurons 
(figure 3).

Our experience showed that a two layer net with five hidden neurons are 
quit enough to achieve zero percent error. Every ANN8 could be learned 
independently, thus we can learn them in parallel to reduce learning 
time.

Fig. 1. Modular architecture for internet packet classifier
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The proposed classifier is compared with those previously reported [7-8] 
and shown to have excellent results considering speed, flexibility, and 
simplicity as shown in table 1 below. Learning time is measured based 
on our experience with a Pentium IV 1.7GHz processor and MatLab 
neural network toolbox. Implementation of proposed NN classifier 
using FPGA technology (200MHz clock), leads to a classification speed 
of about 40Gbps. 

Table 1.
Direct implementation 

of MLP [7-8] 
New NN IP Classifier 
with modular structure 

No. of classifying field Destination address field All fields of header 
Learning time Few hours 12-18 sec 
Percentage of error 1-4 % 0%
Classification speed 60Gbps 40Gbps 
Required memory 19Kb(one field) 30Kb(three fields) 

4. Conclusion

In this paper, a novel neural network design for internet packet 
classification is presented. Due to its modular design, it is very flexible 
and extendable. The neural classifier consists of simple blocks named 
ANN8. Each ANN8 has eight inputs and learns its 128 binary input space 
very fast. Increasing the number of rules, need more outputs for ANN8.
Here we consider a 4 rule classifier, but it could be extended without 
major change in results. 

Fig. 2. Modules with different input space 
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Modeling Uncertainty in Decision Support
Systems for Customer Call Center

Customer call centers are the preferred and prevalent way for many
companies to communicate with their customers. The customer call center industry
is thus vast and rapidly expanding in terms of both workforce and economic scope.
Most major companies have reengineered their communication with customers via
one or more call centers, either internally managed or outsourced. Call centers con-
stitutes a set of resources which enable the delivery of services via telephone, email
or web portal access. Customer inquiries contains different types of uncertainties
regarding the problem description, the recommended system solution and precise
cause study. We develop a decision support system for customer call centers using
soft computing techniques for automating, maintaining and maximizing the value of
the decision process. Fuzzy logic as soft computing technique is a methodology for
the representation and manipulation of imprecise and vague information. Bayesian
networks are formal graphical languages for the representation and communication
of decision scenarios requiring reasoning under uncertainty. We discuss decision sup-
port system scenarios under uncertainty using Bayesian networks and fuzzy logic.
Real customer requests as support cases contain cause action coherence under un-
certainty. We will model these types of uncertainty scenarios in a decision support
system selecting the appropriate technique of supporting the decision process.

Key words: Call centers, decision making, decision support systems, fuzzy sets,
bayesian networks, probabilities, uncertainties.

1 Customer Call Centers

Customer call centers constitutes a set of resources (personnel, computers,
telecommunication equipment) which enable the delivery of services via the
telephone, email or web portal access. Most call centers support Interactive
Voice Response (IVR) units including the possibilities of interactions. A cur-
rent trend is the extension of a call center into a contact center. The latter is
a call center in which the traditional phone service is enhanced by some ad-
ditional multimedia customer contact channels like fax, chat and web portal
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access. There already exist several academic surveys on call centers. Pinedo
et al. [1] describes basics of call center management, including some analyt-
ical models. Anupindi & Smythe [2] introduce the technology that enables
current and plausibly future call centers. Grossman et al. [3] and Mehrotra
[4] both short overviews of some OR challenges in call center research and
practice and Anton [5] provides a managerial survey of the past, present and
future of customer contact centers. Our survey deals with call centers having
a help desk functionality providing different agents characterize low-skilled,
highly-trained, single and multi-skilled agents via web portal access. A devel-
oped decision support system including different soft computing techniques
like fuzzy logic or Bayesian networks as graphical representation deals with
different types of uncertainty.

2 Bayesian networks

In this chapter we will first give a short introduction to the basic probabil-
ity calculus, which is needed for understanding the technology of Bayesian
networks. We define a function P : ε → [0, 1] to be a probability function if
it satisfies the Kolmogorov axioms. Let A and B be any two events such
that P (B) �= ∅. The conditional probability of A given B is defined by
P (A | B) = P (A ∩B)/P (B). Given the conditional probability we can intro-
duce the Bayes rule. The Bayes rule tells how the posterior replaces the prior
probability after receiving evidence, i.e. the observed data. Let A1, ..., An be
a partition of Ω and let B be an event, such that P (B) > 0 and P (Ai) > 0
for all i, i = 1, ..., n. Then we can express the Bayes rule as P (Ai | B) as

P (Ai | B) =
P (B | Ai)P (Ai)∑n
i=1 P (B | Ai)P (Ai)

. (1)

The use of probabilistic models based on directed acyclic graphs apply within
the field of artificial intelligence. Such models are known as Bayesian networks
[6]. Their development was motivated by the need to model the top-down
semantic and bottom-up perceptual combination of evidence in reading. The
capability for bidirectional inferences, combined with a rigorous probabilistic
foundation, were the reason for the appearance of Bayesian networks as a
method of choice for reasoning under uncertainty in artificial intelligence and
expert systems. A Bayesian network can be described as a graphical model
for probabilistic relationships among a set of variables. It is therefore a graph
in which the following holds:

• The nodes of the network represent a set of variables. The variables can
be described as propositional variables of interest.

• Pairs of the nodes are connected with a set of directed links. A link repre-
sents informational or causal dependencies among the variables.
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• Each node has a conditional probability table P (A | B1, ..., Bn) attached
that quantifies the effects that the parents B1, ..., Bn have on the node.

In fact graphical models describe the distribution of a large number of random
variables simultaneously. We can now represent a Bayesian network as n-
dimensional discrete random variable X1, ..., Xn. Each random variable Xk

has the range xk1, ..., xkmk
∈ �. We can define the conditional probability of

Xk given C in the following:

p(x1j1 , ..., xnjn
| C) = P (X1 = x1j1 , ..., Xn = xnjn

| C) (2)
with jk ∈ {1, ...,mk}, k ∈ {1, ..., n}

or in compact form as

p(x1, ..., xn | C) = P (X1 = x1, ..., Xn = xn | C). (3)

3 Decision support systems

A decision maker come to a decision by combining his own knowledge, ex-
perience and intuition with that available from other sources. Modeling this
behaviour lead to mathematical models which represent knowledge relevant to
decision making processes. A model describes the modelled object by means
of variables, which represent the elements of the object the model users want
to study. The basic function of a decision support system (DSS) is to support
the decision maker in finding values of decision variables, which will result in a
behaviour of the system that meets best with the decision maker’s preferences.
A DSS based on a model typically uses the following concepts visualized in
figure 1.

• Decision input x, controlled by the decision maker
• External decision input z, not controlled by the decision maker
• Outcomes y, used for measuring the consequences of inputs
• Model F , which represents the relations between decisions x and z, and

outcomes y

Fig. 1. Mathematical model to represent relations between decisions and outcomes
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DSS are used to realize computer based systems intended to help decision
makers to use data and models to identify and solve problems and to make
decisions. An important task in planning and design of a DSS is selecting the
appropriate technique of supporting the decision process.

4 Model uncertainty in decision support systems

As described in the section two we can develop Bayesian networks as graphi-
cal models handling with uncertainty [6]. The Bayesian network can be used
in DSS to reason about the propositions that are represented by the nodes.
Another approach is the integration of Fuzzy logic aspects. Fuzzy logic is a
methodology for the representation of imprecise and vague information [7].
One approach in this sense is creating a fuzzy rule based system. A fuzzy rule
based system has the advantages that it can represent domain knowledge in
the form of rules, similar to an expert system, but it can also reason with
uncertain information and perform numerical calculations.
We first develop a Bayesian network handling with uncertainty [8]. Specific
user cases include different types of uncertain information regarding the user
preference, the user problem description and the difficulty to detect precise
problem causes.
A Bayesian approach can model this uncertainty under probability perspec-
tives. For instance consider the following customer printing problem using
a HP Laserjet 4100 series printer. The customer access a support web page
having the problem scenario where printing is not possible from a specific soft-
ware application. A DSS collect different problem symptoms and recommend
in cooperation with additional user requested information troubleshooting
suggestions. For instance to verify that the occuring problem is not a network
printing problem, connect first the computer directly to the printer with a
parallel cable and try to print. Based on the customers information confirm
the local print successful so that the DSS next suggest to print the configu-
ration page and verify the protocol information that server and node name
match the names in the printer driver. This process scenario can built up in an
underlying Bayesian network to reason about the propositions represented by
the nodes. We have also developed a customer front end with integrated tree
control, search functionality and full text illustrated in the following figure 2.

4.1 DSS web front end

Utilisation of DSS web front end requires different system demands. To re-
ply customer requests the DSS offer different search scenarios while solving
the problem case. A navigation tree can support the customer while navigat-
ing through the solution space and restrict the number of calculated solutions
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Fig. 2. DSS customer front end

belong to a specific question. A new aspect considered in this DSS is the auto-
matic generation of following questions based on the entry customer problem
description. For instance the customer cannot print the system offer follow-
ing questions like cable problems to reach the appropriate solution stored in
the system database. Our aim is to recommend only one solution based on a
single customer problem description. The main system requirements from the
customer point of view are finding a solution as fast as possible and finding
good solutions by containing the relevant documents through offering ques-
tions answered by the customer. The leading part of the architecture is to
offer good and only a few solutions. The system is in an ongoing process of
learning from current queries to minimize the search time of same or similar
requests. If there is no solution offered by the system, there is the uncompli-
cated and quick way to contact a call center agent embedded via a specific
system interface. In this case, the agent can track previous questions answered
by the customer and carry on the next solution steps.
From the structural point of view we differentiate between questions, answers
and appropriate solutions. Determining the solution documents stored in the
database regarding primary and secondary documents. Primary documents
are extensions for which we store the solution navigation way, special keywords
regarding the solution, last call information or count of all calls concerning
this solution. Secondary documents contains no additional information like
keywords. The reason for this differentiation is easy to understand. In the
economy are monetary aspects fundamental. Rare specific solutions never or
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only few requested would increase the number of cases taking into consid-
eration. For instance different operating systems like HP UX 10.20, HP UX
11.00 or HP UX 11.11 implemented on customers workstations require dif-
ferent patches and different applications. It makes no sense to buil up all
possible combinations of cases in a DSS. Another reason is the possibility
that specific problems occur only on a specific system for one customer. We
can define a specific threshold ε as measurement for requested documents. If
the number of requested secondary solutions exceed this threshold, we can
take over this documents in the primary document list. The search template
is the central working space. The customer can place a new query enter in a
search field or traverse a navigation tree and scroll through different problem
areas like for instance general printers, next HP LaserJet printer family and
next to specific HP LaserJet printers like 5P, 5,L or 6L. Here the customer
can choose between different issues like ”What to do when print media does
not feed correctly into the HP LaserJet 6L printer family?” or ”Why am I
unable to print to my LaserJet printer when shelling from DOS (accessing
the DOS prompt within Windows)?”. The queries are associated with one or
more other questions or solutions as child nodes. A history function provide
an opportunity to return to a previous point of search within the navigation
tree. The search field allow the following entries: case identification, keywords,
phrases and complete questions(see figure 3). Based on the entry request the

Fig. 3. Information search by question or keywords

system offer the following questions answered by the customer. If the system
could not offer a solution the customer can start a secondary search. Now the
solution space contains only documents with less relevance which can cover
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also other problem areas (for instance operating system solutions in the case
of network printing problems).

4.2 Search and Indexing

To allow an efficient way to detect solution documents within the database
match with customer requests we must first identify document keywords. We
administrate the position of each keyword in the document as an integer array.
The indexed documents affect both solutions and cases. The keyword list can
increased through manual word elements specified by the system administra-
tor. Our DSS apply lookup lists as inverted index lists to identify keywords.
Lookup lists contain keywords in alphabetical order with a reference to the
document or case ID. We support lookup lists regarding the primary solutions
and secondary solutions as ccCases. The search algorithm can calculate first
primary and next secondary solutions.

4.3 Inference

We use Bayesian networks in our DSS to calculate new pobabilities when
achieve particular information. For instance let A have n states with P (A) =
(x1, ..., xn) and assume that we get the information e that A can only be
in state i or j. This statement expresses that all states except i and j are
impossible, so we can illustrate the probability distribution as P (A, e) =
(0, ..., 0, xi, 0, ..., 0, xj , 0, ..., 0). Assume we have a joint probability table P (U)
and e

¯
is the preceding finding (n-dimensional table of zeros and ones). Using

the chain rule for Bayesian networks [6], we can express the following

P (U, e) = ΠA∈UP (A | parents(A)) ·Πie¯i (4)

and for A ∈ U we have

P (A, e) =
ΣU\{A}P (U, e)

P (e)
. (5)

The inference implemented in our DSS is a recursive algorithm based on the
exact inference well known from Bayesian networks. The DSS Bayesian net-
work contains solutions as leaf nodes and questions for all other nodes. The
conditional probability tables of the solutions contains an additional column
expressing the utility values to determine the ongoing question order. The
evidence list hold question nodes and appropriate states, specific all ques-
tions respond before. The algorithmn calculate the probability of each node
in summarizing the probabilities of the states of all parent nodes. We can
understand our DSS as extension of standard Bayesian aprroaches regarding
the utility values. In the first step we calculate based on the occurrence of
question or solution nodes utility values (for questions) or probability values
for the solutions as in the standard Bayesian case. This scenario occurs only
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in the first call. In the recursive case the algorithm detect only question nodes
based on the recursive behavoir in calculating probabilities for parent nodes.
Declare states for the parent nodes and calculate the probability for certain
answers. We apply these probabilities to compute the utility value for the
original called node.

5 Conclusions

The Decision support system outlined above has been implemented and used
as experimental system for customer call centers handling hardware and soft-
ware requests for first and second level support cases. Most of the today’s
computer-based decision support has focused on the support for the behav-
ioral aspects of decision making and extensions of the analytical capabilities
of decision makers. We built up and model the uncertainty aspect occurring in
customer call center scenarios. Through the differentiation of primary and sec-
ondary solutions we increase the achievement while reducing the system com-
plexity having a look at more relevant solutions in the first step. The Bayesian
network was implemented through question and solution nodes as leaf nodes.
Further work will be done with other problem domains and the contempla-
tion of dependences between different problem domains, for instance hardware
components and their influence with specific customer applications. Another
consideration is to model possibilistic networks and learn global structures
based on the available customer cases.
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Abstract

This paper introduces a new application of the genetic algorithm for on-
line control application. It acts as a model free optimization technique that 
belongs to the class of reinforcement learning. Its concepts and structure is 
first investigated and then the ability of this algorithm is highlighted by an 
application in a real-time control (pole balancing) problem. The simulation 
results approves the better the merit of the proposed technique. 

1 Introduction

Most traditional optimization methods employed in science and enginee-
ring can be divided into two broad categories, direct and gradient search 
techniques [1]. The methods in the first category need only the objective 
function values while the techniques in the second category require only 
gradient information either exactly or numerically with the common cha-
racteristic that they all work on a point-by-point basis, i.e. they begin with 
an initial solution (usually supplied by the user) and a new solution is cal-
culated according to the steps of the algorithm. In general, direct search 
methods however require no gradient calculations, are computationally ex-
tensive and in most cases they work on some simple unimodal objective 
functions. On the other hand, gradient-based techniques require the know-
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ledge of gradients of functions and constraints and in most cases they suf-
fer from the problems of gradient calculations and local optimality. 

The Genetic Algorithm is in-depth different from the two major classes 
of classical calculus-based and enumerative techniques [3-8]. Because of 
its ease of implementation procedure, the GA has been successfully used 
as an optimization tool for a variety of optimization problems. Some of 
these applications are machine learning [9], delay estimation of sampled 
signals [10-11], robotic trajectory planning [12], fuzzy controllers [13-16], 
neural networks [17-20], linear transportable process [21], identification 
and control [22-23], NP-hard problems [24], job shop scheduling [25] and 
so on. The GA is good for ill-defined or multi-modal cost functions in 
which local optima are frequently observed. Since it tends to seek the glo-
bal optimum solution without getting trapped at local minima. 

The applications of GA for on-line problems are few in number, howe-
ver GA is useful and the volume of literature published on this subject, i.e. 
applications GA in complex, multivariable, and real-world problems, is 
remarkable. However the conventional form of GA implemented so far, as 
the authors know, could not be guaranteed to yield an on-line optimum so-
lution, and in fact oftentimes performed rather poorly. The modifications 
to the conventional GA proposed in this paper make the GA become (mo-
re) suitable for on-line problems. 

Since population plays a crucial role in natural evolution, the genetic al-
gorithms inspired by natural biologics relies on population. This factor, 
however produces some problems, whose optimal cases have not been 
specified yet. Some of these problems are as follows: 

1. Optimal population size, 
2. Efficient selection method of individuals in population, 
3. Efficient crossover operator, 
4. Efficient fitness function, 
5. Suitable function converting minimization problems to the maximization o-
nes,
6. Quality of using individual's age in the genetic process, 
7. How to use GA in problems with two sides of fitness functions that have 
both, positive and negative values. 
Many researchers have employed different ways to solve the above 

problems by proposing some corrections on the procedure of conventional 
GA, i.e., optimization of control parameters of GA [26], population size 
[27-29], fitness function [30], aging of individual [31], mutation operator 
[32-33], crossover operator [34-36], migration operator [37-38], and multi-
population [39-40]. 

Nevertheless, these corrections have been dependent on the problem, 
which GA is implemented. In other words, these corrections may have 
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good performances in some cases while have bad performances in other 
ones. Another restriction of the conventional GA, is that it acts in off-line 
situations and then could not been used for on-line applications. 

This paper introduces an On-line Genetic-Based Algorithm (OGA) as an 
emerging optimization technique for on-line signal processing. The re-
mainder of the paper is organized as follows. Section 2 fully describes the 
OGA. In Section 3; the application of OGA for control is then presented. 
To show the effectiveness of the proposed genetic algorithm, in section 4, 
through an example (cart-pole balancing problem) the performances of 
OGA is investigated. Finally, section 5 concludes the paper. 

2 THE OGA

The genetic algorithm was proposed as a novel algorithm mainly based on 
random search technique for optimization. The reason behind choosing 
GA name is the fact that the evolution in each biological process is based 
on heredity. Many researchers [26-40] showed deep interest in GA and 
improved its performance in various aspects such as convergence speed 
and properties. It is worth mentioning that these modifications make the 
GA improves its performance on some problems. Although some of these 
modifications caused the GA converge to the optimal points in less iterati-
on, the amount of computations at any iteration gets increased and further 
they are not well suited for each problem. 

To distinguish the proposed GA based method which will be fully dis-
cussed in this section with all other GA based techniques developed so far, 
we call all the existing GA methods by Conventional Genetic Algorithms 
(CGA). The CGA may be completely described by the following steps, 
[41]: 

1- Select a coding scheme to represent adjustable parameters, 
2- Initialize and evaluate a population of chromosomes, 
3- Repeat the following steps till stopping criteria are met, 
 3-1- Reproduction, 
 3-2- Crossover, 
 3-3- Mutation, 
 3-4- Population evaluation. 
The proposed genetic algorithm is inspired by unusual human recombi-

nation. To make it more clear suppose as the CGA, produce a population 
of individuals by stochastic selection at response space. After that all of 
individuals in population are evaluated by using a suitable fitness function, 
identify the best individual from present population and call it queen of the 
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population. Similar to the CGA, individuals are selected by a method as 
roulette wheel lemma to doing recombination [41]. Against in CGA that 
selected individuals are recombined two by two with each other, in propo-
ses GA, any selected individual is only recombined with the queen. It is vi-
sible in Figure 1. It shows one individual in each recombination process is 
queen while another individual is randomly selected from the population. 
After completion of queen with selected individuals, mutation operator 
will be accomplish and then, as CGA, all of individuals of population are 
evaluated by fitness function and maybe new queen are obtained. Then a-
gain above process will be repeated. 

(a) Crossover point selected at point a

(b) Crossover point selected at point b

(c) Crossover point selected at point c

Fig. 2.1. The proposed unusual human recombination 

Just as it is seeing, the striking difference between the propose GA with 
the CGA is that instead of combination of selected individuals in form of 
two by two in CGA, the selected individuals are only combined by present 
queen in propose GA. Of course by this change, our expectancy are that 
the propose GA is trapped fast in local response. For preventing of this oc-
currence, probability of doing the mutation operator, Pm, must bigger in 

compare to the CGA. The combination process that is shown in Fig. 2.1 is 
investigated precisely. Just as it is seeing in the figure, all of produced in-
dividuals are really queen that a part of them are changed. In other word, 
new individuals or chromosomes present some individual is queens that 
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inherit some genes from main queen. In another word, all of combined in-
dividuals can consider as Fig. 2.2. 

(a)

(b)

(c)

Fig. 2.2. The conversion procedure of queen individual into a new individual 

After this, as done in CGA, to enter new independent genes to the popu-
lation, the mutation operator is performed, see Fig. 2.3.  

(a)

(b)

(c)

Fig. 2.3. After Mutation 

Eventaullay all the produced individuals at the end of one generation 
cycle will quite resemble the queens, see Fig. 2.4. 

Fig. 2.4. Production of new individuals from the queen 

By a close look at the above figures, it is clear that the present queen 
will change, and the final individual at the end of a generation cycle beco-
mes a mutated form of the present queen, see Fig. 2.5.  

Fig. 2.5. Process of Production new individuals from Queen
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This is the main idea of the OGA. At the end of each generation 
cycle, all mutated queen will be evaluated and the best of them will 
be compared with the present queen. Now if the best mutated queen 
outperformes the present queen, it will be choosen as the new queen 
for the next generation cycle. If the size of population is reduced to 
one, the on-line genetic algorithm is made The OGA is summarized 
below.

 1- Select a coding scheme to represent adjustable parameters 
 2- Initiate a chromosome and evaluate its performance and choose it 
as the queen 
 3- Repeat the following steps until stopping criteria are met 
  3-1- Create a candidate queen by mutation of the present queen  
  3-2- Evaluate the candidate queen 

3-3- Choose it as the queen of the next generation cycle if it out-
performs the old one.

3 The Proposed OGA- Based Control

In general, as shown if Fig. 3.1 the structure of the adaptive closed-loop 
control system has two parts. One part contains model reference by input-

output information (r,yd), where yd is the desired output with respect to re-
ference nput signal r, and the other part contains plant and controller. The 
second part must behave like the reference model.  

Fig. 3.1. The Adaptive Control Scheme 

By modifying the general structure of adaptive control system, the pro-
posed OGA based adaptive controller is given in Fig. 3.2. The OGA tunes 
the controller. The top part represents the reference model with the input-

output pairs of (r,yd). The other bottom part also is made up of two parts. 
One part performs the control task and the other performs the prediction 
task. The controller is tuned  so that the output signal yk tracks the desired 
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output, d
ky and the predictor will tune the controller. Below these two tasks 

are fully explained. 

Fig. 3.2. The proposed control process related to OGA

3.1 The Control Task

The adaptive controller, which is aimed to be designed so that the overall 
closed-loop system acts like the reference model, can be structured by 
classical techniques such as PID, pole-placement, LQG or by intelligent 
techniques such as neural networks, Fuzzy networks, Neuro-Fuzzy net-
works. After choosing a suitable structure for the controller, its adjustable 
parameters will be tuned by the OGA. In the first step, the OGA will ran-
domly select parameters of the controller and consider it as a queen. Then, 
the motion of the plant will begin at some arbitrary initial state X0, and 

continue to a specified period of time, i.e. T seconds. During this period of 
time, the tracking errors, differences between the outputs of the plant and 
those of the reference model, will be collected in the Collection-Box. This 
box produces the input-output training data of the predictor. After training 
of the predictor, its output represents the average of tracking errors of the 

next  seconds, ê , (note that is a random number in (0,T] ). At the end 

of  seconds, a new queen candidate will be produced and the plant moves 
with this new controller, for the next  seconds. After some iterations, if 
the total average errors between outputs of the plant and the reference mo-

del e  becomes less than that of of the predictor, ê , the new queen candi-
date will be selected for the next T- seconds. Otherwise, the old queen will 
not be replaced for the next cycle. Note that only in the present T seconds, 
information is collected in the Collection-Box and delivered to the predic-
tor, while in the next  seconds, performance of the new queen candidate 
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will be evaluated. It is evident that the controller’s parameters are tuned 
with a policy of reward and punishment. 

3.2 The Prediction Task

The goal of designing a predictor is to estimate an average tracking error 
of the current  seconds by using the data collected during the last T se-
conds, ( T ). Note that the tuning of the controller is an individually ori-
ented based procedure; it means that the predictor sees whether the queen 
has to be kept in servicefor the next cycle or it must be replaced with the 
queen candidate of the present -seconds. The predictor estimates the ex-
pected value of the tracking errors for the present  seconds by using in-
formation obtained from the queen controller in the previous  seconds, 
while the candidate queen controller remains unchanged during this period 
of time. Now, if the mean of tracking errors produced by the candidate 
queen controller gets less than what the predictor has been estimated, then 
the queen candidate controller replaces the last queen controller, otherwise 
the candidate queen controller fails. This means that the last queen control-
ler represents the winner and remains active. 

Note that the process of training and that of the of predictor can be done 
in parallel. In other word, two independent processors implement simulta-
neously the control and predictor tasks. Neural networks, fuzzy logic or 
neuro-fuzzy structures may represent the structure of the predictor. This 
paper uses MLP based neural networks to represent the predictor. Initially, 
the parameters of predictor are chosen randomly. Thus, it is necessary to 
train the NN during the control process. For purpose of training we are re-
quired to have a desired set of input/output data pairs. This can be done as 
follows.

Input-Output Information for Predictor training: Suppose that 
the plant affected by the queen controller from time interval to to to +T; 
where T is a given duration time of movement of the plant. Now, with a 
collection of tracking errors at the interval [to , to +T ] at the Collection-
Box, the input-output training data, will be collected. If we can arrange th 
collected data so that the predictor learns the average of the next section 
through information gathered from the present section, the input-output 
training data will be made. For example, assume that the predictor uses 
four previous successive errors to estimate the next error. Then, the neural 
networks will have four inputs and one output. Divide the time T into four 
subsections. Each of these sections is in turn divided into four other sub-
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sections as shown in Fig. 3.3. Note that if the number of predictor inputs 
were n, we would have n subsections in each partitioning. 

Fig. 3.3. The dividing procedure for a time interval of length T 

If the expected value of errors for the time interval 'B' represents the de-
sired output of the predictor, then we have to consider time interval 'A' 
whose length is exactly the same as that of the time interval 'B' as a region, 
in which the training data of the predictor are chosen. To do so, the subsec-
tion 'A' is divided into four parts and the expected values of these four 
parts make the inputs of the predictor. Also, if we want the expected value 
of errors at time interval 'd' be the desired output of the predictor, then the 
time interval 'c' must be divided into four subsections and the expected va-
lues of these subsections are to be considered as the inputs of the predictor. 
Consequently, by repeating this procedure we can end up with a set of in-
put-output data pairs to train the predictor. 

During the present T seconds that the predictor learns to predict the ex-
pected value of tracking errors, the plant can independently operates with 
the new candidate queen controller. In other words, we have results of both 
the predictor and the new candidate queen controller in order to evaluate 
the performance of the last candidate queen controller. For instance, if we 
want the predictor to estimate the expected value of errors at the present T-
second time inerval, the inputs of the predictor must be the expected values 
of errors at four subsections just before this time interval, as shown in Fig. 
3.4.

Fig. 3.4.. Inputs and Output of the predictor for T
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4 Control of Cart-Pole balancing system

In this section the well-known classical pole-balancing problem originally 
introduced by [42-43] is simulated and served to evaluate the OGA per-
formance. This problem was also simulated by Berenji [42], Lin and Lee 
[43]. Since this problem shows the system operation in concrete form and 
can be used as benchmark to compare the performance of OGA with that 
of the Berenji's method, it will be described in some detail in this section. 

As shown in Fig. 4.1, a motor driven cart with a vertical pole attached is 
placed on a short rail track. The cart is free to move to its right or left but 
not forward or backward and the pole has only one degree of freedom of 
rotating about the hinge pivot point. The primary controller's task is to 
keep the pole balanced vertically as long as possible by moving the cart to 
its both right and left with impulsive pushes without moving the cart bey-
ond the rail track boundaries. The equations of motion are determined by 
the parameters: pole length and mass, cart mass, friction in the pole-cart 
hinge, friction between cart and track, force of gravity, impulsive driven 
force applied to the cart, and simulation time step, and are modeled by: 

Fig. 4.1. The cart-pole balancing system 
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where

 1) g = -9.8m/s2, acceleration due to gravity. 
 2) m = 1.1 kg, combined mass of the pole and the cart. 
 3) mp = 0.1 kg, mass of the pole. 
 4) l = 0.5 m, half-pole length. 
 5) c = 0.0005, coefficient of friction of the cart on the track. 

 6) p = 0.000002, coefficient of friction of the pole on the cart. 
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For control of a system, at first we need to choose kind of inputs that 
must feed to the controller. In the cart-pole problem, there are four states ,

, x and x . On the other hand, the cart-pole has only one input, and then 
with this input we can control only or x. In this experiment, we want to 
control the angle of pole,  , then we cannot control the position of the 
cart. Therefore, the position of the cart isn’t important and it won’t have 
any effect on the angle of cart. But, by noting to the dynamics of the cart-

pole system, we can see that the velocity of the cart, x , affects the angle of 

pole. Therefore, we can choose the inputs of the controller as ,  and x .
There are some constraints on the variables of the cart-pole system as, 

“ 12 12 , 2.4m x 2.4m” and “ 20N u 20N” and assume the dyna-
mic equations of the cart-pole balancing system are not known. Furthermo-
re, if the cart is in x 2.4 m , it is set to x=0.

It is remarkable to note that there is no information about parameters of 
the system. Practically, the system runs, till a failure occurs. The system 
fails and receives a penalty signal of -1 when the pole falls down to the 
vertical bound ( 12  is used here). On the other hand, to design the cont-
roller with the OGA method, we assume that the dynamic equations of sys-
tem are unknown. 

Author use the multilayer feedforward neural networks structure for the 

controller. The inputs of this controller are ,  and x  and the neural net-
work has 8 neurons in the hidden layer with hyperbolic tangent activation 
functions and one linear neuron in the output layer. The goal here is to 
show how the controller can produce a sequence of forces with proper 
magnitudes in such a way that it can balance the pole as long as possible 
without failure. For the control of cart-pole system, the OGA based control 
strategy that mentioned in section 3 is applied with the adaptive structure 
in Fig. 4.2. After some failures of cart-pole system, it became balance and 
there was not any new queen candidate to win.  

The vertical angle of the pole and force to the cart (output of controller) 
are shown in Fig. 4.3 and Fig. 4.4, respectively. Easily observed, the pro-
posed controller could balance the pole. Therefore, the system learned to 
solve the complex cart-pole balancing problem with no knowledge of the 
dynamics of the system (the system outputs must be available at each time 
instant). From the simulation results, one can easily judge the merit of the 
proposed OGA.
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Fig. 4.2. Neural networks control process for Cart-Pole system 

Fig. 4.3. Control effort r 

Fig. 4.4. Trajectory of  the Angle of Pole 

N. Seifipour and M.B. Menhaj782



6 Conclusion

This papers introduces a new genetic algorithm. This algorithm is called 
On-line Genetic Algorithms (OGA) that can be used to solve problems 
such as optimization and real time control. By this technique, without any 
knowledge about dynamic equations of the plant, the controller can be 
trained so that the closed-loop system tracks a desired trajectory. 
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Abstract. This paper is the first step of a multi-sensor fusion system for control
of dept of desflurane anesthesia. In this study, depth of desflurane anesthesia was
examined through cardiovascular-based an adaptive neuro-fuzzy system according
to changing in the blood pressure and heart rate taken from the patient. The second
step, in the next paper will be based on auditory evoked responses. The system
designed for anesthetic agent, desflurane, because it is very popular and among the
first choices of anesthesiologist for inhalation anesthesia. Intraoperative awareness
resulting from inadequate anesthetic is a rare but serious complication during general
anesthesia. In order to prevent possible intraoperative awareness, anesthesiologists
usually apply anesthetics at level much above the minimal necessary. Anesthetic
overdosing prolongs the recovery period, which may cause severe hemodynamic de-
pression and a life-threatening scenario in critically ill patients. To increase patient
safety and comfort is one of the most important potential benefits of the system.
The second important aim of the study is to relase the anesthesiologist so that he
or she can devote attention to other tasks that can’t yet be adequately automated.
Also, to make the optimum in the area of anesthetic agent and to economize by
lessening the costs of an operation are included the benefits which are coming with
this system.

1 Introduction

Fuzzy-based control systems have recently found various applications in dif-
ferent fields ranging from consumer electronics and automotive systems to
process engineering. Since the 1980s new techniques have appeared from which
fuzzy-based has been applied extensively in medical systems. Although medi-
cine is a science which isn’t related to control engineering, it is being affected
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to such an extent that it is now possible to use available control techniques
for on-line devices, especially during surgical operations and in intensive care
units [1]. Nevertheless, no standard methods exist for transforming human
experience into the rule base of the fuzzy inference control system. Beside
this the shape of the membership functions associated with the linguistic ex-
pressions are determined by trial and error methods so that the performance
index is optimised.

The depth control of anesthesia is very important problem in anesthesia.
Since depth of anesthesia (DoA) is a very challenging area with no direct
measurements being available. Many models have been developed to formu-
late control strategies for depth control of anesthesia under general anesthesia.
Some of these models are used to describe the relationship between depth of
anesthesia and clinical signs such as blood pressure and heart rate. Some
are used for identifying the EEG process in obtaining derived parameters
and evaluating change with anesthetic administration. Howewer, despite these
advancements, anesthesiologists still rely heavily on training and experience
when determining anetshetic dosage during surgical operations. Only a robust
control system built on a more accurate model of consciousness under anes-
thesia may offer an alternative to the existing paradigm of anaesthesiology
practices.

2 Adaptive Neuro-Fuzzy System
for Cardiovascular Based DoA Control

ANFIS, as a neuro-fuzzy method, combines fuzzy logic and neural nets into
five-layer adaptive network architecture. Using a hybrid learning procedure,
ANFIS can learn an input-output mapping based on human knowledge in the
form of if-then rules. ANFIS performs the identification of an input-output
mapping, available in the form of a set of N input-output examples, using a
fuzzy architecture, inspired by the Takagi-Sugeno approach.

To build a derived fuzzy-knowledge model based on ANFIS for estimating
DoA, model structure and parameter are required. Structure tuning concerns
the structure of the rules: input and output variables selection variable uni-
verse of discourse partition, linguistic labels determination and type of logical
operation to compose each rule. Parameter tuning mainly concerns the fine
adjustment of the position of all membership functions, together with their
shape, controlled by premise parameters and the Takagi-Sugeno type.

3 Pharmacological Profile of Desflurane Anesthetic

This volatile anesthetic is a nonflammable fluorinated methyl ethyl ether. It
has a vapor pressure of 673 mm Mercury at 20 degree Celsius and boils at
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23.5 degree Celsius. The blood/gas coefficient is 0.42 and the MAC in 100
percent oxygen is 6.0 and in 60 percent nitrous oxide 2.8.

Unlike other inhalation anesthetics, desflurane cannot be delivered by stan-
dard vaporizers. It requires the use of electrically heated vaporizers. Desflurane
is very resistant to degradation by soda lime and can therefore be used during
low flow or closed system anesthesia. Desflurane produces a dose-dependent
reduction in arterial blood pressure due to peripheral vasodilatation. It might
as well cause an increase in heart rate. It should therefore not be used in pa-
tients with aortic valve stenosis. It does not sensitize the heart to arrhythmias
or cause coronary artery steal syndrome. Like other inhalation anesthetics, it
can trigger malignant hyperthermia.

Induction of anesthesia can be achieved by using 6 to 10 percent desflurane
in air or in oxygen, or by using 5 to 8 percent desflurane in 65 percent nitrous
oxide. Desflurane may cause coughing and excitation during induction and
should therefore rather not be used without intravenous anesthetics. Mainte-
nance of anesthesia can be achieved with 5 to 7 percent desflurane. The low
tissue solubility of desflurane results in rapid elimination and awakening.

4 Patients and Application

The study was approved by the Hospital Ethics Committee. In Akdeniz Uni-
versity, in the operating room of the Emergency and Trauma Hospital, for
eight months, data were collected from the ASA I-II patients, who underwent
an arthroscopy operation, and who were administered desflurane. Data gath-
ered from 25 patients. 25 operations were recorded and 20 of them (operation
time under 2 hours) were evaluated for the system. The data base was con-
structed of the records from a total of 20 patients who were asked permission
in advance of the operation and were informed about the study. During the
operation every five minutes the blood pressure, the heart rate, and the rate
of anesthetic agent were recorded. 20 patients were studied, 8 females and 12
males, mean age 48.1 (range 17–69) yr, mean weight 80.7 (54–110) kg, mean
height 161.3 (154–194) cm.

A system based on fuzzy logic provides good control algorithms with
self-learning capabilities, with measurement inference based on cardiovascu-
lar indicators, changes in blood pressure (systolic arterial pressure-BP) and
heart rate (HR). Neuro-fuzzy methods facilitate knowledge acquisition, re-
finement, and interpretation for building the fuzzy inference system, such as
the adaptive-network-based fuzzy inference system (ANFIS). An input-output
map, which consists 350 lines, is produced from this gathered data. Using a
hybrid learning procedure, ANFIS performed an input-output mapping based
on human knowledge in the form of if-then rules.

The neuro-fuzzy training process starts with an initial fuzzy logic system.
The neuro-fuzzy learning can either start from the default rules. The advan-
tage of coming up with such initial rules is that it enhances the performance
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Fig. 1. Neuro-Fuzzy System Training for Membership Functions

of the learning process. Every piece of information that you can put in the
initial system out of experience the neuro-fuzzy algorithm cannot extract from
training data. This is a very important fact since poor data quality is the rea-
son why neural nets most often fail to deliver good solutions. Figure 1 and 2
shows structure of neuro-fuzzy systems.

Fig. 2. Neuro-Fuzzy System Structure

In the next step, we selected the parts of the system that the system
may modify. This is a major advantage over learning in a neural net, since
it lets us control the learning process. Especially when we use neuro-fuzzy to
optimize an existing fuzzy logic system, we can exclude parts of the system
from learning. For example, if we are confident that parts of the system already
work fine with the initial fuzzy logic system, exclude them from learning
and training becomes much quicker. Also, if we have data sets representing
different aspects of the system performance, we may direct the system to learn
different parts of the system from different data sets. If we have defined rules
from experience as part of your initial fuzzy logic system, we can also open
them for learning. This is useful if we are not completely confident that the
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rules or membership functions we defined are correct. The learning method
defines how the errors between the results computed by the current fuzzy
logic systems and the desired output values shall modify the rules and the
membership functions of the fuzzy logic system. To optimize performance, we
can parameterize the learning method. Two parameters are important. One is
the learn rate for rules, the other one the learn rate for membership functions.
These parameters define how much the neuro-fuzzy algorithm modifies a rule
or a membership function in each learning step.

In addition to automatic generation of fuzzy logic systems (membership
functions and rule base using sample data, neuro-fuzzy can do more. To tune
systems while they are running, either to increase their performance or to
cope with changing parameters in the environment, we may design adaptive
solutions with Neuro-fuzzy. If we use fuzzy logic, we define the system behav-
ior explicitly. With neuro-fuzzy, it is possible to define it implicitly through
examples, but with neuro-fuzzy adaptive systems, we only tell it what the goal
of its behaviour is. The neuro-fuzzy adaptive strategy will now optimize the
running controller to achieve the goals set. The membership functions and the
rule base of the neuro-fuzzy system were checked under the inspection of spe-
cialists by abiding by the data base information. The system was designed for
anesthetic agent, desflurane, which is among the first choices of anesthesiolo-
gist for inhalation anesthesia. Because a biological process like anesthesia has
a nonlinear, time-varying structure and time-varying parameters, modeling it
suggests the use of rule-based controllers like neuro-fuzzy controllers.

Fuzzy rule-based systems include many aspects of fuzzified values, such
as the rules antecedents and consequence. The rules structure are usually of
the form of if.. then. In its basic form this type of the control is equivalent
linguistically to a PI controller, and depending on the output, whether it is
incremental or absolute, the controller is known as PI or PD respectively. An
example of such a rule is if the blood pressure is above the target and decreasing
slowly, then reduce the drug infusion. A more sophisticated structure is a PID,
where the input, its derivative, and integral are considered as three inputs. The
rules are checked and composed either from the expert (anesthesiologist) or
crafted by hand depending on the experience of the researcher. This includes
tuning the membership functions in terms of the shape, width and position.
This type of controller is widely used and is the most applicable control type
in anesthesia [13, 14, 15, 16, 17].

Blood pressure values always contrast to depth of anesthesia. If the depth
of anesthesia in deep blood pressure goes down. In other case, it goes up[10,
11]. Depth of anaestesia is controlled by using a mixture of drugs that are
injected intravenously and inhaled gases. Desfluorane is widely used, most
often in a mixture of 0 to 10 percent by volume of desflurane in oxygen and/or
nitrous oxide. Figure 3 shows the system block diagram. System has two inputs
and one output.

We used fuzzy TECH 5.52 MP Explorer and MPLAB 6.01 programs for
this application. MPLAB is a windows based application which contains a
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Fig. 3. System block diagram

full featured editor, editor, emulator and simulator operating modes and a
project manager. MPLAB allows us to edit our source files and one touch
assemble and download to PIC16/17. But designer have to write main program
byself. Collected data map firstly were used to training process to produce
membership functions for blood pressure, hearth rate and anesthetics gas out.
Figure 4, 5, and 6 illustrates these trained membership functions. Linguistic
variable ranges on the functions were determined by systems neuro-learning
part, from the operations data which were collected by anesthesiologist.

Fig. 4. The MBF of “Blood Pressure”

Fig. 5. The MBF of “Heart Rate”
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Fig. 6. The MBF of “Rate of Anesth”

Rule base includes 17 rules. Figure 7 shows the system rule base. Some of
the rules are eliminated by neuro- fuzzy system. Eliminated rules are related
to conditions which never happened. Input variable ranges imply 16 bits for
65536 steps.

Fig. 7. The system rule base
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5 Simulation and Simulation Results

In order to test the system, simulation studies have to be carried out to
validate the system and also to test its reliability. Therefore a simulator envi-
ronment was developed which consists one laptop computer and one patient
emulator device. In order to provide a mobile simulation system the complete
system has also been implemented on a laptop computer which facilitates a
multi-window environment providing graphical presentations of the cardiovas-
cular system, the depth of anesthesia and for the patient data.

Results are reported for different types of simulations runs. These simula-
tion results were produced by real recorded operations data. Figure 8 iIllus-
trates BP, HR DoA values variation that were occurred in every five minutes
during operation and Figure 9, shows a sensitive the oldest patient (66 yrs)
operations results. Figure 10 shows nominal patient who was in middle age (33
yrs), operations results. Figure 11 shows a resistive the youngest patient op-
eration results. All data which were used during simulation process specially,
were not included the neuro-fuzzy system training map.

Fig. 8. Real records during the oldest patient operation

Fig. 9. Anesthetic out for the oldest patient
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Fig. 10. Anesthetic out for the nominal patient

Fig. 11. Anesthetic out for the youngest patient

6 Conclusion

A closed-loop adaptive neuro-fuzzy control system for control of depth of des-
flurane anesthesia has been developed based on the cardiovascular system.
The system has been validated different patients sensitivities. The simulation
results show that the system effectively maintains the patient at the clinically
acceptable anesthetic depth.. Also, the results were found quite good and ac-
ceptable by specialist from the Akdeniz University Emergency and Trauma
Hospital Department of Anesthesia and Reanimation. If the desflurane anes-
thesia adaptive neuro-fuzzy control system does not seem to ensure the pa-
tient’s safety as an equipment which works independently without the anes-
thesiologist, it can easily be used as a monitor which helps keep track of depth
of anesthesia. The system is to relase the anesthesiologist so that he or she
can devote attention to other tasks that can’t yet be adequately automated.
Our future work is in DoA control will involve more advanced signal process-
ing and improved mathematical modeling methods. We will try to estimate
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DOA from electroencephalogram, midlatency auditory evoked potentials and
electrocardiogram.
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Abstract.  Therapeutic ultrasound is an emerging field with many medical applications. 
High intensity focused ultrasound provides the ability to localize the deposition of acoustic 
energy within the body, which can cause tissue necrosis and hemostasis. The ultrasound 
applied in therapy is usually ranged from 1MHz to 1000MHz. Even the least vibration of 
1MHz would be as keen as a sharp knife to cut off steels, if we reinforce its amplitude. 
However, the output of the ultrasound used in treating people must be decreased 
substantially. A specific increase in temperature is necessary to achieve a temperature-
mediated therapeutic impact by ultrasound in rehabilitation. On a large scale ultrasound 
intensity determines the temperature level on the tissue. High intensity causes a marked 
mechanical peak loading of the tissue. This may even lead to tissue damage. The extreme 
pressure differences developing as a consequence of exposure to ultrasound may cause 
cavitations in the tissues. Opinions in the literature on the duration of treatment also vary. 
The duration of treatment depends on the size of the body area to be treated. Lehmann fixes 
the maximum duration of treatment at 15 minutes. This refers to a treated area of 75-100 
cm2 which he considers the maximum area that can reasonably be treated. New medical 
applications have required advances in biomedical equipment design and advances in 
numerical and experimental studies of the interaction of sound with biological tissues and 
fluids.  In this study a fuzzy logic control system will be explained which was developed in 
order to obtain optimum ultrasound intensity and determine optimum treatment time during 
ultrasound therapy (UT). This system also increases patient safety and comfort during UT. 

1 Introduction
 Therapeutic ultrasound is a common mode of treatment in rehabilitation and 
physiotherapy. Ultrasound refers to mechanical vibrations like sound waves but 
with a frequency beyond the range of the human hearing. Typical frequencies used 
in rehabilitation range from 0.8 to 3 Mhz. The absorption of such waves by the 
human body results in molecular oscillatory movements. This energy transfer is 
converted into heat proportional to the intensity of the ultrasound. If this heat is not 
dissipated by physiological means, a localized increase in temperature will occur 
and thermal therapeutic effects may arise. If the dissipation of heat equals the 
generation of it, any effects is said to be non-thermal. It is believed that such effect 
could be achieved by low intensities or a pulsed output of ultrasonic energy[ 4,7]. 
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 The thermal effects are best known by research and thought to be more 
controllable than the non-thermal effects, as they can in fact be measured in a 
rather easy way. Lehmann and colleagues investigated this matter extensively [8]. 
Although these experiments did not reveal practical guidelines for present 
rehabilitation protocols and ultrasound equipment, it was not until the early 1990s 
that new and more appropriate clinical research was carried out. 
  
 From former investigations it is known that specific rises in temperature are 
needed to obtain a beneficial influence on human tissue. According to Castel and 
Lehmann each increase of tissue temperature by 1 oC will result in a 13% increase 
of the metabolic rate. A moderate heating of 2-3 oC should reduce muscle spasms, 
pain, chronic inflammation and promote blood flow, although randomized trials do 
not support the clinical relevance of such estimated heating. A strong heating 
decreases the viscoelastic properties of callagenous tissue. According to Forrest 
therapeutic thermal effects of ultrasound can only be expected when tissue 
temperature exceeds 40oC. 
  
 To obtain such temperatures in deeper tissue layers a rehabilitation specialist or 
physiotherapist has a variety of technical ultrasound parameters at his or her 
disposal like intensity, ultrasound frequency, mode of energy transfer, a static or 
dynamic treatment protocol and the option of the treatment duration. 

2 Physical Foundation of Ultrasound

 The unit of the rate of ultrasound is Hertz and that of the intensity (the density 
of the output power) of ultrasound is Watt, while the action strength is W/cm2, i.e. 
one unit of output intensity working on one square centimeter. We have to set for 
different intensities for different purposes, or else powerful ultrasound could hurt 
very much like a keen knife. However, the kind of ultrasound is not so easy for 
common people to touch with.  

 There are two kinds of waveforms that common ultrasound devices provide. 
One is continuous waveform and the other, pulses. The difference between the two 
is that the pulse waveform, unlike the continuous one having heat efficacy, 
produces more powerful output suddenly in every circle. It is better for us to treat 
certain abnormalities. Hence, we use it on the field of therapy rather than the 
others. On the other hand, heat helps beautification so much that we prefer the 
continuous waveform. Figure 1 shows the nature of ultrasound.

2.1 The rate of ultrasound

 The rate of ultrasound means the numbers of vibration occurred in a second. 
Hertz is the unit of measurement. 1000 wave circles occurring in one second 
means 1000Hz, 10000 wave circles, 10000Hz. As to ultrasound over 20000Hz, it 
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is not to be heard by human beings. At present, the ultrasound devices for both 
medicine and beauty are ranged from 1MHz to 5MHz or so.  

Figure.1. Elastic waves in spring and a liquid (Enraf Nonius-Ultrasound Therapy, 1996) 

2.2 The intensity of ultrasound

 The intensity of ultrasound is measured as Watt, while the action strength is 
W/cm2, i.e. one unit of output intensity working on one square centimeter. Passed 
through the safe test, the safe standard of continuous waveform is 1W/cm2 and 
pulse waveform, 240mW/cm2. Cleaning equipment uses 10 to 100W/cm2. 
Continuous ultrasound of 0.5~3 W/cm2 affects the transmission of the peripheral 
nerves obviously. 5~10 minutes 2~3 W/cm2 causes the axis cylinder of the sciatic 
nerve to bulge up and then block the nervous pulses. The values mentioned have 
been found empirically over the years, an experience gained mainly with 
ultrasound frequencies between 800 kHz and 1 MHz. On theoretic grounds it is 
assumed that the therapeutic intensity is lower at 3 MHz than at 1 MHz. This 
conclusion is based mainly on the greater absorption and greater mechanical effect 
of ultrasound at 3 MHz [6]. 

 In any case during treatment the patient may not feel unpleasant sensations 
amounting to pain. A mild sensation of excitation is permissible. If as a result of 
treatment, headache, vertigo, fatigue or other reactions develop, subsequent 
treatment should be given at a lower intensity. With continuous and pulsed 
ultrasound at high intensity a sensation of heat may be felt. Only a mild sensation 

799Ultrasound Intensity and Treatment Time Control with Fuzzy Logic



of warmth is acceptable. As to beautification, the action strength must be much 
lesser, for not over-stimulating the tissues. On the face, the output is 0.5W/cm2, to 
muscles, 1~2W/cm2. That is why almost all beauty devices limit the highest output. 
The higher output is used on the body or to relieve the sore and pain of the 
muscles, the lower output, to the facial beautification. The output level of action 
strength is displayed as following:  

1. Low output <0.3W/cm2

2. Middle output 0.3~1.2W/cm2  

3. High output 1.2~3W/cm2  

 For pulsed ultrasound the mean value must be considered. For instance an 
intensity of 1 W/cm2 in position 1:5 pulsed ultrasound is equivalent to 0.2 W/cm2

continuous ultrasound. However the peak intensity of the pulse must also be 
considered because of the mechanical effect [3]. 

2.3 Duration of Treatment

 Opinions in the literature on the duration of treatment also vary. The duration 
of treatment depends on the size of the body area to be treated. One who 
experienced ultrasound may feel nothing but a little warm. Nevertheless, we can 
not neglect the long-time stimulation, for it causes the dermis tissue fatigued. 
Generally speaking, the maximum time is suggested not over 15 minutes. Lehmann 
fixes the maximum duration of treatment at 15 minutes. This refers to a treated 
area of 75-100 cm2, which he considers the maximum area that can reasonably be 
treated [8]. Naturally the effective radiating area of the treatment head is of 
importance in this respect. Areas no larger than the treatment head are in general 
treated for a few minutes. On the body, 10-15 minutes is suitable, on face, about 
10. As to the guys over weight, prolonging few minutes would be fine. The time 
between two treatments is better over than 5 hours [1,2].  

2.4 The transmission of ultrasound

 Ultrasound can not transmit in the air. If the treatment head does not 
completely contact with the skin, the result would not meet your expectation. 
Researches display, the transmission proportion of ultrasound in the air is 0, about 
50% in general water, 60% in distilled water, near 70% in glue matter, and above 
70% in special gel [10,11]. Besides, another efficacy of ultrasound is to promote 
the skin absorbing outside matters, no matter nutrition or dirt. Hence, the 
transmission is worthy to be noticed. Except cleaning your skin before using 
ultrasound device, we also suggested you use special gels or creams (they must be 
certified by hygiene organization) in case side effects. 
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2.5 Absorption and penetration of ultrasound

 As the ultrasound energy penetrates into the body tissues, biologic effects can 
be expected to occur only if the energy is absorbed by the tissues. Due to the 
absorption the intensity of the sound waves will decrease as they penetrate further 
in to the tissues. The absorption of ultrasound energy by biologic tissues varies. 
The absorption coefficient (a) is used as a measure of the absorption in various 
tissues. The absorption is frequency-dependent. For low frequencies absorption in 
the tissues is lower than for high frequencies[5,9]. This relationship is linear for all 
tissues except bone between 1 and 10 MHz. Therefore there is always a link 
between the frequency, absorption and action at depth of ultrasound. In effect the 
absorption coefficient together with reflection determines the spread of ultrasound 
in the body. For ultrasound, among other things, the following formula applies. 
This formula is true for ultrasound consisting of longitudinal waves with 
perpendicular incidence on homogeneous tissues; 

axeIxI −= .)(
0                                          (1) 

Where; 

I(x) = the intensity in W/cm2 at a depth x in cm 

I0 = the intensity in W/cm2 at the surface of the body, but in the body tissue 

e = 2,7 (base of natural logorithms) 

a = absorption coefficient (cm-1) 

From this formula it emerges that the intensity of ultrasound at a certain depth 
depends on the absorption coefficient (a). 

3 Fuzzy Logic Ultrasound Intensity and Treatment Time
Control System for UT

 This system has been developed to obtain optimum therapy conditions for 
physiotherapy patients. A fuzzy logic control system determines the ultrasound 
intensity (UI) and treatment time related with the surface of treatment area, 
position of the affected tissue, nature and thickness of surrounding tissues and 
absorption of surrounding tissues. Fig. 1 shows the system structure. 

 A low-cost effectual ultrasound therapy device (LCUTD) was designed two 
years ago. This control system has been applied the LCUTD. Test results are 
evaluated by Akdeniz University Hospital Physiotherapy Department’s 
physiotherapy specialists. It shows that the control unit brings very good solutions 
under very specific patient data inputs. 

801Ultrasound Intensity and Treatment Time Control with Fuzzy Logic



 Membership functions and rule bases were determined by physiotherapy 
specialist. They used their experience and knowledge about UT. Fig. 2, 3, 4, 5,  
shows input membership functions. Fig. 6 is UI output membership function for 
rule base 1, but also it is input membership function for rule base 2. Finally Fig.7 
shows the treatment time membership function. 

 The rule base contains the control strategy of a fuzzy logic system. The rules' 
'if' part describes the situation, for which the rules are designed. The 'then' part 
describes the response of the fuzzy system in this situation. The degree of support 
(DoS) is used to weigh each rule according to its importance. There are four inputs 
to rule base 1 and each has 3 fuzzy zones. Hence the number of rules in the rule 
base 1 is equal to 81 (3 x 3 x 3 x 3). There are five inputs to rule base 2 and each 
has 3 fuzzy zones. Hence the number of rules in the rule base 2 equal to 243 (3 x 3 
x 3 x 3 x 3). But, rule base 1 includes 54 rules, and rule base 2 includes 216 rules. 
27 rules are eliminated from each rule bases by specialist. Eliminated rules are 
related to conditions which never happened.

Figure 2. Structure of the Fuzzy Logic UI and TT Control System 

Table 1.Input and output variables 
# Variable Name Type Unit Min Max Default Term Names 

1 Absorb_coeff cm-1 0 9 4.5 low,,medium, high 

2 Depth_distance mm 0 120 60 close, medium, far 

3 S_tissue_thick mm 0 120 60 low, medium, high 

4 Treatment_surf cm2 0 75 37.5 small, medium, large 

5 Intensity W/cm2 0 3 0 low, medium, high 

6 Treatment_time min 
  

0 15 7.5 very_short, 
short,normal 
long, very_long 
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Figure 2. MBF of  "Absorb_coeff" 

Figure 3. MBF of  "Depth_distance" 

Figure 4. MBF of  "S_tissue_thick"
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Figure 5. MBF of  "Treatment_surf"

Figure 6. MBF of "Intensity" 

Figure 7. MBF of "Treatment_time" 

 Most fuzzy logic based application solutions use production rules to represent 
the relationship between the linguistic variables and to derive actions from sensor 
inputs. Production rules consist of a precondition (IF-part) and a consequence 
(THEN-part). The IF-part can consist of more than one condition linked by 
linguistic conjunctions like AND and OR. The computation of fuzzy rules is called 
fuzzy rule inference. The software which we used for this application FuzzyTECH, 
calculates the inference in two steps:  input aggregation and composition with 
degree of support (DOS).  Aggregation uses fuzzy logic operators to calculate the 
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result of the IF part of a production rule when the rule consists of more than one 
input conditions. One of the linguistic conjunctions, AND or OR, links multiple 
input conditions. Composition uses the fuzzy logic operator, PROD, to link the 
input condition to the output condition. 

Composition links the validity of the entire condition with the DOS. Thus, 
composition, the second calculation step of each production rule, uses the validity 
of the condition to determine the validity of the consequence. In standard MAX-
MIN or MAX-PROD inference methods, the consequence of a rule is considered 
equally as true as the condition. 

The Center-of-Maximum (CoM) defuzzification method is an approximation of 
the more computationally-intensive Center-of- Area method. Let R be the 
linguistic variable to be defuzzified, let μRi be the membership functions of all 
linguistic terms i defined for the base variable internal X (x∈X), and let μIi be the 
inference result for every term i. The crisp output value r∈R is computed by the 
following equation: 

••
=

i
Ii

i
RixRixIi

r
μ

μμμ ))](arg(max)(max[
(2) 

5 Test Results

 In order to test the system, simulation studies have to be carried out to validate 
the system and also to test its reliability. This simulation results was produced 
random patients data. Fig 8. illustrates UI results according to depth of distance 
and treatment surface. The other input variables , position of the affected tissue, 
nature and thickness of surrounding tissues and absorption of surrounding tissues 
are chose constant during this test. All data which were used during simulation 
process were included system response map.

Figure.8. System UI response according to patient 
conditions 
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Figure. 9.  System TT response according to patient 
conditions

6 Conclusion

 New medical applications have required advances in biomedical equipment 
design and advances in numerical and experimental studies of the interaction of 
sound with biological tissues and fluids. The developed system obtains optimum 
ultrasound intensity and treatment time during UT. Test results show the increasing 
at patient safety and comfort during UT. 

The authors acknowledge financial support from  the Akdeniz University  Unit of  
Scientific Research Projects Managements.  
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González, Javier Jiménez,
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Härtig, Elisabeth,
Hata, Yutaka,
Hebrail, Georges,
Holland, Alexander,
Horvát, Tomáš,
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Kovács, Szilveszter,
ˇ

Král, Pavol,

Langova-Orozova, Daniela,
Lehmke, Stephan,

Lühning, Dirk,

Marı́n, Nicolás,
Martyna, Jerzy,
Melo-Pinto, Pedro,

Mesiar, Radko,

´
Mouillet, Laure,
Muhammetoglu, A.,
Munir, Badre,

Narukawa, Yasuo,
Negoita, Mircea Gh.,

´ ´

Oguz, Hakan,
Oliboni, Barbara,

Ozen, S.,

Paetz, Jürgen,
Paliy, Dmitriy,
Perfilieva, Irina,
Petrounias, Ilias,
Pons, O.,
Pritchard, David,
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