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18.1 Introduction

Diffusion processes take place almost everywhere in the material world; they
are ubiquitous in condensed matter. Diffusion occurs in the different forms
of condensed matter: in fluids, complex fluids, and solids. This chapter is
concerned with the description of diffusion of particles in lattices. The theo-
retical description refers to diffusion in crystalline but also amorphous solids.
Experimental facts on diffusion processes in solids are given in Chaps. 1-6, in
particular. Empirical information gives the motivation and the basis for the
theoretical description. Two important special cases of diffusion processes in
crystalline solids are the tracer diffusion, where the displacement of marked
atoms (radioactive isotopes) is determined, and interstitial diffusion, where
atoms move on interstitial sites within the solid (see Chap. 1).

Diffusion processes appear in two distinct forms, namely

– Relaxation of density disturbances, or particle currents induced by density
gradients or external forces. These phenomena are usually described by
Fick’s laws.

– Displacements of individual entities (particles, aggregates of particles)
within condensed matter systems. The first description of these phenom-
ena was provided by Einstein [1].

The treatment of diffusion of particles on lattices is theoretically advanta-
geous for the following reasons: Lattice problems are generally easier to treat
than continuum problems. The most important point, however, is the sepa-
ration of time scales that exists between the elementary transition processes
of the particles between lattice sites, and the succession of steps that lead
to the observed diffusion phenomena. The elementary step of diffusion of a
particle on a lattice, for instance exchange of a vacancy with a tracer atom,
or motion of an interstitial atom, is generally rapid compared to the time
between two elementary steps. Hence the problem of a theory of diffusion in
lattices can be separated into two different tasks:
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– Theory for rate of the individual step
This topic is usually not treated in detail in books on diffusion in solids.
An exception is the monograph of Flynn [2]. A more general review on
activated processes is given in [3]. Diffusion processes in solids are pro-
moted by thermal activation. Usually an Arrhenius law is assumed for the
transition rate Γ

Γ = Γ0 exp(−∆E/kBT ) . (18.1)

The prefactor Γ0 is sometimes interpreted as an attempt frequency. ∆E
is the activation energy; it is actually a free energy, or a free enthalpy.
Further details may be found in Chap. 1, where different factorizations
of Γ into prefactor and exponential factor are made. The theory of the
transition rate Γ is especially interesting for light particles (hydrogen,
muons), where possible quantum effects are discussed.

– Combination of several/many individual steps to diffusion in lattices
This is the topic addressed in this chapter.

Let us begin with a few general remarks on the correlation between the-
oretical models and experimental systems. Experimental systems of current
interest are very complicated. Examples are polycrystalline systems, amor-
phous metals, glasses, etc. Theoretical modeling of particle diffusion in such
systems has evolved in different ways and one may distinguish between several
classes of models:

– Models that are extensions of models for regular lattices with uniform
transition rates
Examples are two-state models for diffusion and trapping, and lattice
models with correlated walks. These models are often useful for the in-
terpretation of experiments. One may also subsume the effective-medium
approximation under this class, for it relates a disordered system to an
ordered, effective medium [4].

– Models with disordered transition rates
There are various idealized models, for instance random barriers or ran-
dom traps, and realistic models that try to incorporate as much as possible
the complexities of real substances. The idealized models are treated by
exact or approximate analytical methods, supported by numerical simu-
lations. The realistic models are typically investigated by numerical sim-
ulations (e.g. [5]).

– Models that realize new paradigms for disordered systems
Examples are percolation models, fractal structures, and Sinai models.
These models are rarely realized in ideal form in nature, however, they
capture essential properties of disordered systems; for instance, the ap-
pearance of scaling laws with different exponents.
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In this chapter lattice models with uniform and disordered transition rates
will be considered (“idealized models” in the above sense). Models that con-
tain the new paradigms of fractality and percolation are treated in Chaps.
10, 19 and 22. Realistic models for particle transport in ionic conductors are
described in Chaps. 20 and 21.

This chapter consists of four sections:

- One particle on uniform lattices
Diffusion of one particle is well understood for regular lattices with uni-
form transition rates. The treatment is basic for many extensions, as ex-
emplified in Chaps. 1, 3, 9 and 10.

- One particle on disordered lattices
The problem of diffusion of one particle on a regular lattice with disor-
dered transition rates is now relatively well understood. It will be one
major focus of this chapter.

- Many particles on uniform lattices
The problem of diffusion of many identical particles on regular lattices
with uniform transition rates is also quite well understood, provided that
exclusion of double occupancy is taken into account. Here the distinction
between collective or Fickian and tracer diffusion is essential. A particu-
larly interesting topic is tracer diffusion in one dimension.

- Many particles on disordered lattices
The theory of diffusion of many particles on disordered lattices is a dif-
ficult problem, except for collective diffusion on lattices with symmetric
barriers. In this chapter collective diffusion of particles on lattices with
site-energy disorder will be included.

Finally, some remarks on the general literature will be made. Monographs
on the topics of random walks have been represented by Barber and Nin-
ham [6], and Weiss [7]. Somewhat more mathematical are the books of van
Kampen [8], Spitzer [9], Spohn [10], and Liggett [11]. Monographs that are
more focused on diffusion in metals are cited in Chap. 1. A survey on the fields
of fractals, percolation, and other disordered systems is given in the book of
Bunde and Havlin [12]. Several reviews on the topics addressed in this chapter
have appeared, with quite different emphasis, namely Alexander et al. [13],
Weiss and Rubin [14], Haus and Kehr [15], Havlin and ben-Avraham [16],
Bouchaud and Georges [17] and Schütz [18].
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18.2 One Particle on Uniform Lattices

18.2.1 The Master Equation

In this section the diffusion of one particle, or of an ensemble of indepen-
dent particles on regular lattices with uniform transition rates, is considered.
Examples are

– One, or few independent interstitial particle(s) (muon, low concentration
of hydrogen). The particles diffuse on the lattice of interstitial sites that
is schematically represented in Fig. 18.1 (a). Actual lattices of interstitial
sites may have a more complicated structure.

– One vacancy, or small concentration of vacancies. This diffusion process
is important for diffusion in metals. Figure 18.1 (b) gives a schematic
representation of this process.

These two processes are the simplest ones for a theoretical description. There
are other important diffusion processes in metals that are described in the
monographs, for instance by Manning [19] and Philibert [20]. These mecha-
nisms are also addressed in Chaps. 1 and 2.

The theoretical description of the lattice diffusion process is provided by
the master equation. It is an equation for P (lt|00), the conditional probability
of finding a particle at site l at time t when it was at site 0 at time 0. The
quantity P is generally referred to as the propagator (see Chaps. 10, 19,
23). The sites are designated by d-dimensional integer vectors l. The master
equation reads

d

dt
P (lt|00) = Γ

∑
〈l′,l〉

[P (l′t|00) − P (lt|00)] . (18.2)

The sum in (18.2) runs over the nearest-neighbour sites l′ of l. This equation is
essentially a balance equation for the increase/decrease of P (lt|00). It consists
of a gain term, describing the jumps from nearest neighbours l′ to l, and a
loss term describing the jumps off site l to nearest neighbour sites. Γ is the

(a) (b)

Fig. 18.1. (a) Single particle on uniform lattice; (b) single vacancy in occupied
lattice.
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transition rate between two nearest-neighbour sites. The last term can also
be written as −zΓP (lt|00), where z is the number of nearest neighbours. The
master equation is intuitively obvious.

Theoretically, the master equation follows from the assumption of a
Markovian process for the lattice diffusion problem. In a Markovian process,
the present state is determined by the past state at one time, rather than by
a more complicated history such as states at two different times, etc. More
details about these types of processes including the derivations of the most
essential relations may be found in van Kampen’s monograph [8].

18.2.2 Solution of the Master Equation

The solution of the master equation is obtained by Fourier transformation.
This is a general method for lattice-translation invariant problems (connected
with the validity of Bloch’s theorem). The spatial Fourier transform is defined
by

P (k, t) =
∑

l

e−ik·RlPl(t) . (18.3)

It is in fact this spatial Fourier transform of the propagator which is directly
experimentally accessible by quasielastic neutron scattering (in particular by
the neutron spin echo method - see Chaps. 3 and 13) and by pulsed field
gradient NMR (Chap. 10).

The initial condition will not be written explicitly henceforth.
For simplicity, a restriction to the hypercubic lattices (chain, square lat-

tice, simple-cubic lattice, etc.) will be made. A cube with N = Ld sites will
be introduced, and periodic boundary conditions are assumed. The sum over
l in (18.3) then runs over N sites, whose position vectors are given by

Rl = (al1, . . . , ald) (18.4)

with the lattice constant a. The periodic boundary conditions imply for the
wavevector k

k =
2π
La

ν, (18.5)

where ν is an integer vector, restricted to values between −L/2 and L/2 (first
Brillouin zone).

The master equation (18.2) can be written in a more compact form as

d
dt
P (lt|00) = −

∑
l′
Λl,l′P (l′t|00) (18.6)

Λl,l′ ∼

⎧⎨⎩
zΓ l = l′

−Γ l, l′ nearest neighbours
0 otherwise .

(18.7)

Note that for uniform lattices, the matrix Λl,l′ only depends on |l − l′|.
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The above equation has a convolution form. It is well-known that convo-
lution in direct space becomes a product in Fourier space,

d
dt
P (k, t) = −Λ(k)P (k, t) , (18.8)

with the Fourier transform of the transition rate matrix

Λ(k) = Γ
∑
l−l′

e−ik·(Rl−Rl′ ) . (18.9)

(One can derive (18.8) directly by multiplying (18.6) for fixed l with exp(−ik·
Rl) and summing over l). For hypercubic lattices is

Λ(k) = Γ

⎡⎣z − 2
d∑

j=1

cos(kja)

⎤⎦ . (18.10)

The main point is that a diagonalization of the master equation (18.6)
has been accomplished through Fourier transformation. Now the solution of
the master equation is possible

P (k, t) = P (k, 0) exp[−Λ(k)t] t ≥ 0 . (18.11)

The initial condition is

P (k, 0) =
∑

l

e−ik·RlP (l0|00) = 1 . (18.12)

There are experimental methods that also allow a determination of the
Fourier transforms of the conditional probability P (lt|00) from time to the
frequency domain. It is defined by

P (k, ω) =
∫ ∞

−∞
dt eiωtP (k, t) . (18.13)

The quantity P (k, t) is also required for negative times. It can be obtained
by symmetric continuation,

P (k,−t) = P (k, t) . (18.14)

Performing the Fourier integral (18.13) one obtains

P (k, ω) =
2Λ(k)

ω2 + Λ2(k)
. (18.15)

This is a Lorentzian, whose width Λ(k) can be measured, e. g. by quasielastic
Mößbauer spectroscopy and quasielastic incoherent neutron scattering. De-
tails may be found in Chaps. 2 and 3. Also the NMR relaxation times are
determined by Fourier transforms of (different) correlation functions. This
topic is considered in Sects. 9.2 and 9.9 of Chap. 9.
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18.2.3 Diffusion Coefficient

In this section the diffusion coefficient of a particle that performs random
walk on a regular lattice with uniform transition rate will be calculated. For
this purpose, the mean square displacement of the particle is derived from
the solution of the master equation. Consider the definition of the Fourier
transform which was given in (18.3), and differentiate it with respect to a
component of the wavevector k,

∂

∂kj
P (k, t) =

∑
l

(−iRlj)e−ik·RlP (lt|00) . (18.16)

Differentiate the expression again and sum over all components,

d∑
j=1

∂2

∂kj∂kj
P (k, t) = −

∑
l

(
d∑

j=1

R2
lj)e

−ik·RlP (lt|00) . (18.17)

The expression on the right-hand side, evaluated at k = 0, is the mean square
displacement of the particle at time t, when it started at site 0 at time 0,

〈R2〉(t) = −
d∑

j=1

∂2

∂kj∂kj
P (k, t) |k=0 . (18.18)

From the explicit solution of the master equation (18.11) one obtains

〈R2〉(t) =
d∑

j=1

∂2Λ(k)
∂kj∂kj

|k=0 t . (18.19)

For hypercubic lattices one finds from (18.10)

d∑
j=1

∂2Λ(k)
∂kj∂kj

∣∣∣∣∣∣
k=0

= 2dΓa2 . (18.20)

Hence one has
〈R2〉(t) = 2dDt, (18.21)

with the diffusion coefficient
D = Γa2 . (18.22)

In this derivation, the diffusion coefficient has been derived from the mean
squared spreading of the conditional probability with time. This is Einstein’s
description of particle diffusion [1].

It is possible to derive the diffusion equation (see Chandrasekhar [21])
from the master equation in the long-wavelength limit k → 0. For this pur-
pose one has to replace the discrete conditional probability by a continuous
probability density,
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P (l, t) −→ p(r, t) , (18.23)

where p(r, t)ddr is the probability density of finding the particle in the vol-
ume element ddr at location r and time t (initial conditions omitted). The
probability density obeys the diffusion equation (Fick’s 2nd law)

∂

∂t
p(r, t) = D∇ · ∇p(r, t), (18.24)

where ∇ · ∇ is the Laplace operator in d dimensions.

18.2.4 Extensions

There are important extensions of the master-equation description of diffu-
sion of a single particle on a regular lattice with uniform transition rates.

– More complicated lattices
Examples are lattices with a basis, e.g. the lattice of tetrahedral sites
of hydrogen in bcc metals. This extension is trivial from the theoretical
point of view, however, the derivation of P (k, t) may require considerable
labour. References are given in [15].

– Lattices with inequivalent sites
Inequivalent sites can occur in lattices with a basis, when some sites in
the unit cell are energetically lower than the others. This leads to a larger
thermal occupation of these sites. The problem of taking the different
thermal occupation factors into account was solved in principle in [22]
and [23], for a review, see [15]. Applications were made by Anderson et
al. [24].

– Two-state models for diffusion and trapping
These models provide a very simple description of trapping processes.
The basis is the decomposition of the conditional probability into a part
corresponding to a free state and a part corresponding to a trapped state,

Pl(t) = P free
l (t) + P trapped

l (t) . (18.25)

A particle may be alternatively in a free or a trapped state, with mean
times of stay τ1, or τ0, respectively. The two-state model can be treated by
differential equations (Schroeder [25]), or by integral equations (Richter
and Springer [26]), with equivalent results. The differential equations are
somewhat more compact and they read

d
dt
P f

l (t) = Γ
∑
〈l′,l〉

[P f
l′ (t) − P f

l (t)]

− ΓtP
f
l (t) + ΓrP

t
l (t)

d
dt
P t

l (t) = −ΓrP
t
l (t) + ΓtP

f
l (t), (18.26)
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with the trapping rate Γt = 1/τ1 and the release rate Γr = 1/τ0. The first
equation in (18.26) is the usual master equation, augmented by a loss
and gain term, corresponding to transitions into and out of the trapped
state. The second equation describes the temporal development of the trap
state. An application of the two-state model has been given in Sect. 3.6
of Chap. 3.

All models mentioned above, and some additional models, for instance
correlated-walk models, have in common that they are lattice-translation
invariant. Hence they are solved by similar techniques as described above.
Spatial Fourier transformation leads to a partial diagonalization, the rest is
the solution of coupled ordinary first-order differential equations. As already
said, this may require considerable effort in complicated cases, but in princi-
ple the solution of these models is understood.

18.3 One Particle on Disordered Lattices

18.3.1 Models of Disorder

In this section the random walk of a single particle, or of independent parti-
cles, on lattices with disordered transition rates will be considered. The main
emphasis of this chapter will be on the derivation of asymptotic diffusion co-
efficients, but also the time dependence of the mean square displacement, or
the frequency dependence of the conductivity will be considered. The models
of disorder will be defined on regular lattices, and topological disorder will
not be included. This is a popular approach for modeling diffusion in disor-
dered materials, even if many materials of interest do not have crystalline
structure. It means that the disorder is put completely into the transition
rates,

Γ −→ Γfi , (18.27)

which depend on the initial (i) and final (f) sites. The rates are assumed to
be fixed, i.e. the case of quenched disorder is treated. In principle, one could
include transitions between arbitrary sites, in practice only nearest-neighbour
transitions are taken into account, as is appropriate for diffusion of atoms.

Various models of disorder have been introduced in different contexts.
Here some idealized models of disorder will be considered:

– Random barriers (RB)
In this model the transition rates between neighbour sites have the sym-
metry

Γji = Γij . (18.28)

It is usually assumed that the rates are given by an Arrhenius law,

Γji = Γ0 exp
(
− Eji

kBT

)
Eji ≥ 0 . (18.29)
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Fig. 18.2. Models of disorder.

The disorder then originates from random barrier energies Eji, which are
taken from a distribution νB(E). A pictorial representation of the RB
model is given in Fig. 18.2(a).

– Random site energies (RT)
Another important model is the random site-energy model, which is also
called random-trap model. One should keep in mind that the traps do
not capture the particles permanently. The model is defined by transition
rates that depend on the initial sites, but not on the final sites,

Γji = Γ0 exp
(

Ei

kBT

)
Ei ≤ 0 . (18.30)

The site energies Ei are counted negative and they are taken from a
distribution νT(E). A pictorial representation of the RT model is given
in Fig. 18.2(b).

– Combination of RB and RT
In this chapter also a combination of random barriers and random site
energies will be studied. The rates of the combined RB and RT model
shall be given by

Γji = Γ0 exp
(
−Eji − Ei

kBT

)
. (18.31)

The random-barrier energies Eji and the random-site energies Ei are
taken independently from the distributions νB(E) and νT(E). A picto-
rial representation of the model is given in Fig. 18.2(c). Note that all
energies refer to a common origin E = 0.
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– Randomly blocked sites (RBS)
Finally, the model of randomly blocked sites will be included in this list of
models of disorder. Sites of a lattice are randomly blocked with probability
1 − p and not accessible to the particle that performs random walk. The
transition rates of this model are defined by

Γji =
{
Γ if j is “open”
0 if j is blocked. (18.32)

The pictorial representation of the model is included in Fig. 18.2(d). Of
course, this model is nothing else than the site percolation model, which is
exclusively treated in Chap. 22. In the present chapter, however, the RBS
model will only be considered for concentrations p of open sites above the
percolation threshold, where long-range diffusion of a particle is possible.

There are other models with disordered transition rates which are not in-
cluded in the list above. One example is the Miller-Abrahams model, where
transitions that lead to sites with lower energies have rates that do not depend
on the energy difference, while the transitions to sites with higher energies re-
quire thermal activation. For a treatment of this model with similar methods
as applied here the reader is referred to [29].

18.3.2 Exact Expression for the Diffusion Coefficient in d = 1

It is possible to give an exact expression for the diffusion coefficient of a
particle in a linear chain for rather general disordered rates. Some restrictions
on the disorder have to be made, which will be explained below. Linear chains
with sites at a distance a will be considered and one may view Fig. 18.2(c) as a
graphical representation of such a model. The task is to derive the asymptotic,
long-time diffusion coefficient of a particle, averaged over the disorder.

The expression to be given below was derived independently by Dieterich
[27] and Kutner [28], and by Wichmann [29]. Dieterich and Kutner calculated
the mobility of a particle from the linear response to a force while Wichmann
used a mean first-passage time method. Here a derivation will be given which
utilizes Fick’s first law. Of course, there are relations between the different
derivations.

Consider a finite chain of length Na, as schematically displayed in
Fig. 18.3. A particle current I (precisely: probability current) into site 0
is assumed such that P0 is fixed. The same particle (probability) current is
then taken out at site N and a stationary situation is maintained.

The derivation for general disorder is somewhat tedious and hence put into
the appendix. A much simpler derivation can be made for the random-barrier
model with Γi+1,i = Γi,i+1 and it should convey the idea of the derivation.

Consider Kirchhoff’s node equation for site 0 which expresses the fact
that the sum of all currents into the site must be zero:
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I

I

1 1

Fig. 18.3. Linear chain with constant current I .

I + Γ10(P1 − P0) = 0 . (18.33)

The master equation at site 1 reads

d
dt
P1 = Γ10(P0 − P1) + Γ21(P2 − P1) . (18.34)

One finds in the stationary situation

Γ21(P1 − P2) = Γ10(P0 − P1) = I , (18.35)

where also (18.33) was used. The same consideration yields for all sites
0 ≤ i < N

Γi+1,i(Pi − Pi+1) = I . (18.36)

One can now play the following trick: Write

P0 − PN = P0 − P1 + P1 − P2 + P2 ∓ . . .

−PN−1 + PN−1 − PN . (18.37)

Introduce the current I into the differences by using (18.36),

P0 − PN = I

(
N−1∑
i=0

1
Γi+1,i

)
. (18.38)

This expression is already Fick’s first law. To recognize this, rewrite (18.38)
as

P0 − PN

N
= I

{
1
Γ

}
, (18.39)

where the sum has been replaced by the disorder average (valid for large N){
1
Γ

}
=

1
N

N−1∑
i=0

1
Γi+1,i

. (18.40)

The length of the chain is Na and the probability density at site i is Pi/a.
Hence one can identify the gradient of the probability density,

P0 − PN

Na2
= −∇n . (18.41)
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Fick’s first law reads I = −D∇n. Comparison with the above expressions
yields

D =
{

1
Γ

}−1

a2. (18.42)

The expression (18.42) is the exact result for the diffusion coefficient of the
RB model in d = 1, which is known since a long time [13].

The physical significance of the result is that the highest barriers dominate
diffusion in d = 1. This is evident: particles have to overcome all barriers in
the course of long-range diffusion, and it takes long times to overcome the
high barriers.

The generalization of the result to arbitrarily disordered transition rates
is

D =
{

1
Γi+1,iρi

}−1

a2, (18.43)

with the thermal occupation factors

ρi =
exp(−βEi)

1
N

∑N−1
j=0 exp(−βEj)

, (18.44)

where β = 1/(kBT ). The existence of the thermal occupation factors ρi is
required in the proof, which is given in the appendix. The ρi exist when
one can introduce a reference energy E0 and the sum in the denominator of
(18.44) remains finite for arbitrary N . A counterexample, where the ρi do
not exist in the limit N → ∞ will be given in Sect. 18.3.7.

The expression (18.43) for the diffusion coefficient of a particle on a linear
chain with general disorder means that one has to use transition rates that
are weighted by the mean thermal occupation of the sites. This is an exact
result in d = 1 (see [27–29]).

18.3.3 Applications of the Exact Result

The expression (18.43) for the diffusion coefficient in d = 1 will now be
examined for the models that have been introduced in Sect. 18.3.1. Henceforth
the lattice constant will be set a = 1.

For the random barrier model, where Γi,i+1 = Γi+1,i one has ρi = 1. The
result (18.42) is then immediately obtained from (18.43) and it is the correct
result in d = 1.

In the random site-energy model, where Γji = Γ0 exp(βEi), the product
is

Γjiρi = Γ0

⎡⎣ 1
N

∑
j

exp(−βEj)

⎤⎦−1

. (18.45)

Hence the diffusion coefficient is given by
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D =
Γ0

1
N

∑
j exp(−βEj)

. (18.46)

This is the exact result in d = 1; it is also valid in all dimensions [15, 30].
Normally it is written in the form D = { 1

Γ }−1 which is equivalent to (18.46).
Equation (18.46) signifies that the diffusion coefficient of the RT model is
solely determined by the inverse of a partition function, which becomes large
for strong site-energy disorder and/or low temperatures.

An immediate consequence of the exact expression (18.46) for the diffusion
coefficient of the RT model is its downward curvature in an Arrhenius plot,
where lnD is displayed as a function of β = 1/kBT . Differentiating lnD
according to (18.46) with respect to β one obtains

∂ lnD
∂β

=

∑
j Ej exp(−βEj)∑

j exp(−βEj)
= 〈E〉 . (18.47)

Thus the slope of the Arrhenius plot of D is the mean thermal energy of a
particle in the RT model. The mean thermal energy decreases with increasing
β in the case of energetic disorder, hence one has convex (downward) curva-
ture of D(β) in the Arrhenius plot. This is the generic cause for downward
curvature of D(β) in the Arrhenius plot.

Finally the combined RB and RT model will be considered. The rates of
this model were given in (18.31). The weighted rates are then

Γjiρi = Γ0

⎡⎣ 1
N

∑
j

exp(−βEj)

⎤⎦−1

exp(−βEji) . (18.48)

One obtains for independent distributions of barrier and site energies [31]

Dcomb =
1
Γ0
DRBDRT . (18.49)

Thus the diffusion coefficient of this model factorizes into two independent
contributions in d = 1. A numerical verification of the result is given in
Fig. 18.4.

18.3.4 Frequency Dependence in d = 1: Effective-Medium
Approximation

Not only the asymptotic behaviour of the mean square displacement is of
interest, but also the behaviour at finite times. It corresponds to the frequency
dependence of the mobility. Asymptotic expansions of the time-dependent
mean square displacement were made for the RB and RT models; they yield
exact results in d = 1 for the RB model and all d for the RT model [32, 33].
Here an approximate treatment will be introduced for several reasons:
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-4
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0

0 0.5 1 1.5

ln
(D

)

1/T

Fig. 18.4. Diffusion coefficient in combined RB and RT model. Uniform distribu-
tions of barriers and site energies of width Ec = 2. Line: Equation (18.48); symbols:
Monte Carlo (MC) simulations.

i) The technique is rather simple and intuitive.
ii) The approximation yields an overall description of the frequency-dependent

mobility.
iii) It is easily generalized to higher dimensions.

To formulate the effective-medium approximation (EMA), the random barrier
model will be considered in d = 1. The master equation reads

d
dt
Pi(t) = Γi,i+1[Pi+1(t) − Pi(t)]

+Γi,i−1[Pi−1(t) − Pi(t)] . (18.50)

The rates Γi,i±1 are taken from a common distribution ρ(Γ ) (or, equivalently,
are determined from the distribution of barrier energies).

The frequency-dependent formulation of the EMA was developed by sev-
eral authors around 1980 (Alexander and Orbach [34], Summerfield [35],
Odagaki and Lax [36], Webman [37]). Here a derivation by an embedding
procedure will be given, following Haus et al. [38]. One systematic, random
transition rate Γ01 is embedded in a linear chain, which consists of time-
dependent, effective transition rates. A graphical representation is given by
Fig. 18.5 (bottom).

The systematic rate is taken from the distribution ρ(Γ ) and, once selected,
considered as fixed.

The master equations for the conditional probabilities Pi(t) for sites that
do not involve sites 0 and 1 are

d
dt
Pi(t) =

∫ t

0

dt′Γeff(t− t′)[Pi+1(t′) + Pi−1(t′) − 2Pi(t′)] . (18.51)

The master equation for the conditional probabilities P0 and P1 is then
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eff

Fig. 18.5. Embedding procedure for
effective-medium approximation.

d
dt
P0 =

∫ t

0

dt′Γeff(t− t′)[P−1(t′) − P0(t′)]

+ Γ01[P1(t) − P0(t)] ,
d
dt
P1 = Γ01[P0(t) − P1(t)]

+
∫ t

0

dt′Γeff(t− t′)[P2(t′) − P1(t′)] . (18.52)

This set of master equations will be compared with the master equation for
the effective medium only, where the conditional probability will be called
Ei(t) (see also Fig. 18.5 (top))

d
dt
Ei(t) =

∫ t

0

dt′Γeff(t− t′)[Ei+1(t′) + Ei−1(t′) − 2Ei(t′)] . (18.53)

Now a Fourier and Laplace transformation of both equations will be made.
The Laplace transform of a function f(t) is defined by

f̃(s) =
∫ ∞

0

dtE−stf(t) . (18.54)

The advantage of the Laplace transformation is that the initial condition of
the master equations appears explicitly, because∫ ∞

0

dt e−st df(t)
dt

= e−stf(t) |∞0 +s
∫ ∞

0

dte−stf(t)

= sf̃(s) − f(t = 0) . (18.55)

The master equation for the effective medium reads after the transformations

[s+ 2Γeff(s)(1 − cos ka)]Ẽ(k, s) = 1 . (18.56)

The 1 on the right-hand side of the equation comes from the initial condition
Ei(t = 0) = δi,0.
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It is possible to solve the equations for P̃0(s) and P̃1(s), as explicitly
shown in the appendix. The requirement will be made that the average over
the different realizations of the embedded bond will reproduce the effective
medium. Hence the requirement is

{P̃0(s)}ρ(Γ ) = Ẽ0(s) . (18.57)

Equation (18.57) is a self-consistency condition for Γ̃eff(s). In the appendix
the following explicit form of the self-consistency condition is derived,{

Γ̃eff(s) − Γ10

Γ1,0 + sẼ0(s)[Γ̃eff(s) − Γ10]

}
ρ(Γ10)

= 0 . (18.58)

The conditional probability of the effective medium at site 0 can be given
explicitly in d = 1,

Ẽ0(s) = [s(s+ 4Γ̃eff(s))]−1/2 . (18.59)

The self-consistency condition (18.58) corresponds to a fourth-order equation
whose general solution is of no practical use. Hence an ansatz is made to
determine Γeff(s) for small s, corresponding to long times,

Γeff(s) = Γeff(1 + ϑ1(s/Γeff)1/2 + · · · ) s −→ 0 . (18.60)

The self-consistency condition yields

Γeff =
{

1
Γ

}−1

(18.61)

and

ϑ1 =
1
2
Γ 2

eff

{(
1
Γ

− 1
Γeff

)2
}
. (18.62)

The results for Γeff and ϑ1 are exact [32]; note that ϑ1 is specific for the
presence of disorder.

Having obtained the effective transition rate for small s, one can deduce
the asymptotic mean square displacement of a particle by an extension of the
procedure of Sect. 18.2.3. The result for the disorder-averaged mean square
displacement is

{〈δx2〉}(t) = 2Γeffa
2
(
t+ 2ϑ1(t/πΓeff)1/2 + · · ·

)
. (18.63)

There appears a “long-time tail” correction to the asymptotic mean square
displacement. Note that (18.63) together with (18.61) reproduces the exact
result (18.42) of the RB model, which was derived earlier.

The result for the s-dependence of the effective transition rate gives also
information on the frequency dependence of the mobility. The frequency-
dependent mobility of a particle is obtained from the linear response to a
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periodic force. Equivalently, one may define a frequency-dependent diffusion
coefficient as the Fourier transform of the velocity autocorrelation function
of the particle. The connection with the s-dependent effective rate is (a = 1)

D(ω) = Re[Γ̃eff(s = iω)] (18.64)

and comparison with (18.60) shows that

D(ω) = Γeff(1 + ϑ1(ω/Γeff)1/2 + · · · ) ω −→ 0 . (18.65)

Hence one finds a strong increase of the diffusion coefficient and the mobility
with frequency, for small frequencies.

18.3.5 Higher-Dimensional Lattices: Approximations

Approximations are generally necessary when one treats diffusion of single
particles on higher-dimensional lattices. An exception is the random site-
energy model, where the diffusion coefficient is known exactly in all dimen-
sions [15, 30]. First the effective-medium approximation (EMA) will be dis-
cussed; this is an approximation that includes frequency dependence. As al-
ready said in the introduction, the EMA replaces the disordered medium
by an effective ordered medium. A candid criticism of the philosophy of the
EMA from the point of view of a theorist has been given by Anderson [4].
Nonetheless, EMA provides an adequate overall description of various disor-
dered systems.

Effective-Medium Approximation

The embedding procedure for one random bond described in the previous sec-
tion can be extended to higher dimensions. The result is the self-consistency
condition [37]{

Γ̃eff(s) − Γ
z−2
2 Γ̃eff(s) + Γ + sẼ0(s)[Γ̃eff(s) − Γ ]

}
ρ(Γ )

= 0 . (18.66)

The relevant parameter is z, the coordination number; z = 2d for hypercubic
lattices. The conditional probability for the effective medium Ẽ0(s) is more
complicated for d > 1 than in d = 1. To obtain the static, long-time diffusion
coefficient one has to set s = 0. The product sẼ0(s) vanishes for s = 0 in all
d and the self-consistency condition reduces to{

Γeff − Γ
z−2
2 Γeff + Γ

}
ρ(Γ )

= 0 . (18.67)

This self-consistency condition was already established by Kirkpatrick [39]
who considered the equivalent problem of random resistor networks. If the
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effective transition rate has been determined, the diffusion coefficient is given
by D = Γeffa

2 in hypercubic lattices.
The average in (18.67) can be evaluated explicitly for a uniform distrib-

ution of activation energies [40],

νB(E) =
{

1
Ec

0 ≤ E ≤ Ec

0 otherwise .
(18.68)

One finds for Ec 
 kBT and z > 2

Γeff −→ 2Γ0

z − 2
exp

(
− 2Ec

zkBT

)
. (18.69)

The EMA result for the simple-square lattice is then

Γeff −→ Γ0 exp
(
− Ec

2kBT

)
, (18.70)

and the one for the simple-cubic lattice

Γeff −→ Γ0

2
exp

(
− Ec

3kBT

)
. (18.71)

Good agreement with numerical simulations has been found [41, 42]. Fig-
ure 18.6 shows simulation results [42] for the mean square displacement of
particles on a simple-square lattice with random barriers. One observes pro-
nounced transient behaviour for stronger disorder at intermediate times, until
the asymptotic behaviour is reached. Good agreement with the predicted as-
ymptotic behaviour (18.70) is recognized.

Critical-Path Approach

For very large disorder or very low temperatures, the diffusion coefficient of
the RB model can be estimated by the critical-path approach. This intu-
itive method was proposed by Shklovskii and Efros [43] and by Ambegaokar,
Halperin, and Langer [44]. Consider a large but finite d-dimensional lattice
and decorate the bonds with random hopping rates. Identify the largest hop-
ping rate on the lattice, then the second largest rate, etc. (see Fig. 18.7).

Continue until a connection between two opposite sides of the (large)
lattice is obtained. In the limit N −→ ∞ the possibility of connection defines
the bond percolation threshold [45], see also Chap. 22. The smallest rate in
the set of all selected rates represents an estimate for the diffusion coefficient.

The activation energy for the smallest rate will be determined for the
uniform distribution of activation energies. Evidently (cf. Fig. 18.8)∫ E∗

0

dE νB(E) = pc . (18.72)
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Fig. 18.6. Mean square displacement of particles in the RB model in d = 2 as a
function of time. Lines: (18.70); symbols: MC simulations. Uniform distributions of
activation energies; T is given in units of Ec/2. From [42].

For the uniform distribution one obtains

E∗ = pcEc . (18.73)

Hence the estimate for the diffusion coefficient is

D ∼= Γ0 exp
(
−pcEc

kBT

)
. (18.74)

(a) (b)

Ε*Ε*

Fig. 18.7. Construction of the critical path: (a) the three largest transition rates
are identified; a percolating path has been closed by bond with barrier E∗.
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Fig. 18.8. Determination of the barrier E∗ from density of states.

In d = 2 the bond percolation threshold is pc = 0.5 and one has

D ∼= Γ0 exp
(
− Ec

2kBT

)
. (18.75)

This result is identical to the EMA result (18.70). In fact, it is an exact
result, as was shown by Bernasconi et al. using the self-duality of the square
lattice [46]. In d = 3, where pc ≈ 0.244 one obtains

D ∼= Γ0 exp
(
−0.244Ec

kBT

)
, (18.76)

i. e. a result that is different from the EMA result. As said above it gives the
dominant behaviour for very low temperatures or very strong disorder, but
there are important corrections to it [47, 48].

Single Particles in the RBS Model

The diffusion of single particles in lattices with randomly blocked sites be-
longs to the same category of problems as other diffusion models on disordered
lattices. However, the methods of treatment are somewhat different. As al-
ready said, only low concentrations p of blocked sites will be considered, such
that long-range diffusion of test particles is always possible. An approximate
derivation of the diffusion coefficient was made by Tahir-Kheli [49] and his
result is (a = 1)

D = Γ0

(
1 − 1 − p

f
+ · · ·

)
. (18.77)

In the formula the correlation factor f for tracer diffusion in lattice gases ap-
pears, which will be discussed in Sect. 18.4.3. Ernst et al. [50] could establish
(18.77) by performing a perturbation expansion with respect to 1− p.

The validity of (18.77) was investigated by numerical simulations in
simple-cubic lattices [51] and it was found that it is a good approximation
for small and moderate concentrations of blocked sites, see Fig. 18.9.
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Fig. 18.9. Diffusion coefficient of single particles in the RBS model, as a function
of the concentration of blocked sites. Symbols: MC simulations; continuous line:
spline fit to the MC results; dashed line: (18.77). From [51].

18.3.6 Higher-Dimensional Lattices: Applications

Vanishing of D for Exponentially Distributed Site Energies

An interesting application of the exact result (18.46) for the RT model in
arbitrary dimensions can be made for the exponential energy distribution.
This distribution is given by

νT(E) =
1
Ec

exp
(
E

Ec

)
E ≤ 0 . (18.78)

Combining this expression with the Arrhenius law (18.30) for the transition
rates of the RT model, one can calculate the distribution of transition rates
ρ(Γ ) (this is equivalent to a change of the integration variable from E to Γ ),

ρ(Γ ) =
α

Γ0

(
Γ

Γ0

)α−1

, Γ ≤ Γ0 , (18.79)

where α = kBT/Ec. The inverse of the diffusion coefficient is then given by
(a = 1)

D−1 =
∫ Γ0

0

dΓρ(Γ )
1
Γ
. (18.80)

D−1 diverges for α < 1, and consequently
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D ≡ 0 for α < 1 . (18.81)

Hence the diffusion coefficient vanishes for random site energies with an ex-
ponential distribution, for temperatures kBT ≤ Ec, in arbitrary dimensions.

The mean square displacement of particles does no longer exhibit linear
behaviour at long times for α < 1. Instead one finds subdiffusive behaviour,
as was derived by Havlin, Trus, and Weiss [52]:

〈R2〉(t) ∼
{
t

2α
α+1 d = 1
tα d ≥ 2 .

(18.82)

Combined RB and RT Model for d > 1

How can one treat more general models with disorder by approximations
in higher dimensions? The EMA as formulated above with one systematic
bond requires symmetric rates. A hint can be obtained from the exact result
(18.43) for generally disordered rates in d = 1. The message of this result is:
Use thermally weighted transition rates Γjiρi for the general models. Invoking
the relation of detailed balance,

Γjiρi = Γijρj , (18.83)

one observes that the thermally weighted rates are symmetric, hence they
can be employed in the EMA as formulated above.

The utilization of thermally weighted transition rates will be illustrated
for the combined RB and RT model. Its rates were given in (18.31) and the
weighted rates were already given in (18.48). From the self-consistency con-
dition (18.67) follows for independent barriers and site-energies in arbitrary
dimensions [31]

DEMT
comb =

1
Γ0
DEMT

RB DRT. (18.84)

Since DRT is known exactly, cf. (18.46), only the application of the EMA for
the random barriers is necessary [31].

The interest in the combined RB and RT model originates from experi-
ments on diffusion in amorphous metallic alloys. The diffusion coefficient in
these substances exhibits typically linear behaviour in an Arrhenius plot of
lnD vs. ln 1/T . This is not expected from the simple models for diffusion in
disordered lattices.

As was discussed in Sect. 18.3.3, the RT model exhibits downward cur-
vature in an Arrhenius plot of lnD versus ln 1/T (i. e. the deepest trap sites
dominate at low temperatures). In contrast, the RB model exhibits upward
curvature in an Arrhenius plot of lnD vs. ln 1/T for z > 4. One can give the
following argument for the origin of this upward curvature: The critical path
dominates the behaviour of the diffusion coefficient at the lowest tempera-
ture; additional paths contribute at higher temperatures and they comprise
higher activation energies.
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Fig. 18.10. Arrhenius plot of the diffusion coefficient for two-level models. Con-
tinuous lines: EMA, d = 3; dashed lines: EMA, d = 5. Symbols: MC results (+: RB
model, �: RT model, �: combined model).

Limoge and Bocquet suggested a possible compensation of the effects of
random barriers and of random traps [53]. The original derivations given
in [53] were only partially satisfactory. We investigated the problem by the
analytic approach outlined above and by numerical simulations [54]. This
reference also contains a more detailed discussion of the previous work. It
was found that compensation is possible in finite temperature intervals if
the relative strengths of RB and RT are properly adjusted. Fig. 18.10 shows
this compensation for uniform distributions of barrier and trap energies in
d = 3 when |ET

c | ≈ 3/5 EB
c . Complete compensation of the curvature is only

possible for d −→ ∞, as was shown by Wichmann [29].

Frequency Dependence

Only some remarks on the frequency dependence of the mobility or the dif-
fusion coefficient will be made. There are many observations of frequency-
dependent conductivities in disordered substances with typically

σ(ω) ∼ ωβ 0 < β < 1 . (18.85)

The question is whether this behaviour can be understood in the framework of
single-particle theories, for instance by EMA. So far, asymptotic results were
derived for the frequency-dependent conductivity in the limit ω → 0 [33], for
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a review, see [15]. They seem to be not really useful in the frequency ranges
of interest. Numerical evaluations of the self-consistency condition for finite
ω were made by Wagener and Schirmacher [55] and Hoerner et al. [56]. The
authors found a frequency dependence in qualitative accord with (18.85).
In the opinion of the authors, no simple physical picture of the origin of
anomalous frequency dependence has been established so far (see however
Chap. 21).

It should also be pointed out that the problem of the frequency-dependent
mobility is truly a many-particle problem, in addition, the particles can have
interactions. Work has been done on this problem mainly by numerical sim-
ulations [57–59], see also Chap. 20.

18.3.7 Remarks on Other Models

In this section some comments will be made concerning several models that
are not treated in this chapter. The first three are addressed in other chapters
of this textbook, hence some cursory remarks will suffice.

Fractals

These objects are considered in Chaps. 10 and 19. If they are regularly con-
structed objects, often an explicit solution of recursion relations is possible,
and the mean square displacement of diffusing particles can be calculated.

Percolation lattice

This model is treated in Chap. 22, together with experimental realizations. It
can be viewed as the RBS model, where the concentration of blocked sites is
adjusted at the threshold value where the diffusion coefficient vanishes. Diffu-
sion of particles on fractals and on percolation lattices exhibits an interesting
behaviour including scaling laws that are different from ordinary diffusion.

Extended defects

Also extended defects are not included in this chapter. An example are grain
boundaries, which are of great practical importance. They are treated in
Chap. 8.

Sinai model

Also here no detailed treatment will be given, only some introductory con-
siderations concerning the one-dimensional model will be presented.

In the Sinai model (see the references in [60]) the transition rates to the
right, Γi+1,i, and to the left, Γi−1,i, are independent random variables with
the restriction
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Fig. 18.11. Pictorial representation of the Sinai model on a larger scale.

{
ln
Γi+1,i

Γi−1,i

}
= 0 . (18.86)

The potential that would yield such transition rates from the Arrhenius law
can be imagined as representing a random walk by itself, cf. Fig. 18.11. The
Sinai condition can be interpreted as the requirement that the potential does
not contain additional systematic forces that would induce drift of the particle
in either direction.

An estimate of the behaviour of the mean square displacement can be
given in the following way [60]: Since the potential displayed in Fig. 18.11
represents a random walk, the typical height difference over a length L is
described by

V ∼
√
L . (18.87)

The motion of the particle requires thermal activation, hence the typical time
for a particle to move the length L is

t ∼ exp(V/kBT ) . (18.88)

Using (18.87) one finds
√
L ∼ ln t. Hence the typical mean square displace-

ment in this model is given by

〈δx2〉 ∼ (ln t)4 . (18.89)

Diffusion of a particle in the Sinai model cannot be treated by the methods
of Sect. 18.3.2, because the condition of existence of the ρi is violated. If one
increases the length of the chain, deeper and deeper valleys appear, in which
the ρi are concentrated. Thus the limit L → ∞ does not exist for the ρi. In
summary, the Sinai model is theoretically extremely interesting. Its practical
relevance, however, is limited: unbounded variations of the potential are not
physical for real substances.
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18.4 Many Particles on Uniform Lattices

18.4.1 Lattice Gas (Site Exclusion) Model

In the lattice-gas model, sites of a lattice are occupied by particles. Each site
can be occupied by at most one particle. A pictorial representation is given
in Fig. 18.12.

There are many applications of lattice-gas models. Two prominent ex-
amples are hydrogen in metals (see Sect. 3.5 in Chap. 3), where the atoms
occupy interstitial sites of the metal lattice, and impurity atoms on surfaces
of crystals.

The concentration of the lattice gas is defined as

c =
number of particlesNp

number of available sitesN
. (18.90)

The simplest lattice-gas model is the site-exclusion model, where multiple
occupancy of the sites is excluded, and no further interactions of the particles
are taken into account. Of course, real particles have interactions, but many
important properties of lattice gases can already be studied in this model. In
this section uniform lattices will be considered, where the transition rate of
a particle to an empty site is Γ everywhere.
Two different diffusion coefficients have to be defined for lattice gases:

– Coefficient of collective diffusion, Dcoll

This diffusion coefficient is defined through Fick’s law (1st or 2nd law),
and it describes the decay of density disturbances. Alternative expressions
are chemical or transport diffusivity.

– Coefficient of tagged-particle diffusion, Dt

This coefficient is defined through the mean square displacement of tagged
particles. It is commonly called tracer diffusion coefficient or self-diffusion
coefficient.

The single-particle diffusion coefficient, which was discussed in the preceding
sections, is obtained either from the collective diffusion coefficient, or from the
tagged-particle diffusion coefficient, in the limit of small particle concentra-
tions, c → 0. Both definitions lead to the single-particle diffusion coefficient
in this limit.

Γ

Fig. 18.12. Site-exclusion lattice gas.
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In all lattice-gas models the physical properties depend crucially on
whether a net bias in the hopping rates leads to a mean drift in the mo-
tion of the particles (and hence to a finite density-dependent current) or
not. The intrinsic non-equilibrium behavior of driven diffusive systems is
reviewed in detail in [18,61]. Besides the existence of novel and unusual non-
equilibrium phase transitions, the most remarkable features are the occur-
rence of shocks [62–64] and the importance of the physical boundaries of the
system [65–69]. In this section we consider only symmetric hopping models
where the rate of hopping does not depend on the direction of hopping across
the bond between the two sites.

18.4.2 Collective Diffusion

Consider the most basic site exclusion model where particles hop between
nearest neighbor sites with a constant rate Γ . This model is known as the
simple symmetric exclusion process, introduced by Spitzer [70]. Many exact
results are known, see [18, 71].

The basic quantity for the description of collective diffusion is P (l, t), the
probability that site l is occupied by a particle at time t. The important
point is that the identity of the particles is disregarded in its definition. The
quantity P (l, t) has a different meaning than the conditional quantity Pl(t)
in the single-particle case. It is a member of a set of probabilities, defined
on the lattice sites l which gives the mean occupation number and hence the
mean density on site l at time t . Let P (̄l, t) be the probability that site l is
empty. Obviously the following normalization condition holds:

P (l, t) + P (̄l, t) = 1 . (18.91)

The master equation for P (l, t) in the site-exclusion model is:

d
dt
P (l, t) = Γ

∑
〈l′,l〉

[P (l′, l̄, t) − P (l, l̄′, t)] . (18.92)

Here P (l′, l̄, t) is the joint probability that site l′ is occupied and site l is
empty at time t. The joint probabilities fulfil the relations

P (l′, l̄, t) + P (l′, l, t) = P (l′, t)
P (l, l̄′, t) + P (l, l′, t) = P (l, t) . (18.93)

Since P (l, l′, t) = P (l′, l, t) , insertion of (18.93) into (18.92) yields

d
dt
P (l, t) = Γ

∑
〈l′,l〉

[P (l′, t) − P (l, t)] . (18.94)

This equation is identical to the master equation for the single-particle case.
The initial conditions, however, are different. The derivation presented above
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including that of the coherent dynamical structure function has been pro-
posed by Kutner [72].

As a consequence of the master equation (18.94), the coefficient of collec-
tive diffusion results to be

Dcoll = Γa2 , (18.95)

which is identical to the diffusion coefficient of a single particle on a uniform
lattice (The numerical factor applies to hypercubic lattices in all dimensions).
The important feature of (18.95) is that the collective diffusion coefficient
does not depend on the concentration of the site-exclusion lattice gas.

The mathematical reason for the absence of the concentration dependence
in the symmetric exclusion process is an underlying SU(2) symmetry of the
generator of this Markov process. In the quantum Hamiltonian formalism
for the master equation the Markov generator turns out to be the SU(2)-
symmetric quantum Hamiltonian of the Heisenberg ferromagnet [73, 74]. In
this correspondence the (many-particle) dynamics of the local density P (l, t)
is related in a simple fashion to the (single-particle) spin-wave dynamics of
the ferromagnet. This accounts for the identity of the dynamical equation
(18.94) for the local density with the single-particle diffusion equation.

18.4.3 Tracer Diffusion for d > 1

The diffusion coefficient of a tagged particle, Dt, is defined from the asymp-
totic behaviour of its mean square displacement for t → ∞

〈R2〉(t) → 2dDtt . (18.96)

In this chapter only a cursory treatment of tagged-particle diffusion in the
site-exclusion model for d > 1 will be given.

Consider a tagged particle. Its mean transition rate is (1 − c)Γ , where
1 − c is the blocking factor, i. e. the probability of finding an unoccupied
site in the site-exclusion model. A mean field estimate of the tagged-particle
diffusion coefficient is

DMF
t = (1 − c)Γa2 , (18.97)

hence Dt is smaller than Dcoll. Bardeen and Herring [75] pointed out that
(in the limit c → 1) there exists a backward correlation in the random walk
of a tagged atom. To understand its origin, regard Fig. 18.13, where a tagged
particle has made an exchange with an empty site.

Immediately after the transition there is an increased probability for a
backward transition of the tagged particle, due to the presence of a vacancy,
with certainty, at the initial particle position. This can be accounted for by
introducing a correlation factor f(c), with generally f(c) ≤ 1,

Dt = (1 − c)Γa2f(c) . (18.98)
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(b)            c -> 1(a)             c < 1

Fig. 18.13. Illustration of origin of backward correlation; (a) lattice gas of arbitrary
concentration; (b) limit relevant to metal physics.

In metal physics the factor 1−c is the concentration cV of thermally activated
vacancies and cV � 1. The correlation factor f = f(c→ 1) can be calculated
from the random walk of a single vacancy. Its walk is uncorrelated and can be
described by the methods of Sect. 18.2.1. The tagged atom, however, performs
correlated random walk. In the limit c → 1 only consecutive jumps of the
tagged particle are correlated. Then [76]

f =
1 + 〈cosϑ〉
1 − 〈cosϑ〉 , (18.99)

where 〈cosϑ〉 is the average angle between two consecutive transitions of the
tagged particle. This quantity can be calculated exactly from the random
walk of a single vacancy [77]. Values of 〈cosϑ〉 and f for various lattices are
given in [78]. An example is the value f = 0.727 . . . for the bcc lattice.

Extensions to arbitrary concentrations of the lattice gas were made by
Nakazato and Kitahara [79] and Tahir-Kheli and Elliott [80]. They derived

f =
1 + 〈cosϑ〉

1 + [(2 − 3c)/(2 − c)]〈cosϑ〉 , (18.100)

where 〈cosϑ〉 has the same meaning as above. Equation (18.100) is an ap-
proximate expression, but simulations show that the deviations are less than
1-2 % of the correct value (see Fig. 18.14). Of course, f(c = 0) = 1, and
f(c → 1) reproduces (18.99). More details about the correlation factor, in
particular about its relevance for experimental studies, have been presented
in Chap. 1.

18.4.4 Tagged-Particle Diffusion on a Linear Chain

Tagged-particle diffusion on a linear chain is completely different from tagged-
particle diffusion in higher dimensions (d ≥ 2). The reason is that the
tagged particle cannot pass the other particles, as schematically illustrated
by Fig. 18.15.
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Fig. 18.14. Correlation factor for site-exclusion lattice gas on a square lattice as
a function of concentration. Line: (18.100); symbols: MC simulations. From [81].

As a consequence, the mean square displacement of the tagged particle,
〈δx2〉(t), is no longer proportional to t. It turns out that the mean square
displacement of a tracer particle under the single-file constraint is asymptot-
ically proportional to

√
t. This phenomenon is called single-file diffusion and

it was first described in the physical literature by Richards [82]. There exist
formal derivations of this behaviour (see [83] and references therein). How-
ever, the analytical derivations are rather difficult. Therefore, a derivation
of the asymptotic behaviour from a physical consideration will be presented
that is due to Alexander and Pincus [84]. The main idea is that the rela-
tive displacements of two tagged particles are caused by density fluctuations
of the other particles. These density fluctuations are governed by collective
diffusion.

For the derivation a continuum description will be adopted. In Fig. 18.16
the equilibrium positions and the displacements of two tagged particles are
indicated.

A relation between the displacement difference and the change of density
δn(x, t) in between the two particles is required. This relation is derived in

Fig. 18.15. Tagged-particle diffusion on a linear chain.
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x

δu(x) u(x+  x)

x+  xδ

Fig. 18.16. Coordinates for the derivation of the mean square displacement in
single-file diffusion, following [84].

the appendix (Sect. 18.7.3) and it reads in Fourier space

1
n
δn(k, t) = iku(k, t) , (18.101)

where u(k,t) is the Fourier transform of the displacement u(x, t) of the tagged
particle. It follows

u(x, t) − u(x, 0) =
1
n

∫
dk
2π

eikx 1
ik

[δn(k, t) − δn(k, 0)] . (18.102)

The square of this expression will be taken. One is interested in the random-
walk average of the square. Instead of performing this average, one can take
the ensemble average over many tagged particles, with the result

〈[u(x, t) − u(x, 0)]2〉 =
1
N

∫
dx[u(x, t) − u(x, 0)]2

=
1

Nn2

∫
dk
2π

2
k2

[〈δn(k, 0)δn(−k, 0)〉

−〈δn(k, t)δn(−k, 0)〉] . (18.103)

Here the density fluctuations are averaged over the stochastic dynamics
of the lattice gas. The decay of density fluctuations is governed by collective
diffusion; in the limit of long wavelengths k → 0, i.e., for long times, one has

〈δn(k, t)δn(−k, 0)〉 −→ Nc(1 − c) exp(−Dcollk
2t) . (18.104)

Insertion of this relation into (18.103) and transcription of the right-hand
side into a lattice formulation gives (a = 1)

〈[u(t) − u(0)]2〉 =
2(1 − c)

c

∫ ∞

−∞

dk
2π

1 − exp(−Dk2t)
k2

. (18.105)

The integral is ∫ ∞

0

dx
1 − e−λ2x2

x2
= λ

√
π . (18.106)

Hence one obtains using the result (18.95) for Dcoll
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Fig. 18.17. Mean square displacement of tagged particles on a linear chain at
concentration c ≈ 0.5 as a function of time. Lines: theory; symbols: MC simulations.
From [83].

〈[u(t) − u(0)]2〉 =
2(1 − c)

c

√
Γt

π
. (18.107)

This is the characteristic behaviour of the mean square displacement of tagged
particles under the single-file constraint. Experimental evidence for single-file
diffusion is reported in Chap. 10.

Expression (18.107) is valid for long times. For short times (1− c)Γt� 1
one has

〈δx2〉(t) = 2(1 − c)Γa2t . (18.108)

In this time regime one recovers the mean-field result (18.97) for the tracer
diffusion coefficient. In [83], an approximate expression was derived that cov-
ers the complete time region. Figure 18.17 shows numerical simulation results
for the mean square displacement of tagged particles, together with the the-
oretical curve of [83]. One recognizes the proportionality of 〈δx2〉(t) with

√
t

for longer times.
It is instructive to consider two coupled lines between which the particles

can make transitions with rate Γ⊥, under the condition that the target sites
on the other chain are not occupied, cf. Fig. 18.18. The single-file constraint
is now relieved and one expects that a tagged particle makes asymptotically
normal diffusion,

〈δx2〉(t) = 2Dtt . (18.109)

A heuristic derivation of the diffusion coefficient Dt in this situation can
be given by putting together single-file mean square displacements of the
particle according to (18.107) at time intervals 1/Γ⊥(1 − c), see Fig. 18.19.

This is the mean time, where a tagged particle makes a transition to
the other chain and starts a new displacement. The slope of the dashed line
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Γ

Γ⊥

Fig. 18.18. Particle diffusion on two coupled lines.

in Fig. 18.19 can be determined in the following way: Take 〈δx2〉 at time
t = 1/Γ⊥(1 − c) and divide by this time. This gives as an estimate for the
diffusion coefficient

Dt
∼=

(1 − c)3/2

c
Γ

√
Γ⊥
Γ

. (18.110)

An approximate theory which is valid at all times, was given in [85].
Figure 18.20 presents the results of numerical simulations together with the
theoretical results of this paper. One recognizes how the asymptotic behav-
iour ∼ t is reached for Γ⊥/Γ �= 0 after a crossover region.

18.5 Many Particles on Disordered Lattices

18.5.1 Models with Symmetric Rates

In this final section of this chapter, diffusion of many particles on regular lat-
tices with disordered transition rates will be treated. The disordered rates are
assumed to be fixed, i. e. quenched disorder is assumed. The considerations
will be restricted to the site exclusion model, where double occupancy of the
sites is forbidden, and no further interactions of the particles are present.
Only the coefficient of collective diffusion will be studied. Even with all

<x >2

t[(1-c)    ]-1Γ⊥

Fig. 18.19. Heuristic derivation of the diffusion coefficient of a tagged particle on
two coupled lines.
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Fig. 18.20. Mean square displacement
of tagged particles on two coupled lines
as a function of time. Lines: theory; sym-
bols: MC simulations. The ratio Γ⊥/Γ is
indicated on the curves. From [85].

these restrictions, the problem is very difficult, with one important excep-
tion. Namely, for symmetric transition rates, the problem can be reduced to
the independent-particle problem. This case will be treated in this section.

The cancelation of the joint probabilities in the master equation for P (l, t)
that has been shown in Sect. 18.4.2 for lattices with uniform transition rates
is also valid for disordered lattices as long as Γij = Γji. In this case the
hierarchy of many-particle equations reduces to the single-particle equation
with disordered, symmetric rates. Consequently [86]

if Γij = Γji then Dcoll = Ds.p. . (18.111)

The index s.p. means single, independent particles. The origin of this cancel-
lation is the symmetry under the Lie algebra for the special unitary group
SU(2) of the generator of the process which holds on any type of lattice with
arbitrary bond-symmetric disorder [74]. Also symmetric processes with par-
tial exclusion of up to Mi particles on lattice site i have this property [18]. A
result equivalent to (18.111) was obtained for the conductivity by Harder et
al. [87].

The models of interest are the random barrier model and the model with
randomly blocked sites.
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18.5.2 Selected Results for the Coefficient of Collective Diffusion
in the Random Site-Energy Model

The nontrivial case for collective diffusion of site-exclusion lattice gases in
disordered lattices is the case of site-energy disorder. No cancelation of the
joint probabilities P (l, l′, t) occurs in the master equation and one has to
resort to approximations, with two exceptions. The first exception is the site-
exclusion lattice gas on a linear chain with random site energies (RT model)
in the limit of very small vacancy concentrations, cV → 0. The diffusion
problem of single vacancies can then be solved, for instance by the methods
of Sect. 18.3.2, and the exact result for the corresponding diffusion coefficient
Ds.v. was given in [88]. In the limit c→ 1 Ds.v. agrees with Dcoll. Second, an
exact expression for the collective diffusion coefficient can be given for the
RT model in the limit of infinite dimensions. Apart from these two cases, no
further exact results for the collective diffusion coefficient are known. Hence
approximate treatments are necessary.

An effective medium approximation for collective diffusion of site-exclusion
lattice gases can be formulated in the following way. First the problem has to
be reduced to an effective one-particle problem. This can be achieved by an
obvious extension of the results for the single-particle case, where weighted
transition rates were used. The following effective or mean field single-particle
transition rates will be introduced

Γ Sym
ji =

Pi(1 − Pj)Γji

{Pi(1 − Pi)}
. (18.112)

The quantity Pi is the thermal equilibrium occupation of site i. It is nor-
malized differently from ρi, hence a normalization factor in the denominator
of ΓSym is required. The symmetry of the rates ΓSym follows from detailed
balance. The rate equations (18.112) were already introduced in [89] in the
context of lattice-gas diffusion on linear chains.

The second step is the use of ΓSym in an effective-medium approximation.
Since the rate equations (18.112) are symmetric, the formulation of the EMA
of Sect. 18.3.5 can be used. From the EMA the limit of infinite dimensions
(infinite coordination number) is easily obtained [90]. The result is

Dphen
coll = {Γ Sym

ji } =
Pi(1 − Pj)Γji

{Pi(1 − Pi)}
(18.113)

and it represents a phenomenological expression for the collective diffusion
coefficient that was derived in the context of metal physics [91] and surface
physics [92]. It is not surprising that a phenomenological theory is obtained
in the limit of infinite coordination number. The main problem in treating
collective diffusion of lattice gases in disordered lattices are the correlations
that are caused by particles which occupy sites with low energies and act as
blocking sites. The effects of these correlations become irrelevant in the limit
of infinite coordination number.
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Fig. 18.21. Collective diffusion coefficient of site-exclusion lattice gas in a two-
level RT model in d = 3, as a function of concentration. 20 % of the sites are trap
sites. Continuous lines: EMA; dashed lines: phenomenological theory; symbols: MC
results for Γ </Γ = 0.1 (�), 0.01 (+) and 0.001 (�). Limiting value c → 1: ∗.

Fig. 18.21 shows results for a two-level RT model in d = 3 which consists
of free sites with concentration 1 − ct and transition rates Γ , and trap sites
with concentration ct and rates Γ<. The results of numerical simulations are
compared with the EMA and the phenomenological expression (18.113).

The main feature of the results is that Dcoll is determined by the satura-
tion of deep trap sites by particles. This was first pointed out by Kirchheim
who modelled hydrogen diffusion in metglasses [93]. The saturation effect is
a rather general feature of collective diffusion in systems with site-energy
disorder and is not restricted to a particular realization of the disorder.

The figure also shows that the single-particle result is approached for
c → 0. Also the limit c → 1 and Γ</Γ � 1 can be understood for the two-
level RT model. In this limit Dcoll is given by the single-particle result for
the RBS model. Namely, the deep trap sites are saturated by particles and
act as blocking sites. It was discussed in Sect. 18.5.1 that for the RBS model
Dcoll ≡ Ds.p.. Additional EMA and numerical results are given in [90].

It has been shown in Sect. 18.3.6 that the diffusion coefficient of single, in-
dependent particles vanishes in the RT model for an exponential distribution
of site energies, at low temperatures. The relevant parameter is α = kBT/Ec,
where Ec characterizes the width of the distribution. The result was Ds.p. ≡ 0
for α < 1 (cf. (18.81)).

What happens when a finite concentration of particles is filled into the
lattice? The particles tend to occupy the sites with low site-energies, satu-
rating thereby the low-lying levels. If now a density disturbance is set up in
the lattice gas, the disturbance should decay by collective diffusion. This was
indeed observed in the numerical simulations of [94], and Dcoll was obtained
by monitoring the decay of cosine density profiles.
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Fig. 18.22. Collective diffusion coefficient in the RT model in d = 3 with expo-
nential distribution of site energies. Continuous lines: EMA; symbols: MC results
for α = 1.43 (�), 1.0 (+), 0.5 (�), and 0.333 (×). Limit c → 1 (*).

Fig. 18.22 shows numerical results for the RT model in d = 3 together
with EMA results. It is evident that Dcoll(c → 0) −→ Ds.p., also for α < 1,
where Ds.p. = 0. There is qualitative agreement between the simulations and
the EMA, particularly at lower particle concentrations.

The behaviour of Dcoll for c � 1 can be understood from the following
qualitative consideration: Since only one particle can occupy a given site, the
equilibrium occupancy of a site is given by the Fermi-Dirac distribution. In
the limit of low temperatures, all levels are occupied up to a pseudo Fermi
level E∗ (see Fig. 18.23). For the exponential distribution∫ E∗

−∞
dE

1
Ec

exp
(
E

Ec

)
= c , (18.114)

from which follows
E∗ = Ec ln(c) . (18.115)

At small concentrations and low T , diffusion is mainly carried by parti-
cles at or above the Fermi level, and the coefficient of collective diffusion is
approximately given by the single-particle diffusion expression,

D−1
coll ≈

∫ 0

E∗
dEνT(E)

1
Γ (E)

. (18.116)

The result for small c is (note that α < 1)

Dcoll ≈ Γ0

(
1
α
− 1

)
c(

1
α−1) . (18.117)

That is, Dcoll exhibits a power-law dependence on the concentration.
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Fig. 18.23. Exponential density of site
energies; the levels are filled up to the
“Fermi” level E∗.

Power-law dependence of the conductivity on the concentration has been
observed in ionic conductors, see, e. g., [95]. Of course, the actual systems
are much more complex than described by the site-exclusion lattice gas in
the RT model. Indeed, power-law dependence of the mobility was obtained
in numerical simulations of models that were designed to describe superionic
conductors [96, 97]. Nonetheless, it is interesting to note that already rather
simple models exhibit these effects.

18.6 Conclusion

This chapter was concerned with the theoretical description of diffusion of
particles on lattices. Two different dimensions of difficulties were encountered:
Diffusion of single versus many particles and diffusion in ordered versus dis-
ordered lattices. The diffusion of a single particle on a uniform lattice is a
well-understood textbook problem. Of practical interest are extensions of this
problem, for example two-state models for diffusion and trapping of single
particles. The problem of diffusion of a single particle in disordered lattices is
now well understood with respect to the asymptotic properties, if local (site
and/or bond) disorder is present. One remaining topic for future work is dif-
fusion in the presence of extended defects. Also the frequency dependence
seems to be not completely understood.

Various aspects of the diffusion of many particles on uniform lattices have
been clarified in the past, in particular the differences between collective and
tracer diffusion, the inherent correlation effects in tracer diffusion, and the
anomalous diffusion of tagged particles on linear chains (single-file diffusion).
Open problems can be found in the consideration of various forms of the
interactions of the particles.
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Least well understood is, of course, the problem of diffusion of many par-
ticles in lattices with quenched, disordered transition rates. Since this is a
problem of current interest, the corresponding remarks will be more detailed
than those concerning the previous sections. In the preceding section diffu-
sion of site-exclusion lattice gases in disordered lattices was considered. There
exist now reasonable appoximate descriptions for the coefficient of collective
diffusion in form of the phenomenological theory and the EMA. The approxi-
mations are rather accurate for two-level models of site energies if the lattice-
gas concentration c is smaller than the trap concentration ct. However, one
should be aware of the limitations of the approximations. Simulation results
in d = 3 show that there are large discrepancies between the approximations
and the numerical results when c ≈ ct. Hence an exact theory for collective
diffusion for the site-exclusion model in disordered linear chains is desired.

The following important aspects of diffusion of lattice gases in disordered
lattices were omitted in this chapter:

– Tracer diffusion
The theory of tracer diffusion is more complicated than that of collective
diffusion, in view of the inherent backward correlations for tracer diffu-
sion. The inclusion of backward correlations in the presence of quenched
disorder appears to be very difficult.

– Effects of interactions
Even for lattices with uniform transition rates, interactions can only be
treated by approximations like mean field. If disorder is present, and the
particles have interactions, one has to resort to numerical simulations,
see [57–59,96, 97] and Chap. 20.

– Frequency dependence
Although frequency dependence was investigated in numerical works (see
the references given in the preceeding item), many of the observed features
are not yet understood in a qualitative way (see however Chap. 21).

One could easily add more points to this list of partially understood problems.
The main message perhaps should be that the field of diffusion of particles in
condensed matter systems is still an open field with many unsolved problems.

18.7 Appendix

18.7.1 Derivation of the Result for the Diffusion Coefficient for
Arbitrarily Disordered Transition Rates

Consider a segment of a linear chain with general (nonsymmetric) transition
rates, as indicated in Fig. 18.3 of Sect. 18.3.2. A constant current I is fed into
site 0 and extracted at site N . Kirchhoff’s node equation for site 0 is

Γ10P0 − Γ01P1 = I . (18.118)
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It expresses the fact that the sum of all currents into site 0 is zero. The master
equation for site 1 is

d
dt
P1(t) = Γ10P0(t) + Γ12P2(t) − (Γ01 + Γ21)P1(t) . (18.119)

One has in the stationary situation

−Γ10P0 + (Γ01 + Γ21)P1 − Γ12P2 = 0. (18.120)

Add this equation to the node equation (18.118) to obtain

Γ21P1 − Γ12P2 = I . (18.121)

This procedure is continued and the equation for site i is

Γi+1,iPi − Γi,i+1Pi+1 = I . (18.122)

The last equation is Kirchhoff’s node equation at site N ,

ΓN,N−1PN−1 − ΓN−1,NPN = I . (18.123)

The aim is to relate I to the difference P0 −PN . This can be achieved by
first expressing PN−1 through PN , I, using (18.123),

PN−1 =
ΓN−1,N

ΓN,N−1
PN +

I

ΓN,N−1
. (18.124)

The quantity PN−2 can be expressed through PN−1 and I,

PN−2 =
ΓN−2,N−1

ΓN−1,N−2
PN−1 +

I

ΓN−1,N−2
. (18.125)

Insert PN−1 to obtain a relation between PN−2, PN , and I,

PN−2 =
ΓN−2,N−1

ΓN−1,N−2

ΓN−1,N

ΓN,N−1
PN

+
(
ΓN−2,N−1

ΓN−1,N−2

1
ΓN,N−1

+
1

ΓN−1,N−2

)
I. (18.126)

Continue this procedure with PN−3, etc. The final result is

P0 =
Γ01Γ12 × · · · × ΓN−1,N

Γ10Γ21 × · · · × ΓN,N−1
PN

+
(Γ01 × · · · × ΓN−2,N−1

Γ10 × · · · × ΓN−1,N−2

1
ΓN,N−1

+
Γ01 × · · · × ΓN−3,N−2

Γ10 × · · · × ΓN−2,N−3

1
ΓN−1,N−2

+ . . .

+
Γ01

Γ10

1
Γ21

+
1
Γ10

)
I . (18.127)
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The expression (18.127) can be further simplified by introducing the re-
lation of detailed balance which holds in thermal equilibrium. It is clear that
a non-equilibrium situation is maintained in the segment of the chain. The
relation of detailed balance will be used to express the ratio of two rates by
equilibrium occupation factors. An implicit assumption is the validity of the
Arrhenius law. The equilibrium occupation probabilities are proportional to

ρi ∼ exp(−βEi) ; (18.128)

note that Ei ≤ 0. The condition of detailed balance is

Γ01ρ1 = Γ10ρ0 (18.129)

or
Γ01

Γ10
=
ρ0

ρ1
= exp[−β(E0 − E1)] . (18.130)

The product of two factors is

Γ12Γ01

Γ21Γ10
= exp[−β(E1−E2)] exp[−β(E0−E1)] = exp[−β(E0−E2)] (18.131)

and the product
N−1∏
i=0

Γi,i+1

Γi+1,i
= exp[−β(E0 − EN )] . (18.132)

Equation (18.127) can then be written as

P0 − exp[−β(E0 − EN )]PN =

=
( 1

exp[−β(EN−1 − E0)]ΓN,N−1
+

1
exp[−β(EN−2 − E0)]ΓN−1,N−2

+· · · + 1
exp[−β(E1 − E0)]Γ21

+
1
Γ10

)
I . (18.133)

It will be required that P0 = PN if I = 0, and P0 �= PN only through
maintaining a current through the chain. This requirement will be satisfied if
E0 = EN , i. e., if the initial and final site energies are equal. It is henceforth
assumed that always E0 = EN , which is a reasonable assumption.

The disorder average of (18.133) will now be taken. Each term on the
right-hand side of this equation can be averaged independently and the per-
tinent quantities are taken from common distributions. The result is then

P0 − PN = N

{
1

Γi+1,i exp[−β(Ei − E0)]

}
I, (18.134)

where the dummy indices have been kept to indicate the direction of the
transition rate. The curly brackets represent the average over the different
realizations of the disorder.
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The further requirement will be made that the initial site is a typical site
with respect to the disorder average. Hence it is assumed that

{exp(−βE)} = exp(−βE0) . (18.135)

This means that the thermal occupation of the initial (and final) site is equal
to the average occupation. Large segments will be considered, where the
disorder average is approximated by the sum over all sites,

{exp(−βE)} =
1
N

N∑
j=0

exp(−βEj) . (18.136)

Thermal occupation factors will be defined by

ρi =
exp(−βEi)
{exp(−βE)} =

exp(−βEi)
1
N

∑N−1
j=0 exp(−βEj)

. (18.137)

Relation (18.134) between P0 −PN and the current I can then be written as

P0 − PN = IN

{
1

Γi+1,iρi

}
. (18.138)

This relation represents Fick’s first law. The following identification can be
made (lattice constant a = 1)

P0 − PN

N
∼= −∇n d = 1 . (18.139)

Fick’s first law reads
I = −D∇n . (18.140)

Hence one finds

D =
{

1
Γi+1,iρi

}−1

. (18.141)

18.7.2 Derivation of the Self-Consistency Condition for the
Effective-Medium Approximation

The Fourier-Laplace transformation of the conditional probability Pl(t) is
defined by

P̃ (k, s) =
∫ ∞

0

dt exp(−st)
∑

l

exp(−ika)Pl(t) . (18.142)

The equation for P̃ (k, s) is obtained by multiplying (18.51) and (18.52) with
exp(−ikal), summing over l, and integrating:
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[ s +2Γ̃eff(s)(1 − cos ka)]P̃ (ks, )
= 1 + (e−ika − 1)[Γ̃eff(s) − Γ10] [P̃1(s) − P̃0(s)] . (18.143)

Combining this equation with the master equation (18.56) for the effective
medium one finds

P̃ (k, s) = Ẽ(k, s) + Ẽ(k, s)(e−ika − 1)
×[Γ̃eff(s) − Γ10][P̃1(s) − P̃0(s)] . (18.144)

The inverse Fourier transform of Ẽ(k, s) is

Ẽl(s) =
∫ π

−π

dk

2π
exp(ikal)

s+ 2Γ̃eff(s)(1 − cos ka)
. (18.145)

Note that Ẽl(s) = Ẽ−l(s). Multiplying (18.144) with 1/2π and integrating
over k one obtains

P̃0(s) = Ẽ0(s) + [Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10] [P̃1(s) − P̃0(s)] . (18.146)

Multiplying (18.144) with exp(ika)/2π and integrating one obtains

P̃1(s) = Ẽ1(s) + [Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10] [P̃1(s) − P̃0(s)] . (18.147)

The difference of the two equations is

P̃1(s) − P̃0(s) =
Ẽ1(s) − Ẽ0(s)

1 + 2[Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10]
(18.148)

and thus

P̃0(s) = Ẽ0(s) +
[Ẽ1(s) − Ẽ0(s)]2[Γ̃eff(s) − Γ10]

1 + 2[Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10]
. (18.149)

The self-consistency requirement {P̃0(s)} = Ẽ0(s) (cf. (18.57)) leads to{
[Ẽ1(s) − Ẽ0(s)]2[Γ̃eff(s) − Γ10]

1 + 2[Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10]

}
= 0 . (18.150)

The difference squared in the numerator is systematic and can be factored
out. From the master equation for the effective medium in d = 1 follows

Ẽ1(s) − Ẽ0(s) =
sẼ0(s) − 1
2Γeff(s)

. (18.151)

The self-consistency condition can now be brought into the form that has
been given in the main text.
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18.7.3 Relation Between the Relative Displacement and the
Density Change

The displacements of two tagged particles from their equilibrium positions x
and x+δx are considered. The notation is explained in Fig. 18.16. The initial
distance changes into the actual distance

δx −→ δx+ u(x+ δx) − u(x) . (18.152)

Because the number of particles in the interval between the two tagged par-
ticles is conserved, the local density change induced by the difference in the
displacements of the two particles is

δn =
nδx

δx+ u(x+ δx) − u(x)
− n . (18.153)

Here n is the (spatially constant) equilibrium particle density. A Taylor ex-
pansion for small δx is made, together with the assumption of small gradients,
∂u/∂x� 1. From (18.153) follows in linear approximation

1
n
δn = −∂u

∂x
. (18.154)

The inverse Fourier transformation is defined by

f(x, t) =
∫

dk
2π

eikxf(k, t) . (18.155)

The relation between density change and displacement gradient reads in
Fourier space

1
n
δn(k, t) = iku(k, t) . (18.156)

This is the relation used in the main text.

Notation

D = Ds.p. Diffusion coefficient of single, independent particles
Dcoll Collective (Fick’s) diffusion coefficient
Dt Tagged particle (tracer) diffusion coefficient
Ei Energy level of site i
Eij Activation energy of barrier between sites i and j
f(c) Correlation factor for tagged-particle diffusion in lattice gas
f = f(c→ 1) Correlation factor for metal physics
P (lt|00) Conditional probability of finding a particle on site l at time t

when it was at site 0 at t = 0.
Pl(t) Abbreviated form of P (lt|00)
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P (l, t) Probability of finding a particle at site l at time t (applies to
lattice gases)

P (k, t) Fourier transform of Pl(t)
P̃ (l, s) Fourier-Laplace transform of Pl(t)
Γ Transition rate between two neighbour sites in uniform lattice
Γji Transition rate from site i to neighbour site j in disordered

lattice
Γeff(t) Time-dependent transition rate in effective medium
Λl,l′ Transition-rate matrix between two neighbour sites
Λ(k) Fourier transform of transition rate matrix
νB(E) Density of activation energies of random barriers
νT(E) Density of random site energies
ρ(Γ ) Probability density of random transition rates
〈 〉 Random walk and/or thermal average
{ } Average over (quenched) disordered rates.
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