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22.1 Introduction

Percolation is a standard model for disordered systems. Its applications range
from transport in amorphous and porous media and composites to the prop-
erties of branched polymers, gels and complex ionic conductors. Because of
universality the results do not depend on the specific model, and general
scaling laws can be deduced. In this chapter we give a short introduction to
percolation theory and describe one application to composites. We start with
the structural properties of site percolation clusters and their substructures
and report on other percolation systems after that. Then we turn to the dy-
namical properties of percolation clusters and discuss the way the laws of
diffusion and conduction are modified on random fractal structures. Finally,
we review a particular application of the percolation concept, transport in
heterogeneous ionic conductors.

22.2 The (Site-)Percolation Model

Percolation represents the basic model for a structurally disordered system
(for recent reviews see [1–3], for applications see [4, 5]). Let us consider a
square lattice, where each site is occupied randomly with probability p or is
empty with probability 1 − p (see Fig. 22.1). Occupied and empty sites may
stand for very different physical properties. For illustration, let us assume that
the occupied sites are electrical conductors, the empty sites represent insu-
lators, and that electrical current can only flow between nearest-neighbour
conductor sites.

At low concentration p, the conductor sites are either isolated or form
small clusters of nearest-neighbour sites. Two conductor sites belong to the
same cluster if they are connected by a path of nearest-neighbour conductor
sites, and a current can flow between them. At low p values, the mixture is an
insulator, since no conducting path connecting opposite edges of our lattice
exists. At large p values, on the other hand, many conducting paths between
opposite edges exist, where electrical current can flow, and the mixture is a
conductor. At some concentration in between, therefore, a threshold concen-
tration pc must exist where for the first time electrical current can percolate
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p = 0.2 p = 0.59 p = 0.8

Fig. 22.1. Site percolation on the square lattice: The small circles represent the
occupied sites for three different concentrations: p = 0.2, 0.59, and 0.80. Nearest-
neighbour cluster sites are connected by lines representing the bonds. Filled circles
are used for finite clusters, while open circles mark the large infinite cluster.

from one edge to the other. Below pc we have an insulator, above pc we have
a conductor. The threshold concentration is called the percolation threshold,
or, since it separates two different phases, the critical concentration.

If the occupied sites are superconductors and the empty sites are con-
ductors, pc separates a normal-conducting phase below pc from a supercon-
ducting phase above pc. Another example is a mixture of ferromagnets and
paramagnets, where the system changes at pc from a paramagnet to a ferro-
magnet.

In contrast to the more common thermal phase transitions, where the
transition between two phases occurs at a critical temperature, the perco-
lation transition described here is a geometrical phase transition, which is
characterized by the geometric features of large clusters in the neighbour-
hood of pc. At low values of p only small clusters of occupied sites exist. When
the concentration p is increased the average size of the clusters increases. At
the critical concentration pc a large cluster appears which connects opposite
edges of the lattice. We call this cluster the infinite cluster, since its size
diverges in the thermodynamic limit. When p is increased further the density
of the infinite cluster increases, since more and more sites become part of
the infinite cluster, and the average size of the finite clusters, which do not
belong to the infinite cluster, decreases. At p = 1, trivially, all sites belong
to the infinite cluster.

The critical concentration depends on the details of the lattice and in-
creases, for fixed dimension d of the lattice, with decreasing coordination
number z of the lattice: For the triangular lattice, z = 6 and pc = 1/2, for
the square lattice, z = 4 and pc

∼= 0.592746, and for the honeycomb lattice,
z = 3 and pc

∼= 0.6962. For fixed z, pc decreases if the dimension d is en-
hanced. In both the triangular lattice and the simple cubic lattice we have
z = 6, but pc for the simple cubic lattice is considerably smaller, pc

∼= 0.3116.
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Table 22.1. Critical exponents and fractal dimensions for percolation in two and
three dimensions. The numerical values are taken from [1,6,7].

Quantity Exp. d = 2 d = 3

Order parameter P∞(p) ∼ (p − pc)
β β 5/36 0.417 ± 0.003

Correlation length ξ(p) ∼ |p − pc|−ν ν 4/3 0.875 ± 0.008

Cluster mass M(r) ∼ rdf df 91/48 2.524 ± 0.008

Backbone mass MB(r) ∼ rdB dB 1.6432 ± 0.0008 1.855 ± 0.015

Chemical Path �(r) ∼ rdmin dmin 1.1307 ± 0.0004 1.374 ± 0.004

Random Walk 〈r2(t)〉 ∼ t2/dw dw 2.871 ± 0.001 3.80 ± 0.02

Conductivity σdc(p) ∼ (pc − p)µ µ 1.310 ± 0.001 1.99 ± 0.01

Superconductivity σS(p) ∼ (p − pc)
−s s 1.310 ± 0.001 0.74 ± 0.03

The percolation transition is characterized by the geometrical properties
of the clusters near pc [1, 2]. The probability P∞ that a site belongs to the
infinite cluster is zero below pc and increases above pc as

P∞ ∼ (p− pc)β . (22.1)

This behaviour is illustrated in Fig. 22.2. The linear size of the finite clusters,
below and above pc, is characterized by the correlation length ξ. The corre-
lation length is defined as the mean distance between two sites on the same
finite cluster and represents the characteristic length scale in percolation.
When p approaches pc, ξ increases as

ξ ∼ |p− pc|−ν , (22.2)

with the same exponent ν below and above the threshold (see also Fig. 22.2).
While pc depends explicitly on the type of the lattice, the critical exponents
β and ν are universal and depend only on the dimension d of the lattice, but
not on the type of the lattice. The values of the critical exponents are given
in Tab. 22.1 for two and three dimensions.

22.3 The Fractal Structure of Percolation Clusters
near pc

Near pc on length scales smaller than ξ both the infinite cluster and the finite
clusters are self-similar, i.e., if we cut a small part out of a large cluster,
magnify it to the original cluster size and compare it with the original, we
cannot tell the difference: Both look the same. This feature is illustrated in
Fig. 22.3, where a large cluster at pc is shown in four different magnifications.
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Fig. 22.2. Schematic diagram of the proba-
bility P∞ (cf. (22.1), bold line) and the corre-
lation length ξ (cf. (22.2), thin line) versus the
concentration p of occupied sites.

We leave it to the reader to find out what is the original and what are the
magnifications.

We have learnt in Chap. 19 that – as a consequence of the (non-trivial)
self-similarity – the cluster is characterized by a “fractal” dimension, which
is smaller than the dimension d of the embedding lattice. The mean mass of
the cluster within a circle of radius r increases with r as

M(r) ∼ rdf , r � ξ, (22.3)

with the fractal dimension df . The numerical values of df can be found in
Table 22.1. Above pc on length scales larger than ξ the infinite cluster can be
regarded as an homogeneous system which is composed of many cells of size
ξ. Mathematically, this can be summarized as

M(r) ∼
{
rdf , if r � ξ,
rd, if r 
 ξ.

(22.4)

Fig. 22.4 shows a part of the infinite cluster above pc (p = 1.003 pc) on
different length scales. At large length scales (r 
 ξ, upper left) the cluster
appears homogeneous, while on lower length scales (r � ξ, lower pictures)
the cluster is self-similar.

The fractal dimension df can be related to β and ν in the following way:
Above pc, the mass M∞ of the infinite cluster in a large lattice of size Ld is
proportional to LdP∞. On the other hand, this mass is also proportional to
the number of unit cells of size ξ, (L/ξ)d, multiplied by the mass of each cell
which is proportional to ξdf . This yields (with (22.1) and (22.2))

M∞ ∼ LdP∞ ∼ Ld(p− pc)β ∼ (L/ξ)dξdf ∼ Ld(p− pc)νd−νdf , (22.5)

and hence, comparing the exponents of (p− pc),

df = d− β

ν
. (22.6)

Since β and ν are universal exponents, df is also universal.
A fractal percolation cluster is composed of several fractal substructures,

which are described by other exponents [1, 2]. Imagine applying a voltage



22 Diffusion and Conduction in Percolation Systems 899

Fig. 22.3. Four successive magnifications of the incipient infinite cluster that forms
at the percolation threshold on the square lattice. Three of the panels are magni-
fications of the center squares marked by black lines. In the figure that you see,
however, the labels of the four panels have been removed and the panels have been
scrambled. Attempt to put them back into sequence by eye – it is extremely dif-
ficult if the system is at the percolation threshold (p = pc). An educational game
is to time how long it takes each player to detect by eye which of the 24 possible
orderings is the correct one that arranges the four panels in increasing order of
magnification.
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Fig. 22.4. The same as Fig. 22.3 except that now the system is slightly (0.3 %)
above the percolation threshold and the panels are not scrambled. The upper left
picture shows the original and the other pictures are magnifications of the center
squares marked by black lines. The correlation length ξ is approximately equal to
the linear size of the third (lower left) picture. When comparing the two lower
pictures, the self-similarity at small length scales below ξ is easy to recognize.

between two sites at opposite edges of a metallic percolation cluster: The
backbone of the cluster consists of those sites (or bonds) which carry the
electric current. The topological distance between both points (also called
chemical distance) is the length of the shortest path on the cluster connecting
them. The dangling ends are those parts of the cluster which carry no current
and are connected to the backbone by a single site only. The red bonds (or
singly connected bonds), finally, are those bonds that carry the total current;
when they are cut the current flow stops.
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(a) (b)

Fig. 22.5. Further percolation systems: (a) Bond percolation cluster on a square
lattice and (b) continuum percolation of conductive material with circular holes of
fixed radius at the percolation threshold.

The fractal dimension dB of the backbone is smaller than the fractal
dimension df of the cluster, reflecting the fact that most of the mass of the
cluster is concentrated in the dangling ends. On the average, the topological
length � of the path between two points on the cluster increases with the
Euclidean distance r between them as � ∼ rdmin . The values of the fractal
dimensions dB and dmin are given in Table 22.1 for two and three dimensions.
The fractal dimensions of the red bonds dred are known from exact analytical
arguments. The mean number of red bonds varies with p as nred ∼ (p −
pc)−1 ∼ ξ1/ν ∼ r1/ν , and the fractal dimension of the red bonds is therefore
dred = 1/ν [1].

A further important substructure of the cluster is the external perimeter
(which is also called the hull). The hull consists of those sites of the cluster
which are adjacent to empty sites and are connected with infinity via empty
sites. It is an important model for random fractal interfaces. In two dimen-
sions, the hull has the fractal dimension dh = 7/4, while its mass seems to
be proportional to the mass of the cluster in d = 3, i.e. dh = df . In contrast
to the hull, the total perimeter also includes the holes in the cluster.

22.4 Further Percolation Systems

So far we have considered site percolation, where the sites of a lattice have
been occupied randomly. When the sites are all occupied, but the bonds
between the sites are randomly occupied with probability q, we speak of
bond percolation (see Fig. 22.5 (a)). Two occupied bonds belong to the same
cluster if they are connected by a path of occupied bonds, and the critical
concentration qc of bonds (qc = 1/2 in the square lattice and qc � 0.2488 in
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the simple cubic lattice) separates a phase of finite clusters of bonds from a
phase with an infinite cluster [1, 2].

If sites are occupied with probability p and bonds are occupied with prob-
ability q, we speak of site–bond percolation. Two occupied sites belong to the
same cluster if they are connected by a path of nearest-neighbour occupied
sites with occupied bonds in between. For q = 1, site–bond percolation re-
duces to site percolation, for p = 1 it reduces to bond percolation. In general,
both parameters characterize the state of the system. Accordingly, a critical
line in p-q space separates both phases, which for p = 1 and q = 1 takes the
values of the critical bond and site concentrations, respectively.

Perhaps the most common example of bond percolation in physics is a
random resistor network, where the metallic wires in a regular network are cut
randomly with probability 1−q. Here qc separates a conductive phase at large
q from an insulating phase at low q. A possible application of bond percolation
in chemistry is the polymerization process, where small branching molecules
can form large molecules by activating more and more bonds between them.
If the activation probability q is above the critical concentration, a network
of chemical bonds spanning the whole system can be formed, while below qc
only macromolecules of finite size can be generated. This process is called
a sol-gel transition. An example of this gelation process is the boiling of an
egg, which at room temperature is liquid and upon heating becomes a more
solid-like gel. Site–bond percolation can be relevant for gelation in dilute
media.

The most natural example of percolation is continuum percolation, where
the positions of the two components of a random mixture are not restricted
to the discrete sites of a regular lattice. As a simple example, consider a
sheet of conductive material, with circular holes punched randomly in it (see
Fig. 22.5 (b)). The relevant quantity now is the fraction p of remaining con-
ductive material. Compared with site and bond percolation, the critical con-
centration is further decreased: pc

∼= 0.312 for d = 2, when all circles have
the same radius. This picture can easily be generalized to three dimensions,
where spherical voids are generated randomly in a cube, and pc

∼= 0.034. Due
to its similarity to Swiss cheese, this model of continuous percolation is called
the Swiss cheese model. Similar models, where also the size of the spheres can
vary, are used to describe sandstone and other porous materials. Often also
the inverse model is considered, where the circular discs or spheres represent
the conductive material [8].

It is important that close to the percolation threshold all these different
percolation systems are characterized by the same critical exponents β, ν,
and df given in Table 22.1. The exponents are universal and depend neither
on the structural details of the lattice (e.g., square or triangular) nor on the
type of percolation (site, bond, or continuum), but only on the dimension d
of the system.
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Fig. 22.6. Random walk on a square
lattice. The lattice constant a = 1 is
equal to the jump length of the ran-
dom walker. Sixteen steps of the walk
are shown.

22.5 Diffusion on Regular Lattices

After we have discussed the structural properties of percolation systems close
to the percolation threshold, we will now focus on the dynamical properties
of percolation systems, where to each site or bond a physical property such as
conductivity is assigned. We show that due to the fractal nature of the perco-
lation clusters near pc, the physical laws of dynamics are changed essentially
and become anomalous .

At first, we consider regular lattices. The diffusion process is commonly
modelled by a simple random walk (see e. g., Chaps. 18 and 19), which ad-
vances one step of length a in one time unit. Each step brings the random
walker to a randomly chosen nearest-neighbour site on a given d-dimensional
lattice. Assume that the walker starts at time t = 0 at the origin of the lat-
tice. After t time steps, the actual position is described by the vector (see
Fig. 22.6)

r(t) = a
t∑

τ=1

eτ , (22.7)

where eτ denotes the unit vector pointing in the direction of the jump at the
τ th time step.

The mean distance the random walker has travelled after t time steps
is described by the root mean square displacement R(t) ≡ 〈r2(t)〉1/2, where
the average 〈· · · 〉 is over all random-walk configurations on the lattice. From
(22.7) we obtain

〈r2(t)〉 = a2
t∑

τ,τ ′=1

〈eτ · eτ ′〉 = a2t+
∑
τ �=τ ′

〈eτ · eτ ′〉. (22.8)

Since jumps at different steps τ and τ ′ are uncorrelated, we have 〈eτ · eτ ′〉 =
δττ ′, and we obtain the Einstein relation

〈r2(t)〉 = a2t, (22.9)
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which is equivalent to Fick’s first law (see Chap. 10). Note that (22.9) is
independent of the dimension d of the lattice.

In the general case, when the lengths of the steps of the random walker
may vary, (22.9) is modified into

〈r2(t)〉 = 2dDt, (22.10)

where D is the diffusion coefficient. The diffusion coefficient is (approxi-
mately) related to the dc conductivity σdc by the Nernst-Einstein equation,

σdc = n(e2/kBT )D, (22.11)

where n is the density and e the charge of the diffusing particles.
A more complete description of the diffusion process is possible with the

probability density P (r, t), which is the probability of finding the walker
after t time steps at a site within distance r from its starting point. The mean
square displacement can be obtained from P (r, t) via 〈r2(t)〉 =

∫
dr r2P (r, t).

For t 
 r, P (r, t) is described by a Gaussian: P (r, t) ∼= 1√
2πt

e−r2/2t. This
“normal” probability density – commonly referred to as the propagator (see
Chaps. 10, 18, and 23) – characterizes the diffusion on regular lattices. Next
we consider disordered structures.

22.6 Diffusion on Percolation Clusters

We start with the infinite percolation cluster at the critical concentration pc.
The cluster has loops and dangling ends, and both substructures slow down
the motion of a random walker. Due to self-similarity, loops and dangling ends
occur on all length scales, and therefore the motion of the random walker is
slowed down on all length scales. The time t the walker needs to travel a
distance R is no longer, as in regular systems, proportional to R2, but scales
as t ∼ Rdw , where dw > 2 is the fractal dimension of the random walk [1,2,9].
For the mean square displacement this yields immediately

〈r2(t)〉 ∼ t2/dw . (22.12)

The fractal dimension dw is approximately equal to 3df/2 [10]; the results of
numerical simulations can be found in Table 22.1. For continuum percolation
(Swiss cheese model) in d = 3, dw is enhanced: dw

∼= 4.2 [11]. Diffusion
processes described by (22.12) are generally referred to as anomalous diffusion
(cf. Chap. 10).

The probability density 〈P (r, t)〉N , averaged over N percolation clusters,
is not so easy to calculate. Analytical expressions for 〈P (r, t)〉N that fully
describe the data obtained from numerical simulations can be derived. The
derivation is beyond the scope of this book and we refer the interested reader
to [1, 12].
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Fig. 22.7. Schematic diagram of the (usual) dc
conductivity σdc (cf. (22.15), bold line) and the
conductivity σS for a conductor-superconductor
percolation network (cf. (22.20), thin line for p <
pc) versus the concentration p of occupied sites.
The cluster capacitance C is proportional to σS

for p < pc and diverges with the same exponent
for p > pc (see (22.25)).

Comparatively simple, however, is the scaling behaviour of 〈P (0, t)〉, that
denotes the probability of being, after t time steps, at the site where the
random walker started. Since for very large times each site has the same
probability of being visited, the probability of being at the origin is propor-
tional to the inverse of the number of distinct sites S(t) the random walker
visited. Since S(t) increases with R(t) ≡ 〈r2(t)〉1/2 as S(t) ∼ R(t)df , we have

〈P (0, t)〉 ∼ R(t)−df ∼ t−df/dw (22.13)

(see also Chap. 19). Above pc, fractal structures occur only within the corre-
lation length ξ(p) from (22.2). Thus the anomalous diffusion law, (22.12), oc-
curs only below the corresponding crossover time tξ ∼ R(tξ)dw ∼ ξdw , which
decreases proportional to (p− pc)−νdw , if p is further increased. Above tξ, on
large time scales, the random walker explores large length scales where the
cluster is homogeneous, and 〈r2(t)〉 follows Fick’s law (cf. (22.9) or (22.10))
increasing linearly with time t. Thus,

〈r2(t)〉 ∼
{
t2/dw , if t� tξ,
t, if t
 tξ.

(22.14)

22.7 Conductivity of Percolation Clusters

The diffusion coefficient is related to the dc conductivity σdc by the Nernst-
Einstein equation, (22.11). Below pc, there is no current between opposite
edges of the system, and σdc = 0. Above pc, σdc increases by a power law
(see Fig. 22.7 for illustration),

σdc ∼ (p− pc)µ, (22.15)

where the critical exponent µ is (semi)-universal. For percolation on a lattice,
µ depends only on d; the numerical results are contained in Table 22.1. For
continuum percolation (Swiss cheese model) in d = 3, however, µ is enhanced:
µ ∼= 2.38.

Combining (22.11) and (22.15), we can obtain the behaviour of the dif-
fusion coefficient D as a function of p − pc. Since only the particles on
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the infinite cluster contribute to the dc conductivity, we have (from (22.1))
n ∼ P∞ ∼ (p− pc)β in (22.11). This yields

D ∼ (p− pc)µ−β . (22.16)

Next we use scaling arguments to relate the exponent µ to dw. Equations
(22.16) and (22.10) imply that above tξ the mean square displacement 〈r2(t)〉
behaves as

〈r2(t)〉 ∼ (p− pc)µ−βt, t > tξ. (22.17)

On the other hand we know that for times below tξ on distances r < t
1/dw
ξ ,

〈r2(t)〉 ∼ t2/dw , t < tξ. (22.18)

By definition, for t = tξ, we have 〈r2(t)〉 ∼ ξ2. Substituting this into
(22.17) and (22.18) and equating both relations we obtain immediately
(p − pc)µ−βtξ ∼ t

2/dw
ξ . Using tξ ∼ ξdw ∼ (p − pc)−νdw (from (22.2)) we

get the relation between µ and dw,

dw = 2 + (µ− β)/ν. (22.19)

22.8 Further Electrical Properties

In the last section we have already seen that the dc conductivity in the
conductor-insulator system is zero below pc and increases with a power law
above pc. If we consider, instead, the corresponding superconductor-conduc-
tor system, the conductivity is infinite above pc and diverges with a power
law when approaching pc from below (see Fig. 22.7),

σS ∼ (pc − p)−s. (22.20)

The numerical results for s can be found in Tab. 22.1.
Next, for generalizing this result and for obtaining further electric prop-

erties, let us assume that each bond in the network represents (with proba-
bility p) a circuit consisting of a resistor with resistivity 1/σ0

A and a capac-
itor with capacitance CA, or (with probability 1 − p) a circuit consisting of
a resistor with resistivity 1/σ0

B and a capacitor with capacitance CB. The
(complex) conductivity of each bond is therefore either σA = σ0

A − iωCA

or σB = σ0
B − iωCB. This model is called equivalent circuit model. At the

percolation threshold the total conductivity follows a power law [1, 13, 14],

σ(ω) = σA(σA/σB)−u, (22.21)

where the exponent
u = µ/(µ+ s) (22.22)
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is related to the exponents µ and s from above, u = 0.5 in d = 2 and u ∼= 0.71
in d = 3 (see Tab. 22.1).

For extending this result to the critical regime below and above pc, we
multiply (22.21) by a complex scaling function S(z) that depends on z =
|p− pc|(σA/σB)Φ and can be different above and below pc [15, 16],

σ(ω) = σA(σA/σB)−u · S[|p− pc|(σA/σB)Φ]. (22.23)

The exponent Φ as well as the asymptotic behaviour of the scaling function
is determined by the asymptotic behaviour of σ(ω) in the limit ω → 0 and
(σA/σB) → ∞.

In the following, let us concentrate on the conductor-capacitor limit,
where σA = σ0

A and σB = −iωCB. Then the complex scaling variable z is
proportional to |p−pc|[σ0

A/(−iωCB)]Φ ∼ (τω)−Φ, and τ = |p−pc|−1/ΦCB/σ
0
A

defines the characteristic time scale in this short-circuit model. Splitting the
complex function (−i)uS(z) into its real part S1 and imaginary part S2, we
obtain for the complex conductivity

σ(ω) = σ0
A(CB/σ

0
A)u · ωu · [S1(τω)] + iS2(τω)], (22.24)

where S1 and S2 are real functions.
According to standard electrodynamics, in the limit of ω → 0 the real part

of the complex conductivity tends to σdc, while the imaginary part becomes
−ωC, with C the capacitance of the whole system:

σ(ω) →
{
σdc − iωC, if p > pc,
−iωC, if p < pc

(ω → 0). (22.25)

For satisfying these conditions, we must require that S1(τω) ∼ (τω)−u above
pc and S2(τω) ∼ (τω)1−u below and above pc. The first condition determines,
together with (22.15) and (22.22), the scaling exponent Φ, Φ = 1/(µ + s).
The second condition yields the new relation for the capacitance [1, 15, 16],

C ∼ S2(τω) ∼ |p− pc|(u−1)/Φ = |p− pc|−s, (22.26)

with the same exponent s below and above pc (see Fig. 22.7). The divergency
of C at pc has a simple physical interpretation: each pair of neighboured clus-
ters forms a capacitor. The effective surface increases when pc is approached
and tends to infinity at pc. Accordingly, the effective capacitance C of the
system also diverges. Next, we discuss a (non-trivial) application of the per-
colation concept, the ionic transport in heterogeneous ionic conductors. For
a recent application of the percolation concept in gas sensors, see [17].



908 Armin Bunde and Jan W. Kantelhardt

(a) (b) (c) (d)

Fig. 22.8. Illustration of the three-component percolation model for dispersed ionic
conductors, for different concentrations p of the insulating material. The insulator
is represented by the grey area, the ionic conductor by the white area. The bonds
can be highly conducting bonds (A bonds, bold lines), normal conducting bonds
(B bonds, thin lines), or insulating (C bonds, dashed lines). (a) p < p′

c, (b) p = p′
c,

(c) p = p′′
c , and (d) p > p′′

c (redrawn after [22]).

22.9 Application of the Percolation Concept:
Heterogeneous Ionic Conductors

22.9.1 Interfacial Percolation and the Liang Effect

Let us now turn to percolation models that describe electrical transport in
specific composite materials. A substantial amount of research has concen-
trated on “dispersed ionic conductors” after the discovery by Liang [18] that
insulating fine particles with sizes of the order of 1 µm, dispersed in a conduc-
tive medium (e. g. Al2O3 in LiI), can lead to a conductivity enhancement [19].
This effect has been found to arise from the formation of a defective, highly
conducting layer following the boundaries between the conducting and the
insulating phase [20]. Effectively, the system thus contains three phases. Theo-
retical studies therefore have focused on suitable three-component impedance
network models.

Figure 22.8 shows a two-dimensional illustration of such composites in a
discretized model [21, 22]. In its simplest version this model is constructed
by randomly selecting a fraction p of elementary squares on a square lattice,
which represent the insulating phase, while the remaining squares are the
conducting phase. The distribution of both phases leads to a correlated bond
percolation model with three types of bonds and associated bond conduc-
tances σα; α = A,B,C; as defined in Fig. 22.8. For example, bonds in the
boundary between conducting and insulating phases correspond to the highly
conducting component (A bonds). The analogous construction for three di-
mensions is obvious. Finite-frequency effects are readily included, when we
allow bond conductances to be complex [23]. For simplicity, we may assume
the ideal behaviour σα = σ0

α − iωCα, as in the previous section, but more
general forms can be chosen when necessary. Clearly, the experimental situ-
ation described above requires that σ0

A/σ
0
B = τ 
 1; σ0

C = 0. Thereby it is
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Fig. 22.9. (a) Normalized conductivity of the LiI-Al2O3 system as a function of
the mole fraction p of Al2O3 at different temperatures (after [24]). (b) Normalized
conductivity resulting from Monte Carlo simulations of the three-component per-
colation model, as a function of p, for σ0

A/σ0
B = 10 (circles), 30 (full squares), and

100 (triangles) (after [22]).

natural to assume that σ0
A and σ0

B are thermally activated, such that their
ratio τ ∝ exp(−∆E/kBT ) increases with decreasing temperature.

A remarkable feature of this model is the existence of two threshold con-
centrations. At p = p′c, interface percolation (i.e., percolation of A bonds)
sets in, whereas at p = p′′c = 1 − p′c (normally not accessible by experiment)
the system undergoes a conductor-insulator transition. In two dimensions we
have p′c = 0.41, while in d = 3, p′c = 0.097, corresponding to the threshold for
second-neighbour (d = 2) and third-neighbour (d = 3) site percolation on a
d-dimensional lattice, respectively. At zero frequency, the total conductivity
can be obtained from Monte Carlo simulation [21, 22].

Figure 22.9 shows experimental results for LiI-Al2O3 at four different
temperatures [24] and simulation results for d = 3 at three different tem-
peratures (corresponding to τ = 10, 30 and 100) [22]. Good agreement is
achieved, since both plots show a broad maximum. Changing τ (by varying
the temperature) offers the possibility to interpret the measured activation
energies as a function of p [25] and, in principle, also to detect the critical
transport behaviour associated with interface percolation. In the vicinity of
p′c it seems interesting in addition to study critical ac effects. For examples, at
p′c the effective capacitance develops a peak, whose height should scale with
τ as Ceff ∼ τ1−u, where u = µ/(µ+s), see (22.21) and (22.22). Ac properties
in the whole range of p-values have been calculated by renormalization group
techniques [23].

Several extensions of this model are conceivable. In the case of dc trans-
port (ω = 0), the variation of the total conductivity with the size of dis-
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Fig. 22.10. Plot of the dc conductivity of micro- and nanocrystalline (1 −
x)Li2O:xB2O3 composites vs volume fraction p (bottom scale) and mole fraction x
(top scale) of insulating B2O3, at T = 433 K. The experimental conductivity of the
nanocrystalline samples (open circles) shows an enhancement up to a maximum at
p ≈ 0.7 (x ≈ 0.5), while the conductivity of the microcrystalline composites (full
circles) decreases monotonically. The arrows indicate the compositions where the
dc conductivities fall below the detection limit. The dashed lines show the dc con-
ductivities obtained from the continuum percolation model discussed in the text
(after [37,39]).

persed particles has been calculated and successfully compared with experi-
ments [26–29]. In particular, it was found that as the particle size decreases
while the thickness of the highly conducting interfacial layer is fixed, the max-
imum in the total conductivity as a function of the insulator concentration p
shifts to smaller values of p. The observation of conductivity maxima at very
low volume fractions (� 10%) in certain composite electrolytes, however, was
interpreted by a grain boundary mechanism within the bulk of the electrolyte
phase [30].

Related work also emphasized aspects of continuum percolation in dis-
persed ionic conductors [27, 29], which, depending on the geometrical condi-
tions, can lead to dynamical critical properties differing from lattice percola-
tion (see e.g. Sect. 22.7).

22.9.2 Composite Micro- and Nanocrystalline Conductors

In the foregoing subsection, we have discussed dispersed ionic conductors
that were prepared by melting the ionic conductor and adding the insulator
(mainly Al2O3) to it. Next we consider diphase micro- and nanocrystalline
materials, which were prepared by mixing the two different powders and
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pressing them together to a pellet. This way, in contrast to the classic dis-
persed ionic conductors discussed above, the grain size of both ionic conductor
and insulator can be varied over several orders of magnitude. For reviews on
nanocrystalline materials, see e. g. [31–36] (cf. also Chap. 9).

Recently, the ionic conductivity of micro- and nanocrystalline (1−x)Li2O:
xB2O3 composites, for different contents x of insulator B2O3, has been stud-
ied [37–39]. In the nanocrystalline samples, with an average grain size of
about 20 nm, the dc conductivity increases with increasing content of B2O3

up to a maximum at x ≈ 0.5. Above 0.92, the dc conductivity vanishes.
In contrast, in the microcrystalline samples (grain size about 10 µm), the

dc conductivity decreases monotonically when x is increased and seems to
vanish above x ≈ 0.55 (see Fig. 22.10). The activation energy remains almost
constant in both cases, Eact

∼= 1 eV, for all x values.
To explain these surprising experimental observations, Indris et al. [37]

assumed that (as for the classical dispersed ionic conductors) (i) B2O3 acts
as an insulator for the lithium ions, (ii) the mobility of the Li ions along the
diphase boundaries between ionic conductor and B2O3 is larger than in the
bulk lithium oxide, and (iii) that the thickness λ of this highly conducting
interface is independent of the grain size.

For a quantitative treatment one has to note that the insulator content
x is related to the volume fraction p (considered in percolation theory) by
p = αx/(αx−x+1), where α = Vmol(B2O3)/Vmol(Li2O) ≈ 1.9065 is the ratio
between the mole volumes. Accordingly, the experimental results suggest the
existence of two different percolation thresholds for the conduction paths,
pc ≈ 0.7 for the microcrystalline samples and pc ≈ 0.96 for nanocrystalline
ones, above which the dc conductivity of the composite vanishes.

These different thresholds can be understood by simple geometrical argu-
ments. In the case of micro-crystalline samples, the highly conducting region
at the interface between B2O3 and Li2O grains does not play a role since
its width is negligible compared to the grain sizes, and conducting paths
can open up only when two Li2O grains get in direct contact to each other.
Qualitatively, we can expect a percolating conducting path when the Li2O
concentration gets larger than 0.3 (i.e., p = 0.7), which is between the per-
colation threshold of spheres in a three-dimensional continuum percolation
model and the percolation threshold of sites in the simple cubic lattice.

In the case of nanocrystalline samples, however, the width of the highly
conducting interface becomes comparable to the grain sizes. In this case, the
highly conducting region can act as a bridge between two Li2O grains not
in direct contact to each other, opening up additional paths for Li ions. A
percolating conducting path can be disrupted only at much higher concentra-
tions of B2O3 than for micrometer sized grains. Again, the value suggested
by the experiment is in the expected regime.

To describe the actual dependence of the dc conductivity of Li2O:B2O3

composites, σdc(p), on the insulator concentration p, Indris et al. [37] em-
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ployed a continuum percolation model similar to that studied earlier for dis-
persed ionic conductors [27]. In this model, the size of dispersed particles
is considered explicitly and the conductivity is estimated by means of the
effective-medium approximation (EMA), yielding an analytical expression
for σdc(p). Denoting by P0(p), PA(p), and PB(p) the concentrations of the
insulator, the highly conducting diphase boundaries and the ionic conductor,
respectively, σdc(p) is given within EMA by

σdc(p) = σ0
B

1
z − 2

{
−A+ [A2 + 2τ(z − 2 − zP0)]1/2

}
, (22.27)

where A = τ(1 − zPA/2) + (1 − zPB/2), z is a parameter determining the
percolation threshold pc at which σdc = 0, and τ = σ0

A/σ
0
B is (as before) the

enhancement factor, defined as the ratio between the conductivities of the
highly conducting interface and of pure Li2O, respectively. For details of the
treatment, we refer to [27, 37]. The concentrations of the three components
are given by P0(p) = p, PB(p) = (1 − p)η3

and PA(p) = 1 − p− PB(p), with

η =
R+ λ

R
, (22.28)

where R is the radius of the particles (R ∼= 10 nm for the nanoparticles and
R ∼= 5 µm for the microparticles) and λ between 1 and 2 nm.

According to (22.27), the percolation threshold for the disruption of con-
ducting paths, pc, is given by pc = (z − 2)/z. Thus, from our previous dis-
cussion, we expect that for nanocrystalline samples, pc ≈ 0.96, obtaining
znano = 59, while in the microcrystalline case pc ≈ 0.7 and zpoly = 7. The
remaining parameters, except the interface conductivity σ0

A can be easily es-
timated from the measurements. The theoretical results, obtained for a rea-
sonable fit of σ0

A, are displayed in Fig. 22.10 as dashed lines. The agreement
is quantitatively good in view of the simplicity of the model employed.

Both nanocrystalline and microcrystalline materials have been described
within the same model. The striking difference between both is the parameter
η; η − 1 describes the thickness of the interface in relation to the grain size.
For η close to one, the blocking effect of the large insulating grains dominates,
and the dc conductivity decreases monotonically, while for smaller grain sizes
a similar behaviour as in the classic dispersed ionic conductors occurs.

The results summarized here are consistent with results of nuclear mag-
netic resonance studies on the same composites, presented in Sect. 9.6.4 of
Chap. 9.

22.10 Conclusion

In this chapter we gave a short introduction to the standard model for dis-
ordered systems, the percolation model. Percolation clusters at the critical
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concentration are self-similar on all length scales and their structure as well
as several substructures can be described with the concept of fractal dimen-
sions. Because the clusters have loops and dangling ends on all length scales
diffusion processes on these structures are slowed down and become anom-
alous. Diffusion is related to electrical conductivity via the Nernst-Einstein
relation, and thus the scaling behaviour of the dc conductivity can be de-
duced from it. Other scaling arguments give the dependence of the capacity
on the concentration of conducting sites, and show that the capacity diverges
at the percolation threshold. In the last section, we reviewed experimental
results and numerical simulations for ionic conduction in heterogeneous ionic
conductors.

Notation

C capacitance
D diffusion coefficient
M cluster mass
p, q concentration of occupied sites, resp. bonds
pc, qc critical concentrations (percolation thresholds)
P∞ concentration of sites from infinite cluster
P (r, t) probability density of random walk
r, � Euclidean and topological (chemical) distance
R(t) ≡ 〈r2(t)〉1/2 root mean square displacement of random walk
ξ correlation length
σdc dc conductivity
σS conductivity in conductor-superconductor system
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