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20.1 Introduction

The low-frequency dynamic response of many non-metallic materials is gov-
erned by the transport of mobile ions or other charged mobile defects. The
classes of such materials include traditional ionic glasses, polymeric and glassy
superionic conductors, highly defective crystals or even highly viscous liquids
such as glassforming melts. To get an understanding of the microscopic trans-
port mechanism in these materials, a large number of experimental techniques
has been applied, among them are tracer experiments (Chap. 1 and [1]), con-
ductivity measurements including impedance spectroscopy (Chap. 21, [2–5]),
nuclear magnetic resonance (NMR) relaxation (Chap. 9, [6–10]), quasielastic
neutron scattering (Chaps. 2, 3 and 13, [11, 12]), internal friction and ul-
trasonic absorption measurements (Brillouin scattering) (Chap. 11, [13,14]).
In all these experiments the measured quantities show characteristic devia-
tions from the standard behavior that one would expect for a purely random
motion of the mobile ions.

For example, the dynamic conductivity σ̂(ω) in disordered crystalline and
glassy ionic conductors exhibits, for fixed temperature T , a dc-plateau at low
frequencies (below some crossover frequency 1/τσ), and follows an approxi-
mate power law behavior at larger frequencies [15],

σ̂(ω) ∼
{
σdc , ωτσ � 1,

(iω)nσ , ωτσ 
 1.
(20.1)

The dc conductivity σdc usually shows an Arrhenius behavior below the glass
transition temperature,

σdcT = Aσ exp(−Eσ/kBT ) , (20.2)

and also the crossover frequency τ−1
σ is thermally activated with the same

activation energy Eσ. The exponent nσ > 0 tends to increase, if the temper-
ature is lowered or if the frequency is increased by several orders of magni-
tude. From standard random walk theory on a lattice with equivalent sites
one would expect no dispersion to occur, i.e. nσ = 0 (see Sect. 20.2.2). The
overall behaviour (20.1) is not restricted to ionically conducting solids but
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occurs also in disordered electronic conductors such as amorphous semicon-
ductors, electronic conducting polymers and disordered polaronic conductors.
The widespread occurrence of such similar low-frequency dielectric behavior
in all disordered solids was first pointed out by Jonscher [16] and is known
as the “universal dielectric response”.

A second, “universal” type of response in disordered ionic systems occurs
at even higher frequencies, ω > ωNCL 
 τ−1

σ . Going at ambient temperatures
to the Gigahertz regime, the real part of the conductivity increases nearly
linearly with frequency,

Re σ̂(ω) ∼ ω; ω > ωNCL. (20.3)

This is equivalent with a frequency-independent dielectric loss, χ′′(ω) �
const, and is thus known as “nearly constant loss” (NCL) response [17–19].
Its temperature dependence is much weaker than implied by (20.2) and (20.1)
with the consequence that at low temperatures the NCL response dominates
the spectrum in the experimentally accessible frequency-range.

In some glassy fast ion conductors it was found that the dc-conductivity
shows strong deviations from a simple Arrhenius law even below the glass
transition temperature [20, 21]: The values of σdc at ambient temperatures
are significantly smaller than expected when extrapolating the Arrhenius law
valid at low temperatures T . We note that a non-Arrhenius behaviour was
found earlier in ion conducting glasses but disappeared after annealing [22].

Strongly non-Arrhenius diffusion of a different type occurs in yet another
class of amorphous materials, namely ion conducting polymers above their
glass transition temperature [23]. Certain chain polymers carry polar groups
in their repeat unit and are therefore capable of dissolving salts. When tem-
perature is lowered, the polymer chains tend to freeze. In contrast to (20.2),
the strong coupling of ions to the network degrees of freedom generally leads
to Vogel-Fulcher-Tammann (VFT)-type behavior [24] of the conductivity,

σdcT ∝ exp(−E/kB(T − TVFT)) (20.4)

Here E is an energy parameter and TVFT the VFT-temperature, commonly
referred to as “ideal glass transition temperature”. Much effort is being spent
to explore transport mechanisms in these complex materials, and to optimize
their electrical conduction properties with respect to their use in electrochem-
ical devices.

Apart from conduction and dielectric measurements, the perhaps most
common experimental technique to probe ionic motion in disordered media
is nuclear magnetic resonance (see Chap. 9). The behavior of the diffusion-
induced spin-lattice relaxation (SLR) rate 1/T1(ωL, T ), as a function of tem-
perature T and Larmor frequency ωL, can be summarized as follows:

1
T1

(ωL, T ) ∼
{

exp(ESLR
1 /kBT ) , T 
 Tmax(ωL),

ωnSLR−2
L exp(−ESLR

2 /kBT ) , T � Tmax(ωL),
(20.5)
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with an exponent nSLR ≥ 0. In an Arrhenius plot, 1/T1 shows a maximum
at 1/Tmax(ωL), where the temperature Tmax(ωL) decreases with decreasing
frequency. Since generally ESLR

1 > ESLR
2 , the curve is asymmetric in shape. In

contrast to this overall behavior, the standard Bloembergen-Purcell-Pound
(BPP) theory [25] predicts a symmetric maximum of 1/T1 in the Arrhenius
plot with nSLR = 0 (see Sect. 20.2.4).

Dynamic scattering of neutrons is another technique to investigate the
ionic transport. In many structurally disordered ionic conductors broad qua-
sielastic components in the scattering spectra are observed. The line shapes of
these components often deviate from simple Lorentzians, which are expected
in the simple random walk case (see Sect. 20.2.3). A similar behavior has been
found in mechanical loss spectroscopy [13,14]. The spectra are usually much
broader than simple Debye spectra, reflecting an inherent non-exponential
nature of the ionic relaxation processes.

From a theoretical point of view, the ionic transport in solids is a very
complex phenomenon (for a recent review, see [26]) and rigorous solutions are
not available. For an ordered host lattice a mode-coupling theory has been
developed to study the effect of Coulomb interactions between the mobile
ions [27]. One fundamental consequence of the long-range nature of Coulomb
forces is the non-analytic dependence of the tracer diffusion coefficient on the
ion concentration c in dilute systems, c → 0. To describe the experimental
situation for arbitrary c and arbitrary frequencies, however, it has turned
out that also the structural disorder plays an essential role [28–30]. Various
phenomenological and semi-microscopic approaches have been successfully
applied. Prominent examples are the coupling scheme proposed by Ngai [31],
the jump relaxation model pioneered by Funke [11] that recently was extended
by means of the concept of mismatch and relaxation, see Chap. 21, and the
diffusion-controlled relaxation model elaborated by Elliott and Owens [32].
Attempts have been made to map the dynamics of the many body problem
onto the dynamics of a single particle moving in a complex energy landscape
(see Chap. 18, [33–35]).

For a more microscopic description of the ionic transport one is depen-
dent upon numerical investigations. Important microscopic insight emerged
from recent molecular dynamics studies [36–38]. In this chapter we are
mainly concerned with the results of semi-microscopic Monte Carlo stud-
ies [28–30, 39–41], where the effects of long-range Coulomb interactions be-
tween the mobile ions and structural disorder in the host lattice are investi-
gated in a systematic way. The chapter is organized as follows. In Sect. 20.2
the basic dynamic quantities under study are defined and discussed with re-
spect to their standard behaviour, obtained from simple random walk theory.
In Sects. 20.3 and 20.4 we introduce different versions of the Coulomb lattice
gas model pertaining to glasses, and represent computed relaxation spectra.
In Sect. 20.5 the origin of the non-Arrhenius behavior seen in fast conducting
glasses is investigated. Interacting Coulombic traps are considered in Sect.
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20.6 as a mechanism that can explain the NCL response. Peculiarities in
the transport properties associated with compositional changes in ion con-
ducting glasses are discussed in Sect. 20.7. In Sect. 20.8 we turn to polymer
electrolytes and present calculations of their typical transport properties as
a function of temperature, pressure and salt content. Sect. 20.9 finally con-
cludes the paper with a brief summary and discussion. For ionic transport in
systems with disorder on macroscopic length scales we refer to Chap. 22.

20.2 Basic Quantities

In this section we discuss the standard behavior of the basic quantities of
interest. We assume that the mobile particles perform simple random walks
on a d-dimensional (cubic) lattice with lattice constant a. The lattice has
length L and the particle density is ρ = N/Ld, where N is the number of
particles. We assume that the mean residence time τ0 between two jumps of
a particle is τ0 = τ∞ exp(V0/kBT ), where τ∞ is a rattling time and V0 is the
structural energy barrier between two nearest neighboring lattice sites.

20.2.1 Tracer Diffusion

The tracer diffusion coefficient D is related to the long time limit of the mean
square displacement 〈r2(t)〉 of a tracer particle, D = limt→∞〈r2(t)〉/2dt. Ex-
perimentally, D can be obtained from the concentration profile of radioactive
tracers introduced into the material under investigation (see Chap. 1).

It is convenient to define (in d dimensions) a generalized frequency-
dependent tracer diffusion coefficient D̂(ω) by

D̂(ω) = −ω2

2d
lim

ε→+0

∫ ∞

0

〈r2(t)〉eiωt−εtdt, (20.6)

which for ω → 0 approaches D.
If the particles perform simple random walks, subsequent jumps of a tracer

particle are uncorrelated and the mean square displacement increases linearly
with time according to 〈r2(t)〉 = a2t/τ0, yielding D̂(ω) = D = a2/2dτ0,
independent of frequency. If the particle hops are correlated, 〈r2(t)〉 only
increases linearly for very small and very large times, and one can define a
tracer correlation factor ftr as the ratio of the long-time diffusion coefficientD
and the short-time diffusion coefficient Dst by ftr ≡ D/Dst. The deviation of
ftr from unity can be regarded as a measure of the strength of the correlations.
If a particle prefers to jump back to the site where it came from (backward
correlations) ftr < 1; if it prefers to jump forward (forward correlations), we
have ftr > 1.
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20.2.2 Dynamic Conductivity

The dynamic conductivity σ̂(ω) can be expressed by the auto-correlation
function 〈j(t) · j(0)〉 of the current density in the absence of the electric field
(Kubo formula, [42]):

σ̂(ω) =
Ld

dkBT
lim

ε→+0

∫ ∞

0

〈j(t) · j(0)〉eiωt−εtdt. (20.7)

The brackets 〈〉 denote a thermal average and the current density is given
by the sum over the particle velocities, j(t) = (eρ/N)

∑N
i=1 vi(t), where e is

the charge of the particles. (For non-interacting particles the charge e means
only a formal coupling to the external electric field.) Separating the velocity
autocorrelation function 〈vi(t)·vi(0)〉 ≡ 〈v(t)·v(0)〉 from the cross-correlation
part, we can write

〈j(t) · j(0)〉 =
ρe2

Ld

⎡⎣〈v(t) · v(0)〉 +
1
N

N∑
i�=j

〈vi(t) · vj(0)〉

⎤⎦ . (20.8)

In the absence of interactions between the mobile particles, the cross terms
in (20.8) vanish, 〈vi(t) ·vj(0)〉 = 0 for i �= j. Using that together with (20.6),
(20.7) and the relation 2〈v(t) · v(0)〉 = d2〈r2(t)〉/dt2 one obtains the Nernst-
Einstein relation for non-interacting particles,

σ̂(ω) =
ρe2

kBT
D̂(ω). (20.9)

For the simple random walk case, this yields σ̂(ω) = ρe2a2/2dkBTτ0 inde-
pendent of ω. In interacting systems, on the other hand, cross-correlations
are non-negligible. Equation (20.9) is then generalized to

σ̂(ω) =
ρe2

kBT ĤR(ω)
D̂(ω) (20.10)

where ĤR(ω) is the complex Haven ratio. For frequencies ω much larger than
the hopping rate the cross-correlations vanish even if the particles interact
and ĤR(ω) approaches one. In the limit ω → 0, ĤR(ω) approaches the ordi-
nary Haven ratio HR = ρe2D/kBTσdc.

20.2.3 Probability Distribution and Incoherent Neutron
Scattering

For a more detailed description of the diffusion process, one considers the
distribution function P (r, t), also called the “propagator” (see e.g. Chaps. 10,
19 and 23), which denotes the probability for an ion to be on a (lattice) site
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r at time t, if it started at t = 0 from site 0. The Fourier transform of P (r, t)
is the incoherent structure factor Sinc(k, ω) (see Chaps. 3, 13 and 23),

Sinc(k, ω) =
1
2π

∫
d3 r

∫
dt P (r, t)e−i(k·r−ωt) ≡ 1

2π

∫
dt Sinc(k, t)eiωt,

(20.11)
which contributes to the differential cross section obtained in scattering ex-
periments.

For simple random walks on a Bravais lattice, the intermediate scattering
function Sinc(k, t) decays exponentially

Sinc(k, t) = exp
(
−Λ(k)

|t|
τ0

)
, (20.12)

with Λ(k) =
∑

d(1−cos(d k))/ν, where the sum runs over all nearest-neigbor
vectors d and ν is the number of nearest neigbors. Accordingly, Sinc(k, ω) is
a simple Lorentzian with width Λ(k)/τ0.

20.2.4 Spin-Lattice Relaxation

In an external static magnetic field B, the alignment of the nuclear magnetic
moments of the mobile ions gives rise to a total magnetization in the direction
of the applied field (see Chap. 9). By a radiofrequency pulse perpendicular to
the static field this magnetization can be rotated into the opposite direction.
Fluctuating local magnetic and electric fields cause the magnetization to relax
into the original direction parallel to the static field B in a characteristic time
T1. The spin-lattice relaxation rate 1/T1 depends on both the magnitude of
the field B and the temperature T . In the case of ionic conductors mainly
two mechanisms give rise to the fluctuating local fields:

(i) The magnetic dipole-dipole interaction between the mobile particles.

(ii) The interaction of the nuclear quadrupole moment of one particle with the
electric field gradient of another particle (as far as the ions have nuclear
spin larger than 1/2 and the quadrupole moment of the nucleus does not
vanish).

According to standard theory (Sects. 9.2 and 9.9 in Chap. 9, [43, 44]),
1/T1 is determined by the spectral densities J (1)(ω) and J (2)(ω) at ω = ωL

and ω = 2ωL, respectively,

1
T1

= C(J (1)(ωL) + J (2)(2ωL)) , (20.13)

where ωL = γB is the Larmor frequency. The spectral densities are the
Fourier transforms of the SLR correlation functions G(q)(t),

J (q)(ω) =
∫ ∞

−∞
G(q)(t)eiωt dt, q = 1, 2. (20.14)
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In both cases (i) and (ii) the correlation functions G(q)(t) can be written
as [44]

G(q)(t) =
1
N

N∑
i�=j

〈F (q)∗
ij (t)F (q)

ij (0)〉, (20.15)

where F (q)
ij (t) = q(8π/15)1/2Y q

2 (Ωij(t))/r3ij(t) is the local field between the
particles i and j. Y q

2 are the spherical harmonics, and Ωij and rij are the
spherical coordinates of the vector rij pointing from particle i to particle j,
with respect to the magnetic field. The constant C in (20.13) depends on
the nuclear properties of the mobile particles, C = (3/2)γ4

�
2I(I + 1) in case

(i) and C = (3/2)(e2Q/�)2 I(I + 1)/(I(2I − 1))2 in case (ii). Here γ is the
magnetogyric ratio, I the spin and Q the quadrupole moment of the nucleus.

The ansatz G(q)(t) = G(q)(0)e−t/τ0 , commonly referred to as the BPP
ansatz [25], leads to

1
T1

= CG(1)(0)
[

τ0
1 + (ωLτ0)2

+
4τ0

1 + (2ωLτ0)2

]
(20.16)

where we have used G(2)(0) = 4G(1)(0) valid for an isotropic distribution of
the ions [43]. In an Arrhenius plot of ln 1/T1 versus inverse temperature, the
curve is symmetric in shape with slopes equal to V0 and −V0 on the high and
low temperature side of the 1/T1 maximum, which occurs at ωLτ0 ≈ 1. V0 is
the activation energy. At the low temperature side, ωLτ0 
 1, 1/T1 decreases
as ω−2

L = (γB)−2 with increasing field B.
It may be shown [30] that for simple random walks the asymptotic decay

of G(q)(t) is algebraic rather than exponential. However, for (20.16) to be
approximately valid it is sufficient that the correlation functions decay lin-
early with t for small times and faster than 1/t for large times. Since both
conditions are satisfied in the simple random walk case (for d = 3), the devi-
ations from the exponential decay do not lead to pronounced changes of the
standard behavior of 1/T1, according to (20.16).

20.3 Ion-Conducting Glasses: Models and Numerical
Technique

As discussed in the introduction (Sect 20.1), in most cases strong deviations
from the standard behavior are experimentally observed. We will show below
that for a more realistic description of the ionic transport that goes beyond
the simple random walk case, one has to take into account at least (a) the
Coulomb interaction between the mobile charge carriers and (b) the struc-
tural disorder of the host system.

In glassy systems the ions cannot enter all regions of the substrate but
are confined to diffusion paths with high mobility. Starting from a lattice
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gas model allowing nearest-neighbor hops, we thus make only a fraction p of
lattice sites accessible for the mobile ions, totally blocking the rest of them.
This construction is known as the site percolation model (Chap. 22, [45]). For
p well above the percolation threshold pc (pc

∼= 0.312 for the sc lattice), most
of the accessible sites belong to the “infinite percolation cluster” (IPC), which
connects opposite sides of the lattice. We disregard the small finite clusters
of accessible sites in the system and consider as our model for structural
disorder only the IPC where all mobile ions exhibit long-range mobility (see
Chap. 22 for a sketch of the IPC). This disordered structure of accessible
sites is reminiscent to a “connective tissue” or a “crumbled handkerchief”,
which has been suggested to model diffusion paths in ionic glasses [46]. In
the detailed numerical procedure we choose a simple cubic lattice of length L
with lattice constant a and use periodic boundary conditions. A fraction 1−p
(p > pc) of the lattice sites is randomly blocked and the IPC is determined
with the help of the Hoshen-Kopelmann algorithm [47].

The simple percolation model is sufficient to explain anomalous features
found in the relaxation spectra. However, it cannot explain the non-Arrhenius
behaviour observed in some fast ion conductors. In order to take into account
the energy scale associated with the disorder present in the diffusion paths
itself, we will also study a modified model, where instead of simply blocking
sites for the ions, an energy εi is assigned to each lattice site i drawn from a
Gaussian distribution P (ε) with zero mean and variance σ2

ε (see Chap. 18).
The percolative disorder can be regarded as a limiting case, where only two
site energies are allowed, one being zero (with probability p) and one being
infinite (with probability 1 − p).

In network glasses modified by alkali-oxides or -sulfides the diffusing alkali
ions will experience the Coulomb fields arising from immobile counterions. At
low doping level, this leads to the picture of well-separated, negatively charged
Coulomb traps, fixed at random positions R, which temporarily can bind
the diffusing cations and thus will have a strong influence on the conduction
process. To implement such a mechanism, we assume that cations diffuse on
a simple cubic lattice where a fraction c� 1 of randomly selected unit cubes
carry a counterion at their midpoint R. The eight corner sites of each such
cube will then constitute the binding sites for the mobile ions.

In the framework of Coulomb lattice gases, those three models of disorder
in the site energies can be summarized as follows:

I) Percolative disorder

εi =
{

0 probability p
∞ probability 1 − p

(20.17)

II) Gaussian disorder

P (ε) = (2πσ2
ε )−1/2 exp(−ε/2σ2

ε ) (20.18)
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III) Randomly placed counterions

εi = −
∑
R

nRe
2

|ri − R| . (20.19)

If c is the number of mobile ions per lattice site, then with probability c,
nR = 1, otherwise nR = 0. In this way charge neutrality is maintained.

In all these models, we assume that sites cannot be occupied by more than one
ion. The strength of the Coulomb interaction relative to the thermal energy
kBT is characterized by Γ ≡ Vc/(kBT ), where Vc ≡ e2/rs is the typical
interaction energy and rs ≡ (3/4πρ)1/3 the half mean distance between the
mobile ions. Here ρ = c/a3 denotes the ionic number density.

To model the diffusion process we use a standard Monte Carlo algorithm:
In each elementary step of the simulation, an ion is chosen randomly, and

a nearest neighbor site is also chosen, to which the ion attempts to jump.
If the neighboring site is blocked or occupied by another ion, the jump is
rejected. If the neighboring site is vacant, the ion jumps to it with probability
w = min{1, exp(−∆E/kBT )}, where ∆E is the change of the total energy
caused by the jump and is given by ∆E = ∆Es +∆Ec. Here ∆Es = εj − εi
is the site energy difference (∆Es ≡ 0 for the percolation model) and ∆Ec is
the energy difference due to the Coulomb interaction of the jumping particle
with all other particles. For the calculation of ∆Ec one has to take care of
the image charges caused by the periodic boundary conditions, which is done
by using Ewald’s method ( [48], see also Chap. 16). After each elementary
step, the time t is incremented by τ0/N , where τ0 = τ∞ exp(V0/kBT ) is the
mean residence time between two jumps of an ion in the absence of Coulomb
interactions and structural disorder (see Sect. 20.2).

Initially the particles are randomly distributed over the system. In order
to reach a thermalized state at the final simulation temperature, the system
is cooled down from a high temperature, kBT = 10 max{σε, Vc}, to the simu-
lation temperature by a linear increase of 1/T . After the cooling process, the
temperature is held constant for a time equal to the cooling time; then the
quantities of interest are determined. The time for the thermalization process
is chosen such that the mean total energy of the ion system does not change
significantly during the constant temperature phase, and is typically 3 to 5
times larger than the simulation time itself.

To obtain the mean square displacement 〈r2(t)〉, all particle positions
ri(0) are stored at time t = 0 after thermalization. At time t, the particles
are at positions ri(t), and the mean square displacement is calculated from
〈r2(t)〉 = (1/N)

∑N
i=1[ri(t)−ri(0)]2. To obtain the SLR correlation functions

G(q)(t), the magnetic field B is aligned along the z-direction and all pair
vectors rij(0) are stored at time t = 0 using the minimum image convention
[48]. At time t these pair vectors are rij(t), and the G(q)(t) are calculated
according to (20.15).
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The frequency dependent conductivity is determined by the current re-
sponse to a (small) external sinusoidal electric field E(t) = E0 sin(ωt)
aligned in the x-direction. The effect of the field is taken into account by
the way the neighboring site is chosen to which an ion attempts to jump
(see above). In the absence of the electric field, the 6 nearest neighbor
sites are equivalent and are chosen with equal probability 1/6. In the pres-
ence of the field, the sites in the ±x-direction are chosen with probability
(1 ± ε(t))/6, where ε(t) ≡ eE(t)a/2kBT � 1. The resulting current den-
sity jx(t) in the x-direction is determined by counting the number N+(t)
and N−(t) of jumps in the +x- and −x-direction in a small time interval
t − ∆t/2 ≤ t < t + ∆t/2, where ∆t � 2π/ω. The mean values of N+(t)
and N−(t), averaged over several samples, determine the mean current den-
sity jx(t) = ea(〈N+(t)〉 − 〈N−(t)〉)/L3 and, since jx(t) can be written as
jx(t) = σ′(ω)E0 sin(ωt)−σ′′(ω)E0 cos(ωt), the real and imaginary part σ′(ω)
and σ′′(ω) of the frequency dependent conductivity. In order to improve the
statistics, the results are finally averaged over typically 100 thermalized con-
figurations.

20.4 Dispersive Transport

For model I, most of our numerical simulations have been performed on a
simple cubic lattice of length L = 39a, fixed ion density c = 10−2 and fixed
η = e2/(rsV0) = 5, which defines our set of standard parameters. V0 denotes
the structural potential barrier. To investigate the effect of percolative dis-
order, we compare results for the ordered lattice (p = 1) with those for the
disordered substrate (p = 0.4). The strength of the Coulomb interactions,
represented by the plasma parameter Γ , is varied by changing the tempera-
ture.

Figures 20.1 (a) and (b) show the time dependent diffusion coefficient
D(t) ≡ 〈r2(t)〉/2dt in units of D0 ≡ a2/2dτ0 as a function of t/τ0 for Γ = 0,
40, and 80 in (a) the ordered lattice (p = 1) and (b) the disordered system
(p = 0.4). For t/τ0 � 1, 〈r2(t)〉 is proportional to the total number of success-
ful hops, which increases linearly with time and therefore D(t) is constant,
D(t) = Dst. For t/τ0 > 1, D(t) decreases with time t and finally approaches
Dtr. In the ordered system, the decrease of D(t) is comparatively weak, even
at large plasma parameters Γ (low temperatures), while in the disordered sys-
tem, D(t) decreases over several orders of magnitude for large Γ . This behav-
ior is reflected in the temperature dependence of the tracer correlation factor
ftr(Γ ) = D∞/Dst shown in Fig. 20.1 (c). In both the ordered and the dis-
ordered system, ftr is thermally activated, ftr(Γ ) = ftr(0) exp(−∆Ef/kBT ),
but the activation energy ∆Ef being the difference between the activation
energies for the long and short time diffusion coefficients, is much larger in
the disordered system (∆Ef = 0.05e2/rs = 0.27V0) than in the ordered one
(∆Ef = 0.01e2/rs = 0.06V0). We conclude that in order to obtain strong
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Fig. 20.1. Plot of (a) D(t) in the ordered lattice for Γ = 0 (�), 40 (◦), and 80
(�), (b) D(t) in the disordered system (model I) for Γ = 0 (�), 40 (•), and 80 (
),
and (c) the tracer correlation factor as a function of the plasma parameter Γ in the
ordered lattice (�) and in the disordered system (�). The full lines in (a) and (b)
are least-square fits according to (20.21).

dispersion in the diffusive transport, we need both Coulomb interactions and
structural disorder. In the following we will concentrate on this relevant case
only and consider the curves shown in Fig. 20.1 (b) in more detail.

For Γ ≥ 20, an intermediate time regime t1 < t < τD occurs, where D(t)
shows approximate power law behavior,

D(t) ∼ t−nD , t1 < t < τD. (20.20)

The upper crossover time τD and the exponent nD increase with increasing Γ
(decreasing temperature), while the lower crossover time t1 is approximately
independent of Γ and of the order of the inverse hopping rate a2/6Dst. The
whole time dependence of D(t) can be well described by the formula

D(t) = D∞ + (Dst −D∞)
(

1 +
t

t1

)−nD

, (20.21)

which has been suggested earlier by Funke on the basis of his jump relaxation
model [11].

From the Nernst-Einstein relation (20.9) we expect that the power law
behavior of D(t) at intermediate time scales is reflected in a power law be-
havior of σ̂(ω) at intermediate frequency scales, 1/τD < ω < 1/t1. To de-
termine σ̂(ω) we have studied the current response to an external electric
field E(t) = E0 sin(ωt) as described in Sect. 20.3. Figure 20.2 shows the real
and imaginary parts σ′(ω) and σ′′(ω) of the conductivity σ̂(ω) in units of
σ0 ≡ e2/2kBTaτ0 as a function of ωτ0 for (a) Γ = 0, (b) Γ = 40 and (c)
Γ = 80.

For comparison we show also the real and imaginary parts of σ̂D(ω) ≡
ρe2D̂(ω)/kBT (full lines in the figure), which one obtains for the complex



824 Armin Bunde et al.

10-5 10-4 10-3 10-2 10-1 100 10110-5 10-4 10-3 10-2 10-1 10010-7

10-6

10-5

10-4

10-3

(b) (c)(a)
10-5 10-4 10-3 10-2 10-1 100

ωτo ωτoωτo

σ '
/σ

o
-σ

''/
σ o

Fig. 20.2. Real (�) and imaginary part (
) of the conductivity in model I for (a)
Γ = 0, (b) Γ = 40, and (c) Γ = 80. The full lines are explained in the text.

conductivity when neglecting the cross-correlations in the autocorrelation
function of the current density in (20.8). The frequency dependent tracer
diffusion coefficient D̂(ω) is obtained numerically by a Laplace transform
of 〈r2(t)〉 (see (20.6)). Since σ′′(ω) ≤ 0, we have plotted −σ′′(ω) in the
figure. For Γ = 0, σ̂(ω) and σ̂D(ω) coincide, since in this case the cross-
correlations practically vanish (the effect of the hard-core interaction between
the mobile ions can be neglected since c = 0.01 is very small). For Γ = 40
and 80, σ̂(ω) and σ̂D(ω) are equal at high frequencies, but deviate at lower
frequencies. Despite this, the overall behavior is quite similar. Both σ′(ω)
and σ′

D(ω) exhibit a dc plateau at low frequencies ω � 1/t2 and approach
σ∞ = ρe2Dst/kBT at high frequencies ω 
 1/t1. In between they can be
approximately described by

σ′(ω) ∼ (ωτ0)nσ , τ0/τσ � ωτ0 � τ0/t1, (20.22)

where nσ = nD and τσ ≈ τD. At very high frequencies the conductivity be-
comes constant again. This high frequencies plateau is difficult to detect ex-
perimentally, especially in glasses, because dynamical processes not included
in the lattice gas model, e.g. vibrations of the glassy matrix, become domi-
nant (see however [49]). In some crystalline ion conductors as e.g. RbAg4I5 or
Na-β′′-Alumina, however, a high frequency plateau was found ([3], Chap. 23).

Since the cross-correlations do not affect strongly the overall behavior of
σ(ω) one can hope to understand the origin of the conductivity dispersion
from the behavior of the time dependent tracer diffusion coefficient. Indeed,
to map the complex dynamics of the many-particle system to an effective
dynamics of a one-particle system, it has been suggested that the mutual
interactions between the ions can be described by an effective distribution
ψ(τw) of waiting times τw between successive jumps of a tracer particle. This
continuous time random walk model (CTRW) (see e.g. [50]) was proposed by
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Fig. 20.3. Plot for model I of (a) the distribution function of the waiting time τw

between successive jumps as a function of τw/τ0 for different plasma parameters,
Γ = 20 (�), 40 (•), 60 (
) and 80 (�), and (b) the real part of the diffusion coefficient
D′

w(ω)/D0 (obtained from the approximation (20.23)) (�) and the correct D′(ω)/D0

(obtained from (20.6)) (
) for Γ = 80.

Scher and Lax [51] to describe the dielectric response of amorphous semicon-
ductors.

To test if the CTRW model applies here, we have determined the number
N(τw) of waiting times τ ′w between two successive jumps of a tracer particle,
which lie in the interval τw − ∆τw ≤ τ ′w < τw + ∆τw. The waiting time
distribution ψ(τw) is related to N(τw) by ψ(τw) = AN(τw)/2∆τw, where
the prefactor A follows from the normalization condition,

∫∞
0
dτwψ(τw) = 1.

Figure 20.3 (a) shows ψ(τw) times τ0 as a function of τw/τ0 for various plasma
parameters Γ . For all values of Γ , τ0ψ(τw) � 10−1 is approximately constant
for τw/τ0 < 1 and decreases rapidly for τw/τ0 > 10. As one would expect,
the decrease is weaker for larger Γ , but no significant change of ψ(τw) occurs
if Γ is increased.

The one-sided Fourier transform of the waiting time distribution ψ(τw)
is (within the CTRW model) related to the frequency dependent diffusion
coefficient D̂w(ω) by [51]

D̂w(ω) =
a2

6
iωψ̂(ω)

1 − ψ̂(ω)
. (20.23)

In Fig. 20.3 (b) we compare D′
w(ω)/D0 (obtained from (20.23)) with the

correct D′(ω)/D0 (obtained from (20.6)) for Γ = 80. The two curves are
completely different: In contrast to D′(ω), D′

w(ω) shows only a very weak dis-
persion. The low-frequency limit of D′

w(ω) is the same as the high-frequency
limit of D′(ω).
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Fig. 20.4. Mean square displacement 〈r2(Nhop)〉 as a function of the
number of performed hops Nhop for different plasma parameters Γ .

These deviations show clearly the principle difficulties of the CTRW-
model (see also [52]). If the initial waiting time τ0

w, the tracer particle needs
for the first jump, is chosen according to the proper stationary distribution,
ψ0(τ0

w) =
∫∞
0 dτwψ(τ0

w + τw)/
∫∞
0 dτ0

w

∫∞
0 dτwψ(τ0

w + τw), then D(ω) shows
no dispersion at all, D(ω) = Dst just as in the simple random walk case. The
larger value of Dw at high frequencies is an artifact of the CTRW-model and
results from the fact that the initial time τ0

w is assumed to be distributed
according to ψ rather than to the stationary distribution.

Since the time inhomogeneities in the tracer motion can not be responsible
for the dispersion, we now study spatial correlations in the tracer trajectory.
We consider the mean square displacement 〈r2(Nhop)〉 as a function of the
number of performed hops Nhop, which is shown in Fig. 20.4 for various
plasma parameters Γ . At Nhop = 1, 〈r2(Nhop)〉/a2 = 1 for all Γ since a
tracer particle has moved the distance a after the first jump. At small plasma
parameters, 〈r2(Nhop)〉 increases monotonously with Nhop. At larger values
of Γ (Γ ≥ 20), a striking alternation of 〈r2(Nhop)〉 for even and odd Nhop

begins to emerge for 1 < Nhop < N
(2)
hop, which becomes more pronounced at

larger Γ . The upper crossover number N (2)
hop increases with increasing Γ and

is of the order of the product of the jump rate 6Dst/a
2 and the crossover

time t2 ≈ τσ, N (2)
hop � 6Dstt2/a

2. For even values of Nhop, 〈r2(Nhop)〉 shows
approximate power law behavior

〈r2(2Nhop)〉 ∼ (2Nhop)k, 1 < Nhop < N
(2)
hop, (20.24)
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where k = 1 − nD = 1 − nσ is the exponent expected from the behavior of
〈r2(t)〉, if t is simply replaced by the average time 2Nhop/6Dst after 2Nhop

jumps of the tracer particle, 〈r2(2Nhop)〉 � 〈r2(t = 2Nhop/6Dst)〉.
The striking alternation of 〈r2(Nhop)〉 is caused by strong forward-backward

correlations in the tracer motion, which occurs on length scales of the order
of the lattice constant a. Before its first jump the tracer ion finds itself in
a deep energy minimum, which is created by the surrounding ions. After
its first jump the ion is in an energetically unfavourable situation and has
a large tendency to jump back to the original site. Thus 〈r2(Nhop = 2)〉 <
〈r2(Nhop = 1)〉 = a2. Repetition of these forward-backward jumps leads to
the alternating behavior of 〈r2(Nhop)〉. Sometimes it happens that an en-
ergetically unfavourable position is stabilized by jump relaxation processes
of the surrounding ions. This causes 〈r2(Nhop)〉 to increase slightly, but the
increase is much weaker than in the absence of the forward-backward cor-
relations. The presence of disorder is important for the forward backward
correlations to arise because the surrounding ions cannot follow the tracer
ion without making detours, which delays the local relaxation process con-
siderably. A similar suppression of the mobility of the surrounding ion cloud
can be expected to occur in ordered lattices by a complex lattice structure
with several sites per unit cell, as, for example, in the crystalline superi-
onic conductor RbAg4I5. In ordered Bravais lattices, the surrounding ions
can easily stabilize the position of the tracer ion and the forward-backward
correlations are very small. The forward-backward correlations dominate the
overall behavior on a length scale of the lattice constant. When 〈r2(Nhop)〉1/2

has reached a few lattice constants at Nhop 
 N
(2)
hop, the effect ceases to be

dominant and the dispersion becomes considerably weaker.
In order to understand why the even values of Nhop between 1 and N

(2)
hop

determine the behavior of 〈r2(t)〉 between t1 � 1/6Dst and t2 � N
(2)
hop/6Dst,

one must be aware that for a fixed time t the probability that the tracer ion
has performed an even number of jumps is much larger than the probability
that it has performed an odd number of jumps. After an odd number of jumps
the tracer ion mostly finds itself in an energetically unfavourable position and
stays there only for a short time (compared to the time spent on a site after an
even number of jumps). Hence the probability that a particle has performed
an odd number of jumps at a given time t is small, and does not contribute
to the mean square displacement at t.

The forward-backward correlations also cause characteristic changes of the
distribution function P (r, t) and its Fourier transforms. Fig. 20.5 (a) shows
log(P (r, t)/P (0, t)) as a function of the scaled distance r/R(t), where R(t) =
〈r2(t)〉1/2 is the root mean square displacement, in the disordered system for
Γ = 40 and 80, and several times t in the dispersive regime. It is remarkable
that although R(t) is small in this regime, the curves collapse, showing that
the simple scaling relation P (r, t)/P (0, t) = f(r/R(t)) holds as in the simple
random walk case. For Γ = 40 and 80, the scaling function f(x) is no longer
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Fig. 20.5. Plot of (a) the distribution function log(P (r, t)/P (0, t)) versus r/R(t)
in the disordered system I (p = 0.4) for Γ = 40 and 80, and (b) of 1 − S̃inc(k, t)
for k = 2π/10a as a function of t/τ0. In (a) different symbols refer to different
times: For Γ = 40: t/τ0 = 546 (�), 1130 (�), 2340 (◦), 4830 (•), and 10000 (�) and
for Γ = 80: t/τ0 = 113 (�), 264 (�), 616 (◦), 1440 (•), 3360 (�), and 7850 (
).
The data points for Γ = 80 have been multiplied by a factor of 4. In (b) different
symbols refer to different plasma parameters Γ = 0 (�), 40 (•), and 80 (
), and
the full lines are the approximation (20.26).

a Gaussian, but a stretched Gaussian, f(x) = exp(−cxu), with u � 1.2.
For Γ = 0 in contrast, P (r, t) shows the expected scaling behavior with a
Gaussian scaling function only at larger times (Fig. 20.5 (b)). It is interesting
to note that the exponent u satisfies the relation

u =
2

1 + nD

, (20.25)

which has been originally derived to describe the distribution function of
random walks on random fractal structures [53].

In order to discuss the Fourier transform of P (r, t), the intermediate scat-
tering function, we first remove any artificial effects of the lattice anisotropy
by averaging Sinc(k, t) over the k-vector orientation S̃inc(k, t) ≡ (4π)−1

∫
dΩ

Sinc(k, t). For kR(t) � 1 and R(t) � 1 it is easy to verify that S̃inc(k, t) can
be approximated by

S̃inc(k, t) � exp(−k2R2(t)
6

). (20.26)

Fig. 20.5 (b) shows 1 − S̃inc(k, t) for k = 2π/10a and Γ = 0, 40, and 80.
Quite surprisingly, the simple approximation (20.26) holds in the whole de-
cay regime, showing that the decay changes from a simple to a stretched
exponential when Γ becomes larger (see also [11]).
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Fig. 20.6. Plot of 1−G(2)(t)/G(2)(0) in model I (a) as a function of t/τ0 for p = 1
and Γ = 20 (�), 40 (◦), 60 (�) and 80 (	), (b) as a function of t/τ0 for p = 0.4 and
Γ = 20 (�), 40 (•), 60 (
) and 80 (�). Part (c) shows the correlation time τSLR for
p = 1 (�) and p = 0.4 (�) as a function of Γ , and part (d) 1 − G(2)(t)/G(2)(0) as
a function of the scaling parameter t/τSLR for p = 1 (open symbols), p = 0.4 (full
symbols) and Γ = 40 (�,�), 50 (◦, •), 60 (�, 
), 70 (	, �) and 80 (♦, �).

Next we discuss the SLR correlation functions G(q)(t), q = 1, 2. We again
compare our results for the ordered lattice (p = 1) and the disordered sub-
strate (p = 0.4). For sufficiently large values of Γ (Γ > 1) the distribution
of the mobile ions is isotropic and therefore G(2)(0) = 4G(1)(0) [43]. Numer-
ically we find that for Γ > 10, G(2)(t) ∼= 4G(1)(t) is valid for all times t,
and thus G(2)(t)/G(2)(0) ≡ G(1)(t)/G(1)(0). Since the G(q)(t) decay faster
than 1/t for very long times, the asymptotics is irrelevant for 1/T1 (see the
discussion above, Sect. 20.2.4), and the relevant decay regime is most con-
veniently discussed in terms of the functions 1 − G(q)(t)/G(q)(0), which are
shown in Fig. 20.6. Both in the ordered lattice (Fig. 20.6 (a)) and the dis-
ordered system (Fig. 20.6 (b)), 1 − G(q)(t)/G(q)(0) are proportional to t/τ0
for small t/τ0 values. Similar as in the diffusion coefficient, an intermediate
time regime can be well identified in the disordered system for Γ > 20, where
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Fig. 20.7. Spin-lattice relaxation rate 1/T1 in units of Cτ∞ as a function of V0/kBT
for (a) p = 1 and η = 5 (ordered system with Coulomb interaction), (b) p = 0.4
and η = 5 (disordered system with Coulomb interaction), and (c) p = 0.4 and
η = 0 (disordered system without Coulomb interaction). Different symbols denote
different frequencies. In (a) ωLτ∞ = 3 · 10−7 (�), 9.5 · 10−7 (•) und 3 · 10−6 (
), in
(b) ωLτ∞ = 3 ·10−9 (�), 9.5 ·10−9 (•) und 3 ·10−8 (
), and in (c) ωLτ∞ = 3 ·10−6

(�), 9.5 · 10−6 (•) und 3 · 10−5 (
).

1 − G(q)(t)/G(q)(0) ∼ (t/τ0)1−nSLR . The exponent nSLR is independent of
temperature, nSLR

∼= 0.73. In the ordered lattice, the decay of the G(q)(t) is
much faster and a corresponding intermediate time interval is hardly seen.

Figure 20.6 (c) shows the SLR correlation time τSLR, which we define
as the time, where G(q)(t) has decreased to 1/e of its initial value, i. e.
G(q)(τSLR)/G(q)(0) = 1/e. Due to strong correlations in the ionic motion,
τSLR is stronger activated than τ0, τSLR/τ0 = exp(∆ESLR/kBT ), ∆ESLR ≡
ESLR − V0 > 0. The activation energy ∆ESLR is smaller in the ordered
lattice (∆ESLR

∼= 0.04e2/rs = (0.04ηV0)) than in the disordered system
(∆ESLR

∼= 0.09e2/rs = (0.09ηV0)), where τSLR exceeds τ0 by more than 5
orders of magnitude for Γ = 80.

Fig. 20.6 (d) shows 1 −G(q)(t)/G(q)(0) as a function of t/τSLR. The data
collapse shows that on time scales larger than τ0, G(q)(t)/G(q)(0) is only a
function of t/τSLR (independent of Γ ), in particular 1 − G(q)(t)/G(q)(0) ∼
(t/τSLR)1−nSLR for τ0/τSLR � t/τSLR < 1. Accordingly in the relevant decay
regime, the correlation functions can be approximately written in KWW
form, G(q)(t) = G(q)(0) exp(−(t/τSLR)1−nSLR), in the relevant regime.

With (20.13) we obtain 1/T1(ωL, T ) by Fourier transformation. Fig-
ure 20.7 shows 1/T1(ω, T ) as a function of V0/kBT for η = 5 and various
Larmor frequencies ωL in (a) the ordered lattice, and (b) the disordered sys-
tem. For comparison, we show in (c) also the behavior of 1/T1 for uncharged
particles (η = 0, Γ ≡ 0) diffusing in the disordered system. Since in all cases
(a)–(c), the G(q)(t) decay faster than 1/t for large times, 1/T1 is independent
of ωL at the high temperature side of the maximum. For the uncharged par-
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Fig. 20.8. Plot of (a) the exponents nσ and nSLR and (b) the correlation times
τσ/τ0 and τSLR/τ0 as a function of V0/kBT for p = 0.4 and η = 5.

ticles (Fig. 20.7 (c)), 1/T1 shows no significant deviation from the standard
BPP behavior. For charged particles slight deviations occur in the ordered
lattice (Fig. 20.7 (a)), but the typical non-BPP behavior according to (20.5)
does not occur. The deviations predominantly show up in a weak asymmetry
of 1/T1 near the maximum. In case (b), when both disorder and Coulomb
interactions are present, we obtain the typical non-BPP behavior: The curves
are asymmetric in shape, the maximum occurs at ωLτSLR ≈ 1 
 ωLτ0 (note
that this relation is the only way to experimentally determine τSLR as a func-
tion of T ), and 1/T1 decreases as 1/T1 ∼ τ0(ωLτ0)nSLR−2 at low temperatures
(ωL 
 1/τSLR). The activation energies are ESLR

1
∼= 1.5V0 and ESLR

2
∼= 0.4V0.

Since ESLR
∼= 1.45V0 for η = 5 (see above) also ESLR � ESLR

1 is fulfilled. We
conclude that, similar to our result for the conductivity σ(ω), both structural
disorder and Coulomb interactions are needed to obtain qualitative agreement
with the experimental findings. Again, we concentrate on this relevant case
only.

As a consequence of the scaling behavior of G(q)(t), 1/T1(ωL, T ) obeys
the simple scaling relation

1
T1

(ωL, T ) = τSLRg(ωLτSLR), (20.27)

with g(x) = const. for x� 1 and g(x) ∝ xnSLR−2 for x
 1. Equation (20.27)
implies ESLR

1 = ESLR and the relation ESLR
2 = (1 − nSLR)ESLR

1 first proposed
by Ngai [31].

Next we compare the exponent nSLR and the correlation time τSLR with
the corresponding quantities in the conductivity spectra. Figure 20.8 (a)
shows that nσ is smaller than nSLR for V0/kBT < 16 and seems to approach
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nSLR at lower temperatures. Only at these very low temperatures we ex-
pect mean field approaches [11] yielding nσ = nSLR to be applicable. From
Fig. 20.8 (b) we find that the conductivity relaxation time τσ is less acti-
vated than the correlation time τSLR in spin-lattice relaxation, and therefore
τSLR/τσ 
 1 at lower temperatures. This is in accordance with experimental
results for, e.g., (LiCl)0.6(Li2O)0.7(B2O3)1.0 [54], glassy LiAl Si2O6 [55] and
LiAlSi4O10 [56], and flourozirconate glasses [7]. The reason for these differ-
ences is that although the phenomena observed in both experiments originate
from the same ion transport mechanism, they are governed by different cor-
relation functions: In spin-lattice relaxation, the correlation functions are
determined by diffusion of ion pairs, while in conductivity the current corre-
lation function is mainly determined by the diffusion of single ions.

20.5 Non-Arrhenius Behavior

In the preceding section, we have shown that simple percolative disorder
and the Coulomb interaction between the ions can account for the typical
anomalies found in several transport quantities. Another interesting effect
is the non-Arrhenius behaviour of fast ion conducting glasses [20]. Clearly it
would be desirable to confirm this effect also in tracer diffusion measurements
[57].

In order to explain non-Arrhenius behaviour, one has to include the en-
ergy fluctuations associated with the disorder present in the material. To
begin our discussion of energy fluctuations, we first assume non-interacting
particles moving between lattice sites with energies drawn form a Gaussian
distribution, as in model II, cf. (20.18). For that problem, the dc activation
energy at low T can be calculated analytically [33, 34]. Since double occu-
pancy of sites is forbidden, the ions in equilibrium are distributed according
to a Fermi distribution. At temperatures T � σε/kB, the activation energy
follows from a critical percolation path argument [58, 59], Eσ = εc − εf(c).
Here εf(c) is the Fermi energy, defined by

∫ εf
−∞ P (ε)dε = c, and εc is the criti-

cal energy given by
∫ εc
−∞ P (ε) = pc, where pc is the percolation threshold [45]

in the sc-lattice, pc � 0.3117. For c = 0.01 we obtain Eσ = 1.84σε. Because
of the weak dependence of εf on c (see Sect. 20.7), Eσ assumes similar values
for other reasonable concentrations c� 1.

At high temperatures T 
 σε/kB, the conductivity is well approx-
imated by σdc � σhf = ρq2a2W0/6kBT . As can be shown by a high-
temperature expansion, W0 is given by W0 � (1 − c)erfc(σε/(2kBT )) �
(1 − c) exp(−σε/

√
πkBT ), in leading order of σε/kBT . Hence we obtain a

high-temperature activation energy E0 = σε/
√
π ∼= 0.56σε that is smaller

than Eσ. Accordingly, the apparent activation energy E(T ) changes from Eσ

for low temperatures to E0 at a crossover temperature Tx � σε/kB. Fig-
ure 20.9 (a) shows the simulation results for σdc (data points) in comparison
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Fig. 20.9. Arrhenius plot of σdcT for Vc = 0 and c = 0.01 (open circles) (a)
in units of σ0 as a function of σε/kBT and (b) in units of the preexponen-
tial factor Aσ of the low-temperature Arrhenius law as a function of Eσ/kBT .
In (a) the full line shows the high temperature approximation (see text), the
dashed line corresponds to Aσ exp(−Eσ/kBT ), where Eσ = 1.84σε and Aσ was
taken to get the best fit to the data. For comparison, the experimental data for
0.4AgI+(0.6)[0.525Ag2S+0.475(B2S3:SiS2) are shown in (b) (filled symbols, re-
drawn from [20]). The solid line is drawn as guide for the eye.

with the analytical results (lines). Except for the crossover regime T ≈ Tx,
the calculated activation energy agrees perfectly with the simulation data.

At first glance, the crossover at high temperatures seems to be very sim-
ilar to recent experimental results for fast ion glasses [20]. Notice however,
that both Eσ and kBTx are of the same order of magnitude, determined by σε.
This is a serious disagreement to the experiments, where the non-Arrhenius
behavior sets in at temperatures more than one order of magnitude smaller
than Eσ/kB. The disagreement can be seen clearly in Fig. 20.9 (b), where we
have plotted both the simulation results in the absence of Coulomb interac-
tions (open circles) and the experimental data (filled circles) [20] as a function
of Eσ/kBT . The arrows indicate the crossover temperatures and show that
both disagree by about an order of magnitude.

Next we include the Coulomb interaction i. e. consider the complete model
II, cf. (20.18). That model now is characterized by the typical interaction en-
ergy Vc ≡ e2/rs and the disorder energy σε. Since we have found in Sect. 20.4
that the cross correlations give only a minor contribution to the conductiv-
ity, we have calculated the dc conductivity from the long-time limit of D(t)
by using (20.9) and neglecting the cross correlations. Figure 20.10 (a) shows
σdcT in units of σ0 as a function of Vc/kBT for c = 0.01 and σε/Vc = 0.0115,
0.018, 0.036, and 0.072. At low temperatures, each curve follows a straight
line corresponding to an Arrhenius law with constant activation energy Eσ,
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Fig. 20.10. Arrhenius plots of the dc conductivity σdcT (a) in model II, cf. (20.18)
in units of σ0 for σε/Vc = 0 (�), 0.0115 (◦), 0.018 (�), 0.036 (�), and 0.072 (♦), and
(b) for zAgI+(1−z)[0.525Ag2S+0.475(B2S3:SiS2)] in units of Ω−1cm−1K for z = 0
(�), 0.2 (
), 0.3 (�), and 0.4 (•) (redrawn from [20]). The dashed lines indicate the
upper mobility limit predicted by the model. In (c) the data from (a) and (b) are
shown together as functions of Eσ/kBT and are normalized with respect to the
preexponential factors Aσ in the corresponding Arrhenius laws. The solid lines in
(a) and (c) are drawn as guide for the eye.

and Eσ decreases with decreasing σε. The Arrhenius law is valid up to a
crossover temperature Tx, where the curves bend toward lower diffusivities.
In all cases, the crossover temperature Tx is of the order of σε/kB. For compar-
ison we have redrawn in Fig. 20.10 (b) the experimental conductivity data [20]
for zAgI+(1−z)[0.525Ag2S+0.475(B2S3:SiS2)] with mole fractions z between
zero and 0.4. Evidently, when increasing z, the experimental behavior is anal-
ogous to the model behavior when decreasing σε: Eσ becomes smaller and
the non-Arrhenius behavior starts to occur at lower T .

The similarity between the results found in the model and in the ex-
periment becomes even more evident in Fig. 20.10 (c), where the data from
Fig. 20.10 (a) and Fig. 20.10 (b) are plotted in the same way as in Fig. 20.9 (b).
The experimental curve for z = 0.4 is almost perfectly reproduced by the
model when σε = 0.0115Vc (see the filled and open circles in Fig. 20.10 (c)).
The experimental curves for z = 0, 0.2 and 0.3 correspond to disorder
strengths within a range 0.015Vc < σε < 0.036Vc. It is remarkable that
the model not only gives a good fit to the overall shape of the conductivity
curves but also reproduces the small values of kBTx/Eσ. Within the frame-
work of the model, the non-Arrhenius behaviour thus may be explained as a
cross-over from a high activation energy at low temperatures, where the ionic
motion is dominated by disorder and interaction effects, to a low activation
energy at high temperatures, where only the interaction is relevant.
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20.6 Counterion Model and the “Nearly Constant
Dielectric Loss” Response

Models with smooth distribution of uncorrelated site energies, as implied by
(20.18), have been studied also with respect to ac transport properties [39],
in addition to dc transport considered in the foregoing section. Generally
speaking, the outcome for time-dependent mean square displacements and
frequency-dependent conductivities in Coulomb lattice gases with Gaussian
and percolative disorder (Sect. 20.4) is similar, provided Γ 
 1. Qualitative
features of conductivity spectra are therefore robust with respect to the par-
ticular type of disorder, an issue which is important for understanding their
“universal” nature [26].

Let us turn now to yet another disorder model, the counterion model
(20.19), which will allow us to discuss both composition-dependent dc-
transport properties and dispersive effects, including “nearly constant loss”
(NCL)-type high-frequency phenomena [40].

Clearly, in that model with c � 1 two nearby counterions are separated
by a Coulomb barrier whose height is a sensitive function of their distance
2rs. Consequently, we observe Arrhenius behavior for both σdc and τσ with
an activation energy Eσ(c) determined by that Coulomb barrier, which grows
with decreasing concentration c. From simulations one can extract Eσ(c) �
const− 0.11(e2/a) ln c in the relevant concentration range, a variation with c
on an energy scale of order 1 electronvolt, which favourably compares with
some experiments, see also Sect. 20.7. Regarding dc transport, other notable
features of the counterion model are preexponential factors in the Arrhenius
law for σdc satisfying the Meyer-Neldel compensation rule [60] and Haven
ratios (see Sect. 20.2) which decrease sharply with increasing c for dilute
systems, in qualitative accord with the measurements [61].

The dynamic conductivity in the counterion model with c � 1 displays
four distinct frequency regimes and reflects the experimental behavior of di-
lute samples in a wide frequency range. Those regimes can directly be con-
nected with specific kinds of ionic motions in space and time [62]. Figure
20.11 shows a typical set of data for σ′(ω), normalized by the high-frequency
conductivity σ(∞). Below the usual high-frequency plateau (regime I, de-
fined by ω > τ−1

MC, where τMC is one Monte Carlo time step) a second regime
II appears where σ′(ω) raises with ω approximately in a linear fashion. This
effect will be discussed below in greater detail. A simultaneous analysis of the
mean square displacement shows that regime II has limits τ−1

1 < ω < τ−1
MC,

where τ1 is defined by 〈r2(τ1)〉 = a2. Therefore, in II, the ions essentially
remain bound to a counterion and are able to perform only local motions of
the character of dipolar reorientation steps. Regime III, related to the Jon-
scher regime, corresponds to escape processes out of the Coulomb trap. This
interpretation is confirmed by noting that the conductivity relaxation time
τσ in this model satisfies 〈r2(τσ)〉 = r2s , where rs = a(3/4πc)1/2 amounts to
half the distance between two counterions. Finally, for even lower frequencies
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Fig. 20.11. Frequency dependence of the conductivity (in a double-logarithmic
plot) in the counterion model for c = 0.03 and e2/akBT = 20. τMC corresponds to
one Monte Carlo time step (after [40]).

(regime IV, ω < τ−1
σ ) the ions can complete effective hops to the next or to

further distant counterions, and σ(ω) approaches the dc-plateau.
Now we return to the regime II, where σ′(ω) ∝ ω. As mentioned in the

introduction (Sect. 20.1), such a behavior in fact is widely observed in glassy
materials and defective crystals. The “universal dielectric response” repre-
sented by (20.1) therefore has to be supplemented by a high-frequency con-
tribution, see (20.3)

σNCL(ω) � A(T )ω; ω > ωNCL(T ) 
 τ−1
σ (20.28)

In view of the relationship χ̂(ω) = −4πiσ̂(ω)/ω between σ̂(ω) and the dielec-
tric susceptibility χ̂(ω), this amounts to a frequency-independent dielectric
loss, χ′′(ω) ∝ A(T ), known as NCL response. In distinction to the parame-
ters in (20.2), both A(T ) and ωNCL(T ) are not thermally activated, but only
weakly decrease with temperature [17,63]. Therefore, cooling to helium tem-
peratures, σdc ∝ τ−1

σ becomes unmeasurably small while the NCL response
(20.28) dominates and typically extends over several orders of magnitude in
frequency.

Up to now, the physical origin of the NCL response is unclear. A common
picture adheres to the “asymmetric double well potential (ADWP)” model,
which rests on the assumption of thermally activated local relaxational steps
of charged defects subject to a broad distribution of activation barriers [64].
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Fig. 20.12. Section of the dipolar lattice gas model (after [66]).

Recently, the idea has been advanced that long-range interactions among
dipolar centres can give rise to long-time tails in dielectric relaxation, con-
sistent with NCL-type spectra [65, 66]. Evidence for the relevance of this
mechanism arose from dynamic Monte Carlo simulations of a “dipolar lattice
gas”. This model consists of a spatially random assembly of dipolar centres,
where charged particles (ions) perform reorientational steps next to their
associated immobile counterion. Contrary to the ADWP-model, this model
requires no extrinsic local disorder within the individual centres, but empha-
sises the importance of dipole-dipole interactions.

Clearly, that dipolar lattice gas directly emerges from the counterion
model (see Sect. 20.3, (20.19)) and Fig. 20.11, simply by cutting the bonds
which leave the first shell surrounding a counterion. Moreover, it is required
that each such shell contains exactly one mobile charge carrier. For an illus-
tration see Fig. 20.12. The reduced number of configurations in comparison
with the full counterion model clearly facilitates numerical simulations and
also allows us to set up analytic approaches, namely exact diagonalization of
the underlying master equation for small systems and a dynamic pair approx-
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Fig. 20.13. Dielectric loss spectrum χ′′(ω) of a dipolar lattice gas with c = 10−3 at
different reduced temperatures θ = kBT/Vdip−dip, showing the gradual transition
between Debye and NCL behavior (for a specification of parameters see [66]).

imation [67, 68]. For details we refer to the original works. In Fig. 20.13 we
present a set of simulated loss spectra for a fairly dilute system with a fraction
c = 10−3 of dipolar centers relative to the total number of unit lattice cells.
Temperature enters via the ratio θ = kBT/Vdip−dip, where Vdip−dip denotes
the typical interaction strength between centers. Rather than simulating the
current correlation function, it is more convenient in this case to obtain the
correlation function of the total polarisation P (t) =

∑
pi(t), which is a sum

over the dipole moments of all centers, and to use

χ′′(ω) =
βω

3
Re

∫ ∞

0

〈P (t) · P (0)〉eiωt dt (20.29)

Similar to Sect. 20.4 it turns out that the qualitative behavior of χ′′(ω) is
already contained in the “self-part” χ′′

self(ω) being determined by the self-
correlation function 〈pi(t)pi(0)〉. This quantity can be decomposed into a
short-time contribution, which corresponds to relaxation of a selected dipole
in a static energy landscape due to the other dipoles and a long-time con-
tribution due to temporal renewals in the minimum energy position of that
individual dipole. The latter process turns out to be responsible for the slow
decay at long times and for NCL behavior, in contrast to the Debye-like
behavior of the initial decay [26].

Further notable features of this model are a significant enhancement of the
overall NCL response χ′′(ω) relative to the “self-part” χ′′

self(ω), the appear-
ance of different concentration-dependent scenarios in approaching a constant
loss under decreasing temperature and a robustness of the results against
changes in the character of positional disorder [66].
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20.7 Compositional Anomalies

In ion-conducting glasses long-range transport properties depend in an un-
expected anomalous way on the composition of mobile ions. One anomaly
refers to the dependence of the conductivity on the ionic concentration. Ex-
periments show that the dc conductivity σdc raises very steeply with the ion
content [69]. Taking Na2O-B2O3 glasses at 300◦C as an example, the conduc-
tivity increases approximately by a factor 106 as the mole fraction of Na2O
is increased from 0.15 to 0.5. As mentioned in Sect. 20.6, the variation of
the conductivity can in general be described by an activation energy that
decreases logarithmically with the ionic concentration c, Eσ � A − B ln(c).
This behavior corresponds to a power law dependence σdc ∼ cB/kBT , where
the exponent B/kBT becomes much larger than one at low T .

Another anomaly pertains to the variation of the conductivity if one type
of mobile ion A is successively replaced by a another type of mobile ion B.
As a function of the mixing ratio x = cB/(cA + cB), where cA = (1− x)c and
cB = xc are the partial concentrations (c = cA + cB), σdc(x) runs through
a minimum that becomes more pronounced with decreasing temperature.
Well below the calorimetric glass transition temperature Tg, the conductiv-
ity at the minimum is several orders of magnitude lower than the conduc-
tivities of the corresponding single ionic glasses (x = 0, 1). For example, in
xK2O(1−x)Li2O·2SiO2 glasses at 150◦C, the minimum conductivity is about
104 times smaller than that of either single cation glass. In fact, all proper-
ties of glasses that are strongly affected by long-range motions of mobile ions
(tracer diffusion coefficients, conductivity, internal friction, viscosity, etc.),
show strong deviations from a simple additive behavior upon mixing of two
different types of mobile ions. This phenomenon is known as the mixed alkali
effect [70] and occurs in all ionically conducting glasses, regardless of the types
of ions that are mixed and the type of network constituents forming the dis-
ordered host matrix for the ionic motion. Of fundamental importance for the
effect are the behaviors of the tracer diffusion coefficients DA and DB of ion
species A and B. When A ions are replaced by B ions, DA always decreases
and DB always increases (and vice versa). These changes in the diffusivities
are caused by changes in the respective activation energies EA,B, such that
DA and DB vary by several orders of magnitude at low temperatures T .

Like the dispersive transport properties, these compositional anomalies
can be understood from lattice gas models with fluctuating site energies. As
discussed in Sect. 20.5, the activation energy Eσ can, in the presence of a con-
tinuous distribution of site energies, be calculated from a critical percolation
path argument. Accordingly, Eσ(c) = εc − εf(c) is the difference between the
critical energy εc determined by the percolation threshold pc and the Fermi
energy εf(c) that, due to the filling up of low-energy sites, increases with c. A
calculation of this c-dependence [33, 71] for the Gaussian site energy model
(20.18) yields, at intermediate concentrations c, a behavior very similar to
a logarithmic increase of εf(c) with c. Accordingly, an approximate logarith-
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Fig. 20.14. Plot of the activation energy Eσ/σε as a function of the ionic concen-
tration c in a lattice gas with Gaussian distributed site energies (20.18). The open
circles represent the values obtained from Monte Carlo simulations, while the solid
line marks the result from the critical path analysis. The dashed lined is a fit with
respect to a logarithmic dependence of Eσ on c, Eσ = A − B ln(c) with A ∼= 0.23
and B ∼= 0.37 (redrawn from [71]).

mic decrease of Eσ(c) is found, in qualitative agreement with experiment, see
Fig. 20.14. For an exponential distribution of site energies, the logarithmic
decrease Eσ(c) = A−B ln c comes out exactly [72,73]. It is important to note
that the logarithmic behavior can prevail when the Coulomb interactions be-
tween the mobile ions are taken into account also [72]. As first shown in [30],
the activation energy Eσ(c) for the Coulomb lattice gas with uncorrelated
site energy disorder can be expressed as a sum of the “structural contribu-
tion” E(0)

σ (c) = A−B ln c coming from the critical percolation path analysis
and a Coulomb contribution Ecoul

σ ∝ q2/rs ∝ q2c1/3. For low concentrations
c, the behavior is dominated by the structural contribution. Moreover, the
logarithmic behavior can be supported by the Coulomb trapping effect of the
counterions discussed in Sect. 20.6.

In order to understand the mixed alkali effect one has to realize that dif-
ferent types of ions exhibit distinct local environments in the glassy network.
This has been shown by EXAFS measurements [74] and been verified also
by means of neutron and X-ray diffraction measurements on mixed alkali
phosphate glasses in combination with reverse Monte-Carlo simulations [75].
Accordingly, the energy landscapes εAi and εBi encountered by A and B ions,
respectively, must be different; a preferable low-energy site for an A ion is
not a preferable low-energy site for a B ion and vice versa. These experimen-
tal findings are the starting point of the “dynamic structure model” [76,77].
The central idea of the dynamic structure model is that sites are created in
response to the needs of the cations. Thus, in single and in mixed Na+/K+

ion glass, Na sites are created for Na+ ions and K sites for K+ ions. Structure
building in the molten or solid glass depends on the dynamic responses of
the network to the moving ions. The preferred sites are created mostly dur-
ing the cooling process (and possibly, although it is the subject of debate, in
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the glass) by an accommodation of the network in the local environment of
each mobile ion. Thereby preferred diffusion paths for each type of ion are
formed. The dependence of the connectivity of these diffusion paths on the
ionic composition was shown to provide an explanation for both the mixed al-
kali effect and the steep increase of the conductivity with ionic concentration
in single modified glasses. For a further discussion of the mixed alkali effect
and further developments of the dynamic structure model, which take into
account cation size effects and interactions between interchange and network
structure, we refer to [78–80]. Signatures of the mixed alkali effect were also
found in molecular dynamics studies [37, 81].

Within our description of ionic transport in terms of lattice gases with
fluctuating site energies, the simplest approach is to assume that the two ion
species move independently of each other and that the sets of low-energy sites
for A and B ions are disjoint. Under these assumptions the activation energies
EA(x) and EB(x) for the tracer diffusion coefficients can be calculated from
the activation energies E

(0)
A (cA) and E

(0)
B (cB) of the corresponding single

ionic glasses by taking EA(x) = E
(0)
A ((1−x)c) and EB(x) = E

(0)
A (xc) [72,73].

Hence, with increasing replacement of A ions by B ions, i.e. increasing x,
EA(x) becomes larger while EB(x) is lowered. As a consequence,DA decreases
and DB increases very strongly with x at low temperatures.

Comparison with experimental data, however, reveals that this picture of
independent ion species is not sufficient. While the direction of changes in the
activation energies is in qualitative agreement with the experimental data, the
dependence of dEA(x)/dx and dEB(x)/dx on x is not correctly reproduced.
In linear-log plots of the mixing ratio versus the tracer diffusion coefficients,
this leads to “curvatures” ∂2 lnDA/∂x

2 and ∂2 lnDB/∂x
2 having wrong signs

in comparison with those found in measurements. As shown in Fig. 20.15,
however, this problem may be resolved by taking into account the Coulomb
interaction between the mobile ions. The Coulomb interaction seems to be of
particular importance in the “dilute foreign alkali regimes” x → 0 or x → 1.
Since the minority ions in these regimes are immobile on the diffusive time
scale of the majority ions, they can, due to the Coulomb repulsion, create
“blocking regions” for the majority ions on length scale large compared to
the typical jump distance. Immobile minority ions replacing the majority
ions in these dilute regimes are thus very effective in interfering the preferred
diffusion paths of the majority species and lead to a very strong reduction of
their mobility. The model of ions moving in energy landscapes being different
for different types of ions allows one to address further important issues [72]:
(i) the degree of validity of the empirical Meyer-Neldel rule (cf. Sect. 20.6),
(ii) the mixed alkali internal friction peaks occurring in mechanical relaxation
spectra, (iii) the behavior of a third tracer impurity ion in a binary mixed
alkali glass as measured in [82], and (iv) the question if a clustering of like
ions should be expected.
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Fig. 20.15. (a) Monte-Carlo results for normalised tracer diffusion coefficients
DA,B(x) of two ion types A and B as a function of their mixing ratio x =
cB/(cA + cB) in a lattice gas with exponentially distributed and uncorrelated site
energies εAi and εBi (redrawn from [72]). Long-range Coulomb interactions between
the mobile ions were taken into account in the simulations. Full symbols refer to ion
type A, open symbols to ion type B, and different symbol types refer to different
temperatures. The activation energies EA,B(x) are shown in (b). For a specification
of the parameters, see [72].

Before closing this section, we note that a mixed alkali effect also occurs
in certain crystals with structure of β- and β′′-alumina type, where the ionic
motion is confined to two-dimensional conduction planes [83–87]. For this ef-
fect a quantitative theoretical description is possible [88, 89] due to a wealth
of structural information (see e.g. [85, 90, 91]). This theory is based on the
fact that A and B ions have a different preference to become part of mobile
defects, and this preference is caused by a different interaction of the ions
with the local environment. Hence, the very origin of the mixed alkali effect
in crystals and glasses might be similar. On the other hand, since the con-
centration of mobile ions in the crystals is large and since there is no strong
structural disorder in the conduction planes, Fermi- and critical energies are
not relevant. Instead, blocking and redistribution effects of ions in the con-
duction planes are important to understand the mixed alkali effect in the
crystalline systems (see [88, 89] for a detailed discussion of these points).
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20.8 Ion-Conducting Polymers

In the preceding sections we discussed charge transport in lattice gases that
exhibit frozen disorder either by introducing at random a certain fraction
of inaccessible sites (percolative disorder) or through some randomness in
the site energies. The assumption of ion diffusion in a rigid matrix showing
structural randomness on interatomic length scales turned out to constitute
a general frame for the description of ionic transport in inorganic glasses and
highly defective crystals.

As indicated already in the introduction (Sect. 20.1), a significantly more
complex situation occurs in ion-conducting polymers [23,92]. Prototype mate-
rials are polymer-salt solutions based on polyethylene-oxide (PEO). The elec-
tronegative oxygen atom in the repeat unit of the PEO-chain tends to bind
cations and hence favors salt dissociation. Above their glass transition tem-
perature such systems can exhibit significant ionic conductivities. Distinctive
features in comparison with inorganic glasses are the simultaneous diffusion
of cations and anions and, most important, matrix fluctuations through the
polymer segmental motions, which stochastically provide pathways for ion
migration. This last issue is important also in problems of gas permeation
through polymer membranes [93], but coupling of the diffusing particles with
network degrees of freedom is much stronger in the polymer electrolytes dis-
cussed here.

Detailed insight into the coordination of cations by polymer chain seg-
ments and the resulting migration mechanisms emerged during recent years
from classical molecular dynamics simulations, mostly on alkali-halide/PEO-
systems [94–97]. Moreover, for understanding general trends in the ion and
chain diffusion properties under varying temperature, pressure and salt-
content, a coarse-grained description in terms of stochastic lattice models
has proved useful [98–100]. Below we briefly outline this kind of approach.
Subsequently we turn to a simplified, athermal model for particle diffusion
in a fluctuating network of chain molecules. A mapping of that model onto
dynamic percolation theory is proposed [101, 102]. Favorable tests against
Monte Carlo simulations suggest that dynamic percolation could become a
useful concept for studies of diffusion in fluctuating realistic structures. Fi-
nally, we adopt a more macroscopic viewpoint and summarize some ideas,
based on differential effective-medium theory [103], how to interpret the re-
cently discovered enhancement of ionic conductivities in stretched polymer
systems [104].

20.8.1 Lattice Model of Polymer Electrolytes

For PEO-type electrolytes we adopt a simple model of lattice chains, where
beads occupy a sequence of nearest-neighbour points on a simple cubic lat-
tice of spacing a. We distinguish between C-beads and X-beads in sequences
C(XCC)n, where X corresponds to an oxygen atom and C to a hydrocarbon
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Fig. 20.16. Temperature-dependent cation and anion diffusion coefficients D(±)

(normalized by the diffusion coefficient D0 of non-interacting point particle) ver-
sus inverse temperature (data points) and VFT-fits (dotted lines) for different ion
concentrations x = 0.08 (circles), x = 0.16 (squares) and x = 0.24 (triangles). The
inset shows the variation of the VFT-temperature T (+)(x) with x (after [100]).

group. The total length of the chain is r = 3n+1. Beads on nearest neighbor
positions interact with a common repulsion ε0 > 0, which drives the system
from the fluid to a glassy state upon lowering the temperature. Ions are rep-
resented as point particles carrying charges ±q, and experience their mutual
Coulomb forces. The asymmetry in the cation-chain and anion-chain interac-
tions is introduced by assuming that X-beads attract cations with strength
−ε < 0. In order to reduce the number of free parameters in our model, we
assume that ε0 = ε. Elementary moves of the chains follow the generalized
Verdier-Stockmayer algorithm [105,106], including kink jump, end jump and
crankshaft moves. Such moves are known to conform with Rouse-dynamics
in the case of sufficiently long chains (see Chap. 13). Ions simply perform
nearest-neighbor hops. Transition probabilities in our Monte Carlo simula-
tions are given by the Metropolis algorithm. For further details we refer to the
original literature [100]. Considering techniques of lattice Monte Carlo sim-
ulations for polymers, we should remark at this point that the dynamics of
dense polymer melts, especially their associated scaling properties, are most
efficiently investigated by using the bond-fluctuation model [107]. However,
in view of the chemical heterogeneity within a repeat unit in PEO-chains and
the specific interactions of ions with chain beads it seems more natural in the
present context to employ the lattice chain model described above.
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Now we turn to some representative results. Figure 20.16 shows Arrhenius
plots of the diffusion coefficients D(±) and D(P ) for cations, anions and the
polymer center of mass, respectively. The downward curvature of the data
allows fits in terms of the empirical Vogel-Fulcher-Tammann (VFT) equation,
well-known from relaxation studies in supercooled fluids [24],

D(α)(T, x) = D∞(x) exp
(
− Eα(x)
kB(T − T (α)(x))

)
(20.30)

where α = ±, P . The ion concentration enters through the parameter x which
measures the number of cations relative to the number ofX-beads in the sam-
ple. Eα(x) is a characteristic energy and T (α)(x) the VFT-temperature. For
low ion content, x � 1, one finds that T+(x) � T (P )(x), which confirms the
strong coupling of cations to the chain beads and suggests that freezing of the
network simultaneously suppresses cation diffusion. By contrast, anion diffu-
sion shows a much weaker temperature dependence, with T (−)(x) < T (P )(x).
VFT-temperatures generally increase with x, as indicated in the inset of
the figure. These findings agree qualitatively with diffusion measurements on
PEO-based electrolytes by the NMR pulsed-field gradient method [108], cf.
Chap. 10, and with the general experimental observation of an increase in
the glass transition temperature Tg with x [109].

The VFT-expressions (20.30) together with the equality T (+)(x) � T (P )(x)
for x � 1 immediately imply, for fixed x, that

D(+)(T, x) ∝ (D(P )(T, x))n+(x) (20.31)

where the exponent

n+(x) = E(+)(x)/E(P )(x) < 1 (20.32)

decreases with increasing x. Thus, when temperature is varied, the cation
diffusion coefficient depends in a power-law fashion on the diffusion coeffi-
cient for the chain center-of-mass motion. As shown in Fig. 20.17, such a
relationship holds over at least three decades in D(+). Qualitatively, we ex-
pect that diffusion coefficients of non-entangled chains reflect the behavior
of the viscosity η of the system, D(P ) ∼ η−1. Equation (20.31) would then
imply D(+) ∼ η−n+ . Such a relationship appears interesting in connection
with recent experimental observations of a “fractional Stokes-Einstein” law
in ionic melts [110]. Figure 20.17 also shows that under variation of both T
and x the anion diffusion coefficients can be represented by a unique function
of D(P ). This suggests that, for given T and x, anion diffusion depends only
on a single time scale that characterizes the chain motion, a result which
perfectly agrees with the idea of dynamic percolation. There one considers
a random walk in an environment with percolative disorder. As time pro-
ceeds, the disorder configurations are continually renewed at a certain rate.
In Sect. 20.8.2 we shall come back to this model in greater detail.
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Fig. 20.17. Self-diffusion coefficients D(±) of cations and anions (normalized by
the diffusion coefficient D0 of non-interacting point particle) against chain diffusion
coefficients D(P ), for different ion concentrations (after [100]).

Several further studies have been carried out in a reduced polymer elec-
trolyte model with only one species of mobile point-like particles. The lat-
ter assumption may directly apply to the so-called ionenes, where the an-
ions are chemically grafted to the chains [111]. By combining the quasi-
chemical approximation for the equation of state with standard simulations
at constant volume, information on the isobaric-isothermal ensemble can be
gained [112]. Ion diffusion coefficients in dense systems were found to de-
crease exponentially with pressure, in accord with experiments [111]. Further
studies considered the variation of VFT-temperatures with salt concentra-
tion, keeping the pressure fixed. As x becomes of the order of unity, the
VFT-temperatures T+(x) and T (P )(x) tend to saturate in this model and
get decoupled, T+(x) < T (P )(x), such that ions keep some mobility when
the network freezes.

20.8.2 Diffusion through a Polymer Network: Dynamic
Percolation Approach

With the aim to investigate generic aspects of random walks in a dynamically
disordered environment, several authors have developed models of dynamic
percolation (DP) [113–116]. The most common starting point is a bond per-
colation model with global, instantaneous renewals of the disorder configu-
rations. These renewal events occur in time according to some waiting time
distribution ψ(t). Denoting by 〈r2(t)〉0 the mean square displacement of the
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walker in the absence of renewals (frozen disorder), one can show [117] that
the long-time (zero-frequency) diffusion coefficient in d = 3 dimensions is
given by

D =
1
6

∞∫
0

dt ψ(t)〈r2(t)〉0
∞∫
0

dt ψ(t)t
(20.33)

In the special case of a Poisson renewal process with mean waiting time λ−1,
we have ψ(t) = λ−1e−λt, so that D = D0(λ), where D0(λ) is determined by
the Laplace transform of 〈r2(t)〉0. More generally, the frequency-dependent
diffusivity D(−iω) in the case of Poisson renewals satisfies the analytic con-
tinuation rule [113]

D(−iω) = D0(−iω + λ) (20.34)

In an attempt to map a random walk through a system of fluctuating
polymer chains onto that model, the primary task is to extract an appro-
riate waiting time distribution ψ(t), to be used in (20.33), from the actual
polymer dynamics. For that purpose the following scheme has been advanced
recently [102,118]. The function ψ(t) is related to the stochastic process ni(t),
representing the occupation of a site i by a polymer bead. That site i is cho-
sen to be a nearest neighbor of a fixed position of the walker. By this, the
correlation function 〈ni(t)ni(0)〉 reflects the closing or opening statistics of
a bond connected to the walker. Renewal events in an associated DP model
are now identified with occupational changes at site i. This will allow us to
express ψ(t) in terms of 〈ni(t)ni(0)〉.

To put this idea on a quantitative basis, we introduce the probability
Φ(t) with t > 0 that no renewal takes place in the interval [0, t], after a
previous renewal at an arbitrary time t0 < 0. Hence, with probability Φ(t)
the occupation of site i does not change, so that ni(t) = ni(0), with pos-
sible values 0 and 1, and ni(t)ni(0) = (ni(0))2 = ni(0). Conversely, with
probability 1 − Φ(t), one or more renewals occur within [0, t]. Then, since
configurations are randomly reassigned, ni(t) can be replaced by its average
c, and ni(t)ni(0) = c ni(0). Averaging in addition over the initial occupation
ni(0), we obtain

〈ni(t)ni(0)〉 = c Φ(t) + c2(1 − Φ(t)) (20.35)

or

Φ(t) =
〈ni(t)ni(0)〉 − c2

c(1 − c)
(20.36)

The final step is to utilize the result from renewal theory [117], that

ψ(t) = λ̄−1Φ′′(t) (20.37)
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Fig. 20.18. Comparison of tracer correlation factors from dynamic percolation
theory for chains of different lengths r (data points) with results from simulations
(full lines, representing fit functions of simulation data). The dashed-dotted line
shows the tracer correlation factor of a hard core lattice gas that corresponds to
r = 1.

where λ̄−1 =
∞∫
0

dt ψ(t)t is the mean renewal time. These arguments general-

ize earlier ideas of constructing effective-medium theories for many-particle
systems with the help of DP theory [119].

When applying this concept, based on (20.33), (20.36) and (20.37), to
tracer diffusion within a polymer host, one has to find the two input quanti-
ties 〈r2(t)〉0 and 〈ni(t)ni(0)〉 from simulations of the two separate problems:
random walk of a tracer particle through a frozen polymer host and local
occupational correlation function due to polymer segmental motions next to
a frozen tracer. Both of these problems are expected to be computationally
much less demanding than the simulation of the full system dynamics.

Recently that DP scheme has been tested against Monte Carlo simulations
for the case of an athermal model, where multiple occupation of lattice sites
by either chain beads or (point-like) tracer particles is excluded [102]. As
usual, we define the tracer correlation factor ftr(c, r) in terms of the tracer
diffusion coefficient D by

D = (1 − c)ftr(c, r)D0 (20.38)

which now depends both on the overall concentration c of occupied sites and
on the chain length r. Data points in Fig. 20.18 show DP results for ftr(c, r)
up to a chain length r = 20, while the full lines represent fits to Monte
Carlo simulations of the complete system dynamics. Obviously the agreement
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between both methods is excellent, suggesting that the DP description may
become a useful tool also in studies of more realistic systems. It is important
to note that in order to achieve this degree of accuracy in DP theory, the
non-Poisson character of the waiting-time distribution has to be taken into
account. In particular, the function Φ(t) reflecting the polymer dynamics
shows slow relaxation which for longer chains becomes even more pronounced.

Figure 20.18 includes data for the well-known case of a hard core lat-
tice gas, which emerges here as the limit r = 1. Since for c < 0.8 one
finds ftr(c, 1) < ftr(c, r) with r �= 1, we conclude that in this concentra-
tion range chain connectivity enhances tracer diffusion. This conforms with
the additional observation that a random walker in a 3 − d system of frozen
chains ceases to percolate at a threshold concentration ccrit(r) which increases
with r.

20.8.3 Diffusion in Stretched Polymers

Recent experiments on stretched PEO-based polymer electrolyte films have
revealed an enhancement of ionic diffusion and conductivity in the stretch
direction, while these transport coefficients in the normal direction decrease
[104]. A preferential migration of cations along the helical structure of the
PEO-chain, detected in molecular dynamics simulations [94], can in princi-
ple lead to that kind of macroscopic anisotropy when chains get oriented
through stretch. This situation has been described qualitatively by an effec-
tive two-phase model, where a highly conducting phase is associated with
those oriented molecular structures, but is surrounded by poorly conducting
boundary regions [103]. The effective conductivity was evaluated by using dif-
ferential effective-medium theory (DEMT), which accounts for the fact that
the highly conducting phase with conductivity σ2 never percolates; rather,
the conduction paths always have to pass the boundary phase with conduc-
tivity σ1 � σ2. Under stretch, the shape of one-phase regions changes from
spherical to prolate-ellipsoidal. As a stretch parameter one uses the ratio λ
between the long and the short axis of these ellipsoids. A version of DEMT
capable of taking into account these non-spherical shapes is due to Mendelson
et al. [120].

Conductivities perpendicular and parallel to the stretch direction are plot-
ted in Fig. 20.19 as a function of λ for different volume fractions f2 of the
highly conducting phase. While the directions of change in σ‖ and σ⊥ with
λ agree with experiments, the model calculations show further details which
remain to be tested against more refined measurements. For example, as f2

increases, σ‖(λ) becomes more sensitive to changes in λ, whereas σ⊥ becomes
less sensitive. Clearly, in the interpretation of these and other features of that
model, care has to be taken in relating the degree of macroscopic stretch to
anisotropies on the molecular level.
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Fig. 20.19. Ratio between conductivities of the stretched film in the stretch di-
rection (right) and perpendicular to it (left) and the conductivity in the isotropic
unstretched film (σ⊥(1) = σ‖(1)) as a function of the stretch parameter λ for several
values of the volume fraction f2 of the low-conductivity phase with σ1/σ2 = 10−4

(after [103]).

20.9 Conclusion

In Sects. 20.3–20.6, models for ionic transport in complex systems have been
presented which keep the essential physics: Coulombic interaction between
the ions and structural disorder in the substrate. These models are sim-
ple enough to be treated numerically by Monte-Carlo simulation techniques.
Several ionic transport quantities, such as the mean square displacement,
the frequency dependent conductivity and the spin-lattice relaxation rate,
have been discussed and it was found that both ingredients (structural dis-
order and Coulomb interactions) are needed to find the typical dispersion
behavior widely observed in experiments. It is remarkable that inclusion of
the simple percolative type of disorder allows one to account for the deli-
cate differences between conductivity relaxation and spin-lattice relaxation
found in experiments. However, for the theoretical understanding of the non-
Arrhenius behaviour observed in fast ion conductors the consideration of the
different energies associated with the different environments encountered by
the mobile ions becomes important.

In Sects. 20.4 and 20.5 it has been assumed that the charges of the mobile
cations are balanced by a homogeneous background charge, and that the en-



20 Ionic Transport in Disordered Materials 851

ergetic disorder is spatially uncorrelated. On the other hand, the assumption
of randomly placed immobile counterions leads to a spatially correlated one-
particle energy landscape. Local motions of ions on binding sites next to an
associated counterion can give rise to a “nearly constant loss”-type response.
This was shown by additional simulations of a dipolar lattice gas discussed
in Sect. 20.6. Other effects caused by spatial correlations in the disorder are
considered in [121]. By taking into account that the energetic disorder is dif-
ferent for different types of mobile ions, a natural explanation for the mixed
alkali effect in glasses was discussed in Sect. 20.7. Coulomb interaction effects
are important to understand why the long-range mobility of a particular ion
type behaves quite differently if its concentration is changed via dilution or
if its (partial) concentration is changed via replacement by another type of
mobile ion.

Furthermore we have shown in Sect. 20.8 that a stochastic model of lattice
polymers and point-like particles (ions) with specific interactions can account
for characteristic conductance and network relaxational properties of polymer
electrolytes. On a coarse-grained level, dynamic percolation theory appears
as a promising tool to study ionic diffusion through a fluctuating polymer
matrix.

Notation

a, L lattice constant, system size
d space dimension
D, Dst long-time, short-time diffusion coefficient
D(t) time dependent diffusion coefficient
D̂(ω) complex frequency dependent diffusion coefficient
∆ESLR activation energy of the correlation time in spin-lattice relaxation
ESLR

1 , ESLR
2 activation energy of spin-lattice relaxation rate at high- and low-

temperature side of maximum
Eσ, ∆Ef activation energy of conductivity and tracer correlation factor
ftr tracer correlation factor
G(q)(t) correlation function for spin-lattice relaxation
ĤR(ω) complex Haven ratio
I, Q spin and quadrupole moment of nucleus
j(t) current density
〈j(t) · j(0)〉 current auto-correlation function
nσ, nD conductivity and diffusion exponent
p fraction of lattice sites accessible for mobile ions
pc percolation threshold
P (r, t) diffusion propagator
P (t) electric polarization
r length of polymer chains
〈r2(t)〉 mean square displacement
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〈r2(Nhop)〉 mean square displacement as a function of performed hops
Sinc(k, ω) incoherent structure factor
1/T1(ω, T ) spin-lattice relaxation rate
Tmax temperature of maximum in spin-lattice relaxation rate
T (α) Vogel-Fulcher-Tammann temperature for polymer chains (α =

P ), cations (α = +) and anions (α = −)
V0 structural energy barrier for hops
Vdip−dip dipole-dipole interaction energy
γ magnetogyric ratio
Γ plasma parameter
λ mean renewal rate
ν number of nearest neighbours
ρ number density
σ||, σ⊥ parallel, perpendicular conductivity in stretched polymer films
σ̂(ω), σdc complex dynamic conductivity, dc-conductivity
τ∞ rattling time or inverse attempt frequency for hops
τSLR correlation time in spin-lattice relaxation
τσ, τD conductivity and diffusion relaxation time
χ̂(ω) complex dielectric susceptibility
ψ(t) waiting time distribution for renewals
ψ(τw) effective distribution of waiting times τw
ωNCL cross-over frequency to “nearly constant loss” regime
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102. O. Dürr, T. Volz, W. Dieterich, A. Nitzan: J. Chem. Phys. 117, 441 (2002)
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