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21.1 Introduction

In the ion conducting materials to be discussed in this chapter, structural
and dynamic disorder is the key property. A simple scheme may serve to
highlight the remarkable implications of this property with regard to the
movements of the ions. In this scheme, perfectly ordered crystals are placed
at level one. At this level, there is no possibility for the ions to leave their sites;
thus no ionic transport can occur. Historically, the decisive step forward was
made when site disorder was discovered and point-defect thermodynamics
were developed. At this stage, which we call level two, ionic transport is
accomplished by point defects moving randomly from site to site. In fact,
modern materials science and engineering build on the concept of level two.

Dramatic changes are encountered as we move on to materials with dis-
ordered structures, i.e., from level two to level three. Now, point defects are
no longer isolated structural elements. It is even no longer sensible to speak
of defects, since the entire structure is disordered. Therefore, ionic transport
cannot be described in terms of individual defects performing random walks
in a static energy landscape. Instead, we are facing a challengingly compli-
cated many-particle problem, with the mobile ions interacting with each other
and with their surrounding matrix.

In materials with disordered structures, the number of available sites by
far exceeds the number of mobile ions, and it turns out to be impossible to
arrange the ions unambiguously in an optimised manner. These materials
may be crystalline or glassy. They are fast ion conductors, if the barrier to
be surmounted in a hop is of the order of the thermal energy.

The transition from level two to level three, i.e., from a random hopping
of individual defects to a non-random correlated motion of interacting ions,
is found to be accompanied by prominent changes in the shapes of functions
which are experimentally accessible. For instance, the ionic conductivity as-
sumes a characteristic frequency dependence, and spin-lattice relaxation rates
are no longer properly described by the model of Bloembergen, Purcell and
Pound [1] (cf. Chaps. 9 and 20). Surprisingly, the experimental phenomena
are very much the same in structurally disordered crystals such as RbAg4I5,
in glasses, and even in supercooled melts.
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Fig. 21.1. Random versus correlated jump diffusion.

In this chapter, the diffusive motion of mobile ions in disordered materials
will be analysed on the basis of the frequency-dependent electrical (ionic) con-
ductivity, σ(ν). Figure 21.1 illustrates the change observed in the shape of this
function as random hopping is replaced by correlated hopping. In Fig. 21.1,
we have used a relationship from linear response theory which states that
σ̂(ν) is proportional to the Fourier transform of the autocorrelation function
of the current density [2]. If all mobile ions have the same charge, the current
density will be proportional to the sum of their velocities. Therefore, σ(ν)
is proportional to the Fourier transform of the velocity correlation function,
〈
∑1..N

i,j vi(0) · vj(t)〉.
If the ions (or mobile defects) are random walkers, as in level two, they

do not know of each other, and all the cross terms vanish. Also, random
walkers have no memory. Hence each hop is only correlated to itself. On a
time scale that does not resolve a few picoseconds, the velocity correlation
function is, therefore, proportional to a delta function at time zero, δ(t). The
Fourier transform of a delta function being a constant, σ(ν) will be constant
at least up to microwave frequencies. Such a behaviour is indeed observed
in the case of level-two materials such as AgBr. By contrast, ionic materials
with disordered structures display frequency-dependent conductivities, σ(ν),
as in Fig. 21.2. In this case, the conductivity caused by the hopping motion
of the ions is well described by a constant minus a bell-shaped contribution
centred at ν = 0. The corresponding velocity correlation function is, therefore,
characterised by a sharp peak at t = 0, plus a decaying negative contribution
at t > 0, see Fig. 21.1. While the sharp peak once again reflects the self-
correlation of the velocity during hops, the decaying negative contribution
results from a decaying probability for an ensuing backward hop, if the hop
performed at time t = 0 defines the forward direction. If the dc conductivity,
σdc = σ(0), is much smaller than the conductivity measured at microwave
frequencies, correlated forward-backward hops have to be considered the rule
rather than the exception.
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Fig. 21.2. Frequency-dependent conductivity, σ(ν), of crystalline Na-β′′-alumina
at 473 K [3]. Below 100 GHz, σ(ν) is essentially caused by the hopping motion of the
sodium ions, while above 1THz it is essentially due to the excitation of transverse
optical phonons.

There is a direct analogy between this effect and the Debye-Hückel-Onsa-
ger-Falkenhagen effect, cf. Fig. 21.3. In Fig. 21.3 (a), consider a dilute strong
liquid electrolyte. Suppose an ion is virtually displaced at time zero. As a
consequence, it is no longer at the centre of its ion cloud. Two competing
relaxation processes tend to restore equilibrium. The ion may move backward
or the cloud may move forward. This results in a flow of charge in the direction
opposite to the initial displacement, and Fourier transformation of the current
density autocorrelation function yields a small increase of the conductivity
as a function of frequency.

In a structurally disordered solid electrolyte, see Fig. 21.3 (b), the transla-
tional motion is achieved by hops, and the neighbouring mobile ions play the
role of the ion cloud. Again, there is a competition between two relaxation
processes. After each hop of a mobile ion, the ion may either hop backwards
or its neighbours may rearrange. However, there is a striking difference be-
tween Fig. 21.3 (a) and Fig. 21.3 (b) concerning the respective magnitude of
the effect. The amount of backward flow of charge and hence the resulting
dispersion of σ(ν) are dramatically larger in the solid than in the dilute liquid
electrolyte.

In this chapter, the correlated ionic motion in materials with disordered
structures is studied on the basis of experimental conductivity spectra, σ(ν).
In particular, a simple set of rules is derived that grasp the essential aspects
of the ion dynamics and outline their development with time. Indeed, experi-
mental conductivity spectra have led us to derive two coupled rate equations
which describe the ion dynamics in a very general fashion and provide a
means not only for reproducing the frequency-dependent conductivities, but
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Fig. 21.3. Schematic comparison of the current density autocorrelation function
and the conductivity dispersion in a) a dilute strong liquid electrolyte and b) a
structurally disordered solid electrolyte.

also for tracing the specific traits of the spectra back to their dynamic ori-
gins. These rate equations make up the concept of mismatch and relaxation
(CMR), to be presented and discussed in this chapter.

This chapter is organised as follows. In Sect. 21.2, the experimental tech-
niques used in conductivity spectroscopy are briefly introduced, and the char-
acteristic features of frequency- and temperature-dependent conductivities,
σ(ν, T ), are summarised. In Sect. 21.3, we give a brief outline of the for-
mal relationships between conductivities, σ(ν), and time-dependent correla-
tion functions. We also give interpretations of the experimental features and
present models for the ion dynamics on a microscopic scale. In Sect. 21.4, we
introduce the two rate equations of the CMR and show how time-dependent
functions and realistic model conductivity spectra are obtained from them.
Section 21.5 is devoted to a brief discussion of the scaling properties of the
model spectra. It also provides relationships between model parameters and
characteristic frequencies of the conductivity spectra, thus facilitating their
interpretation. The physical concept leading to the two rate equations of the
CMR is then outlined in Sect. 21.6. Examples of sets of complete conductivity
spectra (extending at least up to millimetre-wave frequencies) taken at differ-
ent temperatures are presented and discussed in Sects. 21.7 and 21.8, for solid
electrolytes and for a fragile supercooled ionic melt, respectively. Section 21.9
deals with the shape of frequency-dependent conductivities of many glassy
and crystalline materials as measured in the so-called impedance frequency
regime, below some 10MHz. In Sect. 21.10 we discuss localised movements
of interacting charged particles and their manifestation in σ(ν, T ).
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21.2 Conductivity Spectra of Ion Conducting Materials

Conductivity spectroscopy spans more than 17 decades on the frequency
scale, ranging from less than 10−3 Hz to more than 1014 Hz. The width of
the time scale thus covered is unsurpassed by any other technique. Besides
offering a broad variety of applications in the characterisation of materi-
als, the technique also provides a unique possibility to study the motion of
charged particles (ions or polarons) on rather different time scales, even re-
solving their elementary hopping processes. Therefore, it plays the role of an
extremely powerful ‘microscope in time’. A schematic survey of the requisite
spectroscopies is given in Fig. 21.4. Experimentally, four frequency regimes
may be discerned:

(i) the impedance regime, below some 10MHz,
(ii) the radio regime, from some 10MHz to a few GHz,
(iii) the microwave regime, from a few GHz to about 150GHz, and
(iv) the (far-) infrared regime, above 150GHz.

Electrodes are used only in (i). Guided electromagnetic waves are employed
in (ii) and (iii), and free ones in (iv). Coaxial waveguides are practicable up
to 18 GHz. At higher microwave frequencies, they are replaced by rectan-
gular waveguide systems. Fourier transform spectroscopy is the method of
choice in the (far) infrared. Although a number of different experimental set-
ups are required to cover the entire frequency range, the general procedure
towards the electrical characterisation of materials is essentially the same in
any part of the spectrum. The complex electrical conductivity, σ̂(ν), is always
determined by measurement of amplitudes and phases of quantities related
to the field-induced current in the sample. These are voltages and currents, if
electrodes are employed [4–6]. If the experimental technique is electrode-free,
the relevant quantities are, instead, complex field amplitudes of electromag-
netic waves transmitted or reflected by the sample [7]. In the latter case, the
complex conductivity, σ̂(ν), is obtained from the measured data by means
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Fig. 21.4. Schematic overview of different techniques for the measurement of
frequency-dependent conductivities.
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Fig. 21.5. Typical conductivity spectra of an ion conducting material, viz., glassy
B2O3 · 0.56 Li2O · 0.45 LiBr.

of Maxwell’s equations and the boundary conditions at the interfaces, which
guarantee the continuity of the electric and magnetic field components.

In spite of their potential for unravelling microscopic mechanisms of ionic
motion, complete conductivity spectra of ion conducting materials, like the
one presented in Fig. 21.2, are still very rare. In Fig. 21.5, we present another
example, viz., conductivity spectra of glassy B2O3 · 0.56 Li2O · 0.45 LiBr, ex-
tending up to 100 THz. Above 100 GHz, the conductivity is governed by
vibrational contributions featuring a ν2 frequency dependence on the low-
frequency flank. In amorphous materials without lattice periodicity there are
no selection rules for far-infrared absorption; hence the vibrational peaks are
much broader than in crystals, cf. Fig. 21.2.

Conductivity spectra of different ion conducting materials with disordered
structures show many common features. Phenomenologically, the following
characteristics have been identified:

(i) A dc conductivity plateau, σdc = σ(0), is attained at sufficiently low
frequencies. In ionic solids and strong ionic melts, σdc · T is usually
Arrhenius activated, viz., σdc · T = A · exp(−Edc/(kBT )), while fragile
melts show a pronounced deviation from the Arrhenius law [8].

(ii) The ac conductivity, σ(ν), increases monotonically with frequency [9],
at least up to millimetre-wave frequencies. In the very far infrared, dis-
placive and vibrational contributions to σ(ν) are usually hard to distin-
guish.

(iii) In some cases, however, this distinction has been possible, and the so-
called high-frequency plateau, σhf = σ(∞), has been identified. An
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example has been given in Fig. 21.2. Wherever detected, high-frequency
plateau conductivities are found to obey the Arrhenius law with an
activation energy lower than Edc [3, 7, 10–12].

(iv) Typically, the shape of σ(ν), as observed in a log-log plot below the
microwave regime, does not depend on temperature. Therefore, a master
curve is obtained when these sections of the conductivity spectra are
shifted and superimposed. This is the time-temperature superposition
principle [13–17].

(v) In a log-log plot of σ · T versus frequency, the onset of the dispersion is
often found to occur along a straight line with a slope of one, implying
that the onset frequency and σdc · T are both activated with Edc. This
is the so-called Summerfield scaling [18], exemplified in Fig. 21.6 where
conductivity spectra of glassy 0.3 Na2O · 0.7 B2O3 taken at different
temperatures have been scaled to fall on a single master curve.

(vi) Master curves constructed from spectra σ(ν) of a large number of dif-
ferent ionic materials with disordered structures are surprisingly similar
in shape [15, 17, 19].

(vii) At any temperature, the initial part of σ(ν) roughly follows the Jonscher
power law, i.e., σ(ν) − σ(0) ∝ νp with an exponent p between 0.6 and
0.7 in most cases. This behaviour, found in a broad variety of materials,
is often called universal dynamic response (UDR) [20].

(viii) Two-dimensional ion conductors such as the beta aluminas [21], crystals
and glasses with low number densities of mobile ions, see Sect. 21.9
and [17], and mixed cation glasses [22,23] exhibit a particularly gradual
onset of the dispersion of σ(ν).

(ix) As temperature is decreased, the slope of σ(ν) in the log-log plot
approaches the value of one at any given audio or radio frequency,
while the conductivity becomes decreasingly temperature-dependent,
cf. Fig. 21.5. As σ(ν) ∝ ν corresponds to a frequency-independent di-
electric loss, this feature has come to be known as nearly constant loss
(NCL) behaviour [24–26].

(x) As a consequence of (vii) and (ix), the typical shape of empirically con-
structed master curves of ionically conducting materials is characterised
by an apparent exponent which increases with increasing reduced fre-
quency, gradually approaching the value of one.

(xi) Remarkably, the NCL feature has also been found in ionic crystals and
glasses at cryogenic temperatures, where it is certainly not related to
ionic transport [27].
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Fig. 21.6. a) Experimental conductivity spectra of glassy 0.3 Na2O · 0.7 B2O3. b)
Scaled representation of the data presented in a).

21.3 Relevant Functions and Some Model Concepts for
Ion Transport in Disordered Systems

Conductivity spectra convey information on the microscopic dynamics of the
mobile charge carriers, since according to linear response theory [2], σ̂(ω),
with ω = 2πν, is the Fourier transform of the autocorrelation function of the
current density:
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σ̂(ω) =
V

3kBT
·
∫ ∞

0

〈i(0) · i(t)〉 exp(−iωt)dt . (21.1)

In (21.1), the current density,

i(t) =
1
V

N∑
i=1

qivi(t) , (21.2)

and its autocorrelation function are real functions of time. V is the volume of
the sample, and the summation is over all N charge carriers. Their charges
and velocities are denoted by qi and vi, respectively. In systems with only one
type of mobile charge carrier, the complex conductivity, σ̂(ω), is connected
with the complex coefficient of self diffusion of this carrier, D̂(ω), via

σ̂(ω) =
Nq2

V kBT
· 1

ĤR(ω)
· D̂(ω) . (21.3)

In (21.3), ĤR(ω) denotes the frequency-dependent complex Haven ratio,

ĤR(ω) =
N

∫∞
0 〈v(0) · v(t)〉 exp(−iωt) dt∫∞

0 〈
∑1..N

i,j vi(0) · vj(t)〉 exp(−iωt) dt
, (21.4)

which becomes a real number in its low-frequency limit: HR = ĤR(ω = 0). If
cross correlations between movements of different ions i, j may be neglected,
the Haven ratio becomes unity. Within this approximation we then obtain
the Nernst-Einstein relation,

σ̂(ω) =
Nq2

V kBT
· D̂(ω) . (21.5)

Monte-Carlo simulations by Maass et al. [28] have shown that the overall
shape of conductivity spectra is indeed well described, if only correlations
between hops of a single ion are taken into account. Within this “single
particle approximation”, the dynamic conductivity can be expressed by the
Fourier transform of the velocity autocorrelation function,

σ̂(ω) =
Nq2

3V kBT
·
∫ ∞

0

〈v(0) · v(t)〉 exp(−iωt) dt (21.6)

= −ω2 Nq2

6V kBT
· lim

ε→0

∫ ∞

0

〈r2(t)〉 exp(−εt− iωt) dt .

Here, 〈r2(t)〉 is the time-dependent mean square displacement of the mobile
ions. Equation (21.6) implies that the dynamic conductivity can be derived
from a model-based velocity autocorrelation function, 〈v(0) · v(t)〉.

In the most simple approach, the ions are assumed to be random walkers,
cf. Fig. 21.1, and the velocity autocorrelation function reads:
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〈v(0) · v(t)〉RW =
Γx2

0

2
· δ(t) . (21.7)

Here Γ and x0 are the hopping rate and the elementary jump distance of
the ions, respectively. Combination of (21.6) and (21.7) yields a hopping
conductivity which is real and constant up to about 100GHz:

σ̂RW = σRW =
Nq2x2

0Γ

6V kBT
, (21.8)

see also Fig. 21.1.
However, (21.8) is in marked contrast to experimental conductivity spec-

tra like those presented in Figs. 21.2 and 21.5. As outlined in Sect. 21.1,
correlated hopping processes of the ions have to be taken into account. In the
latter case, both the current density autocorrelation function, 〈i(0) · i(t)〉,
and the velocity autocorrelation function, 〈v(0) ·v(t)〉, strongly deviate from
those of a random walker, cf. Fig. 21.1.

Over the years, various concepts, models and computer simulations have
been published, all of them aiming at a realistic description of the nonrandom
ion transport in disordered systems. The most important ones are briefly
summarised in the following.

(i) In his coupling concept, Ngai described the time-dependent decay of an
electric field in an electrolyte by joining together an exponential and
a stretched-exponential (Kohlrausch-Williams-Watts) decay function.
The model yields σdc = σ(0), σhf = σ(∞), and a dispersive conductivity
in between [29–31].

(ii) The physical picture of mismatch and mismatch relaxation was first
introduced in the jump relaxation model. Being based on interactions
between the ions, the model was able to reproduce essential features of
the spectra in a closed expression [32, 33].

(iii) Introducing disorder on a square lattice, Bunde and co-workers obtained
time-correlation functions and spectra σ(ν) from Monte-Carlo simula-
tions [34] (see Chap. 20).

(iv) In their counter-ion model, Dieterich and co-workers considered both
disorder and interactions and were thus able to derive realistic spectra
from numerical simulations [35, 36] (see Chap. 20).

(v) It has been realised that the combined validity of the time-temperature
superposition principle and the Summerfield scaling implies that the
only effect of temperature is to change the hopping rates of the ions
while their hopping mechanism is preserved.

(vi) The asymmetric double well potential (ADWP) model [37] has been
used by Nowick, Jain, and their co-workers to explain the NCL behav-
iour. Jain coined the phrase “jellyfish” behaviour [38]. Both Nowick and
Jain have always regarded UDR and NCL as different features [26].
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(vii) On the other hand, concepts have also been developed which self-
consistently explain a continuous transition from UDR to NCL. One of
these is the random barrier model as treated mathematically by Dyre
and Schrøder [39, 40]. However, the comparatively large rms value of
the distance at which an ion loses memory of its previous position is an
unsolved problem of this approach.

(viii) The concept of mismatch and relaxation (CMR) also provides realistic
spectra including the UDR-NCL transition. It has the further advan-
tage of reproducing spectra with different shapes in a one-parameter
treatment, see the following section.

(ix) On the basis of the CMR, the non-Arrhenius dc conductivity encoun-
tered in fragile supercooled ionic melts has been shown to be a di-
rect consequence of a short-time behaviour characterised by Arrhenius-
activated elementary displacements normally followed by roll-back processes
[12].

(x) According to recent computer simulations [41], the NCL behaviour ob-
served at cryogenic temperatures can be explained by strictly localised
movements of interacting ions (cf. Chap. 20). The same result is ob-
tained from a suitably modified version of the CMR [42].

21.4 CMR Equations and Model Conductivity Spectra

Before embarking on the construction of the CMR, it is useful to consider
the shapes of some relevant functions. This is done with the help of Fig. 21.7,
where the approximation of (21.6) has been adopted, i. e., it is assumed that
no essential error is introduced by putting HR = 1, cf. [43]. For convenience,
one further function is introduced, viz., the time-dependent correlation factor,
W (t) [32]. This function is a normalised integral of 〈v(0) · v(t)〉 and, at the
same time, a normalised derivative of the mean square displacement, 〈r2(t)〉:

2
Γ0x2

0

∫ t

0

〈v(0) · v(t′)〉dt′ = W (t) =
1

Γ0x2
0

d
dt

〈r2(t)〉 . (21.9)

Here, Γ0 denotes the elementary hopping rate of the ions.
At very short times, when each ion performs at most one hop, correla-

tions are not yet visible. Therefore, we have W (0) = 1, and 〈r2(t)〉 increases
linearly with time, see Fig. 21.7 (b) and Fig. 21.7 (d). Note that the ballistic
short-time behaviour, with 〈r2(t)〉 ∝ t2, is not included as jump processes
are considered only. At longer times, when negative values of 〈v(0) · v(t)〉
contribute significantly to the expression in (21.9), W (t) is found to decay
with time, and 〈r2(t)〉 increases in a sublinear fashion. This time regime is
sometimes called “subdiffusive” or “anomalous” (cf. Chaps. 10, 18, 19, 22).
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Fig. 21.7. Schematic plot of relevant functions. (a) Normalised frequency-
dependent conductivity caused by the hopping motion of the ions, versus angular
frequency in a log-log representation. (b) Time-dependent correlation factor versus
time in a log-log representation. (c) Velocity autocorrelation function of the mobile
ions versus time. (d) Mean square displacement of the mobile ions versus time in a
log-log representation.

Only at much longer times, when 〈v(0)v(t)〉 becomes very small and, conse-
quently, W (t) tends to its long-time limit, W (∞), does 〈r2(t)〉 change from its
subdiffusive behaviour into its diffusive long-time behaviour, which is linear
in time, with 〈r2(t)〉 = 6Dt, where D is the coefficient of self-diffusion. Note
that σ(ν)/σ(∞) and W (t), in log-log representations, are almost perfect mir-
ror images of each other, see Fig. 21.7 (a) and Fig. 21.7 (b) as well as Fig. 21.8.
Although this approximate symmetry is useful for practical purposes, we will
not use it for deriving model spectra, σ(ν)/σ(∞). Rather, exploiting the re-
lationships between σ(ν) and 〈v(0)v(t)〉, and between 〈v(0)v(t)〉 and W (t),
we write

σ(ν)
σ(∞)

= 1 +
∫ ∞

0

Ẇ (t) cos(2πνt)dt . (21.10)

From (21.10) it is evident that σ(ν)/σ(∞) will be known as soon as W (t)
is known. The basic idea of the CMR is now to find W (t) from simple rate
equations that describe the development of the ion dynamics with time.

In the following, we present the equations that allow us to determine func-
tions W (t) and σ(ν)/σ(∞). We also present and discuss general features of



21 Concept of Mismatch and Relaxation 869

the conductivity spectra thus obtained, while the explanation of the physical
concept of the model is postponed to Sect. 21.6.

The rate equations used in the CMR are

−ġ(t) = AgK(t)W (t) (21.11)

and
−Ẇ (t) = −BW (t) ġ(t) . (21.12)

These equations contain two time-dependent functions, W (t) and g(t).
Here W (t) is the time-dependent correlation factor, while g(t) is a normalised
mismatch function, see Sect. 21.6. They also contain three parameters, viz.,
A, B and K. The first parameter, A, is an internal frequency which turns out
to be proportional to the high-frequency conductivity, σ(∞). The second pa-
rameter, B, determines the ratio σ(0)/σ(∞) = W (∞) viaW (∞) = exp(−B).
In many cases, W (∞) is found to be Arrhenius activated which implies that
B should be proportional to the inverse temperature, 1/T . In the following
section, see (21.25), we will show that the ratio A/B is not only proportional
to σ(∞) ·T , and hence to the elementary hopping rate of the mobile ions, Γ0,
but that A/B and Γ0 may even be assumed to be identical (at least for the
example studied, within the limits of experimental error). The value of the
third parameter, K, influences the shape of the resulting conductivity spec-
tra in the vicinity of the onset of the dispersion, see the end of this section
as well as the discussion at the end of Sect. 21.6. In glassy and crystalline
electrolytes with high concentrations of mobile ions, K is typically found to
be 2 or close to 2.

Functions W (t) and g(t) satisfying the rate equations are shown in
Fig. 21.8 (a). The particular parameter values used are W (∞) = 0.001 and
K = 2. The time axis has been normalised by multiplication with the internal
frequency A. In a second step, application of (21.10) yields the normalised
conductivity spectrum, σ(ν)/σ(∞), represented in Fig. 21.8 (b) by the solid
line. Note that the broken line in Fig. 21.8 (b), obtained from W (t) by form-
ing the mirror image, provides a good approximation to the exact solution,
i.e.,

σ(ω)
σ(∞)

≈ W

(
2
πω

)
. (21.13)

Here, the factor 2/π arises as (21.13) is an approximation for an expres-
sion obtained by Fourier transformation. Figure 21.9 shows the shape of the
frequency-dependent conductivity for a fixed value of B (B = 25), and also
demonstrates the effect of varying the parameter K. In the first place, it is
important to note that, irrespective of the value of K, the model conduc-
tivity spectra do not obey a power law. Rather, as in Fig. 21.6, the appar-
ent slope in the log-log representation increases continuously, approaching
the value of one before the high-frequency plateau is attained. This is the
UDR–NCL transition. Of course, this transition can only be observed, if



870 Klaus Funke, Cornelia Cramer, and Dirk Wilmer

-2 0 2 4 6

-3

-2

-1

0

lo
g 10

 W
(t

),
 lo

g 10
 g

(t
)

-8 -6 -4 -2 0 2 4

-3

-2

-1

0

lo
g 10

(σ
(ω

)/σ
(∞

))

log10(t . A)

log10(ω /A)

W(t)
g(t)

Fig. 21.8. (a) Functions W (t) and g(t) satisfying (21.11) and (21.12) for W (∞) =
exp(−B) = 0.001 and K = 2. (b) Solid line: normalised conductivity caused by
hopping motion versus normalised angular frequency as obtained by inserting W (t)
from panel (a) into (21.10). Broken line: mirror-image approximation for the nor-
malised conductivity.
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Fig. 21.9. Shape of frequency-dependent conductivity as obtained from the CMR
for fixed B, with B = 25, including the effect of different values of K.
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W (∞) = σ(0)/σ(∞) = exp(−B) is sufficiently small, i.e., at sufficiently low
temperatures. Otherwise, the high-frequency plateau will be attained before
the transition becomes visible.

Figure 21.9 also shows how the numerical value of K influences the shape
of the spectrum. As K is increased, the transition from σdc = σ(0) into the
dispersive regime becomes more and more gradual. Indeed, such a variation
has been observed experimentally, e.g., upon reducing the number density of
mobile ions in a solid electrolyte [17] or when moving from a binary alkali-ion
conducting glass into the mixed-alkali regime [22,23]. Examples will be given
in Sect. 21.9.

21.5 Scaling Properties of Model Conductivity Spectra

On the basis of (21.11) and (21.12) specific predictions can be made with re-
gard to the behaviour of W (t) and σ(ω)/σ(∞) in the vicinity of those times
and angular frequencies that mark the transitions from σdc into the disper-
sive regime and from the dispersive regime into σhf . We will in particular
show that model conductivity spectra possess the property of scaling in both
limiting cases. This means that the shapes of frequency-dependent model
conductivities are preserved in either frequency regime as the temperature is
varied. Of course, this requires sufficiently large ratios of σ(∞)/σ(0) as well
as a fixed value of the parameter K.

For the purpose of scaling, temperature-dependent angular frequencies
ωO and ωE will be introduced which mark the onset and the end of the
dispersion, respectively.

The situation is particularly simple at short times, when g(t) is still close
to one, cf. Fig. 21.8 (a). In this case, (21.11) and (21.12) may be combined
and approximated by

−Ẇ (t) = ABW 2(t) . (21.14)

Equation (21.14) has the solution

W (t) =
1

1 +ABt
. (21.15)

This implies that, according to the mirror image approach, the high-frequency
solution for the conductivity should be close to

σ(ω)
σ(∞)

=
1

1 + 2AB/(πω)
. (21.16)

We may, therefore, somewhat arbitrarily, define an “end angular frequency”
as

ωE = AB . (21.17)

Equation (21.16) is remarkable as it describes the nearly-constant-loss be-
haviour encountered at angular frequencies ω below ωE, provided g(1/ω) is
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Fig. 21.10. A CMR model conductivity spectrum, with B = 8 and K = 2. The
angular frequencies ωO and ωE mark the onset and the end of the dispersion.

still close to one. At sufficiently low temperatures, this requirement is indeed
satisfied in a wide range of angular frequencies that are still well below ωE.
In Fig. 21.10, the position of ωE has been marked in a plot of ln(σ(ω)/σ(∞))
versus ln(ωB/A). The plot also contains a mark for the corresponding “onset
angular frequency”, ωO. An expression for ωO is obtained by considering low
frequencies, corresponding to long times, where Wscaled = W (t)/W (∞) tends
to unity. In this case we combine (21.11) and (21.12) to form

− d
dt

lnWscaled(t) = AB exp(−B)Wscaled(t)
[
lnWscaled(t)

B

]K

(21.18)

or, with
ωO = AB1−K exp(−B) (21.19)

and
tscaled = tωO , (21.20)

− d
dtscaled

lnWscaled = Wscaled · (lnWscaled)K . (21.21)

Integration of (21.21) yields

tscaled =
∫ − ln W (∞)

ln Wscaled

x−Ke−x dx ≈
∫ ∞

lnWscaled

x−Ke−x dx . (21.22)

The approximation made on the right-hand side of (21.22) is always valid
at times that are much longer than 1/ωE. In particular, it is always valid in
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the “long-time regime” that corresponds to the impedance frequency range,
below 10MHz. This is important, because experimental conductivities used
for scaling purposes have almost exclusively been measured below 10MHz.

From (21.22) it is evident that in the long-time regime Wscaled is a unique
decaying function of tscaled. Correspondingly, σ(ω)/σ(∞) also exhibits scal-
ing, and the “onset angular frequency” may be chosen to be ωO from (21.19).
In the frequent case of K = 2, we have

ωO =
A

B
exp(−B) for K = 2 . (21.23)

This “onset angular frequency” ωO has been marked in Fig. 21.10.
The inverse onset angular frequency, 1/ωO , plays the role of a crossover

time at which macroscopic random diffusion is attained. Likewise, a crossover
distance, �O, may be defined by �O = (6D/ωO)1/2. The example of RbAg4I5
is particularly clear-cut. In this solid electrolyte, the density of mobile ions
is high, the value of K is found to be 2 as in Fig. 21.10, and the elementary
hopping distance, x0, is known. From the conductivity spectra of RbAg4I5,
to be discussed in Sect. 21.7, we find that within experimental error there is
no difference between x0 and the distance �O, after which random diffusion
prevails. This means that an ion, after a hop from one site to another, loses its
memory of the previous site as soon as it succeeds in stabilising its position
at the new one. Therefore, within experimental error, ωO can be identified
with the “random hopping rate” or “rate of successful hops” of the ions, Γ :

ωO ≈ Γ = 6D/x2
0 . (21.24)

Equation (21.24) is expected to hold not only in the particular case of
RbAg4I5 but in many other ionic materials as well.

As only a fraction Γ/Γ0 = W (∞) = exp(−B) of all hops are successful,
we find that the elementary hopping rate should be

Γ0 = Γ · exp(B) ≈ ωO exp(B) =
A

B
for K = 2 . (21.25)

As illustrated in Fig. 21.10, the position of A/B ≈ Γ0 is situated between
ωO ≈ Γ and ωE = AB on the frequency scale.

In most crystalline and glassy electrolytes, the dc conductivity, σdc =
σ(∞) exp(−B) is found to obey the Arrhenius law. This means that σdc · T
is proportional to exp(−Edc/kBT ), where Edc is the activation energy. In
those cases, where high-frequency conductivities, σ(∞), have also been de-
termined, they turn out to be Arrhenius activated as well, cf. Sect. 21.2.
Conductivity spectra of this kind are easily reproduced by the CMR, with
A and B depending on temperature in a known and simple fashion, and a
complete set of isothermal conductivity spectra at different temperatures is
readily constructed, as shown in Fig. 21.11. According to (21.24), the onset
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Fig. 21.11. Sketch of a set
of frequency-dependent conduc-
tivity isotherms as obtained from
the CMR for the case where dc
conductivity and high-frequency
conductivity both follow the Ar-
rhenius law. The value of the pa-
rameter K is again 2.

angular frequency is expected to be proportional to the coefficient of self-
diffusion and, because of the Nernst-Einstein relation, also proportional to
the product of dc conductivity and temperature. In Fig. 21.11, the onset of
the dispersion at different temperatures is, therefore, marked by a straight
line with a slope of one. This kind of scaling, with ωO ∝ σ(0) · T , is some-
times called “Summerfield scaling” [18] and has already been mentioned in
Sect. 21.2.

Figure 21.11 also shows that shifting individual conductivity spectra along
the line with slope one will result in a superposition of their low-frequency
sections. This procedure was applied in Fig. 21.6, producing one experimental
master curve and, likewise, one model master curve. The same procedure
has proved successful for many glassy and crystalline electrolytes. Further
examples are glassy B2O3 · 0.56 Li2O · 0.45 LiBr, cf. Fig. 21.12, and glassy
0.3 Li2O · 0.7 B2O3, cf. Fig. 21.18 in Sect. 21.9.

Experimentally, materials usually do not display noticeable variations
in the shapes of their low-frequency conductivities as the temperature is
changed. In the CMR, this corresponds to a fixed value of the parameter K.
Recently, changes in shape have, however, been observed in the temperature-
dependent conductivity spectra of the mixed alkali glass 0.3 [xLi2O · (1 −
x)Na2O] · 0.7 B2O3 [23].

21.6 Physical Concept of the CMR

The concept of mismatch and relaxation builds on the jump relaxation
model [32,33], the central idea being unchanged. Each mobile ion is assumed
to have vacant sites in its immediate neighbourhood, while other mobile ions
are present in its further surroundings, very much like the ion cloud in Debye-
Hückel theory. Due to their mutual repulsive interaction, the ions tend to stay
at some distance from each other. Each ion experiences a time-dependent ef-
fective potential which consists in part of the static potential provided by
the immobile crystalline or glassy network and in part of a time-dependent
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Fig. 21.12. Scaled representation of experimental and model conductivities (circles
and solid line, respectively) for B2O3 · 0.56 Li2O · 0.45 LiBr glass. The value of K is
again 2. For more details on this particular system, see [23].

cage-effect potential provided by its mobile neighbours. Suppose the ion per-
forms a hop to a neighbouring site. As a consequence, mismatch will usually
be created between its own position and the momentary arrangement of its
mobile neighbours. There are two possible ways for the system to reduce the
mismatch. Either the neighbours rearrange or the “central” ion hops back
into its previous site. This explains the existence of forward-backward corre-
lations of successive hops. Consequently, the mean square displacement ex-
hibits a “subdiffusive” behaviour, cf. Fig. 21.7 (d), and dispersion is observed
in frequency-dependent ionic conductivities.

Suppose mismatch is created by a hop of a mobile ion at time t = 0.
Then the mismatch function g(t), for t > 0, has the meaning of a normalised
distance between the actual position of the ion and the position at which
it would be optimally relaxed with respect to the momentary arrangement
of its mobile neighbours. The function g(t) varies with time from g(0) = 1
to g(∞) = 0, describing the way mismatch decays because the neighbouring
ions rearrange, while the “central” ion is supposed to stay at its position. The
negative time derivative, −ġ(t), is thus the rate of mismatch relaxation on
the “many-particle route”. On the other hand, −Ẇ (t)/W (t) is interpreted
as the rate of mismatch relaxation on the “single-particle route”, with the
ion hopping backwards. Here, the factor 1/W (t) is required, since we focus
on those cases where the ion has not yet moved backwards at time t. The
central assumption of the CMR is then expressed by (21.12), i.e., the rates of
relaxation on the single- and many-particle routes are assumed to be propor-
tional to each other at all times. In other words, the tendency for the central
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ion to hop backwards is assumed to be proportional to the tendency of its
neighbours to rearrange.

Up to this point, the CMR and its predecessor, the jump relaxation model,
are identical. The CMR differs from the jump relaxation model by inclusion
of (21.11). In this equation, we consider the rate of decay of g(t), −ġ(t).
Here it is important to realise that g(t) plays the role of a normalised dipole
moment. Its dipole field is the driving force felt by the neighbouring mobile
ions, inducing their rearrangement and, as a consequence, the concomitant
decay of g(t) itself. As the rearrangement of the surrounding “ion cloud”
proceeds, the central dipole will become increasingly shielded. This means
that two effects occur simultaneously. One is the decay of g(t) with time. The
other is the shrinking of the effective volume of the dipole field. In other words,
the effective number of mobile neighbours available for the relaxation becomes
time-dependent. It is evident that this is an extremely complicated dynamic
process, much more complicated than Debye-Hückel theory. Any attempt
to grasp its essence in a simple equation must contain approximations. For
deriving a suitable equation we start from the relation,

−ġ(t) ∝ g(t) ∗ 〈v(0)v(t)〉 · #(t) . (21.26)

Here, the rate of decay of g(t) at time t is expected to be proportional to
the convolution, denoted by “∗”, of the driving force and the velocity auto-
correlation function of the neighbouring mobile ions. No distinction is made
between the velocity autocorrelation function of the central ion and that of
its mobile neighbours. Furthermore, the rate of decay of g(t) is expected to
be also proportional to a function #(t) denoting the time-dependent effective
number of mobile neighbours available for the relaxation.

It is now easy to show numerically that g(t) varies with time much more
slowly than 〈v(0)v(t)〉 does. As a consequence, the convolution is well approx-
imated by the product of g(t) and the time integral of 〈v(0)v(t)〉, which is
proportional to W (t). Indeed, functions g(t) and W (t) obtained by use of the
approximation are found to satisfy the exact equation (with the convolution)
perfectly [12]. Equation (21.26) thus becomes

−ġ(t) ∝ g(t)W (t) · #(t) . (21.27)

While #(t) is certainly a decaying function of time, its shape is not easily
determined from simple model considerations. Therefore, in a more empirical
approach, we have tried to determine its shape by comparing experimental
spectra, σ(ν), and model spectra obtained from (21.10), (21.12), and (21.27)
using functions #(t) with different shapes. As a result, good agreement be-
tween model spectra and experimental spectra is obtained, if #(t) is assumed
to decay as g(t) or slightly faster. This results in (21.11) with K = 2 orK > 2.

Interestingly, the value of K appears to be related to the overall num-
ber density of mobile ions. If the number density is high, then K ≈ 2 gives



21 Concept of Mismatch and Relaxation 877

excellent results in most cases, implying that #(t) should be roughly pro-
portional to g(t). Smaller number densities are reflected by a more gradual
increase of σ(ν) in the vicinity of the onset angular frequency, ωO. According
to Fig. 21.9, this corresponds to a larger value of K implying a more rapid
decay of #(t), cf. (21.27). A tentative simple explanation of this effect may be
as follows. Let us assume the unshielded effective volume of the dipole field
and the number of mobile ions contained in it do, indeed, decay with time in
the same fashion as g(t) does. Then, if the overall number density of mobile
ions is large, the difference between the number of mobile ions contained in
that volume and the number #(t) will not be significant, since it is only one
(the “central” ion). However, if the number density becomes smaller, then
this difference becomes increasingly significant. The function #(t) will then
decay faster than g(t), and the effect will be the more pronounced, the smaller
the number density is.

At this point, we should like to compare the model concept of the CMR
with approaches that focus on the effects of static disordered energy land-
scapes on the ion dynamics, see e.g. [39,44]. In either treatment, each mobile
ion encounters varying potentials in the course of time. In a static energy
landscape, this happens as the ion explores larger and larger parts of its
neighbourhood. In the CMR, however, this happens locally, as the potential
is considered time-dependent itself. Therefore, the characteristic length �O
after which a mobile ion loses memory of a previous site and starts to diffuse
at random will necessarily be larger in models with static energy landscapes
than it is in the CMR. Here it is important to note that, in agreement with
the CMR approach, we find �O = x0 from the data available for rubidium
silver iodide, see Sects. 21.5 and 21.7.

21.7 Complete Conductivity Spectra of Solid Ion
Conductors

The vast majority of measurements of frequency-dependent conductivities of
solid ion conductors have been performed in the impedance frequency regime,
below 10MHz. There are only few examples where measurements have been
extended into the radio, microwave and far-infrared frequency ranges. Of
course, measurement of such “complete” conductivity spectra is a prereq-
uisite for detecting the high-frequency plateau. Nevertheless, the detection
of the high-frequency plateau often poses severe experimental problems, in
particular in the case of glassy electrolytes, where it is usually swamped by
the vibrational contributions to the conductivity, cf. Sect. 21.2 and [45]. In a
few cases, however, the variation of the vibrational far-infrared conductivity
with frequency is so clear-cut that attempts to remove it appear justified.
An example is the glassy electrolyte silver thio germanate, of composition
0.5 Ag2S · 0.5 GeS2, where conductivity spectra have been taken continuously
up to infrared frequencies [46]. In this case it has been possible to prove that,
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Fig. 21.13. Conductivity spectra of 0.5 Ag2S · 0.5 GeS2 glass, after removal of
vibrational contributions. The solid lines result from the CMR. As in Fig. 21.11, the
values of A(T ) and B(T ) have been chosen such that both dc and hf conductivity
are Arrhenius activated. The value of K is 2.3.

within the limits of error, the low-frequency flank of the vibrational conduc-
tivity is exactly proportional to frequency squared [23]. In Fig. 21.13 we show
a set of non-vibrational conductivity spectra of glassy 0.5 Ag2S · 0.5 GeS2

which have been obtained from the original ones by removing the vibrational
component. Although the uncertainty introduced by this procedure is consid-
erable at microwave frequencies above 10GHz, it is evident that the spectra
of Fig. 21.13 closely resemble the model spectra of Fig. 21.11. The solid lines
included in Fig. 21.13 are CMR model spectra. Both A/B and exp(−B) are
thermally activated, the activation energies of A/B and σ(∞) ·T being iden-
tical. The best choice for the value of K is 2.3.

While the spectra of Fig. 21.13 suffer from the scatter of the data in
the microwave regime, the separation of the vibrational and non-vibrational
contributions to σ(ν) is less problematic in the case of crystalline rubidium
silver iodide, RbAg4I5, see Fig. 21.14.

RbAg4I5 is a prominent member of the class of optimised silver ion con-
ductors with structurally disordered silver sublattices [47–49]. High-frequency
conductivity spectra of RbAg4I5 extending up to infrared frequencies have
been published in [7,10,50]. In the microwave regime and below, the conduc-
tivity is dominated by the translational motion of the silver ions via tetrahe-
dral sites. Slow vibrations of the silver ions within their flat potentials have
been shown to be responsible for a maximum in σ(ν) observed in the far
infrared, at about 0.5THz [50]. Conductivity maxima beyond 1 THz are due
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Fig. 21.14. Radio and microwave conductivities of the crystalline fast ion conduc-
tor RbAg4I5 at different temperatures. The notation σred indicates that vibrational
contributions to the conductivity have been removed. The solid lines result from
the CMR, with K = 2, the shaded area marks the dispersive regime. For details,
see text.

to the excitation of transverse optical phonons (cf. Fig. 21.2 for the case of
Na-β′′-alumina).

The non-vibrational radio and microwave conductivity isotherms of Fig.
21.14 have been obtained from the experimental spectra by removing the
low-frequency flank of the slow vibrational contribution. At millimetre-wave
frequencies, they gradually approach their high-frequency plateaux. Again,
the product σ(∞) ·T is thermally activated, the activation energy now being
Ehf = 0.053 eV ± 0.005 eV. As noted earlier, this value is identical with the
potential barrier between adjacent tetrahedral sites in RbAg4I5 as derived
from a probability density contour map for the silver ions [50]. This identity
is not surprising, since elementary hops are registered individually in the
high-frequency limit.

In Fig. 21.14, CMR model spectra are presented along with the experimen-
tal ones. The values of the parameter A are found to be exactly proportional
to σ(∞), while the best choice for K is 2.0. For each dispersive spectrum, the
onset of the frequency dependence is marked in the figure at νO = ωO/(2π),
while its end is marked at νE = ωE/(2π). In Fig. 21.14, the onset frequencies
νO lie on a straight line with a slope of one, signifying the validity of the Sum-
merfield scaling on the low-frequency side of the dispersion. As noted earlier,
the values of ωO(T ) = (A(T )/B(T )) exp(−B(T )) and those of the random
hopping rate, Γ (T ), of the mobile silver ions are found to be identical within
the experimental limits of error:
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ωO(T ) ≈ Γ (T ) . (21.28)

To determine Γ (T ), we have used the Nernst-Einstein relation,

Γ (T ) ≈ 6σ(0)kBT

NV e2x2
0

, (21.29)

where NV and e denote the number density of the silver ions and the elemen-
tary charge, respectively. The Haven ratio has not been included in (21.29) as
it is close to one [43]. As a consequence of (21.28), the ratio A(T )/B(T ) has to
be interpreted as the elementary hopping rate, Γ0(T ), cf. Sect. 21.5. Equation
(21.28) also implies that the time when random diffusion is attained corre-
sponds to a root mean square displacement of about one elementary hopping
distance.

In Fig. 21.14, the marks for νO and νE are on the edge of a shaded area.
Within this area the spectra display dispersion, while they become flat out-
side. On the frequency scale, the width of the shaded area is found to shrink
as the temperature is increased, until a particular point is attained at its top,
resembling a critical point and signifying the end of the dispersive regime. We
thus observe, for the first time in a solid ion conductor, a smooth transition
from a non-random hopping at lower temperatures to a random hopping at
higher temperatures. In fact, at 298K the “ion cloud” appears to relax al-
most instantaneously after each hop of the “central ion”, leaving no energetic
advantage for a correlated backward hop and no memory of the previously
occupied site.

For W (∞) = exp(−B) we observe a gradual transition from a thermally
activated low-temperature behaviour to its high-temperature value of one.
Because of the relation σ(0) = exp(−B) · σ(∞), this has the following impli-
cation. In an Arrhenius plot of the dc conductivity, there is a slight, gradual
change of slope as σ(0) approaches σ(∞) with increasing temperature. In
fact, this kind of non-Arrhenius behaviour appears to be characteristic of
a number of fast ion conductors, both crystalline and glassy. Examples in-
clude Na-β′′-alumina [51,52], argyrodite (Ag7GeSe5I) [53], and glasses of the
system AgI − Ag2S − B2S3 − SiS2 [54].

21.8 Ion Dynamics in a Fragile Supercooled Melt

Comparing the dynamics of the mobile ions in glassy and crystalline elec-
trolytes on the one hand and in fragile supercooled ionic melts such as
0.6 KNO3 · 0.4 Ca(NO3)2 [11] and LiCl · 7 H2O [12] on the other, one finds
surprising similarities as well as characteristic differences. Both are outlined
in this section. Considering the fragile melt LiCl · 7 H2O, we show that the
CMR is, indeed, applicable to this system [42].
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Fig. 21.15. Non-vibrational conductivity spectrum of the fragile supercooled ionic
melt LiCl · 7H2O at 253 K. The solid line is a CMR model spectrum, with K = 2.

In the case of supercooled LiCl · 7 H2O, careful removal of the low-
frequency part of the vibrational contribution to the conductivity results
in non-vibrational conductivity spectra as the one presented in Fig. 21.15. At
frequencies around 1THz, the spectrum of Fig. 21.15 is seen to level off and
to approach its high-frequency plateau. In the figure, a CMR model spectrum
is included for comparison. Here, the numerical value of K used for modelling
has again been chosen to be 2.0 [42]. The same value of K has also been used
for fitting four other σ(ν) isotherms, and the entire set of CMR model spectra
thus obtained is presented in Fig. 21.16. Interestingly, the high-frequency con-
ductivities of Fig. 21.16 turn out to follow the Arrhenius law, with a thermal
activation energy of 0.08 eV± 0.005 eV for σ(∞) · T [12].

The observation of a thermally activated high-frequency conductivity in
a melt impacts strongly on the assessment of model approaches for the ion
dynamics. Evidently, the melt behaves solid-like, if the time window is not
larger than a fraction of a picosecond. In this short-time regime, one may vi-
sualise individual activated displacements of individual ions. At longer times,
however, the structure does not remain rigid. Structural relaxation sets in,
and the concept of fixed sites has to be abandoned. Nevertheless, the CMR
equations, (21.11) and (21.12), still seem to apply. Conceptually, it is now
important to separate the two routes of relaxation expressed by the two
equations. In particular, it is important to note that by definition −ġ(t) is
the rate of mismatch relaxation due to the rearrangement of the neighbours
under the virtual condition W (t) ≡ 1, i.e., without considering the backward
motion of the central ion itself. Therefore, the factor W (t) is once again in-
cluded in (21.12). Also, the meaning of W (t) itself is different from what it
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Fig. 21.16. Set of CMR model isotherms for the fragile supercooled ionic melt LiCl·
7H2O obtained on the basis of experimental conductivity spectra as in Fig. 21.15,
with K = 2.

is in a solid. The function now denotes the average fraction of an original
displacement that is still encountered at time t.

It is most interesting to compare the conductivity isotherms of Fig. 21.16
with those of Fig. 21.11. The spectra shown in the two figures have many
properties in common. Firstly, they display the same shape, even the value of
K being identical. Secondly, the high-frequency conductivities are Arrhenius
activated in both cases. Thirdly, the time-temperature superposition princi-
ple appears to be satisfied not only in the solid electrolyte, but also in the
supercooled melt. Nevertheless, the two systems differ strongly with regard
to the temperature dependence of their dc conductivities. In contrast to the
example of Fig. 21.11, the dc conductivity is clearly non-Arrhenius in the case
of the fragile supercooled melt. Most remarkably, this property turns out to
be a direct consequence of the short-time dynamics of the mobile ions.

The key feature causing the non-Arrhenius behaviour of the dc conduc-
tivity is, in fact, the constancy of the crossover angular frequency at the end
of the dispersive regime, ωE = AB, as a function of temperature, which is
evident from Fig. 21.16. As a consequence of ωE(T ) = A(T )B(T ) = const.
and A(T ) ∝ σhf(T ), B(T ) is proportional to 1/σhf(T ). As the dc conductivity
varies with temperature as σdc(T ) = σhf(T ) exp(−B), we find

σdc(T ) = σhf(T ) · exp
(
− σ∗

σhf(T )

)
, (21.30)

where σ∗ is a constant. Equation (21.30) replaces the empirical Vogel-Fulcher-
Tammann [55–57] relation. Apart from resulting from the short-time dynam-
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Fig. 21.17. Dc conductivity data of LiCl · 7H2O. The solid line is from (21.30),
see main text.

ics, it has the further advantage of not predicting a singularity of the tem-
perature derivative of the dc conductivity.

The temperature-dependent dc conductivity of LiCl · 7 H2O is plotted in
Fig. 21.17. Here, the squares mark our data points [12], while the solid line is
obtained from (21.30) with Arrhenius-activated high-frequency conductivities
taken from Fig. 21.16. The meaning of the constant σ∗ becomes obvious by
extrapolating (21.30) to a higher temperature T ∗, where B is only one. For
that particular temperature, σ∗ and σhf are identical.

Finally, it is worth emphasising that the distinguishing mark of a fragile
melt, resulting in (21.30), is the absence of any temperature dependence
of the crossover angular frequency ωE. This feature corresponds to a non-
activated roll-back process occurring in most cases after a thermally activated
displacement. Such a view of the short-time dynamics is well in line with the
conception of a fragile melt as an ionic system whose structure does not easily
provide preexisting neighbouring sites for its mobile ions. The situation would
be different in a strong glass-forming melt, where (21.30) would not apply,
the reason being the existence of available neighbouring sites in the network.
The backward hop from such a site would require some activation energy,
and hence ωE would become temperature-dependent.

21.9 Conductivities of Glassy and Crystalline
Electrolytes Below 10 MHz

Below 10 MHz, where waveguide techniques are not required, conductivities of
materials are measured not only much more easily, but also with much higher
precision than at higher frequencies. Therefore, characteristic variations in
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the shapes of conductivity spectra of solid electrolytes are best detected in the
low-frequency range. In this section, low-frequency conductivities of various
glassy and crystalline ion conductors are presented and compared with CMR
model spectra. The result of the comparison turns out to be twofold. In the
first place, we find that the model conductivities always agree very well with
the experimental ones. However, to achieve good agreement, different values
of the parameter K have to be adopted, and the remaining question is how to
relate those values to the structures and dynamics of the materials studied.

In Fig. 21.18, we present frequency-dependent conductivities of a lithium
borate glass of composition 0.3 Li2O · 0.7 B2O3 as measured at four differ-
ent temperatures. The dc values of the conductivities follow the Arrhenius
law. The solid lines included in the figure are CMR model spectra calculated
with K = 2.0. Both the experimental and the model conductivities satisfy
the time-temperature superposition principle, and the Summerfield scaling
is found to apply. Utilising the Summerfield scaling, the four experimental
spectra can be collapsed in one master curve which is, indeed, indistinguish-
able from those already shown for other glasses in Fig. 21.6 and Fig. 21.12.
Likewise, the model spectra are automatically collapsed in one curve, if the
angular frequency is scaled in units of ωO = (A/B) exp(−B), as described in
Sect. 21.5. The master spectrum thus obtained and the one of Figs. 21.6 and
21.12 are identical, since the value of K is 2.0 in all cases.

More examples of low-frequency conductivity spectra of glassy electrolytes
are given in Figs. 21.19 and 21.20. The data have been taken from a silver
sulphate silver metaphosphate glass of composition 0.3 Ag2SO4 · 0.7 AgPO3

[42] and from a mixed alkali-alkaline-earth silicate glass of composition K2O ·

Fig. 21.18. Comparison of CMR model conductivities (solid lines, K = 2) and
experimental ones (symbols) for 0.3 Li2O · 0.7B2O3 glass at different temperatures.
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Fig. 21.19. Experimental conductivity isotherm of glassy 0.3 Ag2SO4 · 0.7 AgPO3

at 193 K (circles) and CMR model spectrum with K = 2.1 (solid line).

Fig. 21.20. Experimental conductivity isotherm of glassy K2O · 2BaO · 4 SiO2 at
113 K (circles) and CMR model spectrum with K = 2.6 (solid line).

2 BaO · 4 SiO2 [42], respectively. The data of Fig. 21.19 are best reproduced
with K = 2.1, while a considerably larger value of K, viz., 2.6, is required
to describe the frequency-dependent conductivity of the mixed cation glass
of Fig. 21.20. The rather gradual onset of the dispersion observed in Fig.
21.20 is reminiscent of many mixed alkali glasses, where the same feature
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Fig. 21.21. Experimental conductivity isotherm of Na-β-alumina at 113 K (circles)
[58] and CMR model spectrum with K = 2.3.

has been identified as a characteristic property of their frequency-dependent
conductivities [22].

Values of K larger than 2 are not only found for mixed-cation glasses,
but also for crystalline ion conductors with a reduced dimensionality of the
sublattice of the mobile ions. The effect of dimensionality on the shape of
conductivity spectra has recently been pointed out by Sidebottom [21]. (For
the influence of reduced dimensionality on neutron scattering and NMR spin-
lattice relaxation results see Chap. 3 and 9, respectively.) The most famous
two dimensional fast ion conductor is probably Na-β-alumina. In Fig. 21.21,
we reproduce conductivity data of this material published by Almond, West
and Grant [58]. To reproduce the data in terms of the CMR, the best choice
of K is 2.3.

Crystalline electrolytes in which the number of mobile ions is limited by
the particular defect structure constitute another interesting class of materi-
als. Examples are the low-temperature γ-phase of RbAg4I5, stable below the
first-order β-γ-transition at 122K [59] and β-AgI where the defect structure
is frozen-in at reduced temperatures. In both cases, the conductivity spectra
are well reproduced by the CMR, if K is chosen to be as high as 2.6 [42,60].
A spectrum of β-AgI is shown in Fig. 21.22, while the case of γ-RbAg4I5 will
be discussed in Sect. 21.10.

The impression that K may be causally related to the number density of
translationally mobile ionic charge cariers is thus corroborated. The view that
enhanced values of K correspond to a reduced number density of potentially
mobile ions in the neighbourhood of the “central” ion also seems to agree
with the observation that large values of K are found in mixed cation glasses
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Fig. 21.22. Experimental conductivity isotherm of β-AgI at 120 K (circles) [58]
and CMR model spectrum with K = 2.6.

as well. In such glasses, only a fraction of the neighbouring ions may be
considered mobile, since most of them are unable to find suitable sites in
their immediate neighbourhood. In spite of the above pieces of evidence,
it is felt that the tentative interpretation towards an understanding of the
meaning of K given at the end of Sect. 21.6 is not yet sufficiently conclusive.
Rather, further investigations are required to get a better insight into this
problem.

21.10 Localised Motion at Low Temperatures

The short-time solution for W (t) as given in (21.15) applies as long as g(t) is
close to one. This is the case in a broad interval on the logarithmic time scale,
if B is sufficiently large. Equation (21.15) then corresponds to a conductiv-
ity that increases almost linearly with frequency, before the high-frequency
plateau is attained. Approaching this regime from low frequencies, the CMR
predicts a continuous increase of the apparent power-law exponent, with one
as a limiting value. Experimentally, such a behaviour has been observed in
many ion-conducting solid materials, both crystalline and glassy, cf. Fig. 21.5.
Another agreement between experimental and model conductivities concerns
the very small temperature dependence in the NCL regime. As outlined in
Sect. 21.5, the low-frequency parts of spectra like those in Fig. 21.11 can be
superimposed by shifting them along a line with a slope of one. This implies
that at frequencies where σ (ω) ∝ ω is roughly satisfied, the temperature
dependence of the conductivity should, indeed, become very small.
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Fig. 21.23. Two conductivity isotherms of RbAg4I5 taken in the low-temperature
γ-phase (circles). The solid lines are CMR model spectra, with K = 2.6.

Interestingly, an approximately linear dependence σ (ω) ∝ ω has been
found in the impedance frequency regime not only in materials featuring non-
zero dc conductivities, but also in cases where, at a few Kelvin, ionic hopping
transport can be safely excluded as the cause of the effect [26, 27, 61, 62].
To explain such data, one has to envisage small localised displacements over
low potential barriers. It appears obvious that in this process interactions
between locally mobile ionic charge carriers will play an important role.

The purpose of this section is twofold. In the first place, we show that
the CMR equations, when slightly modified, are able to describe completely
localised movements of interacting ions, reproducing the low-temperature
NCL behaviour. Secondly, we present experimental conductivity spectra fea-
turing the CMR behaviour as outlined in Sects. 21.4 to 21.6 plus the low-
temperature NCL effect. In fact, in the γ-phase of rubidium silver iodide, cf.
Fig. 21.23, both types of ionic motion appear to contribute simultaneously to
the frequency-dependent conductivity. This will be discussed at the end of
this section.

In the literature, the low-temperature NCL behaviour is usually described
in terms of the asymmetric double well potential (ADWP) model [37]. In
that model, the potentials considered are static and exhibit particular distri-
butions of their barrier energies and asymmetries. The resulting conductivity
spectra have the same features as the one presented in Fig. 21.24. As the fre-
quency is increased, the slope in the log-log plot of σ (ω) changes first from
two to one and later from one to zero. The two crossover angular frequencies
correspond to a longest and a shortest relaxation time. However, there are
two aspects to the ADWP model that appear unsatisfactory. One is the ne-
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↓ 

ωcross = 1/τ

↓

ωE = A B

log ω

 ← σ = σ(∞)

lo
g

σ(
ω

)

Fig. 21.24. CMR model conductivity spectrum for an assembly of interacting
localised ions in flat double-well potentials (B = 100, Aτ = 106).

cessity to assume particular distributions. The other is the lack of any time
dependence in the shape of the potentials. Of course, such a time dependence
has to be expected, reflecting the interactions with other ions which are also
locally mobile. Indeed, if the dynamics of local electric dipoles are simulated
on a computer, and if interactions between them are taken into account, par-
ticular distributions turn out to be unnecessary, and the spectra obtained
again display the features of the one shown in Fig. 21.24 [41] (cf. Chap. 20).

The derivation of the conductivity spectrum of Fig. 21.24 has not required
any particular distribution, nor a computer simulation. Instead, the CMR has
been used to introduce the interaction. The rationale is as follows. Without
any interaction, the dynamics of an individual ion in a flat double-well po-
tential would be properly described by an exponentially decaying function
W (t). This would imply −(dW (t)/dt)/W (t) = 1/τ , where τ is the relax-
ation time. Taking interactions with other dipoles into account, we replace
the right-hand side with −B · dg(t)/dt+ 1/τ and again describe the decay of
the normalised mismatch function, g(t), by the short-time version of (21.11):

− d
dt
g(t) = A · gK (t) ·W (t) � A ·W (t) (21.31)

−
(

d
dt
W (t)

)
· 1
W (t)

= −B · d
dt
g (t) +

1
τ
. (21.32)

At low temperatures, 1/τ is only a small additive constant on the right-
hand side of (21.32). At short times, when 1/τ is still much smaller than
−B · dg(t)/dt, the functions W (t) and σ (ω) /σ (∞) obtained from (21.31)
and (21.32) are almost identical with those obtained without inclusion of
1/τ . If the dc conductivity is extremely low, corresponding to a large value
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of B, and if 1/τ is small, we thus find a nearly-constant-loss behaviour in a
wide range of frequencies. At very long times, however, when −B · dg(t)/dt
becomes even smaller than 1/τ , W (t) will decay exponentially. This results
in a σ (ω) ∝ ω2 behaviour at low frequencies. Both features are clearly seen
in Fig. 21.24.

The crossover from the σ (ω) ∝ ω2 regime into the NCL regime occurs at
an angular frequency ωcross = 1/tcross. At the particular time tcross, the two
terms on the right-hand side of (21.32) become identical. As g(t) is still close
to unity, we find from (21.31) and (21.32) that W (tcross) should be 1/(ABτ).
On either axis of a σ (ω) plot, the corresponding crossover point and the high-
frequency crossover point (at angular frequency ωE = AB) should, therefore,
be apart from each other by a factor of ABτ . This implies

ωcross = 1/τ (21.33)

as indicated in Fig. 21.24.
In Fig. 21.23, the CMR model curves provide fits to the experimental con-

ductivities of γ-RbAg4I5 only at sufficiently low frequencies, while increasing
discrepancies are observed at higher frequencies. Forming the difference be-
tween the measured conductivity isotherms and the model curves we obtain
the same straight line with a slope of one at both temperatures. This extra
contribution to the conductivity of γ-RbAg4I5 is thus – within the limits of
experimental error – both linear in ω and temperature-independent. It is,
therefore, interpreted as resulting from a strictly localised ionic motion as
described by (21.31) and (21.32). In the α- and β-phases of RbAg4I5 where
all the silver ions are translationally mobile, this contribution to σ (ω) has
not been detected, as it is evidently swamped by the regular CMR spectrum.
For a complete and satisfactory description of the ion dynamics in γ-RbAg4I5
it will, of course, be important to elucidate the detailed structural properties
of this phase, which are still unknown.

The conductivity isotherms of Fig. 21.23 are especially valuable, as they
put an end to a long-standing discussion. Until now, there have been two
seemingly contradictory points of view. Authors who have been measuring
ionic conductivities over wide ranges of frequency and temperature have been
convinced that the NCL behaviour is observed in any structurally disordered
solid electrolyte, if σ(ν)/σ(0) is sufficiently large, but σhf is not yet attained,
the effect being caused by the short-time hopping dynamics of the mobile ions
[63, 64]. On the other hand, those who have been measuring nearly constant
losses at low temperatures, have been convinced that this effect is certainly
not related with ionic hopping and ionic transport [27, 62]. The two views
are now reconciled, since Fig. 21.23 provides an example where the strictly
localised kind of ionic motion is found to coexist with the translational one.



21 Concept of Mismatch and Relaxation 891

21.11 Conclusion

Conductivity spectra of ionic materials with disordered structures contain
valuable information on the diffusion dynamics of the mobile ions. Phenom-
enologically, they display a number of common features. For any given ion
conducting material, these include the time-temperature superposition prin-
ciple and the UDR – NCL transition. With regard to different ion conducting
materials, they include surprisingly close similarities in the shapes of the spec-
tra of crystalline, glassy, and even molten systems. On the other hand, specific
differences are also observed concerning, e.g., the temperature dependence of
the dc conductivity and the way σ(ν) increases in the vicinity of the onset
frequency of the dispersion.

In this chapter, we have presented a set of simple rules, expressed in the
form of rate equations, which describe the development of the ion dynamics
with time. The rules reproduce the observed phenomena and explain them
in terms of microscopic processes. Our CMR model bears analogy to Debye-
Hückel-Falkenhagen theory in considering the coupling between mobile ions
and their surrounding ion clouds. It is able to reproduce and explain the time-
temperature superposition principle as well as the UDR – NCL transition
and the low-temperature NCL behaviour. The specific differences in shape
encountered in conductivity spectra of different ion conducting materials are
reproduced with the help of only one parameter, K. Although it is clear that
there is a connection between K and the number density of the mobile ions,
more work is required in order to quantify this relationship.

Notation

A parameter of the CMR model; internal frequency
B parameter of the CMR model: B = ln(σ(∞)/σ(0))
D coefficient of self diffusion
e elementary charge
Edc activation energy of the dc conductivity
g(t) normalised mismatch function, normalised dipole field
HR Haven ratio
i current density
〈i(0) · i(t)〉 current density autocorrelation function
i imaginary unit, i =

√
−1

kB Boltzmann constant
�O characteristic length for loss of memory
N number of mobile carriers
NV particle density
q electrical charge
〈r2(t)〉 mean square displacement
t time
T temperature
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v velocity
〈v(0) · v(t)〉 velocity autocorrelation function
V volume
W (t) time dependent correlation factor
x0 jump distance
Γ rate of “successful” hops, random hopping rate
Γ0 elementary hopping rate
ν frequency
σ electrical conductivity
ω angular frequency
ωO angular frequency marking the onset of dispersion
ωE angular frequency marking the end of dispersion
#(t) effective number of mobile ions available for relaxation

Complex quantities are marked by a circumflex (“̂”).
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