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Preface

Diffusion as the process of migration and mixing due to irregular movement
of particles is one of the basic and ubiquitous phenomena in nature as well
as in society. In the latter case the word “particles” may stand for men or
ideas, and in the former for atoms or galaxies. In this sense diffusion is a
truly universal and transdisciplinary topic.

The present book is confined, of course, to diffusion of atoms and mole-
cules. As this process shows up in all states of matter over very large time and
length scales, the subject is still very general involving a large variety of nat-
ural sciences such as physics, chemistry, biology, geology and their interfacial
disciplines. Besides its scientific interest, diffusion is of enormous practical
relevance for industry and life, ranging from steel making to oxide/carbon
dioxide exchange in the human lung.

It therefore comes as no surprise that the early history of the subject is
marked by scientists from diverse communities, e.g., the botanist R. Brown
(1828), the chemist T. Graham (1833), the physiologist A. Fick (1855), the
metallurgist W.C. Roberts-Austen (1896) and the physicist A. Einstein (1905).
Today, exactly 150 and 100 years after the seminal publications by Fick and
Einstein, respectively, the field is flourishing more than ever with about 10.000
scientific papers per year.

From the foregoing it is evident that a single volume book on atomic and
molecular diffusion has to be further restricted in its scope. As the title says,
the book is confined to diffusion in condensed matter systems, so diffusion
in gases is excluded. Furthermore, emphasis is on the fundamental aspects of
the experimental observations and theoretical descriptions, whereas practi-
cal considerations and technical applications have largely been omitted. The
contents are roughly characterized by the headings Solids, Interfaces, Liq-
uids, and Theoretical Concepts and Models of the four parts under which the
chapters have been grouped.

The book consists of 23 chapters written by leading researchers in their
respective fields. Although each chapter is independent and self-contained
(using its own notation, listed at the end of the chapter), the editors have
taken the liberty of adding many cross-references to other chapters and sec-
tions. This has been facilitated by the common classification scheme. Further
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help to the reader in this respect is provided by an extended common list of
contents, in addition to the contents overview, as well as an extensive subject
index.

The book is a greatly enlarged (more than twice) and completely revised
edition of a volume first published with Vieweg in 1998. Although the first
edition was very well received (and considered as a “must for students and
workers in the field”), it was felt that, in addition to the broad coverage
of modern methods, materials should also be discussed in greater detail in
the new edition. The same applies to theoretical concepts and models. This,
in fact, is represented by the new subtitle Methods, Materials, Models of
Diffusion in Condensed Matter.

The experimental Methods include radiotracer and mass spectrometry,
Mößbauer spectroscopy and nuclear resonant scattering of synchrotron ra-
diation, quasielastic neutron scattering and neutron spin-echo spectroscopy,
dynamic light scattering and fluorescence techniques, diffraction and scan-
ning tunneling microscopy in surface diffusion, spin relaxation spectroscopy
by nuclear magnetic resonance (NMR) and beta-radiation detected NMR,
NMR in a magnetic field gradient, NMR in the presence of an electric field,
impedance spectroscopy and other techniques for measuring frequency de-
pendent conductivities.
Materials now dealt with are, among others, metals and alloys, metallic
glasses, semiconductors, oxides, proton-, lithium- and other ion-conductors,
nanocrystalline materials, micro- and mesoporous systems, inorganic glasses,
polymers and colloidal systems, biological membranes, fluids and liquid mix-
tures. The span from simple monoatomic crystals, with defects in thermal
equilibrium enabling elementary jumps, to highly complex systems, exem-
plarily represented by a biomembrane (cf. Fig. 12.3), is also indicated on the
book cover.
Models in the subtitle stands for theoretical descriptions by, e. g., correlation
functions, lattice models treated by (approximate) analytical methods, the
theory of fractals, percolation models, Monte Carlo simulations, molecular dy-
namics simulations, phenomenological approaches like the counterion model,
the dynamic structure model and the concept of mismatch and relaxation.

Despite the large variety of topics and themes the coverage of diffusion in
condensed matter is of course not complete and far from being encyclopedic.
Inevitably, it reflects to a certain extent also the editors’ main fields of inter-
est. Nevertheless the chapters are believed to present a balanced selection.

The book tries to bridge the transition from the advanced undergradu-
ate to the postgraduate and active research stage. Accordingly, the various
chapters are in parts tutorial, but they also lead to the forefront of current
research without intending to mimic the topicality of proceedings, which nor-
mally have a short expiry date. It is therefore designed as a textbook or refer-
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ence work for graduate and undergraduate students as well as a source book
for active researchers.

The invaluable technical help of Dr. Sylvio Indris (University of Han-
nover) in the laborious editing of the chapters, which in some cases included
extensive revision, is highly acknowledged. We also thank Jacqueline Lenz
and Dr. T. Schneider from Springer-Verlag for accompanying this project.
As ever, the editors have to thank their wives, Maria Heitjans and Birge
Kärger, for their patience and encouragement.

Hannover, Germany Paul Heitjans
Leipzig, Germany Jörg Kärger
August 2005
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Uwe Renner, Gunter M. Schütz, Günter Vojta . . . . . . . . . . . . . . . . . . . . . . 793
19.1 Introduction: What a Fractal is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
19.2 Anomalous Diffusion: Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . 797
19.3 Stochastic Theory of Diffusion on Fractals . . . . . . . . . . . . . . . . . . . . 802
19.4 Anomalous Diffusion: Dynamical Dimensions . . . . . . . . . . . . . . . . . 803
19.5 Anomalous Diffusion and Chemical Kinetics . . . . . . . . . . . . . . . . . . 806
19.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

20 Ionic Transport in Disordered Materials
Armin Bunde, Wolfgang Dieterich, Philipp Maass, Martin Meyer . . . . . 813
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
20.2 Basic Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

20.2.1 Tracer Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
20.2.2 Dynamic Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
20.2.3 Probability Distribution and Incoherent Neutron

Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
20.2.4 Spin-Lattice Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

20.3 Ion-Conducting Glasses: Models and Numerical Technique . . . . . . 819
20.4 Dispersive Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
20.5 Non-Arrhenius Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
20.6 Counterion Model and the “Nearly Constant Dielectric Loss”

Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
20.7 Compositional Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
20.8 Ion-Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

20.8.1 Lattice Model of Polymer Electrolytes . . . . . . . . . . . . . . . . . 843
20.8.2 Diffusion through a Polymer Network: Dynamic

Percolation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
20.8.3 Diffusion in Stretched Polymers . . . . . . . . . . . . . . . . . . . . . . . 849

20.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852



Contents – In Detail XXV

21 Concept of Mismatch and Relaxation for Self-Diffusion
and Conduction in Ionic Materials with Disordered Structure
Klaus Funke, Cornelia Cramer, Dirk Wilmer . . . . . . . . . . . . . . . . . . . . . . . 857
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
21.2 Conductivity Spectra of Ion Conducting Materials . . . . . . . . . . . . . 861
21.3 Relevant Functions and Some Model Concepts for Ion Transport

in Disordered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
21.4 CMR Equations and Model Conductivity Spectra . . . . . . . . . . . . . . 867
21.5 Scaling Properties of Model Conductivity Spectra . . . . . . . . . . . . . 871
21.6 Physical Concept of the CMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
21.7 Complete Conductivity Spectra of Solid Ion Conductors . . . . . . . . 877
21.8 Ion Dynamics in a Fragile Supercooled Melt . . . . . . . . . . . . . . . . . . 880
21.9 Conductivities of Glassy and Crystalline Electrolytes Below

10MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
21.10 Localised Motion at Low Temperatures . . . . . . . . . . . . . . . . . . . . . . . 887
21.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

22 Diffusion and Conduction in Percolation Systems
Armin Bunde, Jan W. Kantelhardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
22.2 The (Site-)Percolation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
22.3 The Fractal Structure of Percolation Clusters near pc . . . . . . . . . . 897
22.4 Further Percolation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
22.5 Diffusion on Regular Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903
22.6 Diffusion on Percolation Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
22.7 Conductivity of Percolation Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 905
22.8 Further Electrical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
22.9 Application of the Percolation Concept: Heterogeneous Ionic

Conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908
22.9.1 Interfacial Percolation and the Liang Effect. . . . . . . . . . . . . 908
22.9.2 Composite Micro- and Nanocrystalline Conductors . . . . . . 910

22.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

23 Statistical Theory and Molecular Dynamics of Diffusion
in Zeolites
Reinhold Haberlandt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
23.2 Some Notions and Relations of Statistical Physics . . . . . . . . . . . . . 916

23.2.1 Statistical Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 916
23.2.2 Statistical Theory of Irreversible Processes . . . . . . . . . . . . . 919

23.3 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
23.3.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
23.3.2 Procedure of an MD Simulation . . . . . . . . . . . . . . . . . . . . . . . 923



XXVI Contents – In Detail

23.3.3 Methodical Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
23.4 Simulation of Diffusion in Zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . 925

23.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
23.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
23.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

23.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955



Part I

Solids



1 Diffusion: Introduction and Case Studies in

Metals and Binary Alloys

Helmut Mehrer

1.1 Introduction

Diffusion in solids is an important topic of physical metallurgy and materials
science. Diffusion processes play a key role in the kinetics of many microstruc-
tural changes that occur during processing of metals, alloys, ceramics, semi-
conductors, glasses, and polymers. Typical examples are nucleation of new
phases, diffusive phase transformations, precipitation and dissolution of a
second phase, recrystallization, high-temperature creep, and thermal oxida-
tion. Direct technological applications concern, e.g., diffusion doping during
fabrication of microelectronic devices, solid electrolytes for battery and fuel
cells, surface hardening of steel through carburization or nitridation, diffusion
bonding, and sintering.

The atomic mechanisms of diffusion in crystalline materials are closely
connected with defects. Point defects such as vacancies or interstitials are the
simplest defects and often mediate diffusion. Dislocations, grain boundaries,
phase boundaries, and free surfaces are other types of defects of crystalline
solids. They can act as diffusion short circuits, because the mobility of atoms
along such defects is usually much higher than in the lattice.

This chapter will concentrate on bulk diffusion in solid metals and alloys.
Most of the solid elements are metals. Furthermore, diffusion properties and
atomic mechanisms of diffusion have most thoroughly been investigated in
metallic solids. On the other hand, many of the physical concepts, which have
been developed for metals, apply to diffusion in all crystalline solids. Those
effects, which are unique to non-metallic systems such as charge effects in
ionic crystals and semiconductors, are treated in Chaps. 4 and 5.

For a comprehensive treatment of diffusion in solid matter the reader is
referred to the textbooks of Shewmon [1], Philibert [2], Heumann [3], Allnatt
and Lidiard [4], and Glicksman [5]. A critical collection of data for diffusion in
metals and alloys was edited in 1990 by Mehrer [6]. Recent developments can
be found in the proceedings of a series of international conferences on ‘Diffu-
sion in Materials’ [7–9]. The field of grain- and interphase-boundary diffusion
is described in Chap. 8 and in the book of Kaur, Mishin and Gust [10]. The
book of Crank [11] provides an excellent introduction to the mathematics of
diffusion.
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1.2 Continuum Description of Diffusion

1.2.1 Fick’s Laws for Anisotropic Media

The diffusion of atoms through a solid can be described by Fick’s equations.
The first equation relates the diffusion flux j (number of atoms crossing a
unit area per second) to the gradient of the concentration c (number of atoms
per unit volume) via

j = −D∇c. (1.1)

The quantity D is denoted as diffusion coefficient tensor or as diffusivity
tensor. The dimensions of its components are length2 time−1. Its SI units
are [m2s−1]. Equation (1.1) implies that D varies with direction. In general
the diffusion flux and the concentration gradient are not always antiparallel.
They are antiparallel for an isotropic medium.

For anisotropic media and non-cubic crystalline solids D is a symmetric
tensor of rank 2 [12]. Each symmetric second rank tensor can be reduced to
diagonal form. The diffusion flux is antiparallel to the concentration gradient
only for diffusion along the orthogonal principal directions. If x1, x2, x3 denote
these directions and j1, j2, j3 the pertaining components of the diffusion flux,
(1.1) can be written as

j1 = −DI
∂c

∂x1
, j2 = −DII

∂c

∂x2
, j3 = −DIII

∂c

∂x3
, (1.2)

where DI , DII , DIII denote the three principal diffusivities. The diffusion
coefficient for a direction (α1, α2, α3) is obtained from

D(α1, α2, α3) = α2
1DI + α2

2DII + α2
3DIII , (1.3)

where αi denote the direction cosine of the diffusion flux with axis i. Equation
(1.3) shows that anisotropic diffusion is completely described by the three
principal diffusion coefficients.

For uniaxial (hexagonal, tetragonal, trigonal) crystals and decagonal qua-
sicrystals with the unique axis parallel to the x3 axis we have DI = DII �=
DIII and (1.3) reduces to

D(Θ) = DI sin2Θ + DIII cos2Θ, (1.4)

where Θ denotes the angle between diffusion direction and crystal axis. For
isotropic media such as amorphous metals and inorganic glasses, cubic crys-
tals and icosahedral quasicrystals

DI = DII = DIII ≡ D. (1.5)

Then the diffusion coefficient tensor is reduced to a scalar quantity.
Steady state methods for measuring diffusion coefficients, like the perme-

ation method [3], are directly based on Fick’s first law. In non-steady state
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situations diffusion flux and concentration vary with time t and position x.
In addition to Fick’s first law a balance equation is necessary. For particles
which undergo no reactions (no chemical reaction, no reactions between dif-
ferent types of sites in a crystal, etc.) this is the continuity equation

∂c

∂t
+ ∇j = 0. (1.6)

Combining (1.1) and (1.6) leads to Fick’s second equation (also called diffu-
sion equation)

∂c

∂t
= ∇(D∇c). (1.7)

1.2.2 Fick’s Second Law for Constant Diffusivity

In diffusion studies with trace elements very tiny amounts of the diffusing
species can be applied. Then the composition of the sample during the inves-
tigation does practically not change (see also Sect. 1.3) and D is independent
of the tracer concentration. Also diffusion in ideal solutions is described by a
concentration-independent diffusion coefficient. Then for diffusion in a certain
direction x (1.7) reduces to

∂c

∂t
= D

∂2c

∂x2
. (1.8)

From a mathematical point of view (1.8) is a second order, linear partial
differential equation. Initial and boundary conditions are necessary for par-
ticular solutions of this equation. Solutions can be found in the book of Crank
for a variety of initial and boundary conditions [11]. These solutions permit
the determination of D from measurements of the concentration distribution
as a function of position and time. We consider two simple examples which,
however, are often relevant for the analysis of experiments.

Thin-Film Solution

If a thin layer of the diffusing species (M atoms per unit area) is concentrated
at x = 0 of a semi-infinite sample, the concentration after time t is described
by

c(x, t) =
M√
πDt

exp
(
− x2

4Dt

)
. (1.9)

The quantity
√
Dt, called diffusion length, is a characteristic distance for

diffusion problems. The experimental determination of diffusion coefficients
by the tracer method discussed in Sect. 1.4 is based on (1.9). It is applicable
if
√
Dt is much larger than the initial layer thickness.
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Error Function Solution

Suppose that at t = 0 the concentration of the diffusing species is c(x, 0) = 0
for x > 0. Then, if for t > 0 the concentration at x = 0 is maintained at
c(0, t) = cs, the appropriate solution of (1.8) is

c(x, t) = cserfc
( x

2
√
Dt

)
, (1.10)

where the complementary error function is defined by

erfc z ≡ 1 − erf z (1.11)

and

erf z ≡ 2√
π

z∫
0

exp (−u2) du (1.12)

denotes the error function. Equation (1.10) describes the in-diffusion of a dif-
fuser (or diffusant) into a semi-infinite sample with constant concentration
cs of that species at the surface. It is, e.g., applicable to the in-diffusion of
a volatile solute into a non-volatile solvent, to the carburization of a metal
in a carbon containing ambient, and to in-diffusion of a solute from an inex-
haustible diffusion source into a solvent with solubility cs.

1.2.3 Fick’s Second Law for Concentration-Dependent Diffusivity

Let us consider a case of great practical importance, in which the chemical
composition during diffusion varies over a certain concentration range. Dif-
fusing particles will experience different chemical environments and hence
different diffusion coefficients. This situation is denoted as interdiffusion or
as chemical diffusion. We use the symbol D̃ to indicate that the diffusion co-
efficient is concentration dependent. D̃ is denoted as interdiffusion coefficient
or as chemical diffusion coefficient. Fick’s second law (1.7) for diffusion in a
certain direction x then reads

∂c

∂t
=

∂

∂x

(
D̃(c)

∂c

∂x

)
= D̃(c)

∂2c

∂x2
+

dD̃(c)
dc

(
∂c

∂x

)2

. (1.13)

Theoretical models which permit the calculation of the composition depen-
dent diffusivity from deeper principles using, e.g., statistical mechanics are
nowadays still not broadly available. Then the strategy illustrated in the
previous section of calculating the concentration field for certain initial and
boundary conditions is not applicable. Instead, it is possible to invert this
strategy and to determine the interdiffusion coefficient from a given concen-
tration field by using (1.13). The classical Boltzmann-Matano method for
extracting the concentration-dependent diffusivity D̃(c) from experimental
concentration-depth profiles will be considered in Sect. 1.11 of this chapter.
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1.3 The Various Diffusion Coefficients

Diffusion in materials is characterized by several diffusion coefficients. In
this section we describe various experimental situations which entail differ-
ent diffusion coefficients. We will, however, concentrate on bulk diffusion in
unary and binary systems. Diffusion in ternary systems produces mathemat-
ical complexities which are beyond the scope of this chapter. We will focus
on bulk diffusion since diffusion along grain boundaries and along surfaces
is treated in Chaps. 7 and 8 of this book. In this section we will distinguish
the various diffusion coefficients by lower and upper indices. We will drop the
indices in the following sections again, whenever it is clear which diffusion
coefficient is meant.

1.3.1 Tracer Diffusion Coefficients

In diffusion studies with trace elements (tagged by their radioactivity or
by their isotopic mass) tiny amounts of the diffusing species can be used.
Although there will be a gradient in the concentration of the trace element,
its total concentration can be kept so small that the overall composition of
the sample during the investigation does practically not change1. In such
cases a constant tracer diffusion coefficient is appropriate for the analysis of
the experiments.

Self-Diffusion Coefficient

If the diffusion of A-atoms in a solid element A is studied, one speaks of
self-diffusion. Studies of self-diffusion utilize a tracer isotope A∗ of the same
element. A typical initial configuration for a tracer self-diffusion experiment
is illustrated in Fig. 1.1a. If the applied tracer layer is very thin as compared
to the average diffusion length, the tracer self-diffusion coefficient DA∗

A is
obtained from such an experiment.

The connection between the macroscopically defined tracer self-diffusion
coefficient and the atomistic picture of diffusion is the famous Einstein-
Smoluchowski relation discussed in detail in Sect. 1.6. In simple cases it reads

DA∗
A = fDE with DE =

l2

6τ
, (1.14)

where l denotes the jump length and τ the mean residence time of an atom
on a certain site of the crystal2. The quantity f is the correlation factor. For
self-diffusion in cubic crystals f is a numeric factor. Its value is characteristic
1 From an atomistic viewpoint this implies that a tracer atom is not influenced by

other tracer atoms.
2 Equation (1.14) considers only the simplest case: cubic structure, all sites are

energetically equivalent, only jumps to nearest neighbours are allowed.
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of the lattice geometry and the diffusion mechanism (see Sect. 1.6). In some
textbooks the quantity DE is denoted as the Einstein diffusion coefficient3.

In a homogeneous binary AXB1−X alloy or compound two tracer diffusion
coefficients for both, A∗ and B∗ tracer atoms, can be measured. A typical
experimental starting configuration is displayed in Fig. 1.1b. We denote the
tracer diffusion coefficients by DA∗

AXB1−X
and DB∗

AXB1−X
. Both tracer diffusion

coefficients will in general be different:

DA∗
AXB1−X

�= DB∗
AXB1−X

. (1.15)

This diffusion asymmetry depends on the crystal structure of the material
and on the atomic mechanisms which mediate diffusion. Both diffusivities,
of course, also depend on temperature and composition of the alloy or com-
pound and for anisotropic media on the direction of diffusion. Self-diffusion
in metallic elements will be considered in Sect. 1.8. Self-diffusion in binary
intermetallics is the subject of Sect. 1.10.

Impurity Diffusion Coefficient

When the diffusion of a trace solute C∗ in a monoatomic solvent A or in
a homogeneous binary solvent AXB1−X (Fig. 1.1) is measured, the tracer
diffusion coefficients

DC∗
A and DC∗

AXB1−X

are obtained. These diffusion coefficients are denoted as impurity diffusion
coefficients or sometimes also as foreign atom diffusion coefficients.

1.3.2 Chemical Diffusion (or Interdiffusion) Coefficient

So far we have considered in this section cases where the concentration gra-
dient is the only cause for the flow of matter. We have seen that such situ-
ations can be studied using tiny amounts of trace elements in an otherwise
homogeneous material. However, from a general viewpoint a diffusion flux is
proportional to the gradient of the chemical potential.

The chemical potential of a species i in a binary alloy is given by (cf.
Chap. 5)

µi =
(
∂G

∂ni

)
p,T,nj �=i

i = A,B (1.16)

In (1.16) G denotes Gibbs free energy, ni the number of moles of species i,
T the temperature, and p the hydrostatic pressure. The chemical potential
3 This notation is a bit misleading, since the original Einstein-Smoluchowski re-

lation relates the total macroscopic mean square displacement of atoms to the
diffusion coefficient (see Sect. 1.6), in which correlation effects are included.
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Fig. 1.1. Initial configurations for diffusion experiments:
a) Thin layer of A∗ on A: tracer diffusion in pure elements.
b) Thin layer of A∗ or B∗ on homogeneous alloy: tracer diffusion of alloy compo-
nents.
c) Thin layer of C∗ on element A or homogeneous alloy: Impurity diffusion.
d) Diffusion couple between metal-hydrogen alloy and a pure metal.
e) Diffusion couple between pure end-members.
f) Diffusion couple between two homogeneous alloys.

depends on the alloy composition. For ideal solutions the chemical potentials
are

µi = µ0
i +RT ln

ni

nA + nB
, (1.17)

where µ0
i depend on T and p only. In this case the gradient of the chemical

potential is directly proportional to the logarithmic gradient of the concen-
tration. In non-ideal solutions the gradient of the chemical potential gives
rise to an ‘internal’ driving force. As a consequence the interdiffusion diffu-
sion coefficient is concentration-dependent and Fick’s equation in the form
of (1.13) must be used.

Examples of diffusion couples which entail an interdiffusion coefficient are
(see Fig. 1.1):
(i) Pure end-member diffusion couples consisting of two samples of pure ele-
ments joined together (e.g. Ni/Pd, Cu/Ag, ...).
(ii) Incremental diffusion couples consisting of two samples of homogenous
alloys joined together (e.g. Ni50Pd50/Ni70Pd30, Ni/Ni70Pd30, ...).
(iii) Diffusion couples which involve solutions of hydrogen in a metal (e.g. Pd-
H/Pd, Ag1−XHX/Ag1−Y HY , ...). Binary metal-hydrogen systems are often
special in the sense that hydrogen is the only mobile component.

Interdiffusion results in a composition gradient in the diffusion zone. Inter-
diffusion profiles are analysed by the Boltzmann-Matano method or related
procedures. This method will be described in Sect. 1.11. It permits to deduce
the concentration dependence of the interdiffusion coefficient
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D̃ = D̃(c) (1.18)

from the experimental diffusion profile.

1.3.3 Intrinsic Diffusion Coefficients

The intrinsic diffusion coefficients (sometimes also component diffusion coeffi-
cients) DA and DB of a binary A-B alloy describe diffusion of the components
A and B relative to the lattice planes. The diffusion rates of A and B atoms
are usually not equal. Therefore, in an interdiffusion experiment a net flux of
atoms across any lattice plane exists. The shift of lattice planes with respect
to a sample fixed axis is denoted as Kirkendall effect, which is illustrated
in Fig. 1.27 in Sect. 1.11. The Kirkendall shift can be observed by incorpo-
rating inert markers at the initial interface of a diffusion couple. This shift
was for the first time observed for Cu/Cu-Zn diffusion couples by Kirkendall
and coworkers [13]. In the following decades work on many different alloy
systems and a variety of markers demonstrated that the Kirkendall effect is
a widespread phenomenon of interdiffusion.

The intrinsic diffusion coefficients DA and DB of a substitutional binary
A-B alloy are related to the interdiffusion coefficient D̃ and the marker veloc-
ity vK (Kirkendall velocity). These relations were deduced for the first time
by Darken [14] and refined later on by Manning [15]. They will be discussed
in Sect. 1.11. If the quantities D̃ and vK are known from experiment the
intrinsic diffusion coefficients can be deduced.

We emphasize that the intrinsic diffusion coefficients and the tracer diffu-
sion coefficients are different. DA andDB pertain to diffusion in a composition
gradient whereas DA∗

AB and DB∗
AB are determined in a homogenous alloy. They

are approximately related (see Sect. 1.11 for details) via

DA = DA∗
ABΦ and DB = DB∗

ABΦ, (1.19)

where Φ denotes the so-called thermodynamic factor (see Sect. 1.11). In a
metal-hydrogen system ususally only the H atoms are mobile. Then the in-
trinsic diffusion coefficient and the chemical diffusion coefficient of hydrogen
are identical.

1.4 Experimental Methods

Methods for the measurement of diffusion coefficients can be grouped into two
major categories: Direct methods are based on Fick’s laws and the phenom-
enological definition of the diffusion coefficients given in Sect. 1.3. Indirect
methods are not based directly on Fick’s laws. Their interpretation requires a
microscopic model of the atomic jump processes and then uses the Einstein-
Smoluchowski relation to deduce a diffusion coefficient.
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1.4.1 Direct Methods

Tracer Method

The tracer method is the most direct and most accurate technique for the
determination of diffusion coefficients in solids. Since very tiny amounts of
trace isotopes can be applied in tracer experiments, the chemical composi-
tion of the sample is practically not influenced by the tracer. In this way
self-diffusion and impurity diffusion can be studied in a material which is
homogeneous – apart from the tracer gradient.

As indicated schematically in Fig. 1.2 the tracer is usually deposited onto
a polished, flat surface of the diffusion sample. Normally a radioactive isotope
of the investigated atomic species is used as tracer. Enriched stable isotopes
have also been used in a few cases. Evaporation, dripping of a liquid solution,
and electrodeposition of the tracer onto the surface are common deposition
techniques. Sometimes the tracer is ion-implanted as a thin layer below the
sample surface in order to overcome disturbing surface oxide hold-up and sol-
ubility problems [16]. The sample is usually encapsulated in quartz ampoules
under vacuum or inert (e.g. Ar) atmosphere and an isothermal diffusion an-
neal is performed at temperature T for some diffusion time t. For tempera-
tures below 1500 K quartz ampoules and resistance furnaces can be used. For
higher temperatures more sophisticated heating techniques are necessary.

The best way to determine the resulting concentration-depth profile is
serial sectioning of the sample and subsequent determination of the amount
of tracer per section.

For average diffusion lengths of at least several ten micrometers mechan-
ical sectioning techniques are applicable (for a review see, e.g., [17]). Lathes
and microtomes are appropriate for ductile, grinding devices for brittle sam-
ples. For extended diffusion anneals and diffusivities D > 10−15 m2s−1 lathe
sectioning is sufficient whereas diffusivities D > 10−17 m2s−1 are accessible
by microtome sectioning. In favourable cases, grinder sectioning can be used
for diffusivities D > 10−18 m2s−1.

�

�

�� � �

x2

ln c

slope:− 1

4 D∗ t

Fig. 1.2. Schematic illustration of the tracer method: The major steps – deposition
of the tracer, diffusion anneal, serial sectioning, and evaluation of the penetration
profile – are indicated.
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Diffusion studies at lower temperatures require measurements of very
small diffusivities. Measurements of diffusion profiles with diffusion lengths
in the micrometer or nanometer range are possible using sputter section-
ing techniques. Devices for serial sectioning of radioactive diffusion samples
by ion-beam-sputtering are described in [18, 19]. Such devices permit serial
sectioning of shallow diffusion zones, which correspond to average diffusion
lengths between several nm and a few µm. This implies that for anneal-
ing times of about 106 s a diffusivity range between D ≈ 10−24 m2s−1 and
D ≈ 10−16 m2s−1 can be examined.

Provided that the experimental conditions were chosen in such a way
that the deposited layer is thin compared with the mean diffusion length,
the distribution after the diffusion anneal is described by (1.9). If radioactive
tracers are used, the specific activity per section (count rate divided by the
section mass) is proportional to the tracer concentration. The count rate
is conveniently determined by nuclear counting facilities (γ- or β-counting,
depending on the isotope). According to (1.9) a plot of the logarithm of
the specific activity versus the penetration distance squared is linear, if bulk
diffusion is the dominating diffusion process. Its slope equals −(4D∗t)−1.
From the slope and the diffusion time the tracer diffusivity D∗ is obtained.
An obvious advantage of the tracer method is that a determination of the
absolute tracer concentration is not necessary.

Fig. 1.3 shows a penetration profile of the radioisotope 59Fe in the inter-
metallic phase Fe3Si obtained by grinder sectioning [20]. Gaussian behaviour
as stated by (1.9) is observed over several orders of magnitude in concentra-
tion. An example for a penetration profile of 59Fe in the intermetallic phase
Fe3Al obtained with the sputtering device described in [18] is displayed in
Fig. 1.4 according to [21]. From diffusion profiles of the quality of Figs. 1.3
and 1.4 diffusion coefficients can be determined with an accuracy of a few
percent.

Deviations from the Gaussian behaviour in experimentally determined
penetration profiles may occur for many reasons. We mention two frequent
ones:

– Grain boundaries in a polycrystal often act as diffusion short-circuits with
enhanced mobility of atoms. Grain boundaries usually cause a ‘grain-
boundary tail’ in the deeper penetrating part of the profile. In this ‘tail’
region the concentration of the diffuser is enhanced with respect to mere
bulk diffusion.

– Evaporation losses of the tracer itself and/or of the diffusion sample will
cause deviations from Gaussian behaviour in the near-surface region.

For a more detailed discussion of implications and pitfalls of the tracer
method the reader is referred to [17]. The grain-boundary tails mentioned
above can be used for a systematic study of grain-boundary diffusion in bi-
or polycrystals as described in Chap. 8 and in [10].



1 Diffusion: Introduction and Case Studies in Metals and Binary Alloys 13

�

Fig. 1.3. Penetration profile of the ra-
dioisotope 59Fe in Fe3Si obtained by
grinder sectioning. The solid line rep-
resents a fit of the thin-film solution of
Fick’s second law to the data points.

�

Fig. 1.4. Penetration profile of the ra-
dioisotope 59Fe in Fe3Al obtained by
sputter sectioning. The solid line rep-
resents a fit of the thin-film solution of
Fick’s second law to the data points.

In some cases several tracer isotopes of the same element are available.
Differences between the isotopic masses lead to isotope effects in diffusion.
Isotope effects are interesting phenomena although the differences between
diffusivities of two isotopes of the same element are usually a few percent
only. An exception is hydrogen with its three isotopes H, D, and T, which
have significantly different masses (see Sect. 1.7.2). Isotope effects of self- and
solute-diffusion in metals can contribute useful information about the atomic
mechanisms of diffusion. For a detailed discussion the reader is referred to [22–
24] (see also Chap. 6, Sect. 6.5.3).

Other Profiling and Detection Methods

Several other profiling and detection methods can be used to measure
concentration-depth profiles. We mention the more important ones:

1. Secondary Ion Mass Spectrometry (SIMS)
As already mentioned foreign elements or stable isotopes of the matrix
can be used as tracers in combination with SIMS for depth profiling. SIMS
is mainly appropriate for the diffusion of foreign elements. Contrary to
self-diffusion studies by radiotracer experiments, in the case of stable
tracers the natural abundance of the stable isotope in the matrix limits
the concentration range of the diffusion profile. Highly enriched isotopes
should be used. An example of this technique can be found in a recent
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Fig. 1.5. Interdif-
fusion profile of a
Fe70Al30–Fe50Al50
couple measured by
EMPA.

study of Ni self-diffusion in the intermetallic compound Ni3Al in which
the highly enriched stable 64Ni isotope was used [25]. Average diffusion
lengths between several nm and several µm are accessible.

2. Electron Microprobe Analysis (EMPA)
In EMPA an electron beam of several tens of keV with a diameter of
about one micrometer stimulates X-ray emission in the diffusion zone
of the sample. The diffusion profile can be obtained by analysing the
intensity of the characteristic radiation of the elements in a line scan along
the diffusion direction. The detection limit is about 10−3 to 10−4 mole
fractions depending on the element. Light elements cannot be analysed.
Because of the finite size of the excited volume (several µm3) only fairly
large diffusion coefficients ≥ 10−15m2s−1 can be measured. EMPA is
mainly appropriate for interdiffusion studies. An example of a single-
phase interdiffusion profile resulting from a Fe70Al30–Fe50Al50 couple is
shown in Fig. 1.5 according to [26]. The analysis of interdiffusion profiles
is discussed in Sect. 1.11.

3. Auger Electron Spectroscopy (AES)
AES in combination with sputter profiling can be used to measure dif-
fusion profiles in the range of several nm to several µm. It is, however,
only applicable to diffusion of foreign atoms since AES only discriminates
between different elements.

4. Rutherford Backscattering Spectrometry (RBS)
In RBS experiments a high-energy beam of monoenergetic α-particles is
used. These particles are preferentially scattered by heavy nuclei in the
sample and the energy spectrum of scattered α-particles can be used to
determine the concentration-depth distribution of scattering nuclei. This
technique is mainly suitable for detecting heavy elements in a matrix of
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substantially lower atomic weight. Due to the energy straggling of the
incident beam the profile depth is limited to less than a few µm.

5. Nuclear Reaction Analysis (NRA)
High energy particles can also be used to study diffusion of light elements,
if the nuclei undergo a suitable resonant nuclear reaction. An example is
diffusion of boron in an alloy. During irradiation with high energy pro-
tons α-particles are emitted from the nuclear reaction 11B + p → 8B + α.
The concentration profile of 11B can be determined from the number and
energy of emitted α-particles as a function of the incident proton energy.
Like in RBS energy straggling limits the depth resolution of NRA.
RBS and NRA methods need a depth calibration which is based on not
always very accurate data for the stopping power in the matrix for those
particles emitted by the nuclear reaction. Also the depth resolution is usu-
ally inferior to that achievable in careful radiotracer and SIMS profiling
studies.

6. Field Gradient Nuclear Magnetic Resonance (FG NMR, PFG NMR)
Nuclear magnetic resonance (NMR) measurements in a magnetic field
gradient (FG) or in a pulsed field gradient (PFG, see Chap. 10) provide
a direct macroscopic method for diffusion studies. In a magnetic field
gradient the Larmor frequency of a nuclear moment depends on its po-
sition. FG NMR and PFG NMR utilize the fact that nuclear spins that
diffuse in a magnetic field gradient experience an irreversible phase shift,
which leads to a decrease in transversal magnetization. This decrease can
be observed in so-called spin-echo experiments [27, 28]. A measurement
of the diffusion-related part of the spin echo provides the diffusion co-
efficient without any further hypothesis. In contrast to tracer diffusion,
FG NMR and PFG NMR techniques permit diffusion measurements in
isotopically pure systems. These techniques are applicable for relatively
large diffusion coefficients D � 10−13 m2s−1 [29].

1.4.2 Indirect Methods

Indirect methods are based on phenomena which are influenced by the dif-
fusive jumps of atoms. Some of these methods are often sensitive to one or
a few atomic jumps only. Quantities like relaxation times, relaxation rates
or linewidths are measured. Using a microscopic model of the jump process
the mean residence time of the diffusing species is determined and then via
the Einstein-Smoluchowski relation (see Sect. 1.6) the diffusivity is deduced.
Indirect methods can be grouped into two categories – relaxation methods
(mechanical and magnetic) and nuclear methods.
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Relaxation Methods (Mechanical and Magnetic)

Mechanical relaxation methods make use of the fact that atomic motion in
a material can be induced by external influences such as the application
of constant or oscillating mechanical stress. In ferromagnetic materials the
interaction between the magnetic moments and local order can give rise to
various relaxation phenomena similar to those observed in anelasticity. A
great variety of experimental devices have been used for such studies. Their
description is, however, beyond the scope of this chapter.

Some of the more important relaxation phenomena related to diffusion
are the following [30–32]:

The Snoek effect is observed in bcc metals which contain interstitial
solutes such as C, N, or O. These solutes occupy octahedral or tetrahedral
interstitial sites. These sites have tetragonal symmetry, which is lower than
the cubic symmetry of the matrix. Therefore the lattice distortions caused by
interstitial solutes give rise to elastic dipoles. Under the influence of external
stress these dipoles can reorient (para-elasticity). The reorientation of solutes
gives rise to a strain relaxation or an internal friction peak. The relaxation
time or the (frequency or temperature) position of the internal friction peak
can be used to deduce information about the mean residence time of a solute.
A Snoek effect of interstitial solutes in fcc metals cannot be observed, because
the interstitial sites have cubic symmetry.

The Gorski effect is due to solutes in a solvent which produce a lattice
dilatation. In a macroscopic strain gradient solutes redistribute by diffusion.
This redistribution gives rise to an anelastic relaxation. The Gorski effect
is detectable if the diffusion coefficient of the solute is high enough. Gorski
effect measurements have been widely used for studies of hydrogen diffusion
in metals [30].

In substitutional A-B alloys the reorientation of solute-solvent pairs under
the influence of stress can give rise to an anelastic relaxation called Zener
effect.

Nuclear Methods

Examples of nuclear methods are NMR, Mößbauer spectroscopy (MBS), and
quasielastic neutron scattering (QENS). Since MBS, QENS, NMR and PFG
NMR are the subjects of the Chaps. 2, 3, 9 and 10 and QENS also of a recent
textbook [33] we confine ourselves here to a few remarks:

The width of the resonance line and the spin-lattice relaxation rate T−1
1

in NMR have contributions which are due to the thermally activated jumps
of atoms. Measurements of the ’diffusional narrowing’ of the linewidth or
of T−1

1 as a function of temperature permit a determination of the mean
residence time τ of the atoms. NMR methods are mainly appropriate for
self-diffusion measurements on solid or liquid metals. In favourable cases (e.g.
Li and Na) self-diffusion coefficients between 10−18 and 10−10 m2s−1 are
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accessible (see [6]). In the case of foreign atom diffusion, NMR studies suffer
from the fact that a signal from nuclear spins of the minority component must
be detected. Nevertheless, detailed studies were conducted, e. g., in the case
of Li-based Li-Mg and Li-Ag alloys via the spin-lattice relaxation of polarized
radioactive 8Li nuclei [34].

The linewidth in MBS and QENS both have a contribution ∆Γ which is
due to the diffusion jumps of atoms. This diffusion broadening can be ob-
served only in systems with fairly high diffusivities since ∆Γ must at least
be comparable with the natural linewidth in MBS experiments or with the
energy resolution of the neutron spectrometer in QENS experiments. Appro-
priate probes for MBS must be available. The usual working horse in MBS
is the isotope 57Fe although there are a few other Mößbauer isotopes avail-
able (e.g. 119Sn, 115Eu, 161Dy). MBS has been mainly used to study fast Fe
diffusion. QENS experiments are suitable for fast diffusing elements with a
sizable incoherent scattering cross section for neutrons. Examples are hydro-
gen diffusion in metals or hydrides and Na self-diffusion (see Chap. 3).

Neither MBS nor QENS are routine methods for diffusion measurements.
The most interesting aspect is that these methods can provide microscopic
information about the elementary jump process of atoms. For single crystals
∆Γ depends on the crystal orientation. This orientation dependence can be
used to deduce information about the jump direction and about the jump
length (see Chaps. 2 and 3), which is not accessible by conventional diffusion
studies.

For a more comprehensive discussion of experimental methods for the
determination of diffusion coefficients we refer the reader to the already men-
tioned textbooks on diffusion [1–3] and to Chap. 1 in [6] as well as to a recent
article [29] where also an overview of the accessible windows for the mean
residence time τ are given.

1.5 Dependence of Diffusion on Thermodynamic
Variables

So far we have said nothing about the dependence of diffusion processes upon
thermodynamic variables, i.e. upon temperature T and hydrostatic pressure
p. In binary systems also variations of the diffusivity with the variable ’compo-
sition’ are of interest. These variations can range from very slight to striking.
They will be not considered in this section since they depend very much on
the system. Examples can be found in Sect. 1.10.

1.5.1 Temperature Dependence

It is well known that diffusion coefficients in solids generally depend rather
strongly on temperature, being low at low temperatures but appreciable at
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high temperatures. Empirically, measurements of diffusion coefficients over a
certain temperature range may be often, but by no means always, described
by an Arrhenius relation 4

D = D0 exp
(
−∆H

RT

)
. (1.20)

In (1.20) D0 is denoted as pre-exponential factor and ∆H (or Q)5 as activa-
tion enthalpy of diffusion. The pre-exponential factor can be written as

D0 = D′
0 exp

∆S

R
, (1.21)

where ∆S is the diffusion entropy and D′
0 contains geometric factors, the

correlation factor, the lattice parameter squared, and an attempt frequency
of the order of the Debye frequency.

In an Arrhenius diagram the logarithm of the diffusivity is plotted versus
the reciprocal temperature T−1. For a diffusion process with a temperature-
independent activation enthalpy ∆H the Arrhenius diagram is a straight line
with slope −∆H/R. From its intercept for T−1 → 0 the pre-exponential
factor D0 can be deduced. Such simple Arrhenius behaviour should, how-
ever, not be considered to be universal. Departures from it may arise for
many reasons, ranging from fundamental aspects of the atomic mechanism,
temperature dependent activation parameters6, effects associated with im-
purities or microstructural features such as grain boundaries. Nevertheless,
(1.20) provides a very useful standard.

1.5.2 Pressure Dependence

The variation of diffusivity with hydrostatic pressure p is far less pronounced
than with temperature. Usually the diffusivity decreases as the pressure is
4 Equation (1.20) is often also written as

D = D0 exp
�
−∆H

kBT

�
.

If the first version of the Arrhenius equation is used the unit of ∆H is kJ mol−1.
If the second version is used the appropriate unit of ∆H is eV per atom. Note
that 1 eV per atom = 96.472 kJ mol−1. The gas constant R and the Boltzmann
constant kB are related via R = NAkB = 8.314×10−3 kJmol−1 K−1, where NA

denotes the Avogadro constant.
5 The symbol Q for the activation enthalpy is also widely used in the literature.
6 Thermodynamics tells us that a temperature-dependent enthalpy according to

∂∆H

∂T
= T

∂∆S

∂T
(1.22)

automatically entails a temperature-dependent entropy and vice versa. If en-
thalpy and entropy increase with temperature the Arrhenius diagram will show
some upward curvature.
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increased. Typical pressure effects range from factors of 2 to 10 for a pressure
of 1 GPa (10 kbar). This variation is largely due to the fact that the Gibbs
free energy of activation ∆G varies with pressure according to

∆G = ∆H − T∆S = ∆E − T∆S + p∆V (1.23)

where ∆V denotes the activation volume and ∆E the activation energy of
diffusion. Using (1.21) and (1.23) the Arrhenius equation (1.20) can also be
written as

D = D′
0 exp

(
−∆G

RT

)
. (1.24)

Thermodynamics tells us that

∆V =
(
∂∆G

∂p

)
T

. (1.25)

Equation (1.25) can be considered as the definition of the activation volume.
Using (1.24) and (1.25) the activation volume can be obtained from mea-
surements of the diffusion coefficient at constant temperature as a function
of pressure via

∆V = −RT
(
∂ lnD
∂p

)
T

+RT
∂ lnD′

0

∂p︸ ︷︷ ︸
correction term

. (1.26)

The term arising from the pressure dependence of D′
0 can be estimated from

the isothermal compressibility and the Grueneisen constant of the material.
It is often negligibly small (a few percent of the molar volume Vm or of the
atomic volume Ω = Vm/NA, respectively). Typical values for the activation
volume for various metals lie between 0.5 and 0.9 Ω. For a recent review
see [35].

We emphasize that a complete characterization of the diffusion process
requires knowledge of the three activation parameters ∆H = ∆E + p∆V
(valid for p = const.), ∆S and ∆V . For solids the term p∆V becomes signif-
icant only at high pressures. At ambient pressure it is negligible and hence
∆H ≈ ∆E.

1.6 Atomistic Description of Diffusion

1.6.1 Einstein-Smoluchowski Relation and Correlation Factor

Diffusion in crystalline solids takes place by a series of jumps of individual
atoms 7. For interstitial diffusers the ‘diffusion lattice’ is formed by the in-
terstitial sites of the crystal lattice. Substitutional diffusers perform jumps
7 Near the melting temperature of fcc metals the self-diffusion coefficient (see

Sect. 1.8) has a value of about 10−12m2s−1. This corresponds to about 10 million
jumps of each atom per second.
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Fig. 1.6. Total displacement R of a particle on
a lattice composed of many individual jumps ri .

between sites of the normal lattice. The diffusivity on a lattice can be ex-
pressed in terms of physical quantities that describe the elementary jump
process. As we shall see below, these quantities are the jump length and the
jump rate.

The link between the displacement of particles on a (cubic) lattice and
the diffusion coefficient is given by the relation 8

D =
1
6t

〈
R2

〉
(1.27)

where
〈
R2

〉
denotes the mean square displacement of particles (see also

Chap. 18). Equation (1.27) is due to Einstein [36] and Smoluchowski [37].
It also includes correlation effects as we shall see below.

Suppose that a particle carries out n jumps during time t. As illustrated
in Fig. 1.6 its total displacement

R =
n∑

i=1

ri (1.28)

is composed of n individual jump vectors ri and hence

R2 =
n∑

i=1

r2
i + 2

n−1∑
i=1

n∑
j=i+1

rirj . (1.29)

Taking the average over an ensemble of particles and using the fact that
the average of a sum of terms equals the sum of the averages of the terms we
get 〈

R2
〉

=
n∑

i=1

〈
r2

i

〉
+ 2

n−1∑
i=1

n∑
j=i+1

〈
rirj

〉
. (1.30)

8 We restrict ourselves for reasons of simplicity to cubic lattices. The extension to
non-cubic lattices is straightforward and can be found, e.g., in [2].
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Correlation effects are contained in the double sum of (1.30). For a true
random walk (index RW) the double sum in (1.30) vanishes as for every pair
rirj one can find another pair equal and opposite in sign. Then

〈
RRW

2
〉

=
n∑

i=1

〈
r2

i

〉
. (1.31)

The degree of randomness in a long sequence of jumps can be expressed by
the so-called correlation factor f , which can be written as

f = lim
n→∞

〈
R2

〉〈
R2

RW

〉 = 1 + 2 lim
n→∞

n−1∑
i=1

n∑
j=i+1

〈
rirj

〉
n∑

i=1

〈
r2

i

〉 . (1.32)

For diffusion on a lattice the jump vectors ri can take only a few definite
values. Let us consider a cubic coordination lattice with coordination number
Z and let us suppose that only nearest-neighbour jumps of equal length l
occur. Then (1.31) reduces to〈

R2
RW

〉
=

〈
n
〉
l2 , (1.33)

where
〈
n
〉

denotes the average number of jumps. For a true random walk (no
correlation) we get from (1.32) f = 1. It is convenient to define an average
jump rate of atoms into a certain direction, Γ , by

Γ =

〈
n
〉

Zt
. (1.34)

The mean residence time τ of an atom on a certain lattice site is related to
the jump rate of the atom in a certain direction Γ via

τ =
1
ΓZ

. (1.35)

τ−1 is the mean atomic jump rate in any direction on a lattice. Then (1.27)
can be written as

D =
1
6
l2ZΓ =

l2

6τ
, (1.36)

which is identical with (1.14) discussed in Sect. 1.3. Diffusion of interstitial
atoms in a dilute interstitial solution can be considered as a true random
walk process and hence (1.36) is an appropriate expression for the diffusion
coefficient of interstitial diffusers.

Diffusion of self-atoms and of substitutional foreign atoms in metals,
metallic alloys, and in non-metallic solids is usually mediated by lattice va-
cancies. As already noticed by Bardeen and Herring [38] atoms migrating by
exchange with vacancies perform a correlated walk. The atom experiences
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some ‘backward correlation’ since immediately after its exchange with the
vacancy the latter is still available for a backward hop of the atom. Then
the double sum in (1.30) does not vanish. For correlated diffusion on cubic
Bravais lattices9 (1.36) must be replaced by

D =
1
6
fl2ZΓ. (1.37)

In summary we can say that the diffusion coefficient (in cubic crystals) for
interstitial diffusers as well as that for diffusers which migrate by exchange
with defects (vacancies, divacancies, self-interstitials, etc.) is described by
(1.37). For interstitial diffusers (in very dilute interstitial alloys) the corre-
lation factor is unity whereas for defect-mediated diffusion the correlation
factor is smaller than unity. Numerical values for the correlation factors of
self-diffusion can be found in Sect. 1.8. We emphasize that with increasing
degree of correlation the correlation factor decreases.

1.6.2 Atomic Jumps and Diffusion

Due to lattice vibrations atoms in a crystal oscillate around their equilibrium
positions with frequencies ν0 of the order of the Debye frequency (typically
1012 to 1013 Hz). Usually an atom is confined to a certain site by a potential
barrier of height GM, which corresponds to the Gibbs free energy difference
between the configuration of the jumping atom at the saddle point and at
its equilibrium position. GM is denoted as Gibbs free energy of migration.
Diffusion is thermally activated which means that a fluctuation of thermal
energy pushes the atom over the energy barrier between two neighbouring
sites.

Using statistical thermodynamics Vineyard showed [39] that the jump
rate ω, at which an atomic jump into an empty neighbouring site occurs, can
be written in the form

ω = ν0 exp
(
−GM

RT

)
= ν0 exp

(SM

R

)
exp

(
−HM

RT

)
. (1.38)

On the right-hand side of (1.38) the Gibbs free energy according to

GM = HM − TSM (1.39)

is decomposed into enthalpy HM and entropy SM of migration (superscript
M).

A diffusion jump of a self-atom or of a substitutional solute atom will only
occur if a neighbouring lattice site is occupied by a vacancy. If p denotes the
vacancy availability factor (the probability that the neighbouring site of the

9 For an extension to non-cubic lattices see, e.g., [2].
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jumping atom is empty) the jump rate of the atom to this particular site is
given by

Γ = ωp. (1.40)

Inserting this expression into (1.37) yields

D =
1
6
fl2Zωp. (1.41)

For interstitial diffusion in a very dilute interstitial alloy we have f = 1,
p = 1, and Γ ≡ ω. Then (1.41) reduces to (1.36).

1.6.3 Diffusion Mechanisms

Solid-state physics tells us that atoms in crystals oscillate around their equi-
librium positions. Occasionally these oscillations become large enough to al-
low an atom to change its site. As outlined above these jumps give rise to
diffusion in solids. Various atomic mechanisms of diffusion in crystals have
been identified and are catalogued in what follows:

Interstitial Mechanism
Solute atoms which are considerably smaller than the solvent (lattice)

atoms (e.g. hydrogen, carbon, nitrogen, and oxygen) are usually incorpo-
rated in interstitial sites of a metal. In this way an interstitial solid solution
is formed. Interstitial solutes usually occupy octahedral or tetrahedral sites
of the lattice. Octahedral and tetrahedral interstitial sites in the fcc and bcc
lattices are illustrated in Fig. 1.7. Interstitial solutes can diffuse by jumping
from one interstitial site to the next as shown in Fig. 1.8. This mechanism
is sometimes also denoted as direct interstitial mechanism in order to distin-
guish it more clearly from the interstitialcy mechanism discussed below.

(a) (b)

Fig. 1.7. Octahedral (a) and tetrahedral (b) interstitial sites in the fcc (left) and
bcc (right) lattice. Lattice atoms (open circles); interstitial sites (full circles).

Vacancy Mechanism
Self-atoms or substitutional solute atoms migrate by jumping into a neigh-

bouring vacant site as illustrated in Fig. 1.9. In thermal equilibrium the
atomic fraction of vacancies Ceq

V in a monoatomic crystal is given by
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Fig. 1.8. Direct interstitial
mechanism of diffusion.

⇒

Fig. 1.9. Vacancy mechanism of diffu-
sion.

⇒

Fig. 1.10. Divacancy mechanism of dif-
fusion.

Ceq
V = exp

(SF

R

)
exp

(
−HF

RT

)
, (1.42)

where SF andHF denote formation entropy and enthalpy of a vacancy (super-
script F ). For self-diffusion the vacancy availability factor p in (1.40) equals
Ceq

V . Typical values for Ceq
V near the melting temperature of metallic elements

lie between 10−4 and 10−3 (in molar fractions) [40]. From (1.38), (1.40), and
(1.42) we get for the jump rate of an atom in the case of self-diffusion

Γ = ν0 exp
(SF + SM

R

)
exp

(
−HF +HM

RT

)
. (1.43)

Self-diffusion in metals and alloys, in many ionic crystals (e.g. alkali halides)
and ceramic materials occurs by the vacancy mechanism.

Attractive or repulsive interactions modify the probability to find a va-
cancy on a nearest-neighbour site of a solute atom. For a very dilute sub-
stitutional solution the probability p of finding a vacancy next to the solute
atom is given by

p = Ceq
V exp

(GB

RT

)
, (1.44)

where GB denotes the Gibbs free energy of binding between vacancy and
solute (superscript B). The quantity GF−GB can be considered as the Gibbs
free energy for the formation of a vacancy on a nearest neighbour site of
the foreign atom. For attractive interaction (GB > 0) p is enhanced and for
repulsive interaction (GB < 0) p is reduced compared to the equilibrium site
fraction of vacancies Ceq

V in a pure solvent10.
10 Note the convention: The binding energy is positive for attractive interaction.
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Divacancy Mechanism
Diffusion of self-atoms or substitutional solute atoms can also occur via

bound pairs of vacancies (denoted as divacancies or as vacancy pairs) as
illustrated in Fig. 1.10. At thermal equilibrium divacancies in an elemental
crystal are formed from monovacancies according to the reaction

V + V � 2V . (1.45)

As a consequence of the law of mass action we have for the mole fractions
CV and C2V of mono- and divacancies

Ceq
2V = K (Ceq

V )2 . (1.46)

The quantity K contains the Gibbs free binding energy of the vacancy pair.
Since the monovacancy population under equilibrium conditions increases
with temperature, the concentration of divacancies Ceq

2V becomes more sig-
nificant at high temperatures. Divacancies in fcc metals have a higher mo-
bility than monovacancies [40]. Therefore self-diffusion of fcc metals usually
has some divacancy contribution in addition to the vacancy mechanism. The
latter is, however, the dominating mechanism at temperatures below 2/3 of
the melting temperature [22].

Interstitialcy Mechanism
In this case self-interstitials – extra atoms located between lattice sites –

act as diffusion vehicles. As illustrated in Fig. 1.11 a self-interstitial replaces
an atom on a substitutional site which then replaces again a neighbouring
lattice atom. Self-interstitials are responsible for diffusion in the silver sublat-
tice of silver halides. In silicon, the base material of microelectronic devices,
the interstitialcy mechanism dominates self-diffusion and plays a prominent
role in the diffusion of some solute atoms including important doping ele-
ments [41]. This is not surprising since the diamond lattice (coordination
number 4) provides sufficient space for interstitial species. For a detailed dis-
cussion of the diffusion mechanism in Si see Chap. 4, Sect. 3.

In densely packed metals contributions of this mechanism are negligible
for thermal diffusion. Self-interstitials in metals have a fairly high formation
enthalpy compared to vacancies [40]. Therefore the concentration of the lat-
ter is dominating completely under equilibrium conditions. The interstitialcy

�

�

Fig. 1.11. Interstitialcy mechanism of diffusion.
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mechanism is, however, important for radiation induced diffusion, since then
self-interstitials and vacancies are created in equal numbers by irradiation of
a crystal with energetic particles.

Interstitial-Substitutional Exchange Mechanisms
Some solute atoms (B) can be dissolved on interstitial (Bi) and substi-

tutional sites (Bs) of a solvent crystal (A) and diffuse via an interstitial-
substitutional exchange mechanism (see Fig. 1.12). For some of these so-called
‘hybride solutes’ the diffusivity of Bi is much higher than the diffusivity of Bs

whereas the opposite is true for the solubilities. Under such conditions the
incorporation of B atoms can occur by the fast diffusion of Bi and the sub-
sequent change-over to Bs. Two types of interstitial-substitutional exchange
mechanisms can be distinguished:

If the change-over involves vacancies (V) according to

Bi + V � Bs (1.47)

the mechanism is denoted as dissociative mechanism (sometimes also: Frank-
Turnbull mechanism or Longini mechanism). The rapid diffusion of Cu in
germanium (see Chap. 4, Sect. 4.3) and of some foreign metallic elements in
polyvalent metals such as lead, tin, niobium, titanium, and zirconium has
been attributed to this mechanism (see Sect. 1.9).

If the change-over involves self-interstitials (Ai) according to

Bi � Bs + Ai (1.48)

the mechanism is denoted as kick-out mechanism. The fast diffusion of Au, Pt
and Zn in silicon has been attributed to this mechanism [41,42] (see Chap. 4,
Sect. 4.3).

For a description of diffusion processes, which involve interstitial-substitu-
tional exchange reactions, Fick’s equations must be supplemented by reaction

�
� �
� � ��

Bi V V

�
�
� ��

�
� ��

Bi V

Fig. 1.12. Interstitial-substitutional exchange mechanisms of foreign atom diffu-
sion. Upper part: dissociative mechanism. Lower part: kick-out mechanism.
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terms. Since three species are involved, sets of three coupled diffusion-reaction
equations result for both mechanisms mentioned above. Solutions of these
equations – apart from a few (interesting) special cases – can only be ob-
tained by numerical methods. For details we refer the reader to the literature
(e.g. [41, 42]).

In the following four sections we consider examples of normal interstitial
diffusion, diffusion of hydrogen, self-diffusion in pure metals, and of impurity
diffusion in metals11. We shall see below that the Arrhenius parameters of
(1.20) can be readily interpreted in terms of properties of atomic defects.

1.7 Interstitial Diffusion in Metals

1.7.1 ‘Normal’ Interstitial Solutes

Carbon, nitrogen, and oxygen often form interstitial solid solutions with met-
als. Interstitial sites in fcc and bcc lattices are illustrated in Fig. 1.7. Inter-
stitial diffusers have diffusion coefficients that are much larger than those
of self- and substitutional solute diffusion. Examples are shown in Fig. 1.13,
where diffusion of C, N, and O in niobium is displayed together with nio-
bium self-diffusion. The pertaining activation enthalpies and pre-exponential
factors are collected in Table 1.1 (for references see Chap. 8 in [6]).

Table 1.1. Activation parameters of some solutes in niobium (for references see [6]).

Diffuser C N O Nb
∆H [kJmol−1] 142 161 107 395
D0[ m2s−1] 1 × 10−6 6.3 × 10−6 4.2 × 10−7 5.2 × 10−5

For a dilute interstitial alloy the probability p in (1.40) is unity. The
magnitude of the activation enthalpy is also small with the result that the
diffusion coefficients for interstitial diffusion are many orders of magnitude
larger than those for self-diffusion of lattice atoms. Interstitial diffusivities
near the melting temperature of the solvent can be as high as diffusivities in
liquids.

For interstitial solutes, which migrate by the direct interstitial mechanism,
(1.36) can be written as

D = ga2ν0 exp
(SM

R

)
exp

(
−HM

RT

)
. (1.49)

Here a is the cubic lattice parameter and g a geometric factor, which depends
on the lattice geometry and on the type of interstitial sites (octahedral or

11 For reasons of simplicity we restrict ourselves to cubic crystals.
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Fig. 1.13. Diffusion of C, N, O and Nb in niobium.

tetrahedral) occupied by the solute. For octahedral sites (Fig. 1.7) we have
g = 1 for the fcc lattice and g = 1/6 for the bcc lattice. For interstitial
diffusers the Arrhenius parameters of (1.20) have the following meaning:

∆H = HM (1.50)

and

D0 = ga2ν0 exp
(SM

R

)
. (1.51)

With reasonable values for the migration entropy (between zero and several
R) and the attempt frequency (between 1012 and 1013 s−1) (1.51) yields the
following limits for the pre-exponential factors of interstitial solutes:

10−7m2s−1 ≤ D0 ≤ 10−5m2s−1. (1.52)

The experimental values of Table 1.1 confirm this estimate.
The fast diffusion of C, N, and O and the fact that N2 and O2 are gases, or,

in the case of carbon, readily available in gas or vapour form (CO2, CH4,...)
have an impact on the choice and availability of methods used to measure
their diffusion coefficients. Anelastic relaxation, magnetic relaxation (in the
case of ferromagnetic materials), internal friction, steady-state and in- and
out-diffusion methods are often applied. For details the reader is referred to
textbooks [2, 3].
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1.7.2 Hydrogen Diffusion

Hydrogen in metals provides itself an important and fascinating topic of ma-
terials science. It has also attracted considerable interest from the viewpoint
of applications. For example, the idea of hydrogen storage in metals is based
on the high solubility and fast diffusion of hydrogen in some metal-hydrogen
systems. Permeation of hydrogen through palladium membranes for hydro-
gen purification is an old and well-known application based on the very fast
diffusion. Nowadays, diffusion of hydrogen plays a key role for fuel cells which
use hydrogen or hydrocarbons as fuels.

Hydrogen forms interstitial solid solutions with most metallic elements.
Some metals have a negative enthalpy of solution and a high solubility for
hydrogen (e.g. group IV transition metals, group V transitions metals, and
palladium) and form hydrides at higher hydrogen concentrations. Other met-
als have a positive enthalpy of solution and a relatively low solubility (e.g.
group VI metals, group VII metals, and iron).

From a scientific point of view diffusion of hydrogen is significantly dif-
ferent from diffusion of other interstitial solutes. Fig. 1.14 shows an Arrhe-
nius plot for diffusion of hydrogen and its isotopes deuterium and tritium in
the bcc transition metal niobium (for references see Chap. 9 in [6]). We use
Fig. 1.14 to illustrate some characteristic features of hydrogen diffusion:
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Fig. 1.14. Diffusion of the hydrogen isotopes H, D, and T in niobium.
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– Diffusion of hydrogen and its isotopes is extremely rapid: Diffusivities
exceed that of heavier interstitials by many orders of magnitude as can
be seen from a comparison of Figs. 1.13 and 1.14. From Fig. 1.14 we get
DH = 8 × 10−9 m2s−1 near 300 0C. According to (1.36) the reciprocal
mean residence time τ−1 of H atoms is about 1012 s−1. This extremely
high value is of the order of the Debye frequency of niobium.

– Hydrogen has three isotopes (H, D, T): These isotopes differ consider-
ably in their isotopic masses, which offers the possibility to study large
isotope effects. Fig. 1.14 shows that normal hydrogen (H) diffuses more
rapidly than deuterium (D), and deuterium diffuses more rapidly than
tritium (T). In addition the activation enthalpies of hydrogen isotopes
are different and obey the inequalities

∆HH < ∆HD < ∆HT. (1.53)

In the classical regime the activation enthalpy of a diffuser is exclusively
determined by the chemistry of the system and not by the isotopic mass.
The latter enters the diffusion coefficient only via the mass dependence of
the attempt frequency. If many-body and quantum effects are negligible
the attempt frequency ν0 is related to the mass m of the diffuser simply
by

ν0 ∝ 1√
m
. (1.54)

This shows that (1.53) represents a non-classical effect. Similar non-
classical effects have been observed for hydrogen diffusion in the metals
vanadium and tantalum.

– Hydrogen is the lightest atom. As a consequence, quantum effects in dif-
fusion can be observed which are hardly detectable for heavier diffusers.
The deviation of hydrogen diffusivity from an Arrhenius law below room
temperature (see Fig. 1.14) has been attributed to incoherent tunneling
(e.g. [33]).

– Positive muons can be considered in several respects as light isotopes of
hydrogen [43]. The muon mass is by a factor of nine smaller than the
proton mass. Like the hydrogen nuclei, the muons may be considered as
very heavy compared with the electrons but nevertheless light compared
with most metal atoms. A prefered topic studied with positive muons in
metals is quantum diffusion (see, e. g., [44]).

The very fast diffusion and the often high solubility of hydrogen have con-
sequences for the experimental techniques used in hydrogen diffusion stud-
ies. Concentration-profile methods, permeation methods based on Fick’s first
law, absorption and desorption methods, electrochemical methods, and re-
laxation methods (Gorsky effect, magnetic after effect, etc.) are in use. Due
to the favourable gyromagnetic ratio of the proton and due its large incoher-
ent scattering cross section for neutrons, NMR and QENS, respectively, (see
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Chaps. 2 and 3 and [33]) are well suited for hydrogen diffusion studies. For a
more thorough discussion of hydrogen diffusion the reader is referred to text-
books [2,3], to reviews [30,32] and to Chap. 9 of the data collection [6]. Muon
diffusion can be studied by the muon spin resonance (µSR) technique [45],
which has some similarities with β-NMR (see Chap. 9).

1.8 Self-Diffusion in Metals

Self-diffusion is most conveniently studied by the tracer method described in
Sect. 1.4. As an exampleD values from 63Ni tracer measurements in nickel are
displayed in Fig. 1.15 according to [46, 47]. An enormous diffusivity range of
about 9 orders of magnitude has been covered by the combination of mechan-
ical sectioning [46] and sputter sectioning [47]. Most of the more important
metallic elements have been studied by tracer methods over similarly wide
ranges. In some cases the tracer data have been supplemented by additional
techniques. For example, NMR proved to be very useful in the cases of alu-
minium and lithium (cf. Chap. 9) where no radioisotopes appropriate for
tracer diffusion studies are available. For a collection of data and information
about the method(s) used for each metal the reader is referred to Chap. 2
in [6].
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Fig. 1.15. Self-diffusion of 63Ni in nickel. Open circles: data from mechanical sec-
tioning; full circles: data from sputter sectioning.
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The dominating mechanism of self-diffusion12 in metallic elements is the
vacancy mechanism illustrated in Fig. 1.9. Using (1.37) and (1.43) the diffu-
sion coefficient of tracer atoms can be written as

D = fa2ωCeq
V = fa2ν0 exp

(SF + SM

R

)
exp

(
−HF +HM

RT

)
. (1.55)

The Arrhenius parameters of (1.20) have the following meaning for vacancy
mediated self-diffusion:

∆H = HF + HM (1.56)

and

D0 = fa2ν0 exp
(SF + SM

R

)
. (1.57)

As already mentioned in Sect. 1.6 the correlation factor accounts for the
fact that for vacancy-mediated diffusion the tracer atom experiences some
‘backward correlation’ whereas the vacancy itself performs a random walk.
For monovacancies in cubic lattices f is a temperature-independent quantity,
which is approximately given by

f ≈ 1 − 2
Z

(1.58)

where Z is the coordination number. Vacancy jumps into one of the Z di-
rections occur with the probability 1/Z and an immediate backward jump
effectively ‘cancels’ two tracer jumps. (1.58) is a ‘rule of thumb’. Exact values
according to [2] are listed in Table 1.2.

Table 1.2. Correlation factors of vacancy-mediated self-diffusion in cubic lattices.

Structure fcc bcc sc diamond
f 0.7815 0.727 0.653 0.5

For self-diffusion in non-cubic crystals correlation factors are orientation
and temperature dependent. For example, the two correlation factors in hcp
crystals depend on the ratio of the jump rates within and oblique to the basal
plane (see, e.g., [2]).

1.8.1 Face-Centered Cubic Metals

Self-diffusion coefficients of several face-centered cubic (fcc) metals are shown
in the Arrhenius diagram of Fig. 1.16. For each metal the temperature scale is
12 For fcc metals at temperatures above about 2/3 of the melting temperature an

additional contribution of divacancies (see Fig. 1.10) has been proposed (see [22]
and the textbooks [2, 3]), which for reasons of simplicity will be not considered
here.
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Fig. 1.16. Self-diffusion of several fcc metals versus reciprocal temperature nor-
malized to their melting temperatures Tm.

normalized by its melting temperature Tm (homologous temperature scale).
The following empirical rules for fcc metals are evident:

– Diffusivities near the melting temperature are similar for all fcc metals
and lie between about 10−12 m2s−1 and 10−13 m2s−1.

– The Arrhenius lines on homologous scale have approximately the same
slope. Since the slope equals −∆H/RTm an empirical correlation between
the activation enthalpy ∆H and the melting temperature Tm exists. This
can be stated as follows:

∆H ≈ (17 to 18)RTm . (1.59)

Equation (1.59) is sometimes denoted as the rule of van Liempt. The
melting temperature in (1.59) is expressed in Kelvin.

– The pre-exponential factors lie typically within the following range:

5 × 10−6 m2s−1 < D0 < 10−3 m2s−1 . (1.60)

For the explanation of the empirical rules the reader is referred to [48]. Ac-
tivation parameters for self-diffusion of some fcc metals are listed in Table 1.3
(for references see Chap. 2 in [6]). According to (1.57) the pre-exponential
factors of Table 1.3 correspond to self-diffusion entropies
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Table 1.3. Activation parameters for self-diffusion in some fcc metals.

Metal Cu Ag Au Ni Pd Pt

∆H [kJ mol−1] 204 170 165 285 266 257
D0 [ 10−4 m2s−1] 0.35 0.046 0.027 1.77 0.205 0.05

∆S = SF + SM (1.61)

of several R. According to (1.56) the activation enthalpy Q equals the sum of
formation and migration enthalpies of the vacancy. For fcc metals indepen-
dent experimental determinations of the formation and migration properties
show that

HM

HF
≤ 1 (1.62)

is fulfilled. For a review of point defect properties in metals the reader is
referred to [40].

1.8.2 Body-Centered Cubic Metals

Self-diffusion coefficients of several body-centered cubic (bcc) metals are
shown in the Arrhenius diagram of Fig. 1.17 on a homologous temperature
scale. A comparison of Figs. 1.17 and 1.16 reveals the following differences
between fcc and bcc metals:

– Diffusivities at homologous temperatures are usually higher for bcc metals
than for fcc metals. At the melting temperature Tm the difference is about
one order of magnitude. Diffusivities for bcc metals near Tm lie between
about 10−11 m2s−1 and 10−12 m2s−1.

– The ‘spectrum’ of self-diffusivities is much wider for bcc metals than
for fcc metals. Self-diffusion is slowest for group VI metals and fastest
for group IV metals. It is interesting to note that the latter undergo
a structural phase transition from a hexagonal close-packed (hcp) low-
temperature to a bcc high-temperature phase.

– The Arrhenius diagram of self-diffusion for some bcc high-temperature
phases (β-titanium, β-zirconium) shows considerable upward curvature.

A common feature of fcc and bcc metals is that within one group of the
periodic table self-diffusion at homologous temperatures is slowest for the
lightest and fastest for the heaviest element of the group.

The very fast self-diffusion of bcc high-temperature phases and the wide
spectrum of diffusivities of bcc metals has been attributed to special fea-
tures of the lattice dynamics in bcc structures. A nearest-neighbour jump of
a self-atom in the bcc lattice is a jump in [111] direction. For bcc metals the
longitudinal phonon branch shows a minimum for 2/3[111] phonons, which is
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Fig. 1.17. Self-diffusion of several bcc metals versus reciprocal temperature nor-
malized to their melting temperatures.

most pronounced for group IV metals. The associated low-phonon frequen-
cies indicate a small activation barrier for nearest-neighbour exchange jumps
between atom and vacancy [49, 50].

1.9 Impurity Diffusion in Metals

Let us now consider a very dilute substitutional binary alloy of metals A and
B with the mole fraction of B atoms much smaller than that of A atoms.
Then A is denoted as solvent (or matrix) and B is denoted as solute. Dif-
fusion in a dilute alloy has always two aspects: solute diffusion and solvent
diffusion. In this section we consider only solute diffusion in very dilute fcc
alloys13. This is often denoted as impurity diffusion. It implies that the solute
is isolated from other solutes in the matrix. In what follows we consider first
the ‘normal’ behaviour of substitutional impurities. There are, however, some
remarkable exceptions from ‘normal’ impurity diffusion, which will be men-
tioned afterwards.
13 For solvent diffusion in dilute alloys the reader may consult [2,3].
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Fig. 1.18. Substitutional impurity diffusion in an fcc lattice: ‘five-frequency model’
for vacancy jumps in the presence of an impurity atom. Impurity (full circle), solvent
atoms (open circles), vacancy (squares).

1.9.1 ‘Normal’ Impurity Diffusion in fcc Metals

From the atomistic expression (1.41) derived in Sect. 1.6.1 and (1.44) we get
for the impurity diffusion coefficient DB∗

A (denoted in the following by D2) of
vacancy-mediated diffusion in cubic Bravais lattices

D2 = f2a
2ω2C

eq
V exp

(GB

RT

)
. (1.63)

To be specific we consider in the following fcc solvents14. If only nearest-
neighbour interactions between vacancy and impurity occur, four vacancy
jump rates apart from the jump rate ω in the pure solvent must be considered.
This so-called five-frequency model introduced by Lidiard [51] is illustrated
in Fig. 1.18.15 The jump rates of the vacancy are denoted as follows:

ω1: jump rate for rotation of vacancy-solute complex,
ω2: jump rate of vacancy-solute exchange,
ω3: dissociation jump rate of vacancy-solute complex,
ω4: association jump rate of vacancy-solute complex,
ω: vacancy jump rate in the pure solvent.

As shown by Manning [15], the correlation factor of impurity diffusion
can be written as

f2 =
ω1 + (7/2)Fω3

ω2 + ω1 + (7/2)Fω3
, (1.64)

14 For impurity diffusion in bcc or hcp solvents see [2,3].
15 We adopt the name ‘five-frequency model’ commonly used in the literature. The

physical meaning of the quantities ωi is that of jump rates.
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where F = F (ω/ω4) is a function of the rate ratio ω/ω4 [15]. F approaches
unity for small ω4/ω. F = 0.7357 for ω4 = ω and F = 2/7 for large ω4/ω. In
the case of self-diffusion all jump rates are equal. Then f2 = f = 0.7815 (see
Table 1.2). It is interesting to note that because of the condition of detailed
thermal equilibrium the relationship

ω4

ω3
= exp

(GB

RT

)
(1.65)

must hold. This equation relates the dissociation and association rates of the
vacancy-solute complex to its Gibbs free energy of binding GB.

The impurity diffusion coefficient (1.63) can be recast to give

D2 = f2a
2ν0 exp

(
SF − SB + SM

2

R

)
exp

(
−HF −HB +HM

2

RT

)
, (1.66)

where HB and SB denote binding enthalpy and entropy of the vacancy-solute
complex and HM

2 and SM
2 enthalpy and entropy of the vacancy-solute ex-

change jump. The activation enthalpy for impurity diffusion is then given
by

∆H2 = HF −HB +HM
2 − C (1.67)

where the correlation term
C = R

∂ ln f2

∂ 1
T

(1.68)

results from the temperature dependence of the impurity diffusion correlation
factor.

It is evident from (1.55), (1.63), and (1.65) that the ratio of the diffusion
coefficients between impurity- and self-diffusion can be written as

D2

D
=

ω4

ω3

ω2

ω

f2

f
. (1.69)

This expression shows that the diffusion coefficient D2 of a substitutional
impurity differs from that for self-diffusion D in the pure solvent for three
reasons:

– The factor ω4/ω3 shows that the probability to find a vacancy on a
nearest-neighbour site of the impurity is different from the equilibrium
vacancy concentration in the pure matrix because of vacancy-solute in-
teraction (1.65).

– The factor ω2/ω arises because the exchange rate between vacancy and
impurity and those between vacancy and host atoms are different.

– The factor f2/f arises because the correlation factor f2 of impurity dif-
fusion is no longer a geometric factor as in the case of self-diffusion. It
depends on various jump rates and hence also on temperature.
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Fig. 1.19. Diffusion of several solutes and self-diffusion (dashed line) in silver.

Fig. 1.19 shows an Arrhenius diagram of various solutes in silver together
with silver self-diffusion (for references see Chap. 3 in [6]). It reveals charac-
teristic features of ‘normal’ diffusion of substitutional solute atoms:

– The D2 values of solutes lie in a relatively narrow band around self-
diffusion according to

1/100 � D2/D � 100. (1.70)

– The following empirical limits are found for pre-exponential factors

0.1 � D0(solute)
D0(self)

� 10 (1.71)

and activation enthalpies

0.75 � ∆H2(solute)
∆H(self)

� 1.25. (1.72)

Substitutional solutes in other fcc solvents like Cu, Au, and Ni also confirm
these limits (see Chap. 3 in [6] for references).

Since solute and solvent atoms are located on the same lattice and since
their diffusion is mediated by vacancies this rather small diffusivity disper-
sion is not surprising. It reflects the high efficiency of screening of point
charges in some metals (e.g. noble metals) which normally limits the vacancy-
impurity interaction enthalpy to values between 0.1 and 0.3 eV. Such values
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are small relative to the vacancy formation enthalpies, which are in the order
of 1 eV [40]. Using ∆H = HF +HM we get for the difference of the activation
enthalpies between solute- and self-diffusion

∆Q = ∆H2 −∆H = −HB + (HM
2 −HM) − C. (1.73)

A useful theoretical approach associates ∆Q with the charge difference be-
tween solute and vacancy. Positive solutes, generally those of higher nominal
valence than the solvent, tend to have a net attraction with the vacancies.
Such solutes diffuse more rapidly and with lower activation energies than
self-diffusion. Calculations of ∆Q from a theory based on the free electron
model using the Thomas-Fermi approximation for the interaction potential
have been made, e. g., by LeClaire [52]. Good agreement was found with ex-
periments for solute diffusion in noble metals and zinc. ∆Q is negative and
its absolute value increases with the difference in valence between the solvent
and the solute. For transition-metal solutes in noble metals and for other sol-
vents such as the alkali metals, divalent magnesium, and trivalent aluminium
the calculated values of ∆Q do not agree with the experiment.

1.9.2 Slow Diffusion of Transition-Metal Solutes in Aluminium

Fig. 1.20 shows an Arrhenius diagram of various solutes in aluminium to-
gether with aluminium self-diffusion according to [53]. The transition ele-
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Fig. 1.20. Diffusion of several solutes and self-diffusion (dashed line) in aluminium.
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ments are diffusers with high activation energies and high pre-exponential fac-
tors. Most of them have extremely low diffusivities as compared to aluminium
self-diffusion. In contrast, non-transition elements have diffusion rates similar
or slightly higher than self-diffusion and show only small diffusivity disper-
sion.

The pressure dependence of the solute diffusion coefficients in aluminium
has been studied in [35,54]. The activation volumes of non-transition element
solute diffusers are close to one atomic volume (Ω) and not much different
from the activation volume of self-diffusion. However, the transition elements
are diffusers with high activation volumes between 1.67 and 2.7Ω. These
findings can be attributed to differences in vacancy-solute interaction in alu-
minium between transition and non-transition element solutes [54]. The large
∆H2 values of transition element solutes according to (1.67) indicate a strong
repulsion between solute and vacancy (HB < 0) and/or a large activation en-
thalpy HM

2 for the solute-vacancy exchange jump.

1.9.3 Fast Solute Diffusion in ‘Open’ Metals

Fast solute diffusion is observed in some polyvalent metals, which are some-
times also denoted as ‘open’ metals [55]. ’Open’ refers to the large ratio
between atomic and ionic radius of the solvent. This solvent property leads
for solutes with relatively small radii to the occurrence of fast solute diffusion.

As an example, Fig. 1.21 shows an Arrhenius diagram of solutes in lead to-
gether with lead self-diffusion (for references see Chap. 3 in [6]). Some solutes
(thallium, tin) in lead show ‘normal’ behaviour. However, noble metals, nickel
group solutes, and zinc have diffusivities which are three or more orders of
magnitude faster than self-diffusion.

Noble metal solutes are also fast diffusers in the group IVB metal tin
and in the group IIIB metals indium and thallium. The late transition el-
ements Fe, Co, and Ni in group IVA metals (α-titanium, α-zirconium, and
α-hafnium), and Co in niobium are very fast diffusers as well [55, 56].

Fast solute diffusion in metals has been attributed to the dissociative
mechanism (see, e.g., [57]). This mechanism operates for solutes which are
incorporated not only on substitutional sites but also to some extend in
interstitial sites of the solvent metal (see Sect. 1.6). According to (1.47) the
dissociative reaction involves vacancies. Provided that local equilibrium is
established, the concentrations of the three involved species must fulfill the
law of mass action

CiCV

Cs
= K(T ) =

Ceq
i Ceq

V

Ceq
s

, (1.74)

where Ci, Cs, and CV denote molar fractions of interstitial solute, substitu-
tional solute, and vacancies. K(T ) is a constant which depends on tempera-
ture and the superscript eq denotes thermal equilibrium.

A metal crystal with a normal density of dislocations has a sufficient
abundance of vacancy sources or sinks to keep the vacancies everywhere in
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Fig. 1.21. Diffusion
of several solutes and
self-diffusion (dashed
line) in lead.

equilibrium. Then the effective diffusivity of solutes is given by [41,57]

Deff =
DsC

eq
s

Ceq
i + Ceq

s
+

DiC
eq
i

Ceq
i + Ceq

s
, (1.75)

where Di denotes the diffusivity of the solute in its interstitial state and Ds

its vacancy-mediated diffusivity on substitutional sites.
For solutes with dominating interstitial solubility and diffusivity (Ceq

i 

Ceq

s and Di 
 Ds), (1.75) reduces to the trivial case of interstitial diffusion

Deff ≈ Di. (1.76)

For so-called hybrid solutes the substitutional solubility dominates (Ceq
s 


Ceq
i ) but the interstitial diffusivity is much faster than the substitutional one

(Di >
 Ds). Then the effective diffusivity (1.75) approaches

Deff ≈ DiC
eq
i

Ceq
s

. (1.77)

This relation contains the factor

Ceq
i

Ceq
s

= exp
(
−Gis

RT

)
, (1.78)

whereGis denotes the Gibbs free energy difference between the interstitial and
substitutional positions of the solute. The rather wide ‘diffusivity dispersion’
of fast solute diffusers can be largely attributed to this factor.
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Fast diffusion of solutes is well known for the semiconducting elements sil-
icon and germanium [41,58,59] (see also Chap. 4). It has been also attributed
to interstitial-substitutional exchange mechanisms. The kick-out mechanism
is dominating diffusion of Au, Pt, and Zn in silicon [41,42], whereas the disso-
ciative mechanism is operating, e. g., for Cu in germanium [60]. From a chem-
ical viewpoint these similarities are not surprising. Silicon and germanium are
group IV elements such as the ‘open’ metals lead and tin. Fast diffusion is
also observed for compound semiconductors (e. g. Zn in GaAs [61]). Actually,
the concepts growing out from studies of fast diffusion in semiconductors
(see Chap. 4) have strongly influenced the interpretation of fast diffusion in
metals.

1.10 Self-Diffusion in Binary Intermetallics

Some intermetallics (intermetallic compounds or ordered alloys) have at-
tracted much attention as technological materials for high-temperature ap-
plications. A knowledge of their diffusion behaviour is of interest for the
production of these materials and for their use in technological applications.
Whereas diffusion in many pure metals and dilute alloys is thoroughly in-
vestigated and reasonably well understood, systematic diffusion studies for
intermetallics are still relatively scarce although considerable progress has
been achieved in recent years [62–67].

An atomistic understanding of diffusion in intermetallics in terms of de-
fect structure and diffusion mechanisms is obviously more complex than for
metallic elements:

Intermetallics crystallize in a variety of structures with ordered atom dis-
tributions. Examples are the B2-, D03-, L12-, L10-, D019-, B20-, and Laves-
phase structures. Some intermetallics are ordered up to the melting temper-
ature, others undergo order-disorder transitions because entropy favours a
less ordered or even a random arrangement of atoms at high temperatures.
We know intermetallic phases with wide phase fields and others which exist
as line compounds. Some intermetallics occur for certain stoichiometric com-
positions, others are observed for off-stoichiometric compositions only. Some
phases compensate off-stoichiometry by vacancies others by antisite atoms.

Let us concentrate on the more common cubic intermetallics. Their struc-
tures are the following (see Fig. 1.22):

B2 (or CsCl) Structure: The approximate composition is AB. The
B2 structure can be derived from the bcc lattice, if the two primitive cubic
sublattices are occupied by different kinds of atoms. Examples are FeAl,
CoAl, NiAl, CoGa, PdIn, CuZn, AuZn, and AuCd.

D03 (or Fe3Si) Structure: The approximate composition is A3B. The
D03-structure can also be considered as an ordered structure derived from
the bcc lattice. In Fig. 1.22 (middle) A-atoms occupy white and grey sites,
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Fig. 1.22. Some frequent structures of intermetallics: B2 (left), D03 (middle), L12

(right).

B-atoms occupy black sites. D03 order is observed for example in Fe3Si, in
Fe3Al below about 825 K, and for some high-temperature phases.

L12 (or Cu3Au) Structure: The approximate composition is A3B. The
L12-structure is an ordered structure in the fcc lattice. In Fig. 1.22 (right)
A-atoms occupy white sites, B-atoms occupy black sites . Examples are the
Ni-based compounds Ni3Al, Ni3Ga, and Ni3Ge.

Self-diffusion is the most basic diffusion process also in alloys and com-
pounds. Like in the case of pure metals studies of self-diffusion utilize such
tiny amounts of tracer atoms (see Sect. 1.4) of the diffusing species that the
chemical composition of the sample does practically not change due to dif-
fusion. In a binary system two tracer self-diffusion coefficients – one for A
atoms and another one for B atoms – can be determined.

Table 1.4 compiles those binary intermetallics with B2, D03, and L12

structures for which self-diffusion data are available. In some cases self-
diffusion of both components has indeed been studied. For NiAl and FeAl
impurity diffusion of some solutes has been studied, since no appropriate Al
tracer is available. Also interdiffusion studies were used to deduce the Al
diffusivity via the Darken-Manning equation (see Sect. 1.11) from the in-
terdiffusion coefficient, the tracer diffusivity of the other alloy constituent,
and the thermodynamic factor (see, e. g., [68]). In what follows it may suffice
to illustrate some characteristic features of self-diffusion in intermetallics. A
comprehensive discussion of all aspects of self-diffusion is beyond the scope
of this chapter. For further information the reader is referred to several
overviews [62–66,69].

1.10.1 Influence of Order-Disorder Transition

An order-disorder transition occurs, for example, between the β- and β′-brass
phases of the Cu-Zn system. Below the order-disorder transition (at about
741 K) the compound shows B2 order (β′ brass). At high temperatures the
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Table 1.4. Self-diffusion in B2, D03, and L12 structure intermetallics. For the
underlined components tracer self-diffusion data or data of suitable substitutional
substitutes (in brackets) are available16.

Structure Intermetallic

B2 CuZn, AuCd, AuZn, CoGa, PdIn, FeCo, NiAl(Ga),
FeAl(Zn,In,Cr,Mn,Ni,Co) AgMg, NiGa

L12 Ni3Al, Ni3Ge, Ni3Ga, Co3Ti, Pt3Mn, Cu3Au (disordered)

D03 Fe3Si(Ge), Cu3Sn, Cu3Sb, Ni3Sb, Fe3Al

disordered A2 structure (β brass) is formed. The beautiful pioneering work
of Kuper et al. [70] on self-diffusion of 64Cu and 65Zn in CuZn is displayed
in Fig. 1.23. The influence of the order-disorder transition on the diffusion
behaviour of both components is visible as a change in slope of the Arrhenius
plot. The activation energies obey the inequality

QB2 > QA2. (1.79)

The occurrence of order impedes the diffusion of both components in a similar
way. Similar effects of the B2-A2 transition have been observed for diffusion
in FeCo.

Recently Fe diffusion in Fe3Al has been studied over a wide temperature
range [21]. Fe3Al undergoes two order-disorder transitions from D03 order
at low temperatures to B2 order at elevated temperatures to the completely
disordered A2 structure at high temperatures. At the critical temperatures
the slope of the Arrhenius diagram changes and the activation energies obey
the following sequence

QD03 > QB2 > QA2. (1.80)

The activation energy is highest for the structure with the highest degree
of order and lowest for the disordered structure. The effect is, however, less
pronounced in Fe3Al than in CuZn.

1.10.2 Coupled Diffusion in B2 Intermetallics

Fig. 1.23 reveals another remarkable feature of self-diffusion in B2 inter-
metallics. We recognize that Zn in β-brass diffuses only slightly faster than
Cu and that the ratio DZn/DCu never exceeds 2.3 [70]. For equiatomic FeCo

16 For references see [63–65].
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Fig. 1.23. Self-
diffusion of 64Cu and
65Zn in CuZn.

the ratio DFe/DCo is always close to unity [71]. This type of ‘coupling’ be-
tween the diffusivities of the components seems to be typical of B2 phases.
It can be observed in Fig. 1.24 for practically all B2 compounds, for which
both constituents have been investigated. In some cases (e.g. NiGa, CoGa)
the bounds for DA∗

AB/D
B∗
AB are somewhat wider than in the cases of CuZn and

FeCo. However, the difference between the diffusivities is less than one or-
der of magnitude. This ‘coupling’ between the diffusivities of the components
indicates that the diffusion of both atomic species is likely mediated by the
same defect.

As already mentioned the B2 structure consists of two primitive cubic
sublattices. In the completely ordered state of a stoichiometric B2 compound,
A atoms occupy one sublattice and B atoms the other. This implies that
each A atom is surrounded by 8 B atoms on nearest-neighbour sites and vice
versa. If the A and B atoms are distributed at random, a body-centered cubic
(bcc) structure (A2 structure) is obtained. When atomic diffusion in a highly
B2 ordered compound would take place by a random interchange between
vacancies and atoms via nearest-neighbour jumps, migrating vacancies would
leave traces of antisite defects (AB and BA) behind. In order to maintain order
such disordered regions must either be avoided or compensated during the
diffusion process.

If the order energy is high and the degree of order close to unity sublattice
diffusion of each component via second nearest-neighbour jumps is conceiv-
able. It is well known that diffusion of the components in ionic crystals and in
simple oxides occurs indeed by sublattice diffusion (see Chap. 5 and, e. g., [2]).
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However, sublattice diffusion cannot be the dominating mechanism in B2 in-
termetallics since sublattice diffusion does not lead to a coupled diffusion of
the components.

Ingenious order-retaining mechanisms, for which diffusion of both com-
ponents is coupled, have been proposed for B2 intermetallics:

– Six-Jump-Cycle Mechanism: A vacancy trajectory of 6 consecutive
nearest-neighbour jumps displaces atoms in such a way that after the
cycle is completed the order is re-established [72]. The ratio of the diffu-
sivities for this mechanism for a highly ordered stochiometric compound
lies within the following narrow limits [69]: 0.5 < DA∗

AB/D
B∗
AB < 2.

– Triple-Defect Mechanism: In a stoichiometric B2 compound vacancies
and antisite defects can associate to form triple defects AB+2VA, with VA

denoting a vacancy on the A-sublattice and AB an A-antite atom on the B-
sublattice. Then the ratio of the diffusivities for this mechanism lies within
the following limits: 1/13.3 < DA∗

AB/D
B∗
AB < 13.3 [73]. As the composition

deviates from stochiometry antisite atoms widen these limits [74]. Thus,
in a less ordered state, values of DA∗

AB/D
B∗
AB beyond these limits can no

longer be considered as an indication that the six-jump-cycle mechanism
does not operate.

– Antistructure-Bridge Mechanism: For an ordered B2 phase with
some substitutional disorder antisite defects can act as ‘bridges’ to es-
tablish low-energy sequences for vacancy jumps [75]. Long-range diffusion
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via this mechanism requires a sufficient concentration of antisite defects
to reach the percolation threshold [76].

– Vacancy-Pair Mechanism: A bound pair of vacancies (on both sublat-
tices) can mediate diffusion of both components by successive correlated
next-nearest-neighbour jumps. Whereas this mechanism has some rele-
vance for CsCl-type ionic crystals it is unlikely for B2 intermetallics.

A detailed description of these mechanisms can be found in [63,67]. It seems
that in those B2 compounds, which are composed of a group VIIIB metal
(Co, Fe, Ni, Pd, etc.) and a group IIIA metal (Al, Ga, In, etc.), the triple
defect mechanism is important. By contrast, B2 phases composed of a noble
metal (Cu, Ag, Au) and a divalent metal (Mg, Zn, Cd) are considered as
candidates for the 6-jump cycle mechanism. Clearly, the antistructure bridge
mechanism becomes more important at deviations from stoichiometry.

Perhaps the most thoroughly studied B2 compound is NiAl, where Ni
diffusion has been measured for various compositions on both Al- and Ni-
rich sides and over wide temperature intervals [77, 78]. While the Ni tracer
diffusivity increases notably on the Ni-rich side of the stoichiometric compo-
sition it is practically not changed with the composition on the Al-rich side in
spite of the large amount of structural Ni-vacancies (several %). Calculations
of the atomic mechanism using embedded atom potentials showed that the
triple-defect mechanism dominates self-diffusion on the Al-rich side and for
stoichiometric NiAl. With increasing Ni-content after reaching the percola-
tion threshold the antistructure-bridge mechanism dominates on the Ni-rich
side [77]. These findings for NiAl agree with the pioneering work on the B2
phase CoGa by Stolwijk et al. [79] .

1.10.3 The Cu3Au Rule

The Cu3Au rule (see, e.g., [2]) provides a logical tool to fathom the self-
diffusion behaviour in non-equiatomic intermetallics. It states that in some
compounds of type AmBn, where the ratio m/n is equal to or greater than
2, the majority element diffuses faster than the minority element:

DA∗
AB > DB∗

AB. (1.81)

Here DA∗
AB and DB∗

AB denote the tracer diffusion coefficients of the components
A and B. For geometric reasons discussed below, A3B intermetallics with L12

or D03 structure are good candidates to test the validity of the ‘Cu3Au’ rule17.
17 According to [2] it should only be applied to intermetallics in which diffusion

occurs via vacancies. Phases such as, e.g., Fe3C, where one of the two elements
is sufficiently small to occupy interstitial sites in a matrix composed of the other
element, must be excluded. A nice essay about the Cu3Au rule can be found
in [80].
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The A sublattice in D03 structure compounds is interconnected by nearest-
neighbour bonds, whereas this is not the case for the B sublattice (see
Fig. 1.22). Thus the A atoms can diffuse within their own sublattice via
nearest-neighbour (NN) jumps. If B atoms migrate within their own sublat-
tice, their jump vector corresponds to a third-nearest neighbour jump with
respect to the bcc unit cell. An alternative for the diffusion of B atoms are
nearest-neighbour jumps which, however, create B antisite defects. Both op-
tions are very likely associated with higher activation enthalpies for diffusion
of B atoms compared to A atoms. Those D03 compounds (Fe3Si, Cu3Sn, see
Table 1.4), for which reliable diffusion data for both constituents are available,
indeed fulfill this rule [63]. In L12 compounds each A atom is surrounded by
8 A atoms and 4 B atoms on nearest-neighbour sites (see Fig. 1.22). In con-
trast to this situation, a B atom faces only A atoms on surrounding nearest-
neighbour sites. This implies that similar to the D03 structure the sublattice
of the majority component A is interconnected by nearest-neighbour bonds,
whereas this is not the case for the sublattice of the minority component B.
Vacancy motion restricted to the majority sublattice can promote diffusion
of A atoms. However, diffusion of B atoms either requires jump lengths larger
than the nearest-neighbour distance or the formation of antisite defects, if it
is promoted by NN jumps of vacancies.

As can be seen from Fig. 1.25, diffusion of the majority component Ni
in Ni3Ge is indeed significantly faster than that of the minority component
Ge. Experiments on Ni3Ga revealed that the trend is similar to the case of
Ni3Ge, but the difference of the diffusivities is not so large [81].

For the technologically important compound Ni3Al no unquestioned data
of Al diffusion are available [62,63]. There are, however, indications that the
ratio of the two diffusion coefficients is not far from unity [64]. It is quite
natural that Ni diffusion in L12 compounds occurs by a sublattice vacancy
mechanism. On the other hand, it is not clear how the diffusion of the minor-
ity elements occurs in Ni based L12 compounds. Possible mechanisms have
been discussed in [64]. Most likely minority elements diffuse as antisite atoms
in the majority sublattice. Thus the Cu3Au rule should not be considered to
be universal. A compound which is a beautiful example for the validity of the
rule is MoSi2. Tracer diffusion studies of Si and Mo diffusion revealed a huge
asymmetry between the diffusion of the majority and the minority compo-
nent. Si diffusion is 6 to 7 orders of magnitude faster than Mo diffusion [82].
It is interesting to note that MoSi2 is one of the compounds on which the
formulation of the rule was based to interpret silicide formation from thin
Mo layers on Si wafers [80].
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Fig. 1.25. Self-diffusion in three L12 structure intermetallics (Ni3Ge, Ni3Ga, Ni3Al)
and in Ni normalized to the melting temperatures (1405 K, 1383 K, 1635 K, and
1726 K).

1.11 Interdiffusion in Substitutional Binary Alloys

1.11.1 Boltzmann-Matano Method

A diffusion coefficient in a binary alloy measured in a chemical composition
gradient is denoted as chemical or interdiffusion coefficient D̃ (see also Sect.
1.3 and Chap. 5). The experimental procedure of an interdiffusion study is
schematically illustrated in Fig. 1.26. A diffusion couple consisting of two
homogeneous, homo-phase alloys with different compositions (AXB1−X and
AY B1−Y ), but within the same phase field of the phase diagram, is formed.
Usually the thicknesses of the couple members are chosen very large as com-
pared to the average diffusion length. Then each couple member can be con-
sidered to be semi-infinite. The interdiffusion profile is measured after the
diffusion anneal, e.g., by electron microprobe analysis.

Boltzmann-Matano analysis, which is based on Boltzmann’s transforma-
tion of Fick’s second law [83] and a procedure suggested by Matano [84], is
employed to evaluate – in general concentration-dependent – interdiffusion
coefficients from an experimental profile according to

D̃(c∗) =
(

2 t
∂c

∂x

∣∣∣∣
x∗

)−1 c∗∫
c−

(xM − x) dc . (1.82)
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Fig. 1.26. Schematic illustration
of a single-phase interdiffusion
experiment. The original inter-
face (Kirkendall plane) is marked
by inert markers. The position of
the Matano plane (xM) is also in-
dicated.

Here t is the time of the diffusion anneal and x the position. In (1.82) xM

denotes the position of the so-called Matano plane, which is defined by

c+∫
c−

(xM − x) dc = 0 . (1.83)

c− and c+ refer to the initial compositions of the two starting alloys (see
Fig. 1.26). To deduce D̃ one determines the Matano plane first. Afterwards,
the area corresponding to the integral in (1.82) and the slope of the tangent
to the c(x) curve at the concentration c∗ must be calculated (see Fig. 1.26).
This procedure is repeated for various choices of c∗. In this way D̃ values are
obtained for various compositions.
In (1.82) and in the rest of this chapter volume changes have been neglected
for reasons of simplicity. There are systems in which the volume will change
in the course of interdiffusion. The generalisation of (1.82) for non-constant
volume was given by Sauer and Freise [85] and can be found in textbooks [2,
3, 5].
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1.11.2 Darken’s Equations

As already mentioned in Sect. 1.3 the intrinsic diffusion coefficients DA and
DB are related to the interdiffusion coefficient D̃ and to the velocity of the
marker movement vK (Kirkendall velocity) in a Kirkendall experiment (see
Fig. 1.27). The relations deduced by Darken [14] are as follows:

D̃ = XBDA +XADB, (1.84)

where XA and XB denote the mole fractions of the elements A and B respec-
tively. The Kirkendall velocity is given by

vK = (DA −DB)
∂XA

∂x
(1.85)

with ∂XA/∂x denoting the concentration gradient at the Kirkendall plane.
Using (1.84) and (1.85) the intrinsic diffusion coefficients DA and DB can be
deduced if the interdiffusion coefficient and the Kirkendall velocity are known
from the experiment.

The reason why diffusion occurs is always a decrease in the Gibbs free
energy of the system. This implies that the atoms are diffusing from regions
where their chemical potential is high to regions where it is low, i.e., the
driving force for diffusion is the gradient of the chemical potential (see also
Sect. 1.3.2). As a consequence the interdiffusion coefficient D̃ is related to the
tracer self-diffusion coefficients of the components in a homogeneous alloy via

D̃ = (XAD
B∗
AB +XBD

A∗
AB) Φ. (1.86)

Here XA and XB denote the mole fractions of the components and Φ is the
thermodynamic factor of the alloy. Using a classical result from thermody-
namics of binary systems, the thermodynamic factor can be written as [2]

Fig. 1.27. Schematic illustration of the Kirkendall effect in a diffusion couple
composed of two pure metals A and B. The circles represent inert markers inserted
at the original interface. The line at time t represent the position of the markers
after the diffusion anneal. The solid line is a graph of the concentration of A atoms
in the couple after diffusion time t. As drawn, the B atoms diffuse into A faster than
those of A diffuse into B. As a result the interface moves to the right (DB > DA).
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Φ =
XAXB

RT

d2G

dX2
A

=
∂ln ai

∂lnXi
= 1 +

∂lnγi

∂lnXi
, (1.87)

where G denotes Gibbs free energy, ai the (chemical) activity, and γi the
coefficient of activity of species i ( = A or B). According to the Gibbs-Duhem
relation for binary systems, the thermodynamic factor is identical for both
species. Equations (1.84), (1.85), and (1.86) are denoted as the equations of
Darken.

The thermodynamic factor is unity for ideal solutions. It is larger than
unity for phases with negative deviations from ideality and smaller than unity
in the opposite case. Negative deviations are expected for systems with or-
der. Therefore thermodynamic factors of intermetallic compounds are often
larger, sometimes even considerably larger than unity due to the attractive
interaction between the constituents of the intermetallic phase. As a con-
sequence interdiffusion coefficients are often larger than the bracket term in
(1.86). The latter corresponds to a weighted average of the tracer diffusivities.
Activation enthalpies of interdiffusion are often smaller than those for tracer
diffusion due to the temperature variation of the thermodynamic factor.

1.11.3 Darken-Manning Relations

The Darken relation between tracer diffusivities and the chemical diffusion
coefficient (1.86) is widely used in practice. Although it remains a very useful
equation it was recognized soon that from a theoretical viewpoint (1.86) is
incomplete. Manning [15, 86] developed equations for vacancy-mediated dif-
fusion in a so-called ’random alloy’ (vacancies and A and B atoms distributed
at random on the same lattice). In general, the results are like those obtained
by Darken but with ’vacancy-wind’ corrections18. The intrinsic diffusion co-
efficients and the interdiffusion coefficient, respectively, are given by

DA = DA∗
ABΦ

[
1 +

1 − f

f

XA(DA∗
AB −DB∗

AB)
(XADA∗

AB +XBDB∗
AB)

]
(1.88)

and an analogous equation for DB, and

D̃ = (XAD
B∗
AB +XBD

A∗
AB) Φ

×
[
1 +

1 − f

f

XAXB(DA∗
AB −DB∗

AB)2

(XADA∗
AB +XBDB∗

AB)(XADB∗
AB +XBDA∗

AB)

]
. (1.89)

The factors in square brackets are Manning’s vacancy-wind corrections to
Darken’s equations. One also finds that the Kirkendall velocity is increased
by the addition of a factor f−1 to (1.85). As usual f denotes the correla-
tion factor of self-diffusion. In substitutional alloys the Manning corrections,
18 A transparent derivation can be found in [4].
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while significant, will never be very large even when one of the tracer self-
diffusivities is much greater than the other. For instance the Kirkendall ve-
locity is increased by about 30 % in an fcc alloy.

It is a debated question whether the Darken-Manning equations can be
applied to ordered intermetallics. The answer depends on the structure, the
type of disorder, and the diffusion mechanism. For example, according to
Belova and Murch [87] (1.89) can be used for B2 compounds with antisite
disorder.

1.12 Multiphase Diffusion in Binary Systems

The experimental procedure in a multiphase diffusion experiment is schemat-
ically illustrated in the upper part of Fig. 1.28. A diffusion couple is formed
from the two elements A and B or from two compounds AXB1−X and
AY B1−Y . Let us suppose that the phase diagram of the system contains inter-
metallics. Then interdiffusion will give rise to the formation of intermetallic
layers. A hypothetical phase diagram (containing only one intermetallic com-
pound) and a concentration profile resulting from interdiffusion is illustrated
in the lower part of Fig. 1.28.

Fig. 1.28. Schematic illustration of a multi-phase diffusion experiment. Upper
part: Diffusion couple before and after a diffusion anneal. Lower part: Interrelation
between a hypothetical phase diagram and an interdiffusion profile after a diffusion
anneal at temperature T0.
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The name multi-phase diffusion emphasizes the diffusional aspect of the
whole process. However, there is also the aspect of a chemical reaction be-
tween the atomic species at the phase boundaries. The overall kinetics of
phase formation and growth can be either governed by diffusion across the
growing product phase(s) or by reaction(s) occurring at the interfaces. In the
first case the process is denoted to be diffusion controlled; in the second case
it is called to be reaction controlled. In general the kinetics of formation and
growth of intermetallic layers will be the result of both processes. For this
phenomenon the name reaction (reactive) diffusion has been suggested. In
very thin layers gradients are very large and diffusion processes proceed very
fast. Then the process is in the interface-reaction controlled regime. However,
during progress of reaction diffusion the layer thickness increases. Then dif-
fusion of the reacting species needs more and more time. Finally, diffusion
processes determine the overall kinetics [88, 89].

When the whole process is diffusion controlled, the growth of the inter-
metallic layers in a binary system obeys a parabolic growth law

∆x2
β = 2 kβ t, (1.90)

where ∆xβ denotes the thickness of the layer. Kidson has shown that growth
constants have the following meaning [90]:

kβ = 2

{[
D̃γβ Kγβ − D̃βγ Kβγ

Cβγ − Cγβ

]
−

[
D̃βα Kβα − D̃αβ Kαβ

Cαβ − Cβα

]}2

. (1.91)

Cαβ denotes the equilibrium composition (in atomic fractions) on the α-side
of an α/β-interface, D̃αβ the interdiffusion coefficient in the α-phase near the
α/β -interface, and Kαβ is the composition gradient in the α-phase near the
α/β-interface in a diagram of concentration versus x/

√
t. As already men-

tioned, in the derivation of (1.91) any explicit influence of interface processes
like phase nucleation, atomic transfer across the interface, and the creation
and/or annihilation of point defects at the interfaces has been disregarded.
This is only justified for long diffusion times. Then the growth process is
diffusion controlled [91, 92].

We consider as an example multiphase diffusion in the system Ni-Al [93].
Apart from the primary and terminal solid solutions five intermetallic com-
pounds are present in the phase diagram of Ni–Al: Al3Ni, Al3Ni2, AlNi,
Al3Ni5 and Ni3Al [94]. Fig. 1.29 shows an optical micrograph of a diffusion
couple of pure Al and Ni after a diffusion anneal of 48 h at 823 K. Layers
of the Al-rich intermetallic compounds Al3Ni and Al3Ni2 are clearly visible.
Their compositions can be identified in the profile across the diffusion zone
measured by electron microprobe analysis. The layer thicknesses of Ni-rich
compounds – at the relatively low temperature of the diffusion anneal – are
too small to be detectable in Fig. 1.29. As can be seen from Fig. 1.30 the
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Al Ni3 2
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Fig. 1.29. Optical micrograph of Al–Ni diffusion couple after a diffusion anneal of
48 h at 823 K (left). Composition profile obtained by electron microprobe analysis
(right).

compound Al3Ni2 indeed shows a parabolic growth. The growth constant
obtained from these experiments is thermally activated with an enthalpy of
126kJ mol−1.

We emphasize that according to (1.91) growth constants have a complex
meaning. They depend on diffusivities in the bordering layers as well as on
the diffusivity of the growing phase, on the concentration gradients on both
sides of the interfaces, and on the (in general temperature dependent) solubil-
ity limits of the phases. If one deduces an activation enthalpy for the growth
process it has a complex meaning as well. Its value is usually not identical
with the activation enthalpy of interdiffusion in the growing layer. The ac-
tivation enthalpy assigned to the growth of an intermetallic layer is at most
only an average of several more fundamental activation enthalpies. If a linear
Arrhenius plot is observed for the growth constant, this is only empirically
useful. It indicates either that one of the terms dominates over the others or
that the activation enthalpies are similar to each other. In addition, growth
constants may be influenced by mass transport along diffusion short circuits
like grain boundaries in the growing layer.
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Fig. 1.30. Parabolic
growth of the inter-
metallic compound
Al3Ni2 in Al–Ni diffu-
sion couples.

1.13 Conclusion

Diffusion is an important topic of materials science since the phenomenon of
diffusion is of both practical importance and of fundamental interest. In this
chapter we have outlined the continuum description and the basic atomic
mechanisms of bulk diffusion in solids. The various diffusion coefficients,
which are relevant for diffusion in solid elements and binary alloys, have been
introduced: the tracer diffusion coefficient(s) of self-diffusion, tracer diffusion
coefficients of foreign elements, the chemical (or interdiffusion) coefficient in
a composition gradient, and the intrinsic diffusion coefficients. The most im-
portant experimental method for diffusion studies is the tracer technique in
combination with mechanical and/or sputter sectioning for depth profiling.
Various other techniques for the measurement of diffusion profiles have been
also considered. Indirect methods including mechanical and magnetic relax-
ation and nuclear methods such as nuclear magnetic relaxation, Mößbauer
spectroscopy and quasielastic neutron scattering have been mentioned only
briefly since they are the main topics of Chaps. 2, 3 and 9.

Self-diffusion is the most basic diffusion process in a solid. It is well studied
for most metallic elements. In close-packed metals self-diffusion occurs pre-
dominantly by a vacancy mechanism with some small contributions of diva-
cancies at temperatures above 2/3 of the melting temperature. Self-diffusion
in bcc metals is also vacancy-mediated. In a homologous temperature scale
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it is faster and the range of diffusivities is much wider than for close-packed
metals.

Diffusion of small foreign atoms proceeds much faster than self-diffusion
of the host metal. Small foreign atoms such as H, C, N, and O are usually
incorporated in octahedral or tetrahedral interstitial sites of the host lattice
and diffuse via a direct interstitial mechanism. Diffusion of hydrogen is a
particularly interesting case for scientific and application-oriented reasons. Its
diffusion is extremely rapid, non-classical isotope effects occur, and quantum
effects may cause strong deviations from a linear Arrhenius-like temperature
dependence of H diffusion.

Diffusion of solutes in substitutional alloys is vacancy-mediated. Solute
diffusion in very dilute alloys (impurity diffusion) is normally described by
diffusion coefficients which lie in a relatively narrow band around those of
self-diffusion of the host (solvent). This rather small diffusivity dispersion
is understandable since solute and solvent atoms are located on sites of the
same lattice and both use vacancies as diffusion vehicles. It reflects the high
efficiency for screening of electrical point charges of some metallic hosts such
as the noble metals and zinc. This efficient screening limits the solute-vacancy
interaction to relatively small values.

Remarkable exceptions from ‘normal’ behaviour of solute diffusion are
observed for polyvalent metals: Transition-metal solutes in aluminium are
extremely slow diffusers with high activation energies, high pre-exponential
factors and high activation volumes. Very likely this indicates a strong repul-
sion between vacancy and solute somewhere on the vacancy-solute exchange
path. Fast solute diffusion is observed, e.g., for noble metal solutes in lead
and tin and for late-transition-element solutes in group IVA solvents (zirco-
nium, titanium and hafnium). The fast diffusion has been attributed to the
dissociative mechanism. The latter operates for solutes which are dissolved
on substitutional and interstitial sites. Even when its interstitial fraction is
very small it can be responsible for the rapid diffusion. Fast solute diffusion
is also observed in the semiconductors silicon and germanium (see Chap. 4).

Systematic studies of diffusion in intermetallics (intermetallic compounds
and ordered alloys) have become available only recently. An understanding
of diffusion in terms of atomic mechanisms is more complex than for metal-
lic elements. The current knowledge about self-diffusion has been illustrated
for binary intermetallics with B2-, L12-, and D03-structures. Important fac-
tors which influence diffusion such as the crystal structure, the state of order
and disorder, the temperature and the composition have been illustrated. In
a broad sense diffusion is mediated by vacancy-type defects, which include
triple-defects and antistructure-bridge mechanisms. Relevant atomic mech-
anism must take into account that the degree of order in the material is
maintained during diffusion. Despite of the progress made in recent years,
diffusion in intermetallics is a field that deserves further attention.
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The field of interdiffusion in binary alloys has been only touched in this
chapter. The Boltzmann-Matano method (or a related method) is necessary
to deduce interdiffusion coefficients from composition profiles. A detailed in-
terpretation of the interdiffusion coefficient requires also measurements of
the Kirkendall effect. The analysis given by Darken and its refinement by
Manning permits to deduce the intrinsic diffusion coefficients. The latter are
related to the tracer diffusion coefficients of the components in homogeneous
alloys via the thermodynamic factor of the alloy and the so-called vacancy-
wind corrections.

Multiphase diffusion or reaction diffusion occurs in a binary alloy system
with one or several intermediate phases. In an appropriate diffusion couple
layers of the intermediate phase(s) form and grow. Their growth is often diffu-
sion controlled. Then their growth constants are related to the interdiffusion
coefficients.

Notation

a cubic lattice parameter
ai activity (chemical) of species i
c volume concentration of diffusing species
CV (Ceq

V ) mole fraction of vacancies (in thermal equilibrium)
C2V (Ceq

2V) mole fraction of divacancies (in thermal equilibrium)
Ci (Ceq

i ) mole fraction of interstitial solutes (in equilibrium)
Cs (Ceq

s ) mole fraction of substitutional solutes (in equilibrium)
D diffusion coefficient (second rank tensor)
DI , DII , DIII diffusion coefficients in principal diffusion directions
D diffusion coefficient, also self-diffusion coefficient in a cubic

crystal
D̃ interdiffusion coefficient (also chemical diffusion coefficient)
D2 diffusion coefficient of solute (impurity) in dilute alloy (also

DC∗
A )

Di diffusion coefficient of a solute in interstitial sites
DA∗

A , tracer self-diffusion coefficients of in pure metal A
DA∗

AB, DB∗
AB tracer diffusion coefficients of component A or B in a binary

material
DC∗

A , DC∗
AB, tracer diffusion coefficients of impurity C in pure metal A

or in a binary A-B material
D0 pre-exponential factor of diffusion (including diffusion en-

tropy)
D

′
0 pre-exponential factor of diffusion (without diffusion en-

tropy)
f correlation factor, correlation factor of self-diffusion
f2 correlation factor of solute diffusion
g geometry factor
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GB Gibbs free energy of binding for vacancy-solute complex
GF Gibbs free energy of vacancy formation
GM Gibbs free energy of vacancy migration
Gis Gibbs free energy of formation of an interstitial solute from

a substitutional one
HB binding enthalpy of vacancy-solute complex
HF enthalpy of vacancy formation
HM enthalpy of vacancy migration
HM

2 enthalpy of vacancy-solute exchange
∆H activation enthalpy of self-diffusion
∆H2 activation enthalpy of substitutional impurity diffusion
∆HH activation enthalpy of hydrogen diffusion
∆HD activation enthalpy of deuterium diffusion
∆HT activation enthalpy of tritium diffusion
j diffusion flux (number of particles per second and unit

area)
j1, j2, j3 components of diffusion flux
l jump length of an atomic jump
∆Q ∆H2 −∆H
R gas constant
ri jump vector of an atom
R total displacement vector of an atom〈
R2

〉
mean square displacement of atoms〈

RRW
2
〉

mean square displacement of atoms for a true random walk
SF entropy of vacancy formation
SM entropy of vacancy migration
∆S diffusion entropy
t time
T temperature
x position
xM position of Matano plane
XA, XB mole fractions of A and B in a binary A-B alloy
Z coordination number
αi direction cosine of diffusion flux with axis i = 1, 2, 3
γi coefficient of activity of species i
Γ jump rate of an atom in a certain direction
Θ angle between diffusion flux and crystal axis
µi chemical potential of species i
ν0 attempt frequency (≈ Debye frequency)
τ = 1/ΓZ mean residence time of an atom in a coordination lattice

with coordination number Z
τ−1 mean jump rate of an atom in any direction on a lattice
Φ thermodynamic factor
ω jump rate of vacancy in the matrix
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ω1 jump rate for rotation of vacancy-solute complex in a dilute
(fcc) alloy

ω2 jump rate of vacancy-solute exchange
ω3 dissociation jump rate of vacancy-solute complex
ω4 association jump rate of vacancy-solute complex
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49. U. Köhler, Chr. Herzig: Philos. Mag. A58, 769 (1988)
50. G. Vogl, W. Petry: Physik. Blätter 50, 925 (1994)
51. A.B. Lidiard: Philos. Mag. 46, 1218 (1955)
52. A.D. LeClaire: Philos. Mag. 7, 141 (1962)
53. G. Rummel, Th. Zumkley, M. Eggersmann, K. Freitag, H. Mehrer: Z. Metall-

kde. 86, 121 (1995)
54. G. Rummel, Th. Zumkley, M. Eggersmann, K. Freitag, H. Mehrer: Z. Metall-

kde. 86, 131 (1995)



62 Helmut Mehrer

55. G.M. Hood: Defect and Diffusion Forum 95 - 98, 755(1993)
56. F. Wenwer, N.A. Stolwijk, H. Mehrer: Z. Metallkd. 80, 205 (1989)
57. W.K. Warburton, D. Turnbull. In: Diffusion in Solids – Recent Developments,

ed by A.S. Nowick, J.J. Burton, (Academic Press, New York 1975) p 171
58. A. Seeger, K.P. Chik: Phys. Stat. Sol. 29, 455 (1968)
59. N.A. Stolwijk, H. Bracht. In: Diffusion in Semiconductors and Non-Metallic

Solids, Landolt-Börnstein, Numerical Data and Functional Relationships in Sci-
ence and Technology, New Series Vol. III/33, ed by D.L. Beke, (Springer, Berlin
Heidelberg New York 1998)

60. F.C. Frank, D. Turnbull: Phys. Rev. 104, 617 (1956)
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2 The Elementary Diffusion Step

in Metals Studied by the Interference
of Gamma-Rays, X-Rays and Neutrons

Gero Vogl and Bogdan Sepiol

2.1 Introduction

The elementary diffusion jump in solids can be traced down with a bundle
of methods from solid state physics. In this chapter first the possibilities for
studying diffusion with the quasielastic version of Mößbauer spectroscopy and
neutron scattering are discussed. Since the first edition of this book two new
methods were adopted for studying the elementary diffusion jump. Whereas
as quasielastic methods Mößbauer spectroscopy and neutron scattering both
work in the energy domain, the new methods work in the time domain.
The new methods are nuclear resonance scattering (NRS) of synchrotron
radiation, i. e. a daughter of Mößbauer spectroscopy using synchrotron ra-
diation, and neutron spin echo spectroscopy. Nuclear resonance scattering
was adopted to diffusion studies in 1996, i.e. shortly before the appearance
of the first edition and was shortly mentioned there. Neutron spin echo had
not been applied to diffusion in crystalline systems before 2001. The spec-
trum of systems studied has considerably widened, firstly by the addition of
these methods, secondly due to more experiments performed with quasielas-
tic neutron scattering at improved spectrometers. This chapter is therefore
considerably renewed compared to the first edition.

Our contribution will report on vacancy-induced diffusion in metals and
alloys. The sensitivity of the methods cited in the preceding paragraph to the
elementary step of diffusion on a microscopic scale is their outstanding virtue.
Together with nuclear magnetic resonance measurements (see Chaps. 9 and
10) they are the representatives of diffusion methods provided by nuclear
solid state physics. These methods are “microscopic” in the sense that they
directly study jump vectors and jump rates (cf. Fig. 2.1). In addition we can
calculate the “macroscopic” diffusion coefficients from these quantities and
compare them with literature data obtained by tracer diffusion measurements
(Chap. 1 and [1, 2]), but this is not the main virtue of microscopic methods.

Of course there are other mechanisms proposed for diffusion than va-
cancy mechanisms (see Chap. 1). Some of them will be shortly discussed for
the cases of self-diffusion in titanium but – just as it turns out in these exam-
ples – the most important process of self-diffusion in metals is the vacancy
mechanism [3]. We will only discuss the basic results, more sophisticated ar-
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Fig. 2.1. Microscopic methods study
the frequency and the displace-
ment vectors of elementary diffusion
jumps.

gumentation is found in the cited literature. For a general review on diffusion
in solids see, e.g. [4, 5] and Chap. 1 of this book.

Sect. 2.2 introduces to the formalism, which relates jump diffusion of
atoms to the experimental methods, starting with diffusion on Bravais lat-
tices and ending with diffusion on the non-Bravais lattices of ordered phases.
Sect. 2.3 discusses experimental results, Sect. 2.4 sums up and concludes.

2.2 Self-Correlation Function and Quasielastic Methods

In this chapter we use the “scattering terminology” for all methods. Thus for
Mößbauer spectroscopy we use Q instead of k for the wave vector and the
scattering function S(Q, ω) instead of the absorption cross section σa(k, ω).
The advantage of directly comparable results for all methods outweighs the
inconvenience of an unusual terminology for Mößbauer spectroscopy. As the
formalism is discussed in detail in Chaps. 3, 18 and, e. g., in [6] we will only
give a short introduction to the most important equations.

The simple-minded picture of atoms jumping on the lattice can be pre-
cisely formulated applying the Van Hove correlation function [7]. Displace-
ments of atoms in space and time are described by the self-correlation function
Gs(r, t). This is the probability density to find an atom displaced by a vec-
tor r within a time interval t, averaged over all possible starting positions1.
Van Hove [7] introduced the formalism of the self-correlation function for the
scattering of thermal neutrons, Chudley and Elliott [8] used it for neutron

1 Note that here r denotes a displacement (in our case the jump vector) and not
a position.
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scattering in liquids and Singwi and Sjölander [9] for neutron scattering as
well as for the resonant absorption of γ-radiation (Mößbauer spectroscopy).
We are interested in the self-correlation function because the incoherent scat-
tering function S(Q, ω) is the double Fourier transform of Gs(r, t) in space
and time

S(Q, ω)∝Re
{∫ ∞

0

dt exp
(
−

[
Γ0

2�
+ iω

]
t

)∫
dr exp(iQ · r)Gs(r, t)

}
. (2.1)

All prefactors have been omitted since they are different for neutron scatter-
ing (see Chap. 3) and Mößbauer spectroscopy (see [10]). For neutron scat-
tering, Q is the scattering vector and �ω the energy transfer. As �ω is very
small the scattering process is nearly elastic or “quasielastic”, that is why
the method is called quasielastic neutron scattering (QENS). In analogy we
speak of quasielastic Mößbauer spectroscopy (QEMS) because the method is
based on the same theory as QENS, �ω again being very small. The term
Γ0t/2� has no meaning for QENS, it is specific for QEMS: Γ0 is the natural
width of the nuclear Mößbauer transition. Here S(Q, ω) is the cross section
for resonant nuclear absorption of γ radiation. Remember, that in any case
the calculated S(Q, ω) has to be convoluted with the resolution of the given
experimental set-up.

Gs(r, t) contains both, diffusional motion and motion induced by lat-
tice vibrations. Under certain conditions usually fulfilled in metals these two
contributions can be separated. The vibrational part gives the Debye-Waller
(Lamb-Mößbauer) factor fDW which rules the total intensity of scattered (res-
onantly absorbed) radiation while the diffusional part determines the shape
of the spectra.

Another important consequence of (2.1) is that due to the product Q · r
the scattering function S(Q, ω) depends on the relative orientation between
the scattering vector Q and the jump vector r and hence on the orientation
of the crystal lattice. Thus full information is obtained only by series of
measurements on single crystals at various orientations2.

At the first glance it seems possible to measure spectra of interesting
materials, then to perform an inverse double Fourier transform and arrive
directly at the self-correlation function Gs(r, t). Unfortunately, this is not
possible because of the finite experimental resolution. The loss of information
due to the finite resolution can not be reversed by an analytical deconvolution
of the measured spectra. Thus one has to choose a different way. Starting
from a diffusion model we calculate S(Q, ω), perform a convolution with
the resolution function and compare the obtained “theoretical” spectra with
the measured spectra. At the end of a selection process the most probable
diffusion mechanism remains.
2 In the case of non-crystalline samples (glasses, fluids etc.) there is no such

anisotropy.
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The next subsection deals with the way from a proposed diffusion mech-
anism to the spectrum.

2.2.1 Quasielastic Methods:
Mößbauer Spectroscopy and Neutron Scattering

Quasielastic neutron scattering is the method promoted in the late fifties
by Brockhouse [11] and for diffusion jumps in metals was first applied in
1976 [12,13], whereas quasielastic Mößbauer spectroscopy started in the late
sixties [14].

If diffusion in a solid is fast enough (D in the range from 10−14 to
10−10 m2s−1 for quasielastic Mößbauer spectroscopy and from 10−13 to
10−7 m2s−1 for quasielastic neutron scattering) this leads to the so-called
diffusional broadening of measured Mößbauer or neutron scattering spectra.
The Mößbauer effect is the following phenomenon: A γ quantum emitted by
a nucleus decaying from an excited to the ground level is resonantly absorbed
at the ground level of a second nucleus of the same isotope. Because of the ex-
treme sharpness of nuclear levels, any energy change of the γ quantum beyond
tenth of µeV (for the nucleus 57Fe) – i.e. any recoil or even phonon excitation
– must be absent or be compensated, otherwise the energy of the γ-quantum
would not match and resonance absorption would not occur. For 57Fe, by
far the most frequently used isotope in Mößbauer spectroscopy, the energy
difference between excited and ground level, i.e. the energy of the γ quantum,
is 14.4 keV corresponding to a length of its wave vector Q = 7.3 Å−1. This
can be understood in a roughly simplified picture: If at low temperatures
the emitting Mößbauer nuclei stay on their sites during the emission process,
the energy width of the emitted radiation is ruled by the mean lifetime τ0 of
the excited Mößbauer level. If at sufficiently high temperatures, however, the
mean residence time τ of diffusing atoms between two successive jumps is of
the same order of magnitude as or even smaller than the mean lifetime τ0 of
the Mößbauer level, on the average each emitting Mößbauer atom changes
its position during the emission process. Thus the wave train emitted by a
diffusing atom is “cut” to several shorter wave trains which leads to a larger
width (Fig. 2.2). As these wave trains are emitted by one and the same nu-
cleus they are coherent. The interference between wave trains emitted by the
same nucleus depends on the relative orientation between the jump vector
and the direction of the wave vectors. Therefore, in certain crystal directions
the line width is small while in other directions it is very large. In this picture
the broadening will be the larger the stronger the fragmentation of the wave
train is.

An analogous argumentation is possible for QENS where the wave train of
neutrons scattered by a diffusing atom is cut into several wave trains. While
QEMS has proved to be an appropriate tool for diffusion studies in iron
aluminides and silicides, it can not be applied to other B2 alloys. QENS, on
the other hand, can be applied for diffusion investigations in a broader range
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Fig. 2.2. Simplified, semi-classical explanation of the diffusional line broadening
for QEMS (top) and QENS (bottom). Q: wave vector (QEMS) or scattering vector
(QENS), ki, kf : initial and final wave vector.

of alloys, provided the diffusivity is fast enough because of about a factor
of hundred lower energy resolution of backscattering spectrometers IN10 or
IN16 at the high flux reactor ILL Grenoble.

Below we will treat this phenomenon in a more formalistic way.

Bravais Lattices

For a continuous medium, neglecting the discrete structure of real material,
the diffusion of particles must obey Fick’s equation (see Chap. 1). The solu-
tion of this equation neglects the discontinuous nature of real materials. In
a real material and at not too much elevated temperatures, diffusion can be
considered as jump diffusion as in the model of Chudley and Elliott [8]. This
model, although originally developed for liquids, found more applications in
solid state diffusion with the following assumptions [6]:

1. All sites on which diffusion takes place are equivalent, i.e. we have a
Bravais lattice.

2. The diffusion is independent of other kinds of motion like vibrations.
3. Only jumps to nearest-neighbour sites are allowed, ri is an ith vector

connecting these sites.
4. The jump time is negligible compared with the residence time τ on the

lattice site.
5. Successive jumps are uncorrelated, i.e. the jump direction of the follow-

ing jump is independent from the preceding one. With other words: the
present state of the system is determined only by the past state at a
particular time (Markov process).
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We restrict the discussion to the simple case of Markov processes. This
leads to a Markov master equation (see Chaps. 3 and 18) [15], which is a
linear differential equation (rate equation) for the evolution of the probability
density P (r, t) to find an atom at site r at time t

∂

∂t
P (r, t) =

1
Nτ

N∑
i=1

{P (r + ri, t) − P (r, t)} . (2.2)

With respect to some boundary conditions the solutions of this equation give
the self-correlation function Gs(r, t). The shape of the resulting S(Q, ω) (see
(2.1)) is a Lorentzian

S(Q, ω) ∝ fDW · Γ (Q)/2
(Γ (Q))/2)2 + (�ω)2

(2.3)

where fDW is the above mentioned Debye-Waller factor (lattice vibrations)
and Γ (Q) is the full width at half maximum (in the following denoted as
“(diffusional) line broadening”) of the Lorentzian. Γ (Q) depends on Q · r
and hence on the relative orientation between radiation and crystal:

Γ (Q) =
2�

τ
·

⎡⎣1 −
∑

j

WjEj

⎤⎦ ,

Ej =
1
Nj

Nj∑
i=1

eiQ·ri . (2.4)

Here τ−1 is the jump rate (τ is the mean residence time of an atom between
two successive jumps), Wj is the probability3 for a jump to coordination shell
j and Ej the corresponding structure factor. Nj denotes the number of sites
in coordination shell j and the ri are the i = 1 . . .Nj jump vectors to sites
in shell j.

Non-Bravais Lattices

Some alloys do not form a “simple” solid solution, i.e. a Bravais lattice with
sites statistically occupied by atoms of the alloy constituents, but exhibit
an additional type of order: they form a superlattice made up of different
sublattices each of which belongs to one species of atoms. Because in the
stoichiometry they are well ordered, a degree of order can be well controlled
by temperature, chemical composition and, beyond that, they are of high
technological interest [16]. Such lattices contain more than one atom per
primitive unit cell depending on the type of superstructure. It is energeti-
cally disfavoured to place an atom of a given species at a site on a “wrong”
3 Note that the Wj are normalized, i.e. the sum over all Wj equals unity.
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sublattice (antistructure defects). This complicates the diffusion mechanisms,
as e.g. jumps of a given atom species leading to wrong sites may be markedly
less probable than jumps to sites on the own sublattice, i.e. there are different
jump rates. In this case it is not sufficient to set up only one Markov equation
as in Sect. 2.2.1 for Bravais phases. For a superstructure with m sublattices
one needs m Markov equations. To solve such a system of m coupled rate
equations a matrix formalism is used. The Chudley and Elliott theory [8] was
extended by Rowe et al. [17] for hydrogen diffusion on interstitial sites of a
non-Bravais lattice. The Rowe theory assumes equal occupation of different
sublattices (sites with different “local symmetry” in the unit cell), and at-
tempts to extend the theory for systems with differently occupied sublattices
have been undertaken [18, 19]. This problem has been treated in details by
Randl et al. [20] for non-Bravais structures.

The jump matrix containing the coefficients of the Markov equation is in
general not Hermitian but has always real eigenvalues and thus can be trans-
formed to a Hermitian matrix [18]. Diagonalization of the hermitized jump
matrix gives the solutions of the Markov equations. The spectra of an alloy
with m sublattices are made up from m Lorentzian lines4. The linewidths of
the subspectra are calculated from the eigenvalues and the relative contribu-
tion (weight) of each subspectrum is determined by the eigenvectors.

The jump rates between nearest neighbour (NN) sites are constrained by
the detailed balance which demands that the number of atoms jumping in a
time unit from one sublattice into another must be equal to the number of
reverse jumps

ci
niτi

=
cj
njτj

(2.5)

where ci is the probability of occupation of the ith sublattice and
∑
ci = 1.

1/τi is the jump rate from a site of symmetry i to any of ni nearest-neighbour
sites.

We treat the so-called B2 structure (see Sect. 1.10 in Chap. 1) as an ex-
ample. This superstructure of two-component alloys AB is of special interest
for diffusion studies because in a B2 lattice each atom is surrounded by lattice
sites, which belong to the other species. It is based on a bcc unit cell where
atoms of one species occupy the edges of the unit cell while the body centred
positions belong to atoms of the other species. Thus NN jumps lead always to
antistructure sites. If such NN jumps are the only operative diffusion mech-
anism, we have to set up a 2 × 2 jump matrix and arrive at spectra which
are a sum of two Lorentzians. A useful quantity is the asymmetry parameter
α = τ1/τ2 (where τ1 is the mean residence time of diffusing atoms on their
own sublattice 1 and τ2 analogous for the wrong sublattice 2)5.

4 A sum of Lorentzians is – in general – not a Lorentzian.
5 Note that the same number of A atoms per unit time must jump from sublattice

1 to sublattice 2 and vice versa (“detailed balance”). Thus α is directly connected
to the occupation of the sublattices via α = τ1/τ2 = c1/c2.
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Fig. 2.3. B2 Structure: broadening and relative contributions (weights) of the two
quasielastic Mößbauer lines as a function of orientation ϑ for different values of the
asymmetry parameter α.

This parameter rules the shape of the spectra because the two residence
times τ1 and τ2 (or – in turn – the two jump rates τ−1

1 and τ−1
2 ) are “respon-

sible” for the diffusional line broadening of the two subspectra and their re-
spective contribution to the sum spectrum. Figure 2.3 shows the orientation-
dependent part of the line broadenings of the two subspectra (upper row)
and their contributions (lower row) for three different values of α. For a well
ordered B2 alloy AB the mean residence time τ1 of atoms of species A on
their own sublattice 1 is much longer than the mean residence time τ2 on the
“wrong” sublattice 2, which belongs to the other species B (as the total con-
centration of antistructure defects is low). Therefore α has a large value and
for large α one of the two Lorentzians is very broad while the other is rather
narrow (upper row in Fig. 2.3). But in turn the contribution of the broad line
is small (lower row). This leads to an experimental difficulty: such a broad
but weak line can hardly be observed because it vanishes in the background
of the measured spectra. The spectra seem to consist of one Lorentzian. This
holds even for an alloy, which already contains some excess iron atoms (e.g.
Fe55Al45 with α = 7.0, see Sect. 2.3.2).

The less well-ordered a B2 alloy is, i.e. the more antistructure defects a
B2 alloy contains, the more α decreases. For a moderate value of α like, e.g.,
α = 2.45 the broad line is not “too broad” and the relative contribution of
the broad line is higher (in some directions even higher than the contribution
of the narrow one). In such a case the two lines are easily resolvable, e.g., in
[113] direction. If α equals unity – i.e. the two residence times are equal –
in any direction one of the two lines vanishes. The resulting line broadening
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of the remaining single line is essentially the same as for diffusion in a bcc
Bravais lattice.

If the jump mechanism and jump rates are known one can calculate the
macroscopic diffusion coefficient, which can be compared with the tracer dif-
fusion coefficient. The diffusion coefficient is in a non-Bravais lattice a sum
of partial diffusion coefficients [4], where 1/τij is the jump rate from a site of
symmetry i to any nearest-neighbour site of symmetry j

D =
1
6

∑
i,j

(ri − rj)2τ−1
ij ci . (2.6)

Applying (2.6) to the B2 lattice structure one obtains

D =
1
4
a2

τ12

α

α+ 1
, (2.7)

where a is the lattice constant. QEMS diffusion coefficients [21,22], measured
without assuming any correlation effects, coincide well with tracer diffusion
values [23–25]. This is an argument against highly correlated diffusion mech-
anisms in B2 alloys (see Sect. 2.3.2).

2.2.2 Nuclear Resonant Scattering of Synchrotron Radiation

Nuclear resonant scattering of synchrotron radiation (NRS) was applied for
diffusion studies in the middle nineties [26]. Immediately after the theoretical
paper of Smirnov and Kohn [27] the first feasibility study has been performed
at ESRF Grenoble [26].The most important difference between NRS and the
quasielastic methods QEMS and QENS is that NRS works in the time domain
whereas the quasielastic methods work in the energy domain. The principal
idea of NRS is: the coherence of the synchrotron radiation (SR) in the forward
direction, after nuclear resonance absorption in the sample, is destroyed by
diffusion, which leads to a faster decay of the scattered intensity in forward
direction with respect to an undisturbed process. From this “diffusionally
accelerated” decay, details on the diffusion process can be derived.

The mathematical formulation of the problem can be found in [28–30].
Here we give only an outline characterizing differences between NRS and
QEMS/QENS.

In QEMS and QENS techniques the experimental spectrum S(Q, ω) is
obtained in the energy domain. In order to be compared with the mi-
croscopic diffusion mechanism described by the theory through the self-
correlation function Gs(r, t), it must be double Fourier transformed (see
(2.1)) S(Q, ω) ↔ I(Q, t) ↔ Gs(r, t), where the intermediate scattering func-
tion I(Q, t) is the result of the first (space-momentum) Fourier transform.
For simple Markovian diffusion on a crystalline Bravais lattice, the interme-
diate scattering function in forward direction, IFS(Q, t) can be calculated
analytically yielding the following exponential time-dependent function
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IFS(Q, t) ≈ I0
L2

4τ0
exp

[
− t

�
(Γ0 + Γ (Q))

]
, (2.8)

where L is the effective sample thickness proportional to the Debye-Waller
factor, I0 the scattered intensity at time zero and Γ (Q) is the linewidth
of (2.4). Equation (2.8) shows that the logarithm of the decay rate is pro-
portional to the width of the diffusional broadening Γ (Q) as measured in
classical QEMS. Equation (2.8) is correct only in the thin-sample approxi-
mation due to the much more important role of the effective sample thickness
in NRS than in QEMS or QENS. The most important isotope, which can be
used for diffusion studies by NRS, is once again 57Fe 6. In Fig. 2.4 the ef-
fect of increasing temperature resulting in the faster decay of the scattered
intensity in forward direction is clearly visible. At lower temperatures an ef-
fect of increased effective sample thickness L results in the curvature of the
exponential. If the sample is enriched in 57Fe isotope one can obtain very
high count-rates and much shorter measuring times compared to quasielastic
methods from Sect. 2.2.1.

2.2.3 Neutron Spin-Echo Spectroscopy

Neutron spin-echo (NSE) spectroscopy [31] has been successfully applied to
the study of the dynamics in amorphous systems (proteins, polymers, glassy
dynamics etc.) but we have shown that it is also suited for the investigation
of diffusion on lattices giving direct access to the jump mechanism [32].

NSE is a Fourier method and is sensitive to the time-dependent correlation
function yielding directly the intermediate scattering function I(Q, t) (see
preceding section). It bridges the gap in time scale between conventional
quasielastic neutron scattering and dynamic light scattering. NSE combines
the high energy resolution from QENS with the high intensity of a beam
which is only moderately monochromatic. In NSE the velocity change of
neutrons after scattering by a sample is measured by comparing the Larmor
precession in known magnetic fields before and after the scattering. This
comparison is made for each neutron individually, thus the resolution of the
velocity change can be much better than that corresponding to the width
of the incident beam. A detailed explanation of the method can be found in
Chap. 13.

To demonstrate the potential of the method to observe directly the jump
of atoms, NiGa as a model system was used (see figures in Sect. 2.3.2). An
unambiguous decision between two opposed diffusion models can be obtained
on the basis of two spectra only, provided the measurement is performed at Q
values near reciprocal superlattice points. From the experimental resolution
one can conclude, that diffusivities are around 10−13 m2s−1.
6 NRS may be called Mößbauer spectroscopy in the time domain.
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Fig. 2.4. Time dependence of
forward scattered intensity at
three temperatures with the
beam parallel to the crystal di-
rection [110] of a stoichiometric
FeAl sample.

2.2.4 Non-Resonant Methods

In the following a very basic approach for the calculation of the structure fac-
tor will be presented. Description of atomic movements by the self-correlation
function Gs(r, t) is actually only a special case of the more general descrip-
tion by the pair correlation function G(r, t). An expression for the coherent
scattering function on Bravais lattices has been given by Ross and Wilson [33]
(this problem is also discussed in Chap. 3 and in [34]).

One can split the pair-correlation function into a time-dependent part
G′(r, t) and a static part: G(r, t) = G′(r, t) + cΣδ(r − ri) [35], where c is
the concentration of the scattering atoms on the Bravais lattice, ri is the ith
lattice site and the summation is over all lattice sites. Inserting this equation
into (2.2) and solving by Fourier transformation with the boundary condition
G(r, 0) = (1 − c)δ(r) + cΣδ(r − ri) the coherent scattering function reads

S(Q, ω) = c(1 − c)
1
2Γ (Q)(

1
2Γ (Q)

)2 − (�ω)2
+ cNδ(ω)δ(Q − G) . (2.9)
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Equation (2.9) describes coherent scattering on Bravais lattices [34, 35]. The
quasielastic term with Lorentzian lineshape is, apart from a factor c(1 − c),
identical with the scattering function calculated from the self-correlation
function GS(r, t) for incoherent scattering (2.3). The purely elastic term de-
scribes Bragg scattering in directions, where the scattering vector equals the
reciprocal lattice vector G. The quasielastic term describes isotropic diffuse
scattering (note the pre-factor c(1−c) characteristic for the Laue-diffuse scat-
tering [36]). Note, that (2.9) is derived for a lattice occupied by one type of
scattering atoms only. Derivation for the case of a non-Bravais lattice with
one or more scattering atoms was achieved for the first time by Kaisermayr et
al. [35,37]. General conclusions are similar to conclusions in a Bravais lattice;
no quasielastic broadening apart from a negligible contribution from diffuse
scattering, can be expected in the Bragg reflections, irrespective if they are
of fundamental or superstructure type. If the lattice is occupied by more
than one scattering element, the different quasielastic parts are obtained by
simple summation of all elementary contributions. This prediction was exper-
imentally proven by measuring diffusion in B2 Co60Ga40 using time-domain
interferometry of synchrotron radiation [37]. For the idea of the method we
refer to Baron et al. [38].

From (2.9) and from equivalent derivation for non-Bravais lattices [35,37]
the following conclusions can be drawn:

– The coherent scattering function for diffusion in crystal structures is elas-
tic in Bragg reflections of fundamental and superstructure peaks.

– In the regions between the reciprocal lattice points, the quasielastic diffuse
scattering can be observed, i.e. scattering due to lattice disorder (Laue-
diffuse scattering). The scattering function S(Q, ω) is calculated in the
same way as the scattering function for the incoherent scattering, i.e., is
calculated from the self-correlation function (2.1).

– The largest intensity of the quasielastic component is in superstructure
lattice directions of the non-Bravais lattice7. It is not possible, however,
to measure quasielastic broadening at these positions since the diffuse
intensity will be completely hidden under the elastic Bragg line.

Observation of the diffuse scattering is difficult due to the very low inten-
sities, thus large detectors are necessary. Higher intensities can be measured
by scattering on samples without lattice structure, e.g. on glassy samples.
Such a glassy sample was measured by synchrotron radiation in the first
time-domain interferometry experiment of Baron et al. [38], or by Rayleigh
scattering of Mößbauer γ-quanta [39].

Finally a most interesting development should be mentioned: a new
method in diffusion studies is the X-ray photon correlation spectroscopy
7 For instance in the ordered B2 structure the largest intensity is in the [100]

direction.



2 Diffusion Studied by Interference of γ-Rays, X-Rays and Neutrons 77

(XPCS), which is a version of the old laser-speckles spectroscopy, but with
X-rays that can be used for the studies of metallic systems [40]. Although
in the best current third-generation X-ray sources the degree of coherence is
much lower than for lasers in the visible range, it is still sufficient for studies
of nanometer-size objects like studies of the dynamics of coarsening processes
or the motion of antiphase boundaries.

Preliminary results of time-domain interferometry, Rayleigh scattering of
Mößbauer radiation or XPCS, which are all non-resonant methods, i.e. not
limited to studies of selected isotopes only, are very promising. They predict
new possibilities for diffusion studies of atomistic processes. Though bril-
liance of current synchrotron radiation sources is insufficient for the studies
of atomic motion in crystalline solids, future sources like free electron lasers
will definitely enable this kind of research.

2.3 Experimental Results

2.3.1 Pure Metals and Dilute Alloys

Self-Diffusion in β-Titanium

Self-diffusion in titanium belongs to the fastest self-diffusion processes in
metals. The interesting question of the underlying mechanism was solved by
the use of QENS [41] and phonon spectroscopy [42] (see also Chap. 3 of this
book).

The driving force for diffusion jumps in metals are phonons. With the help
of phonon spectroscopy the reason for the high diffusivity in titanium could
be found [42]. At elevated temperatures the phonon spectrum of titanium
contains some very soft phonon modes, which influence the diffusion process.
Soft phonons correspond to large vibration amplitudes in real space. Parts of
the experimentally found atomic periodic displacements are parallel to the
direction of NN diffusion jumps while others periodically open and close the
configurational “windows” made up from other atoms through which an atom
has to pass in order to change the site. Therefore the atoms are “pushed”
to vacant NN sites and the migration energy is considerably lowered. This
explains the high diffusivity in titanium. Of course – for other metals or alloys
– other reasons for fast diffusion are possible. One of these will be discussed
for the case of Fe3Si in Sect. 2.3.2.

Iron Diffusion in Aluminium and Copper

Diffusion of dilute 57Fe in f.c.c Al or Cu single crystals has been investigated
by QEMS ( [43] and [44]). As this is not self-diffusion but impurity diffusion
one needs a somewhat extended theory, which was elaborated by Le Claire
[45] and Krivoglaz and Repetskiy [46] (see also Sect. 1.9) and adapted to the
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Fig. 2.5. QEMS spectra of dilute
57Fe in copper single crystals. No-
tice that the linewidth of the spec-
tra measured at 1313 K is different
for different directions of observation
ϑ = 55◦ and ϑ = 76.5◦.

current cases in [43] and [44]. This theory accounts for the fact that vacancies
are preferentially situated near the impurity atoms.

Figure 2.5 shows, as an example, four spectra measured on iron-doped
copper single crystals at 973K (bottom) and at 1313K at three different
orientations. The fitted single Lorentzian lines at 1313K are not only broader
than at 973K but also show a variation of the linewidth with orientation
ϑ (which is the angle between the Mößbauer wave vector Q and the [001]
crystal axis). In both metals the basic impurity diffusion mechanism could be
identified as a jump of an impurity atom to a nearest neighbour vacancy. The
diffusion coefficients determined for iron in copper at various temperatures
agree well with reference data [47] obtained by the tracer diffusion method.

2.3.2 Ordered Alloys

B2 Structure (CsCl Structure)

Iron Diffusion in FeAl

Within a wide homogeneity range on the iron rich side Fe1−xAlx alloys crys-
tallise in the B2 structure. As pointed out in Sect. 2.2.1, NN jumps in B2
lattices always lead to antistructure sites and should therefore be energeti-
cally disfavoured. Of course, this is only valid near equiatomic stoichiometry.
In alloys with more than 50 at.% Fe the excess iron atoms are situated on
aluminium sites, i.e. they form “built-in” antistructure defects.
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Fig. 2.6. Diffusional line broadening in Fe50.5Al49.5 (a) at 1065◦C for two differently
oriented slices (1 and 2) of the same crystal and (b) at 1040◦C for slice 1.

The most intriguing question for well ordered FeAl is, whether diffusing
atoms overcome the ordering energy and jump to NN sites or whether they
perform “far” jumps to e.g., second or third neighbour sites, which belong
to their own sublattice. Secondly, if a vacancy diffuses randomly via NN
jumps in a B2 lattice, it leaves a trace of antistructure defects behind. Thus
random diffusion of vacancies via NN jumps destroys the B2 superstructure.
In order to conserve the superstructure, vacancy diffusion via NN jumps
requires mechanisms, which restore the order after disordering jumps. Some of
the proposed mechanisms, which fulfil this condition, are discussed in Chap. 1.

Measurements on well-ordered Fe50.5Al49.5 [21] show, that all spectra are
well fitted by single Lorentzian lines. At first glance it follows from this that
iron diffusion occurs on a Bravais lattice, i.e. via “far” jumps between sites on
the iron sublattice and not via NN jumps to aluminium sites. If we plot the
line broadening (Γ0 already subtracted) as a function of orientation we obtain
Fig. 2.6. These data can be fitted with a superposition of the functions corre-
sponding to [100]- and [110]-jumps (solid line). A similar good fit is obtained
with an additional 10% contribution of [111]-jumps (broken line). Further
measurements on the off-stoichiometric alloy Fe55Al45 [22] give similar re-
sults, but in this case the data can not be fitted without a 20% contribution
of [111] jumps. Note that jumps directly to a [111] site, i.e. across the body
diagonal of the B2 unit cell, are hardly possible unless the body-centered
aluminium site is vacant.

Measurements of nearly-stoichiometric FeAl have been repeated with the
NRS method yielding a combination of [100] and [110] jumps in the ratio
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Fig. 2.7. Two-line spectrum of
Fe66Al35 at 1020◦C in [113] direction.

of (1.9 ± 0.1) : 1 [48], which agrees with conventional QEMS [21], but the
uncertainty of the NRS measurement is considerably smaller.

As pointed out in Sect. 2.2.1 the spectra of a B2 alloy may seem to
consist of one single Lorentzian even though diffusion takes places via NN
jumps if the asymmetry parameter α is large. For highly ordered Fe50.5Al49.5,
α should be high due to the relatively low concentration of antistructure
defects and a still large α can be expected for the still well ordered Fe55Al45.
Therefore, the amount of excess iron atoms was raised further and Fe65Al35
was measured, which is still B2 ordered but – due to the composition –
exhibits a considerable amount of disorder [22]. The spectra of this alloy
clearly consist of two Lorentzians (Fig. 2.7) and the complete set of spectra
measured at different orientations can only be fitted under the assumption
of NN jumps from the iron to the aluminium sublattice and vice versa.

This leads to a consistent picture of diffusion in Fe1−xAlx alloys. Start-
ing near the ideal B2 composition FeAl we find that iron atoms diffuse via
NN jumps to antistructure sites with a remarkably short residence time on
the aluminium sublattice (and hence a large α). With increasing iron con-
tent the residence time of iron atoms on the aluminium sublattice increases
and thus (at comparable temperatures from 1020◦C to 1090◦C) the asym-
metry parameter α decreases from 30 over 7.0 to 2.45 (Fe50.5Al49.5, Fe55Al45
and Fe65Al35, respectively). In “disordered” Fe3Al iron diffuses on a Bravais
lattice, i.e. α = 1.

In the interpretation of the diffusion mechanism in near-stoichiometric
FeAl another QEMS result is of prime importance. The relative intensity of
the Mößbauer spectrum measured as a function of the angle between the
[001] axis and the γ-radiation wave vector shows a clear minimum in the
[113] direction (Fig. 2.8). There is only one possible interpretation of this
result: iron jumps are NN-jumps via short occupation of the Al sublattice.
If the short residence time is much smaller than the Mößbauer time window
(τ0 = 141ns), everything that happens within this extremely short time is
invisible for Mößbauer spectroscopy and only the start and end positions
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Fig. 2.8. Angular dependence of
the Mößbauer line intensity for (a)
Fe50.5Al49.5 and (b) Fe55Al45.

enter into the Mößbauer spectra. The only effect on the spectrum is the
intensity minimum in the direction characteristic for NN jumps.

It should be pointed out that the picture obtained by QEMS and NRS
can today be confirmed by independent experimental results. Even theoretical
simulations, which contradicted this picture in the past [49], today confirm
it. On the basis of [50] and [51], one can exclude the six-jump cycle as a
mechanism of iron diffusion due to much too high concentration of vacancies
and antistructure atoms at temperatures where microscopic studies have been
performed. Neither mechanisms like an antistructure-bridge mechanism and
a triple-defect mechanism are operative (e.g. [51, 52]). The energy barrier
for direct Fe jumps on its own sublattice have been calculated by Fähnle et
al. [53]. The energy barrier for the next-nearest neighbour jump was 2.16 eV,
which is only slightly larger than the experimental migration energy, but
for the direct third-nearest neighbour jump the calculated energy was 6 eV,
which entirely excludes this possibility. Fähnle proposed a modified six-jump
cycle where two atoms jump in a correlated manner avoiding in this way the
creation of the Al vacancy [48, 53]. Recent defect-structure simulations [54],
which take into account the defect vibrational entropies and the effect of
magnetism, confirm the hybrid character of stoichiometric B2 FeAl 8 and a
considerable amount of Al antistructure atoms. These results confirm the NN
jump as the most reasonable elementary diffusion jump in B2 FeAl.

Thus the conclusion for Fe diffusion in FexAl1−x alloys is: at stoichiom-
etry and also far-off stoichiometry the elementary Fe jump is a jump into a
8 This means that stoichiometric FeAl is neither a pure antistructure type system

nor a pure triple defect type system (see [2]).



82 Gero Vogl and Bogdan Sepiol

NN vacancy on an antistructure site. The Fe residence time on this antistruc-
ture site is very short close to stoichiometry and becomes longer until being
comparable to the residence time at a regular site with increasing deviation
from stoichiometry, i.e. the larger is the disorder.

Diffusion of Nickel in NiGa and of Cobalt in CoGa

In order to obtain a consistent picture of the elementary diffusion jump in
B2 alloys, neutron scattering was added to the repertoire of methods.

QENS was used by Kaisermayr et al. to study diffusion in two B2 alloys:
NiGa [55] and CoGa [56]. NiGa and CoGa are very suitable for QENS because
the incoherent neutron scattering cross section [6] of Ga is much smaller than
that of Ni or Co. Thus the scattered intensity can be exclusively attributed
to neutron scattering at nickel and Co nuclei, respectively. The QENS mea-
surements were performed at ILL on single crystals with 51.2 at.% Ni and on
polycrystals with 57 and 62 at.% Ni. Figure 2.9 shows the spectrum measured
at 1400K. From the Q-dependence of the quasielastic line broadening the Ni
jump mechanism was determined. The very weak concentration dependence
of the Ni diffusivity observed by Donaldson and Rawlings [57] was confirmed
over a wide concentration range on the Ni-rich side of the B2 phase. How-
ever, the next-nearest neighbour jumps of Ni [57] could not be found. On
the contrary, the QENS experiment showed that the Ni atoms diffuse via
nearest-neighbour jumps. In the near-stoichiometric composition the best fit
of the Q-dependence was achieved assuming effective jumps of Ni atoms with
the preference of [100] over [110] jumps with an admixture of [111] jumps (ra-
tio 4 : 2 : 1, respectively). From the occupation times of both B2 sublattices
Kaisermayr et al. [55] derived the antistructure-atoms concentration and,
assuming triple defects9 as a dominant defect structure of NiGa, very high
vacancy concentrations in both alloys. These results are in agreement with va-
cancy concentrations extrapolated from dilatometric measurements (see [55]
for more references).

Very recently the jump model of Ni atoms into antistructure-defect sites
was confirmed on the same NiGa crystal but with higher accuracy using
the neutron spin-echo technique [32]. Figure 2.10 shows fits to the spectra
obtained from the single crystal for two wave vectors. For a wave vector
Q = 1.8 Å−1 which coincides with the reciprocal superlattice lattice point the
next nearest neighbour (NNN) model (dashed line) gives a very unsatisfactory
fit to the experimental data. A perfect agreement with the experiment can
be achieved with NN jumps, i.e. jumps to antistructure sites (solid line).

QENS measurements on CoGa [56] were performed at ILL on single crys-
tals with 54 and 64 at.% Co. For both compositions a maximum of the qua-
sielastic line broadening has been observed near a reciprocal lattice point
corresponding to a B2 superlattice [100] reflection. This can be explained
9 A triple defect consists of two A-sublattice vacancies and one antistructure atom

on B-sublattice.
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Fig. 2.9. Quasielastic spectrum ob-
tained from a Ni51Ga49 single crystal
at 1400 K. The thick solid and dashed
lines represent two Lorentzians, dot-
ted line the resolution function.

Fig. 2.10. Time correlation
function measured on the
Ni52.5Ga47.5 single crystal at
1130◦C. Inset: B2-unit cell with
a Ni atom jumping into a NN
vacancy on a Ga site (solid
arrow) and into a NNN vacancy
on the Ni sublattice (dashed
arrow).
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only by the presence of a second Lorentzian arising from jumps to antistruc-
ture sites. The elementary jump of Co in CoGa has therefore been identified
as a nearest-neighbour jump between regular and antistructure sites. From
the residence times on the antistructure sites high vacancy concentrations
were deduced (see e.g. [58]). Moreover, on the basis of the diffusion coeffi-
cient resulting from the line broadening at high Q values and from tracer
measurements a correlation factor for Co diffusion not smaller than approx-
imately 0.6 was found [56,59]. Hence, Co diffusion in CoGa seems to be, like
Fe in FeAl alloys, surprisingly effective. This again suggests that it cannot be
described in terms of defined cycles (six-jump, four-jump cycle), percolation-
driven diffusion (antistructure-bridge mechanism) or a correlated triple-defect
mechanism as proposed by Stolwijk et al. [60]. Note, however, that van Om-
men and Miranda [61] suggested that NN Co and Ga atoms alone can explain
the experimental results on activation enthalpy in the same manner as the
triple-defect mechanism.

Thus the conclusion is again: transition metal (Ni, Co) atoms in NiGa and
CoGa jump via antistructure sites. Their residence time on the antistructure
sites is the shorter the closer to stoichiometry the alloy is.

Summary of Diffusion of Atoms
of Transition Elements in B2 Ordered Alloys

– Diffusion always proceeds via jumps into a vacancy on a nearest-neighbour
site.

– This is true for stoichiometric and non-stoichiometric alloys.
– The residence time on the antistructure site increases with deviation from

stoichiometry.
– The diffusivity increases with deviation from stoichiometry.

D03 Alloys (Fe3Si Structure)

Iron Diffusion in Fe3Si

The D03 superstructure of Fe3Si is more complicated than the B2 superstruc-
ture (see Fig. 2.11 inset). The cubic supercell consists of eight bcc cells. It
can be divided into four sublattices, i.e. three iron sublattices (α1, α2 and γ
sublattice) and one silicon (β) sublattice. The lattice constant of these sub-
lattices of the supercell is twice as large as the lattice constant of the small
bcc cells. Each iron atom on a γ site has eight iron neighbours. The two iron
lattices α1 and α2 are energetically identical (and will be referenced below
as “the α sublattices”). They both have four silicon and four iron nearest
neighbours but the configuration of these neighbours around α1 is mirrored
in comparison to the neighbours surrounding an α2 site. Silicon atoms on
the β sublattice are surrounded by eight iron neighbours. In Fe3Si the su-
perstructure is stable up to the melting point due to a very high ordering
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Fig. 2.11. D03 structure of Fe3Si (2/8 of elementary cell) with iron NN (solid
arrow) and NNN (broken arrow) jumps between regular α and γ lattice sites. Ori-
entation dependence of time-integrated intensity of delayed NRS counts with lines
fitted assuming NN (solid line) and NNN (broken line) iron jumps.

energy, while less ordered off-stoichiometric Fe1−xSix (x < 0.25) undergoes
a D03 ↔ B2 phase transition before reaching the solidus line (excess iron
atoms in off-stoichiometric Fe1−xSix are placed on silicon sites).

Mößbauer studies were the first to detect that despite the high degree of
order in Fe3Si, iron diffusion in this compound is very fast [62] (see Arrhenius
plots in Chap. 1) and – most surprisingly – becomes slower with decreasing
order. This was very soon later confirmed by tracer studies [63], and later-
on by studies with NRS [26]. These facts lead to two questions: Is a special
diffusion mechanism operative in Fe3Si and what causes the decrease in diffu-
sion coefficient with increasing iron content? Experiments using QEMS and
phonon spectroscopy help to solve these problems.

In principle, jumps between all four sublattices are possible, i.e. the spec-
tra of Fe3Si should consist of four Lorentzians. The spectra measured by
QEMS and NRS turn out to be simpler. In contrast to the situation in B2
structures an iron atom in Fe3Si can diffuse exclusively between iron sub-
lattices via NN jumps without creating antistructure defects. Thus in highly
ordered Fe3Si no antistructure jumps are observed and the jump matrix re-
duces to a 3×3 matrix, i.e. the number of lines reduces to three Lorentzians.
All spectra measured at Fe3Si are well fitted by use of a model with a 3 × 3
jump matrix. No jumps directly between α are found. From Fig. 2.11 it is
clear that iron jumps only between NN sites and, moreover, the lower limit
of NNN-jumps contribution can be fitted. The contribution of NNN-jumps is
below 5% of the NN-jump rate, in other words an upper limit for the direct
NNN-jump diffusivity is below 5% of the total iron diffusivity.
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In off-stoichiometric samples the excess iron atoms already occupy silicon
sites and thus diffusion via antistructure sites is less unfavoured than in stoi-
chiometric Fe3Si. Spectra taken at different orientations on off-stoichiometric
samples could only be fitted using a 4 × 4 jump matrix [62].

In the Fe3Si system relatively soft phonon modes [64] which give low mi-
gration energies are found, but they do not vary with composition. Hence the
composition dependency of D cannot be attributed to phonon characteristics.
The diffusion mechanism turns out to be a rather conventional one: Diffusion
in Fe3Si is fast due to a very large concentration of vacancies and occurs
via NN jumps from γ to α sites and vice versa. Off-stoichiometric Fe1−xSix
alloys contain much less vacancies [65] and thus diffusion is slow. In contrast
to stoichiometric Fe3Si iron jumps between α and β sites (silicon sublattice)
are not only possible in off-stoichiometric alloys but even more frequent than
jumps between the regular iron sites α and β [62] which was also confirmed
by Monte Carlo simulations [66].

The high vacancy concentration in Fe3Si may be due to the high order-
ing energy: introducing a large number of vacancies is the sole possibility
to increase entropy upon heating without creating antistructure defects. In
off-stoichiometric Fe1−xSix where already built-in antistructure defects exist
creation of additional defects of this type is less expensive in energy than in
Fe3Si and thus less vacancies are formed and diffusion is slow.

Nickel Diffusion in Ni3Sb

Again neutron scattering can serve to widen the field of accessible alloys be-
cause neutron measurements are not limited to the diffusion of Fe atoms.
Another compound with D03 structure is Ni3Sb (at the high tempera-
tures mandatory for quasielastic measurements). Nickel diffusion in Ni3Sb,
which contains many vacancies, together with Cu diffusion in Cu3Sn, is the
fastest ever found in an intermetallic alloy10. Typical values at 800◦C are
D ≈ 6 × 10−11 m2s−1. In contrast to the case of Fe3Si, however, they are
asymmetrically distributed among the sublattices: the vacancies are concen-
trated on the α sublattices [67]. This may lead to a high rate of “far” jumps
between α sites. Ni3Sb is very suitable for QENS because again the inco-
herent neutron scattering cross section of the metalloid (here Sb) is much
smaller for antimony than for the transition element (Ni). Thus the scattered
intensity can be exclusively attributed to neutron scattering at nickel nuclei.

At two temperatures the quasielastic line broadening was measured on a
Ni72.5Sb27.5 crystal at different orientations. Figure 2.12 shows the result for
different orientations of the single crystal. The bulk lines are fits according
to the model of NN jumps between γ and α sites. The dotted, dashed-dotted
and dashed lines are calculated under the assumption of jumps between α
sites (see arrows in Fig. 2.11). The corresponding jump lengths in terms of
10 To the best of our knowledge, it is even the fastest self-diffusion in a pure metallic

system on the reduced temperature scale T/Tmelting.
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the bcc lattice constant a for these jumps are a (dotted), a/
√

2 (dashed-
dotted, along the face diagonal of the cube formed by the α sites, e.g. from
α1 to α1) and a/2 (dashed, along the edges of the α-site cube, e.g. from α1

to α2). Under the assumption that nickel atoms jump between γ and α sites
(nearest neighbours) the measured linewidth is well fitted, while other jump
models give markedly worse results. Even in this case the elementary steps
of diffusion are NN jumps, profiting from the high vacancy concentration on
two of the three nickel sublattices. Details can be found, e.g., in [68].

Fig. 2.12. Linewidths mea-
sured by QENS on Ni3Sb at
690◦C (dots) and 780◦C (tri-
angles) and comparison with
different models.

Summary of the Diffusion of Atoms of Transition Elements in D03 Alloys

Here the picture is not at all as consistent as for B2 alloys, it rather demon-
strates considerable differences and contrasts: fastest diffusion of transition
element atoms for stoichiometry in Fe3Si, slowest in Ni3Sb. This appears to
be still a not completely solved problem. First principle density functional
calculations for Ni3Sb [69] completely confirm the experimental results [68],
for Fe3Si work is still underway.

2.4 Conclusion

The central aim of this chapter was to demonstrate the potential of methods
working with scattering of X-rays, including Mößbauer gamma rays, and neu-
trons for determining the elementary diffusion jump. These methods either
work in the energy domain or in the time domain.

We have discussed the results of quasielastic Mößbauer spectroscopy
(QEMS) and nuclear resonance scattering of synchrotron X-rays (NRS) on
the one hand; quasielastic neutron scattering (QENS) and neutron spin echo
(NSE) on the other hand, for studying the elementary diffusion jump in
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metallic systems. By way of examples we reported on the determination of
the elementary diffusion jump in pure metals, of impurities in dilute alloys
and in ordered intermetallic alloys. We chose mostly examples from our own
work, not aiming at completeness. For the sake of simplicity, which we re-
garded necessary for an overview, we dwelled exclusively on cubic systems.
Thus we did not report on non-cubic lattices as, e.g., the QENS experiments
on Ni diffusion in NiSb [70] or QEMS experiments on Fe diffusion in FeSb [71],
both hexagonal intermetallic alloys. For more complicated diffusion processes
studied by QEMS and QENS we point to our earlier reviews about diffusion
studies by Mößbauer spectroscopy [10, 72, 73], neutron scattering [74] and
NRS [28]. Reference [10] includes the first atomistic results on diffusion in
restricted regions, i.e. cages [75], which recently gained great interest in bio-
logical systems; this is the large regime of diffusion in confined regions.

As a conclusion for this report limited to long-range diffusion in cubic
metals we could choose: the basic step for these processes is the jump of
an atom into a NN vacancy. World appears to be so simple in these simple
cases, but this had first to be demonstrated. What is not so simple, is the
time scale for occupation of antistructure sites in the particularly interesting
class of ordered alloys: the whole zoo of possibilities exists, connected to the
degree of order of an alloy and to the way the partners match.

The future appears bright: the highly collimated synchrotron beam will
enable studies of surface diffusion, the high coherence of present and more
so of future sources of synchrotron radiation will finally enable photon cor-
relation spectroscopy to study much slower diffusion than possible now. In
neutron spectroscopy considerable progress will be accomplished with the
new spallation sources. Since – and that should not be tacitly omitted be-
cause we want to remain modest – until now diffusion has to be rather fast
to be unveiled by the scattering methods.

Notation

a lattice constant (Å)
A2 two component phase A1−xBx; solid solution with b.c.c structure
B2 two component intermetallic phase AB; superstructure basing on a

b.c.c cell with edges occupied by atoms of one species while the body
centred position belongs to atoms of the other species

D03 two component intermetallic phase A3B ; superstructure basing on
eight b.c.c cells; can also be described as simple cubic lattice with a
base of four atoms

D diffusion coefficient or diffusivity (m2s−1)
f correlation factor
fDW Debye-Waller (Lamb-Mößbauer) factor; relative intensity of scat-

tered (resonantly absorbed) radiation
57Fe most important Mößbauer isotope; interesting Mößbauer transition

with energy 14.4 keV and wave vector |Q| = 7.3 Å−1
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Gs(r, t) probability density to find an atom displaced by a vector r from its
starting position within a time interval t averaged over all possible
starting positions

P (r, t) probability density to find an atom on the site r at time t
Q scattering vector (QENS) or Mößbauer radiation wave vector (QEMS)
S(Q, ω) incoherent scattering function (QENS) or cross section for resonant

nuclear absorption (QEMS)
Γ diffusional line broadening
Γ0 natural line width of the Mößbauer transition (Γ0 ≈ �/τ0)
ϑ angle between Q and the [001] crystal axis
τ0 mean life time of the excited Mößbauer level
τi mean residence time of an atom between jumps from sublattice i

(τ−1 – jump rate)
τij mean residence time between jumps from sublattice i to any nearest-

neighbour site of symmetry j
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3 Diffusion Studies of Solids by Quasielastic

Neutron Scattering

Tasso Springer and Ruep E. Lechner

3.1 Introduction

The diffusion in solids is usually investigated on a macroscopic scale, for
instance following the interpenetration of two atomic species across an inter-
face which is related to the chemical diffusion coefficient. On the other hand,
the self-diffusion coefficient is measured by labelling atoms with radioactive
isotopes. These techniques have been presented in Chap. 1. Labelling can
also be achieved by Larmor precession in a magnetic field gradient where the
corresponding dephasing depends on the diffusive migration of the precess-
ing particles (Chaps. 10 and 17). In contrast to such “macroscopic” methods
the diffusion process can be studied for atomistic time scales by the spin-
lattice relaxation in nuclear magnetic resonance spectroscopy (Chap. 9). The
method of quasielastic neutron scattering (QENS)1, which focuses on scat-
tering processes at small energy transfers, penetrates into the region of 10−13

to 10−8 s. In addition, quasielastic neutron scattering explores the diffusive
motion in space, for a range comparable with the wavelengths of the neu-
trons used in spectroscopy. Typical correlation lengths, diffusive paths, jump
distances, and vibrational displacements can be evaluated between 10−6 and
10−9 cm. Inelastic neutron scattering on such diffusive processes leads to a
spectrum of energy transfers

�ω = E1 − E0 , (3.1)

in a range from 10−3 to 10−7 eV, where E0 and E1 are the energies before and
after scattering, respectively. The corresponding scattering vector in such a
process is

Q = k1 − k0 , (3.2)

where k0 and k1 are the neutron wave vectors before and after scattering,
respectively. The values of Q = (4π/λ) sin(ϕ/2) are in the region of typi-
cally 0.1 to 5 Å−1 (λ = neutron wavelength, ϕ = scattering angle) such that
1/Q corresponds to interatomic distances. The scattered intensity in such a

1 In the following, we use “QENS” for quasielastic neutron scattering in general,
and “QINS”, if the quasielastic scattering is purely incoherent, in order to dis-
tinguish this case from the coherent one.
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process is proportional to the so-called scattering function or dynamic struc-
ture factor S(Q, ω), which can be calculated for typical diffusive processes;
the calculation and determination of this function is the subject of the fol-
lowing sections. To anticipate briefly what will be explained in detail, the
widths of the Lorentzian shaped “quasielastic line” is given by Γ = Q2Ds

for small values of Q, where Ds is the self-diffusion coefficient. For larger
scattering vectors, Γ depends on the details of the jump process. Obviously,
for a particle at rest, Γ = 0 and S(Q, ω) is a sharp line δ(ω) at �ω = 0.
For resonance absorption of gamma rays this corresponds to the well-known
Mößbauer line. It results from absorption processes where the gamma quan-
tum transmits momentum �k to the sample as a whole, without any mea-
surable energy transfer. Furthermore, for Mößbauer absorption spectroscopy,
a diffusing particle produces a corresponding broadening of this line and it
is described by the same concepts as used for incoherent neutron scattering
(see Chap. 2 for nuclear resonance gamma ray absorption and scattering).

The interpretation of the dynamic structure factor S(Q, ω) in terms of
the diffusive process is uncomplicated because

– the diffusion can be described by classical physics; in general, quantum
effects can be completely neglected, and

– the scattering is treated in first Born approximation. This allows an eval-
uation and interpretation of S(Q, ω) by pair correlation functions for the
scattering nuclei in space and time.

Within this concept, the following sections deal with different kinds of
diffusion. First of all, hydrogen diffusion in metals will be explained. Be-
cause of the dominant incoherent scattering of the proton, the interpretation
of the results is straightforward. Then we deal with other cases such as va-
cancy induced diffusion in metals, diffusion in the presence of impurities, ionic
diffusion, and, briefly, collective effects as investigated in substances where
coherent scattering dominates; this is more complicated, and coherent qua-
sielastic scattering has been exploited to a lesser extent than its incoherent
counterpart. It is clear that we cannot cover the whole field. For instance, ex-
periments concerning diffusion in polymers (see Chaps. 13 and 16) are omit-
ted. The methodical aspect, namely high resolution neutron spectroscopy,
will be explained to the extent this is needed for the presented experimental
studies.

3.2 The Dynamic Structure Factor S(Q, ω)

Atomistic information is obtained by analyzing the intensity of neutrons from
a monochromatic beam with a current density I0 scattered into a solid angle
element ∆Ω and an energy interval ∆�ω, on a sample with a volume V and
an atomic number density n0 (see Fig. 3.1). This intensity is given by
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Fig. 3.1. Neutron scattering experi-
ment. The intensity scattered into a
solid angle element dΩ and an energy
element dω is proportional to the dou-
ble differential scattering cross-section
d2σ/dΩdω in (3.4).

∆Is = I0n0V

(
d2σ

dΩ dω

)
∆Ω∆ω, (3.3)

where the double differential scattering cross-section is

d2σ

dΩ dω
=
k1

k0

σ

4π
S(Q, ω) . (3.4)

This cross-section is factorized in three components: i) The ratio of the wave
numbers k1 and k0 characterizing the scattering process, ii) the cross-section
σ for a rigidly bound scattering nucleus (where σ = 4πb2 and b is the cor-
responding scattering length of the nucleus), and iii) the dynamic structure
factor S(Q, ω). The latter depends on the scattering vector Q and the energy
transfer �ω as defined by (3.2) and (3.1), respectively. The structural and dy-
namical properties of the scattering sample are described by S(Q, ω) which
does not depend on the neutron-nuclear interaction. In the following, we will
explain this function. For a detailed derivation and discussion we refer to the
corresponding literature [1–3]. To start with, we formulate the well-known
static structure factor S(Q) for the simplest case of N identical atoms at po-
sitions r0, r1 . . . rN . The scattering (“diffraction”) intensity is proportional
to the square of the amplitude sum, taking into account the mutual phase
differences of the outgoing waves for pairs of particles. The structure factor
per atom is then

I(Q) = N−1
N∑
i

N∑
j

e−iQ(ri−rj) = N−1

∣∣∣∣∣
N∑

i=1

eiQri

∣∣∣∣∣
2

(3.5)

Instead, for moving nuclei, corresponding to lattice vibrations and diffusion,
one gets the so-called intermediate dynamic structure factor (or intermediate
scattering function) with time dependent space coordinates r(t)

I(Q, t) = N−1
N∑
i

N∑
j

〈
e−iQri(0)eiQrj(t)

〉
. (3.6)

Actually, ri are operators, 〈· · · 〉 is a thermal average of the expectation value
for the product enclosed in the brackets. Below we explain that, under the
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given conditions, the quantities r are vectors in space and not operators,
and 〈· · · 〉 is just the thermal average. For the following we need mainly the
self-terms in (3.6) which leads to

Is(Q, t) =
〈
e−iQr(0)eiQr(t)

〉
. (3.7)

The index i was left out and the sum
∑

is replaced by N . From these rela-
tions the Van Hove theory [4] derives an elegant formulation of the dynamic
structure factor S(Q, ω), namely

S(Q, ω) = (2π)−1

∫
I(Q, t) e−iωt dt , (3.8)

and for its self-part, namely the so-called “incoherent” contribution (see be-
low),

Sinc(Q, ω) = (2π)−1

∫
Is(Q, t) e−iωt dt . (3.9)

With these relations, the so-called Van Hove correlation functions can be
defined, namely

G(r, t) = (2π)−3

∫ ∫
e−i(Qr−ωt)S(Q, ω)dQ dω , (3.10)

and for the self-part

Gs(r, t) = (2π)−3

∫ ∫
e−i(Qr−ωt)Sinc(Q, ω)dQdω , (3.11)

Inversion leads to the dynamic structure factors as a Fourier transform of
these correlation functions, namely

S(Q, ω) = (2π)−1

∫ ∫
G(r, t) ei(Qr−ωt)dr dt , (3.12)

Sinc(Q, ω) = (2π)−1

∫ ∫
Gs(r, t) ei(Qr−ωt)dr dt . (3.13)

In the classical approximation, (3.6) and (3.7) can be interpreted in the fol-
lowing sense. The cross terms with i �= j in I(Q, t) correspond to a superposi-
tion of scattered neutron waves originating from pairs of different particles at
positions ri and rj at different times 0 and t. Is(Q, t), however, is obviously
caused by scattered waves originating from the same nucleus at different po-
sitions for different times. Correspondingly, one can show that the Van Hove
correlation functions have the following classical meaning (Fig. 3.2): G(r, t)
is the probability per unit volume to find a particle (nucleus) at a position r
for a given time t if this or another particle has been at a position r = 0 for
a previous time t = 0. In the same way, Gs(r, t) is the probability of finding
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Fig. 3.2. The Van Hove correlation function:
G(rj − ri, t) is the conditional probability to find
an atom at rj for a time t, if this atom or another
one was at ri, with a distance vector r = rj − ri

for t = 0. For the self-correlation function Gs(r, t),
rj and ri locate the same particle.

a particle at r for a time t if the same particle was at the origin r = 0 for
t = 0.

In particular this implies

Gs(r, t = 0) = δ(r) and G(r, t = 0) = δ(r) + g(r) , (3.14)

where g(r) is the usual instantaneous pair correlation function, and one gets

S(Q) =

+∞∫
−∞

S(Q, ω) dω = 1 +
∫
g(r) eiQr dr . (3.15)

Furthermore, we note thatGs(0, t) is the probability that a certain nucleus
which was at r = 0 for t = 0, is still (or again) at r = 0 for a time t.

For a particle diffusing in a space, which is large as compared to the
atomic scale, the self-correlation function Gs(r, t) vanishes, if t goes to infin-
ity, whereas for a particle bound to a finite volume (e. g. as part of a rotating
molecule fixed in a crystal), Gs(r, t) approaches a finite value Gs(r,∞) for
r varying in the interior of this volume. In fact, following Van Hove [4],
Turchin [5] has pointed out that very generally, the self-correlation function
can be split into its asymptotic value in the long-time limit and a time-
dependent term G′

s(r, t), according to Gs(r, t) = Gs(r,∞) + G′
s(r, t). The

Fourier transform of this expression reads:

Sinc(Q, ω) = (2π)−1

∫ ∫
ei(Qr−ωt)[Gs(r,∞) +G′

s(r, t)] dr dt . (3.16)

which gives
Sinc(Q, ω) = Sel

inc(Q)δ(ω) + Sin
inc(Q, ω) (3.17)

It is seen that the incoherent scattering function is decomposed into a purely
elastic line, Sel

inc(Q)δ(ω), with the integrated intensity Sel
inc(Q), and a nonelas-

tic component, Sin
inc(Q, ω). The elastic line is the result of diffraction of the

neutron on the “infinite time” distribution in space of a single nucleus spread
over a finite volume by its motion, as already pointed out by Stiller [6]. There-
fore we can derive information about the structure in a very direct way from
the incoherent scattering [7]. This is clearly a rather important result of the
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Van Hove theory. We now turn to its application which will be further dis-
cussed later, in the context of practical examples in Sects. 3.4, 3.5, 3.9, 3.10
and 3.12.

In order to exploit the theoretical fact expressed by (3.17) in neutron scat-
tering experiments on orientationally disordered (plastic and liquid) crystals,
the concept of the elastic incoherent structure factor (EISF) was formulated
by Lechner [8]. First applications of this concept were published, as soon as
the progress of instrument development at the Institute Laue-Langevin (ILL)
in Grenoble permitted to carry out corresponding experiments [9–13]. First of
all, an experimental separation of the elastic component according to (3.17)
was required. Novel high-resolution quasielastic spectrometers which could
achieve this were built at the start-up of the high-flux reactor of the ILL.
Secondly, for the analysis of the data a method was needed that would allow
the isolation of the scattering effect of specific motions, such as the stochas-
tic molecular reorientations known to occur in these dynamically disordered
crystals. The EISF concept provides such a method. It permits the extrac-
tion of structural information on such localized single-particle motions by
the determination of the elastic fraction of the measured spectral intensity.
The idea is simple: First, by employing sufficiently high energy-resolution,
the measured integrals of elastic (Iel) and nonelastic (I in) components of the
scattering function in (3.17) - after trivial corrections for the factor k1

k0
(see

(3.4)), the sample self-attenuation and the energy-dependent detector effi-
ciency - are determined separately. Then an intensity ratio involving the two
integrals can be defined,

EISF = Iel/(Iel + I in) = ASel
inc(Q)/[A

∫
Sinc(Q, ω)dω] (3.18)

where A is a normalization factor proportional to experiment parameters
such as the incident neutron flux, the sample size, the detector efficiency, the
duration of the measurement, etc. Obviously, the difficulty of an absolute
intensity calibration is avoided in the determination of the EISF by (3.18):
The normalization factor cancels, the integral of the incoherent scattering
function is equal to 1, and we simply have EISF = Sel

inc(Q). Here, we have
used (3.17) and (3.18) as a starting point for obtaining a definition of the
EISF. The coefficient Sel

inc(Q) in these two equations is the EISF in its most
general form, since it includes all the motions of the scattering atom.

However, the determination of this “global” EISF is generally not the
immediate aim of an experiment, for the following reasons. First of all, one
is often more interested in specific types of motions than in all of them. Sec-
ondly, an unambiguous measurement of a global EISF is not easily achieved
in just one single experiment. Every measurement has a well-defined energy
resolution connected with an effective energy transfer window (see the cor-
responding discussion later in this section). Essentially only the dynamics of
the specific motions occurring in this energy range are visible, because much
slower motions are hidden within the energy resolution function, whereas
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much faster motions appear only as a flat background. This can be used to
experimentally isolate the effect of a specific motion. It is therefore much
more interesting to apply the EISF concept to the elastic component of each
specific type of motion, e. g. to molecular rotation, rather than to the com-
bined effect of all atomic motions. The expression to be used for the analysis
of such specific motions is formally the same as (3.18). However, we have to
replace the nonelastic integral (I in) by the corresponding quasielastic integral
(Iqe), and keep in mind that the incoherent scattering function, Sinc(Q, ω),
must now be replaced by a partial scattering function consisting merely of
an elastic term (measured integral: Iel) and a quasielastic term (measured
integral: Iqe) corresponding to the specific motion under study. The effect
of faster motions has been subtracted as a flat “inelastic” background and
only appears as an attenuating Debye-Waller factor bound to be cancelled,
because it is included in the normalization factor A. The feasibility conditions
are that i) the energy resolution is adapted to the time scale of the motion
of interest, ii) this motion is sufficiently well separated on the energy-scale
from other motions of the same atom, and iii) the assumption of dynamical
independence of the different modes from each other, e. g. rotations and vi-
brations, represents an acceptable approximation (see (3.64), Sect. 3.9). It is
this possibility of isolating the EISF of specific modes of motions that has
proved to be of most practical importance for the development of the tech-
nique. The success of a series of prototype experiments is documented in the
original literature [9–13].

The EISF method was developed as a strategy for finding the appropriate
differential equations and their boundary conditions for the dynamical mech-
anisms of localized atomic motions in condensed systems. These early and
subsequent experiments have been reviewed extensively [14–16]. In [16] the
importance of the dynamic independence approximation for the definition
of the EISF of specific motions, the relation between Debye-Waller factor,
Lamb-Mößbauer factor and EISF, as well as the observation-time depen-
dence of the latter are discussed in detail. More general discussions of Van
Hove’s theory and its application can be found in text books; see, e. g. [3,17].
It is interesting to note, that the EISF concept also plays a role in pulsed-
field gradient (PFG) NMR studies of diffusion in confined volumes, where
at sufficiently large observation time the spin-echo attenuation approaches
a time-independent value conveying geometrical information on the spatial
restriction (see (10.18) of Chap. 10).

In our explanation we have interpreted the nuclear motion in terms of
classical time-dependent coordinates. What does this mean? The average de
Broglie wavelength of the scattering nucleus with a mass M is given by

λM =
h

vthM
≈ h(2MkBT )−1/2 , (3.19)

if this particle moves with the average speed vth within a sample at temper-
ature T . A classical description of the nuclear motion is certainly valid for



100 Tasso Springer and Ruep E. Lechner

times during which the particle has passed a distance which is larger than its
de Broglie wavelength: tvth > λM . For instance, at 300 ◦C (3.19) yields

t ≥ h

2kBT
≈ 10−13 s . (3.20)

This holds in all cases to be discussed in the following, i.e. for typical dif-
fusive jump rates < 1012 s−1 or diffusion coefficients Ds < 10−8 m2/s. On
the other hand, the criterium fails for the atomic vibrations in solids with
frequencies above 1013 s−1. In this case, the quantum mechanical meaning of
the Van Hove correlation functions or the usual matrix element description
is preferable.

Let us now turn to the problem of experimental resolution. (3.12) and
(3.13) represent a Fourier analysis of the neutron scattering functions S(Q, ω)
and Sinc(Q, ω) , respectively, with the Van Hove correlation functions in space
and time as coefficients. We draw the attention to the fact that the scattering
functions, i. e. the dynamic structure factors S and Sinc defined in (3.4)
to (3.13), as well as the corresponding correlation functions G, Gs, and the
intermediate scattering functions I, Is, cannot be determined experimentally
in their pure forms: The measured scattering functions are broadened due
to convolution with the experimental resolution functions R(Q, ω) in the
four-dimensional (Q, ω)-space. In the case of incoherent scattering, the Q-
spread of the resolution can often be neglected when the studied functions
are only slowly varying with Q. Then it is sufficient to merely deconvolute the
measured spectra from the energy resolution function R(ω). The latter may
have a shape close to a Gaussian or a Lorentzian, with an energy width ∆(�ω)
defined as the half-width at half maximum (HWHM). Note that this width
is connected, by the uncertainty relation, with the experimental observation
time ∆t which is the decay time of the observation function R∗(t) in the
Fourier time domain [15–18]:

∆(�ω)∆t ∼= � (3.21)

While the resolution function R(ω) has the effect of broadening the neutron
scattering function along the energy transfer coordinate of the experiment,
the observation function R∗(t) is a factor, which increasingly attenuates the
corresponding correlation function with increasing Fourier time: R∗(t) is the
Fourier transform of R(ω) and is therefore in most practical cases a func-
tion essentially decaying with increasing time. The net effect is, that the
correlation functions are observed in a Fourier time window, with an upper
limit determined by the decay time constant of the observation function. The
low-time limit of this window has a different origin: it is a consequence of the
(always limited) statistical accuracy of the measurement, because quasielastic
intensities typically decrease with increasing energy transfer, and therefore
counting statistics become the poorer the larger the energy transfers are as
compared to the energy-resolution width.



3 Diffusion Studies of Solids by Quasielastic Neutron Scattering 101

Let us consider an example, in order to illustrate the implications of ex-
perimental resolution in the study of dynamic structure on the basis of the
Van Hove formalism (see for instance (3.11), (3.13)). We assume, for sim-
plicity, that the scattering particle carries out a random motion described
by a superposition of several components with n different rates, λ1, λ2, ...,
λn. The scattering function will then be a sum of bell-shaped Lorentzians
centered at zero energy transfer (see the following sections). If this quasielas-
tic spectrum is studied with an instrument resolution ∆(�ω), the resulting
resolution-broadened spectrum is again a bell-shaped curve, but with a width
larger than ∆(�ω). This “quasielastic peak” will be dominated by contribu-
tions from those motions which have rates λi ∼ ∆(�ω). While much slower
motions are hidden within the resolution function, much faster motions will
produce only a flat “background” which cannot be easily distinguished from
the usual constant background of the experiment. In order to be able to ex-
tract information on all relevant motional components, one needs to carry
out several measurements with properly chosen resolutions. This procedure
may in practice require the application of more than one type of spectrome-
ter. Quasielastic neutron scattering spectra obtained with one single energy
resolution only usually furnish incomplete information. The analysis may
therefore easily lead to wrong conclusions.

Since ∆(�ω) is related in a simple way to the instrumental energy spreads
of incident and scattered neutrons, the observation time, ∆t, is connected
with (although not equal to) the coherence time of the incident neutron
wave packet. The principle of experimental observation time, energy and
Fourier time windows in quasielastic neutron scattering, and their relevance
for the determination of dynamic structure, and especially in problems con-
cerning diffusive atomic and molecular motions in condensed matter, has
been discussed more extensively in [16] and [18]. For further detailed liter-
ature related to the Van Hove concept and quasielastic neutron scattering
we refer to the reviews, monographs and books specially devoted to this
topic [3, 14, 15, 17, 19–21].

Finally, we note a complication due to the fact that an atomic species
consists of isotopes with different scattering lengths b1, b2 . . . and concen-
trations c1, c2 . . . . Therefore the sum in (3.6) includes terms with different
scattering lengths, randomly distributed over the sites ri. This randomness
of the amplitudes destroys part of the interference. A similar effect is caused
by the spin of the nuclei and of the neutron, because the scattering length
depends on their relative orientation. This leads to scattering lengths b+
and b− corresponding to parallel and anti-parallel orientation with fractions
c+ = (I + 1)/(2I + 1) and c− = I/(2I + 1), respectively, where I is the
nuclear spin. If nuclei and/or neutron spins are unpolarized, this gives a ran-
dom distribution of b+ and b−. Randomness destroys part of the interference
and for ideal disorder the cross section can be separated into a coherent part
with interference terms due to pairs of atoms (including the self-terms) and
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an incoherent part where interference between waves scattered by different
nuclei has completely cancelled out, such that the differential cross-section
reads

d2σ

dΩdω
=
k1

k0

[σcoh

4π
Scoh(Q, ω) +

σinc

4π
Sinc(Q, ω)

]
. (3.22)

The coherent scattering function, Scoh(Q, ω) in the first term, is due to
the atom-atom pair-correlations, whereas the incoherent scattering function,
Sinc(Q, ω) in the second term 2, only conveys self-correlations and therefore
behaves as if not amplitudes but intensities from scattering by different nu-
clei had to be added.

One can easily show that the total scattering cross sections σcoh and σinc

have the following meaning

σcoh = 4πb̄2 with b̄ =
∑

cibi , (3.23)

σinc = 4π
(
b2 − b̄2

)
with b2 =

∑
cib

2
i . (3.24)

In the following section we mainly deal with the incoherent dynamic struc-
ture factor. In particular, for hydrogen the incoherent scattering cross section
is between 10 and 20 times larger than other scattering cross sections, such
that the separation of Sinc is especially easy. We point out that the specifica-
tion “incoherent” is somewhat misleading. In order to calculate the scattered
intensities the amplitudes have to be added and the sum has to be squared.
Disorder leads to a (partial) cancellation of the cross terms with phase fac-
tors. Consequently, the intensities are summed up with reduced interferences.
The total coherent and incoherent scattering cross-sections are empirically
known and a great number can be found in tables [22](for a review on the
fundamental aspects of neutron-nucleus scattering see [23]).

3.3 The Rate Equation and the Self-Correlation
Function

A model was originally proposed by Chudley and Elliott [24], to obtain the
classical self-correlation function Gs(r, t) for an atom diffusing on an assumed
quasi-crystalline lattice of a liquid. This so-called CE-model was then widely
used for treating atomic diffusion on interstitial lattices in crystals.

We first calculate the probability P (rm, t) to find the diffusing atom on a
site rm of a Bravais lattice at time t, where it spends a time τ on the average.
The time τj required for the diffusive jump from site to site is neglected.
The jumps occur between a given site and its neighbours rm + dν where
dν (ν = 1, 2, . . . s) is a set of jump vectors connecting the site with the
neighbours. The master equation for P (rm, t) is then (see Fig. 3.3)
2 Note that the following notations for the scattering functions (dynamic structure

factors) are customary in the literature : S(Q, ω) or Scoh(Q, ω) for coherent, and
Ss(Q, ω) or Sinc(Q, ω) for incoherent scattering.
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Fig. 3.3. Top: Gs(x, t) for a regular lattice. The height of the solid lines describes
the probability of occupancy per unit cell. Asymptotically, the envelope approaches
a Gaussian. τ is the mean rest time at a site.
Bottom: Sinc(Q, ω) and quasielastic width Γ vs. scattering vector Q (schematic).
Q∗ is the reciprocal lattice vector for Γ = 0 and Ds is the self-diffusion coefficient.

∂P (rm, t)
∂t

= −1
τ
P (rm, t) +

1
sτ

s∑
ν=1

P (rm + dν , t) . (3.25)

The first and second term on the right side are the loss and growth rate
due to the jumps to and from adjacent sites, respectively. In order to obtain
Gs(r, t) we impose the initial condition

P (rm, 0) = δ(rm) (3.26)

Because in a Bravais lattice all sites are equivalent, we directly obtain the
self-correlation function as the solution of the master equation: Gs(r, t) ≡
P (rm, t) . The basic CE-model (represented by (3.25)) has been extended for
many special and more complex situations, for instance to include effects due
to ion-ion correlations in ionic conductors; see (3.61) to (3.63) in Sect. 3.8. A
general theory of the master equation is given in Chap. 18. The approximation
τj � τ holds in most cases. For a H atom at room temperature one gets

τj ∼=
d

vth
= d

(
M

2kBT

)1/2

∼= 10−13 s (3.27)

whereas normally τ ≥ 10−12 s. Only in certain cases, e.g. for hydrogen in
vanadium at high temperatures, τ and τj are comparable and the diffusion
coefficient Ds has values above 10−9 m2/s, similar to diffusion coefficients in
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liquids. Equation (3.25) further assumes that subsequent jumps are uncor-
related. Finally, blocking and mutual interaction effects are neglected which
implies a low site occupancy c for the diffusing particles. One could improve
the calculation with respect to correlations between different particles, re-
placing – as a meanfield approximation – τ by τ/(1− c), where (1− c) is the
blocking factor. Correlated jumps are discussed in Sects. 3.8 to 3.10, and in
Chaps. 1, 10, 18 and 21. Now we introduce the Fourier transform

P (rm, t) =
∫
P̃ (Q, t)e−iQrmdQ, (3.28)

where P̃ (Q, t) ≡ Is(Q, t) from (3.7).
This leads to a differential equation of 1st order for P̃ (Q, t) whose solution

is an exponential decay function

P̃ (Q, t) = e−Γ (Q)t , (3.29)

which fulfils the initial condition (3.14). From this one gets

Γ (Q) =
1
sτ

s∑
ν=1

(1 − e−iQdν ) . (3.30)

The resulting dynamic structure factor is the Fourier transform of P̃ (Q, t) =
IS(Q, t), namely a normalized Lorentzian

Sinc(Q, ω) =
Γ/π

ω2 + Γ 2
, (3.31)

with halfwidth Γ (Q). For a simple cubic Bravais lattice one gets the expres-
sion

Γ (Q) =
1
3τ

(3 − cos(Qxd) − cos(Qyd) − cos(Qzd)) . (3.32)

Qx,y,z are the components of Q. For Q � 1/d, where d is the length of the
jump vector, one gets the limiting case

Γ (Q) =
d2

6τ
Q2 = DsQ

2 . (3.33)

This relation holds generally and is independent of the detailed jump geom-
etry, except for “exotic” conditions (e.g. if the diffusion occurs in planes and
the jumps between neighbouring planes occur with a very small probability;
see Sect. 3.11).

Γ (Q) is periodic in reciprocal space. It has a maximum at the Brillouin
zone boundary and it is zero, if a reciprocal lattice point G is reached, such
that Γ (Q = G) = 0. This “line narrowing” 3 is related to Bragg diffraction of
the neutron wave from the probability density of the proton distributed over
the sites of the Bravais lattice. Obviously, the zero width at the reciprocal
3 This effect should not be confused with the coherent line narrowing described in

Sect. 3.12.
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lattice point is a consequence of the condition under which this theoretical
result has been obtained4, namely the assumption of infinitely high energy
and momentum resolution and therefore infinitely large observation time and
observation volume. In a real experiment, with finite resolution – just as in
coherent Bragg diffraction – the zero width cannot be directly observed. All
measured widths are finite, but for sufficiently good resolution, the periodic
oscillatory behaviour of the diffusion linewidth due to this diffraction effect
is nevertheless qualitatively retained. After correction for the effects of reso-
lution, the theoretical line narrowing is indeed recovered (see below).

Let us consider a practical example. For instance, for a 1 µeV resolution
width (e.g. FWHM of a Lorentzian resolution function, corresponding to a
single exponential observation function) the observation time is as long as
0.66 · 10−9 s. During this time a particle diffusing on an interstitial Bravais
lattice may thus be spread out over a regular arrangement of about 103 sites.
Consequently, during the same period the neutron wave packet is diffracted
on this extended “crystal-like” single-proton probability density distribution.
The time-evolution of the correlation function and the shape of the quasi-
elastic spectrum are shown schematically in Fig. 3.3.

As concerns the Fourier transform in Q the main contribution from the
integrand in (3.13) results from a range QrG < 1 (contributions for larger Q
at fixed rG cancel by rapid oscillations of the integrand, if Gs is for instance a
Gaussian distribution with “radius” rG in space). Consequently, the volume
where Gs is “observed” by a scattering experiment is about 1/Q3. In partic-
ular, measurements on diffusing atoms at small Q image the diffusion over
large distances and yield the self-diffusion coefficient only, whereas the re-
sults for large Q values predominantly yield information on a single diffusive
step or on a few steps. The smallest Q values accessible in experiments are
of the order of 0.1 Å−1. This implies that the scattering process “observes”
the diffusing ion in a volume of the order of (10 Å)3. For a diffusive process,
about z ∼= (Q�)−2 ≈ 150 jumps come into play, if a jump length � of 2 Å
is assumed. Consequently, the self-diffusion coefficient from the quasielastic
width for small Q is a bulk quantity, and grain boundaries (see Chap. 8) will
not influence the result, in contrast to macroscopic methods.

There are of course more complicated situations than that described by
(3.25), for instance a bcc lattice with 6 non-equivalent interstitial lattices
which are interconnected. Here, the dynamic structure factor includes 6 eigen-
values and Lorentzians. For Q → 0 again a single Lorentzian remains with
Γ = Q2Ds ( [25], see Fig. 3.11). The complicated case of a non-cubic lattice
with a great number of inequivalent sites was treated for α-La60Ni5Hx. In
this case [26], one calculates 9 eigenvalues. Part of them correspond to nearly

4 Theoretical models for neutron scattering functions are usually derived neglecting
experimental resolution; the latter is introduced a posteriori in the analysis of
the measured spectra.
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localized motions, which means that the corresponding quasielastic width is
almost independent of Q.

3.4 High Resolution Neutron Spectroscopy

In neutron scattering spectrometers, the wavelength, velocity or energy of
neutrons have to be defined before scattering, and analyzed afterwards. Three
methods are being used: Crystal Bragg reflection (XTL), neutron time-of-
flight (TOF), or neutron spin-echo (NSE). In the majority of quasielastic
neutron scattering experiments the scattering function, S(Q, ω), is measured
by TOF spectrometry with resolutions from about 1 µeV to a few 1000 µeV,
or by backscattering (BSC) spectroscopy, with resolutions of the order of
0.1µeV to 1µeV. This allows to cover, by quasielastic neutron scattering, a
range of diffusion coefficients between 10−12 m2/s and 10−8 m2/s, or, corre-
spondingly, of characteristic times from 10−9 s to 10−13 s. In certain cases,
also the NSE method can be used, which permits the direct determination of
the intermediate scattering function, I(Q, t), instead of S(Q, ω) . This tech-
nique extends the Fourier time scale up to 10−7 s, corresponding to an energy
resolution limit in the neV region, where diffusion coefficients of the order of
10−13 m2/s can be measured. For detailed descriptions of the NSE-technique,
see [27] and Chap. 13. The TOF and BSC methods will be explained in the
following.There are different techniques of neutron time-of-flight spectrome-
try. XTL-TOF spectrometers [28] use a crystal monochromator to create a
continuous monochromatic beam. This is then periodically chopped with a
disk or Fermi chopper, before it hits the sample. The energy distribution of
the scattered neutrons is obtained by measuring their time-of-flight from the
sample to the detectors. The latter should be sufficiently thin, to make their
contribution to the flight-time uncertainty negligible. The detectors cover a
large range of solid angle and of Q-values. This type of time-of-flight instru-
ment (Fig. 3.4) is characterized essentially by four parameters: The incident
neutron wavelength λ0, its uncertainty ∆λ0, the pulse width ∆τp, and the
pulse repetition rate ν, typically several 100 Hz. While the wavelength uncer-
tainty is due to the divergence of the neutron beam incident on, and reflected
from the monochromator, the pulse width is defined by the chopper; typical
values are ∆τp = 20 to 50 µs. In Fig. 3.5 a neutron time-of-flight diagram is
shown for a flight path L (of the order of several meters) extending from the
sample to the detectors.

The pulse repetition rate is limited by the frame overlap, which means the
superposition of the fastest neutrons within a certain cycle and the neutrons
scattered with energy loss from the previous one (velocity vmin). This requires

1
ν

=
L

vmin
. (3.34)
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Fig. 3.4. Typical time-of-flight spectrometer with Bragg monochromator at the
FRJ-2 reactor. E0 is selected by a Bragg monochromator crystal, E1 by measuring
the flight time.

rpm�

Fig. 3.5. Time schedule for a time-of-flight spectrometer. ∆τp = pulse length, L =
flight path after scattering, τrpm = cycle length. ν = 1/τrpm = vmin/L = repetition
rate. Shaded: frame overlap. v = v0 corresponds to zero energy transfer �ω = 0. The
incident energy E0 is selected by Bragg reflection from a monochromator crystal.

The choice of vmin depends on the decay of the quasielastic spectrum on the
low-energy side. Obviously, the parameters ∆λ0, ν, and ∆τp determine the
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Fig. 3.6. Schematic sketch of a multi-disk chopper time-of-flight (MTOF) spec-
trometer: CH1 and CH2 are the two principal choppers defining the monochromatic
neutron pulse and its wavelength bandwidth; S = sample, D = detectors; L12, L2S ,
and LSD are the distances between these elements of the instrument; τi and τii are
the widths of the pulses created by CH1 and CH2, λ0, λ the incident and scattered
neutron wavelenths (after [29]). Inset: the pulse-width ratio (PWR) optimization
formula for elastic and quasielastic scattering [30]. Typical instruments of this type
are IN5 at ILL in Grenoble, MIBEMOL at LLB in Saclay, and NEAT at HMI in
Berlin.

average count rate at the detectors, while two of them, ∆λ0 and ∆τp, govern
the energy resolution.

As already mentioned, the incident neutron beam of the XTL-TOF spec-
trometer is monochromatized by Bragg reflection. It selects a certain wave
number k0 = mv0/� for a given Bragg angle Θ and reciprocal lattice vector
G, following the Bragg equation

|G| = 2k0 sinΘ . (3.35)

Alternatively, in the case of a TOF-TOF spectrometer, both v1 and v0 are
selected by time-of-flight by (at least) two choppers in front of the sample,
with a mutual phase shift which determines v0. Such a multi-disk chopper
time-of-flight (MTOF) instrument is illustrated in Fig. 3.6.

The two principal choppers, CH1 and CH2, the sample S and the detectors
D are separated by the distances L12, L2S , and LSD, respectively. CH1 and
CH2 create neutron pulses with widths τi and τii and define the incident
neutron wavelength λ0; the scattering processes cause neutron wavelength
shifts to smaller or larger values of λ.
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For a given incident neutron wavelength, the total intensity at the detec-
tors is essentially governed by the factor (τiτii), i.e. by the product of the
two chopper opening times [30] (see also: [31]). The latter also control the
resolution, and thus intensity and resolution are connected through these pa-
rameters. The most important and unique feature of this type of instrument
is the capability of varying the energy resolution continuously over several
orders of magnitude (see above). The energy resolution width (HWHM) at
the detector [30], i.e. the uncertainty in the experimentally determined energy
transfer �ω, is given by

∆(�ω) [µeV] = 647.2(A2 +B2 + C2)1/2/(L12LSDλ
3)/2 , (3.36)

where
A = 252.78 ∆L λ L12 , (3.37)

B = τi(L2S + LSDλ
3/λ3

0) , (3.38)

C = τii(L12 + L2S + LSDλ
3/λ3

0) . (3.39)

∆L is the uncertainty of the length of the neutron flight path, which is mainly
due to beam divergence, sample geometry and detector thickness. The quan-
tities L12, L2S , LSD, ∆L must be given in m, λ0 and λ in Å and τi, τii in µs.
It follows from these expressions, that the energy dependent resolution, for
given λ0, strongly depends on the scattered neutron wavelength λ, whereas
the total intensity, as an integral property of the spectrometer, has no such
dependence. Furthermore, high resolution is favoured by short pulse widths
and by large values of the distances L12 and LSD. If these distances are
fixed, and if sample geometry, λ0 and energy transfer have been chosen,
then total intensity and resolution-width only depend on the chopper open-
ing times τi and τii. Best instrument performance regarding intensity and
resolution is achieved not only by selecting suitable values of the individual
pulse widths, τi and τii , but also requires the optimization of their ratio
(pulse-width ratio (PWR) optimization [30], [32]). The optimization formula
for elastic and quasielastic scattering is shown as an inset in Fig. 3.6.

The µeV-regime is covered by back scattering spectrometry [33–35], which
was invented by H. Maier-Leibnitz. BSC-spectrometers are XTL-XTL instru-
ments, i.e. they employ single-crystals as monochromators and as analyzers,
with Bragg angles close to π/2 in both cases. For a given incident divergence
of the beam, ∆Θ, the wave number spread produced by reflection from a
crystal is given by differentiating (3.35)

∆kdiv

k
= cotΘ∆Θ . (3.40)

This relation is shown in Fig. 3.7 together with the presentation of the Bragg
law in reciprocal space. For typical Bragg angles and ∆kdiv/k ≈ 10−2 radian
one achieves an energy resolution in the percent range. However, for Θ ap-
proaching π/2, ∆kdiv from (3.40) goes to zero and we have to include the
curvature of sinΘ which leads to a second order contribution (see Fig. 3.7)
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Fig. 3.7. Bragg law and Bragg reflection on a single crystal monochromator in
reciprocal space, for ΘB off 90◦, and for ΘB ≈ 90◦ where k depends only in 2nd

order on ∆Θ. Vertical line: G = reciprocal lattice vector. Width of shaded region:
Darwin width due to extinction.

∆kdiv

k
=

(∆Θ)2

8
for Θ → π

2
. (3.41)

This situation is called “backscattering” which means that the incident and
the Bragg reflected beam are practically antiparallel. The square relation
(3.41 replaces the linear relation between ∆kdiv and ∆Θ: The intensity is
proportional to the incident solid angle (∆Θ)2, and we have (∆Θ)2 ∝ ∆kdiv

instead of ∆Θ ∝ ∆kdiv, which is valid for Bragg angles other than π/2. This
means that under these conditions resolution and intensity are decoupled in
first order.

Actually, the wavevector spread is larger than ∆kdiv. Only a finite number
of lattice planes contributes to the Bragg line, which causes a finite width of
G, the so-called Darwin or extinction width [36], namely

∆kex

k
=

16πNcFG

G2
, (3.42)

where FG is the structure factor for the Bragg reflection at Q = G, Nc

is the number of lattice cells per unit volume. As an approximation, both
contributions can be added such that

∆E0

E0
= 2

[
(∆Θ)2

8
+

16πNcFG

G2

]
. (3.43)

For neutrons from a Ni neutron guide and reflection on an ideal silicon waver
one calculates ∆E0 = (0.24+0.08)µeV. For the resolution in energy transfer,
∆(�ω), of a modern BSC-spectrometer, one obtains values between 0.09µeV
and 0.43µeV (HWHM), depending on the type of crystals used [35]. So far
such values have not been reached by any other crystal spectrometer; they
will, however, be achieved also by high-resolution TOF-TOF instruments at
future spallation sources [29]. The Bragg angle is fixed at 90◦, and the energy
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Fig. 3.8. Backscattering spectrometer at the Jülich FRJ-2 reactor. The Bragg
angles at the silicon single crystals (before and after scattering of the neutrons by
the sample) are close to 90◦. Other well-known spectrometers of this type are IN10,
IN13 and IN16 at the ILL in Grenoble, and HFBS at NIST in Gaithersburg.

scan is performed by a Doppler drive, moving the monochromator crystal
with a speed vD. The resulting energy shift is [37]

δE0

E0
= 2

vD
v0

(3.44)

which yields an energy window of δE0 = ±15 µeV for vD = 2.5 m/s and
λ0 = 6.3 Å.

Fig. 3.8 shows the backscattering spectrometer built at the Jülich FRJ-2
reactor. Cold neutrons are produced in a liquid hydrogen source which mod-
erates the neutrons from the D2O reflector and transfers the spectrum from
an effective temperature close to room temperature to about 20 to 40 K. The
resulting intensity gain factor in the desired low-energy spectrum is between
7 and 15. The monochromator crystal (10×10 cm2) is fixed on a sinusoidally
moving Doppler drive. The backscattered neutrons are separated from the in-
cident beam by a (broad band) copper single crystal which reflects the whole
energy range of about 30 µeV covered by the Doppler motion. The monochro-
matic neutrons, falling onto the sample, being scattered, and finally detected,
are individually labeled with the corresponding instantaneous speed of the
Doppler drive. The neutrons scattered by the sample are backscattered by
spherical shells of Si crystals and thus focussed into a set of BF3 counters.
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Fig. 3.9. Typical quasielastic spectra measured with backscattering spectrometry
in the µeV-region on hydrogen diffusing in ZrV2 for several scattering vectors Q.
Dashed narrow line: Resolution curve of the spectrometer. Dashed broad line: Qua-
sielastic component due to rapid non-diffusive motion at large Q (see Sect. 3.5) [38].

Each counter corresponds to a certain scattering angle or Q-value. To avoid
that the scattered neutrons are directly falling onto the counters (before they
have been filtered by the Si analyzers), the incident beam is periodically in-
terrupted by a chopper, in phase with the Doppler movement. Only when the
beam is closed, the consecutively scattered and analyzed neutrons reach the
counters. Fig. 9 presents typical quasielastic spectra for hydrogen diffusing
in an alloy, measured with µeV resolution at different Q values.

Very often the energy range is too narrow. The reflected neutron energy
can be additionally shifted by heating the monochromator, thus increasing
the lattice parameter, and/or using monochromators whose lattice parameter
is somewhat smaller or bigger than that of the silicon analyzer [39]. In this
way, the range of the spectrometer (and also the resolution) can be adapted
to the problems.

Sometimes, backscattering spectrometers are used with the Doppler drive
at rest. In such a measurement one determines the intensity for the spectro-
meter set at ω = 0, i.e. the convolution integral I(ω = 0) = (S⊗R), where S
is the neutron scattering function and R is the energy resolution function. For
a Lorentzian-shaped spectrum as in (3.31), Sinc(Q,ω) = (Γ/π)/(Γ 2 + ω2),
and assuming a Lorentzian shape for the resolution function as well (approx-
imately valid for the classical BSC spectrometer), with a width (HWHM)
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∆(�ω), one obtains for the measured intensity

I(Q,ω = 0, T ) =
1
π

1
(Γ (Q,T ) +∆(�ω))

. (3.45)

Let us now, for the purpose of discussion, assume that in our example a single
relaxation process (responsible for the Lorentzian line shape) is active over
the whole temperature range considered, and that it shows an Arrhenius type
behaviour. Then, for sufficiently small temperatures, the quasielastic line falls
entirely into the energy resolution window. Therefore, it does not cause any
measurable quasielastic broadening. Then one gets for the “window intensity”

I(Q,ω = 0, T ) = 1/(π∆(�ω)). (3.46)

With increasing temperature, the line width Γ grows, and finally becomes
larger than the window ∆(�ω); the measured intensity of the window scan
then reveals a “stepwise” decrease. Therefore, a simple temperature scan al-
lows one to get a qualitative survey of the diffusion or relaxation processes in
the sample as a function of temperature (fixed-window method: first measure-
ments with this method were carried out by Alefeld et al. on N(CH3)4MnCl3
[40], tetramethyllead [41], and (NH4)2SnCl6 [42]; see also [21] p. 284).

The intensity “step” represents a (purely methodical) transition from non-
observability at low T to observability at high T of the relaxation process.
From the shape of this step the relaxation time of the single process can
easily be determined. Let us consider this problem for the more complex
situation of a localized diffusive process, implying an elastic in addition to
a quasielastic Lorentzian component. Here the same experimental method
can be applied. If the attenuating effect of (harmonic) vibrational motions
is described by a classical Debye-Waller factor, the temperature-dependent
window-scan intensity, in logarithmic form, is given by [43]

ln(I) = −CTQ2 + ln(A(Q)/(π∆(�ω)) + (1 −A(Q))/[π(2�/τ2S +∆(�ω))] .
(3.47)

Here CT is the vibrational mean square displacement (with a temperature
coefficient C), A(Q) is the EISF, and τ2S is the relaxation time (for a two-site
jump model in our example). It is interesting to note that the observability
transition described by (3.47) can be used for the determination of the EISF,
provided that the mechanism does not change in the T -region of the step.

For this purpose, the measured low-temperature straight line of ln(I) vs. T
is extrapolated to high T and compared with the measured high-temperature
line; the latter is obtained, when due to strongly increased line-broadening,
the quasielastic contribution to the intensity becomes negligible. A simple
division of the intensities yields the EISF according to the equation [43]

ln[A(Q)/(π∆(�ω))] = [ln(I)high T ] − [ln(I)extrapol
low T ] . (3.48)

As an example of such a measurement, Fig. 3.10 shows the result obtained
for the solid-state protonic conductor CsOH · H2O (see Sect. 3.9).
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Fig. 3.10. Example of an apparent observability transition exhibited experimen-
tally by the elastic intensity of CsOH ·H2O measured as a function of temperature:
Logarithmic plot of the elastic-window intensity obtained with IN13 (ILL Grenoble)
at Q = 1.89 Å−1. The straight lines show the variation of the Debye-Waller factor
in the limits of low T and high T , respectively. The logarithm of the EISF is simply
the difference between the values of the two lines at a given temperature [43].

Last, but not least, the TOF-XTL technique should be mentioned. This
type of hybrid instrument, employing a pulsed polychromatic (“white”) inci-
dent beam and single-crystals in BSC-geometry as analyzing filters, is repre-
sented by IRIS [44] at RAL in Chilton. It is well adapted to the time-structure
of spallation neutron sources. The energies of the incident neutrons are mea-
sured with time-of-flight techniques, while the energy of scattered neutrons
is fixed by the analyzers. Depending on the type of crystals used, several
discrete values of energy resolution in the range from about 1 to 16µeV are
achieved. An example of application is given in Sect. 3.11.

Let us finally mention a few technical points concerning the analysis of
QENS data. An important problem in the evaluation of quasielastic neutron
spectra is the accurate consideration of the experimental resolution. Although
straightforward, this is complex, if the spectrum is a sum of several quasi-
elastic components, eventually superimposed by a purely elastic line, either
due to the fact that the diffusive motion is localized, or caused by para-
sitic incoherent scattering on the host material in which the particles diffuse.
The measured spectra are convolutions of the dynamic structure factor with
the resolution function. Since a direct deconvolution often encounters prac-
tical difficulties, in a typical analysis the data are usually not corrected for
resolution, but an inverse procedure is employed. It consists in folding the
theoretical model with the measured resolution function and comparing the
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result to the measured spectra. This procedure, which amounts to an indirect
deconvolution, is well-known, and standard software packages are available
in the Neutron Scattering Centers.

Another problem is multiple scattering (MSC). In principle, a neutron
reaching the detector, may have been scattered in the sample once , twice, or
even several times. For a given nominal scattering angle ϕ or nominal Q value
(Q ∼= (4π/λ) sin(ϕ/2)) the convolutions of two or more quasielastic spectra
are then superimposed on the single-scattering data. The MSC components
should be minimized by using sufficiently thin samples. Nevertheless, a nu-
merical correction is often necessary. Analytical methods [45] directly applied
to the theoretical models, and model-independent Monte-Carlo techniques
(see for instance [46], [47]) are employed for this purpose.

The third problem is calibration, which means the absolute determination
of the scattered intensity, instead of quoting “arbitrary units”. Calibration is
performed, for instance, by a vanadium scatterer which has the same geom-
etry as the sample itself, and whose incoherent scattering cross-section is
well-known (provided that there is no hydrogen contamination).

For many elements coherent and incoherent scattering coexists, and it is
difficult to separate the contributions Scoh(Q, ω) and Sinc(Q, ω). Spin inco-
herent scattering causes (2/3)[σinc/(σinc + σcoh)] of the neutrons to flip their
spin in a polarized neutron beam, whereas coherent scattering occurs without
spin flip. The high intensity of polarized beams available at the reactor in the
Institut Laue-Langevin in Grenoble allows one to apply this property for a
direct separation of the coherent and incoherent contributions, by orienting
spin analyzer and polarizer parallel and anti-parallel ( [48], see also [49] and
Sect. 13.2.2 in Chap. 13).

More information on modern QENS spectrometers can be found in the
Instrumentation Booklets of the Neutron Scattering Centers (ILL in Greno-
ble, LLB in Saclay, BENSC at HMI in Berlin, ISIS at RAL in Chilton, NIST
in Gaithersburg, FZ Jülich, IPNS at Argonne).

3.5 Hydrogen Diffusion in Metals and in Metallic Alloys

The first investigations of quasielastic scattering on diffusing atoms were
performed by Sköld and Nelin [50] on palladium hydride where the H atoms
diffuse over an interstitial lattice. The experiments on powder samples indi-
cate clearly that, for small scattering vectors Q, the diffusion coefficient is
obtained following (3.33). For larger Q, the data are consistent with diffusion
on an octahedral lattice (see Fig. 3.11). More recent experiments on palla-
dium single crystals are shown in Fig. 3.12 [51]. The results agree very well
with the Chudley-Elliott model. Results from computer simulations by Li and
Wahnström [52] are included in the figure, where the hydrogen potential was
modelled in the adiabatic Born-Oppenheimer approximation, tested with the
help of the known vibrational frequencies of the dissolved hydrogen. These



116 Tasso Springer and Ruep E. Lechner

Fig. 3.11. Tetrahedral and octahedral interstitial sites (•) for fcc (left) and bcc
(right) host lattices. The sites can be occupied by H atoms. The 6 (3) non-equivalent
sublattices in the bcc (fcc) lattice are labeled. The bcc tetrahedral sites are con-
nected by [110] jump vectors.

calculations strongly deviate from the Chudley-Elliott model and from the
experiments. Agreement between the computer simulations and the experi-
ments was obtained by introducing a dissipative force which is supposed to
follow from the interaction of the protons with the conduction electrons.

The process of diffusive motions of hydrogen in bcc metals, in particu-
lar in niobium hydride, is complicated and not yet fully understood, despite
the great number of investigations published so far (e.g. [53–55]). Hydro-
gen atoms occupy tetrahedral sites in the bcc lattice (Fig. 3.11) forming six
non-equivalent sublattices. Consequently, the quasielastic line is a superposi-
tion of six Lorentzians and it is finally dominated by a single Lorentzian for
Q → 0 whose width is Q2Ds. A comparison between quasielastic scattering
experiments and theory is shown in Fig. 3.13. For simplicity, only the half
width of the combined quasielastic line is used [53]. Obviously, for larger Q
the effective width is considerably smaller than expected from the simple
Chudley-Elliott model. One speculates that this might be due to an effective
jump distance larger than expected from the lattice parameters.
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Fig. 3.12. Quasielastic width in units of Ds/a2 (a = lattice constant) for H dif-
fusion on octahedral sites in fcc Pd. • Quasielastic experiments with Q parallel
[100] (a) and [110] (b). Dashed: Chudley-Elliott theory; triangles: computer sim-
ulation without friction force due to interaction between protons and conduction
electrons; squares: with such a friction force [51,52].

Fig. 3.13. Quasielastic width for cubic α-NbH0.02 with Γ (Q) determined from the
composite spectrum. Ψ = angle between [110] and k0. (1) Chudley-Elliott model
(tetrahedral jump vectors, Fig. 3.11). (2) Correlated double jumps. (3) Jump se-
quences (from [54]).

The following model [54] describes the obtained experimental results. At
elevated temperature the hydrogen alternates between a ‘state’ where it is
localized by the strong elastic relaxation of the surrounding host lattice, with a
rest time τ0, and a mobile state, where it follows a rapid sequence of two, three
or more jumps between adjacent tetrahedral sites, with a rate several times
larger than 1/τ0. This memory effect follows from the relaxation of the host
lattice. The hydrogen ion on a tetrahedral site creates an elastic distortion of
tetragonal symmetry as in Fig. 3.14 with a certain axis shown in this figure.
A jump leading to an adjacent site reorients this axis by 90◦, and a finite
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Fig. 3.14. Left: Atomic displacements around a H atom on a tetrahedral site x in
the Nb lattice. A nearest neighbour jump (e.g. from site x to y) causes a rotation of
the symmetry axis (dashed) by 90◦ with a relaxation time of the displacement field
τr

∼= 10−12 s. Right: Potential for sequence of correlated jumps with incomplete
relaxation of the potential minima (see also Sect. 18.3 in Chap. 18).

time τr is required until the new arrangement of the surrounding lattice is
entirely restored. Small-polaron theory allows a calculation of this time with
τr ∼ 10−12 s [56]. Consequently, for the first moment (i.e. for t � τr), the
activation barrier opposing a hydrogen ion to leave the site is lower than for
a fully relaxed site. Obviously, there is an enhanced probability to leave this
shallow site before full relaxation has occurred. This favours correlated jump
sequences, as well as back jumps to the original site. Fig. 3.15 shows typical
hydrogen trajectories in Nb from molecular dynamics calculations [57].

Fig. 3.15. Typical trajectories of hydrogen motion projected in a (100) plane of the
Nb lattice from molecular dynamics calculation over a time interval of 5·10−12 s [57].
Correlated “forward” and “backward” jumps can be identified.
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Two striking anomalies of the bcc hydrides may be related to the strain
field caused by the jumps. (i) Huang scattering (i.e. scattering close to the
Bragg lines) probes the symmetry of the long-range strain field due to the
dissolved H atoms [58]. X-ray experiments on niobium hydride show that
the strain field is practically cubic. (ii) The inelastic Snoek relaxation of the
bcc Nb hydride is proportional to the squared difference of the two diagonal
components of the Kanzaki double force tensor (A–B)2. Also the Snoek relax-
ation experiments lead to the conclusion of a nearly cubic strain field [59]. If
the time of a jump sequence is comparable to or shorter than the long-range
lattice relaxation, the contributions due to the occupancy of an occupied
site and of previously occupied sites are superimposed. Since the orientation
of the strain fields are mutually orthogonal, the resulting long-range field is
supposed to approach a distribution close to cubic symmetry.

A detailed experimental and theoretical analysis by Dosch et al. [55] treats
the dynamics of the strain field. For the first time, these authors were able
to observe the quasielastic scattering due to the strain field fluctuations orig-
inating from hydrogen jumps. From these results the authors conclude the
existence of very fast back- and forth-jumps between adjacent sites; also these
could be responsible for a reduction of the tetragonal components in the
double force tensor and, therefore, of the long-range field. Such fast “local”
motions distribute the proton over adjacent sites. If this motion is resolved
energetically, it should cause a Q-dependent factor in addition to the Debye-
Waller factor, exp(−〈u2〉Q2), where 〈u2〉 is the mean square vibrational am-
plitude. This would amount to a very steep decay of the quasielastic intensity
with increasing Q, and would have to be identified with the elastic incoher-
ent structure factor (EISF) as defined in (3.16)-(3.18). The interpretation of
Debye-Waller factor and EISF needs special attention. The hydrogen motion
in the 10−12 s regime can be identified by a fit of a suitable theoretical func-
tion Sfit(Q,ω) to the experimental data, in an experimentally limited window
−�ωmax ≤ �ω ≤ �ωmax. The corresponding quasielastic intensity is then cal-
culated by integration, assuming that Sfit also reproduces sufficiently well the
contribution of the diffusive motion to the scattered intensity outside of the
fitting region:

I(Q) =
∫ ∞

−∞
Sfit(Q,ω)dω . (3.49)

If there are fast motions not covered by Sfit(Q,ω), e.g. the rapid back- and
forth-jumps as described in [55], in the 10−13 to 10−14 s region, the quasi-
elastic intensity should read

I(Q) = e−〈u2〉Q2
F (Q) . (3.50)

The first factor is the usual Debye-Waller factor of the proton due to phonons
and localized vibrational modes, and F (Q) is the EISF, i.e. the Fourier trans-
form of the proton distribution in space by diffusive motions which are faster
than the 10−12 s jumps.
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Table 3.1. Hydrogen diffusion coefficients in different intermetallic hydrides. For
comparison, the values for dilute PdHx and NbHx are also included.

Specimen D0 (cm2/s) Eact (meV) D300 K (cm2/s) Reference

PdHx→0 5.3 · 10−3 236 5.7 · 10−7 [60]

NbHx→0,T>250K 3.6 · 10−4 108 5.5 · 10−6 [61]

Ti2NiH2 2.0 · 10−4 345 3.2 · 10−10 [62]

TiFeH 7.2 · 10−4 500 2.9 · 10−12 [63]

TiFeH 4.2 · 10−7 330 1.2 · 10−12 [64]

LaNi5H6 3.2 · 10−4 249 2.1 · 10−8 [65]

LaNi5H6 2.1 · 10−3 275 5.0 · 10−8 [66]

TiCr1.8H2.6 270 [67]

Ti1.2Mn1.8H3 5.9 · 10−4 225 9.8 · 10−8 [68]

Ti0.8Zr0.2CrMnH3 3.1 · 10−4 220 6.2 · 10−8 [69]

Mg2NiH0.3 6.7 · 10−5 280 1.3 · 10−9 [70]

Numerous quasielastic scattering studies were performed on alloy hydrides
which reveal high solubilities and mobilities of the hydrogen atoms. One
objective of the investigations was the determination of the bulk self-diffusion
coefficient from quasielastic experiments at small Q. Table 3.1 summarizes
results from such investigations, namely Ds for 300 K and the parameters for
an Arrhenius law describing the temperature dependence, namely

Ds(T ) = D0e−Eact/kBT . (3.51)

With these bulk diffusion coefficients the hydrogen absorption or desorption
rate, Kr, in a storage powder was calculated and compared with experiments.
For a grain size R one obtains approximately

Kr = π2Ds/R
2 . (3.52)

For Ti0.8Zr1.2CrMnH3 [69] one gets Ds = 6 · 10−12 m2/s from quasielastic
scattering; the grain size of the storage powder is R ≈ 0.5 µm. This leads
to a reaction rate of Kr = 400 s−1, provided that absorption and desorption
is diffusion controlled. The measured rate, however, is only 0.1 s−1. This
implies that the reaction rate is retarded by the surface and not controlled
by the fast bulk diffusion. The opposite situation was found for TiFeHx [63]
where the self-diffusion is very slow and the reaction is diffusion controlled.
However, if one calculates Kr, the resulting value is smaller than measured.
Using metallographic pictures this was explained by microcracks in the grains
which bypass the diffusion path. Obviously, quasielastic neutron scattering
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does not “see” this effect since the distance between microcracks is much
larger than 1/Q.

3.6 Diffusion with Traps

In disordered alloys the potential for a diffusing atom fluctuates randomly in
space, and the potential depth or binding energy changes from site to site,
as well as the barrier connecting adjacent sites. The calculation of the self-
correlation function Gs(r, t) is possible by means of Monte Carlo methods and
only a simplified case can be treated analytically, namely by the so-called
two-state model [71]. We consider a regular lattice doped with impurities
at low concentration where the diffusing atom is temporarily bound by the
impurities. Under these circumstances, the problem is solved by treating the
diffusion as a random sequence of steps, namely an alternation between

– a free “state” where the atom diffuses in an undisturbed lattice, with a
self-diffusion coefficient D1 during an average time interval τ1 and

– a trapped or immobile state during an average time τ0 in the vicinity of
an impurity atom.

The self-correlation function is then obtained as a series expansion where each
term is a multiple convolution of the free and trapped-state self-correlation
functions. The “macroscopic” self-diffusion coefficient Ds is then related to
D1 by

Ds = D1
τ1

τ1 + τ0
, (3.53)

and the free diffusion coefficient is

D1 =
�2

6τ
. (3.54)

τ is the mean rest time on the undisturbed lattice sites and � is the corre-
sponding jump distance. The escape rate from the immobile trapped state
is 1/τ0; the rate of trapping can be calculated on the basis of a continuum
theory, namely

1
τ 1

= 4πReff(T )D1(T )cT . (3.55)

cT is the concentration of the impurities. Reff is an effective trapping ra-
dius. For an attractive potential caused by the impurity, Reff decreases with
increasing temperature.

The results are schematically shown in Fig. 3.16. The width for an un-
doped crystal is presented by the dashed line following the basic Chudley-
Elliott result (3.30). For small Q there is only a single Lorentzian whose
width approaches Γ = Q2Ds, related to the macroscopic diffusion coefficient.
This is only obtained for sufficiently small Q, namely such that the diffusive
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Fig. 3.16. The two eigenvalues Λ1,2 calculated for the two-state model correspond-
ing to the width of the quasielastic components Γ1,2 vs. Q2. The line thickness
symbolizes the intensities of the two components. Dashed: Width for undisturbed
crystal. 1/τ0 = escape rate from trap. The maximum value of Λ2 is 1/τ0.

process is observed over a range larger than the average distance between the
impurities. At large Q, the two eigenvalues are visible in the spectrum. A
narrow quasielastic component appears whose width is related to the escape
rate of hydrogen from the trapping centres and whose intensity is propor-
tional to the fraction of atoms in the immobile state. In addition, there is a
broad component whose width approaches the jump rate in the undisturbed
lattice. Details of this model are found in [71] and in Chap. 18.

This behaviour has been observed and successfully interpreted for niobium
crystals, doped with 0.4 and 0.7 at% nitrogen and with 0.3 at% dissolved
hydrogen. Fig. 3.17 shows the intensity of the line related to the trapped

Fig. 3.17. Diffusion of H (0.3 mol %) in Nb doped with cN = 0.4 and 0.7 mol
% N atoms. Left side: τ1 = average time of free diffusion, 1/τ1 is proportional
to cN; 1/τ0= escape rate, independent of cN. Right side: Intensity of the narrow
component in the quasielastic spectrum corresponding to eigenvalue Λ2. For small
Q: Single line with I2/I0 � 1; for large Q: Intensity proportional to fraction of
trapped protons, increasing with decreasing temperature [71].
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Fig. 3.18. Tunneling spectrum for Nb doped with 0.2 mol % H and 0.2 mol %
O. The hydrogen is trapped in a double potential well near the O impurity at
1.5 K. The asymmetry of the spectral doublet is due to the Boltzmann factor. The
intensity of the tunneling lines is only 1% of the central elastic peak [73].

state. Expectedly for large Q the intensity of this narrow line (width � 1/τ0)
decreases with increasing temperature because the H atoms spend a decreas-
ing fraction of their time near the N impurities. As seen from Fig. 3.17, the
trapping rate 1/τ1 is proportional to the nitrogen concentration cN, whereas
1/τ0, the escape rate, is independent of cN. Both rates are thermally activated
with activation energies which, in a good approximation, can be understood
by elastic strain fields caused by the impurities. The model has also been
applied to a disordered alloy, namely Ti1.2Mn1.8H3 where the free motion
cannot be clearly separated from the trapped state. Nevertheless, the evalu-
ation of the spectra yielded a consistent description of the spectra [68].

An interesting effect is connected with hydrogen or deuterium dissolved
in niobium and trapped on impurities [72, 73]. It has been observed that
the specific heat for niobium doped with hydrogen or deuterium reveals an
anomaly at low temperatures with a strong isotope effect if the sample was
loaded with a certain amount of oxygen or nitrogen. Investigations of neutron
spectra at low temperatures revealed two lines on the energy gain and loss
side. They correspond to transitions between stationary tunneling states of
the proton attached to the impurities, with energies of a few 0.1 meV. It
has been assumed that the N or O impurity occupies an octahedral site of
the bcc Nb lattice (see Fig. 3.11). This leads to two adjacent tetrahedral
sites separated by a low potential barrier where the proton wave function is
distributed over both sites. For a simple double-well model, with an exchange
integral J and an asymmetry ε caused by the elastic distortions, one calculates
a tunneling splitting of

�ωT =
(
J2 + ε2

)1/2
. (3.56)

For hydrogen trapped on oxygen one gets J = 0.22 meV, ε = 0.10 meV
depending on concentration, and for deuterium J = 0.02 meV (Fig. 3.18).
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3.7 Vacancy Induced Diffusion

In many metals the atoms diffuse in the presence of thermally induced va-
cancies. These vacancies themselves diffuse rapidly through the lattice, and
each jump of a vacancy is connected with a jump of a lattice atom. For dilute
vacancies, a selected atom undergoes a jump to a neighbouring site whenever
it has an “encounter” with a vacancy, where the time between jumps of the
vacancy τv � 10−12 s is short compared to the time between two encounters
with different vacancies, τe � 10−9. Normally, one and the same vacancy
leads to several correlated jumps of the same atom, such that one encounter
comprises a number of jumps where the sequences are still short compared
to τe (see Chap. 1).

As a consequence, for incoherent scattering by the nuclei in the lattice,
the quasielastic spectrum can be calculated in the framework of the Chudley
Elliott equation (3.25) where the rapid jump sequence during the encounter
is treated as instantaneous. One obtains [74]

Γ =
1
τe

[
1 −

∑
all rm

w(rm) cosQrm

]
. (3.57)

w(rm) denotes the probability that, during the encounter, the atom was orig-
inally at rm = 0 and has reached the lattice site rm by one or several jumps.
The sum includes a term w(rm = 0) where several jumps of the sequence led
the atom back to its origin. The probabilitiesw can be calculated by computer
simulation [75]. Detailed theoretical investigations on the encounter model,
also including different types of jumps, can be found in the literature [76]. If
the encounter consists only of a single jump, in a bcc metal it reaches only
the n = 8 nearest neighbours with rk ≡ �k = a

2 〈111〉; one has

Γ =
1
nτe

n∑
k=1

[1 − cosQ�k] . (3.58)

It should be emphasized that the rapid jump sequence during the encounter
causes an additional quasielastic spectrum. However, the corresponding jump
rate 1/τv � 1012 s−1 is very large compared to 1/τe � 108 . . . 109 s−1. Conse-
quently, the spectrum is 103 to 104 times broader than the spectrum related
to Γ (Q) in (3.57); in a high-resolution experiment designed for the study of
the encounter rate, 1/τe, this is practically an unobservable background. In
a lattice with coherently scattering nuclei, in principle, one should observe
also vacancy diffusion itself, where the missing atoms have the cross-section
of the atoms. Quasielastic scattering concerning the diffusion in sodium sin-
gle crystals has been investigated and the diffusion is dominated by a

2 [111]
jumps [74,77]. A detailed study has been carried out for the diffusion in bcc
titanium single crystals whose results are shown in Fig. 3.19 [78]. The depen-
dence of the quasielastic width in the µeV-region is consistent with jumps of
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Fig. 3.19. Quasielastic scattering width for vacancy induced diffusion of Ti in a bcc
single crystal. Γ (Q) is the full width at half maximum. Different orientations are
indicated (α = [110] ∧ k0). Left: 1460 ◦C, right: 1530 ◦C. Full circles: Experiment.
Solid line calculated for a

2
[111] jumps with correlations during encounter [78].

the a
2 [111] type including the contribution of next nearest neighbour a[100]

jumps. The high diffusion coefficients of bcc alkali and group IV metals, with
relatively low activation energies has stimulated the investigation of phonon
dispersion curves of such substances, i.e. the relation between the propagation
vector q and the phonon frequency ω. Fig. 3.20 shows such results [79] for a
titanium single crystal. A rather low transverse acoustic mode can be recog-
nized, and, in particular, the collapse of a phonon branch near 2

3 [111] where
the phonon line degenerates and becomes a relaxation spectrum centered
at energy transfer �ω = 0. It is possible to establish a systematic relation
between phonon frequencies ω∗ and the activation energy E∗ for diffusion,
namely

ω∗2 ∝ E∗

kBTm
, (3.59)

where Tm is the melting temperature. This relation is plausible since for a co-
sine potential E∗

2 cos(πx/�) the curvature is proportional to the activation en-
ergy E∗, and the squared frequency ω∗2 is proportional to the curvature [80].
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Fig. 3.20. Top: Phonon dispersion curves ω(q) (ξ = q/qmax) for a Ti single crystal.
Anomalies for the transverse acoustic [211] branch and for q = 2

3
[111]. Bottom: The

2
3
[111] phonon assists the a

2
[111] jump into a vacancy at the cube corner, combined

with an opening of the transition through plane 1 by a [110] mode (from [79], see
also Sect. 2.3.1 in Chap. 2).

3.8 Ion Diffusion Related to Ionic Conduction

At elevated temperatures many materials, such as high-temperature solid
modifications of salts and their melts, certain solid metal hydroxide hydrates,
solid acidic salts and hydrates, and concentrated aqueous solutions of acids
are ionic conductors with electric conductivities σ of similar orders of magni-
tude in the solid and in the liquid state. Especially amenable to quasielastic
neutron scattering studies are those ionic conductors, where the charge car-
riers are negatively or positively charged hydrogen atoms (i. e. protons in the
latter case).

The connection between ionic diffusion and conductivity is given by the
Nernst-Einstein equation, which relates σ with the ionic charge diffusion co-
efficient Dσ, namely

Dσ = σ(T )
kBT

(n · e)2N . (3.60)
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Here N is the number density of the mobile ions, e the electron charge,
(n · e) the module of the charge of the mobile ions (n = 1 in the case of
hydrogen ions); kB is the Boltzmann constant, and T the temperature . The
relation between the atomic self-diffusion coefficient, Ds, obtained from neu-
tron scattering by the nuclei of the diffusing ions, and the charge diffusion
coefficient, Dσ, determined by the measurement of the ionic conductivity,
is defined by the Haven ratio, HR = Ds/Dσ. The latter quantity, a priori
unknown, takes into account correlation effects occurring in ion diffusion,
such as deviations from directional and/or temporal randomness of consec-
utive ion jumps and, perhaps even more important, cooperative phenomena
involving the correlated diffusive motion of more than one charge carrier. Be-
cause of the Coulomb interaction between neighbouring ions, such effects can
be particularly important in ionic conductors. Since correlation effects are
practically always present, HR may have values between slightly smaller or
larger than 1, but may also be larger than 1 by an order of magnitude, as in
the case of cation diffusion in LiNaSO4 [81], or even larger by several orders
of magnitude, as observed with the PFG-NMR technique (see Chap. 10) in
the cubic phase of very pure NaOH [82]. The latter observations have been
explained as the result of cooperative ring exchange mechanisms with no or
minor charge separation. A cation leaving its site induces correlated jumps of
neighbouring ions in the opposite direction. While the original cation jump
still contributes to self-diffusion, the backward-correlated jumps of neigh-
bouring ions strongly reduce the efficiency of charge transport. Beyond the
mere measurement of Ds, and of microscopic quantities, such as residence
times and jump distances, QENS can give access to further information on
such correlation phenomena [83], as will be discussed below.

At higher temperatures, atomic or ionic jump rates in the crystal lattice
may become so large, that they are no longer well separated from the lower
part of the phonon frequencies. As a consequence, even at very low concen-
trations of the mobile particles (high concentration of empty sites) the simple
CE model breaks down, memory effects appear, i.e. the diffusing atom “re-
members” part of its history, and therefore a step of the diffusional motion
will to some extent depend on the previous step(s). This effect is mediated
by the lattice during the time of mechanical relaxation from the local dis-
tortion caused by the diffusing ion. Thus phonons may assist the diffusion
process (see Sect. 3.7) and for instance lead to more than one consecutive
nearest-neighbour jump at a time. An example for this case has already been
discussed in Sect. 3.5.

If, however, the concentration of diffusing species is high (low concentra-
tion of vacancies), it becomes necessary to take account of the correlations
between different diffusing ions, because the probability of neighbouring sites
being blocked due to the presence of other mobile particles, is finite. Since
the theoretical treatment is very difficult, Monte Carlo techniques have been
employed. At sufficiently high ion concentration, the problem can be treated
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as a random walk of vacancies. One of the useful concepts for this case is the
encounter model already mentioned in Sect. 3.7, which has been developed
by Wolf [76]. An encounter is defined as the ensemble of diffusional jumps
resulting from the interaction of a vacancy with a particular ion. At very low
vacancy concentration the duration of the encounter is short, as compared to
the average time interval τe between two consecutive encounters of the same
ion with different vacancies. Therefore, different encounters are uncorrelated
and the ionic diffusion can be treated as a random series of discrete encoun-
ters. Spatial and temporal correlation effects are caused by the fact, that the
ion performs, on the average, more than one single jump during an encounter
with a particular vacancy. The QENS function, derived in a way analogous
to the case of the simple CE model, is a Lorentzian, formally identical with
the expression on the right side of (3.31), where however the linewidth Γ is
now given by (3.57).

The encounter model has been applied to the “superionic” anion con-
ductor SrCl2 and compared to various versions of the CE model by Dickens
et al. [84] and Schnabel et al. [85]. SrCl2 has the fluorite structure which
may be described as a simple cubic array of anions, with cations occupying
every other cube center. Because of the relatively large incoherent scatter-
ing cross-section of the chlorine nucleus, (5.5 barn), the QENS technique is
readily applied. In the region of the ‘diffuse’ transition around Tc = 1000K,
anionic conductivity and self-diffusion coefficient rise rapidly up to values
approaching those of the molten salt. The quasielastic linewidths measured
at 1053K in three different crystallographic directions of a single crystal are
shown in Fig. 3.21 [84] as a function of the scattering vector Q, together
with theoretical width functions of three different models. In particular, the
simple CE model (broken line) is compared with two models taking account
of correlation effects, namely a CE model with nearest neighbour (nn) and
next nearest neighbour (nnn) jumps, i.e. forward correlated double jumps
(full line), and the encounter model (chain curve). The latter models are in
better agreement with the experimental data than the former. An important
result of this work is the proof, that the diffusion mechanism essentially in-
volves only the regular sites of the simple cubic (sc) anion lattice. This is
contrary to previous conjectures with respect to interstitial sites, but consis-
tent with the conclusions from tracer and ionic conductivity measurements,
at lower temperatures, by Bénière et al. [86]. Another important result is the
confirmation of the phenomenon of neutron diffraction by the single particle
probability density distribution (PDD) extending over a large region of the
lattice of diffusion sites at long times (see discussion in Sect. 3). The curves
in Fig. 3.21 clearly show a zero value of the QENS width function in the
[001] direction, where the location of the (002) reflection of the SrCl2 fluorite
lattice is indicated by an arrow. If the coherent (001) reflection (correspond-
ing to the pair correlation function) of the sc Cl− sublattice (with half the
lattice spacing) were observable, it would be located at the same place. This
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Fig. 3.21. Superionic anion conductor SrCl2: Quasielastic width functions mea-
sured at 1053 K (after Fig. 2 of [84]); dashed line: simple CE model with nn jumps
only; full line: CE model with nn and nnn jumps, i.e. with forward correlation;
chain curve: encounter model implying spatial and temporal correlation.

demonstrates, how incoherent neutron scattering can be employed as a means
for determining the structure of the lattice of diffusion sites in a crystal, pro-
vided the structure of the latter is known. Such structure determination is in
fact implicitly carried out, when lattice diffusion models are fitted to QENS
spectra.

Another anion conductor, Ba2NH, is of special interest. The charge car-
rier is the H− ion, the ionic conductivity is extremely high (1 S cm−1 near
700 K [87]), and it is essentially two-dimensional. This compound has a lay-
ered trigonal structure (space group (R3̄m)), with separated H− and N3−

ion layers, these ions being alternately located in the centers of distorted
Ba-octahedra. The analysis of quasielastic neutron scattering spectra, using
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a planar CE diffusion model, has shown that the H− diffusion process takes
place by uncorrelated jumps between regular hydrogen sites of the trigonal
lattice [88]. The scattering function of a two-dimensional diffusion process
has a singularity at zero energy transfer, and an analytical expression was
not available. Therefore a numerical method of calculating the distribution
of Lorentzian linewidths was used for comparison to the measured spectra.
According to crystallographic studies, about 15% of the hydrogen ions are
on interstitial sites; therefore, a large amount of vacancies must exist on the
regular lattice of the basal plane. As a result, the self-diffusion coefficient is
very high: Ds = 2.1 ·10−5cm2/s at 823K. The mean residence time of the H−

ion in a regular lattice site was found to be 20 ps at this temperature. How-
ever, the authors do not mention the contribution of the 15 % of hydrogen
ions on interstitial sites, nor do they discuss their role in the diffusion mecha-
nism. In this example, the question of low-dimensionality has been implicitly
addressed by the numerical calculation of the linewidth distribution specific
for two dimensions. For further experimental results on low-dimensional dif-
fusion and a discussion of theoretical results concerning 2D-diffusion we refer
to Sects. 3.9 to 3.11.

Cationic conductors like AgI or RbAg4I5 are another family of ionic crys-
tals with very high concentration of charge carriers, where all or most of the
mobile metal ions contribute to the electrical conductivity. Again a more so-
phisticated description is required to take into account ion-ion correlations.
For this situation Funke [89] has developed a concept to calculate S(Q,ω),
which has many features in common with the Debye-Hückel theory of ionic
liquids (see Chap. 21). We assume that an atomic jump occurs at the time
t = 0 from an equilibrium lattice site A to another site B. For small times t,
the site B is still unrelaxed and Coulomb repulsion has reduced the barrier for
a reverse jump, where the particle moves back to A over a barrier lower than
in the relaxed state. Now the particle has the choice, either to jump back,
or to stay on B, until the surrounding charges have relaxed such that a new
equilibrium situation has developed (this situation is similar to the one for the
strain field shown in Fig. 3.14). We introduce a probability W (t) that a back
jump has not occurred until time t. This implies W (0) = 1 and W (t → ∞)
approaches a finite value W∞ such that the ionic self-diffusion coefficient is
Ds = W∞�2/6τ . Then the Chudley-Elliott equation can be rewritten, reduc-
ing the right side of (3.25) by a “success factor” W (t). Integration of this
equation then yields

Gs(rm, t) = δ(rm)+
∫ t

0

W (t−t′)
[
−1
τ
Gs(rm, t

′) +
1
sτ

s∑
v=1

Gs(rm + lv, t
′)

]
dt′ .

(3.61)
After Fourier transformation, W (t) can be related to the complex conductiv-
ity σ̃(ω), and we introduce
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Φ(ω) = Φ′ + iΦ′′ = 1 +

∞∫
0

Ẇ (t′)eiωt′dt′ . (3.62)

With this relation one derives a generalized Nernst-Einstein equation with
correlations, where the conductivity σ is replaced by the complex function
σ̃(ω)/Φ(ω) [89]. These relations lead to a modified Chudley-Elliott formula
which now reads

Sinc(Q,ω) =
ΓCEΦ

′/π
Γ 2

CEΦ
′2 + [ω + ΓCEΦ′′]2

, (3.63)

where ΓCE is the width as defined in (3.30). Obviously, for Φ = Φ′ = 1 and
Φ′′ = 0 the conventional Chudley-Elliott result is recovered. A very accurate
shape analysis of the quasielastic line, taking the complex conductivity σ̃
and Φ from impedance spectroscopy, could demonstrate the validity of this
concept and may contribute to the understanding of the conductivity in terms
of correlated back jumps. Attempts with this goal were published for RbAg4I5
[90]. The key problem is the accurate shape analysis and also the careful
elimination of coherent scattering contributions in such crystals.

3.9 Proton Diffusion in Solid-State Protonic Conductors

The specific dynamical features which generally distinguish protonic from
other ionic conductors, are connected with the fact, that hydrogen bonding
plays an important role. In particular, it is the process of formation and
breaking of H-bonds, which represents an important ingredient of the diffu-
sion mechanisms in these materials. Although the details of such mechanisms
may be quite complex, there are four basic types which have been discussed
in the literature [91]. They all take account of the fact that the proton is - at
least temporarily - bonded to an acceptor atom or molecular subunit.

(i) Grotthuß Mechanism
The original idea of Grotthuß (1806) which had dealt with electrical

charge transport along chains of water dipoles in liquid water, has been
transformed through extensive work during the 20th century [92–95] to a de-
scription valid for proton transfer within extended H-bonding networks [96]
in solids. The essential ingredients of this mechanism are alternating trans-
lational and rotational steps of the proton motion. In a translational step
the proton is exchanged via a hydrogen bridge between different molecular
units. Subsequently the proton is transferred into another H-bond by a re-
orientational motion of the acceptor molecule, whereby the latter remains
fixed to its site in the crystal lattice. The repeated occurrence of these alter-
nating processes leads to the uninterrupted trajectory of proton migration
inherent in translational diffusion. The Grotthuß mechanism is of impor-
tance for instance in certain solid alkali metal hydroxide hydrates, such as
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CsOH ·H2O [97] (see below), crystalline framework hydrates [98], solid acidic
salts [99], and in many other materials.

(ii) Simple Molecular Diffusion Mechanism
When the proton is part of a stable mobile ion in a liquid, for instance of

the (NH4)+ ion in liquid ammonium salts, it is simply transported through
the material by translational diffusion of the ion, whereby this charge carrier
is also performing a diffusive rotational motion. But there is no transfer of
protons between different carriers. This mechanism appears to be relevant
not only in molecular liquids, but also for the high-temperature superionic
conducting regimes of the quasi-liquid layers in solid (NH4)+ and (H3O)+

β-aluminas [100–103].
(iii) Vehicle Mechanism
This name has been given to the mechanism in systems, where - as in the

case of molecular diffusion - the proton is not migrating as the bare hydrogen
ion H+, but in a bound state, attached to a vehicle such as for instance H2O
forming (H3O+) or NH3 forming (NH4)+. In contrast to simple molecular
diffusion, however, the neutral vehicles participate in a cooperative motion
together with the charged vehicles, for instance, by changing place with their
partners (counter-diffusion). The vehicle mechanism has been proposed, e.g.,
for concentrated aqueous solutions of acids [104] and for acidic solid hydrates
[105, 106].

(iv) Mixed Mechanism
This mechanism combines essential ingredients of the Grotthuß mech-

anism (orientational rearrangement of neighbouring charged and uncharged
units with respect to each other, and proton transfer via H-bonds) with those
of the vehicle mechanism (inter-diffusion of charged and uncharged particles).
The lifetime of the vehicle-proton complex is finite, as compared to the time
constant of translational diffusion. This situation has been found to exist in
diluted aqueous solutions of acids and bases [104] and in certain acidic solid
hydrates with high water content [107]. Note that the mixed mechanism may
be considered as the Grotthuß mechanism of liquids and lattice liquids, since
it differs from the mechanism (i) mainly by the fact that its vehicles are not
fixed to lattice sites.

The interest in comparing Grotthuß, vehicle and mixed mechanisms to
the simple molecular diffusion model mentioned above, resides in the fact
that the latter allows a very simple theoretical derivation of the incoherent
neutron scattering function, Sinc(Q, ω), which - under certain conditions -
is also applicable to the former mechanisms. This will be outlined in the
following.

In a molecular liquid or in quasi-liquid two-dimensional systems (e.g.
certain liquid crystalline phases or quasi-liquid layers of intercalation com-
pounds) molecules are performing a diffusive rotational motion, while they
are migrating through the bulk of the material by some random-walk long-
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range translational diffusion process. At any given instant, the molecule is
sitting in a (possibly transient) local potential well, where it is taking part in
the external and internal molecular vibrations characterizing the system. The
calculation is greatly facilitated, if vibrational, rotational and translational
motions are assumed to be (dynamically) independent. This convolution ap-
proximation allows us to write (see [14, 15])

Sinc(Q, ω) = Svib(Q, ω) ⊗ Srot(Q, ω) ⊗ Strans(Q, ω) . (3.64)

Here, Svib(Q, ω), Srot(Q, ω), Strans(Q, ω) are the incoherent scattering func-
tions of the three individual types of motions, and the symbol ⊗ stands for
the convolution in energy transfer �ω. The question, why this convolution
approximation can be applied, for instance, to the Grotthuß mechanism, re-
quires some discussion. The vibrational term in this convolution can usually
be replaced by a Debye-Waller factor, as long as the study is restricted to
the quasielastic region. Strictly speaking, the independence approximation
of rotational and translational motions is invalid, since the two motions are
not occurring simultaneously and independently of each other, but as a se-
quence of alternating steps. The validity of the approximation is however
recovered, if the rate of rotational steps, Hrot, is much higher than the rate
of translational steps, Htrans, because then it can be argued that the proton is
quasi-continuously participating in the rotational motion. This has been the
justification for applying the molecular diffusion model for a number of su-
perprotonic conductors exhibiting the Grotthuß mechanism [97,99,108]. The
vehicle and mixed mechanisms can also be treated with the same method,
if differences in the parameters of charged and uncharged vehicles are taken
into account.

Now let us consider the application of this approximation to the Grot-
thuß case. Under the condition that the rates differ by at least one or-
der of magnitude (a situation typical for many protonic conductors), one
can study the rotational motion “alone” in a low or medium resolution ex-
periment by choosing an intermediate energy resolution ∆(�ω) such that
�Htrans � ∆(�ω) ≤ �Hrot. This simply means that the experimental obser-
vation time ∆t (which in practice cannot be made infinite; see the related
discussion in Sect. 3.2) is larger than the build-up time of the local PDD (for
instance due to a reorientational motion), but much smaller than its time
of decay due to long-range diffusion. The EISF of the rotational motion can
then be determined from the integral of the only weakly broadened elastic
peak, whereas the rotation rate is obtained from the quasielastic line width
of the broader spectral component. Vice versa translational diffusion is stud-
ied alone in a high-resolution experiment with ∆(�ω) ≤ �Htrans � �Hrot,
because under this condition the rotational component will contribute only
a flat background to the spectrum, whereas the diffusion parameters can
be determined from the Q-dependent linewidth of the central component of
Sinc(Q, ω).
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Fig. 3.22. Trigonal modification (T > 340 K) of the solid-state protonic conductor
CsOH ·H2O: Projection onto the a-a plane, assuming a random distribution of the
hydrogen atoms between the oxygen atoms, with an O-H bond length of 0.96 Å.
The Cs atoms are located at the corners of the unit cell, the O atoms are placed at
( 1
3
, 2

3
, 1

2
) and ( 2

3
, 1

3
, 1

2
); (after [109]).

This concept has been applied by Lechner et al. [97] to the analysis of
quasielastic neutron scattering data of the quasi two-dimensional solid-state
protonic conductor CsOH ·H2O. The crystal has a trigonal structure consist-
ing of pseudo-hexagonal planar [H2O − OH]− networks sandwiched between
and alternating with Cs+-ion layers (Fig. 3.22). Protons are transported
through the crystal lattice by a combination of translational motion across
the H-bond connecting adjacent H2O and OH− groups, and reorientation
of the latter. At 402K, for medium energy resolution, this material exhibits
a two-component spectrum. The Q-dependence of the relative elastic inten-
sity (EISF; see Sect. 3.2) was shown to be consistent with the assumption
of OH− reorientations acting as mediators in the much slower translational
diffusion process (model E in Fig. 3.23; after [97]). However, this result which
concerns the fast localized motions alone, is not unique, because there is a
second type of local diffusive motion (model B in Fig. 3.23 : two-site pro-
ton jumps in a non-linear H-bond [109]). It agrees equally well with the data.
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Fig. 3.23. EISF data (circles) of CsOH · H2O, compared to five different models
(Fig. 4 in [97] and Fig. 5 in [91]). A) two-site proton jumps in a linear H-bond;
B) two- site jumps in a non-linear H-bond; C) three-fold reorientation of OH−

and H2O groups; D) three-fold reorientation of H2O molecules alone; E) three-fold
reorientation of OH− groups alone. An ambiguity remains: both models B and E
agree with the experimental results; compare Fig. 3.24.

Both types of local motion are apparently required as a combination to result
in translational proton diffusion through the crystal lattice. A Q-dependent
broadening, due to the latter motion, of the elastic spectral component was
observed at much higher resolution. The question, which one of the two local
processes determines the rate of translational diffusion, was answered by the
study of this Q-dependent linewidth. Fig. 3.24 (following [91, 97]) shows the
comparison of models B and E, mentioned above, to the measured line widths
(circles) which have been corrected for multiple scattering. Both models im-
ply Grotthuß mechanisms. In model B the intra-H-bond jumps are assumed
to have the higher rate; OH−−reorientations would consequently determine
the diffusion rate. In model E, the 120◦ OH−−reorientation (corresponding
to inter-H-bond jumps) is assumed to be the fast local motion, whereas the
proton transfer process within the H-bond represents the rate-determining
step of the diffusion mechanism. The figure shows clearly, that only model E
agrees with the data.

It should be emphasized, that the self-diffusion coefficient Ds from PFG-
NMR measurements was used to fix the slope of the linewidth curve in the
low-Q limit (Fig. 3.24). This has been decisive for obtaining this unambiguous
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Fig. 3.24. Translational proton jump diffusion in CsOH · H2O (Fig. 6 in [91];
after [97]): the measured quasielastic diffusion linewidths (squares) are compared
to the width functions Γ (Q) of models B and E. Only model E agrees with the
experimental results. The straight line corresponds to the low-Q limit Γ (Q) = DsQ

2

of the width function, where Ds is the proton self-diffusion coefficient obtained from
PFG-NMR measurements [97]. The ambiguity mentioned in the legend of Fig. 3.23
has now been resolved.

result from the comparison of the theoretical curves to the measured neutron
data, and it is a demonstration of the usefulness of combining 1H − NMR
techniques with QINS experiments on protonic conductors. The direct deter-
mination of Ds by QINS, which requires low Q, is presently limited to the
regime Ds ≥ 10−7cm2/s. Since at low Q, the linewidth is equal to DsQ

2, it
rapidly approaches the limit of timescale imposed by the best possible en-
ergy resolution. Therefore, when the QINS resolution becomes insufficient,
it is recommended to resort to the NMR spin-echo technique employing a
steady-state or pulsed magnetic field gradient (PFG) for the measurement
of the proton self-diffusion coefficient Ds (see Chap. 10). This allows one to
reach values down to about 10−9cm2/s. They may be used as an input to
the analysis of large-Q QINS spectra, permitting to extract the unique geo-
metrical and dynamical information on the microscopic details of the proton
motion, contained in them. Note that at large Q the requirements of energy
resolution are much less stringent as long as the diffusion coefficient is known.

Another important class of ion conducting substances are doped per-
ovskites of the type A(BO3). For instance, Sr(CeO3) is ion conducting if
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Fig. 3.25. Protonic self-diffusion coefficient for the protonic conduction in a H2O-
vapour doped perovskite:
Ba[Ca2+

(1+x)/3Nb5+
(2−x)/3]O

2−
(3−x)/2Hx; full squares, full triangles: Ds from quasielastic

neutron scattering, Γ = Q2Ds; open circles: Dσ from electrical conductivity σ(T )
using the Nernst-Einstein equation [108], with HR set equal to 1.

a few (x) % of the Ce4+ ions are substituted by Yb3+ thus creating (x/2)
oxygen-site vacancies. This leads to oxygen conduction by the mobility of the
vacancies. If, in addition, the material is exposed to water vapour, the H2O
molecules disintegrate. All hydrogens are forming OH− ions and the hydro-
gen (proton) is highly mobile. Also in these materials, it is assumed that the
electrical conductivity of the substance is determined by proton transfer or
jumps between the oxygen atoms (OH–O→O–HO) combined with fast rota-
tions of the hydroxyl ions (Grotthuß process) [110]. Proton diffusion in a ce-
ramic strontium cerate was observed for the first time by quasielastic neutron
scattering [111], with a value of Ds roughly consistent with the experimental
conductivity σ. The hydrogen concentration was obtained by microgravime-
try. Similar experiments were carried out by Pionke et al. [108] for a mixed
niobate of the type Ba[Ca(1+x)/3Nb(2−x)/3]O(3−x/2)Hx, where the vacancies
are produced by the mixture of the 2- and 5- valent Ca and Nb ions. Fig. 3.25
compares the Ds values resulting from QENS experiments extrapolated to
small Q, and the charge-diffusion coefficient Dσ calculated by the Nernst-
Einstein equation from the electrical conductivities. The (unknown) Haven
ratio HR was set equal to 1. The approximate agreement suggests that the
conductivity is predominantly protonic, and not due to hole or electron con-



138 Tasso Springer and Ruep E. Lechner

duction. We emphasize that in impedance spectroscopy the bulk conductivity
is determined by an extrapolation procedure to eliminate the strong influence
of grain boundaries and electrode effects on the electrical measurements. On
the other hand, the scattering experiments should not be influenced by grain
boundaries.

For large Q values, the quasielastic spectrum shows the superposition of
two Lorentzians in the µeV region. They were tentatively explained by two
groups of potential wells for the protons, namely shallow and deep ones de-
pending on the charge of the adjacent ions. Further experiments with low
resolution (∼ 0.1 meV) yield a very broad spectrum. It is interpreted by
rapid OH− rotations connected with the conduction process [108]. For a pro-
ton, rotating in the hydroxyl ion, and jumping from time to time between
neighboring O− ions, one expects an incoherent dynamic structure factor for
an isotropic powder sample.

Sinc(Q,ω) = F (Q)e−Q2〈u〉2
[∑

i

Γi/π

Γ 2
i + ω2

]
+ [1 − F (Q)]e−Q2〈u2〉 ΓR/π

Γ 2
R + ω2

.

(3.65)
This expression is again based on the approximation of dynamical indepen-
dence already described above. The first term describes the translational
diffusion of the hydrogen atoms. The second term results from the OH−

rotation, whereby the small additional broadening of this term due to trans-
lational diffusion has been neglected. F (Q) is the elastic incoherent structure
factor (EISF; see (3.18)) of the protonic motion on a spherical shell with a
radius ρ, namely (see [3])

F (Q) =
(

sin ρQ
ρQ

)2

. (3.66)

The function exp(−Q2〈u2〉) is the Debye-Waller factor and 〈u2〉 is the mean
square amplitude of the phonon vibrations. The width of the line ΓR is related
to the rotational diffusion coefficient DR = 1/τR, where τR is the relaxation
time for the diffusion on the sphere. The rotational term holds approximately
for Qρ < 1. Otherwise, further terms have to be added with widths ΓR =
�(1 + �)DR (� = 1, 2, . . . ). The experiments lead to a width �ΓR = 0.70 meV
at 670 K which does not depend on Q and yields 1/τR = 1012 s−1. The
protonic transfer or jump rate is about 100 times smaller. The Q dependence
of the intensity for the (resolution broadened) central line corresponding to
the first term is shown in Fig. 3.26. It yields F (Q), the EISF, and a value of
ρ = 0.70 Å. The value of ρ can be compared with the OH-distance in water
or ice which is about 1 Å. These results are consistent with the Grotthuß
process introduced at the beginning of this section. They bear some striking
similarity to those observed in CsOH ·H2O by Lechner et al. [97] (see above).
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Fig. 3.26. Intensity of the experimental narrow quasielastic line for the mixed
perovskite as in Fig. 3.25, vs. Q (black dots): The steep decrease vs. Q, corrected
for the Debye-Waller factor (dashed), yields the elastic incoherent structure factor
(EISF), calculated for OH− rotations with an average sphere radius of 0.7 Å (solid
line) [108].

3.10 Proton Conduction: Diffusion Mechanism Based on
a Chemical Reaction Equilibrium

The Grotthuß type proton diffusion mechanism described in the previous
section, for instance in the case of CsOH · H2O, implies a simple chemical
reaction equilibrium between proton donor and acceptor molecules, which
reads: H2O+OH− ⇐⇒ OH−+H2O. An analogous reaction has been studied
in more detail in the solid-state protonic conductor Rb3H(SeO4)2 [112, 113].

The crystalline compounds with the general formula M3H(XO4)2, (M=K,
Rb, Cs; X=S, Se), where hydrogen bonding plays an important role, are
quasi two-dimensional solid-state protonic conductors (SSPC). They have
high-temperature phases with rhombohedral symmetry and extremely high
protonic conductivity. The crystallographic phases existing at lower tempera-
tures are monoclinic or triclinic and show lower but still appreciable protonic
conductivities in a fairly broad temperature range in the vicinity of the SSPC
phase transition [114, 115]. Information on the diffusive proton motion has
been obtained from a series of QINS studies on Rb3H(SeO4)2 [112]. In the
following we will discuss results from a part of these experiments, where
medium-resolution QINS has been used. The time-averaged crystal structure
of Rb3H(SeO4)2 [116–119] can be described as a sequence of Rb · · ·H[SeO4]2
layers alternating with Rb-coordination polyhedra layers, both perpendicular
to the pseudo-hexagonal c-axis. The atoms in the Rb- layers, of type Rb(2),
have 9-fold coordination by the oxygen atoms forming the bases (O(1), O(3)
and O(4)) of the selenate tetrahedra, which are parallel to the layers. The top
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Fig. 3.27. a) Monoclinic Rb3H(SeO4)2: “zero-dimensional” H-bond network as
seen in a projection along the c-axis. Small circles: protons; large circles: Rb+ ions;
b) Trigonal Rb3H(SeO4)2: two-dimensional dynamically disordered H-bond network
in plane perpendicular to c-axis; after [113].

oxygen atoms (O(2)) of the selenate tetrahedra are inter-connected by hydro-
gen bonds, forming H[SeO4]3−2 dimers at low temperatures (see Fig. 3.27 a):
“zero-dimensional” H-bond network) and layers of two-dimensional dynami-
cally disordered H-bond networks in the proton conducting high-temperature
phase (T ≥ 449K; Fig. 3.27 b)). The time averaged structure of the latter
is trigonal, space group (R3̄m). The quasi-planar H-bond networks exhibit
a protonic conductivity exceeding, by an order of magnitude, that observed
along the c-axis which is perpendicular to these planes [114,115].

In the QINS measurements, translational proton diffusion occurring on
the 10−8s time scale was directly observed [120] as well as much faster local-
ized diffusive proton motions (time scales: 10−9 s to 10−11 s [121]). Only the
latter will be discussed here.

An EISF study [112,122] suggests that the local proton-density distribu-
tion resulting from a limited time-average (from 10−11 s to 10−10 s; ) already
has threefold symmetry. It comprises the regions of the three H-bonds con-
necting a given (selenate top) oxygen to its three neighbouring selenate top
oxygens in the same proton conducting plane (Fig. 3.28).

The “trigonal-asymmetric hydrogen bond” (TAHB) model [122] corre-
sponds to this picture: The local proton site arrangement comprises a central
site 1, with an average proton residence time τ1 , connected by the jump
vectors R21, R31 and R41 to 3 external sites with identical residence times
τ2. The 3 vectors (of equal lengths) point into the directions of the three
H-bonds (Fig. 3.29), with end points located fairly close to the bond centers.
The two jump rates, 1/τ1 and 1/τ2 , are allowed to be different from each
other, implying an asymmetry of the potential in which the proton is moving
on the time-scale of this experiment.
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Fig. 3.28. Theoretical EISF curves for several examples of simple two-site and
three-site proton jump models (dashed, dotted and dashed-dotted lines) are com-
pared to the “apparent” EISF (open circles) obtained at medium energy resolution
with the time-of-flight spectrometer NEAT (after [112]). The simple models are
not able to reproduce the experimentally observed data, whereas the successful
trigonal-asymmetric hydrogen bond (TAHB) model (solid line; see text) gives good
agreement [122].

The time-dependent site occupation probabilities for the 4 sites are de-
noted by Wj(t). Their time-averages,

W∞
j (t) = lim

t→∞Wj(t), (3.67)

are used to introduce an order parameter η,

η = 2W∞
1 − 1, (3.68)

where full order (η = 1) means that there is no proton exchange with the ex-
ternal sites. The incoherent scattering function of the model is given by [122]:

Sinc(Q, ω) = EISF(Q) · δ(ω) + QISF2(Q) · L2(H2, ω) + QISF3(Q) · L3(H3, ω)
(3.69)

Here the elastic and quasielastic incoherent structure factors, EISF and
QISFj , depend on the jump vectors and on η. The two Lorentzians are given
by:

Lj(Hj , ω) = Hj/[(Hj)2 + ω2]/π (3.70)

H2 = (3/τ1 + 1/τ2) = 6/(1 − η)/τ1; (3.71)
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Fig. 3.29. Local site arrangement corresponding to the trigonal-asymmetric hy-
drogen bond model. This model is compatible with the trigonal symmetry of
Rb3H(SeO4)2 and with the measured EISF. The central site 1, with the average
proton residence time τ1, is connected to the three external sites, with residence
time τ2, by the jump vectors R21, R31 and R41. The EISF analysis (Fig. 3.28)
suggests that most of the proton probability density is located in site 1. This is,
because the two proton exchange rates, 1/τ1 and 1/τ2 , are different (after [122]).

H3 = 1/τ2 = 3(1 + η)/(1 − η)/τ1. (3.72)

A comparison of this model to the QINS spectra obtained at 500 K gave η
= 0.746 and R21 = 1.785 Å. The asymmetry represented by this value of η
is appreciable. Accordingly, the occupancy of site 1 is at least 5 times larger
than the sum of the occupation probabilities of the 3 external sites. From
this it also follows, that – at the temperature of the experiment – the average
lifetime of the dimer is about 20 times shorter than that of the monomers, a
consequence of the asymmetry of the potential. The meaning of these obser-
vations has been discussed in more detail in [112] and [122]. To summarize,
the important aspect of the obtained η-value is the result that the proton
essentially remains bonded to the original selenate top oxygen, i.e. to one
selenate group, for a period of the order of at least 10−10s. The value of the
jump distance R21 may, however, be taken as an indication that the proton is
also exploring - on the 10−11s to 10−10s time scale - a path into the hydrogen
bridge, although with rather low probability. These observations have been
interpreted as a consequence of the presence of an intracrystalline chemical
equilibrium reaction: alternation between the association of the monomers
[HSeO4]1− and [SeO4]2− , resulting in the dimer [H(SeO4)2]3− (H-bond for-
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mation), and the dissociation of the latter into the two monomers (H-bond
breaking) [112]. Reaction rates and potential barriers for association and dis-
sociation processes have been determined, as well as temperature-dependent
proton exchange rates between neighbouring selenate ions.

It may be concluded, that the dynamical disorder existing in the high-
temperature phase of Rb3H(SeO4)2 can be described by the above-mentioned
chemical equilibrium reaction. The two distinct transient chemical states play
different specific roles in the mechanism of protonic conductivity. While in the
monomer state the protonated monomer via reorientation makes the proton
available for three different elongated (and therefore weak) hydrogen bonds,
the dimer state corresponding to the creation of a strong (but short-lived)
H-bond, with the proton close to the center of the bond, provides the oppor-
tunity for proton transfer across the hydrogen bridge.

3.11 Two-Dimensional Diffusion

In view of the important role played by low-dimensional ionic conduction
and diffusion in solid-state physics, electrochemistry and even in biology, we
present several results concerning this problem. These have been obtained,
for instance, in studies of layered structures exhibiting quasi two-dimensional
proton conduction and diffusion, such as CsOX · X2O, M3X(AO4)2, and
Zr(XBO4)2 · X2O, (where M = NH4, Rb, Cs; A = S, Se; B = P, As; X
= H, D).

Obviously, the concept of low-dimensionality should not be understood in
the sense of strictly planar motions, since there will be local deviations from
this idealized picture. The essential condition is, that the diffusing protons
stay within the conducting layers of the crystal at least during the observa-
tion time defined by the energy resolution of the experiment (see Sect. 3.2,
(3.21), and the related discussion). This also implies that the mean square
displacement parallel to the layer, the proton has acquired during this time,
is much larger than perpendicular to it.

In previous paragraphs, we have already mentioned the cases of the lay-
ered structures Ba2NH [88] (see Sect. 3.8), CsOH · H2O [97] (see Sect. 3.9)
and Rb3H(SeO4)2 [122] (see Sect. 3.10). All these structures are pseudo-
hexagonal or trigonal. The distances between neighbouring (transient) sites
of mobile ions found in crystallographic studies are much shorter within the
layer planes than in directions parallel to the c-axes being perpendicular to
these planes. This leads to the assumption, that ion diffusion and ionic con-
ductivity are likely to be confined to two dimensions. Such assumptions have
been made occasionally, in the absence of single crystals which would al-
low the direct determination of the dimensionality by a QENS experiment.
For CsOH · H2O, this assumption has been confirmed by spin-lattice relax-
ation time (T1) measurements revealing a logarithmic frequency dependence
of the relaxation rate T−1

1 [43], typical for two-dimensional diffusion. It is
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known from theory [123–125], that the corresponding behaviour of T−1
1 as a

function of ln ν0 is linear, whereas for three-dimensional diffusion T−1
1 is inde-

pendent of the nuclear magnetic resonance frequency ν0 at high frequencies
(for details see Sect. 9.2 in Chap. 9). Spin-lattice relaxation also led to the ex-
perimental confirmation of 2D-diffusion of Li ions between graphite layers in
Li-graphite intercalation compounds via the observed logarithmic magnetic-
field dependence of the diffusion-induced component of T−1

1 [126]. The same
authors also employed quasielastic neutron scattering in order to determine
the mean residence time and the jump distance in the diffusion plane of Li
ions from the oscillatory Q-dependent behaviour of the measured quasielas-
tic linewidth. In the case of Rb3H(SeO4)2, the two-dimensional character of
proton diffusion was revealed by conductivity measurements on single crys-
tals [114,115]. Zr(HPO4)2, in its β-phase, is another two-dimensional proton
conductor with a proton site lattice similar to that of Rb3H(SeO4)2 [127].
The proton diffusion mechanism in this crystal comprises – in addition to the
two-dimensional long-range transport – a very fast localized diffusive motion
related to librations of protonated phosphate tetrahedra [121].

The incoherent neutron scattering function in the low-Q limit for long-
range translational diffusion (TD) was already considered in Sect. 3.3 (see
(3.31) to (3.33). Accordingly, in three dimensions, when the diffusive motion
is isotropic, with a diffusion coefficient D3D, we have for this function

S3D
TD(Q, ω) =

1
π

D3DQ
2

(D3DQ2)2 + ω2
, (3.73)

Certain analytic results [128] concerning the anisotropic case, where the diffu-
sion process is restricted to the planes of a layered structure, will be discussed
in the following. For a single-crystalline sample we have then [129]

S2D
TD(Q, ω) =

1
π

D2D(Q sin θ)2

(D2D(Q sin θ)2)2 + ω2
, (3.74)

where D2D is the coefficient of self-diffusion in two dimensions, Q sin θ the
component of the the scattering vector in the diffusion plane, and θ the angle
between Q and the normal to this plane. If single-crystals are not available,
one has to resort to polycrystalline samples requiring orientational averaging
of the above expression. It is known, that the resulting integral over all orien-
tations exhibits a logarithmic singularity at zero energy transfer [129]. This
is caused by the fact that diffusion planes which are perpendicular (or close
to perpendicular) to the scattering vector Q contribute elastic (or almost
elastic) scattering to the QINS function. Experimentally, such a singularity
cannot easily be distinguished from truly elastic scattering, and the numeri-
cal convolution with a resolution function is rather tedious. The question is
to what extent the characteristic feature of low-dimensionality represented
by the above-mentioned singularity can still be exploited when the observed
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scattering function is resolution-broadened. Evidently the logarithmic sin-
gularity is cancelled by finite resolution. It has been shown that for resolu-
tion functions which have the shape of a Lorentzian (with HWHM equal to
H) or of a sum of Lorentzians (which is typically the case in BSC experi-
ments) the orientationally averaged resolution-broadened QINS function for
2D-diffusion,

〈S2D
TD(Q, ω)〉resolorient =

1
2π

∫ 2π

0

dΦ
1
2

∫ π

0

sin θdθ L(θ, ω) (3.75)

where

L(θ, ω) =
1
π

D2D(Q sin θ)2 +H

[D2D(Q sin θ)2 +H ]2 + ω2
(3.76)

can be written in closed form [128]. The explicit expression is lengthy
and will not be given here. Instead, Fig. 3.30 shows the result of numer-
ical calculations of this function for a two-dimensional diffusion coefficient
D2D with D2DQ

2 = 7.5µeV and for four different values of the resolution
∆(�ω) = H . The curves are shown as full lines with circles. For compari-
son, the Lorentzian- shaped three-dimensional diffusion scattering functions
are also shown (simple full lines). Here D3D has been set equal to 2D2D/3,
because this leads to identical linewidths (and lineshapes) for two- and three-
dimensional diffusion in the low-resolution limit. The resolution functions are
shown together with the scattering functions, but on a reduced scale. Al-
though a difference between the lineshapes for different dimensionality starts
to be visible, when D2DQ

2 ∼ H (see Fig. 3.30b), it is seen that H must be
about 10 times smaller than D2DQ

2 in order to permit a clear distinction of
2D- and 3D-diffusion by the shapes of the respective scattering functions. The
expression given above is valid only at small Q, where Lorentzian linewidths
(for single-crystals) exhibit the D2DQ

2-behaviour and are therefore very small
and difficult to be measured. At large Q, i.e. outside of the D2DQ

2-regime,
where much larger and correspondingly more easily measurable linewidths are
observed, lineshapes very similar to expression (3.75) are expected. But un-
fortunately, in this Q-region the shape typical for low-dimensionality cannot
be observed in its pure form, because of the simultaneous presence of addi-
tional quasielastic components due to fast localized diffusive motions usually
connected with the diffusion mechanism. These are probably the reasons, why
the lineshape predicted for polycrystalline samples by (3.75) has so far not
been observed experimentally.

The study of the anisotropy of translational diffusion in single-crystalline
material is straight-forward. As an example we discuss the transport of wa-
ter molecules on the surface of a membrane with a two-dimensional crys-
talline structure [130, 131]. In biological membranes (cf. Chap 12), proton
diffusion connected with conduction of protons provides an important mech-
anism of energy transduction in living organisms. The purple membrane



146 Tasso Springer and Ruep E. Lechner

Fig. 3.30. Assuming a two-dimensional diffusion coefficient D2D, with D2DQ2 =
7.5 µeV, the resolution-broadened scattering function (3.75) has been calculated for
four different energy resolutions H (HWHM): (a) 50 µeV; (b) 5 µeV; (c) 0.5µeV;
(d) 0.05 µeV. The corresponding curves are shown as full lines with circles. For
comparison the Lorentzian-shaped three-dimensional diffusion scattering functions
for the same “effective” diffusion coefficient are also shown (simple full lines). The
resolution functions are given on a reduced scale (after [128]).

(PM) of Halobacterium salinarum, for instance, contains the protein bacteri-
orhodopsin (BR) which becomes a one-dimensional pulsed proton conductor
when activated by light. This is a light-driven proton pump generating an
electrochemical gradient across the membrane, which is employed by the bac-
terium as an energy source. After having been pumped from the cell-interior
to the membrane surface, the protons are transported by a mechanism of sur-
face conduction towards other proteins located within the same membrane:
The light-generated electrochemical potential across the cell membrane is
utilised by the halobacteria to furnish the driving force for ATP synthesis
by energizing the rotation of the turbine-like machinery in ATP synthase.
Water molecules near the surface are known to be relevant for this biological
function, since they have been shown to assist the proton conductivity [132].
Hydration water, its interaction with the surface of biological macromolecules
and macromolecular complexes, and its diffusion generally play an important
role in structure, dynamics and function of biological systems [133, 134]. It
is therefore of considerable interest to study the proton diffusion mechanism
within and close to the hydration layers of membranes. Similar to the case
of bulk water, it is expected that during the diffusion process protons are
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exchanged between water molecules acting either as acceptors (forming for
instance (H3O)+) or as donors (producing (OH)− ions). A “solid-like” Grot-
thuß feature (see Sect. 3.9) is added to the diffusion in the liquid water phase
by the presence of fixed protonation sites on the surface of purple mem-
brane. It is worthwhile to note, that these sites are arranged in space in a
perfectly regular manner, since the bacteria use the most efficient packing of
BR: trimers of BR molecules embedded in a lipid bilayer matrix are aligned
in a two-dimensional hexagonal single-crystalline structure [135]. However,
since the pH-value is not very different from 7, the concentration of charged
particles is very low. The protons spend most of the time as part of dif-
fusing neutral water molecules with only rare events of exchange between
different “vehicles” (see Sect. 3.9). Therefore, for the purpose of analyzing
neutron scattering experiments, the whole mechanism of diffusion may to a
good approximation be classified as that of molecular diffusion.

The crystalline order of PM has been exploited in QINS [130] and PFG-
NMR [131] measurements in a study of the anisotropy of proton diffusion
relative to the membrane surface. For this purpose about 20.000 layers of
purple membranes were stacked approximately parallel to each other (mosaic
spread: about 12◦ FWHM) at defined relative humidities (r.h.). The mem-
brane stacks had been produced, starting from an aqueous suspension of
membrane pieces, by alignment of the membranes through evaporation of
water, using aluminium foils as a substrate. At 100% r.h., with water layer
thicknesses of about 10 Å between neighbouring membranes, the protons of
water molecules were found to participate in a process of two-dimensional
long-range translational diffusion parallel to the membrane plane, with a self-
diffusion coefficient Ds = 4.4 · 10−6cm2s−1 at room temperature, i.e. about
five times smaller than the known bulk value of water. At the same time, they
are also participating in a fast localized diffusive motion which can - at least
partially - be asigned to the rotation of water molecules. This was observed to
be about six times slower than in bulk water. These motions are sufficiently
fast to produce quasielastic broadenings clearly seen with an elastic energy
resolution of 16µeV FWHM (see Fig. 3.31). Finally, a translational diffusion
jump distance of 4.1 Å was derived from the Q-dependent behaviour of the
quasielastic linewidth at large scattering angles (see Fig. 3.32). This distance
is three times larger than the corresponding quantity of bulk water.

The relative slowness of the diffusion process may partly be due to
the restricted space available within the hydration layers. It might also be
caused, together with the large value of the jump distance, by the presence of
fixed protonation sites on the membrane surface. These might have nearest-
neighbour distances similar to those of neighbouring lipid head groups, which
are of this order of magnitude. At these protonation sites, hydrogen bonds
are expected to be formed, with lifetimes exceeding those of bonds which
exist between neighbouring H2O molecules in bulk water.
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Fig. 3.31. Fit of a model for two-dimensional translational diffusion of water to
QINS spectra (data points shown as triangles) of hydrated purple membrane stacks
oriented with an angle α = 135◦ with respect to the incident neutron beam. These
data were taken with the inverted time-of- flight technique (IRIS, see Sect. 3.4) at
the scattering angle ϕ = 90.4◦ . The spectra were not corrected for multiple scat-
tering (MSC), but MSC was taken into account in the fitted theoretical model:
The solid lines represent (from top to bottom) the fit result for the total scatter-
ing function including all terms, the sum of all rotation-broadened components of
the scattering function (including the backgound B), and B. The dotted lines are
the two MSC contributions: a rotation-broadened MSC component sitting on the
background line, and a MSC component without rotation broadening on top of the
rotation-broadened single-scattering contribution; after [131].

An attempt to relate the measured proton diffusion coefficient Ds to the
protonic conductivity σ (see Sect. 3.8) is of interest for elucidating the trans-
port mechanism [91]. The surface conductivity is known from dielectric mea-
surements [136]. By extrapolation to the hydration level of H = 0.28 em-
ployed in [130, 131] (H is given in units of g of water per g of PM), a value
of σ = 2.15 · 10−8Ω−1cm−1 was obtained. From this the charge diffusion co-
efficient Dσ is found in the region 4.4 · 10−6cm2s−1 ≤ Dσ ≤ 58 · 10−6cm2s−1,
if the (unknown) concentration of the positive charge carriers is varied from
pH = 5.9 to pH = 7.0, where the lower limit would correspond to Dσ = Ds.
The Haven ratio, HR = Ds/Dσ, contains information on the proton transport
mechanism (see Sect. 3.8 and Chap. 1). Whereas HR = 1 would correspond to
the unrealistic case of a pure vehicle mechanism, the upper limit (HR = 1/13)
probably is equally unrealistic, because the PM surface is known to be neg-
atively charged, which means that pH < 7.0 near the membrane surface.
An intermediate ratio Ds/Dσ appears to be the reality. It corresponds to a
mixed mechanism, where protons are transported by molecular ion diffusion
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Fig. 3.32. Translational diffusion linewidths (exhibited by spectra as shown in
Fig. 3.31) of water on hydrated purple membrane, plotted as a function of Q2 for
two sample orientations: α = 45◦, open circles; α = 135◦, full circles. The experi-
mental values are compared with the theoretical width corresponding to an isotropic
approximation of the Chudley-Elliott jump-diffusion model in two dimensions. Note
that for α = 135◦, the Q vector is exactly parallel to the membrane plane, when
the scattering angle is ϕ = 90◦, whereas Q is perpendicular to the membrane for
the same scattering angle, when α = 45◦. Therefore the linewidth curve for the
latter case approaches zero near Q2 = 1.784 Å−2, in agreement with the values
observed experimentally. This means that diffusion parallel to the membrane plane
has clearly been seen in this experiment, whereas in the direction perpendicular
to it the diffusive motion is too slow to be observable with the QINS technique.
Dotted lines: behaviour of the width according to the DsQ

2-law, if this was valid
in the whole region of Q2 shown in the figure (after [131]).

and exchanged from time to time between diffusing particles which encounter
each other.

3.12 Coherent Quasielastic Scattering

The diffusion of individual particles treated in the preceding experimental
sections is investigated by measuring Sinc(Q,ω), i.e. by scattering without
the interference of waves that have been scattered by different atoms. Now
we deal with aspects of collective motions which reflect correlations between
different diffusing particles. Information on these correlations is obtained from
the coherent dynamic structure factor Scoh(Q, ω). It yields more details on
the scattering system; however, the theoretical interpretation is a priori more
complex; so far the number of experimental studies on this matter has re-
mained comparatively small.
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The theoretical derivation of the coherent scattering function for transla-
tional diffusion requires the introduction of the mutual interaction between
different particles. A very simple description is the “hard core” or exclusion
potential: The particles diffuse over a lattice of cells or sites which are acces-
sible or blocked. This leads to a modified Chudley-Elliott formula [137] and
the resulting coherent width is given by

Γcoh(c) = ΓCE(Q, c→ 0) . (3.77)

which we call Γ0(Q), and where c is the average site occupancy. In this
case the width is equal to the result for incoherent scattering on the dilute
system, ΓCE, as derived before (see (3.30)). This coincidence is due to the
fact that the thermodynamic coefficient in the chemical diffusion coefficient,
∂(µ/kBT )/∂ ln c (proportional to 1/(1 − c)) just cancels the blocking factor
in the single particle diffusion coefficient, (1 − c).

Instead of the hard core model, a general potential of the mutual in-
teraction is introduced by the method of linear response in the mean-field
approximation [138] which leads to the result

Scoh(Q, ω) =
c(1 − c)Γ0(Q)/π
Γ 2

coh(Q) + ω2
(3.78)

with

Γcoh = Γ0(Q)
[
1 +

c(1 − c)V (Q)
kT

]
. (3.79)

Γ0(Q) is again the value for the dilute case of incoherent scattering, c → 0.
V (Q) is the Fourier transform in space of the atomic interaction potential.
With the Clapp-Moss relation [139] the unknown potential can be directly ex-
pressed by the static structure factor for the short-range order of the diffusing
particles (corrected for contributions from the host lattice distortion)

Scoh(Q) =
c(1 − c)

1 + c(1−c)V (Q)
kT

. (3.80)

This finally leads to

Scoh(Q, ω) = Scoh(Q)
Γcoh/π

Γ 2
coh + ω2

(3.81)

with the coherent line width

Γcoh(Q) =
c(1 − c)Γ0(Q)

Scoh(Q)
. (3.82)

For very small Q, Scoh(Q)−1 is proportional to the thermodynamic factor
∂(µ/kBT )/∂ ln c, the derivative of the chemical potential with respect to the
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Fig. 3.33. Diffusion of deuterium in Nb: Dc(Q) = Γcoh(Q)/Q2 - generalized chem-
ical diffusion coefficient as a function of Q; Dt = tracer or single particle diffusion
coefficient obtained from incoherent quasielastic scattering. S(Q) = experimen-
tal structure factor for deuterium dissolved in Nb. The ratio Dt/S(Q) is close to
Dc(Q) [140].

concentration. This allows one to introduce the chemical diffusion coefficient
Dc, namely

Γcoh(Q → 0) =
c(1 − c)Q2Ds(c→ 0)

Scoh(0)
= Q2Dc . (3.83)

Like in diffusion measurements by light scattering (see Chap. 15), the
coherent quasielastic width can be intuitively understood by the decay rate
of concentration fluctuations with a wave number Q. In (3.82) a maximum
of the static structure factor S(Q) causes a minimum of the quasielastic
width which means: density fluctuations corresponding to strong short-range
correlations decay with a very small relaxation rate. For the first time, this
“line narrowing” was predicted by De Gennes [141] and observed for liquid
argon [142].

In a deuterium loaded bcc niobium crystal the relation between the struc-
ture factor S(Q) and the coherent width, see (3.82), was investigated (deu-
terium has a strong coherent scattering contribution). Γcoh and Γ0 are com-
pared in Fig. 3.33 [140] defining Dc(Q) = Γcoh(Q)/Q2, whereas the structure
factor was calculated with a site blocking model (dashed line) and also exper-
imentally determined, after correction for the strain field contributions from
the host lattice.
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Fig. 3.34. Lower curves: Chemical diffusion coefficient D (called Dc in the text)
from mechanical relaxation experiments. Slowing down for T → Tc near the critical
point at the coexistence curve of the NbHx phase diagram. Open circles: H/Nb
= 34.4 at % (critical concentration); open squares: 40.4 at %. D∗ = self-diffusion
coefficient calculated from the chemical diffusion coefficient using the measured
factor (∂µ/∂ ln c). Fair agreement of this quantity is found with D∗ from quasielastic
scattering with Γ = Q2D∗ for 33 % (full triangle-up) and for 3.2 % H/Nb (full circle
and full triangle-down: upper curve). From [143].

Fig. 3.34 compares the diffusion coefficient as obtained from the width
Γ0 of incoherent quasielastic scattering for NbHx with the chemical diffusion
coefficient; this was measured by the long-range mechanical relaxation on
such samples (Gorski effect) [59,143]. The results are consistent with (3.83).
The “critical slowing down” of the chemical diffusion coefficient Dc is caused
by the singularity of the thermodynamic factor ∂(µ/kBT )/∂ ln c near the
critical temperature Tc on the top of the miscibility gap in the Nb-H phase
diagram. This effect does not show up in the self-diffusion coefficient Ds.

For hydrogen or deuterium atoms the incoherent and the coherent struc-
ture factor can be separated in the same scattering experiment, using polar-
ized neutrons and spin analysis after scattering [49].

An entirely different aspect of quasielastic coherent scattering is related
to the fluctuations of the host lattice, caused by the diffusing particle [144].
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For instance, a hydrogen atom dissolved in niobium is surrounded by atomic
displacements. The resulting long-range strain field induces diffuse scattering
between the Bragg reflections, which is especially strong close to the Bragg
lines, the so-called Huang scattering. The strain field can be described by mu-
tually interpenetrating “distortion clouds”, moving along with the protons.
Consequently, the coherent diffuse scattering on the host lattice is quasielas-
tic due to these density fluctuations. Neglecting retardation and assuming a
linear superposition of the weak distortion fields, the resulting coherent dy-
namic structure factor can be factorized into two terms: the static structure
factor caused by the strain fields of uncorrelated single particles, and the in-
coherent dynamic structure factor following the Chudley-Elliott formula for
the diffusing particles. First quasielastic measurements on the distortion field
were performed for hydrogen in niobium [55] (see Sect. 3.5). The coherent
quasielastic scattering yields interesting information on the diffusion in the
lattice; however, its observation is difficult. Although the distortion scatter-
ing is strong close to the Bragg reflections and therefore its integral is easy to
observe, the width of the quasielastic spectra is very small in these regions,
because it goes as (Q − G)2, where G is the reciprocal lattice vector cor-
responding to the Bragg line. So, in the experiment, a suitable compromise
must be found between the intensity of this effect, the resolution, and the
closest distance from the reciprocal lattice point, where measurements are
feasible with the available energy and momentum resolutions.

A third type of quasielastic coherent scattering concerns the observation
of molecular structure factors in the context of translational diffusion. This
problem occurs, for instance, in studies of the crystalline high-temperature
fast-ion conductor modifications of alkali metal (M) salts, M2SO4 and M3PO4,
of sulfuric and phosphoric acid, respectively. These phases with the poly-
atomic anions SO2−

4 and PO3−
4 , are not only cation conductors, but also

plastic crystals, since the anions exhibit dynamic rotational disorder. Part
of the motivation for quasielastic neutron scattering studies of these com-
pounds [145–147], has arisen from a dispute about a possible cation mobility
enhancement by dynamical coupling of cation migration and anion reorienta-
tion. Proponents of this coupling model have coined the term “paddle-wheel”
mechanism [148–150].

Obviously, the reorientation of the polyatomic tetrahedral sulfate and
phosphate ions implies a fast and rigidly coupled motion of the four oxygen
atoms bound in each anion, whereas the sulfur and phosphorus atoms may
be assumed to stay immobile if coupling between translation and rotation
of these ions is neglected. Since oxygen is a purely coherent scatterer, the
scattering function Scoh(Q, ω) is required. If correlations between different
rotating ions are neglected, the calculation is straight-forward, employing the
same (well-known) models as used for rotational motions in the incoherent
scattering case. Details can be found in the literature [145,151,152]. There are
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two essential differences between the incoherent and the coherent scattering
functions for rotational (localized) motions:

i) In the case of Scoh(Q, ω) , the elastic scattering of the rotating molecules
is entirely concentrated in crystallographic Bragg peaks: the neutron waves
scattered from the (infinite-time) probability density distributions in different
unit-cells are capable of interference with each other. In other words, there is
no EISF that could be measured between the Bragg peaks, and therefore the
possibility of the self-consistent normalization based on a well-known integral
property5 of Sinc(Q, ω), customary in incoherent scattering, is not available
here.

ii) In the absence of elastic and quasielastic incoherent structure fac-
tors (EISF and QISF), the spatial information concerning the geometry of
the rotational motion can only be extracted from the integral of Scoh(Q, ω)
(excluding Bragg peaks), i.e. from the quasielastic coherent structure factor
(QCSF). The normalization problem can be solved, if the compound stud-
ied contains an incoherently scattering component. This is the case, e.g. for
the sodium salts of sulfuric and phosphoric acid. The incoherent scattering
of sodium, determined at small angles, where the intensity of the coherent
component is negligible, has been used for normalization [145].

Earlier QENS measurements of Na3PO4 taken in the temperature range
from 300K to 973K have been successfully interpreted in terms of a uniaxial
reorientation model with a single time-constant in the 1 to 0.3 ps range (ac-
tivation energy: 184meV) for the observed localized diffusive motion [145].
There is, however, a discrepancy between experiment and theory at low Q,
up to about Q = 1.5 Å−1, where the measured QCSFs are larger than the
calculated ones (see Figs. 6 and 7 in [145]). In a subsequent paper [147], the
discrepancy was explained by a modification of the molecular structure fac-
tor. It is caused by a sodium ion attached temporarily at a distance of 2.15 Å
from the central atom, above the center of one of the faces of a tetrahe-
dral anion involved in reorientation. Such transient “binding” increases the
effective molecular “radius” and, therefore, leads to additional quasielastic
intensity for low Q. The same interpretation was also found to be consis-
tent with similar measurements on solid solutions of sodium phosphate and
sodium sulfate (Figs. 5 to 7 in [147]). The translational diffusion of sodium
ions in Na3PO4 was studied with high-resolution backscattering techniques;
it was concluded that sodium ion jumps between tetrahedral sites in the cu-
bic high-temperature phase appear to be most important [146]. The diffusion
coefficient shows an Arrhenius-type behaviour,
Ds(T ) = 1.3 × 10−3cm2s−1 exp(−630 meV/kBT ).

This value of the activation energy is considerably higher than that of the
reorientational motion, and the time scales of the two types of motion differ
by roughly three orders of magnitude: While characteristic times of the an-
5 The integral of the incoherent scattering function over energy transfer is equal

to 1 [3].
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ion rotation are in the picosecond range, average residence times of diffusing
sodium ions are of the order of nanoseconds. This means that cation transport
via a rotational step does not automatically lead to a step of translational
diffusion. It should rather be seen as a thermally activated phenomenon re-
lated with local potential fluctuations which favour translational diffusion,
and which – from time to time – bring a cation into a position favorable for
jumping away to a more distant site. These results clearly suggest a certain
dynamical correlation between the diffusion of cations and anions in these
compounds. But, because of the very different time-scales, a paddle-wheel
mechanism in the sense of a synchronous action of rotatory and translatory
motions can be excluded for Na3PO4.

3.13 Conclusion

Quasielastic scattering of neutrons is an excellent tool to evaluate the el-
ementary steps of diffusion in solids on scales from atomic to mesoscopic
dimensions and times. Good examples are the understanding of correlation
effects of diffusion in metals with vacancies or of hydrogen diffusion in met-
als. The latter problem is still exciting regarding, for instance, the elastic
displacements and the long-range strain fields produced by rapidly moving
protons, as well as the question, to what extent quantum effects related to
the protonic motion might exist. So far no such effects were observed, ex-
cept for the localized modes of a trapped proton. Many questions are still
unsolved and need more experiments, for instance quasielastic Huang scat-
tering. Another class of problems deals with diffusion in disordered solids.
While the theoretical treatment of systems with highly dilute or extremely
concentrated impurities is relatively simple, intermediate concentrations are
much more difficult to handle. The behaviour of disordered alloys has not yet
been systematically treated.

In the case of ionic crystals, ion diffusion, and especially proton diffusion
has been studied in solid-state protonic conductors, e.g. in hydroxide hy-
drates, hydrogen sulfates and selenates of alkali metals, and in the perovskite
structures of acceptor-doped barium or strontium rare earth metal oxides.
The specific dynamical features which generally distinguish protonic conduc-
tors from other ionic conductors are connected with the fact that, in addition
to the ionic character of these crystals, hydrogen bonding plays an important
role. In particular, it is the process of formation and breaking of H-bonds,
which represents an important ingredient of the proton diffusion mechanisms.
The relation between this solid-state chemical reaction and the diffusion of
protons has been established. Suitable approximations have been developed
which allow a comparatively simple treatment also of systems with interme-
diate concentrations of mobile ions. When Coulomb interactions, e.g. in silver
iodide crystals, play a major role, ion-ion correlations become important and
must be taken into account; diffusing ions carry a “correlation cloud” along
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with themselves (similar to the Debye-Hückel cloud in ionic solutions). A
new theoretical model has been developed along these lines and contributes
to the understanding of the relation between ionic diffusion and conductivity
in terms of backward-correlated ion jumps. Also non-stoichiometric metallic
oxides are interesting with respect to diffusion and electrical conductivity.

An interesting special case are solid rotator phases with ionic conduc-
tivity, where the rotating polyatomic anions contribute quasielastic coherent
scattering, whereas the translational diffusion of incoherently scattering sim-
ple cations is easily isolated if the time-scales are sufficiently different. A
certain dynamical correlation between the diffusive cation and anion motions
in these compounds has been shown to exist. But, the renowned picture of a
“paddle-wheel” mechanism in the sense of a synchronous action of rotatory
and translatory motions has so far not been confirmed by QENS experiments.

The interpretation of coherent quasielastic scattering in order to investi-
gate collective effects of diffusion is a new field with a promising future. The
high intensities available at modern neutron scattering instruments and es-
pecially at the high-power spallation neutron sources now under construction
will allow the systematic experimental separation of coherent and incoherent
scattering by spin analysis.

In general, future efforts aiming at the synthesis of the results of quasi-
elastic neutron scattering, Mößbauer spectroscopy, nuclear resonance scatter-
ing of synchrotron radiation, nuclear magnetic resonance studies, frequency-
dependent conductivity spectroscopy using electromagnetic waves from the
microwave to the (far) infrared region, and ultrasonic measurements, com-
puter simulation and the development of new analytical approaches will fur-
ther contribute to a more comprehensive and sophisticated understanding of
the diffusion processes in solids.

Notation

a lattice parameter
b scattering length
c site occupancy probability
ci isotope concentration of species i
ct concentration of traps
d jump vector
Dc collective or chemical diffusion coefficient
D1 diffusion coefficient for free diffusion
DR rotational diffusion coefficient
Ds self-diffusion coefficient (usually in 3 dimensions)
D2D two-dimensional self-diffusion coefficient
D3D three-dimensional self-diffusion coefficient
Dσ ionic charge or conductivity diffusion coefficient
E0, E1 energy of neutron before and after scattering, respectively
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Eact activation energy
A(Q), F (Q) incoherent elastic structure factor (EISF)
G reciprocal lattice vector
g(r) pair-correlation function
G(r, t) space and time dependent pair-correlation function
Gs(r, t) space and time dependent self-correlation function
H hydration level (given in units of g of water per g of biological

material)
h Planck’s constant
� Planck’s constant / 2π
HR Haven ratio
I(Q, t) coherent intermediate scattering function
Is(Q, t) incoherent intermediate scattering function
I0 incident neutron current density
∆Is scattered intensity
k0, k1 wave vector of neutron before and after scattering, respectively
k0, k1 wave numbers of neutron before and after scattering, respectively
∆kdiv wave number spread caused by divergence
l, d jump distances
Lxy distance between elements x and y of a TOF spectrometer
∆L uncertainty in the length of the flight path
L(Hj , ω) Lorentzian in energy transfer with HWHM = Hj

M atomic mass
n0 number density of scattering atoms
Nc number of identical atoms in the scattering specimen
P (r, t) time dependent probability of occupancy
P̃ (Q, t) Fourier transform of P
Q scattering vector
Reff trapping radius
S(Q, ω) scattering function, or dynamic structure factor
Sinc(Q, ω) incoherent scattering function or dynamic structure factor
Scoh(Q, ω) coherent scattering function or dynamic structure factor
S2D

TD(Q, ω) incoherent scattering function for two-dimensional translational
diffusion

S3D
TD(Q, ω) incoherent scattering function for three-dimensional translational

diffusion
∆t experimental observation time
V sample volume
v velocity
vth thermal velocity
v0 velocity of incident neutrons
v1 velocity of scattered neutrons
V (Q) Fourier transform of interaction potential
Γ quasielastic widths
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ΓR quasielastic widths for rotation
ΓCE, Γ0 widths following Chudley-Elliott model
Γcoh widths of coherent scattering
η order parameter
θ polar angle of spherical coordinates
Θ angle of Bragg reflection
∆Θ beam divergence
λ neutron wave length
ν repetition rate of chopper
σ ionic conductivity
σcoh coherent bound scattering cross-section
σinc incoherent bound scattering cross-section
τ mean residence (or rest) time a particle spends on a single

site, when diffusing on an undisturbed lattice (according to the
Chudley-Elliott model)

τj time required for diffusive jump
τe mean time elapsing between two consecutive encounters, when a

particle undergoes diffusion according to the encounter model
τi MTOF spectrometer pulse length of pulsing chopper
τii MTOF spectrometer pulse length of monochromating chopper
τr relaxation time for the restoration of a displacement field of elas-

tic distortion
τR relaxation time of (rotational) diffusion on a spherical surface
τrpm duration of the (spectral) period of a TOF spectrometer
τv mean residence time of a diffusing vacancy
τ0 residence (or rest) time of a particle in a trapped state (two-state

model of translational diffusion)
τ1 mean duration of free diffusion in the undisturbed lattice (two-

state model of translational diffusion)
τ1, τ2 relaxation times of the TAHB model
τ2S relaxation time of the two-site jump model
∆τp chopper pulse length of XTL-TOF spectrometer
φ scattering angle
Φ azimuthal angle of spherical coordinates
Ω solid angle
�ω energy transfer
∆(�ω) half-width at half maximum (HWHM) of the energy transfer

resolution function.
BSC back scattering
CE Chudley-Elliott (jump-diffusion model)
CHx chopper number x
EISF elastic incoherent structure factor
FWHM full-width-at-half-maximum
HWHM half-width-at-half-maximum
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MSC multiple scattering
MTOF multi-disk chopper time-of-flight
nn nearest neighbour
nnn next-nearest neighbour
NSE neutron spin-echo
PDD probability density distribution
PWR pulse-width ratio (optimization method)
QCNS quasielastic coherent neutron scattering
QCSF quasielastic coherent structure factor
QENS quasielastic neutron scattering
QINS quasielastic incoherent neutron scattering
QISF quasielastic incoherent structure factor
sc simple cubic
SSPC solid-state protonic conductor
TAHB trigonal-asymmetric hydrogen bond
TD translational diffusion
TOF time-of-flight
XTL (monochromator or analyzer) crystal
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4 Diffusion in Semiconductors

Teh Yu Tan and Ulrich Gösele

4.1 Introduction

This chapter discusses diffusion phenomena in the semiconductors Si, Ge,
and GaAs. Silicon and GaAs are the two main materials used in fabricating
electronic and optoelectronic devices. Diffusion in Ge will also be mentioned
for the reason that it is the simplest case among semiconductors. Diffusion
processes are used in doping a semiconductor with n-type and p-type dopant
atoms to produce pn-junctions for device operations. The n- and p-type
dopants are specific kinds of substitutional impurity species producing the
electric carriers electrons (e) and holes (h), respectively, in a semiconductor.
Diffusion processes are also involved in the removal of detrimental metallic
impurities, in silicide formation and in thermal SiO2 growth in fabricating
devices using Si.

4.2 Diffusion Mechanisms and Point Defects
in Semiconductors

Impurity atoms may dissolve in a semiconductor by occupying interstitial (i)
or substitutional (s) sites, or both. As in metals (see Chap. 1), atoms of i
species in semiconductors migrate directly between the appropriate intersti-
tial sites, which is described well by Fick’s second law

∂C

∂t
= D

∂2C

∂x2
, (4.1)

where D is the diffusivity and C is the concentration. The diffusivity of an i
species is characterized by a single activation enthalpy.

The semiconductor crystal host atom self-diffusion and the diffusion of s
impurity species utilize native point defects. While the dominant native point
defect species in metals are vacancies (V ), both V and self-interstitials (I)
contribute in semiconductors. To diffuse, an impurity s atom may directly ex-
change or migrate as a pair or complex with an I or a V , but only the exchange
mechanism is operative for the host crystal atom self-diffusion, which is slower
than that of a s species utilizing the same point defect species as diffusion
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vehicles via the pairing mechanism. Furthermore, in a semiconductor both
V and I can be in several different charge states with their concentrations
dependent upon the semiconductor doping level and temperature. These fac-
tors lead to complications in the Fick’s second law description of self-diffusion
and diffusion of substitutional impurities in that the diffusivity shall consist
of the contributions of all the involved point defect species which may not be
a constant at a given temperature, and may also not reveal a single activa-
tion enthalpy over a temperature range. Furthermore, some impurity species
are interstitial-substitutional (i-s) species which dissolve predominantly on
substitutional sites but their diffusion is actually due to the rapid migration
of those occupying interstitial sites and the interchange between atoms oc-
cupying the two different types of sites. The diffusivity in the Fick’s second
law description of the diffusion process of the i-s species is an effective diffu-
sivity Deff which may exhibit a strong dependence on its own concentration.
These aspects will be examined with the diffusion phenomena of the specific
semiconductor.

4.3 Diffusion in Silicon

Because of its use in fabricating integrated circuits, Si is the most important
electronic material presently used and is likely to keep that position in the
future. Diffusion processes are essential in the electronic device fabrication
processes. Figure 4.1 shows the diffusivities of the most important impurities
and that of Si self-diffusion. Borrowing the knowledge from metals, diffusion
in Si had been first thought to be dominated by V -related mechanisms. In
1968 Seeger and Chik [1] suggested that in Si both V and I contribute to
self- and dopant diffusion processes. The problem of the dominant point de-
fect species in Si constituted a controversy for more than 20 years. Finally,
during the 1980s [2], it was generally accepted that both I and V have to
be taken into account, so as to consistently interpret the results of a large
number of different experiments. The main indications for the involvement
of I came from experiments performed under non-equilibrium native point
defect conditions, such as the influence of surface oxidation or nitridation on
dopant diffusion. In this regard, diffusion of the i-s species such as Au or Pt
was also crucial. What is still uncertain is the diffusivity and the thermal
equilibrium concentration values of I and V , to be mentioned later.

4.3.1 Silicon Self-Diffusion

Because I and V both contribute, the transport of Si self-atoms under ther-
mal equilibrium conditions is governed by the uncorrelated self-diffusion co-
efficient

DSD = DIc
eq
I +DV c

eq
V , (4.2)
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Fig. 4.1. A survey
of diffusivity values of
the most important
impurities in Si and of
Si self-diffusion.

where DI and DV are respectively the diffusivities of I and V , and ceqI and ceqV

are respectively the I and V thermal equilibrium concentrations normalized
by the appropriate site densities into atomic fractions. As has been men-
tioned, native point defects may exist in several charge states. The observed
doping dependence of group-III and V dopant diffusion (Sect. 4.3.3) indicates
the contributions of neutral, positively charged, negatively and doubly neg-
atively charged native point defects, but it is not known whether all these
charge states occur for both I and V . Taking all observed charge states into
account we may write DIc

eq
I as

DIc
eq
I = DIoceqIo +DI+ceqI+ +DI−ceqI− +DI2−ceqI2− , (4.3)

and an analogous expression for V . The quantity DIc
eq
I comprises the sum of

the concentrations of self-interstitials in the various charge states according
to

ceqI = ceqIo + ceqI+ + ceqI− + ceqI2− . (4.4)

Therefore, the diffusivity DI is actually an effective diffusion coefficient con-
sisting of an weighted average of the diffusivities in the different charge states.
The same holds analogously for ceqV and DV .

Self-diffusion in Si is studied by measuring the diffusion of Si isotope
tracer atoms DT which differs slightly from DSD of (4.1), since it contains
the correlation factors fI and fV in the expression DT = fIDIc

eq
I +fV DV c

eq
V

(see Chap. 1 for details). In the diamond cubic lattice, fV = 0.5, and fI ≤ 1
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(depends on the unknown self-interstitial configuration). Measured results for
DT are usually fitted to the expression DT = Do exp(−Q/kBT ), where Do

is a pre-exponential factor, Q is the activation enthalpy, kB is Boltzmann’s
constant and T is absolute temperature. A summary of these results is shown
in Fig. 4.2 and elsewhere [3]. Tracer measurements do not allow to separate
I and V contributions to self-diffusion. Such a separation became possible by
investigating the diffusion of Au, Pt and Zn in Si, described in some detail
in Sect. 4.3.2. These experiments allowed a fairly accurate determination of
DIc

eq
I but only a crude estimate of DV c

eq
V derived from a combination of

different types of experiments [2, 3]. The results are

DIc
eq
I = 9.4 × 10−2 exp(−4.84 eV/kBT )m2s−1 , (4.5)

DV c
eq
V = 6 × 10−5 exp(−4.03 eV/kBT )m2s−1 . (4.6)

The values of (4.5) and (4.6) are within the experimental range of the mea-
sured Si tracer diffusion coefficient DT. The doping dependence of Si self-
diffusion [4] allows to conclude that neutral as well as positively and nega-
tively charged point defects are involved in self-diffusion, but the data are
not accurate enough to determine the individual terms of (4.3) or the anal-
ogous expression for vacancies. Since DT as well as DIc

eq
I and DV c

eq
V each

consist of various terms, their representation in terms of an expression of the
type of (4.5) and (4.6) can only be an approximation holding over a limited
temperature range. In Sect. 4.3.5 we will discuss what is known about the
individual factors DI , c

eq
I , DV and ceqV .

4.3.2 Interstitial-Substitutional Diffusion: Au, Pt and Zn in Si

Both Au and Pt can reduce minority carrier lifetimes in Si because their
energy levels are close to the middle of the band gap. They are used in power
devices to improve the device frequency behavior. In contrast, Au and to
a lesser extent Pt are undesirable contaminants in integrated circuits and
hence have to be avoided or removed. For these reasons, the behavior of
Au and Pt has been investigated extensively. Zinc is not a technologically
important impurity in Si, but scientifically it served as an example with
diffusion behavior in between substitutional dopants and Au and Pt in Si.

These impurities are i-s species dissolved mainly on substitutional sites
(As) but accomplish diffusion by switching over to an interstitial configuration
(Ai) in which their diffusivity Di is extremely high. The change-over from
i-site to s-site and vice versa involves native point defects. For uncharged
species the two basic forms of the i-s change-over processes are the kick-out
(KO) mechanism involving I [4, 5]

Ai ⇔ As + I , (4.7)

and the much earlier proposed dissociative mechanism or Frank-Turnbull
(FT) mechanism involving V [6]
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Fig. 4.2. Tracer self-diffusion coefficients of silicon as a function of reciprocal tem-
perature. Partly from [4].
1. R.F. Peart: Phys. Stat. Sol. 15, K119 (1966)
2. R.N. Ghostagore: Phys. Rev. Lett. 16, 890 (1966)
3. J.M. Fairfield, B.J. Masters: J. Appl. Phys. 38, 3148 (1967)
4. J.J. Mayer, H. Mehrer, K. Maier: Inst. Phys. Conf. Ser. 31, 186K (1977)
5. L. Kalinowski, R. Seguin: Appl. Phys. Lett. 35, 171 (1980)
6. J. Hirvonen, A. Antilla: Appl. Phys. Lett. 35, 703 (1979)
7. F.J. Demond, S. Kalbitzer, H. Mannsperger, H. Damjantschitsch:

Phys. Lett. 93A, 503 (1983)

Ai + V ⇔ As . (4.8)

Both mechanisms are schematically shown in Fig. 4.3. The KO mechanism
is closely related to the interstitialcy mechanism. The main difference is that
the foreign atom, once in an interstitial position, remains there for only one
step in the interstitialcy mechanism and for many steps in the KO mecha-
nism. In contrast, the FT mechanism and the vacancy exchange mechanism
are qualitatively different. For the vacancy exchange mechanism an increase
in V concentration enhances the diffusivity, whereas for the FT mechanism
an increase in V concentration rather decreases the diffusivity of the substi-
tutional species.

For a detailed description of i-s atoms diffusing via the KO or FT mecha-
nism, it requires to solve a coupled system of three partial differential equa-
tions describing diffusion and reaction of Ai, As and the native point defect
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(a) Frank-Turnbull Mechanism

(b) Kick-Out Mechanism

V

I

Ai A s

A i A s

Fig. 4.3. Schematic represen-
tation of the Frank-Turnbull
mechanism (a) and the kick-
out mechanism (b).

involved, V or I [4]. But for cases of in-diffusion from the surface the profile
shapes are described well by an effective diffusivity Deff obtained for use in
the Fick’s second law representation, (4.1), of the As diffusion process. This
requires to assume that the local equilibrium conditions in accordance with
reactions (4.7) and (4.8) are

CsCI/Ci = Ceq
s Ceq

I /Ceq
i , (4.9)

CiCV /Cs = Ceq
i Ceq

V /Ceq
s , (4.10)

where Cs and Ci are respectively the concentrations of the s and i atoms
of the i-s species, holds for the KO and FT mechanisms, respectively. For
the KO mechanism, if the in-diffusion of Ai is slow enough to allow the Is
generated to migrate out to the surface to keep their thermal equilibrium
concentration (i.e., DiC

eq
i � DIC

eq
I holds), then the effective diffusivity of

As is given by
Deff

(i) = DiCi/C
eq
s , (4.11)

provided Ceq
s 
 Ceq

i holds, which is generally the case. Here the lower index
in bracket indicates the rate limiting species. If on the other hand the in-
diffusion of Ai is so fast that the generated I cannot escape quickly enough
to the surface (i.e., DiC

eq
i 
 DIC

eq
I holds) a supersaturation of I will develop

and further incorporation of As is limited by the out-diffusion of the generated
Is to the surface. This leads to an effective As diffusivity Deff

(I) given by

Deff
(I) = (DID

eq
I /Ceq

s ) (Ceq
s /Cs)

2 . (4.12)

For the FT mechanism, sufficiently slow in-diffusion DiC
eq
i � DV C

eq
V leads

to the same Deff
(i) as given by (4.11). An effective As diffusivity Deff

(V ) controlled
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by the in-diffusion of V from the surface results, if DiC
eq
i 
 DV C

eq
V holds,

which reads
Deff

(V ) = DV C
eq
V /Ceq

s . (4.13)

The strongly concentration-dependent effective diffusivity Deff
(i) of (4.12) leads

to an As concentration profile so strongly deviated away from the erfc-type
that it is actually concave upward in logCs plotted as a function of 1/T. These
profiles can easily be distinguished from the erfc-type profiles which are asso-
ciated with Deff

(V ). This macroscopic difference allows one not only to decide
between different atomistic diffusion mechanisms of the specific foreign atom
involved but also to obtain information on the mechanism of self-diffusion.
The effective diffusivities given by (4.12) and (4.13) have been derived under
the assumption of dislocation-free crystals. The presence of a high density of
dislocations in an elemental crystal maintains the equilibrium concentration
of intrinsic point defects and thus an erfc-type profile characterized by the
constant diffusivity Deff

(i) of (4.11) will result even if DiC
eff
i 
 DIC

eq
I holds.

For compound semiconductors this statement does not hold in general, since
the presence of dislocations does not necessarily guarantee native point de-
fects to attain their thermal equilibrium concentrations. If I and V co-exist,
such as in the case of Si, the effective As diffusion coefficient in dislocation-free
material for DiC

eq
i 
 (DIC

eq
I +DV C

eq
V ) is given by

Deff
(I,V ) = Deff

(I) +Deff
(V ) . (4.14)

The in-diffusion profiles of both Au and Pt in dislocation-free Si show
the concave profile shape typical for the KO mechanism [4, 7, 8]. Examples
are shown in Figs. 4.4 and 4.5 respectively for Au and for Pt. From profiles
like these and from the measured solubility Ceq

s of Aus and Pts in Si, the
values of DIc

eq
I given by (4.5) have been determined. Diffusion of Au into

thin Si wafers leads to characteristic U-shaped profiles even if the Au has
been deposited on one side only. The increase of the Au concentration in the
center of the wafer has also been used to determine DIc

eq
I [6].

In heavily dislocated Si the dislocations act as efficient sinks for I to keep
CI close to Ceq

I so that the constant effective diffusivity Deff
(i) of (4.11) governs

the As profile, which is erfc-shaped. This has been observed by Stolwijk et
al. for Au [9]. Analysis of the resulting erfc-profiles yielded

Dic
eq
i ≈ 6.4 × 10−3 exp (−3.93 eV/kBT ) m2s−1 . (4.15)

This Dic
eq
i value turns out to be much larger than DIc

eq
I given by (4.5),

which is consistent with the observation that Aus concentration profiles are
governed by Deff

(I) in dislocation-free Si.
Zinc diffusion in Si has also been investigated [10]. In highly dislocated

material, an erfc-profile develops as expected. In dislocation-free material
only the profile part close to the surface shows the concave shape typical
for the kickout diffusion mechanism. For lower Zn concentrations, a constant
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Fig. 4.4. Experimental Au concentration pro-
file in dislocation-free Si (circles) compared
with predictions of the Frank-Turnbull and the
kick-out mechanism. From [7].

Fig. 4.5. Platinum concentra-
tion profiles in dislocation-free
Si. From [8].

diffusivity takes over. The reason for this change-over from one profile type
to another is as follows. In contrast to the case of Au, the Dic

eq
i value deter-

mined for Zn is not much higher than DIc
eq
I so that even in dislocation-free

Si only the profile close to the surface is governed by Deff
(I) of (4.12) which

strongly increases with depth. For sufficiently large penetration depths Deff
(I)

finally exceeds Deff
(i) and a constant effective diffusivity begins to determine

the concentration profile. A detailed analysis of this situation can be found
elsewhere [3]. The change-over from a concave to an erfc-type profile has also
been observed for the diffusion of Au either into very thick Si samples [11] or
for short-time diffusion [12] into normal silicon wafers 300–800µm in thick-
ness.

4.3.3 Dopant Diffusion

Fermi Level Effect

Dopant diffusion has been studied extensively because of its importance in
device fabrication. A detailed quantitative understanding of dopant diffusion
is also a pre-requisite for accurate and meaningful modeling in numerical
process simulation programs. It is not our intention to compile all available
data on dopant diffusion in silicon, which may conveniently be found else-
where (see [3] for a list of references). We will instead concentrate on the
diffusion mechanisms and native point defects involved in dopant diffusion,



4 Diffusion in Semiconductors 173

the effect of the Fermi level on dopant diffusion and on non-equilibrium point
defect phenomena induced by high-concentration in-diffusion of dopants.

The diffusivities Ds of all dopants in Si depend on the Fermi level. The
experimentally observed doping dependencies may be described in terms of
the expression

Ds(n) = D0
s +D+

s (ni/n) +D−
s (n/ni) +D2−

s (n/ni)2 , (4.16)

which reduces to
Ds(ni) = D0

s +D+
s +D−

s +D−2
s (4.17)

for intrinsic conditions n = ni. Depending on the specific dopant, some of the
quantities in (4.17) may be negligibly small. Ds(ni) is an exponential function
of inverse temperature as shown in Fig. 4.1. Values of these quantities in terms
of pre-exponential factors and activation enthalpies are given in Table 4.1.
Conflicting results exist on the doping dependence of Sb.

Table 4.1. Diffusion data of various dopants fitted to (4.17). Each term fitted to
D0 exp(−Q/kBT ); D0 values in 10−4 m2s−1 and Q values in eV

element D0
0 Q0 D+

0 Q+ D−
0 Q− D2−

0 Q2−

B 0.037 3.46 0.72 3.46 – – – –
P 3.85 3.66 – – 4.44 4.00 44.20 4.37
As 0.066 3.44 – – 12.0 4.05 – –
Sb 0.214 3.65 – – 15.0 4.08 – –

The higher diffusivities of all dopants as compared to self-diffusion re-
quires faster moving complexes formed by the dopants and native point de-
fects. The doping dependence of Ds(n) is generally explained in terms of the
various charge states of the native point defects carrying dopant diffusion.
Since both I and V can be involved in dopant diffusion each of the terms in
(4.17) in general consists of an I and a V related contribution, e.g.,

D+
s = DI+

s +DV +

s . (4.18)

Ds(n) may also be written in terms of I- and V -related contributions as

Ds(n) = DI
s (n) +DV

s (n) (4.19)

with

DI
s (n) = DIo

s +DI+

s (ni/n) +DI−
s (n/ni) +DI2−

s (n/ni)2 (4.20)

and an analogous expression for DV
s (n).

Contrary to a common opinion, the observed doping dependence ex-
pressed in (4.16) just shows that charged point defects are involved in the
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diffusion process, but nothing can be learned on the relative contributions of
I and V in the various charge states. Strictly speaking, in contrast to the case
of self-diffusion, the doping dependence of dopant diffusion does not necessar-
ily prove the presence of charged native point defects but rather the presence
of charged point-defect/dopant complexes. In Sect. 4.3.3 we will describe a
way to determine the relative contribution of I and V to dopant diffusion by
measuring the effect of non-equilibrium concentrations of native point defects
on dopant diffusion.

Influence of Surface Reactions

Thermal oxidation is a standard process for forming field and gate oxides, or
oxides protecting certain device regions from ion implantation in Si device
fabrications. The oxidation process leads to the injection of I which can en-
hance the diffusivity of dopants using mainly I as diffusion vehicles or retard
diffusion of dopants which diffuse mainly via a V mechanism. Oxidation-
enhanced diffusion (OED) has been observed for the dopants B, Al, Ga, P
and As, and oxidation-retarded diffusion (ORD) was observed for Sb [2–4].
OED is explained by the I supersaturation and that the dopants diffuse via
mainly the interstitialcy mechanism. On the other hand, ORD of Sb is ex-
plained in terms of the I-V recombination reaction I + V ⇔ φ, where φ is a
lattice atom, which leads to

CICV = Ceq
I Ceq

V , (4.21)

and that Sb diffuses mainly via the vacancy mechanism. The presence of an
I supersaturation leads to a V undersaturation as described by (4.21). The
oxidation-induced I may also nucleate and form I-type dislocation loops on
(111) planes containing a stacking fault and are therefore termed oxidation-
induced stacking faults (OSF).

The physical reason for the I injection during surface oxidation is as
follows [2]. Oxidation occurs by the diffusion of oxygen through the oxide
layer to react with the Si crystal atoms at the SiO2/Si interface. The oxidation
reaction is associated with a volume expansion of about a factor of two which
is mostly accommodated by viscoelastic flow of the oxide but partly also by
the injection of Si interstitials into the Si crystal matrix which leads to an I
supersaturation. Oxidation can also cause V injection provided the oxidation
occurs at sufficiently high temperatures (typically 1150◦C or higher) and the
oxide is thick enough. Under these circumstances, Si, probably in the form of
SiO [13, 14], diffuses from the interface and reacts with oxygen in the oxide
away from the interface. The resulting supersaturation of V associated with
an undersaturation of I gives rise to ORD of B and P diffusion [15] and OED
of Sb [16]. Thermal nitridation of Si surfaces also causes a supersaturation of
V coupled with an undersaturation of I, whereas oxynitridation (nitridation
of oxides) behaves more like normal oxidation. Silicidation reactions have
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also been found to inject native point defects and to cause enhanced dopant
diffusion [17, 18].

A simple quantitative formulation of oxidation- and nitridation-influenced
diffusion is based on (4.19), which changes with perturbed native point-defect
concentrations CI and CV approximately to

Dper
s (n) = DI

s (n) [CI/C
eq
I (n)] +DV

s (n) [CV /C
eq
V (n)] . (4.22)

For long enough times and sufficiently high temperatures (e.g., one hour at
1100◦C) local dynamical equilibrium between V and I according to (4.21) is
established and (4.22) may be reformulated in terms of CI/C

eq
I . Defining the

normalized diffusivity enhancement as ∆per
s = [Dper

s (n) −Ds(n)]/Ds(n), the
fractional interstitialcy diffusion component as ΦI(n) = Di

s(n)/Ds(n), and
the I supersaturation ratio as sI(n) = [CI − Ceq

I (n)]/Ceq
I (n), (4.22) may be

rewritten as [2, 13]

∆per
s (n) = [2ΦI(n) + SIΦI(n) − 1] /(1 + sI) (4.23)

with (4.21) holding. Usually (4.23) is given for intrinsic conditions and the
dependence of ΦI on n is not indicated. Equation (4.23) is plotted in Fig. 4.6
for ΦI values of 0.85, 0.5 and 0.2.

The left-hand side of Fig. 4.6, where sI < 0 (associated with a V su-
persaturation) has been realized by high-temperature oxidation and thermal
nitridation of silicon surfaces, as mentioned above. Another possibility to
generate a vacancy supersaturation is the oxidation in an HCl containing
atmosphere at sufficiently high temperatures and for sufficiently large HCl
contents [2]. As expected, sI < 0 results in enhanced Sb diffusion and re-
tarded diffusion of P and B. Arsenic diffusion is enhanced as in the case of
oxidation, which indicates that arsenic has appreciable components via both
V and I (ΦI ∼ 0.5).

Several different procedures have been used to evaluate ΦI for the different
dopants, resulting in a wide range of conflicting published ΦI values. With
the availability of oxidation for generating a self-interstitial supersaturation
(sI > 0) and of thermal nitridation for generating a vacancy supersaturation
(sI < 0), the most accurate procedure to determine ΦI appears to be the
following: check for the diffusion changes under oxidation and under nitrida-
tion conditions. If for sI > 0 the diffusion is enhanced and for sI < 0 it is
retarded (as for P and B) then ΦI > 0.5 holds. Based on the largest observed
retardation ∆per

s (min), which has a negative value, a lower limit of ΦI may
be estimated according to

ΦI > 0.5 + 0.5
[
1 −

(
1 +∆per

s (min)2
)]1/2

(4.24)

Analogously, an upper limit for ΦI may be estimated for the case when re-
tarded diffusion occurs for sI > 0 and enhanced diffusion for sI < 0, as in
the case of Sb. A different procedure is required for elements with ΦI values
close to 0.5, such as As.
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Fig. 4.6. Normalized diffu-
sion enhancement ∆per

s versus
self-interstitial supersaturation
sI = (CI − Ceq

I )/Ceq
I for differ-

ent values of ΦI . From [2,13].

Fig. 4.7. Interstitial-related fractional diffusion component φI for group III, IV and
V elements versus their atomic radius in units of the atomic radius rSi of silicon.
The values for carbon and tin are expected from theoretical considerations and
limited experimental results. From [3].

In Fig. 4.7 values of ΦI at 1100◦C are shown as a function of the atomic
radius rs of the various dopants for intrinsic doping conditions. Both the
charge state (group III or V dopants) and the atomic size influence ΦI . ΦI

has a tendency to increase with increasing temperature. Oxidation and ni-
tridation experiments and extrinsic conditions indicate a decreasing value of
ΦI for P with increasing n-doping, but both P and B still remain dominated
by I (ΦI(n) > 0.5).

Dopant-Diffusion-Induced Non-Equilibrium Effects

Non-equilibrium concentrations of native point defects may be induced not
only by various surface reactions, but also by the in-diffusion of some dopants
starting from a high surface concentration. These non-equilibrium effects are
most pronounced for high-concentration P diffusion, but also present for other
dopants such as B and to a lesser extend for Al and Ga. Phosphorus in-
diffusion profiles (Fig. 4.8) show a tail in which the P diffusivity is much
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higher (up to a factor of 100 at 900◦C) than expected from isoconcentra-
tion studies. In n-p-n transistor structures in which high-concentration P is
used for the emitter diffusion, the diffusion of the base dopant B below the
P diffused region is similarly enhanced, the so-called ‘emitter-push effect’.
The diffusion of B, P, or Ga in buried layers many microns away from the
P diffused region is also greatly enhanced. In contrast, the diffusion of Sb in
buried layers is retarded under the same conditions. The enhanced and re-
tarded diffusion phenomena are analogous to those occurring during surface
oxidation. As has also been confirmed by dislocation-climb experiments [19],
all these phenomena are due to a supersaturation of I, associated with an
undersaturation of V , induced by high-concentration in-diffusion of P. The
basic features of high-concentration P diffusion are schematically shown in
Fig. 4.9, which also indicates the presence of electrically neutral precipitates
at P concentrations exceeding the solubility limit at the diffusion tempera-
ture. A much less pronounced supersaturation of I is generated by B starting
from a high surface concentration as can be concluded from the B profiles
and from the growth of interstitial-type stacking faults induced by B diffu-
sion [20, 21].

Many models have been proposed to explain the phenomena associated
with high-concentration P diffusion. The earlier models are vacancy based
and predict a P-induced V supersaturation which contradict the experimental
results obtained in the meantime. In 1986, Morehead and Lever [21] presented
a mathematical treatment of high-concentration dopant diffusion which is
primarily based on the point-defect species dominating the diffusion of the
dopant, e.g., I for P and B and V for Sb. The concentration of the other
native point-defect type is assumed to be determined by the dominating
point defect via the local equilibrium condition, (4.21). The dopant-induced
self-interstitial supersaturation sI may be estimated by the influx of dopants
which release part of the I involved in their diffusion process. These self-
interstitials will diffuse to the surface where it is assumed that CI = Ceq

I

holds, and also into the Si bulk. Finally, a quasi-steady-state supersaturation
of self-interstitials will develop for which the dopant-induced flux of injected
I just cancels the flux of I to the surface. Figure 4.9 shows schematically the
situation.

4.3.4 Diffusion of Carbon and Other Group IV Elements

The group IV elements carbon C, Ge and Sn dissolve in Si substitutionally,
but knowledge on their diffusion mechanisms is incomplete. Ge and Sn diffu-
sion are similarly slow as Si self-diffusion, whereas C diffusion is much faster
(Fig. 4.1).

Germanium atoms are slightly larger than Si atoms. Oxidation and nitri-
dation experiments show a ΦI value of Ge around 0.4 at 1100◦C [24] which
is slightly lower than that derived for Si self-diffusion. Diffusion of the much
larger Sn atoms in Si is expected to be almost entirely due to the vacancy
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Fig. 4.8. Concentration
profiles of P diffused into
Si at 900◦C for the times t
indicated. From [22].

Fig. 4.9. A schematic P
concentration profile (CP)
and the normalized native
point-defect concentra-
tions CI/Ceq

I and CV /Ceq
V .

From [23].

exchange mechanism, similar as for the group V dopant Sb. Consistent with
this expectation, a nitridation-induced supersaturation of V increases Sn dif-
fusion [25]), but no quantitative determination of ΦI is available for Sn.

In-diffusion C profiles in Si are error function-shaped. Considering the
atomic volume, it can be expected that the diffusion of C atoms, which are
much smaller than Si, involves mainly Si interstitials. Based on EPR mea-
surements, Watkins and Brower [26] proposed 29 years ago that C diffusion
is accomplished by a highly mobile CI complex according to Cs + I ⇔ CI,
where Cs denotes substitutional C. This is consistent with the experimental
observation that I injected by oxidation or high-concentration P in-diffusion
enhance C diffusion [27]. Equivalently, we may regard C as an i-s impurity,
just as Au. That is, to regard the diffusion of C according to [28, 29]

Cs + I ⇔ Ci (4.25)
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where Ci denotes an interstitial carbon atom. Since whether Cs diffusion is
actually carried by CI complexes or by Ci atoms have not yet been distin-
guished on a physical basis, and the mathematical descriptions for both cases
are identical in form, we can regard Cs diffusion as being carried by Ci atoms
in accordance with the KO mechanism of the i-s impurities. Under this as-
sumption, diffusion of C into Si for which the substitutional C concentration
is at or below the solubility of the substitutional carbon atoms, Ceq

s , the sub-
stitutional C diffusivity Deff

s is given by the effective diffusivity DiC
eq
i /Ceq

s

where Di is the diffusivity of the fast diffusing Ci atoms and Ceq
i is the sol-

ubilities of the Ci atoms. Error function type Cs in-diffusion profiles obtain
under in-diffusion conditions, because

Deff
s Ceq

s = DiC
eq
i < DIC

eq
I (4.26)

holds. Under this condition, C in-diffusion induced Si interstitials migrated
rapidly out to the Si surface and hence the Ceq

I condition is basically main-
tained, in agreement with experimental observations [30, 31].

From the C in-diffusion data, the solubility of Cs is given by [30, 31]

Ceq
s = 4 × 1030 exp(−2.3 eV/kBT )m−3 (4.27)

and the diffusion coefficient of Cs is given by

Ds = 1.9 × 10−4 exp(−3.1 eV/kBT )m2s−1 . (4.28)

Interpreted in accordance with the i-s nature of C, we obtain

Ceq
i = 2 × 1031 exp(−4.52 eV/kBT )m−3 , (4.29)
Di = 4.4 × 104 exp(−0.88 eV/kBT )m2s−1 . (4.30)

For out-diffusion of Cs pre-introduced to high concentrations, however,
the situation is very different. For cases for which the Cs concentration sig-
nificantly exceeded its solubility, as pointed out by Scholz et al. [32],

DiC
eq
i > DIC

eq
I (4.31)

may be satisfied, leading to a severe undersaturation of I in the high Cs con-
centration region which significantly retard the out-diffusion of Cs atoms from
the region. Indeed, such phenomena have been observed by Rücker et al. [33]
and by Werner et al. [34]. These experiments were performed using molecular
beam epitaxy (MBE) grown Si layers containing regions with Cs concentra-
tions in the 1025 to 1026 m−3 range, and hence tremendously exceeded the
Cs solubility of the experimental temperature. A similar retardation of the
diffusion of other impurity species diffusing via primarily I, e.g., B, in the
same region is also expected. This is indeed the case of the experimental re-
sults of Rücker et al. [33], see Fig. 4.10. In order to highly satisfactorily fit
both the Cs profile as well as all the B spike-region profiles, Scholz et al. [32]
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found that additionally the contribution of Si V must also be included. Va-
cancy contributes a component to Cs diffusion via the dissociative or FT
mechanism as given by reaction (4.8) and a component to B diffusion via the
vacancy-pairing mechanism. The V contribution to Cs diffusion is important
in regions outside the initial Cs high-concentration region and to B diffusion
in all regions.

Using similarly grown samples containing Cs and B spikes, ion implan-
tation induced Si interstitials were found to be substantially attenuated in
the Cs spike regions so that the diffusion of B buried beneath the Cs spikes
were severely retarded when compared to cases of having no Cs spikes [35].
The phenomenon was interpreted by the authors as due to the reaction
Cs + I ⇔ CI but with the so formed CI complexes assumed to be immobile,
which is in contrast to the suggestion of Watkins and Brower [26]. The as-
sumption that immobile CI complexes are responsible for the retarded boron
diffusion is not needed in the analysis of Scholz et al. [32]. It is expected that
ion implantation or oxidation induced Si I supersaturation will enhance the
diffusion of C and B with C in concentrations to a moderate level, e.g., in
the range of 1023 m−3.

4.3.5 Diffusion of Si Self-Interstitials and Vacancies

For Si, although the product DIC
eq
I is known and estimates of DV C

eq
V are

available, our knowledge of the individual factors DI , DV , Ceq
I and Ceq

V is
limited in spite of immense experimental efforts to determine these quantities.
These individual quantities enter most numerical programs for simulating
device processing and their elusiveness hinders progress in this area [36].

The most direct way of measuring DI is the injection of I (e.g., via surface
oxidation) at one location of the Si crystal and the observation of its effect
on dopant diffusion or on growth or shrinkage of stacking faults at another
location as a function of time and of distance between the two locations.
That is, the two locations may be the front- and the backside of a Si wafer.
Extensive experiments on the spread of oxidation-induced I through wafers
by Mizuo and Higuchi [37] have shown that a supersaturation of I arrives
at about the same time as a corresponding undersaturation of V . Therefore,
these kind of experiments at 1100◦C just give information on an effective
diffusivity of a perturbation in the I and V concentrations. This effective
diffusivity may be expressed approximately by [2]

Deff
(I,V ) ≈ (DIC

eq
I +DV C

eq
V ) / (Ceq

I + Ceq
V ) (4.32)

and probably corresponds to the diffusivity values of about 3× 10−13 m2 s−1

in the experiments of Mizuo and Higuchi at 1100◦C [37]. Much efforts had
been expended on this approach in the past but the results are inconsistent.

In most experiments aimed at determining DI it has not been taken into
account that I may react with V according to the reaction I + V ⇔ φ which



4 Diffusion in Semiconductors 181

Fig. 4.10. SIMS profiles of
a 300 nm thick carbon layer
with seven boron spikes [33].
Filled and open circles are
respectively data of as-grown
and annealed (900◦C/45 min)
cases. Dashed fitting lines are
those with only the kick-out
model, and solid lines are
those with the dissociative
mechanism also included.
From [32].

establishes local dynamical equilibrium condition given by (4.21). Based on
experiments on oxidation-retarded diffusion of antimony [18, 38] it has been
estimated that an astonishingly long time, about one hour, is required to
establish local dynamical equilibrium at 1100◦C. This long recombination
time indicates the presence of an energy or entropy barrier slowing down
the recombination reaction. At lower temperatures much longer recombina-
tion times can be expected. These long recombination times hold for lightly
doped material. There are indications that dopants or other foreign elements
may act as recombination centers which can considerably speed up the re-
combination reaction, but no reliable data are available in this area. The DI

values so determined (and therefore indirectly also of Ceq
I via the known prod-

uct DIC
eq
I ) were found to diverge over many orders of magnitude [3,39] and

with I formation enthalpies from ∼ 1 to 4 eV. This is clearly an unsatisfac-
tory situation. The problem is further complicated by the observation that the
measured effective diffusivity Deff

(I,V ) depends on the type of Si material used.
In the experiments of Fahey et al. [18] the transport of oxidation-induced Si
interstitials through epitaxially-grown Si layers was much faster than through
equally thick layers of as grown float-zone (FZ) or Czochralski (CZ) Si. This
difference has been attributed to the presence of vacancy-type agglomerates
left from the crystal growth process which might not be present in epitaxial
Si layers. These vacancy agglomerates would have to be consumed by the
injected I before further spread of interstitials can occur.
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Nonetheless, considering the recent development involving several differ-
ent categories of studies, we can now tentatively conclude that the migration
enthalpies of vacancies and self-interstitials in silicon, hm

V and hm
I respectively,

are relatively small while their formation enthalpies, hf
V and hf

I respectively,
are large. This means that the V and I are moving fairly fast while their
thermal equilibrium concentrations are fairly small. The most probable value
of hm

V is ∼ 0.5–1 eV while that of hm
I is ∼ 1 eV, and the corresponding most

probable values of hf
V is ∼ 3.5–3 eV while that of hf

I is ∼ 4 eV. Sinno et
al. [40] used values of 0.457 and 0.937 eV respectively for hm

V and hm
I to sat-

isfactorily model the formation of swirl defects (interstitial-type dislocation
loops and vacancy-type clusters) in FZ Si, including the defect location, den-
sity, size, and their dependence on the crystal growth rate and the thermal
gradient. Plekhanov et al. [41] used a hf

V value of ∼ 3–3.4 eV to satisfactorily
model the formation of voids in large diameter CZ Si. Moreover, in fitting
the C and B diffusion results of Rücker et al. [33], as shown in Fig. 4.10,
Scholz et al. [32] also needed to use hm

I and hm
V values smaller than 1 eV.

This knowledge is consistent with recent quantum mechanical calculations
which yielded fairly high hf

I and hf
V values and correspondingly low hm

V and
hm

I values [42–46]. With the present estimates, it becomes also possible to
connect in a reasonable and consistent way the fairly high diffusivities of na-
tive point defects found after low temperature electron irradiation [47] with
the much lower apparent diffusivities which appear to be required to explain
high-temperature diffusion experiments.

4.3.6 Oxygen and Hydrogen Diffusion

Oxygen is the most important electrically inactive impurity element in Si.
In CZ Si, O is incorporated from the quartz crucible and usually present in
concentrations in the order 1024 m−3. An O atom in Si occupies the bond-
centered interstitial position of two Si atoms and forms covalent bonds with
the two Si atoms. Hence, its diffusion requires the breaking of bonds. The
diffusivity of interstitial oxygen, Oi, has been measured between about 300◦C
and the melting point of Si and is in good approximation described by

Di = 0.07 exp(−2.44 eV/kBT )m2s−1 . (4.33)

The solubility Ceq
i of interstitial O has been determined to be

Ceq
i = 1.53 × 1027 exp(−1.03 eV/kBT )m−3 . (4.34)

Since in most CZ Si crystals the grown-in Oi concentration exceeds Ceq
i at

typical processing temperatures, Oi precipitation will occur in the interior but
not the surface regions (because of Oi out-diffusion) of CZ Si. This leads to the
important technological application of intrinsic gettering [48] for improving
the junction leakage and MOS capacitor charge holding time characteristics
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of integrated circuit devices fabricated using CZ Si, which is not available to
FZ Si.

Around 450◦C Oi forms electrically active agglomerates, called thermal
donors [49]. The formation kinetics of these agglomerates appears to require
a fast diffusing species, for which both Si I [50] and molecular oxygen have
been suggested [51]. The question of molecular oxygen in Si has not yet been
settled.

Hydrogen plays an increasingly important role in silicon device technology
because of its capability to passivate electrically active defects. The passiva-
tion of dislocations and grain boundaries is especially important for inex-
pensive multicrystalline Si used for solar cells. Both acceptors and donors
can be passivated by H which is usually supplied to Si from a plasma. H
in Si is assumed to diffuse as unbounded i atom in either a neutral or a
positively charged form. The diffusivity of H in Si has been measured by
Van Wieringen and Warmoltz [52] between 970 and 1200◦C, see Fig. 4.1.
Between room temperature and 600◦C H diffusivities much lower than those
extrapolated from the high-temperature data have been measured. Corbett
and co-workers [53] rationalized this observation by suggesting that atomic H
may form interstitially dissolved, essentially immobile H2 molecules. Appar-
ently, these molecules can then form plate-like precipitates [54]. As in the case
of oxygen, the existence of H molecules has not been proven experimentally.

4.4 Diffusion in Germanium

Germanium has lost its leading role for electronic devices about four decades
ago and is now mainly used as a detector material or in Si/Ge superlattices.
Therefore, basically no papers have recently been published on diffusion in
Ge. Another reason might be that diffusion in Ge can be consistently ex-
plained in terms of V -related mechanisms and no I contribution has to be
invoked.

Figure 4.11 shows the diffusivities of group III and V dopants and of Ge
in Ge as a function of inverse absolute temperature under intrinsic condi-
tions. The doping dependence of dopant diffusion can be explained by one
kind of acceptor-type native point defect. These native point defects have
been assumed to be V since the earliest studies of diffusion in Ge [1], but a
convincing experimental proof has only been given in 1985 by Stolwijk et al.
based on the diffusion behavior of Cu in Ge [55].

Copper diffuses in Ge via an i-s mechanism [6]. In analogy to the case of Au
and Pt in Si, its diffusion behavior may be used to check diffusion profiles for
any indication of an I contribution via the KO mechanism. A concentration
profile of Cu diffusion into a germanium wafer is shown in Fig. 4.12 [55]. The
dashed U-shaped profile which is typical for the kickout mechanism obviously
does not fit the experimental data. In contrast, the experimental profiles may
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Fig. 4.11. Diffusivities of
various elements (including
Ge) in Ge as a function of
inverse absolute temperature
[4].

be well described by the constant diffusivity Deff
(I,V ) given by (4.13). Values

of the vacancy contribution to Ge self-diffusion

DV C
eq
V = 21.3 × 10−4 exp(−3.11 eV/kBT )m2s−1 , (4.35)

as determined from Cu diffusion profiles, agree well with those measured from
tracer self-diffusion in Ge [3,55]. The kind of excellent agreement shows that
any Ge I contribution to the Ge self-diffusion process is negligible and hence
Ge self-diffusion appears to be entirely governed by V . It is unclear why I
play such an important role in diffusion processes in Si but no noticeable
effect in Ge.

4.5 Diffusion in Gallium Arsenide

Gallium arsenide is the most important base material used for optoelectronic
applications with diffusion processes essential in fabricating the devices. Self-
diffusion and diffusion of dopant and other important impurity species in
GaAs (and in other compound semiconductors) are governed by native point
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Fig. 4.12. Concentration profiles of Cu
into a dislocation-free Ge wafer after dif-
fusion for 15 minutes at 878◦C. The solid
line holds for the Frank-Turnbull and the
dashed line for the kickout mechanism.
From [55].

defects. Compared to that in Si, diffusion in GaAs exhibits a much more
prominent dependence on the Fermi-level effect, and it also shows a depen-
dence on the pressure of an As vapor phase. Moreover, the number of partici-
pating point defect species is more than that in Si. Vacancy, interstitialcy, as
well as i-s diffusion mechanisms are involved. Detailed reviews can be found
elsewhere [3, 56, 57].

4.5.1 Native Point Defects and General Aspects

The compound semiconductor GaAs has a thermodynamically allowed equi-
librium composition range around the Ga0.5As0.5 composition. In thermal
equilibrium coexistence with a GaAs crystal, there are four vapor phase
species: Ga1, As1, As2, and As4. In the crystal, there are six single point
defect species: vacancies of the Ga and As sublattices (VGa and VAs), self-
interstitials of Ga and As (IGa and IAs), and antisite defects of a Ga atom
on an As sublattice site (GaAs) and of an As atom on a Ga sublattice site
(AsGa). Any two single point defect species can form a paired species. There
is no convincing evidence of the involvement of paired point defects in diffu-
sion processes in GaAs, and the role of paired point defect species will not
be considered here. The sum of the thermal equilibrium concentrations of
the point defects constitutes the allowed GaAs crystal composition variation
within its thermodynamically allowed range. For instance, considering the
contributions of only the single point defects, the excess As concentration
(δCAs) is given by

δCAs =
[
Ceq

IAs
+ Ceq

AsGa
− Ceq

VAs

]
−

[
Ceq

IAs
+ Ceq

GaAs
− Ceq

VGa

]
, (4.36)

while δCGa = −δCAs is the excess Ga concentration, which is responsible for
the compound crystal composition deviation from the Ga0.5As0.5 stoichiom-
etry. In (4.36), the C are the various thermal equilibrium concentrations of
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K

Fig. 4.13. (a) The schematic phase diagram of GaAs, with the thermodynamically
allowed GaAs crystal composition range greatly exaggerated. (b) Partial pressures
of the Ga and As vapor phases in equilibrium with the most gallium rich GaAs
(a,a′) or the most arsenic rich GaAs (b,b′) [58].

the appropriate point defect species. Here the concentration of a point defect
species includes those in all charge states.

Clearly, the following three categories of quantities form a mutual depen-
dence, each of which may be regarded as the cause for the other two: (i) the
vapor phase pressures; (ii) the GaAs crystal composition; and (iii) the point
defect concentrations of the crystal.

To analyze experiments, it is convenient to regard the vapor phase pres-
sure as the cause and the other quantities as consequences. For III-V com-
pounds, the group V element vapor phase pressure are large, e.g., PAs4 and/or
PAs2 , and can be readily measured. Figure 4.13a shows the GaAs phase dia-
gram and Fig. 4.13b shows the vapor phase pressures [58]. Thus, for GaAs,
according to the pressure effect,

Ceq
I0
As

∝ 1/Ceq
V 0
As

∝ Ceq
V 0
Ga

∝ 1/Ceq
I0
Ga

∝ (PAs4)
1/4 (4.37)

holds for the four mobile point defect species in the neutral state. For GaAs,
explicit expressions for the thermal equilibrium concentrations of all neutral
single point defects have been obtained [59]. Such expressions should also be
applicable to other III-V semiconductors.

Diffusion of many elements in GaAs have been investigated, with most
of the studies focused on p-type dopants Zn and Be, on n-type dopants Si
and Se, and on Cr which is used for producing semi-insulating GaAs. Since
Zn, Be, Cr and a number of other elements diffuse via an i-s mechanism, this
type of diffusion mechanism has historically received much more attention in
GaAs than in Si and Ge. Similarly as for Si and Ge, it had been assumed for
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a long time that only vacancies need to be taken into account to understand
diffusion processes in GaAs, see the book of Tuck [60].

The compilation of earlier diffusion data in GaAs may be found else-
where [60]. Only a few studies of self-diffusion in GaAs are available, but with
advances in growing GaAs/AlAs-type superlattices using molecular beam epi-
taxy (MBE) or metalorganic chemical vapor deposition (MOCVD) methods,
Al has served as an important foreign tracer element for elucidating Ga self-
diffusion mechanisms. The observation that high-concentration Zn diffusion
into a GaAs/AlxGa1−xAs superlattice leads to a dramatic increase in the
Al-Ga interdiffusion coefficient [61] opened up the possibility to fabricate lat-
erally structured optoelectronic devices by locally disordering superlattices.
This dopant-enhanced superlattice disordering is a general phenomena occur-
ing for other p-type dopants, e.g., Mg, and for n-type dopants, e.g., Si, Se and
Te [57, 58]. The dopant-enhanced superlattice disordering also has helped to
unravel the contributions of I and V to self- and dopants diffusion processes
in GaAs. These superlattices with their typical period of about 10 nm allow
one to measure Al-Ga interdiffusion coefficients, which turned out to be close
to the Ga self-diffusion coefficient, down to much lower values than had been
previously possible for Ga self-diffusion in bulk GaAs using radioactive Ga
tracer atoms. The dependence of diffusion processes on the As vapor pressure
has helped in establishing the role of self-interstitials versus vacancies.

The diffusivity of a substitutional species in GaAs generally shows a de-
pendence on PAs4 , because the concentration of the responsible point defect
species is dependent upon PAs4 , (4.37). The diffusivity will also exhibit a
dependence on doping because of the involvement of charged point defects
whose concentration is influenced via the Fermi-level effect. Furthermore,
non-equilibrium concentrations of native point defects may be induced by
the in-diffusion of dopants such as Zn starting from a high surface concentra-
tion. Much less is known on the diffusion processes of atoms dissolved on the
As sublattice, but recent experiments indicate the dominance of As I on the
diffusion of the isoelectronic group V element N [62], P and Sb [63–65], and
the group VI n-type dopant S [66]. These results imply also the dominance of
As I on As self-diffusion, which is in contrast to the earlier As self-diffusion
results of Palfrey et al. [67] favoring the dominance of As V .

4.5.2 Gallium Self-Diffusion and Superlattice Disordering

Intrinsic Gallium Arsenide

The self-diffusion coefficient DGa(ni) of Ga in intrinsic GaAs has been
measured by Goldstein [68] and Palfrey et al. [69] using radioactive Ga
tracer atoms. This method allows measurements of DGa(ni) down to about
10−19 m2/s. Measurements of the interdiffusion of Ga and Al in GaAs/
AlxGa1−xAs superlattices extended the range to much lower values [70–74].



188 Teh Yu Tan and Ulrich Gösele

Fig. 4.14. Plot of available
data on Ga self-diffusion in
GaAs and data on Ga/Al in-
terdiffusion in GaAs/AlGaAs
superlattices under intrinsic
conditions together with DGa

derived [75] from the data of
Mei et al. [87].

The various data points have been approximately fitted by Tan and Gösele
[75, 76] to the expression

DV
Ga(ni, 1 atm) ≈ 2.9 × 104 exp(−6 eV/kBT )m2s−1 , (4.38)

see Fig. 4.14. Equation (4.38) is valid for the As4 pressure of 1 atm or for GaAs
crystals with compositions at the As-rich boundary shown in Fig. 4.13a, and
the superscript V in the quantity DV

Ga specifies that the quantity is due to the
Ga sublattice V contribution to Ga self-diffusion. This is because, at ∼ 1 atm,
the disordering rate of the GaAs/AlxGa1−xAs superlattices increases as the
ambient As4 pressure is increased [77,78]. The corresponding DV

Ga values for
GaAs crystals at the Ga-rich boundary is then

DV
Ga(ni,Ga-rich) ≈ 3.93 × 108 exp(−7.34 eV/kBT )m2s−1 . (4.39)

For (4.38) and (4.39), it turned out that the responsible vacancy species is
the triply-negatively-charged Ga vacancies V 3−

Ga , to be discussed in the next
paragraph. However, the Al-Ga interdiffusion coefficient also increases for
very low arsenic vapor pressures [77, 78], indicating that DGa is governed by
Ga I for sufficiently low As vapor pressures [57]. The role of Ga V and I will
become clearer when Ga diffusion in doped GaAs/AlxGa1−xAs superlattices
is considered and when diffusion of the p-type dopant Zn and Be is consid-
ered. Combining the Al-Ga interdiffusion data of Hsieh et al. [79] obtained
under Ga-rich ambient conditions, and the deduced Ga self-diffusion coeffi-
cients from analyzing Zn diffusion [80] and Cr diffusion [81], Tan et al. [82]
summarized that

DI
Ga(ni,Ga-rich) ≈ 4.46 × 10−8 exp(−3.37 eV/kBT )m2s−1 (4.40)
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holds for the Ga I contribution to Ga self-diffusion in GaAs crystals with
composition at the Ga-rich boundary shown in Fig. 4.13a. The corresponding
values for GaAs crystals with composition at the As-rich boundary shown in
Fig. 4.13a is then

DI
Ga(ni, 1 atm) ≈ 6.05 × 10−4 exp(−4.71 eV/kBT )m2s−1 . (4.41)

For (4.40) and (4.41), it turned out that the responsible point defect species
is the doubly-positively-charged Ga self-interstitials I2+

Ga , as will be discussed
in Sect. 4.5.2.

However, as has been first noticed by Tan et al. [83], under intrinsic condi-
tions, for a number of Al-Ga interdiffusion studies [70,84,85] and two recent
Ga self-diffusion studies using stable Ga isotopes [83,86], the results are fitted
better by

DGa(ni, 1 atm) ≈ 4.3 × 10−3 exp(−4.24 eV/kBT )m2s−1 (4.42)

instead of by (4.38). Figure 4.15 shows the values per (4.38) and (4.42) and
the associated data. There has yet to be a satisfactory explanation of the
discrepancy between these expressions. On the one hand, (4.42) does offer
a better fit to the more recent data, but on the other, it does not seem to
be consistent with the Al-Ga data of Mei et al. [87] under Si doping which
are associated with a 4 eV activation enthalpy. In accordance with the Fermi-
level effect, the Ga diffusion activation enthalpy decreases by about 2 eV in
n-doped materials [57], which would mean that (4.38) is more reasonable. A
number of reasons, however, could affect the accuracy of the experimental
results. These will include accidental contamination by n-type dopants in the
nominal intrinsic materials, band off-sets in the case of Al-Ga interdiffusion,
and the fact that the materials did not have the As-rich composition to start
with and the experimental temperature-time was not sufficient to change the
materials into As-rich for most part of the experimental time.

Doped Gallium Arsenide

No studies of Ga self-diffusion in doped bulk GaAs have been reported,
but a wealth of data on Al-Ga interdiffusion in both n-type and p-type
doped GaAs/AlxGa1−xAs superlattices is available. These interdiffusion ex-
periments were triggered by the observation of Zn in-diffusion enhanced su-
perlattice disordering due to Laidig et al. [61]. A number of disordering mech-
anisms have been proposed [61, 88–90] for a particular dopant, but none is
general enough to account for the occurrence of an enhanced Al-Ga interdiffu-
sion rate for also other dopants. The observed dopant enhanced interdiffusion
appears to be due to two main effects [75, 76]: (i). The thermal equilibrium
concentration of appropriately charged point defects is enhanced by doping,
i.e., the Fermi-level effect. In the case of the n-type dopant Si, mainly the
presence of the dopant is of importance, but not its movement. Compensation
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Fig. 4.15. Data and fitting lines for the intrinsic Ga or Al-Ga diffusivity under
1 atm of As4 pressure. The 6 eV line is that given by (4.38) and the 4.24 eV line that
given by (4.42). All Ga data are directly measured ones using norminaly intrinsic
GaAs. The Al-Ga data include directly measured ones using norminaly intrinsic
GaAs/AlxGa1−xAs superlattices as well as those deduced [75] from the Mei et al.
data [87] obtained using Si doped GaAs/AlxGa1−xAs superlattices.

doping, e.g. with Si and Be, should not lead to enhanced Al-Ga interdiffusion,
in agreement with experimental results [91, 92]. (ii) For a dopant with high
diffusivity and solubility, non-equilibrium native point defects are generated.

Depending on whether a supersaturation or an undersaturation of point
defects develops, the enhanced disordering rate due to the Fermi level effect
may be further increased or decreased. Irrespective of the starting material
composition, such non-equilibrium native point defects drive the dopant dif-
fused region crystal composition first toward an appropriate allowed GaAs
crystal composition limit shown in Fig. 4.13a. When the super- or undersatu-
ration of point defects becomes so large that the crystal local region exceeded
the allowed composition limit, extended defects form to bring the composi-
tion of the region back to that composition limit. Afterwards, this permits
the diffusion processes to be described by an equilibrium point defect process
appropriate for the crystal local region which is at an appropriate allowed
composition limit. The crystal is in a non-equilibrium state because of the
spatially changing composition. The diffusion of high-concentration Zn and
Be in GaAs [80,93] and their effects on GaAs/AlxGa1−xAs superlattices [94]
appear to be such cases. Interdiffusion of Al-Ga in n-type GaAs/AlAs su-
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Fig. 4.16. The (n/ni)
3 depen-

dence of the Al-Ga interdiffu-
sion data of Mei et al. [87], with
DV

Ga(ni, 1 atm) given by (4.38).
The data cannot be analyzed to a
similar degree of satisfaction via
the use of (4.42) to a power law
dependence on n/ni. Redrawn
from [75].

perlattices will be first discussed. This concerns with the case of Si-doped
GaAs which allows to identify the type and the charge state of the native
point defect dominating Ga self-diffusion in n-type GaAs. In Fig. 4.16, the
enhanced Al-Ga interdiffusion coefficients under Si-doping are plotted in a
normalized form as a function of n/ni of the appropriate temperature. These
data, obtained by Mei et al. [87], show a clear doping dependence [75, 76]

DAl−Ga(n, 1 atm) = DGa(ni, 1 atm)[n/ni]3 (4.43)

with DV
Ga(ni, 1 atm) given by (4.38). Equation (4.43) indicates the involve-

ment of a triply-negatively-charged native point defect species. Based on
the pressure dependence of the interdiffusion coefficient of n-doped superlat-
tices [56, 78] this defect has to be the gallium vacancy V −3

Ga , as predicted by
Baraff and Schlüter [95]. Values of DV

Ga(ni, 1 atm) calculated from the Mei
et al. data and shown in Fig. 4.14 are in good agreement with values ex-
trapolated from higher temperatures. Thus, including the As vapor pressure
dependence, we may write the Ga self-diffusion coefficient in n-type GaAs as

DGa(n, PAs4 ) = DV
Ga(ni, 1 atm)[n/ni]3[PAs4 ]

1/4 (4.44)

where DV
Ga(ni, 1 atm) is given by (4.38). The much later claim that these

Si-doping induced Al-Ga interdiffusion data show a quadratic dependence on
n [96] is erroneous, because of the use of the room temperature ni value as
that for high temperature ones by the authors. Furthermore, the statement
that there is no Fermi-level effect [97] bears little credence, for it is based on
Al-Ga interdiffusion results with extremely low Si doping, which are thresh-
old phenomena that may be influenced by many other uncontrolled factors.
Tellurium-doped GaAs based superlattices show a weaker dependence of the
Al-Ga interdiffusion coefficient on the Te concentration than expected from
(4.44) [98], especially at very high concentrations. The probable cause is that,
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Fig. 4.17. Fits of some of the
available p-dopant enhanced
Al-Ga interdiffusion data,
with DI

Ga(ni, Ga-rich) given
by (4.40). The data exhibit
an approximately quadratic
dependence on p/ni, indicating
that the dominant native point
defect is I2+

Ga . From [94].

due to clustering, not all Te atoms are electrically active to contribute to the
electron concentration [99].

The available Al-Ga interdiffusion data in p-type GaAs based superlattices
[61, 91, 100–104] had been first thought to be not analyzable in a manner
analogous to that done for the n-doping effect [75,76]. As shown in Fig. 4.17,
however, some of these data has been later approximately fitted by [94]

DAl−Ga(p,Ga-rich) = DI
Ga(ni,Ga-rich)[p/ni]2 (4.45)

where DI
Ga(ni,Ga-rich) is given by (4.40). Equation (4.45) shows that the

dominant native point defects under p-doping to a sufficient concentration
are IGa species, and the p2 dependence of DAl−Ga(p,Ga-rich) shows that the
IGa are doubly-positively-charged. The data shown in Fig. 4.17 [91,100,103,
104] are those under the dopant in-diffusion conditions, while the rest are
those under the dopant out-diffusion conditions involving grown-in dopants
without an outside dopant source. Under out-diffusion conditions, the dopant
diffusivity values are too small to be reliably measured. The fit shown in
Fig. 4.17 is seemingly satisfactory but nowhere near that for the Si-doping
case (Fig. 4.16). Even if the fit were perfect, the essential native point defect
equilibrium situation implied by Fig. 4.17 is only an apparent phenomenon,
for it applies only to the p-dopant diffusion front region while the whole
crystal is having a spatially varying composition. This point is most obvious
in the data of Lee and Laidig [100] which were obtained in a high As4 vapor
pressure ambient.

The grossly different results for in- and out-diffusion conditions is due
to non-equilibrium concentrations of native point defects induced by high-
concentration diffusion of Zn or Be. Both Zn and Be diffuse via an i-s mecha-
nism as will be discussed in more detail in the subsequent section. Historically,
most authors [60] considered that diffusion of p-type dopants is governed by
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the Longini mechanism [105] involving Ga vacancies

A+
i + V 0

Ga ⇔ A−
s + 2h , (4.46)

where h is a hole and the interstitial species of the dopant is assumed to
be positively charged, A+

i . The Longini mechanism is the same as the FT
mechanism, except it deals with charged species. The superlattice disordering
results indicate that for these dopants, the KO mechanism [106] involving Ga
self-interstitials

A+
i ⇔ A−

s + I2+
Ga (4.47)

is operating instead. This also indicates that Ga self-diffusion is governed
by Ga I under p-doping conditions. Within the framework of the kickout
mechanism the dopant in-diffusion generates a supersaturation of IGa with a
corresponding increase of dopant diffusion and the Ga self-diffusion compo-
nent involving Ga I. Because of the IGa supersaturation, the dopant diffused
region tends toward the Ga-rich composition. In the case of Zn in-diffusion
to very high concentrations, it will be discussed in detail that the IGa super-
saturation is so large that in a small fraction of the diffusion time extended
defects form [93,107], resulting in that the Zn diffused region composition is
at the thermodynamically allowed Ga-rich composition limit, and is associ-
ated with the appropriate thermal equilibrium point defect concentrations.
This is the reason for the satisfactory fit shown in Fig. 4.17.

In the case of grown-in dopants without an outside source the KO mecha-
nism involves the consumption of IGa which leads to an IGa undersaturation
with a corresponding decrease in dopant diffusion [108–111] and the Ga self-
diffusion component involving IGa. The results of the superlattice disordering
experiments are consistent with the expectations based on the KO mecha-
nism. In contrast, the Longini mechanism predicts an undersaturation of V
for in-diffusion conditions and a supersaturation for out-diffusion conditions
with a corresponding decrease and increase of a V dominated Ga self-diffusion
component, respectively. Since the predictions based on the Longini mecha-
nism are just opposite to the observed superlattice disordering results, it can
be concluded that: (i) Zn diffusion occurs via the KO mechanism, and (ii)
Ga self-diffusion in p-type GaAs is governed by IGa.

In contrast to the group II acceptors Zn and Be, the group IV acceptor
carbon (C) occupying the As sublattice sites diffuses slowly. This allows the
native point defects to be maintained at their thermal equilibrium values.
The effect of C on the disordering of GaAs/AlxGa1−xAs superlattices [112]
is described well by

Deq
Al−Ga = DI

Ga(ni)[p/ni]2 , (4.48)

where DI
Ga(ni) is given by (4.40) and (4.41) respectively for data obtained

under Ga-rich and As-rich ambient conditions.
The pressure dependence of disordering of p-doped superlattices confirms

the predominance of Ga I in Ga self-diffusion [56]. The magnitude of the
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enhancement effect, its restriction to the dopant-diffused region and the im-
plantation results of Zucker et al. [104] indicate that a Fermi level effect has
to be considered in addition to non-equilibrium point defects.

Combining the results for the p-type and the n-type dopant induced disor-
dering including an I supersaturation sI defined as sI = CI(n(p))/Ceq

i (n(p)),
and an analogous V supersaturation sV defined as sV = CV (n(p))/Ceq

V (n(p)),
where (n(p)) indicates doping conditions, we may express the Ga self-diffusion
coefficient approximately as

DGa (n(p), PAs4) = DI
Ga(ni, 1 atm)[p/ni]2P

−1/4
As4

sI

+ DV
Ga(ni, 1 atm)[n/ni]3P

1/4
As4

sV . (4.49)

In (4.49) the quantities DV
Ga(ni, 1 atm) and DI

Ga(ni, 1 atm) are given respec-
tively by (4.38) and (4.41). In writing down (4.49), the As-rich GaAs, des-
ignated by PAs4 = 1 atm, is chosen as the reference material state, and
with GaAs crystals of all other compositions represented by an appropriate
PAs4 value. Equation (4.49) describes all presently known essential effects on
GaAs/AlxGa1−xAs superlattice disordering. In the case of non-equilibrium
Ga V injected by a Si/As cap [113], sV > 0 holds. In the case of ion-
implantation, both sI > 0 and sV > 0 may hold and both quantities will
be time dependent. In the case of diffusion-induced non-equilibrium point
defects the presence of dislocations will allow local equilibrium between in-
trinsic point defects to establish in the two sublattices. In this way a large
supersaturation of IGa in the Ga sublattice may lead to an undersaturation
of IAs or a supersaturation of VAs in the As sublattice.

4.5.3 Arsenic Self-Diffusion and Superlattice Disordering

Since there is only one stable As isotope, 75As, As self-diffusion in GaAs can-
not be studied using stable As isotopes. In intrinsic GaAs, however, three
arsenic self-diffusion studies have been conducted using radioactive trac-
ers [62, 63, 67]. In the experiment of Palfrey et al. [67], the As4 pressure
dependence of As self-diffusion indicated that VAs may be the responsible
native point-defect species. This is, however, in qualitative contradiction to
the conclusion reached recently from a large number of studies involving As
atoms and other group V and VI elements that the responsible native point-
defect species should be IAs. The latter studies include: (i) As-Sb and As-P
interdiffusion in intrinsic GaAs/GaSbxAs1−x and GaAs/GaPxAs1−x type su-
perlattices for which x is small so as to avoid a large lattice mismatch [63–65];
(ii) P and Sb in-diffusion into GaAs under appropriate P and As pressures so
as to avoid extended defect formation which leads to complications [63–65];
(iii) an extensive analysis of the S in-diffusion data in GaAs [66]; (iv) out-
diffusion of N from GaAs [62]. A plot of the relevant data is shown in Fig. 4.18,
from which the lower limit of the As self-diffusion coefficient, assigned to be
due to the As self-interstitial contribution, is determined to be
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Fig. 4.18. Data on As self-diffusion coefficient, obtained using radioactive As trac-
ers (open squares), the group V elements N, P, and Sb and the group VI donor S
(filled symbols). The dashed fitting line is given by (4.50), and the solid line is a
better overall fitting. From [64].

DI
As(ni, 1 atm) ≈ 6 × 10−2 exp(−4.8 eV/kBT )m2s−1 . (4.50)

For P-As and Sb-As interdiffusion as well as P and Sb in-diffusion cases
[63–65], the profiles are error function shaped. With P and Sb assumed to be
i-s elements, such diffusion profiles are described by an effective diffusivity of
the type

Deff
s = DiC

eq
i /Ceq

s (4.51)

under native point defect equilibrium conditions, which is satisfied by either
the KO mechanism involving IAs or the Longini (or FT) mechanism involv-
ing VAs. The conclusion that IAs is the responsible species is reached for this
group of experiments because the diffusion rate increases upon increasing the
ambient As vapor pressure. IAs should be the responsible species in the N
out-diffusion experiments [62] because the N profile is typical of that due to
the KO reaction (4.47) under the condition of an IAs undersaturation, which
is qualitatively different from those obtainable from the dissociative reaction
(4.46). IAs should also be the responsible species in the S in-diffusion exper-
iments because the S profile [66] is typical of that due to the KO mechanism
reaction S+

i ⇔ S+
s + I0 under the condition of an IAs supersaturation, which

is also qualitatively different from those obtained from any possible reactions
of the FT or Longini mechanisms. It is seen from Fig. 4.18 that the available
As self-diffusion data lie close to those deduced from the P, Sb, N, and S
studies, and it may thus be inferred that As self-diffusion has a component
contributed by IAs.
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There are yet no doping dependence studies using the isoelectronic group
V elements N, P, and Sb, and hence the charge nature of the involved IAs has
not yet been determined. However, S is a group VI donor occupying the As
sublattice sites. In analyzing S in-diffusion [66], it was necessary to assume
that neutral IAs species were involved, which is therefore a most likely species
responsible for As self-diffusion.

There is also a study on the disordering of GaAs/AlxGa1−xAs superlat-
tices by the group IV acceptor species C [112] which occupy the As sub-
lattice sites. While there is no information obtained from this study on As
self-diffusivity, satisfactory descriptions of the C diffusion profiles themselves
were obtained also with the use of a kickout reaction involving neutral As self-
interstitials, discussed later. This lends further support to the interpretation
that neutral As self-interstitials are responsible for As self-diffusion.

4.5.4 Impurity Diffusion in Gallium Arsenide

Silicon

For GaAs the main n-type dopant is Si. It is an amphoteric dopant mainly
dissolved on the Ga sublattice but shows a high degree of self-compensation
at high concentrations due to an increased solubility on the As sublattice.

The Si diffusivity shows a strong dependence on its own concentration,
which had been modeled by a variety of mechanisms [113–115]. Apparently, Si
diffusion is dominated by negatively charged VGa and that its apparent con-
centration dependence is actually a Fermi level effect. Results on Si diffusion
into n-type (Sn-doped) GaAs confirm the Fermi level effect [115] and con-
tradict the other models, e.g., the SiGa-SiAs pair-diffusion model of Greiner-
Gibbons [114]. In the Fermi-level effect model, Yu et al. [115] used mainly V 3−

Ga

to fit the Si in-diffusion profiles, and more recently Chen et al. [116] found only
V −3

Ga is needed to fit these profiles. This is in consistency with the fact that
V 3−

Ga dominating GaAs/AlAs superlattice disordering under n-doping condi-
tions. In the work of Chen et al. [116] the Si source material and the GaAs
crystal are regarded as forming a heterostructure so that electrical effects due
to the heterojunction are also accounted for. In these analyses [115,116], the
diffusivity of the Si donor species Si+Ga satisfies

DSi(n) = DSi(ni)(n/ni)3 , (4.52)

which indicates that V 3−
Ga governs the diffusion of Si+Ga. Satisfactory fits of the

experimental data of Greiner and Gibbons [114] and of Kavanagh et at. [113]
were obtained using (4.51) with

DSi(ni) = 5.2 exp(−4.98 eV/kBT )m2s−1 (4.53)

in the work of Yu et al. [115], while DSi(ni) values 10 times larger than that
given by (4.53) were needed in the analysis of Chen et al. [116].
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In a set of Si out-diffusion experiments, You et al. [117] found that the Si
profiles also satisfy (4.52) but the needed DSi(ni) values are

DSi(ni, 1 atm) = 6.67 exp(−3.91 eV/kBT )m2s−1 , (4.54)
DSi(ni,Ga-rich) = 9.18 × 104 exp(−5.25 eV/kBT )m2s−1 , (4.55)

respectively, for experiments conducted under As-rich and Ga-rich ambient
conditions.

The DSi(ni) expressed by (4.54) and (4.55) are larger than those of (4.53)
by several orders of magnitude at temperatures above ∼ 800◦C, which in-
dicates the presence of an undersaturation and a supersaturation of V 3−

Ga ,
respectively, under the Si in- and out-diffusion conditions [117]. For the in-
diffusion case, the starting GaAs crystal contains V 3−

Ga and the neutral Ga
vacancies V 0

Ga to the thermal equilibrium concentrations of those of the in-
trinsic material. Upon in-diffusion of Si atoms, V 3−

Ga (and hence also V 0
Ga) be-

come undersaturated relative to the thermal equilibrium V 3−
Ga concentration

values appropriate for the n-doping conditions, which can only be alleviated
via inflow of V 3−

Ga from the interface of the Si source material and the GaAs
crystal. The reverse analogy holds for the Si out-diffusion case. Since V 3−

Ga

diffusion should be much faster than that of the Si+Ga atoms, in either case
there shall be no substantial spatial variations in the distribution of the V 0

Ga

species while the spatial distribution of V 3−
Ga follows the local n3 value.

Diffusion of Interstitial-Substitutional Species

Carbon

The group IV element carbon (C) occupies the As sublattice sites in GaAs
and is a shallow acceptor, designated as C−

s to emphasize that it is most likely
an i-s species. By in-situ doping during MBE crystal growth, C−

s reaches high
solubilities [118] and diffuses slowly [119], which are attractive features when
compared to the main p-type dopants Zn and Be in GaAs. The measured C−

s

diffusivity values of a few groups obtained under As-rich annealing conditions
[112,118–122] are fitted well by the expression

Ds(1 atm) = 4.79 × exp(−3.13 eV/kBT )m2s−1 . (4.56)

The corresponding Ds values under Ga-rich conditions should therefore be

Ds(Ga-rich) = 6.5 × exp(−4.47 eV/kBT )m2s−1 . (4.57)

These fits are shown in Fig. 4.19. In the work of You et al. [112] the C−
s

diffusivity data were obtained by the individual fittings of C−
s profiles which

are not quite error function shaped. In order to fit these profiles well, together
with a carbon precipitation process, it was also necessary to use the kickout
reaction
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Fig. 4.19. Available carbon
diffusivity data and fittings in
GaAs. From [112].

C−
s + I0

As ⇔ C−
i , (4.58)

where C−
i is an interstitial C atom which is also assumed to be an acceptor,

and I0
As is a neutral As self-interstitial. Later, Moll et al. [123] identified the

nature of the precipitation process as that of graphite formation. The As
self-interstitials are maintained at their thermal equilibrium values during C
diffusion, because of the low diffusivity value of C.

Zinc and Beryllium

The main p-type dopants in GaAs based devices, Zn and Be, diffuse via
an i-s mechanism in GaAs as well as in many other III-V compounds. In
most works Zn and Be diffusion have been discussed in terms of the much
earlier suggested FT or Longini mechanism [60], but only the KO mechanism
involving IGa is quantitatively consistent with the superlattice disordering
results as well as with Zn diffusion results [80, 93].

Isoconcentration diffusion of Zn isotopes in GaAs predoped by Zn showed
error function profiles [124, 125] with the substitutional Zn diffusivity values
of

Ds(p, 1 atm) = Ds(ni, 1 atm)(Cs/ni)2 (4.59)

for As-rich GaAs and an analogous expression for Ga-rich GaAs. At suffi-
ciently high Zn concentrations, since the GaAs hole concentration p equals
approximately the Zns concentration (p ∼ Cs), (4.59) shows that the respon-
sible native point defect species can only be the doubly-positively-charged
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Ga self-interstitials or vacancies, I2+
Ga or V 2+

Ga . Under high-concentration Zn
in-diffusion conditions, the GaAs/AlxGa1−xAs superlattices disordering rates
are tremendously high, indicating the presence of a high supersaturation of
the responsible point defects. Thus, the native point-defect species respon-
sible for Zn diffusion, and also for Ga self-diffusion and Al-Ga interdiffusion
under p-doping conditions, is I2+

Ga according to reaction (4.47), and not V 2+
Ga

according to reaction (4.46). In the latter case only an undersaturation of
V 2+

Ga can be incurred by Zn in-diffusion which should then retard Al-Ga in-
terdiffusion rates in superlattices, in contradiction with experimental results.
In the Zn isoconcentration diffusion experiments, a non-equilibrium I2+

Ga con-
centration is not involved. Similarly, for Zn diffusion to low concentrations
below the ni value, a non-equilibrium concentration of I2+

Ga is also not present,
and the Zn diffusivity values may be represented by that under the intrinsic
conditions, Ds(ni). As analyzed by Yu et al. [80], Zn isoconcentration exper-
iments and Zn in-diffusion experiments at high concentrations yielded the
value range of

Ds(ni, 1 atm) = 1.6 × 10−6 exp(−2.98 eV/kBT )m2s−1 , (4.60a)
Ds(ni, 1 atm) = 9.68 × 10−3 exp(−4.07 eV/kBT )m2s−1 . (4.60b)

The two analogous expressions for Ga-rich materials are respectively

Ds(ni,Ga-rich) = 1.18 × 10−10 exp(−1.64 eV/kBT )m2s−1 , (4.61a)
Ds(ni,Ga-rich) = 7.14 × 10−7 exp(−2.73 eV/kBT )m2s−1 . (4.61b)

The values of (4.60ab) and (4.61ab) and the associated data are plotted in
Fig. 4.20.

The correspondingly deduced I2+
Ga contribution to Ga self-diffusion has

been included in (4.38) and (4.39). Because of the lack of a proper Be source
for in-diffusion studies, and in Be out-diffusion studies with Be incorporated
using MBE or MOCVD methods the Be diffusivity is too small, there are no
reliable Be diffusivity data.

Out-diffusion of Zn or Be in GaAs doped to fairly high concentrations
during crystal is associated with a high I2+

Ga undersaturation, leading to Zn
or Be out-diffusion rates orders of magnitude smaller than those under in-
diffusion conditions [109,110,126]. In-diffusion of high concentration Zn into
GaAs induces an extremely large I2+

Ga supersaturation, because the condition

DiC
eq
i 
 DSD

Ga(p) (4.62)

holds. As first noted by Winteler [107], this I2+
Ga supersaturation leads to the

formation of extended defects. In recent works three kinds of extended defects
have been characterized and their formation process analyzed [57,93,127]: (i)
interstitial-type dislocation loops, which degenerate into dislocation tangles
in time; (ii) voids; and (iii) Ga precipitates co-existing with neighboring voids.
For diffusing Zn into GaAs in a Ga-rich ambient, a Zn diffused GaAs crystal



200 Teh Yu Tan and Ulrich Gösele

Fig. 4.20. The substitu-
tional Zn diffusivity values
under intrinsic and 1-atm
As4 pressure conditions.
From [80].

region with compositions at the allowed Ga-rich boundary shown in Fig. 4.13a
is obtained, irrespective of the GaAs starting composition. The fact that the
Zn diffused region is indeed rich in Ga is evidenced by the presence of Ga
precipitates in the voids [93]. Formation of these defects ensures the Zn in-
diffusion profile to be governed by the thermal equilibrium concentrations of
native point defects of the Ga-rich GaAs crystal, and the profile is box-shaped
which reveals the p2 (or C2

s ) dependence of the substitutional Zn diffusivity
Ds. Such a profile is shown in Fig. 4.21 together with an illustration of the
involved extended defects. It is, however, noted that the crystal is in a highly
non-equilibrium state, for two reasons. First, extended defects are generated.
Second, the starting material may not be rich in Ga and hence the crystal will
now contain regions with different compositions which is of course a highly
non-equilibrium crystal.

For diffusing Zn into GaAs in an As-rich ambient, the situation is more
complicated. After a sufficient elapse of diffusion time, the crystal surface re-
gion becomes As-rich because of the presence of a high ambient As4 pressure.
But, since

DiC
eq
i 
 DSD

As (p) (4.63)

holds in the Zn diffusion front region, it is Ga-rich. Thus, the high-concen-
tration Zn in-diffusion profiles are of a kink-and-tail type resembling those of
high concentration P in-diffusion profiles in Si, see Fig. 4.22. The kink-and-tail
profile develops because the Zns solubility value in the As-rich and Ga-rich
GaAs materials are different [93]. In the high Zn concentration region the
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Fig. 4.21. (a) Zn in-diffusion
profiles obtained at 900◦C un-
der Ga-rich ambient conditions.
Squares are the total Zn concen-
tration and crosses are the hole
or Zns concentration. The higher
total Zn concentration indicates
formation of Zn containing pre-
cipitates caused by the use of a
non-equilibrium Zn source mate-
rial which diffused Zn into GaAs
exceeding its solubility at 900◦C.
(b) A schematic diagram indicat-
ing the morphologies and distri-
butions of voids (open) and Ga
precipitates (filled), indicated by
also v[p]. The presence of dislo-
cations is not shown. From [93].

Ds(ni) values are those given by (4.60a) and (4.60b), while in the tail or Zn
diffusion front region theDs(ni) values are those given by (4.61a) and (4.61b).
These profiles cannot be modelled with a high degree of self-consistency, be-
cause the extended defect formation process cannot be modelled without the
use of some phenomenological parameters [80]. The evolution of the extended
defects, as suggested by Tan et al. [57] and Luysberg et al. [127], are as fol-
lows: (i) to reduce I2+

Ga supersaturation, they form interstitial type dislocation
loops containing extra GaAs molecules, with the needed As atoms taken from
the surrounding As sites which generates a VAs supersaturation; (ii) the su-
persaturated VAs collapses to form voids, each of an initial volume about that
of a neighboring Ga precipitate formed from Ga atoms lost the neighboring
As atoms to the formation of the dislocation loops. The voids will be rapidly
filled by subsequently generated Ga self-interstitials due to further Zn in-
diffusion. For cases of diffusing Zn into GaAs in a Ga-rich ambient, the voids
contain Ga precipitates throughout the Zn in-diffused region, but for cases
of diffusing Zn into GaAs in an As-rich ambient, the surface region voids are
empty.

Chromium

Chromium is a deep acceptor occupying Ga sites and is used for fabricating
semi-insulating GaAs. In undoped GaAs, diffusion of Cr involves no charge
effects. In-diffusion profiles of Cr are characterized by a kickout type profile
from the crystal surface to a substantial depth and an erfc-type profile deeper
in the material near the diffusion front [60, 128]. Out-diffusion profiles are
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Fig. 4.22. (a) Zn in-diffusion
profiles obtained at 900◦C un-
der As-rich ambient conditions.
Squares are the total Zn concen-
tration and crosses are the hole
or Zns concentration. The higher
total Zn concentration indicates
formation of Zn containing pre-
cipitates caused by the use of a
non-equilibrium Zn source mate-
rial which diffused Zn into GaAs
exceeding its solubility at 900◦C.
(b) A schematic diagram indi-
cating the morphologies and dis-
tributions of voids (open) and
Ga precipitates (filled). The pres-
ence of dislocations is not shown.
From [93].

characterized by a constant diffusivity which is much lower than that for in-
diffusion. The existence of the two types of profiles needs the description of the
i-s diffusion mechanism in terms of the KO mechanism Cri ⇔ Cs + I2+

Ga + 2e
and/or the Longini mechanism Cri + V 3−

Ga ⇔ Cs + 3e, where e denotes an
electron.

Tuck [60] and Deal and Stevenson [128] have discussed Cr diffusion in
terms of the Longini mechanism. The satisfactory treatment of the diffusion
behavior of Cr in intrinsic GaAs [81], however, includes the co-existence of
VGa and IGa, the dependence of Ceq

s and Ceq
i on the outside Cr vapor pressure,

and a dynamical equilibrium between the native point defects in the Ga and
the As sublattice at the crystal surface region. In-diffusion of Cr turned out
to be governed by the effective diffusivity Deff

surf = (DIC
eq
I /Ceq

s )(Ceq
s /Cs) in

the surface region, which is concentration dependent, and by the much faster
constant diffusivity Deff

tail = DiC
eq
i /Ceq

s in the tail region. The deduced DIC
eq
I

value from Cr in-diffusion profiles [81] were included in (4.40).
In the case of out-diffusion the Cr vapor pressure is so low that, similarly

to the case of out-diffusion of Zn, a much lower diffusivity prevails. This slower
out-diffusion turned out to be dominated either by the constant V -dominated
diffusivity Deff

s = DV C
eq
V /Ceq

s or the constant Si dominated diffusivity Deff
s =

DiC
eq
i /Ceq

s , whichever is larger for low outside chromium vapor pressure.

Sulfur

The group VI donor S occupies As sites. With lower surface concentrations,
the S in-diffusion profiles [66,129,130] resemble the erfc-function, but a con-
cave shape develops in the surface region for higher concentration cases. The
latter cases are indicative of the operation of the KO mechanism for an i-s
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impurity. The available S in-diffusion profiles have been quantitatively ex-
plained [66] using the KO mechanism assuming the involvement of the neutral
As self-interstitials, I0

As. The deduced DI
As(ni, 1 atm) values were included in

(4.50).

4.5.5 Diffusion in Other III-V Compounds

Gallium arsenide is certainly the one III-V compound in which self and
impurity diffusion processes have been studied most extensively. The avail-
able results on self-diffusion in III-V compounds have been summarized by
Willoughby [131]. The Group III and the Group V diffusivities appear to
be so close in some compounds that a common defect mechanism involving
multiple native point defects appears to be the case, although no definite con-
clusion has been reached. There are hardly any experimental results available
which would allow one to draw conclusions on the type and charge states of
the native point defects involved in self-diffusion processes. Zinc is an impor-
tant p-type dopant also for other III-V compounds and its diffusion behavior
appears to be governed by an i-s mechanism as well. No information is avail-
able on whether the FT mechanism or the KO mechanism is operating. It
can be expected that dopant diffusion induced superlattice disordering may
rapidly advance the understanding of diffusion mechanisms in other III-V
compounds similarly as has been accomplished in GaAs.

4.6 Conclusion

Diffusion phenomena in semiconductors are now understood to a high de-
gree of consistency, mainly due to progresses during the last 20 years or so.
In semiconductors, the lattice vacancies and self-interstitials both contribute
to the crystal host atom self-diffusion and to the diffusion of substitutional
impurity atoms. Often the point defects are charged which leads the diffu-
sivity of the diffusing species to be dependent upon the crystal Fermi-level.
In compound semiconductors, the diffusivity of the diffusing species will fur-
ther depend on the ambient pressure of an appropriate vapor phase. The
i-s diffusion mechanism appears to govern the diffusion processes of many
impurities.

Notation

Ai interstitialy dissolved atom of species A
AsGa the antisite defect of an As atom occupying a Ga-sublattice

site
As substitutionally dissolved atom of species A
C carbon
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C concentration
Ceq

x or ceqx actual or normalized thermal equilibrium concentration of
species x

D or Dy diffusivity (diffusion coefficient) or diffusivity of species y
Deff effective diffusivity
Deff

(j) effective diffusivity of a species controlled diffusion of
species j

Ds diffusivity of species s
DSD self-diffusion coefficient
DI

SD or DV
SD I or V contribution to the self-diffusion coefficient

DT tracer self-diffusion coefficient
D0 pre-exponential factor of DT or DSD

Dper
s or ∆per

s actual or normalized s diffusivity perturbed by non-equi-
librium point defect concentrations

e the electrical carrier electrons
fI or fV tracer diffusion correlation factors or interstitialcy or va-

cancy mechanism
GaAs the antisite defect of a Ga atom occupying an As-sublattice

site
h the electrical carrier holes
hf

I or hf
V formation enthalpy of I or V

hm
I or hm

V migration enthalpy of I or V
i interstitialy dissolved impurity
i-s interstitial-substitutional impurity
I self-interstitials
IGa or IAs Ga or As self-interstitials
I2+
Ga doubly-positively-charged Ga self-interstitials
I0, I+, I−, etc. neutral, singly-positively-charged, singly-negatively charged

I, etc.
kB Boltzmann’s constant
n donor doped or electron concentration of a semiconductor
ni intrinsic carrier concentration
p acceptor doped or hole concentration of a semiconductor
P pressure
Q activation enthalpy
s substitutionally dissolved impurity
sI or sV self-interstitial or vacancy supersaturation ratio
T absolute temperature
V vacancies
VGa or VAs Ga- or As-sublattice vacancies
V 3+

Ga triply-negatively-charged Ga-sublattice vacancies
V 0, V +, V −, etc. neutral, singly-positively-charged, singly-negatively charged

V , etc.
ΦI interstitialcy fraction of the Si self-diffusion coefficient
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4. W. Frank, U. Gösele, H. Mehrer, A. Seeger. In: Diffusion in Crystalline Solids,
ed by G.E. Murch, A. Nowick (New York: Academic Press 1984) pp 31–142
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Franzheld, M. Uetmatsu, H. Ito: J. Appl. Phys. 81, 6056 (1997)
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5 Diffusion in Oxides

Manfred Martin

5.1 Introduction

Diffusion processes in crystalline oxides are governed by the same mechanisms
as in crystalline metals, i.e. they proceed by means of point defects, and the
two basic mechanisms are vacancy diffusion and interstitial diffusion. Both
mechanisms have been described in detail in Chap. 1 of this book. There are,
however, some important differences in the defect structures of oxides and
metals, with severe implications for diffusion processes in oxides:

– Most oxides are ionic compounds, i.e. they consist of cations and anions
with well defined, opposite charges.

– Crystalline oxides consist of at least two sublattices, a metal and an oxy-
gen sublattice, or a cation and an anion sublattice. Due to the opposite
charges of cations and anions diffusion proceeds always in the correspond-
ing sublattice.

– The concentrations of point defects, vacancies as well as interstitials,
which are necessary for diffusion depend not only on the intensive ther-
modynamic variables pressure, p, and temperature, T , but also on the
chemical potential of the component oxygen, µO2 = µ0

O2
+RT ln aO2 . The

oxygen activity, aO2 = pO2/bar, can be established easily by means of gas
mixtures with different oxygen partial pressures, pO2 , and can be varied
over many orders of magnitude.

– Oxides cover a wide range of materials, such as insulators, pure ionic
conductors, semiconductors, mixed electronic and ionic conductors and
also metallic oxides. The latter will not be considered in this chapter.

– The crystal structure of the oxide influences the defect structure. In struc-
tures with cubic close packing of the oxygen ions, such as the NaCl- or the
spinel-structure, defects in the oxygen sublattice have much higher for-
mation enthalpies and therefore much lower concentrations than defects
in the cation sublattice(s). Consequently, oxygen diffusion is much slower
than cation diffusion. In oxides with more open oxygen sublattices, such
as the perovskite structure or the fluorite structure, oxygen defects are
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formed more easily than cation defects. Therefore, these oxides show very
often high oxygen diffusivities and are good oxygen ion conductors.

These introductory remarks show that diffusion in oxides depends largely
on the defect structure of the oxide. The important dependence of the defect
structure on the thermodynamic variables p, T and pO2 (so-called defect
chemistry) will be discussed in detail in Sect. 5.2, where at first transition
metal oxides with dominating cation disorder and then doped perovskites and
fluorites with dominating disorder in the oxygen sublattice will be treated. In
the subsequent sections self- and impurity diffusion, chemical diffusion and
diffusion in external forces will be considered.

For a comprehensive treatment of defect chemistry and diffusion processes
in oxides the reader is referred to the books of Schmalzried [1,2], Philibert [3],
Kofstad [4], Allnatt and Lidiard [5], and Laskar et al. [6].

5.2 Defect Chemistry of Oxides

In this section the dependence of the defect fractions on the thermodynamic
variables, p, T and oxygen partial pressure, pO2 , will be calculated for bi-
nary oxides. A binary oxide can be written as AmOn, where m and n are
integers. To consider deviations from the ideal stoichiometry, the so-called
non-stoichiometry, δ, is introduced. Then the correct formula for the non-
stoichiometric oxide is An−δOm (or AmOn+δ). For the sake of simplicity, in
the subsequent discussion only monoxides with m = n = 1 will be consid-
ered. The generalization of the results obtained for A1−δO to Am−δOn is
straightforward and results will be given if necessary.

In the exactly stoichiometric oxide AO, i.e. δ = 0, we have only thermal
disorder, and the concentrations of point defects are determined by intrinsic
defect equilibria such as the Schottky equilibrium, the Frenkel equilibrium
and the anti-Frenkel equilibrium [7, 8]. The corresponding defect formation
processes are depicted in Fig. 5.1. For a quantitative description we use quasi-
chemical reactions and the corresponding chemical equilibria:

Schottky equilibrium: nil � V′′
A + V

••
O KS = [V′′

A] · [V••
O ] (5.1)

Frenkel equilibrium: Ax
A + Vx

i � V′′
A + A

••
i KFA = [V′′

A] · [A••
i ] (5.2)

anti-Frenkel equilibrium: Ox
O + Vx

i � V
••
O + O′′

i KFO = [V
••
O ] · [O′′

i ] (5.3)

Here we have used the so-called Kröger-Vink notation [9] for the structure
element Sq

p. S stands for an ion (cation A or anion O) or a vacancy (V)
and p for the sublattice (A, O or interstitial). An excess charge, q, of −1, 0
or +1 of the structure element relative to the ideal crystal is denoted by the
symbols ′, x or •. These quasi-chemical reactions describe the defect formation
processes shown in Fig. 5.1. KS, KFA and KFO are the chemical equilibrium
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(a) (b)

Fig. 5.1. Formation of Schottky defects (a) and Frenkel defects (b) in an oxide AO
(• = cation, © = anion).

constants for the three equilibria, depending on temperature1. In the mass
action laws in (5.1)–(5.3) we have assumed that the site fractions of vacancies
and interstitials (defects), denoted by brackets, are small compared to the site
fractions of regular cations and anions, and that the structure elements in
each sublattice form an ideal mixture.

Incorporation of oxygen from the surrounding atmosphere into the crystal
or removal of oxygen from the crystal results in the formation of a non-
stoichiometric oxide with oxygen excess or oxygen deficit. It can also be
described by a quasi-chemical reaction:

1
2O2(g) + V

••
O � Ox

O + 2h
•

KO =
[h

•
]2

(pO2)
1/2 · [V••

O ]
. (5.4)

Oxygen from the gas phase, 1
2O2(g), occupies an oxygen vacancy, V

••
O , and

for charge compensation electron holes, h
•
, are produced (see also Fig. 5.2).

Finally, the electronic equilibrium, resulting in the formation of electrons, e′,
and electron holes, h

•
, has to be considered:

nil � e′ + h
•

Ke = [e′] · [h•
] . (5.5)

The fractions of all charged structure elements are coupled by the condition
of local electrical neutrality:

2[V′′
A] + 2[O′′

i ] + [e′] = 2[V
••
O ] + 2[A

••
i ] + [h

•
] . (5.6)

The set of equations is completed by the site balances for each sublattice, e.g.
[Ax

A] + [V′′
A] = 1. Provided the equilibrium constants are known, all defect

fractions and the non-stoichiometry

δ = [V′′
A] + [O′′

i ] − [V
••
O ] − [A

••
i ] (5.7)

can be calculated as a function of the thermodynamic variables, p, T and
pO2 .
1 The temperature dependence of the equilibrium constants is given by K =

exp(−∆G0/RT ) = exp(∆S0/R) · exp(−∆H0/RT ), where ∆G0, ∆S0 and ∆H0

are the standard Gibbs energy, entropy and enthalpy of the corresponding quasi-
chemical reaction.
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Fig. 5.2. Incorporation of an oxygen
molecule (©=©) from the gas phase
into an oxide AO with dominating oxy-
gen vacancies (see (5.4)). For each oxy-
gen atom two electron holes are pro-
duced. For the sake of simplicity they
are localized on cations (•).

5.2.1 Dominating Cation Disorder

Oxygen Activity Dependent Disorder

In oxides with a fcc oxygen sublattice, i.e. cubic close packing of the oxygen
ions, as in most transition metal oxides, the formation of oxygen vacancies
and oxygen interstitials is energetically unfavourable in comparison with the
formation of cation defects. Thus, we may regard the oxygen sublattice as
perfect compared to the cation sublattice. This means that in the exactly
stoichiometric oxide with δ = 0 the Frenkel equilibrium dominates2 and (5.2)
and (5.6) simplify to [V′′

A] = [A
••
i ] = (KF)1/2. At fixed temperature, T , and

pressure, p, the so-called stoichiometric point, δ = 0, corresponds to a well
defined oxygen partial pressure, p∗O2

. If we increase the oxygen partial pres-
sure relative to p∗O2

, oxygen is incorporated into the crystal. Since oxygen
defects are only minority defects it is more convenient to formulate the incor-
poration of oxygen from the ambient atmosphere in terms of cation defects
which is possible by ‘adding’ (5.4) and (5.1):

1
2O2(g) � Ox

O + V′′
A + 2h

•
, KA =

[V′′
A] · [h•

]2

(pO2)
1/2

. (5.8)

Oxidation of the oxide results in the formation of new lattice sites in both
the oxygen and the cation sublattices, i.e. now the crystal grows, in contrast
to the incorporation of oxygen described in (5.4). While the new oxygen
sublattice sites are occupied by oxygen ions the new cation lattice sites are
empty, i.e. cation vacancies are formed (see Fig. 5.3). They are electrically
compensated by the formation of electron holes.

Thus, for oxygen partial pressures that are sufficiently large compared to
p∗O2

cation vacancies and electron holes will be the majority defects, which
results in a simplified condition of electrical neutrality, 2[V′′

A] = [h
•
]. Us-

ing this relation, the pO2-dependence of the majority type of defects can be
calculated from (5.8):
2 Here we have assumed that the fractions of the electronic defects are small com-

pared to the fractions of the Frenkel defects. The opposite case, dominating
electronic disorder, will not be considered.
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Fig. 5.3. Incorporation of an oxygen
molecule (©=©) from the gas phase
into an oxide AO with dominating
cation vacancies. For each oxygen atom
a new occupied anion lattice site (©),
a new unoccupied cation lattice site (�)
and two electron holes (•) are produced.
For the sake of simplicity the electron
holes are localized on cations.

[V′′
A] = 1

2 [h
•
] =

(
KA

4

)1/3

· (pO2)
1/6

. (5.9)

On the other hand, cation interstitials, A
••
i , and electrons, e′, are only mi-

nority defects, and their fractions decrease with increasing pO2 (see (5.2) and
(5.5)) according to

[A
••
i ] = KFA ·

(
KA

4

)−1/3

· (pO2)
−1/6

,

[e′] = Ke · (2KA)−1/3 · (pO2)
−1/6 . (5.10)

For oxygen partial pressures that are sufficiently small compared to p∗O2
,

cation interstitials and electrons will be the majority defects, which results in
a simplified condition of electrical neutrality [e′] = 2[A

••
i ]. With this relation,

the pO2 -dependence of the majority type of defects can be calculated from
(5.8) and (5.2) by

[A
••
i ] = 1

2 [e′] =
(
KFA ·Ke

4KA

)1/3

· (pO2)
−1/6

. (5.11)

In this regime, cation vacancies, V′′
A, and electron holes, h

•
, are the minority

defects and their fractions decrease with decreasing pO2 :

[V′′
A] =

(
4KA ·K2

FA

K2
e

)1/3

· (pO2)
+1/6

,

[h
•
] =

(
KA ·Ke

2KFA

)1/3

· (pO2)
+1/6

. (5.12)

Equations (5.9) to (5.12) show that all defect fractions follow a power law
dependence on pO2 with typical exponents 1/6 and −1/6 for oxygen par-
tial pressures which are sufficiently larger or smaller than p∗O2

. In the close
vicinity of p∗O2

the fractions of the Frenkel defects do not depend on pO2 ,
[V′′

A] = [A
••
i ] = (KF)1/2. In contrast, the fractions of the minority defects, e′

and h
•
, exhibit pO2-dependencies with exponents −1/4 and 1/4, respectively
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Fig. 5.4. Dependence of the defect fractions on the oxygen partial pressure pO2

(Kröger-Vink-diagram) in an oxide AO with dominating Frenkel disorder at the
stoichiometric point (see (5.9)–(5.12)).

(see (5.5) and (5.8)). In a double-logarithmic plot (Kröger-Vink diagram) we
therefore obtain straight lines (see Fig. 5.4) and three typical regions corre-
sponding to δ < 0, δ ≈ 0 and δ > 0.

Without going into further details we note that other exponents are also
possible, mainly for two reasons:

i) Defects might form associates, e.g. a vacancy might trap an electron hole
resulting in a singly ionised vacancy:

V′′
A + h

• � V′
A . (5.13)

If these vacancies become the majority defects they show a dependence
[V′

A] ∝ (pO2)1/4. Similarly, cation interstitials might trap an electron,
A••

i + e′ � A•
i , resulting in a dependence [A•

i ] ∝ (pO2)−1/4.

ii) Often, there are also oxides of different stoichiometry, i.e. A3O4, A2O3

or A2O. For the oxide of a monovalent metal, e. g. Cu2O, we obtain typ-
ical exponents 1/4 and −1/4, and in the mixed-valent oxide Fe3O4 the
exponents are 2/3 and −2/3.

Doping

Doping an oxide A1−δO with dominant cation disorder with an oxide of a
higher valent metal B, e.g. B2O3 can be described by
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B2O3 → 2B
•
A + V′′

A + 3Ox
O (5.14)

where we have assumed that the dopant B occupies regular cation lattice sites.
To conserve the lattice structure of the host oxide AO the incorporation of
two dopant cations, B

•
A, and three oxygen ions, Ox

O, demands the formation
of one cation vacancy, V′′

A. Since the dopant is charged it must be considered
in the condition of electrical neutrality in (5.6), and the defect structure of
the doped oxide will be changed:

2[V′′
A] + [e′] = 2[A

••
i ] + [h

•
] + [B

•
A] . (5.15)

i) For strong doping, the fraction of cation vacancies is directly given by the
dopant fraction, (see (5.14)), and is independent of the thermodynamic
variables p, T and pO2 , i.e. the exponent of the pO2 -dependence is zero.

ii) For small dopant fractions, however, the disorder of the host oxide cannot
be neglected, and the defect structure depends on the thermodynamic
variables p, T , pO2 and the dopant fraction as well.

iii) Coulombic interaction between the dopant ions, B
•
A, and differently

charged cation vacancies, V′′
A and V′

A, may lead to the formation of solute-
vacancy pairs:

B
•
A + V′

A �
{

B
•
A,V

′
A

}x

, KP1 =
[P1]

[B•
A] · [V′

A]
, (5.16)

B
•
A + V′′

A �
{
B

•
A,V

′′
A

}′
, KP2 =

[P2]
[B•

A] · [V′′
A]

. (5.17)

Here we have denoted the solute-vacancy pairs containing singly and dou-
bly ionised vacancies by P1 and P2.

5.2.2 Dominating Oxygen Disorder

In oxides where the oxygen ions do not form a cubic close packing but a
more open substructure, for example, in the perovskites or fluorites, oxygen
defects may be the dominating defects while cation defects are only minority
defects. As before, the defect fractions are determined by (5.1)–(5.7), and
typical exponents are obtained for the different disorder types. To increase
the fraction of oxygen vacancies, these oxides are often doped with oxides
of lower valent metals. Then, the condition of electrical neutrality in (5.6)
simplifies to

[B′
A] = 2[V

••
O ] . (5.18)

Thus, the negative excess charge of the dopant cation, B′
A, is compensated

by oxygen vacancies, and these oxides are good oxygen ion conductors. Some
well know examples are
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– yttria-stabilized zirconia, (Zr1−xYx )O2−x/2 (YSZ). Here, doping with
Y2O3 increases the fraction of oxygen vacancies, [Y′

Zr] = 2[V
••
O ], and sta-

bilizes the cubic fluorite structure. YSZ is a pure oxygen ion conductor
over many orders of magnitude in pO2 and is used as such in oxygen
sensors and solid oxygen fuel cells (SOFC).

– Sr- and Mg-doped lanthanum gallate, (La1−xSrx )(Ga1−yMgy)O3−(x+y)/2

(LSGM), which belongs to the class of perovskites ABO3. In LSGM
oxygen vacancies are produced by co-doping in both cation sublattices,
[Sr′La] + [Mg′Ga] = 2[V

••
O ], resulting also in a good oxygen ion conductor.

However, at very low or very high oxygen partial pressures the electronic
disorder can no longer be neglected and the oxide becomes a mixed ionic and
electronic conductor. Examples are

– YSZ and LSGM, both of which become mixed conductors (V
••
O and e′) at

low oxygen partial pressures.

– strontium-doped lanthanum-chromate, (La1−xSrx )CrO3−δ, which is a
good semiconductor at high oxygen partial pressures and becomes a mixed
conductor at low oxygen partial pressures.

5.3 Self- and Impurity Diffusion in Oxides

For the definition of diffusion coefficients and flux equations the reader is
referred to Sects. 1.1 to 1.3 of Chap. 1.

5.3.1 Diffusion in Oxides with Dominating Cation Disorder

Since cations are mobile in the cation sublattice by means of cation vacancies
and in the interstitial sublattice as cation interstitials, the cation self-diffusion
coefficient, DA, can be written as

DA = DVA · [VA] +DAi · [Ai] . (5.19)

Here DVA and DAi are the self-diffusion coefficients of cation vacancies and
cation interstitials, and [VA] and [Ai] are the corresponding site fractions.
If the self-diffusion coefficients of vacancies and interstitials do not depend
on the oxygen partial pressure, the pO2-dependence of the cation diffusion
coefficient is solely determined by the pO2-dependence of the defect fractions
which has been calculated in the previous section. Then, the pO2 -dependence
of the diffusion coefficient can be used to identify the disorder type of the
oxide under investigation. At high pO2 cation vacancies dominate while at low
pO2 cation interstitials are the dominating defects (see Fig. 5.4). We therefore
obtain a minimum of the cation self-diffusion coefficient as a function of pO2

and typical exponents in the pO2 -dependence left and right of the minimum.
Since DVA and DAi are usually different from each other, the minimum in
the diffusion coefficient is shifted relative to the stoichiometric point (δ = 0).
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Cation Self- and Impurity Diffusion in Spinels A3−δO4

The best-known oxide where the transition from a vacancy to an intersti-
tial regime was found experimentally is magnetite, Fe3−δO4 [10]. It crystal-
lizes in the spinel structure where the oxygen ions form a cubic close pack-
ing while the cations occupy well defined octahedral and tetrahedral sites.
The observed exponents of the iron diffusion coefficients are 2/3 at high
pO2 and −2/3 at low pO2 , as expected for dominating cation vacancies and
cation interstitials, respectively (see Sect. 5.2.1). This typical behaviour of
the cation diffusion coefficients remains the same if the spinel consists of
several cations, e.g. (Co,Fe,Mn)3O4 [11, 12]. Another example is manganese-
zinc-ferrite, Mn1−xZnxFe2O4, where part of the Fe-ions in magnetite has
been replaced by Mn- and Zn-ions. Cation tracer diffusion coefficients have
been measured with radioactive isotopes in the thin-film geometry, using both
the sectioning method (described already in Sect. 1.4.1 in Chap. 1) and the
residual activity method [13]. In the sectioning method a thin layer of the
sample is ground off and its activity, Asect, is counted, while in the residual
activity method the residual activity, Ares, of the sample after grinding off
a thin layer is counted. In the first case the activity profile is a Gaussian
curve, Asect ∝ exp(−x2/4D∗t), while in the second case an error function is
obtained, Ares ∝ (1−erf(x/

√
4D∗t)). Typical profiles from both methods are

shown in Fig. 5.5 for diffusion of the radioisotope 54Mn in manganese-ferrite.
The diffusion coefficients obtained from both methods agree well. Figure 5.6
shows in a double-logarithmic plot results for the tracer diffusion coefficients
of Mn, Fe and Zn and the impurity diffusion coefficient of Co as a function of
the oxygen partial pressure [13]. All diffusion coefficients show a minimum as
a function of pO2 . The slopes +2/3 and −2/3 at high and low pO2 indicate that
diffusion proceeds via cation vacancies and cation interstitials, respectively.
While all diffusion coefficients are nearly the same in the vacancy regime,
the diffusion coefficient of zinc is higher in the interstitial regime, resulting in
a minimum of the Zn-diffusion coefficient which is shifted to higher oxygen
partial pressures compared to the other cations. A more detailed analysis,
considering that the cation sublattice in the spinel structure consists of two
sublattices with octahedral and tetrahedral sites and that iron, manganese
and cobalt cations exist in two charge states, +2 and +3, can be found in [13].

Cation Self- and Impurity Diffusion in Monoxides A1−δO

In most transition metal monoxides, such as Co1−δO, Ni1−δO or Mn1−δO,
the oxide is reduced to the metal before the stoichiometric point, δ = 0, is
reached. Thus, only a vacancy regime for cation diffusion is observed [14–16].
However, as mentioned before, the typical exponent in the pO2 -dependence
of the cation diffusion coefficient quite often differs from the value 1/6 that is
expected if cation vacancies V′′

A would dominate. Subsequently, two examples
will be discussed, pure cobalt oxide and gallium-doped cobalt oxide.
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(a)

(b)

Fig. 5.5. Tracer sectioning profile (a) and residual activity profile (b) of 54Mn in
manganese ferrite [13] and corresponding fits with a Gaussian (a) and an error-
function (b).
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Fig. 5.6. Tracer diffusion coefficients of 54Mn, 59Fe, 65Zn, and 57Co in
Mn0.54Zn0.35Fe2.11O4 as a function of the oxygen activity at T = 1200◦C (symbols)
and fits (solid lines) [13].

Cobalt Monoxide, Co1−δO

Cobalt monoxide, Co1−δO, exists only with a cation deficit and is a p-type
semiconductor. As shown by Dieckmann [17], the pO2-dependence of three
defect-dependent quantities, the non-stoichiometry, δ, the cation tracer dif-
fusion coefficient, D∗

Co, and the electrical conductivity, σ, can be explained by
a defect structure, where differently charged cation vacancies, V′′

Co and V′
Co,

and electron holes, h
•
, are the dominating defects (see (5.13)). At interme-

diate oxygen partial pressures singly ionised cation vacancies V′
Co dominate,

and all three quantities, δ = [V′
Co] (see (5.7)), σ, which is proportional to

[h
•
], as well as the cation tracer diffusion coefficient3, D∗

Co = f0 ·DV · [V′
A],

show the same dependence on pO2 with a typical exponent 1/4. Results for
the tracer diffusion coefficient of cobalt, D∗

Co, measured with the radiotracer
method [18] and demonstrating this pO2 -dependence are shown in Fig. 5.7
together with results for impurity diffusion of Fe in CoO. The smaller slope
can be explained by impurity-vacancy binding between iron ions and cation
vacancies (see (5.16) and (5.17)). In the exact analysis one must consider that
the charge states of both the iron ions and the cation vacancies change with
decreasing pO2 [19, 20].

Ga-Doped Cobalt Monoxide, (Co1−xGax)1−δO

In Co1−δO doped with Ga2O3, resulting in (Co1−xGax)1−δO, both cation
tracer diffusion coefficients, D∗

Co and D∗
Ga, have been measured as a function

3 f0 is the geometrical correlation factor appearing in tracer diffusion (see
Sect. 1.3.1 in Chap. 1).
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Fig. 5.7. Tracer diffusion co-
efficients of 57Co and 59Fe in
Co1−δO as function of the oxy-
gen activity at 1100◦C. Dashed
lines are guides to the eyes.
For the different experimental
techniques see [18].

of the oxygen partial pressure, pO2 , and the dopant fraction, x, using ra-
dioisotopes [21]. The results depicted in Fig. 5.8 for a temperature of 1350◦C
show two typical features: (i) The dependence of both diffusion coefficients
on the dopant fraction, x, is non-linear. (ii) At high oxygen partial pressures
Co is the faster moving species while at low oxygen partial pressures Ga is
faster than Co. To explain this behaviour we have to consider that the solute,
Ga, and the solvent, Co, move by means of different diffusion mechanisms.

– In the dilute system, x � 1, the Ga ions are distinguishable, as tracer ions
in tracer self-diffusion. Therefore, Ga is only mobile via solute-vacancy
pairs, P1 and P2 (see (5.16) and (5.17)), and the solute diffusion coeffi-
cient, D∗

Ga, is proportional to the association degrees p1 = [P1]/[Ga] and
p2 = [P2]/[Ga] of solute ions bound in these pairs [22].

D∗
Ga = DGa,1 · p1 +DGa,2 · p2 (5.20)

The diffusion coefficients per defect, DGa,1 and DGa,2, depend only on
temperature and include the mobilities of the defects and all physical
correlation effects arising in solute tracer diffusion [22] (see also Sect. 1.9.1
in Chap. 1). The dependence of D∗

Ga on the defect concentrations, and
hence on x, T and pO2 is given by the association degrees p1 and p2.

– In contrast, the solvent ion Co is mobile by means of free, i.e. unbound
vacancies, V′′

A and V′
A, and conceivably by vacancies bound in pairs. Since

Co is the majority component, its tracer diffusion coefficient is propor-
tional to the appropriate defect fractions (and not to the association de-
grees, as for the solute):

D∗
Co = DCo,1 · [V′

Co]+DCo,2 · [V′′
O]+DCo,P1 · [P1]+DCo,P2 · [P2] . (5.21)

Here we have permitted different mobilities for the vacancies V′′
A and V′

A.
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. . . .

Fig. 5.8. Tracer diffusion
coefficients of 58Co and
67Ga in (Co1−xGax)1−δO
as a function of the dopant
fraction, x, at T = 1350◦C
and different oxygen activi-
ties [21].

The modelling of both measured diffusion coefficients, D∗
Co and D∗

Ga, as
a function of the oxygen partial pressure, pO2 , and the dopant fraction, x,
yields the equilibrium constants KP1 and KP2 (see (5.16) and (5.17)) and
the diffusion coefficients DCo,i and DGa,i (i = 1, 2) [21]. The results show
that there is essentially no binding between the dopant, Ga

•
Co, and singly

ionised vacancies, V′
Co, while there is strong binding between Ga

•
Co and V′′

Co.
As a consequence, DCo,1 and DCo,P1 are identical. DCo,P2 is two orders of
magnitude smaller than DCo,1 and DCo,2 and can therefore be neglected. In
summary, Ga is mobile by means of strongly bound pairs, {Ga

•
Co,V

′′
Co}′, and

weakly bound pairs, {Ga
•
Co,V

′
Co}. Co is mobile by means of free vacancies,

V′′
Co and V′

Co, and also by exchange with vacancies which are strongly bound
in pairs {Ga

•
Co,V′′

Co}. In the latter mechanism the vacancy performs jumps
around the Ga ion, thereby moving the Co ion but without dissociating the
pair.

The binding energy EP2 determined from the equilibrium constantKP2 =
z · exp(EP2/RT ) turns out to depend slightly on temperature. Assuming
nearest-neighbour pairs (z = 12) we obtain a binding energy of about
40 kJ/mol, while we obtain values of about 50 kJ/mol if we assume next-
nearest neighbour pairs (z = 6). The corresponding Coulomb energies (as-
suming point charges) are 72 kJ/mol (z = 12) and 50 kJ/mol (z = 6) which
might be an indication for the next-nearest neighbour pairs, as proposed by
theoretical calculations [23].

A detailed analysis of the diffusion coefficients, DGa,i and DCo,i, obtained
from the fitting in terms of defect mobilities and correlation factors is impos-
sible because the (physical) correlation factors are not known. However, we
can draw some general conclusions.

– The diffusion coefficients DCo,1 and DCo,2 describe the motion of the
solvent Co via free vacancies V′

Co and V′′
Co, and can both be written
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as a product of a vacancy diffusion coefficient and a correlation factor.
If we assume that these correlation factors are identical to the geometric
correlation factor in an fcc lattice, f0 = 0.781, we obtain different vacancy
diffusion coefficients, DV′ and DV′′ in Ga-doped CoO. This result is in
agreement with measurements of the charge of transport4 in pure CoO
[24], and the modelling of these data in terms of the Onsager-Fuoss-theory
of liquid electrolytes shows also that the average mobility of the vacancies
changes with the oxygen activity.

– The diffusion coefficients DGa,1 and DGa,2 describe the motion of the
solute Ga by means of pairs P1 and P2, and both can be written in the
form DGa,i = (1/6) · s2 ·fB,i ·ωB,i (i = 1, 2), where s is the jump distance,
fB,i the correlation factor and ωB,i the impurity-vacancy exchange rate.
The experimentally obtained ratioDGa,1/DGa,2 is about ten. If we assume
that the exchange rates ωGa,1 and ωGa,2 are about the same for both
mechanisms we can conclude that the correlation factor fGa,2 must be
much smaller than fGa,1. This is in qualitative agreement with strong
binding between Ga

•
Co and V′′

Co, compared to weak binding between Ga
•
Co

and V′
Co.

5.3.2 Diffusion in Oxides with Dominating Oxygen Disorder

Oxygen defects are now the majority defects, while cation defects are only
minority defects. Thus, oxygen diffusion will be much faster than cation dif-
fusion.

Oxygen Self-Diffusion

The determination of the self-diffusion coefficient of oxygen is accomplished
by using one of the two stable oxygen isotopes, 17O or 18O. The sample
is annealed in an isotope-enriched atmosphere and the diffusion profile is
generally determined by secondary ion mass spectrometry (SIMS) [25] (see
Chap. 1, Sect. 1.4.1). Mathematically the experimental setup corresponds
to the well-known infinite source solution [26]. However, if exchange of the
oxygen isotope between the atmosphere and the oxide is not sufficiently fast
there will be no equilibrium for the isotope at the surface. Most often, the
rate of isotope exchange at the oxide surface is assumed to be proportional
to the isotope concentrations in the gas and the solid, cg and cs, resulting in

−D∗
O · ∂c

∂x

∣∣∣∣
x=0

= k · (cs − cg) (5.22)

where D∗
O is the oxygen tracer diffusion coefficient and k the surface ex-

change coefficient. The solution of the diffusion equation for a semi-infinite
4 The charge of transport will be discussed in more detail in Sect. 5.5.2
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medium subject to the boundary condition in (5.22) and having an initial
concentration c0 is [26]

c(x, t) = c0 + (cg − c0) ·
{

erfc
(

x√
4D∗t

)
− exp

(
kx

D∗ +
k2t

D∗

)
· erfc

(
x√

4D∗t
+ k

√
t

D∗

)}
. (5.23)

The parameters D∗
O and k are then obtained by fitting (5.23) to the experi-

mental profile. A detailed analysis of the conditions where D∗
O and k can be

determined unambiguously can be found in [27].
Two typical examples of oxygen diffusion in oxides of the ABO3 per-

ovskite structure are shown in Fig. 5.9 [28]. Both examples belong to sam-
ples in the solid solution series between Sr-doped lanthanum cobaltate,
La0.8Sr0.2CoO3−δ, and Sr-doped lanthanum manganate, La0.8Sr0.2MnO3−δ.
The oxides are doped with SrO to increase the fraction of oxygen vacan-
cies (see (5.18)). In the manganese-rich sample, La0.8Sr0.2Mn0.8Co0.2O3−δ,
the oxygen diffusion profile extends over a few microns and can be deter-
mined by SIMS depth profiling (Fig. 5.9a). In Sr-doped lanthanum cobaltate,
La0.8Sr0.2CoO3−δ, however, oxygen diffusion is much faster and the penetra-
tion depth is about two orders of magnitude larger (Fig. 5.9b). For such large
penetration depths the SIMS depth profiling technique is no longer applica-
ble; the SIMS line-scanning technique [25] is used instead. Here the SIMS
analysis is performed on a section perpendicular to the sample surface. By
fitting (5.23) to the profiles, the oxygen diffusion coefficient and the surface
exchange coefficient in both materials were determined. It turns out that in
La0.8Sr0.2CoO3−δ the oxygen diffusion coefficient is about five orders of mag-
nitude larger than in La0.8Sr0.2Mn0.8Co0.2O3−δ, while the surface exchange
coefficient is about 2 orders of magnitude larger in the former oxide than in
the latter.

In general, oxygen diffusion can proceed in the same way as described for
cation diffusion in (5.19), namely by means of oxygen vacancies and oxygen
interstitials. As discussed in [28] there is, however, no evidence for oxygen
interstitials in ABO3 perovskite oxides, mainly for geometrical reasons. Thus
the oxygen tracer diffusion coefficient is simply given by

D∗
O = f0 ·DV · [V••

O ] (5.24)

where f0 = 0.69 is the geometrical correlation factor for oxygen tracer dif-
fusion in the oxygen sublattice of the ABO3 structure [29] and DV the
self-diffusion coefficient of oxygen vacancies. In several other perovskites
the combination of oxygen diffusion coefficients and measured vacancy frac-
tions shows that the self-diffusion coefficient of oxygen vacancies, DV, ex-
hibits only small variations between different perovskites [29]. Thus, the
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Fig. 5.9. Typical 18O diffusion profiles, showing the normalized isotope frac-
tion, c′(x) = (c(x) − c0)/(cg − c0), against depth, together with the fitted
curves according to (5.23) [28]. (a) determined by SIMS depth profiling of a
La0.8Sr0.2Mn0.8Co0.2O3−δ sample (18O anneal at 1000◦C for 3840 s). (b) deter-
mined by SIMS linescanning of a La0.8Sr0.2CoO3−δ sample (18O anneal at 1000◦C
for 1675 s).

large difference of the observed oxygen diffusion coefficients is predomi-
nantly due to the difference in the oxygen vacancy concentrations between
La0.8Sr0.2Mn0.8Co0.2O3−δ and La0.8Sr0.2CoO3−δ.

Cation Diffusion

In oxides with dominating oxygen disorder cation defects are only minor-
ity defects and consequently cation diffusion is much slower than oxygen
diffusion. Cation diffusion is nevertheless important since the slowest mov-
ing species determine many fundamental processes, such as sintering [30],
creep [31] or internal friction [32].

An important example is yttria-stabilized zirconia, (Zr1−xYx)O2−x/2

(YSZ), which exhibits very high oxygen ion conductivity and is therefore used
as electrolyte material in high-temperature applications [33]. While there is a
considerable amount of data available on the oxygen transport (e.g. [34,35]),
only little is known about the cation transport in YSZ [36, 37]. Figure 5.10
shows recent results for the diffusion coefficients of Y and Zr in single crys-
talline YSZ [38]. The diffusion coefficient of yttrium was measured using the
radioactive isotope 88Y, while the diffusion coefficient of Zr was obtained by
implanting the stable isotope 96Zr, annealing at elevated temperatures and
subsequent SIMS analysis.

From Fig. 5.10 it can be seen that Zr diffusion becomes slower with in-
creasing Y-content. This is due to the fact that the dopant yttrium deter-
mines the fraction of oxygen vacancies, [Y′

Zr] = 2[V
••
O ], which again deter-

mines via the Schottky equilibrium (see (5.1)) the fraction of cation vacan-
cies. Thus cation diffusion should be slower the higher the dopant fraction, as
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Fig. 5.10. Temperature dependence of the tracer diffusion coefficients of Zr, Y and
Sc in yttria-doped zirconia, YSZ, containing 10, 11 and 32 mol% Y2O3 [38].

observed. As expected, comparison of the self-diffusion coefficients of oxygen
and cations in YSZ shows that DO is about 5 orders of magnitude larger than
Dcation.

Similar results were found for doped lanthanum gallate,
La1−xSrxGa1−yMgyO3−(x+y)/2 (LSGM), which has a higher oxygen ion con-
ductivity than YSZ and is therefore a candidate for solid oxide fuel cells work-
ing at intermediate temperatures [39]. Here oxygen diffusion coefficients [40]
and cation self- and impurity diffusion coefficients [41, 42] have been mea-
sured. In contrast to YSZ there are two cation sublattices in the ABO3-
perovskite LSGM, an A- and a B-sublattice. In the perovskite structure (see
Fig. 5.11), a direct jump of A-cations within the A-sublattice is possible,
while a direct jump of B-cations within the B-sublattice is impossible due
to the oxygen ion located between two nearest neighbour B-sites. Thus, for
diffusion of B-cations curved diffusion pathways or jumps to next-nearest
neighbour sites must be considered. Atomistic simulations of migration en-
ergies in lanthanum gallate [43] yield much higher migration energies for
diffusion of B-cations than for diffusion of A-cations. The measured tracer
diffusion coefficients of La, Sr and Mg [41] and the impurity diffusion coef-
ficients for Fe, Cr and Y [41] are, however, very similar and show identical
activation energies, although Mg, Fe and Cr should occupy B-sites while La,
Sr and Y occupy A-sites. These observations may be an indication for anti-
site disorder in the perovskite LSGM, i.e. a small fraction of B-cations may
occupy A-sites. This would be sufficient to enable diffusion of B-cations with
similar diffusion coefficients as A-cations. A more detailled diffusion model



226 Manfred Martin

Fig. 5.11. Structure of the perovskite
ABO3.

considers a defect cluster consisting of an A-site vacancy, a B-site vacancy
and at least one oxygen vacancy [41]. This cluster is mobile as an entity, i.e.
without dissociation by means of four, correlated jumps of A- and B-cations
and oxygen ions. As a result, A- and B-cations have identical diffusivities.

5.4 Chemical Diffusion

So far we have considered self- and impurity diffusion processes in chemi-
cally homogeneous oxides without any concentration gradients. We will now
consider diffusion in concentration gradients, which is called chemical diffu-
sion. It is well known, from irreversible thermodynamics, that the real driving
force for isothermal mass transport of a component i is not its concentration
gradient but the gradient of its electrochemical potential, ηi = µi + zi ·F ·Φ,
where µi is the chemical potential and Φ the electric potential [44] (zi is the
charge number and F , Faraday’s constant)5. The resulting flux equation for
component i is

ji = −Lii · ∇(µi + zi · F · Φ) (5.25)

where Lii is the so-called Onsager transport coefficient6. For the sake of sim-
plicity, we will consider only a binary oxide AO with dominating cation dis-
order. The results can easily be transferred to oxides with dominating oxygen
disorder. We start with an oxide which is equilibrated at elevated tempera-
tures and at a certain oxygen partial pressure, p(1)

O2
. If the partial pressure of

the surrounding atmosphere is increased to p
(2)
O2

an oxidation process takes
place. Oxygen is incorporated into the crystal by adding new lattice sites to
the crystal and producing cation vacancies and electron holes (see (5.8)). In
the case of reduction, lattice planes are annihilated and oxygen is released
5 For neutral particles (zi = 0) the driving force for mass transport is the gradient

of the chemical potential, as already discussed for metals in Sect. 1.3.2 of Chap. 1.
6 Cross coefficients Lij are neglected in this section but will be considered in

Sect. 5.5.
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to the atmosphere. To preserve local electrical neutrality during the result-
ing transport processes of cations and electronic defects their fluxes must be
coupled:

2jA2+ + jh• = 0 . (5.26)

From (5.26) we can calculate the internal electrical potential gradient, ∇Φ
(the so-called Nernst field), and insert the resulting expression into the flux
equation for the cations in (5.25). With the equilibrium A + 2h

• � A2+

between metal, A, cations, A2+, and electron holes, h
•
, the flux of cations

can be written as
jA2+ = −LAA · tel · ∇µA (5.27)

where tel = Lhh/(4LAA + Lhh) is the electronic transference number. Equa-
tion (5.27) is the so-called Wagner formula for chemical or ambipolar diffu-
sion [45]. If the thermodynamic driving force, ∇µA, is written in terms of the
concentration gradient, ∇µA = (∂µA/∂cA) · ∇cA, we obtain

jA2+ = −LAA · tel · (∂µA/∂cA) · ∇cA = −D̃ · ∇cA (5.28)

which defines the chemical diffusion coefficient, D̃. Due to the flux coupling,
jA2+ + jV = 0, the vacancy flux can also be written in terms of the chemical
diffusion coefficient:

jV = −D̃ · ∇cV . (5.29)

Finally, we write LAA in terms of the diffusion coefficient DA and the con-
centration cA, LAA = DA · cA/RT (Einstein relation) and make use of
µA = µ0

A +RT ln aA, where aA is the activity of A. The result for D̃ is

D̃ = DA · tel ·
∂ ln aA

∂ lnxA
. (5.30)

Thus, the chemical diffusion coefficient, D̃, is the product of the cation self-
diffusion coefficient, DA, the electronic transference number, tel, and the ther-
modynamic factor, ∂ ln aA/∂ lnxA. Equation (5.30) applies also to oxides with
dominating oxygen disorder if DA, aA and xA are substituted by DO, aO and
xO.

The chemical diffusion coefficient, D̃, of an oxide A1−δO determines the
equilibration kinetics of δ after a change of the external oxygen partial pres-
sure. It can be determined by measuring δ directly, e.g. via thermogravimetry
or by measuring a quantity which is proportional to δ, such as the electronic
conductivity. These so-called relaxation experiments have been used to mea-
sure D̃ in various oxides such as CoO with dominating cation disorder [46],
or (La,Mn)CoO3 [47] and (La,Sr)CrO3 [48] with dominating oxygen disorder.

If the oxide is a good semiconductor (tel = 1) and the majority defects are
cation vacancies, Vα′

A (with negative excess charge α = 2, 1, 0), and electron
holes, h

•
, (or oxygen vacancies, Vα

•

O , and electrons, e′) the formula for D̃ in
(5.30) simplifies to (see appendix)
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D̃ = DV · (1 + α) . (5.31)

Thus, from the measured chemical diffusion coefficient, D̃, the self-diffusion
coefficient, DV, of the dominating vacancies can be calculated, if their excess
charge is known. This is the normal procedure, e.g. mostly adopted in oxides
with oxygen disorder where vacancies V

••
O (α = 2) dominate. If, on the other

hand, the vacancy self-diffusion coefficient is known the excess charge of the
vacancies can be calculated. As will be shown in Sect. 5.5.1, both the vacancy
self-diffusion coefficient, DV, and the chemical diffusion coefficient, D̃, can
be obtained simultaneously by performing tracer self-diffusion experiments
during chemical diffusion. Then, from both diffusion coefficients the excess
charge α can be obtained via (5.31).

In the general case of a mixed conductor, tel �= 1, the chemical diffusion
coefficient may show a strong dependence on the oxygen partial pressure for
two reasons: (i) the electronic transference number, tel, depends on the oxygen
partial pressure. (ii) if the stability field of the oxide contains the stoichio-
metric point, δ(p∗O2

) = 0, the thermodynamic factor and also the chemical
diffusion coefficient exhibit a maximum at this oxygen partial pressure. This
case is found, e.g., in BaTiO3 [49].

Another technique that has been used recently for the measurement of
chemical diffusion coefficients in Fe-doped SrTiO3, which is a mixed conduc-
tor, uses the optical absorption of the sample [50]. In this way, time- and
position-resolved concentration profiles of oxygen can be determined from
which the chemical diffusion coefficient is evaluated.

5.5 Diffusion in Oxides Exposed to External Forces

If an oxide is exposed to external thermodynamic forces, e.g. an oxygen po-
tential gradient or an electric potential gradient, defect fluxes are induced
which again cause fluxes of the chemical components. As before, it is rea-
sonable to distinguish between dominating oxygen disorder and dominating
cation disorder.

In oxides where the oxygen ions are much more mobile than the cations,
essentially only oxygen is driven through the oxide7. For pure oxygen ion
conductors this situation corresponds to an electrolyte in a solid oxide fuel
cell (applied oxygen potential gradient) or an electrochemical oxygen pump
(applied electric potential gradient). For mixed conductors this situation cor-
responds to oxygen permeation cells. A detailed analysis of these cases is,
however, beyond the scope of this chapter and can be found, e.g., in [51].

7 The (driven) motion of the slower cations is, however, a possible origin of
long-term degradation processes, such as creep or kinetic demixing (see also
Sect. 5.5.1).
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In oxides with dominating cation disorder external forces act on the mobile
cations. The implications will be considered in more detail in the following
sections.

5.5.1 Diffusion in an Oxygen Potential Gradient

Chemical Diffusion in an Oxygen Potential Gradient

If an oxide A1−δO of thickness ∆z is exposed to an oxygen potential gradient,
established, e.g., by different gas mixtures on both sides of the disc, different
concentrations of cation vacancies, c(1)V and c(2)V , are established on both sides
of the disc (according to (5.9)). As a consequence, a vacancy flux, jV =
−D̃ ·∇cV (see (5.29)), occurs from the high- to the low-oxygen potential side.
Due to the flux coupling, jA2+ + jV = 0, cations are driven in the opposite
direction. When vacancies and cations arrive at the oxide surfaces, reduction
and oxidation of the oxide occur at the low- and high-oxygen potential side,
respectively:

V′′
A + 2h

•
+ AO

reduction−−−−−−→←−−−−−−
oxidation

Ax
A + 1

2O2(g) . (5.32)

Thus, lattice planes are removed from the low oxygen potential side and
added to the high oxygen potential side. As a result, the crystal surfaces move
relatively to the immobile oxygen sublattice to the side of the higher oxygen
activity. The crystal displacement and the vacancy concentration profile can
be calculated by solving the diffusion equation [52]. After a short transient
period the crystal moves with a constant velocity. A steady-state solution
can be calculated by transforming from the laboratory reference frame8 to a
moving coordinate system (coordinate z) which is fixed at one surface. The
steady-state vacancy fraction profile in the moving system, xV(z), is linear
in position, z, to a very good approximation, and the steady state velocity,
v, is given by

xV = a+ b · z , v = D̃ · b (5.33)

with

a = x
(1)
V , b =

x
(2)
V − x

(1)
V

∆z
. (5.34)

Experiments with the model system CoO exposed to an oxygen potential
gradient confirm the shift of the crystal surfaces relatively to the immobile
oxygen sublattice [52].

8 Since oxygen is essentially immobile, the laboratory reference frame is identical
to the lattice reference frame.
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Tracer Diffusion in an Oxygen Potential Gradient

The motion of cation tracers (being chemically identical to the cation A or
being an impurity) in an oxide which is exposed to an oxygen potential gradi-
ent is influenced by the directed vacancy flux in (5.29) in two respects: Firstly,
the tracer diffusion coefficient is proportional to the vacancy fraction which
varies linearly with position. Thus, tracer diffusion takes place with a linearly
position dependent tracer diffusion coefficient. Secondly, the tracer ions are
moved by the drifting vacancies. This drift flux of the tracer particles, which
is over and above their normal Brownian motion, reflects the interaction of
the tracer ions with the vacancies. In summary, the tracer flux consists of
two parts: the first part, jdiff

tracer, describes Brownian motion, as in the case
of a homogeneous crystal, but with the difference that the diffusion coeffi-
cient is position dependent. The second part is a drift term, jdrift

tracer, which is
proportional to the vacancy flux, as will be shown below.

Tracer Self-Diffusion in an Oxygen Potential Gradient

In this case the tracer ions A∗ are chemically identical to the normal cations
A, but in contrast to them they are distinguishable. Thus, the tracer diffusion
coefficient, DA∗ = f0 · DV · xV, contains the geometrical tracer correlation
factor, f0, and the first part of the flux of the tracer particles has the form

jdiff
A∗ = −f0 ·DV · xV · ∇cA∗ . (5.35)

Since the tracer particles are chemically identical to the normal cations they
are moved by the directed vacancy flux in the same way as the normal cations.
However, only a fraction xA∗ of the total amount of A exists as tracer. There-
fore the drift flux of the tracer has the form:

jdrift
A∗ = −xA∗ · jV . (5.36)

The source solution for this diffusion problem is given by [53]

cA∗(z, t) =
M

DV · b · t · exp
(
−2a+ b · (z + z0)

DV · f0 · b2 · t

)
· I0

(
(a+ bz)1/2 · (a+ bz0)1/2

DV · f0 · b2 · t

)
(5.37)

where M is the total amount of tracer per unit area, z0 the initial position of
the tracer source, and I0 a Bessel function of order zero. In contrast to the
source solution for a constant diffusion coefficient (Gaussian) the maximum
of the curve shifts with increasing time to the side of higher oxygen potential,
and the profile becomes more and more asymmetric. The initial tracer source
position can be marked by inert markers. Its position in the moving system
is zmarker = z0 + v · t. The position of the maximum, zmax(t), relative to the
marker position is then given by
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Fig. 5.12. Normalised tracer concentration profile of 60Co in CoO in an oxygen
potential gradient (T = 1210◦C, a

(1)
O2

= 6.8 · 10−5, a
(2)
O2

= 0.21, ∆z = 1184 µm,
t = 15 h) [20]. ◦ experimental concentrations; — best fit using (5.37); – – – Gaussian

profile for a homogeneous crystal at a
(1)
O2

; –·– Gaussian profile for a homogeneous

crystal at a
(2)
O2

.

zmax(t) − zmarker =
(
D̃ − 1

2 · f0 ·DV

)
· b · t . (5.38)

Figure 5.12 shows a typical tracer concentration profile of 60Co in Co1−δO
in an oxygen potential gradient. By fitting of (5.37) the vacancy diffusion
coefficient, DV, and the chemical diffusion coefficient, D̃, can be determined
simultaneously. Using (5.31) the average excess charge of the cation vacan-
cies was found to be α = 0.86 [20]. This value is in reasonable agreement
with values calculated on the basis of equilibrium constants (see Sect. 5.2.1).
For comparison, the Gaussian profiles which one would obtain in a homoge-
neous crystal equilibrated at oxygen activities a(1)

O2
and a(2)

O2
are also shown in

Fig. 5.12. The actual profile lies between the two Gaussian profiles.
Similar experiments have been performed for tracer diffusion of Fe in

magnetite, Fe3O4, which was exposed to an oxygen potential gradient [54].
Due to the high electronic disorder in magnetite (Fe2+ and Fe3+ ions are
regular structure elements) the chemical diffusion coefficient, D̃, is identical
to the vacancy diffusion coefficient, DV, in the vacancy regime, and identical
to the interstitial diffusion coefficient, DI, in the interstitial regime [20]. This
means, that the two parameters which can be determined simultaneously
are the self-diffusion coefficient of the dominating defect and the correlation
factor for tracer diffusion via this defect. In contrast to oxides with the NaCl-
structure, e.g. CoO, the effective correlation factor for a jump sequence in the
spinel Fe3O4 cannot be specified a priori since several vacancy and interstitial
or interstitialcy mechanisms are possible in magnetite. This is due to the fact
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that in the spinel structure two regular cation sites exist, an octahedrally
and a tetrahedrally coordinated site. Likewise, several interstitial positions
are possible.

In the vacancy regime, three basic vacancy mechanisms are discussed.
They are characterised by jumps only within the octahedral sublattice, only
within the tetetrahedral sublattice [55], or jumps between these two sub-
lattices [56]. The geometrical correlation factors for these mechanisms are
fV = 0.50, fV = 0.56, and fV = 0.73, respectively. The correlation fac-
tor obtained from tracer experiments in an oxygen potential gradient is
fV = 0.56±0.07 [54] indicating preferred diffusion of Fe within the octahedral
sublattice, in agreement with results of in situ Mößbauer spectroscopy [56].

In the interstitial regime, the correlation factor obtained from tracer ex-
periments in an oxygen potential gradient is fI = 0.43 ± 0.1. Only a direct
interstitial mechanism (fI = 1) can be excluded. The experimental accu-
racy is, however, too small to distinguish between different interstitial or
interstitialcy mechanisms for which the theoretical correlation factors, fI, are
between 0 and 1 [55].

Impurity Diffusion in an Oxygen Potential Gradient

The flux of impurity ions, B, in an oxide which is exposed to an oxygen
potential gradient consists also of two parts: a pure, diffusion term, which is
characterized by the impurity diffusion coefficient, DB, and which describes
Brownian motion of the impurity ions, and a second part which is again a drift
term caused by the directed flux of vacancies which drift through the oxide.
However, in contrast to self-diffusion, where the drift flux was always opposite
to the vacancy flux and directly proportional to the fraction of tracers, now
the magnitude and direction of the drift flux have to be calculated with
the aid of linear transport theory. This means that transport coefficients Lij

(i, j = A,B) have to be used which describe the coupled transport of A and
B under the influence of an applied oxygen potential gradient. The impurity
drift flux was calculated in detail in [20] and can be written as

jdrift
B = −jV · xB · DB

DA
· β . (5.39)

As expected, the impurity drift flux is proportional to the vacancy flux, jV,
and the fraction of impurities, xB. In addition it is proportional to the ra-
tio of the diffusion coefficients of the impurity, DB, and the solvent, DA.
This ratio reflects the fact that impurities and solvent ions exchange with
different rates with vacancies. As a result they are moved differently by the
vacancies. In contrast to these first terms, which are model independent, the
last factor, β, depends on the microscopic model used. It describes essen-
tially the interaction of the impurity with its neighbours which can be small
(as is expected for homovalent impurities) or stronger (for aliovalent impuri-
ties). Particularly for higher valent impurities which possess a positive excess
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charge there can be strong interaction with the negatively charged vacancies.
Now the two possible limiting cases will be discussed: First, the situation
where the interaction is small. This means that impurities and vacancies
should drift in opposite directions, as in the case of self-diffusion. Second, the
case of attractive interaction between impurities and vacancies. Then impu-
rities and vacancies form bound pairs and the impurities should drift in the
same direction as the vacancies. This qualitative picture is confirmed by the
theoretical results for the constant β in (5.39) which was calculated in [57]
within the five-frequency model. Within this model the transport coefficients
Lij (i, j = A,B) are known exactly [22]. The five-frequency model (Fig. 1.18,
note also footnote 15 in Chap. 1) is a nearest-neighbour model and uses five
exchange rates of vacancies and ions: ω0 and ω1 for exchange of vacancies
with solvent ions in the pure crystal (i.e. far away from the impurity) and
in the next neighbourhood of the impurity; ω3 for vacancy jumps, which dis-
sociate an impurity-vacancy pair; ω4 which creates a new pair; and ω2 for
exchange of a vacancy and an impurity. For strong binding the parameter β
is negative, yielding an impurity drift flux in the same direction as the vacan-
cies, while for weak binding β is positive, and the drift flux is opposite to the
vacancies. Thus, an impurity drift experiment in an oxygen potential gradient
performed in the same way as described for tracer self-diffusion shows first
by the direction in which the profile moves whether strong or weak impurity-
vacancy binding prevails, and second allows the determination of ratios of
the exchange jump rates ωi (i = 0, 1, 2, 3, 4).

An example is impurity diffusion of Fe in CoO in an oxygen potential
gradient. It was found, that the drift direction of the Fe-tracer profile depends
on the oxygen potential region [19]. In region I (log aO2 ≈ −2) the profile
drifts to the high oxygen potential side, i.e. opposite to the vacancies, while in
region II (log aO2 ≈ −8) the profile shifts to the low oxygen potential side, i.e.
in the same direction as the vacancies. The impurity diffusion coefficient, D∗

Fe,
and the constant β in (5.39) can be obtained from the profiles. To calculate
from these data the vacancy exchange rates ωi in the five-frequency model, or
at least ratios of them, two additional experimental parameters are needed.
These are: (i) the impurity correlation factor which was obtained from the
isotope effect [58] and which changes from 0.78 in region I to 0.87 in region
II. (ii) the impurity-vacancy binding energy, ∆gpair, which was obtained from
the pO2 -dependence of the Fe-tracer diffusion coefficient. It is small compared
to the thermal energy in region I and about 0.7 eV in region II [19]. All four
quantities are known exactly as functions of the five rates ωi (i = 0, 1, 2, 3,
4) within the five-frequency model [22] 9. As a result four ratios of exchange
rates can be calculated in regions I and II, respectively:
9 The dependence of the impurity diffusion coefficient and the impurity correlation

factor on the exchange ratees ωi can be found in Sect. 1.9.1 in Chap. 1, the
expression for β in [19], and the relation for the impurity-vacancy binding energy
is given by ω4/ω3 = exp(−∆gpair/kBT ).
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region I: ω3/ω1 = 0.29, ω2/ω1 = 0.52, ω4/ω0 = 0.53, ω4/ω3
∼= 1

region II: ω3/ω1 = 0.02, ω2/ω1 = 0.14, ω4/ω0 = 0.60, ω4/ω3
∼= 300

While the ratios ω2/ω1 and ω4/ω0 remain nearly unchanged in passing
from region I to region II, ω4/ω3 increases drastically and ω3/ω1 decreases.
This is mainly due to the fact that the escape rate, ω3, decreases in pass-
ing from region I to region II indicating the transition from weak to strong
binding between Fe and vacancies. If the binding is mainly due to Coulom-
bic interaction between oppositely charged structure elements, one cause for
the change in ∆gpair could be the change in the relative concentrations of
the differently charged cation vacancies. At high oxygen activities (region I)
vacancies V′

Co dominate, whereas vacancies V′′
Co become more important at

lower oxygen activities (region II). As a result, there is stronger Coulombic
interaction with trivalent iron at lower oxygen activities. On the other hand,
iron exists as Fe2+ and Fe3+, and the fraction of trivalent iron decreases with
decreasing oxygen activity, which results in a smaller degree of association.
Another possible cause for the increase of ∆gpair goes back to the different
sizes of di- and trivalent iron ions. The larger ionic radius of Fe2+ would
result in displacements of neighbouring ions which may be compensated by
association of a vacancy.

Demixing in an Oxygen Potential Gradient

If, instead of a pure oxide, a mixed oxide, (A1−xBx)O, in which oxygen is im-
mobile, is exposed to a stationary oxygen potential gradient, again different
cation vacancy fractions are established at the high and low oxygen potential
sides. However, the resulting cation vacancy flux from the high to the low
oxygen potential side causes fluxes of both cations, A and B. In general, they
have different mobilities and the oxide will become enriched in the more mo-
bile cation at the high oxygen potential side, while it will become enriched in
the less mobile cation at the low oxygen potential side (see Fig. 5.13). This
kinetic demixing process was studied first by Schmalzried et al. [59,60] consid-
ering steady-state demixing and homovalent solid solutions, e.g. (Co,Mg)O,
where Co is the faster cation and becomes enriched at the high oxygen poten-
tial side of the oxide. The formal solution of the transient demixing problem
with moving boundaries and time-dependent boundary values can be found
in [61].

However, kinetic demixing may also be important in doped oxides
(A1−xBx)O, where the kinetic segregation of impurities is of interest, e.g.
during sintering or alloy corrosion [62]. The basis for the subsequent analysis
is given by the general transport equations [44]

ji = −
∑

j

Lij · ∇ηj (5.40)

where Lij are the transport coefficients and ηj is the electrochemical potential
(see Sect. 5.4). As shown in [63], in a dilute oxide, A1−xBxO (x � 1)), the
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Fig. 5.13. Schematic representation of
the fluxes of electron holes, cation va-
cancies and cations A and B, and the
initial and steady state concentration
profile of A in a mixed oxide (A,B)O
exposed to an oxygen potential gradient
for the case that component A is faster
than B.

flux of the dopant, B, can be written as

jB = −DB · ∇cB − jV · LBB

LAA
·
(
γ +

LBA

LBB

)
. (5.41)

The dimensionless quantity γ contains all physical correlation effects and is of
the order of unity. Equation (5.41) shows that the dopant flux consists of two
terms, a pure diffusion term, −DB∇cB, characterized by the dopant diffusion
coefficient, DB (= LBBRT/cB), and a drift term, which is proportional to
the vacancy flux, jV. The direction of the drift term, which determines at
which side of the sample the dopant becomes enriched, depends crucially
on the sign and magnitude of the non-diagonal element LBA. Particularly in
trivalent doped oxides, AO(+B2O3), solute-vacancy interactions might result
in a non-vanishing cross term LAB. Thus the demixing behaviour or the
kinetic segregation of the dopant B strongly depends on the strength of the
solute-vacancy binding energy.

Demixing experiments with Ga2O3-doped CoO [64] clearly show demix-
ing of Co and Ga with enrichment of Ga at the low oxygen potential side
(see Fig. 5.14). Since the tracer diffusion coefficients of Co and Ga are also
known (see Sect. 5.3.1), the ratio LGaCo/LGaGa can be obtained from the
demixing profile using (5.41). The result is LCoGa/LGaGa = −1.7, leading to
the following interpretation. Due to the strong binding between the dopant
Ga and the vacancies the drift flux of the dopant is directed to the side of
lower oxygen potential (i.e. in the same direction as the vacancy flux), where
the dopant Ga therefore becomes enriched. As shown in detail in [64] the
result LCoGa/LGaGa = −1.7 can be explained adequately in terms of the
five-frequency model of impurity diffusion [22] and strong impurity-vacancy
binding, which was found independently in the tracer diffusion studies of this
system [21].

Finally it should be mentioned that demixing in an oxygen potential gra-
dient might be important also in oxygen ion conductors, such as yttria-doped
zirconia (YSZ) or doped lanthanum gallate (LSGM). When these oxides
are used as electrolytes, e.g. in solid oxide fuel cells (SOFCs), oxygen ions
are driven through the electrolyte and simultaneously electrons are flowing
through the external circuit. As soon as the cations, e.g. Zr4+ and Y3+ in
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Fig. 5.14. Demixing profile of Ga in (Co1−xGax)O exposed to an oxygen potential

gradient (T = 1250◦C, a
(1)
O2

= 10−6 (left), a
(2)
O2

= 10−5 (right), ∆z = 725 µm,

x0
Ga = 1.85%, t = 38.5 h) [64].

YSZ, have different diffusion coefficients (see Sect. 5.3.2) there will be demix-
ing of the electrolyte. However, since cation diffusion is very slow, steady-
state demixing will be reached only after rather long times. If, for example,
the slowest diffusion coefficient is taken as D = 10−18 m2s−1, one obtains
15 000 years for an electrolyte thickness of 1mm. However, for a thickness of
10 µm the time to reach the steady state is only 1.5 years which is comparable
to the desired operating times of SOFCs.

5.5.2 Diffusion in an Electric Potential Gradient

In this section, electro-transport in oxides, i.e. the motion of ions due to an
external electric potential gradient, ∇Φ, will be discussed. As in the previous
section, where diffusion in an applied oxygen potential gradient was analyzed,
the fluxes of the mobile components i (ions and electronic defects) can be
written as a sum of a diffusion and a drift flux, ji = jdiff

i + jdrift
i . In a

chemically homogeneous oxide without any gradients in chemical potentials,
the diffusion fluxes vanish, and the drift flux can be written as

jdrift
i = −Lii

(∑
k

zk · Lik

Lii

)
· F · ∇Φ . (5.42)

The sum in parentheses is usually denoted as effective charge, zi,eff . It is
identical to the formal charge, zi, only if the cross coefficients Lik (i �= k) are
zero and, consequently, the fluxes are independent of each other10.
10 In metals, the effective charge is frequently denoted by the symbol z∗

i .
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Fig. 5.15. Schematic experimental
setup for the measurement of the ef-
fective charge in a constant electric
potential gradient (sandwich exper-
iment). The Gaussian curve shows
the broadening and shift of a tracer
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veloped from a point source located
originally in the middle of the crys-
tal.

The effective charges are thus a measure of the cross coefficients which are
again indicating defect-defect interactions. In homogeneous oxides exposed to
an electric field, (radioactive) tracers can be used to measure the drift veloc-
ities of ions from which their effective charges can be calculated (Sect. 5.5.2).
During demixing experiments, however, the oxide becomes chemically inho-
mogeneous resulting in drift and diffusion fluxes as well. This situation will
be discussed in Sect. 5.5.2.

Tracer Diffusion in an Electric Potential Gradient

Figure 5.15 shows the typical experimental setup which can be used to mea-
sure the effective charges, zi,eff , of the host cation A or of impurity cations
B in an oxide AO using radioactive tracers, A∗ and B∗. The tracer source is
located between two single crystals of the oxide in a sandwich arrangement,
and the electric potential gradient is applied by two reversible electrodes.
Diffusional broadening of the tracer source results in a Gaussian profile from
which the tracer diffusion coefficient can be obtained. Superimposed is a drift
of the tracer concentration profile due to the applied electric field. As shown
in detail in [18], the drift velocity of the tracer concentration profile, vdrift

A∗ or
vdrift
B∗ , allows the determination of the effective charges of the corresponding

cations, A or B. For self-diffusion, i.e. tracers A∗, we obtain

vdrift
A∗ =

DA

RT
· zA,eff · F · ∇Φ, zA,eff = zA +

LAh

LAA
. (5.43)

The effective charge of cation A, zA,eff , contains the cross coefficient, LAh,
which indicates the flux coupling between cations and electron holes. zA,eff is
often called ‘charge of transport’. For impurity tracer cations, B∗, the result
is

vdrift
B∗ =

DB

RT
· zB,eff · F · ∇Φ, zB,eff = zB +

LBh

LBB
+
LBA

LBB
. (5.44)

The effective charge of B, zB,eff , now contains two cross coefficients, LBh and
LBA, which indicate flux coupling between B and h and between B and A.
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Fig. 5.16. Effective charge of cobalt
in Co1−δO as a function of the oxy-
gen activity at 1100◦C [18].

Figure 5.16 shows results for the charge of transport of Co in CoO as
a function of the oxygen partial pressure [18]. zCo,eff has a value close to
+1. Since the formal charge of Co in CoO is zCo = 2 this result demon-
strates clearly that the cross coefficient LCoh is by no means negligible. The
cross effect may be understood in terms of vacancy-electron hole associates,
V′′

Co + h
• � V′

Co, and long-range Coulomb interactions between the oppo-
sitely charged vacancies and electron holes. Application of the Onsager-Fuoss
theory to this system [65] has shown that long-range interactions are of minor
significance compared to association reactions. If the lifetime of the associate,
V′

Co, is long enough to move as an entity, a simple interpretation of the ef-
fective charge can be given: in an electric field, Co2+ ions move towards the
cathode via lattice site exchange with vacancies. If the vacancy is associ-
ated with an electron hole, two positive charges (fixed on the cobalt ion)
move towards the cathode and, at the same time, one positive charge (the
hole associated with the vacancy) moves in the opposite direction during the
exchange step. Thus, the net charge which is moved towards the cathode
and which is the only quantity that can be measured is +1. Additional ev-
idence for vacancy-electron hole associates stems from measurements of the
electrical conductivity [66]. The data were modelled by two different elec-
tronic conductivity processes, by means of free electron holes and by means
of electron holes bound by vacancies. The lifetime of a vacancy-electron hole
associate was found to be 20 times larger than the residence time of a free
electron hole on a cation site.

The effective charges of the impurities indium and iron are shown in
Fig. 5.17. Whereas zFe,eff remains nearly constant with changing oxygen ac-
tivity with a value of about +1, zIn,eff decreases drastically with changing
aO2 and becomes even negative at aO2 < 10−4. This is equivalent to a re-
versal of the migration direction in the electric field. In the range of high
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Fig. 5.17. Effective charges of indium and iron in Co1−δO as a function of the
oxygen activity at 1100◦C [18].

oxygen activities, the indium tracer moves towards the cathode, at low ac-
tivities it moves towards the anode, and therefore virtually behaves like an
anion. If we try to explain the observed behavior in the same way as for the
Co ions and assume that the impurity ions move via vacancy-electron hole
associates, V′

Co (majority defects), we expect zIn,eff = +2 (with the formal
charge zIn = +3) and zFe,eff = +2 or +1 (with zFe = +3 or +2, respectively).
It is obvious from Fig. 5.17 that the strong decrease of zIn,eff and the ap-
pearance of negative values at low oxygen activities cannot be interpreted in
this manner. Furthermore, the experimentally obtained value of zFe,eff ≈ +1
at high oxygen activities is unexpected, because iron should have a formal
charge of about +3 in this region. This means that in (5.44) the second ratio
including the cross coefficient LBA is also important. It is well known that
this cross coefficient is due to the formation of impurity-vacancy pairs [22].
If the pair binding energy is strong enough to make the lifetime of the pair
much longer than the time required for an individual jump of the impurity
ion, the pair moves as an entity and the vacancy drags the impurity cation
towards the anode. As a result, we find a negative effective charge, as ob-
served experimentally. A more detailed formal analysis can be found in [67]
and [68].
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Demixing in an Electric Potential Gradient

The external electric field can also cause demixing of an initially homoge-
neous oxide solid solution, e.g. (A1−xBx)O, if the cations have different mo-
bilities. In semiconducting oxides demixing due to an electric field was found
by several authors [69–72]. Demixing processes have important practical im-
plications. Local composition changes can severely alter the physical, chem-
ical and electrical properties and are therefore a source of high temperature
degradation of materials in electric fields.

We consider a semiconducting, ternary oxide, (A1−xBx)1−δO, with an im-
mobile oxygen sublattice, where the cations are mobile via a vacancy mech-
anism. As in the previous section, the external electric field (see Fig. 5.18)
causes fluxes of the homovalent cations, A2+ and B2+, and electron holes,
h

•
, which are given by (5.40).
At the reversible electrodes the cations are involved in chemical reactions,

e.g. at the cathode:

A2+ + 2e−(Pt) + 1
2O2(g) → AO,

B2+ + 2e− + 1
2O2(g) → BO (5.45)

This means that the oxide grows at the cathode. At the anode the opposite
reactions take place, i.e. here the oxide dissociates into cations, electrons and
oxygen molecules. Thus, both oxide surfaces move to the cathode side. In the
steady state both surfaces and also both cations move with the same velocity,
v:

v =
jA2+

cA
=
jB2+

cB
. (5.46)

Integration of (5.46) over the sample thickness yields

x
(1)
A

x
(2)
A

· 1 − x
(2)
A

1 − x
(1)
A

= exp
(

2FU
RT

· γ − 1
γ

)
(5.47)

where x(1)
A and x

(2)
A are the unknown molar fractions of A at the oxide sur-

faces and U is the applied voltage. γ = DA/DB is a constant, since both

semiconducting
oxide

(A1-xBx)O

U=const.

h	

A2+

B2+

(1) (2)

cathodeanode Fig. 5.18. Schematic representation
of the fluxes in a mixed oxide (A,B)O
exposed to an electric potential gra-
dient established by Pt-electodes.
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Fig. 5.19. Calculated steady state demixing profiles of component A in a mixed
oxide (A,B)O as a function of the applied voltage U (T = 1300◦C, x0

A = 0.5,
γ = DA/DB = 2) [70].

diffusion coefficients are proportional to the cation vacancy fraction, xV. The
concentration profile of A (and B, xA + xB = 1) can be obtained by inte-
gration of (5.46) and the overall mass balance for A. Details can be found
in [70]. Figure 5.19 shows steady-state demixing profiles calculated in this
way for different values of the applied voltage U . With increasing voltage the
anode-side of the oxide is more and more depleted by the faster component
A.

A typical result of a steady-state demixing experiment for (Co1−xNix)O
is shown in Fig 5.20. Enrichment of Co near the cathode side of the oxide
is found [73], as expected qualitatively due to the higher diffusivity of Co
compared to Ni [74]. For a quantitative modelling of the demixing (solid
line in Fig. 5.20) one also has to consider the cross terms in the transport
coefficient matrix Lij (i, j = A,B, h

•
). In particular the cross terms LAh and

LBh are important, as shown in the previous sections. Finally it should be
emphasized that the electric current during demixing is mainly conducted
by electron holes, because th

∼= 1 and tcation ≈ 10−4. Nevertheless, there is a
demixing process for the cations as long as they have different mobilities.

Demixing in a heterovalently doped oxide, (A1−xBx)O, is more compli-
cated. Due to Coulomb interactions between the defects (impurity-vacancy
pairs) the cross term LAB can no longer be neglected and might even de-
termine the complete demixing behavior. An example is Ga-doped CoO,
(Co1−xGax)O, in which Ga

•
Co and V′′

A form impurity-vacancy pairs,
{Ga

•
Co,V

′′
Co}′ [21]. These pairs have a negative excess charge and move to-
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Fig. 5.20. Steady state demixing profile of Co in (Ni1−xCox)O (T = 1444◦C,
x0

A = 0.932, ∆z = 600 µm, t = 17 h); � experiment; — theory.

wards the anode. Thus Ga is enriched at the anode side, independent of the
ratio of the diffusion coefficients of Co and Ga [71].

5.6 Conclusion

In this chapter we have outlined the basics of diffusion processes in oxides.
We have started in Sect. 5.2 with the so-called defect chemistry which de-
scribes all defect formation processes by quasi-chemical reactions and the
corresponding equilibria. In this way, a quantitative calculation of the defect
fractions in an oxide as a function of the intensive thermodynamic variables
temperature, T , and oxygen partial pressure, pO2 , is possible. The most im-
portant reaction is the incorporation of oxygen into the oxide which results
in the formation of a non-stoichiometric oxide, either with oxygen excess or
oxygen deficit. In the most simple cases, we obtain typical regimes in the
pO2-dependence of the defect fractions. In each regime only two oppositely
charged defects dominate which exhibit a power-law dependence on pO2 with
a typical exponent (Kröger-Vink-diagram, see Fig. 5.4).

In Sect. 5.3, the basic diffusion processes in oxides, vacancy diffusion and
interstitial diffusion, have been considered. Self-diffusion and impurity diffu-
sion were discussed for oxides with dominating cation disorder and for oxides
with dominating oxygen disorder. Special emphasis was put on the role of
defect-defect interactions, such as the formation of impurity–vacancy pairs.
Chemical diffusion was treated in Sect. 5.4, and in Sect. 5.5 diffusion in ox-
ides exposed to external forces was analysed. In particular the latter section
shows that – apart from a fundamental interest – diffusion in oxides is of
great practical importance, e.g. for long-term degradation processes of oxides
in technical applications, such as fuel cells, sensors etc..
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Finally it should be mentioned that several important topics concerning
diffusion in oxides could not be discussed in detail in this chapter. Some of
them are:

Creep of oxides: Mass transport in oxides due to mechanical forces is
determined by the slowest moving species, which are the oxygen ions in oxides
with cation disorder and the cations in oxides with oxygen disorder. Thus,
measurements of the creep rate as a function of stress provide not only data
on the mechanical strength of an oxide but they yield also information on
the diffusivities of the minority defects (see e.g. [31]).

Solid state reactions between oxides: The formation of ternary ox-
ides, for example the spinel formation MgO + Al2O3 → MgAl2O4, pro-
ceeds by counter-diffusion of Mg2+ and Al3+ through the spinel MgAl2O4

resulting in parabolic growth laws for the thickness of the spinel layer,
∆x(t) = (2kpt)1/2. The parabolic rate constant, kp, is a function of the
diffusion coefficients of both cations [75].

Oxidation of metals: Diffusion controlled growth of an oxide layer on
a metal is determined by ambipolar diffusion of cations and/or oxygen an-
ions and electronic defects through the oxide. As shown by Wagner [45], the
growth rate of the oxide layer is also determined by a parabolic rate law,
where the parabolic rate constant, kp, is given as a function of the diffusion
coefficients of cations and anions and the electronic transference number. If
the oxide is anisotropic the parabolic rate constant depends on the orienta-
tion of the oxide relative to the metal substrate. This case was found in a
recent investigation on the oxidation of the intermetallic, ordered compound
CoGa [76,77] where only Ga is oxidised and β-Ga2O3 is formed.

5.7 Appendix

We consider a binary oxide A1−δO with cation disorder. Using xA + xV = 1,
the thermodynamic factor ∂ ln aA/∂ lnxA can be rewritten as:

∂ ln aA

∂ lnxA
= −xA · ∂ ln aA

∂xV

Considering the equilibrium for the reaction A + 1
2O2 � AO, K = 1/(aA ·

a
1/2
O2

), the activity aA can be expressed in terms of aO2 :

∂ ln aA

∂ lnxA
=

1
2
· xA

xV
· ∂ ln aO2

∂ lnxV

As shown in Sect. 5.2.1, the vacancy fraction shows a simple power law de-
pendence on aO2 , xV = const · (aO2)1/m, where m is the typical exponent for
the dominating disorder type. For differently charged cation vacancies, Vα′

A ,
m is given by m = 2 + 2α, resulting in
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∂ ln aA

∂ lnxA
=

1
2
· xA

xV
· (2 + 2α) .

With this expression for the thermodynamic factor, the chemical diffusion
coefficient D̃ in (5.30) can be written as

D̃ =
DA · xA

xV
· tel · (1 + α) .

Finally, we use the jump balance, DAxA = DVxV, and obtain

D̃ = DV · (1 + α) · tel .

If tel = 1 this expression simplifies to (5.31).

Notation

ai chemical activity of component i
aO2 chemical activity of oxygen
A metal A in the binary oxide AO or the ternary oxide (A,B)O
Ares residual activity
Asect activity during sectioning
B metal B in the ternary oxide (A,B)O
ci concentration of species i
Di diffusion coefficient of species i
DA self-diffusion coefficient of A
DAi interstitial self-diffusion coefficient
DV vacancy self-diffusion coefficient
D̃ chemical diffusion coefficient
e′ electron
f0 geometrical correlation factor
fB impurity correlation factor
F Faraday constant
h

•
electron hole

ji diffusion flux of species i
k surface exchange coefficient
kB Boltzmann constant
K equilibrium constant
Lij transport coefficient
p pressure
pO2 oxygen partial pressure
p∗O2

oxygen partial pressure at the stoichiometric point (δ = 0)
R universal gas constant
Sq

p structure element with excess charge q in sublattice p
t time
T temperature
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tel electronic transference number
Vm molar volume
x position
xi molar fraction of species i (identical to [i])
z position in the moving reference frame
zi formal charge of species i
zi,eff effective charge of species i
δ non-stoichiometry of the oxide A1−δO
ηi electrochemical potential of species i
µi chemical potential of species i
µO2 chemical potential of oxygen
σ electrical conductivity
Φ electrical potential
ωi jump rate of a vacancy in jump of type i
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6 Diffusion in Metallic Glasses

and Supercooled Melts

Franz Faupel and Klaus Rätzke

6.1 Introduction

A wide variety of materials ranging from oxide glasses to polymers can so-
lidify as glasses rather than crystals. While diffusion plays an important role
in all media at elevated temperatures, diffusion in glasses is of particular
interest. The metastability of these materials makes them prone to various
rearrangement processes such as structural relaxation, phase separation and
crystallization. In the supercooled liquid state diffusion is very important
in connection with the glass transition, which appears to be a kinetic phe-
nomenon [1]. With the recent discovery of novel bulk-glass-forming alloys,
exhibiting high stability against crystallization in the supercooled state [2,3],
the dynamics of the glass transition could also be studied in metallic sys-
tems, which are the paradigm of dense random packing. Stimulated by the
development of bulk metallic glasses and advances in computer simulation,
recent progress in the understanding of the diffusion mechanisms in metallic
glasses and supercooled melts has been considerable. For recent reviews the
reader is referred to [4, 5]

In this chapter, after discussing some general aspects of diffusion in non-
crystalline matter, which are not related to a particular class of materials, we
focus on metallic glass-forming systems. Metallic glasses are so-called ‘fragile
glasses’. Unlike silica and other strong inorganic glasses fragile glasses exhibit
a glass transition in a narrow temperature range, where marked changes in
physical properties can be observed. Emphasis is placed on results from ra-
diotracer measurements. Moreover, we frequently refer to results from com-
puter simulations which provide valuable insight into the atomic dynamics.
The following section briefly recalls important characteristics of diffusion in
crystalline solids. Normal liquids well above the melting point are treated in
Sect. 6.3. In this context, the free-volume model and the Stokes-Einstein rela-
tion are introduced. The transition from liquid-like continuous small motion
to thermally activated hopping is the subject of Sect. 6.4. In this connec-
tion the mode-coupling theory and a recent extension to medium-assisted
hopping in the glassy state are discussed. The concept of medium-assisted
hopping implies strongly collective diffusion and is applied to the interpreta-
tion of isotope effect measurements in metallic glasses in Sect. 6.5. Relaxation
phenomena that are pertinent to the understanding of diffusion near the glass
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transition temperature are examined in Sect. 6.4, too. Furthermore, conse-
quences of a distribution of activation energies are considered. In Sect. 6.5
atomic transport in conventional metallic glasses is critically reviewed, and
measurements of the pressure and mass dependence of diffusion are presented.
These measurements point to highly cooperative hopping processes in fully
relaxed metastable glasses. The effect of excess volume, quenched in from the
liquid state, is also addressed. Sect. 6.6 covers diffusion in supercooled melts
of the novel bulk-glass-forming alloys. Of particular interest are the changes
in the atomic dynamics concomitant with the liquid-to-glass transition. It
will be shown that from the microscopic point of view diffusion in the deeply
supercooled liquid state is solid-like, taking place by thermally activated col-
lective processes. Microscopic viscous flow via atomic collisions is observed to
set in well above the caloric glass transition temperature in full accord with
the mode coupling scenario. In this section we also discuss very recent diffu-
sion and isotope effect data in the equilibrium melt of a particularly stable
metallic glass-forming alloy. Diffusion measurements from the glassy to the
equilibrium liquid state have not been possible so far. It is demonstrated that
even in the equilibrium melt the atomic dynamics are highly collective and
still depart strongly from the hydrodynamic regime of uncorrelated binary
collisions. A summary is given in Sect. 6.7.

6.2 Characteristics of Diffusion in Crystals

Unlike diffusion in amorphous matter, transport in crystalline solids is well
understood, at least as far as self-diffusion and diffusion of trace impurities
are concerned (see Chap. 1). Small solute atoms occupy interstitial sites and
perform thermally activated jumps between equilibrium positions (Chap. 1,
Fig. 1.8). The temperature dependence of interstitial diffusion obeys the well
known Arrhenius law (Chap. 1). Diffusion coefficients for interstitials ap-
proach values in liquids near the melting point (∼=10−10 m2/s). A representa-
tive value for the pre-exponential factor D0 in metals is 10−6 m2/s.

Large impurities substitute for solvent atoms in the lattice. It is now well
established that diffusion of these substitutional solutes and self-diffusion in
most crystalline solids generally proceeds via vacancies (Chap. 1). For a va-
cancy mechanism (Chap. 1, Fig. 1.9) one again ends up with an Arrhenius
law. It has to be pointed out, however, that the activation enthalpy now con-
tains the additional contribution for the formation of a vacancy, which is of
the same order of magnitude as the migration enthalpy (Chap. 1, (1.56)).
Consequently, substitutional diffusion is many orders of magnitude slower
than interstitial diffusion. Moreover, an additional term arising from the for-
mation entropy enters into D0 (Chap. 1, (1.57)). D0 is typically of the order
of 10−4 m2/s. As discussed in Chap. 1, a correlation factor f comes into play
for indirect diffusion of tracer atoms via vacancies. If there is no interaction
between tracer atoms and vacancies, specifically if the tracer is a self isotope
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of the host, f is an additional geometry constant in D0 which can be esti-
mated as f ∼=1−2/Z (Chap. 1, (1.58)). We note that f is of the order of unity
in close packed crystals. Impurity-vacancy binding can significantly lower the
correlation factor for impurities provided these are strongly diluted [6].

In view of the great success of the vacancy model for diffusion in crystals,
many investigators also invoked vacancy-like defects to explain diffusion in
glasses and even in liquids. While there is general agreement now that solid-
like vacancies do not exist in liquids (Sect. 6.3), their role in metallic glasses
is still a controversial issue in literature (Sect. 6.5.2).

6.3 Diffusion in Simple Liquids

We have seen in the preceding section that diffusion in crystals occurs by very
infrequent large jumps from one lattice point to a neighboring site. The other
extreme is a dilute gas, where all molecules fly freely between frequent binary
collisions. According to the kinetic theory of gases in the Chapman-Enskog
formulation [7], the diffusivity is determined by the mean free path λ and the
collision frequency ν or the mean velocity v according to

D =
1
3
νλ2 =

1
3
vλ . (6.1)

In air at standard temperature and pressure (v = speed of sound, λ = 300
molecular diameters) (6.1) yields D ∼= 10−5 m2/s for an average molecule.

The properties of liquids are somewhere in between those of crystalline
solids and gases. Liquids are almost as compact as solids and they exhibit a
pronounced short-range order, which is reflected in the pair correlation func-
tion g(r) (see Fig. 6.1). The latter describes the probability of finding an atom
at a distance (r, r + dr) from a given atom. ng(r)dV is the average number
of atoms in the volume dV at a distance r, where n is the number density.
The Fourier transform of g(r), the structure factor S(q), can be measured
with x-rays and neutrons (see Chap. 3). If the atoms move, the correlation
between two given atoms decays. The so-called Van Hove space-time correla-
tion function G(r, t) = Gs(r, t)+Gd(r, t) is related by Fourier transformation
to the dynamical structure factor, which is accessible to neutron scattering.
The self and distinct parts Gs and Gd represent the probability that a given
particle or some other atoms, respectively, will be at (r, t) when the given
atom is at r = 0 at t = 0.

Diffusion in liquids [8] is much faster than in solids because of the more
open structure. A typical melting-point value of D is 10−9 m2/s. Unlike in
solids, the temperature dependence of D is weak. The early experimental
findings that diffusion rates in liquids could be fitted to an exponential de-
pendence on 1/T over short temperature ranges and the compact structure
of liquids led to an identification of the mechanism with that of vacancy dif-
fusion in solids. However, there is evidence now from various experimental
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Fig. 6.1. Scheme of a monoatomic liq-
uid and the corresponding pair correlation
function g(r). Note the pronounced peak at
the nearest-neighbor distance r1.

methods [8], including neutron and x-ray techniques, Mößbauer spectroscopy,
and nuclear magnetic resonance, as well as from molecular dynamics calcu-
lations [9], that jumps of the size of lattice constants do not take place in
simple liquids. Diffusion rather proceeds continuously by frequent small mo-
tions. The atoms create their macroscopic displacement from a very large
number of collisions on a time scale of 10−12 s, and the mean free path for
diffusion is at least one order of magnitude smaller than the atomic spacing.
Moreover, the pressure dependence of diffusion in liquids is much smaller than
predicted for a vacancy-like mechanism [7,10]. We shall see in Sect. 6.5.4 that
the pressure dependence of diffusion in some metallic glasses is not consistent
with a vacancy-like mechanism, either.

Apparently, transport in simple liquids such as metallic and van der Waals
liquids is much more gas-like than solid-like. Kinetic theories of self-diffusion
that are based upon the classical gas equation (6.1), Dulong Petit’s rule, and
geometrical arguments for the mean free path predict

D ∝ 1√
m
T 3/2 . (6.2)

Equation (6.2) reproduces the approximate temperature and pressure depen-
dence of D quite successfully in many simple liquids [7].

Molecular dynamics simulations [11] have confirmed a temperature depen-
dence D ∝ T n where n was found to be between 1.7 and 2.3. Such simulations
also allow one to investigate the time dependence of the mean square displace-
ment 〈r2(t)〉 on a microscopic level. A transition from gas-like ‘free flight’ for
very short times (t < 10−13 s) to Brownian displacement 〈r2(t)〉 = 6Dt for
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long times has been observed, which was also found experimentally, e.g.,
by neutron scattering [12]. In the transition interval many-body interactions
and memory effects play a role, and the motion of a given atom is correlated
with the motion of its neighbors. This collective behavior is the subject of
mode-coupling theories and becomes more pronounced in supercooled liquids,
where a dynamical glass transition is predicted at a critical temperature Tc

(see below).
High precision isotope-effect measurements of self diffusion in liquid Sn

under microgravity conditions [13] clearly show that cooperative effects sub-
stantially influence the diffusive motion of single atoms even at temperatures
well above the melting point (232◦C for Sn). At 800◦C an isotope effect of
E ≡ (Dα/Dβ−1)/(

√
mβ/mα−1) = 0.7 was found. It indicates only relatively

small deviations from ideal single-particle motion, which is characterized by
D ∝ m−1/2 (see (6.2)) and E = 1. At 250◦C however, E drops to a value of
0.3, reflecting a high degree of collectivity. Here the mass effect is strongly
reduced by correlated motion of the tracer atom and surrounding particles.
The departure from gas-like uncorrelated binary collisions at low tempera-
tures is to be expected in view of the decrease of free volume. It is shown in
Sect. 6.5.3 that diffusion in structurally relaxed metallic glasses requires an
even higher degree of cooperativity, causing a very small isotope effect.

The concept of free volume results from a crude but physically plausible
approach. It has provided a deeper understanding of transport phenomena
and the liquid-to-glass transition. Free-volume models [14] have affinities with
kinetic theories and attribute most of the change in the diffusivity to ther-
mal expansion. But unlike simple kinetic theories diffusion is visualized as
a cooperative process. The basic assumption is that each molecule resides
within a ‘cage’ that is stable for times much longer than the vibration times.
A molecule is regarded as being able to move out of the ‘cage’ as soon as
random molecular movements produce a void, larger than some critical size
v∗, into which it can move, there being no energy barrier to the movement.

From this notion it is easy to show that the diffusion coefficient has the
form

D = D0 exp
(
−γv∗

vf

)
(6.3)

where the exponential term represents the probability that the redistribution
of free volume leads to fluctuations greater than v∗. vf is the mean free
volume per molecule, and γ is an overlap factor, typically between 0.5 and 1.
It considers that the same free volume is available to more than one molecule.
The temperature dependence of D is determined by vf(T ), whereas the pre-
exponential factor D0 is a much weaker function of T . Cohen and Turnbull
[14] assumed that vf may be expressed approximately as

vf = αV (T − T0) . (6.4)

In this simple approach T0 is the temperature at which the free volume dis-
appears, α and V are the mean values of the coefficient of thermal expansion
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and the molecular volume over the temperature range of interest, respec-
tively. Although it is a weak point of the model that T0 is found to be well
above absolute zero, (6.3) and (6.4) give a relatively good account of the
temperature dependence of D and of the viscosity (cf. Sect. 6.4) in many
liquids. An even better description has been obtained in a later development
of the theory by Cohen and Grest [15]. However, additional parameters were
introduced to describe vf(T ).

Free-volume models have also been applied extensively to transport in
polymers and also in metallic glasses (see Sect. 6.5).

In liquids the viscosity η is closely related to the diffusivity. Usually at
high temperatures the generalized Stokes-Einstein equation

D =
kBT

aη
(6.5)

is obeyed, where the parameter a is almost independent of T . The hydrody-
namic theory in the elementary Stokes-Einstein form, combining the theory of
Brownian motion (Λ0 = D/kBT ) with Stokes law for the mobility Λ0 of a big
spherical particle of diameter d in a continuous viscous fluid (Λ0 = 1/(3πdη)),
yields a = 3πd. Various hydrodynamic theories are concerned with relation-
ships between η and D for more complicated cases, including non-spherical
molecules and concentrated solutions, where correlation effects, which are not
accounted for in Einstein’s expression of Λ0, come into play [8].

At high viscosities, for instance in supercooled liquids near the glass tran-
sition temperature, diffusion is eventually governed by activated hopping
mechanisms (Sect. 6.4). In this regime, as in crystalline solids, diffusion and
viscous flow are decoupled.

Several other theories have been developed for diffusion in ordinary liq-
uids, the discussion of which is beyond the scope of this chapter. The reader
is referred to reviews by Nachtrieb [16], Tyrell and Harris [8], Shimoji and
Itami [11], and DeBenedetti [17].

6.4 General Aspects of Mass Transport
and Relaxation in Supercooled Liquids and Glasses

In the foregoing section we have been concerned with molecular transport in
normal liquids at high temperatures under conditions of complete ergodicity.
Upon supercooling the viscosity increases markedly until at the so-called
glass-transition temperature macroscopic flow freezes in. Glasses exhibiting
this behavior are called ‘fragile’. By contrast, in some glasses termed ‘strong’
all physical properties change so gradually during cooling that no particular
temperature can be marked as border between the undercooled liquid and the
glass. Typical representatives of strong glasses are oxide glasses [18]. Fragile
behavior is observed in organic glasses and conventional metallic glasses. The



6 Diffusion in Metallic Glasses and Supercooled Melts 255

new bulk metallic glasses are significantly stronger than the conventionally
ones [1].

Every class of material can be transformed into an amorphous solid (with-
out crystallinity) if the experimental parameters are adjusted to the dynamics
of the system. While, e.g., quenching rates well above 1010 K/s are required
for systems consisting of spherical molecules such as rare gases, many poly-
mers undergo always a glass transition on cooling. Generally, glasses are not
in a well defined metastable state after quenching, but exhibit irreversible re-
laxation processes, also referred to as ‘physical aging’ in polymers, which are
accompanied by annealing out of excess volume and changes in the chemical
short-range order.

Tg is often somewhat arbitrarily defined as the temperature where η =
1012 Pa s. This value corresponds to solid-like behavior on ordinary time scales
and results in Tg values close to the caloric glass transition temperature
which is determined by the additional degrees of freedom above the glass
transition [19]. In the glassy state the temperature dependence of η follows an
Arrhenius law. Fragile glasses, particularly polymers and amorphous metals
generally obey the Vogel-Fulcher equation

η = η0 exp
(

B0

T − TVF

)
(6.6)

in a certain temperature range near Tg. η0, B0 and the Vogel-Fulcher tem-
perature TVF are constant parameters. Tg depends on the sample history, for
instance on the quenching rate. Equation (6.6) can be derived analogously to
(6.3). Within the free-volume concept, TVF is identical with the temperature
T0 (see (6.4)) where vf vanishes. The functional form of the Vogel-Fulcher law
can also be shown to be a direct consequence of cooperativity in the move-
ment of the molecules [20] and can also be derived from the more advanced
mode coupling concept discussed below.

The glass-to-liquid transition is closely related to the relaxation of shear
stress and dielectric properties, for example. The corresponding relaxation
function Φ(t) for this so-called α relaxation can be described by an universal
empirical expression

Φ(t) = exp
[
−(t/τ)β

]
. (6.7)

Here β is usually in the range between 0.3 and 0.7 depending on the material.
This ‘stretched exponential’ or Kohlrausch behavior [19] departs markedly
from simple Debye relaxation (β = 1), which is characterized by a thermally
activated process with a single activation energy. Φ(t) drops much faster
for short times and has a pronounced long time tail typical of transport
processes in disordered media (see below). The relaxation function Φ(t) obeys
a time-temperature scaling principle [21], i.e. relaxation functions measured
at different temperatures fall on a single ‘master curve’ Φ(t/τ(T )).

In addition to the slow α relaxation, which involves long range atomic
transport, there is a second fast process in amorphous media referred to as β
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relaxation. It can be associated with local rearrangements of molecules. The
time-temperature scaling obeys an Arrhenius law through the glass transi-
tion. At high temperatures the α relaxation becomes increasingly faster until
at a certain temperature above Tg α and β relaxation coincide, i.e. β relax-
ation becomes part of the flow process. In polymers β relaxation has been
attributed to well defined local mechanisms like movements of chain seg-
ments or side chain rotations [22], but β relaxation has also been observed in
metallic glasses (see Sect. 6.5.1).

So far we have discussed theoretical descriptions of the glass transition
and the dynamics around Tg that are related to a critical temperature below
Tg, for example to TVF, and to a true thermodynamical transition. On the
other hand, recent mode coupling theories [23,24] predict a dynamical phase
transition at a critical temperature Tc, well, typically 30–150K, above Tg.
They are based on the hydrodynamic theory of liquids. The classical the-
ory is linear, however, and is only valid exactly in the limit of long times
and wavelengths, whereas the glass transition is characterized by a freezing-
in of density fluctuations with finite wavelengths due to strong interactions
between the atoms or molecules in a liquid. Therefore, non-linear coupling
between density-density correlations, the relevant modes of the theory, are
introduced, and memory effects are taken into account.

Upon cooling a dense liquid the aforementioned (Sect. 6.3) cage effect,
viz. the trapping of molecules by surrounding particles, which induces time
dependent potential barriers, becomes more and more effective and may even-
tually, at a critical temperature Tc, lead to a partial localization of molecules
or clusters of molecules in a metastable state. If activated hopping between
metastable states (jump diffusion) can be neglected, a sharp transition from
an ergodic to a non-ergodic state occurs. This transition is reflected in an al-
gebraic divergence of the viscosity at Tc. Below Tc only local rearrangement of
molecules but no transport over macroscopic distances is possible. Real sys-
tems are always expected to return to ergodicity at sufficiently long times as a
consequence of hopping diffusion, not included in the original mode-coupling
theory.

The predictions of mode coupling theory have been tested in numerous
systems resulting in a qualitative and sometimes even quantitative agreement
of microscopic dynamics with the theory. For a review we refer to [24].

Recently, thermally activated hopping processes have been incorporated
into mode-coupling theories [25]. It has been shown [23] that the viscosity
may exhibit a Vogel-Fulcher-like dependence in a certain temperature range
below Tc. In particular, the cross-over to an Arrhenius behavior that is ex-
perimentally observed at T ∼= Tg has been predicted for sufficiently strong
coupling [25]. In these terms the Arrhenius law η ∝ exp(H/kBT ) results from
the dynamics of the β process. As mentioned earlier the β process reflects
the decay of local density fluctuations and does not freeze in below Tc. Local
displacements, i.e. short wavelength clusters, induce a disturbance in the sur-
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rounding medium that may give rise to rearrangements of long wavelengths
in a macroscopic volume and induce a feedback effect on the original cluster.
This may lead to a medium-assisted hopping process, caused by the nonlin-
ear coupling between longitudinal currents of quite different wavelengths but
identical time dependence, being governed by the dynamics of β relaxation
in the initial stage of the diffusion process. In this extended mode coupling
theory, transport in the glassy state is a highly cooperative process on all
length scales. We shall see in Sect. 6.5.3 that isotope effect measurements of
diffusion in a structurally relaxed metallic glass strongly support this view.

While atomic transport in glasses obviously proceeds via jump diffusion,
the disordered nature of these materials gives rise to further peculiarities that
are absent in crystalline solids. Apart from the difficulty in defining defects
like vacancies or interstitials, which are directly related to the existence of a
lattice and govern diffusion in crystals, activation barriers, site energies, and
jump distances exhibit a certain distribution around their average values.
Modeling of these phenomena in three dimensions requires drastic simplifi-
cations (see Chap. 18 and [26]). On the other hand, the salient features are
already revealed by a separate study of the different types of disorder and
under the assumption of a Gaussian distribution function.

Disorder in the jump distance only affects the pre-exponential factor D0

(see Chap. 1) and usually does not induce a significant perturbation unless
the spectrum is very broad [27]. The effect of a random distribution of site
energies is illustrated in Fig. 6.2a. The diffusivity D is smaller than that for a
sharp site energy, and the apparent activation energy is larger because trap-
ping in the deep wells cannot be avoided. Conversely, randomness in the bar-
rier heights (Fig. 6.2b) enhances diffusion in three dimensions, where the high
barriers can be by-passed. Here D becomes time dependent. For short times
or high frequencies, i.e. short-range diffusion, the small activation enthalpies
essentially govern the diffusion behavior. Long-range diffusion, however, is
mainly controlled by the high barriers and, thus, proceeds slower.

In real glasses a combination of site and saddle point disorder is expected
(Fig. 6.2c). At high frequencies both effects cancel out, but for long times
the deep traps dominate. The deviations from crystal-like linear Arrhenius
behavior without frequency dependence go to zero for T → ∞ and are most
pronounced at low temperatures.

The time dependence of D causes anomalous diffusion on a certain time
or frequency scale where the mean square distance walked by the diffusing
particle increases sublinearly instead of linearly with time (see Chaps. 10, 18,
19). Disorder related anomalous diffusion is well known from ionic conduc-
tion in glasses (see Chaps. 20 and 21 and [28]) and has also been observed
for hydrogen in metallic glasses. At room temperature the range of strong
frequency dependence of the hydrogen mobility proved to be between 107

and 1011 s−1 [29].
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Fig. 6.2. Effect of (a) site and (b) barrier height disorder and (c) of their combi-
nation on diffusion in three dimensions (schematically). The straight dashed lines
in the Arrhenius plots represent the average activation energy H0. D0 is the high-
temperature limit of the diffusivity D. The behavior at low and high frequencies, ω,
corresponding to long and short times, respectively, is indicated (after Kronmüller
et al. [30]).

Transport in disordered media with a Gaussian activation-energy distri-
bution around H0 with variance σ leads to a characteristic temperature law
for the zero-frequency diffusion coefficient (long-time limit)

D(T, ω = 0) = D0 exp
(
− H0

kBT

)
exp

[
−

(
T0

T

)2
]

. (6.8)

Here kBT0 = σ/
√

2 (see e.g. Kronmüller and Frank [30]). For low tem-
peratures and/or large widths of the energy distribution one obtains an
exp[−(T0/T )2] variation with temperature. Equation (6.8) has been con-
firmed by Monte-Carlo simulations [31]. Moreover, Bässler [32], reanalyzing
viscosity data of various supercooled liquids, has shown that η(T ) is pro-
portional to exp[(T0/T )2] over ten decades in η and extending to the glass
transition. As expected, the concept fails at high temperatures where the
barriers can no longer be regarded as quasi-static.

In summary, there is ample evidence from experiment, theory, and com-
puter simulation that liquid-like diffusion has come to rest in glasses and
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that transport is clearly of the jump type. The details of the diffusion mecha-
nisms, in particular the role of defects and the number of atoms or molecules
involved certainly depend on the material under consideration.

6.5 Diffusion in Metallic Glasses

6.5.1 Structure and Properties of Metallic Glasses

Metallic glasses of practical importance are always alloys of at least two
components because of the ease of crystallization of monoatomic systems
(Sect. 6.4). They can essentially be subdivided into two groups [33]: those of
the metal-metalloid type and those of the metal-metal type. In the first group
transition metals like Fe, Co, Ni, and Pd are alloyed with typically 15–20%
of metalloids, such as B, C, P, Si, and Ge. The second group often consists of
an early transition metal, e.g. Zr and Nb and a late one, for instance Co, Ni,
and Pd. Frequently, especially for technological applications, these elements
are used in multicomponent systems.

The structure of amorphous alloys, in particular the absence of extended
defects and the inherent free volume, gives rise to a variety of desirable prop-
erties and unique property combinations [34]. Metallic glasses can be very
ductile, for example, and still exhibit a high flow stress and fracture tough-
ness. The electrical resistivity is large and almost independent of temperature.
Magnetic glassy metals are generally characterized by excellent soft magnetic
properties. The new bulk metallic glasses can be produced at relatively low
cooling rates similar to processing of oxide glasses and hence offer additional
applications [35] such as the fabrication of very precise microcomponents, for
instance [36].

Various methods have been developed for the preparation of conventional
amorphous metals [37]. They can be quenched from the liquid state, e.g., by
melt spinning or splat quenching, and can be produced by vapor condensation
and sputter deposition. Moreover, it is possible to transform crystalline solids
into the amorphous state by solid-state reaction, ion implantation, neutron
irradiation, ball milling, high-pressure application, and other techniques [38].

As one would expect, there are close similarities between the structure of
glassy and liquid metals, which are also reflected in the pair-correlation func-
tion g(r) (Fig. 6.1). The maxima and minima are somewhat more pronounced
in amorphous metals and the second peak is split into two subpeaks. Since
g(r) is a one-dimensional representation of the unknown three dimensional
structure, further modelling is required to reveal the atom arrangement [39].
One approach is based on the dense random packing of hard spheres intro-
duced by Bernal [40]. Here the structure consists of a number of different
kinds of polyhedra, the majority of which are tetrahedra and octahedra.
This simple model already explains the main features in g(r) for metallic
glasses. The subpeaks of the second peak are attributed to atoms occupying
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the vertices of two tetrahedra having a common base and to three collinear
atoms, respectively. Major improvements have been attained by taking into
account chemical short-range order and by sequential computer relaxation of
soft spheres [39]. Recent molecular dynamics simulations are based on real-
istic interatomic potentials and benefit strongly from progress in computer
processing speed [41–43].

Chemical short-range order is a common characteristic of amorphous al-
loys. Partial pair correlation functions indicate that close contact between
metalloid atoms is very unlikely in metal-metalloid glasses [44]. In metal-
metal glasses atoms of the same kind are nearest neighbors, but nearest
neighborhoods between different components are more likely [44].

The pronounced chemical short-range order of most metallic glasses is
due to the fact that these systems tend to form strong compounds upon
crystallization. Therefore, Gaskell [45] modelled the amorphous structure as
a random network of unit cells of the nearest, in composition, crystalline
compounds.

Amorphous alloys have also been described in terms of icosahedral pack-
ing [46, 47]. In icosahedra, which consist of twenty slightly distorted tetra-
hedra, twelve atoms are grouped around a central atom. Their local fivefold
symmetry is broken up by a disordered entangled array of +72◦ and −72◦

disclination lines. The disclinations are associated with sixfold and fourfold
symmetries, respectively. They are forced in by ‘frustration’, viz. the incom-
patibility of flat space with a space-filling icosahedral crystal.

Most glass forming alloy systems are able to form glasses over an extended
composition range. In some cases discontinuities in physical properties are
observed, which have been related to structural changes [37]. For instance, a
transition from dense random packing to the formation of random networks
was proposed for Fe1−xBx at x = 0.18. The above mentioned molecular
dynamics simulations have revealed more complex structural transitions in
metal-metal glasses [48].

Upon heat treatment amorphous alloys undergo rearrangement processes.
Structural relaxation and sometimes also phase separation, which are gener-
ally accompanied by drastic and detrimental changes in properties [49], may
occur already at temperatures well below Tg. Phase separation, giving rise to
inhomogeneities on a scale of some 10 nm, appears to be closely related to the
changes in the glassy structure with composition, mentioned above [50, 51].

Structural relaxation affects to a greater or lesser extent all physical prop-
erties, specifically structure sensitive quantities such as the viscosity and the
diffusion coefficient. Irreversible relaxation takes place when as-prepared sam-
ples are heated for the first time at elevated temperatures. On the time scale
of this process, there occur also much faster reversible relaxation processes,
which are superimposed on the irreversible background. The degree of irre-
versible relaxation appears to depend strongly on the rate of cooling during
preparation of the glass and is higher, e.g., for splat quenched than for melt
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spun samples [52]. Irreversible relaxation is accompanied by an increase in
density of the order of 0.1% and a narrowing of the first peak in the pair cor-
relation function g(r). These effects have been interpreted as resulting from
an elimination of extremely short and long atom distances in the nearest-
neighbor shell of a given atom [53].

After extended isothermal structural relaxation metallic glasses are in a
metastable non-equilibrium state that can be described in terms of thermo-
dynamics of metastable systems [54]. This is also reflected in the course of η
and D as function of time. η was found to increase linearly with t during re-
laxation. Consequently, the relative increase d ln η/dt decreases continuously,
and the system has often been described to approach a so-called isocon-
figurational state after sufficiently long times [55]. The diffusion coefficient
drops initially and reaches a plateau value which is reproducible and constant
within experimental error as long as annealing is not performed at very long
times close to Tg [56–58] (see also Fig. 6.6). Such conditions are excluded
in conventional metallic glasses due to the onset of crystallization. Recent
investigations on bulk metallic glasses have shown that the ‘plateau value’
is not constant and that complete relaxation from the frozen-in glassy non-
equilibrium state to the metastable equilibrium supercooled liquid state can
be achieved upon long-time relaxation [59, 60].

The mechanisms of structural relaxation are still discussed controversially,
though there is general agreement that the increase in density ρ and the
changes in g(r) involve the annealing of quenched-in excess volume. Accord-
ing to Egami [61], the large effect in η and the relatively small change in ρ
can be attributed to the mutual annihilation of regions of high positive and
negative atomic level stress. The movement of these ‘p and n defects’ involves
collective rearrangements of atoms. Within this concept the small increase
in ρ is caused by a second order effect that arises from the anharmonicity
of the interatomic potentials. Spaepen [62] has explained the increase in η
during structural relaxation within the free-volume model as resulting from
the bimolecular annihilation of frozen in free-volume fluctuations. There are
similarities between both models, in particular with regard to the internal an-
nihilation of frozen-in defects. Horváth et al. [56] have studied the relaxation
behavior of D. The time and temperature dependence could be described by
a single activation enthalpy. These authors came to the conclusion that re-
laxation takes place by annihilation of quenched-in ‘quasi-vacancies’ mainly
through migration to the outer surface. The quasi-vacancies are envisioned
as localized defects that are stable on the time scale of several atomic jumps.
We will come back to the mechanisms of structural relaxation in Sect. 6.5.5.

The role of defects, especially of thermal quasi-vacancies, in diffusion will
be discussed in the following sections. Unfortunately, positron annihilation,
which has been so successful in monitoring vacancies in crystals, does not
allow to identify unequivocally vacancy-like defects in metallic glasses because
of saturation trapping of the positrons at large interstices [63]. Computer
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simulations of the dense random packing of soft spheres of single component
glasses [64] indicate the existence of a high concentration of relatively large
octahedral and a portion of even larger interstices similar in size to a relaxed
vacancy in crystals. In multicomponent glasses the large voids may be filled by
the smaller atoms. Brandt [65] has demonstrated the stability of vacancies at
0K in computer simulations of a one-component system. However, this result
does not allow one to draw conclusions on the stability of vacancies at high
temperatures. Bennet et al. [66] have shown vacancies to be unstable in a
Lennard-Jones computer glass at elevated temperatures, whereas a Keating
potential was found to stabilize a point defect. More recent simulations based
in realistic metallic interatomic potentials have shown vacancy-like defects to
be stable on the limited time scale below 1ns [67].

So far we have focussed on irreversible structural relaxations. These can
be associated with long-range atomic transport. The aforementioned fast
reversible relaxation phenomena are most pronounced in multicomponent
glasses and have been attributed to local rearrangements of atoms within of
the general framework of β relaxation (Sect. 6.4, [68]). Anelastic coopera-
tive changes in the local structure, which may lead to a different chemical
short-range order, seem to be involved [69, 70].

In addition to fast reversible relaxation, slow reversible changes are ex-
pected to occur for many properties near the glass transition temperature
Tg [62]. As mentioned above the rapid crystallization of almost all conven-
tional glasses near Tg, however, made it difficult to study this behavior.
Gerling et al. [71] utilizing an up-quenching technique and neutron irradia-
tion [72] have demonstrated the occurrence of reversible changes in ductility
and density in several amorphous alloys. In the new bulk glasses, of course,
reversibility of properties can always be achieved by annealing above Tg and
subsequent cooling [59].

6.5.2 Possible Diffusion Mechanisms

We have seen that metallic glasses are prone to structural relaxation, phase
separation, and crystallization. Diffusion plays a mayor role in these processes
and is also important for solid-state amorphization alluded to in Sect. 6.5.1.
Nevertheless, despite of a considerable amount of research effort during the
last decades [4, 5, 45, 56, 73–76], the knowledge of diffusion in amorphous al-
loys has long been rather limited. Even after the discovery of the new bulk
metallic glasses with their stimulating effect on research several issues re-
main controversial. As for conventional metallic glasses, this is partly due to
experimental difficulties, such as the onset of crystallization, which restricts
the maximum annealing temperature and time to values corresponding to a
typical diffusion length of some ten nm. In order to circumvent the problems
concomitant with recording diffusion profiles on this length scale, conclusions
were often drawn from results of indirect methods like measurements of the
crystallization kinetics, viscosity, resistivity, magnetic anisotropy, and from
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x-ray and Mößbauer techniques. Often, however, an unequivocal relationship
between the measured quantity and the diffusion coefficient in the amorphous
phase could not be established. Moreover, despite employing direct techniques
based on high-resolution ion-beam depth profiling in combination with a ra-
diotracer method, mass spectrometry, or Auger analysis, many investigators,
particularly in the early measurements, did not properly take into account
structural relaxation. We have seen in Sect. 6.5.1 that the diffusivity is very
sensitive to relaxation, and that reproducible results can only be obtained in
well relaxed samples.

While, in view of the disordered nature of amorphous alloys, one would ex-
pect a temperature-dependent effective activation energy (Sect. 6.4), it is now
well established that Arrhenius plots for diffusion in the relaxed metastable
amorphous state are linear, i.e. they exhibit a constant activation energy H .
This has often been interpreted as being indicative of a diffusion mechanism
similar to that in crystals, where vacancy-like defects in thermal equilibrium
are the carriers of diffusion, even though resulting D0 values were sometimes
many orders of magnitude different from those typical of a vacancy mech-
anism. Moreover, numerous observations, e.g., the occurrence of anomalous
hydrogen diffusion [29] (cf. Sect. 6.4) and the difference in the activation en-
ergies for self-diffusion and magnetic relaxation, Kronmüller and Frank [27]
point to a broad spectrum of activation energies. Apparently, only a narrow
range of this spectrum is probed during long-range diffusion experiments in
the small accessible temperature interval. Furthermore, it has been shown
that compensation of side and saddle point disorder (see Fig. 6.2) may also
lead to a almost linear Arrhenius plot [26, 77]. An additional explanation of
the linear Arrhenius plots can be given in terms of a highly cooperative dif-
fusion mechanism, discussed below, which averages over local differences in
the barrier heights.

There are several experimental results that lend support to the idea of
defect-mediated diffusion in metallic glasses. For example, diffusion can be
enhanced by irradiation, which in crystalline materials produces additional
point defects. The annealing behavior of the radiation-induced excess volume
also resembles that of crystals [78, 79]. Moreover, the crystallization kinetics
of amorphous (FeNi)8(PB)2 were studied under hydrostatic pressure [76]. The
resulting activation volume of the order of one atomic volume was taken as
evidence of diffusion via point-defectlike entities in thermal equilibrium. It
should be noted, however, that the evaluation of diffusion coefficients from
measurements of the crystallization kinetics is a rather indirect approach
which has often been criticized [73,80]. Direct measurements of the pressure
dependence of diffusion will be discussed in detail in Sect. 6.5.4.

Tu and Chou [81] studied interdiffusion in electron-beam evaporated
amorphous NiZr trilayer films. Void formation was observed when both Ni
and Zr diffused. Since the voids formed on the side with the higher con-
centration of the slower species this was termed ‘opposite Kirkendall effect’.
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No voids were seen when Ni was the dominant diffusing species. The au-
thors concluded that self diffusion in the glass can be mediated by localized
vacancy-like defects, which may agglomerate like vacancies in crystals if their
concentration is out of equilibrium, as well as by non-localized ‘free-volume
defects’. A free-volume model of diffusion in metallic glasses has been pro-
posed by Spaepen [55]. The original theory for liquids (Sect. 6.3) was mod-
ified by introduction of an activation barrier for a diffusive jump into an
evolving hole. The free volume concept was corroborated by Chason and Mi-
zoguchi [82] who evaluated diffusion coefficients from the shift in position of
the modulated diffraction peak in compositionally modulated amorphous Fe-
Ti films as function of densification. The expected exponential dependence
of D on the free volume was indeed observed. Hahn and coworkers [83] mea-
sured the dependence of tracer diffusion on atomic size and alloy composition
in amorphous Ni-Zr. From similarities to α-zirconium they drew the conclu-
sion that small atoms, including Ni, diffuse by an interstitial-like mechanism,
using the interstices of the amorphous structure as jump positions. Such an
interstitial model of diffusion has been proposed by Ahmadzadeh and Can-
tor [84]. For larger atoms like Zr diffusion was explained in terms of the
coordinated motion of many atoms creating a localized free volume defect.

Cooperative diffusion mechanisms in metallic glasses have also been pro-
posed by others, [55, 73, 85–87], mostly in view of the extreme variety of
D0 values alluded to above, which reflects a corresponding variability of the
entropy of diffusion (Chap. 1). Furthermore, the lnD0-vs-H relationship de-
viates strongly from that for single-jump diffusion in crystals. The envisioned
atomistic picture is often reminiscent of or directly related to the free-volume
approach. Highly collective thermally activated processes, such as chain-like
displacements of many atoms have been observed in computer simulations,
which will be discussed in more detail below [41, 88, 89].

The new bulk metallic glasses have offered the opportunity to measure
diffusion in the supercooled liquid state and to investigate changes in the
transport mechanism concomitant with the glass transition and even in the
equilibrium melt. Several groups have carried out diffusion measurements
in bulk glasses during the last years by means of the radiotracer technique
[90,91] or secondary ion mass spectrometry [92] (see Chap. 1 for experimental
techniques). One generally observes a kink in the Arrhenius plot near the
caloric glass transition temperature as measured, e.g., by differential scanning
calorimetry (DSC). In accord with the expected time scale dependence of the
caloric glass transition temperature the kink is shifted to lower temperatures
for slower diffusing elements, and for Al no kink is observed in the investigated
temperature range, for instance. The kink in the Arrhenius plot has often been
interpreted as being due to a change in the diffusion mechanism [92, 93]. In
particular, a transition from single-atom hopping to liquid-like viscous flow
has been proposed at the caloric glass transition temperature Tg [94, 95].
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The notion of a change in the mechanism of atomic transport at Tg is in
conflict with predictions of the mode coupling theory (MCT) [96] discussed
in Sect. 6.4. According to MCT, a gradual transition in the atomic transport
mechanism from solid-like thermally activated local hopping – envisioned as
a highly collective process involving many atoms [25] – to liquid-like motion
occurs well above Tg at a microscopic glass transition temperature Tc. Tc

does not depend on the time scale of the experiment and is the temperature
where, upon cooling, due to the concomitant increase of density, the cage
formed by the neighboring atoms of a given atom is frozen in and can only
be overcome by hopping processes.

In the present light we are left with the following questions:

1. Is diffusion in fully relaxed metallic glasses generally mediated by thermal
equilibrium defects similar to vacancies in crystals as often suggested (see
review articles [18, 97])?

2. If thermal defects do not mediate diffusion, is diffusion in relaxed amor-
phous alloys a highly cooperative process as one would infer from com-
puter simulations and the concept of ‘medium assisted hopping’ discussed
in Sect. 6.4?

3. Which role do non-equilibrium defects play?
4. Do we have to consider different mechanisms for diffusion in relaxed and

as-quenched samples, in other words: how does quenched-in excess volume
affect diffusion?

5. Is there a change in the diffusion mechanism at the caloric glass transition
temperature or does the change occur above the critical temperature Tc
where, according to the mode coupling theory liquid-like atomic motion
sets in?

In the next sections we shall see that these questions can be answered
satisfactorily by critical experiments. Investigations of the isotope-mass de-
pendence of diffusion in relaxed samples (Sect. 6.5.3) are pertinent to the
second question. In Sect. 6.5.4 measurements of the pressure dependence of
diffusion will be discussed, which are related to the role of equilibrium defects.
The role of excess volume will be addressed in Sect. 6.5.5 mainly based on
measurements of the isotope effect during structural relaxation. Section 6.6
will be devoted to the 5th question. Here we will also discuss very recent
diffusion and isotope measurements in the equilibrium liquid.

6.5.3 Isotope Effect

A salient feature of diffusion in metallic glasses is the extremely small isotope
effect. The isotope effect E for diffusion of two isotopes with diffusivities Di

and masses mi is defined as ( [98], see also Chap. 1, Sect. 1.7.2)

E = (Dα/Dβ − 1)
/(√

mβ/mα − 1
)
. (6.9)
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Fig. 6.3. (a) Typical penetra-
tion profile of 57Co diffusion in
Pd40Cu30Ni10P20 at 603 K and 1 h
annealing time. The activity is
plotted vs. the square of penetra-
tion depth. (The very first data
points (open symbols) are affected
by surface effects and were not
taken in to account.) The resolu-
tion function of the depth profil-
ing technique, obtained from a thin
tracer layer without annealing, is
shown in black. (b) Corresponding
isotope effect profile. The activity
ratio of 57Co and 60Co is plotted
vs. the 57Co activity on a logarith-
mic scale. The dotted line indicates
an isotope effect of E = 1 and is
shown for comparison (from [60]).

For single jump diffusion in densely packed lattices E is generally of the order
of unity because of the m−1/2 dependence of the attempt frequency [98],
although correlation effects may give rise to a significant reduction of E,
particularly in case of diffusion of diluted impurities due to impurity-vacancy
binding (Chap. 1) [99]. E can also be strongly reduced by relaxation of the
surrounding [100] and a broad distribution of activation energies [101].

Almost vanishing isotope effects have been observed for Co diffusion in
various metallic glasses [102–106]. E was determined by measuring the si-
multaneous diffusion of the radiotracers 57Co and 60Co employing the serial
sectioning technique in conjunction with ion-beam sputtering. For illustra-
tion of the technique, which is described in Chap. 1, Fig. 6.3 depicts a typical
radiotracer profile on a semilogarithmic scale. According to the thin film so-
lution of Fick’s 2nd law (Chap. 1, (1.9)) a straight line fitted to the profile
has the slope 1/(4Dt) and thus yields the tracer diffusivity D if the annealing
time t is known. In order to obtain the isotope effect one can easily derive
the following equation based on the thin film solution

ln[cα(x, t)/cβ(x, t)] = const.− (Dβ/Dα − 1) · ln[cβ(x, t)] . (6.10)

Equation (6.10) shows that the slope of a straight line fitted to the data in
Fig. 6.3b is given by Dα/Dβ −1. The isotope effect E then follows from (6.9)
and the isotope masses. Representative isotope effects for Co-Zr glasses are
shown in Fig. 6.4.
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Fig. 6.4. Isotope effect in CoxZr1−x

glasses for 0.31 < x < 0.86. One
notes that the isotope effect is very
close to zero in the whole concentra-
tion range [105].

The essentially vanishing isotope effects measured in metallic glasses were
taken as strong evidence of a highly collective hopping mechanism, as sug-
gested by the notion of highly cooperative medium assisted hopping (see
Sect. 6.4) and molecular dynamics (MD) simulations [107–109]. In these terms
the extremely small isotope effects are attributed to a strong dilution of the
mass dependence of diffusion due to the participation of a large number of
atoms in collective hopping processes.

In MD simulations mainly chain-like displacements have been observed
[88]. Both the computer simulations as well as the isotope effect measurements
suggest the number of atoms participating in a cooperative hopping process
to be very high, typically well above ten [109,110].

Computer simulations also indicate a connection between the low-fre-
quency excitations in glasses and long-range diffusion [88]. These low-fre-
quency excitations appear to be characteristic of topologically disordered
solids [111–114]. They give rise to extra specific heat at low temperatures and
to additional contributions to the low-frequency part of the vibrational den-
sity of states as obtained by Raman and inelastic scattering. Close to absolute
zero temperature the excitations can be attributed to tunneling (two-level)
systems and at somewhat higher temperatures to quasi-localized vibrational
states [113]. In addition to the periodic low frequency excitations aperiodic
thermally activated relaxations have been observed [115]. Fits of an extended
soft-potential model to experimental data resulted in effective masses of 20 to
100 atomic masses for the entities moving in the effective soft potentials. In a
soft-sphere glass, which is a first approximation of a metallic glass, the local
relaxations turned out to be collective jumps of groups of atoms, predom-
inantly chains (sometimes with side-branches) along dense directions [115].
The effective mass and the total jump length of the atoms were found to
increase with increasing temperature, and the possibility of fusion of isolated
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relaxations at high temperatures was demonstrated. It is not unlikely that
such processes lead to long-range diffusion. We emphasize, however, that our
isotope effect measurements do not rule out other cooperative mechanisms,
e.g., those involving smeared out defects.

6.5.4 Pressure Dependence

Information on the role of thermal defects have been obtained from measure-
ments of the pressure dependence of diffusion. For a single-jump-type vacancy
mechanism in crystalline close packed metals the activation volume, given by

Vact ≈ −kBT

(
∂ lnD
∂p

)
T

, (6.11)

is of the order of the size of the relaxed vacancy, i.e., somewhat smaller than
one atomic volume [98]. In (6.11) D, p, T , and kB are diffusivity, pressure,
absolute temperature, and Boltzmann constant, respectively. For interstitial
diffusion, i.e. a direct mechanism without thermally generated defects, the
activation volume proved to be nearly vanishing [98]. Both observations sug-
gest the activation volume to be essentially given by the formation volume of
the defect and the migration volume for a single-jump mechanism to be very
small.

Several measurements, carried out by our group [116–118] and the Münster
group [119], have revealed an almost vanishing pressure dependence for
Co diffusion in the metallic glasses Co76.7Fe2Nb14,3B7, Fe40Ni40B20, and
Co81Zr19. A recent example is shown in Fig. 6.5 [118]. This in conjunction
with the very small isotope effects, measured in these systems, led us to the
conclusion that the migration volume can be close to zero even for a coop-
erative hopping process involving many atoms. Consequently, diffusion was
interpreted in terms of direct cooperative hopping process as observed in the
above mentioned MD simulations.

On the other hand, a pronounced pressure dependence, corresponding
to activation volumes between one half and two atomic volumes, expressed
in terms of the average atomic volume of the alloy, was reported for Au
diffusion in amorphous Pd40Ni40P20 [120], Ni diffusion in NixZr100−x (42 <
x < 62) [121] and Co42Zr58 glasses [122], Hf diffusion in Ni54Zr46 [123], and
Zr diffusion in Co91Zr9 [124]. Based on our aforementioned conclusion on
the possibility of very small migration volumes even for cooperative hopping
processes we tend to attribute the observed significant activation volumes to
formation of thermal defects, which, however, may not necessarily be localized
like a vacancy in a crystal but are expected to be spread out. On the other
hand, recent results from MD simulations indicate that collective hopping
processes may have a significant migration volume [109].

Of particular interest is the case of Co-rich Co-Zr glasses. Here Co seems
to diffuse by a cooperative hopping process without assistance of thermal
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Fig. 6.5. Isothermal pressure dependence of 57Co diffusion in structurally relaxed
amorphous Co81Zr19 at 563 K [118]. The dashed line corresponds to an activation
volume of one atomic volume.

defects, judging from a vanishing isotope effect [104] and an almost vanishing
pressure dependence [118]. Diffusion of Zr, in contrast, is characterize by a
large activation volume of the order of an atomic volume, which we attributed
to diffusion via thermal defects [124]. This points to the existence of an op-
posite Kirkendall effect in interdiffusion in amorphous Co-Zr or Ni-Zr alloys
which should behave similarly. An opposite Kirkendall effect, evidenced by
void formation on the side with a higher concentration of the slower com-
ponent, was indeed reported under conditions where both Ni and Zr were
mobile in interdiffusion experiments involving amorphous Ni-Zr couples of
different composition. As expected no such effect was seen when only Ni was
mobile (see Sect. 6.5.1) [81]. These experiments lend support to the existence
of thermal defects that mediate diffusion.

Mechanisms based on delocalized thermal defect have been proposed be-
fore [55, 97, 125, 126]. A well known example is the spread out free vol-
ume within the free-volume approach modified for glasses (see Sect. 6.5.2)
[55, 94, 127].

6.5.5 Effect of Excess Volume on Diffusion

So far, we have discussed diffusion in structurally relaxed metallic glasses.
Only in these systems the structure is stable during a diffusion experiment,
and reproducible diffusion measurements can be made, if the diffusion tem-
perature does not significantly exceed the relaxation temperature and the
diffusion time in not too long. On the other hand, conventional metallic
glasses, and to some extend also bulk glasses [128, 129], contain excess vol-
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ume quenched in from the liquid state. This excess volume affects nearly all
properties [130] and enhances diffusion [131,132]. Therefore, we have investi-
gated the influence of excess volume on the diffusion mechanism by measuring
both the diffusivity and the isotope effect during structural relaxation of as
quenched glasses. First measurements were carried out for Co diffusion in
a Co-rich metal-metalloid glass [133]. The isotope effect was found to be as
high as 0.5 in the as-quenched state and to drop to a very low value of 0.1 in
the relaxed state evidenced by a plateau region of the diffusivity. The high
isotope effects in an as quenched state corroborates the notion of quenched-in
quasi-vacancies, which migrate to the outer sample surface during structural
relaxation [56].

On the other hand, our recent isotope effect measurements in thin amor-
phous Co-Zr films do not show any change in the diffusion mechanism during
structural relaxation and point to a collective hopping mechanism in the
relaxed and in the as-quenched state [132,134]. As shown in Fig. 6.6a the dif-
fusivity drops substantially during relaxation and finally reaches the expected
plateau value. The course of D(t) is well described by the Kohlrausch law
given in (6.7). The isotope effect in very low in the whole range (Fig. 6.6b)
reflecting highly collective diffusion. Similar behavior was observed in thin
Co81Zr19 films. Apparently, in the thin Co-Zr films excess volume appears to
annihilate intrinsically, e.g., by recombination of regions of higher and lower
density on the nanoscopic scale as first suggested by Egami et al. [130].

6.6 Diffusion in Supercooled and Equilibrium Melts

Most diffusion studies in the new bulk-glass formers where performed in the
amorphous ‘Johnson alloy’ Zr47Ti8Cu7.5Ni10Be27.5 also termed Vitrelloy 4.
An Arrhenius plot summarizing the results for the is shown in Fig. 6.7, for
example. One notes the aforementioned kinks shifting to lower temperatures
for slower diffusing species, which have often been interpreted as a change
in the diffusion mechanism at the caloric glass transition temperature. The
diffusivities follow the expected size dependence (for a detailed discussion
see, e. g., Chap. 5 in [5]) in both the glassy and the supercooled liquid state
except for the Be data reported by Geyer et al. (dashed line in Fig. 6.7). The
intersection of the Be diffusivity with those of substantially larger elements
is quite unusual and contradicts expectations on the size dependence of dif-
fusion as well as more general concepts of the convergence of the diffusivities
at higher temperatures (above Tc) as predicted by the Stokes-Einstein equa-
tion. While Geyer at al. performed chemical diffusion experiments, which are
influenced by the thermodynamic factor [99] recent radiotracer experiments
of our group in cooperation with the group of Geyer demonstrated that the
behavior of Be is by no means exceptional. As shown in Fig. 6.7, the radio-
tracer data of Rehmet et al. [135] (solid line) nicely fit in with the overall
picture. The differences between the tracer and the chemical diffusion data
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Fig. 6.6. (top) Time dependence of 57Co diffusion in Co51Zr49 during structural
relaxation at T = 300◦C. The squares indicate samples that have been preannealed
at T = 380◦C for 1 h. Circles indicate specimens that have not been preannealed
before diffusion treatment while the specimen described by a triangle was annealed
for 1.5 h and again for 4.75 h. The straight line represents the time-averaged dif-
fusivity, the dashed line shows the instantaneous diffusivity (for details see 132).
(bottom) Isotope effect E in Co51Zr49 during structural relaxation. The squares
indicate the preannealed samples while circles display the specimens which have
not been preannealed before diffusion annealing. The specimen represented by a
triangle was annealed for 1.5 h and again for 4.75 h.

are not yet understood. They cannot be attributed to the thermodynamic
factor, which goes to unity at high temperatures.

Recently, we have also carried out isotope effect measurements involving
the isotopes 57Co and 60Co by means of the radiotracer technique in the
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Fig. 6.7. Arrhenius
plot summarizing the
diffusivities of various
tracers in amorphous
Zr47Ti8Cu7.5Ni10Be27.5.
The data were taken
from the following ref-
erences: Be [143], B,
Co, Fe, Al [92], Co [90].
The sequence of the
curves is as in the leg-
end. Data for Ni [91],
being close to those of
Co, are omitted for sake
of clarity.

deeply supercooled liquid state of metallic bulk-glass-forming alloys. Results
for Vitrelloy 4 and a well known ‘Inoue glass’ are displayed in Fig. 6.8. For
experimental details the reader is referred to [90, 136].

One notes that the isotope effect is very small in the whole temperature
range and exhibits no temperature dependence. The magnitude of the isotope
effect is similar to the isotope effects found in the glassy state of conventional
metallic glasses [103–105,116]. This support the view that the diffusion mech-
anism does not change at the caloric glass transition temperature and that the
highly collective hopping processes occurring in the glassy state still deter-
mine long-range diffusion in the deeply supercooled melt. Collective hopping
of many atoms has recently also been observed in deeply supercooled melts
in MD simulations [137]. The order of magnitude of 10 atoms participating in
the hopping processes is in agreement with the measured E values [90, 136].

Recently, we measured the isotope effect in a Pd40Cu30Ni10P20 alloy at
one and the same temperature in the glassy state and after long-time relax-
ation in the supercooled liquid state [60]. Although the diffusivity dropped
by about an order of magnitude, the isotope effect did not change and was
close to zero in both states (Fig. 6.9). This provides further evidence of the
absence of a change in the diffusion mechanism at the caloric glass transition
temperature.

Since this macroscopic glass transition is a transition from a metastable
equilibrium state above Tg to a non-equilibrium state below Tg there is an ob-
vious explanation of the kinks in Arrhenius plots. In the glassy state diffusion
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Fig. 6.8. Isotope effect as function of temperature for Co diffusion in bulk metal-
lic glasses. The data are taken from [90]. The diffusivities in the Be-containing
“Johnson glass” are displayed as squares.

takes place in a frozen-in structure which does not change with temperature
(except for irreversible structural relaxation [59, 131, 138]). Above Tg, how-
ever, any increase in temperature gives rise to structural changes, e.g., an
increase in free volume which is certainly expected to enhance diffusion. In
these terms the increase in slope in the Arrhenius plots near the calorimet-
ric glass transition temperature (see Fig. 6.7) is simply due to temperature
dependent structural changes. Therefore, the slope −kB∂ lnD/∂T−1 above
Tg can no longer be regarded as an activation energy and should be termed
apparent or effective activation energy.

Using a novel Pd43Cu27Ni10P20 alloy, which exhibits exceptional stability
against crystallization, we were recently able to study for the first time long-
range diffusion at and above Tc in a metallic system [139]. The results are
shown in Fig. 6.9. Below Tc one notes Arrhenius behavior in conjunction with
a very low isotope effect as observed before (see Figs. 6.7 and 6.8, and the
data for Pd40Cu30Ni10P20 in Fig. 6.9). This was attributed to thermally acti-
vated highly collective hopping in the preceding chapter. Above Tc, however,
our data provide clear evidence of a change in the atomic dynamics. The ef-
fective activation energy −kB∂ lnD/∂T−1 (slope in Fig. 6.9) drops gradually
as expected from the onset of viscous flow in the mode coupling scenario. Due
to the increasing influence of liquid-like motion the nearest neighbor barriers
should gradually decay as the temperature is increased above Tc. Our diffu-
sion data are even in good quantitative agreement with a fit of the idealized
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Fig. 6.9. Temperature dependence of (top) Co diffusivity and (bottom) isotope
effect in Pd40Cu30Ni10P20 and Pd43Cu27Ni10P20. The diffusivity is plotted on a
semi-logarithmic scale vs. 1/T . Open squares show data for Ni and Cu diffusion
from quasielastic neutron scattering (QENS) in Pd43Cu27Ni10P20. The dashed line
is a fit of the idealized mode coupling theory to the QENS data (see text). The
melting temperature Tm (more precisely, the quasi-eutectic melting temperature)
and Tc, determined from the fit to the QENS, data are displayed. Below Tc the tracer
diffusivity data were fitted by an Arrhenius law. Open circles represent samples in
the glassy state at different stages of structural relaxation.
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Fig. 6.10. Comparison of measured tracer diffusivities with diffusivities calculated
from the Stokes-Einstein relation [141,144].

mode coupling theory to quasielastic neutron scattering data [140] above Tm.
The idealised MCT neglects hopping processes and predicts a [(T −Tc)/Tc]γ

dependence, as shown in Fig. 6.9 (dashed line). Thus, the present results
strongly support the mode coupling approach for metallic glass formers.

The transition from solid-like hopping below Tc to liquid-like atomic mo-
tion above Tc is also reflected in the behavior of the viscosity. Above Tc dif-
fusivities calculated from the Stokes-Einstein relation (see (6.5)) agree well
with the tracer diffusion data (Fig. 6.10). Below Tc, however, Co diffusion
and viscous flow are clearly decoupled.

We point out that the excellent agreement between our long-range dif-
fusion data and the diffusivities from quasielastic neutron scattering, which
measures short-range diffusion, allows convection effects to be ruled out. The
absence of convection effects, which are a severe problem in diffusion mea-
surements in ordinary liquids and melts under gravity conditions, is in accord
with the about two orders of magnitude higher viscosity of the present melt,
compared to ordinary melts, at the liquidus temperature [141].

The high viscosity of the Pd43Cu27Ni10P20 melt is reflected in a remark-
ably low isotope effect close to zero even in the equilibrium melt. This shows
that the present Pd-Cu-Ni-P melt is still far away from the hydrodynamic
regime of uncorrelated binary collisions as much as 200K above Tc. For the
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hydrodynamic regime kinetic theories predict [7, 16] predict a m−1/2 mass
dependence and hence an isotope effect close to unity (see (6.2)

The behavior of the excellent glass-forming alloy contrasts sharply with
that of simple melts such as liquid Sn, which exhibits an isotope effect of the
expected order of unity [13]. Molecular dynamics simulations [142] indicate a
strong correlation of isotope effect and density of the liquid and suggest the
present very low E value to be due to the small density difference between
glassy and liquid state of only about 3%. The strongly coordinated atomic
motion up to the equilibrium liquid, evidenced by the very low isotope effect,
appears to be the key to exceptional glass forming ability of the present alloy.

6.7 Conclusion

Amorphous metallic alloys, also termed metallic glasses, are the paradigm
of dense random packing. Conventional metallic glasses are very prone to
crystallization and do not lend themselves for diffusion studies above the
glass transition temperature. With the discovery of novel bulk-glass-forming
alloys diffusion in metallic systems can now be investigated from the glassy
state up to the equilibrium melt. This is of considerable interest not only
from the technological point of view but also in terms of fundamental science,
particularly in connection with the glass transition. According to the mode
coupling theory the glass transition is a kinetic phenomenon characterized
by the arrest of viscous flow at a critical temperature Tc well above the
calorimetric glass transition temperature Tg. Below Tc an extension of the
original theory predicts cooperative hopping processes.

In this chapter we focus on results from radiotracer measurements of dif-
fusion and frequently refer to molecular dynamics simulations, which have
provided much insight into the underlying diffusion mechanisms. The tracer
diffusivity is not affected by thermodynamic effects and is hence directly
related to the atomic dynamics. In particular, we present results from iso-
tope effect measurements which indeed confirm the highly collective nature
of diffusion in structurally relaxed metallic glasses. The highly cooperative
hopping processes seem to be closely related to the universal low-frequency
excitations.

We also address the role of defects based on measurements of the isother-
mal pressure dependence which can be interpreted in terms of the activation
volume of diffusion. The corresponding results do not reflect a uniform pic-
ture. Depending on the structure of the glass, essentially vanishing activation
volumes and those of the order of an atomic volume have been observed. The
vanishing activation volumes found in several conventional metallic glasses
clearly allow diffusion via thermal defects to be ruled out. Large activation
volumes in conjunction with a very small isotope effect have mainly been
interpreted as being indicative of cooperative hopping that takes place by
assistance of thermally generated defects. This interpretation is not unique,
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judging from recent molecular dynamics simulations which reveal a significant
migration volume for a direct collective hopping process. In line with the pos-
sibility of defect-mediated diffusion we provide evidence of the existence of an
opposite Kirkendall effect in interdiffusion between certain amorphous alloys
that combine slow diffusion via thermal defects and fast direct diffusion.

We also address the role of quenched-in excess volume in metallic glasses.
On the one hand, isotope effect measurements during structural relaxation in
melt-spun ribbons support the notion of quenched-in vacancy-like defect that
enhance diffusion and anneal out during irreversible structural relaxation by
migration to the outer surface. On the other hand, similar measurements in
thin metal-metal glasses clearly point to highly cooperative diffusion even in
the as-quenched glassy state and to internal annihilation of excess volume.

In accord with the mode coupling scenario cooperative hopping processes
are also observed in the supercooled liquid state up to Tc. Kinks in Arrhenius
plots are shown to be related to structural changes above Tg but not to a
change in the diffusion mechanism. Above Tc the effective activation energy
drops gradually as expected from the decay of barriers, induced by the onset
of liquid-like atomic motion. Isotope effect measurements in Pd-based alloys
show atomic transport up to the equilibrium melt to be far away from the
hydrodynamic regime of uncorrelated binary collisions. This appears to be a
prerequisite of excellent glass forming abilities.

Notation

a atomic radius (in Stokes-Einstein eq.)
D diffusion coefficient
D0 prefactor of Arrhenius law
D0 diffusion coefficient at zero frequency
E isotope effect parameter
f correlation factor
g(r) pair correlation function
H activation enthalpy of diffusion
H0 activation enthalpy distribution
kB Boltzmann’s constant
mi mass of isotope i
m+M effective mass
p (hydrostatic) pressure
S(q) structure factor
T absolute temperature
Tc critical temperature of mode coupling theory
Tg caloric glass transition temperature
Tm quasi-eutectic melting temperature
TVF Vogel-Fulcher temperature
T0 reference temperature for free volume theory
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Vact activation volume
v̄ mean velocity
vf mean free volume per molecule
β parameter of Kohlrausch law
η viscosity
λ mean free path
τ relaxation time
ν0 attempt frequency
Φ(t) relaxation function
Ω atomic volume
ω frequency
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25. L. Sjögren: J. Phys. B 79, 5 (1991)
26. J.W. Haus, K.W. Kehr: Phys. Rep. 150, 263 (1987)
27. H. Kronmüller, W. Frank, A. Hörner: Mater. Sci. Eng. A 133, 410 (1991)
28. A.K. Jonscher: Nature (London) 267, 673 (1979)
29. W. Schirmacher, M. Prem, J.-B. Suck, A. Heidemann: Europhys. Lett. 13,

523 (1990)
30. H. Kronmüller, W. Frank: Radiation Effects and Defects in Solids 108, 81

(1989)
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132. V. Zöllmer, H. Ehmler, K. Rätzke, P. Troche, F. Faupel: Europhys. Lett. 51,

75 (2000)
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7 Fluctuations and Growth Phenomena

in Surface Diffusion

Michael C. Tringides and Myron Hupalo

7.1 Introduction

The development of new and innovative techniques over the last 40 years
to study in a controlled way the adsorption of atoms on surfaces has led
to increased interest in the problem of surface diffusion and to explosive
publication growth in the field [1, 2]. The interest in the problem is driven
both by questions of fundamental science and by the role of surface diffu-
sion in controlling the growth of atomic scale structures, which can have
potential technological applications. Atoms adsorbed on surfaces (at least in
the submonolayer regime) provide a true realization of two-dimensional (2D)
systems, so it is possible to test many theoretical predictions of dynamic phe-
nomena in 2D statistical mechanics. At the same time, surface diffusion is the
key process that controls the formation of nanostructures which can be used
as building blocks in electronic nanodevices (i.e. lasers, switches, transistors
etc.) of increasing speed and storage capacity. However within the limited
space of this chapter it is not possible to give justice to the wide-range ac-
tivity in the field and only selected topics covering different aspects of the
problem will be presented. Still we hope even this limited view of surface
diffusion will convey the tremendous progress and excitement in the field.

The chapter is organized as follows. In Sect. 7.2 a broad overview of
surface diffusion is presented, with a short discussion of measurement meth-
ods and unique features of the diffusion problem related to properties of
surfaces (i. e. geometry of surfaces, adatom interactions, equilibrium vs non-
equilibrium methods). Next, four experiments are discussed in detail in order
to illustrate the general issues presented in the overview. Section 7.3.1 de-
scribes equilibrium diffusion measurements in reciprocal space on stepped
Si(100) from diffraction fluctuations. Section 7.3.2 describes equilibrium dif-
fusion measurements in real space on H/Si(111) with scanning tunnelling
microscopy (STM) current fluctuations. Next, non-equilibrium methods are
discussed, viz in Sect. 7.4.1 non-equilibrium growth studies on Pb/Si(111) at
low temperatures and the observation of self-organized uniform height islands
as a result of quantum size effects (QSE). Section 7.4.2 presents measure-
ments and theoretical analysis of interlayer diffusion in Ag/Ag(111) which
is responsible for the 3D growth observed at all temperatures. Section 7.5
lists some general remarks about equilibrium vs non-equilibrium diffusion.
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Hopefully the reader can appreciate the wide-ranging concepts and diversity
in the field of surface diffusion despite the subjective and limited choice of
experiments discussed.

7.2 Surface Diffusion Beyond a Random Walk

7.2.1 The Role of Structure and Geometry of the Substrate

The traditional paradigm used to describe surface diffusion is the random
walk of an atom diffusing on a rigid 2D lattice. The atom jumps to nearest
neighbour sites with constant probability and its mean square displacement
〈(Rt−R0)2〉 = 4Dtt grows linearly vs time with the constantDt, the so-called
tracer diffusion coefficient. The lattice is described in an abstract way, as a
periodic arrangement of mathematical points which is far from the structure
and geometry of a real surface. Surface atoms have finite size and varying co-
ordination with their neighbors depending on the symmetry of the underlying
lattice and the atom position on the lattice. Surface atoms are connected with
their neighbours and the diffusing atom with finite forces. As a result of the
motion of the diffusing atom, they can move out of their initial equilibrium
to new relaxed positions to minimize the total energy of the system. The sub-
strate is therefore not passive and rigid, as in the picture of a mathematical
random walk, but actively participates in determining the optimal pathway
of the lowest barrier. Although the relaxation of the surface atoms affects the
jumping probability to the nearest site and the energetic barrier, it does not
change the basic stochastic nature of the process as a random walk.

Figure 7.1 illustrates the complexities related to the structure of real
surfaces by using the ball model for an fcc(111) surface with two exposed
levels separated by a step [3]. Different types of atoms are seen with increasing
bonding coordination: adatom detached from the step to the terrace, kink
atoms, step atoms and terrace atoms. Depending on the specific structure and
the growth conditions used, different diffusion processes can be the controlling
factors of the observed structures. In general, terrace diffusion of adatoms
controls mass transport across the surface. Step shape, whether regular or
ramified, is controlled by 1D diffusion of the kink atoms at the island edges.
Even this 1D diffusion has additional complexity as seen from the difference
in the structure of the two steps shown, denoted by A- (Fig. 7.1(a)) or B-type
(Fig. 7.1(b)), dictated by the stacking sequence of the fcc(111) lattice. Atoms
at A-type edges form square (100)-type unit cells with the row of substrate
atoms below; while atoms at B-type steps occupy the in-between sites of the
row of atoms below and form triangular (111)-type unit cells. (If the islands
were of multiple heights, A-type steps develop into (100) and B-type steps
develop into (111) facets).

We have briefly described one major aspect of the surface diffusion prob-
lem, the role of the energetic barriers and kinetic pathways on the formation
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Fig. 7.1. Ball models for the two types of fcc(111) steps: A- (at the top) and B-type
(at the bottom). In each case a straight step and a step with kinks is shown.

of the different atomic scale structures. This is a major research area within
the surface diffusion community, driven by close interaction between theory
and experiment: the potential energy surfaces can be reliably mapped out
with an arsenal of theoretical techniques and directly compared to experi-
ments to identify the corresponding kinetic pathways. The theoretical meth-
ods range from ab initio methods [4] (i.e. the force fields of the adsorbed
atom to the substrate are calculated from Quantum Mechanics) and approx-
imate methods [5] (where the adatom-substrate interactions are parametrized
with effective classical potentials and the time evolution of the system follows
Newton’s equations of motion). Correspondingly the atomic pathways in real
systems are inferred by comparing initial to final state images obtained with
atom resolving techniques (i.e. scanning tunneling microscopy (STM), field
ion microscopy (FIM)). Although this aspect of the problem is a very active
research area in surface diffusion, it will not be covered in this article and
interested readers can consult the literature [1, 2].

However, even after the pathway of individual atoms is fully determined,
it is still an open question to show how this atomistic information can be used
to account for the results of finite coverage experiments, when many atoms
cooperate to form complicated configurations . As will be seen in this chapter,
which emphasizes the many-body aspect and cooperativity in the problem
of surface diffusion, this is another active research area within the commu-
nity. The cooperativity is particularly important under equilibrium condi-
tions when thermal averaging over all the microscopic processes is required.
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However, atomistic information can be sufficient under non-equilibrium con-
ditions. A single microscopic process can fully determine the outcome of the
experiment if this process has a time constant comparable to the duration
of the experiment and all other processes “freeze out” because they have
larger time constants. In epitaxy, for example, single atom terrace diffusion
can fully determine the nucleated island density during irreversible growth
at sufficiently low temperatures [6].

7.2.2 The Role of Adsorbate-Adsorbate Interactions

The second complexity of the problem of surface diffusion, stated in the pre-
vious section, is related to the cooperativity and interactions between the
diffusing atoms at finite coverage [7]. As seen from the formation of ordered
phases of different symmetry formed at low temperatures, the atoms expe-
rience strong mutual interactions to generate the ordering. When interac-
tions are present diffusion is not a simple random walk, because the jumping
probability to the nearest neighbor sites depends on the local environment
of the diffusing atom rather than being constant. For example, in a simple
model with nearest-neighbour repulsive interaction J the jumping probabil-
ity ezJ/kBT depends on the number of nearest neighbours z of the diffusing
atom, as implemented in Monte Carlo algorithms.

At high temperatures no single microscopic process of barrier Ei (i.e. ter-
race diffusion, edge diffusion, dimer diffusion, atom detachment from islands
etc.) controls the dynamics of the system because all rates (∼ eEi/kBT ) of the
different microscopic processes become comparable and an averaging over all
the processes is necessary (cf. Chap. 18).

The magnitude of the interactions between the adatoms depends on the
strength of the bonding to the substrate. For example, in chemisorbed systems
the bonding to the substrate is strong and the adatom interactions larger than
about 0.1 eV, because they involve charge transfer or are mediated via the
conducting electrons of the substrate [8]. Physisorbed atoms (e. g. noble gases)
are weakly bound to the substrate, with van der Waals type interactions
between the adatoms that are less than about 0.1 eV, i. e. comparable to
the potential corrugation of the substrate. In some systems, strong long-
range adatom interactions mediated through the anisotropy of the intrinsic
substrate stress can be present (i. e. stepped Si(100), Au(23 ×

√
3). They

result in the spontaneous formation of periodically arranged domains of large
size determined by the competition between the energy increase (because of
missing bonds at the domain boundary) and the energy decrease due to the
long-range stress mediated interactions [9].

Adatom interactions modify the energy minima at the binding site of the
adsorbed atom and the corresponding diffusion barrier. Qualitatively, the ef-
fect of the interactions on diffusion is summarized as: repulsive interactions
lower the diffusion barrier while attractive interactions raise it. It is not a pri-
ori clear how competing interactions will affect the barrier. Since the number
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of atoms within the local environment of the diffusing atom increases with
coverage, one expects the diffusion coefficient to be coverage dependent. This
in turn changes the linear diffusion equation into a non-linear one

∂θ

∂t
= ∇Dc(θ)∇θ (7.1)

where θ(r, t) is the coverage at position r and time t and Dc the collective
diffusion coefficient. The coverage is defined as the ratio θ = c(r, t)/c0 with
c(r, t) the concentration at r, t and c0 the saturation concentration, i. e. when
all binding sites on the surface are filled. However, as will be discussed later,
for systems truly at equilibrium the coverage dependence is not a severe prob-
lem and the diffusion equation can be still treated as linear if the variation of
θ is small (a few % from its average value θ), which justifies the assumption
that Dc(θ) is constant.

Extensive theoretical work has already been carried out to answer quan-
titatively the question how adsorbate-adsorbate interactions affect diffusion
[1, 2]. Commonly a lattice gas model is used, with an effective Hamiltonian
which includes the adatom interactions, to deduce the concentration and tem-
perature dependence of the diffusion coefficient D(θ, T ) (where D refers to
either Dt and Dc). The Hamiltonian is written in the form

H =
∑

〈ninj〉
Jijninj +

∑
〈ninjnk〉

Jijkninjnk + . . . (7.2)

where ni = 1, 0 denotes the occupation of site i, Jij denotes the pairwise
interaction energy between sites i and j, Jijk a trio interaction between a
triplet of sites, etc.. In principle, the Hamiltonian can include more complex
interactions than the pairwise and trio interactions shown above, but (7.2)
can account for the majority of the ordered phases observed experimentally.
The calculation of D(θ, T ) for a given Hamiltonian and set of interaction
energies {J ’s} is carried out either analytically (i.e. mean field theory of var-
ious levels of sophistication, renormalization group techniques), numerically
(series expansion methods), or, far more commonly, with Monte Carlo simula-
tions. The family of calculated curves D(θ, T ) from (7.2) are compared to the
corresponding measured curves to obtain the best agreement with the exper-
imental results. Since the temperature dependence of the diffusion coefficient
is commonly parametrized in Arrhenius form D = D0(θ) exp−(E(θ)/kBT ),
in practice, the extracted parameters from the data (i.e. the prefactor D0(θ)
vs θ and activation energy E(θ) vs θ) are compared to the calculated ones.
It would have been far more efficient if it were possible to do the analysis
inversely i. e. to start from the experimental quantities D0(θ) and E(θ) and
deduce the appropriate Hamiltonian (7.2) and the interaction parameters
{J ’s}. In practice, the Hamiltonian is based on information obtained inde-
pendently in other experiments (for example low energy electron diffraction
(LEED) measurements of I vs θ or I vs T to determine the different or-
dered regions of the system and to map out the phase diagram [10]). But
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Fig. 7.2. Schematic energy dia-
gram of hopping from an initial
energy state Ei to a final state
Ef , through the saddle point of
energy Es. ∆E denotes the en-
ergy change because of adatom
interactions.

even if such inversion in the data analysis were possible, there would still be
the question whether the Arrhenius pametrization of D(θ, T ) over the whole
temperature range is justified or whether non-Arrhenius behaviour should
be expected. Arrhenius expressions are empirically used by experimentalists
over limited temperature range (∼ 100K) but it is not clear what is the full
theoretical justification of this practice.

In a simple-minded way the Arrhenius expression is explained in terms
of the 1D energy diagram of Fig. 7.2. At temperature T and in the har-
monic approximation the adsorbed adatom oscillates at the well minimum
because of its thermal energy. It can overcome the energy barrier with a
temperature-dependent probability which leads to the Arrhenius-like expres-
sion D = D0(θ) exp(−E(θ)/kBT ). In the θ → 0 limit E(θ) is the energy
difference between the minimum and the saddle point in the potential energy
surface of a single adatom and the prefactor is simply D0(θ → 0) = 1/4a2ν
where a is the lattice constant and ν the typical adatom vibrational frequency.
Such expressions are better justified at low temperatures or for strong bar-
riers, when the typical residence time of the adatom in the potential well is
much longer than the vibrational time of the substrate phonons, so the pic-
ture of an adatom adsorbed at the minima of a rigid potential energy surface
as shown in Fig. 7.2 is better justified.

In addition to the coverage and temperature dependence of the diffu-
sion coefficient, important questions related to how sensitive D(θ, T ) is to
the phase boundaries separating different ordered regions and whether crit-
ical effects resulting from phase transitions can be observed in the θ or T
dependence of D, have been actively pursued and will be discussed later.

7.2.3 Diffusion in Equilibrium and Non-Equilibrium
Concentration Gradients

Fluctuation Measurements

Diffusion is a result of the presence of non-zero concentration gradients in
the system. These gradients exist either because they are imposed as initial
conditions, i.e. at t = 0 the coverage θ(r, t) has an externally imposed value
θ0(r, 0) (different from its average equilibrium value θ) or they are generated
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because chemical potential gradients∇µ(r) exist in the system. Such chemical
potential gradients are present even at equilibrium (i.e. when the average
coverage θ is constant both in time and space) because the energy cost of
adsorption at a site depends on the type of site occupied. It is more general
to write the diffusion equation in terms of the chemical potential gradient
(cf., e. g., Chap. 5)

J = −L∇µ (7.3)

where J is the adatom flux generated by the gradient ∇µ and L a phenom-
enological transport coefficient. Using the continuity equation

c0
∂θ

∂t
+ ∇J = 0 (7.4)

we derive (7.1) with Dc related to L by the expressionDc = (∂µ/∂θ)L. When
the system is at equilibrium, the derivative ∂µ/∂θ is determined thermody-
namically from the µeq(θ) isotherm of the system, otherwise the chemical
potential µ(θ) under non-equilibrium conditions depends on the specific con-
dition θ0(r, 0) applied initially. For example, in non-equilibrium step profile
experiments when the coverage has a value θ1 for r < 0 and a different value
θ2 for r > 0, as will be discussed below, µ(θ) if different from µeq(θ) and the
extracted Dc depends explicitly on ∂θ/∂r.

It is more relevant to discuss differences between equilibrium vs non-
equilibrium configurations in systems when ordered phases are present, i. e. in
interactive systems at sufficiently low temperatures. As an illustration assume
the ordered state is c(2×2). At equilibrium, atoms can diffuse into neighboring
sites even when there is no externally imposed gradient, because within the
ordered domains neighboring sites are vacant or at the domain walls the sites
are energetically costly, i. e. they have different chemical potentials. If one
monitors the coverage at position r and time t, θ(r, t), its occupation will
fluctuate in time around its average value θ. As a result of diffusion in or out
of position r, a random initial fluctuation δθ(r, 0) = (θ(r, 0) − θ) will spread
out. At distance r′ away and at later time t, we expect to see the “remnant”
fluctuation δθ(r′, t) = (θ(r′, t) − θ) if the time of the fluctuation at r to
diffuse to site r′ is larger than t. Information about the diffusion coefficient
is obtained from the time dependence of the autocorrelation function S(r′ −
r, t) = 〈δθ(r, 0)δθ(r′, t)〉 where the bracket average includes an average over
all sites in the system, since at equilibrium all sites are equivalent. Since the
diffusion equation (7.1) is linear for systems at equilibrium (even when Dc(θ)
is coverage dependent) it is also obeyed by S(r′ − r, t). Truly equilibrium
systems have low amplitude concentration fluctuations (when compared to
the average concentration θ) |〈δθ2(0, 0)〉1/2|/θ � 1 and as discussed earlier a
constant diffusion coefficient can be assumed. Since S(r′ − r, t) depends on
the difference (r′ − r) it can be simplified to S(r, t) and is given by

S(r, t) = S0

(
exp−(r2/(4Dct))

)
(7.5)



292 Michael C. Tringides and Myron Hupalo

with S0 = 〈δθ2(0, 0)〉. As will be discussed in Sect. 7.3.2, more commonly
the initial fluctuation is probed within an area with several sites in order
to increase the measurable signal. The expression for S(r, t) can be written
equivalently in terms of its Fourier transforms for the conjugate variables of
r and t, i.e. wavevector k and frequency ω. The Fourier components S(k, t)
follow exponential decay with k-dependent initial amplitudes. For the k → 0
component the decay is given by

S(k, t) =
(
S0/a

2
)
· exp(−Dck

2t) (7.6)

where a2 is the unit cell area and S(k, ω) has a Lorentzian dependence on ω

S(k, ω) = 2S0k
2Dc/

(
a2(ω2 + (k2Dc)2)

)
. (7.7)

For the measurement of the diffusion coefficient Dc different experimental
methods based on the three equivalent expressions (7.5), (7.6), (7.7) have been
developed.

The extraction of Dc from (7.5) requires the measurement of time corre-
lations between fluctuations at two sites separated by distance r′ − r. Such
measurements are difficult because (i) precise control of the separation (r′−r)
is necessary and (ii) the measurable signal is low if the correlation between
only two single sites is probed. However, it is not necessary to restrict the
experiment to the correlation of single sites [11]. The signal can be increased
considerably if instead fluctuations within a finite area, which includes sev-
eral sites, are monitored in time. For example for a circular area A of radius
r0, shown schematically in the upper part of Fig. 7.3, it can be easily shown
that the autocorrelation function is given by the integral

〈∆N(0)∆N(t)〉 =
∫
c20 d2r d2r′〈δθ(r, 0)δθ(r′, t)〉 =

∫
c20 d2r′ d2rS(r′ − r, t)

(7.8)
where N(t) is the number of adatoms within the area A at time t and c0 the
saturation concentration. The magnitude of the initial fluctuation at t = 0 is
given by 〈∆N2(0)〉 = Ac20S(k = 0, 0). Since the signal increases linearly with
the probe area A, it is easier to be detected in the experiment. Dc depends
on the time constant τ of the decay of the correlation function and the probe
area A via Dc = A/(4τ).

Equation (7.6) has been implemented in simulations where a periodic
long-wavelength (λ = 2π/k) modulation of the coverage is generated by
imposing at t = 0 a small-amplitude variation of the chemical potential
µ(r) = µ0 + δµ cos(kr) whith δµ/µ0 � 1. The system is still close to equilib-
rium but the coverage differs in a sinusoidal fashion from the average value
θ (determined from µ0 = µeq(θ) by a small amount δθ proportional to δµ).
For times t > 0 the variation δµ cos(kr) is removed and the system relaxes
back to equilibrium. This is shown schematically in the lower part of Fig. 7.3
where the amplitude of the coverage modulation decays with times t1, t2, t3.
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Fig. 7.3. Schematic presenta-
tion of the diffusion experiment
to measure the decay of coverage
fluctuations within a probe area
(upper part). Presentation of
the grating experiment when an
initial sinusoidal coverage pro-
file decays exponentially in time
(lower part).

Since only one spatial Fourier component of wavevector k is present, both
S(k, t) and the amplitude of the coverage variation δθ(t) decay exponentially
according to (7.6). The time constant τ of the decay can be used to deduce the
value of the diffusion coefficient Dc = (2π/k)2/τ . Experimentally a method
based on (7.6) has been implemented by forming a 1D grating from the in-
terference of two laser beams incident on the same surface spot [13]. Atoms
within the illuminated region desorb according to the local laser power which
varies sinusoidally because of the interference of the two waves. So within the
grating the coverage is lower than the average θ. Diffusion of atoms from the
surrounding area refills the grating and returns the coverage back to its aver-
age value θ. The refilling is measured in time by using a third low power laser
which monitors the decaying second harmonic generation (SHG) or the first
order diffraction signal, as the grating refills in time. Although the coverage
within the 1D grating is always below θ (while in the case of the oscilla-
tory chemical potential the coverage oscillates around θ) its refilling follows
a similar time dependence as (7.6).

Equation (7.7) can be implemented in the frequency domain with a spec-
troscopic technique to measure S(k, ω). This technique is a well-developed
method to measure diffusion coefficients in 3D systems with the use of qua-
sielastic neutron scattering (see Chap. 3). The equivalent technique in two
dimensions is quasielastic He-scattering which fulfills the necessary require-
ments to have both wavevector and energy resolution [14]. A monochro-
matic beam of He-atoms scatters from the surface with momentum transfer
wavevector k and the scattered atoms are energy resolved to obtain the spec-
trum S(k, ω) (of (7.7)). The energy loss of the atom beam at fixed wavevector
k is measured from the full width at half maximum (FWHM) of the quasi-
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elastic spectra ∆E = �∆ω (extracted after fitting the experimental spec-
tra to Lorentzian lineshapes). The inverse ∆ω−1 corresponds to the time
∆t = (Dck

2)−1 for the diffusing atom to reach a distance of about λ = 2π/k.
For “hydrodynamic” (i.e. long wavelength) diffusion measurements, (espe-
cially at high coverage for systems with interactions when Dc can differ from
the one deduced at smaller length or time scales) it is necessary to perform the
measurements at sufficiently small wavevectors k and long scattering times
∆ω−1 being larger than the time for a time to the nearest neighbor site. This
imposes strong requirements on the wavevector and energy resolution of the
technique.

Diffusion in Externally Imposed Concentration Gradients

Other methods to measure surface diffusion are carried out under conditions
when the coverage gradient ∂θ/∂r is externally imposed. For example, in 1D
step profile evolution experiments along a line r the coverage has one value
θ1 in region r < 0 and a different value θ2 in region r > 0. With time, atoms
will move from the region of higher to the region of lower coverage (shown
schematically in Fig. 7.4) until a uniform concentration is established. If there
are no adatom interactions (except site exclusion) the profile is described by

θ(r, t) =
(θ1 − θ2)

2

(
1 − erf

(
r2/

√
2Dct

))
. (7.9)

Such profile experiments result in coverage independent Dc values in agree-
ment with equilibrium methods.

In systems with interactions the coverage dependence Dc(θ) is obtained
from the Boltzmann-Matano (BM) analysis (see Chap. 1, Sect. 1.11.1) of the
profile shape. However, before applying the method to the experimental or
simulation results, it is essential to show first that the profiles scale (i.e. they
can be written in the form θ(r, t) = θ(r/t0.5)). It is not possible to satisfy
the scaling condition in the case of an initial 2D patch geometry [15]. If
the scaling condition is met, Dc(θ0) is obtained for a range of coverages θ0
(θ2 < θ0 < θ1) by

Fig. 7.4. Schematic representa-
tion of a step-profile evolution ex-
periment and the geometric pa-
rameters (shaded integrated area
and local slope) needed to eval-
uate the Boltzmann-Matano in-
tegral (7.10). Each flat segment
of constant coverage can approx-
imately be thought to be at equi-
librium.
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Dc(θ0) =
1

2t
(

dθ
dr

)
θ0

∫ θ0

θ2

r dθ . (7.10)

If the scaling condition is not fulfilled, a time-dependent diffusion coeffi-
cient will be extracted from (7.10) where the value obtained at the earliest
times deviates the most from the equilibrium value. At longer times the pro-
file smoothes out, the gradient ∂θ/∂r is reduced, the coverage differences are
smaller and the scaling condition is met more easily.

We can consider limits in the steepness of the gradient ∂θ/∂r, so Dc(θ)
extracted from profile evolution experiments agrees with Dc(θ) obtained at
equilibrium [16]. For a given system the gradient ∂θ/∂r must not exceed a
certain maximum value to ensure that the externally imposed fluctuations
(from the initial steepness of the profile) do not exceed the thermodynami-
cally generated fluctuations. The profile can be approximated as a staircase
of flat segments of length L, (with L ≈ 5Lres, i. e. equal to several times the
optimal spatial resolution limit Lres ≈ 0.1 µm) for reliable differentiation. It
is necessary that the externally imposed gradient (∆θ/∆r)exp is smaller than
the coverage gradient due to mean square fluctuations within a system of size
L. The coverage variation (∆θ)therm is simply given by the ratio of the mean
square fluctuations 〈δN2(0)〉0.5 and the number of sites (L/a0) (with a0 the
lattice constant). This ratio, in turn, is simply the normalized compressibility
of the system. We thus have

(∆θ)therm = 〈δN2(0)〉0.5/(L/a0) = (∂θ/∂(µ/kBT ))0.5 . (7.11)

It follows that the condition

(∆θ/∆r)exp < (∆θ/∆r)therm = (∂θ/∂(µ/kBT ))0.5/L (7.12)

between the experimental and the thermodynamically generated gradient
should hold for the extracted Dc(θ) to be the same as the equilibrium
one. Equation (7.12) most probably will not be satisfied at early times
when (∆θ/∆r)exp has its largest value of about θ/L (in practise larger
than 104θ/cm). This value is comparable to the right-hand side of (7.12), at
least for the case of the Langmuir gas (i. e. site exclusion interaction) when
∂θ/∂(µ/kBT ) = θ(1 − θ) < 1. Even at later times (7.12) can be violated
close to the ideal coverage of an ordered phase (i.e. at θ = 0.5ML for the
p(2 × 1) phase and for T < Tc the phase is least compressible, which means
∂θ/∂(µ/kBT ) → 0).

This discussion explains a recent Monte Carlo study of O/W(110) with
the p(2×1) the ordered phase from step profile evolution with the BM method
[17]. In these simulations the larger deviation between the Dc extracted from
BM and equilibrium methods was observed at early times and for a coverage
close to θ = 0.5ML.

The BM step profile method should fail to follow critical fluctuations as
T → Tc and ∂θ/∂(µ/kBT ) → ∞, since finite size effects become important,
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especially at early times when the constant coverage segments in Fig. 7.4 are
the smallest. Smaller “subsystems” cannot measure correctly thermodynamic
singularities of the free energy or its derivatives.

One of the major predictions in the variation of Dc(θ, T ) is the critical
slowing down close to a second-order phase transition [18]. This is easily seen
from a widely used mean field expression for the diffusion coefficient, namely
Dc = Γa2

0/(∂ ln θ/∂(µ/kBT )) with Γ denoting the average jump rate. This
expression is referred to also as the Darken equation when Γa2

0 is identified
with the tracer diffusion coefficient Dt (cf., e. g., Chap. 1, Sect. 1.11.2). Close
to a second-order phase transition, critical fluctuations generated thermody-
namically are so large (∂µ/∂θ → ∞ as T → Tc) that no diffusion currents
can eliminate them. This effectively means that Dc(T ) goes to 0 as T → Tc.
Strictly speaking this is true for systems where the order parameter is the
coverage θ, since only then the compressibility ∂µ/∂θ is singular at Tc. How-
ever, for systems which have order parameters different from θ (e. g. an Ising
model with repulsive interactions and the order parameter being the “stag-
gered magnetization”) a weaker singularity is expected for (∂θ/∂µ)−1 at the
phase transition. Critical slowing down effects both in equilibrium and profile
evolution methods should be smeared out, since only the “staggered” com-
pressibility (i.e. the inverse derivative of the order parameter with respect
to µ) is truly singular. However, Dc is still reduced close to Tc as a result
of the less singular behavior of ∂µ/∂θ (as will be seen later in Sect. 7.3.2
in connection with Fig. 7.9). In addition to the temperature dependence of
Dc close to a phase transition, the coverage dependence Dc vs θ (for fixed
temperature T < Tc) can show maxima as the ideal coverage of the ordered
phase θ → θc is approached, since at θc the perfect defect-free phase is least
compressible. The reason is that large energy is needed to generate deviations
from this ideal phase, i.e. ∂θ/∂µ → 0 as θ → θc. For the Ising model with
repulsive interactions at θc = 0.5 (the coverage of the c(2 × 2) phase) Dc

shows a maximum both in equilibrium and profile evolution methods [19,20].
Clearly the behaviour of Dc, whether it shows maxima or minima, depends
on the interaction Hamiltonian (i. e. the nature of the order parameter) and
the control parameters, i. e. temperature and coverage. Step profile evolution
methods have been used in [21] to study phase transitions.

In addition to the interest in profile evolution measurements of surface
diffusion, non-equilibrium methods based in the time evolution of a system
from a disordered to an ordered phase after a deep quench have been reviewed
in [22] and will not be covered here. Instead we will discuss the role of surface
diffusion in epitaxial growth because it has more technological significance.
Since epitaxial growth is commonly carried out at far-from-equilibrium condi-
tions (i.e. low temperatures or high deposition rates) the observed structures
are metastable [1]. These epitaxially grown structures can have technological
importance when they are regular in size, shape and separation. In general,
many different microscopic processes with different activation barriers can
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operate during the growth. As discussed earlier, at low temperatures the
process with the lowest barrier is the controlling one.

We present below specific examples for equilibrium and non-equilibrium
experiments to illustrate the previous general discussion. The equilibrium ex-
periments are based on measuring coverage fluctuations with high resolution
low energy electron diffraction (HLEED) on stepped Si(100) and with STM.
As for non-equilibrium experiments, we discuss the formation of Pb islands
of uniform height, flat tops and steep edges on Si(111) and measurements of
interlayer diffusion on Ag/Ag(111).

7.3 Equilibrium Measurements of Surface Diffusion

7.3.1 Equilibrium Diffusion Measurements
from Diffraction Intensity Fluctuations

Are Diffraction Intensity Fluctuations Possible?

Experiments measuring diffusion at equilibrium are based on coverage fluc-
tuations which have a low amplitude for systems truly at equilibrium. If the
fluctuations are large, as discussed for step profile evolution experiments, they
introduce a non-thermodynamic driving force in the diffusion current and the
extracted parameters cannot always be compared to the ones from equilib-
rium experiments. However, fluctuations of low amplitude imply that the
measurable signal is small and it is necessary for the experimental technique
to have sufficient amplification. Such a fluctuation method has been imple-
mented with great success by exploiting the high magnification (≈ 106) of
the field emission microscope [11,16] to monitor the time dependence of cov-
erage fluctuations within a probe area, as discussed in connection with (7.8).
Since it is reviewed elsewhere it will not be discussed further in this chapter.
An STM based probe area method [22, 23] will be described in Sect. 7.3.2.
The electron emission process requires high electric fields (typically 0.5V/Å)
which can potentially introduce bias to the random walk with atoms prefer-
entially diffusing towards the tip.

Despite the success of these methods, there are reasons to develop a
reciprocal-space method (i.e., surface diffraction) to measure equilibrium fluc-
tuations. In addition to the disadvantages associated with the presence of an
electric field, real space methods have to integrate over the atoms occupy-
ing the probe area (cf (7.8)) and therefore are not sensitive to the state of
the overlayer, i. e. are unable to decide whether it is an ordered or disor-
dered phase. On the other hand, diffraction-based methods are wavevector
selective and therefore sensitive to the fluctuations within a specific phase,
when the overlayer supports the formation of different phases. By “tuning”
the wavevector to the phase of interest the sensitivity of the technique is
enhanced. In such methods fluctuations of the diffracted intensity defined by
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I(k, t) =
1

(Nθ)2

∫
θ(r, t)θ(r′ + r, t) exp(−kr) d2r′ d2r (7.13)

are measured which are more intimately related to theoretical quantities like,
e. g., S(k, t) (cf. (7.6)). The autocorrelation function of I(k, t) is defined in
terms of fluctuations δI(k, t) = I(k, t) − 〈I(k, t)〉 from the average value
〈I(k, t)〉 at time t. Although it involves 4-point correlation functions, as shown
in [24], it can be expressed in terms of the structure factor S(k, t)

G(k, t) = 〈δI(k, 0)δI(k, t)〉 = cS2(k, t) (7.14)

with c representing a constant which depends on the details of the system
under investigation. Measurements of the autocorrelation function of I(k, t)
provide a new method of measuring S(k, t) [25–28].

The idea of the diffraction experiment is straightforward but it has not
been implemented earlier because several demanding experimental conditions
should be met [25, 26]: (i) coherence in the diffraction experiments extends
up to a finite distance ζ, so that the intensity fluctuations are correlated
only up to this distance. Since the beam size d is larger than ζ it includes
(d/ζ)2 incoherent scattering regions and the fluctuation signal is reduced
since temporal correlations between different regions are lost. To minimize
this effect it is necessary to employ high-resolution diffractometers (i.e ∆k
better than 0.1% of the Brillouin Zone) or small d. The high resolution has
the additional advantage of prohibiting the integration of the measured time
constant τ(k) over a wider wavevector range. (ii) it is also essential to have
high acquisition speed to take full advantage of the high resolution, otherwise
a larger time constant than the true one will be extracted, a severe problem
at high temperatures.

As shown recently [25, 26] condition (i) depends on the brightness of the
incident beam (i.e. number of electrons per solid angle per time). It is met
with specialized electron guns of high current densities. The use of such guns
and modern high-gain channeltron-based detectors has shown the feasibility
of the technique, as discussed below in diffraction experiments on stepped
surfaces.

Fluctuation measurements have been also pursued in “speckle” X-ray ex-
periments [29] where the incident beam size is reduced to size comparable to
the coherence length d ∼ ζ with the use of µm size geometric apertures. Such
a stringent condition is necessary for “speckle” measurements (i. e. when the
relative scattering phase of all the atoms within the illuminated region is pre-
served). Features of the static structure factor S(k) (i. e. interference fringes)
have a one-to-one correspondence with the exact location of the atoms within
the illuminated area, which effectively enables the technique to function like
a real space “microscope”. However, such reduction of beam size is not neces-
sarily beneficial for time-dependent fluctuation measurements, if the bright-
ness of the source (i. e. number of photons per area per second) remains the
same after the aperture is introduced. Because of the reduced beam size, the
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incident photon flux will be correspondingly reduced which also lowers the
measurable signal.

Thermal Fluctuations at Steps

What kind of dynamic processes can be studied from diffraction intensity fluc-
tuations? As the simplest example we can think of point defects or adatoms
diffusing on the surface, with atomic scattering factors different from the
one of the substrate atoms fD �= fs . As the adatoms diffuse their position
and scattering phase is time-dependent (fD(r, t)), which will cause fluctua-
tions in the diffracted intensity I(k, t) = |

∑
fj exp(ikr)|2. The autocorre-

lation function of the intensity fluctuations will decay with time constant
τ(k) = (2π/k)2/4Dc where Dc is the adatom diffusion coefficient. Such low
coverage experiments can be best performed with He-scattering since the
adatom scattering factor can differ substantially from the substrate scatter-
ing factor [30] thus maximizing the measured signal. In a different experi-
ment, fluctuation measurements can be used to study the dynamics close to
phase transitions. This is an area where practically no experimental work
has been done so far in 2D systems. Close to a second-order phase transi-
tion, large fluctuations of the order parameter (i.e. superstructure intensity)
at the ordering wavevector are expected. Changes in the functional form of
the time-dependent correlation function, critical slowing down and dynamical
critical exponents can be measured from the superstructure spot fluctuations.
Another example are physisorbed systems (i.e. inert gases adsorbed at low
temperatures) with fluctuations in the intensity of integer order spots, origi-
nating either from adatom diffusion or adsorption-desorption from or to the
gas phase. As shown in [24], the form of the autocorrelation function changes
as the relative contribution of the two processes, diffusion and desorption, is
varied with temperature. In such experiments the autocorrelation function
measured at different temperatures can be used to deduce the barriers of
the two processes, i.e. the desorption energy, the corrugation of the potential
energy surface in the limit θ → 0 and the adatom interactions.

In general, for any microscopic process monitored with diffraction fluctu-
ations of I(k, t), the first theoretical priority is to work out the form of the
autocorrelation function to check if it agrees with the measured one. Such
comparison can be used to deduce the details of the microscopic mechanism
controlling the dynamic process and to measure in real time the relevant
time constants. Both pieces of information are difficult to obtain with other
methods.

A full comparison between theoretical and experimental results has been
carried out in the dynamics of thermally induced step fluctuations [27, 28].
When steps are heated to higher temperatures they deviate from their
straight positions because a fluctuating step leads to a gain in entropy. Ele-
mentary excitations such as kinks, vacancies etc. are created which are highly
mobile and cause the fluctuations. Dynamic measurements of the fluctuations
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can be used to determine the type of microscopic process generating them
and the relevant energetic barriers.

Step fluctuations result from several competing processes described in
[31]. Step mobility Γ (T ) is responsible for generating thermal excitations at
temperature T . This is opposed by the restoring force acting to return the step
back to its straight position. The restoring force consists of two terms. First,
the step stiffness β describes the energy cost to generate a kink on a straight
step, since a kink atom has lower coordination than an atom at a straight step.
Second, long-range step-step interactions described in terms of an effective
potential U(x) (where x is the separation between two steps) constraints the
step to maintain the initial terrace length L. Excursions of the step separation
from L will increase the potential energy U(x) and as a result the elastic
forces between the steps act to restore the step back to its straight position.
This second component of the restoring force is parametrized by the “force
constant” of the potential c = ∂2U/∂x2|L evaluated at the initial average
terrace size L. The two parameters of the restoring force β and c determine
the step average equilibrium properties: the mean square displacement w2

∞ =∑
i(xi − x)2 (where (xi − x) is the deviation of the ith atom from its average

position), the correlation length ξ along the step (defined by the correlation
function C(y) ∼ exp(−|y|/ξ) between two atoms separated by distance y)
and β the step-stiffness

w2
∞ = kBT

(
1

8cβ

)1/2

, ξ(T ) =
(
β

2c

)1/2

. (7.15)

The Cartesian coordinate system is chosen in such a way that z is normal
to the terrace and x, y lie on the terrace, with x normal to the step and y along
the step. Both w∞ and ξ can be extracted from fits of the static intensity
profile I(kx, ky) at the out-of-phase condition kz = (odd) π/d = (2l+ 1)π/d,
where d is the step height and l an integer. At the out-of-phase condition,
neighboring terraces scatter destructively because the phase difference of the
scattered wave normal to the terrace is an odd multiple of π and therefore
I(k, t) is maximally sensitive to step fluctuations. The static diffraction profile
of an integer order beam normal to the step I(kx) is split with the separation
between the two split spots (located at kx = ±π/L) proportional to the
inverse of the average terrace length. The FWHM of each split spot in the
x direction can be used to extract w∞. On the other hand the static profile
along the step I(ky) is sensitive to correlations in the atom positions and
in the step fluctuations up to the correlation length ξ(T ) [28]. The inverse
of the FWHM of spot profile along the spot for fixed out-of-phase values of
kx = ±π/L (at the two maxima of the split spot) can be used to deduce the
correlation length ξ(T ) along the step.

Temporal step fluctuations are measured by monitoring the peak of the
diffracted intensity at the maxima of the out-of-phase split spot I(kx =
±π/L, ky = 0). At in-phase-conditions, kz = (even)π = 2lπ/d, no fluctua-
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tions (and no splitting of the profile I(kx)) are expected because neighboring
terraces scatter constructively. This difference between the temporal signal
measured at in-phase vs out-of-phase conditions, is the first experimental ev-
idence that the experiment has sufficient sensitivity to step fluctuations and
incoherent scattering has not washed out the fluctuation signal.

The relative magnitude of the expected diffraction fluctuations 〈δI2(0)〉/〈I〉
for average intensity 〈I〉 with M incoherent domains (for a beam of size d and
coherence length ζ, M ≈ (d/ζ)2 domains) can be expressed in terms of the
relative fluctuation 〈δ2Ip(0)〉/〈Ip〉 within a single coherent domain [26,28] by

〈δI2(0)〉
〈I〉 = 1 +

〈I〉
M

〈δI2
p(0)〉
〈Ip〉

. (7.16)

The unity term in the right hand side is simply the known result for statistical
uncorrelated noise 〈δ2Is(0)〉/〈I〉 = 1, expected for any measurement with
average signal 〈I〉. It can be shown [28] that for the case of step fluctuations
the term 〈δ2Ip(0)〉/〈Ip〉 can be expressed as

〈δ2Ip(0)〉
Ip

=
2

Nx(ζ/ξ)
(kxw∞)4(1 − exp(−(ζ/ξ))) (7.17)

with all other symbols defined earlier. Equations (7.16) and (7.17) indicate
the optimal conditions for the step fluctuation signal to be observed. First,
although the decrease of the beam size reduces the number of incoherent
domains M and suppresses the incoherent summation, this is not necessar-
ily an advantage, as seen in (7.16), if the current density 〈I〉/M remains
constant. Second, experiments on surfaces with higher vicinality (i.e. lower
L for the same w∞, ζ, ξ) will have larger signal in the temporal measure-
ment since k4

x/Nx ∼ L−3. Such experiments demonstrating the feasibility
of temporal fluctuation experiments with high resolution LEED [26], have
been first carried out on high-index stepped W(430) surfaces in the range
T = 700–900K by taking advantage of the improved brightness of the elec-
tron source, the high resolving power of the instrument (∆k = 0.005nm−1

or ζ = 1/∆k = 200nm) and the high vicinality of the surface (L = 7a0,
i. e. 7 lattice units). Fluctuations 〈δ2Ip(0)〉/〈Ip〉 which increase with temper-
ature as high as up to 5 times the statistical fluctuations were observed at an
out-of-phase condition kz = 5π/d, while smaller fluctuations, consistent with
statistical fluctuations, were observed at the adjacent in-phase-condition.

Microscopic Mechanisms for Step Fluctuations

The usefulness of diffraction fluctuation experiments can be assessed further
from the time dependence of the correlation function and the extraction of
diffusion barriers from the corresponding Arrhenius plots. For step fluctua-
tions, the measured diffraction signal (which originates from phase differences
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between neighboring steps) is a collective result of the contribution of sin-
gle atom hopping events. Information about the nature of these atomistic
processes can still be extracted from the fluctuation signal, because the form
of the correlation function and the measured time constants are sensitive to
the atomistic processes operating.

Three atomistic processes have been proposed in the literature to explain
how collective step fluctuations are generated [31]. Each process is described
by a characteristic quantity: the step mobility Γ , the 1D diffusivity along the
step edge Ds and θ0Dt (the product of the equilibrium adatom concentration
θ0 and the tracer diffusion coefficient Dt since in the third process atom
detachment from the step is balanced by diffusion away on the terrace).
Depending on which of these three rates is the controlling one, the analysis
of step fluctuations results in different functional forms for the correlation
function. By testing which form is in agreement with the experimental data
the controlling process can be identified. In the evaporation and condensation
mechanism (EC), atom transport to other steps is controlled by Γ . It is valid
whenever Γ is sufficiently small. Step diffusion (SD) applies in the opposite
limit when the detachment of atoms from the steps is fast and diffusion along
steps is faster than terrace transport (Ds 
 θ0Dt). Terrace diffusion (TD)
applies when Γ is very large and terrace transport is faster than step edge
diffusion (Ds � θ0Dt). These limits are deduced from the general expression
for the effective time constant τ(k) (of a step fluctuation of wavevector k
with Σ the area of an elementary hop of the diffusing entity) when all three
atomistic processes have comparable contributions [32]

τ(k) =
2kBT (Γ + 2θ0DtΣ

2k +Σ3/2Dsk
2)

Γθ0βk2(2θ0DtΣ2k +Σ3/2Dsk2)
. (7.18)

When one of the three limits dominates, the measurement can be analyzed
as if only one of the three processes operates; otherwise in crossover regimes
more than one process should be taken into account.

Next we outline briefly the methodology of deriving the form of the cor-
relation functions for the different atomistic processes. In general, the step
fluctuation correlation function Gp(t) originating from a single coherent do-
main can be written [28] in terms of the time-dependent correlation along
the step C(y, t)

Gp(t)
〈Ip〉2

=
4

Nx(ς/a‖)

ς/2a∑
−ς/2a

{
cosh((k‖w)2C(y, t) − 1

}
. (7.19)

Equation (7.19) has been derived from the summation of the amplitude
of Nx independently fluctuating steps in the x-direction within the coher-
ence length of the instrument ζ and the summation along the step in the
y-direction still present in (7.19). Fluctuations along the step are correlated
up to ξ(T ), i.e. essentially the distance over which C(y, t) is non-zero. ξ(T ) is
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temperature dependent and is determined by the thermodynamics of the step
interactions (cf (7.15)) while ζ as a parameter of the instrument is indepen-
dent of temperature. The step can be thought of as divided into ζ/ξ separate
regions and each region contributes independently to the total fluctuation
signal. The expression (7.19) is evaluated at the wavevector of maximum
sensitivity at the split spot kx = ±π/L.

The different atomistic models differ as to the functional form of the
correlation function C(y, t) or equivalently the form of its Fourier components
Ck(t)

C(y, t) = exp(−|y|/ξa‖) −
1Na‖
π4w2

∫ ∞

−∞
Ck(t) cos(kya‖) dk . (7.20)

Expressions for Ck(t) have been derived from the solution of differen-
tial equations describing the local fluctuating step amplitude ∆(y, t) for the
different atomistic mechanisms. We have

∂∆

∂t
=

Γβ

kBT

∂4∆

∂y4
− 2Γθ0

kBT

∂2∆

∂y2
+
η(y, t)
a

(7.21)

where η(y, t) is uncorrelated thermal noise. As an illustration, we give the
result for the SD model. Full derivations for the other models can be found
in [28]. The solution for the Fourier coefficients of the correlation function
C(y, t) is

Ck(t) = ξ
4w2

Na

(1 − exp(−(t/τs)(a/ξ)2{(ξk)2 + (ξk)4}))
(ξk)2 + 1

. (7.22)

All symbols in (7.22) have been defined before except τs, which is the
characteristic time for the rate controlling atomic event, i. e. the time for the
diffusing entity (i. e. atom, dimer, etc.) to hop a distance Σ0.5 along the step
edge i. e. τs ≈ Σ/2Ds.

From (7.22) one can derive the correlation function C(y, t) by means of
(7.20), the expected expression Gp(t) for the single-domain (7.19) at an out-
of-phase condition kz = (2l + 1)π/d, and finally the expression for the mea-
sured correlation function (7.16) which includes the effect of the incoherent
summation over the beam size.

It has been shown in [28] that the expression for Gp(t) at times t > τ1/2

(where τ1/2 is the time for the correlation function to drop to half its initial
value, Gp(τ1/2) = Gp(0)/2)) can be written in the general form

Gp(t) = Gp(0) exp
[
−A(n)(t/τn)1/n

]
(7.23)

with the exponent n different for the three atomistic models, n = 1 for EC,
n = 3 for TD and n = 4 for SD kinetics. Equally important is the determina-
tion of the energetic barriers of the atomistic process, from the temperature
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dependence of the time constant τ1/2(T ) of the correlation function. The
connection between τ1/2(T ) and the microscopic time τn of the individual
atomistic event is different for each of the three cases and is made through
the model-dependent parameter A(n) via

τn =
(
A(n)
0.693

)n

τ1/2 . (7.24)

For example, for the specific SD model already discussed in (7.21) and (7.22)
we have

A(n = 4) = (0.74)
(
a

ξ

)2

(2θ0Ω3/2)/kBT . (7.25)

Thermal Fluctuations on Stepped Si(100)
with High Resolution LEED

These theoretical predictions have been tested in high resolution LEED ex-
periments [27] on vicinal Si(100) crystals of misorientation ∼ 1◦ (i.e. the
average terrace is L = 6.5 nm). 200 independent samples were averaged
to minimize statistical noise. The experiment was performed in the range
950 K < T < 1130K. Fitting the static profiles along the step I(ky) was used
to deduce the correlation length ξ(T ) and to extract the step stiffness β from
(7.15) (β in turn can be used to deduce the kink and corner step energies
within the terrace-step-kink TSK model [27]) and the step-step interaction
“force constant” c = ∂2U/∂x2|L. It is possible to deduce two independent pa-
rameters, β(T ) and c, from a single measured one (ξ(T )), because ξ(T ) can
be uniquely written as the sum of a term varying strongly with temperature
and another term practically temperature independent. As seen from (7.15)
these components correspond to β and c, respectively.

Time-dependent correlation functions are shown in Fig. 7.5(a) for the two
extreme temperatures 948K and 1123K. Both G(0) and τ1/2(T ) follow the
expected temperature dependence described earlier: G(0) being proportional
to w4∞ (where w∞ is the mean square deviation of the step) increases with
T , and τ1/2(T ), the time constant of the fluctuations, decreases with T . The
value of G(0)/〈I〉 = 〈δ2I(0)〉/〈I〉 is equal to 4× 10−3 and still small with re-
spect to the value 1 of statistical noise at t = 0. However, averaging over 200
independent samples reduces statistical noise for finite times t > 0 so that
the correlation function is observed above the noise. Figure 7.5(b) shows a
fit of the time dependence of the form of the correlation function accord-
ing to (7.23). Exponential decay (i.e. n = 1) is ruled out by the fit so EC
is not the operating mechanism. The data are compatible with n = 4 (SD
mechanism) and with n = 3 (TD). The test of the functional form of G(t) is
therefore not sufficient to distinguish between these two possibilities. Ener-
getic considerations of the extracted diffusion barriers, to be discussed next,
favor n = 4.
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Fig. 7.5. (a) High-resolution
LEED correlation function on
stepped Si(100) at two tempera-
tures. (b) The fits of the time de-
pendence of the correlation func-
tion exclude exponential decay
and therefore rule out the EC
model for step fluctuations.

From the temperature dependent data the decay times τ1/2(T ) are ex-
tracted for each correlation function with the two compatible fits (n = 3 or
4). The τ1/2 values clearly do not depend on n, however the atomistic times
τn which correspond to the single atomistic events generating the fluctuations
(and therefore the microscopic barriers) do, through (7.24), (7.25). For SD
kinetics we measure the step edge diffusion barrier Es = 0.8± 0.2eV and the
prefactor νs = 1010±2 s−1, while for the TD case we measure Et = 1± 0.2 eV
and νt = 3 × 108±2 s−1. In TD kinetics two activated barriers are involved
additively in the final activation energy, i.e. the barrier controlling the equi-
librium coverage θ0 of the detached entity (i.e. the dimer formation energy
EF for Si(100)) and the terrace diffusion barrier ED. The extracted activation
energy from the fluctuation experiments should be the sum Et = ED+EF. As
discussed in [27], from other experiments ED = 0.67 eV is known and theo-
retical estimates give EF = 1.6 eV, so the measured activation energy of 1 eV
(if n = 3 is assumed) is too low to be consistent with these independently
known energies. The data suggest that SD and n = 4 is the most probable
microscopic mechanism.

Step fluctuations of Si(100) have been studied before with low energy
electron microscopy (LEEM), both at equilibrium [31] (by analyzing real-
space LEEM images of fluctuating steps with video acquisition speed and
at length scales ≈ 10 times the LEED coherence length ζ) and during non-
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equilibrium ripening experiments [35] (by monitoring after Si deposition, how
the nucleated islands grow in time). Because the LEEM experiments follow
the evolution of the system over larger length scales higher temperatures
were used (T > 1090K) than in the diffraction experiments. From the LEEM
studies it was deduced that the microscopic mechanism responsible for the
step fluctuations is not SD, as in the diffraction experiment, but EC. This
conclusion was based on the wavevector dependence of the time constants
(τ(k) ∼ k2) deduced from the relaxation of the Fourier components Ck(t)
of the correlation function calculated from time-dependent LEEM images.
It was further supported from the linear dependence of the growing island
area (A ∼ t) in the non-equilibrium ripening experiments [35]. This raises
the interesting question why the diffraction experiments indicate that SD is
most probably the microscopic mechanism operating and not EC kinetics.

As mentioned before in discussing (7.18) all atomistic mechanisms operate
simultaneously and one can identify a single mechanism responsible for the
fluctuations only when the inequalities between the atomistic rates Γ , θ0Dt,
Ds described in Sect. 7.3.1 (p. 302) are strictly obeyed. However, as seen in
(7.18), the limiting values, where a single atomistic process is the dominant
one, are strong functions of the temperature and the length scale of the exper-
iment (i.e. the inverse of the probing wavevector of the technique k−1). From
(7.18) it is seen that the various limits between Γ , θ0Dt, Ds depend both
on T (since in principle different activation energies and prefactors describe
the different rates) and the wavevector k. Since in LEEM both the tempera-
ture range is higher (by approximately 300K) and the probing wavevector is
smaller by a factor of 10 than in the diffraction experiment, the EC process
is weighted more, but at lower temperatures or larger k the SD process is
favored. The main conclusion from this comparison is that although it is not
appropriate to assign a single atomistic process, the comparison of different
experiments is legitimate, in terms of the Arrhenius parameters (i.e. activa-
tion energies and prefactors). The Arrhenius parameters are independent of
which atomistic process operates in a given temperature range.

7.3.2 STM Tunneling Current Fluctuations

Correlation Functions in Probe Area STM Experiments

The use of STM to study finite coverage diffusion and the role of interactions
has been demonstrated in [33, 34] by measuring the mean residence time of
an adatom as a function of adatom separation. Such FIM-like experiments
require a large number of statistics. No time-dependent correlation functions
were measured. As shown by (7.8), equilibrium diffusion measurements can
be carried out by analysing the decay of the autocorrelation of concentration
fluctuations within a probe area A. In such experiments the possibility of
measuring fluctuations at selective wavevectors is lost, since the measured
signal integrates the total number of adatoms within A. An area is naturally
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defined in the STM geometry because the tunneling current depends expo-
nentially on the tip-surface separation and most of the current is confined
within a narrow cone with its apex at the tip.

If the surface coverage θ is constant, the number of adatoms in A, N(t),
will fluctuate around its average value N = Aθ as adatoms diffuse in and out
of the area. The tunneling current i(t) depends on the tip-surface separation
z and the electronic structure within A (i. e. the local “workfunction” ∆ϕ)
which is determined by the number of adatoms within A. I(t) is uniquely
determined by N(t) at a given time, since both z and ∆ϕ are functions
of N(t). As N(t) changes, its fluctuations δN(t) = N(t) − N will produce
fluctuations in the tunneling current ∆i(t) = i(t) − i with i denoting the
average tunneling current. The time dependence of the current fluctuations
∆i(t) will follow the time dependence of∆N(t) and hence the fluctuations due
to the adatom diffusion in and out of A. Equation (7.8) can be measured from
the tunneling current autocorrelation function for sufficiently small∆N/N �
1,

〈∆N(t)∆N(0)〉 = γ2〈∆i(t)∆(0)〉 = γ2
k=N∑
k=1

(
i(tk + t) − i

) (
i(tk) − i

)
(7.26)

where γ is a proportionality constant relating ∆i(t) to ∆N(t). For systems
with no interactions and for any size A (even as small as one unit cell) it has
been shown by Monte Carlo simulations [36] that the functional form of (7.8)
is given by

〈∆N(t)∆N(0)〉 = 〈δN2(0)〉
∫

A

e−r2/4Dt

4πDct
d2r (7.27)

which is simply the probability for an initial fluctuation of strength 〈δN2(0)〉
to remain within A after time t. Equivalently, if the power spectrum W (ω)
is measured, instead of the correlation function, it is given by the Fourier
transform of (7.27),

W (ω) =
∫
〈∆N(t)∆N(0)〉eiωt dt . (7.28)

The experimental situation is shown schematically in Fig. 7.6. The decay of
the correlation function in the short-time limit is approximately exponential
(equivalently (7.28) follows the Lorentzian ω−2 dependence in frequency).
In the long-time or zero-frequency limit, the correlation function has the
characteristic 1/Dct tail, typical of diffusion in two dimensions. Equivalently,
W (ω) has the form

W (ω) =
〈δN2(0)〉A lnω

4πDc
for ω → 0 . (7.29)

Preliminary experiments [23] on O/Si(111) have shown that such STM
fluctuation measurements are possible. The evidence was based on the much
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Fig. 7.6. Schematic presenta-
tion of the STM fluctuation ex-
periment where either the time
dependent correlation (left) or,
equivalently, the power spectrum
(right) of the tunneling current I
vs time t can be used to measure
the diffusion coefficient.

higher fluctuation level 〈∆i2(0)〉0.5/i for the adsorbate covered vs clean sur-
face, on fitting the measured spectra to the characteristic lnω dependence on
ω as in (7.29) and to the Arrhenius dependence of the time constants τ(T ) vs
1/T in the range T = 400–550K to extract an activation energy of diffusion
E = 1 eV. However, the O/Si(111) system is highly complex with adsorbed
oxygen in different bonding configurations [37], so it is difficult to interpret
the extracted value of E in terms of the energetic barrier of a single diffusing
species.

Figure 7.7 presents power spectra obtained for the H/Si(111) system at
saturation coverage, θ → 1, in the range T = 500–730K. The tunneling con-
ditions are i = 1 nA and V = −15V (tunneling from the sample to the tip)
which corresponds to a tip-surface separation of ≈ 3 nm. The separation is
measured experimentally by modulating the position of the z-piezo ∆z and
detecting the corresponding current component ∆I with a lock-in amplifier.

Fig. 7.7. Power spectra for
H/Si(111) close to saturation
(θ → 1) as a function of temper-
ature (T = 500–730 K) showing
that the mean square fluctua-
tions 〈δN2(0)〉 increase while the
spectral content shifts to higher
frequencies with increasing tem-
perature.
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∆ log I/∆z corresponds to the tunneling barrier. The point where the barrier
“collapses” is identified as the contact point between tip and surface. Once
this point is identified, the tip-surface separation is determined by the differ-
ence in the z-piezo voltages between the “contact” voltage and the voltage
of interest.

The spectra include higher frequencies outside the low frequency limit
of (7.29), so the fitting requires the full expression (7.28). The spectra are
consistent with H diffusion as seen from the increase of the integrated area
under the curves (which is a measure of 〈∆N2(0)〉) and the shift of the
spectral content to higher frequencies with increasing temperature. The time
constants τ(T ) are obtained by fitting the spectra to (7.27), (7.28) and, when
plotted in Arrhenius form, an activation energy E = 1.3 eV is extracted, in
good agreement with earlier optical grating measurements on H/Si(111) [38]
over mesoscopic length scales.

For measuring only the diffusion activation energy, it is sufficient to ob-
tain the ratios of the time constants at different temperatures τ(T1)/τ(T2).
However, full information about surface diffusion requires two additional is-
sues to be addressed. First, it is important to deduce the absolute value of Dc

(i.e. in addition to E) to be able to extract the diffusion prefactor. Second,
it is not clear whether the form of the correlation function (cf (7.27)) is true
in systems with interactions (i. e. it is an open question whether in the limit
t → ∞ the correlation function follows the 1/Dct dependence), especially at
low temperatures when ordered phases are present. Although changes in the
form of the correlation function do not affect the extracted value of E, they
can indicate different cooperative dynamics (i.e. critical slowing down close
to a second-order phase transition).

Tunneling Area Determination from STM Fluctuations

We can answer the first question if the size of the tunneling area A can be
measured. In principle, the area can be estimated from a solution of the
Schroedinger equation to match the measured tunneling current i(V ) at a
given voltage V . The accuracy of the estimate depends on the sophistication
of the model of the tunneling process and unknown experimental parame-
ters like tip shape and sharpness. Because of these caveats, we suggest an
experimental method to measure the tunneling area which is based on only
measurable quantities.

The tunneling area is expected to increase monotonically with the tip-
surface separation z. The tunneling current i(z,N) for a fixed voltage V is a
function also of N where N is the number of adatoms within the tunneling
area since the local “workfunction” ∆ϕ is determined by N . For a change
∆N (and fixed z), we can write the corresponding tunneling current change
as a result of an equivalent change of z

∆i =
∆i

∆z
· ∆z
∆N

·∆N (7.30)
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or for the relative current change

∆i

i
=
∆ log i
∆z

· ∆z
∆N

·∆N . (7.31)

This assumption is justified since ∆ log i/∆z is the effective barrier in the
tunneling process with N adatoms in A. ∆ log i/∆z is uniquely defined be-
cause N is approximately constant (when ∆N/N � 1 is satisfied) and the
geometry of the two electrodes (i.e. “conically”-shaped tip and planar surface)
remains unchanged.

In the limit of θ → 1 diffusion is caused by the motion of a small number
of vacancies (θv ≈ (1 − θ)), so the problem can be analyzed by considering
a dilute gas of Nv vacancies. When Nv → 0, the relative fluctuation (using
the compressibility of a Langmuir gas) can be approximated as ∆Nv/Nv =
(Nmax(1 − θ)2θ)0.5/Nmax(1 − θ) ∼=N

−1/2
max , i. e. it is the inverse of the square

root of the number of sites in the tunneling area.
The Nv vacancies are generated in the adatom layer of thickness z0 (where

z0 is the apparent height of a single adatom). The rate of change ∆z/∆N for
N close to Nmax can be written as z0/Nmax since the motion of one atom into
or out of A causes on the average only 1/Nmax fractional change of z0, (i.e.
z0 is the change of the tip-surface separation when all atoms are removed).

We can rewrite (7.31) in terms of the unknown quantity Nmax, which is
the number of sites within A,

Nmax =
(
(∆ log i/∆z)z0/∆i/i

)2
. (7.32)

All three quantities on the right hand side of (7.32) can be measured
experimentally:∆i/i is the ratio of the mean square fluctuation to the average
current (or, equivalently, the area under the power spectrum W (ω)) to i),
∆ log i/∆z is the effective barrier height, measured with the lock-in technique
described before and z0 (= 0.1 nm) is obtained from the apparent atom height
in STM images.

Figure 7.8 shows such power spectra at three tip-surface separations on
H/Si(111) at θ → 1 in the frequency range 0–200Hz and T = 600K [22].

Fig. 7.8. Power spectra for
H/Si(111) close to θ → 1 as a
function of the tip surface sepa-
ration z showing that the lower
spectrum (V = −15 V and larger
tip-surface separation z ≈ 3 nm)
has spectral content shifted to
lower frequencies because of the
larger tunneling area.



7 Fluctuations and Growth Phenomena in Surface Diffusion 311

In the spectra of Fig. 7.8 the tunneling current is fixed (I = 1 nA) and
the tip-surface separation is varied from 0.4 nm to 3 nm by varying V (z is
measured from the point of “collapse” of the barrier ∆ log I/∆z ≈ 0 and
the change of the voltage on the z-piezo). The spectra for the larger voltage
V = −15V (i.e. larger tip-surface separation z = 3 nm) have more spectral
weight to lower frequencies, as expected for larger tunneling area. By using
the measured values V = −15V, ∆ log I/∆z = 2.5 nm−1, ∆i/i = 0.038,
z0 = 0.1 nm we obtain Nmax = 43 hydrogen binding sites. If we assume
that each site corresponds to a Si(1 × 1) unit cell this amounts to an area
A = 4.5 nm2 which is used to deduce a prefactor D0 = 1.5×10−7 m2/s in the
experiments of Fig. 7.7.

Correlation Functions in Interactive Systems

We return to the second question raised previously, viz what is the shape of
the correlation function 〈∆N(t)∆N(0)〉 if there are interactions between the
adatoms. Such questions have been addressed with mean field theory [39] and
Monte Carlo simulations in model systems [36], with the results of the two
methods being in good agreement with each other.

An Ising model with repulsive interactions was used for illustration. At low
temperatures the ordered c(2 × 2) phase forms. The most demanding condi-
tion for determining whether 〈∆N(t)∆N(0)〉 follows the non-interactive (i. e.
site exclusion) expression (7.27) is for the smallest probe area A because in
this case the most pronounced deviations from the long-wavelength “hydro-
dynamic” regime are present. For this reason, in [36] the single-site correlation
function (i.e. the probe area side is one lattice constant) was used. As stated
before for the case of site-exclusion, even for such small areas 〈∆N(t)∆N(0)〉
obeys (7.27) and has the characteristic 1/Dct tail. This is not surprising
since the evolution of the step concentration profile for site exclusion (which
also includes short-wavelength components) follows (7.9). i. e. the solution for
non-interactive systems.

Figure 7.9 shows results for the single-site correlation function obtained
in [36] as a function of T/Tc. The results are plotted in terms of the scaled
variable t/τ1/2 (where τ1/2 is the time for the correlation function to drop
to 1/2 of its initial value) to check for deviations from the non-interactive
form obtained for T/Tc → ∞. Deviations are seen at lower temperatures
and the characteristic 1/Dct tail is not observed for intensity levels as low as
10−3 of the initial value of the correlation function at t = 0. It is not known
whether the tail will be seen for lower values of the correlation function,
although such values are below the detectability limit of current fluctuation
experiments. Deviations of the correlation function from the non-interactive
form (cf (7.27)), are also expected for larger probe areas, but the degree of
deviation should be less. It is an open question to determine these deviations
in other lattice gas models with different types of interactions.
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Fig. 7.9. Single-site (i.e. probe
area is 1×1 cell) correlation func-
tions as a function of the scaled
variable t/τ1/2 in an Ising model
with repulsive interaction θ =
0.5 calculated with Monte Carlo
simulations. The results show
that for temperatures within the
ordered region (T/Tc < 1) there
are deviations from the non-
interactive (T/Tc = ∞) form of
the correlation function.

The high electric field E(r) present in STM experiments raises the ques-
tion whether the field can affect the measurements by changing diffusion,
from purely random to a biased random walk [40]. The magnitude of the
effect will depend on the type of the adsorbed atom. Larger effects should
be expected for adatoms which have non-zero dipole moments. For adatoms
with zero dipole moments the effect should be smaller and should depend on
the adatom polarizability. We examine this latter case in detail because it is
applicable to the two fluctuation experiments described earlier, i. e. H/Si(111)
and O/Si(111). The electrostatic energy between an adatom with polarizibil-
ity α in an electric field E(r) is given by U0(r) = 1

2αE
2(r). Since the energy

does not depend on the sign of the electric field, similar effects should be
expected independent of the voltage polarity. The energy U0 will be lower
where E(r) is strongest (i. e. underneath the tip), so the diffusing atoms will
move towards the tunneling area. The ratio of the probability to diffuse to-
wards (P↑) over the probability to diffuse away (P↓) from the tunneling area
is given by

P↑
P↓

= e2U0(r)/kBT . (7.33)

Since the electric field falls with the distance r from the tunneling area with
a power law dependence, this biased diffusion will extend over long distances.
The role of the field on diffusion is based on two effects. First, diffusion in
this “tilted” potential energy surface will have the effect of rearranging the
atom distribution (if initially the atoms are deposited randomly on the sur-
face) to one with maximum coverage within the tunneling area underneath
the tip. This effect has been observed in the H-on-Si(111) system, when af-
ter randomly depositing θ < 0.05ML, a circular region of higher coverage
(θ ≈ 0.25ML, i. e. five times the initial θ) is seen underneath the tip if the
tunneling voltage 6 V is kept on for 1/2 hour [22]. Second, the shape of the
correlation function can deviate from the non-interactive shape (cf (7.27))
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and the calculated time constant τ1/2 can be smaller than the expected one
for zero field (τ = A/4Dc).

Biased diffusion in the presence of an electric field was modeled with
Monte Carlo simulations and simple site-exclusion interaction [40]. The cor-
relation function was calculated for different starting times t0 (starting from
t0 = 0 when there is a random distribution of atoms on the surface) as atoms
diffuse towards the tunneling area. For shorter times t0, strong deviations
from the expected form (7.27) are observed, as a result of both the coverage
rearrangement and the biased character of diffusion. For long enough times
t0 the shape of the correlation function becomes identical to (7.27) for the
non-biased potential energy surface, although the value of the time constant
is half the expected one (A/4Dc), i.e. an initial fluctuation decays faster on
the “tilted” than on the flat surface. It is left to further studies to justify
these results analytically.

7.4 Non-Equilibrium Experiments

Two growth experiments shall be described where diffusion controls the final
outcome. Because such experiments are non-equilibrium ones (i.e. carried out
at low temperatures or high flux rates so that equilibrium cannot be estab-
lished), a single microscopic process is sufficient to account for the observa-
tions. There is no need for averaging over the different microscopic processes,
as in fluctuation experiments.

7.4.1 Uniform-Height Pb Islands on Si(111)

Growth of Uniform-Height Islands in Pb/Si(111)
at Low Temperatures

Epitaxial growth is widely used to fabricate custom-made structures with
nano-scale dimensions that do not exist in nature. Because the confinement
of the electrons in these small structures leads to sharp quantization of their
energy levels, these structures can have important technological applications
as lasing devices, sensors, ultrafast switches, etc. The spacing of these energy
levels (and thus the electronic properties of the nano-scale devices) can be
adjusted if the size of the growing structure can be controlled.

Since epitaxial growth is commonly carried out far from equilibrium the
grown structures are metastable. The key controlling processes for the growth
in a specific system are the ones with time constants smaller than the dura-
tion of the experiment. Because it is not clear which microscopic process is the
controlling one, it is important to check the full space of growth parameters
(i. e. coverage, temperature, flux rate, kinetic pathway, etc.) in order to de-
termine the types of structures which form, especially whether it is possible,
to observe structures which are self-organized and regular.
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A lot of effort in growth experiments is necessary to produce smooth (i. e.
layer-by-layer) films where a layer is completed before a new one starts to
grow. This type of growth results in films of minimal roughness and well-
defined electronic states. On the other hand, if growth is rough (i.e. three-
dimensional) the electronic levels are smeared out which degrades their poten-
tial technological applications. Great efforts have been made to understand
the factors that determine the type of growth mode and, in case it is 3D,
to find ways to modify it to layer-by-layer growth. One way to accomplish
this is with the use of surfactants [41] i. e. by involving a small amount of
impurities that modify the kinetic barriers and enhance interlayer diffusion.

It is far more challenging to fabricate regular structures where confine-
ment is in more than the normal direction as in an ultrathin film. Sharper
electronic levels are expected. For example, islands of sufficiently small lateral
size, the so-called quantum dots, confine the electrons in all three dimensions.
By adjusting the geometrical dimensions, energy selectivity and improved
monochromaticity of the emitted radiation during electronic transitions be-
come possible.

Strain can play an important role in fabricating quantum dots, like in
Ge-Si alloys [42]. Islands, already buried within a Si-capped layer, generate a
strain field propagating through the capped layer producing deep energy min-
ima at specific locations on the surface. These minima “stir” the nucleation
of new islands deposited on the capped layer to positions highly correlated to
the buried islands below and can lead to highly uniform island size/separation
distributions, if several consecutive cycles of deposition/capping are used.

Next we describe a different method to produce uniform-height metallic
quantum dots on semiconductor substrates observed during low-temperature
growth. Such uniformity has been observed in the Pb/Si(111)-(7× 7) [43,44]
system and is not driven by stress, since a wetting layer of one ML forms
initially to relieve the stress and to allow perfect Pb(111) crystallites to grow
on top of it.

In these experiments two complementary techniques are used, STM and
high resolution electron diffraction (SPA-LEED) to determine the growth
mode, as a function of coverage and temperature. With SPA-LEED at 185K
intensity oscillations are observed as a function of perpendicular momen-
tum transfer kz of the scattered wave, for different deposited Pb amounts
as shown in Fig. 7.10. Oscillations are produced as the scattering condition
changes from in-phase (i. e. Hkz = 2π(integer), when the scattered inten-
sity has maxima, with H denoting the island height) to out-of-phase (i. e.
Hkz = π(odd), when the scattered intensity has minima) as discussed in
Sect. 7.3.1. The island height H can be found from the oscillation period
∆kz , H = 2π/∆kz . If single steps were present (H = d) the maxima would
correspond to integer values of kz/(2π/d) = 3, 4 (the variable on the abscissa)
shown schematically at the bottom of Fig. 7.10. Since the observed period
∆kz is 1/7 of the oscillation for single steps, it implies that H = 7d. More
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Fig. 7.10. 7-fold diffraction os-
cillations of the (00) intensity vs
normal-component momentum
transfer kz/(2π/d) indicating 7-
step islands for Pb/Si(111)-(7 ×
7) grown at T = 185 K for cov-
erage θ ≤ 7.5 ML. The bottom
curve indicates the expected 1-
fold oscillation, if single steps
were present.

detailed analysis of the amplitude of the oscillations, to extract all Fourier
components, suggests that the islands have flat tops and steep edges. In fact,
the width of the facets regions at the sides of the island turns out to be
smaller than 10% of the island size.

These diffraction results have been confirmed with variable temperature
STM. Figure 7.11 shows an STM 200 nm × 200 nm image for θ = 3.3ML
Pb deposited on Si(111)-(7 × 7) at T = 190K [44]. This unusual growth has
been also reproduced with STM in [45]. One sees directly the regular Pb
islands with striking flat tops and steep edges in excellent agreement with
the diffraction results. A histogram of the island heights is shown at the
bottom of Fig. 7.11. The main peak in the histogram corresponds to islands
with 6.7-single-step and a smaller peak is present at 3.8-single-step islands.
The non-integer height values are related to the difficulty in defining the
origin of the layer between the islands with STM, since in STM one measures
the electron density contours and not the atomic centers. The presence of
a sharper height distribution in diffraction is because of the vastly superior
statistical average (106 islands are included in collecting the data of Fig. 7.10
while only 40 islands are considered for the histogram of Fig. 7.11). At 190K,
from Fig. 7.11 the average island diameter is found to be 10 nm (consistent
with the inverse of the FWHM of the Pb(10) spot) and the average island
separation is 30 nm (consistent with the satellite spots close to the (00) spot
expected for a spatially correlated island separation). The island size and
separation increase by approximately a factor of 3 as the temperature changes
from 130K to 240K.

Extensive studies on Pb/Si(111)-(7× 7) were carried out by varying the
growth temperature, coverage, annealing temperature and annealing time to
measure how the selected island height depends on the growth conditions.
Although for a given T and θ only one island height is the preferred one
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Fig. 7.11. (a) 200 nm × 200 nm
STM image and (b) height his-
togram of Pb/Si(111)-(7 × 7) at
190 K and θ = 3.3 ML con-
firming the diffraction data of
Fig. 7.10 that the islands grow
in preferred 7-step heights.

(for example at T = 185K 7-step is the preferred height) the selected height
changes with growth conditions by bilayer 2d = 0.58 nm height increments
(d = 0.29nm is the single-step height of Pb(111)). 5-step oscillations are
observed at the lower temperatures 130–160K, followed by 7-step islands,
followed by 9-step islands for T > 210K etc.. From these studies a T − θ
kinetic phase diagram shown in Fig. 7.12 [44] was constructed and by choosing
the appropriate T −θ range a given height can be selected in the experiment.

The growth experiments were performed by direct deposition of a fixed
amount or by stepwise deposition of small increments. No difference in the
island dimensions was found which indicates that diffusion in the system is
extremely fast, since these islands are completed within the deposition time
(i.e. 4 minutes to deposit 4 ML). Annealing experiments were also performed
with the surface heated from the initial lower temperature Ti to a higher
final temperature Tf . Although the same island height is selected in annealing
and growth experiments (for the same Tf), islands larger in size form after
annealing than after growth experiments. However, once a final temperature
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Fig. 7.12. θ-vs-T kinetic phase diagram for growth on Pb/Si(111)-(7 × 7) show-
ing that preferred island heights 4, 7, 9 . . . can be selected for different growth
conditions.

is reached no further increase in island height and minor increase in size
is observed despite prolonged (≈ 1/2 hour) heating at constant Tf , which
indicates the extraordinary mobility of ∼ 104 deposited Pb atoms to diffuse
and build the islands within ∼ 4 minutes and, most likely, some type of
non-thermal diffusion.

Quantum Size Effects (QSE) and Charge Transfer
in Pb/Si(111) Growth

What is the driving force for the formation of the uniform-height islands?
An explanation was proposed in terms of quantum size effects (QSE), i. e.
the dependence of the energy of the confined electrons occupying discrete
energy levels on island thickness [46, 47]. The boundary conditions on the
electron wavefunction imposed by the two interfaces (metal-semiconductor
and metal-vacuum) is matched for preferred film thickness nd = sλF/2 (with
n and s integers), d = 0.29nm and Fermi wavelength λF = 0.393nm [48]
with approximately n = 5, 7, 9 . . . . Because of the special relation between
λF and d (i. e., d ≈ 3/4λF) the bilayer height increments provide evidence of
QSE. Since bilayer height increments add approximately three nodes to the
electron wavefunction, 2d ≈ 3λF/2, they are favored. These simple estimates
have been fully supported by first-principle calculations [49].

Other experiments using He-scattering on Pb/Cu(111) [50], X-ray scat-
tering on Pb/Si(111) [51] and in-situ conductivity on Pb/Si(111) at T = 90K
[48], show bilayer intensity oscillations consistent with bilayer height incre-
ments. He-scattering studies of Pb/Ge(001) [52] growth show that the in-
terlayer spacing adjusts in a way that the film height is always close to
an integer multiple of λF/2. Ni on hydrogen-terminated C(111) surfaces at
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T = 800K show the formation of multiple-height islands with flat tops [53].
Other low-temperature studies on Ag/GaAs(100) [54] of films which normally
grow three-dimensionally, show “magic” thickness effects after annealing to
room temperature. Depending on the deposited amount the film separates
into regions of “magic” 7-layer thickness and empty “pits” indicating that
the electronic energy of the film dictates its structure, a novel growth mode
labeled “electronic growth” [55].

A test whether the confinement energy of the electrons in the Pb islands is
sufficient to explain the height selection or whether other factors (i.e. charge
transfer at the metal/semiconductor interface) are needed, is to grow on a
different reconstructed surface the Si(111)-Pb

√
3 ×

√
3 phase [56, 57]. The

electronic structures on the (7 × 7) and
√

3 phases are known from angle-
resolved photoemission [58]. They show that the Fermi level is 0.19 eV above
the valence band on the

√
3 ×

√
3 phase vs 0.42 eV on the (7 × 7) phase.

This implies that initially there is a larger difference ∆EF between the Fermi
levels on the metal and the semiconductor side for the

√
3×

√
3 than for the

(7 × 7) interface. The charge transfer energy ∆U , to a first approximation,
can be estimated as the energy stored in a capacitor of capacitance C and
potential difference (∆EF/e) so ∆U = (1/2)C(∆EF/e)2.

Experiments on the
√

3×
√

3 phase show that for the same growth condi-
tions (θ = 4 ML, T = 190K) 5-step islands are those of the preferred height,
while for growth on the (7 × 7) phase it is 7-steps. Since the Fermi level is
lower on the

√
3 ×

√
3 phase than on the (7 × 7) phase, the charge transfer

contribution is larger for growth on the
√

3 ×
√

3 interface, with larger en-
ergy gain at 5-step compared to the 7-step thickness [56]. This confirms that
charge transfer (and different initial reconstructions on the substrate) play a
role in island height selection.

Low-Temperature Mobility

While QSE provide energetic reasons that Pb islands with preferred height
are formed, it is still not clear what are the key kinetic processes that lead to
the unusual self-organization. Although QSE explain why at preferred island
heights the energy have minima, it leaves wide open the question of how
mass transport gives rise to the ordering. Specifically, how do the deposited
Pb atoms move from initially random positions where they land on the surface
to well-defined positions in specific island layers, within the relatively short
time of the deposition rate (∼ minutes) and at such low temperatures?

Other growth experiments at low temperatures have shown that reg-
ular structures can form, as evidenced from diffraction oscillations during
growth [59]. Such oscillations were observed for Pb/Si(111) [60] even at 16K.
STM and FIM studies in other systems have shown that impinging atoms
at low temperatures can have finite mobility. A review of low-temperature
growth and the presence of finite mobility is given in [59]. Despite numerous
studies suggesting some type of mobility at low temperatures its origin is still



7 Fluctuations and Growth Phenomena in Surface Diffusion 319

unclear. One explanation is based on the efficiency of the energy transfer from
the incoming adatom to the substrate. Depending on the desorption energy,
this additional energy can amount to a few eV. While it is difficult to observe
the accommodation process experimentally because it is ultrafast (i. e. with
time constants of some picoseconds), Molecular Dynamics simulations of the
landing process have been performed [61]. The simulations give mixed results
since the evidence for non-thermal mobility depends on the interatomic po-
tential used to describe the interactions between the adatom and substrate
atoms. Depending on the softness of the potential, the energy transfer can be
completed within the first landing or if the adatom retains some of its energy
after the impact, it can come to rest after several hops. Such mechanism was
invoked to explain the diffraction oscillations in Pb/Si(111) [51]. It is still an
open question whether the necessary mass transport for the buildup of the
uniform-height Pb islands can be accounted for only by thermal diffusion or
whether some type of non-thermal mobility is necessary.

The buildup of the Pb uniform-height islands is the outcome of the bal-
anced interplay between several kinetic processes: thermal and possibly non-
thermal mobility on the terrace, hopping on the island side planes (facets)
from lower to higher levels, and atom retainment at preferred heights. Nor-
mally, atoms are retained on top of islands because a barrier is present at step
edges (to be discussed more extensively for Ag/Ag(111) in 4.2). Experiments
with SPA-LEED (similar to the Ag/Ag(111) experiments) were carried out
to identify which of these barriers is the controlling one. An initial predomi-
nantly 5-step island height distribution is prepared followed by an additional
deposition of ∆θ = 0.5ML Pb at different growth temperatures Tg to deter-
mine the transition temperature when 2-step islands nucleate on top of the
5-step islands. It is found that the transition is at Tg ≈ 175K, which indicates
that the transfer of atoms from the surrounding region to the island top is
the rate limiting step. Terrace diffusion is faster than transfer to the top,
since growth and stepwise growth (by depositing small coverage increments)
give identical results. Diffusion at the island facets is also faster than transfer
over the edges, otherwise a decrease in the facet slope would be observed as
the atoms accumulate on the facets.

The metastable phases in the kinetic phase diagram of Fig. 7.12 are the
kinetically stabilized phases from the interplay of energy gain at the potential
energy minima and kinetics with incoming atoms overcoming the island edge
barrier. It was also shown that with oxygen the island height and size can be
stabilized over a wider temperature range (up to room temperature) because
oxygen increases the step edge barrier and limits the Pb transfer to the top
[62].



320 Michael C. Tringides and Myron Hupalo

7.4.2 Measurements of Interlayer Diffusion on Ag/Ag(111)

Second-Layer Nucleation Experiments
to Measure Interlayer Probability on Ag/Ag(111)

The growth mode (2D or 3D) observed in a system depends on the so-called
interlayer probability of an atom encountering a step, i. e. the probability to
hop from a higher to a lower level [1, 2]. Usually the interlayer probability is
described by an Arrhenius expression p = (νs/νt)e−(∆Es/kBT ) where νs is the
prefactor at the step edge, νt the prefactor on the terrace and ∆Es is the step
edge barrier. For Ag/Ag(111) the growth was found to be three-dimensional
for all temperatures studied [63–65]. This has been attributed to the presence
of a strong step edge barrier and therefore a low interlayer probability.

Several methods have been applied with different experimental techniques
(STM, Diffraction) and over different temperature ranges to measure the step
edge barrier and to separate the two contributions to p, i.e. the ratio νs/νt

and the step edge barrier ∆Es.
Although the simple Arrhenius expression for the interlayer probability

has been widely used in the analysis of experiments, several factors have been
considered which can complicate the picture of hopping over a single step edge
barrier and can result in a more complex dependence of p on temperature.
The step edge barrier can be lower at a kink than at a straight step [66].
Furthermore, different step edge barriers can be present at different step
types (i. e. A- or B-types on fcc(111) substrates). Such complications can
lead to a non-Arrhenius temperature dependence since the step morphology,
the relative population of A- or B-type steps or the number of atoms at kink
sites etc. can change with temperature.

Experiments to measure the interlayer probability for Ag/Ag(111) with
different methods and over different temperature ranges have resulted in the
same high barrier ∆Es = 0.13–0.15 eV but in different prefactor ratios νs/νt

[67]. Low-temperature (T < 150K) experiments under growth conditions
indicate νs/νt > 1 while quasi-equilibrium experiments carried out close to
room temperature show νs/νt ∼ 1. In this section we review the different
experiments and examine possible reasons for the difference in νs/νt.

The low-temperature experiments [68, 69] were carried out under growth
conditions, with a constant flux of atoms incident on the surface. In one ex-
periment, performed with STM [68], an initial island distribution is prepared
by annealing the surface to different temperatures Tanne so the average island
size R(Tanne) can be varied. After a second deposition with a smaller amount
∆θ = 0.1ML at a lower temperature Tgr the fraction of islands with second-
layer occupation on top f(Tgr, R) is measured as a function of temperature
Tgr and R. Figure 7.13(a) shows STM results for two growth temperatures
T = 70K, 130K [68]. At 70K practically all islands have second-layer occu-
pation (f = 1), while at T = 130K only a fraction of the islands is occupied,
despite the islands being larger in size. This behavior of f(Tgr, R) is the one
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Fig. 7.13. (a) STM images of second-layer nucleation experiments on Ag/Ag(111)
at T = 70 K, 130 K showing how interlayer diffusion increases with temperature.
(b) Fractional occupation of first-layer islands vs island size at fixed temperatures
(70K, 120 K, 130 K).

expected from the temperature dependence of the interlayer probability p. At
70K, p is very low, so practically no atoms overcome the step edge barrier,
even for small size islands. At 130K, however, p increases, so many atoms can
hop to the lower level. The f(Tgr, R)-vs-R function for fixed Tgr is expected
to have a step-like shape, with no second-layer occupation (f = 0) for small
R, complete occupation (f = 1) for large R and a transition region defined by
a characteristic critical size Rc where the function shows a sudden jump. At
lower Tgr the transition becomes steeper and Rc moves to smaller sizes. The
data for Ag/Ag(111) are shown in Fig. 7.13(b). By measuring the f(Tgr, R)
curves at least at two temperatures, it is possible to separate the two contri-
butions to p, the prefactor ratio νs/νt and the barrier ∆Es. Qualitatively one
expects that the larger the difference in the two occupation curves f(Tgr, R),
measured for the same two temperatures, the larger the barrier ∆Es will be;
while the absolute value of Rc determines the prefactor ratio νs/νt. Larger
values of Rc imply larger values of νs/νt since the atoms must have larger
interlayer probability to compensate for the reduced probability to reach the
island edge.
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Theoretical Analysis
of Second-Layer Nucleation Experiments

The form of the function f(R, T ) depends on the theory used for the analysis.
Initially a mean field theory was proposed [70] to relate the rate of second-
layer nucleation (Ω, i. e. number of nucleated islands/time), on top of an
island of size R, to p. It is assumed that on top of the island there is a
distance-dependent monomer density c(r) (where r is the distance from the
center of the island) as a result of the incident flux. Because of the absorptive
boundary conditions at r = R, c(r) drops off with r; but as p becomes smaller
(i.e. an atom has higher probability to be reflected at the island edge), the
difference between the density at r = 0 and r = R is reduced according to

c(r) =
FR2

4D
(1 + 2a/pR)− Fr2

4D
. (7.34)

Following nucleation theory [71] monomers diffusing in the presence of
the density c(r) on top of an island of size R will irreversibly aggregate into
second-layer islands with the rate

Ω(R) =
κDt

a2

∫ R

0

2πr dr
a2

[c(r)a2]i+1 (7.35)

where Dt denotes the terrace diffusion coefficient. Integrating this expression
over the island area, it simplifies in the limit of a strong step edge barrier
(p � 1) to

Ω(R) =
αgF

2R4

4Dtp2
(7.36)

with αg being a geometric factor related to the shape of the islands. The
fractional occupation of the islands, shown in Fig. 7.13b, can be obtained by
integrating the rate of change df/dt = Ω(1 − f) over the time of the second
deposition, since only islands free of second-layer nucleation can increase f .

In [70] as a main assumption of the mean field theory it is supposed
that the monomer density c(r) on top of the first layer island and monomer
diffusion determines the second layer nucleation rate Ω. This assumption has
been questioned in [72]. Instead, the nucleation of a second-layer island has
been analyzed in terms of the probability of two atoms (deposited successively
on top of the island) to diffuse and encounter each other. This analysis leads
to different form of f(R,T) than the mean field theory. Ω(R) is given by the
rate of monomer deposition on top of the island of area A, FA, (with F
the flux rate) times the probability for two of the deposited monomers to
encounter each other. In the limit of very fast terrace diffusion (e. g. about
107 hops/s at 130K for Ag(111)) it can be shown that this probability is given
by the ratio of the residence time of the first atom τr to the time between
depositions τ = (FA)−1, namely
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Ω = FAτr/τ = (FA)2τr . (7.37)

Since an atom diffusing very fast can explore all the sites on the island
top with the same probability, the residence time τr is the inverse of the
escape probability to the lower layer. Thus the escape probability is simply
the product of 2πRa/πR2 (the probability to reach the island edge) times
the probability to hop over the barrier Dtp (which is the product of terrace
diffusion coefficient times the interlayer probability). Equation (7.37) becomes

Ω(R) = αgF
2R5/Dtp . (7.38)

The two expressions for the rate Ω(R) are very different in the two the-
ories. For fixed Ω, (7.36) shows that the interlayer probability depends less
strongly on R (p ∼ R2) than predicted by the result of the revised theory
(cf (7.38), p ∼ R5). This implies that if the same second-layer nucleation
data are analyzed by the two theories, a lower probability (and therefore a
higher barrier) will be deduced in the revised theory than in the mean field
theory. Because the mean field theory assumes a monomer density c(r) to be
present, it is easier for second-layer nucleation to occur. Ω is overestimated
and therefore a higher p is sufficient to match the experimental f(T,R) curve.

Anomalous Prefactors in Interlayer Diffusion of Ag/Ag(111)

In principle, for a given f(T,R), p can be used as a fitting parameter to
obtain the best agreement with the data, but such fits have large uncertainty.
A direct method was proposed in [73] by using at least two temperatures,
to deduce uniquely the two contributions to p, νs/νt and ∆Es. From the
theoretical expression of the nucleation rate Ω(R) (either (7.36) or (7.38))
the limiting values Ωmin (when only one island has a second-layer island
on top) and Ωmax (when all the islands have second-layer islands on top)
the corresponding values Rmin, (the largest island size with no second layer
occupation) and Rmax (the smallest island size with all islands having second
layer occupation) are plotted vs p in Fig. 7.14 (for (7.38)). From the measured
values of (Rmin, Rmax) in Fig. 7.13b: (2 nm, 4 nm at T = 120K and 3nm,
7.5 nm at T = 130K) these values are best matched on the two values of
ln p at −9.2 and −6.6 shown by the vertical lines. From these two values of
p the parameters νs/νt = 109, and ∆Es = 0.32 eV are uniquely extracted for
the revised theory [72]. If the mean field expression (7.36) for Ω(R) is used
the corresponding parameters are νs/νt = 103 and ∆Es = 0.13 eV because
the mean field theory overestimates Ω(R) and underestimates the barrier.
Although the exact form of the function f(T,R) depends on the theory,
the result νs/νt > 1 is independent of the theory and follows from visual
inspection of the raw data of [68], because a dramatic change of the measured
function f(T,R) is seen even within a 10K temperature change (from 120K
to 130K).
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Fig. 7.14. Plots of the min-
imum island size (Rmax) with
all islands occupied (top curve)
and maximum island size (Rmin)
when none of the islands is oc-
cupied (bottom curve) vs ln p
(where p = νs/νte

−∆E/kBT ) for
the theory of [72]. The experi-
mentally determined sizes Rmin

and Rmax at two temperatures
120 K and 130 K are used to de-
termine the corresponding val-
ues of p (shown by vertical lines)
and to extract νs/νt and ∆Es.

Since the interlayer parameters can depend on the step morphology (i.e.
whether straight or kinked, whether A- or B-type are present etc.) exper-
iments on macroscopic crystals measure an effective barrier averaged over
different length scales and step morphologies, with techniques which sam-
ple a larger area and different step types. During growth of Ag on Ag(111)
over a wide temperature range (T = 90–600K) and with different scattering
techniques (X-ray, He-scattering, reflection high energy electron diffraction
(RHEED) [63–65]) monotonic intensity decay is observed (instead of diffrac-
tion oscillations), which confirms 3D growth and, hence, the small values of
p. Such diffraction experiments can be also used to measure the step edge
barrier at the edges of the finite terraces on the clean surface. Terraces are
present in all crystals, even under the best preparation conditions.

RHEED experiments were carried out to measure the step edge barrier at
the edge of Ag(111) crystals with small average terraces of 50 nm diameter
[69]. Since the diffracted intensity is summed over more than 104 terraces,
the experiment averages over different step configurations and local barriers.
The temperature of the experiment is chosen to be in the “1-island regime”.
In this regime, because diffusion is so fast, the deposited atoms will attach to
existing islands and only few (1 or 2) islands nucleate on the terrace. After a
fixed deposition ∆θ = 0.1ML, the deposited atoms end either at ascending
or descending steps at the terrace edges or at the few nucleated islands.
At ascending steps the arriving atoms stick irreversibly. At descending steps,
atoms have only a finite probability p to descend and attach to the step below.
As the temperature is increased more atoms at descending steps overcome
the barrier at the expense of the atoms which attach to the nucleated islands.
The size of the nucleated island determines the magnitude of the RHEED
intensity drop. By comparing the RHEED intensity drop both at in-phase and
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Fig. 7.15. RHEED inten-
sity decay after deposition in
Ag/Ag(111) for in-phase and
out-of-phase conditions (top two
sets of data also shown in the
inset). The lower curve is the
result of Monte Carlo simula-
tions. The difference between
the experimental and simulation
data implies higher interlayer
probability p and therefore
νs/νt = 100.

out-of-phase condition (see the discussion in Sect. 7.3.1) it is deduced that at
in-phase (kzd = (even)π) the intensity drop is not determined kinematically,
but is related to the change of the step density on the surface. Quantitative
information about the step edge barrier at the terrace edges can be extracted
from the difference between the measured and the simulated step density.
The experimental intensity drop is essentially determined by the increase in
the step density at the nucleated island (since the step density increase at
the terrace perimeter is much smaller than at the island perimeter).

The process was modeled with Monte Carlo simulations with parameter
Dt/F ≈ 1011 (i. e. with terrace diffusion to flux rate ratios at T ≈ 150K
typical of the “1-island” regime for 200 × 200 lattice or 50 nm Ag(111) ter-
race [69]). The additional amount ∆θ = 0.1ML deposited on the lattice is
divided between ascending steps, descending steps and the nucleated island.
By monitoring the increase of the nucleated island perimeter N1/2

isl /L, with
N denoting the number of atoms in the island and L the system size (i.e.
increase in the step density and therefore the intensity drop ∆I/I) the sim-
ulation result is compared to the experimental result in Fig. 7.15. The top
curves are for in-phase and out-of-phase conditions and the bottom curve
shows the result of the simulations. From the comparison one can deduce
the temperature dependence of the interlayer probability p(T ) and extract
the Arrhenius parameters νs/νt ∼ 100 and ∆Es = 0.13 eV, in good agree-
ment with the second-layer nucleation experiments [68]. The reason for the
larger prefactor ratio can be directly seen from Fig. 7.15. ∆I/I both at in-
phase and out-of-phase conditions is less than the simulation result N1/2

isl /L
for νs/νt ∼ 1 and ∆Es = 0.13 eV (at T = 150K p is so low that only one
out of 105 atoms encountering a step will descend). For such high-step edge
barriers many atoms will be reflected at descending steps, the reflected atoms
will attach to the nucleated island, resulting in larger perimeter and larger
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intensity drop. Since the experimental drop is well above the expected one,
p is larger than 10−5 as the fitting result νs/νt = 100 suggests.

It is not clear what is the physical reason for the prefactor at steps to be
larger than the terrace prefactor. As discussed in Sect. 7.2.2, the “normal”
value of the prefactor is D0 = 1/4a2ν ∼ 10−8 m2/s where a is the lattice
constant and ν the typical vibrational frequency. Numerous diffusion exper-
iments have measured prefactor values different from this “normal” result.
Several heuristic reasons have been suggested to explain these “anomalous”
values, but there is still no clear understanding of the underlying physics.
First, as stated in Sect. 7.2.2, even for single-atom diffusion non-Arrhenius
behavior (and “anomalous” prefactors) can result when the residence time
of an atom in the potential well becomes comparable to the phonon vibra-
tional time of the substrate atoms, which invalidates the assumption of a
rigid potential energy surface. Second, finite coverage experiments on in-
teractive systems can lead to a coverage-dependent activation energy E(θ),
non-Arrhenius temperature dependence and “anomalous” prefactors. An al-
most complete understanding of such effects has been attained for O/W(110)
where prefactor changes from 10−11 m2/s to 10−8 m2/s and activation energy
increase from 0.6 eV to 1 eV have been observed with increasing θ. These in-
creases have been correlated to a phase transition from a disordered phase at
low θ to an ordered p(2 × 1) phase at higher θ [74]. “Anomalous” prefactors
have been also related to the presence of impurities, to long-range interactions
and to concerted collective cluster motion, mediated through substrate elastic
interactions [2]. However, a better understanding of diffusion prefactors and
reasons why prefactors can vary so widely is one of the major open questions
in the field.

Adatom vs Vacancy Island Decay Experiments
to Measure Interlayer Diffusion on Ag/Ag(111)

Experiments to measure the interlayer parameters for Ag/Ag(111) were
also carried out at higher temperatures (T ≈ 300K) under assumed quasi-
equilibrium conditions during the decay of adatom and vacancy islands of
radius r inside larger vacancy islands of radius R [75]. The geometry of the
vacancy island decay experiment is shown schematically in Fig. 7.16. Adatom
islands decay because the atom detachment rate exceeds the rate at which
atoms attach to the island from the terrace; vacancy islands decay because
the refilling rate by atoms hopping over its edge exceeds the detachment rate
from its boundary. Vacancy islands decay over longer times than adatom
islands because in the analysis of [75] incoming atoms experience the step
edge barrier and hop into the island with probability p < 1. In [75] the decay
rates for an r = 7nm adatom (and vacancy) island located at the center
of an R = 70nm vacancy island were studied as a function of temperature
(T = 280–360K). For example, at 300K the decay rate for the adatom island
is 25 times faster than the decay rate of the vacancy island.
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Fig. 7.16. Schematic presenta-
tion of the experiment of [75]
for adatom-island decay of ra-
dius r = 7 nm in the middle
of a larger vacancy island R =
70 nm. Dark areas are at the
same height and the region be-
tween them is one step lower.
The bottom curve shows the
atom arrangement at the island
corner: #1 denotes kink atoms,
#2 corner atoms and #3 straight
segment atoms. If the indepen-
dent detachment model is used
the prefactor ratio νs/νt  25 is
deduced at T = 300 K (in agree-
ment with the low-temperature
experiments of [68,69]).

The experiment was analyzed under the assumption of steady state. For
the adatom island this means that the 2D atom flux (i.e. number of atoms
per unit length per time) at r is equal to the flux diffusing away from r and
also equal to the atom flux incorporated at R. Similar steady-state condition
holds for the vacancy-island decay. The steady-state condition implies that
the concentration c(r′) (within the annular disc R ≥ r′ ≥ r) is described
by the same functional form at all times, which is a solution of the diffusion
equation in cylindrical coordinates. Atoms are evaporated from the island
perimeter because of differences between the real monomer density outside
the island from the expected equilibrium monomer density ceq(r) which is
given by the Gibbs Thomson relation ceq(r) = c∞ exp(γ/kBTnr) where γ is
the 1D “surface” tension, n = 13.6 atoms/nm2 the two-dimensional Ag(111)
density and c∞ the monomer density in front of a straight step. The decay
of the adatom island of radius r obeys the relation

d(πr2)
dt

= −κ
[a
r

+ ln(R/r) + a/R
]−1

× [exp(γ/kBTnr) − exp(−γ/kBTnR)] (7.39)

which is derived from the steady-state condition with κ = 2πDtc∞/n de-
noting the effective detachment rate. The three terms in the first bracket
of the right hand side represent the contribution of the three microscopic
processes which are needed to transport atoms from r to R, i. e. evaporation
at r because c(r) < ceq(r), diffusion in the annular region R ≥ r′ ≥ r, and
incorporation at R because c(R) > ceq(R). A similar equation holds for the
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decay of the vacancy island except in this case the curvature in the Gibss
Thomson relation is negative, because it is easier to evaporate atoms from
the boundary of a larger than a smaller vacancy island. In addition, the first
term (a/r) in the first bracket in the right hand side is replaced by (pa/r)
since the incorporation of atoms at r has probability p because of the step
edge barrier, which leads to

d(πr2)
dt

= κ
[pa
r

+ ln(R/r) + a/R
]−1

× [exp(−γ/kBTnr) − exp(−γ/kBTnR)] . (7.40)

Depending on which of the three processes dominates, (7.39) and (7.40)
can be simplified. Different regimes are defined for the vacancy-island decay
(i.e. diffusion limited when ln(R/r) 
 pa/r or interface limited when pa/r 

ln(R/r)), while for adatom-island decay the decay is always diffusion limited
(since ln(R/r) > a/r, a/R)). For each adatom-island decay curve at a given
temperature T two parameters γ and κ(T ) and for the vacancy-island decay,
in addition to these two, the interlayer probability p(T ) are extracted by
fitting the decreasing island area vs time according to (7.39) and (7.40). From
this analysis the step edge barrier parameters ∆Es = 0.13 eV, νs/νt ≈ 1, the
“surface” tension γ = 0.22 eV/atom and the detachment activation energy
κ = 0.71 eV were extracted.

It is puzzling why the prefactor ratio deduced in this experiment (νs/νt ≈
1) is lower than the one deduced in the growth experiments [68, 69], which
implies different interlayer probability p. However, a single Arrhenius form
might fail over a temperature range of 150K between the two experiments.
In addition, if the step edge barrier depends on site type (i.e. whether it is
kink vs straight step site, A- or B-step site type, etc.) the measured step edge
barrier will be an effective average over the distribution of different sites. The
quasi-equilibrium experiments were carried out on well-equilibrated islands
with a larger fraction of straight steps, while the low temperature experiments
were carried out on partially equilibrated island shapes, with a larger fraction
of kink sites. The interlayer probability p should be lower in the high- than
in the low-temperature experiments, because interlayer diffusion is higher
at kink than straight step sites. However, it is not clear why the extracted
barrier ∆Es is the same in the two experiments and only the prefactor is
different.

Independent Atom Detachment Model for Island Decay
Experiments

As another possible explanation for the difference in the prefactor ratios the
assumption of steady-state conditions might not be applicable to Ag/Ag(111)
at 300K. The validity of this assumption depends on the time scales of the
different microscopic processes in the system [76]. If τ(= κ−1) is the av-
erage detachment time and td the time for an atom to diffuse across the
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region R ≥ r′ ≥ r, then td must be larger than a minimum value (which
depends on τ). Otherwise, for very fast diffusion, the detached atoms are
transferred “instantaneously” to the boundaries, the concentration on the
terrace falls to zero and steady-state conditions cannot be established. For
Ag(111), terrace diffusion measured in a different experiment is extremely
high (2×1011e−0.1eV/kBT hops/s [68]). At 300K, using the measured value of κ
(obtained in [75]) andDt corresponding to ∼ 109 hops/s, the equilibrium den-
sity in front of a straight step is c∞ = (κn/2πDt) = 0.25 × 10−9 atoms/nm2

(with n = 13.8 atoms/nm2 as the Ag(111) density). At 300K, for the mea-
sured “surface” energy γ = 0.22 eV/atom and r = 7nm, R = 70nm we obtain
ceq(r) = 0.33×10−9 atoms/nm2 and ceq(R) = 0.24×10−9 atoms/nm2, respec-
tively. This implies differences ceq(r) − ceq(R) of less than 10−9 atoms/nm2,
indicating that steady-state condition might be violated.

An alternative way to view the island decay is to assume that it is a result
of independent atom detachment, followed by single-atom random walk until
the atom is adsorbed at the island boundaries. In this analysis the steady-
state condition is not satisfied [76].

One way to decide which analysis is applicable in a given experiment, is to
relate the detachment rates for adatom and vacancy islands to the expected
rates from the experimentally determined island shapes [77]. As found in [77]
the island shape consists of two types of segments: six straight segments
connected with six kinked segments, shown schematically in Fig. 7.16 for the
small adatom island in the middle of the large vacancy island. Straight and
kinked segments have comparable free energies at T ∼ 300K; so the ratio
of their lengths is ∼ 1. Atoms can detach easier from kinked than straight
segments simply because they have lower coordination (i. e. 3 vs 4 neighbors).
We can determine the average detachment rate E(r) for an adatom island of
radius r and E(−R) for a vacancy island of radius R based on their shapes, if
we use a simple bond counting estimate of the corresponding energy barriers.
These simple estimates of the barriers have been also confirmed with more
sophisticated calculations [66].

For the adatom island we assume that all the atoms at the kinked seg-
ments evaporate first within τk since they have lower number (3) of bonds.
Since the corner atoms also have 3 bonds they detach next, followed by the
“unzipping” of the atoms at the straight segment in time (ns/2)τk (where
ns is the number of atoms on the straight segment). There are two corner
atoms to initiate the “unzipping” which accounts for the factor of 2. For the
adatom island of [75] with r = 7 nm we have ns = 12 and nk = 7, so the
average detachment time is τa = (1 + ns/2)τk = 7τk.

The time for an atom to detach from the vacancy island of radius R
determines the decay of the smaller vacancy island, since these detached
atoms diffuse “instantaneously” to r and refill the small vacancy island. As
argued before, first the atoms at the kinked segments detach within time
τk. However, a major difference between the convex adatom vs the concave
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vacancy island is that once the atoms in the kinked segment are evaporated,
the corner atom has 5 bonds (instead of 3 for the adatom island) so it does
not detach next. Atoms need to detach from the straight segment (where
an atom has 4 bonds) to generate kink atoms (with 3 bonds). The time
for a kink atom to be generated on a straight step of the vacancy island
will be by a factor eε/kBT longer (with ε denoting the nearest neighbor at-
tractive energy), followed by the “unzipping” process as before. The kink
atom can be generated anywhere on the straight segment, so averaging over
this position we find the average time to “unzip” (3/4n′

s)τk. Since these
processes are sequential, the total time is τV = τk + eε/kBT τk + (3/4n′

sτk)
corresponding respectively to detachment from kink segment, straight seg-
ment and “unzipping” of the straight segment. For R = 70nm one has
n′

s = 120, which results in τV = 5053τk using ε = 0.22 eV/atom [75]. Since
E(r) and E(−R) are rates per detached atom and the number of atoms
that can detach is proportional to the island perimeter, the ratio of de-
tachment rates is E(r)/E(−R) = (τV/τa)(2πr/2πR) = 72.1. This ratio is
much larger than the ratio E(r)/E(−R) = Dtc(r)/Dtc(−R) expected for the
steady-state analysis, since using the Gibbs Thompson expression one has
c(r)/c(−R) = exp(γ/kBT (1/r+1/R)) ≈ 1.4. Such a low ratio is not compat-
ible with the difference in the island shape discussed before, i. e. convex for
the adatom vs concave for the vacancy island.

The decay rates for the adatom and vacancy islands can now be estimated
in an independent atom model. For the adatom island

dAa/dt = (2πr)aE(r)Pr/n (7.41)

where Pr is the probability of an atom detached from the island at r, to reach
the boundary at R. The other possible outcome for the atom is to return back
to r with probability (1− Pr). The contribution of the atoms detached from
the boundary of the vacancy island at R is neglected because E(−R) � E(r).
Pr has been shown to be a/r ln(R/r) [75].

Similarly, the vacancy island decay rate is given by

dAV/dt = (2πR)aE(−R)PRs/n (7.42)

where PRs is the probability for an atom detached at R to be adsorbed
at r after overcoming the step edge barrier. The probability PR for the
atom detached at R to be adsorbed at r, if there was no reflecting bound-
ary at r (i.e. p = 1), is PR = a/R ln(R/r). PRs is easily found to be
PR p/(1− (1−p)(1−Pr)) by summing the probabilities p(1−Pr)n(1−p)nPR

of all possible paths to reach the small vacancy island before the atom over-
comes the barrier. n denotes number of reflections at r.

We can express the ratio of adatom- vs vacancy-island decay rates in terms
of the detachment rates, (dAa/dt)/(dAV/dt) = (r)(PrE(r))/(RPRsE(−R)) =
E(r)(1 − (1 − p)(1 − Pr))/E(−R). Using the data for island vs vacancy de-
cay of Ag/Ag(111) at T = 300K [r = 7 nm, R = 70nm, Es = 0.13 eV (for
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p = νs/νt exp(−∆Es/kBT )), E(r)/E(−R) = 72.1, (dAa/dt)/(dAV/dt) = 25]
we obtain a ratio νs/νt 
 25. We have a strong inequality in νs/νt (instead
of an exact value) because from the measured ratio of the decay rates it fol-
lows that p > PR, which implies that p is sufficiently large so that it does
not control the atom attachment to the small vacancy island at r. Any value
of p > PR is allowed and therefore (for a fixed value ∆Es = 0.13 eV of the
barrier) the experiment is consistent with any ratio νs/νt 
 25.

The re-examination of the island decay experiments in terms of the in-
dependent atom model brings the value of νs/νt in good agreement with the
low-temperature experiments. It is also consistent with the fact that the ra-
tio of atom-detachment rates E(r)/E(−R), expected from the experimentally
known island shapes and the contribution of the different segments (kink vs
straight), is larger than the ratio found under the steady-state assumption.

7.5 Conclusion

We have reviewed recent developments in the fast growing field of surface
diffusion by presenting results from four different experiments to illustrate
different techniques and objectives in the field, especially the important dis-
tinction between equilibrium and non-equilibrium experiments. We would
like to stress again that the issues and problems discussed in this chapter can
only be a small subset of the wide-ranging activities in the field, focused on
the authors’ expertise. Despite this limitation, the reader is expected to gain
a good idea about the breadth and diversity of the field.

The basic dichotomy in the field, i. e. equilibrium vs non-equilibrium
methods, is characteristic of surface diffusion. Work in the first area is more
intimately related to topics covered in other chapters of this volume. Non-
equilibrium diffusion especially in the context of epitaxy, growth and in de-
veloping the ability to control nanostructures, as discussed in Sects. 7.4.1 and
7.4.2, is unique to surface diffusion with no clear analogue to bulk diffusion.

After recognizing this essential fact, which defines two subcommunities in
surface diffusion, it is worth commenting on pragmatic limitations in the rela-
tion between theory and experiment in each subcommunity. Equilibrium sur-
face diffusion is highly developed theoretically with mature methods of high
sophistication to deduce the coverage and temperature dependence of the
diffusion coefficient D(θ, T ) and its relation to phase transitions and thermo-
dynamic parameters, for a given set of adatom interactions. This connection
is universally amenable to general and global predictions. Unfortunately, this
area is difficult to implement experimentally because the measurable signal
is small, originating from few percent concentration fluctuations. The meth-
ods presented in Sects. 7.3.1 and 7.3.2, based on fluctuation measurements
in reciprocal and real space, have shown that such methods are now possi-
ble, but further tests are necessary, to carry fluctuation experiments to other
systems and compare them with the results from other techniques.
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On the other hand, non-equilibrium experiments such as profile evolu-
tion methods, island growth in epitaxy, second layer nucleation, island decay
etc. are easier to implement experimentally because the measurable signal is
large and easy to detect. However, such methods are either less developed
theoretically or they easily lead to ambiguities in their interpretation. The
implicit expectation, i. e. to apply the results universally to other physical
phenomena, is not easily achieved in non-equilibrium experiments, since the
questions posed are specific to the situation at hand, and the controlling fac-
tors in non-equilibrium experiments are different microscopic processes. The
main issue is the identification of the kinetically limiting key processes which
control the evolution of the system. This was clear both in the uniform-height
island in Pb/Si(111) and in the different interpretations of the interlayer diffu-
sion experiments on Ag/Ag(111). However, the ultimate justification of non-
equilibrium experiments is the potential to fabricate well-controlled atomic-
scale structures which are technologically useful. Success even in one system
may therefore have a larger payoff than finding, if possible, a universal de-
scription of all non-equilibrium phenomena.

Notation

a lattice constant
c(r, t) local concentration at r, t
d single step height
Ds step edge diffusion coefficient
Dc collective Diffusion coefficient
Dt tracer Diffusion coefficient
E(r) detachment rate from island of radius r
∆Es step edge barrier
F flux rate
f atomic scattering factor
I diffraction Intensity
k wavevector
kB Boltzmann constant
L terrace length of stepped surfaces
n Ag(111) atom density in atom/nm2

p interlayer probability
Pr probability to diffuse from r to R
PR probability to diffuse from R to r
PRs probability to diffuse from R to r in the presence of a step edge

barrier at r
S(k, t) structure factor
t time
T temperature
Tc critical temperature
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w fluctuating step width
z tip-surface separation
α atom polarizability
β step stiffness
Γ step mobility
γ 1D “surface” tension
∆ amplitude of step fluctuations
ζ instrumental correlation length
θ coverage
κ atom detachment rate in the steady state model
λF Fermi wavevector
µ chemical potential
νs prefactor at step edge
νt prefactor at terraces
ξ step correlation length
Σ area of elementary hops along step
EC evaporation and condensation mechanism
FIM field ion microscopy
LEED low energy electron diffraction
LEEM low energy electron microscopy
ML monolayer
QSE quantum size effects
RHEED reflection high energy electron diffraction
STM scanning tunneling microscopy
SD step diffusion
TD terrace diffusion
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8 Grain Boundary Diffusion in Metals

Christian Herzig and Yuri Mishin

8.1 Introduction

Grain boundary (GB) diffusion plays an important role in many processes
taking place in engineering materials at elevated temperatures. Such processes
include Coble creep, sintering, diffusion-induced grain boundary migration,
discontinuous reactions (such as discontinuous precipitation, discontinuous
coarsening, etc.), recrystallization, and grain growth. GB diffusion is impor-
tant not only at high temperatures but sometimes also at relatively low, even
ambient temperatures. In particular, the service life of many microelectronic
elements and devices is limited by room temperature diffusion or electromi-
gration of detrimental impurities along GBs resulting in the degradation of
service characteristics.

The fact that GBs provide high diffusivity (“short circuit”) paths in met-
als has been known since a few decades. First indications of enhanced atomic
mobility at GBs were obtained as early as in the 1920–1930s, for example
from grain size dependence of creep and sintering rates in polycrystalline
materials. However, the first direct proof of GB diffusion was obtained in the
early 1950s using autoradiography [1]: the additional blackening of autoradi-
ographic images along GBs indicated that the radiotracer atoms penetrated
into GBs much faster than in the regular lattice [2]. These observations were
immediately followed by two important events: the appearance of the nowa-
days classic Fisher model of boundary diffusion [3], on one hand, and the
development and extensive use of the radiotracer serial sectioning technique,
on the other hand. It was largely due to these events that GB diffusion studies
were put on a quantitative basis and GB diffusion measurements became the
subject of many investigations and publications. Over the five decades that
followed, the experimental techniques for GB diffusion measurements have
been drastically improved and extended to a wide range of temperatures and
a broad spectrum of metallic, semiconductor, and ceramic materials. On the
theoretical side, the Fisher model, being still the footing stone of GB diffu-
sion theory, has been subject to careful mathematical analysis and extended
to various situations encountered in diffusion experiments and technological
processes. For an overview of both fundamentals and recent achievements in
this area see the book of Kaur et al. [4] and review articles [5–7]. A com-
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Fig. 8.1. Schematic geometry of the Fisher model
of grain boundary diffusion.

plete collection of experimental data published before the end of 1980s can
be found in the handbook of Kaur et al. [8].

This chapter presents a brief review of fundamental aspects of GB dif-
fusion with emphasis on metals and metallic alloys. In Sects. 8.2 and 8.3
we introduce classifications of GB diffusion kinetics and mathematical mod-
els applied for the analysis of experimental concentration profiles. We also
give a brief summary of the current knowledge of GB diffusion in metals. In
Sect. 8.4 we discuss in more detail the problem of GB diffusion accompanied
by GB segregation and discuss the recent progress in this area. In Sect. 8.5
we summarize. The idea which we wish to emphasize in this review is that
many problems in this area could only be solved by combining new theoretical
models with precise measurements using novel experimental techniques.

8.2 Fundamentals of Grain Boundary Diffusion

8.2.1 Basic Equations of Grain Boundary Diffusion

Most mathematical treatments of GB diffusion are based on the Fisher model
[3] describing diffusion along a single GB. In the Fisher model, a GB is
represented as a high-diffusivity uniform and isotropic slab embedded in a
low-diffusivity isotropic crystal perpendicular to its surface (Fig. 8.1). The
GB is thus described by two physical parameters: the GB width δ and the
GB diffusion coefficient Db such that Db 
 D, D being the volume diffusion
coefficient. In a typical diffusion experiment, a layer of foreign atoms or tracer
atoms of the same material is created at the surface and the specimen is
annealed at a constant temperature T for a time t. During the anneal the
atoms diffuse from the surface into the specimen in two ways: directly into
the grains and, much faster, along the GB. In turn, the atoms which diffuse
along the GB eventually leave it and continue to diffuse in the lattice regions
adjacent to the GB, thus giving rise to a volume diffusion field around the
GB.

Mathematically, the diffusion process is described by two coupled equa-
tions:
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∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
, where |x| > δ/2, (8.1)

∂cb
∂t

= Db
∂2cb
∂y2

+
2D
δ

(
∂c

∂x

)
x=δ/2

. (8.2)

These equations represent diffusion in the volume and along the GB, respec-
tively. c(x, y, t) is the volume concentration of the diffusing atoms and cb(y, t)
is their concentration in the GB. The second term in the right-hand side of
(8.2) takes into account the leakage of the diffusing atoms from the GB to the
volume. Any solution of (8.1) and (8.2) should meet the surface condition,
which can be different in different experiments (see below), as well as the
natural initial and boundary conditions at x → ±∞ and y → ∞. The join-
ing condition between functions c(x, y, t) and cb(y, t) depends on whether
we study self-diffusion or impurity diffusion. For self-diffusion, the joining
condition simply reflects the continuity of the concentration across the GB,

cb(y, t) = c(±δ/2, y, t). (8.3)

For impurity diffusion, the joining condition involves the equilibrium segre-
gation factor s and reads

cb(y, t) = sc(±δ/2, y, t). (8.4)

The physical meaning of this relation will be discussed later.

8.2.2 Surface Conditions

Fisher [3] postulated a constant source condition at the surface,

c(x, 0, t) = c0 = const. (8.5)

This condition is also called a thick-layer condition because it can be estab-
lished by depositing a thick layer of diffusant, h 
 (Dt)1/2. The constant
source condition also applies when diffusion takes place from a gas phase.

Later Suzouka [9, 10] introduced an instantaneous source, or thin-layer
condition,

c(x, y, 0) = Mδ(y), (∂c/∂y)y=0 = 0, (8.6)

where M is the amount of diffusant deposited per unit area of the surface.
This surface condition assumes that the initial layer is completely consumed
by the specimen during the diffusion experiment, i.e. h � (Dt)1/2. Note that
(8.6) unrealistically assumes that the rate of surface diffusion is the same as
the rate of volume diffusion, which contradicts existing experimental data.

A more realistic thin-layer condition, called fast surface diffusion condi-
tion, was proposed in [4,11]. That condition postulates that surface diffusion
is much faster than volume and even GB diffusion, which results in a uniform
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surface concentration near the GB-surface intersect. The respective surface
condition is

c(x, y, 0) = Mδ(y), c(x, 0, t) = M/(πDt)1/2. (8.7)

This condition also assumes that h � (Dt)1/2.
In modern experiments thin-layer conditions are established more often

than the constant source condition. This is due to the use of extremely thin
radiotracer layers which do not disturb the structural or chemical state of
GBs in the course of the diffusion experiment.

8.2.3 Methods of Profile Analysis

The basic equations of the Fisher model, (8.1) and (8.2), can be solved analyt-
ically. The integral representations of the exact solutions for the constant and
instantaneous sources were derived by Whipple [12] and Suzuoka [9, 10], re-
spectively. Using the same Fourier-Laplace transformation method, the exact
analytical solution was also obtained for the fast surface diffusion condition,
(8.7) [4]. Unfortunately, the practical significance of exact solutions is very
limited because of their very complicated mathematical form. In practical
terms, any mathematical solution is only useful if it offers a way to process
the experimental concentration profile and determine GB diffusion charac-
teristics.

GB diffusion measurements typically employ the radiotracer serial section-
ing method. After the diffusion anneal, thin-layers of the material parallel to
the source surface are removed from the specimen (either mechanically or by
ion beam sputtering) and the radioactivity of each section is measured with
a crystalline γ-detector or a liquid scintillation counter. Experimental details
of this method can be found in the literature [13, 14], see also Chap. 1. The
quantity measured by this method is the average layered concentration of the
diffusant, c, as a function of the penetration depth y. This function, called
a concentration (or penetration) profile, bears information about GB diffu-
sion parameters and is therefore subject to a mathematical treatment with
the purpose of extracting that information. Much work has been devoted to
the development of approximate analytical solutions of the Fisher model and
simple recipes of profile analysis.

Fisher [3] derived the following approximate solution for self-diffusion
from a constant source:

c ∝ c0 exp(−π−1/4w), (8.8)

where the precise value of the proportionality constant is not important. Here
w is the reduced penetration depth defined by

w =
y

(δDb)1/2

(
4D
t

)1/4

. (8.9)
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Equation (8.8) suggests that the penetration profile c(y) plotted in the coor-
dinates log c versus y should yield a straight line. Then, knowing the slope
∂ ln c/∂y of that line we can determine the product δDb:

δDb = 1.128(D/t)1/2(−∂ ln c/∂y)−2. (8.10)

The volume diffusion coefficient D is assumed to be known from independent
measurements.

Fisher’s exponential solution, (8.8), is not very accurate. If a profile calcu-
lated using Whipple’s [12] exact analytical solution is plotted in the coordi-
nates log c versus yn with various powers n, the best straight line is obtained
with the power of n = 6/5 [15, 16]. Moreover, the linear part of the profile
scales with the reduced depth w defined by (8.9) with a constant slope of
about −0.78:

∂ ln c
∂w6/5

≈ −0.78. (8.11)

It immediately follows that, knowing the slope of the experimental profile in
the coordinates log c versus y6/5, we can calculate the product δDb:

δDb = 1.322(D/t)1/2
(
−∂ ln c/∂y6/5

)−5/3

. (8.12)

Equations (8.11) and (8.12) are only valid under two conditions:

– The so-called LeClaire’s parameter β defined by

β =
δDb

2D(Dt)1/2
(8.13)

must be large enough, in practical conditions β > 10.

– Parameter
α =

δ

2(Dt)1/2
(8.14)

must be small enough, in practical conditions α < 0.1.

Similarly, for diffusion from an instantaneous source it was found that

∂ ln c
∂w6/5

≈ −0.775 (8.15)

provided that α is small enough and β > 104 [9, 10]. Therefore, the product
δDb can be determined from the linear part of the profile log c versus y6/5:

δDb = 1.308(D/t)1/2
(
−∂ ln c/∂y6/5

)−5/3

. (8.16)

If β < 104, the right-hand side of (8.15) is no longer constant; instead, it
becomes a function of β (and thus time). Then, (8.16) should be slightly
modified to become

δDb = 1.206(D0.585/t0.605)1/1.19
(
−∂ ln c/∂y6/5

)−5/2.975

(8.17)
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Fig. 8.2. Schematic shape of a typical pen-
etration profile of grain boundary diffusion.
If α � 1 and β  1, where α and β are
defined by (8.13) and (8.14), then the tail
of the profile is a straight line in the coordi-
nates log c versus y6/5.

for 102 < β < 104, and

δDb= 1.084(D0.91/t1.03)1/1.94
(
−∂ ln c/∂y6/5

)−5/2.91

(8.18)

for 10 < β < 102.
The preceding relations describe only one part of the profile, namely, the

part which is dominated by GB diffusion. The overall penetration profile
typically consists of two parts as shown schematically in Fig. 8.2:

– A near-surface region caused by direct volume diffusion from the surface.
The concentration in this region follows a Gaussian function or an error
function, depending on the surface condition. If measured accurately, this
part can be used to determine the volume diffusion coefficient.

– A long-penetration tail caused by the simultaneous GB diffusion and lat-
eral volume diffusion from the GB to the adjacent grains. It is this tail
that should become a straight line when plotted as log c versus y6/5. The
slope of this line is used to determine the GB diffusivity.

It should be pointed out that the power n = 6/5 has no physical meaning
and cannot be derived analytically. It simply provides a good numerical ap-
proximation of the exact profile in a convenient concentration range and is
therefore widely used for the analysis of experimental profiles. A slightly more
accurate value of n can be obtained for each particular surface condition or
GB geometry in the sample [17]. The obtained values range from 1.1 to 1.2,
i.e. are rather close to 6/5. Given the scatter of data points on experimental
profiles, the use of one universal power n = 6/5 and thus (8.12), (8.16)-(8.18)
is a well-justified procedure for all practical purposes. Carefully measured
experimental profiles do follow the y6/5-rule in a wide concentration range,
see examples in Fig. 8.3. Moreover, the linearity of log c versus y6/5 is often
used as a proof of predominant GB diffusion in the sample and a measure of
the profile quality.
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Fig. 8.3. Penetration profiles for
self-diffusion in polycrystalline sil-
ver [23]. This diagram demon-
strates that the GB-related tail
of high quality profiles becomes a
straight line when plotted as log c
versus y6/5.

Equations (8.12), (8.16)-(8.18) are only valid for self-diffusion in metals.
The case of impurity diffusion was first analyzed by Bokshtein et al. [18] and
Gibbs [19] and later revisited by other authors (see [4] for references). It has
been shown that, provided the segregation factor s is a constant, all solutions
of the Fisher model remain the same as for self-diffusion except that δ should
be replaced by the product sδ. In particular, (8.12), (8.16)-(8.18) should be
modified by replacing their left-hand side by sδDb. After this modification
they can be applied for the determination of the triple product sδDb of
impurity diffusion.

8.2.4 What Do We Know About Grain Boundary Diffusion?

It is not our intention to give a complete answer to this question, especially
because many topics in this area are still the subject of debates in the lit-
erature. We will focus on facts that appear to be well established and will
restrict our discussion to self-diffusion in metals.

The Grain Boundary Width

In the case of self-diffusion we can only determine the product δDb. We
thus need to know δ if we want to determine the GB diffusion coefficient
Db. The assumption δ = 0.5 nm introduced by Fisher [3] seems to be a good
approximation. This value of δ is well-consistent with evaluations of GB width
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Fig. 8.4. Arrhenius lines for self-diffusion in fcc metals in the lattice (D) [31], along
grain boundaries (Db) [32], on the surface (Ds) [30] and in the liquid phase [30].

by high-resolution transmission electron microscopy, field ion microscopy, and
other techniques [4, 20–22]. Furthermore, recent combined B-regime and C-
regime measurements (see definitions of these regimes below) of self-diffusion
in silver indicate that δ = 0.5 nm is a very good estimate of δ in metals [23,24].
Atomistic computer simulations also confirm that the enhanced diffusivity at
GBs is confined to the GB core of around 0.5 nm in thickness [25–29].

Empirical Rules

Like lattice diffusion, GB diffusion normally follows the Arrhenius tempera-
ture dependence, Db = Db0 exp(−Qb/RT ), R being the gas constant. The
activation energy Qb of GB diffusion is about a factor of two smaller than
the activation energy Q of lattice diffusion; more exactly, in most metals
Qb/Q ≈ 0.4 to 0.6. Typically, GB diffusion is 4 to 8 orders of magnitude

Table 8.1. Empirical correlation between grain boundary self-diffusion and the
melting temperature for three classes of metals. Tm is the melting temperature.

Brown and Ashby [31] Gust et. al. [32]

structure δDb0 (m3/s) Qb (J/mol) δDb0 (m3/s) Qb (J/mol)

fcc 9.44 × 10−15 83.0 Tm 9.7 × 10−15 75.4 Tm

bcc 3.35 × 10−13 97.6 Tm 9.2 × 10−15 86.7 Tm

hcp 2.74 × 10−14 89.8 Tm 1.5 × 10−14 85.4 Tm
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Fig. 8.5. Orientation de-
pendence of self-diffusion
in [001] symmetrical tilt
grain boundaries in silver
at T = 771 K [34].

faster than volume diffusion depending on the temperature (Fig. 8.4). This
tremendous difference in the diffusion coefficients is mainly due to the dif-
ference in the activation energies while the respective pre-exponential factors
are close to one another. For all metals, Db approaches a common value of
about 10−9 to 3×10−9 m2s−1 at the melting temperature Tm [30]. Even near
the melting point, Db remains significantly higher than D and approaches
the diffusion coefficient in the liquid phase (Fig. 8.4). In Table 8.1 we sum-
marize empirical correlations between GB diffusion data and Tm for three
classes of metals (fcc, bcc and hcp) derived by Brown and Ashby [31] and
Gust et al. [32]. These correlations offer a good base for the systematics of
available GB diffusion data and the evaluation of new data.

Anisotropy of Grain Boundary Diffusion

If diffusion is measured in two mutually perpendicular directions in the same
GB, the obtained diffusion coefficients are generally different. The first mea-
surements of this type were performed by Hoffman [33] for self-diffusion along
[001] tilt GBs in Ag. He diffused a silver radiotracer into a single GB in silver
bicrystals, i.e., samples prepared by the diffusion bonding of two properly
oriented single crystals. For small-angle misorientations between the grains
the anisotropy was especially strong, with diffusion parallel to the tilt axis
(D‖

b) being a factor of 15 faster than diffusion perpendicular to the tilt axis
(D⊥

b ). These observations were explained in terms of the dislocation model
of small-angle GBs. However, some anisotropy D

‖
b/D

⊥
b ≈ 2 still remained

even when the tilt angle θ became as large as 45◦. Since the dislocation
model is not valid at large misorientations, the measurements of Hoffman
suggest that even large-angle GBs are not amorphous but instead have a
well-ordered anisotropic structure. Figure 8.5 shows more recent results of
diffusion anisotropy measurements, also in bicrystals with a [001] symmet-
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(a) (b)

Fig. 8.6. (a) Orientation dependence of 195Au diffusion in [001] symmetrical tilt
grain boundaries in Cu measured on oriented bicrystals around the Σ = 5 (310)[111]
orientation [36]. The grain boundary diffusivity P = sδDb is plotted as a function of
the tilt angle θ. (b) orientation dependence of Ge diffusion in Al bicrystals around
the Σ = 7 (321)[111] orientation [38].

rical tilt GB in Ag, in the range of high-angle misorientations [34]. Similar
results were obtained in other metallic systems [4]. Atomistic computer simu-
lations also predict a significant anisotropy of GB diffusion in metals [26,27].

Orientation Dependence of Grain Boundary Diffusion

If the lattice misorientation between two grains changes continuously and GB
diffusion is measured along a fixed direction in the GB plane (e.g., parallel to
the tilt axis), will the diffusion characteristics change monotonically or will
they show maxima or minima at some special orientations? The first attempt
to answer this question was made in the pioneering work of Turnbull and Hoff-
man [35], again on bicrystals with a [001] symmetrical tilt GB in Ag. They
studied only small-angle GBs and found a monotonic increase in the diffu-
sivity with the misorientation angle. Later measurements on large-angle GBs
revealed sharp minima at some misorientations with low values of Σ (recipro-
cal density of coincident sites). For example, Budke et al. [36,37] have studied
tracer self-diffusion and Au impurity diffusion in a series of well-characterized
Cu GBs in a narrow range (∆θ = 6◦) of tilt angles around the Σ5 (310)[001]
symmetrical tilt misorientation. The diffusivity showed a minimum and the
activation energy a maximum very close to the perfect θ = 36.9◦ misorien-
tation (Fig. 8.6(a)). Similar minima of GB diffusivity were observed for Ge
tracer diffusion along the Σ7 (321)[111] GB in Al [38] (Fig. 8.6(b)), as well
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as for Zn chemical diffusion along the Σ5 (310)[001], Σ9 (122)[011], and Σ7
(321)[111] symmetrical tilt GBs in Al [39]. At first sight, these observations
stand in contrast with the continuous orientation dependencies found earlier
on [001] symmetrical tilt GBs in Ni [40] and Ag [34, 41] (cf. Fig. 8.5). How-
ever, if the minima of Db are confined to narrow ranges around some special
misorientations, as was observed in [36–38], they could have been overlooked
in the previous studies [34, 40, 41] where the measurements were taken in
every 5–7◦.

Atomistic Mechanisms of Grain Boundary Diffusion

There is experimental evidence suggesting that GB diffusion in metals and
metallic systems takes place by the vacancy mechanism [4, 20, 42]. However,
alternative mechanisms cannot be excluded, especially the interstitial mecha-
nism. Recent atomistic computer simulations [25–27,43] suggest that the full
description of GB diffusion should include both the vacancy and interstitial-
related mechanisms. Simulations also reveal that vacancies can move by “long
jumps” involving a simultaneous displacement of two or more atoms [26,27].
Interstitials move by the interstitialcy mechanism in which two or more atoms
jump in a concerted manner. On some (although rare) occasions even the ring
mechanism was found to operate in certain GBs [26]. Which mechanism dom-
inates the overall atomic transport depends on the particular GB structure.
Atomistic modeling also suggests that at high temperatures GBs can develop
a significantly disordered, “liquid-like” structure [28, 29]. Diffusion in such
GBs is believed to occur by mechanisms similar to those in liquids.

8.3 Classification of Diffusion Kinetics

GB diffusion is a complex process involving several elementary processes, such
as direct volume diffusion from the surface, diffusion along the GBs, partial
leakage of the diffusant from the GBs to the volume, and the subsequent vol-
ume diffusion around the GBs. In a polycrystalline material, diffusion trans-
port between individual GBs can also play an important role. Depending on
the relative importance of these elementary processes, essentially different
diffusion regimes, or kinetics, can occur. In each particular regime one or
two elementary processes control the overall rate of diffusion, whereas other
processes are unimportant. Each regime dominates in a certain domain of
anneal temperatures, times, grain sizes, and other relevant parameters. The
knowledge of all regimes that can occur is important for both planning dif-
fusion experiments and the interpretation of their results. The shape of the
experimental concentration profile depends on the kinetic regime. Further-
more, the diffusion characteristics that can be extracted from the penetration
profile also depend on the kinetic regime and should be identified a priori.
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Fig. 8.7. Schematic illustration of type A,
B and C diffusion regimes in Harrison’s clas-
sification.

In this section we consider Harrison’s [44] A-B-C classification for a poly-
crystal containing parallel GBs (Sect. 8.3.1). Some other classifications are
discussed in Sect. 8.3.2.

8.3.1 Harrison’s Classification

Harrison [44] proposed the first and still the most widely used classification
of diffusion kinetics in a polycrystal with parallel GBs. His classification in-
troduces three regimes called type A, type B, and type C (Fig. 8.7).

Type A Kinetics

The A regime is observed at high temperatures, or/and after very long an-
neals, or/and when the grain size is small. In this regime, the volume diffusion
length (Dt)1/2 is larger than the spacing d between the GBs, so that volume
diffusion fields of neighboring GBs overlap very extensively. Thus, the condi-
tion of the A regime is

(Dt)1/2 
 d. (8.19)

Under this condition an average tracer atom visits many grains and GBs
during the anneal time t, which results in planar front diffusion with the
penetration depth proportional to t1/2. On the macroscopic scale, the poly-
crystal obeys Fick’s law with an effective diffusion coefficient Deff . The latter
represents an average of D and Db weighted in the ratio of the number of
atomic sites in the grains and in GBs [45],

Deff = fDb + (1 − f)D (8.20)
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(Hart’s formula). Here f is the volume fraction of GBs in the polycrystal, i.e.,
f = qδ/d, q being a numerical factor depending on the grain shape (q = 1
for parallel GBs). Thus, the experimental penetration profile should follow a
Gaussian or an error function solution (depending on the surface condition)
with the diffusion coefficient Deff . Since Db 
 D, Deff is generally larger
than D, which explains why diffusion coefficients measured on polycrystals
are typically higher than the true value of D. If the grain size is large enough,
then f → 0 and Deff approaches D. In the other extreme, when d is very
small, Deff is dominated by the first term and Deff ≈ qδDb/d. Then, knowing
the grain size and measuring Deff , we can determine the product δDb.

Type B Kinetics

If the temperature is lower, or/and the diffusion anneal time is shorter, or/and
the grain size is larger than in the previous case, then diffusion takes place
in the B regime in which

δ � (Dt)1/2 � d. (8.21)

As before, GB diffusion is accompanied by volume diffusion around GBs,
but volume diffusion fields of neighboring GBs do not overlap (Fig. 8.7).
Individual GBs are effectively isolated and mathematical solutions obtained
for a single GB (Sect. 8.2) are also valid for a polycrystal. The relation (8.21)
also implies that α � 1. When analyzing the B regime, it is additionally
assumed that also β 
 1. Under these conditions the penetration profile has
a two-step shape (Fig. 8.2) and (8.12), (8.16)-(8.18) can be applied for the
profile analysis. The product δDb (for impurity diffusion, sδDb) is the only
quantity that can be determined in the B regime. This regime comprises the
widest and the most convenient temperature range of diffusion measurements
in comparison with other regimes.

Type C Kinetics

If, starting from the B regime, we go towards lower temperatures or/and
shorter anneal times, we eventually arrive at a situation when volume diffu-
sion is almost “frozen out” and diffusion takes place only along GBs without
any leakage to the volume (Fig. 8.7). In this regime, called type C, we have

(Dt)1/2 � δ, (8.22)

and thus α 
 1. The concentration profile is either a Gaussian function

c ∝ exp
(
− y2

4Dbt

)
(8.23)

(instantaneous source) or an error function
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Fig. 8.8. Penetration profile of GB
self-diffusion in polycrystalline Ag
measured in the C regime (α = 17)
[23]. In order to measure this pro-
file in a wide concentration range,
carrier-free 105Ag radiotracer was
implanted at the ISOLDE/CERN
facility. After a microtome sec-
tioning, the radioactivities of the
sections were determined with a
well-type intrinsic Ge γ-detector.
The tail of the profile shows a
downward curvature when plotted
as log c vs y6/5 (B-regime format,
lower scale) but becomes a straight
line when plotted as log c vs y2 (C-
regime format, upper scale).

c ∝ erfc
[

y

2(Dbt)1/2

]
(8.24)

(constant source). If the profile has been measured experimentally (which is
extremely difficult to do because the amount of tracer penetrated into the
sample is very small), then we can determine Db separately from δ. If the
profile has been measured over a wide concentration range, we can distinguish
between the B and C regimes already from its shape and not only from the
value of α. This fact is illustrated in Fig. 8.8 in which a C-regime profile of
GB self-diffusion in Ag is plotted in two different formats [23]. The linearity
of the plot log c versus y2 confirms the C regime.

It is important to know the physical meaning of the parameters α and β
used in this classification [4,5]. Parameter α determines the relation between
diffusion along the GBs and the leakage of the diffusant from the GBs to the
volume. When α 
 1, which is the case in the C regime, then diffusion along
the GBs takes place without any leakage to the volume. Then the leakage term
in (8.2) can be neglected and this equation is easily solved to give (8.23) and
(8.24). If α � 1 (B regime), the leakage of the diffusant from the GBs is
the rate-controlling step while GB diffusion itself is quasi-steady. The latter
means that the derivative ∂cb/∂t in (8.2) can be neglected, which simplifies
this equation and makes the concentration a function of the reduced depth
w only.

Parameter β determines the relation between the x and y components
of volume diffusion near the GBs. When β 
 1 (C and B regimes), volume
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diffusion takes place predominantly in the x direction and the term ∂2c/∂y2

in (8.1) can be neglected. This approximation does not apply to the zone
of direct volume diffusion near the surface, which is dominated by the term
∂2c/∂y2. However, as long as β 
 1, the depth of the direct volume diffusion
zone is much smaller than the penetration depth along the GBs. Because
β decreases with temperature and time, at high temperatures or after long
anneals β becomes small and we arrive at the A regime in which most of the
penetration profile lies in the zone of direct volume diffusion.

If the grain size is small, the volume diffusion fields around GBs come
to overlap while β is still large. In that case the onset of the A regime is
determined by the condition Λ ≡ d/

√
Dt � 1. Murch and Belova [46] have

recently performed kinetic Monte Carlo simulations of GB diffusion across the
A and B regimes and established a more practical criterion of the A-B kinetic
transition. Namely, the A regime dominates at Λ ≤ 0.4–0.7 (depending on
the surface conditions), whereas lower limit of the B regime is Λ ≈ 2.0. The
range 0.5 ≤ Λ ≤ 2 therefore corresponds to the A-B transition kinetics.

Another transient kinetics, namely between the B and C regimes, in which
α ≈ 1, is particularly interesting. It has even been argued that this transi-
tion deserves to be treated as separate kinetic regime [4, 11]. In this regime,
the diffusion profile depends on both w and α, which opens a possibility
to determine both δDb and δ from the profile shape. Although the respec-
tive mathematical treatments have been developed and experimental profiles
measured in this transient regime are available in the literature, attempts
to determine Db and δ in such conditions have not been very successful so
far [4].

8.3.2 Other Classifications

So far we have only considered a polycrystal with parallel GBs. More realistic
models of a polycrystal have been proposed, such as the cubic grain model
of Suzuoka [9], the spherical grain model of Bokshtein et al. [18], and the
general model of diffusion in isotropic polycrystals by Levine and MacCal-
lum [15]. The spherical grain model has been particularly useful due to its
ability to treat diffusion in fine-grained polycrystals. The model was analyzed
in several publications and applied to diffusion in fine-grained oxides [47] and
growing oxide films [48,49]. Along with standard regimes that fit into Harri-
son’s classification, both Bokshtein et al. [18] and Levine and MacCallum [15]
identified a new regime in which

δ �
√
Dt� d� Lb, (8.25)

where Lb is the penetration depth along GBs. In this regime the diffusing
atoms penetrate to a large depth Lb 
 d along the GB network but volume
diffusion fields around individual GBs still do not overlap. It has been shown
[4] that the penetration profile has the same shape as in Harrison’s B regime
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and that (8.12), (8.16)-(8.18) are still valid, but δ should be replaced by
an “effective” GB width qδ, where q is a geometric factor of order unity
depending on the grain shape.

A general classification of diffusion kinetics in isotropic polycrystalline
materials has been developed in [4, 50]. If the grain size d is allowed to vary
over a wide range, a number of new regimes can occur, each defined by a
certain relation between the four characteristic lengths involved in the prob-
lem: δ, d, (Dt)1/2, and Lb. In particular, the kinetics defined by (8.25) is one
of such regimes. Each regime is characterized by a certain time dependence
of the penetration length, a certain shape of the concentration profile, and
certain diffusion characteristics that can be determined from the profile. The
analysis also shows that all isotropic polycrystals can be divided into three
classes called “coarse-grained”, “fine-grained”, and “ultrafine-grained” poly-
crystals according to their grain size. Polycrystals of each class exhibit their
own set of diffusion regimes. GB segregation has a strong effect on both the
concentration profiles and the critical grain sizes separating the three classes
of polycrystals. The interested reader is referred to Sect. 2.4.13 of [4] for more
details.

Other generalizations of Harrison’s classification include the analysis of
diffusion in structurally non-uniform GBs [51, 52] and GB diffusion in con-
ditions when the grains are non-uniform [52, 53]. In particular, Klinger and
Rabkin [53] proposed an extension of Harrison’s classification which recog-
nizes that lattice dislocations, subgrain boundaries, and other extended de-
fects present in the bulk can alter the GB diffusion kinetics. They have iden-
tified a new (“type D”) regime in which the effective rate of GB diffusion is
controlled by short circuit diffusion inside the grains. These and other gener-
alizations are very important as they reach out to more realistic conditions
of diffusion experiments and diffusion-controlled processes in materials.

The following example demonstrates the practical usefullness of the an-
alyses of kinetic regimes in polycrystals. Ni GB diffusion in a two-scale ma-
terial was investigated in [54, 55]. The nanocrystalline γ-Fe–40 wt.%Ni alloy
consisted of nanometer-scale grains arranged in micrometer-scale clusters, or
agglomerates (cf. Fig. 9.22 in Chap. 9). For the analysis of the complex pene-
tration profiles in this material with two types of short-circuit diffusion paths
(the nanocrystalline GBs and the inter-agglomerate interfaces) a further ex-
tention of the Harrison classification was suggested [54], which resembles the
one introduced in [53]. Diffusion profiles were observed which corresponded to
three concurrent processes: (i) Harrison’s type B regime of GB diffusion along
the nanocrystalline GBs, (ii) type B regime of short-circuit diffusion along the
inter-agglomerate boundaries with subsequent outdiffusion into the adjacent
nanocrystaline GBs, and finally (iii) volume diffusion (B-B regime). At higher
temperatures, when the bulk diffusion fluxes from individual nanocrystalline
GBs overlapped, the diffusion process proceeded in the type A regime along
the nanocrystalline GBs and in the type B regime along the inter-agglomerate
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boundaries with subsequent outdiffusion via combined nanocrystalline GB
and bulk diffusion (A-B regime). Mathematical methods for analysing the
obtained penetration profiles were also proposed in [54].

8.4 Grain Boundary Diffusion and Segregation

8.4.1 Determination of the Segregation Factor from Grain
Boundary Diffusion Data

As mentioned above, GB diffusion experiments are typically performed in
the B regime and the measured penetration profiles are analyzed using the
y6/5-method, see (8.12), (8.16)-(8.18). If we study impurity diffusion, this
method gives only the triple product sδDb, the only quantity that can be
determined in the B regime. While the GB width δ can be considered as
a known constant, δ = 0.5 nm (Sect. 8.2.4), the GB segregation factor s
and the GB diffusion coefficient Db are still to be determined. Because both
quantities are essentially temperature dependent and can vary by orders of
magnitude, knowing only their product means knowing almost nothing about
each of them individually.

In some cases the equilibrium segregation factor s can be determined by
independent direct measurements. In direct measurements, the impurity is
introduced into the host material and the sample is annealed at a chosen
temperature T to let the impurity form an equilibrium GB segregation. The
sample is then fractured in situ along GBs and the chemical composition of
the fracture surface is analyzed using Auger electron spectroscopy or some
other surface analytic technique [20–22]. Combining the obtained GB segre-
gation factor with the product sδDb measured at the same temperature, we
can calculate the GB diffusion coefficient Db. Unfortunately, direct measure-
ments of s are only possible in intrinsically brittle materials, such as ceramics
and some intermetallic compounds, and are practically impossible in most of
pure metals.

Another way to separate s and Db is to perform GB diffusion measure-
ments in a wide temperature range covering both B and C regimes. By C
regime measurements we can directly determine Db (Sect. 8.3.1). By com-
bining the obtained Db values with sδDb values extrapolated from B regime
measurements at high temperatures, we find sδ = sδDb/Db and thus s as-
suming δ = 0.5 nm. This approach offers a key to solving two important
problems at the same time. Firstly, the GB diffusion coefficients are deter-
mined separately. By making systematic measurements of volume and GB
diffusion in binary systems, insights can be obtained into mechanisms of GB
diffusion and segregation. Secondly, we determine the GB segregation fac-
tor and thus the GB segregation energy. That way, diffusion measurements
can be used as a tool to study equilibrium GB segregation. This capability
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is especially important for non-brittle materials in which direct segregation
measurements are not possible.

It should be pointed out that the separate determination of s and Db

from diffusion measurements is based on the following assumptions:

– Local thermodynamic equilibrium is constantly maintained between GBs
and the adjacent lattice regions at any depth within the diffusion zone.

– Both volume and GB concentrations of the impurity are small enough to
be coupled by the linear equation (8.4) with a constant s. In other words,
the GB segregation follows a linear, or Henry-type, isotherm.

A major problem of this approach is that diffusion measurements in the C
regime are very difficult. Strong GB segregation favours such measurements
by extending the temperature range of the C regime towards higher tempera-
tures. Indeed, since α = sδ/2(Dt)1/2, large s values increase α and allow us to
meet the condition α
 1 at temperatures higher than for self-diffusion. Nev-
ertheless, due to the experimental challenges C regime measurements have
practically not been performed until recently even for impurity diffusion. It
is only since a few years that reliable and systematic C regime measurements
have become possible, mainly due to the use of carrier-free radioisotopes
and extremely sensitive γ-detectors with a large counting efficiency and low
background. To date, combined B and C regime measurements have been
performed in a few systems [56–60]. We will discuss the results for two sys-
tems, Te in Ag [56] and Au in Cu [57], which represent the extreme cases of
very strong and very weak segregation, respectively.

GB diffusion of Te in Ag was studied in the temperature range 378 to
970 K using the radiotracers 123Te (deposited by vacuum evaporation) and
121Te (carrier-free, implanted at the ISOLDE/CERN facility). Each penetra-
tion profile was analyzed in two ways: assuming the B and the C regimes.
The actual regime that dominated the experiment was established from the
profile shape (whether it became linear in the respective coordinates), and by
comparing the α and β values with those required by the B and C regimes.
It was found that the B regime prevailed in the temperature range > 600
K (Fig. 8.9). At these temperatures, the sδDb values determined from log c
versus y6/5 plots followed the Arrhenius relation

sδDb = 2.34 × 10−15 exp
(
−43.47 kJ/mol

RT

)
m3/s. (8.26)

It was also established that the measurements below 500 K were dominated
by the C regime. At these temperatures the GB diffusion coefficients were
determined by fitting the profiles to the Gaussian function. The diffusion
coefficients were found to follow the Arrhenius relation

Db = 1.01 × 10−4 exp
(
−86.75 kJ/mol

RT

)
m2/s. (8.27)
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Fig. 8.9. The Arrhenius plot of
sδDb (circles) and δDb (squares)
(δ = 0.5 nm) for Te impurity dif-
fusion along GBs in Ag [56]. The
B and C regimes dominate above
600 K and below 500 K, respec-
tively. In the range 500 to 600 K
the apparent values of both sδDb

and δDb are significantly under-
estimated. The difference between
the two Arrhenius lines is due to
GB segregation of Te.

In the transition temperature range 500-600 K, the sδDb and Db values
showed significant downward deviations from the respective Arrhenius lines
(Fig. 8.9). This behavior is perfectly consistent with the theoretical analysis
[4, 61] and is typical of the transient regime between B and C.

In Fig. 8.9, the δDb values measured in the C regime are plotted together
with sδDb values extrapolated from the B regime measurements at T > 600
K. The difference between the two lines gives the segregation factor s. The
high values of s (103 to 105) are well-consistent with the very small solubility
of Te in Ag. The segregation energy determined from the Arrhenius plot of
s (Fig. 8.10) equals Es = −43.3 kJ/mol.

In contrast to the previous case, Au in Cu is a system with complete
mutual solubility of the components, so that the GB segregation should be
weak. The results of combined B and C regime measurements for this system
[57], using the carrier-free radiotracer 195Au, are shown in Fig. 8.11. The
Arrhenius relations obtained in the B and C regimes are

sδDb = 2.11 × 10−15 exp
(
−81.24 kJ/mol

RT

)
m3/s (8.28)

and

Db = 4.87 × 10−6 exp
(
−91.03 kJ/mol

RT

)
m2/s, (8.29)

respectively. The segregation factors s deduced from the diffusion data are
shown in Fig. 8.10. As expected, the obtained values of s (8 to 11) and the
segregation energy Es = −9.7 kJ/mol are relatively small. The segregation
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Fig. 8.10. Temperature depen-
dence of the GB segregation factor
s of Te in Ag [56] and Au in Cu [57]
determined from combined B and
C regime measurements.

Fig. 8.11. The Arrhenius plot of
sδDb (circles) and δDb (squares)
(δ = 0.5 nm) for Au impurity dif-
fusion along GBs in Cu [57]. The B
and C regimes prevail above 618 K
and below 526 K, respectively. The
difference between the two Arrhe-
nius lines is due to GB segregation
of Au.

energy has a reasonably lower absolute value than Es = −13.0 kJ/mol ob-
tained earlier for Au segregation at the surface of a Cu-7.5at.%Au alloy [62].

These two examples demonstrate that separate measurements of s and
Db are now possible for both strongly and weakly segregating impurities. As
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-

Fig. 8.12. GB segregation fac-
tors obtained by combined B and
C regime measurements: Te in Ag
[56], Au in Cu [57], Se in Ag [58,
59], Ni in Ag [59], and Ag in Cu
[60].

mentioned before, such measurements offer the only way to study GB segre-
gation in materials in which direct segregation measurements are hampered
by their ductility or tendency to transgranular fracture. Figure 8.12 presents
a summary of GB segregation data in other systems obtained by diffusion
measurements. We see again that segregation factors can be determined over
a wide range spanning almost five orders of magnitude. In all cases studied,
GB segregation tends to reduce the GB diffusion rate of the impurity. In par-
ticular, impurities which are slow diffusers in the lattice diffuse even slower
in GBs, as exemplified by Ni in Ag [59]. Furthermore, a fast diffuser in the
lattice may be a slow diffuser in GBs if the segregation level is high enough,
e.g. Te in Ag [56]. An atomistic theory explaining this “retardation effect” is
yet to come.

8.4.2 Beyond the Linear Segregation

Until this point we assumed that the GB segregation followed a Henry-type
isotherm, i.e., that the segregation factor s in (8.4) was a function of tempera-
ture only. This approximation is only valid when both the volume concentra-
tion cv(y, t) = c(±δ/2, y, t) and the GB concentration cb(y, t) of the impurity,
expressed in mole fractions with respect to the host element, are small. This
condition in turn can only be met when the segregation is not very strong.
In systems with a high level of segregation, especially at low temperatures,
the GB concentration cb can be relatively large. Then, the GBs can show
a tendency to a saturation with the impurity and thus to a non-linear de-
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pendence between cv and cb. A non-linear dependence means that the ratio
cb/cv in the joining condition (8.4) is no longer constant. Instead, it depends
on the volume concentration cv, and since cv changes with depth y, the ratio
cb/cv also changes along the penetration profile. The depth dependence of
cb/cv can affect the shape of the penetration profile and should be taken into
account in the profile analysis.

This problem was first analyzed by Martin and Perraillon [63] and more
recently by Bokshtein et al. [64] and the present authors [65]. All these analy-
ses included the non-linearity of GB segregation by using McLean’s isotherm
instead of the Henry isotherm. McLean’s isotherm of GB segregation has the
form

cb =
scv

1 + (s− 1)cv
, (8.30)

where s depends only on temperature, s = s0 exp(−Es/RT ). If the volume
concentration is small, cv → 0, then (8.30) reduces to the Henry isotherm,
cb = scv. If cv is large, (8.30) gives cb → 1, meaning that the GB is saturated
with the impurity.

Using the approximations introduced by Fisher [3], the basic equations
of the model can be solved analytically. For a constant source, we obtain the
following expression for cb as a function of the reduced depth w:

w = π1/4

∫ σc0

σcb

dc
[−2 ln(1 − c) − 2c]1/2

. (8.31)

Here σ ≡ (s− 1)/s and c0 is the surface concentration. The average concen-
tration measured in sectioning experiments equals

c = 2

∞∫
0

c(x, y, t)dx = 4
(
Dt

π

)1/2

· cv = 4
(
Dt

π

)1/2

· cb
s− (s− 1)cb

. (8.32)

We thus have two functions, w = w(cb) given by (8.31) and c = c(cb) given
by (8.32), which define the penetration profile c(w) parametrically.

Typical penetration profiles log c/c0 versus w calculated from (8.31) and
(8.32) are shown in Fig. 8.13, c0 being the surface value of the average con-
centration c. The profiles consist of two parts:

1. The GB saturation region (w < 1) in which c rapidly decreases and the
profile has a strong upward curvature. In this region the GB concentration
remains almost constant, cb ≈ 1, while the volume concentration cv drops
rapidly.

2. The linear-segregation region (w > 1) in which the profile is consistent
with Fisher’s exponential solution, (8.8). In this region both cv and cb
are small and the linear segregation isotherm is a good approximation. It
is this part of the profile that can be used for the determination of sδDb

using standard methods of profile analysis.
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Fig. 8.13. Typical GB penetration
profiles calculated with McLean’s
isotherm [65].

The profile shape shown in Fig. 8.13 is rather general and could be ob-
tained by using more accurate mathematical solutions of the model or other
forms of the non-linear isotherm of segregation. With more accurate solutions,
the linear-segregation part of the profile has a slight downward curvature ac-
cording to the w6/5-approximation.

Examples of experimental profiles measured for a strongly segregating
impurity and containing two steps are available in the literature. Although it
seems tempting to immediately explain the near-surface part of such profiles
by the solute-saturation effect, one should bear in mind that the near-surface
region of the profiles can be affected by many other factors, such as direct
volume diffusion from the surface, diffusion along dislocations, GB motion,
etc.

In order to avoid such complications, GB diffusion measurements in well-
oriented bicrystals offer a convenient way of studying the effect of non-linear
segregation. This has been demonstrated in a recent investigation of Ag GB
diffusion in Cu bicrystals near the Σ = 5(310)[001] orientation [66]. A curved
penetration profile similar to those presented in Fig. 8.13 has been measured
for Ag GB diffusion (Fig. 8.14, circles), whereas a perfectly linear, type-B pro-
file has been measured for Au GB diffusion in the same bicrystal (squares).
Because Au diffusion closely represents Cu self-diffusion (very low segrega-
tion, cf. Fig. 8.12), the difference in the shape of the profiles can be directly
attributed to the strong GB segregation of Ag in Cu and the associated effect
of GB saturation near the surface. Further details of this study can be found
in [66].

8.5 Conclusion

Diffusion along GBs is a phenomenon of both practical importance and sig-
nificant fundamental interest. Modern GB diffusion studies employ novel ex-
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Fig. 8.14. Experimental
demonstration of non-linear
segregation of Ag in Cu. The
concentration profiles have been
measured for Ag (circles, left
axis) [66] and Au (squares,
right axis) [37] GB diffusion
in a Cu bicrystal near the
Σ = 5(310)[001] orientation.
The measured specific radioac-
tivity of the 110mAg tracer
has been recalculated to the
absolute concentration of Ag
(in mole fractions). cv(0) is the
Ag bulk concentration in lattice
regions adjacent to the GB and
s is the GB segregation factor
measured under dilute limit
conditions in [60].

perimental techniques for precise radiotracer measurements combined with
elaborate mathematical treatments of the experimental profiles. The large
volume of experimental data accumulated to date follows clear systematics
and provides a reasonably good understanding of GB diffusion, at least on a
phenomenological level. One of the most impressive achievements in this area
is the implementation of GB diffusion measurements at relatively low tem-
peratures in the C-regime. Such measurements, combined with traditional
measurements in the B regime, open the long awaited possibility of separate
determination of the GB diffusion coefficientDb and the impurity segregation
factor s.

GB diffusion measurements can be used as a tool to study other prop-
erties of GBs, such as their structure, migration, impurity segregation, etc.
Since GB diffusion is sensitive to GB structure and chemistry and because
radiotracer experiments do not practically disturb the initial state of GBs, dif-
fusion measurements provide useful information on the structural and chem-
ical state of GBs. The importance of this capability is emphasized by the fact
that, in contrast to an open surface, GBs are buried interfaces, which makes
their studies more difficult. Cleavage of a material along GBs may strongly
disturb the initial state of the GBs and in addition is not feasible for many
materials. High-resolution transmission electron microscopy is probably the
most effective technique for GB studies, but it involves some other problems
which will not be discussed here. In this situation, GB diffusion measure-
ments can serve as a useful complimentary technique to study GB properties
averaged over a 10−4 m length scale (typical penetration length along GBs).
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In what follows we will briefly discuss a few other interesting topics that
have not been addressed here in detail.

Grain boundary diffusion and segregation in solid solutions: GB
diffusion in a binary solution A-B depends on tracer diffusion coefficients
of both components in the volume and in GBs, as well as the respective
GB segregation factors. In contrast to impurity diffusion, all these quantities
generally depend on the bulk composition. There are systems in which both
components have suitable radiotracers and their diffusion characteristics can
thus be established as functions of the bulk composition. However, there
is only one system, Fe-Sn [67], in which both GB diffusion coefficients and
segregation factors were determined by independent measurements. In all
other systems (e.g. Ag-Sn [68], Ag-Ni [69]) only the products (sδDb)A and
(sδDb)B were determined, and not sA and sB separately, which makes the
interpretation of the results very difficult. Now that a separate determination
of Db and s is possible, it seems timely to revisit some of those systems and
determine the composition dependencies of both diffusion and segregation
characteristics of A and B over a range of temperatures and compositions.

Grain boundary diffusion in intermetallic compounds: GB diffu-
sion data in ordered intermetallics are scarce. Meanwhile, the need for such
data is rapidly growing, especially for transition metal aluminides in view of
their potential applications as high temperature structural materials. Inter-
metallics are also suitable model systems to study the effect of bulk ordering
and non-stoichiometry on GB diffusion. The compounds in which GB diffu-
sion has been measured include Ni3Al [70–72], NiAl [73, 74], Ti3Al [73, 74],
TiAl [73, 74], Fe3Al [75], FeCo [75], Ni2Si [77], Ni2Si5 [78], CoSi2 [78], and
NiSb [79]. While Al and Si diffusion measurements are hampered by the lack
of suitable isotopes, diffusion of the transition element does not present a par-
ticular problem. In most Ni and Ti aluminides and in FeCo, the ratio Qb/Q
lies within the same range 0.4–0.6 as in pure metals, whereas in silicides
Qb/Q is anomalously high, 0.7–0.9. Ti diffusion in Ti3Al also shows unusu-
ally high Qb/Q values varying between 0.68 (which is a borderline value) for
the stoichiometric composition and 0.88 for the 35 at.%Al alloy.

Tôkei et al. [75] have studied the effect of a bulk phase transition on GB
diffusion of Fe in Fe3Al and Fe and Co in FeCo. In FeCo, GB diffusion shows
a discontinuity near the temperature of the bulk order-disorder transition. In
contrast, in Fe3Al GB diffusion does respond to the order-disorder transition.
This difference was tentatively explained by a partial atomic order around
GBs in Fe3Al pertaining even above the bulk transition temperature, but this
interesting hypothesis requires an atomic level verification.

The effect of non-stoichiometry on GB diffusion has been studied in Ni
and Ti aluminides [70, 71, 73, 74]. In Ni3Al [70, 71], Ni GB diffusion has a
minimum at the ideal stoichiometry and increases with deviations from the
stoichiometry on either side. In Ti3Al [73, 74], the measurements have only
been performed on the Al-rich side, and Ti GB diffusion has been found to
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decrease with the bulk Al concentration. Interestingly, in both compounds
bulk diffusion of Ni and Ti almost does not depend on the composition, sug-
gesting that the observed composition dependence of GB diffusion is due to
local effects such as GB segregation and/or disorder. On the other hand, the
data available for the equiatomic compounds NiAl and TiAl do not indicate
any composition dependence of GB diffusion [73, 74]. It appears that more
measurements and theoretical work need to be done in this area before any
understanding can be reached.

Diffusion in moving grain boundaries: Under real conditions GBs
often move as a result of recrystallization, grain growth, and other processes.
Moreover, GB diffusion itself is capable of making otherwise stationary GBs
move in a random manner. The diffusion induced GB migration (DIGM)
is only observed during interdiffusion, i.e., when a substantial amount of
foreign atoms is diffused into the sample [80]. Although the nature of DIGM
is still not well-understood, many GB diffusion experiments have probably
been affected by DIGM. Even during a radiotracer self-diffusion experiment
in a well-annealed polycrystalline sample some GBs can still move due to the
continued grain growth and/or the trend to establish equilibrium inclination
angles between GBs and the surface. GB migration can have a noticeable
effect on the shape of the measured concentration profiles and should be
taken into account in their analysis. It has been shown that GB motion only
modifies a near-surface part of the profile whereas the tail of the profile is not
affected. Thus, from the shape of the entire profile measured in the B regime
we can determine not only the product sδDb for stationary GBs but also
the average velocity v of moving GBs [81]. Again, diffusion measurements
can be used as a tool to study the kinetics of GB migration [82]. The first
experimental study of this type was performed for self-diffusion in α-Hf [83]
and was followed by similar studies of Co and Ni impurity diffusion in Nb
[84–86]. An interesting observation in [83] is that the activation energy of GB
migration, 195 ± 18 kJ/mol, evaluated from the temperature dependence of
v, is close to the measured activation energy of self-diffusion along stationary
GBs, 212 ± 9 kJ/mol. This result can be interpreted as evidence that the
activation barrier for atomic transport across GBs during their migration is
essentially the same as the barrier of the atomic transport along GBs.

Atomistic theory of grain boundary diffusion: Much progress has
been recently achieved in the atomistic interpretation of GB diffusion through
computer modeling. The atomistic computer simulations have employed
many-body interatomic potentials and a variety of simulation methods, see
e.g. [25–29]. It has been recognized that, in contrast to lattice diffusion, GB
diffusion is accompanied by strong and temperature dependent correlations
between successive atomic jumps [87]. Analysis of jump correlation effects is
thus a prerequisite for the understanding of the diffusion-structure relation-
ship in GBs. It has also been established that GBs support both vacancies
and interstitials, but these defects can show interesting structural effects such
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as vacancy delocalization, vacancy instability at certain cites in the GB core,
etc. [26, 27]. Vacancies can move in GBs by single-atom exchanges, like in a
regular lattice, but can also make collective jumps involving several atoms.
Interstitial formation energies in GBs are close to vacancy formation energies,
which makes both defects equally important for diffusion. Interstitials can be
either localized or form split dumbbell configurations. They move predom-
inantly by the interstitialcy mechanism involving 2-4 atoms. A challenging
problem in this area is to calculate GB diffusion characteristics as functions
of misorientation between the two grains, particularly around a low-Σ orien-
tation for which experimental data are available or can be measured.

Notation

bcc body-centered cubic
c diffusant concentration in the volume
cb diffusant concentration in the grain boundary
c0 constant course concentration
c average concentration of the diffusant measured by the serial sec-

tioning technique
D volume diffusion coefficient
Db grain boundary diffusion coefficient
Db0 pre-exponential factor of grain boundary diffusion
Deff effective diffusion coefficient in a polycrystalline material
d spacing between grain boundaries in a polycrystalline material
DIGM diffusion induced grain boundary migration
Es segregation energy
fcc face-centered cubic
f volume fraction of grain boundaries in a polycrystalline material
h thickness of the initial layer of diffusant
hcp hexagonal close-packed
ISOLDE isotope separator on-line detector
L diffusion penetration depth in the volume
Lb diffusion penetration depth along grain boundaries
ln natural logarithm (on base e)
log common logarithm (on base 10)
M amount of diffusant deposited per unit area of the surface
Q activation energy of volume diffusion
Qb activation energy of grain boundary diffusion
R gas constant
s segregation factor
T absolute temperature
Tm melting temperature
t diffusion anneal time
v grain boundary migration velocity
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w reduced coordinate along the diffusion direction
α diffusion parameter
β diffusion parameter
δ grain boundary width
θ tilt angle
Λ kinetic parameter of the A regime
Σ reciprocal density of coincident site in the grain boundary
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72. J. Čermak, I. Stloukal, J. Ruvzikova: Intermetallics 8, 21 (1998)
73. Chr. Herzig, S.V. Divinski, S. Frank, T. Przeorski: Defect Diffus. Forum 194-

199, 317 (2001)
74. Chr. Herzig, T. Wilger, T. Przeorski, F. Hisker, S.V. Divinski: Intermetallics

9, 431 (2001)
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9 NMR and β-NMR Studies of Diffusion in

Interface-Dominated and Disordered Solids

Paul Heitjans, Andreas Schirmer, and Sylvio Indris

9.1 Introduction

The topic of this chapter concerns diffusion studies via nuclear magnetic
relaxation in solids with deviations from three-dimensional (3D) long-range
order. These include, on the one hand, well-defined layer-crystalline materials
with very large planar internal interfaces and, on the other hand, systems with
highly complex internal interfaces as well as 3D amorphous solids where the
structural disorder is of interest.

In layer-crystalline materials a strong anisotropy of the atomic or in-
termolecular coupling prevails. It often leads to the formation of atomic or
molecular layers being weakly bonded in the direction perpendicular to the
planes. As examples graphite and transition metal dichalcogenides will be
considered. Between the layers of these materials, regarded as ‘hosts’, other
atomic or molecular species may be built in as weakly bonded ‘guests’ which
often are quite mobile. The corresponding process is called intercalation, its
result is an intercalation compound [1–3]. These are quasi-2D solids with
large internal interfaces. On the one hand, they are of technical interest; e. g.,
intercalation and deintercalation may in the case of an ionic guest be used
as a charging and decharging cycle of a secondary battery component. On
the other hand, intercalation materials show a large variety of structural and
dynamical properties and may thus be used as model systems to study many
phenomena in reduced dimensionality. Even with in-plane disorder, interca-
lation compounds show long-range ordered stacking of the layers with a fixed
periodicity which is governed by the host material.

Another class of interface-dominated materials, which however are highly
complex, are nanocrystalline materials [4,5]. They consist of crystalline grains
of a diameter of typically 10 nm which is about three orders of magnitude
below the respective value for normal poly-, i. e. microcrystalline materials.
The nanometer-sized grains are surrounded by grain boundary regions with
high defect concentration. These regions may form a network and share up to
50% of the volume of the material. The mass density of the interfacial regions
can be reduced to 80% of the crystalline bulk. Nanocrystalline solids may
thus be regarded as materials with inhomogeneously distributed free volume;
they exhibit heterogeneous disorder. The density of interfaces is of the order
of 109 m2/m3, similar to that of the planar interfaces in the intercalation
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compounds. The nanocrystalline materials dealt with in this chapter are ox-
ide and non-oxide ceramics. Nanocrystalline metals are briefly addressed in
Chap. 8.

A third class of solid state systems considered here are amorphous mate-
rials, in particular ion conducting oxide glasses [6–8]. Contrary to nanocrys-
talline materials, these are homogeneously disordered with no internal inter-
faces. In this case free volume is homogeneously distributed. In general the
density is reduced only by a few percent with respect to the ordered phase.

In order to disentangle the influences of disorder and low-dimensionality
on the diffusional properties, the respective 3D ordered modifications should
be studied in parallel as reference materials. In fact, besides the quasi-2D lay-
ered crystals the respective 3D modification, besides the nanocrystalline the
normal coarse-grained material and besides the glass the respective crystal
with identical chemical composition were investigated whenever possible.

As explained in Chap. 1, diffusion has aspects of both macroscopic mater-
ial transport and microscopic jump processes. Correspondingly, macroscopic
and microscopic experimental methods may be distinguished [9]. Nuclear
magnetic resonance (NMR) techniques measuring spin relaxation, including
beta-radiation detected NMR (β-NMR), which are dealt with in this chapter,
belong to the latter. Macroscopic and microscopic techniques may further be
classified as nuclear [10] and non-nuclear methods, respectively (cf. [9, 11]).
Microscopic nuclear methods other than NMR relaxation spectroscopy are
quasielastic neutron scattering (Chaps. 3 and 13) and Mößbauer spectroscopy
(Chap. 2). They are capable to explore the jump geometry in addition to the
jump rates. However, their dynamical ranges are more restricted [9]. An ex-
ample for a microscopic non-nuclear technique is the measurement of the
frequency-dependent ionic conductivity (Chap. 21).

An NMR technique probing macroscopic transport is field gradient NMR,
which is treated in Chap. 10. Classical macroscopic nuclear and non-nuclear
techniques are, respectively, the radiotracer technique (Chap. 1) and mea-
surements of the d.c. ionic conductivity [12].

In the following we first recall the basic features of the influence of diffu-
sion on NMR longitudinal relaxation (spin-lattice relaxation) and transverse
relaxation (spin-spin relaxation), the latter being closely related to the NMR
linewidth. We start from the ordinary case of 3D media and point out the
deviations expected for two-dimensional and disordered systems (Sect. 9.2).
Some principles of NMR techniques for measuring spin relaxation times of
stable (Sect. 9.3) and β-radioactive probe nuclei (Sect. 9.4) are then pre-
sented. Finally experimental examples obtained by these methods in interca-
lation compounds (Sect. 9.5), nanocrystalline materials (Sect. 9.6) and glasses
(Sect. 9.7) are reviewed.
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9.2 Influence of Diffusion on NMR Spin-Lattice
Relaxation and Linewidth

Diffusion can be probed by spin-lattice relaxation (SLR) caused by the tem-
poral fluctuations of local fields due to the motion of particles carrying a
nuclear spin. The principle can be understood from the simple picture of
a probe spin precessing in an external magnetic field B0 with a Larmor
precession frequency ωL given by ωL = γB0, where the magnetogyric ratio γ
connects nuclear magnetic moment and angular momentum. The nuclear spin
will be reversed, i. e. the transition probability will be maximum, when ωL

is in resonance with the frequency of a transverse alternating field B1. This
may be an external radio-frequency field or the internal fluctuating field due
to the motion of the atoms. In the following the latter case will be regarded
more closely.

The fluctuating field which may be dipolar magnetic from neighbouring
nuclei as well as quadrupolar electric from local electric field gradients can
be described by the correlation function G(t) which contains the temporal
information on the atomic diffusion process [13–15]. The correlation time
τc characterizing G(t) is within a factor of the order of unity equal to the
mean residence time τ between successive atomic jumps. Relevant for SLR
is the spectral density function J(ω) of the fluctuating local field which is
the Fourier transform of the correlation function G(t) and extends up to
frequencies of the order of τ−1

c . Transitions between the energy levels of the
spin system will be induced, i. e. spin-lattice relaxation becomes effective,
when J(ω) has components at the transition frequencies. The spin-lattice
relaxation rate T−1

1 , being a measure of the transition probability, is roughly
given by

T−1
1 ∝ J(ωL) . (9.1)

Full expressions describing the relaxation due to dipolar interaction between
like and unlike spins are given in (9.27) and (9.31), respectively, in the Ap-
pendix (Sect. 9.9)). The basic characteristics of T−1

1 in a 3D system with
random jump diffusion can be derived from the simple exponential correla-
tion function

G(t) = G(0) · exp(−|t|/τc) (9.2)

assumed by Bloembergen, Purcell and Pound (BPP) [16]. The corresponding
Lorentzian shaped spectral density function is given by

J(ω) = G(0) · 2τc
1 + (ωτc)2

. (9.3)

The correlation time τc, like the mean residence time τ , will generally depend
on temperature T according to the Arrhenius relation

τc = τc0 · exp(EA/kBT ) , (9.4)
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Fig. 9.1. Lorentzian spectral density function for different temperatures T . For a
chosen value of the Larmor frequency ωL the spectral density will be maximum for
the medium T value where ωLτc � 1.

where EA is the activation energy of the diffusion process. Fig. 9.1 shows
J(ω) as an even function for three different temperatures taking into account
that

∫
J(ω)dω is constant. It illustrates that T−1

1 (T ), measured at a certain
Larmor frequency ωL, passes through a maximum at a specific temperature
which is determined by the condition ωLτc ≈ 1.

Quantitatively, the standard behaviour of T−1
1 in a 3D system is shown in

Fig. 9.2 for the experimental example of self-diffusion in lithium [17] which
was studied by β-NMR (Sect. 9.4). In the usual representation of logT−1

1

vs. 1/T the peak for each Larmor frequency (magnetic field) is symmetric.
At temperatures above and below the maximum, which correspond to the
limiting cases ωLτc � 1 and ωLτc 
 1, respectively, the slopes yield the
activation energy EA. The SLR rate shows no ωL dependence in the high-T
limit and follows the power law T−1

1 ∝ ω−2
L in the low-T limit.

While Fig. 9.2 apparently reflects the main features of the BPP model
predictions, the accuracy of the data enabled a comparison with a more
refined model, namely the encounter model of correlated self-diffusion (cf.
Chap. 3, Sect. 3.7) which, in fact, is represented by the continuous lines.
There it has been taken into account that in the present case of β-NMR
the 8Li nuclei interact with unlike nuclei only (cf. (9.31) in the Appendix
(Sect. 9.9)). From the fit τc values have been extracted over almost seven
decades. Li has in fact been used as a test case for further diffusion-related
NMR work and seems to be the best studied 3D ordered system concerning
relaxation [18–23].

Much more pronounced deviations from the BPP model than in the case
of the 3D encounter model are to be expected for low-dimensional and disor-
dered systems being of interest here. The quantities bearing information spe-
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B0

Fig. 9.2. Demonstration of the characteristic temperature and frequency depen-
dence of the diffusion-induced SLR rate in 3D systems exemplified by 8Li in poly-
crystalline Li. The B0 values correspond to ωL/2π = 4.32 MHz, 2.14 MHz, 334 kHz
and 53 kHz [17].

cific for the jump diffusion mechanism are the slopes of the high-T and low-T
flanks of the logT−1

1 vs. 1/T plot. In Table 9.1 the corresponding predic-
tions from simple models for low-dimensional diffusion [24,25] are compared
with the standard 3D behaviour. It is noted that dimensionality effects show
up only in the high-T region where several jumps occur before one preces-
sion of the probe spin is completed (τc � ω−1

L ). The functional dependences
are valid not only in the case of discrete jump vectors pertaining to ordered
solids but also in the case of continuous diffusion. In the low-T region, how-
ever, the τ−1

c ω−2
L dependence (cf. Fig. 9.2), which applies to the 1D through

3D cases, is true only for jump diffusion. In the case of continuum diffusion a
τ
−1/2
c ω

−3/2
L dependence is predicted, which is thus weaker in both variables

than for jump diffusion.
SLR in disordered systems is not explicitly included in Table 9.1. How-

ever, continuum diffusion is discussed as bearing resemblance to diffusion in
disordered solids due to varying distances of atomic sites. Indeed, the SLR
rate in amorphous and defective crystalline materials has often been found
to show an asymmetric log T−1

1 vs. 1/T peak with a smaller (absolute) slope
on the low-T side and an ωL dependence characterized by
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Table 9.1. Asymptotic behaviour of T−1
1 (τc, ωL) for diffusion processes with dif-

ferent dimensionalities

ωLτc � 1 (high T ) ωLτc  1 (low T )
jump diffusion continuum diffusion

3D ∝ τc

2D ∝ τc ln(1/ωLτc)
1D ∝ τc(ωLτc)

−1/2

�
∝ τ−1

c ω−2
L ∝ τ

−1/2
c ω

−3/2
L

T−1
1 ∝ ω−α

L (9.5)

with α ≤ 2.
There are models for SLR in disordered ion conductors such as the as-

sumption of distribution functions of jump correlation times [26], the counter-
ion model [27], the coupling concept [28] and the jump relaxation model [29].
In Chaps. 20 and 21 up-to-date versions of the latter ones are presented
mainly with respect to conductivity measurements. These models predict

T−1
1 ∝ ω−α

L · exp
(
−ElT

NMR

kBT

)
(9.6)

with 1 < α ≤ 2 on the low-T side. The corresponding activation energy ElT
NMR

should be related to EhT
NMR, characterizing the slope on the high-T side, by

ElT
NMR = (α− 1) · EhT

NMR . (9.7)

Thus, in the frame of these models, the parameter α links the frequency
dependence of T−1

1 to the asymmetry of the peak.
Monte Carlo simulation studies of the correlation functions in disordered

ionic conductors ([30], see also Chap. 20) agree with these findings and show
that the deviations from the BPP behaviour are the consequence of the com-
bined effect of structural disorder and Coulomb interactions of the moving
particles. Structural disorder is modelled in these simulations by using a per-
colation approach.

By means of the parameter α, SLR data may be related to data from
other spectroscopic methods investigating, e. g., the dynamic conductivity or
incoherent neutron scattering (cf. Chap. 20). Figs. 9.3 and 9.4 summarize
the expected behaviour of the diffusion-induced SLR rate as a function of
correlation time and frequency, respectively, for diffusion in an (ordered) 2D
system and a (3D) disordered system in comparison with the BPP case.

If spin-lattice relaxation is not probed with reference to the static external
field B0 but in a resonant alternating field B1 (see Sect. 9.3), the SLR rate
in the rotating frame, T−1

1ρ , is measured. It approximately obeys the relation

T−1
1ρ ∝ J(2ω1) (9.8)
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Fig. 9.3. Schematic representation of
log (SLR rate) vs. log (correlation time)
(corresponding to reciprocal tempera-
ture) for diffusion in the BPP case and
the expected deviations for 2D systems
and disordered systems.

Fig. 9.4. Schematic representation
of log (SLR rate) vs. log (Larmor fre-
quency) (or magnetic field) for the BPP
case and the expected deviations for 2D
systems and disordered systems.

where ω1 = γB1. The full expression for the case of 3D diffusion is given in
(9.30) in the Appendix (Sect. 9.9). Since B1 � B0, the condition ω1τc ≈ 0.5
for the maximum of T−1

1ρ (T ) entails that considerably longer correlation times
are probed than by T−1

1 measurements.
Besides SLR measurements of T−1

1 and T−1
1ρ also measurements of the

NMR linewidth, which is related to the spin-spin relaxation time T2, can give
information about microscopic parameters of diffusion. In general, nuclear
spins in an external magnetic field B0 experiencing dipolar interaction in a
homogeneous solid at low temperatures show one broad static NMR line with-
out substructure. This is because the nuclei under investigation are located
at sites with different spin environments resulting in different local magnetic
fields superimposed on the external magnetic field B0. In this way many con-
tributions with different resonance frequencies form a broad NMR line with a
width of some kHz. This is the rigid lattice linewidth ∆νR which corresponds
to the spin-spin relaxation rate T−1

2 at low temperatures. When the sample is
heated the ions start moving through the solid. The temperature dependence
of the jump rate τ−1 is given by an Arrhenius relation analogous to that of
the correlation rate τ−1

c (cf. (9.4)).
At higher temperatures the hopping of the ions becomes so fast that they

are experiencing the same average local field. This sets in when the correlation
rate becomes larger than the width of the rigid lattice line, i. e.

τ−1
c � 2π ·∆νR . (9.9)
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Then all nuclei have the same resonance frequency and a narrowed NMR line
is observed. This phenomenon is called motional narrowing. In this temper-
ature regime the spin-spin relaxation rate is approximately given by

T−1
2 ∝ J(0) ∝ τc . (9.10)

The functional dependence of the linewidth on temperature allows one to
determine τc0 and EA.

The situation when at even higher temperatures the correlation rate ex-
ceeds the Larmor frequency,

τ−1
c > ωL , (9.11)

is called extreme motional narrowing. The full expression for the spin-spin re-
laxation rate in the motional narrowing and the extreme motional narrowing
regime for 3D diffusion is given in (9.28) in the Appendix (Sect. 9.9). Then
the spin-spin relaxation rate T−1

2 and the spin-lattice relaxation rates T−1
1

and T−1
1ρ should all have the same value, and the residual NMR linewidth is

determined by the inhomogeneity of the magnetic field.
Additional contributions to the lineshape can occur for nuclei with spin

I ≥ 1. These have a quadrupolar moment which interacts with electric field
gradients, when present due to low crystal symmetry at the site of the nuclei.

The general features of the relaxation rates T−1
1 , T−1

1ρ and T−1
2 in the

standard case of 3D diffusion via random jumps are summarized in Fig. 9.5.
The rates are plotted here as a function of ωLτc so that it can readily be
seen that the T−1

1 maximum occurs for ωLτc ≈ 1. As mentioned above, the
maximum of T−1

1ρ shows up for ω1τc ≈ 0.5 and the constant value for T−1
2 is

reached when 2π∆νR ≈ 1. In the plot we used ωL :ω1 : 2π∆νR = 104 : 20 : 1.
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Fig. 9.5. Schematic representa-
tion of the relaxation rates T−1

1 ,
T−1

1ρ and T−1
2 vs. ωLτc for 3D

diffusion via random jumps.
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∆νR is typically some tens kHz. The shoulder in the curves of T−1
1ρ and T−1

2

is due to contributions by the spectral densities at ωL and 2ωL in addition
to those at 2ω1 and ω = 0, respectively (see (9.30) and (9.28)).

Concluding this section, we note that besides the description of diffusion
induced NMR relaxation in the perturbation approach by spectral density
functions, sketched here in a qualitative way, there are stochastic models.
These yield a more general access to spin relaxation being not confined to
the motional narrowing regimes (see, e. g., [31, 32] and references therein).

9.3 Basics of NMR Relaxation Techniques

Solid-state NMR, being based on the Boltzmann polarization of stable nuclei,
is a very broad field and for a comprehensive treatment the reader is referred
to various monographs [13, 14, 33–35]. Furthermore, detailed descriptions of
NMR relaxation techniques are available (e. g. [36, 37]), and corresponding
pulse programs are nowadays implemented in standard NMR spectrometers.
We here confine ourselves to a brief outline of the basic principles of the
measurements of longitudinal and transverse, i. e. spin-lattice and spin-spin
relaxation times, respectively. A T1 or T2 measurement proceeds in two steps
in the time domain:
(i) tilting the nuclear magnetization

M0 = N · γ
2
�

2I(I + 1)
3kBT

· B0 (9.12)

of an ensemble of nuclei (number density N , spin I) at equilibrium in a static
magnetic field B0 at temperature T by a pulsed alternating field.
(ii) detection of the magnetization M (t) as it relaxes back to M0.

The experimental set-up consists of the sample placed in a strong mag-
netic field B0 (of the order of some Tesla) in the z-direction and a coil wound
around the sample for application of a perpendicular alternating field B1(t)
with frequency ω/2π in the radio-frequency (rf) regime. In this arrangement
an equilibrium magnetization M0 is built up in the z-direction due to the
Boltzmann population of the Zeeman energy levels (Fig. 9.6), which is given
by (9.12).

The effect of simple rf-pulse sequences is discussed in the classical picture
of a magnetization M moving in an external magnetic field. The equation of
motion is [14]

dM

dt
= M × γ [B0 + B1(t)] . (9.13)

For discussion of the motion in an alternating magnetic field applied in the x-
direction (B1(t) = Bx0 cos(ωt)ex), time dependences are eliminated by using
a coordinate system rotating about the B0 direction with angular velocity ω.
Its axes are denoted in the following with x′, y′ and z′, see Fig. 9.7. In such
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Fig. 9.6. Zeeman splitting of the
nuclear energy level due to inter-
action of the nuclear spins with
a static external field B0, here
shown exemplarily for spin I =
3/2, γ > 0.

a system the effective magnetic field Beff is composed of the static field B0,
the alternating field B1 and a term ω/γ which results from the transition to
an accelerated reference frame (see Fig 9.8 (a)). When the x′-axis is chosen
along B1 the equation of motion can be rewritten as

dM

dt
= M × γ

[(
B0 −

ω

γ

)
ez′ +B1ex′

]
= M × γBeff (9.14)

which means that the magnetization behaves as if it experienced a stationary
magnetic field Beff . If the resonance condition ω = ωL = γB0 is fulfilled for
the alternating B1 field, the z′ component of Beff vanishes and the effective
field is B1ex′ and M will rotate in the z′−y′ plane with a frequency ω1 = γB1

(see Fig. 9.8). The application of an alternating B1 with the duration tp will
result in a flipping of M to the angle θp = γB1tp. In the laboratory reference
frame this results in a nutational motion as shown in Fig. 9.9. By proper
choice of tp, M can be inverted (θp = π) or tilted into the x − y plane
(θp = π/2), where it will precess (in the laboratory reference frame) and
induce an observable voltage in the coil. This is the free induction decay
(FID).

z , z

x

y
x

, y
,

,

�

Fig. 9.7. The rotating reference frame rotat-
ing about the direction of the external magnetic
field (z axis) with angular velocity ω.
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Fig. 9.8. (a) The effective magnetic field in the rotating reference frame. (b) The
motion of the magnetization in the rotating reference frame for ω = ωL.
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M

Fig. 9.9. Nutational motion of the magnetization
in the laboratory reference frame due to an alter-
nating magnetic field perpendicular to the static
external field which is applied along the z axis.

After the π or π/2 pulse M will relax towards its equilibrium value M0

along the +z-direction in the laboratory reference frame. The instantaneous
Mz value may be described by

dMz

dt
=
M0 −Mz

T1
(9.15)

with T1 being the longitudinal or spin-lattice relaxation time. Equation (9.15)
yields

Mz(t) = M0[1 −Ap exp(−t/T1)] (9.16)

with Ap = 2 (1) for an initial π pulse (π/2 pulse). Mz(t) is monitored by
the amplitude of the FID after a π/2 reading pulse at the evolution time τe
which is varied.

In case that the magnetization M is not aligned parallel to the external
magnetic field B0 the magnetization will precess around the magnetic field.
Furthermore, the transverse components Mx′ and My′ will decay due to a
dephasing of the nuclear spins which are in phase only directly after the rf
pulse. The equilibrium values of Mx′ and My′ are zero. The magnitudes of
Mx′ and My′ obey the equations
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Fig. 9.10. (a) Principle of a T1 measurement with the inversion-recovery pulse
sequence (π − τe − π/2): After inversion and evolution time τe the magnetization
M(τe) is probed with the π/2 pulse. (b) Principle of a T1ρ measurement: After
a π/2 pulse Mρ(t) is locked by a π/2 phase shifted B1-locking field and decays
according to Mρ(t) = Mρ(0) exp(−t/T1ρ) which is probed at t = τe after switching
off the locking field. (c) Principle of a T2 measurement with a spin echo pulse
sequence (π/2 − τe − π): After a π/2 pulse has turned the magnetization to the
plane perpendicular to the external magnetic field it starts precessing around this
field and its transverse component decays due to dephasing of the nuclear spins
according to My′(t) = M0 exp(−t/T2). The π pulse at time τe causes a refocussing
of the spins at time 2τe resulting in a spin echo signal. Its amplitude can be used
to probe the magnetization My′(2τe).

dMx′

dt
= −Mx′

T2

dMy′

dt
= −My′

T2
(9.17)

with T2 being the transverse or spin-spin relaxation time. After an initial π/2
pulse has turned the magnetization to the y direction, (9.17) yields

My′(t) = M0 exp(−t/T2) . (9.18)

In NMR spectrometers the coil around the sample is used for both steps
of the experiment, irradiation of the rf pulse and detection of the signal re-
sponse, i. e. the voltage induced by the precessing magnetization. Modern
NMR spectrometers further supply rf pulses which are coherent with the
possibility to control and switch the phase of different pulses. A widely used
pulse sequence for measurements of the longitudinal relaxation time is illus-
trated in Fig. 9.10 (a). It should be noted that for T1 measurements longer
and more complex pulse sequences may be tailored to overcome limitations
of the simple sequences. The latter suffer, e. g., from the dead time of the
detection system after the strong rf pulse; in this case echo sequences may
be used to shift the FID away from the rf pulse.

As an example of how phase and power switching with modern NMR spec-
trometers are used to extend the effective magnetic field range for spin-lattice
relaxation measurements, the pulse sequence for spin locking and longitudi-
nal relaxation in the rotating frame is shown in Fig. 9.10 (b). With a π/2
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Fig. 9.11. Typical setup of an NMR spectrometer.

pulse the magnetization Mz is turned into the x− y plane and locked paral-
lel to B1 in a frame rotating about B0 with ωL = γB0. During application
of the B1 locking field the magnetization Mρ in the rotating frame relaxes
and Mρ(τe) can be measured by monitoring the FID at the end of the pulse.
Thus the relaxation time T1ρ is obtained. It reflects the spin relaxation in the
locking field being typically some 10−4 T. Variation of the locking field ampli-
tude gives access to studies of the field dependence of T1ρ. Corresponding to
the change in frequencies from the MHz to the kHz regime when SLR times
in the rotating instead of the laboratory frame are measured, considerably
longer motional correlation times can be studied. We note, that a technique
to measure SLR times also in the laboratory frame at frequencies down to
the kHz regime is field-cycling relaxometry [38], which, however, will not be
discussed here.

Fig. 9.10 (c) shows a spin echo pulse sequence which can be used to probe
the decay of the transverse magnetization component My′ and thus to mea-
sure the transverse relaxation time T2. A π/2 pulse turns the magnetization
to the plane perpendicular to the external magnetic field where it starts pre-
cessing around this field. Its transverse component which is built by the sum
of the nuclear spins starts to decay because of a dephasing of the spins. The π
pulse at time τe causes a refocussing of the spin system resulting in a so-called
spin echo signal at time 2τe. Its height is proportional to the magnetization
My′(2τe) which is measured for different evolution times τe between the two
pulses. According to (9.18) measurements with different delay times τe allow
one to probe the decay of the transverse components and thus to determine
T2.
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It is obvious from the discussion above that the basis of modern NMR
techniques is data acquisition after pulsed excitation and subsequent Fourier
transformation. The main components of a Fourier-NMR spectrometer are
shown in Fig. 9.11. The sample is located in the coil of a rf resonant circuit
which is part of the probe. This is located in the center of a superconductive
magnet. The nuclei in the sample are excited by rf pulses which are generated,
starting from a highly precise synthesizer, with a rf modulator and a high-
power amplifier. The response signal of the sample nuclei, being weaker by
many orders of magnitude, is directed via a rf switch to a phase sensitive
detector (PSD), whose reference signal is provided by the synthesizer. The
whole procedure which may include not only single pulses but complex pulse
sequences, as described above, is controlled by a computer.

9.4 Method of β-Radiation Detected NMR Relaxation

Technical improvements have made NMR relaxation techniques described in
Sect. 9.3 a tool of steadily increasing versatility. On the one hand, higher
magnetic fields have improved the signal-to-noise ratio by increasing the
Boltzmann factor. On the other hand, by using more sensitive amplifiers
and digitized signal recorders weaker signals can be measured and less sam-
ple material or smaller samples under extreme conditions (e. g. high-pressure
cells) can be used. An alternative approach is to replace the steps of the
NMR relaxation experiments by unconventional ones which avoid certain
limitations. In this section concepts of such a method, known as β-radiation
detected NMR (β-NMR [39]) relaxation, will be introduced and discussed.

The principle of β-NMR relaxation is the use of the β-decay radiation
asymmetry of polarized, short-lived β-emitters embedded in the solid in order
to monitor the nuclear polarization and its decrease due to longitudinal, i. e.
spin-lattice relaxation [11]. The two steps of the classical NMR relaxation
experiment (Sect. 9.3) are replaced by (i) on-line production of the short-
lived polarized probe nuclei with lifetimes τβ ranging from some 10ms to some
100 s, and (ii) in-situ measurement of the β-asymmetry during a subsequent
time interval of a few lifetimes. The signal amplitude resulting from step (i)
is determined by the angular distribution of the emission probability W (θ)
of β-particles from an ensemble of polarized β-active nuclei into a solid angle
element at angle θ between polarization and emission direction

W (θ) = 1 + f · v
c
· A · cos θ . (9.19)

f is the dipolar polarization characterized by a linearly varying population of
the nuclear Zeeman levels, v is the electron velocity, c the velocity of light and
A is a constant for the specific β-decay. The β-decay radiation asymmetry
aβ is given by the 0◦-180◦-difference of W (θ) and is a direct measure of
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Fig. 9.12. Different techniques to produce polarized β-active nuclei in condensed
matter: (a) capture of polarized neutrons, (b) nuclear reaction with polarized accel-
erated particles, (c) particle reaction with selected recoil angle, (d) nuclear reaction
with beam-foil polarization, (e) particle reaction and polarization by optical pump-
ing (OP). In each case an exemplary nuclear reaction is given.

P = f v
cA, the experimentally accessible polarization. It reflects the dipolar

polarization f and any changes of it.
Variants of the β-NMR method can be classified according to the way the

short-lived β-emitters embedded in the sample are generated and polarized,
which may be done in one or two steps. The polarized β-emitters can be
produced on-line in nuclear reactions with polarized reactor neutrons or with
accelerator ions [39, 40]. Schemes of various production routes are shown in
Fig. 9.12. The generation and polarization by capture of polarized thermal
or cold neutrons (Fig. 9.12 (a)) will be dealt with in some detail below. With
accelerators different techniques may be applied (Fig. 9.12 (b)-(e)). First,
polarized incident particles may be used again (Fig. 9.12 (b)). In this case
one can profit from a sufficiently high polarization transfer to the short-lived
β-emitters in reactions of the type 7Li(

−→
d ,p)8

−→
Li or 16O(

−→
d ,n)17

−→
F [39]. The

accelerator ions have typically to have energies above 1MeV. The β-emitters,
which can be β+ as well as β−-emitters, have kinetic recoil energies in the
range of several keV and are stopped in the sample.

With unpolarized accelerator ions (Fig. 9.12 (c)-(e)) the short-lived β-
emitters emerging as recoil nuclei from the target foil have to be polarized
prior to implantation into the sample. This can be achieved either by a proper
selection of the recoil angle, into which the β-emitters escape from the reac-
tion (Fig. 9.12 (c)), or by polarizing the short-lived β-emitters after the reac-
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tion (Figs. 9.12 (d) and (e)). In the former case, the recoil angle selection of the
short-lived β-emitters corresponds to an angular momentum selection with a
polarization perpendicular to the reaction plane which is given by the trajec-
tories of the accelerator ion and the recoil nuclei [39,41]. Another technique to
obtain polarized β-emitters with unpolarized accelerator ions hitting the tar-
get is the use of hyperfine effects by passage of the β-emitters through carbon
foils which are tilted with respect to the beam direction [42,43] (Fig. 9.12 (d)).
A more established technique to polarize the recoil nuclei is optical pumping
which in combination with mass-separator extraction offers access to a large
variety of probe nuclei [44, 45] (Fig. 9.12 (e)).

In all these nuclear techniques the polarization P , which in the classical
NMR experiments is determined by a Boltzmann factor and which gives rise
to a macroscopic magnetization M0 (cf. (9.12)), is larger by many orders of
magnitude than a usual Boltzmann polarization and reaches some per cent.

Among the various β-NMR techniques sketched above, diffusion studies
have essentially been performed with β-NMR after capture of polarized neu-
trons (Fig. 9.12 (a)) and after a particle reaction with selected recoil angle
(Fig. 9.12 (c)). In the latter case the investigations were confined to bulk
metals and semiconductors [46–50] which is beyond the scope of this chap-
ter. Only very few diffusion studies were done using the optical pumping
technique (Fig. 9.12 (e)), e. g. 8Li surface diffusion on Ru(001) [51] and on
Si(111) [52].

In the following the β-NMR technique after capture of polarized neutrons
will be further outlined [53]. The sample abundantly containing the nuclei
for the production reaction is placed in the field B0 of an electromagnet and
irradiated with polarized cold neutrons. For example, in the case of the probe
nucleus 8Li the reaction is

−→n + 7Li −→ 8−→Li
∗ γ′s−→ 8−→Li

β−
−→ 2α .

Established probe nuclei available with the neutron capture technique are:
8Li (τβ = 1.2 s), 12B (29 ms), 20F (16 s), 23Ne (57 s), 28Al (3.2 min), 108Ag
(3.5 min), 110Ag (35 s), 116In (20 s).

Special features of the β-NMR method with respect to relaxation mea-
surements are as follows. As outlined above, the polarization P is high and
independent of a Boltzmann factor. Thus low values of the magnetic field
(which provides the quantization axis) and high temperatures are accessible.
The magnetic field has to be stronger than parasitic internal and external
fields. The concentration of the probe nuclei is extremely small (typically 1
in 1018 other nuclei) and as a consequence spin diffusion, i. e. the polariza-
tion transfer by resonant mutual spin flips of like nuclei, is suppressed due
to their large distance. Thus SLR by distant paramagnetic impurities, gen-
erally effective via spin diffusion in classical NMR relaxation measurements,
does not contribute to β-NMR relaxation. The highly diluted probe nuclei
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Fig. 9.13. Experimental set-up of the β-NMR spectrometer at the reactor FRJ-2
of the Forschungszentrum Jülich.

relax individually and the β-asymmetry signal stems from an inhomogeneous
polarization average of the probe nuclei.

A technical advantage of β-radiation detected SLR is that no rf irradiation
is required. The field B0, correspondingly the Larmor frequency of the mea-
surement, is easily variable and skin effect problems do not arise. Bulk metal-
lic samples and/or metallic sample containers can be used. The latter is of-
ten desirable when corrosive materials are to be studied. The measurement of
SLR times T1 is restricted to a time window of at most 0.01τβ < T1 < 100τβ.

Fig. 9.13 shows the scheme of the β-NMR spectrometer at the research
reactor of the Forschungszentrum Jülich [53]. The set-up consists of a neu-
tron beam section with macrobender, neutron-polarizer and spin-flipper for
branching-off, polarizing and polarization switching of cold neutrons with a
broad wavelength distribution. The polarization switching is used in order
to cancel instrumental asymmetries of the NMR apparatus. Its main compo-
nents are chopper, collimator, sample in oven or cryostat, β-scintillator tele-
scope detectors and electromagnet. The chopper is used for the separation
of the production and the relaxation measurement periods of the short-lived
nuclei. The β-scintillator telescopes are mounted on the pole faces ‘North’
and ‘South’ and register the counting rates ZN and ZS at θ = 0◦ and 180◦,
respectively, which yield the experimental β-asymmetry

aβ =
ZN − ZS

ZN + ZS
. (9.20)

As pointed out above, aβ is proportional to the nuclear polarization P . β-
NMR relaxation measurements are performed by monitoring transients aβ(t)
after neutron activation pulses produced by the chopper. In simple cases
monoexponential transients

aβ(t) = aβ0 · exp(−t/T1) (9.21)

with the SLR time T1 are observed.
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The NMR apparatus is further equipped with an rf source and a coil
around the sample for recording resonance signals. In this mode the β-
asymmetry is monitored under quasi-continuous neutron-activation condi-
tions while an rf field, scanning a frequency range in the vicinity of the
Larmor frequency, is irradiated on the sample. Neutron flux and polarization
can be controlled with a counter and an analyser.

9.5 Intercalation Compounds

In the introduction to this chapter (Sect. 9.1) the role of a prototype 2D
material for understanding both, diffusion mechanisms and material modi-
fications, has been mentioned. Due to its simple structure and amphoteric
character, graphite as host material for intercalation has attracted much in-
terest for structural [2] and dynamic [3] studies. Graphite can be intercalated
with electron donors like alkali metals or with electron acceptors like Br or
more complex molecules (as for example HNO3, AsF5). Other prototype host
materials with 2D internal interfaces are transition metal dichalcogenides [54].
Similar to the case of graphite, Li-intercalated TiS2 as a model system for
translational diffusion was investigated.

9.5.1 Lithium Graphite Intercalation Compounds

Lithium can easily be intercalated into graphite to form the stage-1 compound
LiC6, i. e. to attain a stacking of alternating C and Li layers. The number
of subsequent host layers of an intercalation compound, here the graphite
sheets, denotes the stage of the compound. The Li layers in LiC6 form a
commensurate (

√
3 ×

√
3) R30◦ superstructure as shown in Fig. 9.14. The

stage-2 compound LiC12 has the same structure of the Li planes, which are
separated by two C layers.

SLR of 8Li in both stages was investigated with the β-NMR method. The
samples were made from highly oriented pyrolytic graphite (HOPG). The

Fig. 9.14. Structure of Li graphite intercalation compounds. Left: View upon the
in-plane structure of LiC6 and LiC12. Li atoms (full circles) are located above the
hexagons of C atoms (open circles). Right: View upon a plane containing the c axis
of LiC12
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Fig. 9.15. T dependence of the SLR rate of 8Li in the stage-2 graphite intercalation
compound LiC12 for B0 = 37 mT and two orientations of B0 with respect to the
c axis (B0 ‖ c: open dots, B0⊥c: full dots). The straight line represents the SLR
rate contribution due to coupling to conduction electrons [59].

graphite sheets in HOPG are stacked in a single-crystalline manner in the
c direction. In the crystallographic (a, b) plane the C layers are oriented at
random.

Fig. 9.15 gives an overview of T−1
1 measured as a function of T at a con-

stant value of B0 for the orientations B0 ‖ c and B0⊥c. As another impor-
tant parameter, the value of B0 was varied between 10mT and 400mT. This
corresponds to an ωL/2π range from 0.06MHz to 2.5MHz which is hardly
accessible with conventional NMR techniques. The temperature dependence
of T−1

1 shows different regions. Here we only touch upon the temperature
region below 100K and concentrate on the range between 300K and 500K,
where a pronounced T−1

1 peak shows up.

For T < 100K, T−1
1 increases linearly with T and does neither depend on

orientation nor on magnitude of B0. This is a feature of SLR due to coupling
to conduction electrons. A detailed representation of the data and a discussion
of the implications on the electronic properties of LiC12 is given in [55]. This
SLR mechanism persists also at higher temperatures and contributes as a
background to the experimental T−1

1 values.
Between 300K and 500K, SLR is dominated by long-range Li motion [56]

and the rate T−1
1d , obtained by subtracting the contribution due to conduction

electrons from T−1
1 , exhibits a temperature dependence qualitatively similar

to that depicted in Fig. 9.2. However, B0 dependences of T−1
1d were found

on the low-T and high-T flanks of the diffusion-induced peak which can be
characterized by
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T−1
1d ∝ B−α

0 with

{
α � 1.2 for low T (ωLτc 
 1)
α � 0.4 ... 0.7 for high T (ωLτc � 1) .

On the low-T side, the value for α is smaller than expected for jump diffusion
in ordered systems (α = 2; cf. Table 9.1). It is close to that for continuum dif-
fusion (α = 1.5) and compatible with B0 dependences observed in disordered
systems with highly correlated ionic motion. On the high-T side, the obser-
vation of a B0 dependence (α �= 0) indicates that SLR is governed by a low-D
diffusion process. For a direct comparison with the asymptotic laws for 1D
and 2D diffusion given in Table 1, however, one has to take into account that
above 500K T−1

1 does not reduce to the conduction electron contribution.
This implies an additional contribution to T−1

1 which is weakly T dependent
(partly reflected by the above spread of α values). After correction for this
contribution the SLR data are compatible with a logarithmic B0 dependence
as predicted for 2D diffusion.

From the slope of the logT−1
1d vs. 1/T on the low-T side of the peak an

activation energy of about 1 eV was estimated [56].
Analogous measurements on the stage-1 compound LiC6 [57], where sim-

ilar conclusions from the B0 dependence of the SLR rate were drawn, yielded
an activation energy of about 0.6 eV. Thus an additional C sheet between the
Li layers seems to slow down the Li diffusion. This trend was also found in a
lattice simulation calculation [58].

It is noted that the dependence of the SLR rate on orientation of the
layer stacking c axis with respect to B0, not further discussed here, gives
information on the type of interaction dominating SLR [57]. For a comparison
of the β-NMR results with those from quasielastic neutron scattering on the
same samples we refer to [59] and to Chap. 3, Sect. 3.11.

9.5.2 Lithium Titanium Disulfide – Hexagonal Versus Cubic

In the previous subsection diffusion-induced SLR in quasi-2D Li graphite
intercalation compounds of different compositions (stages) with identical in-
plane structures were studied. We now compare a layered (2D) Li dichalco-
genide with a cubic 3D one having the same chemical composition.

The host material TiS2, in its hexagonal modification (h-TiS2), consists
of two hexagonal closed packed S layers between which the Ti atoms occupy
octahedral sites. h-TiS2 may be regarded as a layer structure of these inter-
connected octahedra as illustrated in the top part of Fig. 9.16. In the van
der Waals gap between the TiS2 layers (ABA sequence) Li may easily be
intercalated at any concentration x to form a stage-1 compound h-LixTiS2

(0 < x ≤ 1). The intercalated Li atoms are at rest at octahedral sites [54].
The cubic polymorph c-TiS2 can be obtained [60,61] from h-TiS2 by moving
one quarter of the Ti atoms to the van der Waals gap as indicated in the
lower part of Fig. 9.16. The ABA stacking is then shifted to a stacking of the
type ABCA. Li insertion is possible again in the whole concentration range
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Fig. 9.16. Structure of h-TiS2

(top), the 2D modification, and
of c-TiS2 (bottom), the cubic
modification of the host mater-
ial. The latter may be derived
from h-TiS2 by shifting the lay-
ers from hexagonal closed packed
to cubic closed packed anion
packing and moving one quar-
ter of the Ti to interlayer octa-
hedra [60].

yielding c-LixTiS2 (0 < x ≤ 1) and leads to the occupation of the empty
octahedra. It is noted that c-TiS2 irreversibly transforms to h-TiS2 above
700K.

SLR was investigated by 7Li-NMR on polycrystalline samples of both
modifications at Li concentrations between x = 0.35 and x = 1 [62]. By use
of a Bruker MSL100 spectrometer and a tunable (0 – 7 T) cryomagnet spin-
lattice relaxation times both in the laboratory frame (T1) and in the rotating
frame (T1ρ) were measured at various fields B0 and B1, respectively, (cf.
Sect. 9.3). The temperatures of the hexagonal and the cubic samples were
varied up to 950K and 700K, respectively.

Figs. 9.17 and 9.18 show examples of the T dependence of T−1
1 at two

frequencies for different Li concentrations. In both modifications diffusion-
induced T−1

1 peaks are observed.
On the high-T side, T−1

1 does not depend on frequency in the case of
the cubic modification, which verifies that diffusion is 3D (cf. Sect. 9.2). For
the hexagonal polymorph a distinct frequency dependence is found which
indicates low-D diffusion. Figure 9.19 explicitly shows data for T−1

1 as a
function of B0 at constant T on the high-T side following the logarithmic
frequency dependence expected for 2D diffusion. The characteristics showing
up in the frequency and temperature dependence of T−1

1 are clearly reflected
also by the T−1

1ρ result, i. e. at lower frequencies and correspondingly lower
temperatures. As an example, Fig. 9.20 shows the B1 dependence of T−1

1ρ

at a temperature on the high-T side of the T−1
1ρ peak. Again a logarithmic

frequency dependence is verified over nearly two orders of magnitude. Taken
together, the T−1

1 and T−1
1ρ results on the frequency dependence at high T

confirm the logarithmic law in different frequency regimes, which span a total
range of five orders of magnitude, and unambiguously show that diffusion is
2D in h-LixTiS2 and 3D in c-LixTiS2.

On the low-T side, T−1
1 shows a frequency dependence for both modifi-

cations which can be described by a power law according to (9.5), with the
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Fig. 9.17. T dependence of the
diffusion-induced SLR rate T−1

1 in the
laboratory frame of 7Li in c-Li0.35TiS2

for two frequencies ωL/2π. The lines
are to guide the eye [62].

Fig. 9.18. T dependence of the
diffusion-induced SLR rate T−1

1 in the
laboratory frame of 7Li in h-Li0.7TiS2

at two frequencies ωL/2π. The lines are
to guide the eye and represent sym-
metrical curves with respect to the rate
maximum [62].
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Fig. 9.19. B0 dependence of the SLR
rate in the laboratory frame of 7Li in
h-Li0.7TiS2 on the high-T side of the
diffusion-induced peak. The solid line
represents a logarithmic frequency de-
pendence according to a 2D diffusional
process.

Fig. 9.20. B1 dependence of the SLR
rate in the rotating frame of 7Li in
h-Li0.7TiS2 on the high-T side of the
diffusion-induced peak. The solid line
represents a logarithmic frequency de-
pendence according to a 2D diffusional
process [62].

exponent α ≈ 1.3 both for h-Li0.7TiS2 and c-Li0.6TiS2. This value is signif-
icantly smaller than α = 2, expected regardless of dimensionality. Similar
to the case of the Li graphite intercalation compounds this is in accordance
with various theoretical approaches [28–30] where the weak frequency depen-
dence is ascribed to highly correlated diffusion. According to (9.7) and the



9 NMR and β-NMR Studies of Diffusion 389

10
-1

10
0

10
1

10
2

10
3

10
4

T
1-1

 ,
T

1ρ
-1

 ,
T

2-1
  [

s-1
]

7654321

T
 -1

  [10
-3

 K
-1

]

10
-1

10
0

10
1

10
2

10
3

10
4

τ 
SA

E
-1

  [
s-1

]

1502003004501000

T  [K]

T1
-1

T2
-1

T1ρ
-1

τ SAE
-1

Fig. 9.21. Temperature dependence of the relaxation rates T−1
1 , T−1

1ρ , T−1
2 (left-

hand ordinate) and of the correlation rate τ−1
SAE (right-hand ordinate) obtained from

spin-alignment echo (SAE) measurements, for 7Li in h-Li1.0TiS2. T−1
1 and T−1

1ρ were
measured at 10MHz and 20 kHz, respectively. For the spin-lattice relaxation rate
T−1

1 a background is visible on which the diffusion-induced peak is superimposed
(after [66]).

schematic representation in Fig. 9.3 an exponent α < 2 also leads to a smaller
(absolute) slope of logT−1

1 vs. 1/T on the low-T side. On the other hand,
for 2D diffusion the slope of the high-T side will be reduced as compared to
the BPP case (cf. Fig. 9.3). If the effects of correlated and 2D diffusion come
together, experimentally a pseudo-symmetric peak may be found which, in-
deed, is the case for h-Li0.7TiS2 (Fig. 9.18, for the corresponding T−1

1ρ data
see Fig. 3 in [62]). Apparent activation energies ElT

NMR obtained from the
slope of the low-T side are around 0.3 eV for the various samples. This agrees
with an early result for h-LixTiS2 obtained by T−1

1ρ measurements [63]. From
the condition for T−1

1 (T ) and T−1
1ρ (T ) maxima (ωLτc ≈ 1 and ω1τc ≈ 0.5,

respectively; see Sect. 9.2) and the temperature values where they occur for
the various measuring frequencies the important conclusion was drawn that
at comparable Li content in the two modifications the jump rate in the in-
terfacial planes of h-LixTiS2 is higher than in the 3D pathways of the cubic
polymorph [62].

The large range of frequencies and correlation (or jump) rates probed by
T−1

1 and T−1
1ρ studies1 can be further extended by T−1

2 measurements. An
example is shown in a joint representation for h-Li1.0TiS2 in Fig. 9.21 [66].

1 The gap between the frequency and correlation rate regimes covered by T−1
1 and

T−1
1ρ studies is bridged in certain cases by β-NMR T−1

1 measurements [17] as well
as by field cycling NMR relaxometry [38].
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Though it reflects the main features shown in Fig. 9.5 it has to be kept in mind
that in the case of 2D diffusion present here there are deviations from the
3D case. Additionally the figure shows on the right-hand ordinate correlation
rates determined by the spin-alignment echo (SAE) technique which is sensi-
tive to ultraslow motions with correlation rates of the order of 1 s−1 [64–66].
These correlation rates can be attributed to local jumps between inequiva-
lent sites being characterized by different electric field gradients. These may
be identified with two sites in the van der Waals gap, namely the octahe-
dral one, normally occupied by Li, and the tetrahedral one [66]. According
to quantum chemical calculations the field gradient at the tetrahedral site
differs from that at the octahedral site by a factor of three [67]. Altogether,
correlation rates have been covered over nine decades which, as far as NMR
studies of Li ion conductors are concerned, seems to have been exceeded up
to now only in a β-NMR investigation of Li3N [11,68].

Concluding this section, we recall the importance of frequency variation
in NMR relaxation measurements to disentangle effects of dimensionality and
correlation.

9.6 Nanocrystalline Materials

Another class of interface-dominated systems is represented by nanocrys-
talline materials [4,5,9]. They have been the topic of broad research activity
aiming both at a better understanding of the fundamental aspects and at
new applications. In contrast to intercalation compounds where an ordered
stacking sequence of host and guest layers prevails, nanocrystalline materials
consist of an assembly of randomly oriented nanometer-sized crystal grains
and of interfacial regions. From an atomistic point of view two types of sites
occur, those in the nearly perfect crystallites and those in the highly defective
grain boundary regions characterized by a distribution of interatomic dis-
tances. This is illustrated in a very simplified way in the left part of Fig. 9.22
where the full and open circles denote chemically identical atomic species. An
alternative approach is to regard nanocrystalline materials as consisting of a
crystalline phase and an interfacial phase with pores as depicted in the middle
part of Fig. 9.22. There is presently no generally accepted model represent-
ing all aspects of nanocrystalline materials. A high-resolution transmission
electron micrograph of nanocrystalline CaF2 with an average crystallite size
of 9 nm [9,69] is shown in the right part of Fig. 9.22.

From the broad range of preparation techniques [4] here only two will
be regarded. Nanocrystalline materials can be built up from their atomic or
molecular constituents or, starting from the other extreme, they are obtained
by milling the polycrystalline educt. An example of the former is the inert
gas condensation technique. The material is evaporated in an inert gas at-
mosphere where it thermalizes and precipitates on a cold finger. Then it is
gathered and compacted under high pressure (up to 5GPa). An example of
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10 nm

Fig. 9.22. Schematic representations and transmission electron micrograph of
nanocrystalline materials. Left: Atoms in crystalline regions (full circles) and in
grain boundary regions (open circles) [4]. Middle: Nanocrystalline material consist-
ing of a crystalline phase, the interfacial phase and pores [70]. Right: High-resolution
transmission electron micrograph of nanocrystalline CaF2 with an average grain size
of about 9 nm [9].

the alternative route is high-energy ball milling, where the grain size of the
microcrystalline starting material is reduced by mechanical attrition [71–73].
The size of the grains is controlled by the duration of the milling process. The
excess energy is stored in the grain boundary regions by a highly disordered
atomic arrangement.

Here investigations on nanocrystalline CaF2 (n-CaF2), prepared by the
inert gas condensation technique, and on nanocrystalline LiNbO3, Li0.7TiS2

and (1−x)Li2O:xB2O3 composites, prepared by high-energy ball milling, will
be discussed.

9.6.1 Nanocrystalline Calcium Fluoride

The average grain diameter of the n-CaF2 material obtained with the inert
gas condensation technique was about 9 nm according to X-ray diffraction line
broadening and transmission electron microscopy (TEM), see right part of
Fig. 9.22. After compaction the density was 96% of that of single crystalline
CaF2.

Single- or polycrystalline CaF2 is a F−-ion conductor and the dominant
self-diffusion mechanism at elevated temperatures consists of F−-jumps via
thermally activated vacancies in the anion sublattice. Fig. 9.23 shows the
diffusion-induced peak of T−1

1 of 19F in a CaF2 single crystal (s-CaF2) [74]
including a temperature-independent background, which becomes apparent
at low temperatures, in comparison with the SLR rate in n-CaF2 [75]. For the
latter several temperature runs were made, which will be discussed below.

Though measured at a higher Larmor frequency, the SLR rate in n-CaF2

rises to a peak at considerably lower temperatures than in s-CaF2. The ac-



392 Paul Heitjans, Andreas Schirmer, and Sylvio Indris

Fig. 9.23. Temperature dependence of the spin-lattice relaxation rate T−1
1 of 19F

in (a) nanocrystalline CaF2 (ωL/2π = 47 MHz, second temperature run) [75] and
(b) single-crystalline CaF2 (ωL/2π = 15 MHz, data points from [74]). The solid
lines are fits of a simple spectral density function as guide to the eye.

tivation energy estimated from the slope of the peak is found to be reduced
to typically 0.4 eV compared to 1.6 eV in s-CaF2. These findings indicate a
drastically enhanced F−-diffusivity which is ascribed to the influence of the
interfacial regions. A realistic estimate of the enhancement at, e. g., 500K
where the diffusion coefficient in s-CaF2 itself is increased due to the pres-
ence of extrinsic vacancies in addition to the thermal ones (cf. the deviation
of the SLR data from the fit curve (b) in Fig. 9.23) can be obtained from a
comparison of the corresponding conductivities of n-CaF2 and s-CaF2 [76].
The ratio amounts to about 104.

Up to temperatures T ≤ 500K, measured values of the SLR rate in n-
CaF2 are reproducible in different T−1

1 (T ) runs. For higher T , the SLR rate
reduces upon thermal cycling and approaches that of s-CaF2 due to sub-
stantial grain growth. A similar observation of thermal metastability and in-
stability, respectively, was made in T1ρ measurements on 63Cu in n-Cu [77].
The activation energies observed in n-CaF2 in successive temperature runs
increase towards the value for s-CaF2. TEM of the n-CaF2 material after
three T−1

1 (T ) runs up to 870K showed growth of the average grain diameter
to about 50 nm [69].

Further information on the fast interfacial diffusion was obtained from
temperature-dependent lineshape measurements as shown in Fig. 9.24 [75].
At room temperature the 19F resonance can be described by a broad Gaussian
line (Fig. 9.24a2). This corresponds to the rigid lattice. As the temperature

2 The small dip in the line centre is due to a dead time effect at the start of the
FID recording.
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Fig. 9.24. NMR lineshapes of 19F in an
as-prepared nanocrystalline CaF2 sample
at 298 K (a), 400 K (b), and 440 K (c) at
ωL/2π = 24MHz. The lines through the
data represent fits by a Lorentzian and/or
a Gaussian.

of the virgin sample is raised up to 440K the width of the broad line remains
essentially constant and a superimposed motionally narrowed line shows up

Fig. 9.25. Fraction Af of the motionally narrowed 19F signal with respect to the
total signal intensity in n-CaF2 as a function of temperature. Between about 440 K
and 600 K a T independent fraction of mobile ions corresponding to the mass frac-
tion of the interfacial regions is observed.
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which can be described by a Lorentzian (Fig. 9.24b,c). The two components
whose centres of gravity coincide are attributed to the stationary fluorine
ions in the grains and the highly mobile ones in the interfacial regions.

Fig. 9.25 shows the fraction Af of the area under the Lorentzian line with
respect to the total lineshape area. Af corresponds to the fraction of mobile
F−. At 440 K the narrowed line has attained about 10% of the signal intensity
and remains constant up to about 600K where the onset of line narrowing
also in the grains is observed. The plateau value of Af should reflect the
mass fraction of the interfacial regions. Taking their reduced mass density
into account (cf. Sect. 9.1) the volume fraction is somewhat higher than 10%
but still smaller than the value of 25% which may be estimated [5] using the
XRD result for the average grain diameter. The difference may be attributed
to different weighting of interfacial and crystal regions in the dynamic and
static measurements, respectively.

First measurements on the analogous system n-BaF2 [78], which, however,
was not prepared by inert-gas condensation but by high-energy ball milling,
show SLR results which are consistent with those on n-CaF2 presented above.

9.6.2 Nanocrystalline, Microcrystalline and Amorphous Lithium
Niobate

In spite of the extensive research work performed on LiNbO3 mainly because
of its technical relevance, e. g. in electro-optic applications, NMR investi-
gations of the Li ion dynamics have been rather scarce. Thus for compari-
son reasons not only nanocrystalline LiNbO3, prepared by high-energy ball
milling, but also the coarse-grained polycrystalline source material (i.e. mi-
crocrystalline LiNbO3, m-LiNbO3) and amorphous LiNbO3 (a-LiNbO3) were
studied in detail [79–81]. Fig. 9.26 shows results of 7Li T−1

1 (T ) measurements
at various frequencies in the MHz regime on n-LiNbO3 with an average grain
diameter of 23 nm and on m-LiNbO3 (average grain size of some µm) at
one of the above frequencies for comparison. For both modifications only the
low-T sides of the diffusion-induced T−1

1 (T ) peaks, being superimposed on
background relaxation rates, were observable in the accessible temperature
ranges up to 1400K and 500K, respectively. From the shift of the flank to
lower T it can be concluded that in n-LiNbO3 the effective correlation time
τc is by orders of magnitude smaller, i. e. diffusion is much faster. The slopes
indicate that the activation energy is reduced from 0.75 eV for m-LiNbO3 to
about one third of this value.

Figure 9.27 shows an Arrhenius plot of the SLR rate in the rotating
reference frame at various frequencies in the kHz regime for m-LiNbO3. In-
stead of conventional T−1

1ρ (cf. Sect. 9.3) the SLR rate T−1
1e in the pulsed

rotating frame, being a time saving alternative [82], was measured. In this
case also the maxima of the curves and parts of their high-temperature sides
were detectable. From the T−1

1e maximum for a given frequency an absolute
value for τc in m-LiNbO3 can be estimated which amounts at, e. g., 890K to
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Fig. 9.26. 7Li SLR rate versus in-
verse temperature in n-LiNbO3 at
three frequencies measured in the lab-
oratory reference frame. For compar-
ison the T−1
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at ωL/2π = 24 MHz are displayed,
too [79,80].

Fig. 9.27. 7Li SLR rate versus inverse
temperature in m-LiNbO3 at four fre-
quencies measured in the pulsed rotat-
ing frame [79,80].

3 · 10−6 s. For uncorrelated jumps this corresponds to a diffusion coefficient
D = 8 · 10−15 m2 s−1 as obtained from the Einstein-Smoluchowski equation
(see (1.36) in Chap. 1). For the mean square displacement the Li-Li distance
of about 0.38nm in the crystal structure of LiNbO3 was adopted and the
dimensionality of the jump process is taken to be three because the SLR rate
on the high-T side is independent of frequency (Fig. 9.27, cf. Table 9.1). The
activation energy of 0.88 eV obtained from the high-T side, which applies to
long-range diffusion, is greater than the value 0.75 eV from the low-T side
which agrees with that from the T−1

1 measurements and reflects short-range
motion. The asymmetry of the T−1

1e (T ) peak corresponds qualitatively to a
frequency dependence on the low-T side described by α < 2; this is also
found for the SLR rate in the laboratory frame both for microcrystalline and
nanocrystalline LiNbO3. Quantitatively, however, (9.7) is not fulfilled.

In additon to the SLR measurements also lineshape measurements were
done [80,81,83]. Fig. 9.28 shows the lineshape obtained in n-LiNbO3 in com-
parison with m-LiNbO3 and a-LiNbO3. We focus on the central line of the
spectrum of 7Li (I = 3/2). The figure shows the motional narrowing for all
three samples. Similar to the 19F spectrum in n-CaF2 (Fig. 9.24), the central
line of 7Li in n-LiNbO3 reveals a superposition of two distinct contributions
already at moderate temperatures (Fig. 9.28, middle row). The narrow com-
ponent is caused by Li ions mobile at 450 K in the interfacial regions whereas
the broad line can be attributed to Li ions within the grains being still im-
mobile at that temperature. In contrast, the spectra of m-LiNbO3 (Fig. 9.28,
bottom row) do not show a comparable structuring at any temperature indi-
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Fig. 9.28. Shape of the central line of the 7Li-NMR spectrum. Top row: signal of a-
LiNbO3 at 143K, 353 K and 453 K. Middle row: signal of n-LiNbO3 at 160 K, 370 K
and 450 K. Bottom row: signal of m-LiNbO3 at 550 K and 975 K. The frequencies
denote the linewidths (FWHM) [81].
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Fig. 9.29. Temperature dependence of the 7Li linewidth in n-LiNbO3 (full circles),
m-LiNbO3 (open circles) and amorphous LiNbO3 (squares). The lines show fits
yielding activation energies [81].

cating equivalent sites, i. e. a line contribution from bulk material only. For
comparison Fig. 9.28 (top row) also shows the motional narrowing in the
amorphous material. It starts at temperatures similar to those in n-LiNbO3,
but the lineshape has no comparable structure. This indicates that, as ex-
pected, the amorphous material is homogeneously disordered in contrast to
n-LiNbO3 where heterogeneous disorder is found. Fig. 9.29 displays the ef-
fective linewidth of the n- , m- and a-material as a function of temperature.
Motional narrowing for Li ions in the interfacial regions of the nanocrystalline
material starts at a temperature some 400K below that in the undisturbed
crystal and very similar to that in the amorphous material. The T dependence
of the linewidth, analyzed with a phenomenological equation [84], yields an
activation energy of 0.39 eV for n-LiNbO3, 1.25 eV for p-LiNbO3 and 0.35 eV
for a-LiNbO3. These values are in reasonable agreement with those obtained
by SLR measurements on the same samples and suggest that the fast dif-
fusion pathways in the interfacial regions of nanocrystalline LiNbO3 being
prepared by ball milling are similar to those in the amorphous material.

A further source of information not discussed here are the quadrupole
satellites in the 7Li spectra.

9.6.3 Nanocrystalline Lithium Titanium Disulfide

In Sect. 9.5.2 7Li spin-lattice relaxation results on microcrystalline hexago-
nal Li0.7TiS2 were presented in comparison with those on the corresponding
cubic modification. We now turn to a study of nanocrystalline hexagonal
Li0.7TiS2 and compare it with the above microcrystalline reference mater-
ial from which it was produced by ball milling. Furthermore nanocrystalline
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Fig. 9.30. Relaxation rates T−1
1 of microcrystalline (open circles), nanocrystalline

(full circles) and amorphous (squares) LixTiS2 at ωL/2π = 24.5 MHz [85].

Li0.7TiS2 is compared with amorphous Li0.7TiS2 [85]. An Arrhenius plot of
T−1

1 for all three forms is shown in Fig. 9.30. Contrary to the case of LiNbO3

(Sect. 9.6.2), the activation energy in nanocrystalline Li0.7TiS2, estimated
from the slope of the low-temperature flank to be about 0.2 eV, is not con-
siderably smaller than that in the microcrystalline material and larger than
that in the amorphous one (about 0.1 eV). This indicates that the diffusion
pathways in the two crystalline forms are similar and determined by the
layer structure of the grains, even if the interfacial regions are essentially
amorphous, while in the bulk amorphous phase the less dense packing may
be responsible for the reduction of the activation energy. The spin-lattice
relaxation rate measured after annealing a freshly prepared nanocrystalline
LixTiS2 sample at various temperatures was also used to study the kinetics
of the Li intercalation process [85].

Concerning the frequency dependence of T−1
1 in the regime of the low-

temperature flank of the diffusion-induced peaks for the nanocrystalline and
the amorphous forms, the exponent α (cf. (9.5)) was found to be smaller
than 1 (approximately 0.6). This result for the two disordered forms con-
trasts with that for microcrystalline h-Li0.7TiS2 where α was larger than
one (approximately 1.3, see Sect. 9.5.2). Sublinear frequency dependencies
have also been observed in ionic glasses by NMR (e. g. [86–88]) as well as
β-NMR [56,89, 90] (cf. Sect. 9.7). In [86] α < 1 was interpreted in the frame
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of the coupling concept [28] as being due to spin-lattice relaxation by local-
ized ion motion involving two-level systems, typical of disordered systems. A
sublinear frequency dependence of the motion-induced relaxation rate corre-
sponds to a superlinear frequency dependence of the ionic conductivity (see
Chap. 20) which has also been observed in disordered systems (e. g. [92]).
Such a behaviour has also been treated in terms of the concept of mismatch
and relaxation treated in Chap. 21 (cf. [29]).

9.6.4 Nanocrystalline Composites of Lithium Oxide and Boron
Oxide

Besides single-phase nanocrystalline materials also composite systems of an
ionic conductor and an insulator have been studied. Such systems are called
dispersed ionic conductors and can show surprising effects in the overall con-
ductivity [93–96] (see also Sect. 22.9.2 of Chap. 22). Fig. 9.31 shows a sketch
of such a composite material consisting of two different types of grains which
are shown as light grey and dark grey hatched areas for the ionic conductor
and the insulator, respectively. There are now three different types of in-
terfaces. These are interfaces between ionic conductor grains (dotted lines),
interfaces between insulator grains (dashed lines) and interfaces between an
ionic conductor and an insulator grain (solid lines). The latter ones seem
to play a crucial role for the overall conductivity in many dispersed ionic
conductors [97–102]. The composition and the grain sizes of such compos-
ites can easily be varied which gives the possibility to modify the network of
the different interfaces which in turn might lead to materials with tailored
macroscopic properties.

Fig. 9.31. Sketch of a composite material of ionic conductor grains (light grey
areas) and insulator grains (dark grey areas). The network of interfaces consists of
interfaces between ionic conductor grains (dotted lines), interfaces between insulator
grains (dashed lines) and interfaces between ionic conductor and insulator grains
(solid lines).
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In order to study the dynamics of Li ions in such composites, among others
7Li NMR lineshape measurements on nanocrystalline (1− x)Li2O:xB2O3 at,
e. g., x = 0.5 and a temperature of 433K were performed [103]. The central
line shows two contributions similar to the results found for nanocrystalline
CaF2 (Sect. 9.6.1) and nanocrystalline LiNbO3 (Sect. 9.6.2) which again can
be attributed to fast and slow Li ions in the interfaces and the bulk of the
grains, respectively. The microcrystalline counterparts again show only one
broad line.

This is consistent with the time dependence of the free induction decay
(FID) found for this composite material at 433K (Fig. 9.32). The micro-
crystalline material (Fig. 9.32(a)) shows only one fast decaying part in the
time regime below 50µs which can be described by exp(−a1t

2) sin(a2t)/a2t
(cf. [13]), with a1 and a2 being fit parameters. For the nanocrystalline ma-
terial (Fig. 9.32(b)) this component is also present, but now there is an ad-
ditional slowly decaying component (marked by an arrow), which becomes
apparent for times larger than 100µs and can be described by a simple expo-
nential function. Of course, the NMR lineshapes are the Fourier transforms
of these FIDs and one can easily show that the fast decaying component in
the FID belongs to a broad component in the NMR lineshape and the slowly
decaying component in the FID belongs to a motionally narrowed compo-
nent. These are attributed to the slow ions in the grains and the fast ones
in the interfacial regions, respectively. For the microcrystalline sample only
Li ions in the grains can be detected because the number fraction of Li ions
in the interfacial regions is too small. The fact that for the nanocrystalline
composite material the two different Li species can be discriminated by their
different time dependences in the FID is due to their different T2 values.

Another way to discriminate the two Li species is via their different T1

values. Fig. 9.33 shows the magnetization transients of the micro- and the
nanocrystalline composites. Whereas for the microcrystalline material the
magnetization transients M(t) can be described by a monoexponential func-
tion, the nanocrystalline composite shows significant deviation from mono-
exponential behaviour and has to be described by a sum of two exponential
functions reflecting the fact that the fast and slow Li species have different
T1 values. This also reveals that in the present case spin diffusion between
the two Li reservoirs is not fast enough for a homogeneous averaging to set
in which would result in a monoexponential magnetization behaviour (cf.
Sect. 9.7.1). Spin diffusion becomes apparent only in the fact that the re-
laxation time of the slow Li ions in the nanocrystalline composite is slightly
reduced in comparison with the corresponding microcrystalline composite
(see values given in Fig. 9.33).

Fig. 9.34 shows the temperature dependence of the spin-lattice relaxation
rates of the fast and the slow Li ions of nanocrystalline (1 − x)Li2O:xB2O3,
x = 0.5. The slope of the Arrhenius fits which represent the low-temperature
flanks of the corresponding diffusion-induced peaks yield the activation bar-
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riers for single ion jumps. Within the experimental errors they are the same
for the slow and the fast Li ions. Therefore the different diffusivities of the
two species of Li ions are not caused by an enhanced mobility but by an
enhanced concentration of defects in the neighbourhood of the interfaces.

In summary, the different diffusivities of the two Li species in the nanocrys-
talline composites become apparent in three different results: (i) two contri-
butions to the NMR lineshape, (ii) two contributions to the FID and (iii) two
components in the magnetization transients. In all cases the microcrystalline
composites show only one species of Li ions.

The effects described in this section for the composites of Li2O and B2O3

can be also found in pure nanocrystalline Li2O but they are much weaker
there. This shows that an interface between unlike crystallites generates a
larger number of Li ions than an interface between Li2O grains.

It is remarkable that results for the analogous system (1−x)Li2O:xAl2O3

are very similar to those presented in this section [104]. This suggests that
it is not important which specific insulator is added to Li2O and that the
results reveal a generic behaviour of such composites.

9.7 Glasses

In the previous section on nanocrystalline materials, systems with heteroge-
neous disorder were studied. We now turn to materials with homogeneous
disorder. First the question how local disorder influences the decay behav-
iour of the nuclear polarization of the probe nuclei in β-NMR relaxation is
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Fig. 9.35. Time dependence of the po-
larization of 8Li in Li2O · 3B2O3 glass
at T = 120 K, B0 = 37 mT. The solid
line represents a fit with P/P0 =
exp(−�t/T1inh).

Fig. 9.36. Time dependence of the 8Li
polarization in the glassy electrolyte so-
lution LiCl · 4 D2O at T = 10K, B0 =
300 mT. The solid line represents a fit
with P/P0 = exp(−t/T1hom).

addressed. The answer will be exemplified by experimental results on glasses
with different short-range order. In the next subsection direct comparison
of homogeneously disordered systems with their ordered counterparts will
be made using, as example, lithium aluminosilicates where compounds with
identical compositions in the glassy and the crystalline state can easily be
prepared. The comparison will be based on 7Li-NMR and 8Li-β-NMR relax-
ation studies.

9.7.1 Inhomogeneous Spin-Lattice Relaxation in Glasses with
Different Short-Range Order

In the study of SLR in materials with structural disorder – whether homo-
geneous or heterogeneous – the question arises if the relaxation behaviour
of nuclei on inequivalent sites can be discriminated. This was possible, e. g.,
in the case of the 7Li-NMR T1 measurements on nanocrystalline Li2O:B2O3

composites reported in Sect. 9.6.4 where spin diffusion did not play an im-
portant role. Often, however, in conventional NMR measurements on homo-
geneous systems polarization transfer among neighbouring nuclei by resonant
mutual spin flips, i. e. spin diffusion, will hamper such a discrimination. In β-
NMR the highly diluted probe nuclei differ in their magnetogyric ratio γ from
the surrounding stable nuclei and thus relax independently without resonant
polarization transfer (cf. Sect. 9.4).

Two classes of glassy systems were investigated with the β-NMR method.
These are on the one hand oxide glasses represented here by the borate glass
Li2O · 3B2O3 and on the other hand electrolyte glasses exemplified by the
solution LiCl ·nD2O (n = 4 and 7).
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As shown in Fig. 9.35 the polarization P (t) of 8Li in the borate glass
decays non-exponentially and can well be represented by

P (t) = P0 · exp
[
−
√
t/T1inh

]
, (9.22)

where T1inh is the so-called inhomogeneous relaxation time to be addressed
in the following. Contrary to such a single transient, the bulk of data also
allows one to determine the parameter β in the stretched exponential

P (t) = P0 · exp
[
−(t/T1inh)β

]
. (9.23)

Taking together, for example, the data on 8Li in Li2O · 3B2O3 in the temper-
ature range 5K - 200K the value β = 0.52(1) was found [90]. Furthermore,
transients of the polarization of the β-NMR probe 12B in the same glass and
again of 8Li in other oxide glasses (Li2O · 2 SiO2, Li2O ·Na2O · 4 SiO2 and
Li2O ·Al2O3 · 4 SiO2) showed a behaviour according to (9.22) [90, 91, 105].

Essential in the explanation of the exp(−
√
t/T1inh) law is the fact that an

observed transient results from inhomogeneous polarization averaging [106].
The β-NMR probes are isolated and relax independently with different rates

1/T (k)
1 =

∑
i

a(rik) J(ωL, τi) (9.24)

where a(rik) = a0(r0/rik)m is the coupling constant of the probe nucleus k
to a relaxation centre (‘defect’) i at distance rik and J(ω, τi) is the spectral
density function of the field fluctuations attributed to this centre.

Inhomogeneous polarization averaging over all probe nuclei yields

Pinh(t) =
〈
P0 exp

[
−t/T (k)

1

]〉
k

= P0 · exp

[
−

(
t

T1inh

)3/m
]

. (9.25)

For m = 6 which applies to dipolar and quadrupolar coupling, the observed
exp(−

√
t/T1inh) law is obtained. It is noted that homogeneous averaging,

which in general is performed in classical NMR relaxation where rapid po-
larization transfer due to high probe concentration is possible, results in a
single exponential

Phom(t) = P0 · exp
[
−t/〈T (k)

1 〉k
]

= P0 · exp[−t/T1hom] . (9.26)

Contrary to the oxide glasses, β-NMR relaxation in the electrolyte glass
LiCl·nD2O (n = 4; 7) was found to be monoexponential as illustrated in
Fig. 9.36 [53,107]. The bulk of P (t) data obtained in the glassy state clearly
shows that here β is near unity and not 1/2. LiCl·nD2O has a disordered
structure consisting of Cl− ions and Li+(4D2O) complexes as basic units. For
n = 7 the excess water is interstitially incorporated between Li+(4D2O)Cl−



9 NMR and β-NMR Studies of Diffusion 405

clusters. In each case the Li+ ions are tetrahedrally surrounded by D2O mole-
cules. Thus, despite the overall amorphous structure, the near neighbourhood
of each Li ion is largely equivalent3. This contrasts with the oxide glasses,
where Li as network modifier (or B as network constituent) occupies many
inequivalent sites. This difference in local structure near the probe is the rea-
son for the different transient behaviour of the polarization found in the two
classes of glassy systems.

In conclusion, β-NMR relaxation is inherently sensitive to local order and
a deviation from monoexponential polarization decay is a fingerprint of the
disorder near the probe.

9.7.2 Glassy and Crystalline Lithium Aluminosilicates

Lithium aluminosilicates are of interest for the design of materials with negli-
gible thermal expansion which is possible due to opposite signs of the expan-
sion coefficients in the crystalline and the glassy state [108]. Another point
of interest, relevant here, is the lithium conductivity and diffusivity.

In the system Li2O - Al2O3 - nSiO2, Li motions were studied in glasses
with n = 2; 4; 8, and in their crystalline counterparts β-LiAlSiO4 (β-eucryp-
tite), β-LiAlSi2O6 (β-spodumene) and LiAlSi4O10 (petalite composition).
The ratio of Li2O to Al2O3 is always one, i. e. the charge of each Li+ is
compensated by AlO−

4 . Non-bridging oxygen atoms which interrupt the sili-
cate network in binary oxide glasses with high alkali content are not present
in these ternary glasses and their silicate network is fully polymerised. In
the following, the discussion is mainly confined to glassy and polycrystalline
samples with the spodumene composition (n = 4). In the crystal structure
of β-spodumene there are four pairs of closely neighboured Li sites per unit
cell. Their distance is 0.13 nm and only one site is occupied at a time. The
distance between different pairs of Li sites is about 0.45 nm. This suggests
two types of possible Li jumps, long-range jumps between different pairs and
a localized motion by hops between the sites of a pair.

In Fig. 9.37, 7Li T−1
1 (T ) data for the glassy and the crystalline sample

at one frequency are compared [87]. For both modifications a pronounced
diffusion-induced peak shows up which in the case of the glass occurs at
roughly 700K, i. e. some 250K below the glass transition temperature, and
in the case of the crystal at about 820K. These peaks are due to the long-
range Li jumps. The temperature values of the T−1

1 maxima and the slopes
of the low-T flanks show that the jump rate of Li+ is faster and the acti-
vation energy is smaller in the glass than in the crystal. Similar behaviour
was found in the other Li aluminosilicates [88]. The activation energies ElT

NMR

obtained from the slopes of the low-T side of the T−1
1 peak, corrected for a

3 To some extend this type of glass may also be regarded as heterogeneously dis-
ordered.
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Fig. 9.37. Temperature dependence of T−1
1 of 7Li in glassy and polycrystalline

LiAlSi2O6 (β-spodumene) at ωL/2π = 38.9 MHz [87].

small background contribution to T−1
1 , are summarized in Table 9.2, neglect-

ing a possible slight frequency dependence. There is no obvious trend with
Li concentration. Provided that the diffusion mechanism does not change, a
logarithmic decrease of the activation energy with increasing mobile-ion con-
centration is predicted by various model calculations of diffusion in disordered
systems [109–111] (see also Chap. 20).

Inspection of Fig. 9.37 further shows that a peak asymmetry, expected ac-
cording to Sect. 9.2 for the glass, is also found for the crystal. For crystalline
Li2O ·Al2O3 · 4 SiO2 the value EhT

NMR = 0.86(3) eV is obtained from the slope
of the high-T side [87]. Comparison with the corresponding ElT

NMR value in
Table 9.2 yields α = 1.6 for the parameter in (9.7). For the glass the high-T
flank and thus EhT

NMR was not accessible. However, as verified for crystalline
Li2O ·Al2O3 · 4 SiO2 [112] and generally predicted (e. g. [29]) EhT

NMR is essen-
tially equal to the activation energy Edc

σ from dc conductivity measurements

Table 9.2. Activation energies ElT
NMR [eV] obtained from the low-T slopes of 7Li

SLR rate peaks in glassy and crystalline lithium aluminosilicates with various min-
eral compositions. The error in ElT

NMR is typically 2 in the last digit.

glass crystal

Li2O ·Al2O3 · 2 SiO2 0.30 0.40
(eucryptite)
Li2O ·Al2O3 · 4 SiO2 0.34 0.50
(spodumene)
Li2O ·Al2O3 · 8 SiO2 0.22 0.47
(petalite)
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Fig. 9.38. Temperature dependence of the spin-lattice relaxation rate of 8Li in
glassy (◦) and polycrystalline (�) LiAlSi2O6 (β-spodumene) at a magnetic field
corresponding to ωL/2π = 3MHz. The lines are drawn to guide the eye.

(for a small difference between the two see [113] and Chap. 20). In the case of
the glass Edc

σ = 0.66 eV was found [112]. Using (9.7), this results in α = 1.5.
The deviation from standard SLR behaviour [16] is also reflected by a sub-
quadratic frequency dependence of T−1

1 found on the low-T flank of the peak
for both modifications [87]. The experimental power law (cf. (9.5)) is even
weaker than that expected on account of the asymmetry of the rate peak
(cf. (9.6)) and can be described by α = 0.9(2) and α = 0.8(1) for crystalline
and glassy Li2O ·Al2O3 · 4 SiO2, respectively [87]. Thus, in this regard the
apparently ordered ion conductor shows nearly the same ‘anomalies’ as the
disordered one. The sublinear frequency dependence being indicated in the
glass shows up also in other glasses [86, 88–91] as well as in nanocrystalline
ion conductors, e. g. Li0.7TiS2, as mentioned in Sect. 9.6.3.

Besides the main peak at about 820K, in Fig. 9.37 a second, broad max-
imum can be seen for the crystalline sample around roughly 100K. This can
be attributed to the short-range hopping of the Li ions between the pair
sites mentioned above. Fig. 9.38 shows the corresponding data obtained by
β-NMR on 8Li at 3 MHz [114] covering the temperature range from about
500K down to 10K. Whereas in the case of polycrystalline LiAlSi2O6 tran-
sients P (t) of the 8Li polarization could be fitted by a single exponential, in
the glass P (t) followed the expected exp(−

√
t/T1inh) behaviour (9.22). The

resulting values of the inhomogeneous relaxation rate T−1
1inh are displayed in

Fig. 9.38. For temperatures above 200K the low-temperature flank of the
long-range diffusion induced peak is visible again. The maximum of the re-
laxation rate due to the localized jumps in crystalline LiAlSi2O6 occurs at
about 70K. For the glassy material this maximum appears only as a slight
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shoulder. Using the temperature of the SLR rate maximum of 7Li together
with that of 8Li (Figs. 9.37 and 9.38) one can estimate the activation energy
for the jumps between the pair sites in the crystalline material to be roughly
50meV. This result is also consistent with 7Li-T1 data obtained at different
frequencies [115].

In summary, glassy and crystalline aluminosilicates, besides being inter-
esting for applications, provide a playground for the study of the influence of
disorder on ion transport properties by complementary techniques, as exem-
plified here for the spodumene system.

9.8 Conclusion

In this chapter the use of stable and β-radioactive NMR nuclei for probing dif-
fusive motion was reviewed. After having shown how microscopic information
on the diffusive motion can be obtained from the SLR rate, the corresponding
NMR and β-NMR techniques were outlined.

The materials discussed in this chapter were Li intercalation compounds
as examples of layer-crystalline systems with simple internal interfaces, nano-
crystalline ceramics as examples of materials with complex internal interfaces
and, finally, oxide glasses representing homogeneously disordered systems. In
all three classes the 3D ordered modifications were also examined for com-
parison.

Emphasis in the SLR investigations was put on the variation of frequency
besides temperature. In the case of the intercalation compounds this allowed
one to study the high-temperature (low-frequency) limit and to trace in-
plane 2D diffusion processes. In all materials of interest here and contrary
to the ‘ideal’ case of Li metal, the frequency dependence of the SLR rate in
the low-temperature limit was found to be weaker than that predicted by the
standard (BPP) model which was ascribed to the influence of disorder and/or
Coulomb interaction. In the nanocrystalline ceramics, in addition to NMR
relaxation studies, lineshape measurements helped to elucidate the heteroge-
neous structure where the interfacial regions provide a network of pathways
for fast diffusion. The heterogeneous structure results in heterogeneous dy-
namics of the mobile ions with fast ions in the interfacial regions and slower
ones in the bulk of the grains.

Finally in glassy materials the potential of the β-NMR relaxation tech-
nique to probe the local disorder was demonstrated. A systematic comparison
of glassy and crystalline modifications of ion conductors covered lithium alu-
minosilicates where higher diffusion jump rates showed up in the glasses.
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9.9 Appendix

In the following we list the full expressions for the dependence of the differ-
ent NMR relaxation rates on the spectral densities described in Sect. 9.2 in
a more qualitative way. A quantitative description includes a linear combi-
nation of spectral density functions J (q) which result in transitions of spin
pairs, where the combined angular momentum changes by q�, and thus in-
volve contributions at ωL and 2ωL. For pure dipolar interaction one gets for
the spin-lattice relaxation rate [13]

1
T1

=
3
2
γ4

�
2I(I + 1)

[
J (1)(ωL) + J (2)(2ωL)

]
(9.27)

and for the spin-spin relaxation rate

1
T2

=
3
8
γ4

�
2I(I + 1)

[
J (0)(0) + 10 J (1)(ωL) + J (2)(2ωL)

]
. (9.28)

The different contributions J (0)(ω), J (1)(ω) and J (2)(ω) to the spectral den-
sity stem from the partitioning of the Hamiltonian to contributions which
do not change the overall magnetization and those which cause a single or
twofold spin flip. The spectral densities J (q)(ω) (q = 0, 1, 2) are calculated
from the corresponding correlation functions G(q)(t) via a Fourier transform

J (q)(ω) =

∞∫
−∞

G(q)(t) eiωt dt . (9.29)

For powder samples the relation J (0)(ω) : J (1)(ω) : J (2)(ω) = 6 : 1 : 4 holds.
For the spin-lattice relaxation rate in the rotating reference frame the full

expression is [15]

1
T1ρ

=
3
8
γ4

�
2I(I + 1)

[
J (0)(2ω1) + 10 J (1)(ωL) + J (2)(2ωL)

]
(9.30)

where ω1 denotes the Larmor frequency in the locking field B1.
For β-NMR measurements we have to treat the case of highly diluted

spins I interacting with a reservoir of spins S. For the longitudinal relaxation
time one gets [13, 17]

1
T1

= γ2
Iγ

2
S�

2S(S + 1)
[

1
12
J (0)(ωI − ωS) +

3
2
J (1)(ωI) +

3
4
J (2)(ωI + ωS)

]
(9.31)

where ωI and ωS are the Larmor frequency of the spin I and S, respectively
(see also Sect. 9.7.1). In case of quadrupolar interaction analogous results are
obtained for NMR and β-NMR relaxation [13, 15, 39, 116].
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Notation

a unit cell dimension in x-direction
a(rik) coupling constant
aβ β-asymmetry
A asymmetry coefficient of a β-decay
Af fraction of motionally narrowed signal
Ap pulse sequence parameter
b unit cell dimension in y-direction
B0 static magnetic induction (‘field’)
B1 alternating magnetic induction (‘field’)
Beff effective magnetic induction (‘field’) in the rotating frame
c unit cell dimension in z-direction
EA activation energy
ElT

NMR, EhT
NMR activation energy from low-T , high-T side of T−1

1 peak
f dipolar polarization
G correlation function
� Planck constant divided by 2π
I nuclear spin
J , J (q) spectral density function (angular momentum change q�)
kB Boltzmann constant
m power of distance dependence of coupling constant
M , M0 magnetization (equilibrium value)
Mx, My, Mz magnetization components in the laboratory frame
Mx′ , My′, Mz′ magnetization components in the rotating frame
Mρ magnetization in the rotating frame
N number density
P nuclear polarization
Phom, Pinh homogeneously, inhomogeneously averaged nuclear polariza-

tion
r distance
t time
tp duration of a pulse
T temperature
T1 spin-lattice relaxation time in the laboratory frame
T1ρ spin-lattice relaxation time in the rotating frame
T1ρ spin-lattice relaxation time in the pulsed rotating frame
T1inh, T1hom inhomogeneous, homogeneous spin-lattice relaxation time
T2 spin-spin relaxation time
v/c velocity of β-particle in units of light velocity
W emission probability of β-particles
ZN, ZS counting rates in counter ‘North’,‘South’
α exponent for frequency dependence
β exponent in stretched exponential
γ magnetogyric ratio
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∆νR NMR linewidth of the rigid lattice
θ angle between β-emission and nuclear polarization direction
θp tilt angle of magnetization
τ mean residence time between successive jumps
τe time interval in magnetization recovery experiment
τSAE correlation time obtained from spin-alignment echo NMR

measurements
τβ mean lifetime of β-radioactive nuclide
τc correlation time
ω angular frequency
ωL = 2πνL Larmor frequency

References

1. Materials Interfaces - Atomic-Level Structure and Properties, ed by D. Wolf,
S. Yip (Chapman & Hall, London 1992)

2. Graphite Intercalation Compounds I, Structure and Dynamics, Springer Series
in Materials Science, vol 14, ed by H. Zabel, S.A. Solin (Springer, Berlin
Heidelberg New York 1990)

3. Graphite Intercalation Compounds II, Transport and Electronic Properties,
Springer Series in Materials Science, 14, ed by H. Zabel, S.A. Solin (Springer,
Berlin Heidelberg New York 1992)

4. H. Gleiter: Progress in Materials Science 33, 223 (1989)
5. R.W. Siegel: Nanophase Materials. In: Encyclopedia of Applied Physics, vol

11, ed by G.L. Trigg, E.H. Immergut, E.S. Vera, W. Greulich (VCH, New
York 1994) pp 173–200

6. A. Feltz: Amorphous Inorganic Materials and Glasses (VCH, Weinheim 1993)
7. R. Zallen: The Physics of Amorphous Solids (Wiley, New York 1983)
8. M.D. Ingram: Phys. Chem. Glasses 28, 215 (1987)
9. P. Heitjans, S. Indris: J. Phys.: Condens. Matter 15, R1257 (2003)

10. G. Schatz, A. Weidinger: Nuclear Condensed Matter Physics: Nuclear Methods
and Applications (Wiley, Chicester 1996)

11. P. Heitjans: Solid State Ionics 18/19, 50 (1986)
12. H. Rickert: Electrochemistry of Solids - An Introduction (Springer, Berlin

1982)
13. A. Abragam: The Principles of Nuclear Magnetism (Clarendon, Oxford 1961)
14. C.P. Slichter: Principles of Magnetic Resonance (Springer, Berlin Heidelberg

New York 1989)
15. A.R. Allnatt, A.B. Lidiard: Atomic Transport in Solids (Cambridge Univ.

Press, Cambridge 1993)
16. N. Bloembergen, E.M. Purcell, R.V. Pound: Phys. Rev. 73, 679 (1948)
17. P. Heitjans, A. Körblein, H. Ackermann, D. Dubbers, F. Fujara, H.-J.
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Freiländer, W. Müller-Warmuth, K. Meise-Gresch: Hyperfine Interact. 15/16,
597 (1983)
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10.1 Introduction

Depending on the system under study, particle diffusivities cover a huge range
of values from ∼ 10−20 m2s−1 for solids (see Chaps. 1-9) up to ∼ 1 m2s−1 for
dilute gases. However, the nature of a system does not only affect the rate
of particle propagation, it is also the pattern of its time dependence, which
may be a function of the system. In general, the mean square displacement of
the migrating particles increases in proportion to the observation time. This
is the case of normal diffusion, which is commonly described by Fick’s laws.
The fundamental relations of normal diffusion are summarized in Chap. 1 of
this textbook, and most of the other chapters are also devoted to this case.
However, under the influence of internal structures, particle propagation may
deviate from this pattern. Owing to the intimate relation between structure
and mobility, in the last few years the study of “anomalous diffusion” has
become a most attractive subject of both fundamental and applied research.
Since the time exponent of the mean square displacement is generally found
to be smaller than 1, anomalous diffusion is often referred to as subdiffusion.
Chapters 13, 16 - 19, 21 and 22 deal with experimental and theoretical aspects
of this case. The present chapter is devoted to the influence of interfaces on
molecular propagation. It is based on the corresponding chapter of the first
edition, which one of us has co-authored with G. Fleischer and U. Roland.
With great regret we have to announce that Gerald Fleischer has passed away
in 1999. His oeuvre as one of the pioneers in applying PFG NMR to diffusion
in macromolecular systems remains of lasting value.

In the present chapter, the term interface is meant in a rather broad
sense. It refers to fluid/solid interaction in microporous zeolitic adsorbate-
adsorbent systems (Sect. 10.4) and in meso- and macroporous amorphous
materials (Sect. 10.5) as well as to fluid/fluid interaction in internally struc-
tured macromolecular melts and solutions (Sect. 10.6). In all these cases,
deviations from ordinary diffusion occur, and the method of pulsed field gra-
dient (PFG) NMR (Sect. 10.3) turns out to be a most helpful technique for
their investigation.
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10.2 The Origin of Anomalous Diffusion

The diffusion path of a particle consists of numerous displacements caused by
the stochastically changing interaction between the particle and its surround-
ings. In many cases, in particular in homogeneous systems and for sufficiently
large observation times, it is possible to divide the diffusion time into inter-
vals, which are large enough so that the displacements in any of these time
intervals are independent of each other. In this case, the mean square dis-
placement 〈r2(t)〉 of the particles may be shown to depend in a simple way
on the observation time t. For this purpose we consider the vector sum of the
displacements ∆ri during the individual time intervals, which for simplicity
are assumed to be of equal duration ∆t. It holds

〈r2(t)〉 =
〈(∑

∆ri

)2〉
=

〈∑
i

(∆ri)
2
〉

+
〈∑

i�=j

∆ri∆rj

〉
=

〈
(∆r)2

〉
· t/∆t (10.1)

where the last equality results as a consequence of the missing correlation
between subsequent displacements ∆ri. With

〈
(∆r)2

〉
as the mean square

value of the displacement during the considered time interval ∆t, (10.1) re-
flects the expected proportionality between the mean square displacement
〈r2(t)〉 and the observation time t in the case of ordinary diffusion. The ab-
sence of correlation between the displacements during different time intervals,
i.e. the disappearance of the cross term in (10.1), turns out to be a necessary
and sufficient condition for normal diffusion. This statement does clearly not
imply that under the condition of normal diffusion any correlation between
subsequent displacements is excluded. A famous example is the correlation
effect of solid state diffusion (see Sect. 1.6.1 in Chap. 1 and Sect. 18.4.3 in
Chap. 18), where subsequent displacements are preferentially directed into
opposite directions. However, summing the times for the individual steps to
longer time intervals with correspondingly larger displacements (being the
vector sum of the individual displacements), these larger displacements are
soon found to be independent of each other. Hence, the correlation effect
in solid state diffusion is found to affect the absolute value of the diffusiv-
ity (by the “correlation factor” f – see Sect. 1.6.1 and Sect. 18.4.3) without
leading to deviations from normal diffusion. Anomalous diffusion can only be
observed if the correlation between the displacements is preserved over the
total duration of the experiment. It is therefore one of the crucial questions to
be answered in the following sections, what is the mechanism, which ensures
the correlation between the displacements over the whole observation time.

Deviations from normal diffusion may follow various patterns. Using the
conception of a fractal structure (see Chap. 19), the correlation between the
mean square displacement and the observation time may be represented in
a quite general way. For deriving this correlation we have only to imply the
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self-similarity of the system. Owing to the stochastic nature of diffusion, it
is sufficient to imply the self-similarity of the system in a statistical sense.
The effect of this self-similarity of the structure on molecular propagation is
assumed to be reflected by a scaling law, which implies that by enhancing
the elementary structure length from l to µl the corresponding time step has
to be enhanced from t to νt. The actual values of the scaling parameters µ
and ν depend on the system under study. The efforts to be exerted on their
determination (see Chap. 19 and [1, 2]) are generally not negligibly small.
However, when these parameters are known, the relation between the mean
square displacement and the observation time t may be deduced very easily:
As a consequence of the scaling law one may note the correspondence

〈r2〉 = f(t) ↔
〈
(µr)2

〉
= f(νt), (10.2)

where f(t) is an (at first) unknown function representing the time dependence
of the mean square displacement. The right-hand side of this correspondence
may be rearranged leading to the equation

〈r2〉 = f(t) =
1
µ2
f(νt) (10.3)

The second equality is obviously obeyed by

〈r2(t)〉 = f(t) ∝ tκ (10.4)

with
κ = 2

logµ
log ν

. (10.5)

The mean square displacement is thus quite generally found to obey a power-
law time-dependence (cf. (10.4)) where exponent κ is given by (10.5). In the
case of ordinary diffusion due to one-dimensional random walk with con-
stant step size, e.g., µ and ν are found to be 2 and 4, respectively ([3], p.
61). This leads to the familiar result of proportionality between 〈r2〉 and t,
which has been verified, already, by means of (10.1). In the case of anomalous
diffusion, independent of the considered time interval, subsequent displace-
ments are more likely directed into opposite directions, making the cross
term

∑
i�=j ∆ri∆rj in (10.1) negative. The mean square displacement is thus

expected to increase less than linearly with the observation time. One has
therefore to expect that κ ≤ 1, with κ = 1 characterizing the case of normal
diffusion.

In several places of this book (Chaps. 2, 3, 18, 19 and 23), the phenom-
enon of diffusion is considered on the basis of the so-called propagator or (as
generally referred to in neutron scattering and Mößbauer spectroscopy) Van
Hove self-correlation function (with the notation Gs(r, t)). It represents the
probability density of particle propagation and contains the maximum infor-
mation accessible about the diffusion properties of the system. Like in the
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case of quasielastic neutron scattering (QENS, see chapters 2, 3 and 13), the
propagator is directly related to the experimental data of pulsed field gradi-
ent (PFG) NMR, which shall be explicitly shown in the subsequent section.
In contrast to QENS, which traces molecular motion over not more than a
few tens of nanometers maximum, typical displacements monitored by PFG
NMR are of the order of micrometers. Therefore, the propagator generally
results as the superposition of many individual displacements. If – as in the
case of normal diffusion – these displacements are independent of each other,
on the basis of the central limit theorem [4] the resulting probability distri-
bution may be shown to be a Gaussian ( [3], pp. 63–67). In PFG NMR one
is able to monitor molecular displacements in the direction of the magnetic
field gradient, which is commonly assumed to coincide with the z-direction.
In the case of normal diffusion the propagator thus results to be

P (z, t) =
1√

2π〈z2(t)〉
exp

(
−z2

2〈z2(t)〉

)
, (10.6)

where P (z, t)dz denotes the probability that during a time interval t the
z coordinate of a particle is shifted by a value between z and z + dz.
Equation(10.6) may be interpreted as an immediate consequence of the cen-
tral limit theorem. However, it also follows by applying Fick’s second law
(see, e.g., (1.8) of Chap. 1) with the initial condition

P (z, 0) = δ(z) (10.7)

to the propagator. Moreover, in doing so, the mean square displacement is
found to be

〈z2(t)〉 = 2Dt (10.8)

in complete agreement with (10.1) and with the requirement of the central
limit theorem that the square width of the distribution increases in propor-
tion with the number of elements (time intervals) considered for the total
distribution. Equation (10.8) is commonly referred to as Einstein’s relation
with D denoting the coefficient of self-diffusion (tracer diffusion) as appearing
in Fick’s first law for labelled particles.

Even under the conditions of anomalous diffusion, the propagator is often
found to be satisfactorily well approached by a Gaussian (cf. (10.6)). In some
cases, e.g. in the long-time limit of single-file diffusion (see Sect. 10.4.5), (10.6)
holds even strictly. It is therefore common practice in PFG NMR to analyse
diffusion phenomena exclusively on the basis of an effective diffusivity

Deff(t) ≡ 〈z2(t)〉
2t

, (10.9)

which results by inverting (10.8). In the case of normal diffusion,Deff is clearly
independent of the observation time and coincides with the self-diffusivity.
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Under the conditions of anomalous diffusion, Deff becomes time dependent.
If (10.4) is valid, the time dependence of Deff becomes

Deff(t) ∝ tκ−1. (10.10)

Since κ ≤ 1, the effective diffusivity is found to decrease with increasing ob-
servation time. Anomalous diffusion is therefore (like in the cases considered
in Chaps. 12, 13, 16 and 19) often referred to as sublinear diffusion or even
subdiffusion. In the case of completely restricted diffusion, e.g. diffusion in a
space confined by impenetrable barriers, 〈z2〉 remains constant for sufficiently
long observation times, and we have Deff ∝ t−1 for t→ ∞.

10.3 Fundamentals of PFG NMR

10.3.1 The Measuring Principle

As in the case of NMR tomography [5], the application of NMR for studying
molecular transport is based on the Larmor condition

ω = γB (10.11)

between the magnetic field and the resonance frequency (multiplied by 2π) for
transitions between the Zeeman levels of the nuclear spins in the magnetic
field. The magnetogyric ratio γ is a characteristic quantity of the nucleus
under study (e.g. 2.67 · 108 T−1s−1 for 1H). The Larmor frequency ω may
be intuitively understood as the precessional frequency of the nuclear spins
(and hence of the nuclear magnetization) about the direction of the magnetic
field. Superimposing the constant magnetic field B0 by an inhomogeneous
field Badd = gz (the “field gradient”), the Larmor frequency becomes space
dependent:

ω = ω(z) = γ(B0 + gz) = ω0 + γgz , (10.12)

where the z-coordinate is assumed to be aligned along the direction of the
applied field gradient. In the PFG NMR technique (see, e.g., [3, 6–10]), the
inhomogeneous field is applied over two short time intervals of duration δ
separated by the “observation time” ∆. These two field gradient pulses are
applied either with opposite signs (i.e. the amplitudes +g and −g) or with
a radiofrequency (rf) pulse of suitable duration (a “π-pulse”) in between. In
both cases, the effect of the second field gradient pulse has to be subtracted
from that of the first one. The phase shift ϕ of a nuclear spin, which during
the observation time ∆ has been displaced over a distance (z2 − z1) in z-
direction, in comparison with a spin, which has remained at the same position,
is therefore

ϕ = γgδ(z2 − z1) . (10.13)

The quantity monitored in PFG NMR is the amplitude of the “spin echo”
as generated, e.g., in the π

2 – τ – π – τ – echo sequence (see also Sect. 9.3
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in Chap. 9 (Fig. 9.10), Sect. 13.2.1 in Chap. 13, Sect. 17.2.2 in Chap. 17
(Fig. 17.1)). Instead of PFG NMR, therefore, sometimes also the term PGSE
(pulsed gradient spin-echo) NMR is used. The amplitude of this spin echo
is proportional to the total magnetization, i.e., to the vector sum of the
contributions of the individual spins. The application of field gradient pulses
thus leads to a signal (spin-echo) attenuation

Ψ =
∫ ∫

p(z1)P (z2, z1, ∆) cos (γgδ(z2 − z1)) dz2dz1

=
∫
P (z,∆) cos(γgδz)dz, (10.14)

with

P (z,∆) =
∫
p(z1)P (z1 + z, z1, ∆) dz1. (10.15)

p(z1) is the a priori probability (density) to find a spin at position z1 for
t = 0 and P (z2, z1, ∆) the probability (density) that the spin has moved
from z1 to position z2 in the time interval t = ∆. P (z,∆) is the so-called
mean propagator, i.e., the propagator averaged over all starting positions
z1. It is the probability density that an arbitrarily selected particle in the
sample is shifted over a distance z in z-direction (which is the direction of
the magnetic field gradient) during the time interval between the two field
gradient pulses. Since in a heterogeneous sample the probability function of
molecular displacement may depend on the starting point, in this case the
propagator as used in (10.15) is understood as a mean value over the sample.

10.3.2 The Mean Propagator

By Fourier inversion of (10.14) the mean propagator may be directly deduced
from the primary data of the PFG NMR experiment, yielding

P (z,∆) =
1
2π

∫
Ψ(δg,∆) cos(γδgz) d(γδg) . (10.16)

As an example, Fig. 10.1 displays the first application of this possibility show-
ing the propagation patterns of ethane in beds of zeolite NaCaA with two
different crystallite sizes [11]. Zeolite NaCaA consists of microporous crys-
tallites whose diffusion properties are discussed in more detail in Sect. 10.4
and in Sect. 23.4 of Chap. 23 [12–14]. Being symmetric in z, for simplicity
the propagator is only represented for z ≥ 0. For the lowest temperature
(153 K), the distribution widths of molecular displacement during the con-
sidered time intervals (5 . . . 45 ms) are found to be small in comparison with
the mean radius of the larger crystallites (8µm). In this case, the observed
mean square displacement increases in proportion with the observation time
as required for normal diffusion so that PFG NMR is able to monitor genuine
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Fig. 10.1. Propagator representation of the self-diffusion of ethane in NaCaA
zeolite: (a) loading 40 mg/g, mean crystallite radius R = 8 µm; (b) 58mg/g,
R = 0.4 µm [11].

intracrystalline self-diffusion. In the smaller crystallites, obviously, molecu-
lar propagation is terminated by the surface of the crystallites so that PFG
NMR provides information on the size of the crystallites rather than the in-
trinsic mobility. This way of tracing the extension of microscopic regions has
become popular under the name “dynamic imaging” [7, 15]. With increasing
temperature, however, the thermal energy of the diffusing molecules becomes
large enough so that a substantial fraction of the ethane molecules are able
to surpass the step in the potential energy from the intracrystalline space
into the surrounding gas phase (intercrystalline space). Consequently, distri-
bution widths of molecular propagation much larger than the crystallite radii
become possible. Eventually, the conditions for the application of the central
limit theorem are again obeyed and molecular propagation is described by a
Gaussian with an effective diffusivity Dlr. Dlr may be shown to be the prod-
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uct of the diffusivity of the molecules in the intercrystalline space and their
relative amount [16].

10.3.3 PFG NMR as a Generalized Scattering Experiment

Using complex notation and introducing the magnetic field gradient vector
g, (10.14) may be written in the form

Ψ(γδg, ∆) =
∫
P (r, ∆) exp(iγδgr) dr . (10.17)

The structure of this relation coincides with that of the self-term of the inter-
mediate dynamical structure factor Is(Q, t) of QENS as introduced by (3.7)
in Sect. 3.2 of Chap. 3 and as S(Q, t) in Sect. 13.2 of Chap. 13. Similar
relations occur in Mößbauer spectroscopy (Chap. 2) and dynamic light scat-
tering (Chaps. 15 and 16). They may be derived by Fourier transformation of
(2.1) in Chap. 2 and of (15.3) together with (15.1) in Chap. 15, respectively,
from frequency to time domain. PFG NMR may therefore be considered as a
scattering experiment with a generalized scattering vector q = γδg [17–20].
With typical maximum values of g (50 T/m) and δ (2 ms; cf., e.g., [21–25]),
for protons the generalized scattering vector is found to be of the order of
3 · 107 m−1. This corresponds to minimum displacements observable by PFG
NMR of 10 . . .100 nm.

Inserting (10.6) and (10.8) into (10.14) (or the equivalent three-dimensional
expressions into (10.17)), the spin-echo attenuation is found to be a simple
exponential

Ψ = exp(−γ2δ2g2D∆) . (10.18)

Identifying γδg as the generalized scattering vector, (10.18) coincides with the
intermediate scattering function in the so-called diffusion limit in QENS and
light scattering. Obviously, in this case the self-diffusivity (and via (10.8) the
mean square displacement) results in a straightforward way from the slope of
the spin-echo attenuation in a semilogarithmic representation versus γ2δ2g2.
As long as the propagator is a Gaussian, (10.18) is rigorously correct and
implies the cases of normal and anomalous diffusion, if D is understood in
the more general sense as an effective diffusivity as defined by (10.9).

If molecular diffusion is confined to a certain range, for sufficiently large
observation times the propagator approaches a time-independent function
P∞(r), which is determined by the distribution of the molecules under study
in the confining volume. Therefore, the spin-echo attenuation attains a time-
independent value

Ψ∞(γδg) ≡ lim
∆→∞

Ψ(γδg, ∆)

=
∫ ∫

p(z1)P (z2, z1,∞) exp (iγgδ(z2 − z1)) dz2 dz1 (10.19)

=
∣∣∣∣∫ p(z) exp(iγgδz) dz

∣∣∣∣2 = |F (q)|2 ,
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Fig. 10.2. Spin-echo attenuation of n-heptane diffusing in the space between par-
allel glass plates with the normal parallel to the direction of the field gradient. The
curve is the diffraction pattern of a single slit of 18 µm width [26].

where we have used P (z2, z1,∞) = p(z2). Equation (10.19) corresponds to
the elastic incoherent structure factor (EISF) of QENS ((3.18) of Chap. 3).
F (q) is the Fourier transform of the confining geometry p(z). The expression
in the last line of (10.19) is known as the form factor in scattering theory. It
describes the diffraction pattern of the scattering geometry p(z). This analogy
of PFG NMR with a scattering experiment was nicely demonstrated in [26],
cf. Fig. 10.2, where the echo attenuation of n-heptane diffusing in the space
between parallel glass plates was compared with the diffraction pattern of
the slit.

10.3.4 Experimental Conditions

The measurement of the spin-echo attenuation Ψ as a function of the field gra-
dient pulse programme clearly implies the existence of a measurable NMR
signal. Therefore, the molecules under study must contain “NMR active”
atoms, i.e. nuclei with a non-vanishing magnetogyric ratio, which have to
occur with a sufficiently large density. For hydrogen, e.g., which offers the
best measuring conditions with respect to both the minimum number of dif-
fusants and minimum displacements, typical minimum concentrations are of
the order of one hydrogen nucleus per 10 nm3 which corresponds to about 0.1
moles per litre. Hence, PFG NMR is not very appropriate for studying the
diffusivities of species, which are only present in minor concentration. In prin-
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ciple, clearly, with a sufficiently large number of acquisitions, even at much
smaller concentrations NMR signals may be generated. For the measurement
of small diffusivities, however, such a procedure is far more subjected to the
risk that signal attenuation is due to a mismatch between the field gradient
pulses or mechanical instabilities rather than to diffusion. Diffusivity data
determined under such conditions may dramatically exceed the real values.
We shall return to this point at the end of this section.

The measuring conditions are furthermore determined by the nuclear
magnetic relaxation times (cf. Sect. 9.3 in Chap. 9). In the above introduced
primary or Hahn-echo experiment (π

2 – τ – π – τ – echo), the observation time
is essentially limited by the transverse relaxation time T2. If the longitudinal
relaxation time T1 is notably larger than T2, the observation time may be
further enhanced by applying the stimulated echo (π

2 – τ1 – π
2 – τ2 – π

2 – τ1 –
echo) where the field gradient pulses are applied during the two time intervals
of duration τ1. As in the case of the primary echo, signal attenuation during
these two time intervals occurs with the time constant T2, while during the
time interval τ2 signal attenuation is governed by T1. Typical values of T2

and T1 and hence of the observation times in diffusion studies by PFG NMR
are of the order of milliseconds to seconds.

In deriving (10.14, 10.15) and (10.18) we have presumed that during the
field gradient pulses the spins assume well-defined positions. Such an as-
sumption is clearly only acceptable if molecular displacements during the
field gradient pulses are negligibly small in comparison with those between
the pulses. In the case of normal diffusion it may be shown [6–9] that these
relations may be maintained also for field gradient pulses of finite duration
by simply replacing the quantitiy ∆ by an “effective” observation time ∆− δ

3 .
The PFG NMR method works under the supposition that the values of

δg for the first and second field gradient pulses are identical. Any difference
has the same effect as translational motion of the molecules under study,
leading to a signal attenuation. The correct application of PFG NMR there-
fore necessitates extremely stable gradient currents, which generate the field
gradient pulses within suitably structured field gradient coils [5–8]. Likewise
high mechanical stability of both the field gradient coils and the sample must
be ensured, since any movement of the sample with respect to the coils would
also lead to differences in the local field at the instants of the first and second
field gradient pulses and to an additional attenuation of the spin echo.

Intrinsic differences in the magnetic susceptibility of heterogeneous sam-
ples give rise to internal field gradients, which are superimposed upon the ex-
ternally applied ones. While under the influence of the modest external mag-
netic fields produced by iron magnets, for a number of important adsorbate-
adsorbent systems such as zeolites these superpositions could be shown to be
of no disturbing influence if only sufficiently large pulse gradient intensities
are applied [27], in PFG NMR diffusion measurements with superconducting
magnets such disturbing influences have to be considered. As a most effec-
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tive possibility to circumvent such difficulties, the application of pairs of field
gradient pulses with alternating signs (±g) separated by appropriate rf (viz.
π) pulses has been suggested [28, 29].

Methodical development in PFG NMR is focussed on the generation of
extremely large field gradient pulses [21–25]. The difficulties due to the re-
quirement of perfect matching between the two field gradient pulses may be
circumvented by applying the stimulated spin echo under the influence of a
strong constant field gradient [8, 30–32], which is provided by the stray field
of the superconducting magnet (“stray field gradient” (SFG) NMR). The in-
tensity of the stimulated echo is influenced by the field gradient only during
the two time intervals of duration τ1. These are exactly those time intervals
during which – as we have seen above – also the pulsed field gradients are
applied. Therefore, signal attenuation is described by the same equations as
in the case of PFG NMR with the pulse width δ replaced by τ1 and the
observation time ∆ being equal to τ1 + τ2. By this technique, presently the
largest field gradient “amplitudes” (up to 185 T/m) may be achieved [33].
In comparison with PFG NMR, however, the signal-to-noise ratio is dramat-
ically reduced since only a slice of the sample of thickness of the order of
0.1 mm is at resonance, so that much larger acquisition times are inevitable.
These are, however, much easier to be accomplished since the requirement
of identical field gradient “pulses” is automatically fulfilled in this technique.
A severe disadvantage of SFG NMR is the fact that the large constant mag-
netic field gradient excludes the possibility of Fourier transform PFG NMR
for multicomponent diffusion studies [34, 35]. SFG NMR measurements are
additionally complicated by the fact that by varying the “width” of the field
gradient “pulses” the signal is affected by both diffusion and transverse nu-
clear magnetic relaxation.

10.4 PFG NMR Diffusion Studies in Regular Pore
Networks

At a first glance, regular pore networks do not seem to be a suitable system
for studying anomalous diffusion. There are, however, a number of reasons,
which justify the inclusion of this section in the present chapter. Regular
pore networks of rather diverse nature are provided by the zeolites [3,36,37].
Originally, zeolites have only been known as minerals. They are microporous,
crystalline aluminosilicates. Starting in the fifties of the last century, how-
ever, also artificial zeolites have been synthesized. As an example, Fig. 23.5
of Chap. 23 shows the structure of a zeolite of type LTA – in short – an A-type
zeolite. The last few years have been characterized by an explosion of new
zeolite structure types [37]. Most of them have no natural counterpart. The
great interest in zeolites results from their potential as selective adsorbents,
catalysts and cation exchangers, leading to profits of the order of hundreds
of billions of dollars worldwide attained per year by their production and
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application. However, zeolites have also become an attractive object of fun-
damental research. Owing to their well-defined structure and the diversity of
their nature, zeolites have proved to be ideal model systems, in particular
for studying the interaction of molecules with solid surfaces as exemplified in
Pfeifer’s classical survey [38]. Thus, zeolites have also become a most attrac-
tive host system for studying molecular diffusion [3]. They have in particular
turned out to be an ideal system for demonstrating the versatility of PFG
NMR. This possibility and the numerous correlations with Chap. 23 moti-
vated us to include this section into a chapter about anomalous diffusion.
Moreover, we shall also learn that under certain conditions even a regular
zeolite pore system may give rise to anomalous diffusion.

10.4.1 The Different Regimes of Diffusion Measurement

As an example, Fig. 10.3 shows an Arrhenius plot of the effective diffusivity
(cf. (10.9)) as determined by PFG NMR for n-hexane in a sample of NaX
zeolite crystallites of mean diameter 4µm for an observation time of 4 ms. One
may clearly distinguish between three different regimes. For temperatures
below about 220 K, the diffusion paths are sufficiently small in comparison
with the crystallite diameters, so that the effective diffusivity is exclusively

Fig. 10.3. Temperature de-
pendence of the effective self-
diffusivity for n-hexane in a
sample of NaX zeolite crystals
of mean diameter 4 µm at a sor-
bate concentration of 20mg/g
and observation time 4ms [3].
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determined by intracrystalline diffusion. The situation is the same as in the
propagator representation of Fig. 10.1 (a) at 153 K. This is the regime of PFG
NMR measurements which shall be exclusively considered in the subsequent
Sects. 10.4.2 to 10.4.5. In the subsequent temperature range up to about
290 K, the diffusion paths are limited by the extensions of the crystallites
(situation as in Fig. 10.1 (b) at 153 K). Under the assumption that (i) the
confinement is perfect and that (ii) the observation time is much larger than
the mean diffusion time over a distance of the order of the crystallite radius,
the signal attenuation obeys (10.19), being the equivalent of the EISF of
QENS. By assuming that the crystallites may be approximated by spheres
with mean square radius R2, (10.19) approaches [6–9]

Ψ∞(γδg) = exp
(
−γ2δ2g2R2

5

)
(10.20)

corresponding to an effective diffusivity

Deff =
R2

5∆
. (10.21)

The root mean square radius obtained via (10.21) with the experimental
value of Deff (2 · 10−10 m2s−1) does in fact coincide with the microscopically
determined mean crystallite radius of 2µm. Finally, for temperatures above
290 K, the thermal energy of the molecules is high enough so that a sufficiently
large number of molecules is able to leave the individual crystallites during
the observation time. Molecular transport is now determined by long-range
diffusion (situation in Fig. 10.1 (b) at 223 K and 293 K).

Deviations from normal diffusion become immediately visible by repre-
senting the mean square displacement as a function of the observation time.
As an example, Fig. 10.4 shows the mean square displacement of n-butane
in a bed of zeolite crystallites of type NaX with a mean diameter of 16 µm.
As expected, for displacements either much smaller or much larger than the
crystallite diameter, the mean square displacement is found to increase in
proportion with the observation time. This corresponds to the limiting cases
of intracrystalline and long-range diffusion. The trend of the deviations from
straight lines for displacements in the vicinity of the crystallite diameters may
be easily rationalized on the basis of (10.1). In contrast to normal diffusion,
the cross terms are not negligible anymore. At low temperatures, molecules
encountering the crystallite surface are more likely reversed in the direction of
propagation. This leads to negative cross terms and hence to deviations of the
mean square displacement to lower values. At high temperatures, molecules
encountering the surface may easily escape into the intercrystalline space and
profit by the high intercrystalline mobility. Subsequent steps are therefore
more likely to be oriented into the same direction, leading to an enhance-
ment in the mean square displacements in comparison with linearity in time.
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Fig. 10.4. Mean square displacements 〈r2(∆)〉 of n-butane on zeolite NaX with
a mean crystallite diameter of 16 µm at a sorbate concentration of 80 mg/g at
183 K(+), 223 K(�), 243 K (©), 258 K(�), and 273 K(�), respectively, in depen-
dence on the observation time ∆ [39].

10.4.2 Intracrystalline Self-Diffusion

The MD simulations presented in this textbook (Chap. 23, Sect. 23.4) are
exclusively devoted to the regime of intracrystalline zeolitic diffusion. A sur-
vey of the different patterns of concentration dependence so far obtained
experimentally is displayed in Fig. 10.5. Depending on the nature of the sys-
tem under study, the self-diffusivity may vary with varying concentration in
quite different ways. A decrease of molecular mobility with increasing con-
centration (patterns 1 and 2) may intuitively be understood by the increasing
mutual hindrance of the molecules, while any other dependence indicates the
dominating influence of the interaction between the diffusants and the zeolite
pore network. This tendency is demonstrated quantitatively in Sect. 23.4 of
Chap. 23 (Fig. 23.11, right), where the diffusivity is found to decrease with
increasing loading for large diameters of the “windows” between adjacent
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Fig. 10.5. Patterns of concentration dependence of intracrystalline self-diffusivities
as determined from PFG NMR measurements. (I) n-hexane in NaX at 358 K; (II)
ortho (�), meta (�) and para (�) xylenes in NaX at 293 K; (III) ammonia (©)
and water (•) in NaX at 298 K; (IV) acetonitrile in NaX at 393 K; (V) ethane (©)
at 173 K and propane (�) at 413 K in NaCaA [3].

pores (dominating interaction between the diffusants) while it increases for
small windows (dominating influence of the pore system) [12].

10.4.3 Correlated Diffusion Anisotropy

The fact that zeolitic diffusion has to proceed in a well-defined network of
pores and channels gives rise to a special type of correlation in the path of
molecular propagation. While the correlation effect in solids (see Sects. 1.6.1
in Chap. 1 and 18.4.3 in Chap. 18) refers to the orientation of subsequent
steps, correlation in zeolitic diffusion effects that propagation in different
directions may not be independent from each other. As an example, Fig. 10.6
schematically represents the channel network of zeolite ZSM-5 by showing the
axes of the so-called straight channels (in y-direction) and of the sinusoidal
ones (in x-direction). Obviously, molecular propagation in z-direction implies
alternating displacements in x- and y-directions, so that the diffusivities in
these three directions (the principal elements of the diffusion tensor – see
(1.2) of Chap. 1) are correlated with each other. Under the assumption that
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Fig. 10.6. Outline of the channel network of ZSM-5 type zeolites over three ad-
jacent unit cells. The straight and zig-zag channels are oriented along the y and x
directions, respectively.

molecular displacements between the intersections of the channel network
are independent from each other, the correlation rule of zeolitic diffusion in
ZSM-5 may be shown to read [40]

c2

Dz
=

a2

Dx
+

b2

Dy
, (10.22)

where a, b and c denote the dimensions of the unit cell as indicated in
Fig. 10.6. It has been confirmed by MD simulations [41] that (10.22) provides
an excellent first-order estimate of diffusion anisotropy in zeolites ZSM-5 and
silicalite-1, and may thus serve as a reasonable starting point for PFG NMR
measurements of diffusion anisotropy in ZSM-5 by PFG NMR [42].

Deviations from (10.22) have been quantitatively accounted for in [43] by
introducing a memory parameter β via the equation

β =
c2

Dz

a2

Dx
+ b2

Dy

(10.23)

Comparison with (10.22) yields β = 1 for the no-memory case. Since
molecular propagation in z-direction can only occur in consequence of particle
exchange between different types of channel segments, β > 1 (i.e. a diminished
value ofDz) indicates that molecular propagation tends to proceed within one
and the same type of channel, while β < 1 refers to enhanced exchange rates.
These differences may be easily taken account of by allowing for a particle
memory, which permits the particles to choose their further migration path
depending on the channel segment along which they have got to a given
channel intersection [44, 45] .

10.4.4 Transport Diffusion Versus Self-Diffusion

From a practical point of view, molecular transport under the influence of
concentration gradients is of much greater relevance than self-diffusion, since
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transport diffusion may be the rate limiting step for a number of applications.
The coefficients of transport diffusion (Dt, in the terminology of QENS – see
Sect. 3.11 in Chap. 3 – generally referred to as the coefficient of chemical
or collective diffusion) is usually related to the self-diffusivity by the Darken
relation (see Chap. 14, Sect. 14.3 and [3], p. 13)

Dt = D
c

kT

dµ
dc

= D
d ln p
d ln c

, (10.24)

where µ is the chemical potential of the diffusing species and p denotes the
equilibrium pressure necessary to maintain the sorbate at concentration c.
The “thermodynamic factor” d ln p/d ln c may be easily determined from the
adsorption isotherm c(p). The notation of (10.24) is correct under the as-
sumption of an ideal gas phase. Otherwise, the thermodynamic factor has to
be used in the more rigorous form 1

kT dµ/d ln c. This is the notation used,
e.g., in Sect. 3.12 of Chap. 3. Equation (10.24) implies in particular the quite
general result that in the limit of small concentrations (i.e. for c ∝ p) the co-
efficients of transport diffusion and self-diffusion coincide. Exactly the same
message is provided by diffusion studies with liquid mixtures, where at trace
concentration of a component the self-diffusion coefficient of this component
approaches the mutual diffusion coefficient (Chap. 14, Sect. 14.3).

In contrast to these theoretical predictions, the comparison between the
transport diffusivities deduced from uptake experiments and the PFG NMR
self-diffusivity data yielded remarkable discrepancies [38, 46]. A critical re-
consideration of the uptake experiments has revealed that in many cases
molecular uptake was controlled by processes different from intracrystalline
diffusion. The message of PFG NMR about diffusion in zeolites has thus
revolutionized the up to this time generally accepted picture, leading to sub-
stantially larger diffusivities [3]. However, even now the data on transport
diffusion and self-diffusion are not entirely compatible. It is interesting to
note that systems showing satisfactory agreement follow the concentration
patterns (iii) to (v) of self-diffusion (see Fig. 10.5) while in the case of con-
centration patterns (i) and (ii) the self-diffusivities are often found to be up
to two orders of magnitude larger than expected on the basis of the trans-
port diffusivities resulting from uptake experiments. In complete agreement
with this finding, MD simulations with methane in zeolite NaCaA (pattern
(v)) reveal satisfactory agreement between the transport and self-diffusivities
(see Fig. 23.20 right, of Chap. 23). As a possible explanation of this finding
one should have in mind that (10.24) is not strictly correct. On the basis of
the linear response theory (see Sects. 14.5 and 14.6 in Chap. 14 and 23.2.2 in
Chap. 23) the self-diffusivity (cf. (14.28) in Chap. 14 and (23.15) in Chap. 23)
is found to be

D =
1

3N

∑
i

∞∫
0

〈vi(0)vi(t)〉dt (10.25)

and the transport diffusivity (cf. (14.32) in Chap. 14)
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DT =
1

3N

∑
i,j

∞∫
0

〈vi(0)vj(t)〉dt · d ln p/d ln c (10.26)

with N and vi(t) denoting the number of diffusants and the velocity of the
i-th diffusant at time t, respectively. Obviously, the Darken relation (10.24)
is an immediate consequence of (10.25) and (10.26) for negligible cross terms
〈vi(0)vj(t)〉 between the velocities of different particles. One may speculate
that such a situation can in particular occur for dominating interaction be-
tween the diffusants and the zeolite lattice. From this point of view, the
agreement of transport and self-diffusivity data with (10.24) for systems fol-
lowing the concentration patterns (iii) to (v) is not unexpected. Similarly,
the mutual interaction between the diffusants for concentration patterns (i)
and (ii) should lead to deviations from (10.24). Since, however, the largest
discrepancies are observed for the smallest concentrations, where the mutual
interaction must be expected to vanish, the proposed explanation is still far
from exhaustive [47].

10.4.5 Single-File Diffusion

Molecular motion in one-dimensional channels is subject to a special pat-
tern of propagation if mutual passages of the molecules are excluded. This
is the famous case of single-file diffusion considered in detail in Chap. 18,
Sect. 18.4.4. As a consequence of the confinement by the other diffusants,
the propagation of an arbitrarily selected molecule, albeit proceeding in a
completely regular pore network, is subjected to anomalous diffusion. Any
displacement in a certain direction is only possible if the molecules in front of
the diffusant under study are shifted into the same direction. This would lead
to an enhanced particle concentration just in front and to a smaller concentra-
tion behind the diffusant under consideration. Subsequent displacements are
therefore more likely to proceed into the opposite direction, tending to equi-
librate concentration. In contrast to diffusion in solids (Chap. 1, Sect. 1.6.1
and Chap. 18, Sect. 18.4.3), the significance of this correlation increases with
increasing displacements. The larger the displacements in one direction are,
the larger is the probability that they are followed by displacements in the
opposite direction. As a consequence, the cross term in (10.1) becomes in-
creasingly important, leading to an exponent κ smaller than one in the time
law for the mean square displacement. As the rigorous result ((18.107) of
Chap. 18) one obtains

〈z2(t)〉 = 2F
√
t (10.27)

with
F = λ2 1 − θ

θ

1√
2πτ

, (10.28)

where in analogy to the Einstein relation (cf. (10.8)) the mobility factor F
has been introduced [48]. Equations (10.27) and (10.28) are derived under
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the assumption that molecular diffusion proceeds by stochastic jumps be-
tween adjacent adsorption sites of separation λ with a mean time τ between
subsequent jump attempts. Jump attempts are only successful if the sites
where the jumps are directed to are unoccupied. The occupation probability
is denoted by θ. It could be shown by MD simulations [49] that the validity of
(10.27) and (10.28) is not confined to the case of activated jumps but holds
quite generally if the quantity θ is understood as a suitably defined pore-
filling factor. Moreover, it could be shown [50] that as in the case of normal
diffusion the propagator is given by a Gaussian, albeit with a mean square
displacement increasing in proportion to the square root of the observation
time (cf. (10.27)) rather than with the observation time itself (cf. (10.8)).

By use of the PFG NMR technique, zeolites with one-dimensional chan-
nels served as the first model systems where the validity of (10.27) could
be demonstrated experimentally [51–54]. As an example, Fig. 10.7 shows the
molecular mean square displacement of CF4 in AlPO4-5 at 180 K as a func-
tion of the observation time for different concentrations. At least for the
larger concentrations, the validity of (10.27) could be confirmed over up to
two orders of magnitude of the observation time. The displacement z(t) of a
molecule in a single-file system may be shown to be correlated to the displace-
ment s(t) of the same molecule without any neighbours (i.e. of an isolated
molecule) by the equation [55, 56]

〈z2(t)〉 = l 〈|s(t)|〉 , (10.29)

where l denotes the mean free distance (clearance) between adjacent mole-
cules in the single-file system.

Table 10.1 summarizes the values for F taken from Fig. 10.7, together
with the values for the mean free distance l calculated from the sorbate

Fig. 10.7. Molecular mean square displacement of CF4 in AlPO4-5 at 180 K as a
function of the observation time at sorbate concentrations of 0.005 (�), 0.05 (©),
0.2 (�), and 0.4 (�) molecules per unit cell, respectively [54].
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Table 10.1. Results of the PFG NMR self-diffusion studies with CF4 adsorbed in
AlPO4-5 at 180 K, represented in terms of the single-file mobility factor F and the
limiting diffusivity. The errors of the experimental values are about 50%.

c l F D

(mol./unit cell) (nm) (m2s−1/2) (m2s−1)

0.4 1.63 0.7 · 10−12 0.6 · 10−6

0.2 3.73 1.5 · 10−12 0.5 · 10−6

0.05 16.3 4.5 · 10−12 0.3 · 10−6

0.005 167 1.0 · 10−10 1.1 · 10−6

concentration c and the diffusivities D, which an isolated molecule in the
channel would have. The latter quantity follows from (10.29) by using the
expression

〈|s(t)|〉 =

√
4D
π

√
t, (10.30)

which may be easily derived from the propagator for normal diffusion (cf.
(10.6) and (10.8)). The estimated single-particle diffusivities are found to
be by two orders of magnitude larger than the largest diffusivities so far
observed in zeolitic adsorbate-adsorbent systems [3]. In contrast to the three-
dimensional pore network of “ordinary” zeolites, in one-dimensional channels
the molecular momentum is preserved over much longer time intervals, so
that the large values for the single-particle diffusivities are not unexpected.
The direct measurement of such diffusivities by PFG NMR is excluded due
to the extremely low concentration, which the diffusants should have in such
experiments.

For practical applications, one has to take account of the finite size of the
zeolite crystallites of single-file type. While under non-equilibrium conditions
– i.e. during molecular adsorption or desorption – finite single-file systems do
not exhibit any peculiarities in comparison with the case of ordinary diffusion
[48,57,58], tracer exchange and chemical reactions are found to be controlled
by the single-file confinement. Since any arbitrarily chosen pair of molecules
in single-file systems cannot be completely uncorrelated in its movement the
boundary conditions relevant for finite single-file systems affect the transport
behaviour of all individual diffusants in the single-file system. The influence
of the boundary conditions on single-file diffusion is far from being solved,
and recent theoretical studies [59–63] try to handle the difficulties arising
from these complications.

As a consequence of the finite extension of real single-file systems, parti-
cle displacements within the file are subjected to a second mechanism, which
is caused by the particle exchange between the marginal sites and the sur-
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rounding atmosphere. Since subsequent events of molecular adsorption and
desorption on the marginal sites may occur independently from each other,
the associated shifts of the particles in the file are also independent from
each other. The corresponding molecular displacements are therefore subject
to normal rather than to anomalous diffusion. As a consequence, with in-
creasing observation time molecular displacements are very soon dominated
by this second mechanism. The ratio between the corresponding diffusivity
and the diffusivity of a sole (i.e. isolated) molecule in the file is of the order of
the reciprocal value of the site number [60, 64]. Molecular exchange between
single-file systems and the surrounding atmosphere is therefore dramatically
slowed down in comparison with adsorbents undergoing normal diffusion.

In [65] this mechanism has been identified as the key process for ensuring
reactivity enhancement by “molecular traffic control” [66]. Reactivity en-
hancement by “molecular traffic control” has been postulated to occur if the
reactant and product molecules enter and leave pore networks along different
diffusion paths. The possibility of substantial differences in the accessibility
of different ranges of the intracrystalline pore system by the different com-
ponents in multi-component adsorbate-adsorbent systems has been recently
demonstrated by MD simulations [67]. If the involved molecules are accom-
modated by different channels, reactant molecules will enter and product
molecules will leave the catalysts along separated channels, i.e. without be-
ing inhibited by the presence of the other component. Microscopically, this
situation appears in the existence of overall concentration gradients along
both channel types, viz. into the catalyst particle for the reactant and out
of the catalyst particle for the product molecules. From the above considera-
tions it is well known that under such conditions, i.e. under the existence of
macroscopic concentration gradients, there is no additional transport inhibi-
tion due to the single-file effects. In the conventional case, i.e. for coinciding
accommodation probabilities of the two components, however, the overall
concentration is constant over the total channel network, so that molecular
displacements within the system are subject to the additional transport in-
hibition of single-file confinement [68]. Obviously, reactivity enhancement by
molecular traffic control is based on the suppression of this inhibition mecha-
nism by caring for different accommodation probabilities of the reactant and
product molecules in the two channel systems [69, 70].

10.4.6 Diffusion in Ordered Mesoporous Materials

The propagation rate of guest molecules in porous materials depends strongly
on the pore structure of the host system. As a consequence, measurement
of intraparticle diffusion is able to provide information about structural fea-
tures, which are not easily accessible by conventional techniques of structural
analysis such as scattering and diffraction methods. This is in particular true
for structural effects such as pore blockages and leakages in pore walls. As
an example, investigations of this type have substantially contributed to an
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Fig. 10.8. Dependence of the parallel (�) and perpendicular (�) components of
the axisymmetrical self-diffusion tensor on the inverse temperature for water in
MCM-41 as measured at 10ms observation time with PFG NMR. The dotted lines
may be used as a guide for the eyes. For comparison, the full line represents the
self-diffusion coefficients of super-cooled bulk liquid water [74].

improvement of the understanding of the real structure of mesoporous ma-
terials of the MCM-41 type. In comparison with zeolites, diffusion measure-
ments with this type of material are complicated by the polydispersity of
the sample. As a consequence of the irregular shape of the adsorbent parti-
cles, which is quite common for mesoporous materials, analysis of transient
adsorption/desorption measurements is not free from some ambiguity. Be-
ing sensitive to molecular shifts within the individual adsorbent particles,
PFG NMR (like QENS, cf. Chaps. 3 and 13) offers better possibilities for the
measurement of intraparticle diffusivities. Some of these measurements, how-
ever, have been complicated by the fact that during the observation time of
the PFG NMR experiment a substantial fraction of the adsorbate molecules
leaves the individual adsorbent particles [71–73].

In [74] this complication has been circumvented by monitoring the wa-
ter diffusivity in MCM-41 samples overloaded with water at temperatures
below 0 ◦C. In this way it is possible to find experimental conditions under
which the phase of intraparticle water is still mobile, while the ice formed
in the space between the particles definitely excludes any exchange of wa-
ter molecules between different adsorbent particles. The signal attenuation
observed in PFG NMR is found to be in excellent agreement with the theo-
retical fit based on the assumption that intraparticle diffusion is described by
an axisymmetrical diffusion tensor. Fig. 10.8 shows the main elements of the
diffusion tensor in comparison with the diffusivities of free water. The larger
component, which represents the diffusivity in the direction of the axis of
symmetry, has obviously to be attributed to diffusion in the direction of the
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Fig. 10.9. Dependence of the parallel (�, �) and perpendicular (◦, •) components
of the mean square displacement on the observation time for water in two MCM-
41 samples at 263 K. The mean square displacements were calculated via (10.8)
from the components of the axisymmetrical self-diffusion tensor. The horizontal
lines indicate the limiting values for the axial (full lines) and radial (dotted lines)
components of the mean square displacements for restricted diffusion in cylindrical
rods. The lengths l and diameters d of the rods are written in micrometers on
the lines. The oblique lines, which are plotted for short observation times only,
represent the calculated time dependences of the mean square displacements for
unrestricted (free) diffusion with Dpar = 1.0 × 10−10 m2s−1 (full line) and Dperp =
2.0 × 10−12 m2s−1 (dotted line), respectively [74].

channels of the MCM-41 structure. Fig. 10.8 allows the following conclusions:
(i) Diffusion along the channels is slower than in the free liquid by about one
order of magnitude, it is obviously inhibited by partial channel blockages.
(ii) Though being much smaller than the diffusivity in axis direction, there is
also a finite probability of molecular propagation perpendicular to the chan-
nel axes. As the most obvious explanation, the channel walls should therefore
be considered as being somewhat permeable to the water molecules.

In the PFG NMR studies, molecular confinement within the intraparticle
space was used as an independent check of the data compatibility (Fig. 10.9).
With increasing observation times the diffusion path lengths along the main
axes of the diffusion tensor were found to be in satisfactory agreement with
the particle dimensions.

10.5 Anomalous Diffusion by External Confinement

It has been explained in Sect. 10.2 that anomalous diffusion following the
time dependence of (10.4) with a time exponent κ < 1 is most likely to
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be observed under the confinement by self-similar structures, where the dis-
placements must be in the space interval between the lower and upper cut-off
of self-similarity. In the regular pore-network of zeolites, anomalous diffu-
sion due to this type of confinement can be excluded if the pore network is
not additionally structurized, e.g. by coke depositions [39]. Good prospects
for the observation of anomalous diffusion should be provided, however, by
amorphous porous materials. While in first detailed PFG NMR studies with
amorphous carbonaceous adsorbents molecular displacements were found to
follow ordinary diffusion over orders of magnitude [39], polymeric matrices
turned out to be most effective host systems for anomalous diffusion. Two
examples of molecular diffusion in such systems will be considered. In the
third subsection, the benefit of restrictions for elucidating structural details
of the samples under study shall be illustrated.

10.5.1 Restricted Diffusion in Polystyrene Matrices

Polystyrene (PS) matrices with inclusions of polydimethylsiloxane (PDMS)
droplets turned out to be a useful material for the production of self-
lubricating components [75]. PFG NMR measurements with these systems
may serve as a model for dynamic imaging. As an example, Fig. 10.10 shows
the spin-echo attenuation of the PDMS as a function of the observation time,
with the gradient intensity (in terms of the generalized scattering vector
q = γδg) as a parameter. It turns out that with increasing observation time
the spin-echo attenuation approaches a finite value Ψ∞, corresponding to
the EISF of QENS (cf. (10.19)). From the q-dependence of the spin-echo at-
tenuation for each individual observation time, via (10.18) and (10.9), one
may deduce both the effective diffusivity and the mean square displacement.
Fig. 10.11 shows the resulting time dependence of the effective diffusivity.
It turns out that for sufficiently small observation times the effective dif-
fusivity approaches the value of the free PDMS (average molecular weight
28 000 g/mol), while with increasing observation time the effective diffusivi-
ties approach the reciprocal proportionality required by (10.21). The situation
is now the same as for the small crystallites at the lowest temperature con-
sidered in Fig. 10.1 where molecular propagation as observed by PFG NMR
was controlled by the crystal size as well as for water diffusion in MCM-41
(cf. Sect. 10.4.6), where in Fig. 10.9 for the largest observation times molecu-
lar displacements were controlled by the geometrical shape of the adsorbent
particles rather than by their intrinsic diffusivity. The mean droplet radii
obtained in this way were found to be in excellent agreement with the micro-
scopic measurements [76]. In contrast to these measurements, however, PFG
NMR permits a non-destructive determination of the droplet sizes where the
external conditions such as pressure and/or temperature may easily be varied.
The described experiments revealed that PDMS diffuses out of the cavities
into the PS matrix at elevated temperatures (the cavity radius decreases).
This process was entirely reversible.
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Fig. 10.10. Spin-echo attenuation of PDMS confined to cavities of mean diameter
1.1 µm in a polystyrene matrix in dependence on the observation time [76].
q/m−1 = 1.13 · 106 (©), 1.71 · 106 (�), 2.27 · 106 (�) and 3.41 · 106 (�).

10.5.2 Diffusion in Porous Polypropylene Membranes

The total confinement of molecular propagation considered in Sect. 10.5.1
clearly excludes the possibility of anomalous diffusion. For this purpose,
molecular propagation has to proceed in a network of interconnected pores,
with small pores being the replica of larger ones. Commercially available
polypropylene membranes of type “Accurel” [77, 78] proved to be an excel-
lent host matrix for such studies. As an example, Fig. 10.12 shows the time
dependence of the effective diffusivities of PDMS (22.5 kg/mol) in this matrix.
In contrast to Fig. 10.11, the time regime exhibiting a constant diffusivity is
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Fig. 10.11. Deff in dependence on the observation time t for PDMS confined
to cavities with a mean diameter of 0.6 µm. The diffusivity of the bulk PDMS is
indicated as the dashed line [76].

Fig. 10.12. Effective diffusivities of PDMS (22.5 kg/mol) in a polypropylene host
matrix at pore filling factors as indicated [78].

now followed by a less pronounced decay, indicating that molecular prop-
agation – though being progressively hindered with increasing observation
time – is not completely restricted. It is interesting to note that the slope
of the representation, i.e. the effectiveness of the hindrance with increasing
observation time, increases with decreasing pore-filling factors. This corre-
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Fig. 10.13. Effective diffusivity of PDMS (22.5 kg/mol) in a polypropylene host
matrix at a pore filling factor of 100 % at 293 K as a function of the root mean
square displacement of PDMS during the NMR experiment. The filled circles refer
to effective diffusivities extrapolated from measurements at 343 K to room temper-
ature by applying the well-established temperature-time shift principle of polymer
dynamics [78].

sponds to the fact that the influence of the matrix on molecular propagation
is the more pronounced, the larger the relative amount of molecules that
are in immediate contact with the matrix. On the basis of (10.4) and (10.9)
or (10.10), from the representation of Fig. 10.12 the time exponents κ are
found to be κ = 0.83, 0.72 and 0.55 in the sequence of decreasing pore-filling
factors. From the representation of the effective diffusivities as a function of
the displacement (Fig. 10.13), it becomes obvious that anomalous diffusion as
reflected by a dependence of the diffusivity on the diffusion time and hence
on the diffusion path length occurs for displacements between about 100 and
600 nm. It is interesting to note that these lower and upper cut-offs are of the
order of the diameters of the smallest and largest pores of the host matrix
which has a nominal pore width of 200 nm [77]. The reader will easily find
that transfering Fig. 10.13 into a 〈r2(t)〉 – vs. – t plot leads to the pattern of
Fig. 16.6 in Chap. 16, with the slopes for short and large times given by the
large and small diffusivities (i.e. the “short-range“ and “long-range“ diffusivi-
ties) of Fig. 10.13. In the present context, the ratio between these diffusivities
is an exclusive function of the architecture of the pore space. It is referred to
as the tortuosity factor (cf. Sect. 17.5.1 of Chap. 17).
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10.5.3 Tracing Surface-to-Volume Ratios

As an example, Fig. 10.4 has illustrated the different patterns of time de-
pendence of the molecular mean square displacements in zeolitic adsorbate-
adsorbent systems, which result as a function of the considered space scales
and temperature ranges. For the smallest temperatures, the adsorbate mol-
ecules were found to be essentially confined to the intracrystalline space.
This can be attributed to the fact that the thermal energy of the molecules
is far too small to permit molecular escape into the intercrystalline space
with its correspondingly higher potential energy. Molecular propagation in
the vicinity of the surface clearly bears features of anomalous diffusion since
subsequent displacements are predominantly oriented in opposite directions.
Since under the given conditions molecular passage through the surface is
essentially excluded, displacements towards the surface are most likely fol-
lowed by reversed displacements. The resulting confinement in molecular dis-
placements clearly affects their mean values and is therefore reflected in the
PFG NMR diffusivities as their direct measure. Fitting the PFG NMR spin
echo attenuation under these conditions to (10.18) yields an effective, time-
dependent diffusivity D(∆). In the limiting case of sufficiently small obser-
vation times ∆, D(∆) may be expanded as [79, 80]

D(∆)
D0

= 1 − 4
9
√
π
Sv

√
D0∆+R(

√
D0∆). (10.31)

where D0 denotes the unperturbed diffusivity and Sv = S/Vp stands for
the surface-to-volume ratio of the confining pore geometry, i.e., the ratio be-
tween the surface area (S) of the confining wall and the total (pore) volume
(Vp) in which the diffusants are contained. The value R(

√
D0∆) accounts for

higher-order terms in
√
D0∆, which become increasingly important with in-

creasing observation time. (10.31) may be rationalized by conceiving that the
fraction of diffusants, which are subjected to confinement effects, is propor-
tional to the ratio between the total surface area of confinement multiplied
by the mean diffusion path during the observation time (S

√
D0∆) and the

total volume occupied by the diffusants (Vp), where it is assumed that the
diffusant density over this volume is constant. This dependence is reflected
by the second term on the right-hand side of (10.31), which represents the
first-order influence of the confinement on the effective diffusivity D(∆) with
respect to the unperturbed value D0. It has to be kept in mind that this
first-order correction is only justified over a rather modest range of effective
diffusivities (D0 ≥ D(∆) ≥ 0.85D0). In this range, the plot of D(∆)/D0 ver-
sus

√
D0∆ yields a straight line with a slope determined by the S/Vp ratio

(cf. (10.31)). With further increasing observation times (viz. as soon as the
root mean square displacements in the unconfined space get into the order of
the curvature radii of the confining areas), the influence of the higher-order
term in

√
D0∆ on the right-hand side becomes dominating and there is no
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Fig. 10.14. Effective diffusivity of n-hexane in zeolite NaX at 293K and a loading
of 2 molecules per supercage plotted as a function of the observation time [81].

way anymore for simply deducing the surface-to-volume ratios from the time
dependence of the effective diffusivity.

As an example, Fig. 10.14 displays the time dependence of the effective dif-
fusivity of n-hexane adsorbed by a bed of zeolite crystallites of type NaX [81].
At the measuring temperature of 293 K the gas phase concentration corre-
sponding to the given loading of two molecules per supercage turns out to be
so small that the long-range diffusivity (i.e. the rate of molecular propaga-
tion through the bed of crystallites, cf. Sect. 10.4.1) is much smaller than the
intracrystalline diffusivity. As a consequence, the diffusants are essentially
confined to the space of each individual crystallite with the crystal surface
acting as an impenetrable boundary. Hence, in complete agreement with the
predictions of (10.31), the effective diffusivity is found to decrease linearly
with increasing values of

√
D0∆. Extrapolating to

√
D0∆ = 0, the genuine

intracrystalline diffusivity is found to be equal to 3.6 × 10−10 m2s−1. From
the slope of the representation, S/Vp is found to be 4×105 m−1. Approaching
the crystallite shapes by spheres, the resulting mean radius is of the order of
8µm, which is in satisfactory agreement with the value of 11µm determined
by scanning electron microscopy.

It is noteworthy that in some way the situation referred to in Fig. 10.14
is opposite to the situation met in PFG NMR experiments with water in the
(macro)pores formed by monosized sphere packs [80], which provided first
experimental evidence of the validity of (10.31). In [80], the external surface
of the spherical particles represents the restricting surface (S) and the volume
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Fig. 10.15. (a, left): Relative effective self-diffusion coefficients D(∆)/D0 as a
function of (D0∆)0.5 for water in the four grain size fractions of the sand. The solid
lines represent the results of the fits of (10.31) to the early time dependence of these
data [82]. (b, right): SEMs of the four grain size fractions of the sand. The screen
intervals used for sieving analysis are given in the legend of Fig. 10.15 (a). The bars
represent a length of 300 µm [82].

(Vp) occupied by the diffusants is the space between the particles rather than
the intra-particle space as in the case of the zeolites.

A similar situation applies for PFG NMR diffusion studies of natural
porous sediments where the pore fluids such as water or oil surround the
solid (impermeable) pore matrix. As an example, Fig. 10.15 (a) displays the
effective diffusivities of water in the pore volume formed between the grains
of a natural quartz sand originating from a glacial sand deposit in Central
Germany. Four different size fractions of these grains, which were obtained by
sieving the original sediment and which are displayed in Fig. 10.15 (b), were
studied [82, 83]. Via (10.31), the distinct increase in the initial slopes of the
D0/D(∆) representations (Fig. 10.15 (a)) with decreasing grain diameters
may easily be attributed to the corresponding increase in the surface-to-
volume ratio. With the known bed density, the resulting surface-to-volume
ratios may be transferred into the specific surface areas (Sm = S/mg, surface
area per mass of the grains mg) of the different grain size fractions. Their
representation in Fig. 10.16 versus the averaged diameters (dg) of the grain
size fractions reveals an interesting feature of these natural sand grains: Their
specific surface area decreases less than linearly with increasing averaged
grain diameter [82, 83].

Following the concept of Avnir et al. [84], who proposed an approach to
determine the fractal dimension (Ds) of the surface area of granulated porous
media by analyzing the scaling behaviour of the measured specific surface in
dependence on the grain diameter [82, 84]
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Fig. 10.16. Specific surface areas Sm

as function of the averaged grain di-
ameters dg of the grain size fractions
(•) and the original sand (�). The
full and dotted lines represent the
log Sm − vs. − log dg fit and its con-
fidence interval (slope −0.80 ± 0.05),
respectively. The horizontal error bars
show the width of the screen intervals
used for sieving analysis [82].

Sm ≡ S

mg
∝
dDs
g

d3
g

= dDs−3
g , (10.32)

the deviation in the slope of the log-log plot from −1 in Fig. 10.16 may be
attributed to a fractal geometry of the grain surfaces. The logSm−vs.−log dg

fit yields a slope of −0.80 ± 0.05 clearly deviating from −1. According to
(10.32), it refers to a fractal dimension of the surface area of the sand grains
of Ds = 2.20 ± 0.05.

Thus, even in samples with irregular pore space geometries such as natural
sand grains, PFG NMR self-diffusion studies of the confined pore fluids are
suitable to reveal geometric properties of the pore walls. However, for the
validity of a fractal analysis of the measured surface areas as performed above
one has to keep in mind that a hierarchy of length scales determines its
applicability (see Fig. 10.17 and [83, 85]). The length scale of the observed
diffusion process (r ≈

√
D0∆), which is generally on the order of a few µm,

determines the lower limit for surface curvature radii (Rs), which contribute
to the measured surface-to-volume ratio. Possible smaller features on the
surface, which may be explored by adsorption studies, where the radius of
the adsorbate molecule (Rm) determines the resolution of the surface area
measurements, are averaged over the diffusion length. On the other hand,
the surface curvature radii cannot significantly exceed the radii of the grains,
which in the present case are on the order of 0.1 · · · 1 mm. This situation is
illustrated in Fig. 10.17.

10.6 Anomalous Diffusion due to Internal Confinement

The existence of hierarchical external structures affecting molecular propa-
gation is not the only possibility leading to deviations from normal diffusion.
In the following, we shall speak about two possibilities of how the very nature
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Fig. 10.17. Hierarchy of length scales involved in surface area measurements by
PFG NMR self-diffusion studies in granulated porous media.

of the diffusants may compellingly lead to features of anomalous diffusion.
The first example (Sect. 10.6.1) refers to the peculiarities of the time depen-
dence of the displacements of the individual segments of a polymer chain
(which are in fact the subjects of investigation in PFG NMR) if these dis-
placements are comparable or even smaller than the mean extensions of the
macromolecules. These studies are complementary to the QENS investiga-
tions of polymer segment mobility presented in Chap. 13 on, however, much
shorter time and space scales. The subsequent two sections are devoted to
structure-related diffusion phenomena in macromolecular systems with block-
copolymers: Sect. 10.6.2 presents data on self-diffusion of a micell-forming tri-
block copolymer in aqueous solution where deviations from ordinary diffusion
are observed for displacements even much larger than the root mean square
end-to-end distance RF of the polymer chains. The occurrence of anomalous
diffusion must therefore be explained by the formation of substructures re-
flecting a process of self-organization within the sample. As an illustration
of the technological potentials of block-copolymers, Sect. 10.6.3 communi-
cates diffusion studies in a ternary macromolecular system. It consists of two
polymers, which owing to the presence of their diblock copolymer attains
completely new structural features, which are also reflected in the internal
dynamics.

10.6.1 Anomalous Segment Diffusion in Entangled Polymer Melts

The general characteristics of segmental and chain dynamics in linear poly-
mers are outlined in Chap. 13, Sect. 13.1. The time dependence of the dis-
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Fig. 10.18. Log-log-plot of the segment mean square displacement and the effective
self-diffusivity Deff vs. the observation time t after the tube picture of Doi-Edwards
[86]. The cross-overs between the different dynamic regimes occur at Te, where the
segments reach the tube wall, at TR, the equilibration time of Rouse dynamics
along the tube and Trep, the reptation time, where the initial tube conformation
has relaxed.

placement of a polymer segment of a linear chain long enough to be entangled
depends on the chosen time interval of observation. Fig. 10.18 shows the dif-
ferent regimes of time dependence to be expected on the basis of the model
by Doi and Edwards [86]. For the shortest observation times, a particular
segment is subjected to the confinement by the existence of the neighbour-
ing segments, so that 〈r2〉 increases only in proportion to t1/2. With further
increasing observation time, the propagation of the segment is additionally
retarded by the curvature of the diffusion path of the segments since they
have to follow the course of the tube. The absolute displacement of a segment
therefore increases only in proportion to the square root of the displacement
if it is measured along its curvilinear diffusion path. As a result, the overall
displacement increases in proportion to t1/4. As soon as diffusion of the whole
chain along the curvilinear diffusion path becomes predominant (correlated
motion) in comparison with the displacements of the individual segments,
the mean square displacement again increases with t1/2 (though due to a
completely different reason than under time regime I). Finally, for diffusion
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paths larger than the end-to-end distance of the polymer, segment diffusion
coincides with the normal diffusion of the centre of gravity of the molecule.
The process of snake-like propagation along the curvilinear diffusion path has
become well-known by the term “reptation”. It is interesting to note that un-
der the conditions of time-regime II, segment diffusion in polymers may be
understood in a way, which is also very helpful for the analytical treatment of
single-file diffusion. In the polymer chain, the elementary step of propagation
of a segment may be interpreted as the effect of a loop passing the segment
under consideration [87], while in a single-file system a particle changes its
position, if a “vacancy” is travelling across this particle from one to the other
side [50]. The benefit of this interpretation is due to the fact that instead of
elements subjected to correlated movements (chain segments and particles
in a single-file systems) one has to do with independent elements (loops or
vacancies). It is not too complicated, therefore, to obtain in this way the√
t-dependence for the movement of the mutually dependent elements ana-

lytically. In the case of the macromolecules, clearly, another square root has
to be applied as a consequence of the curvilinear diffusion path. The space
and time scales of transition between the individual regimes in Fig. 10.18 are
characterized by characteristic quantities, which are explained in the legend.
From the values typical for the different quantities (tube diameter d0 = 4 nm
and RF = 100 nm; cf. Chap. 13, Sects. 13.1 and 13.6) one may deduce that
– coming from large observation times – PFG NMR is only sensitive to the
transition between regimes IV to III, while – coming from short observation
times – QENS is only appropriately applied to study regimes I and II. Such
investigations shall be presented in much more detail in Chap. 13.

Fig. 10.19 shows the results of time-dependent SFG NMR measurements,
with PDMS exhibiting a clear transition between the case of normal diffu-
sion (regime IV) and anomalous, restricted segment diffusion along the tube
(regime III) [88]. The cross-over times are found to increase with increasing
molecular weights. This trend is an obvious consequence of the increasing
molecular extensions and decreasing mobilities. Similar results, though not
yet with this accuracy and wealth of data have been obtained by the PFG
NMR technique for polymer solutions [18, 89].

10.6.2 Diffusion Under the Influence of Hyperstructures in
Polymer Solutions

Recent achievements in polymer chemistry have enabled the production of
macromolecules containing groups with quite different chemical properties
[90]. Under appropriately chosen conditions, the thus achieved internal struc-
ture of the macromolecule favours certain patterns of molecular aggregation,
which in turn give rise to the formation of supramolecular hyperstructures. In
the following, we visualize the consequences of such molecular aggregations on
the diffusion properties of the constituting molecules by presenting the results
of PFG NMR studies with aqueous solutions of triblock-copolymers [91, 92].
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Fig. 10.19. Time-dependent self-diffusion coefficients in PDMS with various mole-
cular weights of Mw = 118 kg/mol (�), 160 kg/mol (�), 344 kg/mol (©) and
716 kg/mol (�) at T = 305 K. The dashed straight line indicates the proportion-
ality Dapp ∝ t1/2 in regime III, cf. Fig. 10.18. The full line is calculated with the
Doi-Edwards tube model, the arrows indicate Trep [88].

The triblock-copolymers under study are linear chains with a middle part
of poly(propylene oxide) (PPO), containing about 39 C3H6O-units, followed
on either side by “tails” of poly(ethylene oxide) (PEO), containing about
96 C2H4O-units. Since the additional CH3 group of poly(propylene oxide)
reduces the hydrophilicy of the medium part with respect to the tails, in
aqueous solutions the central parts of the triblock-copolymers tend to aggre-
gate forming micelles with a core of densely packed poly(propylene oxide)
and a corona of poly(ethylene oxide) tails. It turns out that the tendency
to form such micelles increases with increasing temperature [93]. Fig. 10.20
shows the results of PFG NMR measurements of the self-diffusion of this
PEO-PPO-PEO-triblock-copolymer in an aqueous solution at a concentra-
tion of 20wt.-%. Using deuterated water, the observed 1H NMR signal is
exclusively due to the dissolved triblock-copolymers. For low temperatures,
Fig. 10.20 displays the astonishing result, that the measured diffusivity de-
creases with increasing temperature. This rather unusual finding, however,
may be explained by the formation of micelles with increasing temperatures.
Obviously, at sufficiently low temperatures most of the PEO-PPO-PEO mole-
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Fig. 10.20. Temperature dependence of the experimental self-diffusion coefficient
Dapp of a 20 % aqueous solution of the triblock copolymer F88 for five different
observation times as indicated in the inset [91].

Fig. 10.21. Experimental self-diffusion coefficient in dependence on the observation
time t for the triblock copolymer F88 in a 20% aqueous solution at 345 K. Note the
cross-over to completely restricted diffusion at about t = 10ms [91].

cules migrate separately from each other as “unimers”, while with increasing
temperature an increasing percentage of molecules is contained in micelles,
which – according to the well-known Stokes-Einstein relation (see, e.g., Sect.
6.3 of Chap. 6 and (15.31) in Chap. 15) – diffuse at a considerably lower
rate. It turns out that the molecular exchange between these two states of
propagation, viz. as a unimer or in a micelle, is much faster than the shortest
observation time of ∆ = 13 ms [94]. Otherwise, the PFG NMR spin-echo
attenuation should consist of two constituents with vastly differing decay
constants. Therefore, it is only possible to determine the mean diffusivity as
the weighted average of the diffusivities of the unimers and the micelles.
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Starting from temperatures above about 300 K, the diffusivities appear to
be time-dependent. For a temperature of 345 K, this dependency is explicitly
shown in Fig. 10.21. Over the considered time interval the effective diffusivity
obeys the relation Deff ∝ t−1. According to (10.21), this proportionality
suggests that – at least during the observation time – the molecules are
confined within ranges, whose mean radii result to be of the order of 500 nm.
This value is much larger than the typical dimensions of the micelles which
are of the order of 10 nm. PFG NMR diffusivity data suggest, therefore, the
existence of a hyperstructure, being caused, e.g., by the existence of different
crystalline domains. The formation of a polycrystalline structure in PEO-
PPO-PEO triblock copolymers was confirmed by SANS [95]. Such domains
could in fact be observed by static light scattering experiments, which indicate
the existence of aggregates with radii of the same order [91, 92]. Moreover,
the dimensions of the confining regions were found to depend significantly
on the time programme of temperature variation. Such a dependence is most
likely if the confining regions are identified with domains of ordered molecular
and/or micellar arrangement.

10.6.3 Diffusion Under the Influence of Hyperstructures in
Polymer Melts

Two-component systems are well known to tend to disintegrate into two
separate phases, if the association of like molecules is favoured over the as-
sociation of unlike molecules. In two-component polymer systems, such a
tendency may be counteracted by involving diblock copolymers of the two
constituents as a third component. PFG NMR may serve as a valuable tool
for the elucidation of internal dynamics of such systems, which are found
to be dramatically affected by the presence of the diblock copolymer. As an
example, Fig. 10.22 shows the results of extensive PFG NMR self-diffusion
measurements with a ternary blend containing equal molar volumes of the ho-
mopolymers poly(dimethylsiloxane) (PDMS) and poly(ethylethylene) (PEE),
and the nearly symmetric PDMS-PEE diblock copolymer [96,97]. The copoly-
mer represents about 10 % of the total volume. The blend is known to form
a bicontinuous microemulsion below ≈ 356 K, while it is in the disordered
state at higher temperatures [98]. In addition, Fig. 10.22 also displays the
diffusivity data determined separately for the pure components of the blend.

In the ternary blend, two constituents with different diffusivities may be
identified. Owing to their prevailing contribution to the molecular volume,
they are most likely to be attributed to the homopolymers PDMS and PEE
of the blend. This assumption has been confirmed by considering the influ-
ence of the nuclear magnetic relaxation times on the relative contributions of
the respective constituents [96, 97]. As a remarkable result, the diffusivity in
the fast process (which has thus been attributed to PDMS in the blend) is
found to be smaller than the diffusivity in the pure PDMS phase, while the
diffusivity in the slow process (i.e. the PEE diffusivity in the blend) is larger
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Fig. 10.22. Arrhenius diagram of the PFG NMR diffusivities in the disordered
state (•) as well as for the fast (full �) and slow processes (full �) in the ternary
blend and comparison with the mean diffusivities of the pure PDMS (�) and PEE
(�) homopolymers as well as of the PEE-PDMS diblock copolymer following two
different averaging procedures (×, +). The vertical line denotes the phase transition
between the microemulsion and the disordered state as identified using dynamic
light scattering [98]. The arrow indicates the order-disorder transition in the PEE-
PDMS diblock copolymer melt [96,97].

than the diffusivity in the pure PEE phase. The explanation of this behav-
iour may be based on the different translational mobility in the pure PDMS
and PEE phases due to the differences in their viscosity [99]. There are in
fact two mechanisms, which may explain the observed behaviour and which
are most likely acting in parallel: Though there is an internal separation of
the blent into two phases, there is no perfect disintegration into the two con-
stituents. As a consequence, the contribution of PEE to the PDMS-enriched
phase tends to decrease the internal mobility with respect to the pure PDMS
phase, while, vice versa, the contribution of PDMS to the PEE-enriched phase
is supposed to lead to an enhanced mobility. Further on, molecular propa-
gation has to be influenced by the internal structure. This means that as a
consequence of the tortuosity of the two phases, the diffusivity of PDMS will
be additionally reduced in comparison with the extended phase. In the case
of PEE, however, the existence of different phases may be expected to lead
to an additional enhancement of its mobility, since during their residence in
the PDMS-enriched phases the PEE molecules will experience an enhanced
translational mobility.

In contrast to the studies presented in Sect. 10.6.2, varying the observation
time did not show any essential influence on the measured diffusivities. This
shows that any internal transport resistances are many times overcome during
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the observation time. In fact, an estimate of the domain size of the separated
phases by small angle neutron scattering yields values of about 75 nm [98,
100], which are notably exceeded by the diffusion path lengths during the
observation times. Studying such effects of molecular restrictions by choosing
experimental conditions, where the observed molecular displacements may be
of the order of the phase extensions, are among the most challenging tasks
of future research.

10.7 Conclusion

PFG NMR has been introduced as a sensitive technique for studying the time
dependence of molecular propagation. In homogeneous systems the probabil-
ity distribution of molecular displacements (the “propagator”) is described by
a Gaussian, which is completely determined by its mean square width (which
is most appropriately visualized by the “mean square displacement”). In ho-
mogeneous systems, the mean square displacement increases in proportion
to the observation time, with the self-diffusivity being the factor of propor-
tionality. Deviations from homogeneity may lead to characteristic deviations
from this proportionality as well as from the Gaussian shape of the prop-
agator. Such deviations are most likely to be encountered for molecules in
contact with interfaces. We have highlighted a wide spectrum of possibilities
for deviations from homogeneity including micro- and mesoporous adsorbate-
adsorbent systems, fluid-saturated natural sediments as well as the case of
self-structurization in macromolecular systems. PFG NMR could be shown
to provide unique information about both structural and dynamical proper-
ties, thus complementing the information from other techniques about these
systems.

Notation

a unit cell dimension in x-direction
b unit cell dimension in y-direction
B magnetic flux density
c sorbate concentration; unit cell dimension in z-direction
dg grain (particle) diameter
D coefficient of self-diffusion (self-diffusivity)
Dlr coefficient of long-range diffusion
Dt coefficient of transport diffusion
Dpar/perp main components of axisymetrical diffusion tensor
Ds fractal dimension of the grain surface
F mobility factor of single-file diffusion
g magnetic field gradient
l elementary length; mean free distance between adjacent molecules
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N number of diffusants
p pressure
P (z, t) (mean) propagator in z-direction
q generalized scattering vector
r vector of displacement or position
∆r displacement during time interval ∆t
R radius of crystallites
RF root mean square end-to-end distance of polymer chains
Sm, Sv specific surface area, surface-to-volume ratio
t time, time step
∆t time interval
T1 longitudinal nuclear magnetic relaxation time
T2 transverse nuclear magnetic relaxation time
vi(t) velocity of particle i at time t
z coordinate
γ magnetogyric ratio
δ duration (width) of the field gradient pulses
∆ separation of the field gradient pulses (“observation time”)
θ occupation probability
κ time exponent of anomalous diffusion
λ jump distance
µ scaling parameter; chemical potential
ν scaling parameter
τ distance between the π/2- and π-pulse in the spin-echo experiment;

mean residence time between subsequent jumps
τ1, τ2 distances between the first and second π/2-pulse, and the second

and third π/2-pulse in the stimulated echo sequence, respectively
ϕ phase shift in the precessional motion
Ψ attenuation of the NMR signal (spin echo) in PFG NMR experi-

ments
ω Larmor frequency
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64. C. Rödenbeck, J. Kärger: J. Chem. Phys. 110, 3970 (1999)
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11 Diffusion Measurements by Ultrasonics

Roger Biel, Martin Schubert, Karl Ullrich Würz, and Wolfgang Grill

11.1 Introduction

The velocity of acoustic waves depends on the elastic properties and the den-
sity of the transport medium. The variation of these properties can therefore
be observed with ultrasonic waves. The velocity of sound can sensitively be
detected by observation of the phases of transit signals. Resolutions of 1 part
in 108 with respect to changes of the velocity of ultrasound can be achieved
for ultrasonic waves in the frequency regime of typically 10 to 100MHz. Spa-
tial resolution can be obtained with narrow beams of plane waves or with
focused ultrasonic waves.

Ultrasonic beams generated and detected by planar transducers are rou-
tinely used to observe the temperature dependence of the velocity of sound
in liquid or solid materials. Variations of the temperature lead to changes
of the elastic properties as well as to thermal expansion. The temperature
dependence of the velocity of acoustic waves is often used to observe phase
transitions or to gain information on other thermodynamic properties of the
samples. The observation of the velocity of sound can also be used as an ex-
tremely sensitive thermometer, capable to resolve temperature changes even
below 1mK. It is therefore almost surprising that only little effort has been
paid so far to observe thermal diffusion processes or other transport processes
by diffusion with ultrasonic detection schemes. An exception are somewhat
related photoacoustic excitation schemes including the so-called thermal wave
methods which have even been applied with microscopic resolution.

To demonstrate the feasibility of ultrasonic detection schemes with phase
resolution, applications are presented for the observation of the diffusion of
hydrogen in single-crystalline tantalum and the diffusion of heavy water in
gels and living cells. Acoustic interferometric detection schemes and acoustic
imaging techniques have so far only been used in these applications. They
are demonstrated here to inform about these novel developments and to sup-
ply the information needed to decide if such methods can be used advanta-
geously for measurements which cannot easily be performed by established
techniques.
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11.2 Diffusion of Hydrogen in Single-Crystalline
Tantalum

The transport properties of hydrogen in metals have an obvious technical
relevance for hydrogen storage devices where metals are employed, capable
to store large amounts of hydrogen dissolved in the metal matrix. Single-
crystalline samples are normally used to study the basic physical properties
under idealized conditions.

A two-beam interferometric setup has been employed (Fig. 11.1) to ob-
serve the temperature dependence of the transport properties of hydrogen in
metals [1]. The ultrasonic interferometric device is comparable to an opti-
cal Mach-Zehnder interferometer. Acoustic waves travel along two paths at
different positions in the sample, monitoring integrally the hydrogen concen-
tration along the paths. Piezoelectric transducers (quartz) mounted on the
sample convert electric signals into acoustic signals and vice versa. Different
to the optical equivalent the remaining part of the interferometer involves
only electrical signals. This is possible since ultrasonic transducers are linear
devices converting the amplitudes and not simply the power of the respective
electric or acoustic signals.

The dependence of the velocity of transverse polarized ultrasonic waves
vt on the hydrogen content c with respect to a small variation of this content
∆c is given by [2]:

vt =

√
c044 + (∆c44/∆c)c
ρ+ (∆ρ/∆c)c

, (11.1)

where ρ is the density and cii the element i, i of the tensor of the elastic
stiffness constants of tantalum. The relative change of c44 per variation of the
hydrogen content of one atomic percent is 1.4 · 10−3 [2]. The respective value
for c11 is only 8.9 · 10−5 [2]. Therefore transverse polarized acoustic waves,
travelling along the [100] direction of the tantalum crystal, are employed for

Fig. 11.1. Tantalum sample with gradient in the hydrogen distribution and four
transducers for generation and detection of ultrasonic waves travelling along two
separated paths.
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Fig. 11.2. Schematic of the ultrasonic two-path interferometer with vector phase
detection. Channel 1 is used for phase-locking of the oscillator. Channels 2 and 3
detect relative changes of the phase of the ultrasonic signal with respect to chan-
nel 1. Changes in the velocity in path 1 can be determined from the frequency
variation of the locked RF-oscillator.

optimum sensitivity to the hydrogen content which is about 16 times higher
than for longitudinal waves.

In the experimental setup phase detection is achieved by multiplicative
mixing techniques (Fig. 11.2). The frequency used for excitation is varied in
such a way, that the phase observed in one of the paths with respect to an
electronic reference derived from the oscillator used for excitation remains at
a constant value. The amplitude is stabilized to achieve optimum resolution.
The phase observed for the other path is monitored with respect to the same
electronic reference by vector detection schemes. Pulses are used to discrim-
inate echoes in the acoustic paths. Some of these features are introduced to
achieve optimum sensitivity and long-term stability. This is necessary since
rather slow changes have to be observed. Equilibration times for samples of
typical sizes of 1 cm can reach several days or even months, depending on
the temperature of the sample.
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Fig. 11.3. Time dependence of the phase signals (channels 2 and 3 in Fig. 11.2)
referenced with a shift of 0◦ and 90◦ with respect to the oscillator signal during
the equilibration of the graded hydrogen distribution in tantalum by diffusion at a
temperature of 273 K (frequency of the ultrasound: 10.6 MHz).

The data are collected and stored with a computer, controlling also the
temperature of the sample.

The hydrogen distribution in the tantalum sample is varied by applying
unidirectional electric currents at temperatures of about 400 K. This creates a
gradient in the hydrogen content across the sample. Subsequently the crystals
are cooled to the temperature where the transport processes are studied. The
equilibration of the hydrogen distribution is observed with one path of the
acoustic interferometer in the region of elevated hydrogen content and the
other path in the region where the content has been reduced.

The data collected over time spans up to several days (Fig. 11.3) may
be used to determine the diffusion coefficient D taking into account that
the relaxation of the hydrogen distribution is determined by a quasi-one di-
mensional diffusion process following Fick’s second law (see, e.g., (1.8) in
Chap. 1):

∂c

∂t
= D

∂2c

∂x2
. (11.2)

The diffusivities obtained for different temperatures are presented in Fig. 11.4.
The temperature dependence of the diffusion coefficient is found to follow an
Arrhenius relation

D = D0e
− Ea

kB·T (11.3)

with Ea = 0.14 eV, where D0 is the diffusivity at temperature T → ∞.
Results presented in the literature [3] which have been obtained by con-

ventional methods show errors of up to almost 100%, even for data from the
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Fig. 11.4. Arrhenius plot of the diffusion coefficient D derived from measurements
as represented in Fig. 11.3 (crosses) at different temperatures and line fitted to the
data.

same author. The results obtained here show deviations of only up to 23%
from the expected linear behaviour. The extrapolation to the value of the dif-
fusion coefficient for T → ∞ leads to D0 = 4.5 · 10−8 m2/s, which compares
well with the value of D0 = 4.4 ·10−8 m2/s obtained by Völkl and Alefeld [3].

The ultrasonic detection scheme has the advantage, that surface effects
play a negligible role, since the hydrogen content is monitored along a path
in the volume of the sample. Even extremely slow processes can be studied.
As unwillingly demonstrated in the data (Fig. 11.3), the measurement can
be continued in the case of temporal failure of the electronics, caused here by
a failure of the current supply. Such events are otherwise disastrous for long-
time observations. Furthermore the rather low power level of the acoustic
signals does not influence the observed hydrogen distribution in the sample.

The method presented here can be used for any sample with two plane
parallel surfaces. Due to the integrated detection along the paths of the ul-
trasonic waves, transport properties can be studied for a direction normal to
these surfaces. Lateral resolution is restricted by the fact that planar acoustic
waves are employed. Resolutions down to typically 2 mm are feasible with
available transducers. Temporal resolution is determined by the repetition
rate at which the ultrasonic pulses are generated. The maximum repetition
rate depends on the absorption in the sample, since ultrasonic echoes must
reach a negligible level prior to the following excitation. Repetition rates of
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at least 1 kHz can usually be obtained, leading to a temporal resolution of
at least 1 ms. More than two paths can be used with the aid of electronic
switches.

11.3 Observation of Diffusion of Heavy Water in Gels
and Living Cells by Scanning Acoustic Microscopy with
Phase Contrast

Scanning acoustic microscopy (SAM) [4] in the reflection mode is a confo-
cal version of microscopy similar to confocal laser microscopy but based on
acoustic waves. In commercially available equipments frequencies up to 2 GHz
are used. With water as a coupling fluid a lateral resolution down to 0.6 µm
can be achieved.

Recently, high resolution phase contrast has been developed for this ver-
sion of scanning microscopy [5]. For demonstration of a typical image obtain-
able by scanning acoustic microscopy with phase contrast (PSAM), Fig. 11.5
shows an image of a cell.

The phase contrast can be employed to detect local changes of the trans-
port properties of ultrasound induced by diffusion processes [6]. To establish
this method droplets of gel deposited on a glass substrate have been used.
The gel is manufactured from household gelatin dissolved in ordinary water.
Heavy water (D2O) is used in exchange for ordinary water as a coupling fluid.
This leads to time-dependent changes in the phase images. A set of images

Amplitude contrast Phase contrast

Fig. 11.5. Images of an XTH2-cell on glass. The grey scale in the image in phase
contrast is proportional to the phase of the reflected ultrasonic waves. The width
of the images is about 100 µm. The images were obtained at a frequency of 1 GHz
with water as a coupling fluid. The maximum thickness of the cell somewhat below
the center of the images is about 2 µm.
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Fig. 11.6. Time dependence of the phase of the reflected ultrasonic waves (1.2 GHz)
observed with an ultrasonic microscope for a position on a sample of gelatin de-
posited on glass. The coupling fluid has been changed from normal water to heavy
water at time equal zero.

Fig. 11.7. Time dependence of the phase of the reflected ultrasonic waves (1.2 GHz)
observed with an ultrasonic microscope for a fixed position on a living cell on glass.
The coupling fluid has been changed from normal water to heavy water at time
equal zero.

was taken at constant time intervals. A reference area close to the deposited
droplet is used as a reference to detect changes of the phases in the image of
the droplet. Figure 11.6 shows the result for a fixed position in the image of
a droplet. The area at this position is only limited by the lateral resolution
of the acoustic microscope of about 1 µm. The temporal dependence of the
phase signal exhibits a distinct change following the contact to heavy water
over a time span of about 100 s. This change is attributed to the exchange
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of normal water by heavy water in the gel by diffusion. Variations at later
times are in part caused by solution processes of the deposited material.

Fig. 11.7 shows the response of a living cell under similar conditions. A
relaxation time of about 200 s can be derived from the early part of the
response. The distinct change at time 1800 s represents the exitus of the cell
due to an overdose of heavy water.

These observations represent only a first step to demonstrate the pos-
sibility to observe transport processes including diffusion with acoustic mi-
croscopy. We restrain therefore from a quantitative analysis of the data. The
transport properties in the cell are expected to be dominated by diffusion
through the cell membrane. The observation is at least sufficient to deter-
mine the typical time scales for transport processes even in living objects.

For determining quantitatively the diffusivities, the thickness of the ob-
jects is needed. The technique is therefore especially suitable for coatings of
constant thickness. For irregularly shaped objects of limited size on planar
substrates (as employed here), the thickness can be monitored by atomic
force microscopy (AFM), available in the developed microscope [5]. Homoge-
neous materials can also be characterized by phase sensitive scanning acoustic
microscopy (PSAM) and model calculations fitted to the data [7].

In addition to the techniques demonstrated here microscopic holographic
detection schemes have been developed [5, 8], which can be employed for
the spatially resolved detection of the variation of the elastic properties in
extended objects.

11.4 Conclusion

The novel detection schemes based on ultrasonic interferometers can be used
to determine the diffusion coefficient following a non-equilibrium distribution
of the diffusing species – in the demonstrated application the diffusing hydro-
gen. The rather high sensitivity allows the observation of slow processes, re-
spectively small deviations from equilibrated distributions. Scanning acoustic
microscopy with phase contrast representing also an interferometric method
can be used in a similar way to observe relaxation processes with spatial
resolution down to about 1 µm (lateral). Due to the rather short interaction
length in the observed objects which is typically in the range of the lateral
resolution or below, the sensitivity is significantly reduced with respect to
interferometric detection schemes employed in macroscopic objects.

Notation

c hydrogen concentration in atomic percent
c11 , c44 stiffness constants
D diffusion coefficient
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D0 diffusion coefficient at T → ∞
Ea activation energy
kB Boltzmann constant
t time
T temperature
vt velocity of transverse ultrasonic waves
x position
ρ density
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12 Diffusion in Membranes

Ilpo Vattulainen and Ole G. Mouritsen

12.1 Introduction

Nature is always in motion. As simple as it is, this statement is true in the
sense that numerous phenomena in living systems are characterized by non-
equilibrium. Our muscles are in constant need of energy provided by the
metabolic pathway, the blood flows in our veins as long as the heart keeps
going, and yet old cells are constantly being replaced by fresh ones as a
typical life time of a cell is on the order of one day. The state of living beings
can therefore only rarely be described by equilibrium. However, even if a
true equilibrium were possible in living systems, we would find spontaneous
thermal fluctuations to occur around the equilibrium state, again implying
that the matter were moving in time.

This book is devoted to the idea of particles moving in condensed matter
systems. Our aim in this chapter is to discuss the role of diffusion in soft
biological interfaces known as membranes.

In biological systems, diffusion is one of the most intriguing processes that
arise from the dynamics of biological molecules. It may sound surprising but
many of the diffusion processes in living systems are based on a very simple
idea – a random walk. Microtubules – long filaments of proteins that search
for other molecules inside cells and serve as highways for transporting them
inside the cell – grow and shrink in a manner that reminds us of a random
walk [1]. Small bacteria, in turn, swim in a fashion involving a long ballistic
movement followed by a period during which the particle “tumbles” in a
highly erratic manner, thus choosing a new direction for its motion, again
followed by another long jump [2]. Interestingly, this joint motion of rushing
and tumbling allows the bacterium to move efficiently around its environment
as it searches for the best food markets. Then, if we look at the motion of
molecules in cell membranes that act as a permeable barrier between the
inside and the outside of the cell, we again may notice that the motion of
molecules in the plane of the membrane can essentially be described as a
random walk [3].

All these examples are kind of confusing since one might expect that
Nature works in a manner that is more orderly and deterministic and less
random than finance or lottery, in which the random walk plays a major
role [4]. Yet we have plenty of evidence that the diffusion in living systems
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is often governed by this simple principle. To the best of our knowledge,
the first (reported) observations of the random walk were made in 1828 by
the botanist Robert Brown [5], who studied the pollen of different plants
and observed that, when placed in water, the pollen particles were in unin-
terrupted and irregular “swarming” motion. Today, we understand that the
Brownian motion (as it is called to honor the person who discovered it) con-
cerns the motion of a colloidal particle in a liquid and results from random
molecular collisions with the liquid molecules, leading to motion, which can
be described in terms of the random walk picture. In biological systems, in
turn, we are dealing with molecules or clusters of molecules whose size is
far greater than the size of surrounding solvent particles. Therefore there is
an analogy from colloidal particles to biological molecules, thus providing us
with some grounds to use the random walk concept to describe diffusion in
living systems.

Random diffusion is a non-specific process, which invariably leads to dis-
order in a system. Although random diffusion over time may provide for
essential reaction pathways in living matter, it is too disordered and disor-
ganized to be relied on in delicate life processes. Therefore, in order to take
advantage of the omnipresence and robustness of random diffusion, Nature
has over evolutionary time scales developed strategies to compartmentalize
and structure living matter on scales from nanometers to the size of whole
cells and organisms. Within these structures, macromolecules, macromolec-
ular assemblies, as well as sub-cellular entities perform random as well as
directed diffusion. The compartmentalization and structure are provided by
biological soft interfaces, so-called membranes, as well as a host of fibers
and scaffolding structures. It is noteworthy that the typical length scales of
these structures are in the 1 – 1000nm range, i.e. on a scale where diffusional
processes can be effective on the time scales that are relevant in biology. Due
to the structuring, one can anticipate that the various diffusional processes
take place in highly heterogeneous matter and that deviations from normal
diffusion under isotropic conditions are likely to occur.

An understanding of the nature of diffusional processes in living matter,
and in particular on the level of the individual cell and its various sub-cellular
components, is one of the grand challenges in the so-called post-genomic era.
Within the last few years, the complete genome of whole organisms, rang-
ing from bacteria, yeast, worms, insects, to that of man, has been mapped
out. The genome provides the information about which macromolecules (e.g.
proteins) the organism can produce. However, the genome contains seem-
ingly no information on how these macromolecules are organized in space
and time and which molecular mechanisms are controlling the organization.
Physical principles are here called for. At almost every stage of these con-
trolling mechanisms, elements of diffusional processes are involved: in the
molecular self-assembly of fibers and membranes, in the transport and traf-
ficking of RNA, DNA, sugars, fats, and metabolites, in biochemical signaling
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cascades as well as intra- and inter-cellular communication, in cell growth,
and ultimately in cell death.

In this short review, our aim is to illustrate some of the charming aspects
of diffusion in model membranes. We feel that the topic is of a fundamental
nature as it is related to the dynamics of cellular functioning. Many present-
day medical applications such as drug delivery and gene therapy [6] are es-
sentially dynamic processes that involve the transport of molecules through
membranes. Diffusive transport in membranes furthermore plays an impor-
tant role in processes such as membrane fusion [7], charge transfer [8], and
intracellular signaling [9]. It is rather surprising, though, how little is known
about the microscopic mechanisms of these dynamic processes in membrane
systems. Thus we hope that you will enjoy this little journey, and especially
we wish that you will find this topic exciting and let the spirit guide your way
to work on these problems. To ease your way on this road, we would like to
direct your attention to a number of comprehensive review articles about the
overall properties of membrane systems [9–16] as well as about the dynamic
processes in membranes and other biological systems [2, 15–17]. It is not an
easy road, but it is worth it.

12.2 Short Overview of Biological Membranes

Nature is full of examples of surfaces or interfaces that separate one phase
from another and have some important function. For instance, our skin pro-
tects our body from hazardous chemicals of the environment and from dry-
ing out, and soap bubbles are fragile fluctuating interfaces [18] that are both
charming to wonder about and important as an example of the behavior of
the detergents we use in our daily life. Further, soap bubbles remind us of
biological membranes that surround our cells and serve as an example of
soft condensed matter surfaces whose properties can be tuned by weak in-
teractions on the order of thermal energy. Yet there is no doubt that the
complexity and biological relevance of membranes are far greater than those
of soap bubbles.

Biological membranes are an intriguing example of Nature’s talent to
make complex systems with a huge number of degrees of freedom but with
a well-defined function. The complexity, however, makes our study difficult
as we try to understand how membranes work under a variety of physiolog-
ically relevant conditions. To ease this burden, one often starts from simple
descriptions of such complex systems, and then, after having understood how
they work, it is natural to proceed to a higher level of complexity.

Using this idea, we may first think of cell membranes as thin elastic sheets,
whose total thickness is typically about 5 nm and depends only weakly on
thermodynamic conditions such as the temperature of the system. The mem-
brane is comprised of two monolayers, each of which is made up of lipid mole-
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Fig. 12.1. Representation of a typical phosphatidylcholine (PC) lipid molecule on
an atomic level (on the left). Additionally, as physicists, we feel obliged to present
a simplified description of a lipid (in the middle), where the aim is to grasp the
essential features of both the hydrophilic and hydrophobic nature of lipid molecules.
In some cases, this structure can be coarse grained even further to obtain a minimal
description of a lipid in terms of a two-dimensional disk (shown on the right).

cules. The lipids1 (see Fig. 12.1) can be thought of as surfactants with some
biologically relevant function, and they typically include two non-polar and
hydrophobic (water hating) acyl chains connected close to the head group,
which in turn is usually polar and hydrophilic (water loving) and therefore
capable of forming hydrogen bonds with neighboring water molecules. This
“schizophrenic” nature of lipid molecules is the underlying reason why they
self-assemble as closed objects such as micelles and liposomes, such that the
head groups face water molecules while the acyl chains are as far from the
water phase as possible. More precisely speaking, the question is about min-
imizing the free energy, which contains a substantial entropic component as
in most other strongly fluctuating soft matter systems [19]. Often the hy-
drogen bonds play the most important role for the balance between energy
and entropy since hydrogen bonds are significantly stronger than many other
non-bonded interactions, such as van der Waals interactions in soft matter
systems. Consequently, the lipids form phases of various kinds [19, 20] de-
pending on, e.g., the effective shape of the lipid molecules, their interactions
with other molecules in a system, and the relative concentrations of lipids and
the solvent. As a simple way of understanding the structure of membranes,
we may consider the single-component lipid bilayer shown in Fig. 12.2. Al-
though this example is a highly simplified description of an actual biological
membrane, it readily demonstrates the basic structure of membranes. As a
matter of fact, due to its “simplicity”, this model is often used as a starting
point when one aims to understand the complicated properties of biological
membranes.
1 We use the following short-hand notation for di-acyl glycero phospholipids:

PC, phosphatidylcholine; PLPC, palmitoyl-laureoyl PC; DMPC, dimyristoyl PC;
DPPC, dipalmitoyl PC; DSPC, distearoyl PC; POPC, palmitoyl-oleoyl PC.
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Fig. 12.2. A PLPC lipid bilayer based on molecular dynamics simulations [21]
as a representation of the basic model for biological membranes. Water molecules
appear at the top and bottom of the picture. Illustration by Marja Hyvönen. A
schematic view of the bilayer is shown on the right.

Turning to native biological membranes [9, 11] (see Fig. 12.3) found in
living systems, they contain a bilayer of lipids as discussed above. Yet this
is just a small part of the story, since biological membranes are not like
single-component lipid bilayers but rather they are mixtures of various types

Fig. 12.3. A cartoon of an actual biological membrane including the lipid bilayer,
integral proteins, the cytoskeleton (below the bilayer), and glycocalyx carbohy-
drates (above the bilayer). Illustration by Ove Broo Sørensen.)
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of lipids that differ in a number of ways such as with respect to the size,
the chemical composition in the polar head group region, and the rigidity
of the molecular core [11]. Fats, oils, and certain vitamins and hormones
are all lipids. It is fascinating that there are typically more than a hundred
different lipid species in a given type of biological membrane, all assumed to
have some particular purpose, and many of them are unsaturated or poly-
unsaturated, increasing the complexity of their nature even further. The lipid
bilayer is then complemented by numerous kinds of integral and peripheral
proteins that are embedded or attached peripherally to the membrane. The
proteins are also related to a dynamic rubber-like network known as the
cytoskeleton [11], which is attached to the inner surface of the membrane.
The cytoskeleton moves the cell, gives further rigidity to the membrane, and
also allows the membrane to adjust its shape to varying non-spherical shapes
as is the case, e.g., when red blood cells travel through narrow capillaries.
Finally, to make things even more difficult, Nature has chosen that the outer
leaflet of the membrane is also covered by a network, which in this case is
made of glycocalyx carbohydrates. It has been suggested that this network
serves the purpose of cell-cell recognition and adhesion to other cells.

As biological membranes are highly complex objects, the overall picture
of their structural and dynamic properties has been rather shady for quite
some time. Some 30 years ago, membranes were thought of as fluid-like mat-
tresses of lipid molecules whose main purpose was to provide an environment
in which membrane proteins were able to function. This “fluid mosaic model
of membranes” [22] has had an enormous impact on the manner in which
membranes have been investigated, and it has served its purpose as a good
starting point for further work as the picture of membranes and their role
have been refined. Thanks to significant activities on the field based on novel
experimental techniques and theoretical modeling, a detailed understand-
ing of membranes and their biological relevance has emerged. Rather than
being static, membranes are nowadays known to be highly dynamic in na-
ture [23, 24]. Both in-plane and out-of-plane fluctuations are playing a role,
although their relative magnitudes are very different. While membranes can
be twisted and bent rather easily [12, 24, 25], they cannot be stretched by
more than about 2 – 5% of their average area without rupturing [12]. Thus,
although there is a danger of misunderstanding here, one can roughly de-
scribe membranes as sheets of thin and flexible polymer networks. Further
characteristics of membranes include their fluid-like nature in the sense that
lipid molecules are able to pass one another relatively easily, their heterogene-
ity [26] in the sense that there are distinct different small-scale phases and
internal structures in membranes, and their mode of compartmentalization
in the sense that cells are divided in compartments with specialized functions
and membranes thus act as permeable barriers for molecules that are trying
to diffuse from the outside to the inside of the cell (or vice versa).
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The fluid-like nature of membranes is the key to their various dynamic
properties. Out-of-plane fluctuations such as undulations [24] are more like a
rule than exception, since their activation energy is of the order of few kBT ’s.
Fluid-like lipid bilayers have no resistance to shear, unless the cytoskeleton is
attached to the membrane. As the molecules are able to pass one another, the
lateral diffusion coefficients of individual lipid molecules are relatively high,
typically of the order of 10−10 – 10−12 m2/s. Then, as the lipids and proteins
are complex chain-like molecules, they have various internal degrees of free-
dom, and thus rotational diffusion characterizing their rotation rates around
the symmetry axes is also important. The decay of density fluctuations, in
turn, gives rise to the so-called collective diffusion (related to area fluctua-
tions of the bilayer), while the diffusive transport of lipids across membranes
yields another interesting transport process known as the flip-flop.

The lipid-bilayer component of membranes displays a number of different
phases separated by phase transitions. In the present context the most impor-
tant transition is the so-called main transition, which takes the bilayer from a
low-temperature solid phase to a high-temperature liquid (fluid) phase. The
solid phase has a two-dimensional crystalline character and in addition the
lipid acyl chains are conformationally ordered. This phase is therefore usu-
ally referred to as the solid-ordered phase. In the fluid phase, the crystalline
structure is lost and at the same time the acyl chains display a substan-
tial degree of conformational disorder. This phase is consequently termed
the liquid-disordered phase. The diffusional characteristics of the membrane
molecules are very different in the two phases.

Our aim in the next few sections is to provide the reader with some flavor
of the various diffusion processes taking place in membranes. Rather than
presenting an exhaustive description of the topic, we prefer a down-to-earth
approach on an introductory level, combined with instructive examples and
highlights of a few recent studies that we consider interesting.

12.3 Lateral Diffusion of Single Molecules

Here we discuss the motion of individual molecules in membranes as the
particles diffuse laterally in the bilayer.

12.3.1 Lateral Tracer Diffusion Coefficient

Let us consider a membrane comprised of two lipid monolayers (see Fig. 12.2).
Additionally, we may imagine that there are proteins embedded in the mem-
brane, and all these molecules are allowed to move in the plane of the mem-
brane. For simplicity’s sake the membrane is assumed to be flat (zero curva-
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ture).2 Furthermore, we can safely assume that the number of lipid molecules
in both monolayers remains constant, since the time scale of lipids exchang-
ing their positions from one monolayer to another (flip-flop) is of the order
of several seconds or even hours, while the lateral diffusion of lipids usually
takes place on much smaller time scales, typically nanoseconds.

A measure of how fast individual molecules move around is given by the
lateral tracer diffusion coefficient [27,28] (cf., e. g., also Chap. 10, (10.8) and
Chap. 18, (18.21))

DT = lim
t→∞

1
2dt

〈|r(t) − r(0)|2〉, (12.1)

where r(t) is the position of the tagged particle (or its center of mass) at time
t, and d = 2 is the dimensionality of a surface.3 This definition is identical
to the original one by Einstein for the motion of Brownian particles in a
solvent [27].

We note that DT is essentially defined as a long-time limit of 〈|r(t)|2〉,
which is the mean square displacement of a given particle. The tracer diffusion
coefficient, however, arises from correlations between consecutive displace-
ments of the particle at small times, as is demonstrated by the Green-Kubo
equation [28] (cf. Chap. 23, (23.15))

DT =
1
d

∫ ∞

0

dt φ(t), (12.2)

where φ(t) ≡ 〈v(t) · v(0)〉 is the velocity correlation function of the tagged
particle (or its center of mass) in terms of its velocity v(t) at time t.

It can be shown that (12.1) and (12.2) are identical and yield the same
diffusion coefficient [28]. However, they probe slightly different properties of
the dynamics of the particle and therefore complement each other. While
the approach based on the mean square displacement assumes that one has
found the long-time limit (the diffusive regime) in which 〈|r(t)|2〉 ∼ t, the
Green-Kubo equation concentrates on the short-time regime and integrates
over velocity correlations prior to the long-time regime. At long times, beyond
some characteristic time scale τc, the velocity correlation function φ(t) = 0
for t > τc. It is obvious that τc is closely related to the onset of the diffusive
regime in which 〈|r(t)|2〉 ∼ t (cf, e. g., Chap. 21, Fig. 21.7).

In practice, the velocity correlation function provides a useful quantity
for examining the short-time dynamics through molecular dynamics simu-
lations, thus yielding valuable information of the microscopic details of the
diffusion process. Einstein equation, on the other hand, is probably more
useful as a means to determine the actual value of the diffusion coefficient
DT. Besides this, the mean square displacement provides one with a reliable
2 In the case of liposomes, the calculation for the diffusion coefficient has to be de-

termined in a spherical geometry. A further complication arises when the bilayer
is so soft that the diffusional motion changes the local curvature.

3 In the following discussion we assume that r(0) = 0.
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way to find the diffusive regime as well as to obtain information of effects
leading to anomalous diffusion (cf. Chap. 10). To illustrate these points, let
us argue that 〈|r(t)|2〉 ∼ tx, where x is some time-dependent exponent. For
normal diffusion, x → 1 at long times, which allows one to find the regime
in which the Einstein equation is valid. However, there are also cases where
the heterogeneity of the membrane or large obstacles such as proteins hin-
der or bias the diffusion process in such a fashion that x < 1 even at very
long times [29]. Then the diffusion process is said to be subdiffusive (see
Sect. 12.3.3). The concept of anomalous diffusion is generally related to the
so-called Levy processes, which are discussed in more detail in [30, 31].

The diffusion of lipids and proteins in a bilayer is essentially a two-
dimensional process, and since we are dealing with a hydrodynamic medium
in which interparticle interactions are mediated by the solvent, it is worth-
while to point out the well-known problem of diffusion in two spatial di-
mensions. Under hydrodynamic conditions, φ(t) decays at long times as
φ(t) ∼ t−d/2 [32, 33], and therefore for a truly two-dimensional system
φ(t) ∼ t−1. This seems to imply that (12.2) does not converge and thus
the diffusion coefficient is not well defined. However, one should keep in mind
that we are looking at the motion of lipids in a bilayer which is interacting
with the neighboring environment. These interactions imply that the mo-
mentum and the energy of the bilayer are not conserved. Thus, the motion
of lipids in a bilayer is a dissipative process, and the theoretical result above
does not apply in the present case. In brief, as long as anomalous diffusion
is not expected, one should find 〈|r(t)|2〉 ∼ t at long times with a constant
slope.

The two approaches mentioned above [(12.1) and (12.2)] are not unique,
although they provide the grounds since they can be considered as definitions
of the tracer diffusion coefficient. Of the other approaches suggested recently,
let us mention the method by which the calculation of DT can be optimized
by a so-called “memory expansion” of particle displacements [34]. Finally,
once DT has been found, one can use it to estimate the diffusion length
�D ≡

√
Dτ , which the particle undergoes during a time interval of τ .

12.3.2 Methods to Examine Lateral Tracer Diffusion

To start with, we would like to emphasize the special nature of tracer diffusion
that should be accounted for in any study of diffusion. The tracer diffusion
process refers to a case where one follows the motion of some tagged individual
particle.

This is relatively easy in computer simulations of model systems, where
one can keep track of the positions and velocities of all particles one by
one. In experiments the situation is not as simple, however. Many techniques
are based on labeling lipid molecules by attaching rather bulky molecules
such as pyrene to their acyl chains or a colloidal particle to the head group.
The attached molecule has typically some property that allows one to follow



480 Ilpo Vattulainen and Ole G. Mouritsen

its position, fluorescent labeling being probably the most commonly used
technique. In some cases the fluorescence signal from a single lipid molecule or
lipid analogue yields a signal large enough to be detected on the background
of the noise. Most often one labels a certain fraction (such as 1/1000) of all
lipids, however. This leads to two possible problems. First, since the size of the
functional group attached to a parent molecule can be quite substantial, and
its diffusion characteristics may be very different from those of non-labeled
parent molecules, there is an obvious difficulty in interpreting experimental
diffusion data. Second, the fact that there are numerous labeled molecules in
a bilayer makes it possible that the trajectories of individual lipid molecules
cannot be followed any further. Consequently, one cannot use the Einstein
equation either. Nevertheless, as discussed later in this chapter, there are
certain ways to avoid this problem.

Computational Approaches

For studies of soft matter systems, the first-principles approach including
electronic degrees of freedom feels like a method of choice. However, its com-
putational costs are harsh and imply that it is limited to very small systems
over short time scales, and is therefore not applicable to membrane systems
as such. Current approaches of combining the first-principles techniques with
classical molecular dynamics (MD) may provide some relief to this prob-
lem [35,36].

The classical MD approach ([37,38], see also Chap. 23), however, has de-
veloped in recent years to a versatile method for studies of lipid and protein
dynamics in lipid bilayers [39–44]. In this approach, all atoms are treated
classically, their interactions are well defined, and the time evolution of par-
ticle positions is determined by solving Newton’s equations of motion. This
approach provides one with a classical but detailed description of the system,
and can yield plenty of relevant information of the structure and dynamics
of membranes at the atomic level. Nevertheless, the price one has to pay is
the computational cost. At present, state-of-the-art MD simulations are for
about 1000 lipid molecules in a bilayer plus a few thousand water molecules,
which allows one to study the system over a time scale of about 100ns [45].
However, is this enough for studies of lateral lipid diffusion? To address this
question, let us first approximate the onset of the diffusive regime τc using
a rule of thumb τc ≈ R2

L/DT, where R2
L is the area per lipid in the plane of

the membrane and DT is its tracer diffusion coefficient. Using typical values
of RL = 8 Å and DT = 3× 10−11 m2/s for a single-component lipid bilayer of
DPPC molecules in a liquid-disordered phase [3], we obtain τc ≈ 20× 10−9 s.
Thus we have to look at times larger than about 20 ns to make sure that an
individual lipid molecule in a pure bilayer moves over a distance that is equal
to its own size. This time scale should be considered as the lower limit, since
displacements of this size can only barely be regarded as macroscopic ones.
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In particular in multicomponent systems often characterized by domain for-
mation, the time scale should be far larger since then RL needs to be replaced
by the characteristic size of the domains, which is typically 10 – 1000 Å [26].

We can conclude that detailed MD simulations are not the most feasible
approach of studying lateral diffusion. Consequently, less detailed approaches
have been suggested. The underlying idea is to simplify the model by replac-
ing an atomistic description with a coarse grained one that retains only some
of the most essential molecular features (see Fig. 12.1). In practice, this means
that the “fast” variables in a system are replaced with stochastic noise and
the interactions are chosen to represent those between coarse grained particles
rather than actual atoms. Recent progress on the field is encouraging since
some of the structural [46, 47] as well as dynamic [48, 49] properties of the
membrane have been successfully explored using this idea. However, one can
coarse grain the molecular description even further and describe the system
in terms of a minimal model, in which lipids and proteins are described in a
very simplified fashion in terms of disks or cylinders, for example. This ap-
proach allows studies of very large time and length scales and may be highly
useful for investigations of processes that are too complicated to be studied
by models including molecular information. Studies have shown [50–52] that
the approach of using minimal models works fine in a number of cases.

Experimental Techniques

The number of techniques which probe lateral tracer diffusion directly is lim-
ited. One popular technique is single-particle tracking [53, 54] in which one
attaches a colloidal particle (typically 40 nm in diameter) to the lipid or pro-
tein molecules by proper anti-body functionalization. Then, one follows the
trajectories of individual labeled molecules in bilayers by computer-enhanced
video microscopy, and statistical analysis of a large number of traces allows
one to determine the lateral tracer diffusion coefficient in terms of (12.1).
In recent years single-molecule fluorescence labeling assays have been devel-
oped which by ultra-sensitive fluorescence microscopy or fluorescence cor-
relation spectroscopy have permitted traces of single-molecule diffusion to
be observed [55–59]. An example of such observations is given in Fig. 12.4
which shows the motion of an individual fluorescence-labeled molecule in a
phospholipid bilayer and the recording of a part of a diffusion trace. The
time resolution of such experiments is in the range of 5ms and the positional
accuracy is around 50 nm [58].

In principle, all other approaches we are aware of are based on follow-
ing some collective property of the whole system, such as the decay rate
of density fluctuations. As we will see in Sect. 12.5, this may lead to stud-
ies of the collective aspects of diffusion rather than tracer diffusion. Never-
theless, a number of techniques such as fluorescence recovery after photo-
bleaching (FRAP) [60, 61] (cf. also Chap. 16), nuclear magnetic resonance
(NMR) [62] (cf. also Chap. 10), (incoherent) quasi-elastic neutron scattering
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(a)

(b)

Fig. 12.4. (a) Fluorescent image of a single fluorescence-labeled lipid molecule in a
phospholipid bilayer, and (b) the recording of a part of a diffusion trace of a single
lipid molecule. From [58].

(QENS) [63–66] (cf. also Chap. 13), and electron spin resonance (ESR) [67]
have been used to obtain information of single-molecule motion in mem-
branes. The time and length scales probed by these techniques differ sub-
stantially, for which reason they are often characterized as either microscopic
or macroscopic methods (see also Chaps. 1, 9 and, e. g., [68]). We will come
back to this topic in Sect. 12.5, where some of these techniques are described
in more detail.

12.3.3 Lateral Diffusion of Lipids and Proteins

Characteristic Diffusion Coefficients

One of the compelling findings in membranes is the great variety of lateral
diffusion coefficients, which range from essentially zero to a value of about
10−10 m2/s. To gain some insight into the scales on a practical level, one may
consider a molecule diffusing for a period of 10 s at a rate of 10−11 m2/s.
Then the diffusion length is about 10µm, which is roughly the diameter of
an animal cell.
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Diffusion in membranes is strongly dependent on phase behavior. As a
practical example one may think of diffusion in a single-component bilayer
in the vicinity of the main phase transition temperature TM separating the
solid-ordered phase from the liquid-disordered phase. As the temperature
is changed by a few degrees from T < TM to T > TM, the system goes
through a sudden change from a “frozen and ordered” to a liquid-like bi-
layer, and similarly the diffusion coefficient changes abruptly from 10−20 –
10−14 m2/s [23,69] to about 10−12 – 10−10 m2/s [3,23,69]. The wide range of
diffusion coefficients in the liquid-disordered phase has been obtained by a
number of different experimental techniques, and even though this may seem
surprising, the diffusion coefficient actually depends on the technique used for
the measurement. Furthermore, the diffusion coefficient depends on whether
the bilayer is free as in a liposome or supported on a solid substrate [58]
which has in some cases been found to decrease the diffusion coefficient by a
factor of 4 – 5.

This observation is essentially due to the different time and length scales
probed by different techniques. Techniques such as QENS follow the dynam-
ics of molecules in a bilayer over short time scales (less than, say, 1 ns). Thus
they examine the “short-time” behavior often denoted as “rattling in a cage”,
which corresponds to local molecular motion of a lipid within the cage of its
nearest neighbors, over a distance smaller than the size of the molecule. Rigor-
ously speaking, the motion of molecules over such short time and length scales
is not related to the lateral tracer diffusion coefficient, since the actual diffu-
sion coefficient is defined in the hydrodynamic long-time limit only. However,
one may extract a “time-dependent diffusion coefficient” by, e.g., looking at
the time-dependence of the slope of the mean square displacement. MD simu-
lation studies using this approach have led to short-time diffusion coefficients
(cf., e.g., (10.9) of Chap. 10) on the order of 10−11 – 10−10 m2/s [3, 40, 70].

Rather generally, the diffusion coefficients get smaller at larger time scales
measured by techniques such as FRAP. This observation is often inter-
preted as evidence of domain formation. Then one expects that 〈|r(t)|2〉 ∼ t
over a relatively wide time window (say, from 1ns to 100ns), yielding an
intermediate-time diffusion coefficient, which describes the diffusion coeffi-
cient within the domain. Only at very long times, however, when the dif-
fusion extends over domain boundaries and protein networks that tend to
slow down the diffusion coefficient, one eventually finds the hydrodynamic
diffusion behavior. The time scales that differentiate these time regimes ob-
viously depend on a system under study, but the point is that macroscopic
techniques (over time scales of microseconds and length scales of micrometers
or more) may yield diffusion coefficients that are significantly smaller than
the short-time values.

As an example of this scale-dependent diffusion behavior, Table 12.1 lists
a few recent results for the lateral diffusion of lipids in a DPPC bilayer. This is
one of the most extensively studied single-component lipid systems at present.
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Table 12.1. Examples of lateral diffusion coefficients of lipids in single-component
DPPC (dipalmitoylphosphatidylcholine) bilayers. The time scale over which the
diffusion coefficient was determined is also given in some cases. Then “local” refers
to short times while “long range” is over a larger scale.

Technique Time scale T Diffusion coefficient Reference

MD < 10 ps 50oC 20 × 10−11 m2/s [71]
MD 0.3 – 0.5 ns 60oC 3 × 10−11 m2/s [3]
QENS 63oC 40 × 10−11 m2/s [72]
QENS “local (max)” 60oC 60 × 10−11 m2/s [64]
QENS “local (min)” 60oC 1.5 × 10−11 m2/s [64]
QENS “long range” 60oC 1 × 10−11 m2/s [64]
NMR 57oC 1 × 10−11 m2/s [73]

It is clear that the diffusion coefficients are reduced at long times, as the ideas
above suggest, although the effects due to domain formation expected at large
scales in many-component lipid bilayers are not included here. Further trends
of lipid diffusion have also been discussed in the literature. It has been found
that the diffusion coefficient is only weakly dependent on the chain length,
while the number of double bonds (unsaturation) has a pronounced effect on
diffusion.

Another remarkable feature associated with membranes is the role of flu-
idity for the diffusion of individual molecules. It has been found that in the
liquid-disordered phase the size of the hydrophobic part of the molecule does
not have noticeable effect on the diffusion coefficient but it is mostly deter-
mined by the properties of the head group [71, 74, 75]. The recent work by
Pampel et al. is particularly illustrating, as the pulsed field gradient NMR
studies of DOPC diffusion at 37oC yielded a lateral diffusion coefficient of
1.1 × 10−11 m2/s. This is in full agreement with the results in Table 12.1
despite the differences in acyl chain length and saturation between DPPC
and DOPC. This finding may have major general implications. First of all,
it proposes that labeling does not influence the diffusion coefficients of the
molecules significantly, but the labeled molecules move laterally essentially
at the same rate as non-labeled ones. Recent experiments and model calcu-
lations support this view [51, 54, 74]. The same line of thought suggests that
molecules inside lipid bilayers move essentially at the same rate as the lipid
molecules in a bilayer. Again, a number of works are consistent with this
idea. They have shown that molecules close to the headgroups diffuse later-
ally approximately at the same rate as the lipids, while molecules near the
center of the membrane diffuse 3 – 4 times faster than lipid molecules [8,76,77]
(see discussion below). Further, if the hydrophobic interior of the molecule
and its size are not very important, then one might expect that the lateral
diffusion coefficient of integral proteins is roughly as large as the diffusion co-
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Fig. 12.5. Snapshot of an MD simulation [8] of ubiquinone (UQ-10) inside a DPPC
bilayer (water not shown). Here the ubiquinone molecule is “swimming” close to
the center of the bilayer, where the density is substantially lower compared to other
parts in a membrane. Illustration by J. Arvid Söderhäll and Aatto Laaksonen.

efficient of lipid molecules. It turns out that this idea is supported by various
experiments [11].

It is indeed intriguing that the lateral diffusion coefficients of proteins
are typically from 10−14 m2/s to 10−11 m2/s [11, 78]. These are slower than
the diffusion coefficients of lipids, but only by a factor of ten or so. Yet
the size and mass of integral proteins are far larger than those of lipids.
Equally remarkable is the finding that the diffusion of proteins is only weakly
dependent on the physical dimensions of the protein. This is demonstrated
in the classical work by Saffman and Delbrück [79], who described proteins
as cylinders with radius R, and found that their diffusion coefficient can be
described as [79]

D� =
kBT

4πµh

(
log

µh

µ′ R − γ

)
, (12.3)

where h is the height of the membrane in which the protein is embedded,
µ and µ′ are the viscosities of the bilayer and the surrounding fluid, respec-
tively, and γ is the Euler constant. This expression is based on a number of
assumptions (including µ
 µ′), which are discussed in detail in [78].

Finally, let us briefly discuss the diffusion coefficients of molecules inside
lipid bilayers. Söderhäll and Laaksonen studied the diffusion of ubiquinone
inside a DPPC bilayer in the liquid-disordered phase through MD simula-
tions [8] (see Fig. 12.5). Ubiquinone acts as a charge carrier inside lipid bi-
layers from one protein to another, and thus the diffusion properties are of
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crucial importance in understanding the charge transfer process. Söderhäll
and Laaksonen found that ubiquinone with a short tail (UQ-et) preferred a
location close to the headgroups of lipid molecules, which is probably due to
the partially hydrophilic nature of UQ-et. The diffusion of UQ-et was found
to occur with a rate being essentially the same as the diffusion of DPPC
molecules. The diffusion coefficient of ubiquinone with a long tail (UQ-10),
in turn, was found to depend on the location of the molecule in a bilayer.
Close to the membrane surface, UQ-10 and lipids diffused with similar rates,
while in the center of the membrane the diffusion of UQ-10 was found to be
almost four times faster compared to the diffusion coefficient of lipids. This
finding is consistent with earlier studies of benzene diffusion inside a DMPC
bilayer [76, 77]. Thus it seems likely that the diffusion coefficient of mole-
cules inside lipid bilayers depends on the size and density of voids, which
are greatest in the bilayer center, and that this is somehow related to the
conformational ordering of acyl chains in a membrane.

Above we have discussed the diffusion in the liquid-disordered phase. It is
worthwhile pointing out that the picture is likely to be rather different in the
solid-ordered phase, where the ordered nature of the membrane comes into
play. In the solid-ordered phase, the diffusion of molecules in the center of the
bilayer will be relatively rapid, while the diffusion close to the headgroups
will slow down due to the “frozen” nature of the bilayer.

Diffusion Mechanisms and Theoretical Frameworks

Despite the significant progress in the field, the knowledge of the microscopic
mechanisms of how molecules diffuse in membranes is scarce. It has been
proposed [65, 80] that the motion of lipids in bilayers consists of two parts:
first of local diffusion of a lipid molecule at its site, and secondly of jumps
between adjacent sites. This suggestion has been tested by a number of studies
but the overall picture is still cloudy. Essmann and Berkowitz [3] found no
evidence in MD simulations for the two regimes expected in this mechanism,
while Moore et al. found [70] that the two-step mechanism might be valid. The
MD study by Moore et al. dealt with a pure DMPC bilayer, and during a time
scale of 10 ns they found two jump events in which a lipid molecule moved
relatively rapidly over a distance of its size in the plane of the membrane. Most
lipids, however, diffused uniformly like molecules in a fluid. This suggests
that the long-range diffusion of lipid molecules in pure bilayers (in the liquid-
disordered phase) is a mixture of jumps and uniform motion.

The idea of lateral diffusion as a series of jumps from one site to another
is interesting also from a theoretical point of view, since the so-called free-
volume theory [23,78,81] is based on this idea. Originally Cohen and Turnbull
[81] derived the free-volume theory to describe diffusion of hard spheres, but
later it has been applied to a number of systems including the diffusion of
lipids in a bilayer. In this approach, one assumes that lipids spend long periods
of time at their sites, and long-range diffusion takes place only if there is a



12 Diffusion in Membranes 487

hole (void) nearby to which the lipid can move. The hole may arise from
a vacancy left behind by another lipid molecule, or from collective density
fluctuations in a bilayer.

In the case of a two-dimensional system, the free-volume theory assumes
that the single-particle diffusion coefficient can be written as [81]

D =
∫ ∞

a∗
daD(a) p(a), (12.4)

where D(a) is the diffusion coefficient inside a free area a, and a∗ is the
critical free area defined as the minimum value of a that allows a jump from
one site to another (D(a) = 0 for a < a∗). The p(a) is the probability of
finding a free area of size a, and is written as

p(a) =
Γ

at − a∗
exp

(
− Γa

at − a∗

)
, (12.5)

where Γ is a geometric factor and at is the average area per molecule. Thus
at − a∗ is the average free area per molecule. For constant D(a), one obtains

D = D(a∗) exp
(
− Γa∗

at − a∗

)
. (12.6)

This expression has later been extended to cases where energy fluctuations
are important [23, 78].

Although both experiments [23, 64, 82, 83] and simplified model systems
[51,84] have provided support for the free-volume theory, one should bear in
mind that the critical free area a∗ is assumed constant in this description,
while in practice the size and the shape of molecules in membranes fluctuate
in time (thus a∗ depends on at). Further, it has been proposed that the free-
volume theory is valid only at high densities over a relatively narrow range
of areas per molecule [66, 84]. Nevertheless, the free-volume approach has
been shown to describe diffusion specifically in the liquid-disordered phase of
single-component lipid bilayers [23].

It is worthwhile pointing out that the microscopic verification of the free-
volume theory is still missing. One way to clarify this issue and to provide
more insight into the diffusion mechanism is to look at the displacement ∆r
made by a tagged lipid during a time interval ∆t. If the idea of a two-stage
diffusion process were true, then the corresponding probability distribution
P (∆r,∆t) would have a relatively narrow peak around ∆r ≈ RL. This kind
of experiment would be straightforward to carry out by MD simulations, and
has been employed in the case of benzene molecules diffusing inside a lipid
bilayer [76, 77]. For lipids in a bilayer, however, this idea is probably out of
reach at present due to the high computational cost. Perhaps forthcoming
model studies by MD and coarse-grained approaches (of the kind presented
in [46–49]) will clarify this issue.
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Besides the free-volume theory, there are several theoretical descriptions
that have been suggested to describe lateral diffusion under different condi-
tions and in a variety of different systems. These descriptions are discussed
in a comprehensive manner, e.g., in [23, 78].

Anomalous diffusion

Lateral diffusion is often assumed to take place in an unrestricted environ-
ment such that the mean square displacement is linear in time. In membranes
this assumption cannot be taken for granted, however. This idea is supported
by a number of experiments [57,85–87] that have revealed how labeled mole-
cules may be temporally confined to some domain or compartment, or how
the mean square displacement may show anomalous behavior [88–90] as char-
acterized by 〈|r(t)|2〉 ∼ tx with x �= 1.

Anomalous diffusion may be due to a number of reasons (cf. also Chap. 10).
It has been suggested that proteins embedded in membranes may act as ob-
stacles [91] or binding sites [92] and therefore hinder the diffusion of molecules
in a bilayer. In this case the diffusion may look anomalous at small times. At
large times, though, one expects normal diffusion unless the motion of lipids
is bounded. The diffusion may look anomalous also in a situation where the
membrane is locally highly curved or characterized by strong out-of-plane
fluctuations. Then, if the diffusion of molecules is interpreted by looking at
their trajectories projected onto the average plane of the membrane, it may
resemble anomalous diffusion at short times. Also in this case, however, the
diffusion is expected to be normal at long times. Another possible scenario
giving rise to anomalous diffusion is the heterogeneity of the bilayer. Perhaps
the simplest example in this respect is a binary mixture of two lipids at a
temperature, where one of the lipids is in the fluid (liquid-disordered) and
the other in the solid-ordered phase. A DMPC-DSPC mixture is an example
of this situation [23]. Then in coexistence of the two phases there are both
liquid-disordered-rich and solid-ordered-rich domains, and the lateral diffu-
sion in the fluid phase is very rapid compared to the solid-ordered phase.
Thus, if the relative concentration of lipids in the solid-ordered phase exceeds
some critical value, one expects the solid-ordered phase to percolate through
the system, implying that long-range diffusion is no longer possible. In bio-
logical membranes including the cytoskeleton network the situation is even
more subtle, as the membrane-associated network may lead to domains in
which the molecules are trapped for a certain (and usually long) period. The
transient confinement associated with this situation reminds one of anom-
alous diffusion at small times, while at (very) long times the molecules are
eventually expected to diffuse from one domain to another.

We may conclude that anomalous diffusion is relatively common in mem-
branes. However, one should keep in mind that in many cases the diffusion
properties depend on the time scale studied. The true tracer diffusion coeffi-
cient characterizing the lateral motion of individual molecules is found only
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from the long-time limit through (12.1). Thus, if the technique used looks at
times prior to the long-time regime, it provides information of the dynamics
over a given time scale instead of the actual hydrodynamic limit.

Lateral Tracer Diffusion in a Lipid-Cholesterol Mixture

Cholesterol is a major component of the plasma membrane of animal eukary-
otic cells, comprising up to 50mol % of the total lipid content [93]. A signif-
icant understanding of the role that cholesterol plays in the cell membrane
has been obtained from numerous experimental studies of lipid-cholesterol
model membranes [94]. These studies have demonstrated that cholesterol
has a variety of notable effects on the physical properties of lipid bilayers,
including an increase in the bulk bending modulus of bilayers containing
cholesterol [95], and changes in the orientational ordering of phospholipid
hydrocarbon chains [12]. Cholesterol also has a strong effect on the dynam-
ical properties of lipid bilayers, as is exemplified by numerous experimental
studies [62, 83, 96, 97] which have shown how cholesterol affects the rate of
lateral diffusion.

We shall here describe some observations for lateral tracer diffusion in
lipid bilayers containing cholesterol in order to illustrate how the diffusion
coefficient depends both on the phase state and the degree of conformational
order of long-chain lipid molecules. Off-lattice Monte Carlo simulations have
been used to study lateral diffusion [51] in lipid-cholesterol bilayers using a
two-dimensional minimal, strongly coarse grained model system [98,99]. This
study was motivated by two important ideas. First, the model predicted a
phase diagram in full qualitative agreement with the experimental phase
diagram of a lipid-cholesterol system. Second, since the model retains only
the key properties, which are expected to govern the behavior of interest
thereby omitting details of the molecular description which are not relevant
for phase behavior, one obtains an enormous reduction in the computational
cost of the simulations. This makes it possible to study much larger systems
for longer times, a feature which is necessary in order to be able to investigate
diffusion behavior over large time scales.

The phase diagram for the lipid-cholesterol model system [99,100] is shown
in Fig. 12.6. Figure 12.7 shows results for the lateral tracer diffusion coeffi-
cient DT of a lipid chain as a function of cholesterol concentration Xchol for
temperatures T/TM = 0.99, 1.0, 1.01, 1.02, and 1.03, where TM denotes the
temperature of the main phase transition.

It was found that for T ≥ TM, DT generally decreases as Xchol is increased
from 0 to 0.45. For these temperatures, there is initially a slow decrease in DT

for Xchol < 0.1, followed by a more rapid decrease up to about Xchol = 0.3,
after which the curves tend to level off. An interesting observation is that
for T/TM = 1.0, DT increases slightly with increasing Xchol. At the lowest
temperature of T/TM = 0.99,DT increases monotonically with Xchol. Finally,
for any value of Xchol, DT always increases with increasing temperature.
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Fig. 12.6. The phase diagram for a model of a lipid-cholesterol mixture as a
function of temperature T and cholesterol concentration Xchol. TM corresponds to
the temperature of the main phase transition. Shown here are the solid-ordered (so),
the liquid-disordered (ld), and the liquid-ordered (lo) phases. Coexistence phases at
intermediate cholesterol concentrations are also illustrated. The molecular structure
of cholesterol is shown in the inset.

Generally it was observed in the simulation studies that increasing the
cholesterol concentration suppresses DT due to an increased conformational
ordering of lipid chains. However, it seems likely that this effect competes with
an increase in the average free area per lipid, which favours an increase in DT.
The interplay of these two effects leads to the diffusion behavior shown in
Fig. 12.7, which in turn is in excellent qualitative agreement with available ex-
perimental results for lipid-cholesterol mixtures. In these systems the lateral
diffusion coefficient decreases by a factor of 2 – 3 for increasing the cholesterol
concentration from 0mol %, when the system is in the liquid-disordered (ld)
phase for T > TM, to 50mol %, for which the system is in the liquid-ordered
(lo) phase [51, 83]. Furthermore for T < TM, experimental observations are
in agreement with our results in the sense that increasing the cholesterol
concentration increases DT, with a rather abrupt change close to the phase
boundary between solid-ordered and liquid-ordered phases (so-lo) [69, 101].
In addition, the increase in DT with Xchol at sufficiently low T in the lo
phase (T ≈ TM) observed in our simulations was also observed by Almeida et
al. [83] in their FRAP study of lateral diffusion of DMPC-cholesterol bilayers.
Overall, the model results are in good qualitative agreement with experiments
and furthermore provide support for the free-volume theory [51].

Given the simplicity of the model, the results for phase behavior and lipid
diffusion in the cholesterol mixtures are in remarkably good qualitative agree-
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Fig. 12.7. Results for the lateral tracer diffusion coefficient of lipids in the model
of a lipid-cholesterol mixture as a function of cholesterol concentration Xchol. The
curves correspond to different temperatures as described by T/TM. The results for
DT are given in units of σ2 / tMC, where σ is the length scale related to the hard-
core size of a molecule (see [98] for details), and tMC is the time in Monte Carlo
units. The inset shows details in the data in order to highlight the non-monotonous
behavior at TM.

ment with experiment. This demonstrates first of all that microscopic details
are in many cases irrelevant for the large-scale properties of complex systems
such as lipid membranes. Further, the good agreement between experiments
and the model system serves as an instructive example of how statistical
physics can contribute to studies of membrane systems. The key idea is to
use the concepts and methods of statistical mechanics to simplify complex
systems. In this manner, one can obtain models, which grasp the essential
features of the system with minimal effort. In the present case, we conclude
that the minimal model described in [51,98–100] is sufficiently well designed
to describe a wide range of physical behavior of lipid-sterol systems.

12.4 Rotational Diffusion of Single Molecules

The rotational motion of lipids and proteins is characterized by the rotational
diffusion coefficient DR. To this end, let us use (12.1) and replace r with θ.
The angle θ is chosen to represent the desired degree of freedom such as the
rotation of the vector �12 from one of the lipid acyl chains to another (i.e.,
the vector from the center-of-mass of the sn-1 chain to the center-of-mass
of sn-2) around an axis perpendicular to the bilayer plane. Then Einstein
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equation yields

DR = lim
t→∞

1
2t
〈|θ(t) − θ(0)|2〉, (12.7)

where θ(t) − θ(0) is the overall change in the angle during a time period t
(thus θ is not bounded by −π and π). This definition is very suitable for
computational purposes, while in experiments it is less useful. The usual
way to circumvent this problem is to look at the decay of time correlation
functions that are written in terms of the Wigner rotation matrices [3, 39].
This approach is used in experiments such as NMR relaxation, and it is closely
related to the measurement of the lipid conformational order parameter [12],
which is one of the key quantities when the structure of lipid membranes is
being investigated.

As a specific example, one may consider the correlation function

C2(t) = 〈P2(u(t) · u(0))〉, (12.8)

where u(t) is some unit vector at time t, and P2(x) = 3
2x

2 − 1
2 is the second

Legendre polynomial. The unit vector u(t) can be chosen in various ways,
depending on the motion one wishes to examine. One commonly made choice
is to look at the time dependence of the CH unit vector of some methylene
group in an acyl chain. Then C2(t) essentially measures the rate of rotational
motion of this vector.

Once CR(t) has been measured, one has to fit the results to a decaying
exponential, whose decay rate yields a rotational relaxation rate, which is
proportional to DR. Alternatively, one can estimate rotational diffusion coef-
ficients by models such as the one developed by Saffman and Delbrück [79],
who treated a lipid molecule (or a protein) as a cylinder. Within this de-
velopment, the lateral and rotational diffusion coefficients are coupled by
the membrane viscosity. However, as Moore et al. pointed out [70], these ap-
proaches are marred by the fact that molecules in membranes change their
shape in time and therefore they are not modeled well by a cylinder of some
fixed shape and size. Nevertheless, both approaches [(12.7) and (12.8)] have
been used with success to provide valuable information of rotational diffusion
in membranes.

As examples of recent studies on rotational diffusion, we discuss a the-
oretical and an experimental approach focused on single-molecule imaging.
Firstly, let us consider the MD work by Moore et al. for lipids in a DMPC
bilayer [70]. They found that the rotational motion of individual compo-
nents in a lipid span three orders of magnitude from about 25 rad2/ns to
0.04 rad2/ns. The fastest component corresponded to the rotation of the sn-1
and sn-2 chains (for a vector from the first to the last carbon of each chain),
while the rotation of interchain vectors such as �12 were found to be the
slowest modes in this system. Moore et al. also concluded that for most of
the components, the translational and rotational diffusion are over different
time scales and therefore uncoupled.
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Secondly, we consider a novel method, called single-molecule anisotropy
imaging, that permits a simultaneous measurement of lateral and rotational
diffusion on fluorescence-labeled lipids in a bilayer [59]. In contrast to large
bead labels, a single fluorophore has a well-defined transition dipole mo-
ment with respect to its structure. In the case of the head-group label rho-
damine, its dipole is oriented within the plane of the membrane. Under
proper conditions of excitation lifetime, rotational time scale, and obser-
vation time, the rotational diffusion can be imaged directly and the rota-
tional diffusion coefficient be derived. Harms et al. [59] found for supported
bilayers of POPC DR = 0.07 rad2/ns in the liquid-disordered phase and
DR = 1.2 × 10−9 rad2/ns in the solid-ordered phase.

12.5 Lateral Collective Diffusion of Molecules in
Membranes

Like many complex soft-matter systems, membranes are characterized by col-
lective fluctuations that are essentially driven by thermal excitations. Out-
of-plane fluctuations such as undulations affect the shape and stability of the
membrane as is exemplified by the creation (budding) of liposomes [24] when
a part of the membrane separates from the parent membrane, or when a li-
posome breaks into two. The in-plane fluctuations, in turn, describe density
fluctuations in the plane of the membrane, and are related to area fluctu-
ations that may be one of the mechanisms, which lead to pore formation,
thus allowing passive diffusion of particles through membranes. Despite its
importance, it is rather surprising that the collective motions in membranes
are not well understood at the moment [102].

Here we deal with a collective aspect of motion related to density fluctua-
tions in membranes. The density fluctuations are characterized by the motion
of particles as local excess density is spread through collective diffusion. It
may sound surprising but in many cases it is the collective diffusion rather
than tracer diffusion that is measured in actual experiments.

12.5.1 Fick’s Laws

So far we have considered diffusion in terms of the Einstein equation that is
related to Brownian motion. However, the way how diffusion is described in
many textbooks is rather different (cf., e.g., (1.1) to (1.8) of Chap. 1). This is
probably due to the historical background since the so-called Fick’s laws were
likely the first attempt to grasp the essential ideas of mass transport. They
were formulated already in 1855 [103] by direct analogy with the equations
of heat conduction derived some years earlier by Fourier [104].

The starting point is a postulate that some of the quantities in a system
are conserved variables. In the case of diffusion, the conserved quantity is the
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particle density ρ(r, t). The second necessary ingredient for a hydrodynamical
description that one is looking for concerns the explicit form for the driving
force in diffusion. The general assumption in this respect is that, for systems
close to their equilibrium state, mass transport across a certain unit area is
proportional to the gradient of the particle density normal to the unit area.
These two ideas are described by the continuity equation

∂ρ

∂t
+ ∇ · j = 0, (12.9)

and the phenomenological Fick’s first law for the particle current density

j(r, t) = −D(ρ)∇ρ(r, t), (12.10)

where the hydrodynamic assumption of large length scales and long time
scales is already implicitly included. When these two expressions are com-
bined, one obtains

∂ρ

∂t
= ∇ ·D(ρ)∇ρ(r, t). (12.11)

The emerging expression is a non-linear partial differential equation, which
unfortunately is not often analytically soluble. For this reason, one usually
makes an additional assumption that D(ρ) does not depend on the density of
the diffusing particles, or that this dependence is weak. Then we get a linear
partial differential equation

∂ρ

∂t
= D∇2ρ(r, t), (12.12)

which is nothing but the usual diffusion equation, which can be often solved
exactly to yield the diffusion coefficient D.

Based on Fick’s second law, (12.12), D describes the decay rate of a
(small) density gradient. Evidently this process does not characterize the
same thing as Einstein’s relation (12.1), and therefore one makes a clear
distinction between the two diffusion coefficients. The diffusion coefficient
corresponding to single-particle motion is the tracer diffusion coefficient DT,
while the collective motion of the whole many-particle system is denoted as
the collective diffusion coefficient DC. Depending on the physical situation,
DT may be equal to the self-diffusion coefficient (see, e. g., Chaps. 1 and 10)
and DC is sometimes also called the coefficient of chemical diffusion (cf., e. g.,
Chaps. 3 and 18) or transport diffusion coefficient (Chaps. 10, 18 and 23).

12.5.2 Decay of Density Fluctuations

To gain some further insight into the physical meaning of DC, let us begin
with ρ(r, t), which describes the density of the lipid bilayer at position r at
time t. As the density of the system fluctuates in time, and we expect the
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system to be in equilibrium (or close to it), the relevant quantity here is the
density fluctuation δρ(r, t) = ρ(r, t)−〈 ρ 〉, where 〈 ρ 〉 is the average density in
a membrane. Then we define the density-fluctuation autocorrelation function

S(r, r ′, t) = 〈δρ(r, t) δρ(r ′, 0)〉. (12.13)

Now we can write Fick’s second law [see (12.12)] for the fluctuation δρ(r, t)
and assume translational invariance without loss of generality. Consequently
we get Fick’s second law for the density autocorrelation function:

∂S(r, t)
∂t

= DC ∇2S(r, t). (12.14)

In the hydrodynamic regime (small wave-vector k and large times), and as-
suming for simplicity the system to be isotropic, the corresponding Fourier
transform decays as

S(k, t) = S(k, 0) exp(−k2 tDC). (12.15)

Thus S(k, t) provides an interpretation of DC in terms of the decay rate of
density fluctuations. With a suitable small value of k, the collective diffusion
coefficient DC can then be extracted from the long-time tail of (12.15).

As a concrete example, one may think of some region in a membrane
in which the local density is obviously larger than the average density in
equilibrium. Then the density gradient drives the system towards equilibrium.
However, since the excess density at this region cannot spread locally, it must
spread over large length scales (small k) in the course of long times, thus
giving rise to a hydrodynamic collective diffusion process.

12.5.3 Relation Between Tracer and Collective Diffusion

Under general conditions, there is no simple relationship between the two
diffusion coefficients DT and DC. This is noticed by considering the motion
of N (identical) labeled molecules in a membrane. Then the Green-Kubo
equation for tracer diffusion is given by

DT =
1
dN

N∑
i=1

∫ ∞

0

dt 〈vi(t) · vi(0)〉, (12.16)

and the corresponding Green-Kubo equation for collective diffusion is

DC =
1

d kBTρNκT

∫ ∞

0

dt 〈J(t) · J(0)〉 , (12.17)

which for simplicity’s sake is here given for an isotropic system. The time
correlation function of the total particle flux J(t) =

∑N
i=1 vi(t) is described

in terms of velocities of the particles, the quantity ρ denotes the density of
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particles studied in this case, and κT is the corresponding compressibility.
The corresponding relations for nanoporous host-guest systems are (10.24)
and (10.25) of Chap. 10 (mind the difference in the notations for tracer (self-)
and collective (transport) diffusion in the respective communities).

Combining (12.16) and (12.17) yields

DC = DT
1

kBTρ κT

[
1 +

∑
i�=j

∫∞
0 dt 〈vi(t) · vj(0)〉∑N

i=1

∫∞
0

dt 〈vi(t) · vi(0)〉

]
. (12.18)

We see that the cross-correlations 〈vi(t) · vj(0)〉 determine whether a sim-
ple expression between DC and DT can be established. Such an expression
emerges if the velocities (displacements) of different particles are not corre-
lated at all. Then we get

DC = DT
1

kBTρ κT
. (12.19)

This situation is expected to be reasonable at very low concentrations, since
then interparticle interactions are not important and (12.19) works well. Fur-
ther, since the thermodynamic factor approaches a constant value in this
limit, limρ→0 kBTρ κT = 1 [105], one obtains DC ≈ DT at low concentra-
tions.

We can conclude that DT and DC are approximately equal provided that
interaction effects between the labeled particles are weak. In practice this
implies that one should look at the dilute regime at which the concentration
of labeled particles is small. Fortunately this is often the case in experiments
such as FRAP measurements where only a tiny fraction of lipid molecules
are labeled. However, several interesting issues remain unclear. For example,
what is the concentration at which the tracer diffusion begins to deviate sig-
nificantly from the collective diffusion, and how does the compressibility come
into play in collective diffusion. The latter question is particularly important
since the isothermal compressibility

κT =
1

kBTρ

〈N2〉 − 〈N〉2
〈N〉 (12.20)

is related to particle number fluctuations in the plane of a bilayer. These
fluctuations, in turn, are expected to show anomalous behavior in the vicinity
of phase transition lines. Thus we can expect that DC may provide one with
information of phase transitions and the locations of boundaries between
different phases. Further, the compressibility underlines a marked difference
between the two diffusion coefficients, and it is therefore justified to expect
very different behavior of DT and DC under certain conditions. To address
these questions, we will discuss some model results in Sect. 12.5.5.
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12.5.4 Methods to Examine Lateral Collective Diffusion

Computational Approaches

Having established a model, which can be studied through computer simula-
tions, one can determine DC from density fluctuations by (12.15) with small
k (for a system of size L3, one obtains k = 2π/L). Then the slope of lnS(k, t)
at large times yields DC. This approach is particularly suitable in the case
of discrete models such as those studied through Monte Carlo simulations,
in which velocities are not well defined. In systems with continuous inter-
action potentials such as those studied in MD simulations, one can use the
Green-Kubo approach in (12.17).

The computational cost of calculating DC is nevertheless large compared
to tracer diffusion. This is mainly due to the fact that, contrary to tracer
diffusion, all (labeled) molecules in a system are needed to provide one sam-
ple for the evaluation of DC. In other respects, the discussion presented in
Sect. 12.3.2 holds here as well.

Experimental Techniques

The Fourier transform of S(k, t) (in time),

S(k, ω) =
S(k, 0)
π

DC k
2

ω2 + (DC k2)2
, (12.21)

is very useful for practical cases, since it can be measured through (quasi-
elastic) neutron scattering experiments, for example (cf. Chaps 2, 3 and 13).
It yields

DC =
π

S(0, 0)
lim
ω→0

ω2 lim
k→0

1
k2
S(k, ω), (12.22)

when the direction in k-space is fixed.
Another widespread technique used to study lateral diffusion is the flu-

orescence recovery after photobleaching (FRAP) [60, 61], which has proved
to be a popular means to assess the structure and dynamics of membranes.
In this technique, a certain fraction of lipids in a membrane is labeled by
a fluorescently active probe. A light source is then focused onto a small re-
gion of the membrane to determine the background level of fluorescence, after
which the fluorescently active molecules within the region of interest are pho-
tobleached by a high-intensity laser. Consequently the intensity coming from
the blackened area drops down, but recovers in time as the fluorescently la-
beled molecules in the surrounding area diffuse into the region under study.
By measuring the rate of recovery of fluorescence, one is able to determine
the diffusion coefficient [29]. Further, the extent of recovery provides informa-
tion of how many molecules are able to move in a membrane, and therefore
FRAP can provide valuable information of regions where the motion of lipids
or proteins is confined.
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There are reasons to comment on a few subtle issues regarding this ap-
proach, however. First, the spatial resolution of FRAP is typically about
100nm, the time resolution about 100ns, and thus FRAP is not able to de-
tect the short-time dynamics of diffusing molecules. Second, the experiments
are done over hundreds or thousands of labeled molecules, and therefore they
do not provide a true description of single-particle motion. Rather, they de-
scribe the rate of how fast a large number of interacting molecules fills the
region of interest.

It is worthwhile pointing out that the FRAP technique is very similar to
the laser-induced thermal desorption method [106] used in surface science for
studies of collective diffusion (cf Chap. 7). Another technique closely related
to the FRAP experiment is the Boltzmann-Matano (BM) method [104] (cf.
Sect. 1.11.1 of Chap. 1), which also is commonly used in studies of collective
diffusion of particles migrating on solid surfaces ([106,107], see also Chap. 7).
In the BM method, one considers a step-like density gradient which starts
to spread at t = 0, and the concentration profile in time yields the collective
diffusion coefficient. In membranes, the same technique could be applied by
labeling a major fraction of lipids and then photobleaching the lipids beyond
some regime (say, x > 0). By following the concentration profile of fluo-
rescently active molecules as a function of x-coordinate in time, one could
extract the collective diffusion coefficient of the photobleached molecules. Al-
though this idea seems worthwhile, it has not, to the best of our knowledge,
been carried out yet.

Finally, a number of other techniques are often used in studies of lateral
diffusion. NMR T1 relaxation [62] measures diffusion over short distances,
although the results are interpreted in terms of Fick’s laws. QENS techniques
[63–66] are also microscopic as they extend over short times and distances,
and are comparable to current MD simulations. Larger scale properties of
diffusion are measured by NMR-spin echo [62] and ESR [67], among others.

12.5.5 Lateral Collective Diffusion in Model Membranes

Collective Diffusion in Lipid-Cholesterol Mixtures

We have emphasized in the discussion above that tracer and collective diffu-
sion characterize different aspects of mass transfer. Let us here illustrate by
an example how this difference is manifested in practice.

We use the same minimal model as in the study of lateral tracer diffusion
of lipid molecules in Sect. 12.3.3. Our objective is to examine a situation where
a certain number of labeled molecules are diffusing in a bilayer comprised
mainly of non-labeled lipids. The concentration of labeled molecules is varied
such that the total number of molecules in a bilayer remains constant. In the
present model system, this setup is accomplished by considering cholesterol
molecules as labeled ones, while the lipid molecules form the environment in
which the cholesterol molecules diffuse.
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Fig. 12.8. Results for the lateral tracer and collective diffusion coefficients of choles-
terol molecules in the model of a lipid-cholesterol mixture as a function of cholesterol
concentration Xchol. The results for DT are given in units of σ2 / tMC, where σ is
the length scale related to the hard-core size of a molecule (see [98] for details), and
tMC is the time in Monte Carlo units. Results are given at two temperatures as de-
scribed by T/TM, where TM is the temperature of the main phase transition. Tracer
diffusion results are shown by squares (T/TM = 1.02) and diamonds (T/TM = 0.99),
while results for collective diffusion are illustrated by triangles (T/TM = 1.02) and
circles (T/TM = 0.99).

In Fig. 12.8 we show data for the tracer and collective diffusion coefficients
of cholesterol molecules as a function of cholesterol concentration Xchol. We
find thatDT ≈ DC at small concentrations, as expected, but at larger concen-
trations of cholesterol molecules the deviation between DT and DC becomes
more and more apparent. In the high-temperature phases at T > TM, the
crossover from DT ≈ DC to DT �= DC takes place around Xchol = 5 %,
after which the two diffusion coefficients have little in common. In the low-
temperature phase at T < TM, the deviation between DT and DC becomes
clear around Xchol = 5 – 7%, where one crosses the boundary between so
and so-lo phases. Perhaps surprisingly, the quantitative difference between
DT and DC is not prominent. Instead, the difference in both cases is most
pronounced in the qualitative features and is somehow related to the phase
behavior of the system.

The purpose of this example is not to provide quantitative understanding
of how large concentrations of labeled molecules one can safely use in studies
of lateral tracer diffusion. However, these results show that DT and DC are
distinctly different, and this difference becomes clear even at relatively small
concentrations. In practice, the crossover concentration is likely to depend
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on the strength and extent of intermolecular interactions, and is obviously
system dependent.

12.6 Diffusive Transport Through Membranes

So far we have been concerned with diffusional processes that take place
within and along the plane of the membrane sheet. Since membranes serve
their main purpose as barriers for diffusion across the membrane in order
to maintain various gradients needed for biological activity, it is of major
interest to understand what determines these barrier properties and how
they may be modulated. The importance of these questions becomes clear
when considering that the main reason for cell death is membrane leakage,
and that the most efficient way to kill bacteria and microbes is to damage
their membranes by lowering their membrane permeability barrier by poking
holes in the membrane by certain peptides. The most important barriers
for live processes in vertebrates include the blood-brain barrier and the skin,
which both are barriers mediated by membranes. One of the most challenging
questions is to figure out how new and potent drugs can cross these barriers.

Crossing the lipid-bilayer membrane is a complex process since it involves
traversing a stratified and highly structured interface of both hydrophilic
and hydrophobic nature [108]. If we first consider membrane proteins, these
do not diffuse randomly across the membrane without being facilitated by
certain enzymes and transporter molecules. In contrast, the lipid molecules,
being amphiphilic, undergo so-called flip-flop diffusion that takes the mole-
cule from one leaflet of the bilayer to the other. However, since this process
involves transfer of a hydrophilic head group through the hydrophobic in-
terior, it is exceedingly slow and characterized by time scales in the range
from minutes to days. The flip-flop processes that are needed to maintain the
membrane in its functional asymmetric state are controlled by specific trans-
membrane proteins (‘flippases’). Spontaneous flip-flop processes can however
be enhanced by various solutes that change the trans-membrane profile.

The passive trans-membrane diffusion of various molecular species is re-
ferred to as passive permeability. Lipid bilayer membranes are fairly perme-
able to water, gaseous substances like CO2 and O2, and small hydrophobic
molecules like benzene, whereas ions and larger molecular species such as
glucose and amino acids as well as peptides pass only very slowly.

The permeation of molecular species across lipid bilayers [109, 110] de-
pends on both the diffusion coefficient and the solubility of the permeant in
the membrane. The permeability therefore intimately reflects the inhomoge-
neous nature of the membrane, both transversely and laterally. The detailed
motion of permeants in lipid bilayers is difficult to monitor experimentally,
and new insight into the mechanism of permeation therefore mostly stems
from molecular dynamics calculations [40].
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It has appeared from such studies, in accordance with interpretation of
experiments [111], that the main barrier to trans-bilayer permeation of small
molecules is the region that contains the carbonyl groups which are in be-
tween the head-group region and the hydrophobic region in Fig. 12.2. In this
region diffusion is hampered by the low free volume. Furthermore, the highly
ordered lipid acyl-chain segments underneath the carbonyl groups tend to ori-
ent anisotropic permeants. The rate of permeation is strongly dependent on
the molecular size and polarity of the permeant. Deeper into the hydropho-
bic region, small molecules like benzene take advantage of the available free
volume and diffuse by a non-Brownian jump mechanism such that the diffu-
sion coefficient turns out to be about the same throughout the hydrophobic
bilayer core. In contrast, larger molecules, e.g. the drug analogue molecule
nifedipine [112], undergo simple Brownian diffusion and the diffusion coeffi-
cient is therefore dependent on the position in the bilayer. The properties of
the head-group region, which is about 8 Å wide and has maximum density,
are important for the penetration of ionic species into the bilayer. In this
region the water density gets very small and all water molecules present are
involved in the hydration of the lipid polar head groups. This is the bound-
ary zone where impinging ions will have to change their hydration level and
look for water fingers in order to get into the hydrophobic interior of the
bilayer. The central core of the hydrophobic region is the region of lowest
density because of the disordered chain segments. This hydrophobic region
easily dissolves permeating hydrophobic species and can accommodate large
and bulky (drug) molecules.

Turning now to the effect on permeation of the lateral structure of the
lipid bilayer it is obvious that the considerations for trans-bilayer permeation
presented above have to be modified in order to account for the possibility
that the actual bilayer profile, which a given permeant sees, can vary laterally
across the bilayer [113]. This is particularly important under those conditions
where the bilayer undergoes large fluctuations in local density or composition
due to the proximity to phase transitions and phase-separation phenomena.
In those cases, small-scale structural heterogeneity and lipid-domain struc-
ture as illustrated in Fig. 12.9 are expected to prevail [114, 115]. The small-
scale structure implies the presence of domain boundaries with less favorable
molecular packing conditions. At these boundaries, which act effectively as
defect lines, more free volume is available which in general will enhance per-
meation under the conditions that produce such heterogeneity. This effect is
illustrated in Fig. 12.10(a) [116], which shows that at the main transition, the
lipid bilayer displays an anomalous permeability behavior in the case of Na+

permeation through DPPC bilayers. This permeability anomaly is in fact a
fairly generic phenomenon, which is not only found for small cations but also
for a number of other small and larger molecular compounds.

When several different lipid species are present in a bilayer membrane, a
more complex phase behavior arises due to phase coexistence as described
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Fig. 12.9. Lateral structure of lipid monolayers transferred to a solid support and
subsequently imaged by atomic force microscopy. The lateral structure in these
monolayers are similar to that in bilayers. The different grey tones reflect height
differences. (a) Lipid monolayer of DMPC in the fluid phase near the phase transi-
tion. Image size is 5 µm× 5µm. Maximum height difference is about 5 Å. (b) Lipid
monolayer of a binary mixture of DMPC-DSPC near the coexistence region. Image
size is 250 nm× 250 nm. Maximum height difference is about 2 Å.

by the thermodynamic phase diagram. This has some dramatic consequences
for the permeability of the bilayer. Figure 12.10(b) shows the permeability
of a small negative ion (dithionite, S2O2−

4 ) [117] through 1:1 DMPC-DSPC
bilayers. It is observed that the permeability displays two peaks corresponding
to the liquidus and solidus phase boundaries. This implies that the binary
bilayers become leaky at the borders of the coexistence region. Furthermore
it is interesting to note that the level of the permeability in the coexistence
region is considerably higher than in either of the two phases. This suggests
that the mixture is not fully separated and therefore possibly not in thermal
equilibrium.

It is possible to take advantage of these special mixing properties of lipid
bilayers to design bilayer systems, e.g. in the form of liposomes to be used for
drug-delivery purposes, with particularly strong enhancer effects in relation to
permeation. An example is a mixture involving short-chain lipids like DC10PC
[117]. The short-chain lipid molecules enhance fluctuations and hence the
lateral heterogeneity of the liposomal membranes leading to dramatic leakage.

This enhancement of trans-bilayer permeation due to small-scale bilayer
structural heterogeneity is expected to be a generic effect and qualitatively
independent of the permeating species and the lipid material. Of course, the
magnitude of the enhancement and the range of parameter values (tempera-
ture, composition, pH, etc.) over which it occurs depends on details, such as
the size, charge, and hydrophobicity, of the permeant, as well as the materials
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(a) (b)

Fig. 12.10. (a) Relationship between passive permeability of Na+-ions (•) mea-
sured by radioactive tracer experiments and computer simulation of lipid-bilayer
heterogeneity (—). (b) Thermal scan across the phase diagram of a 1:1 lipid-bilayer
mixture of DMPC-DSPC showing the variation of the trans-bilayer permeability of
dithionite ions (S2O

2−
4 ) measured by fluorescence quenching techniques.

characteristics of the lipid bilayer (thermodynamic phase, polar head groups,
degree of acyl-chain unsaturation, etc.).

Once having established the relationship between small-scale lipid-bilayer
structure and trans-bilayer diffusion, it becomes of interest to explore how one
can use this relationship to modify permeation of certain substances, such as
drugs, by manipulating the microstructure [117]. The effect of cholesterol is
a particularly interesting example [118]. In fluid lipid bilayers, cholesterol in
amounts larger than about five molar percent effectively acts as an acyl-chain
rigidifier hence lowering the free volume in hydrophobic region of the bilayer.
This leads to a suppression of the permeation and therefore a sealing effect
of bilayer. It is interesting to note that cholesterol (or similar sterols) is uni-
versally present in large amounts (about 30 – 50%) in the plasma membranes
of all eucaryotes.

12.7 Conclusion

Diffusion of lipids and other molecules in membranes is an example of the
dynamic nature of soft fluctuating interfaces. This feature is characteristic for
various soft-matter systems that are governed by interactions on the order of
thermal energy. Consequently, understanding the dynamics of membranes is
highly challenging, since one needs to work on a bridge between truly solid
and fluid phases, and since one has to deal with the time-dependent nature of
diffusion as well as the wide range of time and length scales associated with
diffusion processes.

In the present chapter, we have tried to illustrate some of the key features
of diffusion in membranes. Hopefully we have managed to open the door a
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little and guide your way to work on the topic. It is fascinating that despite
all work done so far, there are major gaps in our understanding of diffusion,
ranging from the microscopic molecular limit of diffusion mechanisms up to
the large-scale properties of diffusion in lateral heterogeneous environments
of large topological complexity, to name just a few examples. The topic is
genuinely interesting, and we wish to encourage all to reveal its secrets.

Notation

a free area in a bilayer
a∗ critical free area in a bilayer
at average free area per molecule
C2(t) time autocorrelation function
d dimensionality
D diffusion coefficient
D(a) diffusion coefficient inside a free area a
DC collective diffusion coefficient
DT tracer diffusion coefficient
DR rotational diffusion coefficient
D� diffusion coefficient of proteins
h height of the membrane
J(t) total particle flux
j(r, t) particle current density
k wave vector
kB Boltzmann constant
�D diffusion length
�12 vector from site “1” to site “2”
N number of molecules
p(a) probability of finding a free area of a
P (∆r,∆t) probability to find a displacement of ∆r over a time interval of

∆t
P2 2nd Legendre polynomial
r(t) position at time t
R2

L area per lipid
R radius
S(r, r ′, t) density autocorrelation function
t time
T temperature
TM main phase transition temperature of the lipid bilayer
u(t) unit vector at time t
v(t) velocity at time t
vi(t) velocity of particle i at time t
x exponent
Xchol cholesterol concentration
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Γ geometric factor
∆r particle displacement
∆t time interval
Θ(t) angle in time t
κT isothermal compressibility
µ viscosity of the bilayer
µ′ viscosity of the surrounding fluid
〈ρ〉 average density
ρ(r, t) local particle density at r at time t
τc characteristic time scale
φ(t) velocity autocorrelation function
ω frequency
BM Boltzmann-Matano
DNA deoxyribonucleic acid
DMPC dimyristoyl phosphatidylcholine
DPPC dipalmitoyl phosphatidylcholine
DSPC distearoyl phosphatidylcholine
ESR electron spin resonance
FRAP fluorescence recovery after photobleaching
MD molecular dynamics
NMR nuclear magnetic resonance
PC phosphatidylcholine
PLPC palmitoyl-laureoyl phosphatidylcholine
POPC palmitoyl-oleoyl phosphatidylcholine
QENS quasi-elastic neutron scattering
RNA ribonucleic acid
UQ ubiquinone
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13 Viscoelasticity and Microscopic Motion

in Dense Polymer Systems

Dieter Richter

13.1 Introduction

The mechanical properties of condensed matter are generally divided into
two classes: solids, such as metals or glasses, behave elastically; for small
deformations the stress is proportional to the strain – Hooke’s law is valid.
Liquids display viscous behavior; in this case the stress is proportional to the
change in strain, Newton’s law persists. In contrast, the mechanical dynam-
ical properties of polymers are extraordinarily versatile. Depending on the
temperature or load time, the same polymer may display vitreous, rubber-
like or fluid behaviour. This wide range of behaviour is known as viscoelastic.

In particular, the dynamic modulus of long-chain linear polymers dis-
plays a plateau regime which expands with growing chain length [1]. In this
plateau region, the stress is proportional to strain – although a liquid, the
polymer melt behaves elastically. For long times the material yields and vis-
cous behavior takes over. This behaviour reminds us of the rubber elasticity
of chemically cross-linked polymers. The elastic modulus of rubbers is pro-
portional to the temperature and inversely proportional to the mesh size of
the network. The proportionality to temperature is caused by entropic forces
resulting from the conformational entropy of the coiled chains between the
network points. If chain pieces are stretched, an entropic force originating
from the reduction of free energy acts with the aim of restoring the more
probable coiled state for these stretched segments.

Based on this analogy to rubber elasticity it is natural to assume that the
elastic behaviour of polymer melts is caused by network-like entanglements of
the polymer chains, so that the melt becomes a temporary network. The role
of the network points is taken over by entanglements. The plateau modulus
is ascribed to the rubber elastic modulus of this temporary network. On
this assumption it is possible to estimate the mean distance between the
hypothetical entanglement points in the melt from the value of the plateau
modulus. The resultant entanglement distances d are typically of the order
of d = 40 − 100 Å. Compared with the two characteristic length scales of
a polymer, the monomer length � ∼ 5 Å and the coil end-to-end distance
RE ∼ 1000 Å, the entanglement distance defines an intermediate length scale
of a dynamic nature.
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If a solid is subjected to a mechanical strain, then the individual atoms
or molecules move in their local potential and take on a new equilibrium
position. A macroscopic deformation at a polymer, in contrast, causes com-
plex molecular rearrangements, starting from individual bonds up to and
including the molecular dimensions. On the scale of the individual bond,
these rearrangements proceed at a speed similar to that in a normal solid.
This local bond dynamics is governed by the local potentials and occurs on
length scales of a few Ångstrøms and times from several picoseconds upwards
and is of particular interest in connection with glass transition phenomena.
For intermediate times corresponding to spatial distances shorter than the
entanglement distance we expect motional mechanisms which are driven by
entropic forces. These motions are described by the so-called Rouse model [2].
As the spatial extension of motion increases and reaches dimensions of the en-
tanglement distance, the freedom of motion of the chain is greatly restricted.
The temporary network leads to a localization of the chain, which dominantly
moves like a snake along its own profile due to the network, which restricts
lateral motions. For very long times, the chain leaves its original topolog-
ical restrictions behind – the plateau modulus relaxes [3]. This concept is
essentially contained in the reptation model of de Gennes. All associated
movements, starting from lengths of about 1 Å and times in the order of
magnitude of 10−11 s up to the size of a molecule of typically 1000 Å, deter-
mine the viscoelastic properties of a polymer system.

Applying quasielastic neutron scattering (QENS) the aim of the stud-
ies presented here was a space-time analysis of the above-described mo-
tions [4–23], in order to achieve molecular understanding of the mechanical
properties of polymer melts. After a short introduction to the neutron spin-
echo technique, which complements the presentation of quasielastic scattering
given in Chaps. 2 and 3, five topics will be dealt with. First of all, experi-
ments on the local bond dynamics and segmental motion giving rise to the α-
and β-relaxation in polymer systems will be reported. Thereafter, the entropi-
cally driven Rouse motion will be discussed. Subsequently, on long chains this
chapter presents direct experimental observation of the reptation process. At
the end we address the transition regions: First we report data from the cross
over from universal entropic Rouse dynamics to local dynamics. Then we ex-
amine the entanglement transition and display how topological restrictions
manifest themselves if the polymer chain length increases.

13.2 The Neutron Scattering Method

Scattering methods play a prominent role if spatial structures are to be ex-
plored on the atomic and molecular scale. The two most important probes
are photons in the X-ray region and neutrons. While photons with appropri-
ate wavelength possess energies of the order of keV, neutrons with de Broglie
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Fig. 13.1. Schematic representation of a neutron scattering experiment; Mono:
monochromator; Anal: analyzer; Det: detector; Ei, Ef , incident and scattered neu-
tron energies; ki, kf : corresponding wave vectors; ∆E: energy transfer; �Q: momen-
tum transfer; 2ϑ: scattering angle.

wavelengths in the Å region have thermal or subthermal energies. The neu-
tron probe thus permits a simultaneous space and time analysis of the thermal
motion in condensed matter [24] (see also Chaps. 2 and 3). Whereas the X-
ray photon provides information about the molecule location, the neutron
reveals the location of an atom and its direction, type and rate of motion.
Unlike photons, neutrons are scattered on the atomic nucleus. This provides
the possibility of selective atomic labelling by isotope exchange. Especially
the scattering properties of protons and deuterons, described by their scat-
tering lengths (bH = −0.34 · 10−12 m, bD = 0.66 · 10−12 m), are particularly
different. As a unique feature therefore neutrons provide the opportunity to
study synthetic and biological macromolecules among their equals if labelled
by deuteration. For example, the coil conformation of the polymer in the melt
and in the amorphous state was only confirmed experimentally in this way.

Figure 13.1 shows the schematic setup of a neutron scattering experiment.
A monochromator is used to select neutrons with a defined energy, Ei, and
a wave vector, ki, from the neutron spectrum of a neutron source. These
neutrons are scattered on a specimen and analysed under the scattering angle
2ϑ. The analyser chooses neutrons with a wave vector kf and an end-point
energy Ef . These neutrons are identified in a detector. Momentum transfer
�Q = �(ki − kf) and energy transfer ∆E = Ei − Ef correspond to distances
r

∼= 2π/Q and to times t ∼= h/∆E.
A neutron scattering experiment generally measures the space-time Fourier

transform of the pair-correlation function S(Q,ω) or, in specific cases, only
the spatial Fourier transform S(Q, t) (�ω = ∆E) (cf. Sect. 3.2 in Chap. 3). In
classical approximation, the pair-correlation function means the conditional
probability of finding an atom j at location r and time t, if another atom i was
at location r = 0 at time t = 0. For i = j the self-correlation function is ob-
tained, which measures the time-dependent thermally averaged mean square
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displacement 〈(ri(0)− ri(t))2〉. For the time-dependent scattering function in
the so-called Gaussian approximation we have

S(Q, t) =
1
N

N∑
ij

exp
(
−Q2〈(ri(0) − rj(t))2〉

)
. (13.1)

In the case of a labelled polymer, ri and rj denote the spatial monomer
coordinates and N is the number of monomers in a chain. The sum extends
over all monomers in a chain.

13.2.1 The Neutron Spin-Echo Technique
Versus Conventional Scattering

The unique property of the neutron spin-echo (NSE) technique [25, 26] is its
ability to directly measure energy changes of the neutron during scattering.
This distinguishes NSE from conventional scattering techniques which, as
explained above, proceed in two steps: first monochromatization of the inci-
dent beam and then analysis of the scattered beam. Energy and momentum
changes during scattering are determined by taking differences between two
measurements. In order to achieve high energy resolutions with these conven-
tional techniques, a very narrow energy interval must be selected from the
relatively low-intensity neutron spectrum of the source. Conventional high-
resolution techniques therefore always have difficulties with low intensity.

Unlike these conventional techniques, NSE measures the neutron veloci-
ties of the incident and scattered neutrons using the Larmor precession of the
neutron spin in an external magnetic field. The neutron spin vector acts like
the hand of an internal clock, which is linked to each neutron and stores the
result of the velocity measurement at the neutron itself. The velocity mea-
surement is thus performed individually for each neutron. For this reason, the
velocities prior to and after scattering on one and the same neutron can be
directly compared and a measurement of the velocity difference during scat-
tering becomes possible. The energy resolution is thus decoupled from the
monochromatization of the incident beam. Energy resolutions of the order of
10−5 may be achieved with an incident neutron spectrum of 20% bandwidth.

13.2.2 Neutron Spin Manipulations with Magnetic Fields

The motion of neutron polarization – it is the quantum mechanical expecta-
tion value of neutron spin – is described by the Bloch equation

d
dt

P =
|g|µN

�
[B × P ] (13.2)

where g is the g-factor of the neutron (g = −3.82), µN the nuclear magne-
ton and B the flux density of the magnetic field H. The factor gµN/� is
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/2� = 180°

� = 180°

Fig. 13.2. Spin angular operations in neutron spin-echo technique; a) arrangement
of a Mezei coil for a rotation of the neutron spin by the angle π; b) motion of neutron
polarization during π angular operation; c) motion of neutron polarization during
a π/2 rotation, after [25].

equal to the magnetogyric ratio γ commonly used in NMR (see Chaps. 9,
10 and 17; for the neutron γ = −1.83 · 108 T−1s−1). Equation (13.2) is the
basis for manipulation of the neutron polarization by external fields. Let us
discuss two simple spin angular operations. We consider a neutron beam,
which propagates with a polarization parallel to the direction of propagation
in the z-direction. A magnetic guide field parallel to z stabilizes the polar-
ization. First of all, we will explain the so-called π-coil, which reverses two
components of the neutron spin. Its principle is shown in Figs. 13.2a and b.

A flat, long, rectangular coil, a so-called Mezei coil, is slightly tilted with
respect to the x,y plane. A magnetic flux Bc is generated so that the resultant
flux Bπ = Bo + Bc points to the x-direction. A neutron spin entering this
field begins to rotate about the x-axis. During a time t = d/v, d being the
coil thickness and v the neutron velocity, a phase angle φ = ωLt is passed.
With the Larmor frequency ωL = g(µN/�)Bπ and v = h/(λm) we find

φ =
(

2π|g|µNm

h2

)
λBπd (13.3)

where m is the neutron mass and λ the neutron wavelength. φ is thus given by
the line integral

∫
Bds and is proportional to the wavelength. If we take, for

example, a coil thickness of d = 1cm and a neutron wavelength of λ = 8 Å,
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a field Bπ of 0.85mT is needed to rotate the neutron spin by 180◦. Such a
spin rotation operation is shown schematically in Fig. 13.2b. Thereby, the
components of polarization x,y,z are transferred to x,−y,−z.

The second important spin angular operation is the 90◦ rotation where
the polarization is transformed from the z- to the x-direction or vice versa.
A Mezei coil in the x,y-plane is adjusted such that the resultant field points
exactly to the direction of the bisectrix of the angle between x and z. A
180◦ rotation about this axis transforms the z-component of polarization to
the x-direction. At the same time, the sign of the y-component is inverted
(Fig. 13.2c).

13.2.3 The Spin-Echo Principle

The basic experimental setup of a neutron spin-echo spectrometer is shown
in Fig. 13.3. A velocity selector in the primary neutron beam selects a wave-
length interval of about 10%–20% width. The spectrometer offers a primary
and a secondary neutron flight path passing through the precession fields B
and B′. Prior to beginning the first flight path, the neutron beam is polarized
in the forward direction with the aid of a supermirror polarizer. A first π/2
coil rotates the polarization to the x-direction perpendicular to the direction
of propagation. Beginning with this well-defined initial condition, the neu-
trons precess in the precession fields. Without the effect of the π-coil each
neutron would go through a phase angle φ ∝

∫
Bds (see (13.3)). Since the

wavelengths of the neutrons are distributed over a wide range, the phase an-
gle for each neutron would be different in front of the second π/2 coil and the
beam would be depolarized on a disk perpendicular to z. The π-coil, which
is exactly positioned at the value of half the field integral, prevents this ef-
fect. Let the neutron spin pass through the phase angle Ω1 = 2πn + ∆φ1

on its way to the π-coil. The effect of the π-coil transforms the angle ∆φ1

to −∆φ1. In a symmetric arrangement (both field integrals in front of and
behind the π-coil are identical) the neutron spin passes through a second
phase angle φ2 = φ1 = 2nπ + ∆φ1. The spin transformation at the π-coil
thus just compensates the angles ∆φ1, and in front of the second π/2 coil
the neutron spin points again to the x-direction irrespective of the velocity.
This effect is called spin focusing or spin echo and is also the basis of various
NMR techniques to study diffusion (see Chap. 9, Sect. 9.3; Chap 10, Sect.
10.3; Chap. 17, Sect 17.2).

The second π/2 coil projects the x-component of polarization onto the
z-direction. It is then determined by a subsequent supermirror analyser and
detector. In a spin-echo experiment, the specimen is positioned near the π-
coil. With the exception of losses due to field inhomogeneities, the polariza-
tion is maintained in the case of elastic scattering. If, however, the neutron
energy is changed due to inelastic scattering processes in the specimen, then
the neutron wavelength is modified from λ to λ′ = λ + δλ. In this case,
the phase angles φ1 and φ2 are not compensated anymore. The second π/2
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B

B

B

B

Fig. 13.3. Schematic representation of a neutron spin-echo spectrometer.

coil now only projects the x-component of polarization from a general direc-
tion into the z-direction. This part of the polarization is then identified by
the analyser. Apart from resolution corrections, the final polarization Pf is
obtained from the initial polarization Pi as

Pf = Pi

∫ +∞

−∞
dωS(Q,ω) cosωt . (13.4)

The polarization Pf is proportional to the Fourier transform of the scattering
function S(Q,ω). The transformation from δλ to ω gives the relation between
Fourier time, wavelength and magnetic field as t ∝ λ3B. NSE is a Fourier
technique, which measures the real part of the intermediate scattering func-
tion S(Q, t). The time variation in a spin-echo experiment is performed by
changing the magnetic field.

Figure 13.4 shows a technical realization of the spin-echo spectrometer
at the Jülich FRJ-2 research reactor. Particularly striking are the Larmor
precession coils in front of and behind the specimen. Furthermore, some of
the coils for the spin angular operations can be recognized.

13.3 Local Chain Dynamics and the Glass Transition

The local chain motion under the influence of freezing processes is character-
ized by a very broad range of time scales. Figure 13.5 displays a relaxation
map for (1–4) polybutadiene (PB) sketching the major dynamical features
of a glass-forming polymer. The shown data points are taken from dielec-
tric studies [27], from measurements of the dynamical modulus [28] and from
neutron scattering [4, 7, 29].

We distinguish three different dynamical regimes:

(i) the freezing process is controlled by the structural α-relaxation exhibit-
ing a pronounced non-Arrhenius temperature dependence. Phenomeno-
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Fig. 13.4. The neutron spin-echo spectrometer in the ELLA laboratory at the
FRJ-2 of FZ Jülich. The two large coils producing the precession fields are clearly
visible. The smaller Helmholtz coils are used for the spin angular operations.

logically it is well described by a Vogel-Fulcher temperature dependence:
τ−1 ∝ exp(−B/(T − T0)).

(ii) At a temperature about 20% above Tg a secondary relaxation process,
the βslow relaxation, splits from the α-process. Other than the primary
α-relaxation βslow follows an Arrhenius law and is not affected by the
glass transition.

(iii) At high frequencies, in the picosecond range, characteristic low frequency
excitations – the Boson peak and the associated fast relaxation process
called βfast are indicated [30]. Following Fig. 13.5 the relevant time scales
for the glass process from the Boson peak and the fast relaxations to the
freezing α-relaxation span 14–15 orders of magnitude.

Though the relaxation dynamics of polymers has been investigated by
relaxational methods at least for five decades, still little is known about the
underlying molecular motions. In principle, varying the momentum transfer
Q, quasielastic and inelastic neutron scattering is capable of providing the
space-time resolution in order to access the relaxations on a molecular level. In
this section we discuss results from coherent quasielastic neutron scattering
on the relaxational dynamics in the α/βslow merging region [9, 14, 15] and
relate them to some recent incoherent (QENS) results on the self motion
[18, 31].



13 Viscoelasticity and Microscopic Motion in Dense Polymer Systems 521

Fig. 13.5. Relaxation map
for (1–4) polybutadiene cover-
ing the prevailing dynamical fea-
tures around the glass transition.
The frequency range for the Bo-
son peak and the associated fast
relaxation-like dynamics (βfast)
are indicated schematically. The
full and open circle along the
α-relaxation trace represent di-
electric [27] and mechanical
[28] results, respectively. The
full squares display characteristic
rates obtained from neutron spin
echo spectroscopy [4,9]. The time
scale of the α-process has been
shifted to match that of the mi-
croscopic data. The dashed line
represents the temperature de-
pendence of the βslow process ob-
served by dielectric spectroscopy
[15].

13.3.1 Dynamic Structure Factor

We begin by displaying the qualitative behavior of the dynamic structure
factor and then turn to a quantitative evaluation. Figure 13.6 shows the
intermediate dynamic structure factor as measured by NSE (cf. (13.1)) at a
Q-value close to the first minimum of the static structure factor S(Q) [9]. Ac-
cording to the time-temperature superposition principle the time dependence
of S(Q, t) was rescaled with the time scale of the α-relaxation as obtained
from dynamic mechanical measurements [32]. Above the merging tempera-
ture of the α and βslow relaxation Tm ≈ 220K (see Fig. 13.5) the different
spectra collapse to a single master curve following a Kohlrausch-William-
Watts (KWW) time dependence: τ−1

KWW ∝ exp
(
−(t/τ0)β

)
with β = 0.41.

Below 220K severe deviations from scaling are observed which are accompa-
nied by an increase of the amplitude of the relaxation function. As we shall
see this deviation from scaling is a signature of the βslow process.

We now inspect the Q-dependence of the dynamic structure factor in
more detail. Figure 13.7 displays NSE spectra taken at the position of the
first and second peak of S(Q) – the first peak or amorphous halo thereby
relates mainly to interchain correlations while the second peak stems from
intrachain distances. The data were rescaled with the time scale τη set by
the viscosity relaxation. At the first peak all data collapse on a single master
curve, which can be described by a stretched exponential using the dielectric



522 Dieter Richter

Fig. 13.6. Selected neutron spin echo spectra obtained at Q = 1.88 Å−1 from
polybutadiene [14]. The time was rescaled to the viscosity scale. (� 280 K, • 260 K,
� 250 K, ♦ 240 K, + 230 K, � 205 K, 	 190 K, ◦ 180 K) The solid line represents the
master curve obtained from the spectra at temperatures higher than 220 K. The
dashed lines represent individual fits to the low temperature data.

stretching exponent βdiel = 0.41. In contrast, at the second peak the spectra
do not follow the time-temperature superposition principle determined by τη
and strong deviations from a single master curve are obvious.

Extracting characteristic times from both sets of spectra, those from the
interchain peak follow, as already signified by the master plot, the Vogel-
Fulcher temperature dependence of the α relaxation, while those from the
second peak obey an Arrhenius law with an activation energy identical to
that of the dielectric β relaxation [14]. Thus, at the two first structure factor
peaks qualitatively different aspects of the chain dynamics are observed; at
the interchain peak the diffusive structural relaxation stands out, while at
the intrachain peak the more local βslow relaxation dominates the density
fluctuations.

In the range of pure βslow relaxation below the merging temperature Tm

the main features of the dynamic structure factor can be understood in terms
of a simple model based on local jump processes with jump rates determined
by a Gaussian distribution of energy barriers as derived from dielectric re-
laxation. The βslow relaxation is assumed to be a spatially localized process.
The simplest picture of an elemental motion is a jump of an atom between
two equivalent sites separated by a distance d with a characteristic time
τ = τ0 exp(EA/kBT ) whereEA is the activation energy and kB the Boltzmann
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Fig. 13.7. Scaling representation of neutron spin echo data from polybutadiene at
Q = 1.48 Å−1 (◦ 280 K, • 260 K, � 240 K, � 230 K, � 220 K (upper figure) and at
Q = 2.71 Å−1 (◦ 300 K, • 280 K, ♦ 260 K, � 240 K, � 220 K, � 205 K, � 190K, |
180 K, 	 170 K). The solid lines correspond to KWW functions (see text) [15].

constant. For such hopping processes the incoherent intermediate scattering
function is given by

Shop
inc (Q, t) = 1 − 1

2

(
1 − sinQd

Qd

)
+

1
2

(
1 − sinQd

Qd

)
e−2t/τ

= 1 − Ahop(Q, d) + fhop(Q, d, τ, t) . (13.5)

Coherent and incoherent scattering differ with respect to the presence of in-
terference terms in the coherent scattering. Let us consider the jump motion
of a pair of atoms. If such atomic jumps are uncorrelated, dynamic con-
structive interferences are absent and it follows naturally that the dynamic
quasielastic part assumes the form of the incoherent part. Note, however, that
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interference terms from the average atom distribution remain giving rise to
S(Q). If the motions are correlated it can be shown that interference effects
are small as long as the jump distances are smaller than the distances be-
tween atom pairs. Under this assumption the coherent inelastic part can be
approximated by the incoherent inelastic part, and the normalized coherent
scattering function can be written as

Sβ
coh(Q, t)
S(Q)

= 1 − Ahop(Q, d)
S(Q)

+
fhop(Q, d, τ, t)

S(Q)
. (13.6)

Figure 13.8 displays the result of the fit with this model to the Q and T
dependent spectra. Implying for the jump distance the slight barrier energy
dependence of the soft potential model d ∝ E

1/4
A a most probable jump dis-

tance of d = 0.15nm evolves. Furthermore, the experiment reveals the very
astonishing result that the density fluctuations, which are directly observed
by the neutrons, decay two orders of magnitude faster than the dipole reori-
entations seen by dielectric spectroscopy (see also [33]).

The total scattering function for the βslow process then follows from an
averaging over the different relaxation times with the energy barrier distrib-
ution from dielectric spectroscopy.

Figure 13.9 shows the relative quasielastic contribution of the βslow process
to the structure factor as calculated on the basis of the parameters obtained
by the fitting procedure. The result explains immediately the qualitatively
different behavior of S(Q, t) at the first two maxima of S(Q). Due to the
renormalization of the quasielastic part in (13.6) with S(Q) the contribution
of the βslow process at the first maximum of S(Q) is minute, while it becomes
very strong close to the second maximum explaining the Arrhenius behavior
of the characteristic times at highQ. Further evaluation considering explicitly
the coherent form factor of the moving rigid building blocks of the chain (cis
and trans units involving the double bond) essentially confirms the outcome
of the analysis within the simple hopping model [15].

At temperatures around the merging temperature Tm and above, the time
scales of α- and β-relaxations become similar and consequently the dynamic
structure factor has to be generalized in order to include the structural α-
relaxation or so-called segmental diffusion. When this segmental diffusion
reaches the timescale of the local relaxation, the atoms and molecular groups
will noticeably participate simultaneously in both motional mechanisms: the
intrachain β-relaxation and the interchain α-relaxation. We assume that to
first order both mechanisms are statistically independent from each other.
We shall see that on the basis of this hypothesis the Q- and temperature-
dependent dynamic structure factors in the merging regime and above can
be consistently accounted for.

Being a conditional probability, the self-correlation function correspond-
ing to an atom undergoing two different statistically independent motions,
α and β, can be written as a convolution product of the corresponding self-



13 Viscoelasticity and Microscopic Motion in Dense Polymer Systems 525

Fig. 13.8. Neutron spin echo spectra from polybutadiene a) at T = 205 K and
for different Q-values ♦ 1.4 Å−1, � 1.56 Å−1, ◦ 1.88 Å−1, • 2.55 Å−1; and b) at
Q = 2.71 Å−1 for various temperatures ♦ 170 K, � 180 K, ◦ 190 K, • 205 K. The
ordinates corresponding to each spectrum are given on the left and right side,
respectively. Solid lines correspond to the fit with the hopping model for the β-
relaxation [14].

correlation functions:

Gαβ
S (r, t) =

∫
Gβ

S(r, t)Gα
S (r − r′, t) dr . (13.7)

This implies that the incoherent structure factor obtained by Fourier transfor-
mation of Gαβ

S (r, t) becomes a product of the structure factors corresponding
to the two processes:

Sαβ
S (Q, t) = Sα

S (Q, t)Sβ
S(Q, t) . (13.8)

In the coherent case the derivation of a similar expression is not straightfor-
ward because the correlations between all the pairs of scatterers (j, i) have
to be taken into account. It can be shown that a relation similar to (13.8)
holds if for the segmental diffusion the incoherent approximation is made.
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Fig. 13.9. Amplitude of the relative quasielastic contribution of the βslow process
to the coherent scattering function obtained from the hopping model as a function
of Q. The static structure factor S(Q) at 160 K is shown for comparison (solid
line) [14].

This assumption corresponds to the so-called Vineyard approximation [34],
in which Sβ

coh(Q, t) takes the role of S(Q).
In incoherent approximation the relaxation function for the α-process ϕα

can be described by a KWW function

ϕα(Q, t) = exp

[
−

[
t

τKWW(Q, t)

]β
]

(13.9)

with β = 0.41 from the shape of the dielectric spectra. τKWW(Q, t) is the char-
acteristic Q- and temperature-dependent relaxation time. With the structure
factor for the β-process evaluated at low temperature (see above) we obtain
similar to (13.8)

Sαβ(Q, t)
S(Q)

= ϕα(Q, t)Sβ
coh(Q, t)/S(Q) . (13.10)

All parameters involved in the coherent structure factor of the β-relaxation
are known from the evaluation at low T and are extrapolated to the higher
temperatures. Figure 13.10 shows the comparison between theory and exper-
iment for several temperatures at the first maximum, minimum and sec-
ond maximum of S(Q) (Fig. 13.10a) and for 260K at different Q-values
(Fig. 13.10b). The excellent agreement between the scattering function
(cf. (13.10)) and the experiment strongly supports the hypothesis that the
α- and β-relaxation occur independently of each other.
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Fig. 13.10. Data from polybutadiene: (a) NSE-spectra for the Q-values indicated
at 220 K (�); 240 K (�); 260 K (
) and 280 K (♦). (b) at 260 K for the Q-values
indicated. The solid lines display the model predictions.

13.3.2 Self-Correlation Function

In Gaussian approximation [20] the self-correlation function for a diffusive
process is directly related to the mean square displacement 〈r2(t)〉 by

Sself
α (Q, t) = exp

{
−Q2

6
〈r2(t)〉

}
. (13.11)

It is measured by analyzing the incoherent scattering from protonated sam-
ples. For the α-process the scattering functions are well described by stretched
exponentials (see (13.9)). It is worthwhile to note that (13.11) is completely
equivalent to the expression for spin-echo attenuation ((10.18) of Chap. 10
with the product D∆ expressed by the mean square displacement) of pulsed
field gradient NMR, whence in the latter technique the quantity γδg assum-
ing the position of Q is sometimes referred to as a generalized scattering
vector.
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If the system is homogenous, i.e. all particles undergo the same fate on the
time scale of observation, then a combination of (13.11) and (13.9) implies

〈r2(t)〉 = D̃tβ and τKWW(Q) ∼ Q−2/β (13.12)

invoking sublinear diffusion of the polymer segments as the underlying rea-
son for the stretched exponential dependence. Its signature is a power-law
dependence of the Kohlrausch-Williams-Watts relaxation times τKWW with
an exponent 2/β.

Figure 13.11 displays the τKWW values obtained by backscattering spec-
troscopy (see Chap. 3) for four different polymers, polyvinylether (PVE) at
340K, polyisobutylene (PIB) at 365K, polybutadiene (PB) at 280K and
polyisoprene (PI) at 340K for different momentum transfers [20]. To test
(13.12), the relaxation times have been exponentiated with the exponent β
obtained from the stretching of the relaxation functions in these polymers by
dielectric spectroscopy. According to (13.12) τβ

KWW should be proportional
to Q−2. The solid lines in Fig. 13.11 display this power law relation. As may
be seen, in all cases the predicted power law within experimental error is
followed by the experimental relaxation times. Recent data on PIB and PI
confirm these results with high accuracy [35,36]. Thus, the experimental ev-
idence supports a sublinear diffusion process as underlying the α-relaxation.
We remark that this result is in disagreement with assertions [19, 37], that
the stretched exponential relaxation function of the α-process originates from
heterogeneous motional processes, where polymer segments in different parts
of the sample would relax at different relaxation rates.

In the temperature range, where the α-relaxation is too slow to be ob-
served by neutron scattering, the β-process can be measured. The correspond-
ing spectra are a superposition of elastic and inelastic components indicative
of a localized motion.

Figure 13.12 displays this elastic part of the intensity, observed for PIB as
a function ofQ [31]. The data were corrected for multiple scattering and fitted
with the elastic incoherent structure factor (EISF) for a jump process between
two sites. The EISF is the Fourier transform of the self-correlation function
in the limit of infinite times and reveals the asymptotic proton distribution
(see also (3.18), Chap. 3). The fit reveals the jump distance d = 0.27nm. For
comparison the solid line displays the prediction for methyl group rotation,
which was invoked earlier on the basis of NMR experiments [38]. Within a
factor of two the time scale obtained from the neutron results agrees with that
from dielectric spectroscopy. Since the underlying process has an amplitude
of 0.27 nm and is also dielectrically active, it cannot be understood as due to a
methylgroup rotation alone. A possible interpretation is a combined backbone
and methyl motion, which is also supported by simulation results [39].

Let us draw a first conclusion: Exploiting the Q-dependence of the co-
herent dynamic structure factor, which is accessed by NSE, at temperatures
below the merging temperature Tm spatial information on the chain motions
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Fig. 13.11. Momentum transfer dependence of the characteristic time of the α-
relaxation for the polymers investigated: PVE at 340 K (
), PIB at 365 K (•), PB at
280 K (�) and PI at 340 K (�): (τKWW)β as a function of Q in a double logarithmic
plot. Solid lines represent the Q-dependence expected in the homogenous scenario
[τKWW]β ∼ Q2.

behind the β-relaxation was obtained. The results suggest intrachain mo-
tions like rotations of the chain building blocks (cis and trans units) within
one chain. At temperatures around and above Tm the NSE results qualified
the α-relaxation as being mainly related to interchain motions. The dynamic
structure factor, thereby, can consistently be described assuming that α- and
β-relaxations in 1,4 PB are statistically independent processes.

The self-correlation function measured on protonated samples reveals the
mean squared displacement of the moving hydrogens. The Q-dependence
of the characteristic relaxation time shows that motions underlying the
α-relaxation at least on a time scale larger than that of the dielectric
α-relaxation (corresponding to typically τKWW (1 Å−1)) are following a
Gaussian process and are homogenous in nature.

13.4 Entropic Forces – The Rouse Model

We now turn to longer length scales, where motions resulting from local
chain potentials have already taken place, assume that the chains do not
interfere with each other in their motion and consider a Gaussian chain in a
heat bath as the simplest model for chain relaxation. The elements of such
a Gaussian chain are the so-called Kuhn segments, which consist of a few
monomers, so that their end-to-end distance follows a Gaussian distribution.
Their conformations are described by vectors an along the chain. The chain
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Fig. 13.12. Elastic incoherent intensities from PIB at 260 K (
) and 280 K
(•). The solid lines represent the prediction for methyl group rotation Iel =
3
4

�
1
3

�
1 + 2 sin QrHH

QrHH

�
+ A 2

3

�
1 − sin QrHH

QrHH

��
+ 1

4
with rHH = 0.178 nm and A re-

lates to the jump time distribution function (see [4]). The dashed line gives the fit
result for a two-site jump model with d = 0.27 nm.

is then described by a sequence of freely connected segments of length �. We
are interested in the motion of these segments on a length scale � < r < RE.

This motion is described by a Langevin equation

ζ0ȧn + ∇n · F{ai} = fn(t) (13.13)

where ζo is the friction coefficient, fn the stochastic force acting on the
segment n of extension an and F the free energy. For segment motion,
the force ∇nF{ai} is dominated by the entropic part of the free energy
(S = k ln Prob{ai}), where

Prob{ai} ∼
N∏

i=1

exp
(
−3a2

i

2�2

)
(13.14)

is the probability of a chain conformation {ai}. We ascertain that the re-
sultant entropic force is a special property of macromolecular systems with
a large number of internal degrees of freedom. This conformational entropy
generates the force stabilizing the most probable conformation. As already
mentioned above, it is also the basis for rubber elasticity.

The Rouse equation of motion (cf. (13.13)) is solved by a spectrum of
normal modes. These solutions are similar to the transverse vibrational modes
of a linear chain except that relaxations are involved instead of periodic
vibrations. We obtain for the relaxation rates
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1
τp

=
3π2kBT

ζ0N2�2
p2 (13.15)

where N denotes the chain length. The mode index p counts the number
of nodes along the chain. The relaxation rate is proportional to the number
of nodes to the second power. On the basis of these normal modes we can
calculate the dynamic structure factor S(Q, t). This will be done later on.
Here, an asymptotic solution for long chains will be briefly dealt with. It was
formulated by de Gennes [40], who finds for the characteristic relaxation rate
Ω

Ω =
1
12

kBT

ζ0
�2Q4 . (13.16)

Unlike diffusion, where the characteristic relaxation rate is proportional to
the momentum transfer Q2, the fourth power is found here. Another char-
acteristic quantity of diffusive motions is the mean square displacement of a
segment. For Rouse motion follows

〈(r(0) − r(t))2〉 ∼ t1/2 (13.17)

which, again, is in clear contrast to normal diffusion where a linear time law
holds. In Fig. 10.19 of Chap. 10 patterns of PFG NMR results for polymer
diffusion are presented which follow the dependence of (13.17), though they
do not relate to Rouse motion. The Rouse equation (13.13) applies to a
length domain which is greater than the segment length and which is limited
upwards by the entanglement distance. In this domain, no further length
scale appears. The dynamic structure factor therefore assumes a scaling form
linking length and time scales.

S(Q, t) = f(Q2�2
√
Wt) (13.18)

with the Rouse rate W = 3kBT/(ζ0/l2).

13.4.1 Neutron Spin-Echo Results in PDMS Melts

In order to study the Rouse dynamics, a polymer with a low plateau modu-
lus is needed, i.e. few entanglements and high flexibility and mobility. Poly-
dimethylsiloxane (PDMS) fulfils these conditions. Neutron spin-echo exper-
iments were carried out for both the self-correlation function and the pair-
correlation function in PDMS melts.

Neutron measurements of the self-correlation function are normally per-
formed on protonated materials since then the incoherent scattering is
strongly dominating. Due to spin flip scattering, which leads to a loss of
polarization, this approach is difficult for the NSE method. In order to avoid
this obstacle, high-molecular-weight deuterated PDMS containing short pro-
tonated labels at random positions was synthesized. Each of these protonated
sequences contained eight monomers. In such a specimen, scattering is mainly
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Fig. 13.13. NSE spectra for the self-correlation function measured in a randomly
labelled PDMS melt at 100◦C. The data are scaled with the Rouse variable (σ2 ≡
l2). The solid line is the result of a fit with the Rouse self-correlation function.

Fig. 13.14. NSE spectra for the pair-correlation function in PDMS melts at 200◦C.
The solid lines are the result of a fit with the coherent structure factor calculated
by de Gennes (see text).
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Fig. 13.15. Dependence of the charac-
teristic relaxation rate Ω as a function
of the momentum transfer Q resulting
from an analysis of the spectra shown
in Fig. 13.14. The solid lines denotes the
predicted Ω ∼ Q4 dependence.

caused by the contrast between the protonated sequence and the deuterated
environment and is therefore coherent. On the other hand, the sequences are
randomly distributed, so that there is no constructive interference of par-
tial waves from different sequences. The scattering experiment measures the
self-correlation function under these conditions [5].

In Fig. 13.13 the scattering data are plotted versus the scaling variable of
the Rouse model (cf. (13.18)). The results for different momentum transfers
follow a common straight line. For the case of the self-correlation function, the
scattering function directly measures the mean square displacement which,
according to (13.17), follows a square root law in time. This behaviour can be
directly read from Fig. 13.13 (For data from polyethylene propylene (PEP)
see also [41]).

The pair-correlation function for segment dynamics of a chain is observed
if some protonated chains are dissolved in a deuterated matrix. The scat-
tering experiment then observes the result of the interfering partial waves
originating from such a chain (cf. (13.1)). Figure 13.14 presents the dynamic
structure factor of a deuterated melt with 5% protonated chains. The solid
lines represent a fit with (13.18) [12]. Obviously, the structure factor calcu-
lated by de Gennes satisfactorily describes the neutron data (the only fit
parameter W�4 = 3kBT�

2/ζ0). Figure 13.15 presents the characteristic relax-
ation rate Ω as a function of momentum transfer Q. The data are in very
good agreement with the predicted Q4 law.

The microscopic Rouse relaxation rate W also determines the viscosity of
the non-entangled melt
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Fig. 13.16. NSE data
from PE melts vs.
computer simulations
using the EA and UA
models for different
Q(≡ q) values/Å−1.

η =
ρNA

NM0

kBT

2

∑
p

τp =
ρNA

M0

kBT

12
N

W
(13.19)

where ρ is the polymer density and NA the Avogadro constant. Measured
viscosities and calculated viscosities using the microscopically determined
rate W are in agreement within 20%.

13.4.2 Computer Simulations

In order to learn about the limits of the Rouse model, recently a detailed
quantitative comparison of molecular dynamics (MD, cf. also Chap. 23) com-
puter simulations on a 100C-atom polyethylene chain (PE) with NSE exper-
iments on PE chains of similar molecular weight has been performed [17].
Both the experiment and the simulation were carried out at T = 509K. Sim-
ulations were undertaken for an explicit (EA) as well as for a united (UA)
atom model. In the latter the H atoms are not explicitly taken into account
but reinserted when calculating the dynamic structure factor. The potential
parameters for the MD simulation were either based on quantum chemical
calculations or taken from literature. No adjusting parameter was introduced.
Figure 13.16 compares the results from the MD-simulation (solid and broken
lines) with the NSE spectra. In order to correct for the slightly different over-
all time scales of experiment and simulation, the time axis is scaled with the
center-of-mass diffusion coefficient. From Fig. 13.16 quantitative agreement
between both results is evident.

Figure 13.17 compares the same experimental data, which agreed quan-
titatively with the simulations, with a best fit to the Rouse model (see [17]).
Here a good description is observed for small Q-values (Q ≤ 0.14 Å−1), while
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Fig. 13.17. NSE
data from PE melts
in comparison to a
best fit with the Rouse
model for different
Q(≡ q) values/Å−1.

at higher Q important deviations appear. Similarly also the simulations can-
not be fit in detail with a Rouse structure factor.

Having obtained very good agreement between experiment and simula-
tion, the simulations which contain complete information about the atomic
trajectories may be further exploited, in order to rationalize the origin for
the discrepancies with the Rouse model. A number of deviations evolve.

1. According to the Rouse model the mode correlators should decay in a
single-exponential fashion. A direct evaluation from the atomic trajec-
tories shows that the 3 contributing Rouse modes decay with stretched
exponentials displaying stretching exponents β of (0.96 (mode 1) and 0.86
(modes 2 and 3)).

2. A detailed scrutiny of the Gaussian assumption reveals that for t < τR
deviations occur.

3. While the Rouse model predicts a linear time evolution of the mean
squared centre of mass coordinate, within the time window of the simu-
lation (t < 9 ns) a sublinear diffusion in form of a stretched exponential
with a stretching exponent of β = 0.83 is found. A detailed inspection of
the time-dependent mean squared amplitudes reveals that the sublinear
diffusion mainly originates from motions at short times t < τR = 2ns.

The prediction of a time-dependent center-of-mass diffusion coefficient has
recently been corroborated by NSE-experiments on short-chain polybutadi-
enes [42]. Figure 13.18 displays the mean squared center-of-mass displacement
from simulation compared to the same quantity obtained from the dynamic
structure factor at various Q-values. Both the simulation and the experimen-
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Fig. 13.18. Mean square center-of-mass displacement for PB chains in the melt
obtained from 〈r2(t)〉 = − 6

Q2 n�S(Q, t). Solid line: simulation result; thin line

〈r2(t)〉 = DRt.

tal data consistently lead to a weaker than linear time dependence of the
center-of-mass displacement.

The overall picture emerging from this combined simulational and experi-
mental effort is, that for chains, which should be ideal Rouse chains, the model
is capable of quantitatively describing the behaviour only on time scales of
the order of the Rouse time or larger and therefore on length scales of the
order of the radius of gyration of the chains or larger and in the regime, where
the chains actually show Fickian diffusion. The self-diffusion behaviour for
times smaller than the Rouse time and the relaxation of the internal modes of
the chains show small but systematic deviations from the Rouse prediction.
The origin of these discrepancies are traced to interchain interactions. On
the other hand, we will see that deviations observed at higher Q relate to
intrachain potentials.

Let us draw a second conclusion: The chain dynamics for times, where en-
tanglement effects do not yet play a role, is excellently described by Langevin
dynamics with entropic restoring forces. The Rouse model nearly quantita-
tively describes (i) the Q-dependence of the characteristic relaxation rate,
(ii) the spectral form of both the self- and the pair-correlation function and
(iii) establishes the correct relation to macroscopic viscosity. (iv) Finally, de-
tailed comparisons with MD-simulation reveal small deviations originating
from interchain interactions.



13 Viscoelasticity and Microscopic Motion in Dense Polymer Systems 537

13.5 Long-Chains Reptation

13.5.1 Theoretical Concepts

The reptation model of de Gennes [43], Doi and Edwards [44] proceeds on the
intuitive assumption that the motions of a chain in a melt are significantly
impeded by the surrounding chains in directions lateral to its own profile. The
dominant diffusive motion, therefore, proceeds along the coarse-grained chain
profile. A chain meanders through a melt like a snake. The lateral restrictions
are modelled by a tube running parallel to the coarse-grained chain profile.
Its diameter is correlated with the plateau modulus of the melt, as discussed
in the introduction. The restriction of motion by other chains is not effective
on the monomer scale, but permits lateral motions on intermediary length
scales (dt

∼= 50 . . . 100 Å). In this simple intuitive model, the experimental
observations for viscosity and diffusion can be readily made comprehensible.

According to (13.19) the viscosity is determined by the longest relaxation
time – here the abandonment of an initial configuration. Assuming that the
chain is subject to a Rouse diffusion within its tube, DR ∝ 1/N holds for the
tube diffusion. The chain has left an initial configuration when it is diffused
over a contour length L = �N . This gives

τη ∝ L2

D
∝ N3 ∝ η . (13.20)

In space, the contour of the chain follows a Gaussian random path, i.e. the
chain diffuses over a spatial distance during the time τη, which corresponds
to its end-to-end distance (RE ∝ N1/2). The reptation diffusion coefficient
then reads

Drep ∝ R2
E

τη
∝ 1
N2

. (13.21)

Whereas the experimentally observed viscosity generally depends on the
molecular weight with an exponent slightly greater than 3 – there is rea-
son to suppose that an N3 law is fulfilled for very long chain lengths – the
predicted chain length dependence of the diffusion coefficient is directly con-
firmed experimentally.

What are the consequences of the localization tube for the dynamic struc-
ture factor? For short times during which the mean squared segment displace-
ment is smaller than the tube limitation, the chain motion should proceed
without being affected by the tube restriction. In this case, the Rouse law
should apply, especially its scaling property of momentum transfer and time
(cf. (13.18)). For medium times, density fluctuations transversely to the tube
have already equilibrated. Pair correlations along the tube are stabilized by
the localization tube and are only decomposed when the chain leaves the
tube. We thus expect that the dynamic structure factor tends to a constant
dependent on Q. A further decomposition of S(Q, t) only occurs for times
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of the order of τη. The value of the Q-dependent plateau results from the
Fourier transform of the localization tube. The essential new feature in the
dynamic structure factor of the reptating chain is the appearance of a length
scale d, which invalidates the scaling property of the Rouse model.

Quantification requires analytical models, which can be compared with
the data. We would like to briefly discuss three different model categories
without explaining them in detail. (i) In so-called generalized Rouse models
[45, 46] the effect of the topological constraints is described by a memory
function. In the limiting case of long chains, in the time domain of the NSE
experiment the dynamic structure factor can be explicitly calculated in such
models. (ii) Neglecting the initial Rouse motion for small values of the Rouse
scaling variable in his local reptation model de Gennes explicitly calculated
the collective chain motion in the localization tube [47]. For the dynamic
structure factor in the limit of long times, this gives

S(Q, t)
∣∣
t→∞ = S(Qdt;Q2t1/2)

∣∣
t→∞ = 1 − Q2d2

t

36
. (13.22)

(iii) Des Cloizeaux finally formulated a rubber-like model for the chain motion
for intermediate times [48]. He assumed that for intermediate times the en-
tanglement points of the chains are fixed in space and that the chains perform
Rouse motions under the boundary condition of fixed entanglement points.
This rubber-like model is closest to the concept of a temporary network.

13.5.2 Experimental Observations of Chain Confinement

Figure 13.19 compares the dynamic structure factors from polyethylene
melts, both taken at 509K for two different molecular weights [7, 8, 16, 23].
Figure 13.19a displays the structure factor for a short-chain melt (Mw =
2000g/mol). The solid lines display a fit with the Rouse dynamic structure
factor. Very good agreement is achieved. Figure 13.19b displays similar re-
sults from a PE melt with a molecular weight of Mw = 12400g/mol. The
solid lines present the predictions of the Rouse model. While for the short-
chain melts this model describes well the experimental observations, for the
longer chains the model fails completely. Only in the short-time regime the
initial decay of the dynamic structure factor is depicted, while for longer
times the relaxation behaviour is strongly retarded signifying confinement
effects. In Fig. 13.20 the data from a Mw = 36000 PE-melt at 509K are
plotted as a function of the scaling variable of the Rouse model (see (13.18)).
In contrast to Fig. 13.13 the scaled data do not follow a common curve, but
after an initial common course they rather split into Q-dependent branches.
This splitting is a consequence of a dynamic length scale present in the melt,
which invalidates the Rouse scaling properties. We note, that this length is
of purely dynamical character and cannot be observed in static experiments.

Figure 13.21 presents recent experimental results on a polyethylene melt
(Mw = 190000), which were carried over a time regime of 170 ns [23]. The data
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a)

b)

Fig. 13.19. Dynamic structure factors from PE-melts at 509K (a) Mw = 2000; (b)
Mw = 12400. The solid lines display the predictions of the Rouse model.

are compared with the dynamic structure factor of the reptation model [47]
and are very well described. We note, that the fits were performed varying
only one single parameter, namely the tube diameter d, while the Rouse
rate was determined from earlier NSE data taken at short times. With this
one parameter it is possible to achieve quantitative agreement with respect
to both the Q and the time dependence of the dynamic structure factor.
We further note, that the dynamic structure factors predicted by the other
confinement models discussed above are not able to fit the data [16].

It is illustrative to visualize the large spread of the time regimes relevant
for the dynamics of the Mw = 190000 molecule. The elementary Rouse time
amounts to 2.5 ps. The cross over time to local reptation τe = 5ns. The
Rouse time of the chain τR = 45 µs and finally the disentanglement time
τd = 11.7ms. Thus, the relevant time scales spread over a range of more than
nine orders of magnitude. The corresponding length scales are much closer
together. The segment length � = �0

√
C∞, where C∞ is the characteristic

ratio, is 4 Å, the tube diameter d = 46 Å and the chain end-to-end distance
RE = 418 Å.

We are now drawing a third conclusion. NSE experiments on long-chain
polymer melts have verified the molecular existence of an entanglement length
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Fig. 13.20. Scaling presentation of the dynamic structure factor from a Mw =
36000 PE-melt at 509 K as a function of the Rouse scaling variable. The solid lines
are a fit with the reptation model [47]. The Q-values (Q ≡ q) are (from above)
Q = 0.05, 0.077, 0.115, 0.154 Å−1.

Fig. 13.21. Dynamic structure factor from a long-chain PE-melt (Mw = 190000)
at 509 K. The solid lines represent a fit with the reptation model [47].

which, being of dynamic nature, under equilibrium only reveals itself in dy-
namic experiments. Moreover, the detailed Q-dependent dynamic structure
factor validates the idea of chain motion in a confining tube and corroborates
quantitatively the celebrated reptation model of de Gennes.

13.6 Intermediate Scale Dynamics

A precondition for the validity of the entropy-driven Rouse model is the re-
quirement that only chain connectivity enters into the equation of motion and
any influence from local stiffness or rotational barriers etc. are negligible. In
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Fig. 13.22. Dynamic structure factor of (a) a PIB melt (Mw = 3870, Mw/Mn =
1.06, radius of gyration Rg = 19.2 Å) at 470 K and (b) a PDMS melt (Mw = 6460,
Mw/Mn = 1.10, Rg = 21.3 Å) at 373 K. The Q-values (in Å−1) are noted in the
figures. The solid lines are the respective predictions of the Rouse model.

going to shorter length scales this condition must break down. Measurements
of the dynamic structure factor at smaller scales or higher Q-values offer the
opportunity to learn about the limitation of the Rouse model towards local
scales and to understand the leading processes. Both local chain stiffness as
well as rotational potentials may play a role [49–51].

Recently, the relevant factors, which limit the universal Rouse dynamics
towards small scales, were studied in comparing the dynamic structure factors
S(Q, t) of polyisobutylene (PIB) and polydimethylsiloxane (PDMS) of simi-
lar size in the melt and in dilute solution [21,22]. Both polymers show similar
static flexibility (the characteristic ratios are very close), but strongly differ-
ent rotational barriers (PDMS: Erot

∼= 0.4 kJ/mol; PIB: Erot = 12.6 kJ/mol).
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Figure 13.22a presents the dynamic structure factor from a PIB melt at
470K including a fit with the prediction of the Rouse model. Figure 13.22b
displays comparable data from a PDMS melt at 373K.

While for Q-values above Q = 0.15 Å−1 increasing deviations between
the experimental results from PIB and the Rouse prediction are evident, the
PDMS results are described well over the entire Q-range (up to Q = 0.4 Å−1).
Since both polymers exhibit the same static flexibility, we may immediately
conclude, that chain stiffness is not the leading mechanism limiting the Rouse
dynamics for flexible polymers as proposed earlier [51]. A thorough study of
the stiffness effects on the dynamics of this polymer was carried out in [21]
applying the approaches of the all-rotational-state model and a bending force
model. Stiffness effects were found to be almost negligible.

After the failure of stiffness models, the source for the slowing down of
the PIB chain dynamics at intermediate scales must be related to dissipation
effects not present in PDMS. Allegra’s intrachain viscosity model [49,50] pro-
vides a simple access to such an effect. He describes the intrachain dissipation
degrees of freedom by a local relaxation mode characterized by a relaxation
time τ0.

In order to access this process without disturbances experiments on so-
lutions were crucial, where interchain friction effects are weak [22]. Fig-
ures 13.23a,b compare experimental results on PIB and PDMS in toluene
at room temperature and 378K. While at low Q both data sets agree – both
polymers undergo the same translational diffusion – at larger Q a systematic
retardation of the dynamic response of PIB compared to PDMS is visible.

The application of the intrachain viscosity model to the PIB solution data
on the basis of the PDMS reference led to a very good description of the NSE
results for all Q values and temperatures (Fig. 13.24). The activation energy
of 13kJ/mol for the intrachain relaxation time τ0 agrees very well with the
rotational barrier for this hydrocarbon [52].

An application of the model to the melt data allows a quantitative de-
scription of the Q-dependent spectra. The activation energy for τ0 resulted
to be about 40 kJ/mol, i.e. more than 3 times as high as in solution. Ob-
viously, chain relaxation occurs via correlated motions over several barriers
or interchain effects come in additionally and the activation energy cannot
easily be compared with rotational potentials, see also [35].

Drawing a fourth conclusion, we note that Allegra’s intrachain viscosity
model accounts properly for the deviations from universal dynamics towards
shorter time and length scales. In solution, the corresponding relaxation time
directly relates to jumps across rotational potentials. Also in the melt, intra-
chain friction effects limit the Rouse dynamics. The relaxation time, however,
is not directly related to crossings of single barriers.
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Fig. 13.23. Chain-dynamic struc-
ture factor of PDMS (empty sym-
bols) and PIB (full symbols –
in each case the upper curve) in
toluene solution at 300 K (a) and
378 K (b). The corresponding Q (in
Å−1) values are indicated. Lines
through the points are guides to
the eye.

Fig. 13.24. Chain-dynamic struc-
ture factor of PIB in toluene so-
lution at 327 K at the Q values:
0.04 Å−1 (◦); 0.06 Å−1 (•); 0.08 Å−1

(�); 0.10 Å−1 (�); 0.15 Å−1 (♦);
0.20 Å−1 (�); 0.25 Å−1 (�); 0.30 Å−1

(
); 0.40 Å−1 (+). Solid lines cor-
respond to fitting curves with the
Rouse-Zimm model including intra-
chain viscosity.

13.7 The Crossover from Rouse to Reptation Dynamics

Chains of small molecular weight are not able to build entanglements and
their dynamics is supposed to be fully compatible with the Rouse model.
Increasing the chain length beyond a threshold length, topological hindrance
shows itself in (i) reducing the self-diffusion coefficient below the Rouse law
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Fig. 13.25. Dynamic structure factor for two polyethylene melts of different mole-
cular weight; a) Mw = 2× 103 b) Mw = 4.8× 103. The momentum transfers Q are
Q = 0.037; 0.055; 0.077; 0.115 and 0.155 Å−1 from top to bottom. The solid lines
show the result of mode analysis.

DR ∼ 1/N and (ii) increasing the Rouse linear relationship between viscosity
and chain length to a power law η ∼ N3.4.

In order to find out how beginning entanglement effects influence the in-
trachain motions, we discuss neutron-spin echo experiments on a number of
polyethylene melts with molecular weights in the transition range (Mw =
2000, 3600, 4800, 6500) [11, 13]. The monodisperse deuterated melts were
mixed with 10% protonated chains of the same length. Figure 13.25 shows
experimental spectra obtained on specimens with the molecular weights 2000
and 4800. A comparison of the spectra shows that the relaxation is obviously
much less advanced for the longer chain compared to the shorter chain. Let
us take the spectrum at the momentum transfer Q = 0.12 Å−1 as an ex-
ample. While the dynamic structure factor for the shorter chain has already
decreased to about 0.1 after 20 nanoseconds, the longer chain only relaxes to
about 0.4 for the same Q and the same time.

In the following analysis of these data we want to find out how the indi-
vidual normal modes of the relaxing chain are influenced by the appearance
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of topological hindrance. The starting point for this analysis is the fact that
the spatial structure of the eigenmodes of Gaussian chains is given by the
Rouse form

xp(t) =
1
N

∑
n

xn(t) cos
(pπn
N

)
. (13.23)

The time dependence can have an arbitrary form. Within the framework of
this mode structure, the dynamic structure factor can be formulated in a
general form [53].

S(Q, t) =
1
N

exp
(
−Q2

6
〈
(x0(t) − x0(0))2

〉)
×
{∑

mn

exp
{
− 1

6
Q2�2|m− n| − 2

3
R2

E

π2
Q2

∑
p

1
p2

×
[

cos
(pπm

N

)
cos

(pπn
N

)
(1 − 〈xp(t)xp(0)〉)

]}}
(13.24)

where x0 denotes the center of mass coordinates and the pointed brackets
denote the thermal average. The correlation function 〈(x0(t) − x0(0))2〉 de-
scribes the diffusive motion of the molecular center of gravity. The relaxation
dynamics of the internal modes is hidden in the exact time dependence of
the correlators 〈xp(t)xp(0)〉. They describe the time-dependent development
of the motion of a normal mode “p”. In the case of the entropy-determined
Rouse motion, the correlators have the form

〈xp(t)xp(0)〉 � e−t/τp ,

1
6
〈
[x0(t) − xp(0)]2

〉
=
kBT

Nζ0
t = DRt (13.25)

where DR is the Rouse diffusion coefficient. The beginning spatial restrictions
should lead to a more complicated time dependence.

How can we hope to extract the contributions of the different normal
modes from the relaxation behaviour of the dynamic structure factor? The
capability of neutron scattering for directly observing molecular motions on
their natural time and length scale enables the determination of the mode
contributions to the relaxation of S(Q, t). Different relaxation modes influ-
ence the scattering function in differentQ ranges. Since the dynamic structure
factor is not simply decomposed into a sum or a product of mode contribu-
tions, this Q-dependence is not easy to represent. In order to make the effects
more transparent, we consider the maximum possible contribution of a given
mode “p” to the relaxation of the dynamic structure factor. This maximum
contribution is reached when the correlator 〈xp(t)xp(0)〉 in (13.24) has fallen
to zero. In order to keep the picture simple, we retain all the other relaxation
modes: 〈xs(t)xs(0)〉 = 1 for s �= p.

Under these conditions, (13.24) indicates the maximum extend to which a
particular mode p can reduce S(Q, t) as a function of the momentum transfer
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Fig. 13.26. Contributions of the different relaxation modes to the relaxation of
the dynamic structure factor S(Q, t)/S(Q, 0) for a) Mw = 2.0 × 103 and b) Mw =
4.8×103 . The experimental Q-values (in Å−1) are indicated by vertical lines; curves
correspond to mode numbers increasing from bottom to top.

Q. Figure 13.26 presents the Q-dependence of the mode contributions for the
Mw = 2000 and Mw = 4800 samples. Vertical lines mark the experimentally
examined momentum transfers. Let us begin with the short chain. For the
smallest Q the internal modes do not influence the dynamic structure factor.
There, only the translation diffusion is observed. With increasing Q, first of
all, the first mode begins to play a role. If Q is further increased, higher
relaxation modes above Q = 0.1 Å−1 also begin to influence the dynamic
structure factor. If the chain length is enlarged, the influence of the different
internal relaxation modes shifts to smaller momentum transfers.

This Q-dependent contribution of different relaxation modes to S(Q, t)
permits a separation of their influence on the dynamic structure factor. In
order to be able to evaluate the data with a reasonable number of parameters,
as a first approximation we assume that the exponential correlation of the
correlators (cf. (13.25)) is maintained. For further treatment reference is made
to [13].
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Fig. 13.27. Result of the mode analysis for
the Mw = 3600 sample. The diagrams show
the result of a calculation of the spectra re-
taining a successively rising number of modes
in comparison to the experimental result; a)
translation diffusion only, b) translation dif-
fusion and first mode, c) translation diffusion
and the first two modes, d) translation diffu-
sion and the first three modes, e) translation
diffusion and all modes.

The relaxation rates 1/τp may depend in a general form on the mode
index p according to

1/τp =
π2p2

N2
Wp . (13.26)

The mode-dependent rate Wp is the parameter of analysis.
Figure 13.27 demonstrates the contribution of different modes to the dy-

namic structure factor for the specimen with the molecular weight 3600.
Based on the parameters obtained in a common fit using (13.24) we cal-
culated S(Q, t) including an increasing number of mode contributions. Fig-
ures 13.27a show the contribution of translation diffusion. The translation
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Fig. 13.28. Relaxation rates Wp

for the first four relaxation modes
of chains of different molecular
weight as a function of the mode
number p. The arrow indicates the
condition p = N/Ne for each mole-
cular weight.

diffusion describes the experimental data for the smallest momentum trans-
fer Q = 0.037 Å−1. Figure 13.27b presents S(Q, t) retaining the first mode.
Obviously, the long-time behaviour of the structure factor is now already
adequately represented, whereas at shorter times the chain apparently re-
laxes much faster than calculated. Figure 13.27c–e shows how the agreement
between experimental data and calculated structure factor improves if more
and more relaxation modes are included. In Fig. 13.27e, finally, very good
agreement between theory and experiment can be noted.

Figure 13.28 shows the results for Wp, the mode-dependent relaxation
rate, for the different molecular weights as a function of the mode index
“p”. For the smallest molecular weight Mw = 2000 relaxation rates Wp are
obtained which are independent of p. This chain obviously follows the Rouse
law. The modes relax at a rate proportional to p2 (cf. (13.15)). If the molecular
weight is increased, the relaxation rates are successively reduced for the low-
index modes in comparison to the Rouse relaxation, whereas the higher modes
remain uninfluenced within experimental error.

How can we understand this behaviour? From the long-chain results of
the last section we know that for polyethylene at the measuring temperature
of 509K the molecular weight between the points of entanglement is about
Me = 2000 or the number of monomers between the entanglement points is
Ne = Me/Mo ≈ 140 (Mo: monomer weight). Let us assume that the charac-
teristic length for a relaxation mode Lp is given by the distance between two
nodes (Lp = �N/p). We then may define a critical mode index pcr = N/Ne

below which the characteristic extension of a mode becomes greater than the
distance between entanglements in the long-chain melt. These critical mode
indices for the different molecular weights are plotted as arrows in Fig. 13.28.
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Fig. 13.29. Comparison of mea-
sured viscosities and viscosities
calculated from the neutron spin-
echo results for polyethylene
melts at 509 K as a function of
molecular weight (•: experimen-
tal result; ◦ viscosities calculated
on the basis of mode analysis).

It is evident that relaxation modes show deviations from Rouse behaviour
when their extension is greater than the entanglement distance in the long-
chain melt. We thus come to an interpretation of the mode analysis results.
Obviously, topological interactions block, or at least very much reduce, the
relaxation rate for those modes whose characteristic length becomes greater
than the entanglement distance formed in long-chain melts.

We are now going to compare the result of the mode analysis with mea-
surements of the viscosity on polyethylene melts. With the aid of (13.19),
which links the viscosity with the relaxation times, we can predict the vis-
cosity using the results of spin-echo measurements and compare it with the
measurement [54]. This is done in Fig. 13.29, where the viscosity is shown as
a function of molecular weight. The open circles represent the predictions of
the NSE result, whereas the filled circles represent the viscosity measurement.
Both data sets are in excellent agreement and demonstrate the consistency
of evaluation.

Let us draw a fifth conclusion: The Q-dependence of the mode contribu-
tions to the dynamic structure factor opens direct access to the individual
relaxation modes of a chain. This follows from the fact that neutrons permit
motions to be observed on their natural length and time scales. We find that
large-scale modes with characteristic lengths greater than the entanglement
distance or with a mode index p < N/Ne are significantly slowed down. A
quantitative agreement with viscosity measurements is achieved with the aid
of the extracted relaxation rates.
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13.8 Conclusion

The viscoelasticity of polymer melts is determined by the relaxations of the
individual chains. Their space-time analysis is possible with the aid of neutron
spin-echo spectroscopy. The experiments described in this chapter allow one
to draw the following conclusions:

(i) On the scale of molecular bonds the local relaxations depend on the spe-
cific local potentials. In (1–4) PB the two prevailing relaxation processes,
the α- and β-relaxation, can be understood as interchain diffusion and
intrachain motion, whereby the β-process relates to rotational motions
of the chain building blocks. Above the merging temperature of the α-
and β-relaxation, both processes persist independently from each other.

(ii) For intermediate time and length scales the segment dynamics of poly-
mer melts follows the entropy-determined dynamics of the Rouse model.
The predictions of this model were confirmed in all facets. Detailed com-
parison with simulation show deviations in detail, which relate to remain-
ing interchain interactions – they are neglected in the Rouse model.

(iii) For long polymer chains the entanglement distance in polymer melts was
directly observed using NSE. Moreover, the NSE experiments led to a
quantitative validation of the dynamic structure factor for tube-confined
reptation. The predictions of all other models put forward so far could
be falsified.

(iv) The length- and time-scale regime in between universal Rouse relaxation
and local relaxation is dominated by intrachain dissipation effects. NSE
experiments on polymers with high (PIB) and low rotational barriers
(PDMS) but similar stiffness unambiguously identified the presence of
intrachain dissipation. In solution its activation energy coincides with
the height of the rotation barrier.

(v) If the chain length in a polymer melt is prolonged beyond the entan-
glement distance, the relaxation modes of this melt are slowed down,
provided that the characteristic length of the mode concerned is larger
than the entanglement arc length. This result was obtained by a mode
analysis of the dynamic structure factor; the microscopic mode relax-
ation rates lead to a quantitative agreement with macroscopic viscosity
measurements.

Notation

Ahop elastic incoherent structure factor for local hopping
an segment vector
B magnetic flux density
D,DR diffusion coefficients
d jump distance
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dt tube diameter
E,∆E neutron energy, energy transfer
fhop quasielastic scattering contribution from two site jump pro-

cesses
GS self correlation function
g g-factor of the neutron
h Planck constant
� � = h/2π
H magnetic field
k,k neutron wave vector
kB Boltzmann constant
� segment length
L chain contour length
m neutron mass
M polymer molecular weight
M0 monomer weight
Me entanglement molecular weight
N degree of polymerization
NA Avogadro constant
Ne number of monomers between entanglements
Prob probability function for chain conformation
P neutron polarization
Q momentum transfer
RE end-to-end vector
r monomer coordinates
S(Q, t), S(Q,ω) dynamic structure factor
S(Q) static structure factor
t time variable
Tm, Tg merging, glass transition temperature
W Rouse rate
xs, xp Rouse normal coordinates
α structural relaxation
βdiel stretching exponents in the KWW function
βslow/fast secondary relaxations
γ magnetogyric ratio
ζ0 monomeric friction coefficient
η viscosity
λ, δλ neutron wavelength, wavelength change
µN nuclear magneton
ρ density
τ, τη characteristic relaxation time; for viscosity relaxation
φ phase angle of neutron spin
ϕα relaxation function for α relaxation
Ω characteristic relaxation rate
ω energy transfer during scattering
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14 The Molecular Description of Mutual

Diffusion Processes in Liquid Mixtures

Hermann Weingärtner

14.1 Introduction

In a liquid, the constituent particles are in rapid translational motion due
to thermal agitation. The molecular displacements are characterized by the
self-diffusion coefficient D, which in three-dimensional space is related to the
mean square displacement after time t via the Einstein relation [1]

D = lim
t→∞

1
6t
〈|rα(t) − rα(0)|2〉. (14.1)

Here rα(t) describes the location of a particle numbered α at time t. The
brackets 〈· · · 〉 denote the ensemble average. In a liquid mixture of r compo-
nents, self-diffusion coefficients Da can be assigned to any of the components
a = 1, 2 . . . r.

The limiting process in (14.1) implies that the displacements of molecules
are observed over a much longer time than the time scale set up by the un-
derlying molecular motions. This situation is often called normal diffusion.
In liquids of low or moderate viscosity the relevant molecular time scale is
typically of the order of some picoseconds. On the other hand, depending on
the experimental method, conventional diffusion experiments observe diffu-
sion over some milliseconds to hours or days. Clearly, the condition for normal
diffusion is fulfilled, e.g., in these cases. It may not be fulfilled for supercooled
liquids, glasses or polymer systems, where molecular relaxation times reach
the experimental observation time. Such cases of anomalous diffusion, dealt
with in Chaps. 10 and 13, will not be considered in the present chapter.

Following the general trend of looking for a molecular description of the
properties of matter, self-diffusion in liquids has become a key quantity for
interpreting and modelling transport in liquids, because among all transport
coefficients the self-diffusion coefficient is certainly the most simple to inter-
pret [1]. For example, the extraction of self-diffusion coefficients from mole-
cular dynamics simulations of liquids is straightforward by evaluation of the
mean square displacement from the simulated trajectories of the particles [2]
(see also Chap. 23).

If, as an external perturbation, a concentration inhomogeneity is set up
for one of the components, the liquid responds with another diffusion process,
because a concentration gradient of any component results in mass fluxes of
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all other components. In this case the species diffuse cooperatively, so as to
smear out the concentration inhomogeneity. In work on fluid mixtures the
term mutual diffusion has become common for this process [1], in other fields
the terms interdiffusion, mass diffusion, chemical diffusion or transport diffu-
sion are also in use. The cooperativity of the mass flows distinguishes mutual
diffusion from the stochastic motion of individual molecules reflected by the
self-diffusion process. For example, the mass flows of the two components
in binary systems are coupled, and a single quantity, called mutual-diffusion
coefficient D12, is sufficient to characterize the diffusion process, regardless
of which of the mass flows is observed [1].

From the applications’ point of view, mutual diffusion is by far more
important than self-diffusion, and plays a major role in many physical and
chemical processes. Hence, the necessity of predicting mutual-diffusion co-
efficients often arises, and many efforts have been made to understand and
predict mutual-diffusion data [1]. Again, there is much interest in a micro-
scopic description of mutual diffusion processes, which is firmly based on
statistical mechanics and liquid-state theory. In particular, it is desirable to
put the description of mutual diffusion on a basis, which is analogous to that
used for interpreting self-diffusion data. Owing to its cooperative nature, a
theoretical description of mutual diffusion, however, is expected to be more
complex than that of self-diffusion. This chapter aims at discussing the ba-
sic foundations of such a molecular-based description of mutual diffusion in
relation to that of self-diffusion.

Actually, attempts to understand mutual diffusion processes at a micro-
scopic level are very closely related to the understanding of self-diffusion –
mutual-diffusion relationships. Many diffusion models in quite different fields
such as chemistry, metallurgy, chemical engineering or geochemistry give rela-
tions between self-diffusion and mutual-diffusion coefficients. As an example,
we mention the use of self-diffusion coefficients measured by NMR techniques
as input data in modelling multi-component mass transport in industrial
processes [3] or in oil recovery and oil technology [4, 5].

From the theoretical point of view, this problem is intriguing, because it
tackles our fundamental understanding of the interrelation between single-
particle and cooperative motions in liquids [6]. This problem is not only
present in translational dynamics, but is also a long-standing problem in the
interpretation of rotational dynamics in liquids, where some experiments such
as nuclear magnetic relaxation monitor single-particle motions, while other
techniques such as dielectric relaxation [7, 8] or depolarized light scattering
[9] monitor cooperative processes. Moreover, the electrical conductance in
molten salts and in electrolyte solutions is a cooperative process as well,
which is closely related to the diffusive motions considered here [6].

Finally, the use of nuclear magnetic resonance spin-echo experiments [10]
provides an elegant and convenient method for monitoring self-diffusion in liq-
uids [11,12]. Furthermore, by applying Fourier transform techniques in NMR
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spectroscopy, self-diffusion coefficients can be determined simultaneously for
many components [10, 13]. From this experimental perspective, theoretical
relations, which interconnect mutual-diffusion coefficients with self-diffusion
coefficients, are of considerable interest as well.

In fact, the interrelation between mutual and self-diffusion in liquid mix-
tures has been under debate since a long time. The simplest self-diffusion –
mutual-diffusion relationship for binary systems is the Darken relation [14],
sometimes called Hartley-Crank relation [15]

D12 = x2D1 + x1D2 . (14.2)

Here, the xi are the mole fractions of the components. Equation (14.2) and
other closely related versions of this equation are well suited for estimat-
ing diffusion coefficients in thermodynamically near-ideal systems such as
mixtures of hydrocarbons [4, 16, 17]. It will be shown below under which ap-
proximations this well-known relation evolves from rigorous theory.

On the other hand, (14.2) and many analogues reported in the literature
rapidly loose their validity in thermodynamically non-ideal systems [1,18,19],
because the effect of intermolecular interactions cannot easily be taken into
account theoretically. Thus, diffusion theory faces similar difficulties as the
calculation of equilibrium thermodynamic properties. Of course, the inter-
molecular interactions, which determine equilibrium properties, also govern
the transport processes. Therefore, it is often useful to take the thermody-
namic properties as a guide for interpreting diffusion data. On the other
hand, this sensitivity of diffusion coefficients to molecular aggregation pro-
vides useful information on molecular interactions in liquid mixtures [18,19].
The present chapter will discuss a conceptual framework for such interpreta-
tions.

The chapter is organized as follows: After a brief review of experimen-
tal aspects in Sect. 14.2, the basic quantities for describing diffusion on a
phenomenological level will be introduced in Sect. 14.3. In Sect. 14.4 we will
reformulate these relations within the framework of the thermodynamics of
irreversible processes. In Sect. 14.5 time correlation functions will be intro-
duced for describing transport processes on a microscopic level. In Sect. 14.6
this formalism is applied to mutual diffusion. As a result, the experimen-
tal diffusion coefficients can be rewritten in terms of generalized interaction
coefficients. These interaction coefficients, denoted as distinct-diffusion co-
efficients, describe the coupling of the diffusive motions of the particles in
the mixture. Their basic properties will be outlined in Sect. 14.7. Finally, in
Sect. 14.8 some predictive equations based on this approach are discussed
and illustrated in application by some examples for diffusion in liquid mix-
tures of non-electrolytes and electrolytes with specific interactions between
the components.
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14.2 Experimental Background

Before considering theoretical aspects, it seems helpful to throw a glance at
the basic experimental situation. In the past, many sophisticated techniques
for measuring self-diffusion and mutual-diffusion coefficients have been de-
veloped [1, 20] . When assessing and comparing their benefits, the recent lit-
erature has, however, seen a considerable change in accentuation.

Mutual diffusion causes local changes in composition and can therefore
be studied by any physical and chemical method that is sufficiently sensitive
to the composition of the mixture. The most precise measurements in two-
and three-component liquid systems have been the Gouy and Rayleigh opti-
cal techniques [21]. In both methods fringe patterns are generated by passing
monochromatic light through a diffusion boundary. The basic principles of
these methods have been described almost five decades ago, and detailed re-
views can be found in the literature [1,21]. If equipped with suitable computer
control and electronic data recording, such techniques still today are methods
of choice, when requiring highly accurate mutual-diffusion data [22, 23].

More simple methods monitor diffusion through diaphragms or diffusion
out of capillaries by appropriate chemical or physical methods of concentra-
tion analysis [1,20]. A more modern and faster technique uses dynamic light
scattering [24] which is described in Chaps. 15 and 16 of this book. Finally,
there is the Taylor dispersion method in which the diffusing component is
injected into the flowing solvent, and its dispersion in the flowing liquid is
subsequently measured at a detector [1, 20]. In recent years, Taylor diffusion
has become a convenient and economic method for collecting diffusion data
over wide ranges of state with fair accuracy, including, for example, the highly
fluid or supercritical regime [25].

In view of these powerful experimental techniques for studying mutual
diffusion, there rises the question, why to go a long way round by develop-
ing theories to estimate mutual-diffusion data from self-diffusion data. The
answer is that NMR spin-echo methods possess some major experimental
advantages [10] resulting, for example, from fast experiments, small sample
volumes, and easy applications over wide ranges of temperature and pressure.
Moreover, most techniques for determining mutual-diffusion coefficients ap-
ply non-equilibrium conditions. When working away from room temperature
and ambient pressure, it is often difficult to stabilize the resulting concen-
tration gradients against thermal or mechanical perturbations. In contrast,
self-diffusion measurements by NMR techniques are performed at equilib-
rium. (Other experimental methods for determining self-diffusion coefficients
based on isotopic tracer techniques, still extensively used in the 1970s and
1980s [1] have almost completely disappeared from the scene.)

The major advantage of NMR methods is however encountered, when
dealing with multi-component systems. In nature as well as in industrial
practice, systems are usually composed of three or more components. As dis-
cussed later in detail, a system composed of r components is characterized
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by an r × r matrix of diffusion coefficients with r(r − 1)/2 independent el-
ements [1]. Except for the interferometric techniques, where the very high
accuracy of the data allows the determination of the matrix at least in the
ternary systems [1,21,22], the extraction of multi-component diffusion coeffi-
cients from measured concentration distributions is exceedingly difficult. The
possibility of measuring simultaneously the self-diffusion coefficients of many
constituents in multi-component mixtures by Fourier transform techniques is
one of the powerful features [10, 12] that make NMR experiments uniquely
suited for studying multi-component diffusion.

14.3 Phenomenological Description of Mutual Diffusion

At isothermal conditions mutual diffusion is described by Fick’s law. If, for
simplicity, we confine the discussion to binary mixtures, Fick’s law relates
the concentration gradients of the components a = 1, 2 to their flux densities
ja. These flux densities depend on the reference frame in the experiment.
Usually, one observes diffusion in a laboratory-fixed frame, defined by some
plane in the diffusion cell perpendicular to the flux [1]. Then Fick’s law reads
for component 1

−j1 = D12 grad c1. (14.3)

If component 2 rather than component 1 is observed, one has

−j2 = D21 grad c2. (14.4)

Experimentally one finds the same value for D12 and D21.
From the theoretical point of view, it is more adequate to define the

fluxes with respect to internal coordinate systems, for example, based on a
reference frame, which assumes the local center of volume to be at rest [1]. In
principle, flows in the laboratory-fixed and volume-fixed frames of reference
are not the same, because there may be diffusion-induced bulk volume flows.
In isothermal-isobaric liquid systems these flows can only result from volume
change on mixing. For small concentration gradients such volume changes
are negligible, so that in most experimental situations the equality of both
reference frames is assumed.

In passing we note that other reference frames can be chosen. For example,
when considering diffusion of a mobile phase into a comparatively immobile
phase, such as a gas into a solid, it is convenient to relate the flow of the mobile
phase to a coordinate system set up by the immobile phase, which is assumed
to be at rest. As an example, Chaps. 10 and 23 consider in detail the diffusion
properties of molecules in zeolites. The analogue in liquid systems is the so-
called solvent-fixed reference system, where the flux of one or more solutes
is considered relative to the solvent at rest [1]. In binary liquid mixtures
this reference frame is of comparatively little use. It may however be the
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Fig. 14.1. Composition dependence of diffusion coefficients in the system mesithy-
lene (1) + carbon tetrachloride (2) at 298.15 K: D1 (open circles), D2 (squares),
D12 (filled circles).

frame of choice for ternary and multi-component systems in the presence of a
large excess of one of the components. Moreover, when describing diffusion in
electrolyte solutions, it is also quite natural to express mass flows in aqueous
electrolyte solutions relative to the solvent water at rest (see Chap. 17).

Presuming that experimental fluxes are indeed measured in the volume-
fixed frame, one can show that the two mass flows are not independent. The
special choice of the coordinate system imposes the condition [1]

J1V 1 + J2V 2 = 0. (14.5)

The V 1 are the partial specific volumes of the components a = 1, 2. Using the
thermodynamic definition of the partial specific volumes, V a = (∂V/∂mi)p,T ,
where ma is the mass of component a in the total volume V , and their
interconnection via the Gibbs-Duhem equation, one can rigorously show that

D12 = D21. (14.6)

Thus, the mutual-diffusion coefficient is one and the same value, regardless
of which of the components is monitored in the diffusion experiment.

Fig. 14.1 shows as an example the composition dependence of the mutual-
diffusion coefficient in the system mesithylene + carbon tetrachloride, which
is a standard example for systems with specific interactions between dislike
components [26]. This interaction between mesithylene and carbon tetrachlo-
ride is well established from thermodynamic data. The figure also contains
the self-diffusion coefficients of both components. It is seen that the concen-
tration dependence of D12 differs markedly in shape from those of D1 and D2.
It is also not correlated with the concentration dependence of other transport
coefficients such as the viscosity.

One may however note that at both ends of the concentration range self-
and mutual-diffusion coefficients approach one another. In fact, at trace con-
centration of a component the self-diffusion coefficient of this component
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approaches the mutual-diffusion coefficient. This limiting behavior evolves
from rigorous theory, and is well established experimentally.

One attempt to bring some order into this confusing behavior is related
to a more detailed analysis of the driving force of diffusion. From the point of
view of thermodynamics, as described later in Sect. 14.4, the correct driving
force of diffusion is the gradient of the chemical potential rather than the
concentration gradient. Noting that

grad ca =
(
∂ca
∂µa

)
gradµa, (14.7)

and rewriting the concentration in terms of mole fractions leads to a trans-
formation factor of the form

Q =
d ln a1

d lnx1
=

d ln a2

d lnx2
, (14.8)

where ai is the activity of component i. Q is denoted as thermodynamic
factor. Therefore, one often considers the experimental diffusion coefficient
D12 to consist of a product of a thermodynamic diffusion coefficient D∗

12

which refers to the correct driving force and the correction term Q, i.e.

D12 = D∗
12Q. (14.9)

From this line of arguing it is more convenient to compare and interpret data
for the quotient D12/Q rather than D12 itself . In practice, the concentration
dependence of Q is often stronger than that of D∗

12, and the superposition
of the two terms often leads to quite complex concentration dependencies
of D12 [1]. It is shown below that such a correction, often introduced by
qualitative reasoning, has indeed a theoretical basis.

Depending on the system, the magnitude of such corrections may be
largely different. Fig. 14.2 illustrates the behavior of Q for systems exhibiting
different thermodynamic situations. Thermodynamic ideality may be defined
by Raoult’s law, which implies that Q = 1. Examples for this type are binary
mixtures of rare gases, or hydrocarbons. Fig. 14.2 shows data for n-hexane +
n-dodecane mixtures, where Q is indeed very close to unity. Model calcula-
tions show that, to a first approximation, binary mixtures of Lennard-Jones
fluids are ideal as well [6] . Thus, for ideal mixtures the correction does not
play a role at all. The same is true for sufficiently dilute solutions, because
for x1 → 0 and x2 → 0 we have by definition Q→ 1.

Systems with aggregation between dislike components show negative de-
viations from Raoult’s law and one finds Q > 1. This behavior is illustrated in
Fig. 14.2 for mesithylene + carbon tetrachloride. In contrast, self-aggregation
of the components reflects itself by positive deviations and 0 < Q < 1. Ex-
amples are solutions of alcohols or carboxylic acids in comparatively inert
solvents such as carbon tetrachloride. Fig. 14.2 shows, as an example, data
for methanol + carbon tetrachloride, where in parts of the concentration
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Fig. 14.2. Composition dependence of the thermodynamic factor Q in the systems
mesithylene + carbon tetrachloride (1), n-hexane + n-dodecane (2), and methanol
+ CCl4 (3) at 298.15 K. The first-mentioned components are denoted as compo-
nent 1.

range Q differs by more than an order of magnitude from unity. Thus, ther-
modynamic non-ideality enhances diffusion in the case of negative deviations
of Raoult’s law and slows down diffusion for positive deviations of Raoult’s
law.

In view of these reasonings one often reformulates the Darken relation (2)
by

D12 = (x2D1 + x1D2) Q . (14.10)

In the case of thermodynamically non-ideal systems, an incorporation of the
thermodynamic factor often leads to an improved estimate of D12 in compar-
ison with Darken’s original relation (14.2). In fact, in most cases the Darken
relation is applied in the form of (14.10) rather than (14.2). We show in
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Fig. 14.3. Composition dependence of diffusion coefficients in the system n-hexane
(1) + n-dodecane (2) at 298.15 K: D1 (open circles), D2 (squares), D12 (filled
circles). n-hexane is component 1.
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(filled circles).

Fig. 14.3 diffusion data for the near-ideal system n-hexane + n-dodecane [4].
Equation (14.10) represents the experimental data for D12 practically within
the limits of experimental uncertainty.

However, even in this improved form, the Darken equation is of little use
for predicting diffusion data for systems with comparatively strong specific
interactions between the components. We show in Fig. 14.4 experimental
data for methanol + carbon tetrachloride [27] with strong self-aggregation
of methanol molecules. Fig. 14.5 shows that (14.2) overestimates D12 by
more than a factor of two in parts of the concentration range. If (14.10)
is used instead, D12 is largely underestimated. Near the minimum of D12

experimental and predicted data differ by an order of magnitude.

(14.2)

(14.10)

Fig. 14.5. Estimate of mutual-diffusion coefficients in the system methanol +
carbon tetrachloride by (14.2) and (14.20), respectively. Methanol is component 1.
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Finally, we note that in thermodynamics (14.8) is just a measure for the
thermodynamic stability of mixtures, because the thermodynamic stability
condition for mixtures can be rewritten in terms of Q, leading to Q > 0. In
other words, the spinodal line for liquid-liquid phase separation is defined
by Q = 0. This stability criterion is therefore often denoted as condition for
diffusional stability. As a consequence, when approaching the spinodal line,
mutual diffusion slows down, because the driving force vanishes. Very slow
diffusion in systems of comparatively low viscosity may therefore imply that
one is close to phase separation or to a critical point. This observation is well
established experimentally for systems with liquid-liquid phase separations
like triethylamine + water [28] or n-hexane + nitrobenzene (see Fig. 15.14
of Chap. 15).

14.4 Thermodynamics of Mutual Diffusion

By using the thermodynamics of irreversible processes, transport phenomena
can be described in a unified formalism [1, 29, 30]. This type of approach is
particularly adequate, when seeking for a starting point for a microscopic
description of transport phenomena. Again, it is necessary to define a ref-
erence frame to which the fluxes are referred to. Although, in principle, the
equations of the thermodynamics of irreversible processes can be set up in
any of these frames, the desired interconnection with statistical mechanics
suggests to do this analysis in the barycentric frame with the center-of-mass
at rest.

To transform Fick’s law to the barycentric frame we first introduce the
partial mass densities of the components as !i = mi/V . Moreover, we consider
specific chemical potentials defined by the mass derivative of the Gibbs free
energy, µ∗

1, rather than chemical potentials defined as partial molar quantities.
Then, Fick’s law may be formulated as

−Jm
1 = Dm

12 grad!1

and
−Jm

2 = Dm
21 grad!2. (14.11)

Superscript m indicates quantities defined in the barycentric frame. Pro-
cedures for reference-frame transformation are extensively discussed in the
literature [1, 29, 30]. Detailed analysis shows that the diffusion coefficients
Dm

12 and Dm
21 are not equal, but interrelated by

Dm
12V 2 = Dm

21V 1. (14.12)

However, within the framework of thermodynamics of irreversible processes,
the gradient of the partial mass density is not a suitable driving force. To
derive the correct force we consider linear equations between fluxes J i and
forces Xi of the form
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−J1=L11X1+L12X2+L13X3+· · ·
−J2=L21X1+L22X2+L23X3+· · ·
−J3=L31X1+L32X2+L33X3+· · ·

...
...

...
...

. . .

(14.13)

Thermodynamics of irreversible processes says that the fluxes and forces have
to be chosen in such a way that their product is equal to the entropy pro-
duction Tσ of the system. In the latter case the coefficients Lij in (14.13) are
called phenomenological coefficients. One can show that in the barycentric
system the entropy production is given by [1, 29, 30]

Tσ = −Jm
1 grad (µ∗

1 − µ∗
2) (14.14)

or an analogous expression for the flow of component 2. Thus, the correct
driving force is the gradient of the specific chemical potential. In a binary
system the phenomenological equations are then given by

−Jm
1 = L11 gradµ∗

1 + L12 gradµ∗
2 ,

−Jm
2 = L21 gradµ∗

1 + L22 gradµ∗
2. (14.15)

There are, however, two restrictions among the fluxes and forces. First, the
fluxes are not independent. If the local center-of-mass is at rest we have

Jm
1 + Jm

2 = 0 (14.16)

which represents the analogue to (14.5). Furthermore, the Gibbs-Duhem
equation interrelates the specific chemical potentials through

!1 gradµ∗
1 + !2 gradµ∗

2 = 0. (14.17)

It can be shown [1, 29, 30] that these restrictions lead to the condition

L12 = L21 = −L11 = −L22. (14.18)

Thus, information on the mutual-diffusion coefficient is sufficient to determine
all four phenomenological coefficients. This simplicity is, however, lost in
systems composed of more than two components. In detail, one finds

D12 = − (x1M1 + x2M2)2

x1x2M1M2

(
d ln a1

d lnx1

)
L12. (14.19)

Mi is the molecular mass of component i.
Let us briefly consider this situation from a more general point of view.

In a system of r components there are r forces and r fluxes described by
the phenomenological relations (14.13). Accordingly, one obtains a matrix of
phenomenological coefficients
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L11 L12 · · · L1r

L21 L22 · · · L2r

...
...

. . .
...

Lr1 Lr2 · · · Lrr

⎞⎟⎟⎟⎠ . (14.20)

The coefficients of this matrix are not independent, because the gradients of
the chemical potentials are interrelated by the Gibbs-Duhem relation and the
sum of the fluxes has to be zero. For a binary system these restrictions lead
directly to (14.18). For ternary and higher-order systems these conditions
are not sufficient to determine the matrix. There is, however, an additional
postulate, saying that the matrix of the coefficients has to be symmetric, i.e.

Lij = Lji. (14.21)

This is Onsager’s well-known reciprocity relation which, in a molecular pic-
ture, reflects microscopic reversibility. Thus, in general, in a system of r
components there are only r · (r − 1)/2 independent coefficients.

Now, for a binary system with r = 2 we are back to a single diffusion
coefficient. However, for a ternary system, presuming the reciprocity relation,
we have already three independent diffusion coefficients. If, however, one
aims at proving the Onsager relation rather than implementing this relation
in data analysis, one has to extract four coefficients from the experimental
concentration distribution [1, 20].

One of the pressing questions is of course, whether the cross terms of the
matrix with i �= j are sufficiently different from zero to be of importance in
data analysis. Otherwise, the analysis is largely simplified. In fact, in many
models for diffusion in complex systems, approximations are made which
implicitly imply that the cross terms are negligible. However, in this regard
the answer by accurate experiments is desillusioning: The cross terms may
be even larger in magnitude than the main terms [22, 23].

Finally, we consider briefly systems with charged species such as elec-
trolyte solutions or molten salt mixtures. Thermodynamically, an electrolyte
solution consisting of the salt (s) and water (w) is a binary system with a
single mutual-diffusion coefficient Dsw, because diffusion arises from the gra-
dients of the neutral salt and water. There cannot be gradients of single ions,
because the concentrations of the ions are not independent variables, but are
interrelated by the constraint of overall charge neutrality. Then, with regard
to mutual diffusion there is a set of four Onsager coefficients, which according
to (14.18) are interrelated by

Lsw = Lws = −Lss = −Lww (14.22)

However, one can also try to apply the formalism of the thermodynam-
ics of irreversible processes to a ternary system consisting of the cation (c),
anion (a) and the solvent water (w). (Note that the three self-diffusion co-
efficients of the ionic constituents can indeed be measured separately.) Such
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a formalism yields a 3 × 3 matrix of Onsager coefficients. We denote these
coefficients by lij (i, j = c,a,w). It is an intriguing problem to relate the lij
of the ternary model system to the Lij of the salt-water system obtained by
direct thermodynamical analysis.

By symmetry, only three of the nine lij of the 3×3 matrix are independent.
Obviously, in addition to the mutual-diffusion coefficient, two other exper-
imental quantities are needed for determining the lij . The solution of this
problem is given by the fact, that thermodynamics of irreversible processes
relates two other transport coefficients to the lij [29, 30], namely the ionic
mobilities of the cations and anions in the electric field. These can be deter-
mined directly, for example, by the new technique of electrophoretic NMR
discussed in Chap. 17. Traditionally, one measures, however, the electrical
conductance of the solution and the transference numbers that allow to sep-
arate the conductance into single-ion contributions. The resulting formalism
to determine the Onsager coefficients lij has been worked out in detail long
time ago by Miller [31].

14.5 Linear Response Theory and Time Correlation
Functions

In statistical mechanics the time dependence of the dynamical variables of
N -particle systems are described by Hamilton’s equations of motion. These
can, for example, be solved for some hundreds or thousands of particles by
numerical solution in molecular dynamics simulations ([2] and Chap. 23). Self-
diffusion coefficients can then be derived from the simulated trajectories, e.g.
via (14.1).

For an analytical description it is only possible to consider certain time
and ensemble averages. For this purpose one considers the time dependence
of the N -particle correlation function ( [6, 32], see also Chap. 23)

FN (rN ,pN ),

where rN and pN stand symbolically for the generalized position and mo-
mentum vectors of the N -particle system. At equilibrium, this correlation
function is given by

F 0
N = const · exp(−H0/kT ), (14.23)

where H0 is the classical Hamiltonian of the N -particle system. If there is
a weak perturbation due to an external force, the Hamiltonian contains an
additional contribution Hext, i.e. H0 is replaced by

H = H0 +Hext. (14.24)

In this case, the time dependence of the correlation function is given by
Liouville’s equation
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∂FN

∂t
= iLFN , (14.25)

where

L = i

N∑
k

{(
∂H

∂pk

)(
∂

∂rk

)
−

(
∂H

∂rk

)(
∂

∂pk

)}
(14.26)

is the Liouville-Operator. If Hext is known, one can calculate expectation
values of the dynamical variables due to this perturbation. In the case of
diffusion the perturbation is related to a local gradient in the specific chemical
potential.

In the regime of linear response due to sufficiently weak perturbations,
the application of this formalism shows that any transport coefficient A can
be written as an integral over a time correlation function of the form [6, 32]

A ∝
∞∫
0

〈JA(0) · JA(t)〉dt, (14.27)

where JA(τ) is the flux associated with A at time τ = 0 and t, respectively.
Expressions of this type are denoted as Green-Kubo relations.

Probably the most well-known and most simple example of a Green-Kubo
relation is the expression for the self-diffusion coefficient Di in terms of the
velocity auto-correlation function

Da =
1
3

∞∫
0

〈va,α(0) · va,α(t)〉dt, (14.28)

where the velocity of a particle α of component a at time t = 0 is correlated
with that of the same particle at time t. These velocities refer to the barycen-
tric reference frame. Because self-diffusion does not lead to macroscopic gra-
dients in the system, the barycentric frame coincides with the volume- and
laboratory-fixed frames. In other words, the self-diffusion coefficient is inde-
pendent of the reference frame.

By using the proper relation between position vectors and velocities one
can show that (14.28) is fully equivalent to the relation for the self-diffusion
coefficient in terms of the mean square displacement, (14.1). For example,
when determining the self-diffusion coefficient in molecular dynamics simu-
lations it is only a technical problem, whether the self-diffusion coefficient is
extracted via (14.1) or (14.28) [2] (see also Chap. 23).

Moreover, another equivalent expression may be mentioned which is par-
ticularly suitable when monitoring diffusion processes in neutron scattering
experiments (see Chaps. 2, 3, and 13). In this case, the quantity of inter-
est is the Van Hove dynamic structure factor S(κ, ω), where κ and ω refer
to the momentum and energy transfer in the scattering experiment. If one
rewrites (14.1) in terms of S(κ, ω) one finds the self-diffusion coefficient to be
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related to the hydrodynamic (κ → 0, ω → 0) limit of the self-part of the dy-
namical structure factor SS(κ, ω) which is available by incoherent scattering
experiments [6]

Da = π lim
ω→0

lim
κ→0

ω2

κ2
SS

a(κ, ω) . (14.29)

In fact, it is well-known that in the hydrodynamic limit incoherent neutron
scattering leads to a Lorentzian spectrum with a half-width determined by
the self-diffusion coefficient [6] (see also Chap. 3).

14.6 The Time Correlation Function for Mutual
Diffusion

In order to obtain the equivalents to (14.1), (14.28), and (14.29) for mutual
diffusion, the Green-Kubo theory has to be applied to the phenomenological
coefficients Lab. The result is [32]

Lab = (3kTV )−1

∞∫
0

〈Ja(0) · Jb(t)〉dt, (14.30)

where J i is the microscopic mass flow of species i = a or b in the barycentric
frame. This mass flow has to be summed up over the velocities of all particles
of component i:

J i(t) =
Ni∑

k=1

(mi

V

)
vi,k(t); i = a, b. (14.31)

We consider first the expression for L12 in the case of which a = 1 and
b = 2. Then, according to (14.30) the velocities of the species of component 1
are coupled to those of the species of component 2. If (14.31) is inserted
into (14.30) one obtains an expression involving velocity cross-correlations for
particles of different components, in contrast to the velocity auto-correlation
function entering into the expression for the self-diffusion coefficient.

Alternatively, we may consider the coefficient L11 (or, by interchange of
indices, L22), instead of L12. Then, the situation turns out to be different.
After inserting (14.31) into (14.30) and expanding the sums, we can sort out
two different types of terms: In the first type, the velocity of a particle α of
component 1 (or 2) at time zero is correlated with that of the same particle α
at time t. However, there are also contributions, which correlate the velocity
of a particle α of component 1 (or 2) with that of a distinct particle β of the
same component. This suggests to split up L11 (and L22) into a contribution
from a velocity auto-correlation function plus a contribution from velocity
cross-correlations of distinct particles of the same component. We note that
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these cross-correlation functions depend on the reference frame. As defined
here, they depend on the barycentric frame.

To formulate this observation quantitatively, we define now a distinct-
diffusion coefficient for the a–b interaction by [18, 33–36]

Dd
ab =

1
3
N

∞∫
0

〈va,α(0) · vb,β〉dt, (14.32)

where the superscripts α and β indicate that the velocities belong to distinct
particles even if a = b. N is the total number of particles in the system. Note
that, originally, Mills and Hertz [34], adapting an older approach by McCall
and Douglass [37], have used so-called velocity cross-correlation coefficients
fab related to the coefficents used here by

fab/xb = Dd
ab. (14.33)

In a binary system of components 1 and 2 the definition used here leads to
four coefficients for 1–1, 2–2, 1–2 and 2–1 interactions, which by symmetry
satisfy the relation

Dd
12 = Dd

21 . (14.34)

This symmetry is not shown by the fij . Using (14.32), we see that one can
formally split the Lab into self- and distinct contributions according to [18,36]

Lab =
{
Ld

ab for a �= b
Ld

ab + Ls
ab for a = b

(14.35)

with the definitions

Ld
ab =

(
N

V

)
MaMb

kT
xaxbD

d
ab (14.36)

and

Ls
aa =

(
N

V

)
M2

a

kT
xaDa. (14.37)

If these expressions are combined with (14.19), one obtains a set of equa-
tions which allows to determine the three distinct-diffusion coefficients Dd

11,
Dd

22 and Dd
12 = Dd

21 from the three experimental quantities D1, D2 and D12:

D12 = − (x1M1 + x2M2)2

M1M2
QDd

12 , (14.38)

D1 = −x1D
d
11 − x2

(
M2

M1

)
Dd

12 , (14.39)

D2 = −x1

(
M2

M1

)
Dd

12 − x2D
d
22 . (14.40)
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Finally, these equations may be combined to a single one for the mutual-
diffusion coefficient

D12Q
−1 = x2D1 + x1D2 + x1x2(Dd

11 +Dd
22 − 2Dd

12), (14.41)

but now not all coefficients on the right hand site of this equation are inde-
pendent.

It may be noted that it is straightforward, albeit tedious, to extend this
type of analysis to multi-component systems and to electrolyte solutions.
We omit a detailed discussion of the multi-component case here, and refer
to a paper of Zhou and Miller [38] for a comprehensive and mathematically
compact survey of the resulting expressions.

Of greater interest in the present context is the application of the concept
of distinct-diffusion coefficients (or, in Hertz’s notation, velocity correlation
coefficients) to transport processes in electrolyte solutions. This type of work
has been initiated in 1978 by Hertz [39]. Later, the interconnection with
the Onsager coefficients has been worked out in a particularly lucid way by
Miller [40]. Again, the mathematical formalism is quite tedious, and it serves
no purpose to give here details.

The basic procedure is to define distinct-diffusion coefficients for the pair-
wise interactions of cations, anions and water and to relate these to the
ionic lij . Just as in the binary non-electrolyte case the lij are then separated
into self- and distinct contributions. The self-contributions are experimentally
available, because the self-diffusion coefficients can be measured for cations,
anions and water. The lij are obtained from conductance, transference and
diffusion data, as described earlier. Eventually, one ends up with six distinct-
diffusion coefficients. Three coefficients, Dd

ac, D
d
aa and Dd

cc, reflect pairwise
interionic interactions between like and dislike ions, respectively. Two further
coefficients, Dd

aw and Dd
cw, characterize cation–water and anion–water inter-

actions, thus reflecting hydration properties. Finally, there is a further coef-
ficient Dd

ww characterizing water–water interactions. This type of approach
is quite fascinating, because modern electrolyte theory allows to model these
coefficients, not only in dilute solutions, where the famous Debye-Hückel laws
apply [40, 41], but also for concentrated solutions [41].

14.7 Properties of Distinct-Diffusion Coefficients

It is seen that mutual diffusion is related to velocity cross-correlations be-
tween different particles in the same way as self-diffusion is related to velocity
auto-correlations. This reflects the collective nature of the mutual diffusion
process. Moreover, one can reformulate the definition of the distinct-diffusion
coefficients by replacing velocities by displacements of particles. If this is done
correctly, one obtains

Dd
ab = N lim

t→∞
1
6t

〈[ra,α(t) − ra,α(0)] · [rb,β(t) − rb,β(0)]〉 (14.42)
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which is the direct equivalent to the Einstein relation (14.1) for self-diffusion.
This relation or the equivalent relation (14.32) form the recipe to extract
information on mutual diffusion processes from molecular dynamics simula-
tions. In fact, the recent literature has seen some attempts to study along
these lines velocity cross correlations in simple model systems such as mix-
tures of Lennard-Jones particles. We quote for example the work of Padro
and coworkers [42–44]). First attempts of such studies in adsorbate-adsorbent
systems are described in Chap. 23.

Moreover, the application of basic scattering theory yields [35]

Dd
ab = Nπ lim

κ→0
lim
ω→0

ω2

κ2
Sd

ab(κ, ω), (14.43)

where Sd
ab(κ, ω) is the so-called distinct part of the partial dynamic struc-

ture factor, which is responsible for coherent neutron scattering [6] (see also
Chap. 3). Thus, the distinct-diffusion coefficient is related to the distinct part
of the partial dynamic structure factor in the same way as the self-diffusion co-
efficient is related to the self-part, which justifies the name ‘distinct-diffusion
coefficient’.

What are the major features of these coefficients? Experiments show that,
in contrast to self-diffusion coefficients, the distinct-diffusion coefficients can
be negative. This is most obvious for the coefficient Dd

12 which reflects corre-
lations between dislike molecules. Here, the minus sign in (14.38) implies that
Dd

12 is negative by definition, because all other quantities in this equation are
positively defined. On the other hand, it depends on the relative weight of
the self- and distinct terms in (14.39) and (14.40), whether the coefficients for
interactions between like molecules, Dd

11 and Dd
22, are positive or negative.

Finally, it should be emphasized again that distinct-diffusion coefficients
depend on the chosen reference frame, and the approach used here and in
most other studies of non-electrolyte systems adopts the mass-fixed frame.
However, formulations in other reference frames are now available. A com-
parative analysis of results formulated in different frames has been given by
Mills et al. [16]. One may argue that, to some extent, the choice of the ref-
erence frame is a matter of taste. Actually, the comparison with results of
statistical-mechanical calculations suggests, however, the mass-fixed frame
to be the most convenient choice. With electrolyte solutions, the situation is
somewhat different. While in the early work the mass-fixed frame has been in
use, it seems that the description of interionic correlations is best performed
in a frame with the solvent being at rest [41].

An interesting idea is, of course, to look for reformulations and combina-
tion of the coefficients, which are independent of the reference frame. In fact,
Trullas and Padro [43] have introduced a set of time correlation functions
based on relative mean molecular velocities that satisfy this requirement.
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14.8 Information on Intermolecular Interactions
Deduced from Diffusion Data

To illustrate the formalism, we first discuss diffusion in ideal systems. To
sharpen the interpretation of diffusion data, it is suitable to assess the data
for real systems relative to what is expected for ideal systems where spe-
cific chemical interactions are absent. This procedure corresponds clearly to
that in equilibrium thermodynamics, where phenomenological laws for ideal
mixtures are used for interpreting data for real mixtures.

In fact, many attempts have been made for predicting ideal diffusion
behavior [1]. From these, Darken’s relation has already been mentioned. This
relation is usually considered to represent a simple empirical mixing rule. The
formalism introduced above allows to examine under which approximations
this relation evolves from rigorous theory. It immediately follows from (14.41)
that in this case

Dd
11 +Dd

22 − 2Dd
12 = 0. (14.44)

Thus, the Darken relation implies that the cross-correlations between mole-
cules of different type, 1–2, just compensate the cross-correlations between
molecules of the same type, 1–1 and 2–2. This situation is conceptually analo-
gous to that in equilibrium thermodynamics, where Raoult’s law implies that
effects of 1–2 interactions just compensate those of 1–1 and 2–2 interactions.
Zhou and Miller [38] have discussed the role of some other simple relations
and their extension to multi-component fluids.

To interpret diffusion in real systems we re-emphasize that the distinct-
diffusion coefficients are measures for the correlation of the velocities of dis-
tinct particles. If we turn on an attractive interaction between these par-
ticles, they will tend to stick together and move in the same direction, so
that their velocities are positively correlated over a long time. In the lat-
ter case one expects positive distinct-diffusion coefficients or at least values
that are more positive than expected for ideal systems. In contrast, repul-
sive interactions may cause the distinct-diffusion coefficients to become more
negative than found for ideal systems. This scheme, introduced here by intu-
itive arguments, is supported by some more elaborate theories, which indeed
predict the distinct-diffusion coefficients to be negative for ideal systems and
to become positive in the case of specific attractive interactions [19,33]. Such
arguments apply to both non-electrolyte and electrolyte systems.

We postpone a discussion of electrolytes and consider first some studies of
binary non-electrolyte mixtures. From the line of arguments given above one
can deduce a simple prediction for direction of the deviations from Darken’s
relation: If molecules of the same species have more tendency to diffuse to-
gether than those of differing species, we expect Dd

11 +Dd
22 > 2Dd

12, leading
to positive deviations from Darken’s relation. The reverse is true for systems
with specific interactions between differing species.
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Fig. 14.6. Distinct-diffusion coefficients in the system methanol + carbon tetra-
chloride at 298.15 K. Methanol is component 1.

We illustrate this idea by considering in Fig. 14.6a and Fig. 14.6b some
data for solutions of methanol in carbon tetrachloride [27]. Dd

12 and Dd
22 are

negative, while Dd
11 is large and positive. If Darken’s relation is built into the

system of (14.38), (14.39), and (14.40), Dd
11 turns out to be negative. It is

obviously the strong methanol-methanol self-association in this system which
causes the velocities of methanol molecules to be correlated over long times.
Thus, strong methanol-methanol correlations are responsible for the peculiar
diffusion behavior in this system [27].

Meanwhile, a lot of similar investigations may be found in the literature,
and only some selected examples can be quoted here. With regard to compar-
atively simple systems, mixtures of hydrocarbons [4,16,17] have been consid-
ered. Already when going to mixtures of hydrocarbons with fluorocarbons,
quite complex behavior is observed, in accordance with known thermody-
namic peculiarities of these mixtures [17]. Much attention has been given
to aqueous solutions of hydrophobic molecules [45–47], where hydrophobic
effects give rise to very subtle behavior of the distinct-diffusion coefficients.
Pronounced temperature effects are notable in these systems [16]. Recently
attempts have also been made to extend this sort of analysis to polymer–
solvent systems [48].

Turning to electrolyte solutions, aqueous solutions of simple alkali halides
or alkaline earth halides have been investigated some time ago [49], indicat-
ing the behavior of highly dissociated salts. More interesting is certainly the
application to systems with strong interionic interactions. For example, there
are special problems in modelling the thermodynamic and transport coeffi-
cients in solutions of some salts containing two-valent ions such as ZnSO4

or Na2SO4, where one expects significant electrostatic ion pairing. How-
ever, little is known on the fate of these ion pairs in concentrated solutions.
Comprehensive studies of transport properties and their analysis in terms of
distinct-diffusion coefficients have given much insight into the details of inte-
rionic interactions in such systems, where at high salt concentrations there is
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strong evidence for attractive like-ion interactions, predicted by statistical-
mechanical model calculations [50, 51].

While all these studies have provided a quite coherent picture of the effect
of attractive and repulsive interactions on distinct-diffusion coefficients, there
is, of course, the pressing question, whether predictive theories can be devel-
oped. For electrolyte solutions this is a current problem of modern electrolyte
theory, and there is indeed some obvious success in applying theories to the
problems of interest [41]. With regard to non-electrolytes, molecular trans-
port theories for systems involving strong intermolecular interactions are less
well established. One promising approach has come from hydrodynamic the-
ory. Friedman and Mills [33] showed by hydrodynamic arguments that the
distinct-diffusion coefficients Dd

ab are proportional to an integral over the pair
correlation function gab that describes the structure of the solution

Dd
ab =

2kT
3η

∞∫
0

[gab(r) − 1] r dr , (14.45)

where η is the shear viscosity, and all other symbols have their usual mean-
ings. This simple relation predicts already some crucial features of the ex-
perimental behavior of distinct-diffusion coefficients, namely negative con-
tributions due to excluded volume effects at short distances and positive
contributions from large peaks in gab(r). Also, the factor r in the integrand
tends to increase the contributions at larger separations so that correlations
over comparatively large distances may affect diffusion behavior.

This type of analysis appears to be particularly apt, when noting that the
well-known Kirkwood-Buff theory of equilibrium thermodynamics enables the
determination of interaction coefficients

Gab =

∞∫
0

[gab(r) − 1] 4πr2 dr , (14.46)

denoted as Kirkwood-Buff coefficients. This integral is sufficiently similar
to the integral appearing in the hydrodynamic expression (14.45) for the
distinct-diffusion coefficient that one may try simple models for the dis-
tribution function gab(r) to interrelate the two integrals. This type of ap-
proach, discussed in some detail by Bender and Pecora [19], seems particularly
promising for predictive purposes. It allows to tune the parameters of a model
distribution function gab(r) to reproduce thermodynamic properties. Subse-
quently, these parameters are then used to predict diffusion coefficients. In
fact, it was noted [18] that there is a close connection between Kirkwood-Buff
integrals and distinct-diffusion coefficients even in the case of methanol-CCl4
mixtures, where particularly strong interactions are present.

On a somewhat more empirical level, one could adopt another well-known
approach from the thermodynamics of mixtures. If intermolecular interac-
tions are strong, it is often profitable to presume in a chemical model the
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formation of distinct aggregates. For example, a binary system of compo-
nents A and B with strong A-B interactions is modelled as ternary mixture
of A, B and the complex AB, subject to a mass action equilibrium A + B
� AB. By treating the ternary model system as a thermodynamically ideal
system, the deviations from ideality in the real system can be accounted for
by an equilibrium constant. The possibility to extend such chemical models
for dealing with transport properties is evident. In fact, this is a common
approach in the analysis of conductance data for systems exhibiting ion pair-
ing. Comparatively simple approaches have been made to treat diffusion in
non-electrolyte mixtures along such lines as well [1, 52], but such ideas still
await a more rigorous analysis, firmly based in statistical mechanics.

14.9 Conclusion

The mutual diffusion process is strongly influenced by cooperative motions
between distinct particles. Linear response theory allows to develop a formal-
ism in which these cooperative motions are described by a set of coefficients
for the various pairwise interactions in the mixture. As a result, the exper-
imental diffusion coefficients D12, D1 and D2 can be rewritten in terms of
these interaction coefficients, denoted as distinct-diffusion coefficients. It is
the specificity of the distinct-diffusion coefficients to the various interactions
which makes them particularly useful for analyzing diffusion data. It is now
obvious that diffusion theories on the molecular level should be formulated
in terms of the distinct-diffusion coefficients. In the future, predictive equa-
tions may result from the incorporation of hydrodynamic theories into the
formalism. Some promising attempts in this direction are already available
from modern electrolyte theory.

Notation

ai activity of component i
ci volume concentration of component i
D self-diffusion coefficient of pure liquid
Di self-diffusion coefficient of component i in a mixture
D12 mutual-diffusion coefficient in the laboratory-fixed and volume-

fixed reference frame
Dm

12 mutual-diffusion coefficient in the mass-fixed reference frame
Dd

ab distinct-diffusion coefficient for a–b interaction
D∗

12 thermodynamic diffusion coefficient
fab velocity cross-correlation coefficient for a–b interaction
FN (rN ,pN ) N-particle correlation function
H0 classical Hamiltonian of the N -particle
Hext perturbation part of the Hamiltonian
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ji flux density of component i in the cell-fixed frame
J i flow of component i
Jm

i flow of component i in the mass-fixed frame
L Liouville-Operator
Lij phenomenological coefficient of the linear transport equations
mi mass of particle of type i
Mi molecular mass of component i
N total number of particles
Q thermodynamic factor
ri,α(t) location of particle α of component i at time t
Sd

ij(κ, ω) distinct part of the partial dynamic structure factor
SS

ij(κ, ω) self-part of the partial dynamic structure factor
t time
T temperature
vi,α(t) velocity of particle α of component i at time t
Vi partial molal volume of component i
xi mole fraction of component i
Xi thermodynamic driving force
µi chemical potential for component i
µ∗

i specific chemical potential of component i
ρi partial mass density of component i
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18. H. Weingärtner: Ber. Bunsenges. Phys. Chem. 94, 361 (1990)
19. T.M. Bender, R. Pecora: J. Phys. Chem. 93, 2614 (1989)
20. Measurement of the Transport Properties of Fluids, IUPAC Chemical Data

Series No. 37, ed by W.A. Wakeham, A. Nagashima, J.V. Sengers (Blackwell
Scientific Publications, Oxford 1991)

21. D.G. Miller, J.G. Albright. In Ref. [20], p 272
22. J.A. Rard, J.G. Albright, D.G. Miller, M.E. Zeidler: J. Chem. Soc. Faraday

Trans 92, 4187 (1996)
23. L. Paduano, O. Annunziata, A.J. Pearlstein, D.G. Miller, J.G. Albright: J.

Cryst. Growth 232, 273 (2001)
24. J.N. Shaumeyer, R.W. Gammon, J.V. Sengers. In Ref. [20], p 197
25. J.M.H. Levelt Sengers, U.K. Deiters, U. Klask, P. Swiderski, G.M. Schneider:

Int. J. Thermophys. 14, 893 (1993)
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15 Diffusion Measurements in Fluids

by Dynamic Light Scattering

Alfred Leipertz and Andreas P. Fröba

15.1 Introduction

Diffusion measurements in condensed matter mainly stand for the accurate
determination of transport properties, e. g., of fluids. Due to different diffusion
processes, these properties are the thermal diffusivity a (often also denoted
DT ), the mutual diffusion coefficient D12, the sound attenuation DS and the
particle diffusion coefficient DP which is directly related to the dynamic vis-
cosity η. Conventional measurement techniques make use of macroscopic gra-
dients of temperature, concentration, pressure, or fluid velocity which must
be large enough to give rise to a measurable effect but small enough to cause
only very little perturbation in the system under investigation. This difficulty
is strongly enhanced in the vicinity of critical points where induced gradi-
ents may make any reasonable measurement impossible. However, informa-
tion collected in these regions is of great importance both for a fundamental
understanding of critical phenomena and for setting up correlations for the
individual properties of a substance.

A very successful approach to overcome these limitations is the applica-
tion of light scattering techniques [1–4]. A fundamental advantage of these
methods is given by the fact that these may be used in or – in some in-
stances – close to thermodynamic equilibrium. They make use of microscopic
statistical fluctuations of the local electric susceptibility χe which may be
related to various diffusive processes and thus to the transport properties to
be measured. The basic justification for this relation is Onsager’s regression
hypothesis [5], which states that, on a statistical average, microscopic fluctu-
ations are governed by the very same macroscopic transport equations and
which has been confirmed also by light scattering investigations.

Here, an introduction is given to dynamic light scattering (DLS) as a
valuable tool for the measurement of diffusion processes. Additionally, var-
ious applications are presented, which especially are related to the deter-
mination of transport and other thermophysical properties in liquids. The
subsequent Chap. 16 shall be devoted to the application of this technique
to colloidal and polymeric systems. In dynamic light scattering (often also
denoted as quasielastic light scattering or light beating spectroscopy) the
temporal behavior of light is analysed. This chapter focuses on “classical”
photon correlation spectroscopy (PCS), using correlation techniques in the
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temporal analysis of scattered light, and gives additionally some informa-
tion on related techniques, namely surface light scattering (SLS), where light
scattered from liquid/vapour interfaces is analysed, and forced Rayleigh scat-
tering (FRS), where an additional thermal grating is employed. It is a revised
and significantly extended version of the chapter published in the first edition
of this textbook [6].

15.2 Basic Principles

15.2.1 Spectrum of Scattered Light

When coherent light in form of a plane wave EI = E0 exp[i(kIr − ωIt)] with
electric field amplitude E0, wave vector kI, and frequency ωI impinges on an
isotropic fluid sample with permittivity ε, the scattered field at a sufficiently
large distance R from the scattering volume V with electric susceptibility
fluctuations ∆χe is found to be (for details, see, e.g., Chap. 16 and [7, 8])

ES(R, t) = kS × (kS × E0)
(
ε

ε0

)
exp [i(kSR− ωIt)]

4πR

×
∫

V

∆χe(r′, t) exp [i(kI − kS)r ′] dr′.
(15.1)

Here, ε0 denotes the permittivity in vacuo, and kS the wave vector of the
scattered light. By the difference between the wave vector of the incident
light and that one of the scattered light the scattering vector q = kI − kS is
defined. For a quasielastic scattering process, i. e. for kI

∼= kS, the modulus
of the scattering vector directly follows from the geometry, see Fig. 15.1,

q = |kI − kS| ∼= 2kI sin(ΘS/2) =
4πn
λ0

sinΘS/2, (15.2)

Fig. 15.1. Scattering geometry.



15 Diffusion Measurements in Fluids by Dynamic Light Scattering 581

Fig. 15.2. Schematic representation of the spectrum of scattered light for a binary
fluid mixture.

where n is the refractive index of the fluid, λ0 is the wavelength of the light
in vacuo, and ΘS is the scattering angle.

It is the key feature of the DLS technique to analyse the fluctuations in the
electric susceptibility ∆χe. In a fluid in macroscopic thermodynamic equilib-
rium, the local statistical fluctuations in the electric susceptibility are caused
by microscopic fluctuations of temperature (or entropy), of pressure, and of
species concentration in mixtures. The relaxations of these statistical fluctu-
ations follow the same rules which are valid for the relaxation of macroscopic
systems. Thus, the decay of temperature fluctuations is governed by the ther-
mal diffusivity a. Pressure fluctuations in fluids are moving with sound speed
cS and their decay is governed by the sound attenuation DS. In a binary fluid
mixture the decay of concentration fluctuations is governed by the mutual
diffusion coefficient. Altogether, these fluctuations result in a characteristic
spectrum of the scattered light [7] which is shown schematically in Fig. 15.2.

The temperature and/or concentration fluctuations contribute to the cen-
tral or frequency-unshifted Rayleigh component of the spectrum of the scat-
tered light. The pressure fluctuations cause the Brillouin lines which are
shifted by ωS relative to the frequency ωI of the incident light. The widths
of these three lines, which in good approximation all exhibit a Lorentzian
form, yield information on the relaxation of the fluctuations in the fluid and
thus on the transport properties. In particular, the widths of the Brillouin
lines are governed by the attenuation of sound DS, the width of the Rayleigh
line is determined by the thermal diffusivity a, and, in case of a binary fluid
mixture, also by the mutual diffusion coefficient D12. Additionally, the fre-
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quency spacing ωS between the Rayleigh and Brillouin lines is proportional
to the speed of sound cS, and the ratio of the intensities of the Rayleigh and
the Brillouin lines results in the Landau-Placzek ratio S = IR/(2IB), which
contains information on the specific heats, cp and cv, at constant pressure
and constant volume, respectively. When adding spherical particles to the
fluid, the width of the Rayleigh line is governed by the particle diffusion
coefficient DP, which is related to the particle diameter and the dynamic
viscosity. Thus, several different thermophysical properties of interest can be
determined nearly simultaneously by analysing the spectrum of the scattered
light.

15.2.2 Correlation Technique

The use of classical interference spectroscopy (Fabry-Perot spectroscopy)
seems to be the straightforward way to analyse the Rayleigh-Brillouin triplet.
This filtering scheme is, however, only possible under special conditions, for
instance in the transition region from the kinetic to the hydrodynamic regime
where the Rayleigh line is relatively broad [9, 10]. Usually, the width of the
Rayleigh lines of order MHz or below for most cases of practical interest is
such small that it is far beyond the resolving power of Fabry-Perot interferom-
eters. This is the reason for analysing the spectrum of the scattered light in a
post-detection filtering scheme where the total intensity is first detected and
the detector signal is later filtered and processed. In this type of detection
one measures optionally the second-order power spectrum of the scattered
light or, as is described in some detail in the following, the time-dependent
intensity correlation function which also is named second-order correlation
function

G(2)(τ) ≡ 〈I(0)I(τ)〉 = lim
T→∞

1
2T

∫ T

−T

I(t)I(t+ τ)dt . (15.3)

The brackets indicate the time average of the product I(t)I(t + τ). The
spectral range has an upper limit of about 20 MHz corresponding to the time
resolution of the correlator instrument.

In general, the time correlation function gives information on the degree
to which two dynamical properties are correlated over a considered period of
time. In the following we first discuss some of the basic properties of these
functions which are relevant to our understanding of light-scattering spec-
troscopy. The time-dependence of the intensity I(t) will generally resemble
a noise pattern. The noise signal in Fig. 15.3 shows that the intensity at the
two times t and t + τ can in general have different values. However, when
τ is very small compared to the period of the fluctuations in the intensity,
I(t + τ) will be very close to I(t) and thus both values are correlated. If τ
increases, I(t+ τ) and I(t) become more and more different. The correlation
between both values is lost if τ becomes large compared to times typify-
ing the fluctuations in the intensity. A measure of this correlation is the
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Fig. 15.3. Time-dependence of the intensity I(t) (left) and its time-correlation
function 〈I(0)I(τ )〉 (right).

correlation function or strictly speaking the autocorrelation function (ACF),
which is defined by (15.3). Here, it is assumed that the infinite time average
(T → ∞) of the intensity is independent of its starting value. Such a prop-
erty is called a stationary property. In the case of non-periodic fluctuations
of a stationary property the correlation function starts from its initial value
〈I2〉 = 〈I(0)I(0)〉 which is a maximum and decays to 〈I〉2 = 〈I(0)〉〈I(τ)〉 as
I(t+τ) and I(t) become statistically independent for long times τ → ∞. The
exact form of the correlation function depends on the underlying scattering
process and on the experimental conditions which is discussed in more detail
later in this chapter. In many applications the correlation function decays
like a single exponential. Here the decay time τC is the time for which the
time-dependent part of the correlation function has decayed to the fraction
1/e of its initial value. The decay time τC reflects the mean decay behavior
or life-time of the fluctuations of a particular property. This is characteristic
for the decorrelation of signals.

In a realistic experimental situation, besides the light scattered from the
fluctuations in a sample, also contributions from stray light, e.g., from dust on
the cell windows or from the cell windows themselves, may occur. Therefore,
for a general description, we consider a local oscillator field coherent with the
incident electric field. In terms of the total electric field E(t) = ES(t)+ELO(t),
which represents a superposition of the scattered electric field ES(t) with the
local oscillator field ELO(t), the intensity or, more precisely, the radiative flux

I(t) =
cε

2
E∗(t)E(t), (15.4)

measured by a detector, is given by
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I(t) =
cε

2

∣∣∣∣ES(t)+ELO(t)
∣∣∣∣2 = IS(t)+ILO(t)+

cε

2

[
E∗

S(t)ELO(t)+E∗
LO(t)ES(t)

]
,

(15.5)
where the asterisk denotes the complex conjugate variable, c the speed of
light, and ε the permittivity of the medium. In the following the time de-
pendence of the electric field of the incident light at a fixed space point will
be considered more precisely by EI(t) = E0 exp [−iωIt+ iΨ(t)], where Ψ(t) is
a slowly varying random function representing fluctuations in the phase of
the incident light. The characteristic time behavior of the fluctuations in the
phase is determined by the inverse linewidth of the incident light. Further-
more, the scattered electric field can be written in the form ES(t) = f(t)EI(t),
where f(t) is a stochastic complex quantity being proportional to the fluctu-
ations in the electric susceptibility

f(t) ∝ ∆χeq(t) =
⎧⎪⎪⎩∂χe

∂H

⎫⎪⎪⎭∆Hq(t), (15.6)

with ∆χeq(t) and ∆Hq(t) being the Fourier amplitudes of ∆χe(r, t) and
∆H(r, t) of a fluctuation with wave vector q, respectively [11]. Here, H
may be identified with the temperature (or entropy), pressure, and species
concentration in fluid mixtures. For a general description also the electric
field of a local oscillator will be considered in terms of the incident field by
ELO(t) = fLOEI(t) with a constant strength fLO. In calculating (15.3) one
obtains from the product I(t)I(t + τ) sixteen terms, whereby as a result of
taking the time average only the six terms

IS(t)IS(t+ τ) + ILO(t)ILO(t+ τ) + IS(t)ILO(t+ τ) + ILO(t)IS(t+ τ)

+
c2ε2

4

[
E∗

S(t)ELO(t)E∗
LO(t+ τ)ES(t+ τ) + c.c.

]
(15.7)

show a non-vanishing contribution to the intensity correlation function. The
abbreviation c.c. stands for complex conjugate. In taking the time average
of (15.7) the first term IS(t)IS(t+ τ) corresponds to the intensity correlation
function of the scattered light,

G
(2)
S (τ) = 〈IS(0)IS(τ)〉 =

c2ε2

4
〈E∗

S(0)ES(0)E∗
S(τ)ES(τ)〉, (15.8)

where a local oscillator is absent. For a Gaussian field, which is characterized
in a way that at a point of observation many individual components add
to the electric field and that the phase functions of these contributions are
equally distributed and mutually independent, the Siegert relation [8]

G
(2)
S (τ) =

c2ε2

4

[∣∣∣∣G(1)
S (0)

∣∣∣∣2 +
∣∣∣∣G(1)

S (τ)
∣∣∣∣2], (15.9)
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holds, which connects G(2)
S (τ) with the field correlation function (first-order

correlation function)

G
(1)
S (τ) ≡ 〈E∗

S(0)ES(τ)〉 = lim
T→∞

1
2T

∫ T

−T

E∗
S(t)ES(t+ τ)dt . (15.10)

The optical or first-order power spectrum SE(ω) accessible by classical inter-
ference spectroscopy is, according to the Wiener-Khintchine theorem, directly
connected with G

(1)
S (τ) by a Fourier transform

SE(ω) =
1
2π

∫ +∞

−∞
G

(1)
S (τ) exp (iωτ)dτ . (15.11)

Substituting the above stated expressions for the electric field of the incident
and scattered light EI(t) and ES(t), respectively, into (15.10) one obtains for
the first-order correlation function

G
(1)
S (τ) = |E0|2〈exp [−iΨ(0) + iΨ(τ)]〉〈f∗(0)f(τ)〉 exp (−iωIτ), (15.12)

where the correlation functions of f(t) and exp [iΨ(τ)] are separated since the
laser source and the medium can be considered statistically independent of
each other. As can be seen from (15.12), the optical power spectrum, which
is the Fourier transform of G(1)

S (τ), see (15.11), is in part determined by the
phase fluctuations of the incident light. Thus, a further limiting factor of clas-
sical interference spectroscopy is obvious. If the spectral width of the incident
light is larger than the width of the spectrum governed by the microscopic
fluctuations in the electric susceptibility, the field correlation function of the
scattered light and hence the optical power spectrum is dominated by the
phase fluctuations of the incident light. In contrast, the phase fluctuations of
the incident light cancel out in the second order power spectrum or in the
corresponding intensity correlation function of the scattered light

G
(2)
S (τ) = I2

S + I2
S |〈f∗(0)f(τ)〉|2〈f∗(0)f(0)〉−2, (15.13)

which is obtained by substituting (15.12) into the Siegert relation (15.9). In
deriving (15.13) it has been assumed that only one individual component
dominates the spectrum of the scattered light. This is equivalent to say that
only fluctuations in one property H of the medium cause fluctuations in its
electric susceptibility. In (15.13) IS denotes the time average of the scattering
intensity

IS =
cε

2
|E0|2〈f∗(0)f(0)〉, (15.14)

originated by the fluctuations in the quantity H . With the help of (15.13)
and (15.14) and taking into account that there is no interaction between
the intensity of the local oscillator and the intensity of the scattered light,
one obtains by taking the time average of (15.7) for the intensity correlation
function in the presence of a local oscillator field
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G(2)(τ) = (IS + ILO)2 + I2
S |〈f∗(0)f(τ)〉|2〈f∗(0)f(0)〉−2

+2ISILO〈f∗(0)f(τ)〉〈f∗(0)f(0)〉−1,
(15.15)

where the time average of the intensity of the local oscillator is given by

ILO =
cε

2
f2
LO|E0|2. (15.16)

Since the stochastic function f(t) is proportional to the fluctuations ∆Hq(t),
see (15.5), with the help of their normalized time correlation function,

gq(τ) = 〈∆H∗
q (0)∆Hq(τ)〉〈∆H∗

q (0)∆Hq(0)〉−1, (15.17)

(15.15) can be rewritten by

G(2)(τ) = (IS + ILO)2 + I2
S |gq(τ)|2 + 2ISILOgq(τ). (15.18)

Thus it appears that the intensity correlation function accessible in light scat-
tering experiments gives access to the correlation function of the fluctuations.
In the case of a fluid in the hydrodynamic regime where the mean free path
length r0 of the molecules is much smaller than the reciprocal value 1/q of
the modulus of the scattering vector (qr0 � 1) and by this Onsager regres-
sion hypothesis holds, the time correlation functions of the fluctuations in
the thermophysical properties of state can be derived on the basis of classical
hydrodynamics. Because the fluctuations around the equilibrium values of
temperature (or entropy), pressure, and in addition of species concentration
in fluid mixtures are expected to be very small, the set of the linearized equa-
tions of fluid mechanics can be used. For the hydrodynamic modes of a fluid
the correlation functions gq(τ) can be found ultimately from the linearized
hydrodynamic equations by applying a Fourier-Laplace analysis [7]. As for
many other non-periodic statistical processes, such as for the diffusion of par-
ticles in dispersions, also for the statistical fluctuations of temperature (or
entropy) and species concentration in a fluid mixture, the normalized time
correlation function decays like a single exponential,

gq(τ) = exp (−τ/τC), (15.19)

where τC = (Dq2)−1 is called the “relaxation time” or the correlation time
of the property. Here, D may be identified to be the thermal diffusivity a,
the mutual diffusion coefficient D12 or the particle diffusion coefficient DP,
respectively. For the local pressure fluctuations at constant entropy, which
can be represented, to a good approximation, by propagating sound waves,
the normalized time correlation function has the form

gq(τ) = cos(ωSτ) exp (−τ/τC), (15.20)

where the correlation time τC = (DSq
2)−1 is related to the sound attenuation

DS. In addition, the frequency ωS = cSq, which is identical with the frequency
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of the sound waves observed, gives information about the sound velocity.
Actually, even the correlation function gq(τ) of a pure fluid does not consist
of a simple exponential or damped oscillation, as the fluctuations in pressure
and temperature are present simultaneously. The situation complicates, when
fluid mixtures or particle dispersions are considered. However, as decay times
and/or signal amplitudes are vastly different in many experimental situations,
the ACF in a time interval of interest may often be analysed in terms of a
simple exponential. This point will be described in more detail in the following
sections.

15.2.3 Homodyne and Heterodyne Techniques

As can be seen from (15.18) in the presence of a local oscillator field the
correlation function consists of three terms, the constant term (IS + ILO)2,
the term I2

S |gq(τ)|2, which is due to the scattered light alone and is denoted
as homodyne term, and the heterodyne term 2ISILOgq(τ). In the case that
the correlation function of the hydrodynamic fluctuations gq(τ) decays like
a single exponential we obtain two exponential functions with decay times
being different by a factor of two added to a constant background

G(2)(τ) = (IS + ILO)2 + I2
S exp (−2τ/τC) + 2ISILO exp (τ/τC). (15.21)

As it is very difficult to extract reliable information from a sum of two ex-
ponentials with decay times of the same order of magnitude, the aim of the
experimenter is to meet a situation where one of the exponentials clearly
dominates. Either, one has to design the experiment (see Fig. 15.4) in a way
that only light from the sample itself is collected by the detector, ILO � IS.
In this homodyne case, which may be the easier realized the larger the scat-
tering cross section of the fluctuations is, the normalized intensity correlation
function takes the form

g(2)(τ) = 1 + exp (−2τ/τC). (15.22)

Fig. 15.4. Homodyne and heterodyne detection scheme.
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Fig. 15.5. Error in the decay time τC for a heterodyne experiment introduced if
the ratio 2ILO/IS of local oscillator to scattered light signals is not chosen large
enough.

Alternatively, the strict heterodyne case is achieved. This will be done, if
the signal is comparatively weak, and may be accomplished by deliberately
adding some part of the incident beam to the detected signal in a way that
ILO 
 IS. Now the normalized intensity correlation function has the form

g(2)(τ) = 1 +
2IS
ILO

exp (−τ/τC). (15.23)

It is crucial, however, in either case to make sure that one contribution
clearly dominates. If not, there may be a considerable error, see Fig. 15.5, as
the decay time determined from a fit to a supposed single exponential may
be anywhere in between the two cases. As can be seen from Fig. 15.5 it is
possible to achieve high accuracy in τC by simply adding enough reference
light ILO to the signal IS in the heterodyne technique. A similar solution is
not given for the homodyne technique.

The derivation of (15.22) and (15.23), however, makes implicitly use of
two idealizing assumptions, which in general do not hold. One simplification
is that the scattered light is detected at a point in the far field. In practice,
both the scattering volume and the area of detection are finite, which results
in a deviation from an ideal coherent detection. Thus, there is an averaging
effect with a reduction of the contrast b = g(2)(0) − 1 as compared to the
value for a perfect registration. The deviation of b from 1 or 2IS/ILO in the
case of a homodyne or heterodyne detection scheme, respectively, also takes
into account effects of a finite speed of signal processing. Another simplifi-
cation is the assumption of a constant intensity of the incident light. Slow
fluctuations in the light source result in a deviation of the baseline from the
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ideal value 1 for the correlation function. Here, another adjustable parameter
a is introduced in practice. Thus, a practical ACF takes the form

g(2)(τ) = a+ b exp (−2τ/τC). (15.24)

or
g(2)(τ) = a+ b exp (−τ/τC). (15.25)

assuming homodyne or heterodyne conditions, respectively.
The application of the heterodyne technique is advantageous for achieving

high accuracy in the determination of τC, see Fig. 15.5, and is especially useful
for the evaluation of the periodic pressure fluctuations at constant entropy,
which are responsible for the Brillouin components of the spectrum. In the
case of a pure fluid a usual homodyne intensity ACF exhibits terms due to
both pressure and temperature (or entropy) fluctuations and an additional
cross term. To analyze the pressure fluctuations in a heterodyne detection
scheme, the frequency of the local oscillator is shifted relative to the fre-
quency ωI of the laser light by ωM applying an acousto-optical modulator.
The frequency shift ωM is of the same order of magnitude as the frequency ωS

of the pressure fluctuations observed (ωM ≈ ωS). By a proper choice of the
intensity of the local oscillator shifted in frequency the signal governed by the
periodic pressure fluctuations may be strongly enhanced as compared to that
of the temperature (or entropy) fluctuations, and the correlation function
takes the form of a damped oscillation

g(2)(τ) = a+ b cos (∆ωτ) exp (−τ/τC). (15.26)

Now the speed of sound cS can be found from the knowledge of the adjusted
modulator frequency ωM and the residual detuning ∆ω = |ωS − ωM| of the
correlation function according to cS = ωS/q = (ωM ±∆ω)/q. As mentioned
above, the sound attenuationDS can be determined from the correlation time
τC = (DSq

2)−1.

15.3 The Dynamic Light Scattering Experiment

15.3.1 Setup

In this section some fundamentals of the design of a light scattering appara-
tus are discussed. The exact choice of the individual components naturally
depends strongly on the exact goal of the experiments, i. e., which property is
to be measured. A possible setup is displayed schematically in Fig. 15.6. The
main portion of the laser light is irradiated into a thermostated sample cell,
beam splitters allow one to add some reference light for a heterodyne detec-
tion, the frequency of which may be shifted for measurements on the Brillouin
lines. Part of the scattered light is imaged, in the simplest case only by means
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Fig. 15.6. Possible setup for a dynamic light scattering experiment.

of two circular stops, onto a detector, conventionally a photomultiplier tube.
The signal is amplified, discriminated and fed into the correlator, a special
purpose computer for the computation of the ACF. After this generalized
scheme the individual parts shall be given some more discussion.

Laser

The choice of the suitable laser, which should be linearily polarized with
orientation of the E vector perpendicular to the scattering plane for usual
applications, is mainly determined by the scattering cross section of the fluc-
tuations to be investigated. Low-power He-Ne or semiconductor lasers are
in most cases sufficient for measurements of particle diffusion coefficients or
phenomena close to critical points. More powerful lasers with an output of
typically several hundreds of milliwatts are required for measurements, e.g.,
of the thermal diffusivity, where conventionally Argon lasers have been used,
but where also more recent types of solid-state lasers may be employed.

Which laser may be used also depends on the detection scheme applied.
In heterodyne detection the reference beam has to be added coherently on
the detector. Thus, the coherence length of the laser must be large enough to
ensure that the experiment is not affected by possibly different path lengths
of the main and the reference part of the light. The laser should therefore only
exhibit a single longitudinal mode, which may be accomplished by inserting
an intra-cavity etalon into gas lasers.
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Illuminating Optics

Generally, an important feature of the illuminating optical system is that
the laser beam should be focused strongly [12, 13], as it can be shown that
the signal-to-noise ratio may be improved by reducing the spot size of the
laser. Basically, the increased irradiance is balanced by the reduced size of
the scattering volume, but as it is possible to reduce the size of stops in the
receiving system simultaneously, a net effect results. The major disadvantage
or limitation of focusing is the lack of definition in the scattering vector,
as now - in a simplified picture - light is incident from various angles, which
results in an overlay of several correlation functions. This point is very critical
for the measurement of the sound attenuation and will be discussed below.

The scattering vector and thus the scattering angle to be reasonably em-
ployed are mainly determined by the process to be investigated. Small scatter-
ing angles result in a small linewidth and accordingly in a comparatively long
decay time. For a DLS analysis especially of the Brillouin lines it is necessary
to realize a small scattering angle in order to obtain reasonable time scales
in the computation of the ACF and for signal statistics. Conversely, slow
diffusion processes like particle diffusion are favourably analysed with large
scattering angles up to a backscattering geometry. For a survey, linewidths
and decay times for various scattering angles are given in Table 15.1 for the
individual processes and liquid values, which may be regarded as typical in
the order of magnitude.

For the determination of the scattering vector the refractive index of the
sample must be known which is in general not found tabulated for all samples,
thermodynamic states, and wavelengths used. One can solve this problem by
actually measuring the refractive index by using the refractions between the
external medium and the sample [14, 15]. Another possibility is to make use
of the approximation sin (ΘS/2) ≈ (1/2) sinΘS and to replace, according to
Snell’s law, the resulting term n sinΘS in the expression for the scattering
vector by sinΘi, where Θi is the external angle of incidence and the refractive
index of the surrounding medium is assumed to be 1 (cf. Fig. 15.7). This

Table 15.1. Typical values for linewidths and decay times in the Rayleigh-Brillouin
spectrum. For the Rayleigh lines the subscripts denote thermal diffusivity (t), mu-
tual diffusion (12) and particle diffusion (p).

θ q/m−1 ΓB τB Γt τt Γ12 τ12 Γp τp

2◦ 5.8·105 682 kHz 1.5 µs 14 kHz 73µs 682 Hz 1.5 ms 1.4 Hz 730 ms

5◦ 1.5·106 4.3 MHz 235 ns 85 kHz 12µs 4.3 kHz 235 µs 8.5 Hz 117 ms

20◦ 5.8·106 68MHz 15 ns 1.4 MHz 740 ns 68 kHz 15 µs 135 Hz 7.4 ms

90◦ 2.4·107 1.1 GHz 0.89 ns 22MHz 45 ns 1.1MHz 892 ns 2.2 kHz 446 µs

180◦ 3.3·107 2.2 GHz 0.45 ns 45MHz 22 ns 2.2MHz 446 ns 1.1 kHz 223 µs
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Fig. 15.7. Determination of the modulus of the scattering vector in the small-angle
approximation.

approximation is very useful for small scattering angles [16], but naturally
cannot be used for larger ones.

An exact solution, which may be used for all scattering angles, is a spe-
cial symmetrical setup of the experiment [13]. Again, the a priori unknown
quantities (sample refractive index and scattering angle) may be replaced by
the refractive index of the surrounding medium and the angle of incidence.

Sample Cell

The range of possible sample cells is very broad due to the variety of appli-
cations, and the actual choice depends on the scattering angle and the path
length within the cell to be used. For small scattering angles typically cylindri-
cal cells are employed, where the main body may be made of metal for higher
pressure applications, and optical access is provided through cylindrical en-
trance and exit windows. If larger scattering angles are needed, especially for
the measurement of particle diffusion coefficients, glass cuvettes with circu-
lar or rectangular cross sections are normally employed, where appropriate
modifications with the use of glass rings are done for measurements at higher
pressures. An important feature in many DLS systems is the use of an index-
matching fluid, i.e. of a liquid with a refractive index very close to that of the
glass materials employed, in order to suppress unwanted reflections. A more
extensive treatment of sample cell design with some specific examples may
be found in [8].

Detection Optics

As DLS probes the temporal evolution of the interference pattern caused by
fluctuations in a sample, it is essential to restrict the solid angle of detection in
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Fig. 15.8. Model for the coherence properties of the detection system; “full” spatial
coherence is achieved if the detector area A2 is smaller than the coherence area Acoh.

a way that the pattern of bright and dark speckles is not averaged out. Thus,
the receiving system must ensure that the degree of coherence is large enough
for a good modulation of the signal. In the simplest way, the choice of the
solid angle of detection is realized by two circular stops at a given distance
where the complex degree of coherence determining the contrast b in the
correlation function (15.24) is a function of stop diameter and distance [12]
(cf. Fig. 15.8). Recent approaches employ single-mode optical fibres, which
make use of the fact that only one mode of field is propagated and thus
enables a perfectly coherent registration [17].

Detector

The standard detector for DLS measurements is a photomultiplier tube,
which is operated in a photon-counting mode, i.e. it produces a stream of
pulses the frequency of which is proportional to the light flux impinging on
it. A fundamental problem encountered in the detection system is that pho-
tomultipliers give rise to spurious signals, e.g., there is an afterpulsing effect,
meaning that with a certain probability a detected photon may cause an-
other subsequent pulse with no relevance for the process investigated. An
elegant solution to get rid of this problem is to use a beam splitter just in
front of the detector, to employ two photomultipliers (see Fig. 15.6) instead
of a single one and to operate these in a cross-correlation mode [18]. This
approach ensures that there is only correlation for events both detectors see
simultaneously and spurious uncorrelated pulses in either photomultiplier are



594 Alfred Leipertz and Andreas P. Fröba

not registered. This cross-correlation scheme turns out to be necessary when
fast fluctuations on a time-scale of microseconds and below are investigated,
but should not be employed with no actual need for it, as the signal usable is
reduced by a factor of two. An alternative to photomultipliers are avalanche
photo diodes, which must be operated in a special way and which exhibit a
higher quantum efficiency at longer wavelengths [19].

Correlator

Correlators are special-purpose computers which calculate correlation func-
tions in real-time. An important characteristic of correlators is the sample
time ∆τ , which is the time interval used to collect the detector pulses and
which determines the resolution of the correlation function. In former times,
correlators were bulky stand-alone machines with typically some hundred
channels with an identical sample time (single-tau structure). Today, cor-
relators are made in form of plug-in-cards for PCs, and, what is more im-
portant, they offer a more sophisticated scheme of sample-time distributions
(multiple-tau structure). A possible selection is that after a block of eight or
sixteen channels with a constant sample time, ∆τ is doubled after each subse-
quent block. With this quasi-logarithmic channel spacing, sample times span
a range from a few nanoseconds up to many seconds so that it is possible to
measure processes on a completely different time-scale simultaneously. With
the evolution of standard PCs it is also possible to use a fast data-acquisition
board and to compute the ACF by a normal software routine; sample-times
of nanoseconds, however, are still far away from realization in this way.

15.3.2 Signal Statistics and Data Evaluation

With DLS experiments one should always be well aware that one is prob-
ing statistical fluctuations. Therefore it is necessary to average over a large
number of independent events in order to be able to extract reliable informa-
tion from the ACF. It is thus essential to discuss the statistical properties of
correlation functions. Let us first consider the variance σ2

i of the correlator
channel i of a homodyne ACF, where x is the lag-time of the correlator chan-
nel in units of the decay time of the intensity ACF, i.e. x = τ/τC, f is the
count rate, i.e. the number of detector pulses per second, and T is the total
duration of the experiment. With these abbreviations, the variance may be
approximately expressed by [20, 21]

σ2
i =

(
b2/T

){
τC [1 + exp(−2x)(2x+ 1) + 2b exp(−2x)(−2x− 3)

+ 8b exp(−x)] + 2b−1f−1 [1 + exp(−2x) + 2b exp(−x)]

+ b−2
[
f2∆τi

]−1
[1 + exp(−x)]

}
.

(15.27)
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Fig. 15.9. Standard deviation of the ACF at τ = τC as a function of count rate
and decay time; here a correlator with a quasi-logarithmic sample time structure
has been assumed.

In this relationship the various sources of noise in correlation functions may
be identified. The first line reflects the statistical nature of the experiment
itself; this signal noise is proportional to the ratio of decay time and mea-
surement time and thus is reduced when averaging over a larger number of
independent events. The second line is a cross term, whereas the third line
reflects the imperfect detection, as photons impinging onto the detector only
result in a detected pulse with a certain probability given. This detection
noise dominates for small values of count rate and sample time; in this case
the channel variance is inversely proportional to ∆τ . This formula has some
consequences for the design of an experiment. Firstly, the scattering angle
should be chosen in a way that the resulting decay time is not too small in
order to ensure that during a sample time of interest there is a large number
of detected pulses to keep the detection noise at a low level. On the other
hand, if decay times are very large, little can be gained by increasing the
count rate of the experiment, e.g., by increasing the laser power, as in this
case the statistical nature of the experiment itself dominates. This saturation
effect is visualized in Fig. 15.9, where the standard deviation of the channel
at a lag time of one τC, i.e. x = 1, is plotted against the count rate for various
values of τC.

A central quantity for the evaluation of correlation functions is the decay
time τC. In order to be able to extract this quantity with high accuracy, it
is desirable to ensure experimental conditions where the ACF takes the form
of a simple exponential. A curve of form y = a+ b exp(−τ/τC) is then fitted
to the experimental ACF, which may be done using a non-linear algorithm
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Fig. 15.10. Example for the multi-fit approach for the evaluation of correlation
functions taken at the refrigerant R143a in the saturated liquid phase (insert on
top left). The insert on bottom left shows the residuals of experimental data and
fit, which is free of systematic deviations. The inserts on top and bottom right show
the deviation of the decay times determined from the mean value, when the fit is
started at different times and is performed up to different lag times, respectively.

according to Marquard and Levenberg [22] and which requires to attribute
a correct statistical weight wi to each data point according to wi = (1/σi)2.
In this context it is of great importance to make sure that the correlation
function actually matches the theoretical model; if this does not hold there
is a clear indication that the experiment cannot be relied on. A possible way
to perform this check is to transform the experimental correlation function
according to g(2)(τ) → ln[g(2)(τ)−1] and to fit a polynom to this expression.
In this method of cumulants [23] all orders higher than linear should vanish
for a pure exponential and from the quadratic and the linear cofficient a
quality factor may be built up to quantify deviations. However, there are two
major problems connected with this approach. Firstly, it relies on a value
of exactly one for the baseline; even small deviations, which may not affect
the measurement in the time interval of interest, may result in erroneously
bad values for the quality factor. Secondly, the transformation is basically
restricted to positive values of g(2)(τ)− 1; with experimental noise given, the
cumulant expansion is restricted to a limited interval of lag times.
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A different approach, which overcomes these problems, is to fit an ex-
ponential to various lag time intervals [21]. The experimental ACF is only
regarded to match the theoretical form if the decay times obtained for these
different intervals agree within a certain value given. Moreover, the standard
deviation of the single fit may be regarded as a measure of quality, which
takes into account both the statistical quality of the experimental data and
possible systematic deviations. An example for this procedure is given in
Fig. 15.10.

Another important question is that for the time interval that should be
employed for the fit. If too many channels at large lag-times are omitted, there
will be a significant loss of information; if the fit is extended too much into
the background, noisy data without relevance are included. For the multi-fit
procedure it has turned out to be advantageous if a span of about 2−6 decay
times is regarded in the evaluation. This ensures that all relevant information
is included and that possible deviations from a single exponential can be
detected reliably.

15.4 Thermophysical Properties of Fluids Measured by
Dynamic Light Scattering

15.4.1 Thermal Diffusivity

The thermal diffusivity a is that transport property for which the devel-
opment of the DLS technique is probably most advanced and where mea-
surements can be carried out routinely over a wide range of temperature
and pressure for the liquid phase and, due to the lower signal levels, in an
extended vicinity of the critical point for the vapour phase [24–30]. What
makes the measurement of the thermal diffusivity particularly interesting is
the fact that it is hardly possible by any other technique than light scattering
to measure this property directly with comparable accuracy. Other methods
access the thermal conductivity λ = aρcp, which is related to the thermal
diffusivity a by the density ρ and the isobaric heat capacity cp.

With the exception of measurements in the vicinity of the critical point,
normally a heterodyne detection scheme is employed so that the correlation
function takes the simple form of (15.25). As the measurement of the thermal
diffusivity is performed at low scattering angles of about 2.5◦ to 5◦ an ac-
curate measurement of the angle of incidence is of major importance, which
may be performed by an autocollimation procedure. The main measuring de-
vice is a rotation table, which is placed above the sample cell. With a mirror
mounted on this table the laser beam can be reflected into the direction of
the source of the laser beam. First the optical axis of observation is defined
by aligning the laser beam through the stops, and the angle value is mea-
sured by autocollimation. Next the laser beam is adjusted to the angle of
incidence desired, and after another autocollimation the angle of incidence
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Fig. 15.11. Thermal diffusivity of selected refrigerants on the saturation line [29,
30]; lower trace symbols: liquid; upper trace symbols: vapour.

can be obtained from the difference of the readings on the rotation table.
With an uncertainty in the angle measurement of order 0.01◦ an uncertainty
in the thermal diffusivity of about 0.5% to 1% results.

The other major source of error is the determination of the decay time.
If the correlation function is free from systematical errors the uncertainty in
the determination of τC is given by the signal and the experimental dura-
tion. Depending on the equipment used, the scattering cross section of the
fluctuations investigated and the time available for an experimental run, the
uncertainty for a single measurement is of order 1 − 3%. If several indepen-
dent experimental runs are performed, which is superior to running a single
experiment over a longer time, this value may of course be improved. Finally,
the uncertainty also depends on the definition of the thermodynamic state,
especially on the exact measurement of the sample temperature. In conclu-
sion, a total single-measurement uncertainty of 2.5%, as it was derived for
measurements on liquid toluene [27], may be regarded as typical.

There have been many applications on the determination of a for a wide
range of fluids. DLS has especially contributed to an improvement in the data
situation for refrigerants. An example is given in Fig. 15.11, where measure-
ments on new refrigerants with less environmental impact are shown.

Whereas the measurement of a in pure fluids is basically a straightforward
task, this is clearly more difficult in fluid mixtures. Even in the simplest case
of a binary fluid mixture and neglecting the Brillouin component, the ACF
takes the form
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Fig. 15.12. Thermal diffusivity of a mixture of benzene and toluene [31].

G(2)(τ) = (ILO + It + Ic)2︸ ︷︷ ︸
background

+ 2ILOIt exp(−τ/τC,t) + 2ILOIc exp(−τ/τC,c)︸ ︷︷ ︸
heterodyne term

+I2
t exp(−2τ/τC,t) + I2

c exp(−2τ/τC,c)︸ ︷︷ ︸
homodyne term

+ 2ItIc exp(−τ/τC,t − τ/τC,c)︸ ︷︷ ︸
cross term

(15.28)

where the subscripts t and c denote the contributions from temperature and
concentration fluctuations, respectively. With a large reference light contribu-
tion, ILO 
 It and ILO 
 Ic, the ACF simplifies to a sum of two exponentials

g(2)(τ) = a+ b1 exp(−τ/τC,t) + b2 exp(−τ/τC,c). (15.29)

It is obvious that even for this simplified function the determination of the
decay time τC,t is more complicated and associated with a higher degree of
uncertainty than in the case of a pure fluid, because a larger number of para-
meters are to be fitted. The situation becomes easier if the refractive indices
of the two components nearly match, as the signal from the concentration
fluctuations may then be treated as a low-amplitude perturbation. A pos-
sible approach [31] is to expand the exponential decay of the concentration
fluctuations in a way that an ACF of form

g(2)(τ) = a+ b exp(−τ/τC,t) + cτ (15.30)

results. The thermal diffusivity of a mixture of benzene and toluene measured
in that way is shown in Fig. 15.12.

It is also possible to measure a in mixtures with a larger difference in
refractive index. Naturally, this is connected with a loss of accuracy and
comes to a limit, when the signal due to temperature fluctuations is much
weaker than that by concentration fluctuations.
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15.4.2 Mutual Diffusion Coefficient

The problems encountered in measuring the mutual diffusion coefficient D12

are of a similar nature as those of measuring the thermal diffusivity of mix-
tures. In either case there are basically signals from both temperature and
concentration fluctuations. As the mutual diffusion coefficient is in general
at least one order of magnitude smaller than the thermal diffusivity, larger
angles may be chosen for the determination of this property. It is especially
interesting, however, to perform the measurements with an identical setup
as for a, as both properties may then be measured simultaneously. Whether
one succeeds, is again governed by the actual separation of decay times and
by the ratio of the signals.

As an example, the thermal diffusivity and the mutual diffusion coefficient
of the binary system acetone and carbontetrachloride with a difference in the
refractive indices of 7.4% are shown in Fig. 15.13, where the situation is
favourable, as the signals are of the same order of magnitude [32].

In most instances, especially when the difference of refractive indices
is large, the determination of the mutual diffusion coefficient may be per-
formed by standard experiments. Fig. 15.14 shows the measured tempera-
ture dependence of the mutual diffusion coefficient of the separation system
n-hexane/nitrobenzene [33]. According to the stability theory of thermody-
namics, D12 disappears at the critical separation point (temperature Tc),
which can be clearly seen from Fig. 15.14. This effect of vanishing diffusiv-
ities on approaching the critical point is generally referred to as “critical
slowing down”. Further details about the theory of mutual diffusion includ-
ing the phenomenon of the critical slowing down may be found in Chaps. 3
14, and 16 (Fig. 16.29).

Fig. 15.13. Thermal diffusivity and mutual diffusion coefficient of the mixture
acetone/carbon tetrachloride as a function of composition [32].
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Fig. 15.14. Mutual diffusion coefficient of a separation system as a function of the
reduced temperature ε = (T − Tc)/Tc [33].

15.4.3 Dynamic Viscosity

The determination of the dynamic viscosity η of liquids is in some way differ-
ent from the measurement of the other properties treated so far, as it requires
the addition of seed particles. The quantity which is actually measured is the
(translational) particle diffusion coefficient DP of spherical particles, which
results in another Rayleigh peak in the spectrum. The particle diffusion co-
efficient is related via the Stokes-Einstein equation [34, 35]

DP =
kBT

3πηd
(15.31)

with viscosity η, particle diameter d, Boltzmann constant kB and tempera-
ture T . In the low-concentration range (i.e. under the assumption that there
is no particle-particle interaction as implied in fact for deriving (15.31)) this
diffusivity is clearly nothing else than the particle self-diffusivity (cf., e.g.,
Chaps. 10, 14, and 16). Two possible fields of applications are contained in
this relation. One area of research is the determination of particle size dis-
tributions and, as macromolecules may be regarded as special particles, the
determination of molecular weight [36,37]. As with a distribution of particle
sizes a distribution of particle diffusion coefficients results, the ACF is a su-
perposition of exponentials with various decay times. The major problem in
this field is then to recover the size distribution from the experimental ACF,
which is a difficult and, with experimental noise given, sometimes impossi-
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Fig. 15.15. Electron microscope picture of silica particles, courtesy: A.P. Philipse,
University of Utrecht.

ble task, as different size distributions may result in very similar correlation
functions. Here, the other application related with particle diffusion coeffi-
cients shall be given some more consideration, namely the determination of
the dynamic viscosity [38–40].

Generally, as DP is orders of magnitude smaller than the other diffu-
sion coefficients in the Rayleigh-Brillouin spectrum, this quantity is normally
probed at large scattering angles. Another difference is that for the determi-
nation of the viscosity the usage of low-power lasers such as He-Ne or diode
lasers is sufficient in most cases, as the scattering cross section of the parti-
cles is usually much larger than that of other fluctuations in the fluid itself.
Accordingly, a homodyne detection scheme is normally employed, and the
measurements are not affected by other components in the spectrum.

A key to a successful determination of the viscosity is the choice of suit-
able particles in a size range of some 20 nm to 500 nm. These are to be
spherical and monodisperse, or at least are to exhibit a narrow size distribu-
tion, in order to ensure a correlation function which matches the model of a
pure exponential, which is essential for a reliable data evaluation. Moreover,
they must be chemically stable and form stable dispersions. There have been
a number of investigations with different seed particles, but it has turned out
that silica particles with various surface modifications are most appropriate
for a wide range of liquids (see Fig. 15.15). Particle sizes are best calibrated
by DLS measurements in liquids with known viscosities. For high-accuracy
measurements the governing conditions of the working model must be met
what means in this case unhindered particle diffusion and no multiple scatter-
ing in the sample. For these reasons it is essential to use low particle volume
fractions of typically 10−4 and to vary the particle concentration and/or scat-
tering angle. In connection with a careful inspection of the ACF this approach
ensures reliable results. An experimental result is shown in Fig. 15.16, where
the viscosity of n-heptane was measured to check the technique. This liquid
was chosen, because there are reliable reference data [41] both for n-heptane
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Fig. 15.16. Viscosity of liquid n-heptane [40] in comparison with reference data
[41].

itself and for n-hexane and n-octane, which were used for calibrating the
particle size at room temperature.

As the numerical value of the mutual diffusion coefficient is in between
those of the thermal diffusivity and the particle diffusion coefficient, prospects
open of a simultaneous measurement of η and D12. In Fig. 15.17 a correlation
function is plotted, which was measured in a paraffin oil, a mixture of many
hydrocarbons of chain lengths ranging from about 15−40 carbon atoms. Per-

Fig. 15.17. Experimental ACF of a paraffin oil with seed particles added. The
signals from particle and molecular diffusion may be clearly separated [42].
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forming a fit for times larger than 1 ms the ACF can be very well represented
by a single exponential with a decay time of 13.5 ms. Additionally, there is
another signal at small decay times, which is due to molecular diffusion and,
due to the nature of this multi-component mixture, is built up of several
individual diffusion signals.

15.4.4 Sound Velocity and Sound Attenuation

For the measurement of sound velocity cS and sound attenuation DS the
Brillouin components of the spectrum are investigated. As the Brillouin lines
are shifted in frequency, a heterodyne technique with a local oscillator, which
is also shifted in frequency by means of an acousto-optic modulator, is used
[3]. This results in a correlation function in form of a damped oscillation,
(15.26), where the sound attenuation is determined from the decay-time τC
as usual and the sound velocity is deduced from the known frequency shift
by the modulator ωM and the residual mistuning ∆ω of the correlogram.
The simplest way of determining ∆ω is by applying a Fourier transform to
the measured correlation function, where the frequency is found from the
maximum of the resulting spectrum [43]. Dynamic light scattering can be
used to measure the sound velocity with an uncertainty of about 0.5%. This
technique has again been often applied to various refrigerants [29, 44]. An
example is depicted in Fig. 15.18.

In determining the sound attenuation one has to face two problems. One
is that due to the large width of the Brillouin lines the decay-time of the

Fig. 15.18. Sound velocity of refrigerant R134a in a wide range around the critical
point [46].
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Fig. 15.19. Frequency dispersion with the measurement of sound attenuation;
sample: refrigerant R125, saturated liquid at 45◦C [44].

correlation function is typically only a few hundreds of nanoseconds, even if
small scattering angles are employed, which requires the use of fast correla-
tors. The other problem is of a more fundamental nature and is caused by a
lack of definition of the scattering vector [3, 44]. Due to the finite width of
stops in the detection optics there is always some angular spread, which is a
combination of a simple geometrical and a diffraction effect. This uncertainty
does not have a significant effect on probing the Rayleigh line, but causes a
spread in the position of the Brillouin line. Thus, the linewidth probed in a
spectroscopic experiment is a convolution of the distribution of positions and
the actual linewidth. Analyzing the scattered light in the time-domain one
obtains in the presence of this effect a decay time being shorter than asso-
ciated with the sound attenuation. However, one has to realize experimental
conditions, where the angular uncertainty is as small as possible. This may
be realized by placing the stops in the detection optics as far as 4−6 m apart
from each other.

These difficulties result in a reduced accuracy of measuring DS of about
10%, which still is better than by direct spectroscopic methods. Finally, it
must be pointed out that all measurements of sound velocity and attenuation
are basically dependent on the actual frequency used in the experiment. This
dispersion effect has turned out to be negligible for many fluids and the
frequencies probed by DLS as the sound velocity is considered, but is marked
for the sound attenuation, especially of refrigerants, cf. Fig. 15.19.
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15.4.5 Landau-Placzek Ratio

The Landau-Placzek ratio S is defined as the ratio of intensities of the
Rayleigh to Brillouin lines and is related to the specific heats cp and cv
by

S =
IR
2IB

=
(cp − cv)

cv
. (15.32)

The Landau-Placzek ratio may be obtained from the evaluation of the con-
trasts in various heterodyne experiments, when a local oscillator with defined
intensity is added [45]. An example of such measurements is provided by
Fig. 15.20.

Fig. 15.20. Landau-Placzek ratio for refrigerant R134a obtained by DLS measure-
ments [47] in comparison with reference data from the equation of state [48].

15.4.6 Soret Coefficient

When a binary liquid mixture is brought into a temperature gradient ∇T ,
mass diffusion occurs resulting in a concentration gradient ∇c. This Soret
effect may be described by the relation

∇c = −ST c(1 − c) ∇T, (15.33)

where ST is the Soret coefficient and c is the mass fraction of the heavier
component. When DLS experiments are carried out in a steady temperature
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gradient, the Soret coefficient may be derived from the amplitude of the con-
centration mode in the resulting correlation function [49]. As this amplitude
is proportional to (∇T )2/q4 very small scattering angles of order 1◦ must be
employed, where the scattering angle can hardly be measured exactly, but
may be calibrated by a DLS measurement in a system where the diffusion
coefficient is known.

15.4.7 Derivable Properties

Dynamic light scattering is a technique which allows the measurement of a
large variety of thermophysical properties, in some instances even within a
single experiment. Besides the data, which can be measured directly, more
properties may be derived in connection of DLS data with additional infor-
mation from other techniques. A few examples will be given here.

Whereas the Landau-Placzek ratio relating isobaric and isochoric specific
heat capacities, (15.32), may be directly derived from DLS experiments, there
is no straightforward access to either of these values. In order to obtain in-
formation on cp, it is therefore necessary to combine data from DLS with
other properties from different measurement techniques. As DLS can probe
the thermal diffusivity very successfully, the combination with data for the
thermal conductivity λ, which can be measured by various techniques di-
rectly, and for the fluid density ρ, which can be determined very accurately,
yields information on cp according to cp = λ/(aρ). An example for this proce-
dure including a comparison with values obtained from an equation of state
is given by Fröba et al. [50]. Using cp and S, the isochoric heat results as
cv = cp/(S + 1) which immediately follows from (15.32).

The isentropic compressibility χs = 1/(ρc2S) follows directly from density
ρ and the sound velocity cS measured by DLS. Accordingly, the isentropic
exponent κ = ρc2S/p may be derived with the knowledge of the equation of
state of the fluid. The sound attenuation DS is related to a number of other
thermophysical properties via

DS =
(4/3)ηs + ηv + (1/cv − 1/cp)λ

2ρ
. (15.34)

In this notation, the usual dynamic viscosity has been given an index s to
emphasize that this is the shear viscosity in contrast to the bulk viscos-
ity ηv. With a measurement of DS and knowledge of the other quantities,
which again may mostly be derived from DLS measurements, information on
the bulk viscosity may be deduced, which is an important property for the
description of structural relaxation and which is not readily obtainable by
experiment.
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15.5 Related Techniques

15.5.1 Surface Light Scattering

Surface light scattering (SLS) is a technique which is closely related to dy-
namic light scattering in its classical meaning. The difference is that this
technique probes, as the name indicates, fluctuations on the surface of a liq-
uid or, in a more general formulation, at phase boundaries. These fluctuations
can be understood as thermally excited capillary waves of small amplitude
(∼ 1− 100 nm) and with a characteristic wavelength (∼ 0.1− 1000 µm) and
that are quantized in so-called “ripplons” [51].

In general, for the temporal decay of surface fluctuations two cases may be
distinguished. In the case of large viscosity and/or small surface tension, the
amplitude of surface waves is damped exponentially, while in the case of small
viscosity and/or large surface tension the amplitude decays in the form of a
damped oscillation. Light interacting with such a fluctuating surface structure
is scattered. An exponential decay of surface waves results solely in a spectral
broadening of the light spectrum, whereas an oscillatory damping gives rise
to a Brillouin doublet [52]. Hence, the spectrum exhibits three characteristic
lines, qualitatively similar to that from light scattered in a bulk fluid, where
line widths and separation are related to the modulus q of the scattering
vector, kinematic viscosity ν, surface tension σ, and density ρ as shown in
Fig. 15.21 in a first order approximation. A Lorentzian shape of these lines as
well as the relations for line widths and separation as indicated in Fig. 15.21
only hold in the limiting cases y 
 0.145 or y � 0.145, respectively, with

Fig. 15.21. Spectrum of scattered light by surface waves: frequency unshifted line
(center) in the case of large viscosity and/or small surface tension; frequency shifted
Brillouin lines in the case of small viscosity and/or large surface tension.
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y = σρ/(4η2q). For y values close to 0.145 the line shapes become more
complex [51, 53].

In practice, also the spectrum of light scattered by the fluctuations at a
liquid surface can only be resolved in a post-detection filtering scheme us-
ing, e.g., photon correlation spectroscopy (PCS). For heterodyne conditions,
where the scattered light is superimposed with stronger coherent reference
light, the normalized time-dependent intensity correlation function for the
analysis of surface fluctuations is described by

g(2)(τ) = a+ b cos (ωRτ) exp (−τ/τC). (15.35)

or
g(2)(τ) = a+ b exp (−τ/τC). (15.36)

assuming the decay of the amplitude of surface waves is oscillatory (y 

0.145) or overdamped (y � 0.145), respectively. Due to the usually small
frequency separation of the shifted Brillouin lines commonly no frequency
shift of the coherent reference light is necessary. In the propagating case
of surface fluctuations the correlation function (15.35) can be used for the
simultaneous evaluation of surface tension σ and kinematic viscosity ν. The
correlation time τC and the frequency ωR, which are identical with the mean
life time of “ripplons” and the frequency of propagation, respectively, are
given in first order approximation by

τC =
1

2νq2
ωR =

(
σ

ρ

)1/2

q3/2. (15.37)

In the overdamped case, if the fluid viscosity is large and/or the surface
tension is very small, the lifetime of “ripplons” in (15.36) is given in a first-
order approximation by

τC =
2νρ
σq

. (15.38)

For a reliable determination of viscosity and surface tension a more detailed
and rigorous consideration of the surface light scattering method than given
by (15.35) to (15.38) has to be applied. Here, the reader is referred to litera-
ture, see, e.g., [54].

Although it has been shown that SLS may be performed in complete anal-
ogy to DLS measurements from bulk fluids using an identical set-up [50,55],
some differing design features are often employed for SLS measurements. One
obvious difference is that SLS normally investigates interfaces in horizontal
orientation within a sample cell with light impinging from above. Commonly,
scattered light is observed near the reflected beam [56], i.e. also in the top
direction, which eases the optical access and is of course essential for non-
transparent fluids. Alternatively, for transparent fluids scattered light may
be observed close to the direction of the refracted beam [57, 58], which is
advantageous due to stability considerations and scattering intensities. By
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Fig. 15.22. Scattering geometry for the observation of the scattered light in trans-
mission direction.

the choice of the angle of incidence ε, resulting in a specific angle δ of the
refracted light, and the scattering angle ΘS the scattering vector q = k′

I −k′
S

is determined and, by this, the wave vector of the observed surface vibration
mode, see Fig. 15.22. Here, k′

I and k′
S denote the projections of the wave

vectors of the refracted (kI) and scattered light (kS) in the surface plane, re-
spectively. For the observation of scattered light within the irradiation plane
and assuming elastic scattering (i.e., kI

∼= kS), the modulus of the scattering
vector is obtained as

q =
∣∣k′

I − k′
S

∣∣ ∼= 2kI sin(ΘS/2) cos(δ −ΘS/2)

=
4πn
λ0

sin (ΘS/2) cos(δ −ΘS/2),
(15.39)

where n is the fluid refractive index and λ0 is the laser wavelength in
vacuo. The experimental set-up and the computation of the scattering vec-
tor are considerably simplified if the scattered light is observed perpendic-
ularly to the fluid interface, i.e. in a vertical direction with ΘS = δ, where
q = (2π/λ0) sinΘi.

SLS experiments typically use small scattering angles of about 0.1◦ up
to a few degrees. The according range of scattering vectors reaches from an
order of 104 m−1 to about 106 m−1, where large q-vectors can be achieved
easier with a transmission geometry due to intensity considerations. An ad-
vantage of larger scattering vectors is that spectral broadening effects due to
an uncertainty ∆q in the scattering vector do not play a role in the larger
q-range.
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As in many applications of DLS also the variant surface light scattering
makes it possible to determine two properties simultaneously, in the case
of SLS this measurement is performed without any extra effort and yields,
with surface tension and viscosity, two quantities whose determination by
other means requires two completely different sets of experimental equip-
ment. While commonly the kinematic viscosity ν is regarded as the property
directly accessible in SLS experiments, it should be pointed out that this is
only true with the simplifying neglect of gas phase properties. With a proper
execution of the method and experimental care, however, no measurable dif-
ferences between the values obtained by SLS and conventional methods, in
part relying on bulk properties, could be found. An inaccuracy of 1% for
either property can be obtained with SLS [58]. This value is at least compa-
rable with the uncertainty of conventional methods, and, together with the
unanimous advantage of a simultaneous determination of surface tension and

Fig. 15.23. Kinematic viscosity of the liquid phase and surface tension of alterna-
tive refrigerants under saturation conditions from SLS [59].
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Fig. 15.24. Dynamic viscosity of the liquid phase and surface tension of a silicone
oil at ambient pressure from SLS [54].

viscosity, makes the method interesting also for a routine measurement of
these properties of simple fluids [59] and mixtures [60, 61]. For both the os-
cillatory and the overdamped behavior of surface fluctuations, experimental
results are shown on various new refrigerants in Fig. 15.23 and on a silicone
oil in Fig. 15.24, respectively. For the silicone oil the quantity which has been
directly evaluated from the SLS experiment was the ratio of the dynamic vis-
cosity to the surface tension [54]. Assumed that the temperature dependence
of the dynamic viscosity and surface tension of the silicone oil can be reflected
by a simple Andrade-type and a linear equation, respectively, with the help
of a calibration point the dynamic viscosity and surface tension have been
derived over the whole temperature range investigated. This procedure is
shown in Fig. 15.24, where the dashed curves indicate the uncertainty result-
ing from the uncertainty of the calibration point. Also, apart from studying
specific surface properties, the contactless operation makes SLS ideally suited
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for the investigation of high-temperature melts [62], yet presently with clear
limitations in accuracy.

15.5.2 Forced Rayleigh Scattering

Forced Rayleigh scattering (FRS) differs from usual dynamic light scattering
in the respect that it does not probe statistical fluctuations in a sample but
employs a temperature gradient produced by laser irradiation [63,64]. For the
realization of a thermal grating the laser light, which is chopped for pulses
of a few hundreds of microseconds duration, is split and the two beams are
intersected in the sample to produce an interference pattern (see Fig. 15.25).
This causes the temperature to rise locally, where in some instances light
absorption is increased by doping the sample with an additional dye. The
grating is probed by an additional laser beam, where the intensity diffracted
into the first order is measured over time. Assuming one-dimensional heat
conduction, the grating decays with

δT (x, τ) = ∆T cos(kx) exp(−τ/τC), (15.40)

where x is the location in the sample and k is the modulus of the grating
vector. The grating relaxes with a characteristic time τC = 1/(aq2), which is
detected by measuring the intensity of the diffracted beam

I(τ) ∝ [∆T (τ)]2 ∝ exp(−2τ/τC), (15.41)

Fig. 15.25. Typical setup for a FRS experiment [63].
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Fig. 15.26. Distribution of thermal diffusivities within a PVC film, obtained by a
scanning FRS technique [64].

which is usually done by means of a photomultiplier and a transient recorder.
A major advantage of FRS as compared to conventional DLS is that a single
measurement may be performed very fast, i.e. in about 1 ms. On the other
hand, measurements are not performed in true thermodynamic equilibrium,
which makes experiments close to the saturation line or to a critical point
difficult, and the technique requires a dye for usual fluids. Additionally, there
are deviations from the ideal working model of one-dimensional heat conduc-
tion. However, the overall uncertainty of the method is found to be about
1.5% to 3% for usual liquids and is thus similar to that of conventional DLS.

Moreover, there are some fields of application, where FRS is especially
attractive. This includes some mixtures, where accurate DLS measurements
may be difficult because of a large signal due to concentration fluctuations,
water and aqueous mixtures (where DLS cannot be used due to the extreme
weakness or lack of the Rayleigh signal), and a number of high temperature
melts, e.g., molten salts. Another interesting feature of FRS is illustrated in
Fig. 15.26, where the technique has been used to obtain a “map” of ther-
mal diffusivities by scanning the laser beam across a sample. It should be
noted that besides the application of FRS to the measurement of thermal
diffusivities it is also possible to extend the technique to the determination
of some other properties. Similar to DLS, FRS may also be applied to the
measurement of the Soret coefficient, as it has been done for polymer solu-
tions [65]. Additionally, FRS has been used to measure the sound velocity
in hydrothermal solutions [66], where acoustic waves are generated by using
intense pump pulses.
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15.6 Conclusion

Light scattering techniques have been widely employed for the investigation
of diffusive processes and the determination of transport and other thermo-
physical properties. The reasons for the success of these methods may be
summarized as follows:

– Measurements may be performed in or close to thermodynamic equilib-
rium, almost without an input of energy.

– Experiments are conducted in a non-contact mode, allowing access to
regions of thermodynamic state which can hardly be probed by other
techniques.

– The methods allow the determination of a wide range of transport and
other thermophysical properties, in some instances even simultaneously.

– The techniques are based on simple and rigid working equations, where
the reliability of the measurements can easily be checked.

As the state of development is different for the various properties, major
tasks for future work will be both the routine application of light scattering
to data acquisition for interesting samples over a wide range of temperature
and pressure and the continuous improvement of the experimental techniques
themselves. Specific challenges are further applications to samples like high-
temperature melts and the simultaneous determination of several properties
within a single experiment.

Notation

A area
a thermal diffusivity, experimental constant
b experimental constant
c concentration, experimental constant
cp isobaric specific heat
cS speed of sound
cv isochoric specific heat
d particle diameter
DP particle diffusion coefficient
DS sound attenuation
D12 mutual diffusion coefficient
E electric field strength
f stochastic complex quantity, strength, count rate
G correlation function
g normalized correlation function
H state variable
I intensity
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k modulus of wave vector or grating vector
kB Boltzmann constant
n refractive index
p pressure
q modulus of scattering vector
R distance
S Landau-Placzek ratio
SE power spectral density of the electric field
t temperature, time
T temperature, time
Γ line width
δ angle of refraction
ε permittivity of the medium, angle of incidence
ε0 permittivity in vacuo
η dynamic (shear) viscosity
ΘS scattering angle
Θi external angle of incidence
κ isentropic exponent
λ thermal conductivity
λ0 laser wavelength in vacuo
ν kinematic viscosity
ρ density
σ surface tension, standard deviation
τ time
∆τ sample time
χe electric susceptibility
χs isentropic compressibility
Ψ random function
Ω solid angle
ω angular frequency
ACF autocorrelation function
DLS dynamic light scattering
FRS forced rayleigh scattering
PCS photon correlation spectroscopy
SLS surface light scattering
〈· · · 〉 time average

Sub-/Superscripts
B Brillouin
C correlation
c concentration
c critical
coh coherence
I incident
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i channel number
LO local oscillator
M modulator
q Fourier component
R Rayleigh, “ripplon”
S scattered, sound, sample
t temperature
′ projection in the surface plane
∗ complex conjugate variable
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16 Diffusion in Colloidal and Polymeric

Systems

Gerhard Nägele, Jan K. G. Dhont, and Gerhard Meier

16.1 Introduction

In this chapter we shall discuss diffusion properties of spherical and rod-like
colloids, and of binary polymer melts. In addition, the principles of dynamic
light scattering (DLS), fluorescence recovery after photobleaching (FRAP)
and fluorescence correlation spectroscopy (FCS), which are methods com-
monly used to measure various types of diffusion coefficients, are introduced
on a basic level. In Sect. 16.2 we discuss light scattering on a heuristic level,
and we introduce various kinds of dynamic structure factors. These structure
factors describe different types of diffusion processes, like self-, collective-,
rotational- and interdiffusion. These diffusion processes, and their connection
to the corresponding types of structure factors, are discussed in Sect. 16.3,
first for very dilute systems (Sect. 16.3.1) and then for concentrated systems
(Sect. 16.3.2). Interdiffusion is especially relevant for the dynamics in binary
polymer melts. Since long-time self-diffusion is difficult to measure with light
scattering, especially for non-spherical particles, two very direct methods
to probe this type of diffusion process are introduced in Sect. 16.4: FRAP
(Sect. 16.4.1) and FCS (Sect. 16.4.2). These sections also contain experimen-
tal data obtained with these techniques for rod-like macromolecules. Sec-
tion 16.5 deals with diffusion of spherical colloids, where the various types
of diffusion processes that were treated in Sect. 16.3 on a heuristic level,
are quantified, and where theoretical short-time and long-time predictions,
and computer simulation results, are explored and compared to experimen-
tal findings. The systems considered comprise three-dimensional dispersions
of neutral and charged colloidal spheres, quasi two-dimensional suspensions
of charged particle monolayers between narrow plates, and magnetically in-
teracting particles confined to a liquid-gas interface. Section 16.5 addresses
further the diffusion in binary polymer blends, where earlier discussed general
relations for interdiffusion are explicitly quantified within the Flory-Huggins
approach and the dynamic random phase approximation (RPA).
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16.2 Principles of Quasielastic Light Scattering

Light scattering by colloidal suspensions and polymers is a major experimen-
tal tool to study the statistical properties of these systems. In this section,
light scattering is introduced on a heuristic basis, without considering ex-
plicit solutions of the Maxwell equations. The content of this section is much
along the lines of [1]. Besides this reference, more about light scattering can
be found in [2–5] as well as in Chap. 15.

16.2.1 The Scattered Electric Field Strength

Consider an assembly of points, fixed in space. These points will later be iden-
tified as infinitesimally small volume elements that constitute the colloidal
particles or polymers. A plane wave of monochromatic light impinges onto
this assembly of points. Each of the points is supposed to scatter the inci-
dent beam of light in such a way that neither the wavelength nor its phase is
changed. Such a scattering process is referred to as quasielastic, since the only
energy transfer between the photon and the scatterer is due to exchange of
kinetic energy. Due to the extreme difference between the mass of an elemen-
tary scatterer and a photon, the change of the wavelength after the collision
of the photon with the scatterer is extremely small, and will be neglected. A
scattering process of this sort can be thought of as follows. The incident elec-
tric field induces a dipole moment which oscillates with the same frequency as
the incident field. This oscillating dipole then emits electromagnetic radiation
with the same frequency, and hence with the same wavelength.

The scattered intensity is detected in a certain well-defined direction. The
total electric field strength that is scattered in that direction is the sum of the
scattered electric fields by the individual points. Clearly, the phase difference
of the scattered light from two points depends on their relative positions,
as well as on the direction in which the electric field strength is measured,
as can be seen from the sketch in Fig. 16.1. Let us first calculate the phase
difference of electric field strengths scattered by two point scatterers with
position coordinates r and r′ say, into a direction that is characterized by
the scattering angle Θs, which is the angle between the propagation direction
of the incident plane wave and the direction in which the scattered field is
detected (see Fig. 16.1).

The incident wavevector q0 is the vector pointing in the propagation direc-
tion of the incident field, and its magnitude is 2π/λ, where λ is the wavelength
of the light. Similarly, qs is the scattered wavevector: its magnitude qs =|qs |
is equal to that of the incident wavevector

q0 = qs = 2π/λ . (16.1)

The phase difference ∆Φ of the electric field strengths scattered by the two
points located at r and r′ under a scattering angle Θs is equal to 2π∆/λ,
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Fig. 16.1. A schematic representation of the scattering of light by an assembly of
point scatterers (•). Each macromolecule (a colloidal particle or a polymer molecule)
comprises many of such point scatterers. After [1].

where ∆ is the difference in distance traversed by the two photons: ∆ =
AB+BC (see Fig. 16.1). Now, AB = (r′−r)·q0/q0, and BC = (r−r′)·qs/qs.
Hence, using (16.1),

∆ · Φ = (r′ − r) · (q0 − qs) . (16.2)

One can thus associate to each point r a phase equal to r ·(q0−qs). The total
scattered electric field strength Es is then the sum of exp{ir·(q0−qs)} over all
volume elements, weighted by the scattering strength of the point scatterers,
which is defined as the fraction of the incident field strength that is actually
scattered. Now, each point scatterer can be identified as an infinitesimally
small volume element with volume dr, from which the colloidal particle or
polymer molecule is built. The scattering strength of a point scatterer is now
written as dr F (r), where F is referred to here as the scattering strength
density. Replacing the sum over point scatterers by integrals yields

Es =
∫

Vs

dr F (r) exp{i(q0 − qs) · r} E0 (16.3)

where E0 is the incident field strength, and Vs is the scattering volume, which
is the volume from which scattered light is detected. The scattering strength
density is proportional to the polarizability α(r) of the volume element, rel-
ative to a constant background polarizability α0: the additional scattered
field due to the macroscopically large, homogeneous background is zero for
scattering angles unequal to 1800. For a colloidal system, the background
polarizability can be taken equal to that of the solvent, while for a binary
polymer melt one can take the spatial average of the polarizability

F (r) ∼ α(r) − α0 . (16.4)

We note that the polarizability is related to the refractive index for frequen-
cies equal to that of light. The integral in (16.3) may be rewritten in order to
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make the distinction between interference of light scattered from volume ele-
ments within single particles and from distinct particles. Since the scattering
strength is only non-zero within the colloidal particles or polymers, (16.3) can
be written as a sum of integrals ranging over the volumes Vj , j = 1, 2, · · · , N ,
occupied by the N particles in the scattering volume,

Es =
N∑

j=1

∫
Vj

dr F (r) exp{i(q0 − qs) · r} E0 . (16.5)

The integration range Vj is the volume that is occupied by the jth particle.
For non-spherical particles this volume depends on the orientation of the par-
ticle, and for any kind of particles, also for spherical particles, Vj depends
on the location of the jth particle. Let rj denote a fixed point inside the jth

particle, which is referred to as its position coordinate. The position coor-
dinate dependence of Vj can easily be accounted for explicitly, by changing
for each j the integration variable to r′ = r − rj . The new integration range
V 0

j is the volume occupied by the particle with its position coordinate at
the origin. For spherical particles, with their positions chosen at the center
of the spheres, V 0

j is the volume of a sphere with its center at the origin.
For non-spherical, possibly flexible particles, V 0

j depends on the orientation
and the internal configuration of particle j. In terms of these new integration
variables (16.5) reads

Es =
N∑

j=1

Bj(q) exp{i q · rj} E0 , (16.6)

where we abbreviated

Bj(q) =
∫

V 0
j

dr′ F (r′) exp{iq · r′} , (16.7)

where Bj is referred to as the scattering amplitude of particle j, and

q = q0 − qs (16.8)

which is referred to as the scattering wavevector. From (16.1) it is easily
verified that the magnitude of this scattering wavevector is equal to

q =
4π
λ

sin{Θs/2} (16.9)

where Θs is the scattering angle that was introduced before as the angle
between q0 and qs, and λ is the wavelength of the light in the scattering
volume. The exponential functions in (16.6) containing the position coordi-
nates rj describe the interference of light scattered from different colloidal
particles, while the scattering amplitudes Bj describe interference of light
scattered from different volume elements within single particles.
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Fig. 16.2. An observer only probes that part of an oscillating dipole P that is
perpendicular to the observation direction ∼ qs.

In the above analysis we did not consider polarization effects. Consider
the oscillating dipole P that is induced by the incident electric field, from
which emitted radiation is detected in the direction qs. The component of
the dipole parallel to qs does not contribute to the electric field emitted in
that direction: looking “onto the head” of a dipole, one cannot tell whether
the dipole oscillates or not, and therefore it cannot radiate in that direction.
The part of the dipole that gives rise to emitted radiation in the direction qs

is the part that is perpendicular to qs (see Fig. 16.2). This “effective dipole”
is equal to

P eff =
[
Î − q̂sq̂s

]
· P (16.10)

where q̂s = qs/qs is the unit vector in the direction of qs.
Secondly, the polarizability may be anisotropic, that is, the polarizability

may depend on the polarization direction of the incident field. For example,
for long and thin rods, the polarizability for light with a polarization direction
parallel to the rods long axis may be different from the polarizability of
light that is polarized in a direction perpendicular to the long axis. Such an
anisotropic polarizability is the result of the anisotropic microstructure of
the rods material. For such anisotropic polarizabilities, the induced dipole
generally has a different orientation than the incident electric field. In such
a case, the scattering strength F in (16.4) is a tensor, denoted as F , rather
than a scalar. Thirdly, in an experiment one usually measures, by means of
a polarization filter, the scattered intensity with a prescribed polarization
direction, which is characterized by the unit vector n̂s. The detected electric
field strength is simply n̂s ·Es. Taking these polarization effects into account,
generalizes (16.6) to

Es ≡ n̂s · Es = n̂s ·
[
Î − q̂sq̂s

]
·

N∑
j=1

Bj(q) exp{i q · rj} · E0 (16.11)

where Bj is now defined in (16.7), with the scalar F replaced by the tensor
F . Note that the polarization direction is always perpendicular to the prop-
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agation direction, so that, n̂s · q̂s = 0. Introducing the polarization direction
n̂0 of the incident field, where E0 = n̂0 E0, with E0 the magnitude of the
incident electric field strength, (16.11) simplifies to

Es =
N∑

j=1

[n̂s · Bj(q) · n̂0] exp{i q · rj} E0 . (16.12)

This equation is at the basis of the analysis of quasielastic light scattering
experiments.

Two assumptions, which are implicit in the above analysis, should be
mentioned. First of all it is assumed here that the incident field strength is
the same at every point in the scattering volume. This is only true if the var-
ious scattering elements scatter only a very small fraction of the light. This
amounts to what is commonly referred to as “the first Born approximation”.
Secondly, multiple scattering is neglected. That is, scattered light is assumed
not to be scattered by a second and further volume elements. Both these as-
sumptions are satisfied when, according to (16.4), differences in polarizability
of the material within the scattering volume are small.

The value of the scattering wavevector q is of special importance. Since the
exponential function in (16.12) hardly changes when the position coordinates
rj are changed by an amount less than about 2π/q, the scattered electric
field strength changes when particles move over distances of at least ∼ 2π/q.
Equivalently, from (16.7) it follows that particle orientations and internal
modes can only be probed when the scattering angle is chosen such that
the linear dimensions of the scattering particles is at most ∼ 2π/q. We can
therefore introduce an effective wavelength

Λ = 2π/q (16.13)

which sets the structural length scale on which dynamics is probed. For exam-
ple, if the length of a colloidal rod is smaller than Λ, rotation of the rod leaves
the scattering amplitude (16.7) virtually unchanged, and does therefore not
affect the scattered electric field strength. For such a wavevector, nothing can
be learned from a light scattering experiment about the rotational dynam-
ics of these rods. Similarly, if one is interested in the dynamics of internal
degrees of freedom of a polymer molecule, the scattering angle should be so
large, that Λ is smaller the linear dimension of the polymers. For larger Λ,
only translational motion of the polymers is probed. For the same reason,
displacements of particles that are smaller than Λ are not seen in a light
scattering experiment. According to (16.9), the scattering angle thus sets the
length scale on which the dynamics is probed by light scattering.

16.2.2 Dynamic Light Scattering (DLS)

Due to the Brownian motion of the center of mass rj , and of the orienta-
tion of particles and their internal fluctuations (which renders the scattering
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amplitude Bj time dependent), the scattered intensity fluctuates with time.
Clearly, these fluctuations contain information about the dynamics of these
degrees of freedom, which are generally affected by interactions between the
colloidal particles or polymers. In a dynamic light scattering experiment one
measures the so-called intensity autocorrelation function gI(q, t) (hereafter
abbreviated as IACF), which is defined as

gI(q, t) ≡ 〈i(q, t0) i(q, t+ t0)〉 (16.14)

where the brackets 〈· · · 〉 denote ensemble averaging. For an equilibrium sys-
tem, the IACF is independent of the reference time t0, which we shall there-
fore set equal to 0 from now on. The IACF contains information about the
dynamics of the above mentioned degrees of freedom. The instantaneous in-
tensity is related to the scattered electric field strength as

i(q, t) ∼ Es(q, t)E�
s (q, t) (16.15)

where the wavevector and time dependence of the scattered electric field
strength is denoted explicitly. The IACF is thus an ensemble average of a
product of four electric field strengths

gI(q, t) ∼ 〈Es(q, t)E�
s (q, t)Es(q, t = 0)E�

s (q, t = 0)〉 . (16.16)

The scattered field strength in (16.12) can be written as a sum over many
statistically independent terms, where each term itself is a sum over “clusters”
of interacting particles. The linear dimension of a cluster is the distance over
which interactions between particles extends. These clusters of particles are
statistically independent. The central limit theorem implies that the scattered
electric field strength is a Gaussian variable (with zero average), provided that
the scattering volume contains a large number of such independent clusters
of particles. According to Wick’s theorem for Gaussian variables, the four-
point ensemble average in (16.16) can thus be written as a sum of products of
two-point averages (henceforth we simply write Es(0) instead of Es(t = 0)),

gI(q, t) ∼ 〈Es(0)E∗
s (0)〉〈Es(t)E∗

s (t)〉
+ 〈Es(0)Es(t)〉〈E∗

s (0)E∗
s (t)〉

+ 〈Es(0)E∗
s (t)〉〈E∗

s (0)Es(t)〉 . (16.17)

For systems in equilibrium, the first of these terms is nothing but I2, where
I is the mean scattered intensity. Defining the electric field autocorrelation
function (EACF) gE as

gE(q, t) ≡ 〈Es(0)E∗
s (t)〉 (16.18)

the third term in (16.17) is equal to | gE |2. This will turn out to be the
interesting quantity in DLS. The second term in (16.17) is equal to zero for



626 Gerhard Nägele, Jan K.G. Dhont, and Gerhard Meier

non-zero wavevectors. This can be seen as follows. The second term consists
of ensemble averages of the form

〈exp{iq · (ri(0) + rj(t))}〉 ,

where i and j are either different or equal. Let P (rj , t | ri, 0) be the con-
ditional pdf (probability density function) for the position rj of particle j
at time t, given that the position of particle i at time t = 0 is ri. This pdf
is only a function of the difference coordinate ri − rj for homogeneous sys-
tems: P (rj , t | ri, t = 0) ≡ P (ri − rj , t). The ensemble average is then equal
to (with r′ = ri(t = 0) and r = rj(t))

〈exp{iq · (ri(t = 0) + rj(t))}〉

=
∫

Vs

dr′
∫

Vs

dr P (r′ − r, t)P (r′) exp{iq · (r′ + r)}

where P (r′) is the equilibrium pdf for the position coordinate. Since P (r′) ≡
1/Vs for the homogeneous equilibrium system considered here, this can be
written, in the thermodynamic limit (where Vs → ∞ and ρ̄ constant), as

1
8

[
lim

Vs→∞
1
Vs

∫
Vs

d(r′ + r) exp{iq · (r′ + r)}
]
×

∫
d(r′ − r)P (r′ − r, t)

where the factor 1/8 is the Jacobian of the transformation

(r′, r) → (r′ + r, r′ − r) .

The integral with respect to (r′ − r) is well behaved, since the pdf is a
normalized function. The integral between the square brackets is equal to
unity for q = 0, and is zero for q �= 0, since that integral is proportional to
the delta distribution of q (for sufficiently large scattering volumes). Hence,
the ensemble average is zero for non-zero wavevectors, so that the second
term in (16.17) does not contribute. The IACF can thus be written in terms
of the mean scattered intensity and the EACF (16.18)

gI(q, t) = I2 + | gE(q, t) |2 . (16.19)

This equation is usually referred to as the Siegert relation. The IACF is
measured, and interpreted through the more simple EACF via the Siegert
relation.

16.2.3 Dynamic Structure Factors

Several types of dynamic structure factors can be defined, each of which
describes a different type of diffusion process. The experimental relevance of
these structure factors relates to the Siegert relation (16.19). Substitution of
(16.12) into the definition (16.18) of the EACF leads to
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gE(q, t) ∼
N∑

l,j=1

〈Bp
l (q, t)Bp �

j (q, 0) exp{i q · (ri(l) − rj(0))}〉 (16.20)

where rj(0) is the position coordinate at t = 0, and for brevity we introduced

Bp
j (q, t) = n̂s · Bj(q, t) · n̂0 (16.21)

where a superscript “p” is used to indicate that polarization effects are taken
into account. Time dependencies are denoted explicitly here. The collective
dynamic structure factor is now defined as

Sc(q, t) =
1
N

N∑
l,j=1

〈exp{i q · (rl(t) − rj(0))}〉 . (16.22)

This structure factor is proportional to the experimentally obtained EACF,
when the scattering amplitudes Bp

j can be omitted in (16.20). These scat-
tering amplitudes contribute to the EACF due to rotation and possibly fluc-
tuations of internal degrees of freedom of a particle. Rotation and internal
degrees of freedom are not probed when either the wavelength Λ in (16.13)
is larger than the linear dimensions of the scattering particles, or when the
particles are rigid and spherically symmetric. In the latter case, rotation
does not change the scattered intensity and internal degrees of freedom that
could contribute to scattering are absent. For such cases, the scattering am-
plitudes can be omitted in (16.20). It should always be kept in mind, that
DLS-data on non-spherical particles at relatively large wavevectors cannot
be interpreted directly in terms of the collective dynamic structure factor,
whose time dependence is solely determined by the translational dynamics of
centers-of-mass.

The collective dynamic structure factor can be related to density fluctu-
ations as follows. The microscopic density is defined as

ρ(r, t) =
N∑

j=1

δ(r − rj(t)) (16.23)

where δ is the Dirac delta distribution. On ensemble averaging the right-hand
side, it is easily shown that the macroscopic density is obtained. The Fourier
transform of the microscopic density with respect to r yields

ρ(q, t) =
N∑

j=1

exp{iq · rj(t)} (16.24)

where q is the Fourier variable conjugate to r. The collective dynamic struc-
ture factor (16.22) can thus be written as

Sc(q, t) =
1
N

〈ρ(q, t) ρ�(q, 0)〉 . (16.25)
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The collective dynamic structure factor is thus related to collective motion of
many particles. In the next section it will be shown how this structure factor
is related to the so-called collective diffusion coefficient, which under certain
conditions reduces to Fick’s diffusion coefficient.

Consider now an experiment on a binary mixture of particles, where one
sort of particles is very dilute and one sort possibly concentrated. Suppose
that the possibly concentrated species does not scatter any light, that is,
their scattering amplitudes Bp

j in (16.20) are 0. These particles are referred
to as the host particles. All the scattered intensity originates from the dilute
species, the so-called tracer particles. The concentration of tracer particles
is chosen so small, that they do not mutually interact. The summations in
(16.20) range only over the tracer particles, since the scattering amplitudes
are 0 for the host particles. Let us furthermore assume once more, that the
wavevector is small enough in order to neglect the contribution of the scatter-
ing amplitudes Bp

j . Since the tracer particles do not interact, we then have,
for i �= j,

〈exp{iq · (ri − rj)}〉 = 〈exp{iq · ri}〉 〈exp{−iq · rj}〉 . (16.26)

Since the exponential functions are equally often positive and negative (for
q �= 0), this ensemble average is 0. For monodisperse tracer particles the
EACF is now proportional to the so-called self-dynamic structure factor

Ss(q, t) = 〈exp{i q · (r(t) − r(0))}〉 (16.27)

where r(t) is the position coordinate of a tracer particle. This structure fac-
tor contains information about the dynamics of a single particle, possibly
interacting with other particles. Its relation to the mean square displacement
and the so-called self-diffusion coefficient is discussed in the next section.

A third kind of dynamic structure factor which is of importance is the
distinct dynamic structure factor Sd, which is defined as

Sd(q, t) =
1
N

N∑
l�=j=1

〈exp{i q · (rl(t) − rj(0))}〉 . (16.28)

The distinct dynamic structure factor is that part of the collective dynamic
structure factor which describes time correlations between distinct pairs of
particles only.

16.3 Heuristic Considerations on Diffusion Processes

For dispersions of rigid colloidal particles in a solvent and for polymer melts,
there are three fundamental types of diffusion processes to be distinguished
which are related to translational particle motion: self-diffusion, collective
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diffusion, and exchange or interdiffusion between different particle species. In
addition to translational diffusion, the particles or polymers undergo further
rotational diffusion which is coupled in general to the translational motion. In
this section we shall discuss each of these diffusion processes on an intuitive
level for a colloidal system of the most simple particle shape: a suspension
(i.e. an assembly) of rigid colloidal spheres embedded in a low-molecular-
weight fluid (i.e. the solvent) of small molecules as compared to the size of
the spheres. The various translational diffusion mechanisms will be further
exemplified for binary blends of polymer chains, within time- and length
scales accessible to dynamic light scattering.

The basic understanding of diffusion of rigid colloidal spheres is very help-
ful in improving the understanding of diffusion mechanisms of more com-
plicated non-rigid macromolecules in solution, like polymers and polyelec-
trolytes, where the fluctuating internal degrees of freedom related to the mo-
tion of monomers affect the diffusion properties of the macromelecules. We
consider first very dilute colloidal dispersions where the interactions between
the colloidal spheres can be disregarded. For this most simple case, only a
single diffusion mechanism is present, namely self-diffusion. We then focus on
the general case of diffusion in systems of interacting particles.

16.3.1 Very Dilute Colloidal Systems

Translational self-diffusion refers to the random walk of the center of mass of a
tagged colloidal sphere (the “tracer particle”) in a quiescent and homogeneous
suspension caused by thermal collisions with surrounding solvent molecules
and other colloidal particles (the so-called “host particles”). For very small
sphere concentrations, the dynamics of the colloidal tracer is governed only
by the thermal bombardment of the solvent molecules.

The most important quantity that characterizes the translational self-
diffusion of the center of mass of a particle is the so-called mean square
displacement W (t) (hereafter abbreviated as MSD), which is defined as

W (t) ≡ 1
2d

〈|r(t) − r(t = 0) |2〉 . (16.29)

Here, r(t) is the position vector of the center of mass of the tracer sphere
at time t, and hence, ∆r(t) ≡ r(t) − r(t = 0) is the sphere displacement
during a time interval t. A factor 1/2d has been included into the definition
of the MSD for later convenience, where d denotes the system dimension. For
a homogeneous suspension in thermal equilibrium, the reference time “t = 0”
is of no significance (stationarity property).

Suppose that at time t = 0 a colloidal tracer sphere in an unbound solvent
has a translational velocity v0. For very short times, say t � τB, when the
sphere velocity has hardly changed under the impact of solvent molecules,
r(t) − r(0) ≈ v0 t, and hence
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W (t) ∼ t2 , t� τB . (16.30)

For times large as compared to the momentum relaxation time τB, when the
sphere has experienced many collisions with solvent molecules, the MSD has
changed into a linear function of time, i.e.

W (t) = D0 t , t
 τB , (16.31)

where D0 is referred to as the single particle or Stokes-Einstein diffusion
coefficient.

The time scale τB can be inferred from the following reasoning originally
due to Langevin. A sphere with velocity v experiences through the solvent
impacts an average friction force that is equal to −γ v, where γ is referred
to as the friction coefficient, and a fluctuating force f (t). For a sphere, the
friction coefficient γ is given by the Stokes law γ = 6πη0R, where η0 is the
shear viscosity of the solvent and R is the radius of the sphere. For times large
as compared with the mean collision time, τs, of solvent molecules (typically,
τs ≈ 10−13 s), the colloidal sphere has experienced many collisions by the
solvent molecules. Then the force f (t) can be described as a Gaussian dis-
tributed fluctuating quantity completely characterized by its first and second
moments

〈f (t)〉 = 0 , 〈f (t) · f (t′)〉 = 2dB δ(t− t′) . (16.32)

Here, 〈· · · 〉 is an average over the fast solvent collisions, and B is a measure of
the strength of the fluctuating force. In thermal equilibrium, B = kBTγ, i.e.
the strength is proportional to the temperature and friction coefficient. The
delta function in time indicates that, as seen from a coarse-grained time level
t
 τs, there is no correlation between solvent impacts at different times.

The Newtonian equation of motion for a Brownian sphere of mass M is
thus given, for times t
 τs, by

M
dv

dt
= − γ v(t) + f (t). (16.33)

with the solution
〈v(t)〉 = v0 exp

{
− γ

M
t
}

(16.34)

for the solvent-collision-averaged velocity. As seen, the velocity remains on
average almost equal to the initial velocity v0 for times t�M/γ, which sets
the time scale

τB ≡ M

γ
=

M

6πη0R
(16.35)

for the average velocity relaxation of a colloidal sphere. For times t 
 τB,
the average velocity of a tagged particle decays towards zero. Using typical
values for aqueous colloidal dispersions, one finds that τB ≈ 10−8 − 10−9 s,
so that τB 
 τs.
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So far we have considered the Brownian motion of a sphere with given
fixed initial velocity v0. In dynamic light scattering experiments, an addi-
tional average is performed with respect to a Maxwellian distribution of ini-
tial particle velocities since light is scattered from many spheres in thermal
equilibrium. Multiplication of (16.33) by v0 and subsequent averaging over
solvent collisions and initial velocities gives

φv(t) ≡ 1
d
〈v(t) · v(0)〉 =

kBT

M
exp

{
− t

τB

}
(16.36)

for the velocity autocorrelation function (VAF), φv(t), of an isolated Brown-
ian sphere. Due to equipartition of energy at equilibrium, 〈v2(t)〉 = dkBT/M .
Using that r(t)− r0 =

∫ t

0 dt′v(t′) one can easily show for stationary systems
that φv(t) is related to the MSD by

W (t) =
∫ t

0

du (t− u)φv(u) . (16.37)

This relation is valid also for non-dilute system of interacting particles. The
MSD of an isolated sphere follows from the substitution of (16.36) into (16.37)
as

W (t) = D0t
[
1 − τB

t

(
1 − e−t/τB

)]
→

{
kBT
2M t2 , τc � t� τB
D0 t , t
 τB

(16.38)

where D0 is related to the friction coefficient by the Stokes-Einstein relation

D0 =
kBT

γ
. (16.39)

Equation (16.38) interpolates between random ballistic flight for t� τB and
linear diffusive behavior for t
 τB.

The sphere displacement ∆r(t) during time t is a Gaussian random vari-
able, since it is linearly related to v(t) and to f(t). The pdf, P (∆r, t), for
such a displacement is thus

P (∆r, t) = {4πW (t)}−d/2 exp{− (∆r)2

4W (t)
} (16.40)

with
W (t) =

1
2d

∫
drd P (∆r, t) (∆r)2 . (16.41)

The pdf is the solution of the diffusion-like equation

∂

∂t
P (∆r, t) = D(t)∇2P (∆r, t) , (16.42)

where
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D(t) ≡ d
dt
W (t) = D0

[
1 − e−t/τB

]
, (16.43)

subject to the initial condition P (∆r, t = 0) = δ(∆r). The latter follows from
(16.40) specialized to t = 0. Here, ∇ is the d-dimensional gradient operator.
Knowing the pdf we can calculate from (16.40) the self-dynamic structure
factor

Ss(q, t) =
∫

d(∆r) eiq·∆r P (∆r, t) = exp{−q2W (t)} , (16.44)

which, for uncorrelated spheres, depends on time only through W (t). Note
for the dilute dispersions of uncorrelated particles considered here that the
collective dynamic structure factor Sc(q, t) reduces to the self-dynamic one.

In typical dynamic light scattering experiments on colloidal suspensions,
times t > 10−6 s
 τB and hence distances large compared to (D0τB)1/2 are
resolved. In this so-called diffusive regime, (16.42) reduces to the one-particle
diffusion equation

∂

∂t
P (∆r, t) = D0∇2P (∆r, t) , (16.45)

which has (16.40) specialized to W (t) = D0 t as its fundamental solution.
The diffusion (16.45) is statistically equivalent to the overdamped Langevin
equation

v(t) =
1
γ

f(t) , (16.46)

and f according to (16.32), which expresses a force balance, i.e an inertia-free
sphere motion for times t
 τB.

In fact, Brownian motion of a colloidal particle is adequately described
by the Langevin equation (16.33) with δ-correlated random force only when
solvent inertia is negligible, i.e. for times t 
 τB only, where it reduces to
(16.46). The Langevin equation disregards, for shorter times t ≈ τB, the
feedback on the particle velocity from the surrounding solvent. The solvent
cannot instantaneously follow the changes in the particle velocity. Through
the retarded response of the solvent, the sphere velocity is influenced by its
values at earlier times. This leads to an enlarged persistence in the velocity
autocorrelations. These solvent memory effects on the sphere velocity can
be adequately described, for d = 3 by the retarded (one-particle) Langevin
equation

M
dv

dt
= −

∫ t

0

du γ(t− u)v(u) + f(t) (16.47)

which includes a time-dependent friction function γ(t) obeying a generalized
fluctuation-dissipation relation

〈f (t) · f (t′)〉 = 3kBT γ(t− t′) . (16.48)

The random force in the retarded Langevin equation is still Gaussian, how-
ever it is now correlated for different times, due to cooperative effects of the
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fluid motion. The friction function can be calculated, for times t
 τs, using
macroscopic equations of motion for the solvent flow. Substitution of the hy-
drodynamically determined γ(t) into the retarded Langevin equation results
in closed expressions for the MSD and φv(t). We only quote the asymptotic
forms valid for t
 τη, viz. [6–8]

W (t) ≈ D0t

[
1 − 2√

π

(τη
t

)1/2
]

(16.49)

and

φv(t) =
d2

dt2
W (t) ≈ 1

9
√
π

kBT

m

(
t

τη

)−3/2

(16.50)

where τη = a2ρs/η0 = (9/2)(ρs/ρM)τB is the time needed for a viscous shear
wave in the solvent of mass density ρs to diffuse across a particle radius. The
mass density, ρM, of colloidal particles is close to ρs, and τη and τB are thus
of the same order of magnitude.

The positive feedback of the solvent flow on the sphere velocity implies an
algebraic rather than exponential decay of the VAF. Moreover, the algebraic
approach of the single-particle MSD to its long-time-limiting form W (t) =
D0t is much slower than prediced by (16.38). The occurrence of an algebraic
decay in an autocorrelation function is generally referred to as a long-time
tail. An algebraic tail proportional to t−1/2 in W (t) was indeed observed in
dynamic light scattering experiments on very large colloidal spheres (since
τB ∝ a2) through the measurement of Ss(q, t) and using (16.44) to infer
W (t) [9]. While the non-retarded Langevin equation does not describe dilute
colloidal dispersions for times t ≈ τB, it can be applied instead for t ≈ τB to
aerosols like dust or smoke particles in air, since for these systems one has
ρs � ρM and hence τη � τB.

The surrounding solvent molecules exert in addition to a random force
a random torque, f r(t), on the colloidal sphere, which causes a rotational
Brownian motion of its angular velocity ω(t). Neglecting solvent inertia, the
erratic sphere rotation can be described in analogy to translational motion
by a rotational Langevin equation, given for d = 3 and t
 τs by

Mr
dω

dt
= − γr ω(t) + f r(t) , (16.51)

with a stochastic torque of zero mean and δ-correlated covariance

〈f r(t) · f r(t′)〉 = 6kBT γr δ(t− t′) . (16.52)

According to this Langevin equation, the solvent-collisions-averaged angular
velocity and the equilibrium angular VAF are, respectively,

〈ω(t)〉 = ω0 exp
{
− t

τ r
B

}
(16.53)
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and

φω(t) ≡ 1
3
〈ω(t) · ω(0)〉 =

kBT

Mr
exp

{
− t

τ r
B

}
(16.54)

with the damping time

τ r
B =

Mr

γr
. (16.55)

Here, γr = 8πη0a
3 is the so-called Stokes-Debye friction coefficient of a freely

rotating sphere, and Mr = (2/5)Ma2 is the moment of inertia of a homoge-
neous sphere. The damping times for the translational and rotational velocity
are of the same order of magnitude, since τ r

B = (3/10)τB.
When the hydrodynamic solvent-sphere coupling is accounted for through

a time-dependent rotational friction function similar to the translational case,
the exponential decay of the rotational VAF is changed for times t
 τη into
the power-law decay [10, 11]

φω(t) ≈ 1
60

√
π

kBT

Mr

(
t

τη

)−5/2

(16.56)

which is one power in t slower than the asymptotic decay of the trans-
lational VAF. Depolarized dynamic light scattering is a convenient experi-
mental tool to measure rotational Brownian motion of optically anisotropic
spheres in the diffusive regime t 
 τB. As mentioned in Sect. 16.2.1, the
polarizability, α, of an optically anisotropic uniaxial sphere is a tensor

α(û) = α‖ ûû + α⊥ (1 − ûû) = α1 + β

(
ûû − 1

3
1
)

(16.57)

where α‖ and α⊥ are the incremental (relative to the solvent) polarizabilities
parallel and perpendicular to the optical axis of the sphere, with α = (α‖ +
2α⊥)/3 and β = α‖ − α⊥, and û(t) is the unit orientation vector pointing
along the optical axis. The orientation vector is related to the angular velocity
of the sphere by ω(t) = û(t) × (d/dt)û(t).

In depolarized dynamic light scattering, the polarization of the incident
electric light field is chosen perpendicular to the scattering plane spanned
by the incident and detected light beam (i.e. n̂0 = n̂V), and one detects
the in-plane component (i.e. n̂s = n̂H) of the scattered electric field. In this
VH-geometry

n̂s · α(û) · n̂0 = β

(
2π
15

)1/2

[Y2,1(û) + Y2,−1(û)] (16.58)

where Y2,m is a second-order spherical harmonic function. Together with
(16.15), this results in the EACF [3]

gVH
E (q, t) ∝ β2 Ss(q, t) Sr(t) (16.59)
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where we have introduced the rotational self-dynamic correlation function

Sr(r) = 4π〈Y2,−1(û(0)) Y2,1(û(t))〉 = 〈P2(û(t) · û(0))〉 , (16.60)

which includes information on the rotational diffusion. The second equality
follows from spatial isotropy, i.e. from the m-independence of Sr(t), with P2

denoting the second-order Legendre polynomial. In deriving (16.60), it has
been assumed that the rotational motion of a sphere is decoupled from the
translational motion for all t
 τB. While this decoupling is strictly valid for
dilute dispersions of non-interacting spheres, it is an approximation for non-
spherical particles and for concentrated sphere dispersions. Note that β = 0
for optically isotropic spheres. Then there is no depolarized scattered light
as long as multiple light scattering is negligibly small.

The function Ss(q, t) of non-interacting spheres can be calculated for t

τB from the rotational diffusion equation (Debye equation)

∂

∂t
P (û, t) = Dr

0 L̂
2
P (û, t) (16.61)

which determines the pdf P (û, t) of finding the sphere with orientation û at
time t. We have introduced here the diffusion coefficient of a single and freely
rotating sphere, related to the rotational friction coefficient by the Einstein-
Debye relation

Dr
0 =

kBT

γr
. (16.62)

The Debye equation is the analogue of the translational diffusion equation
(16.45), with L̂ = û × ∂/(∂û) denoting the gradient operator in orientation
space. It describes the random walk of the tip of û(t) on the unit sphere.
Equation (16.61) has the fundamental solution [3]

P (û, t|û0) =
∞∑

l=1

l∑
m=−l

Ylm(û) Yl,−m(û0) exp {−l(l+ 1) Dr
0t} , (16.63)

which is the probability density for a sphere to have orientation û at time t
given that it had orientation û0 at initial time t = 0. The rotational function
Sr(t) is then calculated as

Sr(t) =
∫

dû

∫
dû0 Y2,1(û) Y2,−1(û0)P (û, t|û0) = exp

{
−6D0

r t
}

(16.64)
where we have employed the orthogonality relations of the spherical har-
monics. As a consequence, the depolarized EACF of non-interacting sphere
dispersions is

gVH
E (q, t) ∝ β2 exp

{
−

(
q2D0 + 6Dr

0

)
t
}
. (16.65)
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Fig. 16.3. Initial decay rate ΓVH =− limt→0(d/dt) ln gVH
E (q, t) of depolarized EACF

versus q2, for a dilute dispersion of anisotropic teflon spheres (Φ = 0.02). After [12].

One can determine D0 and Dr
0 simultaneously from the EACF by plotting the

time derivative of − ln gVH
E (q, t) versus q2, yielding a straight line of slope D0

and intercept Dr
0. Plots of this kind are shown in Fig. 16.3 for depolarized

DLS experiments on a dilute dispersion of anisotropic teflon spheres [12].
The particle diameters determined from D0 and Dr

0, respectively, are indeed
nearly identical.

From employing the fundamental solution, one can further calculate the
orientation autocorrelation function

〈û(t) · û(0)〉 = exp {−t/τr} (16.66)

and the orientation MSD [13]

〈[û(t) − û(0)]2〉 = 2
[
1 − e−t/τr

]
→

{
4Dr

0 t , τ r
B � t� τr

2 , t
 τr
(16.67)

where τr = 1/(2Dr
0) is the orientation relaxation time. The tip of û(t) per-

forms, for t � τr, a two-dimensional random walk on the tangential surface
touching the unit sphere at û0. The MSD saturates to 2 for times t 
 τr,
since |û(t) − û(0)| ≤ 2 for all t. Typical values of τr are 10−4 − 10−3 s which
implies the following sequence of time scale separations

τs � τη ≈ τB ≈ τ r
B � τr (16.68)

valid for the translational/orientational self-diffusion of non-interacting glob-
ular particles.

16.3.2 Diffusion Mechanisms in Concentrated Colloidal Systems

While the diffusion of a non-interacting sphere is completely described by
its MSD, which is linear in time in the diffusive time regime t
 τB, various
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diffusion processes have to be distinguished in non-dilute dispersions of inter-
acting colloidal spheres. These diffusion processes are controlled by different
diffusion coefficients which become equal to each other only in the dilute limit
when the sphere interactions can be ignored. The spheres influence each other
indirectly through the solvent flow field in which they move. These so-called
hydrodynamic interactions (HI) propagate on a time scale τη ≈ τB, so that
they act quasi-instantaneously on the diffusive time scale where the fast mo-
mentum relaxations of the spheres are not resolved any more. HI affects the
sphere dynamics but not the equilibrium microstructure, since as dissipative
forces they are not describable in terms of an interaction potential. In addi-
tion to the HI, the spheres can have potential interactions with each other
through excluded volume, van der Waals and screened electrostatic forces.
These direct forces become operative on the interaction time scale τI, which
is the time after which a particle experiences a substantial change of the po-
tential interactions through a perceptible change in its next neighbor sphere
configuration. Very roughly, τI can be estimated for a fluid-like suspension as
the time needed for a sphere to diffuse across its own radius, viz.

τI ≈
a2

D0
, (16.69)

with typical values of 10−4 − 10−3 s. The short-time regime τB � t� τI, for
DLS is thus well separated from the long-time regime t
 τI.

Self-Diffusion

For short times τB � t � τI, a sphere diffuses only over a distance small as
compared to its own size, and the dynamic “cage” of neighboring spheres has
thus hardly changed (as sketched in Fig. 16.4a). The sphere diffuses then, on
the average, in a potential minimum of the neighboring particles and is thus
influenced only by the instantaneously acting HI. A linear increase

W (t) = Ds
s t , τB � t� τI (16.70)

of the MSD is thus observed at short times, with a short-time self-diffusion
coefficient, Ds

s, smaller than the Stokesian diffusion coefficient, D0, at infinite

Fig. 16.4. Schematic view of a particle cage around a colloidal sphere for (a) short
times τB � t � τI and (b) long times t  τI.
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dilution, owing to the slowing influence of HI. Note that the subscript s in Ds
s

stands for “self” and the superscript for “short”. At intermediate times t ≈
τI, the cage becomes distorted from its equilibrium spherical symmetry and
the sphere experiences an additional hindrance by potential forces. The cage
distortion implies a sub-linear time dependence of W (t). For long times t

τI, a sphere has experienced many independent collisions with neighboring
spheres, as sketched in Fig. 16.4b.

This leads again to a linear time-dependence of W (t)

W (t) = Dl
s t , t
 τI , (16.71)

but with a long-time self-diffusion coefficient, Dl
s, smaller than the short-time

one. Summarizing,
0 ≤ Dl

s ≤ Ds
s ≤ D0 , (16.72)

and one can show that this ordering is valid independent of the type of
potential interactions. All three diffusion coefficients are equal to D0 in the
absence of interactions only, whereas Dl

s is substantially smaller than D0

for strongly interacting particles. On approach of a glass-transition point, a
particle gets eventually trapped in its next-neighbor cage, with a complete
blocking of its long-range motion characterized by Dl

s ≈ 0 (idealized glass
transition scenario). In contrast, Ds

s > 0 since a sphere in a glass can still
perform short-time Brownian motion within its cage.

Using (16.37), Dl
s can be expressed as a Green-Kubo relation

Dl
s =

∫ ∞

0

dt φv(t) (16.73)

i.e. in form of a time integral over the VAF. On the coarse-grained level
t
 τB, the VAF

φv(t) = 2Ds
sδ(t) − ∆φv(t) (16.74)

of interacting spheres consists of a singular part proportional to Ds
s, such

that (16.70) is retained from (16.37), and a long-lived negative part, −∆φv(t),
originating from particle interactions (caging). One can show that ∆φv(t) > 0
and (d/dt)∆φv(t) < 0, consistent with Dl

s < Ds
s. The regular part of the VAF

is thus negative and increases strictly monotonically towards its final value
zero. As one expects intuitively, the collective retarding effect of neighboring
spheres leads to anti-correlations in the particle velocity. The positive-valued
singular part in the VAF is the residual of the fast initial decay of velocity
correlations mediated through the intervening solvent, and manifests itself as
a δ-function for t
 τB (see Fig. 16.5).

Substitution of (16.74) in (16.37) gives

W (t) = Dl
st+ τm

(
Ds

s −Dl
s

)
−

∫ ∞

t

du(u− t)∆φv(u) , (16.75)

where
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Fig. 16.5. Schematic VAF in (a) the diffusive regime t  τB, and (b) at very short
times so that the initial δ-peak is resolved.

τm ≡
∫∞
0 dt t ∆φv(t)∫∞
0 dt ∆φv(t)

(16.76)

is the mean relaxation time of ∆φv(t). It is roughly comparable to τI. The
last term on the right-hand side of (16.75) is the difference between W (t) and
its long-time asymptote. The asymptote crosses the vertical axis at the point
τm

(
Ds

s −Dl
s

)
. A remarkable feature of W (t) is that the approach towards

its long-time form in (16.71) is very slow. In three dimensions, the VAF of a
suspension of hard colloidal spheres has a negative long-time tail [14]

φv(t) = −∆φv(t) ≈ −A
(

t

τm

)−5/2

, t
 τm (16.77)

with an amplitude A > 0 that depends on the sphere concentration. The
MSD for large t is consequently

W (t) ≈ Dl
st+ τm

(
Ds

s −Dl
s

) [
1 −

(
t

τl

)−1/2
]

+ O(t−1) , (16.78)

where τl is a typical time scale related to τm. Fig. 16.6 displays a sketch of a
three-dimensional MSD.

The relaxation of the VAF becomes extremely slow in two dimensions
where φv(t) decays asymptotically as t−2 for all concentrations, independent
of the nature of the interactions. Therefore, the two-dimensional MSD in-
cludes a logarithmic long-time correction [15]

W (t) ≈ Dl
st+ τm

(
Ds

s −Dl
s

)
ln

(
t

τl

)
+ O(1) (16.79)

with diffusion coefficients and decay times different from the three-dimensional
case. We emphasize that the negative VAF long-time tails discussed above
are due to configurational rearrangements of interacting spheres, and they
should not be confused with the positive long-time tail in (16.50). The latter
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Fig. 16.6. Mean square displacement in three dimensions (for t  τB).

is due to unsteady solvent flow around a sphere in isolation, and appears on
a much shorter time scale t ≈ τη.

The long-time decay of the VAF in one dimension is proportional to
−t−(d+2)/2, with d specialized to one. For particles diffusing along an infi-
nite line which are not allowed to pass each other (single-filing condition)
there is, however, a subtle difference to diffusion in higher dimensions. Due
to the strong mutual hindrance of particles moving along a line the MSD at
long times grows only proportional to t1/2. Without HI, the MSD reads thus
explicitly [16]

W (t) →

⎧⎨⎩
2D0t , τB � t� τI

1
n

(
4D0t

π

)1/2

, t
 τI
(16.80)

with n denoting the line density of particles and interaction time τI =
1/(D0n

2). It is most likely that only the pre-factor of t1/2 will be affected
when HI is included. The long-time limiting form of the pdf, P (x, t), for a
particle displacement x during time t is given by the Gaussian form in (16.40)
for d = 1, with W (t) according to (16.80) for t
 τI. The absence of a linear
long-time term in W (t) implies a vanishing long-time self-diffusion coefficient
for an infinite line. Single-file diffusion can be observed, e.g., in superionic
conduction, in diffusion of bio-molecules through narrow-sized channels in
membranes and in zeolites of one-dimensional channel structure (cf., e.g.,
Chap. 10, Fig. 10.7, and Chap. 18, (18.107)).

Self-diffusion coefficients can be measured by scattering experiments or
by means of specialized techniques that use fluorescently labelled spheres
(which will be discussed separately later in this chapter). To measure self-
diffusion over an extended time range the system now consists of a possibly
concentrated suspension of host spheres, with a few tracer spheres, such that
the tracer spheres do not mutually interact with each other. The system
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must be prepared such that the scattered intensity from the host particles
and the solvent molecules can be neglected against that of the tracer parti-
cles. As explained in Sect. 16.2.2, the measured EACF is proportional to the
self-dynamic structure factor Ss(q, t) defined in (16.27), provided tracer and
host spheres are different from each other only in terms of their scattering
properties.

The self-dynamic structure factor may be expanded in a Taylor series for
small wavevectors,

Ss(q, t) = 1 − 1
6
q2 〈|r(t = 0) − r(t) |2〉 + O(q4) , (16.81)

meaning that
Ss(q, t) = exp{−q2W (t)}

[
1 + O(q2)

]
. (16.82)

There is a time-dependent non-Gaussian correction of O(q2) to Ss(q, t) orig-
inating from particle interactions. This correction is rather small for a fluid-
like suspension and becomes zero when the small-q limit is considered. Equa-
tion (16.82) allows for measuring the full time-dependence of the MSD. To
this end, − ln{Ss(q, t)}/q2 is plotted for a given time t against q2, and linearly
extrapolated to q = 0. The intercept is equal to W (t). Such data obtained
from dynamic light scattering experiments on hard-sphere suspensions are
given in Fig. 16.7, for various volume fractions [17]. The cross-over from
short- to long-time behavior is clearly seen. Further note the diminishing dif-
ference between the short- and long-time self-diffusion coefficients when the
concentration is decreased.

At infinite dilution, Ds
s = D0, W (t) = D0t and

Ss(q, t) = exp{−q2D0t} , (16.83)

which is the dynamic structure factor describing the single-particle diffusion
of independent particles.

Collective Diffusion

In contrast to self-diffusion, which is the Brownian motion of a tagged parti-
cle in a sea of others, collective diffusion refers to the isothermal relaxation
of density gradients by the coordinated motion of many colloidal particles.
Imagine a colloidal system where the density of colloidal particles, at some
instant in time, varies sinusoidally (such a sinusoidal density profile is referred
to as a density wave or density mode). That is, at time t = 0 say, the number
density ρ(r, t = 0) at position r is equal to

ρq(r, t = 0) = ρ0 + ρ(q, t = 0) sin{q · r} (16.84)

with ρ0 = N/V the average number density, and ρ(q, t = 0) the ampli-
tude of the density wave. The bar indicates an ensemble average over a
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Fig. 16.7. Mean square displacement W (t) of silica tracer spheres in an index-
matched host suspension of PMMA spheres (of same size as the silica particles). The
curves are labelled by volume fraction Φ. The last two volume fractions represent the
co-existing fluid (Φfreez = 0.494) and crystalline (φmelt = 0.539) phases. After [17].

non-equilibrium initial particle distribution. The wavevector q determines
both the direction and the wavelength of the sinusoidal density variation.
For changes of the position r in the suspension perpendicular to q, the phase
of the sine function does not change, so that the direction of q is in the “prop-
agation direction” of the sinusoidal variation. A change ∆r of the position r
parallel to q leaves the sine function unchanged when |∆r |= m× 2π/q, with
m an arbitrary integer. Hence, the wavelength of the density variation is

Λ = 2π/q . (16.85)

The density wave will relax away to the homogeneous state due to the collec-
tive motion of particles. In the initial stage of relaxation (i.e. for τB � t� τI),
the decay of the density wave is single-exponential in time. At a later stage
(t ≈ τI) the decay becomes non-exponentially and slower than initially as a
result of interactions between the colloidal particles. In the final long-time
regime (t 
 τI), the density variation may decay once again exponentially
in time for selected values of q, however with a decay rate that is usually
smaller than the initial one. For a density wave of large amplitude, different
wavelengths come into play at a later stage and its shape is then no longer si-
nusoidal. Long-time collective diffusion describes the final stage of relaxation
of a density wave, where the density profile generally strongly deviates from
a sinusoidal profile.

A phenomenological description of the relaxation of density waves can
be accomplished by using what is known as generalized hydrodynamics. The
starting point in a generalized hydrodynamic description is the continuity
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equation
∂

∂t
ρ(r, t) = −∇ · j(r, t) , (16.86)

which relates the particle density to the particle flux density, j(r, t), and it
expresses the conservation of the number of particles. The overbar indicates
an average over a non-equilibrium ensemble. The flux density j(r, t) denotes
the number of colloidal particles that cross the point r in the direction in
which j points, per unit area and unit time.

For small amplitudes in the density variation, and close to thermal equi-
librium, the flux is linearly related to gradients in the density, that is (note
that at time t = 0 relaxation begins)

j(r, t) = −
∫

dr′
∫ t

0

dt′ Dc(r − r′, t− t′) · ∇′ρ(r′, t′) , (16.87)

where the integral kernel tensor Dc(r, t) is referred to as the real-space col-
lective diffusion kernel. This phenomenological expression can be interpreted
as the leading term in an expansion of the flux j with respect to the ampli-
tude of density gradients. The “Taylor coefficient” Dc is independent of the
magnitude of gradients whenever these are sufficiently small. Density modes
of different wave numbers decay then independently from each other due to
linearity in ρ(r, t). The non-local space and time dependence of j on ∇ρ can
be understood as follows. The flux at a point r can depend on density gra-
dients at another point r′, through interactions between the spheres. Hence,
Dc(r − r′, t − t′) = 0 when | r − r′ |
 RI , where RI is a measure for the
distance over which colloidal particles are correlated. Moreover, the flux at
time t can depend on ∇ρ at earlier times, due to the finite time it takes in-
teractions to propagate. Such time-delayed effects are commonly referred to
as memory effects. As a consequence, Dc(r− r′, t− t′) = 0 when t− t′ 
 τI .
Note that causality requires that Dc(r, t) = 0 whenever t < 0. The diffusion
kernel is a tensor since flux and density gradient may not be collinear. Spatial
isotropy requires further that Dc(r, t) = Dc(|r|, t). The so-called non-local
Fickian law in (16.87) is valid on a mesoscopically coarse-grained level of
spatial resolution ∼ (D0τI)1/2 and time resolution ∼ τI.

Spatial Fourier transformation of (16.86) with the use of (16.87) leads to

∂

∂t
ρ(q, t) = −q2

∫ t

0

dt′Dc(q, t− t′) ρ(q, t′) . (16.88)

where Dc(q, t) = q̂ · Dc(q, t) · q̂ is the longitudinal part (parallel to q) of
the Fourier transform of the diffusion kernel, and q̂ = q/q. For notational
brevity we use the same symbols for the original and Fourier transformed
functions, where their argument (either r or q) indicates which function is
meant. Spatial isotropy requires the Fourier transform of Dc(r, t) to depend
only on the magnitude q of the wavevector q. We learn from (16.88) that
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the time rate of change of a density mode becomes increasingly slow with
decreasing wavenumber, since particles need to diffuse over an increasingly
large distance Λ = 2π/q to smooth out density variations.

According to the definition of the collective dynamic structure factor, we
find from (16.88) (using that the non-equilibrium average density ρ satisfies
near equilibrium the same linear equation of motion as the equilibrium den-
sity autocorrelation function, which is known as an application of Onsager’s
hypothesis) that

∂

∂t
Sc(q, t) = − q2

∫ t

0

dt′Dc(q, t− t′)Sc(q, t′) . (16.89)

The solution of this equation for Sc can be formulated in terms of time-
Laplace transforms. The Laplace transform of a function f is defined as

f(z) ≡
∫ ∞

0

dt f(t) exp{−zt} . (16.90)

In terms of such Laplace transforms, the solution of (16.89) reads

Sc(q, z) =
Sc(q)

z + q2Dc(q, z)
(16.91)

with a wavenumber and frequency (i.e. z) dependent collective diffusion ker-
nel Dc(q, z). As explained above, the q-dependence of Dc(q, z) describes the
coupling between the colloidal particle flux at a certain point with density
gradients at other points. The z-dependence of Dc describes memory effects,
that is, the coupling between the flux at a certain time with density gradi-
ents that existed at earlier times. For strongly interacting particles memory
effects give rise to a complicated time-dependence of Sc(q, t), characterized by
a whole spectrum of relaxation times. The collective dynamic structure factor
(as well as Ss(q, t)) is a strictly monotonically decaying function in time, for
fixed q, with negative slope (d/dt)Sc(q, t) < 0. This exemplifies an impor-
tant rule stating that any autocorrelation function is strictly monotonically
decaying in time when described within the overdamped colloid dynamics,
i. e., for t
 τB [18]. It follows readily that Sc(q, z) > 0 and zSc(q, z) < S(q).
These inequalities in turn imply with (16.91) that Dc(q, z) and its associated
collective diffusion coefficients are all non-negative, as one expects on phys-
ical grounds. For fixed t, Sc(q, t) shows damped oscillations in q. A typical
q-dependence of Sc(q, t) at various t is illustrated in Fig. 16.8, which shows
theoretical and computer simulation results of Sc(q, t) for a suspension of
charge-stabilized colloidal spheres.

There exists a special regime where (16.91) predicts an exponential decay
of Sc(q, t). In this so-called hydrodynamic regime, only density wave relax-
ations are resolved with a wavelength much larger than RI (typically ∼ 1
mm), and with a time resolution that is much larger than τI (typically ∼
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Fig. 16.8. Collective dynamic structure factor of a charge-stabilized colloidal dis-
persion. Open squares: Brownian dynamics (BD) computer simulations (from [19]);
solid line: Mode coupling theory (MCT) result.

1 s). On this strongly coarse-grained level, one can neglect non-local spatial
dependencies and memory effects. The collective diffusion kernel is then equal
to

Dc(r − r′, t− t′) = Dl
c 1 δ(r − r′) δ(t− t′) . (16.92)

The coefficient Dl
c is independent of position and time when the amplitude

of the density profile is sufficiently small. Hence, from (16.87),

j(r, t) = −Dl
c ∇ ρ(r, t) , (16.93)

which is Fick’s local law of macroscopic gradient diffusion. Sc(q, t) and the
associated density wave ρq(r, t) in (16.84) decay thus exponentially, for q �
RI

−1 and t
 τI, according to

Sc(q, t) = Sc(q) exp{−q2Dl
ct} (16.94)

and
ρq(r, t) = ρ0 + exp{−q2Dl

ct} ρ(q, t = 0) sin {q · r} (16.95)

respectively, where Sc(q) = Sc(q, t = 0) is the static structure factor. The
correlation length RI can be roughly estimated by 1/qm, where qm is the wave
number where the static structure factor attains its principal maximum. The
average extension of the next-neighbor cage around a sphere is roughly equal
to 2π/qm. The local microstructure around a sphere is not resolved in the
hydrodynamic limit. This means that Sc(q � qm) in (16.94) is practically
equal to the long-wavelength limit
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Sc(0) ≡ lim
q→0

Sc(q) = ρ0kBTχT with χT =
1
ρ0

(
∂ρ0

∂p

)
T

, (16.96)

where, for a one-component suspensions, χT is the isothermal osmotic com-
pressibility of colloidal spheres.

The transport coefficient Dl
c is referred to as the long-time collective or

gradient diffusion coefficient, since it can be determined, e.g., from macro-
scopic gradient diffusion experiments near equilibrium. Note here that (16.94)
is equivalent to

Sc(q, z) =
Sc(0)

z + q2Dl
c

. (16.97)

which shows with (16.91) that Dl
c is equal to the small-wavenumber and

small-frequency (i.e. long-time) limit of the collective diffusion kernel. Ex-
plicitly

Dl
c = lim

z→0
lim
q→0

Dc(q, z) , (16.98)

where q2/z (i.e. q2t) is kept fixed to a value of order one. The long-time
(i.e. zero-frequency) limit t → ∞ (i.e. z → 0) means in physical terms that
t 
 τI (i.e. z � τ−1

I ). Likewise, the short-time (infinite-frequency) limit
t→ 0 (z → ∞) should be interpreted as τB � t� τI (τI−1 � z � τ−1

B ).
As a phenomenological approach, generalized hydrodynamics provides no

methods to predict the collective diffusion kernel Dc(q, z) and its associ-
ated long-time diffusion coefficient Dl

c. An actual calculation of Dc(q, z) can
be accomplished only on the basis of a microscopic theory that relies on a
many-sphere extension of the single-particle diffusion equation (16.45) as the
appropriate time evolution equation. A microscopic theory of diffusion will be
discussed in Sect. 16.5. We will address here only general features of collective
diffusion.

At short times, τB � t� τI, memory effects are not felt yet and

Sc(q, t) = Sc(q) exp{−q2Ds
c(q)t} , (16.99)

i. e. there is an exponential short-time decay of Sc(q, t) for all q. We recall
that short-time collective diffusion relates to the initial stage of relaxation of
a density wave, where it still retains its original form, but just has decreased
its amplitude. This process is described by a wavenumber-dependent (i.e.
apparent) diffusion coefficient Ds

c(q) = Dc(q, z → ∞) which quantifies the
initial de-correlation of density modes of wavenumber q. Equation (16.99) and
the monotonicity of Sc(q, t) imply that the longitudinal collective diffusion
kernel in (16.89) is decomposable as [18, 20]

Dc(q, t) = 2Ds
c(q)δ(t) − ∆Dc(q, t) , (16.100)

corresponding to

∂

∂t
Sc(q, t) = −q2 Ds

c(q)Sc(q, t)+q2
∫ t

0

dt′∆Dc(q, t− t′)Sc(q, t′) , (16.101)
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with a memory function contribution ∆Dc(q, t) ≥ 0. The non-local memory
effect on density relaxations inherent in ∆Dc(q, t) is operative only for times
exceeding the short-time regime, and it causes a slower and, in general, non-
exponential decay of Sc(q, t).

The short-time collective diffusion coefficient is defined as the zero-q limit
of the apparent diffusion coefficient

Ds
c = lim

q→0
Ds

c(q) , (16.102)

and relates to the long-time collective diffusion coefficient through

Dl
c = Ds

c − lim
q→0

∫ ∞

0

dt∆Dc(q, t) . (16.103)

The collective diffusion coefficients obey thus the same ordering

Dl
c ≤ Ds

c (16.104)

as the short-time and long-time self-diffusion coefficients. The coefficient Dl
c

quantifies the relaxation of constant density gradients over times t 
 τI,
through cooperative diffusion of spheres opposite to the gradient direction
q̂. Therefore Dl

c is intimately related to the average sedimentation velocity,
U l, as measured in a homogeneous suspension of slowly sedimenting colloidal
spheres. To understand this explicitly, consider a homogeneous suspension
of equal spheres in a closed vessel which sediment slowly (so that Pe ≡
U la/D0 � 0) under the influence of a constant force of buoyancy F = F q̂.
This force acting on each sphere drives a sedimentation flux

js = ρ0 U
l q̂ . (16.105)

At equilibrium, the small concentration gradient, ∇ρ, thereby generated will
produce an equal, but opposite diffusive flux, jd, so that

0 = js + jd = ρ0 U
l q̂ −Dl

c ∇ρ . (16.106)

The force on the solvent exerted by the sedimenting particles is balanced
through a pressure gradient, ∇p = ρ0F , generated by the base of the vessel
(which is perpendicular to q̂). The pressure gradient drives a back-flow of
solvent such that the zero-volume-flux condition is fulfilled: due to incom-
pressibility, the net volume flux of solvent and spheres through any plane
perpendicular to q̂ is zero. The concentration gradient (at constant temper-
ature and chemical potential) follows next from

∇ρ =
(
∂ρ0

∂p

)
T, µs

∇p = βSc(0)ρ0F q̂ . (16.107)

Finally, substitution into (16.106) leads to the general relation [21, 22]
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Dl
c =

D0

Sc(0)
U l

U0
(16.108)

between Dl
c and U l, where U0 = βD0F is the sedimentation velocity at

infinite dilution. Equation (16.108) can be derived more rigorously from linear
response theory, which provides us further with a microscopic expression for
Dl

c.
Very interestingly, the configurational pdf of identical colloidal spheres is

not distorted from the equilibrium distribution during sedimentation, as long
as HI between spheres can be considered as pairwise additive. This holds true
for dilute monodisperse suspensions. The long-time sedimentation velocity
U l, which is measured in standard sedimentation experiments, becomes then
equal to the short-time sedimentation velocity U s. The latter is related to
the short-time collective diffusion coefficient once again by (16.108), with l
replaced by s. Consequently

Dl
c = Ds

c (16.109)

for pairwise-additive HI. There is thus no distinction between short-time
and long-time collective diffusion, which corresponds to a vanishing memory
contribution to Dl

c in (16.103). A density wave retains its sinusoidal shape
during the entire process of relaxation whenever the wavelength is much
larger than the correlation length RI . This result is in marked difference
to self-diffusion where the long-time self-diffusion coefficient of interacting
particles is substantially smaller than the short-time one even when HI is
totally disregarded.

Three-body or more-body HI become highly relevant for concentrated
dispersions. In these systems, their effect is to distort the suspension mi-
crostructure from the initial equilibrium distribution for times t ∼ τI, which
causes additional hindrance of particle motion. For t 
 τI, a new steady-
state distribution has been reached, accompanied by a small decrease in the
sedimentation velocity such that U l < U s and Dl

c < Ds
c. Recent calculations

for dense hard-sphere suspensions have revealed, however, that the differ-
ences between Dl

c and Ds
c are quite small (less than 6%), which makes them

difficult to detect using DLS [23].
DLS and small-angle quasielastic neutron scattering experiments on col-

loidal particles which scatter equally strongly, are convenient and widely used
tools to determine Sc(q, t) over an extended range of times and wave num-
bers. These methods allow one to study in detail relaxation of density waves
for a wavelength set by the experimental scattering angle. The short-time
and long-time collective diffusion coefficients can be extracted from linearly
extrapolating − ln{Sc(q, t)}/q2, measured for fixed t� τI and t
 τI, respec-
tively, to q = 0. The sedimentation velocity derives then from (16.108) when
in addition Sc(q � qm) is determined by static light scattering.

In dispersions of strongly repelling particles, Ds
c and Dl

c can be substan-
tially larger than the Stokesian diffusion coefficientD0. This feature is mainly
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Fig. 16.9. Enhanced relaxation of density fluctuations through low osmotic com-
pressibility.

due to the low osmotic compressibility (i.e. Sc(0) � 0), which acts as a ther-
modynamic force driving the relaxation of local density gradients (cf. Fig.
16.9).

A typical concentration dependence of Ds
c for a suspension of moderately

charged colloidal spheres and for a suspension of uncharged hard spheres is
shown in Fig. 16.10. Note that both Sc(0) and U s decrease with increas-
ing volume fraction Φ of spheres (cf. (16.108)). At small volume fraction Φ,
U s decreases less strongly than Sc(0) leading to an initial increase in Ds

c.
With Φ further increasing, hydrodynamic hindrance starts to overcompen-
sate the electrostatic particle repulsion so that Ds

c goes through a maximum.
The maximum in Ds

c(φ) becomes smaller with increasing amount of added
electrolyte, i.e. with enlarged screening of the electrostatic repulsion. While
Ds

s/D0 ≤ 1 independent of the type of interactions, Ds
c/D0 is found to be

larger than one for repulsive pair interactions. For dispersions with attractive
interaction contributions close to a critical point, however, Ds

c/D0 ≈ 0 due

D

D
a

b

�
Fig. 16.10. Theoretical prediction for the (reduced) collective diffusion coefficient
Ds

c/D0 versus volume fraction, for typical aqueous solutions of weakly charged
spherical micelles. Shown are two curves with (a) low amount and (b) moderately
large amount of added electrolyte. After [18].



650 Gerhard Nägele, Jan K.G. Dhont, and Gerhard Meier

to the large osmotic compressibility of near-critical systems. The dynamics
of such systems is thus very slow (critical slowing down).

On various places we have noted that, aside from small wavenumbers
q � qm, Sc(q, t) decays in general non-exponentially in time. However, recent
calculations of Sc(q, t) for concentrated suspensions with pronounced particle
caging have revealed that the dynamic structure factor of these systems does
decay exponentially for long times, for wavenumbers centered around qm. The
existence of such a collective long-time mode

Sc(qm, t) ∝ exp{−q2Dl
c(qm)t} , t
 τI (16.110)

characterized by a collective long-time diffusion coefficient, Dl
c(qm), at the

finite wave number qm has been observed indeed in DLS experiments on
concentrated suspensions of hard spheres. This peculiar mode describes the
decay of concentration fluctuations linked to the average extension of a near-
est neighbor cage. According to theory, the long-time mode ceases to exist
when the volume fraction of hard spheres is reduced below 0.2. The caging
effect is then too small and Sc(qm, t) decays non-exponentially at long times.

The long-time coefficient Dl
c(qm) should be distinguished from the q-

dependent mean collective diffusion coefficient, Dc(q). The latter is defined
as

Dc(q) ≡ Dc(q, z = 0) = Ds
c(q) −

∫ ∞

0

dt∆Dc(q, t) , (16.111)

and is related to the mean relaxation time, τ (q), of Sc(q, t) through

τ(q) ≡
∫ ∞

0

dt
Sc(q, t)
Sc(q)

=
1

q2Dc(q)
. (16.112)

Contrary to Dl
c(q), the coefficient Dc(q) is not a true long-time diffusion

coefficient although this has been erroneously claimed. If Dc(q, t) would decay
sufficiently faster than Sc(q, t), the memory integral in (16.89) could then be
de-convoluted for t
 τI as∫ t

0

dt′Dc(q, t− t′) Sc(q, t′) ≈ Dc(q, z = 0) Sc(q, t) . (16.113)

If this holds true thenDc(q) would be a genuine long-time diffusion coefficient
with Sc(q, t 
 τI) ∝ exp{−q2Dc(q)t}. However, Dc(q, t) decays so slowly for
finite q that the de-convolution is strictly valid only in the hydrodynamic
limit, where Dc(q) reduces to Dl

c. Contrary to Dl
c(q) the mean collective

diffusion coefficient is defined for any concentration and all values of q, even
those where Sc(q, t) is non-exponential at long times. Note that the ordering
relations

Ds
c(q) > Dc(q) > Dl

c(q) (16.114)

are valid for the range of q and Φ where Dl
c(q) exists. A comparison between

the coefficients Dl
c(qm) and Dc(qm) of hard spheres, as predicted by theory, is
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Fig. 16.11. Mode coupling theory (MCT) prediction (from [24]) for the concen-
tration dependence of the collective long-time coefficient Dl

c(qm), and for the mean
collective coefficient Dc(qm) of hard-sphere suspensions. The experimental data for
Dl

c(qm) are from [25]. For comparison, we include experimental data (from [26]) for
the short-time Ds

c(qm)/D0 with corresponding theoretical predictions from (16.213,
16.214).

made in Fig. 16.11. This figure includes also DLS data for Dl
c(qm) which agree

well with theory. The difference between both coefficients is rather small over
the complete range of volume fractions where Dl

c(qm) exists.

Interdiffusion

So far we have explored diffusion processes in one-component systems of
identical particles, as far as the sizes and interaction properties are concerned.
In colloidal mixtures, and of course also in atomic and polymer mixtures, an
additional interdiffusion mechanism comes into play related to the relaxation
of thermal fluctuations in the relative concentration of two components. For
simplicity, we will discuss only the most simple case of interdiffusion in binary
colloidal dispersions of spherical particles, and in a ternary incompressible
melt of two homopolymer species mingled in a matrix of a third homopolymer
species. We will address in particular the question whether the interdiffusion
coefficient can be expressed alone in terms of the self-diffusion coefficients of
both components.

The interdiffusion process mediates the relaxation of thermal fluctuations
(under isothermal and isobaric conditions) in the relative particle (monomer)
concentration of two components, say component 1 and 2, towards their
equilibrium values. There might be additional components present but we
focus here on the concentration exchange between components 1 and 2. The
Fourier transform of the incremental microscopic number density of compo-
nent α = 1, 2, relative to its mean density ρα0 = Nα/Vs, reads
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ρα(q, t) =
Nα∑
j=1

exp{iq · rα
j } −Nαδq,0 , (16.115)

with 〈ρα(q, t)〉 = 0. Here, rα
j is the center-of-mass position vector of the j-

th sphere (monomer) of component α, and Nα is the number of particles of
species α in the scattering volume. Small fluctuations in the relative local
concentrations of 1-particles with respect to component 2 are quantified by
the microscopic concentration variable

ρin(q, t) ≡ 1√
N

[x2ρ1(q, t) − x1ρ2(q, t)] , (16.116)

with N = N1 +N2 and partial molar fraction xα = Nα/N . The interdiffusion
process is thus related to the relaxation of ρin(q, t), whose de-correlation in
time is described by the interdiffusion autocorrelation function

Sin(q, t) = 〈ρin(q, t) ρin(−q, 0)〉

= x1x2

[
x2S11(q, t) + x1S22(q, t) − 2 (x1x2)

1/2
S12(q, t)

]
. (16.117)

The interdiffusion function Sin(q, t) has been further denoted in the liter-
ature on X-ray and neutron scattering as the Bhatia-Thornton dynamic
concentration-concentration structure factor. It is a special linear combina-
tion of three partial collective dynamic structure factors [18]

Sαβ(q, t) =
1

(NαNβ)1/2
〈ρα(q, t)ρβ(−q, 0)〉 , (16.118)

with α, β ∈ {1, 2} and S12 = S21. The partial structure factors, Sαβ(q, t),
describe time-correlations in the density fluctuations of components α and β,
and they form the elements of a symmetric and positive definite 2×2 matrix
S(q, t). This matrix is the extension of the collective dynamic structure factor
Sc(q, t) of a monodisperse system to binary mixtures. Note that the factors
N−1/2 and (NαNβ)−1/2 in (16.116) and (16.118), respectively, have been
introduced to make Sin(q, t) and S(q, t) intensive. The EACF for polarized
single scattering from a binary mixture can be expressed in terms of the
dynamic structure factor matrix as

gE(q, t) ∝ f2
1 S11(q, t) + f2

2 S22(q, t) + 2f1f2S12(q, t)

= f(q)T · S(q, t) · f(q) , (16.119)

where we have introduced the column vector f = [f1, f2]
T of partial scat-

tering strengths fα = x
1/2
α bα. For a binary colloidal suspension, bα is the

excess scattering amplitude of a sphere of component α = 1, 2 relative to the
solvent. For a ternary homopolymer blend, bα is the scattering amplitude of
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an α-type monomer relative to the scattering strength of a matrix monomer.
In principle, the three partial dynamic structure factors could be measured
individually by index matching each of the two interdiffusing components
separately to the solvent (matrix). Unfortunately, such an index matching is
quite difficult to do from an experimental point of view and has been achieved
to date only for a few selected systems. The index matching method is to
some extent analogous to the isotope substitution technique used in neutron
scattering.

We are interested here in the hydrodynamic regime (i.e. q → 0 and t→ ∞
with q2t fixed) where the internal structure of the colloidal spheres and ho-
mopolymers, and the internal dynamics of the individual homopolymers are
not resolved. In this regime, the scattering amplitudes become independent
of q. The time evolution of the matrix S(q, t) is shown in the hydrodynamic
limit to be governed by

S(q, t) = exp{−q2Dl
c t} · S(0) , (16.120)

where Dl
c is the 2×2 long-time collective diffusion matrix, and S(0) = S(q →

0, t = 0) is the matrix of partial static structure factors in the small-q limit.
Equation (16.120) extends (16.94) to (binary) mixtures. It is found that Dl

c

is in general not symmetric. However, it can be diagonalized and it possesses
real and positive eigenvalues d+ and d−, as one expects for an overdamped
system. To see this, we introduce the symmetric and positive definite matrix,
µl, of long-time partial mobilities µαβ through [27, 28]

Dl
c = kBT µl · S(0)−1 . (16.121)

A trivial example is provided for a system of non-interacting particles, where
µl

αβ = δαβD0α/(kBT ). The symmetry and positive definiteness of µl is a
consequence of the symmetry of S(q, t), and its monotonic decay in the hy-
drodynamic limit. That Dl

c is diagonalizable with positive eigenvalues arises
then from the possibility to express it as the product of a symmetric and pos-
itive definite matrix µl and a symmetric matrix S−1. Explicit diagonalization
of D leads to the normal-mode expansion [28]

S(q, t) = A+ exp{−q2d+t} + A− exp{−q2d−t} (16.122)

of S(q, t) as a sum of two exponentially decaying diffusive modes. The am-
plitudes A+ and A− can be expressed in terms of the elements of S(0) and
µl. The eigenvalues of D are given by

d± = Dav ±
√
D2

av − |D| (16.123)

with Dav = [D11 +D22] /2 and |D| = D11D22 − D12D21. In case of a bi-
nary colloidal dispersion, the bimodal relaxation described by (16.122) arises
from the large differences in the relaxation times of colloidal particles and
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solvent molecules. In contrast, the relaxation time of the polymer matrix,
which plays the role of the “solvent” in the ternary homopolymer mixture, is
comparable to those of the other two components. The bimodal relaxation is
here a consequence of the incompressibility constraint

ρ1(q) + ρ2(q) + ρ3(q) = 0 , (16.124)

valid in the diffusive limit, which enables one to express the dynamics of
one component, identified as the “matrix”, in terms of the other ones. For
simplicity, we have assumed here that the segmental volumes of all three
homopolymer species are equal to each other. It is clear that S(q, t) in the
general case will contain as many exponentially decaying modes as the num-
ber of independent components.

It follows from (16.117) and (16.122) that

Sin(q, t) = x1x2 eT · S(q, t) · e , (16.125)

with e =
[√

x2,−
√
x1

]T
, is a superposition of two decaying modes. Neverthe-

less, the initial decay of Sin(q, t) in the hydrodynamic limit can be described
for t� 1/d+ by the single-exponential form

Sin(q, t) ≈ exp{−q2Dl
int} , (16.126)

which defines the long-time interdiffusion coefficient, Dl
in, as

Dl
in = lim

t→∞ lim
q→0

[
− 1
q2

∂

∂t
lnSin(q, t)

]
. (16.127)

By matching the initial relaxation rates in (16.125) and (16.126), we find,
using (16.121), that

Dl
in =

Λl
in

Sin(0)
, (16.128)

with

Λl
in = kBT x1x2 eT · µl · e (16.129)

= kBT x1x2

[
x2µ

l
11 + x1µ

l
22 − 2 (x1x2)

1/2 µl
12

]
.

We note that Dl
in is expressed here as a product of a kinetic factor, Λl

in > 0,
and a thermodynamic factor equal to 1/Sin(q = 0). For a binary mixture of
particles nearly identical in their interactions, Sin(0) ≈ x1x2. For systems
with Sin(0) < x1x2 (Sin > x1x2) the particles of components 1 and 2 have
the tendency to mix (de-mix).

The kinetic factor can be expressed by the Green-Kubo formula

Λl
in = lim

q→0

∫ ∞

0

dt 〈jin(q, t) jin(−q, 0)〉 , (16.130)
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where

jin(q, t) =
√
Nx1x2

⎡⎣ 1
N1

N1∑
j=1

v
(1)
j exp{iq · r(1)

j }−

1
N2

N2∑
j=1

v
(2)
j exp{iq · r(2)

j }

⎤⎦ (16.131)

is the interdiffusion flux related to ρin(q, t). Here, v(1)
j and v

(2)
j denote the

longitudinal (i.e. parallel to q) velocities of component 1 and 2 particles. The
interdiffusion flux is seen to be closely related to the relative velocity of the
center-of-positions of the two components in the mixture. The derivation of
(16.130) can be represented quite generally [28, 29] for any density function
ρ(q, t) in Fourier space satisfying the continuity equation

ρ̇(q, t) = iq j(q, t) . (16.132)

Here j(q, t) is the longitudinal component of the flux vector j(q, t) associated
with ρ(q, t), and the dot denotes differentiation with respect to time. The
long-wavelength limit of the current autocorrelation function follows then as

lim
q→0

〈j(q, t) j(−q, 0)〉 = lim
q→0

1
q2

〈ρ̇(q, t) ρ̇(−q, 0)〉

= − lim
q→0

1
q2

∂2S(q, t)
∂t2

(16.133)

where S(q, t) = 〈ρ(q, t)ρ(−q, 0)〉. For the most right equality we have used the
stationarity property which states that equilibrium time-correlation functions
are invariant to a shift in the time origin. Next we integrate (16.133) with
respect to time to obtain

lim
q→0

∫ t

0

dt′ 〈j(q, t′) j(−q, 0)〉 = − lim
q→0

1
q2

∂

∂t
Sin(q, t) (16.134)

where the initial condition

∂

∂t
S(q, t)|t=0 = 0 (16.135)

has been used. This initial condition is a consequence of time reversibility,
i.e. 〈A(t)A(0)〉 = 〈A(−t)A(0)〉 for any dynamic variable A obeying the deter-
ministic Liouville equation. The initial slope of any autocorrelation function
is thus zero in Liouville dynamics. Of course, this does not hold for the ir-
reversible dynamical regime described by diffusion equations (e.g., (16.45)),
wherein the microscopic short-time regime t � τB remains unresolved. The
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transition to the hydrodynamic regime follows from taking the long-time limit
of (16.135). This gives the exact relation

lim
q→0

∫ ∞

0

dt 〈j(q, t) j(−q, 0)〉 = − lim
t→∞ lim

q→0

1
q2

∂

∂t
S(q, t) , (16.136)

where the order of the limits is not interchangeable. In specializing this
equation to interdiffusion, the Green-Kubo formula for Λl

in is readily ob-
tained from substituting the hydrodynamic limit form of Sin(q, t) as given in
(16.122). When (16.136) is specialized to self-diffusion by choosing ρ(q, t) =
exp{iq · r1(t)} and using that Ss(q, t) = exp{−q2Dl

st} in the hydrodynamic
limit, one is led to the Green-Kubo formula for the VAF given in (16.73).
For self-diffusion, Λl

s = Dl
s, since the thermodynamic factor 1/Ss(q, t = 0) is

equal to one even for finite q.
For colloidal mixtures, one needs to distinguish between the short-time

and long-time interdiffusion coefficient. The definition of Ds
in = Λs

in/Sin(0)
and of its associated short-time kinetic factor Λs

in follows from considering
the time evolution equation

∂

∂t
S(q, t) = −q2Ds

c(q) · S(q, t) + q2
∫ t

0

dt′∆Dc(q, t− t′) · S(q, t′) (16.137)

for S(q, t), which constitutes the generalization of (16.101) to colloidal mix-
tures. Here ∆Dc(q, t) is a 2×2-matrix of collective memory functions, related
to the long-time collective diffusion matrix in (16.121) by (cf. (16.103))

Dl
c = Ds

c − lim
q→0

∫ ∞

0

dt∆Dc(q, t) , (16.138)

with the short-time collective diffusion matrix Ds
c = limq→0 Ds

c(q). Introduc-
ing the short-time mobility matrix through Ds

c = kBTµs · S(0)−1, Λs
in can

be defined in analogy to the long-time kinetic coefficient as

Λs
in = kBT x1x2 eT · µs · e . (16.139)

Contrary to the one-component case, where Ds
c = Dl

c for systems with pair-
wise additive HI, one finds for mixtures that Ds

c �= Dl
c, and hence Λl

in < Λs
in

and Dl
in < Ds

in, even so when HI is neglected. The reason for the different
physical behavior of mixtures is that particles of different components diffuse
differently fast under a constant density gradient. Hence, the equilibrium mi-
crostructure becomes distorted at longer times. For the memory matrix this
implies that limq→0 ∆D(q, t) �= 0.

The interdiffusion coefficient describes the relaxation of thermally excited
fluctuations in the relative composition through the collective motion of par-
ticles. Therefore, there is no reason to expect that, except from a few limiting
cases, Dl

in can be expressed solely in terms of the self-diffusion coefficients
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Dl
sα =

∫ ∞

0

dt〈vα
i (t)vα

i (0)〉 (16.140)

of both components, with vα
i denoting the longitudinal velocity of a com-

ponent α particle. That there are collective contributions to Ds
in which are

not contained in the self-diffusion coefficients was explicitly shown for fluid
atomic mixtures in [30]. The importance of collective contributions to Din

will be exemplified in Sect. 16.5.1 for mixtures of colloidal hard spheres.
An ideal binary mixture is characterized by

Λl
in ∝ x2D

l
s1 + x1D

l
s2 , (16.141)

i.e. the kinetic factor can be expressed solely in terms of a weighted sum
of the self-diffusion coefficients. Ideality is implied, in particular, according
to (16.130), when velocity cross-correlations 〈vi(t)vj(0)〉 between different
particles i �= j vanish or mutually cancel each other for all t. A trivial example
of an ideal system is a binary suspension of non-interacting particles (cf.
(14.2) in Chap. 14), where

Dl
in = Ds

in = x2D01 + x1D02 . (16.142)

Here, D0α is the free diffusion coefficient of an α-type particle. Equation
(16.141) is the fast-mode expression for interdiffusion since for Ds1 
 Ds2,
Din is dominated by the self-diffusion coefficient of the fast component 1. The
fast-mode form of Din is approximately valid for mixtures of Lennard-Jones-
type fluids like argon-krypton. However, there are severe deviations from
the fast-mode form for mixtures of strongly dissymmetric particles. Perfect
ideality is reached only for symmetric bimodal systems, where the particles of
both components differ only in their labelling (e.g. in their optical properties).
In this limiting case, Sin(0) = x1x2, and

Din = Ds (16.143)

for arbitrary concentration and particle interactions. Not unexpectedly, this
means that the concentration exchange between the two components is only
driven by self-diffusion. The interdiffusion coefficient in a symmetric mixture
is thus identical with the self-diffusion coefficient. Since all particles are iden-
tical regarding their sizes and interactions, there is no gradient in the local
chemical potential difference of both species. Each particle experiences a uni-
form environment as in the case of self-diffusion. An ideal bimodal system in
the hydrodynamic limit is further characterized by

d− = Din , d+ = Dc (16.144)

with d− < d+. The eigenmode with decay constant d− (d+) is thus identified
with the interdiffusion (collective diffusion) process, and Din and Dc can be
extracted, using index matching, from a single measurement of the EACF
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of the unmatched (labelled) component α, since then gE(q, t) ∝ Sαα(q, t).
The two normal modes cannot be identified, in general, as interdiffusion and
collective diffusion processes. Moreover, Din cannot be extracted, in general,
from the measurement of a single dynamic structure factor, say S11(t), of one
component. One needs a second experiment, in which the first component is
matched away and S22(q, t) is determined.

Exact microscopic expressions have been derived for the interdiffusion
coefficient of colloidal mixtures. These expressions form the basis of its ac-
tual calculation (cf. Sect. 16.5). In the case of incompressible polymer melts,
an analogous microscopic description is of little use from a computational
point of view. Therefore one resorts to approximate schemes like the (dy-
namic) random phase approximation (RPA), which relates the dynamics of
polymer mixtures to the dynamics of single polymer chain in the mixture.
In Sect. 16.5.2, we will discuss the application of the RPA to ternary blends
of homopolymers. We only mention here that for an incompressible binary
blend, the RPA predicts the slow-mode expression

1
Λin

∝ x2

Ds1
+

x1

Ds2
(16.145)

for the kinetic factor, with Dsα the self-diffusion coefficient of an α-type
monomer in the melt, and xα the molar fraction of α-type monomers. The
kinetic factor is dominated here by the slow component, as the name “slow
mode” implies. The RPA states thus that, due to incompressibility, the dy-
namics of the fast component is slaved by the slow one. The binary blend is
thus an opposite limiting case to ideal solutions of weakly interacting par-
ticles and to mixtures of nearly identical components where the fast-mode
expression applies.

Rotational Diffusion

We proceed to discuss salient features of rotational diffusion in suspensions
of colloidal spheres with spherically symmetric potential interactions, within
the time regime accessible by depolarized DLS. As discussed already in
Sect. 16.3.1, the decoupling approximation of the depolarized EACF holds
then exactly to linear order in t. Consider first the (hypothetical) case of parti-
cles which interact by direct potential forces only, and not by HI. Then the ro-
tational self-dynamic correlation function reduces, for all times t
 τB ≈ τ r

B,
to an exponentially decaying function

Sr(t) = exp{−6Dr
0t} . (16.146)

This result follows from realizing that the orientational Brownian motion of a
sphere with radially symmetric pair interactions is independent of the orien-
tational and translational motion of other spheres, as long as HI is not consid-
ered. Recall that, contrary to Sr(t), the translational self-dynamic structure
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factor Ss(q, t) is single exponential without HI only at short times. Conse-
quently

gVH
E (q, t) ∝ β2 exp{−(q2W (t) + 6Dr

0t)} (16.147)

is valid for all t 
 τB, provided small non-Gaussian corrections to Ss(q, t)
can be discarded. In reality, however, (16.147) is of little use since the HI are
very long-ranged. HI decay for long interparticle distances r as r−1 regarding
collective diffusion, and as r−4 and r−6, respectively, in case of translational
and rotational self-diffusion. Therefore, HI cannot be neglected in comparison
to direct interactions. With HI, Sr(t) decays exponentially only at short times.
The initial decay of Sr(t) can be quantified by the short-time rotational self-
diffusion coefficient Ds

r , defined as

Dr
s = − lim

t→0

∂ lnSr(t)
∂t

, (16.148)

where t→ 0 should be interpreted as τB � t� τI ≈ τr. The HI between the
spheres cause a hindrance of short-time rotational motion so that Dr

s < Dr
0.

At infinite dilution, Dr
s → Dr

0. As will be exemplified in Sect. 16.5.1, Dr
s

depends crucially on system parameters like the volume fraction, and the
particle charge in case of charge-stabilized dispersions.

Memory effects come into play at longer times and lead to deviations of
Sr(t) from the single-exponential decay. For rotational Brownian motion of
the tip of the orientation vector û on the compact unit sphere, there is no
analogue of the hydrodynamic q → 0 limit known from translational self- and
collective motion. At long times, Sr(t) decays in principle non-exponentially,
with an average decay rate somewhat smaller than the initial one. Such a non-
Debye-like relaxation of Sr(t) at long times has been observed experimentally
and theoretically for various systems. For dilute suspensions of colloidal hard
spheres, e.g., it has been shown theoretically that Sr(t) is non-exponential at
intermediate and long times, according to [31]

Sr(t)
S0

r (t)
= 1 + γ2(t)Φ + O(Φ2) (16.149)

with a positive-valued function γ2(t). Here, S0
r (t) is the rotational self function

at infinite dilution, given by (16.146). While a genuine long-time rotational
self-diffusion coefficient does not exist, one can always define instead a mean
orientational self-diffusion coefficient, Dr, which depends on the overall time-
dependence of Sr(t) through [31]

1
6Dr

≡
∫ ∞

0

dt Sr(t) =
1

6Dr
0

[
1 + Crφ+ O(Φ2)

]
(16.150)

with Cr = 0.67 for hard spheres, resulting in Dr/D
r
0 = 1 − 0.67φ + O(Φ2).

This should be compared with the first-order virial result for the short-
time rotational self-diffusion coefficient of hard spheres, given by Dr

s/D
r
0 =
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1 − 0.63φ + O(Φ2). Thus, memory effects in Sr(t) lead to a mean diffusion
coefficient only slightly smaller than the short-time one, to first order in Φ.

Whereas a true long-time rotational self-diffusion coefficient, Dr
l does not

exist in monodisperse suspensions, we expect Dr
l to be a well-defined long-

time property when interpreted as the long-time coefficient describing the ro-
tation of a large tracer sphere immersed in a dispersion of small host spheres.
Depolarized DLS measurements indicate that a tracer/host size ratio larger
than 10 is large enough for Dr

l to be well-defined. Due to the separation of
time scales between the slow motion of the tracer and the fast motion of the
host spheres, the tracer experiences the host dispersion as an unstructured ef-
fective fluid, characterized by the effective viscosity ηH of the host dispersion.
Thus, one expects that Dr

l obeys the generalized Stokes-Einstein relation for
a perfectly sticking effective fluid, i.e.

Dr
l =

kBT

6πηHaT
, (16.151)

where aT denotes the radius of the tracer. This expectation is supported
experimentally, and by calculating the short-time rotational self-diffusion co-
efficient of the tracer in a dilute host dispersion of hard spheres [32]. For the
latter case, Dr

s is described to good accuracy by [32]

Dr
s = Dr

0

[
1 − 2.5

1 + 3λ−1
Φ+ O(Φ2)

]
, (16.152)

with λ = aT/aH , and φ the volume fraction of host spheres. This equation
describes a monotonic decline of the tracer coefficient from Dr

s = Dr
0 at λ = 0

towards Dr
s = Dr

0 (1 − 2.5Φ) = kBT/ [6πη0(1 + 2.5Φ)] + O(Φ2) for λ → ∞
(see Fig. 16.12). For very large λ, the tracer sphere experiences thus the host
solution as an effective one-component fluid, with an effective shear viscosity
given to first order in Φ by the relation ηH = η0 (1 + 2.5Φ). In the opposite
limit λ � 1 , the point-like (relative to the host) tracer rotates for short times
in an essentially stationary environment of host spheres so that its dynamic
cage is affected only by the viscosity η0 of the pure solvent.

16.4 Fluorescence Techniques for Long-Time
Self-Diffusion of Non-Spherical Particles

As explained above, in order to measure self-diffusion properties in a concen-
trated dispersion by means of light scattering, one needs to prepare a sys-
tem, where only a few particles scatter light (the so-called “tracer particles”),
whereas the majority of particles do not contribute to the scattered inten-
sity (the “host particles”). The tracer particles must be so dilute, that they
do not mutually interact, but may interact with the host particles. What is
then measured is the self-diffusion coefficient at a concentration that is equal
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Fig. 16.12. Reduced short-time self-diffusion coefficient Dr
s/Dr

0 versus size ratio
λ = aT/aH of a colloidal tracer sphere immersed in a dilute host dispersion of
colloidal hard spheres. The volume fraction of host spheres is Φ = 0.1. After [32].

to the overall concentration. Ideally, the pair-interaction potentials between
the tracer particles and host particles, and mutually between host particles,
are identical. Such a system is difficult to prepare, especially for more com-
plicated colloidal particles such as rods or platelets. In addition, it is not
straightforward to obtain true long-time diffusion coefficients by means of
light scattering. There exist other experimental techniques which allow for a
direct measurement of long-time self-diffusion coefficients, without having to
resort to tracer systems. The techniques which will be discussed here are flu-
orescent recovery after photobleaching (FRAP) and fluorescence correlation
spectroscopy (FCS). Both these techniques require the colloidal particles to
be labelled with fluorescent dyes.

16.4.1 Fluorescence Recovery After Photobleaching (FRAP)

Consider a monodisperse colloidal system, where each colloidal particle is
labelled with a number of fluorescent dye molecules (such as Rhodamine or
Fluoresceine Iso Thio Cyanate (FITC)). These dye molecules can be exited by
a monochromatic incident light beam, and emit light of a larger wavelength
when the exited state of the molecule relaxes to a lower energy state. This
process is called fluorescence. When the intensity of the incident beam is very
high, the structure of the dye molecules is irreversibly changed, and they loose
their fluorescent properties. This process is called bleaching. A bleached dye
molecule does not fluoresce anymore. In the early days of FRAP, diffusion
of free dye molecules was probed, by first bleaching “a hole” in the sample,
by means of a short pulse of high intensity light. Then the intensity of the
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Fig. 16.13. Principle of a FRAP setup. Two beams are crossed under an angle
2Θ. The mirror is mounted on a piezo element, which oscillates with frequency ω
during a measurement. A fiber picks up the fluorescent light that originates from the
sample. The amplitude of the 2ω-component of the fluorescent intensity is filtered
out by means of a lock-in amplifier. From [35].

incident beam was decreased to a level where bleaching is (virtually) absent,
and the fluorescent intensity from molecules within the hole is detected as
a function of time. Due to diffusion of unbleached molecules from outside
the hole into the hole, and of bleached molecules from inside the hole out of
the hole, the fluorescent intensity increases (“recovers”) with time. Once the
geometry of the bleached hole is known, the long-time self-diffusion coefficient
can be obtained from the time dependence of the fluorescent intensity. The
long-time self-diffusion coefficient is measured here, since (i) the fluorescent
intensity from different molecules have no phase relation, so that interference
effects on the measured intensity are absent (contrary scattered radiation),
and (ii) the size of the hole is much larger than molecular dimensions, so that
a significant change in the fluorescent intensity is only measured when the
molecules are displaced over distances that are large compared to their own
size.

The disadvantage of this older version of FRAP is that the geometry of
the bleached volume needs to be known, and that the fluorescent intensity is a
very complicated function of time. Furthermore, for macromolecules that are
labelled, the time required for the fluorescent intensity to recover would be
many hours. The FRAP technique was therefore improved (independently by
two groups [33,34]) by employing a diffraction grating or an interference pat-
tern, respectively. The technique described below uses an interference pattern
created by two crossing laser beams, as sketched in Fig. 16.13.

Instead of just bleaching a hole, a fringe pattern is bleached. To this end,
two laser beams are crossed under an angle 2Θ, say, which gives rise to a
standing interference pattern in the sample. For the intensity we have
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I0(r) ∼ cos{q0 · r} , (16.153)

where the wavevector q0 is equal to the difference between the wavevectors
q1 and q2 of the two crossed beams

q0 = q1 − q2 . (16.154)

Its magnitude is equal to

q0 =
4π
λ

sin{Θ} , (16.155)

where λ is the wavelength of the laser beam. We note here, that for the
almost perpendicular incidence of the two beams onto the sample, the ratio
sin{Θ}/λ is independent of whether Θ and λ are both taken equal to their
values within the sample, or in air, in the absence of the sample. Typical
angles are Θ = 1◦ − 5◦, corresponding to a fringe spacings in the range
10− 50µm. The bleach pulse now creates a sinusoidal concentration pattern
of bleached and unbleached particles, as sketched in Fig. 16.14, provided that
the amount of bleached dye molecules is proportional to the incident intensity.

The overall concentration (bleached + unbleached colloidal particles) is
constant. After this bleach of high intensity, the intensity is lowered to a value
where bleaching is virtually absent. Just as in the older version of FRAP, one
could now monitor the recovery of fluorescent intensity with time. The mea-
sured fluorescent intensity, however, is the sum of a background intensity
and a relatively small time dependent contribution. In order to increase the
signal-to-noise ratio of the FRAP experiment, instead, the interference pat-
tern is oscillated with a certain frequency ω and amplitude over the bleached
pattern. This is accomplished by sinusoidal motion of a mirror in Fig. 16.13
that is mounted on a piezo element, whereby the absolute phase of one of
the beams is changed by a phase angle Ψ . This so-called “reading intensity”
is then equal to

I0(r, t′) ∼ cos{q0 · r + Ψ(t′)} , (16.156)

where
Ψ(t′) = A sin{ω t′} . (16.157)

The optimum value of the amplitude of oscillation A will be discussed later.
Since the fluorescent intensity changes when the degree of overlap of the
reading fringes with the bleached fringes changes, the measured fluorescent
intensity oscillates, generally in a complicated fashion. In addition, due to
diffusion the difference in concentration between bleached and unbleached
colloidal particles diminishes with time, resulting in a decreasing amplitude
of the oscillating fluorescent intensity. The precise time dependence of the
fluorescent intensity can be calculated as follows. First of all, the fluorescent
intensity If is proportional to the local incident intensity I0(r, t′) and the
local concentration c0(r, t) of unbleached dye molecules (which are attached
to the colloidal particles), summed over the entire sample volume,
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Fig. 16.14. The various stages during a FRAP experiment. The top figure is the
intensity of the sinusoidal fringe pattern within the sample. After the bleach pulse,
the concentration of unbleached particles is depicted in the middle figure. The
amplitude of the concentration profile of unbleached particles diminishes with time
due to diffusion. The lower figure depicts the reading intensity with its oscillating
position within the sample. From [35].

If (t′, t) ∼
∫

dr I0(r, t′) c0(r, t) ∼
∫

dq I0(q, t′) c0(q, t) , (16.158)

where in the second equation, Bessel’s theorem is used to express the fluo-
rescent intensity in terms of a wavevector integral over the spatial Fourier
transforms of I0 and c0. We made here the distinction between the time de-
pendence t resulting from diffusion and the time dependence t′ as a result
of the oscillating interference pattern. The reason for doing so is that the
frequency of oscillation will be assumed large enough, so that over a period
of many oscillations the concentration c0(r, t) hardly changes. This will be
important in order to be able to filter a certain time-Fourier component by
means of a lock-in amplifier from the detected fluorescent intensity. During
this filtering, the time dependence due to diffusion must be negligibly small.
Since the spatial Fourier transform of I0 in (16.156) is
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I0(q, t′) ∼ δ(q − q0) exp{iΨ(t′)} + δ(q + q0) exp{−iΨ(t′)} , (16.159)

where the δ’s are Dirac delta distributions, (16.158) leads to

If (t, t′) ∼ c0(q0, t) cos{Ψ(t′)} , (16.160)

where we used that c0(q0, t) = c0(−q0, t). A time-Fourier analysis of the
fluorescent intensity with respect to its t′-dependence is accomplished by the
mathematical identity

cos{A sin{ω t′}} = J0(A) + 2
∞∑

n=1

J2n(A) cos{2nω t′} , (16.161)

where Jm is an mth order Bessel function. When the lock-in amplifier is set
to filter the Fourier component with frequency 2ω, its output, according to
(16.160), (16.161), is equal to

S(t) ∼ c0(q0, t) . (16.162)

S(t) is simply referred to as “the FRAP signal”. In an experiment, the am-
plitude A is chosen such that the corresponding prefactor J2(A) in (16.161)
is maximum. Now, since the fringe spacing is much broader than the lin-
ear dimensions of the colloidal particles, the fluorescent intensity diminishes
only when colloidal particles are displaced over distances much larger than
their own size. Hence, long-time diffusion determines the time dependence
of the FRAP signal. Furthermore, since fluorescent intensities from different
dyes have no phase relation, the FRAP signal is not affected by interference
effects, so that self-diffusion in the homogeneous system governs the time de-
pendence. In the long-time limit, the concentration c0(r, t) obeys the diffusion
equation

∂c0(r, t)
∂t

= Dl
s ∇2c0(r, t) , (16.163)

where Dl
s is the long-time self-diffusion coefficient. The assumption here is

that bleaching has no effect on the pair-interaction potential between the
colloidal particles. Hence,

∂c0(q, t)
∂t

= −Dl
s q

2 c0(q, t) (16.164)

and
c0(q, t) ∼ exp{−Dl

s q
2 t} . (16.165)

From (16.162) one thus obtains the following simple relationship between the
FRAP signal and the long-time self-diffusion coefficient:

S(t) ∼ exp{−Dl
s q

2
0 t} . (16.166)
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The nice feature about the improved FRAP technique is that the concentra-
tion profile of unbleached colloidal particles remains sinusoidal throughout
its relaxation, since the sine-function is an eigenfunction of the operator on
the right hand-side in (16.163). This feature leads to the single-exponential
behaviour of the FRAP signal in (16.166). This must be contrasted with the
concentration profiles during relaxation in the older version of FRAP, where
simply a hole is bleached, leading to a Gaussian-like concentration profile af-
ter the bleach pulse. Such a Gaussian-like concentration dependence is not an
eigenfunction of the operator in (16.163), leading to a much more complicated
time dependence of the fluorescent intensity during recovery as compared to
the decay of the FRAP signal in (16.166) for the improved FRAP technique.

The above analysis is a simplified version of a much more elaborate analy-
sis as given in [35].

Long-Time Self-Diffusion of Colloidal Rods

The analysis given above holds for colloidal particles of any shape, as long
as their linear dimensions are small compared to the fringe spacing. Experi-
mental results on spherical colloids (and mixtures of spheres of various sizes)
will be discussed later. In the present subsection we shall discuss FRAP ex-
periments on stiff, colloidal rods, which are taken from [36–38].

Two colloidal systems are discussed here. The first system consists of
boehmite rods, where the aluminium core is covered with aluminium chloro-
hydrate (Al2(OH)5Cl 2−3H2O, ACH), to partly shield the van der Waals
attractions between the cores [38]. The aspect ratio, corrected for the ACH
layer thickness and charges of these rods is L/D = 7.3 (where L = 257nm is
the length of the rods, and D their effective thickness). The solvent is water,
with 0.01M added NaCl. This system will be referred to as “system I”. The
second system consist of boehmite rods, where the aluminium core is cov-
ered with a ∼ 25 nm thick layer of SiO2, which virtually completely screens
the van der Waals interactions [37]. The aspect ratio, corrected for charge
repulsion, is equal to L/D = 5.4 (with L = 323nm). This system will be
referred to as “system II”. The solvent here is DMS with 0.01M LiCl added.
The polydispersity in both systems is around 30 % in length and 20 % in
thickness. Both systems exhibit an isotropic-nematic (i-n) phase transition.

Typical FRAP data are shown in Fig. 16.15, together with a single-
exponential fit (the solid lines) according to (16.166). The two sets of data
correspond to a measurement in an isotropic state and the coexisting nematic
state, where diffusion along the director is probed.

A reliable value for the long-time diffusion coefficient, accurate to within
a few percent, is obtained when 10 to 20 such measurements are averaged.
Clearly there is a large difference between the long-time diffusion coefficients
in the isotropic phase and the coexisting nematic phase. Within the nematic
state, where the orientation of the rods has a preferred direction, which is
referred to as the director, two kinds of diffusion coefficients can be probed:
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Fig. 16.15. Typical FRAP curves (for system I). The two curves are for the nematic
state, where diffusion along the director is probed, and the coexisting isotropic state.
After [36,38].

diffusion along the director and perpendicular to the director. In order to be
able to measure these two coefficients, the wavevector q0 in (16.154) must
be chosen either along or perpendicular to the director. The corresponding
FRAP geometries are sketched in Fig. 16.16, where the z-axis is along the
director.

Long-time diffusion coefficients for system I are plotted in Fig. 16.17 as a
function of the bare volume fraction (where the thickness is not corrected for
the ACH layer thickness and charges). As can be seen, the long-time diffusion
coefficients within the nematic phase are an order of magnitude smaller than
for the coexisting isotropic phase. Furthermore, the long-time self-diffusion
coefficient Dnem,‖ for diffusion along the director is about twice as large as
the coefficient Dnem,⊥ for diffusion in directions perpendicular to the director.
Side-wise diffusion is thus two times slower than length-wise diffusion in the
nematic phase. This kind of behaviour seems to be very sensitive on flexibility
and/or the presence of charge interactions [39].

For low concentrations, in the isotropic state, the long-time diffusion co-
efficient can be expanded with respect to the (effective) volume fraction Φ
as

Dl
s = D0

{
1 − αΦ+ O

(
Φ2

)}
. (16.167)

On the basis of a variational approach for spherically end-capped cylinders
with hard-core interactions, the aspect-ratio dependence of the coefficient α
is predicted to be equal (to within about 5 %) to [41]

α = 2 + 10
32

(p− 1) + 1
53

(p− 1)2 , p ≤ 30 , (16.168)

where p = L/D is the aspect ratio. Here, hydrodynamic interactions have
been neglected. For p = 1, that is for spherical particles, we have α = 2.
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(a)

(b)

Fig. 16.16. FRAP geometries for the measurement of diffusion coefficients per-
pendicular to the director (a) and parallel to the director (b). The figures on the
right depict the orientation of the fringe patterns relative to the director (which is
along the z-axis). After [36,38].
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Fig. 16.17. Long-time self-diffusion coefficients for system I, as functions of the
bare volume fraction in the isotropic state (a), and up to volume fractions within
the i-n coexistence region (b). Diffusion coefficients are normalized to the Stokes-
Einstein diffusion coefficient D0. After [36,38].

Including hydrodynamic interactions changes this value to 2.10 [1, 42, 43].
Since for rod-like particles the volume fractions of interest are lower than
those for spheres, this indicates that hydrodynamic interactions do not very
much affect values for long-time self-diffusion coefficients.
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Fig. 16.18. The coefficient α, defined in (16.168), as a function of the aspect ratio
p = L/D. The two curves are the result of a variational principle where a very
simple trial function is used (dotted line) and a more involved trial function (solid
line). The solid data points are computer simulation results from [40]. The open
circle is the FRAP result for system II. After [36,37].

Experimental FRAP results for system I are not in accordance with this
theoretical prediction. Probably the 2 nm thick ACH layer does not effectively
screen van der Waals attractions (a theoretical estimate for the minimum
layer thickness to fully screen van der Waals attractions of the aluminium
cores in water is about 20 − 30 nm). For the boehmite rods with the 25 nm
thick silica coating, system II, FRAP data are found to be in accordance
with the prediction in (16.168). The prediction (16.168), together with the
FRAP result for system II (open circle) and computer simulations (solid
data points) are plotted in Fig. 16.18. The two curves are the result of the
variational principle where a very simple trial function is used (dotted line)
and where a more involved trial function is used (solid line) [41]. It remains a
theoretical challenge to predict diffusion coefficients at higher concentrations,
including the i-n coexistence region.

More FRAP data, for spherical particles, will be discussed later.

16.4.2 Fluorescence Correlation Spectroscopy (FCS)

In fluorescence correlation spectroscopy one measures the fluorescent inten-
sity that originates from a small, relatively strongly illuminated volume. Here,
a single laser beam is strongly focussed, and by means of confocal optics, the
fluorescent intensity is measured from a region around the focal point, the
so-called “confocal volume”. The confocal optics is sketched in Fig. 16.19,
and explained in the caption.

The intensity distribution within the confocal volume is well represented
by a Gaussian profile,
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Fig. 16.19. (a) Typical configuration of confocal optics as used in an FCS experi-
ment. A wide laser beam is strongly focussed by means of a high numerical aperture
objective (OBJ). The fluorescent light is collected by the same objective, which is
reflected by a dichroic mirror (DM), and focussed by a lens (L) onto a pinhole
(P). The band filter admits fluorescent light to the detector (DET). The region
from which fluorescent light is detected is limited to a small volume (the so-called
confocal volume) by means of the pinhole P. (b) A magnification of the confocal
volume. Only that part of a macromolecule that is inside the volume contributes
to the measured fluorescent intensity. After [44].
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I0(r) ∼ exp{−(x2 + y2)/2σ2
1} exp{−z2/2σ2

2} , (16.169)

where σ1 measures the width of the confocal volume in the plane perpendic-
ular to the propagation of the beam, while σ2 measures the length along the
propagation direction. Typically, σ1 ≈ 100−300nm, and σ2 ≈ 200−600nm.
Similar to (16.158), the fluorescent intensity is equal to

If(t) ∼
∫

dr I0(r) cd(r, t) , (16.170)

where cd is the local concentration of fluorescent dye molecules, which are
(at least in part) attached to the colloidal particles. The time dependence is
now entirely due to the fact that colloidal particles diffuse in and out of the
confocal volume. What is neglected in (16.170) is the dependence of excitation
probabilities and fluorescent intensities on the orientation of dye molecules.
This is probably a good approximation when there are many dye molecules,
with random orientations, attached to the colloidal particles. Contrary to
FRAP, the volume from which fluorescent intensities are collected is assumed
to contain at most a single colloidal particle. At high concentrations this
sometimes requires to mix labelled with unlabelled colloidal particles. In a
FCS experiment, the intensity correlation function Cf(t) ≡ 〈If(t) If(t = 0)〉
is measured. From (16.170) we obtain

Cf(t) =
∫

dr

∫
dr′ I0(r) I0(r′) 〈cd(r, t) cd(r′, t = 0)〉

∼
∫

dq

∫
dq′ I0(q) I0(q′) 〈cd(q, t) cd(q′, t = 0)〉 , (16.171)

where in the second equation Bessel’s theorem has been applied twice, to
convert spatial integrations to wavevector integrations, which will simplify
the further mathematical analysis. Here, q- and q′-dependent functions are
understood to be spatial Fourier transforms with respect to r and r′, respec-
tively. Now suppose that there is at most a single fluorescent colloidal particle
inside the confocal volume. The Fourier transform of the dye concentration
c0 can be written as

c0(q, t) = Bf(q, t) exp{iq · rc(t)} , (16.172)

where rc is the position coordinate (the position of the center of mass) of the
colloidal particle, and the “fluorescence amplitude” Bf is defined as

Bf(q, t) =
∫

V0(t)

dr χd(r) exp{iq · r} , (16.173)

where V0 is the volume occupied by the colloidal particle with its center-of-
mass at the origin (as indicated by the subscript “0”), and χd(r) is the char-
acteristic function for the dye on and within the core of the colloidal particle
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(χd(r) = 1 when there is a dye molecule at r, and = 0 otherwise). The ex-
ponential with the position coordinate originates from the transformation to
the spatial integration with respect to a coordinate system where the center-
of-mass is chosen as the origin (similar as has been done in Sect. 16.2, dealing
with the principles of light scattering). The integral in (16.173) depends only
on the way dye molecules are distributed over its surface and possibly inside
its core. The volume V0 is time dependent for colloidal particles where the
dye distribution is non-spherically symmetric, through the orientation of the
colloidal particle. Possible rotational contributions to the correlation function
C(t) originate from this integral. Such orientational contributions become im-
portant when the largest linear dimension of the fluorescent macromolecule
are of the order of or larger than the dimensions of the confocal volume. In
that case, a mere rotation of the macromolecule can give rise to a change of
the fluorescent intensity. Translational contributions originate from the time
dependence of the position coordinate rc. From (16.171), (16.172) we have

〈cd(q, t) cd(q′, t = 0)〉 ∼ 〈exp{iq · rc(t)} exp{iq′ · rc(t = 0)}〉 . (16.174)

Since, for a homogeneous system, the probability density function P of
{rc(t), rc(t = 0)} depends only on the difference rc(t) − rc(t = 0), it fol-
lows that (with R = rc + r′

c and ∆r = rc − r′
c)

〈cd(q, t) cd(q′, t = 0)〉

∼
∫

drc

∫
dr′

c P (rc − r′
c, t) exp{iq · rc} exp{iq′ · r′

c}

∼
{∫

dR exp{i 1
2
(q + q′) · R}

}
×

{∫
d∆r P (∆r, t) exp{i 1

2
(q − q′) ·∆r}

}
. (16.175)

Since ∫
dR exp{i 1

2
(q + q′) · R} ∼ δ(q + q′) , (16.176)

where δ is the Dirac delta distribution, it follows from (16.175), that

〈cd(q, t) cd(q′, t = 0)〉 ∼ 〈cd(q, t) cd(−q, t = 0)〉 δ(q + q′) . (16.177)

This equation expresses translational invariance of a homogeneous system.
Substitution into (16.171) thus leads to

Cf(t) ∼
∫

dq I2
0 (q) 〈Bf(q, t)B�

f (q, t = 0) exp{iq · (rc(t) − rc(t = 0))}〉 ,
(16.178)

where “#” stands for complex conjugation. Note that, when the core of the
colloidal particle is homogeneously labelled, the ensemble average in (16.178)
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for the fluorescence autocorrelation function is nothing but the electric field
autocorrelation function in (16.20) that one would measure in a dynamic
light scattering experiment, provided that the scattering power is homoge-
neously distributed over the core of the particles. The fluorescence correlation
function is a weighted q-average of the light scattering correlation function.
When the confocal volume is large compared to the linear dimensions of the
colloidal particles, the rotational contributions arising from the fluorescence
amplitudes Bf in (16.178) do not contribute to the time dependence of the
fluorescence correlation function (in fact, numerical calculations for stiff rods
show that this is already the case when σ1 ≥ L/2, with L the length of the
rods). Hence, for any practical application we have

Cf(t) ∼
∫

dq I2
0 (q) 〈exp{iq · (rc(t) − rc(t = 0))}〉 . (16.179)

Since the fluorescent intensity only changes when the colloidal particle is
displaced over a distance larger or comparable to dimensions of the confocal
volume, which is in turn larger than the linear dimensions of the colloidal par-
ticles, the correlation function in the above equation is the long-time limiting
form as given in (16.165). Using that the Fourier transform of the Gaussian
profile in (16.169) is given by

I0(q) ∼ exp{−(q2x + q2y)σ2
1/2} exp{−q2zσ2

2/2} , (16.180)

where qj is the j-component of q, it is thus found that

Cf(t) ∼
∫

dqx exp{−q2x
[
Dl

st+ σ2
1

]
} ×

∫
dqy exp{−q2y

[
Dl

st+ σ2
1

]
}

×
∫

dqz exp{−q2z
[
Dl

st+ σ2
2

]
} ∼

[
1 +

Dl
s t

σ2
1

]−1 [
1 +

Dl
s t

σ2
2

]−1/2

. (16.181)

The fluorescent intensity autocorrelation function thus decays algebraically
with time, with the two time constants σ2

1,2/D
l
s. The geometrical constants

σ1,2 can be determined from a measurement of a dilute system where Dl
s

is equal to the Stokes-Einstein diffusion coefficient, that can be obtained
independently from dynamic light scattering.

When the size of the particles is not small in comparison with the confocal
volume, the q-dependence of the fluorescence amplitudes in (16.178) comes
into play. For spherical colloidal particles, in which the fluorescent dye is
radially symmetrically distributed, the amplitudes are independent of time,
so that (16.178) simplifies to

Cf(t) ∼
∫

dq
[
Ieff
0 (q)

]2 〈exp{iq · (rc(0) − rc(t = 0))}〉 ,

where
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Ieff
0 (q) = I0(q) |B(q) |

is the Fourier transform of the intensity complying with an “effective confocal
volume”. For homogeneously labelled spheres, | B(q) | can be represented
quite accurately by a Gaussian ∼ exp{−0.11 q2a2}, up to wavevectors where
B(q) is small enough that it does not contribute anymore to the integral over
q. Here, a is the radius of the spherical colloidal particle. We thus obtain the
“effective size” of the confocal volume as

σeff
1,2 =

√
σ2

1,2 + 0.22 a2 .

When the particles are large, the fluorescent intensity is non-zero already
when the outer part of a particle enters the confocal volume. At that moment
the center of the colloid is still outside the confocal volume. This leads to an
increase of the apparent confocal volume, as quantified for homogeneously
labelled spheres by the present expression for σeff

1,2.
Experimental correlation functions show some features that we have not

discussed above. First of all, in the various steps taken in the above analysis,
prefactors are always omitted. It turns out, by including all prefactors, that
the proportionality constant in (16.181) is equal to 1/[the average number
of fluorescent colloidal particles in the confocal volume]. This reflects the
relative decrease of number fluctuations in a given volume with increase of
volume. Secondly, there may be free dye molecules, not attached to colloidal
particles, in the solvent. When this is the case, there is a second, additive
contribution of the form (16.181), except that the time constants are much
smaller as compared to those for the colloidal particles. Free dye is therefore
seen only at very small times. Thirdly, dye molecules that are excited in
long-lived triplet states do not contribute to the fluorescent intensity and
therefore temporarily reduce the number of fluorescent dye molecules. Triplet
state excitation can thus be regarded as “reversible bleaching” (contrary to
the irreversible bleaching in the FRAP experiments described earlier). The
relative amplitude of such contributions depends on the sort of dye that is
used, as well as the concentration of dye on the surface and/or inside the core
of a colloidal particle.

A recent overview of FCS can be found in [44]. An extensive literature list
can be found on the FCS website of Zeiss. The above analysis is a simplified
version of a more elaborate analysis in [45].

As far as we are aware, there are no systematic FCS investigations pub-
lished on macromolecular systems. An example of a fluorescence correlation
function on fd-virus (a semi-flexible rod of length 880nm and width of about
6 nm, with a persistence length of 2200nm), labelled with TARAM , is given
in Fig. 16.20 [46]. At very small times a triplet contribution is found, at in-
termediate times a decay due to free dye and at longer times decay due to
diffusion of the fd-virus. The curve is fitted with a sum of three terms: a
single exponential function to account for the triplet contribution, and a sum
of two contributions of the form as in (16.181) (one for the free dye and one
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Fig. 16.20. A fluorescence correlation function for fd-virus, labelled with TARAM.
At small times a triplet contribution is clearly present, at intermediate times the
correlation function decays due to the presence of free dye molecules, and at larger
times due to diffusion of fd-virus. The lower part in the figure gives the residues
after a least-square fit as described in the main text.

for the fd-virus). Clearly, the conditions should be optimized, in particular
to minimize the triple contribution.

16.5 Theoretical and Experimental Results on Diffusion
of Colloidal Spheres and Polymers

For times t 
 τB, which is the regime of most DLS experiments, the veloci-
ties of the colloidal spheres have relaxed to equilibrium, so that only the slow
relaxation of the particle positions and orientations is probed. Therefore, the
dynamics of interacting spheres is entirely described on this coarse-grained
level in terms of a many-particle pdf, P (rN , û, t), in the configuration space
of positional and orientational degrees of freedom. The pdf depends thus,
in principle, on the center-of-mass position vectors rN = (r1, · · · , rN ) and
orientation vectors ûN = (û1, · · · , ûN ) of all N spheres in the suspension
(scattering volume) Vs. The equation of motion for P (rN , ûN , t) is a gener-
alization of the one-particle diffusion equation (16.45) to interacting parti-
cle systems. This many-particle diffusion equation is known among colloid
scientists as the generalized Smoluchowski equation (GSE). In the polymer
science community, it is better known as the Kirkwood-Riseman-Zimm equa-
tion [13, 47].

The description of the configurational evolution by means of the GSE is
founded on the separation of time scales between the fast fluctuating parti-
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cle velocities, and the slow configurational changes. Such a description can-
not be applied to polymer blends since the relaxation of the matrix, which
plays the role of the solvent, is comparable to those of the other compo-
nents. To explore the polymer dynamics in the diffusion limit (or Markovian
limit) of small wavenumbers and long times, we resort therefore to the semi-
phenomenological dynamic RPA. Using the RPA, we will study the interdif-
fusion process in a ternary homopolymer mixture.

16.5.1 Colloidal Spheres

Consider N identical colloidal spheres in a quiescent and unbound Newtonian
solvent. The evolution for the pdf of the particle positions alone

P (rN , t) =
∫

drN P (rN , ûN , t) (16.182)

is described, for t
 τB, by the translational GSE

∂

∂t
P (rN , t) = Ô(rN )P (rN , t) , (16.183)

where

Ô(rN ) =
N∑

i,j=1

∇i · Dij(rN ) · [∇j − βF j ] (16.184)

is the Smoluchowski differential operator. Here, F j = −∇jU(rN ) denotes
the force that all other N − 1 spheres exert on sphere j, through potential
interactions U(rN ). It is assumed here that the potential energy U(rN ) is in-
dependent of orientation so that the particles exert no torques on each other.
Otherwise, the translational motion would be coupled to the rotational one.
The solvent appears in (16.183) only through the time-independent transla-
tional diffusivity tensors Dij(rN ), which describe the solvent-mediated HI
between the spheres. The tensors Dij(rN ) relate the hydrodynamic forces
{F H

j }, exerted on the surfaces of the spheres by the surrounding fluid to the
resulting drift velocity vi of a sphere i in form of a generalized Stokes’ law

vi = − 1
kBT

N∑
j=1

Dij(rN ) · F H
j . (16.185)

The propagation of hydrodynamic disturbances (via sound and diffusion of
shear waves) appears to be infinitely fast for times t 
 τη. Therefore, the
HI between the spheres act quasi instantaneously on these time scales and
Dij(rN ) can be determined, in principle, from solving the stationary lin-
earized Navier-Stokes equation describing the creeping flow in an incompress-
ible fluid, augmented by stick boundary conditions on the sphere surfaces.
Yet, actual analytical calculations of the Dij(rN ) are very difficult and have
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been fully achieved only on the pairwise-additive level, mainly in form of
inverse distance expansions. Hereby one disregards the influence of other
spheres on the HI between a given pair of spheres, an approximation which is
valid only for large interparticle distances. Note for spheres that the Dijr

N )
depend only on the positions. For non-spherical particles, HI couple position
and orientation variables. If we ignore HI, Dij = δijD01 and (16.185) reduces
to the standard Stokes’ law for isolated single spheres.

In equilibrium, (∂/∂t)P = 0, and the GSE is satisfied by the equilibrium
pdf

Peq(rN ) = exp{−βU(rN )}/
∫

drN exp{−βU(rN )} (16.186)

independent of the Dij(rN ). This shows that the HI are dynamic forces with
no effect on static equilibrium properties.

Using the GSE, one can express equilibrium time-correlation functions
like Sc(q, t) and Ss(q, t) as

SA(q, t) = 〈ρA(−q)
(
exp{ÔBt}ρA(q)

)
〉 , (16.187)

with A = a, c and microscopic densities ρc(q) = ρ(q) (see (16.24)) and
ρs(q) = exp{iq · r1}. Here

ÔB(rN ) =
N∑

i,j=1

[
∇i +

1
kBT

F i

]
· Dij(rN ) · ∇j (16.188)

is the adjoint (or backward) Smoluchowski operator, and

〈· · · 〉 =
∫

drNPeq(rN ) (· · · ) (16.189)

is the equilibrium ensemble average. Note that ÔB operates only on ρA, and
not on Peq.

In the following subsection, we describe theoretical methods based on the
GSE. From a theoretical point of view, it is appropriate to treat short-time
diffusion and long-time diffusion separately, since the former is needed as an
input to the latter one.

Short-Time Diffusion

In general, SA(q, t) cannot be calculated exactly from (16.187), owing to the
complicated form of the operator ÔB for interacting particles. However, for
short times t� τI, SA(q, t) can be expressed in a series of cumulants, that is
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SA(q, t) = SA(q) exp

{ ∞∑
l=1

(−t)l Γ
(l)
A (q)
l!

}
(16.190)

= SA(q) exp
{

−Γ (1)
A (q)t+

1
2
Γ

(2)
A (q)t2 + · · ·

}
with SA(q) = SA(q, t). The higher-order cumulants, Γ (l)

A , with l = 2, 3, · · · ,
measure the deviation of SA(q, t) from a single-exponential decay. Cumulant
analysis is a customary tool to analyze DLS data at short times, whereby
mainly the first and second cumulants have been determined. One can al-
ternatively expand SA(q, t) in a time Taylor series, resulting in the so-called
moment expansion

SA(q, t) =
∞∑

n=0

tn

n!
S

(n)
A (q) = SA(q)+tS(1)

a (q)+
1
2
t2 S

(2)
A (q)+. . . , (16.191)

with moments
S

(n)
A (q) =

1
N

〈ρA(−q)(ÔB)
n
ρA(q)〉 . (16.192)

In deriving (16.192), we have expanded the time evolution operator exp{ÔB}
in (16.187) in powers of t. From a small-t expansion of (16.191), it follows for
the two leading cumulants that

Γ
(1)
A (q) = −S

(2)
A (q)
SA(q)

(16.193)

Γ
(2)
A (q) =

S
(2)
A (q)
SA(q)

−
[
S

(1)
A (q)
SA(q)

]2

.

In specializing to A = c, the first cumulant of the collective dynamic structure
factor follows as

Γ (1)
c (q) = q2Ds

c(q) = q2D0
H(q)
Sc(q)

. (16.194)

Here, Ds
c(q) is the apparent short-time collective diffusion coefficient already

defined in (16.98), and H(q) is given by

H(q) =
1

ND0

N∑
l,j=1

〈q̂ · Dlj(rN ) · q̂ exp{iq · [rl − rj ]}〉 . (16.195)

The function H(q) ≥ 0 contains, through the diffusion tensors Dlj , the in-
fluence of HI on the short-time collective diffusion. For this reason, H(q)
is known as the hydrodynamic function. Without HI, H(q) ≡ 1, so that
Ds

c(q) = D0/Sc(q) in this case. Any q-dependence of H(q) is thus an indicator
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for the non-negligible influence of HI. Comparison with the phenomenological
(16.108) shows that

lim
q→0

H(q) =
U s

U0
. (16.196)

Hence, the long-wavelength limit of the hydrodynamic function is equal to
the relative (short-time) sedimentation velocity in a homogeneous suspension.
According to (16.195), H(q) is indeed a short-time equilibrium average.

Next, the first cumulant for the self-dynamic structure factor is deter-
mined as (see (16.192))

Γ (1)
s (q) = q2Ds

s , (16.197)

with the microscopic expression

Ds
s = 〈q̂ · D11(rN ) · q̂〉 (16.198)

for the translational short-time self-diffusion coefficient. Without HI, Ds
s =

D0 since at short times the Brownian motion of a sphere is not influenced by
direct forces.

For large q 
 qm, strong oscillations in the exponential factors in (16.195)
cancel each other for l �= j, and H(q) becomes therefore equal to the reduced
short-time self-diffusion coefficient, i.e.

H(q 
 qm) ≈ Ds
s

D0
. (16.199)

Likewise, Ds
c(q 
 qm) ≈ Ds

s since Sc(q 
 qm) = 1. Thus, it is in principle
possible to determine short-time self-diffusion properties from DLS experi-
ments performed at long wavenumbers without a need for contrast variation.
Index matching is needed, however, to determine the MSD at longer times.

Moments up to the third order have been calculated for SA(q, t). The
expression for the second moment of Sc(q, t) reads without HI

S(2)
c (q) = (q2D0)2

{
1 +

βρ0

q2

∫
dr g(r) (1 − cos(q · r)) (q̂ · ∇)2u(r)

}
.

(16.200)
It is given in terms of the pair distribution function g(r), and derivatives of
the pair potential, u(r), between two spheres. Hereby it is assumed that the
total potential energy is pairwise additive, that is U(rN ) =

∑
i<j u(|ri−rj |).

The second cumulant, S(2)
s (q), of Ss(q, t) is given by (16.200) with the cos(q·r)

term omitted, since
Sc(q 
 qm, t) = Ss(q, t) (16.201)

due to smallness of the distinct part, Sd(q, t), of Sc(q, t) for q 
 qm (cf.
(16.28)).

Little is known about the higher-order moments. With HI, even the sec-
ond moment becomes quite complicated, invoking now up to four-particle
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static distribution functions. Thus moment expansions are not very helpful
in gaining information on SA(q, t) for intermediate and long times. In the
following section, we will describe a projection operator method which is far
better suited for analyzing the dynamics at long times.

Incidentally, the second moment of SA(q, t) does not exist for systems
with singular pair potentials like suspensions of colloidal hard spheres. For
the latter case, the non-analytical short-time expansion of SA(q, t) is given
by

SA(q, τ) = SA(q) − τ +
4
√
π

3
CA(q;Φ)τ3/2 + · · · (16.202)

with τ = q2D0t. Explicit expressions for the expansion coefficients Cs(q;Φ)
and Cc(q;Φ) can be found in [24, 48].

In order to obtain explicit results for the short-time translational property
H(q) and its limiting values U s and Ds

s, it is necessary to specify the trans-
lational diffusivity tensors Dij(rN ). For this purpose, it is useful to expand
Dij(rN ), according to

Dij(rN ) = D01δij + D
(2)
ij (rN ) + D

(3)
ij (rN ) + · · · , (16.203)

into contributions, D
(n)
ij (rN ), originating from increasingly large clusters of

n hydrodynamically interacting spheres.
For (very) small volume fractions, it is justified to assume pairwise addi-

tivity of the HI. In this case

Dij(rN ) ≈ D01δij + D
(2)
ij (rN ) , (16.204)

with

D
(2)
ij (rN ) = D0

⎡⎣δij

N∑
l�=i

ω11(ri − rl) + (1 − δij)ω12(ri − rj)

⎤⎦ . (16.205)

The first term of (16.205) determines D11 in (16.198) so that the tensor ω11

modifies the short-time self-diffusion coefficient as compared to its value, D0,
at infinite dilution. The tensor ω12 determines the distinct part, i �= j, of
H(q). For one-component suspensions of spheres, series expansions of ω11(r)
and ω12(r) are known, in principle, to arbitrary order. The leading terms in
this long-distance expansions are

ω11(r) = −15
4

(a
r

)4

r̂r̂ + O
[(a

r

)6
]

(16.206)

ω12(r) =
3
4

(a
r

)
[1 + r̂r̂] +

1
2

(a
r

)3

[1− 3 r̂r̂] + O
[(a

r

)7
]
,

where r̂ = r/r. The long-distance (i.e. far-field) expression for ω12(r) up to
O(r−3) is the well-known Rotne-Prager (RP) tensor [49].
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Substitution of (16.205) into (16.195) and (16.198) leads to the expressions

Ds
s = D0

[
1 + ρ0

∫
dr g(r) q̂ · ω11(r) · q̂

]
(16.207)

H(q) =
Ds

s

D0
+ ρ0

∫
dr g(r) q̂ · ω12(r) · q̂ cos(q · r) , (16.208)

valid for pairwise additive HI. The only input needed to calculate Ds
s and

H(q) from these expressions is the pair distribution function g(r). The latter
gives the conditional probability of finding a second sphere a distance r apart
from a given one. For given pair potential u(r), g(r) can be determined using
standard integral equation methods or computer simulations [18, 50]. For
neutral hard spheres, g(r) has its maximum at contact distance, r = 2a+,
whereas it is practically equal to zero for charged spheres up to the nearest-
neighbor distance, where it attains a rather pronounced peak. This implies
that, contrary to dilute suspensions of charge-stabilized spheres, where only
the leading far-field terms in ωij are of importance, many more terms need
to be summed up for neutral hard spheres.

The most accurate virial expansion result for the Ds
s of monodisperse hard

spheres valid to second order in Φ reads [51]

Ds
s

D0
= 1 − 1.832Φ− 0.219Φ2 + O(Φ3) . (16.209)

This result has been obtained from summing up a large number of terms in the
inverse-distance expansions of D

(2)
11 and D

(3)
11 , and by further accounting for

short-range lubrication interactions between nearly touching pairs or triplets
of spheres. Three-body terms in D11, which contribute to Ds

s to order Φ2,
appear first in order r−7.

Fig. 16.21 depicts Ds
s, determined according to (16.209), in comparison

with DLS and depolarized DLS data on hard spheres, and with the semi-
empirical formula,

Ds
s

D0
= (1 − 1.56Φ) (1 − 0.27Φ) , (16.210)

proposed by Lionberger and Russel [53]. The latter formula conforms to the
(numerically) exact O(Φ) limit in (16.209), and it predicts Ds

s to vanish at
the volume fraction Φrcp ≈ 0.64 where random close packing occurs. As
seen in Fig. 16.21, the second-order virial form is applicable for Φ < 0.3. The
experimental data are overall well described by (16.210) up to Φ ≈ 0.5, where
the systems begins to freeze into an ordered solid state.

For small Φ, the sedimentation velocity of hard spheres has been deter-
mined to linear order by Batchelor [54], and to quadratic order by Cichocki
et. al. [55], as

U s

U0
= 1 − 6.546Φ+ 21.918Φ2 + O(Φ3) . (16.211)
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Fig. 16.21. Reduced short-time translational self-diffusion coefficient, Ds
s/D0, of

monodisperse hard-sphere suspensions. We compare experimental DLS [26] and
DDLS [31] data with the O(Φ2) expression in (16.209), and the semi-empirical
expression in (16.210). After [32,52].

Using that Sc(q = 0) = 1 − 8Φ + 34Φ2 + O(Φ3), the short-time collective
diffusion coefficient of hard spheres at low concentrations is determined as [55]

Ds
c

D0
= 1 + 1.454Φ− 0.45Φ2 + O(Φ3) , (16.212)

which shows that Ds
c > D0. The modest initial increase in Ds

c with Φ de-
scribed by (16.212) is counter-operated by HI through the factor H(0), which
causes Ds

c to decay towards zero for larger Φ.
For hard spheres up to Φ = 0.5, it has been shown in comparison to exact

low-density calculations [56], experimental data [26] and so-called Lattice-
Boltzmann computer simulation results for H(q) [26], that [24, 56]

H(qm) = 1 − 1.35Φ . (16.213)

The Lattice-Boltzmann simulation method combines Newtonian dynamics of
the solid colloidal particles with a discretized Boltzmann-type equation for
the fluid phase (see, e.g., [57]). It is particularly suited to analyze the effect
of many-body HI on the colloidal short-time dynamics.

The principal peak height, Sc(qm), of the hard-sphere static structure
factor is well described, within 0 < Φ < 0.5, by [24, 58]

Sc(qm) = 1 + 0.644Φg(r = 2a+) , (16.214)

where g(r = 2a+) = (1 − 0.5Φ)/(1 − Φ)3 is the Carnahan-Starling contact
value of g(r). Note that Sc(qm) ≈ 2.85 at Φ = 0.494, in accord with the
empirical Hansen-Verlet freezing criterion [59]. This criterion states for one-
component atomic and colloidal liquids that freezing into an ordered state
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sets in when Sc(qm) exceeds 2.8 − 3.0. Substitution of (16.213) and (16.214)
into Ds

c(qm) = D0H(qm)/Sc(qm) gives an analytic expression for the short-
time apparent collective diffusion coefficient, Ds

c(qm), which, according to Fig.
16.11, is in perfect agreement with experimental data.

Calculations of the hard-sphere H(q) in dependence on q have been per-
formed by Beenakker and Mazur [60]. These involved calculations account in
an approximate way for many-body HI contributions (through so-called ring
diagrams), with results for H(q) which agree, up to Φ ≈ 0.3, quite well with
experimental data and Lattice-Boltzmann computer simulations [26].

The shape of H(q) is rather similar to that of Sc(q) for the same Φ. The
maximim of H(q) is located close to qm. However, according to (16.213),
H(qm) decreases linearly in Φ, while Sc(qm) is instead a monotonically in-
creasing function in φ (see (16.214)).

Having discussed the short-time properties of colloidal suspensions with
short-range, i.e. hard-sphere-like, pair interactions, we proceed to discuss the
opposite case of charge-stabilized suspensions with long-range electrostatic
repulsions among the particles. We examine in particular systems with small
amounts of excess electrolyte (in addition to the neutralizing counterions).
The highly charged colloidal particles in these systems are already strongly
correlated at volume fractions as low as Φ ≈ 10−4. The strong electrosta-
tic repulsion keeps the particles apart from each other such that contact
configurations are extremely unlikely. Contrary to hard-sphere dispersions in
which near-field hydrodynamic lubrication forces are important, the diffusion
of charged colloidal spheres is thus influenced only by the far-field part of the
HI. This salient difference in the effect of the HI leads to remarkable qualita-
tive differences in the dynamic behavior of charge-stabilized dispersions and
suspensions of hard spheres.

The usual virial expansion in Φ, which is so successful for semi-dilute
hard-sphere suspensions, does not apply to charge-stabilized suspensions.
Non-linear volume fraction dependencies have been predicted instead by
Nägele and co-workers for the short-time transport properties of monodis-
perse charge-stabilized dispersions [18,61–66]. In particular, Ds

s obeys a frac-
tional Φ-dependence of the form [18]

Ds
s

D0
= 1 − atΦ

4/3 , (16.215)

with a parameter at ≈ 2.5 which depends only weakly on the charge of the
colloidal particle, provided that the charge remains large enough to mask
the physical hard core of the particle. Equation (16.215) is valid typically for
Φ ≤ 0.05. At larger volume fractions, three- and more-body HI come into play,
and (16.215) becomes invalid. The Φ3/4-dependence of Ds

s has been verified
in recent DLS measurements on charge-stabilized suspensions with the excess
electrolyte (i.e. excess salt ions) removed form the suspension using an ion
exchange resin [67]. According to (16.215), the Ds

s of charged spheres is less
strongly reduced by HI than for hard spheres at the same volume fraction. In
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case of hard spheres, lubrication forces between nearby spheres are operating
whereas the dynamics of charged spheres is dominated by far-field HI.

HI have a stronger effect on charged spheres than on neutral ones, when
instead of Ds

s the sedimentation velocity in a homogeneous system is con-
sidered. In this case, theory predicts for charge-stabilized suspensions with
Φ < 0.1 that

U s

U0
= 1 − asΦ

1/3 , (16.216)

with a nearly charge- and particle size-independent coefficient as ≈ 1.8 [18,
62, 63]. The fractional exponent 1/3 has been subsequently confirmed by
measurements of the sedimentation velocity in deionized charge-stabilized
suspensions [66]. Equation (16.216) predicts, for Φ = 10−3, a reduction in U s

from the zero-density limit U0 by as much as 15%, whereas the reduction for
hard spheres at the same Φ is as small as 0.4% (cf. (16.211)). This is quite
remarkable, for in the past the influence of HI on dilute charge-stabilized
dispersions had been frequently considered to be negligibly small. The origin
for the smaller sedimentation velocity of charged spheres as compared to
uncharged ones at the same Φ is that charged particles are more strongly
exposed to laminar solvent friction arising from the cumulative backflow of
displaced fluid. This backflow friction is more effective for charged particles
since, contrary to neutral spheres, nearby particle pairs are very unlikely.

The strong influence of (far-field) HI on charged particles can be ob-
served further in the significant wavenumber dependence ofH(q). For charged
spheres at Φ ≤ 10−2, it is sufficient to substitute in (16.195) the Rotne-Prager
limiting form of Dij given in (16.207). This leads to [68]

H(y) = 1 − 15Φ
j1(y)
y

+ 18Φ
∫ ∞

1

dxx [g(x) − 1] {j0(xy) −
j1(xy)
xy

+
j2(xy)
6x2

} , (16.217)

with y = 2qa, x = r/(2a), and jn the spherical Bessel function of order
n. DLS data of Härtl and co-workers [69] for the hydrodynamic function
of dilute charge-stabilized suspensions are displayed in Fig. 16.22 for three
different concentrations. Notify the pronounced oscillations of H(q) even for
the smallest Φ ≈ 10−4 considered. The experimental H(q) are overall in very
good agreement with the theoretical result in (16.217). The differences at
small q can be attributed to the scattering contribution of residual particle
aggregates in the experimental probes and to polydispersity effects, which are
most influential at small q. The radial distribution function in (16.217) was
determined from fitting the peak heights, Sc(qm), of the experimental S(q)
in Fig. 16.22 by static structure factors calculated by means of the rescaled
mean spherical integral equation scheme (RMSA).

Contrary to hard spheres, the peak height, H(qm), of dilute and deionized
charged sphere suspensions is larger than one, and it grows with increasing
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Fig. 16.22. Static structure factor Sc(q)(upper figure) and hydrodynamic function
H(q) (lower figure) versus qa for aqueous dispersions of strongly charged spheres
at Φ = 7.63 × 10−4, 2.29 × 10−3, and 4.58 × 10−3 (curves from left to right). Note
that without HI, H(q) ≡ 1. After [69].

Φ. For Φ ≤ 10−2, this peak height is well described by [24, 56]

H(qm) = 1 + p Φ0.4 , (16.218)

with a coefficient p = 1 − 1.5 moderately dependent on particle size and
charge.

We have dealt so far with translational short-time properties. The rota-
tional short-time self-diffusion coefficient, Dr

s, of interacting colloidal spheres
defined in (16.148) can be calculated in analogy with the translational case
by accounting also for the orientational degrees of freedom [1, 20, 31, 32, 64].
In this way, one obtains the microscopic expression

Dr
s = 〈q̂ · Drr

11(r
N ) · q̂〉 (16.219)

for Dr
s. The rotational diffusivity tensor, Drr

11, relates the hydrodynamic
torque, T H

1 , acting on a representative sphere 1 to its angular velocity, ω1,
by
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ω1 = − 1
kBT

Drr
11(r

N ) · T H
1 , (16.220)

on assuming that no hydrodynamic torques and forces are exerted on the
remaining (N − 1) spheres. To leading order in the a/r expansion, Drr

11(rN )
is given by [70]

Drr
11(r

N ) = Dr
0

⎡⎣1 +
N∑
l�=i

ωrr
11(ri − rl)

⎤⎦ , (16.221)

with

ωrr
11(r) = −15

4

(a
r

)6

[1 − r̂r̂] + O
[(a

r

)8
]
. (16.222)

The leading-order three-body contribution to Drr
11(rN ) is of order r−9 [32,51].

On the basis of (16.219), Cichocki et al. [51] have derived for hard spheres
the second-order virial expansion result

Dr
s

Dr
0

= 1 − 0.631Φ− 0.726Φ2 . (16.223)

This expression describes experimental data and Lattice-Boltzmann com-
puter simulation results for Dr

s quite well up to surprisingly large volume
fractions Φ = 0.4 [31, 52, 72].

Calculations of Dr
s for charge-stabilized suspensions with leading-order

three-body HI included, reveal for small excess electrolyte concentration a
purely quadratic Φ-dependence, viz.

Dr
s

Dr
0

= 1 − arΦ
2 , (16.224)

with a parameter ar ≈ 1.3 rather insensitive to particle size and charge.
Equation (16.224) has been confirmed by Lattice-Boltzmann computer sim-
ulations, which show that it applies quite accurately even up to Φ ≈ 0.3 [72].

Figure 16.23 includes the comparison between the theoretical prediction
for Dr

s in (16.224), and depolarized DLS measurements of Bitzer et al. [71] on
deionized suspensions of highly charged and optically anisotropic fluorinated
teflon spheres. For comparison, Fig. 16.23 contains further the hard-sphere
Dr

s according to (16.223). The experimental data for Dr
s are seen to be in

qualitative accord with the predicted φ2 dependence.
The non-linear volume fraction dependence of the short-time properties

of charged spheres arises from the peculiar concentration dependence of the
mean diameter, rm, of the average next-neighbor cage around a charged
sphere. The length rm coincides with the location of the first maximum,
g(rm), of the radial distribution function and is very nearly equal to the
mean interparticle distance, ρ−1/3

0 , which scales in Φ as Φ−1/3. Using this
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Fig. 16.23. DDLS data (from [71]) and (16.224) for the reduced short-time ro-
tational self-diffusion coefficient, Dr

s/Dr
0, versus Φ of charge-stabilized colloidal

spheres. The second-order virial expansion result in (16.223) for monodisperse hard
spheres is included for comparison.

characteristic property of deionized charge-stabilized suspensions, the expo-
nents in (16.215), (16.216), (16.218) and (16.224) can be derived quite easily
on the basis of a simplified model of effective hard spheres of diameter 2rm.
We refer to [18, 63, 65] for more details on the effective hard-sphere model.

Long-Time Diffusion

Theoretical calculations of the intermediate time and long-time behavior of
Sc(q, t) and Ss(q, t), the MSD and the associated translational long-time self-
diffusion coefficient are very demanding, since these quantities are affected
simultaneously by direct and hydrodynamic interactions. These interactions
give rise to time-retarded caging effects. At long times t 
 τI, the dynamic
cage around a sphere is distorted away from its, on the average, spherical
symmetry. This implies that, contrary to Ds

s, D
l
s cannot be expressed in

terms of a genuine equilibrium average as the one in (16.198).
A frequently used route to a direct calculation of time dynamic properties

at intermediate to long times invokes Brownian dynamics (BD) computer sim-
ulations without and, to a certain degree of approximation, with HI included.
The BD method allows to generate numerically the trajectories {ri(t)} of col-
loidal spheres, and it is statistically equivalent to solving the GSE (16.183) for
the many-sphere pdf. The (translational) displacements of N identical col-
loidal spheres during a time step ∆t, with τB � t� τI, are generated in this
scheme through solving the coupled stochastic finite difference equations [73]

ri(t+∆t) − ri(t) =
N∑

j=1

[−βDij(rN ) · ∇jU(rN ) + ∇j · Dij(rN)]∆t+∆xi + O(∆t2) . (16.225)
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Here,∆xi is a Gaussian-distributed random displacement vector of zero mean
〈∆xi〉 = 0 due to isotropy, and the covariance matrix

〈∆xi ∆xj〉 = 2 Dij(rN )∆t . (16.226)

For dilute suspensions with long-range repulsive interactions, we have argued
before that it is sufficient to account only for the leading asymptotic form
of Dij , given for an unbound three-dimensional suspension by the Rotne-
Prager form in (16.205). Equation (16.225) reduces then to a simpler form,
since ∇j · Dij = 0 within RP approximation. The RP approximation for
Dij amounts to neglecting reflections, through other (caging) spheres, of the
hydrodynamic flow field created by a moving sphere onto itself. Therefore,
Ds

s = D0 within RP approximation. For dilute charge-stabilized suspensions,
DLS experiments show indeed that Ds

s ≈ D0.
In a typical BD simulation, several hundred to several thousand particles

confined in a periodically repeated simulation box are equilibrated using,
e.g., a canonical ensemble Monte-Carlo method. After equilibration has been
reached, several ten thousand production time steps are generated by the
algorithm in (16.225) to obtain diffusional (and structural) properties like
the particle MSD through

W (t) =
1
2d

〈
1
N

N∑
i=1

[ri(t) − ri(0)]2
〉
, (16.227)

with t some multiple of ∆t. The long-range nature of the HI requires to
include an Ewald-type summation technique on the RP level into the BD
algorithm, as developed by Beenakker [75]. The influence of HI on dynamic
properties can be analyzed through comparison with BD calculations where
HI are disregarded, by setting Dij = D0δij1. An example for a BD calculation
of Sc(q, t) without HI has been discussed already in Fig. 16.8, in comparison
with a mode coupling theory scheme which will be explained further down.
BD simulations with far-field HI included have been performed, e.g., for the
in-plane diffusion of planar monolayers of charge-stabilized colloidal spheres
[74] and for one-component [58, 76–78] and bidisperse [79] systems of super-
paramagnetic colloidal spheres confined to a liquid-gas interface, and exposed
to an external magnetic field perpendicular to the interface. The induced
magnetic moments in the particles lead to long-range dipolar repulsions. A
BD study of three-dimensional charge-stabilized suspensions with far-field HI
has been discussed in [80].

For an interesting example of a quasi-two-dimensional colloidal suspen-
sion, consider a monolayer of electrostatically repelling colloidal spheres dif-
fusing in the midplane between two narrow parallel (charged) walls of sepa-
ration h = 2σ, with σ = 2a (see Fig. 16.24).

Due to the stronger influence of HI in such confined systems, it is neces-
sary to account for many-body near-field HI (where ∇j · Dij �= 0) between
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Fig. 16.24. Charged colloidal spheres diffusing in the midplane between two
charged plates. The spheres interact by the screened Coulomb potential u(r) =
Q2 exp{−κr}/r for r > 2a, with particle charge Q and screening parameter
κ = π/(h

√
2) (see [74] for details).

particles and walls (p-w HI), and among the particles themselves (p-p HI),
including also lubrication corrections. Lubrication effects arise when two or
more spheres or a sphere and a wall are close to contact: for stick boundary
conditions, which we assume here to apply, the mobility for relative motion
goes to zero at contact, due to strong lubrication stresses required to expel
the solvent from the thin gap between the surface points of closest approach.
Moreover, in the present system there is a non-negligible hydrodynamic cou-
pling between the translational and rotational motion of the spheres. To
include all these hydrodynamic features of the system one can use the so-
called Stokesian dynamics (SD) simulation method. This method is a more
sophisticated extension of the BD scheme, pioneered and advanced by Brady
and Bossis [81], which accounts to a good approximation for many-body HI
contributions and lubrication effects.

Figure 16.25 includes SD simulation results [74] for the self-dynamic and
distinct space-time Van Hove functions Gs(r, t) and Gd(r, t), respectively,
defined as [18]

Gs(r, t) =

〈
1
N

N∑
i=1

δ(r − ri(t) + ri(0))

〉

≈ [4πW (t)]−d/2 exp{− r2

4W (t)
} (16.228)

and

Gd(r, t) =

〈
1
N

N∑
i�=j

δ(r − ri(t) + rj(0))

〉
. (16.229)

The second approximate equality in (16.228) applies only when non-Gaussian
contributions to Gs(r, t) are very small. The function Gs(r, t) gives the condi-
tional probability density that a particle undergoes a displacement r during
the time interval t. The distinct Van Hove function, with Gd(r, 0) = ρ0g(r),
gives the conditional probability density of finding, at time t, a particle a dis-
tance r apart from another one at earlier time t = 0. Up to the density factor
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Fig. 16.25. Reduced self-dynamic and distinct Van Hove functions, Gs(r, t)/ρ0 and
Gd(r, t)ρ0 versus r/(2a), for time t = 3.5 τI, particle surface fraction Φ = 0.062, and
an effective particle charge Q of 103 elementary charges. After [74].

ρ0, Gd(r, t) is thus the time-dependent generalization of the radial distrib-
ution function. Real-space quantities like Gs(r, t), Gd(r, t) and W (t) can be
directly measured in quasi-two-dimensional systems of micron-sized colloidal
particles using video microscopy imaging [82, 83]. The functions Gs(r, t) and
Gd(r, t) are the Fourier transform pairs, respectively, of Ss(q, t) and of the
distinct part, Sd(q, t) = Sc(q, t) − Ss(q, t), of Sc(q, t), viz.

Ss(q, t) =
∫
dr exp{iq · r}Gs(r, t) (16.230)

Sd(q, t) =
∫
dr exp{iq · r}Gd(r, t) .

The time t = 3.5 τI, at which the reduced Van Hove functions Gs(r, t)/ρ0 and
Gd(r, t)/ρ0 are depicted in Fig. 16.25 versus the radial distance r corresponds
to the intermediate time regime characterized by a sub-linear increase in
W (t). Interestingly enough, the shape of Gd(r, t) with full HI (i.e p-p and p-w
HI) is seen from the figure to be mainly determined by p-p HI. In comparison,
the p-w HI has only a minor effect onGd(r, t), giving rise to a somewhat slower
decay of interparticle correlations. In sharp contrast to Gd(r, t), Gs(r, t) is
mainly influenced hydrodynamically by the walls (i.e. by p-w HI), which act
to slow down the self-diffusion. This is the reason why the Gs(r, t) with full
HI and with p-w HI alone, which are nearly equal to each other, are much
larger for smaller r than the Gs(r, t) for the non-confined cases of of p-p HI
only and with no HI at all.

Aside from BD and SD computer simulations, various approximate theo-
retical methods have been developed [27, 48, 84–91] for calculating long-time
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diffusional and rheological properties from the knowledge of Sc(q) or, like-
wise, g(r). These methods are all based, regarding Sc(q, t), on the microscopic
equivalent of the phenomenological memory (16.101), with different approxi-
mations involved in each of these methods for the memory function ∆Dc(q, t).
Out of these methods, we discuss here only the mode coupling theory (MCT)
for the overdamped dynamics of dense colloidal suspensions [27,68,86,89,91].
The MCT for Brownian systems has been established, through comparison
with experiment and computer simulations, as a versatile tool for calculating
dynamic transport coefficients and density correlation functions [24, 56, 92].

In order to derive a microscopic evolution equation for Sc(q, t) it should be
realized that the microscopic densities ρA(q, t), with A ∈ {s, c}, are the only
slowly relaxing dynamic variables, at least for small q (cf. (16.132)), since
momentum and energy of the colloidal spheres are very quickly exchanged
with the surrounding fluid. From introducing the projection operator into the
subspace of configurational dynamic variables,

P̂c(· · · ) =
〈(· · · )ρc(−q)〉

NSc(q)
ρc(q) , (16.231)

Nägele and Baur have derived the following exact evolution equation for
Sc(q, t) [68]:

∂

∂t
Sc(q, t) = −q2Ds

c(q)Sc(q, t) −
∫ t

0

du M irr
c (q, t− u)

∂

∂u
Sc(q, u) . (16.232)

This equation relates Sc(q, t) to the so-called irreducible collective memory
function M irr

c (q, t). The function M irr
c (q, t) is given by an exact but for-

mal equilibrium average invoking P̂c and the adjoint Smoluchowski operator
ÔB(rN ) (see [27, 68] for details).

Time-Laplace transformation of (16.232) leads to

Sc(q, z) =
Sc(q)

z +
q2Ds

c(q)
1 +M irr

c (q, z)

, (16.233)

with M irr
c (q, z) the Laplace transform of M irr

c (q, t). It follows from this equa-
tion that the collective diffusion kernel, Dc(q, z), in (16.91) can be expressed
in terms of M irr

c (q, t) via

Dc(q, z) =
Ds

c(q)
1 +M irr

c (q, z)
. (16.234)

At this point, it becomes obvious that M irr
c (q, z) renormalizes the short-time

decay rate, q2Ds
c(q), of Sc(q, t) due to the presence of memory effects. As a

generalization of the single-particle Stokes-Einstein relation D0 = kBT/γ to
interacting particle systems, a wavenumber and frequency-dependent friction
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function, γc(q, z), can be introduced through Dc(q, z) = kBT/γc(q, z). Hence,
with (16.234), M irr

c (q, z) is identified as being proportional to the frequency-
dependent part of the generalized friction function. For given M irr

c (q, z), the
long-time collective diffusion coefficient can be calculated from

Dl
c =

Ds
c

1 +M irr
c (q → 0, z → 0)

. (16.235)

On the basis of the microscopic expression for M irr
c (q, t), it can be shown for

vanishing or pairwise additive HI that M irr
c (q, t)/q2 → 0 for q → 0, which

implies that Dl
c = Ds

c.
The MCT provides a self-consistent approximation for M irr

c (q, t), which
preserves the positive definiteness of the exact Dc(q, z). It is particularly
suitable for fluid suspensions of strongly correlated particles. Moreover, as
shown in the salient work of Götze and co-workers (see [93–96]), it predicts a
consistent dynamic glass transition scenario in good accord with experiment
and computer simulation. This scenario is characterized by the appearance
of non-ergodicity above a certain concentration threshold, where Sc(q, t) and
Ss(q, t) do not relax any more to zero, and where the suspension viscosity
diverges.

In the most commonly used version of the MCT, M irr
c (q, t) is approxi-

mated without HI by

M irr
c (q, t) =

D0

2ρ0(2π)3

∫
dk [Vc(q,k)]2 Sc(k, t) Sc(|q − k|, t) (16.236)

with the vertex amplitude [87, 91, 93, 94],

Vc(q,k) = q̂ · k ρ0 c(k) + q̂ · (q − k) ρ0 c(|q − k|) , (16.237)

related to collective diffusion. Here, c(q) = [1 − 1/Sc(q)]/ρ0 is the Fourier
transform of the two-body direct correlation function c(r) [50]. The ver-
tex amplitude Vc(q,k) in (16.236) has been derived in the so-called con-
volution approximation, where the contribution of static three-point direct
correlations is neglected. The convolution approximation for the collective
vertex amplitude is used in most of the recent applications of the MCT to
atomic [95–97] and colloidal dynamics [24, 27, 88, 90, 91].

The MCT has been formulated further for self-diffusional properties re-
lated to the self-dynamic structure factor Ss(q, t). The time evolution of
Ss(q, t) is described by the exact memory equation [68],

∂

∂t
Ss(q, t) = −q2Ds

s Ss(q, t) −
∫ t

0

du M irr
s (q, t− u)

∂

∂u
Ss(q, u) , (16.238)

which includes the irreducible memory function, M irr
s (q, t), related to self-

diffusion. Without HI, Ds
s = D0 , and M irr

s (q, t) is then approximated in
MCT by
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M irr
s (q, t) =

D0

(2π)3ρ0

∫
dk [Vs(q,k)]2Sc(k, t) Ss(|q − k|, t) , (16.239)

with the vertex function [87]

Vs(q,k) = q̂ · k (1 − 1
Sc(k)

) . (16.240)

Equations (16.232, (16.236) and (16.237) constitute a self-consistent set of
non-linear equations determining Sc(q, t) for a given static structure factor
Sc(q). The latter can be calculated independently for given pair potential
using well-established integral equation schemes [18, 50].

Once S(q, t) has been determined, Ss(q, t) is obtained from solving (16.238)–
(16.240). Knowing Ss(q, t), the MSD can be determined from

W (t) = − lim
q→0

logSs(q, t)
q2

. (16.241)

The long-time self-diffusion coefficient, Dl
s, follows then from

Dl
s = lim

t→∞
W (t)
t

=
Ds

s

1 +M irr
s (q → 0, z → 0)

, (16.242)

where M irr
s (q, z) is the Laplace transform of M irr

s (q, t).
An approximate incorporation of far-field HI into the MCT equations of

monodisperse systems and colloidal mixtures was provided by Nägele and co-
workers [27,68,86]. This leads to modifications in the wavenumber dependence
of Vc(q,k) and Vs(q,k), and hydrodynamic functions like H(q) are needed as
additional external inputs. The MCT with far-field HI aims at describing the
dynamics of charge-stabilized suspensions in the fluid regime. So far it has
been applied with good success to the self-diffusion of moderately correlated
charged particles (see below), and to the electrolyte friction effect experienced
by a charged colloidal sphere immersed in an electrolyte solution [98].

Figure 16.8 shows BD results without HI for the Sc(q, t) of a charge-
stabilized dispersion, in comparison with corresponding MCT prediction
without HI. There is no adjustable parameter involved in this comparison.
The good agreement between MCT and BD for all times and wavenumbers
considered confirms our earlier statement that the MCT is well suited for
dense (in the sense of strongly correlated) particle systems. The effect of far-
field HI, which is predominant in charge-stabilized suspensions, is to enlarge
Dl

s moderately, and to enhance the decay of Sc(q, t). The enhancement of
Dl

s had been originally predicted in [68] from partially self-consistent sim-
plified MCT calculations of Dl

s with far-field HI included (see Fig. 16.26),
and from exact low-density calculations. Meanwhile, hydrodynamic enhance-
ment of long-time self-diffusion has been observed in various colloidal systems
characterized by strong and long-range particle repulsions [74,76–78,80]. The
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Fig. 16.26. MCT long-time self-diffusion coefficient of a typical deionized charge-
stabilized suspension as function of volume fraction. HI leads here to an enhance-
ment of long-time diffusion (see [68,87]).

far-field HI prevailing in these systems promotes the diffusion of a sphere out
of its momentary cage.

A neutral sphere diffusing out of its cage of neighboring hard spheres will,
contrary to charged spheres, most probably pass by very closely to one of the
caging particles, since the g(r) of hard spheres is maximal at contact. Due to
the strongly reduced relative mobility of two spheres near contact, the long-
time self-diffusion of a hard sphere is hydrodynamically reduced accordingly.
Consider here Fig. 16.27, which shows BD results for the Dl

s of hard spheres
without HI included, versus experimental data obtained from FRAP and DLS
measurements. For hard spheres, Dl

s/D0 = 1 − 2.1Φ to leading order in the
density. While there are significant differences in Dl

s for the various sets of
experimental data, the hydrodynamically induced de-enhancement of Dl

s for
hard spheres is clearly observable. The diverging experimental results for Dl

s

arise from difficulties in determining the volume fraction unambiguously. Fig.
16.27 includes further the MCT predictions for Dl

s without and with HI. The
MCT locates the glass transition of hard-sphere suspensions at Φ = 0.525
which is lower than the experimental value of approximately 0.58. To correct
for this, Φ is rescaled in the MCT results accoding to Φ → Φ × Φg/0.525,
with a value Φg = 0.62 selected somewhat larger than the experimental one,
so that the MCT-Dl

s without HI conforms well with the BD data at large
concentrations. The influence of many-body HI is accounted for in a semi-
heuristic fashion by multiplying (i.e. rescaling) Dl

s without HI, calculated
using the MCT, by the factor Ds

s/D0 where Ds
s is determined from (16.210).

A rationale for this hydrodynamic rescaling is provided from noting for hard
spheres that a particle diffusing out of its cage will move very slowly for
a considerable amount of time in the immediate neighborhood of a caging
sphere, as adequately described by the short-time self-diffusion coefficient,
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Fig. 16.27. Reduced long-time self-diffusion coefficient for hard spheres as function
of volume fraction. Comparison between MCT and experimental data. Filled circles:
BD data of Moriguchi et al. [100]. Open diamonds: DLS data of van Megen and
Underwood [101]. Open squares and triangles: two sets of FRAP data by Imhof
and Dhont [102]. After [24].

before it leaves the cage. According to Fig. 16.27, the Dl
s from the HI-rescaled

MCT is overall in good accord with experimental data, in particular for larger
concentrations.

An empirical dynamic freezing rule, due to Löwen, Simon and Palberg
[99], states that freezing sets in in a three-dimensional monodisperse suspen-
sion when the threshold value Dl

s/D
s
s ≈ 0.1 has been reached. A value of

0.1 for Dl
s/D0 corresponds to Φ = 0.949 within the HI-rescaled MCT. Since

Sc(qm;Φ = 0.494) = 2.85, this is also the freezing volume fraction predicted
by the static Hansen-Verlet freezing criterion [59]. This observation suggests
that both freezing criteria are in fact equivalent, since dynamic properties are
derived in MCT from knowledge of the static property Sc(q). The equivalence
of both freezing criteria, and of their two-dimensional analogues, has been
further established for systems with long-range repulsive interactions [24,76].
The equivalence of static and dynamic criteria derives from a general dy-
namic scaling behavior (cf. [58,76] for details on this dynamic scaling), which
has led to the formulation of additional dynamic freezing criteria in terms of
long-time collective diffusion coefficients [58].

As an example of dynamic scaling, consider Fig. 16.28a. This figure in-
cludes the master curve for Dl

s versus S(qm), calculated using the MCT
without HI for a three-dimenisional suspension of highly charged spheres.
Note here that a height of 2.85 in the static structure factor peak corre-
sponds to Dl

s/D0 = 0.1. Recall further that Ds
s ≈ D0 for charge-stabilized

systems with prevailing far-field HI. BD simulation results of Dl
s/D0 versus

Sc(qm) with and without far-field HI included are shown in Fig. 16.28b for
magnetically and electrostatically repelling particles. We observe here that
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Fig. 16.28. Reduced long-time self-diffusion coefficient, Dl
s/D0, versus liquid static

structure factor peak height Sc(qm). MCT results without HI (from [24]) for deion-
ized three-dimensional suspensions of charge-stabilized spheres are shown in (a).
The particle interactions in (a) are described by a Yukawa-like screened Coulomb
potential. BD simulation results with and without HI for magnetic and charge-
stabilized (Yukawa-like) quasi-two-dimensional systems are depicted in (b) (af-
ter [58]).

Dl
s/D0 ≈ 0.085 for Sc(qm) ≈ 5.5, in excellent accord with an empirical dy-

namic criterion for two-dimensional freezing proposed by Löwen [103], which
states that Dl

s/D0 ≈ 0.085 at the freezing line, independent of the pair poten-
tial and the nature of the freezing process. Moreover, a value of Sc(qm) = 5.5
at freezing is indeed found in computer simulations of two-dimensional sys-
tems [104]. As seen from Fig. 16.28b, values of Dl

s close to freezing are only
slightly enhanced by HI. This indicates that the dynamic freezing rules re-
main esentially untouched when far-field HI is included.

As an application of the MCT to colloidal mixtures, we consider long-time
interdiffusion in a dilute binary mixture of colloidal hard spheres. To this end,
one needs to employ the generalizations of the one-component MCT equations
to colloidal mixtures, as provided, e.g., in [27]. The long-time mobility matrix
µl, defined in (16.121), can be calculated analytically without HI to yield [27]

kBT µ
l
αβ = δαβ D

l
sα +

1
3
D0

α (Φα Φβ)1/2 (1 + λαβ)2

(λαβ)3/2
+ O(Φ2) (16.243)

where

Dl
sα = D0α

[
1 − 1

3
Φ

2∑
γ=1

xγ (1 + λγα)2
]

+ O(Φ2) (16.244)

is the long-time self-diffusion coefficient, without HI, of an α-type hard sphere
in the mixture. Here, Φ is the total volume fraction of both components,
and λαβ = aβ/aα is the size ratio of β to α spheres. The MCT result in



16 Diffusion in Colloidal and Polymeric Systems 697

(16.243) and (16.244) is not an exact one: the exact expression forDl
sα is given

by (16.244) with the factor 1/3 replaced by 1/2 [18, 42], so that Dl
s/D0 =

1 − 2Φ + O(Φ2) in the mondisperse case. The MCT does not describe the
dynamics at low densities exactly, since the low-density binary collision part
is treated in an approximative way.

Substitution of (16.243) for µl in (16.130) yields the following MCT result
for the kinetic factor of a dilute binary hard sphere suspension [27, 105]:

Λl
in

x1 x2
=

(
x2D

l
s1 + x1 D

l
s2

)
+

4
3

(x1 Φ2D02 + x2 Φ1D01)

− 2
3

(x1x2Φ1Φ2)
1/2

D01
(1 + λ12)

2

(λ12)
3/2

. (16.245)

As has been discussed already in the interdiffusion part of Sect. 16.3.2, an
ideal binary mixture is characterized by Λl

in ∝
(
x2D

l
s1 + x1 D

l
s2

)
; i.e., Λl

in

can then be expressed completely in terms of the self-diffusion coefficients.
Equation (16.245) implies that a binary mixture of hard spheres is non-ideal
already at small concentrations. Ideality is reached only when a1 = a2, i.e.
for labelled but otherwise identical particles.

16.5.2 Polymer Blends and Random Phase Approximation

In this subsection, we analyze the interdiffusion process in binary polymer
blends of hompolymers, labelled as A and B. We further consider the inter-
diffusion of A and B polymers in a matrix of C polymers. Our analysis is
restricted to length scales accessible to dynamic light scattering. The lengths
2π/q resolved in typical DLS experiments on polymer blends are much larger
than the average extent of a polymer coil. The average coil size is quantified
by the radius of gyration, RG, with RG = pa2/6 for a Gaussian chain. Here,
p is the degree of polymerization, i.e. the number of statistical segments or
monomers [13, 47, 106], of a homopolymer chain, and a is the length of a
statistical segment. DLS experiments performed in the macroscopic regime,
i.e. in the diffusive limit where qRG � 1 holds, resolve times which are large
as compared to the internal modes of a chain in the melt. Hence, only the
center-of-mass diffusion of a chain is resolved.

As discussed earlier in Sect. 16.3.2, the partial static structure factors in
a mixture are expressible, in the hydrodynamic limit, as a linear superposi-
tion of exponentially decaying hydrodynamic modes (cf. (16.122)). To make
contact with the notation commonly used in the polymer field with regard to
interdiffusion [28,29], we slightly redefine the partial collective dynamic struc-
ture factor, Sαβ(q, t), for the density correlations of α and β-type monomers
as Sαβ(q, t) = 〈ρα(q, t)ρβ(−q, 0)〉, which differs from the definition given in
(16.118) by a factor of (NαNβ)1/2. In the context of polymer blends, Nα de-
notes the total number of α-type monomers in the melt, with α ∈ {A,B,C},
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and ρα(q, t) is the incremental number density given in (16.115), with rα
j

pointing to the location of the j-th monomer of type α.
Using this redefinition of the Sαβ(q, t), the EACF for a binary blend is

(cf. (16.119))

gE(q, t) ∝ b2A SAA(q, t) + b2B SBB(q, t) + 2 bA bB SAB(q, t) , (16.246)

where bα is the scattering amplitude of an α-type monomer (q-independent in
the diffusive limit), related to its dielectric polarizability. Equation (16.246)
applies also to an incompressible ternary blend, with bA and bB interpreted
now as the excess scattering amplitudes relative to the amplitude, bC, of
matrix monomers. The incremental number density, ρC, of matrix molecules is
hereby contracted out of the description, by using the local incompressibility
constraint (cf. (16.124)),

ρA(q, t) + ρB(q, t) + ρC(q, t) = 0 , (16.247)

for the coarse-grained incremental number densities, ρα(q, t). In (16.247), it
is assumed that the thermodynamic segmental volumes of the three polymer
species are equal.

The interdiffusion of A chains into B chains in the ternary mixture is
described by the interdiffusion autocorrelation function,

Sin(q, t) =
1
N2

A

SAA(q, t) +
1
N2

B

SBB(q, t) − 2
NANB

SAB(q, t) , (16.248)

which differs from the definition of Sin(q, t) in (16.117) by a factor (NxAxB)−1,
with N = NA +NB. Here, xA = NA/N is the molar fraction, i.e. the volume
fraction for equal molar volumes, of A monomers relative to A and B, with
xB = 1 − xA. The long-time interdiffusion coefficient has been defined in
(16.126) in terms of the initial decay rate of Sin(q, t) as

Dl
in = − 1

q2
∂

∂t
lnSin(q, t)|t=0 , (16.249)

where it is understood that the diffusive limit of Sin(q, t) is taken before its
evaluation at t = 0. The 2× 2-matrix, µl, of long-time partial mobilities µαβ

for the components A and B is introduced, in accordance with (16.121), by

kBTµ
l
αβ = − 1

q2
∂

∂t
Sαβ(q, t)|t=0 . (16.250)

Then, Dl
in in (16.249) can be re-expressed as [28]

Dl
in =

Λl
in

Sin
= kBT

µl
AA

N2
A

+ µl
BB

N2
B

− 2µl
AB

NANB

SAA
N2

A
+ SBB

N2
B

− 2SAB
NANB

. (16.251)
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This equation relates Dl
in to the long-time and long-wavelength-limiting par-

tial mobilities and partial static structure factors of A and B monomers. The
definition of the µαβ in (16.250) differs from the one in (16.121) by the same
factor (NANB)1/2 as for the partial static structure factors, so that Dl

in in
(16.251) is not affected by these redefinitions.

In the interdiffusion part of Sect. 16.3.2 we have pointed out that, in
general, Dl

in cannot be determined by a single scattering experiment. An
important exemption from this rule is an incompressible binary blend of A
and B polymer chains, void of any vacancies or C polymers. In this case, local
incompressibility, ρA + ρB = 0, implies that

SAA(q, t) = SBB(q, t) = −SAB(q, t) , (16.252)

from which follows with (16.246) and (16.248) that

gE(q, t) ∝ Sin(q, t) =
(

1
NA

+
1
NB

)2

Sαα(q) exp{−q2Dl
int} , (16.253)

with α = A or B. It can be shown that the amplitude A+ in the normal mode
expansion of (16.122) vanishes in case of an incompressible binary blend, so
that the (+)-mode with eigenvalue d+ is not observable. The relaxation coef-
ficient d+ is identified here with the so-called cooperative diffusion coefficient,
which quantifies the long-time relaxation of fluctuations in the total number
density ρA + ρB [28]. In identifying the normal mode d− with Dl

in, we can
state that in an incompressible binary blend, a measurement of gE(q, t) yields
the interdiffusion coefficient, given here as

Dl
in = kBT

µl
αα

Sαα
, (16.254)

since µl
αα = µl

ββ = −µl
αβ according to (16.250) and (16.252).

To make further progress in determining the interdiffusion coefficient of
binary and ternary melts, a method is needed for calculating the µl

αβ and Sαβ

in (16.251). For an approximate calculation of the µl
αβ , we employ a dynamic

extension of the random phase approximation (RPA) of polymer blends. The
dynamic RPA is a self-consistent mean-field-type approach based on lin-
ear response theory, which relates the (Laplace-transformed) linear response
function , −β(d/dt)Sαβ(q, t), of the actual system of interacting chains, to
the response function, −β(d/dt)S0

αβ(q, t), of a bare reference system of non-
interacting chains. For a derivation of the dynamic RPA, we refer to the work
of de Gennes [107], Brochard and de Gennes [108], and for the extension of
the RPA to incompressible polymer mixtures with an arbitrary number of
components to Akcasu and Tombakoglu [109].

In the dynamic RPA, the static and dynamic properties of the bare system
are assumed to be known. The bare system is commonly chosen as one which
is identical to the original mixture in all respects except for the absence
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of interactions between the monomers and the incompressibility constraint,
but with the chain connectivity maintained. As a mean-field-type theory, the
(dynamic) RPA should apply only to dense systems (i.e. melts) of sufficiently
long polymer chains where density fluctuations are small. Furthermore, its
predictions are most reliable for small values of q (as the ones probed in the
diffusive limit) since, as the name RPA implies, it involves an averaging over
the directions (phase) of q.

The mobilities {µl
αβ}, with α, β ∈ {A,B}, of an incompressible ternary

mixture are expressed in the dynamic RPA in terms of the mobilities, µ0
αβ ,

of the bare system as [109]

1
µl

αα

=
1
µ0

αα

+
1
µ0

ββ

+
1

µ0
ββ + µ0

CC

(16.255)

1
µl

αβ

= −
[

1
µ0

αα

+
1
µ0

ββ

+
µ0

CC

µ0
ααµ

0
ββ

]
, α �= β

where µ0
CC is the mobility of a C-matrix monomer in the bare system. The

mobilities µ0
αβ are related to the self-diffusion coefficients in the bare system

by

µ0
αβ = δαβ

NαD0α

kBT
, (16.256)

with D0α = kBT/γα the self-diffusion coefficient of an α-type monomer re-
lated to the monomer friction coefficient γα. This result for µ0

αβ is obtained
from adopting for the bare system the Rouse model for the dynamics of non-
interacting and non-self-avoiding Gaussian chains [13,106] (cf. also Sect. 13.4
of Chap. 13). Here, we use that in a dense system of chains like in a melt,
each chain is to a good approximation Gaussian and ideal, with RG ∝ N1/2.
Within the Rouse model of non-interacting chains,

S0
αβ(q, t) = δαβNα pα exp{−q2Dp

0α t} (16.257)

for qRG � 1 and for times t large compared to the relaxation times of the
internal modes of a Rouse chain. Here, Dp

0α is the center-of-mass self-diffusion
coefficient of a polymer chain, related to the monomer diffusion coefficient by
Dp

0α = D0α/pα, and pα is the degree of polymerization of an α-chain. Note
that S0

αα(q, t)/Nα is the dynamic structure factor of a single Rouse chain. The
monomer friction coefficient, γα, enters the Rouse dynamics as a parameter
that must be specified as an input from elsewhere. Hence, γα and D0α are
usually interpreted as the friction coefficient and self-diffusion coefficient of an
α-monomer in the actual mixture of interacting chains. As such they depend
implicitly on the composition and temperature of the mixture. Moreover, it is
then necessary to distinguish between systems of unentangled chains, where
Dp

α = Dα/pα, and systems of very long chains governed by the reptation
process, where Dp

α = Dα/p
2
α [29, 106].



16 Diffusion in Colloidal and Polymeric Systems 701

For an application of the RPA, consider first an incompressible binary
blend, without any additional matrix molecules or vacancies. Substitution
of (16.255) and (16.256), with µ0

CC set equal to zero, into (16.254) leads for
unentangled chains to

(N xAxB)Λl
in =

[
xB

pAD
p
0A

+
xA

pBD
p
0B

]−1

, (16.258)

which is the slow-mode form for the long-time kinetic coefficient (cf. (16.145)).
Recall here that the definitions of Λl

in and Sin in (16.130) and (16.117), respec-
tively, differ from the ones used in this subsection by a factor of N(xAxB)2.
This factor renders them into intensive, i. e. N -independent, quantities. Ac-
cording to (16.258), the RPA predicts thus that the interdiffusion process in
a binary incompressible blend is dominated, for Dp

0A � Dp
0B, by the slow

component A, which enslaves the dynamics of the fast component B in the
absence of voids.

To obtain Dl
in, we need to divide Λl

in by Sin(q = 0). The latter is ob-
tained, for consistency, from the static limit of the RPA. For an incompress-
ible ternary blend of A and B chains in a matrix of C chains, the static RPA
relates the 2×2 static structure factor matrix, S(q, t), of A and B monomers
in the interacting system to the static structure factor matrix, S0(q, t), of the
bare system via (for details see [28, 106, 109])

S(q)−1 =
(
S0(q)

)−1
+ v(q) . (16.259)

Here, v(q) is a 2× 2 excluded volume matrix of elements vαβ(q), with α, β ∈
{A,B}, which accounts for the interactions between monomers of type α and
β, and for the incompressibility constraint.

The partial static structure factors of the bare system of non-interacting
Gaussian chains are explicitly

S0
αβ(q) = δαβ pα fD([qRGα]2) , (16.260)

where fD(x) is the Debye function [106], with fD(x) ≈ 1−x/3 for x� 1, and
RGα is the radius of gyration of an α-type chain. Using (16.260) specialized to
qRGα � 1, the RPA result in (16.259) simplifies for a binary incompressible
melt to

1
Sαα

=
(

1
Na

+
1
NB

)2 1
Sin

=
1
N

(
1

xApA
+

1
xBpB

− 2NχAB

)
. (16.261)

The Flory-Huggins interaction parameter, χAB, is related to the spatial
Fourier transforms, wαβ(q), of the local interaction potentials, wαβ(r), of
α and β monomers by [28, 106]

χAB = lim
q→0

1
kBTV

[
wAB(q) − 1

2
(wAA(q) + wBB(q))

]
, (16.262)



702 Gerhard Nägele, Jan K.G. Dhont, and Gerhard Meier

so that χ ≡ NχAB can be interpreted as the Flory-Huggins interaction pa-
rameter per segmental volume vs = V/N , for equal segmental volumes of
both polymer components. Typically, χ exhibits an inverse temperature de-
pendence. Finally, (16.258) and (16.261) yield

Dl
in =

(
1

xA pA
+

1
xB pB

− 2χ
)[

1
xA pAD

p
0A

+
1

xB pBD
p
0B

]−1

. (16.263)

Experiments on binary blends (see the discussion given below) have re-
vealed that the slow-mode result does not satisfactorily describe, in general,
the dependence of Λl

in on the molecular weight (say pA) of its constituents.
The observed discrepancy between the slow-mode result for binary incom-
pressible melts and experiment may be due to the presence of vacancies,
which add some amount of compressibility to the mixture. When instead of
a binary melt, a ternary incompressible blend of A and B chains in a matrix
of C-chains is considered, Λl

in can be derived within the dynamic RPA from
substituting (16.255) and (16.256) into (16.251). This leads to the so-called
ANK expression,

(N xAxB)Λl
in =[

xB pAD
p
0A + xA pBD

p
0B − xAxB (pAD

p
0A − pBD

p
0B)2

xA pAD
p
0A + xB pBD

p
0B + xC pCD

p
0C

]
,

(16.264)

for the kinetic coefficient of unentangled chains, originally derived by Akcasu,
Nägele and Klein [28]. Quite remarkably, this expression reduces to the fast-
mode form (cf. (16.141)),

(N xAxB)Λl
in = [xB pAD

p
0A + xA pBD

p
0B] , (16.265)

in the limit of a large self-diffusivity and/or large concentration of matrix
molecules, that is for xC pC Dp

0C 
 xα pα D
p
0α. In this ’solution-like’ limit,

gE(q, t) decays in a superposition of two normal modes where, contrary to
the incompressible case, d− and, likewise, d+ cannot be identified with the
interdiffusion process [28]. The slow-mode result is recaptured from the ANK
formula when the matrix is removed, i.e. for xC pCD

p
0C → 0, resulting again

in an incompressible mixture of A and B chains. If one is allowed to stretch
the validity of the RPA result in (16.264) by allowing the matrix to consist
of vacancies instead of homopolymers, the ANK formula predicts a gradual
transition from the fast-mode form to the slow-mode form of Λl

in, when the
vacancy concentration, or compressibility, of the mixture is reduced.

Having analyzed the implications of the dynamic RPA and the Flory-
Huggins model for the long-time interdiffusion in binary melts, we proceed
to scrutinize the RPA predictions against DLS and time-resolved static light
scattering experiments on binary homopolymer blends. In DLS experiments
on binary blends, an apparent diffusion coefficient,
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�

Fig. 16.29. Arrhenius plot of the apparent D for a binary blend of PDMS (p = 260)
and PEMS (p = 340) chains for three different compositions of φPEMS as indicated,
including the critical one at φPEMS = 0.465. The critical temperature Tc = 57◦C,
is indicated by an arrow. The two non-critical data sets for D terminate at the
binodal phase-coexistence points. Data from [110].

D ≡ − 1
q2

∂

∂t
ln gE(q, t)|t=0 , (16.266)

is determined, in the diffusive limit, from a cumulant analysis. Within the
RPA, D is identified with Dl

in = Λl
in/Sin in case of incompressility, with Λl

in

given by the slow-mode expression in (16.258). Fig. 16.29 shows DLS results
for D in the homogeneous one-phase region, for an almost symmetric mixture
of poly(ethylmethylsiloxane) (PEMS) chains of polymerization index p = 260
and poly(dimethylsiloxane) (PDMS) chains (with p = 340), with both indices
below the entanglement threshold. In this so-called Arrhenius plot, the loga-
rithm ofD is plotted versus the inverse system temperature for three different
volume fractions φPEMS = xPEMS of PEMS, including the critical composi-
tion φPEMS = 0.465. This figure nicely illustrates, for φPEMS = 0.465, the
phenomenon of critical slowing down, when T is lowered in the one-phase
region to approach the temperature, Tc, at the critical point of demixing (cf.
also Chap. 15, Fig. 15.14). Near the critical point, certain composition fluc-
tuations become anomalously large, and diffusion becomes increasingly slow,
with D going to zero for T → Tc. Demixing through spinodal decomposition
sets in when the temperature is lowered below Tc. The critical point is the
location of a second-order phase transition, characterized by universal scaling
laws of its critical exponents (see [110] for details).
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In the one-phase region T > Tc, with T not too close to Tc, the behavior
of Sin and Dl

in can be described by the mean-field RPA, where the very small
values of D = Din near the critical point are ascribed to the divergence of
Sin = Sin(q = 0) at the spinodal line. The (mean-field) spinodal line separates
the phase region of mechanical stability from the unstable one. The values of
the interaction parameter χ at the spinodal follow from (16.261) as

2χs(φ) =
1

φpA
+

1
(1 − φ)pB

, (16.267)

with φ = xA and (1−φ) = xB. This allows us to reformulate the (slow-mode)
RPA result in (16.263) as

Dl
in = φ(1 − φ) · 2 [χs(φ) − χ] ·W 0 , (16.268)

with W 0 defined by

W 0 =
[
(1 − φ)
pAD

p
0A

+
φ

pBD
p
0B

]−1

. (16.269)

We have factorized Dl
in here in a geometric factor, φ(1−φ), a thermodynamic

factor, 2(χs − χ), and in a kinetic factor, W 0. The kinetic factor depends in
the unentangled case on the monomer diffusivities D0α = pαD

p
0α and φ only.

For the following discussion, it is convenient to absorb a factorN [φ(1−φ)]2

into the definitions of Sin and Λl
in, which renders them intensive. Using this

re-definition, Sin is given by

Sin =
1

2(χs − χ)
=

[
1

φpA
+

1
(1 − φ)pB

− 2χ(T )
]−1

, (16.270)

with zero values of Sin at the end-points Φ = 0, 1 of pure components, and a
parabolic shape of Sin in between. For the kinetic factor then follows

W 0 =
Dl

inSin

φ(1 − φ)
= Λl

inφ(1 − φ) . (16.271)

While (16.271) for W 0 has been derived for the incompressible case only, we
will employ it in an operational sense also for the interpretation of scattering
data, with the experimental D of (16.266) substituted in place of Dl

in, and Sin

replaced by the experimental static structure factor S. The latter is obtained
using static light scattering from the excess Rayleigh ratio (cf. [111]).

When the slow-mode result in (16.269) applies, then 1/W 0 = φ(1 −
φ)/(DS) exhibits a linear φ-dependence. Measurements ofD and of S for a bi-
nary mixture of poly(styrene) (PS) and poly(phenylmethylsiloxane) (PPMS)
chains [111] are indeed in favor of the RPA slow-mode result, as one can
realize from Fig. 16.30. The PS in the PPMS/PS acts as the slower and more
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Fig. 16.30. Variation of the inverse of the kinetic factor W 0 = D S/(φ(1 − φ))
versus volume fraction of PS, for blends of PS and PPMS (M = 2600), with PS
molecular weights M of 9000 (circles), 4000 (squares), and 2000 (triangles). Filled
symbols refer to T = 280 K and open symbols to T = 330 K. There is a linear
φ-dependence as predicted by the RPA slow-mode form. Data taken from [111].

’solid-like’ component, which reflects its stronger proximity to the glass tran-
sition point of pure PS. The blend demixes for larger values of φPS. Therefore,
values for W 0 are shown in Fig. 16.30 for the one-phase region only.

According to its definition in (16.271), and according to the fast-mode,
slow-mode and ANK results for the Λl

in of unentangled chains, which depend
all on the segmental diffusion coefficients D0α only, W 0 should be a local dy-
namic quantity, independent of the polymerization degree or, likewise, mole-
cular weight of the polymers. The predicted molecular-weight-independence
of W 0 = DS/(φ(1 − φ)) has been confirmed [112] from static and dynamic
light scattering experiments on blends of poly(ethylmethylsiloxane) (PEMS)
and poly(dimethylsiloxane) (PDMS) polymers, where the molecular weight
of PEMS has been varied (cf. Fig. 16.31).

�

Fig. 16.31. Measured kinetic factor Λ = DS(q → 0) for a blend of PDMS (p = 100)
and PEMS polymers at PEMS volume fraction φPEMS = 0.67 and T = 20◦C versus
molecular weight, MW , of PEMS. The MW -independence of Λ for Rouse chains is
clearly seen. Data from [112].
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While the diffusion in certain binary blends, like PS/PPMS, is well de-
scribed by the RPA slow-mode result of incompressible systems, there is a
larger class of blends which conform to the fast-mode form of interdiffusion.
One well-characterized example is a nearly symmetric polysiloxane mixture of
low-molecular weight PDMS (p=80) and PEMS (p=90) polymers. Due to a
very distant glass-transition point, this system appears more as a ’liquid-like’
and compressible system. Experimentally determined values for D and S in
this blend as function of φPEMS are listed in Fig. 16.32a, together with val-
ues for the kinetic factor determined from the operational equation (16.271).
The linear volume fraction dependence of W 0 is in accord with the fast-mode
result in (16.265). We note further that the measured S is well described by
(16.270).

There is an interesting relationship between the fast-mode behavior of
W 0 in PDMS/PEMS blends and their shear-mechanical properties. From
mechanical measurements of the low-shear-rate limiting viscosity, ηAB, in the
blend, one can calculate a mean friction coefficient, γAB, assuming Rouse
dynamics in a mixture [13],

γAB =
36ηABM

2
0

ρa2NAM
, (16.272)

where M0 = φAMA + φBMB and ρ = φAρA + φBρB, respectively, are the
mean monomeric molecular weight and the mean mass density of the blend;
NA is the Avogadro number, and M the mean polymeric molecular weight
in the blend. Since mass transport by interdiffusion is related to the viscosity
in the medium, it appears likely that a generalized Stokes-Einstein relation
W 0 ∝ kBT/γAB holds, provided that vitrification effects due to the proximity
to a glass point do not play a role. A plot of 1/γAB versus φ should then
result in a linear composition dependence. Fig. (16.32b) proves that this is
the case indeed. From the fast-mode-like form of 1/γAB one concludes that
the inverse of the mean friction coefficient can be expressed solely in terms
of the A and B monomer friction coefficients, γα in the blend, according to
γ−1
AB = φAγ

−1
A + φBγ

−1
B .

The approximate fast-mode and slow-mode expressions for Λl
in do ap-

ply only to selected polymer mixtures, with varying degree of accuracy
in each case. The fast-mode or vacancy model appears to be more con-
sistent with lower molecular weight blends, whereas the slow-mode or in-
compressible model is more consistent in the high molecular weight regime.
For an example of this trend, consider Figs. 16.33 and 16.34 which dis-
play time-resolved static light scattering data of Feng et. al [114] for the
kinetic interdiffusion factor (called mobility M in the notation of [114]) of a
poly(styrene)/poly(vinylmethylether) blend (PS/PVME) for varying molec-
ular weight NPS of PS. In the experiments by Feng et al., the interdiffusion
coefficient has been determined from temperature quench experiments within
the miscible one-phase region. The measured decay of density (composition)
fluctuations right after the quench has been interpreted in these experiments
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Fig. 16.32. (a) Apparent diffusion coefficient D, measured static structure factor
S(q → 0), and kinetic factor W 0 for a nearly symmetric blend of PDMS (p=80)
and PEMS (p=90) versus composition φPEMS at T = 20◦C. The straight solid line
is the fast-mode prediction for W 0. Data from [113].
(b) Inverse of the friction coefficient, γAB, for the same PDMS/PEMS mixtures as in
(a), deduced from rheological measurements of the blend viscosity, ηAB, as explained
in the text. The linear composition dependence of 1/γAB verifies a generalized
Stokes-Einstein relation W 0 ∝ kBT/γAB for interdiffusion. Open circles at φPEMS =
0, 1 refer to the pure components. Data from [112].

in terms of the celebrated Cahn-Hilliard-Cook (CHC) expression for the time-
resolved average scattered intensity of binary blends (cf. [29,114]). We remark
that the CHC expression is commonly used also to interpret the early stages
of spinodal composition of binary mixtures right after a sudden quench into
the mechanically unstable two-phase region.

The chains in the PS/PVME blend are in a bulk-entangled state, so that
the self-diffusion coefficient of a chain scales, different from Rouse chains, with
the inverse square of the molecular weight. In the entanglement case, W 0 is
not any more a local property independent of molecular weights. Substitution
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T

Fig. 16.33. Inverse mobility data, M−1 ∝ 1/Λl
in, versus molecular weight, NPS , of

PS in PS/PVME blends. The dashed line (solid line) is a fit of the fast-mode (slow-
mode) model to the experimental data. Both models show systematic deviations
from the data. After [114].

of Dp
0α = D0α/p

2
α into (16.258), (16.265) and (16.264) leads for the inverse

mobility 1/M ∝ 1/(xAxBΛ
l
in), according to the slow-mode expression, to

linear dependence on the degree of polymerization pα. On the other hand,
the fast-mode model predicts a concave curve for 1/M plotted versus pα,
with an infinite slope at pα = 0 and a horizontal asymptote for large pα [29].
Fig. 16.33 includes experimental data of 1/M for four different molecular
weights, NPS, of PS. Neither the fast-mode nor the slow-mode expression
can adequately fit the data. The fast-mode model applies only to the low-
molecular-weight side, and the slow-mode model only for large values of NPS

(cf. Fig. 16.33).
Inverse mobility data of PS/PVME versus NPS for two different tem-

peratures are depicted in Fig. 16.34, in comparison with the predictions of
the ANK formula. As one can see, the molecular weight dependence of the
kinetic factor in PS/PVME is well described by the ANK model, with the
(third) matrix component interpreted as ’vacancies’. The solid curves in Fig.
16.34 were plotted using the matrix parameter xCDC0/pC occurring in the
entanglement version of the ANK formula as a fitting parameter. However,
this matrix parameter can be related to the cooperative diffusion coefficient
in a binary mixture, which is a measurable quantity [29]. This deliberates us
from needing to assign a meaning to the diffusion coefficient of a vacancy.
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T

T

Fig. 16.34. Inverse mobility data, M−1, versus NPS, in PS/PVME blends at two
different temperatures as indicated. The solid lines are fits of the ANK formula
(16.264) to the data, demonstrating the applicability of the ANK-theory over the
whole range of PS molecular weights. After [114].

16.6 Conclusion

The aim of this chapter was to analyze the physics of various diffusion
processes observed in colloidal fluids of spherical and rod-shaped particles,
and in binary polymer melts, to describe dynamic light scattering techniques
and other optical methods (FRAP and FCS) used for probing diffusion, and
to explain theoretical methods and computer simulation techniques which al-
low one to calculate diffusional transport properties and scattering functions.

Dynamic light scattering as described in Sect. 16.2 is nowadays a standard
technique to measure diffusion properties of colloids and polymers. The new
developments in this area are in the direction of scattering geometries, where
the dynamics under the influence of external fields (like pressure, shear flow,
electric field and temperature gradients), near walls and within interfaces
can be probed. In addition, somewhat slower dynamical processes are being
studied nowadays by means of optical microscopy, such as confocal laser
scanning microscopy (CSLM). Scattering from single colloidal particles can
be used to probe local properties in the possibly inhomogeneous system under
consideration.

Besides translational dynamics, FRAP can also be used to measure the ro-
tational dynamics, where the polarization dependence of excitation and emis-
sion probabilities are exploited. Time-resolved phosphorescence anisotropy
(TPA) has recently been used to measure rotational diffusion of colloids as
well [115, 116]. FRAP has been applied some time ago to probe long-time
diffusion under oscillatory shear flow. A similar method is forced rayleigh
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scattering (FRS), where a refractive index grating is created by means of an
interference pattern, from which grating scattered intensities are measured
(see Sect. 15.5.2 in Chap. 15). FRAP and FRS are specialized to measure long-
time translational (and rotational) self-diffusion coefficients of various kinds
of macromolecules (also non-spherical molecules). As far as we are aware,
FCS has not yet been applied to synthetic macromolecular systems. For very
large macromolecules (larger than the dimensions of the confocal volume),
FCS probes a combination of translational and rotational motion.

The concentration dependence of translational/rotational diffusion coeffi-
cients characterizing the various diffusion mechanisms, of sedimentation co-
efficients, and the time dependence of mean square displacements, Van Hove
functions and dynamic structure factors have been analyzed for colloidal sus-
pensions in Sect. 16.5. The performances of the theoretical methods which
have been described in this section (i.e., short-time cluster expansion, MCT,
and BD and SD simulations) have been scrutinized through a detailed com-
parison with experimental results for diffusional properties obtained from
DLS, DDLS, FRAP and FCS measurements. Our focus was geared towards
qualitative differences in the dynamics of suspensions with short-range par-
ticle interactions (i.e., hard spheres), and of systems with long-range repul-
sion of particles like charge-stabilized dispersions and magnetic particles with
dipolar repulsion. In particular, it was shown that charge-stabilized suspen-
sions at low salinity are characterized by peculiar non-linear density depen-
dencies of their (short-time) transport properties. For long times, dynamic
scaling is observed, with interesting implications on the equivalence of certain
static and dynamic freezing criteria.

For systems of monodisperse colloidal spheres in the fluid phase, mean-
while a quantitative level of understanding has been reached, at least with
regard to translational diffusion. As yet, a first-principle inclusion of many-
body HI into the theoretical description of concentrated suspensions remains
as a major theoretical challenge. For mixtures of colloidal spheres, a semi-
quantitative level of accuracy has been reached in existing theoretical meth-
ods. Far less is known, however, about diffusion in systems of non-spherical
particles like, to mention the most simple case, colloidal hard rods. In these
systems, translational particle motion is coupled to the rotational one even at
short times. Recent theoretical efforts are devoted to understand diffusion in
confined geometries like in colloidal matrices and gels, to electrokinetic effects
on charged colloidal macro-ions arising from the dynamics of the neutralizing
micro-ion clouds, and to anisotropic diffusion in suspensions under shear.

Our conclusions regarding the dynamics in binary polymer blends in the
homogeneous one-phase region are as follows: The derivation of the kinetic
interdiffusion coefficient on the basis of the two-component dynamic RPA
assumes an incompressible system. This is probably a rather crude assump-
tion since, if it were true, theory would predict a single relaxation process
in the time evolution of density autocorrelation function. However, a single
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mode is usually not observed in DLS experiments on binary blends, although
in some cases the slow-mode result is nevertheless found to be valid. On the
other hand, if the fast-mode model of interdiffusion for a compressible system
would apply, two modes should be experimentally observable [28]. Yet in the
siloxane model system where the fast-mode form holds true, a second mode
has never been observed. The ANK formula constitutes certainly a significant
progress in our understanding of polymeric interdiffusion, but the conflict-
ing results between experiment and theory regarding the observed scattering
modes remain to be understood and resolved in future work.

Notation

a sphere radius (polymer segment length)
Ds

c short-time collective diffusion coefficient
Dl

c long-time collective diffusion coefficient
Ds

s translational short-time self-diffusion coefficient
Dl

s translational long-time self-diffusion coefficient
Dr

s rotational short-time self-diffusion coefficient
Din interdiffusion coefficient
Dl

c(qm) collective long-time diffusion coefficient at qm
D

l

c(qm) mean collective diffusion coefficient at qm
Dp

0α center-of-mass diffusion coefficient of an α-type polymer
D0 translational free diffusion coefficient
Dr

0 rotational free diffusion coefficient
Gs(t) self-dynamic Van Hove function
Gd(r, t) distinct Van Hove function
gE(t) electric field autocorrelation function
H(q) hydrodynamic function
jin(t) interdiffusion current
M mass of a Brownian sphere
M irr

c (q, t) irreducible collective memory function
M irr

s (q, t) irreducible self memory function
Nα number of α-type spheres (monomers)
pα polymerization index of α-type homopolymers
Sc(q, t) collective dynamic structure factor
Sc(q) static structure factor
Sin(q, t) interdiffusion autocorrelation function
Sr(t) rotational autocorrelation function
Ss(q, t) self-dynamic structure factor
U sedimentation velocity
W (t) mean square displacement
W 0 kinetic factor of interdiffusion divided by geometric factor
γ friction coefficient
Λin kinetic factor of interdiffusion
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ρ number density
Φ volume fraction
φv(t) velocity autocorrelation fuction
φA volume fraction of A monomers
φω(t) angular velocity autocorrelation function
χ Flory-Huggins parameter
χs Flory-Huggins parameter at the spinodal
BD Brownian dynamics (simulation)
DDLS depolarized dynamic light scattering
DLS dynamic light scattering
EACF electric field autocorrelation function
FCS fluorescence correlation spectroscopy
FRAP fluorescence recovery after photobleaching
GSE generalized Smoluchowski equation
HI hydrodynamic interactions
IACF intensity autocorrelation function
MCT mode coupling theory
MSD mean square displacement
RPA random phase approximation
SD Stokesian dynamics (simulation)
VAF velocity autocorrelation function
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32. H. Zhang, G. Nägele: J. Phys.: Condens. Matter 15, S407 (2003)
33. F. Lanni, B.R. Ware: Rev. Sci. Instrum. 53, 905 (1982)
34. J. Davoust, P.F. Devaux, L. Leger: EMBO Journal 1, 1233 (1982)
35. A. Imhof: Dynamics of Concentrated Dispersions. PhD thesis, Utrecht Uni-

versity, The Netherlands (1996)
36. M. van Bruggen: Liquid Crystal Formation and Diffusion in Dispersions of

Colloidal Rods. PhD thesis, Utrecht University, The Netherlands (1998)
37. M.P.B. van Bruggen, H.N.W. Lekkerkerker, J.K.G. Dhont: Phys. Rev. E 56

4394 (1997)
38. M.P.B. van Bruggen, H.N.W. Lekkerkerker, G. Maret, J.K.G. Dhont: Phys.

Rev. E 58 7668 (1998)
39. G. Maret, J. Peetermans: private communication on similar, unpublished ex-

periments on fd-virus.
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96. W. Götze, L. Sjögren: Rep. Prog. Phys. 55, 241 (1992)
97. M. Fuchs: Transp. Theory Stat. Phys. 24, 855 (1995)
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17 Field-Assisted Diffusion Studied by

Electrophoretic NMR

Manfred Holz

17.1 Introduction

Nuclear magnetic resonance (NMR), a low-energy radiofrequency (rf) spec-
troscopic technique, provides a huge number of different experimental meth-
ods allowing energy, time and spatially resolved measurements [1,2] (see also
Chaps. 9 and 10). In the present chapter an introduction into an NMR method
shall be given, which allows the study of transport properties of distinct elec-
trically charged species in condensed matter, mainly in the liquid state. Typ-
ically, those charged species can be certain simple, monoatomic ions like Li+,
Cs+, or polyatomic ions as, e.g., alkylammonium ions, or charged macro-
molecules, like polyelectrolytes as well as charged molecular aggregates, like
micelles.

The most interesting transport quantity of charged particles is their mo-
bility u±, measured in m2s−1V−1, that is their drift velocity in an electric
field of unit field strength. But how is this transport quantity related to diffu-
sion, the main subject of this book? In a liquid, the ions share in the general
Brownian motion and have randomly-directed instantaneous velocities of the
order of 102 ms−1, of course with an extremely short mean free path. In an
electric field of say 103 Vm−1, the velocity of ions in the field direction is
of the order of 10−4 to 10−6 ms−1 resulting in a very small perturbation
of the random ionic motions and this represents only a small biasing of the
Brownian motion in a given direction. We can speak of a “directed diffusion
process” (similar as in the case of mutual or transport diffusion in a concen-
tration gradient) or of “field-assisted diffusion”. So, it is understandable that
the ionic self-diffusion coefficient D± and the mobility u± must be somehow
related and this relation can be expressed at least for the limiting quantities
at zero ion concentration D∗

± and u∗± by the well-known “Einstein relation”

D∗
± = RT

u∗±
zF

≡ kBT
u∗±
ze

, (17.1)

where z is the ion valency, F is the Faraday constant, R is the gas constant
and T is the temperature and where the equivalence of the second and third
terms results from the fact that R ≡ kBNA and F ≡ eNA, with the Avogadro
constant NA and the elementary charge e. However, it should be pointed out
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that self-diffusion belongs to the class of incoherent motions, whereas the
uniform migration of ions in the field direction is a coherent motion, a fact,
which will later be reflected in the NMR experiment. The distinction between
coherent and incoherent motion is a topic, which is extensively discussed also
in Chaps. 3, 13, and 14.

The most famous classical methods for the measurement of mobilities
u± and transference numbers T± of ions are the “moving boundary” and the
“Hittorf” method (see, e. g., [3]). However, these methods fail or are connected
with great difficulties in the case of porous media and in the case of mixtures
of electrolytes, where the mobility of a distinct kind of ions is the quantity
of interest. The simplest electrolyte solution contains three constituents, the
anions, the cations and the solvent. Thus, mixed electrolyte solutions consist
of a markedly higher number of components and are typical multi-component
mixtures. Consequently, a highly selective method of observation is required
for obtaining information about a distinct kind of species in the solution.

Such a selective method is NMR, since one can observe selected nuclides
as, e.g., 1H, 7Li, 13C, 19F, 29Si, 133Cs etc. or even the resonance lines of the
same nucleus, but with different chemical shifts according to different chemi-
cal species or groups [1,2]. This frequency (energy) resolved, selective observa-
tion technique can be combined with spatially resolving pulsed field gradient
(PFG) NMR spin-echo experiments [4, 5], allowing diffusion studies (as out-
lined in Chap. 10) and flow studies [6, 7]. There are further advantages of
NMR, namely (i) the measurement is non-invasive and thus non-destructive,
(ii) low-energy electromagnetic fields are applied, which do not disturb the
thermal equilibrium of the system and (iii) the systems under investigation
can be solid or liquid and there is no need for optical permeability.

Taking all these advantages into consideration it was tempting to use
PFG NMR flow measurement techniques to observe the slow drift velocity
of distinct charged species in an external electric field E. In 1982, in the
present author’s group, the first successful experiment of this kind could be
performed, namely the measurement of the drift velocity of (C2H5)4N+ ions
in water [8]. This new type of experiment thus represented a combination
of in-situ electrophoresis with the selectivity of NMR spectroscopy. From
1982 until today a steady methodical and instrumental development in this
field of NMR occurred [9]. Johnson and co-workers introduced the name
“electrophoretic NMR” (ENMR) [10], where the term “electrophoretic” is
used in a general sense for the migration of all kinds of charged particles
in an electric field. In general, for all types of NMR experiments, which are
performed in presence of an electric direct current (DC) in the sample under
investigation, the abbreviation DCNMR [9] is used.

Now, DCNMR experiments are performed in a number of laboratories,
but we cannot yet speak of an NMR routine experiment, due to the fact that
the field is still under development and that the required accessory units for
these experiments are not yet commercially available. On the other hand,
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the potential of ENMR has been clearly demonstrated [9,11] and these novel
NMR techniques can find many fields of interesting applications, in particular
in electrochemistry, biochemistry and in technical sciences.

In the following sections we will briefly discuss the basics of ENMR, the
general problems and technical requirements of DCNMR and finally examples
as well as applications of actual ENMR experiments will be presented.

17.2 Principles of Electrophoretic NMR

17.2.1 Electrophoresis

The characteristic mobilities of charged solutes in a given solvent can be
used to separate the ions on the basis of their different drift velocities in
an electric field E. Shortly after the application of the electric field the ions
reach a constant drift velocity

v± = u± · E. (17.2)

In an electric field E of 103–104 Vm−1, these drift velocities are typically in
the range of 10−6 to 10−4 ms−1 (As we will see, the observation times in
ENMR are typically ≤ 1 s and thus the observed spatial displacement of the
particles of interest is small compared with the length of the NMR receiver
coil, which is typically 1 to 3 cm, and the migrating particles cannot leave
the observation volume during the experiment.).

In the case of strong electrolytes, from the single-ion velocity v± we can
derive another important quantity, namely the transference number T±, via
the relation

T± =
cv±A · F

I
, (17.3)

where c is the ion concentration in moles per liter and A and I denote,
respectively, the cross section of the sample cell and the electric current. The
knowledge of the mobility of charged species in a given environment is of
high interest since u± depends upon the properties of the species and of the
particular environment and can thus yield information on both of them. The
theoretical treatment of u± is difficult [12] and one can only derive expressions
for u± on the basis of approximations. There are two important cases for
which we will give the corresponding relations. For ions with a small radius
r and at low ionic strength Ii, we obtain from (17.1) and from the Stokes-
Einstein equation D = RT/6πη r (see also Sect. 6.3 of Chap. 6), where η is
the viscosity, the “small particle limit”

u± =
z · e
6πηr

, (17.4)

where z · e is the electric charge of the ion.
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Thus (17.2) is applicable in cases where the Stokes-Einstein equation is
valid and where the ionic radius r is also small compared to κ−1, the Debye
length, that means κ · r � 1. The latter is given by

κ =
[

2ρF 2

ε0εrRT

] 1
2

I
1
2
i , (17.5)

where ρ is the density and ε0, εr are the dielectric constant of the vacuum
and the relative dielectric constant of the electrolyte solution, respectively.

If κr 
 1, that means large charged particles and a small Debye length,
one obtains in this “large-particle limit”:

u± =
ze

4πr2
· 1
η · κ =

σ

ηκ
. (17.6)

σ = ze/4πr2 is the surface charge density. In the large-particle limit, the
mobility u± can also be related to the electrokinetic potential ζ at the surface,
the so-called zeta potential, by [13]:

u± =
εrε0ζ

η
. (17.7)

Thus, in this limit the measurement of u± gives valuable information about
σ and ζ of large molecules or molecular aggregates.

17.2.2 Pulsed Field Gradient NMR for the Study of Drift
Velocities

The basis of NMR diffusion and flow studies is spatially resolved NMR (see
also Chap. 10). Since in a homogeneous magnetic field the space points are
equivalent, the superimposition of known magnetic field gradients g produces
an inequivalence and allows the gain of information from the now spatial
dependence of the NMR frequency. If we apply, e.g., a gradient g = ∂Bz/∂z
in z-direction, the NMR signal frequency ω is a function of z:

ω(z) = γB(z) (17.8)

with γ = magnetogyric ratio of the nucleus, B = magnetic field strength.
This spatially resolving NMR is also the basis of all NMR imaging tech-

niques, like NMR tomography and microscopy [6]. If a particle, which carries a
nucleus under observation, performs a translational motion and consequently
changes its position during the observation time, its NMR frequency changes.
This frequency change is observed in a “spin-echo experiment” (Fig. 17.1) al-
lowing very elegant NMR diffusion and flow studies, which were developed by
Stejskal [14]. Since translational diffusion and flow are different kinds of mo-
tion they have different influence on the NMR spin-echo signal. In Fig. 17.2
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Fig. 17.1. Basic pulsed field gradient (PFG) spin-echo experiment in elec-
trophoretic NMR. The diagram of the pulse program shows the radiofrequency
pulses (π/2- and π-pulse) for the generation of the spin-echo signal at 2τ (a). Pulsed
field gradients with a strength g, a duration δ and a distance ∆ are applied for flow
(and diffusion) measurements (b). In an ENMR experiment the electric field E is
switched on in the sample cell during the spin-echo sequence (c). The acquisition
of the second half of the spin-echo signal starts at 2τ .

we show the effects of diffusion and flow in a magnetic field gradient g. We
see that in the case of diffusion the spins, which were at t = 0 in the plane
0, show at times t > 0 a frequency distribution, whereas in the case of flow
(Fig. 17.2(b)) the frequency of all those species is regularly increasing with
t. Diffusion as an incoherent motion produces a damping of the spin-echo
signal due to random dephasing of the spin precession about the magnetic
field, whereas flow as a coherent motion produces a shift of the spin-echo
signal phase.

Since the NMR diffusion experiment is outlined in Chap. 10, we will here
deal only with the basics of NMR flow experiments. We consider a flow or
drift of particles in z-direction along a stationary gradient g = ∂Bz/∂z. The
particles shall have a uniform velocity v and then they have at time t the
position z(t) = v · t. The nucleus residing in a particle experiences a time-
dependent magnetic field

B(z(t)) = B0 + z(t) · g, (17.9)

where B0 represents the constant magnetic main field. The resonance fre-
quency ω(t) of such a nucleus is then

ω(t) = γB0 + γgvt. (17.10)

This means that at a time t a frequency difference with respect to the refer-
ence frequency ω0 = γB0 occurs. From (17.10) it follows
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Fig. 17.2. The effect of diffusion (a), and flow (b) in the presence of a magnetic
field gradient g in z-direction. The magnetic field B(z) increases from left to right.
The nuclear spins in planes 0, 1 and 2 have different NMR resonance frequencies ω0,
ω(1) and ω(2), respectively. In the lower diagrams the frequency distribution P (ω)
is given for the nuclear spins, which were at time t = 0 in the plane 0. In the case
of diffusion (a) the random walk of the spin-carrying particles results in a Gaussian
frequency distribution at times t > 0, which is the origin of the echo damping. In
the case of plug flow (b) the frequency distribution is a δ-function, which is shifted
to higher frequencies ω with increasing t, resulting in a phase shift of the spin-echo
signal.

∆ω(t) = γgvt. (17.11)

Since ∆ω = ∆φ/t is valid, also a phase angle difference increasing with t,
with respect to the reference phase, appears. At time t = τ , where the radio
frequency π-pulse in the spin-echo pulse sequence is applied (see Fig. 17.1),
we have a phase difference

∆φ(τ) =

τ∫
0

γgvt dt =
1
2
γgvτ2. (17.12)

The π-pulse has the effect (see also Fig. 13.2 of Chap. 13) that it inverts
all nuclear spin precession phases and thus it makes ∆φ(τ) to −∆φ(τ). At
the time 2τ , where the spin echo maximum appears and where the signal is
measured, we finally have a phase difference



17 Field-Assisted Diffusion Studied by Electrophoretic NMR 723

∆φ(2τ) = −∆φ(τ) +

2τ∫
τ

γgvt dt = γgvτ2. (17.13)

In an experiment with two pulsed field gradients of length δ and distance ∆
(see Fig. 17.1) (pulsed gradients have some important advantages over the
application of stationary gradients [4, 5, 7]), the phase shift at 2τ is simply

∆φ(2τ) = γgvδ∆. (17.14)

The measurement of∆φ with known g, δ and∆ then allows the determination
of the velocity v.

In phase sensitive signal detection, the phase shift ∆φ due to the flow
leads to a cosine modulation of the signal Sv(2τ) (the subscript v stands for
presence of flow) as a function of g, v, δ or ∆. The total spin-echo signal
intensity in presence of diffusion, flow and T2 relaxation is then [9]:

Sv = S0 cos(γgvδ∆) · exp
[
−2τ
T2

− γ2Dg2δ2
(
∆− 1

3
δ

)]
. (17.15)

Here we see the three influences on the spin-echo signal, namely the flow
(cosine term), T2 relaxation (first term in the exponent) and diffusion (second
term in the exponent). If we measure Sv(2τ) and then switch off the flow (in
electrophoretic NMR one can switch off the electric current) and measure
Sv=0(2τ), the simple intensity ratio

Sv(2τ)
Sv=0(2τ)

= cos(γgvδ∆) (17.16)

yields the influence of flow alone and represents the first simple method for
the actual measurement of v.

How is ∆φ, the quantity of interest, obtained in practice? In modern NMR
spectrometers the resonance signals are first excited and recorded in the time
domain and then transformed mathematically into the frequency domain by
a Fourier transformation (FT) yielding the NMR spectrum. In principle ∆φ
can be measured in the time domain [8, 15] or after FT in the frequency
domain. The latter is today the method of choice. For the introduction and
propagation of this principle, Richard Ernst has been awarded by the 1991
Nobel prize in chemistry [16]. In particular in ENMR there are different
possibilities for the practical procedure. ∆φ or cos(∆φ) is measured as a
function of one of the variables g, δ, ∆ or v, where v can be varied with the
applied electric field E and thus by a variation of the electric current I in
the sample cell. As shown in Fig. 17.3 it is possible to observe and evaluate
the cos(γgvδ∆) modulation of the NMR line intensity as a function of E
(or I). By determination of the electric field E1, which is required for just
one modulation period, one can directly obtain the mobility by means of
u± = 2π/γgδ∆E1.
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Fig. 17.3. 1H ENMR spectra of an “oil-in water” microemulsion as a function of the
electric current I [10], showing the cos(∆φ) modulation of the lines of electrically
charged species, whereas the line of the solvent water (HOD) is unaffected. (S =
ionic surfactant, TIPB = triisopropylbenzene).

Fig. 17.4. 7Li+ spin-echo phase shifts ∆φ as a function of the PFG duration δ.
The different slopes correspond to different Li+ mobilities in various aqueous LiCl
solutions [15].

With modern NMR instruments a signal phase shift of a line in the spec-
trum can be directly observed and printed out. Thus one can, e.g., vary δ,
resulting in the linear dependence ∆φ(δ) = Kδ with K = γgv∆. From the
slope of this straight line the velocity v is derived (see Fig. 17.4). Since the
really acting magnetic field gradient g is the variable, which is less accurately
known compared with the quartz controlled times δ and ∆, often, similar
as in NMR self-diffusion studies [5], measurements are performed relative to
a reference system, here with known v. This procedure then allows velocity
measurements by a simple comparison of slopes, without the need of knowing
the actual g values.
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17.3 NMR in Presence of an Electric Direct Current.
Technical Requirements, Problems and Solutions

The DCNMR experiments are performed in common NMR spectrometers,
normally equipped with a superconducting magnet. For the PFG experiments
a probe head with gradient coils (actively shielded coils are recommended)
is required together with the corresponding gateable high-current power sup-
ply. Such units are commercially available. Special accessories for DCNMR
are the probe cells with two electrodes, where the electric field E can be
applied (see Fig. 17.5) and a gateable constant DC power supply (typically
0 –250 mA, 0 –1 000 V) for the electrophoretic cell. The electric field is applied
as a pulsed field (see Fig. 17.1) where the gate pulses are usually derived from
the computer system of the spectrometer and are thus synchronized with the
rf excitation pulses and the magnetic field gradient pulses. The electrodes
used are Pt or Ag/AgX (X=Cl,Br,J) electrodes. More technical details can
be found elsewhere [8–11].

The electric current flowing during the NMR experiment in the sample
cell is the origin of a number of experimental problems, which shall be briefly
discussed together with the solutions found so far:

Magnetic Fields Induced by the Electric Current

The electric current produces a magnetic field in the plane perpendicular to
its direction of flow. This field can interfere with the Zeeman field B0 and
results in undesired B0 field inhomogeneities and instabilities. However, there
is a relatively easy way to overcome this problem by choosing as the current
direction that of the magnetic field B0 (z-direction) (see Fig. 17.5). The ad-
ditional magnetic fields then lie in the x, y-plane and have no components
in the z-direction, which is the relevant direction in the NMR experiment
and thus no signal disturbances are produced. This z-direction for the elec-
tric current is the “natural” direction in superconducting magnets since it is
also the axis of the magnet bore, and cylindrical sample cells are commonly
mounted parallel to this axis.

Fig. 17.5. Three basic DCNMR cell
geometries (a), (b), (c), with the cor-
responding electrode arrangements.
The radio frequency (rf) transmit-
ter/receiver coil is a saddle coil. The
direction of the Zeeman field B0 and
of the imposed field gradient g =
∂Bz/∂z is also shown.
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Resistive Heating by the Current in the Sample Cell

More serious problems in ENMR can arise from resistive heating. The un-
desired heat production by the current in the electrolyte solution can result
in a temperature increase, unstable temperature conditions and finally in a
macroscopic convection in a liquid sample. Any macroscopic motion in a liq-
uid system like convection, vibrations or shock waves can be the source of
dramatic measuring errors in NMR mobility or diffusion measurements since
we have to measure small displacements in the micrometer or sub-micrometer
region.

The first step to solve the problem of resistive heating is the application of
pulsed electric fields, so that a current flows only during the relatively short
time of the spin-echo sequence, and the use of effective cooling systems. As
a second step there is the possibility of using stabilizers against convection
as agar-agar [17] or some other gelling agents. In particular agar-agar proved
to be a suitable stabilizer for aqueous solutions without affecting markedly
the diffusion and mobility of ions and the diffusivity of the solvent water.
However, the experience shows that with low electric currents of � 10 mA
also measurement in the free solution is possible. A third possibility to over-
come heat-induced convection is the application of special pulse sequences,
including rf, magnetic gradient and electric field pulses, which remove spec-
tral artifacts arising from convection. This novel method is called “Convection
compensated ENMR” [18].

Electro-Osmotic Flow

When ions migrate in the electric field there are always collisions with the
neutral solvent molecules which are connected with a transfer of momen-
tum in the direction of the ion flow. However, this effect is cancelled by the
counter-ions, which move in the opposite direction, but the cancellation acts
only under the condition that there is a homogeneous charge distribution,
which means local charge neutrality [19]. On the other hand, an inhomoge-
neous contribution of mobile charges occurs on charged surfaces, since only
the screening counter-ions are mobile. This fact results in a solvent flow at
the surface in the direction of the electrophoretic migration, and in a vertical
sample tube a counterflow appears in the centre. In this way electro-osmosis
produces macroscopic flow in the sample, which disturbs the ENMR experi-
ment, resulting in an undesired damping of the NMR signal intensity [10,20].
The solution of this problem is not so easy, however also here a gelling agent
proved to be successful. Johnson and coworkers [10] proposed a coating of
the surface by methylcellulose to reduce electro-osmosis.

Mechanical Disturbances

Due to the fact that in DCNMR experiments electric direct currents are
switched in a strong external magnetic field B0, strong forces are acting on
all electrical connections (gradient coils, wires, electrodes etc.) in which the
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current does not flow parallel to B0. In this case during switching shock
waves may be generated, which can lead to displacements in the electrolyte
solution. This problem must be solved by a very careful rigid fixing of all
electrical connections and electrodes within the probe head.

17.4 ENMR Sample Cells

We will give two examples of electrolytic cells in use in our laboratory.
They are both cylindrical cells oriented in z-direction (B0 direction). The
first one [9, 21] is simply cylindric with an upper and a lower electrode (see
Fig. 17.6 (a). The advantage of this cell is a good filling factor, giving a good
signal-to-noise ratio, which is important for nuclei other than 1H, the so-
called heteronuclei. The disadvantage comes from a possible gassing of the
lower electrode, which is not vented to the atmosphere. The second one (see
Fig. 17.6 (b) is a concentric cylindric chamber, where in the inner cylinder
the sample of interest is located. The outer cylinder is filled with an elec-
trolyte solution as a conductor. In order to be able to use as conductor in

Fig. 17.6. Two examples of ENMR cells. (a) probe head insert consisting of a plexi
glass body on which the gradient coils are mounted. The electrophoresis cell in the
centre is surrounded by a temperature bath liquid [21]. (b) Concentric cylindrical
ENMR cell, where the two electrodes are located in the upper part of the cell.
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the outer cell always the same kind of electrolyte solution as it is observed in
the inner cylinder, in the author’s laboratory a very successful procedure has
been developed, which eliminates the undesired NMR signal contributions
from the ions in the outer cylinder. For this purpose in the outer cylinder
suited small beads are added, which due to magnetic susceptibility and/or
surface relaxation effects extremely broaden NMR signals coming from the
outer cylinder. Thus the undesired signals are suppressed by a “T2-filter”. The
advantage of this cell is that both electrodes are vented to the atmosphere,
the disadvantage is the lower filling factor.

17.5 ENMR Experiments (1D, 2D and 3D) and
Application Examples

First we ask the question: which nuclei can be used in ENMR? Whereas
in ordinary NMR more than 100 nuclides are accessible to the experiment,
the number of nuclides, which are suited for ENMR and NMR diffusion ex-
periments, is in the range of 10 to 30. The reason for that lies in the PFG
spin-echo experiment, which is applied and where the particles move during
a defined time (∆) and after that time the displacement is measured via
the spin-echo signal at 2τ . Thus, in particular for slowly moving particles,
∆ cannot be chosen too short, since a measurable displacement 〈∆z〉 has
to be achieved. On the other hand, as can be seen from (17.15), the spin-
echo signal decreases with the nuclear magnetic relaxation (time constant
T2) and therefore the maximum “observation time” ∆ is limited by the re-
laxation influence. There are so-called “stimulated-echo” experiments [9–11],
which can be used in those cases where the transverse relaxation time T2 is
much smaller than the longitudinal relaxation time T1 and then commonly
T1 is the limiting factor (see also Sect. 10.3.4 of Chap. 10). There is a large
amount of nuclides with nuclear spin I > 1/2, which relax by the so-called
quadrupole mechanism and have often very short T1 and T2 values in the
µs range in liquid solutions so that they are not suited for ENMR measure-
ments. Generally, one can say that all spin-1/2 nuclides with a not too low
NMR receptivity should be usable, as, e.g., 1H, 13C, 19F, 29Si, 31P, 113Cd,
119Sn and 205Tl. There are several quadrupolar nuclei, which are candidates
for ENMR, namely for example 2H, 7Li, 23Na, 27Al, 35Cl, 51V and 133Cs,
since they have under normal circumstances relaxation times, which are long
enough for the spin-echo experiment.

So far, in the comparatively young field of applied ENMR, the nuclei
1H, 7Li, 13C, 19F and 133Cs have actually been used in experiments, where
of course 1H ENMR plays an outstanding role, owing to the high sensitiv-
ity of 1H NMR and also as a consequence of the huge number of hydrogen
containing compounds of interest in pure and applied chemistry and in life
sciences.
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In NMR, in the last two decades a number of highly sophisticated tech-
niques have been developed allowing the representation of the spectra in a
multi-dimensional form [16]. Thus, we distinguish one- (1D), two- (2D) and
three-dimensional (3D) NMR experiments, corresponding to the representa-
tion of the line intensities as a function of one, two or three axes. In describing
typical ENMR experiments in the following, we will demonstrate their pos-
sible applications. We shall begin with common 1D ENMR.

17.5.1 1D ENMR Applications

The first ENMR experiments were performed on simple aqueous solutions
of tetraalkylammonium salts, where e.g. the concentration dependence of
the mobility of the hydrogen containing cations has been measured for the
purpose of demonstrating the agreement with results from classical methods
[8, 17]. However, as pointed out above, the main advantage of ENMR lies in
the possibility of studying distinct species in multi-component mixtures.

Mobility Studies in Mixtures
Owing to difficulties with classical methods, there exist in the literature only
a few reliable mobility data of simple ions in electrolyte mixtures. Also for
such a simple system like LiX/CsX (X=Cl,Br,J) in aqueous solution there
were no data available. 7Li+ and 133Cs+ are excellently suited for ENMR and
these two cations differ appreciably in their ionic radii. In Fig. 17.7 we see, as
an example for aqueous LiBr/CsBr mixtures at constant ionic strength, the
mobilities u± for both ions [21]. As a by-product one always obtains (with
electric current I = 0) the ionic self-diffusion coefficients D±, which are also
given in Fig. 17.7. It can be recognized that the mobilities show a curved
composition dependence, with opposite curvature for Li+ and Cs+, which
means that the “fast” cation accelerates the migration of the “slow” cation
in the mixture. An opposite result represents the linear dependence of the
ionic diffusion coefficients. However, this is not surprising since, in contrast
to u+, D+ is an equilibrium quantity. Having measured the mobilities of the
two cations, the transference numbers T+ could be calculated. Since the sum
of all transference numbers must be equal to one, T− for the common anion
could also be determined (see Fig. 17.7).

Another example is shown in Fig. 17.8 where by high-resolution 1H ENMR
the electrophoretic mobilities of the amine and the amino acid in an aqueous
mixture could be measured simultaneously [10].

More recently, mixed anionic-nonionic surfactant micelles have been stud-
ied by the same experimental technique with the aim of characterizing the
surfaces of ionic micelles. New insight in counterion binding could be derived,
which cannot be easily gained by other methods. [23]

In the study and application of polyelectrolytes the quantitative determi-
nation of the effective charge density is an important but difficult task. Ap-
plying the combination of ENMR and PFG diffusion measurements, Wong
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Fig. 17.7. Results of ENMR mea-
surements on a ternary aqueous mix-
ture of simple ions at constant ionic
strength [21]. System y×0.5 m LiBr+
(1 − y) × 0.5 m CsBr in H2O.
(a) The mobilities u+ of Li+ and Cs+

as a function of mixture composition.
(b) The ionic self-diffusion coefficients
D+ of Li+ and Cs+.
(c) The transference numbers T± of
the three ionic constituents Li+, Cs+

and Br− in the mixed electrolyte so-
lution.

and Scheler [24,25], for the first time succeeded in measuring in this way the
electrophoretic mobility of polyelectrolytes in solution and they could de-
termine the effective charge density. The effect of addition of common salts
could also be analysed.

Diffusion and Field-Assisted Diffusion of Ions in Porous Media

In the literature it is often assumed, that the ionic mobility within a pore
can be approximated by its mobility in the bulk fluid and that therefore the
electric conduction of a porous system, filled with a liquid electrolyte, is only
restricted by geometrical factors [16]. The validity of this assumption could
not be experimentally checked by classical methods. ENMR, as a non-invasive
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Fig. 17.8. (a) 1H ENMR (250 MHz)
spectra of a mixture of 1 mM ethylene
diamine with an amino acid (1 mM L-
Ala-Gly-Gly) in D2O [10].
(b) The intensity of the 1H NMR lines
in Fig. 17.8a versus current I . From
the different cosine modulations of the
amine line and the amino acid lines,
the different mobilities can be derived
[10].

technique, which is also independent of optical properties, is a unique tool for
the investigation of the transport of ionic charge carriers in disordered media.
Thus, it is not surprising that this field of ENMR application developed
comparatively fast in the last years. The first successful measurements of
ionic mobilities in porous systems, namely in gels, have been performed in
the author’s laboratory [26, 27]. It could be demonstrated that in the fluid-
filled pore space both the observed ionic self-diffusion coefficient D± and
the ionic mobility u± in an external electric field show a dependence on the
observation time ∆ (see Fig. 17.9). As previously observed for liquid molecules
confined in porous media the phenomenon of “anomalous diffusion” occurs
(see Chaps. 10, 19 and 22). Now, this phenomenon has been also observed
for self-diffusion of charged species and for the first time it has been shown
that also the analogous phenomenon of “anomalous field-assisted diffusion”
or “anomalous electric mobility” exists [26], which means that there is a
time regime, where the average displacement 〈z(∆)〉 of an ion by migration
along the electric field is a non-linear function of time. At long observation
times ∆ the quantities D+ and u+ become independent of ∆ and reach their
effective values Deff

+ and ueff
+ in the porous system, the quantities D+/D

0
+

and u+/u
0
+ in Fig. 17.9 thus reach plateau values. (The index “0” refers to

quantities in the non-confined state.) The inverse plateau value T (D+) =
D0

+/D
eff
+ delivers an important characteristic value of the porous medium,

namely its tortuosity T (see, e. g., [28]; cf also Fig. 10.13 in Chap. 10). T of a
porous medium is usually defined as the squared ratio of the true migration
path length of a fluid particle and the straight-line distance between the
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Fig. 17.9. (a) The relative ionic self-diffusion coefficient D+/D0
+ of the (C4H9)

+
4

cation in aqueous solution confined in the gel Sephadex LH-20 as a function of the
observation time ∆. D0

+ = 0.49 × 10−9 m2s−1 is the ionic self-diffusion coefficient
in the non-confined bulk solution [26].
(b) The relative ionic mobility u+/u0

+ as a function of the product of observation
time ∆′ and the externally applied electric field E. u0

+ = 1.22 × 10−8 m2s−1V−1.
All other details as in (a).

starting and finishing point of the particle’s motion in this medium. Since,
in general, the translational motion can have its origin in different processes
as flow, diffusion or electric field-assisted diffusion, one sometimes speaks
of “hydraulic”, “diffusional” or “electric” tortuosity, respectively [29]. From
the plateau value T (u+) = u0

+/u
eff
+ again the tortuosity of the system is
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available, now measured via the electric mobility. The comparison of the
behaviour of the ionic self-diffusion coefficient and the electric mobility of
the same ion in the medium with internal boundaries allows a first direct
experimental check of the validity of a very important relation in porous
media, namely the Einstein relation (D± ∝ u±, see (17.1)). Fig. 17.9 reveals
that T (u+) = T (D+) is found, which means that indeed in the porous gel
system under investigation the Einstein relation remains valid [26,27]. In the
paper by Holz et al. [27], also a first attempt has been undertaken to derive
the specific surface S/Vp of the porous medium from the time-dependence
of the field-assisted diffusion, similarly, as it has been performed, e. g., by
means of the observation time-dependence of the self-diffusion coefficient in
Sect. 10.5.3 of Chap. 10 [30–32]. The present author and his co-workers also
discussed basic advantages of time-dependent electric mobility measurements
for morphology studies of porous media [27].

Very important special porous media in life science and in technical appli-
cations are membranes, and it has been pointed out that ENMR might be a
powerful technique for the study of ion transport in those media [9]. Polymer
electrolyte membranes are of outstanding interest in connection with fuel
cells. Ise et al. [33] succeeded in measuring by ENMR the electro-osmotic
drag coefficient Kdrag in polymer membranes. This drag coefficient is defined
as the number of water molecules transferred through the membrane per H+

ion, and the authors could determine Kdrag as a function of water content
and temperature for different membrane materials as Nafion and sulfonated
polyetherketones.

Anion and cation (Li+) transference numbers have been studied in com-
posite polymer electrolytes with fumed silica as an inorganic filler by 19F and
7Li ENMR, respectively, [34, 35]. In this way the ionic transport properties
could be investigated as a function of filler content and Li salt concentration
without the usual need of assumptions. The power and validity of ENMR
could be demonstrated by the independent measurement of the anion and
cation transference numbers for different salts, where within the experimen-
tal error these transference numbers sum to unity. Also in lithium polymer
gel electrolytes, used in lithium secondary batteries, the individual ionic mo-
bilities of cations and anions could be measured by 7Li and 19F ENMR exper-
iments [36]. The authors also observed by 1H ENMR a solvent drift in the gel
electrolyte when the strength of the applied electric field exceeds a distinct
value, where also an anomalous change of the Li+ mobility occurs. They dis-
cuss as a possible reason a flow of lithium, compensating lithium deposition
at the electrode surface, possibly causing a counter flow of solvent.

Detection and Identification of Charged Species by ENMR Phase
Difference Spectroscopy
We saw that for resonance lines of coherently moving particles a typical phase
shift ∆φ occurs in the spectrum (Sect. 17.2.2). If a mixture contains both
charged and uncharged species, in an ENMR experiment only the lines of
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Fig. 17.10. “Mobility filter” ENMR experiment: 13C NMR spectra of an aqueous
mixture of ethanol (EtOH), acetonitrile (AN) and sodium formate [40]. (a) Normal
(undecoupled) 13C NMR spectrum (I = 0); (b) 13C ENMR spectrum (I �= 0);
(c) Difference spectrum of (a) and (b), where only the lines of charged species
(HCOO−) remain.

charged species are phase-shifted while the lines of uncharged particles are
not affected. This fact can be utilized for the detection and identification
of charged species in multi-component mixtures, provided that these species
contain the nucleus under observation. As an example of such a procedure,
we show first in Fig. 17.10 (a) the normal 13C spectrum (I = 0) of an aque-
ous mixture of ethanol (EtOH), acetonitrile (AN) and sodium formate [40].
When the same spectrum is then taken in presence of an electric field (I �= 0)
(Fig. 17.10 (b)) only the formate ion lines are phase-shifted and in the differ-
ence spectrum of the spectra with I = 0 and I �= 0 the lines without a phase
shift disappear and only the lines of the ion remain (see Fig. 17.10 (c)).

In this way, in a simple 1D ENMR experiment a “mobility filter” can
be generated, which is able to filter from a complex spectrum only the lines
of migrating species, which in this way can be detected and simultaneously
identified via their NMR lines [40].

17.5.2 2D and 3D Experiments

In 2D NMR a two-dimensional data set is generated and the signal intensities
S(F1, F2) are given as a function of two variables F1 and F2. One advantage
of 2D NMR is the fact that the spectrum is stretched in two dimensions and
much more lines can be resolved. However, the main advantage is that in
the 2D spectrum “correlations” between certain values of F1 and F2 can be
detected and assigned.
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Fig. 17.11. ENMR signal intensity S at a given frequency F2, (a) when ∆ = t1 is
(stepwise) varied, (b) when the electric field E (current I) is varied.

The 2D spectrum is obtained by recording the NMR signals in the time
domain as a function of the acquisition time t2, as in normal 1D NMR,
however, this is performed k times, whereby another time t1 (or another
variable) is stepwise increased in k increments resulting in k signals with 2N
data points:

S1(t
(1)
1 , t2), S2(t

(2)
1 , t2), · · · , Sk(t(k)

1 , t2).

Thereafter, a first Fourier transformation with respect to t2 is performed,
followed by a second Fourier transformation with respect to t1, yielding the
2D spectrum S(F1, F2) with k ×N data points [2, 16].

In 2D ENMR, F2 is the chemical shift axis, which allows the identifi-
cation of the chemical species and F1 is the mobility axis. In this way the
observed species are “correlated” with their mobility in the electric field. This
kind of experiments, developed by Johnson and co-workers [10, 11], is called
“mobility-ordered spectroscopy” (MOSY) and it should be mentioned that
also very interesting analogous 2D “diffusion-ordered spectroscopy” (DOSY)
experiments have been developed, where the second axis is the diffusion
axis [11, 41].

In practical 2D ENMR two quantities can be incremented, namely ∆ in
the PFG experiment (Fig. 17.11) or the velocity v, via a stepwise increase of
the electric field E and thus of the current I. If we choose t1 = ∆ and stepwise
increase ∆, the influence of normal diffusion on the decay of the transverse
magnetization S also increases (see (17.15) and Fig. 17.11 (a)), leading to a
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Fig. 17.12. Mobility-ordered (MOSY) 2D ENMR spectrum (stacked plot) of
(CH3)

+
4 (TMA) in the presence of mixed micelles [11]. [Sodium dodecyl sulfate

(SDS) and octaethylene glycol dodecyl ether (C12E8)]. Note the different sign for
the mobilities of TMA and C12E8.

line broadening in the 2D spectrum. Thus, it proved to be more favourable
to hold constant all the timing parameters and to increment the field E since
in this case the intensity oscillations are not damped (Fig. 17.11 (b)) [10,11].
2D ENMR experiments require the observation (and Fourier transformation)
of several intensity oscillations as a function of ∆ or E, that means in these
experiments high ∆φ-values must be achieved. Since ∆φ is proportional to
the magnetogyric ratio γ of the nucleus, 2D ENMR is much easier performed
with high-γ nuclides as 1H, 19F than with nuclides having a lower γ as 7Li or
13C [40]. So far, 2D experiments have only been performed with 1H ENMR.

In Figs. 17.12 and 17.13 two examples of MOSY experiments are given,
where in Fig. 17.12 the 2D spectrum is shown as a stacked plot and in
Fig. 17.13 as a contour map, which is the mostly used representation of
spectra in 2D NMR. The two examples show the most interesting field of
application of 2D ENMR, namely mobility measurement of molecular aggre-
gates, as micelles and vesicles. In Fig. 17.12 the 1H MOSY spectrum of a
mixture of (CH3)4N+ ions and micelles is shown. This spectrum also demon-
strates the important fact that in ENMR not only the amplitude but also
the sign of the mobility is obtained, allowing the determination of the sign of
charge of the species of interest. In the second example (Fig. 17.13) glucose,
as a good NMR active label, has been entrapped inside vesicles, for which in
this way the vesicle mobilty in water is found to be u = 2× 10−8 m2V−1s−1.

A very interesting extension of ENMR, namely 3D ENMR for the study
of protein mixtures, has been demonstrated by He and co-workers [37, 38].
With two frequency axes a 2D spectrum of the protein mixture is generated.
However, in protein mixtures severe signal overlapping occurs and conven-
tional NMR methods have difficulties in characterising structures or struc-
tural changes of multiple protein components in biochemical reactions. Now
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Fig. 17.13. Example of a MOSY contour map. 2D 1H ENMR spectrum of glucose
entrapped inside vesicles [11]. The 1D NMR spectrum of glucose is shown as a
projection at the top. At the left the 1D mobility spectrum is given.

the overlapping signals can be separated in a 3D experiment, where the third
axis is the electrophoretic mobility, allowing the simultaneous measurement
of the different proteins due to their differing mobility. The otherwise needed
physical separation is no more necessary. “Capillary array ENMR”, devel-
oped by the same group [39], allows the study of protein mixtures at high
ionic strength in buffer solutions.

17.5.3 Mobility and Velocity Distributions. Polydispersity and
Electro-Osmotic Flow

In Fig. 17.11 (b) we saw that in an ENMR experiment the intensity oscil-
lations are not damped if we vary the electric field E. However, there it
was supposed that all observed particles have the same velocity. In polydis-
perse samples, on the other hand, we have a distribution of mobilities g(u)
of particles with the same chemical shift (of the same chemical kind) but
of different size and mass. In such a case, in (17.14), (17.15) we have to
replace cos(γgvδ∆) = cos(γguEδ∆) by

∫ +∞
−∞ g(u) cos(γguEδ∆)du and this

results in a damping of the intensity oscillations as a function of E (or I)
(see Fig. 17.14 (a). However, from an inverse FT of S(E,F2) with respect to
E (or I) the mobility distribution g(u) can be derived (Fig. 17.14 (b) [10,42].

Even for monodisperse solutions the presence of electro-osmotic flow leads
to mobility (velocity) distributions. Such a mobility distribution was studied
in the just described manner in an oil-in-water microemulsion [43]. The aim
was the study of the development of the electro-osmosis profile in a vertical
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Fig. 17.14. (a) 1H ENMR sig-
nal intensity of sucrose entrapped in
charged phospholipid vesicles versus
current I in a polydisperse system,
showing the damping of S(E, F2) due
to a mobility distribution [42]. (b) The
mobility distribution g(u) obtained by
a Fourier transformation of the data in
(a) (solid line). The dashed line repre-
sents a fit curve [42].

cylindrical tube as a function of ∆ and as a function of tel, i. e. of the time
during which the current flowed before the PFG experiment was started.
The result (Fig. 17.15) shows the development of the mobility distribution
g(u) with time, when both electrophoretic and electro-osmotic mobilities are
present. The electrophoretic migration velocity is then superimposed by an
opposite flow at the wall and a counterflow in the centre of the tube. After
a time of ca 400ms in this example the system reached equilibrium and, as
theoretically expected, the flow profile, that is the mobility as a function of
the tube radius rt, becomes purely parabolic [42].

For the study of the electro-osmotic flow profile in capillaries also highly
sophisticated NMR micro-imaging techniques have been applied, which as
well deliver the velocity distributions and their time dependence [44].

The DCNMR studies described in this section might be a very interest-
ing tool for future developments in capillary electrophoresis (CE), where the
electro-osmotic flow is the driving force in these extremely important sepa-
ration techniques in biochemistry.

17.6 Conclusion

The possibility of performing NMR experiments in presence of an electric
current in the sample under investigation opens a novel way of using NMR
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Fig. 17.15. Mobility (velocity) dis-
tributions g(u) in presence of electro-
osmotic flow for various electric field
durations tel and flow times ∆, show-
ing the development of the electro-
osmotic flow profile in an “oil-in-
water” microemulsion [43].

techniques in the wide field of electrochemistry and its applications. The
electric charge or the electric current is thus introduced as a new parameter in
the NMR experiment. Electrophoretic NMR combines in-situ electrophoresis
with the selectivity of NMR, a fact, which is of particular importance for
the study of transport properties in complex multi-component fluid systems
with charge-carrying species, such as simple ions, charged macromolecules,
and charged supramolecular systems. In mixtures of organic compounds the
single components can be simultaneously observed, however, separated by 1H
or 13C NMR.

The pulsed field gradient NMR methods allow the non-invasive measure-
ment of electrophoretic mobilities u± and one always obtains the self-diffusion
coefficient D± of the distinct charged particles as a by-product. This offers
the possibility of a systematic qualitative comparison of transport diffusion
(here field-assisted diffusion) with self-diffusion, that means transport in the
non-equilibrium state with transport in the equilibrium state. Furthermore,
being independent of the optical properties of the sample, the ENMR meth-
ods may also be applied to porous systems. This field of application is just
in its beginning, but seems to be very promising for basic electrophoretic
mobility studies in systems with confined geometry.

Apart from mobility and diffusion studies, DCNMR also offers a new en-
trance to the investigation of electro-osmotic flow and phenomena related
with it. In particular in capillaries and porous systems those electro-osmotic
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flow studies, also combined with NMR imaging techniques, represent a pow-
erful new tool.

On the other hand, ENMR has certain limitations owing to the compar-
atively low sensivity of radiofrequency spectroscopy and owing to problems
with nuclides or systems with short nuclear magnetic relaxation times T1 and
T2. However, it should be pointed out that the low energies connected with
electromagnetic radiofrequency waves have the advantage that investigations
can be performed without any disturbance of thermal equilibrium.

ENMR is a comparatively young and novel technique and the required
accessory units are partly not yet commercially available and therefore so far
we cannot speak of an NMR “routine technique”. On the other hand, the
power of ENMR and DCNMR methods has been impressively demonstrated
[9–11] and it is clear that a further development of special techniques and a
further extension of applications will take place in the coming years.

Notation

A cross section of the electrophoretic cell
B magnetic field
B0 magnetic field, corresponding to the NMR reference frequency ω0

c concentration of an electrolyte in the solution
D self-diffusion coefficient
D∗± ionic self-diffusion coefficient at c→ 0
D0

± ionic self-diffusion coefficient in the non-confined state
DCNMR direct current NMR
DOSY diffusion ordered spectroscopy
E electric field
ENMR electrophoretic NMR
F Faraday constant
g magnetic field gradient
g(u) mobility distribution
I electric current
Ii ionic strength
Kdrag electroosmotic drag coefficient
MOSY mobility ordered spectroscopy
PFG pulsed field gradient
P (ω) NMR frequency distribution
r radius of a particle
rf radio frequency
S NMR signal intensity
Sk NMR signal intensity at the kth step in a 2D experiment
Sv NMR signal intensity in presence of flow
S0 initial NMR signal intensity
S/Vp surface to pore volume ratio, also called “specific surface”
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T tortuosity
T± transference number of an ion
T1 spin-lattice (longitudinal) relaxation time
T2 spin-spin (transverse) relaxation time
u± electrophoretic mobility of an ion
u∗± electrophoretic mobility of an ion at c→ 0
u0
± electrophoretic mobility of an ion in the non-confined state
v velocity
v± ionic drift velocity
z · e electric charge of a particle
1D one-dimensional
2D two-dimensional
3D tree-dimensional
γ magnetogyric ratio of a nuclide
δ duration of a pulsed magnetic field gradient
∆ distance between two pulsed magnetic field gradients
∆φ phase shift difference of NMR signals
ε0 dielectric constant of the vacuum
εr relative dielectric constant of the medium
ζ electro kinetic potential (zeta potential)
η viscosity
κ inverse Debye length
ρ density
σ surface charge density of a particle
τ radio frequency pulse distance in a spin-echo experiment
φ phase angle of the NMR signal
ω NMR frequency
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Theoretical Concepts and Models



18 Diffusion of Particles on Lattices

Klaus W. Kehr†, Kiaresch Mussawisade, Gunter M. Schütz, and Thomas
Wichmann

18.1 Introduction

Diffusion processes take place almost everywhere in the material world; they
are ubiquitous in condensed matter. Diffusion occurs in the different forms
of condensed matter: in fluids, complex fluids, and solids. This chapter is
concerned with the description of diffusion of particles in lattices. The theo-
retical description refers to diffusion in crystalline but also amorphous solids.
Experimental facts on diffusion processes in solids are given in Chaps. 1-6, in
particular. Empirical information gives the motivation and the basis for the
theoretical description. Two important special cases of diffusion processes in
crystalline solids are the tracer diffusion, where the displacement of marked
atoms (radioactive isotopes) is determined, and interstitial diffusion, where
atoms move on interstitial sites within the solid (see Chap. 1).

Diffusion processes appear in two distinct forms, namely

– Relaxation of density disturbances, or particle currents induced by density
gradients or external forces. These phenomena are usually described by
Fick’s laws.

– Displacements of individual entities (particles, aggregates of particles)
within condensed matter systems. The first description of these phenom-
ena was provided by Einstein [1].

The treatment of diffusion of particles on lattices is theoretically advanta-
geous for the following reasons: Lattice problems are generally easier to treat
than continuum problems. The most important point, however, is the sepa-
ration of time scales that exists between the elementary transition processes
of the particles between lattice sites, and the succession of steps that lead
to the observed diffusion phenomena. The elementary step of diffusion of a
particle on a lattice, for instance exchange of a vacancy with a tracer atom,
or motion of an interstitial atom, is generally rapid compared to the time
between two elementary steps. Hence the problem of a theory of diffusion in
lattices can be separated into two different tasks:
† Klaus W. Kehr died in 2000. He was the leading author of the corresponding

chapter of the first edition on which the present chapter is based.
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– Theory for rate of the individual step
This topic is usually not treated in detail in books on diffusion in solids.
An exception is the monograph of Flynn [2]. A more general review on
activated processes is given in [3]. Diffusion processes in solids are pro-
moted by thermal activation. Usually an Arrhenius law is assumed for the
transition rate Γ

Γ = Γ0 exp(−∆E/kBT ) . (18.1)

The prefactor Γ0 is sometimes interpreted as an attempt frequency. ∆E
is the activation energy; it is actually a free energy, or a free enthalpy.
Further details may be found in Chap. 1, where different factorizations
of Γ into prefactor and exponential factor are made. The theory of the
transition rate Γ is especially interesting for light particles (hydrogen,
muons), where possible quantum effects are discussed.

– Combination of several/many individual steps to diffusion in lattices
This is the topic addressed in this chapter.

Let us begin with a few general remarks on the correlation between the-
oretical models and experimental systems. Experimental systems of current
interest are very complicated. Examples are polycrystalline systems, amor-
phous metals, glasses, etc. Theoretical modeling of particle diffusion in such
systems has evolved in different ways and one may distinguish between several
classes of models:

– Models that are extensions of models for regular lattices with uniform
transition rates
Examples are two-state models for diffusion and trapping, and lattice
models with correlated walks. These models are often useful for the in-
terpretation of experiments. One may also subsume the effective-medium
approximation under this class, for it relates a disordered system to an
ordered, effective medium [4].

– Models with disordered transition rates
There are various idealized models, for instance random barriers or ran-
dom traps, and realistic models that try to incorporate as much as possible
the complexities of real substances. The idealized models are treated by
exact or approximate analytical methods, supported by numerical simu-
lations. The realistic models are typically investigated by numerical sim-
ulations (e.g. [5]).

– Models that realize new paradigms for disordered systems
Examples are percolation models, fractal structures, and Sinai models.
These models are rarely realized in ideal form in nature, however, they
capture essential properties of disordered systems; for instance, the ap-
pearance of scaling laws with different exponents.
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In this chapter lattice models with uniform and disordered transition rates
will be considered (“idealized models” in the above sense). Models that con-
tain the new paradigms of fractality and percolation are treated in Chaps.
10, 19 and 22. Realistic models for particle transport in ionic conductors are
described in Chaps. 20 and 21.

This chapter consists of four sections:

- One particle on uniform lattices
Diffusion of one particle is well understood for regular lattices with uni-
form transition rates. The treatment is basic for many extensions, as ex-
emplified in Chaps. 1, 3, 9 and 10.

- One particle on disordered lattices
The problem of diffusion of one particle on a regular lattice with disor-
dered transition rates is now relatively well understood. It will be one
major focus of this chapter.

- Many particles on uniform lattices
The problem of diffusion of many identical particles on regular lattices
with uniform transition rates is also quite well understood, provided that
exclusion of double occupancy is taken into account. Here the distinction
between collective or Fickian and tracer diffusion is essential. A particu-
larly interesting topic is tracer diffusion in one dimension.

- Many particles on disordered lattices
The theory of diffusion of many particles on disordered lattices is a dif-
ficult problem, except for collective diffusion on lattices with symmetric
barriers. In this chapter collective diffusion of particles on lattices with
site-energy disorder will be included.

Finally, some remarks on the general literature will be made. Monographs
on the topics of random walks have been represented by Barber and Nin-
ham [6], and Weiss [7]. Somewhat more mathematical are the books of van
Kampen [8], Spitzer [9], Spohn [10], and Liggett [11]. Monographs that are
more focused on diffusion in metals are cited in Chap. 1. A survey on the fields
of fractals, percolation, and other disordered systems is given in the book of
Bunde and Havlin [12]. Several reviews on the topics addressed in this chapter
have appeared, with quite different emphasis, namely Alexander et al. [13],
Weiss and Rubin [14], Haus and Kehr [15], Havlin and ben-Avraham [16],
Bouchaud and Georges [17] and Schütz [18].
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18.2 One Particle on Uniform Lattices

18.2.1 The Master Equation

In this section the diffusion of one particle, or of an ensemble of indepen-
dent particles on regular lattices with uniform transition rates, is considered.
Examples are

– One, or few independent interstitial particle(s) (muon, low concentration
of hydrogen). The particles diffuse on the lattice of interstitial sites that
is schematically represented in Fig. 18.1 (a). Actual lattices of interstitial
sites may have a more complicated structure.

– One vacancy, or small concentration of vacancies. This diffusion process
is important for diffusion in metals. Figure 18.1 (b) gives a schematic
representation of this process.

These two processes are the simplest ones for a theoretical description. There
are other important diffusion processes in metals that are described in the
monographs, for instance by Manning [19] and Philibert [20]. These mecha-
nisms are also addressed in Chaps. 1 and 2.

The theoretical description of the lattice diffusion process is provided by
the master equation. It is an equation for P (lt|00), the conditional probability
of finding a particle at site l at time t when it was at site 0 at time 0. The
quantity P is generally referred to as the propagator (see Chaps. 10, 19,
23). The sites are designated by d-dimensional integer vectors l. The master
equation reads

d

dt
P (lt|00) = Γ

∑
〈l′,l〉

[P (l′t|00) − P (lt|00)] . (18.2)

The sum in (18.2) runs over the nearest-neighbour sites l′ of l. This equation is
essentially a balance equation for the increase/decrease of P (lt|00). It consists
of a gain term, describing the jumps from nearest neighbours l′ to l, and a
loss term describing the jumps off site l to nearest neighbour sites. Γ is the

(a) (b)

Fig. 18.1. (a) Single particle on uniform lattice; (b) single vacancy in occupied
lattice.
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transition rate between two nearest-neighbour sites. The last term can also
be written as −zΓP (lt|00), where z is the number of nearest neighbours. The
master equation is intuitively obvious.

Theoretically, the master equation follows from the assumption of a
Markovian process for the lattice diffusion problem. In a Markovian process,
the present state is determined by the past state at one time, rather than by
a more complicated history such as states at two different times, etc. More
details about these types of processes including the derivations of the most
essential relations may be found in van Kampen’s monograph [8].

18.2.2 Solution of the Master Equation

The solution of the master equation is obtained by Fourier transformation.
This is a general method for lattice-translation invariant problems (connected
with the validity of Bloch’s theorem). The spatial Fourier transform is defined
by

P (k, t) =
∑

l

e−ik·RlPl(t) . (18.3)

It is in fact this spatial Fourier transform of the propagator which is directly
experimentally accessible by quasielastic neutron scattering (in particular by
the neutron spin echo method - see Chaps. 3 and 13) and by pulsed field
gradient NMR (Chap. 10).

The initial condition will not be written explicitly henceforth.
For simplicity, a restriction to the hypercubic lattices (chain, square lat-

tice, simple-cubic lattice, etc.) will be made. A cube with N = Ld sites will
be introduced, and periodic boundary conditions are assumed. The sum over
l in (18.3) then runs over N sites, whose position vectors are given by

Rl = (al1, . . . , ald) (18.4)

with the lattice constant a. The periodic boundary conditions imply for the
wavevector k

k =
2π
La

ν, (18.5)

where ν is an integer vector, restricted to values between −L/2 and L/2 (first
Brillouin zone).

The master equation (18.2) can be written in a more compact form as

d
dt
P (lt|00) = −

∑
l′
Λl,l′P (l′t|00) (18.6)

Λl,l′ ∼

⎧⎨⎩
zΓ l = l′

−Γ l, l′ nearest neighbours
0 otherwise .

(18.7)

Note that for uniform lattices, the matrix Λl,l′ only depends on |l − l′|.
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The above equation has a convolution form. It is well-known that convo-
lution in direct space becomes a product in Fourier space,

d
dt
P (k, t) = −Λ(k)P (k, t) , (18.8)

with the Fourier transform of the transition rate matrix

Λ(k) = Γ
∑
l−l′

e−ik·(Rl−Rl′ ) . (18.9)

(One can derive (18.8) directly by multiplying (18.6) for fixed l with exp(−ik·
Rl) and summing over l). For hypercubic lattices is

Λ(k) = Γ

⎡⎣z − 2
d∑

j=1

cos(kja)

⎤⎦ . (18.10)

The main point is that a diagonalization of the master equation (18.6)
has been accomplished through Fourier transformation. Now the solution of
the master equation is possible

P (k, t) = P (k, 0) exp[−Λ(k)t] t ≥ 0 . (18.11)

The initial condition is

P (k, 0) =
∑

l

e−ik·RlP (l0|00) = 1 . (18.12)

There are experimental methods that also allow a determination of the
Fourier transforms of the conditional probability P (lt|00) from time to the
frequency domain. It is defined by

P (k, ω) =
∫ ∞

−∞
dt eiωtP (k, t) . (18.13)

The quantity P (k, t) is also required for negative times. It can be obtained
by symmetric continuation,

P (k,−t) = P (k, t) . (18.14)

Performing the Fourier integral (18.13) one obtains

P (k, ω) =
2Λ(k)

ω2 + Λ2(k)
. (18.15)

This is a Lorentzian, whose width Λ(k) can be measured, e. g. by quasielastic
Mößbauer spectroscopy and quasielastic incoherent neutron scattering. De-
tails may be found in Chaps. 2 and 3. Also the NMR relaxation times are
determined by Fourier transforms of (different) correlation functions. This
topic is considered in Sects. 9.2 and 9.9 of Chap. 9.
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18.2.3 Diffusion Coefficient

In this section the diffusion coefficient of a particle that performs random
walk on a regular lattice with uniform transition rate will be calculated. For
this purpose, the mean square displacement of the particle is derived from
the solution of the master equation. Consider the definition of the Fourier
transform which was given in (18.3), and differentiate it with respect to a
component of the wavevector k,

∂

∂kj
P (k, t) =

∑
l

(−iRlj)e−ik·RlP (lt|00) . (18.16)

Differentiate the expression again and sum over all components,

d∑
j=1

∂2

∂kj∂kj
P (k, t) = −

∑
l

(
d∑

j=1

R2
lj)e

−ik·RlP (lt|00) . (18.17)

The expression on the right-hand side, evaluated at k = 0, is the mean square
displacement of the particle at time t, when it started at site 0 at time 0,

〈R2〉(t) = −
d∑

j=1

∂2

∂kj∂kj
P (k, t) |k=0 . (18.18)

From the explicit solution of the master equation (18.11) one obtains

〈R2〉(t) =
d∑

j=1

∂2Λ(k)
∂kj∂kj

|k=0 t . (18.19)

For hypercubic lattices one finds from (18.10)

d∑
j=1

∂2Λ(k)
∂kj∂kj

∣∣∣∣∣∣
k=0

= 2dΓa2 . (18.20)

Hence one has
〈R2〉(t) = 2dDt, (18.21)

with the diffusion coefficient
D = Γa2 . (18.22)

In this derivation, the diffusion coefficient has been derived from the mean
squared spreading of the conditional probability with time. This is Einstein’s
description of particle diffusion [1].

It is possible to derive the diffusion equation (see Chandrasekhar [21])
from the master equation in the long-wavelength limit k → 0. For this pur-
pose one has to replace the discrete conditional probability by a continuous
probability density,
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P (l, t) −→ p(r, t) , (18.23)

where p(r, t)ddr is the probability density of finding the particle in the vol-
ume element ddr at location r and time t (initial conditions omitted). The
probability density obeys the diffusion equation (Fick’s 2nd law)

∂

∂t
p(r, t) = D∇ · ∇p(r, t), (18.24)

where ∇ · ∇ is the Laplace operator in d dimensions.

18.2.4 Extensions

There are important extensions of the master-equation description of diffu-
sion of a single particle on a regular lattice with uniform transition rates.

– More complicated lattices
Examples are lattices with a basis, e.g. the lattice of tetrahedral sites
of hydrogen in bcc metals. This extension is trivial from the theoretical
point of view, however, the derivation of P (k, t) may require considerable
labour. References are given in [15].

– Lattices with inequivalent sites
Inequivalent sites can occur in lattices with a basis, when some sites in
the unit cell are energetically lower than the others. This leads to a larger
thermal occupation of these sites. The problem of taking the different
thermal occupation factors into account was solved in principle in [22]
and [23], for a review, see [15]. Applications were made by Anderson et
al. [24].

– Two-state models for diffusion and trapping
These models provide a very simple description of trapping processes.
The basis is the decomposition of the conditional probability into a part
corresponding to a free state and a part corresponding to a trapped state,

Pl(t) = P free
l (t) + P trapped

l (t) . (18.25)

A particle may be alternatively in a free or a trapped state, with mean
times of stay τ1, or τ0, respectively. The two-state model can be treated by
differential equations (Schroeder [25]), or by integral equations (Richter
and Springer [26]), with equivalent results. The differential equations are
somewhat more compact and they read

d
dt
P f

l (t) = Γ
∑
〈l′,l〉

[P f
l′ (t) − P f

l (t)]

− ΓtP
f
l (t) + ΓrP

t
l (t)

d
dt
P t

l (t) = −ΓrP
t
l (t) + ΓtP

f
l (t), (18.26)
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with the trapping rate Γt = 1/τ1 and the release rate Γr = 1/τ0. The first
equation in (18.26) is the usual master equation, augmented by a loss
and gain term, corresponding to transitions into and out of the trapped
state. The second equation describes the temporal development of the trap
state. An application of the two-state model has been given in Sect. 3.6
of Chap. 3.

All models mentioned above, and some additional models, for instance
correlated-walk models, have in common that they are lattice-translation
invariant. Hence they are solved by similar techniques as described above.
Spatial Fourier transformation leads to a partial diagonalization, the rest is
the solution of coupled ordinary first-order differential equations. As already
said, this may require considerable effort in complicated cases, but in princi-
ple the solution of these models is understood.

18.3 One Particle on Disordered Lattices

18.3.1 Models of Disorder

In this section the random walk of a single particle, or of independent parti-
cles, on lattices with disordered transition rates will be considered. The main
emphasis of this chapter will be on the derivation of asymptotic diffusion co-
efficients, but also the time dependence of the mean square displacement, or
the frequency dependence of the conductivity will be considered. The models
of disorder will be defined on regular lattices, and topological disorder will
not be included. This is a popular approach for modeling diffusion in disor-
dered materials, even if many materials of interest do not have crystalline
structure. It means that the disorder is put completely into the transition
rates,

Γ −→ Γfi , (18.27)

which depend on the initial (i) and final (f) sites. The rates are assumed to
be fixed, i.e. the case of quenched disorder is treated. In principle, one could
include transitions between arbitrary sites, in practice only nearest-neighbour
transitions are taken into account, as is appropriate for diffusion of atoms.

Various models of disorder have been introduced in different contexts.
Here some idealized models of disorder will be considered:

– Random barriers (RB)
In this model the transition rates between neighbour sites have the sym-
metry

Γji = Γij . (18.28)

It is usually assumed that the rates are given by an Arrhenius law,

Γji = Γ0 exp
(
− Eji

kBT

)
Eji ≥ 0 . (18.29)
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Fig. 18.2. Models of disorder.

The disorder then originates from random barrier energies Eji, which are
taken from a distribution νB(E). A pictorial representation of the RB
model is given in Fig. 18.2(a).

– Random site energies (RT)
Another important model is the random site-energy model, which is also
called random-trap model. One should keep in mind that the traps do
not capture the particles permanently. The model is defined by transition
rates that depend on the initial sites, but not on the final sites,

Γji = Γ0 exp
(

Ei

kBT

)
Ei ≤ 0 . (18.30)

The site energies Ei are counted negative and they are taken from a
distribution νT(E). A pictorial representation of the RT model is given
in Fig. 18.2(b).

– Combination of RB and RT
In this chapter also a combination of random barriers and random site
energies will be studied. The rates of the combined RB and RT model
shall be given by

Γji = Γ0 exp
(
−Eji − Ei

kBT

)
. (18.31)

The random-barrier energies Eji and the random-site energies Ei are
taken independently from the distributions νB(E) and νT(E). A picto-
rial representation of the model is given in Fig. 18.2(c). Note that all
energies refer to a common origin E = 0.
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– Randomly blocked sites (RBS)
Finally, the model of randomly blocked sites will be included in this list of
models of disorder. Sites of a lattice are randomly blocked with probability
1 − p and not accessible to the particle that performs random walk. The
transition rates of this model are defined by

Γji =
{
Γ if j is “open”
0 if j is blocked. (18.32)

The pictorial representation of the model is included in Fig. 18.2(d). Of
course, this model is nothing else than the site percolation model, which is
exclusively treated in Chap. 22. In the present chapter, however, the RBS
model will only be considered for concentrations p of open sites above the
percolation threshold, where long-range diffusion of a particle is possible.

There are other models with disordered transition rates which are not in-
cluded in the list above. One example is the Miller-Abrahams model, where
transitions that lead to sites with lower energies have rates that do not depend
on the energy difference, while the transitions to sites with higher energies re-
quire thermal activation. For a treatment of this model with similar methods
as applied here the reader is referred to [29].

18.3.2 Exact Expression for the Diffusion Coefficient in d = 1

It is possible to give an exact expression for the diffusion coefficient of a
particle in a linear chain for rather general disordered rates. Some restrictions
on the disorder have to be made, which will be explained below. Linear chains
with sites at a distance a will be considered and one may view Fig. 18.2(c) as a
graphical representation of such a model. The task is to derive the asymptotic,
long-time diffusion coefficient of a particle, averaged over the disorder.

The expression to be given below was derived independently by Dieterich
[27] and Kutner [28], and by Wichmann [29]. Dieterich and Kutner calculated
the mobility of a particle from the linear response to a force while Wichmann
used a mean first-passage time method. Here a derivation will be given which
utilizes Fick’s first law. Of course, there are relations between the different
derivations.

Consider a finite chain of length Na, as schematically displayed in
Fig. 18.3. A particle current I (precisely: probability current) into site 0
is assumed such that P0 is fixed. The same particle (probability) current is
then taken out at site N and a stationary situation is maintained.

The derivation for general disorder is somewhat tedious and hence put into
the appendix. A much simpler derivation can be made for the random-barrier
model with Γi+1,i = Γi,i+1 and it should convey the idea of the derivation.

Consider Kirchhoff’s node equation for site 0 which expresses the fact
that the sum of all currents into the site must be zero:
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I

I

1 1

Fig. 18.3. Linear chain with constant current I .

I + Γ10(P1 − P0) = 0 . (18.33)

The master equation at site 1 reads

d
dt
P1 = Γ10(P0 − P1) + Γ21(P2 − P1) . (18.34)

One finds in the stationary situation

Γ21(P1 − P2) = Γ10(P0 − P1) = I , (18.35)

where also (18.33) was used. The same consideration yields for all sites
0 ≤ i < N

Γi+1,i(Pi − Pi+1) = I . (18.36)

One can now play the following trick: Write

P0 − PN = P0 − P1 + P1 − P2 + P2 ∓ . . .

−PN−1 + PN−1 − PN . (18.37)

Introduce the current I into the differences by using (18.36),

P0 − PN = I

(
N−1∑
i=0

1
Γi+1,i

)
. (18.38)

This expression is already Fick’s first law. To recognize this, rewrite (18.38)
as

P0 − PN

N
= I

{
1
Γ

}
, (18.39)

where the sum has been replaced by the disorder average (valid for large N){
1
Γ

}
=

1
N

N−1∑
i=0

1
Γi+1,i

. (18.40)

The length of the chain is Na and the probability density at site i is Pi/a.
Hence one can identify the gradient of the probability density,

P0 − PN

Na2
= −∇n . (18.41)
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Fick’s first law reads I = −D∇n. Comparison with the above expressions
yields

D =
{

1
Γ

}−1

a2. (18.42)

The expression (18.42) is the exact result for the diffusion coefficient of the
RB model in d = 1, which is known since a long time [13].

The physical significance of the result is that the highest barriers dominate
diffusion in d = 1. This is evident: particles have to overcome all barriers in
the course of long-range diffusion, and it takes long times to overcome the
high barriers.

The generalization of the result to arbitrarily disordered transition rates
is

D =
{

1
Γi+1,iρi

}−1

a2, (18.43)

with the thermal occupation factors

ρi =
exp(−βEi)

1
N

∑N−1
j=0 exp(−βEj)

, (18.44)

where β = 1/(kBT ). The existence of the thermal occupation factors ρi is
required in the proof, which is given in the appendix. The ρi exist when
one can introduce a reference energy E0 and the sum in the denominator of
(18.44) remains finite for arbitrary N . A counterexample, where the ρi do
not exist in the limit N → ∞ will be given in Sect. 18.3.7.

The expression (18.43) for the diffusion coefficient of a particle on a linear
chain with general disorder means that one has to use transition rates that
are weighted by the mean thermal occupation of the sites. This is an exact
result in d = 1 (see [27–29]).

18.3.3 Applications of the Exact Result

The expression (18.43) for the diffusion coefficient in d = 1 will now be
examined for the models that have been introduced in Sect. 18.3.1. Henceforth
the lattice constant will be set a = 1.

For the random barrier model, where Γi,i+1 = Γi+1,i one has ρi = 1. The
result (18.42) is then immediately obtained from (18.43) and it is the correct
result in d = 1.

In the random site-energy model, where Γji = Γ0 exp(βEi), the product
is

Γjiρi = Γ0

⎡⎣ 1
N

∑
j

exp(−βEj)

⎤⎦−1

. (18.45)

Hence the diffusion coefficient is given by
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D =
Γ0

1
N

∑
j exp(−βEj)

. (18.46)

This is the exact result in d = 1; it is also valid in all dimensions [15, 30].
Normally it is written in the form D = { 1

Γ }−1 which is equivalent to (18.46).
Equation (18.46) signifies that the diffusion coefficient of the RT model is
solely determined by the inverse of a partition function, which becomes large
for strong site-energy disorder and/or low temperatures.

An immediate consequence of the exact expression (18.46) for the diffusion
coefficient of the RT model is its downward curvature in an Arrhenius plot,
where lnD is displayed as a function of β = 1/kBT . Differentiating lnD
according to (18.46) with respect to β one obtains

∂ lnD
∂β

=

∑
j Ej exp(−βEj)∑

j exp(−βEj)
= 〈E〉 . (18.47)

Thus the slope of the Arrhenius plot of D is the mean thermal energy of a
particle in the RT model. The mean thermal energy decreases with increasing
β in the case of energetic disorder, hence one has convex (downward) curva-
ture of D(β) in the Arrhenius plot. This is the generic cause for downward
curvature of D(β) in the Arrhenius plot.

Finally the combined RB and RT model will be considered. The rates of
this model were given in (18.31). The weighted rates are then

Γjiρi = Γ0

⎡⎣ 1
N

∑
j

exp(−βEj)

⎤⎦−1

exp(−βEji) . (18.48)

One obtains for independent distributions of barrier and site energies [31]

Dcomb =
1
Γ0
DRBDRT . (18.49)

Thus the diffusion coefficient of this model factorizes into two independent
contributions in d = 1. A numerical verification of the result is given in
Fig. 18.4.

18.3.4 Frequency Dependence in d = 1: Effective-Medium
Approximation

Not only the asymptotic behaviour of the mean square displacement is of
interest, but also the behaviour at finite times. It corresponds to the frequency
dependence of the mobility. Asymptotic expansions of the time-dependent
mean square displacement were made for the RB and RT models; they yield
exact results in d = 1 for the RB model and all d for the RT model [32, 33].
Here an approximate treatment will be introduced for several reasons:
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ln
(D
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1/T

Fig. 18.4. Diffusion coefficient in combined RB and RT model. Uniform distribu-
tions of barriers and site energies of width Ec = 2. Line: Equation (18.48); symbols:
Monte Carlo (MC) simulations.

i) The technique is rather simple and intuitive.
ii) The approximation yields an overall description of the frequency-dependent

mobility.
iii) It is easily generalized to higher dimensions.

To formulate the effective-medium approximation (EMA), the random barrier
model will be considered in d = 1. The master equation reads

d
dt
Pi(t) = Γi,i+1[Pi+1(t) − Pi(t)]

+Γi,i−1[Pi−1(t) − Pi(t)] . (18.50)

The rates Γi,i±1 are taken from a common distribution ρ(Γ ) (or, equivalently,
are determined from the distribution of barrier energies).

The frequency-dependent formulation of the EMA was developed by sev-
eral authors around 1980 (Alexander and Orbach [34], Summerfield [35],
Odagaki and Lax [36], Webman [37]). Here a derivation by an embedding
procedure will be given, following Haus et al. [38]. One systematic, random
transition rate Γ01 is embedded in a linear chain, which consists of time-
dependent, effective transition rates. A graphical representation is given by
Fig. 18.5 (bottom).

The systematic rate is taken from the distribution ρ(Γ ) and, once selected,
considered as fixed.

The master equations for the conditional probabilities Pi(t) for sites that
do not involve sites 0 and 1 are

d
dt
Pi(t) =

∫ t

0

dt′Γeff(t− t′)[Pi+1(t′) + Pi−1(t′) − 2Pi(t′)] . (18.51)

The master equation for the conditional probabilities P0 and P1 is then
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eff

Fig. 18.5. Embedding procedure for
effective-medium approximation.

d
dt
P0 =

∫ t

0

dt′Γeff(t− t′)[P−1(t′) − P0(t′)]

+ Γ01[P1(t) − P0(t)] ,
d
dt
P1 = Γ01[P0(t) − P1(t)]

+
∫ t

0

dt′Γeff(t− t′)[P2(t′) − P1(t′)] . (18.52)

This set of master equations will be compared with the master equation for
the effective medium only, where the conditional probability will be called
Ei(t) (see also Fig. 18.5 (top))

d
dt
Ei(t) =

∫ t

0

dt′Γeff(t− t′)[Ei+1(t′) + Ei−1(t′) − 2Ei(t′)] . (18.53)

Now a Fourier and Laplace transformation of both equations will be made.
The Laplace transform of a function f(t) is defined by

f̃(s) =
∫ ∞

0

dtE−stf(t) . (18.54)

The advantage of the Laplace transformation is that the initial condition of
the master equations appears explicitly, because∫ ∞

0

dt e−st df(t)
dt

= e−stf(t) |∞0 +s
∫ ∞

0

dte−stf(t)

= sf̃(s) − f(t = 0) . (18.55)

The master equation for the effective medium reads after the transformations

[s+ 2Γeff(s)(1 − cos ka)]Ẽ(k, s) = 1 . (18.56)

The 1 on the right-hand side of the equation comes from the initial condition
Ei(t = 0) = δi,0.
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It is possible to solve the equations for P̃0(s) and P̃1(s), as explicitly
shown in the appendix. The requirement will be made that the average over
the different realizations of the embedded bond will reproduce the effective
medium. Hence the requirement is

{P̃0(s)}ρ(Γ ) = Ẽ0(s) . (18.57)

Equation (18.57) is a self-consistency condition for Γ̃eff(s). In the appendix
the following explicit form of the self-consistency condition is derived,{

Γ̃eff(s) − Γ10

Γ1,0 + sẼ0(s)[Γ̃eff(s) − Γ10]

}
ρ(Γ10)

= 0 . (18.58)

The conditional probability of the effective medium at site 0 can be given
explicitly in d = 1,

Ẽ0(s) = [s(s+ 4Γ̃eff(s))]−1/2 . (18.59)

The self-consistency condition (18.58) corresponds to a fourth-order equation
whose general solution is of no practical use. Hence an ansatz is made to
determine Γeff(s) for small s, corresponding to long times,

Γeff(s) = Γeff(1 + ϑ1(s/Γeff)1/2 + · · · ) s −→ 0 . (18.60)

The self-consistency condition yields

Γeff =
{

1
Γ

}−1

(18.61)

and

ϑ1 =
1
2
Γ 2

eff

{(
1
Γ

− 1
Γeff

)2
}
. (18.62)

The results for Γeff and ϑ1 are exact [32]; note that ϑ1 is specific for the
presence of disorder.

Having obtained the effective transition rate for small s, one can deduce
the asymptotic mean square displacement of a particle by an extension of the
procedure of Sect. 18.2.3. The result for the disorder-averaged mean square
displacement is

{〈δx2〉}(t) = 2Γeffa
2
(
t+ 2ϑ1(t/πΓeff)1/2 + · · ·

)
. (18.63)

There appears a “long-time tail” correction to the asymptotic mean square
displacement. Note that (18.63) together with (18.61) reproduces the exact
result (18.42) of the RB model, which was derived earlier.

The result for the s-dependence of the effective transition rate gives also
information on the frequency dependence of the mobility. The frequency-
dependent mobility of a particle is obtained from the linear response to a
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periodic force. Equivalently, one may define a frequency-dependent diffusion
coefficient as the Fourier transform of the velocity autocorrelation function
of the particle. The connection with the s-dependent effective rate is (a = 1)

D(ω) = Re[Γ̃eff(s = iω)] (18.64)

and comparison with (18.60) shows that

D(ω) = Γeff(1 + ϑ1(ω/Γeff)1/2 + · · · ) ω −→ 0 . (18.65)

Hence one finds a strong increase of the diffusion coefficient and the mobility
with frequency, for small frequencies.

18.3.5 Higher-Dimensional Lattices: Approximations

Approximations are generally necessary when one treats diffusion of single
particles on higher-dimensional lattices. An exception is the random site-
energy model, where the diffusion coefficient is known exactly in all dimen-
sions [15, 30]. First the effective-medium approximation (EMA) will be dis-
cussed; this is an approximation that includes frequency dependence. As al-
ready said in the introduction, the EMA replaces the disordered medium
by an effective ordered medium. A candid criticism of the philosophy of the
EMA from the point of view of a theorist has been given by Anderson [4].
Nonetheless, EMA provides an adequate overall description of various disor-
dered systems.

Effective-Medium Approximation

The embedding procedure for one random bond described in the previous sec-
tion can be extended to higher dimensions. The result is the self-consistency
condition [37]{

Γ̃eff(s) − Γ
z−2
2 Γ̃eff(s) + Γ + sẼ0(s)[Γ̃eff(s) − Γ ]

}
ρ(Γ )

= 0 . (18.66)

The relevant parameter is z, the coordination number; z = 2d for hypercubic
lattices. The conditional probability for the effective medium Ẽ0(s) is more
complicated for d > 1 than in d = 1. To obtain the static, long-time diffusion
coefficient one has to set s = 0. The product sẼ0(s) vanishes for s = 0 in all
d and the self-consistency condition reduces to{

Γeff − Γ
z−2
2 Γeff + Γ

}
ρ(Γ )

= 0 . (18.67)

This self-consistency condition was already established by Kirkpatrick [39]
who considered the equivalent problem of random resistor networks. If the
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effective transition rate has been determined, the diffusion coefficient is given
by D = Γeffa

2 in hypercubic lattices.
The average in (18.67) can be evaluated explicitly for a uniform distrib-

ution of activation energies [40],

νB(E) =
{

1
Ec

0 ≤ E ≤ Ec

0 otherwise .
(18.68)

One finds for Ec 
 kBT and z > 2

Γeff −→ 2Γ0

z − 2
exp

(
− 2Ec

zkBT

)
. (18.69)

The EMA result for the simple-square lattice is then

Γeff −→ Γ0 exp
(
− Ec

2kBT

)
, (18.70)

and the one for the simple-cubic lattice

Γeff −→ Γ0

2
exp

(
− Ec

3kBT

)
. (18.71)

Good agreement with numerical simulations has been found [41, 42]. Fig-
ure 18.6 shows simulation results [42] for the mean square displacement of
particles on a simple-square lattice with random barriers. One observes pro-
nounced transient behaviour for stronger disorder at intermediate times, until
the asymptotic behaviour is reached. Good agreement with the predicted as-
ymptotic behaviour (18.70) is recognized.

Critical-Path Approach

For very large disorder or very low temperatures, the diffusion coefficient of
the RB model can be estimated by the critical-path approach. This intu-
itive method was proposed by Shklovskii and Efros [43] and by Ambegaokar,
Halperin, and Langer [44]. Consider a large but finite d-dimensional lattice
and decorate the bonds with random hopping rates. Identify the largest hop-
ping rate on the lattice, then the second largest rate, etc. (see Fig. 18.7).

Continue until a connection between two opposite sides of the (large)
lattice is obtained. In the limit N −→ ∞ the possibility of connection defines
the bond percolation threshold [45], see also Chap. 22. The smallest rate in
the set of all selected rates represents an estimate for the diffusion coefficient.

The activation energy for the smallest rate will be determined for the
uniform distribution of activation energies. Evidently (cf. Fig. 18.8)∫ E∗

0

dE νB(E) = pc . (18.72)
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Fig. 18.6. Mean square displacement of particles in the RB model in d = 2 as a
function of time. Lines: (18.70); symbols: MC simulations. Uniform distributions of
activation energies; T is given in units of Ec/2. From [42].

For the uniform distribution one obtains

E∗ = pcEc . (18.73)

Hence the estimate for the diffusion coefficient is

D ∼= Γ0 exp
(
−pcEc

kBT

)
. (18.74)

(a) (b)

Ε*Ε*

Fig. 18.7. Construction of the critical path: (a) the three largest transition rates
are identified; a percolating path has been closed by bond with barrier E∗.



18 Diffusion of Particles on Lattices 765
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Fig. 18.8. Determination of the barrier E∗ from density of states.

In d = 2 the bond percolation threshold is pc = 0.5 and one has

D ∼= Γ0 exp
(
− Ec

2kBT

)
. (18.75)

This result is identical to the EMA result (18.70). In fact, it is an exact
result, as was shown by Bernasconi et al. using the self-duality of the square
lattice [46]. In d = 3, where pc ≈ 0.244 one obtains

D ∼= Γ0 exp
(
−0.244Ec

kBT

)
, (18.76)

i. e. a result that is different from the EMA result. As said above it gives the
dominant behaviour for very low temperatures or very strong disorder, but
there are important corrections to it [47, 48].

Single Particles in the RBS Model

The diffusion of single particles in lattices with randomly blocked sites be-
longs to the same category of problems as other diffusion models on disordered
lattices. However, the methods of treatment are somewhat different. As al-
ready said, only low concentrations p of blocked sites will be considered, such
that long-range diffusion of test particles is always possible. An approximate
derivation of the diffusion coefficient was made by Tahir-Kheli [49] and his
result is (a = 1)

D = Γ0

(
1 − 1 − p

f
+ · · ·

)
. (18.77)

In the formula the correlation factor f for tracer diffusion in lattice gases ap-
pears, which will be discussed in Sect. 18.4.3. Ernst et al. [50] could establish
(18.77) by performing a perturbation expansion with respect to 1− p.

The validity of (18.77) was investigated by numerical simulations in
simple-cubic lattices [51] and it was found that it is a good approximation
for small and moderate concentrations of blocked sites, see Fig. 18.9.
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Fig. 18.9. Diffusion coefficient of single particles in the RBS model, as a function
of the concentration of blocked sites. Symbols: MC simulations; continuous line:
spline fit to the MC results; dashed line: (18.77). From [51].

18.3.6 Higher-Dimensional Lattices: Applications

Vanishing of D for Exponentially Distributed Site Energies

An interesting application of the exact result (18.46) for the RT model in
arbitrary dimensions can be made for the exponential energy distribution.
This distribution is given by

νT(E) =
1
Ec

exp
(
E

Ec

)
E ≤ 0 . (18.78)

Combining this expression with the Arrhenius law (18.30) for the transition
rates of the RT model, one can calculate the distribution of transition rates
ρ(Γ ) (this is equivalent to a change of the integration variable from E to Γ ),

ρ(Γ ) =
α

Γ0

(
Γ

Γ0

)α−1

, Γ ≤ Γ0 , (18.79)

where α = kBT/Ec. The inverse of the diffusion coefficient is then given by
(a = 1)

D−1 =
∫ Γ0

0

dΓρ(Γ )
1
Γ
. (18.80)

D−1 diverges for α < 1, and consequently
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D ≡ 0 for α < 1 . (18.81)

Hence the diffusion coefficient vanishes for random site energies with an ex-
ponential distribution, for temperatures kBT ≤ Ec, in arbitrary dimensions.

The mean square displacement of particles does no longer exhibit linear
behaviour at long times for α < 1. Instead one finds subdiffusive behaviour,
as was derived by Havlin, Trus, and Weiss [52]:

〈R2〉(t) ∼
{
t

2α
α+1 d = 1
tα d ≥ 2 .

(18.82)

Combined RB and RT Model for d > 1

How can one treat more general models with disorder by approximations
in higher dimensions? The EMA as formulated above with one systematic
bond requires symmetric rates. A hint can be obtained from the exact result
(18.43) for generally disordered rates in d = 1. The message of this result is:
Use thermally weighted transition rates Γjiρi for the general models. Invoking
the relation of detailed balance,

Γjiρi = Γijρj , (18.83)

one observes that the thermally weighted rates are symmetric, hence they
can be employed in the EMA as formulated above.

The utilization of thermally weighted transition rates will be illustrated
for the combined RB and RT model. Its rates were given in (18.31) and the
weighted rates were already given in (18.48). From the self-consistency con-
dition (18.67) follows for independent barriers and site-energies in arbitrary
dimensions [31]

DEMT
comb =

1
Γ0
DEMT

RB DRT. (18.84)

Since DRT is known exactly, cf. (18.46), only the application of the EMA for
the random barriers is necessary [31].

The interest in the combined RB and RT model originates from experi-
ments on diffusion in amorphous metallic alloys. The diffusion coefficient in
these substances exhibits typically linear behaviour in an Arrhenius plot of
lnD vs. ln 1/T . This is not expected from the simple models for diffusion in
disordered lattices.

As was discussed in Sect. 18.3.3, the RT model exhibits downward cur-
vature in an Arrhenius plot of lnD versus ln 1/T (i. e. the deepest trap sites
dominate at low temperatures). In contrast, the RB model exhibits upward
curvature in an Arrhenius plot of lnD vs. ln 1/T for z > 4. One can give the
following argument for the origin of this upward curvature: The critical path
dominates the behaviour of the diffusion coefficient at the lowest tempera-
ture; additional paths contribute at higher temperatures and they comprise
higher activation energies.
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Fig. 18.10. Arrhenius plot of the diffusion coefficient for two-level models. Con-
tinuous lines: EMA, d = 3; dashed lines: EMA, d = 5. Symbols: MC results (+: RB
model, �: RT model, �: combined model).

Limoge and Bocquet suggested a possible compensation of the effects of
random barriers and of random traps [53]. The original derivations given
in [53] were only partially satisfactory. We investigated the problem by the
analytic approach outlined above and by numerical simulations [54]. This
reference also contains a more detailed discussion of the previous work. It
was found that compensation is possible in finite temperature intervals if
the relative strengths of RB and RT are properly adjusted. Fig. 18.10 shows
this compensation for uniform distributions of barrier and trap energies in
d = 3 when |ET

c | ≈ 3/5 EB
c . Complete compensation of the curvature is only

possible for d −→ ∞, as was shown by Wichmann [29].

Frequency Dependence

Only some remarks on the frequency dependence of the mobility or the dif-
fusion coefficient will be made. There are many observations of frequency-
dependent conductivities in disordered substances with typically

σ(ω) ∼ ωβ 0 < β < 1 . (18.85)

The question is whether this behaviour can be understood in the framework of
single-particle theories, for instance by EMA. So far, asymptotic results were
derived for the frequency-dependent conductivity in the limit ω → 0 [33], for
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a review, see [15]. They seem to be not really useful in the frequency ranges
of interest. Numerical evaluations of the self-consistency condition for finite
ω were made by Wagener and Schirmacher [55] and Hoerner et al. [56]. The
authors found a frequency dependence in qualitative accord with (18.85).
In the opinion of the authors, no simple physical picture of the origin of
anomalous frequency dependence has been established so far (see however
Chap. 21).

It should also be pointed out that the problem of the frequency-dependent
mobility is truly a many-particle problem, in addition, the particles can have
interactions. Work has been done on this problem mainly by numerical sim-
ulations [57–59], see also Chap. 20.

18.3.7 Remarks on Other Models

In this section some comments will be made concerning several models that
are not treated in this chapter. The first three are addressed in other chapters
of this textbook, hence some cursory remarks will suffice.

Fractals

These objects are considered in Chaps. 10 and 19. If they are regularly con-
structed objects, often an explicit solution of recursion relations is possible,
and the mean square displacement of diffusing particles can be calculated.

Percolation lattice

This model is treated in Chap. 22, together with experimental realizations. It
can be viewed as the RBS model, where the concentration of blocked sites is
adjusted at the threshold value where the diffusion coefficient vanishes. Diffu-
sion of particles on fractals and on percolation lattices exhibits an interesting
behaviour including scaling laws that are different from ordinary diffusion.

Extended defects

Also extended defects are not included in this chapter. An example are grain
boundaries, which are of great practical importance. They are treated in
Chap. 8.

Sinai model

Also here no detailed treatment will be given, only some introductory con-
siderations concerning the one-dimensional model will be presented.

In the Sinai model (see the references in [60]) the transition rates to the
right, Γi+1,i, and to the left, Γi−1,i, are independent random variables with
the restriction
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Fig. 18.11. Pictorial representation of the Sinai model on a larger scale.

{
ln
Γi+1,i

Γi−1,i

}
= 0 . (18.86)

The potential that would yield such transition rates from the Arrhenius law
can be imagined as representing a random walk by itself, cf. Fig. 18.11. The
Sinai condition can be interpreted as the requirement that the potential does
not contain additional systematic forces that would induce drift of the particle
in either direction.

An estimate of the behaviour of the mean square displacement can be
given in the following way [60]: Since the potential displayed in Fig. 18.11
represents a random walk, the typical height difference over a length L is
described by

V ∼
√
L . (18.87)

The motion of the particle requires thermal activation, hence the typical time
for a particle to move the length L is

t ∼ exp(V/kBT ) . (18.88)

Using (18.87) one finds
√
L ∼ ln t. Hence the typical mean square displace-

ment in this model is given by

〈δx2〉 ∼ (ln t)4 . (18.89)

Diffusion of a particle in the Sinai model cannot be treated by the methods
of Sect. 18.3.2, because the condition of existence of the ρi is violated. If one
increases the length of the chain, deeper and deeper valleys appear, in which
the ρi are concentrated. Thus the limit L → ∞ does not exist for the ρi. In
summary, the Sinai model is theoretically extremely interesting. Its practical
relevance, however, is limited: unbounded variations of the potential are not
physical for real substances.
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18.4 Many Particles on Uniform Lattices

18.4.1 Lattice Gas (Site Exclusion) Model

In the lattice-gas model, sites of a lattice are occupied by particles. Each site
can be occupied by at most one particle. A pictorial representation is given
in Fig. 18.12.

There are many applications of lattice-gas models. Two prominent ex-
amples are hydrogen in metals (see Sect. 3.5 in Chap. 3), where the atoms
occupy interstitial sites of the metal lattice, and impurity atoms on surfaces
of crystals.

The concentration of the lattice gas is defined as

c =
number of particlesNp

number of available sitesN
. (18.90)

The simplest lattice-gas model is the site-exclusion model, where multiple
occupancy of the sites is excluded, and no further interactions of the particles
are taken into account. Of course, real particles have interactions, but many
important properties of lattice gases can already be studied in this model. In
this section uniform lattices will be considered, where the transition rate of
a particle to an empty site is Γ everywhere.
Two different diffusion coefficients have to be defined for lattice gases:

– Coefficient of collective diffusion, Dcoll

This diffusion coefficient is defined through Fick’s law (1st or 2nd law),
and it describes the decay of density disturbances. Alternative expressions
are chemical or transport diffusivity.

– Coefficient of tagged-particle diffusion, Dt

This coefficient is defined through the mean square displacement of tagged
particles. It is commonly called tracer diffusion coefficient or self-diffusion
coefficient.

The single-particle diffusion coefficient, which was discussed in the preceding
sections, is obtained either from the collective diffusion coefficient, or from the
tagged-particle diffusion coefficient, in the limit of small particle concentra-
tions, c → 0. Both definitions lead to the single-particle diffusion coefficient
in this limit.

Γ

Fig. 18.12. Site-exclusion lattice gas.
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In all lattice-gas models the physical properties depend crucially on
whether a net bias in the hopping rates leads to a mean drift in the mo-
tion of the particles (and hence to a finite density-dependent current) or
not. The intrinsic non-equilibrium behavior of driven diffusive systems is
reviewed in detail in [18,61]. Besides the existence of novel and unusual non-
equilibrium phase transitions, the most remarkable features are the occur-
rence of shocks [62–64] and the importance of the physical boundaries of the
system [65–69]. In this section we consider only symmetric hopping models
where the rate of hopping does not depend on the direction of hopping across
the bond between the two sites.

18.4.2 Collective Diffusion

Consider the most basic site exclusion model where particles hop between
nearest neighbor sites with a constant rate Γ . This model is known as the
simple symmetric exclusion process, introduced by Spitzer [70]. Many exact
results are known, see [18, 71].

The basic quantity for the description of collective diffusion is P (l, t), the
probability that site l is occupied by a particle at time t. The important
point is that the identity of the particles is disregarded in its definition. The
quantity P (l, t) has a different meaning than the conditional quantity Pl(t)
in the single-particle case. It is a member of a set of probabilities, defined
on the lattice sites l which gives the mean occupation number and hence the
mean density on site l at time t . Let P (̄l, t) be the probability that site l is
empty. Obviously the following normalization condition holds:

P (l, t) + P (̄l, t) = 1 . (18.91)

The master equation for P (l, t) in the site-exclusion model is:

d
dt
P (l, t) = Γ

∑
〈l′,l〉

[P (l′, l̄, t) − P (l, l̄′, t)] . (18.92)

Here P (l′, l̄, t) is the joint probability that site l′ is occupied and site l is
empty at time t. The joint probabilities fulfil the relations

P (l′, l̄, t) + P (l′, l, t) = P (l′, t)
P (l, l̄′, t) + P (l, l′, t) = P (l, t) . (18.93)

Since P (l, l′, t) = P (l′, l, t) , insertion of (18.93) into (18.92) yields

d
dt
P (l, t) = Γ

∑
〈l′,l〉

[P (l′, t) − P (l, t)] . (18.94)

This equation is identical to the master equation for the single-particle case.
The initial conditions, however, are different. The derivation presented above
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including that of the coherent dynamical structure function has been pro-
posed by Kutner [72].

As a consequence of the master equation (18.94), the coefficient of collec-
tive diffusion results to be

Dcoll = Γa2 , (18.95)

which is identical to the diffusion coefficient of a single particle on a uniform
lattice (The numerical factor applies to hypercubic lattices in all dimensions).
The important feature of (18.95) is that the collective diffusion coefficient
does not depend on the concentration of the site-exclusion lattice gas.

The mathematical reason for the absence of the concentration dependence
in the symmetric exclusion process is an underlying SU(2) symmetry of the
generator of this Markov process. In the quantum Hamiltonian formalism
for the master equation the Markov generator turns out to be the SU(2)-
symmetric quantum Hamiltonian of the Heisenberg ferromagnet [73, 74]. In
this correspondence the (many-particle) dynamics of the local density P (l, t)
is related in a simple fashion to the (single-particle) spin-wave dynamics of
the ferromagnet. This accounts for the identity of the dynamical equation
(18.94) for the local density with the single-particle diffusion equation.

18.4.3 Tracer Diffusion for d > 1

The diffusion coefficient of a tagged particle, Dt, is defined from the asymp-
totic behaviour of its mean square displacement for t → ∞

〈R2〉(t) → 2dDtt . (18.96)

In this chapter only a cursory treatment of tagged-particle diffusion in the
site-exclusion model for d > 1 will be given.

Consider a tagged particle. Its mean transition rate is (1 − c)Γ , where
1 − c is the blocking factor, i. e. the probability of finding an unoccupied
site in the site-exclusion model. A mean field estimate of the tagged-particle
diffusion coefficient is

DMF
t = (1 − c)Γa2 , (18.97)

hence Dt is smaller than Dcoll. Bardeen and Herring [75] pointed out that
(in the limit c → 1) there exists a backward correlation in the random walk
of a tagged atom. To understand its origin, regard Fig. 18.13, where a tagged
particle has made an exchange with an empty site.

Immediately after the transition there is an increased probability for a
backward transition of the tagged particle, due to the presence of a vacancy,
with certainty, at the initial particle position. This can be accounted for by
introducing a correlation factor f(c), with generally f(c) ≤ 1,

Dt = (1 − c)Γa2f(c) . (18.98)
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(b)            c -> 1(a)             c < 1

Fig. 18.13. Illustration of origin of backward correlation; (a) lattice gas of arbitrary
concentration; (b) limit relevant to metal physics.

In metal physics the factor 1−c is the concentration cV of thermally activated
vacancies and cV � 1. The correlation factor f = f(c→ 1) can be calculated
from the random walk of a single vacancy. Its walk is uncorrelated and can be
described by the methods of Sect. 18.2.1. The tagged atom, however, performs
correlated random walk. In the limit c → 1 only consecutive jumps of the
tagged particle are correlated. Then [76]

f =
1 + 〈cosϑ〉
1 − 〈cosϑ〉 , (18.99)

where 〈cosϑ〉 is the average angle between two consecutive transitions of the
tagged particle. This quantity can be calculated exactly from the random
walk of a single vacancy [77]. Values of 〈cosϑ〉 and f for various lattices are
given in [78]. An example is the value f = 0.727 . . . for the bcc lattice.

Extensions to arbitrary concentrations of the lattice gas were made by
Nakazato and Kitahara [79] and Tahir-Kheli and Elliott [80]. They derived

f =
1 + 〈cosϑ〉

1 + [(2 − 3c)/(2 − c)]〈cosϑ〉 , (18.100)

where 〈cosϑ〉 has the same meaning as above. Equation (18.100) is an ap-
proximate expression, but simulations show that the deviations are less than
1-2 % of the correct value (see Fig. 18.14). Of course, f(c = 0) = 1, and
f(c → 1) reproduces (18.99). More details about the correlation factor, in
particular about its relevance for experimental studies, have been presented
in Chap. 1.

18.4.4 Tagged-Particle Diffusion on a Linear Chain

Tagged-particle diffusion on a linear chain is completely different from tagged-
particle diffusion in higher dimensions (d ≥ 2). The reason is that the
tagged particle cannot pass the other particles, as schematically illustrated
by Fig. 18.15.
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Fig. 18.14. Correlation factor for site-exclusion lattice gas on a square lattice as
a function of concentration. Line: (18.100); symbols: MC simulations. From [81].

As a consequence, the mean square displacement of the tagged particle,
〈δx2〉(t), is no longer proportional to t. It turns out that the mean square
displacement of a tracer particle under the single-file constraint is asymptot-
ically proportional to

√
t. This phenomenon is called single-file diffusion and

it was first described in the physical literature by Richards [82]. There exist
formal derivations of this behaviour (see [83] and references therein). How-
ever, the analytical derivations are rather difficult. Therefore, a derivation
of the asymptotic behaviour from a physical consideration will be presented
that is due to Alexander and Pincus [84]. The main idea is that the rela-
tive displacements of two tagged particles are caused by density fluctuations
of the other particles. These density fluctuations are governed by collective
diffusion.

For the derivation a continuum description will be adopted. In Fig. 18.16
the equilibrium positions and the displacements of two tagged particles are
indicated.

A relation between the displacement difference and the change of density
δn(x, t) in between the two particles is required. This relation is derived in

Fig. 18.15. Tagged-particle diffusion on a linear chain.
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Fig. 18.16. Coordinates for the derivation of the mean square displacement in
single-file diffusion, following [84].

the appendix (Sect. 18.7.3) and it reads in Fourier space

1
n
δn(k, t) = iku(k, t) , (18.101)

where u(k,t) is the Fourier transform of the displacement u(x, t) of the tagged
particle. It follows

u(x, t) − u(x, 0) =
1
n

∫
dk
2π

eikx 1
ik

[δn(k, t) − δn(k, 0)] . (18.102)

The square of this expression will be taken. One is interested in the random-
walk average of the square. Instead of performing this average, one can take
the ensemble average over many tagged particles, with the result

〈[u(x, t) − u(x, 0)]2〉 =
1
N

∫
dx[u(x, t) − u(x, 0)]2

=
1

Nn2

∫
dk
2π

2
k2

[〈δn(k, 0)δn(−k, 0)〉

−〈δn(k, t)δn(−k, 0)〉] . (18.103)

Here the density fluctuations are averaged over the stochastic dynamics
of the lattice gas. The decay of density fluctuations is governed by collective
diffusion; in the limit of long wavelengths k → 0, i.e., for long times, one has

〈δn(k, t)δn(−k, 0)〉 −→ Nc(1 − c) exp(−Dcollk
2t) . (18.104)

Insertion of this relation into (18.103) and transcription of the right-hand
side into a lattice formulation gives (a = 1)

〈[u(t) − u(0)]2〉 =
2(1 − c)

c

∫ ∞

−∞

dk
2π

1 − exp(−Dk2t)
k2

. (18.105)

The integral is ∫ ∞

0

dx
1 − e−λ2x2

x2
= λ

√
π . (18.106)

Hence one obtains using the result (18.95) for Dcoll
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Fig. 18.17. Mean square displacement of tagged particles on a linear chain at
concentration c ≈ 0.5 as a function of time. Lines: theory; symbols: MC simulations.
From [83].

〈[u(t) − u(0)]2〉 =
2(1 − c)

c

√
Γt

π
. (18.107)

This is the characteristic behaviour of the mean square displacement of tagged
particles under the single-file constraint. Experimental evidence for single-file
diffusion is reported in Chap. 10.

Expression (18.107) is valid for long times. For short times (1− c)Γt� 1
one has

〈δx2〉(t) = 2(1 − c)Γa2t . (18.108)

In this time regime one recovers the mean-field result (18.97) for the tracer
diffusion coefficient. In [83], an approximate expression was derived that cov-
ers the complete time region. Figure 18.17 shows numerical simulation results
for the mean square displacement of tagged particles, together with the the-
oretical curve of [83]. One recognizes the proportionality of 〈δx2〉(t) with

√
t

for longer times.
It is instructive to consider two coupled lines between which the particles

can make transitions with rate Γ⊥, under the condition that the target sites
on the other chain are not occupied, cf. Fig. 18.18. The single-file constraint
is now relieved and one expects that a tagged particle makes asymptotically
normal diffusion,

〈δx2〉(t) = 2Dtt . (18.109)

A heuristic derivation of the diffusion coefficient Dt in this situation can
be given by putting together single-file mean square displacements of the
particle according to (18.107) at time intervals 1/Γ⊥(1 − c), see Fig. 18.19.

This is the mean time, where a tagged particle makes a transition to
the other chain and starts a new displacement. The slope of the dashed line
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Γ

Γ⊥

Fig. 18.18. Particle diffusion on two coupled lines.

in Fig. 18.19 can be determined in the following way: Take 〈δx2〉 at time
t = 1/Γ⊥(1 − c) and divide by this time. This gives as an estimate for the
diffusion coefficient

Dt
∼=

(1 − c)3/2

c
Γ

√
Γ⊥
Γ

. (18.110)

An approximate theory which is valid at all times, was given in [85].
Figure 18.20 presents the results of numerical simulations together with the
theoretical results of this paper. One recognizes how the asymptotic behav-
iour ∼ t is reached for Γ⊥/Γ �= 0 after a crossover region.

18.5 Many Particles on Disordered Lattices

18.5.1 Models with Symmetric Rates

In this final section of this chapter, diffusion of many particles on regular lat-
tices with disordered transition rates will be treated. The disordered rates are
assumed to be fixed, i. e. quenched disorder is assumed. The considerations
will be restricted to the site exclusion model, where double occupancy of the
sites is forbidden, and no further interactions of the particles are present.
Only the coefficient of collective diffusion will be studied. Even with all

<x >2

t[(1-c)    ]-1Γ⊥

Fig. 18.19. Heuristic derivation of the diffusion coefficient of a tagged particle on
two coupled lines.
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Fig. 18.20. Mean square displacement
of tagged particles on two coupled lines
as a function of time. Lines: theory; sym-
bols: MC simulations. The ratio Γ⊥/Γ is
indicated on the curves. From [85].

these restrictions, the problem is very difficult, with one important excep-
tion. Namely, for symmetric transition rates, the problem can be reduced to
the independent-particle problem. This case will be treated in this section.

The cancelation of the joint probabilities in the master equation for P (l, t)
that has been shown in Sect. 18.4.2 for lattices with uniform transition rates
is also valid for disordered lattices as long as Γij = Γji. In this case the
hierarchy of many-particle equations reduces to the single-particle equation
with disordered, symmetric rates. Consequently [86]

if Γij = Γji then Dcoll = Ds.p. . (18.111)

The index s.p. means single, independent particles. The origin of this cancel-
lation is the symmetry under the Lie algebra for the special unitary group
SU(2) of the generator of the process which holds on any type of lattice with
arbitrary bond-symmetric disorder [74]. Also symmetric processes with par-
tial exclusion of up to Mi particles on lattice site i have this property [18]. A
result equivalent to (18.111) was obtained for the conductivity by Harder et
al. [87].

The models of interest are the random barrier model and the model with
randomly blocked sites.
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18.5.2 Selected Results for the Coefficient of Collective Diffusion
in the Random Site-Energy Model

The nontrivial case for collective diffusion of site-exclusion lattice gases in
disordered lattices is the case of site-energy disorder. No cancelation of the
joint probabilities P (l, l′, t) occurs in the master equation and one has to
resort to approximations, with two exceptions. The first exception is the site-
exclusion lattice gas on a linear chain with random site energies (RT model)
in the limit of very small vacancy concentrations, cV → 0. The diffusion
problem of single vacancies can then be solved, for instance by the methods
of Sect. 18.3.2, and the exact result for the corresponding diffusion coefficient
Ds.v. was given in [88]. In the limit c→ 1 Ds.v. agrees with Dcoll. Second, an
exact expression for the collective diffusion coefficient can be given for the
RT model in the limit of infinite dimensions. Apart from these two cases, no
further exact results for the collective diffusion coefficient are known. Hence
approximate treatments are necessary.

An effective medium approximation for collective diffusion of site-exclusion
lattice gases can be formulated in the following way. First the problem has to
be reduced to an effective one-particle problem. This can be achieved by an
obvious extension of the results for the single-particle case, where weighted
transition rates were used. The following effective or mean field single-particle
transition rates will be introduced

Γ Sym
ji =

Pi(1 − Pj)Γji

{Pi(1 − Pi)}
. (18.112)

The quantity Pi is the thermal equilibrium occupation of site i. It is nor-
malized differently from ρi, hence a normalization factor in the denominator
of ΓSym is required. The symmetry of the rates ΓSym follows from detailed
balance. The rate equations (18.112) were already introduced in [89] in the
context of lattice-gas diffusion on linear chains.

The second step is the use of ΓSym in an effective-medium approximation.
Since the rate equations (18.112) are symmetric, the formulation of the EMA
of Sect. 18.3.5 can be used. From the EMA the limit of infinite dimensions
(infinite coordination number) is easily obtained [90]. The result is

Dphen
coll = {Γ Sym

ji } =
Pi(1 − Pj)Γji

{Pi(1 − Pi)}
(18.113)

and it represents a phenomenological expression for the collective diffusion
coefficient that was derived in the context of metal physics [91] and surface
physics [92]. It is not surprising that a phenomenological theory is obtained
in the limit of infinite coordination number. The main problem in treating
collective diffusion of lattice gases in disordered lattices are the correlations
that are caused by particles which occupy sites with low energies and act as
blocking sites. The effects of these correlations become irrelevant in the limit
of infinite coordination number.



18 Diffusion of Particles on Lattices 781

0

0.4

0.8

0 0.5 1

D
co

ll

c

Fig. 18.21. Collective diffusion coefficient of site-exclusion lattice gas in a two-
level RT model in d = 3, as a function of concentration. 20 % of the sites are trap
sites. Continuous lines: EMA; dashed lines: phenomenological theory; symbols: MC
results for Γ </Γ = 0.1 (�), 0.01 (+) and 0.001 (�). Limiting value c → 1: ∗.

Fig. 18.21 shows results for a two-level RT model in d = 3 which consists
of free sites with concentration 1 − ct and transition rates Γ , and trap sites
with concentration ct and rates Γ<. The results of numerical simulations are
compared with the EMA and the phenomenological expression (18.113).

The main feature of the results is that Dcoll is determined by the satura-
tion of deep trap sites by particles. This was first pointed out by Kirchheim
who modelled hydrogen diffusion in metglasses [93]. The saturation effect is
a rather general feature of collective diffusion in systems with site-energy
disorder and is not restricted to a particular realization of the disorder.

The figure also shows that the single-particle result is approached for
c → 0. Also the limit c → 1 and Γ</Γ � 1 can be understood for the two-
level RT model. In this limit Dcoll is given by the single-particle result for
the RBS model. Namely, the deep trap sites are saturated by particles and
act as blocking sites. It was discussed in Sect. 18.5.1 that for the RBS model
Dcoll ≡ Ds.p.. Additional EMA and numerical results are given in [90].

It has been shown in Sect. 18.3.6 that the diffusion coefficient of single, in-
dependent particles vanishes in the RT model for an exponential distribution
of site energies, at low temperatures. The relevant parameter is α = kBT/Ec,
where Ec characterizes the width of the distribution. The result was Ds.p. ≡ 0
for α < 1 (cf. (18.81)).

What happens when a finite concentration of particles is filled into the
lattice? The particles tend to occupy the sites with low site-energies, satu-
rating thereby the low-lying levels. If now a density disturbance is set up in
the lattice gas, the disturbance should decay by collective diffusion. This was
indeed observed in the numerical simulations of [94], and Dcoll was obtained
by monitoring the decay of cosine density profiles.



782 Klaus W. Kehr et al.

0

0.2

0.4

0.6

0 0.5 1

D
co

ll

c

Fig. 18.22. Collective diffusion coefficient in the RT model in d = 3 with expo-
nential distribution of site energies. Continuous lines: EMA; symbols: MC results
for α = 1.43 (�), 1.0 (+), 0.5 (�), and 0.333 (×). Limit c → 1 (*).

Fig. 18.22 shows numerical results for the RT model in d = 3 together
with EMA results. It is evident that Dcoll(c → 0) −→ Ds.p., also for α < 1,
where Ds.p. = 0. There is qualitative agreement between the simulations and
the EMA, particularly at lower particle concentrations.

The behaviour of Dcoll for c � 1 can be understood from the following
qualitative consideration: Since only one particle can occupy a given site, the
equilibrium occupancy of a site is given by the Fermi-Dirac distribution. In
the limit of low temperatures, all levels are occupied up to a pseudo Fermi
level E∗ (see Fig. 18.23). For the exponential distribution∫ E∗

−∞
dE

1
Ec

exp
(
E

Ec

)
= c , (18.114)

from which follows
E∗ = Ec ln(c) . (18.115)

At small concentrations and low T , diffusion is mainly carried by parti-
cles at or above the Fermi level, and the coefficient of collective diffusion is
approximately given by the single-particle diffusion expression,

D−1
coll ≈

∫ 0

E∗
dEνT(E)

1
Γ (E)

. (18.116)

The result for small c is (note that α < 1)

Dcoll ≈ Γ0

(
1
α
− 1

)
c(

1
α−1) . (18.117)

That is, Dcoll exhibits a power-law dependence on the concentration.
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Fig. 18.23. Exponential density of site
energies; the levels are filled up to the
“Fermi” level E∗.

Power-law dependence of the conductivity on the concentration has been
observed in ionic conductors, see, e. g., [95]. Of course, the actual systems
are much more complex than described by the site-exclusion lattice gas in
the RT model. Indeed, power-law dependence of the mobility was obtained
in numerical simulations of models that were designed to describe superionic
conductors [96, 97]. Nonetheless, it is interesting to note that already rather
simple models exhibit these effects.

18.6 Conclusion

This chapter was concerned with the theoretical description of diffusion of
particles on lattices. Two different dimensions of difficulties were encountered:
Diffusion of single versus many particles and diffusion in ordered versus dis-
ordered lattices. The diffusion of a single particle on a uniform lattice is a
well-understood textbook problem. Of practical interest are extensions of this
problem, for example two-state models for diffusion and trapping of single
particles. The problem of diffusion of a single particle in disordered lattices is
now well understood with respect to the asymptotic properties, if local (site
and/or bond) disorder is present. One remaining topic for future work is dif-
fusion in the presence of extended defects. Also the frequency dependence
seems to be not completely understood.

Various aspects of the diffusion of many particles on uniform lattices have
been clarified in the past, in particular the differences between collective and
tracer diffusion, the inherent correlation effects in tracer diffusion, and the
anomalous diffusion of tagged particles on linear chains (single-file diffusion).
Open problems can be found in the consideration of various forms of the
interactions of the particles.
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Least well understood is, of course, the problem of diffusion of many par-
ticles in lattices with quenched, disordered transition rates. Since this is a
problem of current interest, the corresponding remarks will be more detailed
than those concerning the previous sections. In the preceding section diffu-
sion of site-exclusion lattice gases in disordered lattices was considered. There
exist now reasonable appoximate descriptions for the coefficient of collective
diffusion in form of the phenomenological theory and the EMA. The approxi-
mations are rather accurate for two-level models of site energies if the lattice-
gas concentration c is smaller than the trap concentration ct. However, one
should be aware of the limitations of the approximations. Simulation results
in d = 3 show that there are large discrepancies between the approximations
and the numerical results when c ≈ ct. Hence an exact theory for collective
diffusion for the site-exclusion model in disordered linear chains is desired.

The following important aspects of diffusion of lattice gases in disordered
lattices were omitted in this chapter:

– Tracer diffusion
The theory of tracer diffusion is more complicated than that of collective
diffusion, in view of the inherent backward correlations for tracer diffu-
sion. The inclusion of backward correlations in the presence of quenched
disorder appears to be very difficult.

– Effects of interactions
Even for lattices with uniform transition rates, interactions can only be
treated by approximations like mean field. If disorder is present, and the
particles have interactions, one has to resort to numerical simulations,
see [57–59,96, 97] and Chap. 20.

– Frequency dependence
Although frequency dependence was investigated in numerical works (see
the references given in the preceeding item), many of the observed features
are not yet understood in a qualitative way (see however Chap. 21).

One could easily add more points to this list of partially understood problems.
The main message perhaps should be that the field of diffusion of particles in
condensed matter systems is still an open field with many unsolved problems.

18.7 Appendix

18.7.1 Derivation of the Result for the Diffusion Coefficient for
Arbitrarily Disordered Transition Rates

Consider a segment of a linear chain with general (nonsymmetric) transition
rates, as indicated in Fig. 18.3 of Sect. 18.3.2. A constant current I is fed into
site 0 and extracted at site N . Kirchhoff’s node equation for site 0 is

Γ10P0 − Γ01P1 = I . (18.118)
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It expresses the fact that the sum of all currents into site 0 is zero. The master
equation for site 1 is

d
dt
P1(t) = Γ10P0(t) + Γ12P2(t) − (Γ01 + Γ21)P1(t) . (18.119)

One has in the stationary situation

−Γ10P0 + (Γ01 + Γ21)P1 − Γ12P2 = 0. (18.120)

Add this equation to the node equation (18.118) to obtain

Γ21P1 − Γ12P2 = I . (18.121)

This procedure is continued and the equation for site i is

Γi+1,iPi − Γi,i+1Pi+1 = I . (18.122)

The last equation is Kirchhoff’s node equation at site N ,

ΓN,N−1PN−1 − ΓN−1,NPN = I . (18.123)

The aim is to relate I to the difference P0 −PN . This can be achieved by
first expressing PN−1 through PN , I, using (18.123),

PN−1 =
ΓN−1,N

ΓN,N−1
PN +

I

ΓN,N−1
. (18.124)

The quantity PN−2 can be expressed through PN−1 and I,

PN−2 =
ΓN−2,N−1

ΓN−1,N−2
PN−1 +

I

ΓN−1,N−2
. (18.125)

Insert PN−1 to obtain a relation between PN−2, PN , and I,

PN−2 =
ΓN−2,N−1

ΓN−1,N−2

ΓN−1,N

ΓN,N−1
PN

+
(
ΓN−2,N−1

ΓN−1,N−2

1
ΓN,N−1

+
1

ΓN−1,N−2

)
I. (18.126)

Continue this procedure with PN−3, etc. The final result is

P0 =
Γ01Γ12 × · · · × ΓN−1,N

Γ10Γ21 × · · · × ΓN,N−1
PN

+
(Γ01 × · · · × ΓN−2,N−1

Γ10 × · · · × ΓN−1,N−2

1
ΓN,N−1

+
Γ01 × · · · × ΓN−3,N−2

Γ10 × · · · × ΓN−2,N−3

1
ΓN−1,N−2

+ . . .

+
Γ01

Γ10

1
Γ21

+
1
Γ10

)
I . (18.127)
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The expression (18.127) can be further simplified by introducing the re-
lation of detailed balance which holds in thermal equilibrium. It is clear that
a non-equilibrium situation is maintained in the segment of the chain. The
relation of detailed balance will be used to express the ratio of two rates by
equilibrium occupation factors. An implicit assumption is the validity of the
Arrhenius law. The equilibrium occupation probabilities are proportional to

ρi ∼ exp(−βEi) ; (18.128)

note that Ei ≤ 0. The condition of detailed balance is

Γ01ρ1 = Γ10ρ0 (18.129)

or
Γ01

Γ10
=
ρ0

ρ1
= exp[−β(E0 − E1)] . (18.130)

The product of two factors is

Γ12Γ01

Γ21Γ10
= exp[−β(E1−E2)] exp[−β(E0−E1)] = exp[−β(E0−E2)] (18.131)

and the product
N−1∏
i=0

Γi,i+1

Γi+1,i
= exp[−β(E0 − EN )] . (18.132)

Equation (18.127) can then be written as

P0 − exp[−β(E0 − EN )]PN =

=
( 1

exp[−β(EN−1 − E0)]ΓN,N−1
+

1
exp[−β(EN−2 − E0)]ΓN−1,N−2

+· · · + 1
exp[−β(E1 − E0)]Γ21

+
1
Γ10

)
I . (18.133)

It will be required that P0 = PN if I = 0, and P0 �= PN only through
maintaining a current through the chain. This requirement will be satisfied if
E0 = EN , i. e., if the initial and final site energies are equal. It is henceforth
assumed that always E0 = EN , which is a reasonable assumption.

The disorder average of (18.133) will now be taken. Each term on the
right-hand side of this equation can be averaged independently and the per-
tinent quantities are taken from common distributions. The result is then

P0 − PN = N

{
1

Γi+1,i exp[−β(Ei − E0)]

}
I, (18.134)

where the dummy indices have been kept to indicate the direction of the
transition rate. The curly brackets represent the average over the different
realizations of the disorder.
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The further requirement will be made that the initial site is a typical site
with respect to the disorder average. Hence it is assumed that

{exp(−βE)} = exp(−βE0) . (18.135)

This means that the thermal occupation of the initial (and final) site is equal
to the average occupation. Large segments will be considered, where the
disorder average is approximated by the sum over all sites,

{exp(−βE)} =
1
N

N∑
j=0

exp(−βEj) . (18.136)

Thermal occupation factors will be defined by

ρi =
exp(−βEi)
{exp(−βE)} =

exp(−βEi)
1
N

∑N−1
j=0 exp(−βEj)

. (18.137)

Relation (18.134) between P0 −PN and the current I can then be written as

P0 − PN = IN

{
1

Γi+1,iρi

}
. (18.138)

This relation represents Fick’s first law. The following identification can be
made (lattice constant a = 1)

P0 − PN

N
∼= −∇n d = 1 . (18.139)

Fick’s first law reads
I = −D∇n . (18.140)

Hence one finds

D =
{

1
Γi+1,iρi

}−1

. (18.141)

18.7.2 Derivation of the Self-Consistency Condition for the
Effective-Medium Approximation

The Fourier-Laplace transformation of the conditional probability Pl(t) is
defined by

P̃ (k, s) =
∫ ∞

0

dt exp(−st)
∑

l

exp(−ika)Pl(t) . (18.142)

The equation for P̃ (k, s) is obtained by multiplying (18.51) and (18.52) with
exp(−ikal), summing over l, and integrating:
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[ s +2Γ̃eff(s)(1 − cos ka)]P̃ (ks, )
= 1 + (e−ika − 1)[Γ̃eff(s) − Γ10] [P̃1(s) − P̃0(s)] . (18.143)

Combining this equation with the master equation (18.56) for the effective
medium one finds

P̃ (k, s) = Ẽ(k, s) + Ẽ(k, s)(e−ika − 1)
×[Γ̃eff(s) − Γ10][P̃1(s) − P̃0(s)] . (18.144)

The inverse Fourier transform of Ẽ(k, s) is

Ẽl(s) =
∫ π

−π

dk

2π
exp(ikal)

s+ 2Γ̃eff(s)(1 − cos ka)
. (18.145)

Note that Ẽl(s) = Ẽ−l(s). Multiplying (18.144) with 1/2π and integrating
over k one obtains

P̃0(s) = Ẽ0(s) + [Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10] [P̃1(s) − P̃0(s)] . (18.146)

Multiplying (18.144) with exp(ika)/2π and integrating one obtains

P̃1(s) = Ẽ1(s) + [Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10] [P̃1(s) − P̃0(s)] . (18.147)

The difference of the two equations is

P̃1(s) − P̃0(s) =
Ẽ1(s) − Ẽ0(s)

1 + 2[Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10]
(18.148)

and thus

P̃0(s) = Ẽ0(s) +
[Ẽ1(s) − Ẽ0(s)]2[Γ̃eff(s) − Γ10]

1 + 2[Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10]
. (18.149)

The self-consistency requirement {P̃0(s)} = Ẽ0(s) (cf. (18.57)) leads to{
[Ẽ1(s) − Ẽ0(s)]2[Γ̃eff(s) − Γ10]

1 + 2[Ẽ1(s) − Ẽ0(s)][Γ̃eff(s) − Γ10]

}
= 0 . (18.150)

The difference squared in the numerator is systematic and can be factored
out. From the master equation for the effective medium in d = 1 follows

Ẽ1(s) − Ẽ0(s) =
sẼ0(s) − 1
2Γeff(s)

. (18.151)

The self-consistency condition can now be brought into the form that has
been given in the main text.
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18.7.3 Relation Between the Relative Displacement and the
Density Change

The displacements of two tagged particles from their equilibrium positions x
and x+δx are considered. The notation is explained in Fig. 18.16. The initial
distance changes into the actual distance

δx −→ δx+ u(x+ δx) − u(x) . (18.152)

Because the number of particles in the interval between the two tagged par-
ticles is conserved, the local density change induced by the difference in the
displacements of the two particles is

δn =
nδx

δx+ u(x+ δx) − u(x)
− n . (18.153)

Here n is the (spatially constant) equilibrium particle density. A Taylor ex-
pansion for small δx is made, together with the assumption of small gradients,
∂u/∂x� 1. From (18.153) follows in linear approximation

1
n
δn = −∂u

∂x
. (18.154)

The inverse Fourier transformation is defined by

f(x, t) =
∫

dk
2π

eikxf(k, t) . (18.155)

The relation between density change and displacement gradient reads in
Fourier space

1
n
δn(k, t) = iku(k, t) . (18.156)

This is the relation used in the main text.

Notation

D = Ds.p. Diffusion coefficient of single, independent particles
Dcoll Collective (Fick’s) diffusion coefficient
Dt Tagged particle (tracer) diffusion coefficient
Ei Energy level of site i
Eij Activation energy of barrier between sites i and j
f(c) Correlation factor for tagged-particle diffusion in lattice gas
f = f(c→ 1) Correlation factor for metal physics
P (lt|00) Conditional probability of finding a particle on site l at time t

when it was at site 0 at t = 0.
Pl(t) Abbreviated form of P (lt|00)
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P (l, t) Probability of finding a particle at site l at time t (applies to
lattice gases)

P (k, t) Fourier transform of Pl(t)
P̃ (l, s) Fourier-Laplace transform of Pl(t)
Γ Transition rate between two neighbour sites in uniform lattice
Γji Transition rate from site i to neighbour site j in disordered

lattice
Γeff(t) Time-dependent transition rate in effective medium
Λl,l′ Transition-rate matrix between two neighbour sites
Λ(k) Fourier transform of transition rate matrix
νB(E) Density of activation energies of random barriers
νT(E) Density of random site energies
ρ(Γ ) Probability density of random transition rates
〈 〉 Random walk and/or thermal average
{ } Average over (quenched) disordered rates.
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19 Diffusion on Fractals

Uwe Renner, Gunter M. Schütz, and Günter Vojta

19.1 Introduction: What a Fractal is

In recent years, there has been a growing interest in the physics and physi-
cal chemistry of fractals. Fractal systems show new physical properties and
anomalous behaviour. This is particularly interesting in the field of transport
processes. The name fractal was coined in 1975 by Benoit B. Mandelbrot, the
founder of modern fractal science. It is derived from the Latin verb frangere:
to break (fractum: broken), cf. words like fraction, fracture, fragment . . .

A fractal is defined as a mathematical point set or a physical (chemical,
biological . . . ) system with a fractional geometrical (spatial) dimension (more
exactly: dimensionality). This dimension is called the fractal dimension or
Mandelbrot dimension d̄. Its rigorous and general mathematical foundation is
given by the Hausdorff dimension dH, see [1]. There also exist typical fractals
which (by chance) carry integer dimensions, e.g., certain Viscek fractals or
the Wiener trajectory of a Brownian particle during normal diffusion (d̄ = 2),
see Sect. 19.4. This fact indicates difficulties to give a suitable definition of
the fundamental concept “fractal” which is not too narrow and not too wide
– these difficulties being shared by definitions of many other basic notions.

Objects embedded in our common (Euclidean) space are characterized by
(topological) dimensions d = 1, 2, or 3. In order to understand the notion of
a fractional dimension attributed to a physical system let us consider some
specific fractal structures. A good introductory example is a solid surface with
defects like steps, dislocations, cavities, with regard to its capacity to adsorb
say atoms (Fig. 19.1). With increasing number of defects, the adsorptive
capacity becomes larger and larger and approaches that of a sponge, to which
can be assigned a dimension d = 3. Therefore, it makes sense to introduce an
effective dimension d̄ regarding adsorption, where 2 < d̄ < 3. The topological
dimension of the surface is now d = 2 as before: One indeed deals with
a surface, even if curvature and many twists are present. The embedding
dimension (or Euclidean dimension) of the system is dE = 3.

The surface of a real solid is a typical stochastic fractal. In principle, one
has to distinguish two types of fractals:
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Fig. 19.1. A real solid surface shows a larger capacity to adsorb atoms than an
ideal flat surface.

– regular, deterministic or ideal fractals, model fractals; these fractals are
constructed as mathematical objects according to a well-defined (unique)
prescription or algorithm;

– irregular, random or stochastic (or statistical) or real fractals, they are
objects of nature or in the laboratory, yet they can be constructed theo-
retically as well.

The fractal systems of interest in physical science can be divided into three
classes, typical representatives of which are:

1. Natural objects (systems with mass) like
solid surfaces, enzyme surfaces, irregular porous solids, e. g. catalysts,
polymer systems (see Chap. 10), percolation networks (see Chap. 22),
irregular particle aggregates, and many others.

2. Particle trajectories of classical Brownian motion (Wiener process), par-
ticle trajectories of anomalous diffusion e. g. on fractal systems (the so-
called fractional Brownian motion [2]) or due to time-correlations in non-
Markovian stochastic processes, quantum mechanical state vectors (wave
function) of disordered electronic systems.

3. Sets in state diagrams, in particular boundaries of attractors and attrac-
tor basins of chaotic systems, i. e. classical dissipative dynamical systems
with deterministic chaos, sets of complex zeros of partition functions in
the frame of statistical thermodynamics (Lee-Yang theorem).

In order to define and investigate the basic properties of these systems, it
is convenient to consider ideal deterministic fractals. A typical example is the
elementary Sierpiński fractal (Sierpiński network, lattice, triangle or gasket);
its construction is indicated in Fig. 19.2.

With growing number n of construction steps the structure becomes
finer and finer, nevertheless one has nothing else than a surface with holes,
i. e. an object with the geometrical (topological) dimension d = 2. Only
in the limit n → ∞ is a fractal generated; its dimension (see below) is
d̄ = ln 3/ ln 2 = 1.5849 . . . < 2. The Sierpiński fractal is a prototype of a
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Fig. 19.2. Construction of a Sierpiński gasket; n: number of construction steps.
Sketched are prefractals; the proper fractal is created in the limit n → ∞.

model for the physics of fractals and renders good services in the exploration
of the new and sometimes strange phenomena occurring in fractal systems.
Ideal fractals are characterized by two basic, closely related properties:

– Self-similarity at all length scales, dilatation invariance (structural invari-
ance against the dilatation group), i.e., existence of a hierarchical struc-
ture.

– The lack of any characteristic length (including such important character-
istic lengths of real physical systems as atomic diameter, lattice constant,
mean free paths, and correlation lengths).

Stochastic fractals are said to possess “stochastic self-similarity”, de-
fined below. The best-known representative is the percolation cluster (see
Chap. 22), generated by randomly breaking either bonds or sites from, say,
a square lattice. For small break-off probability just some bonds are missing,
but there are still many connected paths that lead through the lattice. On the
other hand, for large break-off probability the lattice breaks into disjointed,
irregular sublattices. At the critical break-off probability where connected
paths through the lattice cease to exist the system becomes a stochastic frac-
tal, i.e., average properties attain fractal dimensions.

By definition, ideal fractals have an infinitely fine structure and a spatially
infinite extension. When such a fractal is used to model a real physical system,
it is necessary to introduce two cut-off lengths: a lower cut-off given e. g. by
the lattice constant or atomic diameters, and an upper cut-off due to the
finite size of the system considered. At length scales between these two cut-off
lengths, the fractal is a good model for a disordered system, e. g. a percolation
labyrinth or a porous solid with stochastic distributions of pore locations and
pore diameters. In Sect. 10.5.3 of Chap. 10 even grains of sand are identified
as particles exhibiting surface fractality between certain cut-off lengths. The
essential property of (stochastic) self-similarity remains still valid over some
length scales.

With this in mind we can now define the notion of a fractal dimension. The
non-integer dimension of a fractal system is caused by the imperfect filling of
space; there are typically holes at all orders of magnitude (see Fig. 19.2). For
a rigorous and quantitative definition of the fractal dimension, it is useful to
assign a mass to the fractal (say, with mass density 1). The total mass M of
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Fig. 19.3. Another construction of the Sierpiński gasket a) The initiator: L = L0,
M = M0. b) The generator: L1 = 2L0, M1 = 3M0. c) n = 2: L2 = 22L0, M2 =
32M0.

a common object in an Euclidean space of dimension d = 1, 2, or 3 (say, a
given straight line, a square, or a cube) scales with the length (edge length)
L according to

M ∼ Ld. (19.1)

The factor of proportionality plays no role; important is only the algebraic
functional law between M and L which is determined by the dimensionality
of the system. Generally one defines

extensive property ∼ lengthdimension. (19.2)

For an ideal fractal, the dimension d̄ is defined by

M ∼ Ld̄. (19.3)

However, it is now important to take the limit n → ∞ in the definition of
the fractal.

As an example, let us again consider the Sierpiński gasket, now con-
structed with another algorithm, as shown in Fig. 19.3. After step n one
has a prefractal with

Ln = 2nL0, Mn = 3nM0.

Equation (19.3) yields

d̄ = lim
n→∞

lnMn

lnLn
= lim

n→∞
ln(3nM0)
ln(2nL0)

= lim
n→∞

ln 3n + lnM0

ln 2n + lnL0
= lim

n→∞
n ln 3
n ln 2

=
ln 3
ln 2

< 2.
(19.4)

The quantities L0, M0, and the factor of proportionality no longer play any
role.

For (nearly) all ideal fractals constructed in this manner one can easily
find the fractal dimension d̄ by the rule
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d̄ =
ln(scaling factor of mass)
ln(scaling factor of length)

. (19.5)

A stochastic fractal is given a dimension d̄ by the relation

〈M〉 ∼ Ld̄; (19.6)

the averaging 〈· · · 〉 is to be performed over many samples of the fractal con-
sidered. Often, of course, one is confronted with the task of determining the
fractal dimension of a natural structure where no generating algorithm is
known. Methods of measuring the fractal dimension of a given object are
reviewed in [3]. The basic idea behind these methods is the assignment of a
mass function M(L) to a definite volume V ∼ Ld in the embedding space and
then to measure this mass for a suitably chosen sequence of test volumes. This
yields a sequence of data M(Li) from which one obtains the fractal dimension
via (19.5).

Clearly, a fractal defined in this manner is not only invariant with re-
gard to dilatations of space. It is also irrelevant where in space the structure
is studied: All triangles in the Sierpińsky gasket are treated in the same
way in all consecutive iteration steps. However, fractal systems may be more
complicated. A multifractal is, crudely spoken, a fractal system with a space-
dependent fractal dimension. Typical multifractals are aggregates of (col-
loidal) particles. Such structures are not covered in this brief introduction to
diffusion on fractals. More important for our purposes is another variant of
fractals, viz. self-affine fractals. Isotropic fractals as, e.g., the Sierpińsky gas-
ket remain invariant under rescaling all the directions of the embedding space
by the same factor. Another important generalization is the introduction of
anisotropic scaling where each direction of the embedding space is scaled by
a different amount. Structures that are invariant under such rescaling are
self-affine fractals. A common example (in this case, of a stochastic fractal) is
the trajectory of a random walk where the time direction is scaled differently,
as discussed below. More about the fundamentals and applications of fractal
science can be found in excellent books [1, 3–5]; a short review of selected
applications is given in [6].

19.2 Anomalous Diffusion: Phenomenology

Diffusion is the fundamental process of mass transport in a tremendous va-
riety of systems. Since also fractal structures are not uncommon (of course,
with the limiting upper and lower cut-offs, resp., in real systems) it is rather
important to investigate diffusion processes on fractal systems. Our topic is
the overall behaviour of diffusing particles, i.e., the statistics of the many
steps of one, several, or many particles, not the elementary process of one
step.
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Let us first recall the basic facts of normal diffusion in common (i. e.
Euclidean) systems (see also Chaps. 1, 10, 18, 23 and [7, 8]). Our starting
point is the linear diffusion equation of Fick for the particle number den-
sity n(x, y, z, t) = n(r, t) in a one-component system

∂

∂t
n = D∆n, (19.7)

where D is the diffusion coefficient and ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 the
Laplacian. This equation results from the existence of a diffusive current

j = −D∇n (19.8)

due to the random motion of particles (Fick’s law) and the continuity equa-
tion

∂

∂t
n = −∇j, (19.9)

resulting from the conservation of the number of particles.
Let N be the total number of particles in the system, then

P (r, t) =
n(r, t)
N

(19.10)

appears as the spatial probability density to find one particle at the place r
at time t.

The diffusion equation
∂

∂t
P = D∆P (19.11)

with the initial condition P (r, t0) = δ(r − r0) (corresponding to particles
localized at the point r0 at time t0) has as solution the Gaussian distribution

P (r, t|r0, t0) =
1

(4πD (t− t0))d/2
exp

(
− (r − r0)2

4D (t− t0)

)
. (19.12)

This is the Green’s function (or propagator) of the diffusion equation. (R. P.
Feynman has first coined the name propagator, but for the quantum mechan-
ical transition probability amplitude.) The evaluation for the case of normal
diffusion of, e.g., guest molecules in zeolites is given in Chap. 23.

The basic quantity P (r, t|r0, t0) is the conditional spatial probability den-
sity to find one particle at r, t, given the initial position r0, t0. In physical
terms it is simply the spatial transition probability density from r0, t0 to
r, t for one particle. We remark that the propagator is not a self-correlation
function in the proper sense, though it may be represented in terms of the self-
correlation function of δ(r − r(t)) where r(t) denotes the position of a given
particle at time t. Hence in Mößbauer and neutron scattering spectroscopy
(see Chaps. 2 and 3) both terms are often used simultaneously.

With the variables r0 = 0, t0 = 0 the propagator
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Fig. 19.4. Normal diffusion. In
equal time intervals ∆t the mean
square displacement increases by
equal amounts.

P (0, t|0, 0) ∼ t−d/2 (19.13)

represents the probability density to find a particle at the (arbitrary) origin
at time t, if it was at the origin at time 0.

The mean square displacement, with (19.12) and r0 = t0 = 0, becomes

〈
r 2(t)

〉
=

∫
r 2P (r, t|0, 0)ddr

= 2dD t (d = 1, 2, 3, 4, . . .).
(19.14)

The proportionality between
〈
r 2(t)

〉
and t for all integer dimensions d reflects

the universality of normal diffusion (see Fig. 19.4).
The diffusion equation (19.11) allows for the factorization of the solution

P :
P (x, y, z, t) = P (x, t)P (y, t)P (z, t). (19.15)

This means that there is no correlation between the particle motions in x-,
y-, and z-direction, respectively. Likewise, for the normal diffusive motion of
one particle, there is no correlation of the individual particle displacements
in time, which is reflected in the Gaussian distribution of the probability
density and therefore also in a linear relation between 〈r2〉 and t as shown
in Fig. 19.4. Rigorously speaking, the universality of normal diffusion results
from the central limit theorem which asserts that independent, identically
distributed increments of a random variable (here the particle position) with
finite mean and variance always lead to a Gaussian distribution.

The anomalous diffusion on fractal systems, e. g. on the network of a
Sierpiński gasket, is caused by the self-similarity at all length scales [5]. A
diffusing particle has to circumvent all holes resulting in an increasing effect
of hindrance. Experiments show, however, that it is not only the diffusion
coefficient D which is diminished; even the functional law (19.14) is changed,
leading to the relation 〈

r2(t)
〉
∼ tκ, κ < 1. (19.16)

The time exponent κ shows no universality:
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Fig. 19.5. Mean square displacement for anomalous diffusion; κ = 1/2; cf.
Fig. 19.4. The diffusion law (19.16) acts as an asymptotic law; therefore, the curve
is not valid during a time interval ∆t0 immediately after the starting time t0 of
the process. This time interval covers say 3 . . . 10 elementary steps of the walking
particle.

1. κ is a specific quantity for every fractal type, κ depends on the fractal
dimension d̄.

2. The anomalous diffusion becomes a stochastic process with correlation in
time, its increments are no longer independent; see below and [9].

3. It follows from the time hindrance as schematically shown in Fig. 19.5
that the initial time t0 and hence the time interval ∆t is no longer ar-
bitrary, contrary to the situation in normal diffusion (Fig. 19.4). This is
important for the correct theoretical description of experiments on anom-
alous diffusion, e. g. by use of the pulsed-field-gradient NMR technique
(cf. Fig. 19.5, Chap. 10 and [10, 11]).

It can easily be understood by means of the following simple calculation that
independent time increments are incompatible with anomalous diffusion.

Following the representation of Fig. 19.6 we decompose the transition
from, say, the origin, to a position r into two consecutive transitions first
to a point r1 at some time t1 and by another displacement r2 = r − r1.
Therefore

r(t) = r1 + r2, r1 = r1(t1), r2 = r2(t2)
with t = t1 + t2, t, t1, t2 are fixed times.

Then the mean square displacement is given by〈
r2(t)

〉
=

〈
(r1 + r2)2

〉
=

〈
r2

1

〉
+

〈
r2

2

〉
+ 2 〈r1 · r2〉 . (19.17)

With (19.14) for normal diffusion, (19.17) yields〈
r2(t)

〉
= 2dD(t1 + t2) + 2 〈r1 · r2〉 .
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Fig. 19.6. Displacements for the ex-
planation of anticorrelation during
anomalous diffusion.

On the other hand,
〈
r2(t)

〉
= 2dDt which – since t = t1+t2 – is in agreement

with the absence of correlations (i.e., K(t1, t2) ≡ 〈r1 · r2〉 = 0) between the
increments r1 and r2, respectively.

In contrast, for anomalous diffusion with (19.16) one obtains

tκ = tκ1 + tκ2 + 2K(t1, t2), (19.18)

which proves that the correlation functionK(t1, t2) is non-zero and, for κ < 1,
negative:

K(t1, t2) < 0 for κ < 1. (19.19)

Equation (19.19) quantifies the phenomenon of “anticorrelation” and also
provides a physical interpretation (Fig. 19.6): The diffusing particle is walking
preferentially in the “backward” direction with an (averaged) angle larger
than π/2 between the last two steps. Thus the diffusion is slowed down and
one speaks of subdiffusive behaviour. The quantity

dw = 2/κ (19.20)

is called the walk dimension as it describes the distribution of trajectories
the random walker may take. One has

κ =
2
dw

≤ 1, 2 ≤ dw ≤ 6. (19.21)

The limiting case dw = 2 corresponds to normal diffusion: κ = 1.
Closely related to the anomalous walk dimension in a fractal is the obser-

vation of an anomalous decay

P (0, t|0, 0) ∼ t−d̃/2. (19.22)

of the return probability (19.13). It is remarkable that d̃ �= d̄. In fact, (19.22)
defines a new dynamical dimension, the so-called spectral dimension d̃, gov-
erning the dynamics of fractal systems to a large extent (though one should
be aware of exceptions [20]). Often one has d̃ ≈ 4/3 [21–23].
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19.3 Stochastic Theory of Diffusion on Fractals

The aim of a more detailed stochastic theory of dynamic processes in fractal
systems is twofold,

– to furnish methods for the analytical or numerical calculation of dynami-
cal dimensions, mean square displacements, reaction velocities and other
quantities,

– to provide a deeper understanding of dynamic processes in fractals.

Given the scale invariance both of the fractal and of the trajectory of the dif-
fusing particle (see below) the natural choice of approach is the use of scaling
relations, and, for more detailed study, the renormalization group formalism.
The central idea behind all scaling approaches and renormalization schemes
is the study of quantities of interest under a repeated rescaling of space and
time. Renormalization can be implemented in many different ways which we
cannot review here in this brief survey in any detail. We only point out some
of the relevant literature for further reading.

A main problem is the evaluation of the propagator P (r, t|r0, t0) which no
longer satisfies the simple equation (19.11), and of quantities derived from it,
in particular, the mean square displacement (19.16) and the return probabil-
ity (19.22). There exist several analytical methods [5,7,9] (see also Chap. 18)
which make use of either

– the simple random walk (RW) of one diffusing particle. This particle
jumps in fixed time steps to neighbouring lattice sites and thus accom-
plishes a Markovian process,

– or the continuous time random walk (CTRW), the diffusing particle jumps
at arbitrary times to neighbouring sites and generally performs a non-
Markovian process (technically a semi-Markovian process) which shows
some type of memory.

For simulation purposes the most transparent way to study the proper-
ties of diffusion in fractals is the simple (discrete-time) random walk. This
is a legitimate approach to obtaining more general results because usually
power law relations such as those discussed above are universal reflecting the
properties of large classes of systems rather than the properties of only the
specific model under investigation. In the basic relations (19.16), (19.22) the
parameter t is then understood as a large integer number, representing the
number of steps a random walker has taken.

There are two related formalisms for the analytical investigation of
CTRW, namely the master equation method [5, 7] and the propagator for-
malism [7, 9].

The basic quantity of the propagator formalism is the waiting time distri-
bution (probability density) w(t) (another widely used symbol is ψ(t)). The
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waiting time is defined as the time which a particle spends at a definite site
until the next jump. For the special case of an exponential distribution

w(t) = αe−α t, (19.23)

where 1/α = 〈t〉 is the mean waiting time, the total process (in time) becomes
a Poisson process which is Markovian.

Generally, the propagator P (r, t|r0, t0) is given by the summation of wait-
ing time distributions up to the finite time t, more precisely by the convolution
product (power)

P (t) = w(t)∗k, k = 1, 2, . . . . (19.24)

After Laplace transformation in time a convenient formalism emerges [9]. A
dynamic real-space renormalization procedure then yields the walk dimension
dw (19.20) as well as P (r, t|r0, t0) [9, 18, 21]. The walk dimension, e. g. of
the Sierpiński gasket, is dw = ln 5/ ln 2 > 2; its spectral dimension is d̃ =
ln 9/ ln 5 < 2. These quantities may also be derived using renormalization
within the master equation approach [22]. Using renormalization techniques
the spectral dimensions for a variety of lattices have been calculated [23].

The CTRW formalism can be generalized by including a probability dis-
tribution of random flying times of the diffusing particle considered; this sup-
plies a generalized non-Markovian master equation and the equivalent general
propagator formalism [19]. Other theoretical possibilities are furnished by the
fractional calculus (with the application of differential quotients and integrals
of fractional order) [9,24]. The differential equations of diffusion, i .e . the ex-
tensions of the Fick equation (19.7) or (19.11), are more complicated and no
longer universal; their analytical form depends on the fractal type.

19.4 Anomalous Diffusion: Dynamical Dimensions

Anomalous diffusion can be conveniently described by use of dynamical di-
mensions which only in part imply a geometrical meaning. Simple scaling
laws already give valuable insights into their significance and interrelations,
without the necessity of employing the full renormalization group machinery.

The return probability for normal diffusion is connected with the propa-
gator formula (19.13). Generalizing (19.13) we have introduced the spectral
dimension d̃ (19.22) (another common symbol: ds) of anomalous diffusion.
Another definition of the spectral dimension is possible on the basis of the
Debye theory of atomic vibrations in a crystalline monatomic solid. The vi-
brational spectrum (hence the name “spectral dimension”) is determined by
the vibrational density of states

!(ω) ∼ ωd−1 for normal solids (d = 2, 3, 4, . . .)

!(ω) ∼ ωd̃−1 for fractals, (19.25)
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i. e. for prefractals whose vertices (lattice sites) are occupied by vibrating
atoms. Both definitions (19.22) and (19.25) yield the same spectral dimension
[5].

A second important dynamical dimension is the walk dimension dw (19.20)
for the mean square displacement. Since the walk dimension describes the
typical region explored by the random walker after some time t one defines
a diffusion length l ≡ l(t) by means of〈

r2(t)
〉

= l2. (19.26)

Then (19.20) can be given the form

t ∼ ldw . (19.27)

The time t is proportional to the contour length of the trajectory of the
diffusing particle. In lattice language this corresponds to the number of steps
the random walker has taken. Considering the trajectory itself as a stochastic
fractal, the contour length is also proportional to the mass of the fractal and
(19.27) becomes a special case of the general formula (19.2).

Therefore, in most cases the walk dimension dw is identical to the geo-
metrical fractal dimension d̄ which can be assigned to the single-particle
trajectory of the diffusion process considered as Wiener process or general-
ized Wiener process. The Wiener theory of normal diffusion describes the
usual Brownian motion discovered nearly 200 years ago. The correspond-
ing trajectory is schematically represented in Fig. 19.7. It is the simplest
possible rigorous mathematical theory of a (continuous) Markovian process
(i. e. a process without memory) governing normal diffusion. Nevertheless,
the particle trajectory is a very complicated curve, filling a (twisted) plane
essentially densely and being characterized by a dimension d̄ = 2 = dw. This
curve is everywhere continuous, but nowhere differentiable. These are typi-
cal features of a fractal which in this case is a self-affine structure. This can
be seen from (19.27): The particle trajectory remains (on average) invariant
under the anisotropic scaling r → br, t→ bdwt in the embedding (r, t) space.
This dynamical scale invariance with dw = 2 shows up also in the propaga-
tor (19.13). For hindered diffusion one gets d̄ = dw > 2, that means that
the particle trajectory is even more densely packed. There are, however, also
exceptions of the rule dw = d̄ [12].

Since the trajectory of a Brownian particle itself defines a fractal the
theory of diffusion on fractals has to deal with understanding the impact of
an underlying fractal space on the statistical properties of curves which are
already (self-affine, dynamical) fractals in normal (Euclidean) space. As a
general relation between the three dimensions d̄, d̃, dw one has

κ =
2
dw

=
d̃

d̄
. (19.28)
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Fig. 19.7. Wiener trajectory
of normal diffusion, coarse
grained.

Here d̄ denotes the fractal dimension of the system considered (not of the
particle trajectory). For a common (Euclidean) system one has d̃ = d̄ = d,
dw = 2. A fractal system is characterized by κ < 1, i. e. d̃ < d̄.

A proof of the basic relation (19.28) can be given by the following scaling
argument. It is a typical example of the methodology of fractal science. With
the definition (19.26) of the diffusion length l one has

l = l(t) ∼ t1/dw . (19.29)

The volume visited by a particle on the average up to the time t is given by

V (t) ∼ ld̄ ∼ td̄/dw . (19.30)

The probability (density) to find the particle at time t at any definite place
within the fractal, e. g. at the origin, hence follows as

P (0, t) ∼ 1
V (t)

∼ t−d̄/dw . (19.31)

On the other hand, according to (19.22) one has

P (0, t) ∼ t−d̃/2. (19.32)

The comparison of (19.31) and (19.32) yields (19.28). This proof is essentially
rigorous. Similar scaling arguments may also be employed for other transport
processes, e.g., electronic transport [5, 13].

An important quantity intimately connected with the return probability
is the number S(t) of different locations in space that the diffusing particle
has visited after time t. Here a “location” means some small volume element
of the order of the particle size. One may therefore think of the (continuous)
space as being divided in a lattice with a lattice constant equal to the particle
diameter and view the random motion as a hopping process between these
sites as explained in detail in Chap. 18. In d-dimensional Euclidean space
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(19.30) reads V (t) ∼ td/2. On the other hand, the number of jumps N(t)
made after time t is proportional to t. Therefore the mean time spent on
each site is given by the ratio

V (t)/N(t) ∼ t1−d/2.

In more than two dimensions this mean time decreases with increasing time.
This implies that the probability that a random walker ever returns to a given
site tends to zero as t becomes large and one speaks of a non-recurrent random
walk. Hence the number S(t) of different visited sites is just proportional to
N(t) and therefore increases linearly in time. On the other hand, for d < 2 the
mean time spent at each site diverges and the return probability approaches
1; the random walk is recurrent. In this case S(t) ∼ td/2 is proportional to
the explored volume V (t). In the borderline case of two dimensions there is
a logarithmic correction to the asymptotic law S ∼ t. For recurrent walks
on fractal objects these considerations apply accordingly. Using (19.30) one
finds

S(t) ∼ td̄/dw (19.33)

which may be written in terms of the spectral dimension as S(t) ∼ td̃/2. For
d̃ > 2 the random walk on the fractal is non-recurrent. In this case S(t) ∼ t.

19.5 Anomalous Diffusion and Chemical Kinetics

An important field of application of diffusion on fractals are diffusion-limited
reactions, e.g., on the fractal surface of catalysts. Usually chemical reactions
are studied in terms of parameters which concern the electronic structure of
the molecules or atoms involved in that reaction, the environment in which
the reactions take place seems irrelevant. This treatment then leads to rate
equations with reaction constants that depend on those microscopic molecular
parameters. Probably the simplest example is the bimolecular reaction

A + A k−→ C

where A are the reactants and C is an inert reaction product. This is a
reaction where two A particles are “annihilated” when they meet inside some
effective reaction volume, with a reaction constant k. In the absence of a back
reaction C → 2A all A-particles will eventually disappear. We point out that
such a reaction mechanism need not necessarily be of chemical nature where
new chemical bonds are formed between reactants. Also physical processes
such as laser-induced exciton hopping can be described in terms of such
processes [31]. In this case the “particles” are excitons moving e.g. along a
polymer chain. The reaction corresponds to the decay upon encounter under
the emission of light (playing the part of the inert reaction product).
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Since two A-particles are necessary for an annihilation to take place the
rate equation describing the temporal change of the concentration C of A-
particle simply reads

ċ = −kc2. (19.34)

This is the well-known law of mass action. Equation (19.34) is easy to inte-
grate, with the result

c(t) =
c0

1 + c0kt

for an initial concentration c0 of A-particles. At long times the concentration
decays algebraically

c = 1/(kt) (19.35)

and is quite remarkably independent of the initial concentration. The same
reasoning may be applied to a reaction of the type A+A → A+C or even to
mixed reactions where either both particles disappear or only one, with some
probability. Various models for these systems can be shown to be exactly
equivalent by a mathematical transformation of the observables [26, 29, 32].

The assumptions regarding the spatial distribution of A-particles which
lead to (19.34) are two-fold: Firstly, one assumes the reaction to take place in
a homogeneous environment so that for a homogeneous initial distribution of
A-particles the particle concentration would remain space-independent for all
times. Secondly – and this is more subtle – one assumes that at each instant of
time the probability of finding a second A-particle inside the reaction volume
of the first is proportional to the overall probability of finding particles, i.e.,
to the concentration. This is a mean-field assumption which would be valid
if correlations between particle positions could be ignored.

Of course, the validity of such an assumption is somewhat questionable,
particularly if one thinks of reacting particles diffusing e.g. on the surface of
a catalyst. If a reaction has just taken place the reaction volume is empty
rather than filled with a probability proportional to c. Only after surround-
ing particles have had sufficient time to diffuse and thus restore an uncor-
related filling of space, the mean-field assumption will again be valid and
further annihilations can take place according to (19.34). Hence the mean-
field treatment of an intrinsically diffusion-limited reaction is justified only if
the reacting particles are stirred sufficiently quickly (so that the reaction is
not diffusion-limited anymore) or if diffusion is sufficiently efficient to main-
tain an essentially uncorrelated state of the system at all times.

It was already realized by Smoluchowski [25] that in low-dimensional re-
action media the mean field law (19.34) is actually not valid. Here diffusive
mixing is ineffective and large correlations persist for all times. Instead of
assuming that there is a second reacting particle with a probability propor-
tional to c one has to consider the flux of particles from the environment
into the reaction volume of the first particle. This approach leads to an effec-
tive reaction “constant” k(t) determined not only by microscopic molecular
parameters but also by the process of diffusion as described by Fick’s law
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(19.8). In one space dimension calculating the flux leads to a decaying reac-
tion parameter k(t) ∼ 1/

√
t. Inserting this into (19.34) leads to an anomalous

decay
c ∼ 1/

√
t (19.36)

of the particle density. This demonstrates that the effect of correlations is
particularly pronounced in low dimensions which has been verified experi-
mentally in the last two decades (for a review see [31]). Exact results derived
from lattice models (reviewed in [28]) show that the time-dependent concen-
tration becomes independent of the initial concentration, as in mean field
theory. Exactly solvable lattice models allow not only for the explicit calcu-
lation of the concentration. Also density profiles for spatially inhomogeneous
initial distributions and correlations can be calculated. Thus one has a very
detailed knowledge of the properties of the reaction A + A → C and some
other simple reactions which goes far beyond the fluctuation-corrected mean-
field theory of Smoluchowski.

According to Smoluchowski’s theory the validity of the asymptotic mean
field law depends on the dimensionality of the reaction medium because of the
properties of the particle flux. In two dimensions one has a logarithmic correc-
tion to (19.35), whereas in dimensions higher than two mean field theory re-
mains valid. For other reactions, e.g., the bimolecular Langmuir-Hinshelwood
reaction A + B → C, the critical dimension above which mean-field theory is
valid is equal to four for initially equal concentrations of randomly distributed
A and B particles. Below four dimensions one has c ∼ t−d/4. Hence already
in ordinary three-dimensional reaction environments mean-field theory fails,
in this case due to concentration fluctuations inside pure A and B domains
which build up as the reaction goes on. This is confirmed by renormalization
group studies [30].

The anomalous behaviour of diffusion-limited reactions in low-dimensional
systems naturally leads to the question what happens in a fractal where the
dimension is not integer and, moreover, the environment is not homogeneous
anymore so that the flux cannot be calculated simply using Fick’s law. It
comes as no surprise that as a result of anomalous diffusion, chemical re-
actions in fractal media (heterogeneous reactions, heterogeneous catalysis)
show strange behaviour [2, 14–17]. Also in the presence of disorder, diffu-
sion can become anomalous (Chap. 18 and 22) and the decay law (19.36)
changes [26, 27].

Rather than calculating the flux it is convenient to consider S(t), the
number of different sites visited, since the change of this quantity in time is
proportional to the effective reaction constant,

k ∼ dS(t)
dt

. (19.37)

The quantity S(t) has been discussed in Sect. 19.4 in some detail. Its connec-
tion to the flux can be understood qualitatively by noting that the particle
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flux entering the Smoluchowski approach is proportional to the probability
flux of finding a particle. This probability flux, however, is proportional to the
change in the number of sites visited because of the recurrence properties of
the underlying random walk. For a fractal one may then use (19.33) together
with (19.34) to obtain an effective rate equation for the diffusion-limited an-
nihilation process on a fractal. One then finds for long times

c ∼ t−d̄/dw (19.38)

for spectral dimensions below 2. The mechanism for this fractal correction to
mean field behaviour is the same as in a low-dimensional Euclidean medium.
As time passes particles tend to be more isolated than they would be in
an uncorrelated random ensemble, i. e. particle positions become increasingly
anticorrelated. Diffusion under recurrence conditions is too inefficient to wash
out those anticorrelations since particles are not sufficiently likely to explore
a large volume in between reactions.

The decrease of the reaction rate has a striking effect when comparing to
originally identical reaction vessels, one of which is stirred very quickly (thus
destroying anticorrelations) after some time. From this point on the reac-
tion in the undisturbed vessel will proceed more slowly. In a rate-controlled
reaction such stirring would have no effect on the reaction velocity. Similar
considerations may be adapted to the heteronuclear Langmuir-Hinshelwood
reaction A + B → C.

19.6 Conclusion

The importance and usefulness of the fractal concept can be summarized as
follows:

1. Fractals possess mathematically strange properties and imply very inter-
esting novel physical phenomena.

2. Fractals are suitable to model complicated real systems.

3. Fractals can characterize disordered systems by only a few structural
quantities, viz. geometric fractal dimension and dynamical dimensions
(dynamical exponents).

4. Fractals allow for the application of rigorous scaling and renormalization
methods without approximations.

For the study of random walks (which are stochastic fractals by them-
selves, even without underlying fractal medium) not only the fractal dimen-
sion d̄ of the medium is relevant. The distribution of possible pathways gives
rise to an independent exponent, the walk exponent dw, describing the sta-
tistical properties of trajectories of diffusing particles. In the presence of
interactions, e.g. chemical reactions, correlations between particle positions
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are a new determining factor for the behaviour of diffusion-limited chem-
ical reactions. However, for some simple paradigmatic processes the origin
of these correlations (in fact, anticorrelations) can be traced back to the
statistical properties of single random walks. Anomalous decay laws result
from inefficient diffusive mixing in recurrent random walks and hence can
be found in fractals as well as in low-dimensional Euclidean media. An en-
tirely unexplored field are nonequilibrium interacting particle systems un-
dergoing biased diffusion on a fractal under the action of a driving force.
One-dimensional (Euclidean) lattice models for such systems are reasonably
well-understood [28, 33]. However, even basic questions such as the behav-
iour of the stationary particle current as a function of particle density are
unanswered for fractals.

Notation

c particle concentration
d integer (Euclidean) dimension
dE (Euclidean) embedding dimension
d̄ geometric fractal dimension, Mandelbrot dimension

(also Hausdorff dimension)
d̃ spectral dimension
dw walk dimension
D diffusion coefficient
h heterogeneity exponent
k chemical rate constant
l diffusion length
n = n(r, t) particle number density
N total number of particles in a system
P (r, t) = P (r, t|r0, t0) propagator
r reaction order
r = (x, y, z) coordinate vector
S(t) number of different sites visited by a diffusing particle

on average up to time t
V (t) volume visited by a diffusing particle on average up

to time t
w(t) waiting time distribution
ε reaction efficiency
κ diffusion exponent
!(ω) vibrational density of states
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20 Ionic Transport in Disordered Materials

Armin Bunde, Wolfgang Dieterich, Philipp Maass, and Martin Meyer

20.1 Introduction

The low-frequency dynamic response of many non-metallic materials is gov-
erned by the transport of mobile ions or other charged mobile defects. The
classes of such materials include traditional ionic glasses, polymeric and glassy
superionic conductors, highly defective crystals or even highly viscous liquids
such as glassforming melts. To get an understanding of the microscopic trans-
port mechanism in these materials, a large number of experimental techniques
has been applied, among them are tracer experiments (Chap. 1 and [1]), con-
ductivity measurements including impedance spectroscopy (Chap. 21, [2–5]),
nuclear magnetic resonance (NMR) relaxation (Chap. 9, [6–10]), quasielastic
neutron scattering (Chaps. 2, 3 and 13, [11, 12]), internal friction and ul-
trasonic absorption measurements (Brillouin scattering) (Chap. 11, [13,14]).
In all these experiments the measured quantities show characteristic devia-
tions from the standard behavior that one would expect for a purely random
motion of the mobile ions.

For example, the dynamic conductivity σ̂(ω) in disordered crystalline and
glassy ionic conductors exhibits, for fixed temperature T , a dc-plateau at low
frequencies (below some crossover frequency 1/τσ), and follows an approxi-
mate power law behavior at larger frequencies [15],

σ̂(ω) ∼
{
σdc , ωτσ � 1,

(iω)nσ , ωτσ 
 1.
(20.1)

The dc conductivity σdc usually shows an Arrhenius behavior below the glass
transition temperature,

σdcT = Aσ exp(−Eσ/kBT ) , (20.2)

and also the crossover frequency τ−1
σ is thermally activated with the same

activation energy Eσ. The exponent nσ > 0 tends to increase, if the temper-
ature is lowered or if the frequency is increased by several orders of magni-
tude. From standard random walk theory on a lattice with equivalent sites
one would expect no dispersion to occur, i.e. nσ = 0 (see Sect. 20.2.2). The
overall behaviour (20.1) is not restricted to ionically conducting solids but
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occurs also in disordered electronic conductors such as amorphous semicon-
ductors, electronic conducting polymers and disordered polaronic conductors.
The widespread occurrence of such similar low-frequency dielectric behavior
in all disordered solids was first pointed out by Jonscher [16] and is known
as the “universal dielectric response”.

A second, “universal” type of response in disordered ionic systems occurs
at even higher frequencies, ω > ωNCL 
 τ−1

σ . Going at ambient temperatures
to the Gigahertz regime, the real part of the conductivity increases nearly
linearly with frequency,

Re σ̂(ω) ∼ ω; ω > ωNCL. (20.3)

This is equivalent with a frequency-independent dielectric loss, χ′′(ω) �
const, and is thus known as “nearly constant loss” (NCL) response [17–19].
Its temperature dependence is much weaker than implied by (20.2) and (20.1)
with the consequence that at low temperatures the NCL response dominates
the spectrum in the experimentally accessible frequency-range.

In some glassy fast ion conductors it was found that the dc-conductivity
shows strong deviations from a simple Arrhenius law even below the glass
transition temperature [20, 21]: The values of σdc at ambient temperatures
are significantly smaller than expected when extrapolating the Arrhenius law
valid at low temperatures T . We note that a non-Arrhenius behaviour was
found earlier in ion conducting glasses but disappeared after annealing [22].

Strongly non-Arrhenius diffusion of a different type occurs in yet another
class of amorphous materials, namely ion conducting polymers above their
glass transition temperature [23]. Certain chain polymers carry polar groups
in their repeat unit and are therefore capable of dissolving salts. When tem-
perature is lowered, the polymer chains tend to freeze. In contrast to (20.2),
the strong coupling of ions to the network degrees of freedom generally leads
to Vogel-Fulcher-Tammann (VFT)-type behavior [24] of the conductivity,

σdcT ∝ exp(−E/kB(T − TVFT)) (20.4)

Here E is an energy parameter and TVFT the VFT-temperature, commonly
referred to as “ideal glass transition temperature”. Much effort is being spent
to explore transport mechanisms in these complex materials, and to optimize
their electrical conduction properties with respect to their use in electrochem-
ical devices.

Apart from conduction and dielectric measurements, the perhaps most
common experimental technique to probe ionic motion in disordered media
is nuclear magnetic resonance (see Chap. 9). The behavior of the diffusion-
induced spin-lattice relaxation (SLR) rate 1/T1(ωL, T ), as a function of tem-
perature T and Larmor frequency ωL, can be summarized as follows:

1
T1

(ωL, T ) ∼
{

exp(ESLR
1 /kBT ) , T 
 Tmax(ωL),

ωnSLR−2
L exp(−ESLR

2 /kBT ) , T � Tmax(ωL),
(20.5)
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with an exponent nSLR ≥ 0. In an Arrhenius plot, 1/T1 shows a maximum
at 1/Tmax(ωL), where the temperature Tmax(ωL) decreases with decreasing
frequency. Since generally ESLR

1 > ESLR
2 , the curve is asymmetric in shape. In

contrast to this overall behavior, the standard Bloembergen-Purcell-Pound
(BPP) theory [25] predicts a symmetric maximum of 1/T1 in the Arrhenius
plot with nSLR = 0 (see Sect. 20.2.4).

Dynamic scattering of neutrons is another technique to investigate the
ionic transport. In many structurally disordered ionic conductors broad qua-
sielastic components in the scattering spectra are observed. The line shapes of
these components often deviate from simple Lorentzians, which are expected
in the simple random walk case (see Sect. 20.2.3). A similar behavior has been
found in mechanical loss spectroscopy [13,14]. The spectra are usually much
broader than simple Debye spectra, reflecting an inherent non-exponential
nature of the ionic relaxation processes.

From a theoretical point of view, the ionic transport in solids is a very
complex phenomenon (for a recent review, see [26]) and rigorous solutions are
not available. For an ordered host lattice a mode-coupling theory has been
developed to study the effect of Coulomb interactions between the mobile
ions [27]. One fundamental consequence of the long-range nature of Coulomb
forces is the non-analytic dependence of the tracer diffusion coefficient on the
ion concentration c in dilute systems, c → 0. To describe the experimental
situation for arbitrary c and arbitrary frequencies, however, it has turned
out that also the structural disorder plays an essential role [28–30]. Various
phenomenological and semi-microscopic approaches have been successfully
applied. Prominent examples are the coupling scheme proposed by Ngai [31],
the jump relaxation model pioneered by Funke [11] that recently was extended
by means of the concept of mismatch and relaxation, see Chap. 21, and the
diffusion-controlled relaxation model elaborated by Elliott and Owens [32].
Attempts have been made to map the dynamics of the many body problem
onto the dynamics of a single particle moving in a complex energy landscape
(see Chap. 18, [33–35]).

For a more microscopic description of the ionic transport one is depen-
dent upon numerical investigations. Important microscopic insight emerged
from recent molecular dynamics studies [36–38]. In this chapter we are
mainly concerned with the results of semi-microscopic Monte Carlo stud-
ies [28–30, 39–41], where the effects of long-range Coulomb interactions be-
tween the mobile ions and structural disorder in the host lattice are investi-
gated in a systematic way. The chapter is organized as follows. In Sect. 20.2
the basic dynamic quantities under study are defined and discussed with re-
spect to their standard behaviour, obtained from simple random walk theory.
In Sects. 20.3 and 20.4 we introduce different versions of the Coulomb lattice
gas model pertaining to glasses, and represent computed relaxation spectra.
In Sect. 20.5 the origin of the non-Arrhenius behavior seen in fast conducting
glasses is investigated. Interacting Coulombic traps are considered in Sect.
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20.6 as a mechanism that can explain the NCL response. Peculiarities in
the transport properties associated with compositional changes in ion con-
ducting glasses are discussed in Sect. 20.7. In Sect. 20.8 we turn to polymer
electrolytes and present calculations of their typical transport properties as
a function of temperature, pressure and salt content. Sect. 20.9 finally con-
cludes the paper with a brief summary and discussion. For ionic transport in
systems with disorder on macroscopic length scales we refer to Chap. 22.

20.2 Basic Quantities

In this section we discuss the standard behavior of the basic quantities of
interest. We assume that the mobile particles perform simple random walks
on a d-dimensional (cubic) lattice with lattice constant a. The lattice has
length L and the particle density is ρ = N/Ld, where N is the number of
particles. We assume that the mean residence time τ0 between two jumps of
a particle is τ0 = τ∞ exp(V0/kBT ), where τ∞ is a rattling time and V0 is the
structural energy barrier between two nearest neighboring lattice sites.

20.2.1 Tracer Diffusion

The tracer diffusion coefficient D is related to the long time limit of the mean
square displacement 〈r2(t)〉 of a tracer particle, D = limt→∞〈r2(t)〉/2dt. Ex-
perimentally, D can be obtained from the concentration profile of radioactive
tracers introduced into the material under investigation (see Chap. 1).

It is convenient to define (in d dimensions) a generalized frequency-
dependent tracer diffusion coefficient D̂(ω) by

D̂(ω) = −ω2

2d
lim

ε→+0

∫ ∞

0

〈r2(t)〉eiωt−εtdt, (20.6)

which for ω → 0 approaches D.
If the particles perform simple random walks, subsequent jumps of a tracer

particle are uncorrelated and the mean square displacement increases linearly
with time according to 〈r2(t)〉 = a2t/τ0, yielding D̂(ω) = D = a2/2dτ0,
independent of frequency. If the particle hops are correlated, 〈r2(t)〉 only
increases linearly for very small and very large times, and one can define a
tracer correlation factor ftr as the ratio of the long-time diffusion coefficientD
and the short-time diffusion coefficient Dst by ftr ≡ D/Dst. The deviation of
ftr from unity can be regarded as a measure of the strength of the correlations.
If a particle prefers to jump back to the site where it came from (backward
correlations) ftr < 1; if it prefers to jump forward (forward correlations), we
have ftr > 1.
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20.2.2 Dynamic Conductivity

The dynamic conductivity σ̂(ω) can be expressed by the auto-correlation
function 〈j(t) · j(0)〉 of the current density in the absence of the electric field
(Kubo formula, [42]):

σ̂(ω) =
Ld

dkBT
lim

ε→+0

∫ ∞

0

〈j(t) · j(0)〉eiωt−εtdt. (20.7)

The brackets 〈〉 denote a thermal average and the current density is given
by the sum over the particle velocities, j(t) = (eρ/N)

∑N
i=1 vi(t), where e is

the charge of the particles. (For non-interacting particles the charge e means
only a formal coupling to the external electric field.) Separating the velocity
autocorrelation function 〈vi(t)·vi(0)〉 ≡ 〈v(t)·v(0)〉 from the cross-correlation
part, we can write

〈j(t) · j(0)〉 =
ρe2

Ld

⎡⎣〈v(t) · v(0)〉 +
1
N

N∑
i�=j

〈vi(t) · vj(0)〉

⎤⎦ . (20.8)

In the absence of interactions between the mobile particles, the cross terms
in (20.8) vanish, 〈vi(t) ·vj(0)〉 = 0 for i �= j. Using that together with (20.6),
(20.7) and the relation 2〈v(t) · v(0)〉 = d2〈r2(t)〉/dt2 one obtains the Nernst-
Einstein relation for non-interacting particles,

σ̂(ω) =
ρe2

kBT
D̂(ω). (20.9)

For the simple random walk case, this yields σ̂(ω) = ρe2a2/2dkBTτ0 inde-
pendent of ω. In interacting systems, on the other hand, cross-correlations
are non-negligible. Equation (20.9) is then generalized to

σ̂(ω) =
ρe2

kBT ĤR(ω)
D̂(ω) (20.10)

where ĤR(ω) is the complex Haven ratio. For frequencies ω much larger than
the hopping rate the cross-correlations vanish even if the particles interact
and ĤR(ω) approaches one. In the limit ω → 0, ĤR(ω) approaches the ordi-
nary Haven ratio HR = ρe2D/kBTσdc.

20.2.3 Probability Distribution and Incoherent Neutron
Scattering

For a more detailed description of the diffusion process, one considers the
distribution function P (r, t), also called the “propagator” (see e.g. Chaps. 10,
19 and 23), which denotes the probability for an ion to be on a (lattice) site
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r at time t, if it started at t = 0 from site 0. The Fourier transform of P (r, t)
is the incoherent structure factor Sinc(k, ω) (see Chaps. 3, 13 and 23),

Sinc(k, ω) =
1
2π

∫
d3 r

∫
dt P (r, t)e−i(k·r−ωt) ≡ 1

2π

∫
dt Sinc(k, t)eiωt,

(20.11)
which contributes to the differential cross section obtained in scattering ex-
periments.

For simple random walks on a Bravais lattice, the intermediate scattering
function Sinc(k, t) decays exponentially

Sinc(k, t) = exp
(
−Λ(k)

|t|
τ0

)
, (20.12)

with Λ(k) =
∑

d(1−cos(d k))/ν, where the sum runs over all nearest-neigbor
vectors d and ν is the number of nearest neigbors. Accordingly, Sinc(k, ω) is
a simple Lorentzian with width Λ(k)/τ0.

20.2.4 Spin-Lattice Relaxation

In an external static magnetic field B, the alignment of the nuclear magnetic
moments of the mobile ions gives rise to a total magnetization in the direction
of the applied field (see Chap. 9). By a radiofrequency pulse perpendicular to
the static field this magnetization can be rotated into the opposite direction.
Fluctuating local magnetic and electric fields cause the magnetization to relax
into the original direction parallel to the static field B in a characteristic time
T1. The spin-lattice relaxation rate 1/T1 depends on both the magnitude of
the field B and the temperature T . In the case of ionic conductors mainly
two mechanisms give rise to the fluctuating local fields:

(i) The magnetic dipole-dipole interaction between the mobile particles.

(ii) The interaction of the nuclear quadrupole moment of one particle with the
electric field gradient of another particle (as far as the ions have nuclear
spin larger than 1/2 and the quadrupole moment of the nucleus does not
vanish).

According to standard theory (Sects. 9.2 and 9.9 in Chap. 9, [43, 44]),
1/T1 is determined by the spectral densities J (1)(ω) and J (2)(ω) at ω = ωL

and ω = 2ωL, respectively,

1
T1

= C(J (1)(ωL) + J (2)(2ωL)) , (20.13)

where ωL = γB is the Larmor frequency. The spectral densities are the
Fourier transforms of the SLR correlation functions G(q)(t),

J (q)(ω) =
∫ ∞

−∞
G(q)(t)eiωt dt, q = 1, 2. (20.14)
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In both cases (i) and (ii) the correlation functions G(q)(t) can be written
as [44]

G(q)(t) =
1
N

N∑
i�=j

〈F (q)∗
ij (t)F (q)

ij (0)〉, (20.15)

where F (q)
ij (t) = q(8π/15)1/2Y q

2 (Ωij(t))/r3ij(t) is the local field between the
particles i and j. Y q

2 are the spherical harmonics, and Ωij and rij are the
spherical coordinates of the vector rij pointing from particle i to particle j,
with respect to the magnetic field. The constant C in (20.13) depends on
the nuclear properties of the mobile particles, C = (3/2)γ4

�
2I(I + 1) in case

(i) and C = (3/2)(e2Q/�)2 I(I + 1)/(I(2I − 1))2 in case (ii). Here γ is the
magnetogyric ratio, I the spin and Q the quadrupole moment of the nucleus.

The ansatz G(q)(t) = G(q)(0)e−t/τ0 , commonly referred to as the BPP
ansatz [25], leads to

1
T1

= CG(1)(0)
[

τ0
1 + (ωLτ0)2

+
4τ0

1 + (2ωLτ0)2

]
(20.16)

where we have used G(2)(0) = 4G(1)(0) valid for an isotropic distribution of
the ions [43]. In an Arrhenius plot of ln 1/T1 versus inverse temperature, the
curve is symmetric in shape with slopes equal to V0 and −V0 on the high and
low temperature side of the 1/T1 maximum, which occurs at ωLτ0 ≈ 1. V0 is
the activation energy. At the low temperature side, ωLτ0 
 1, 1/T1 decreases
as ω−2

L = (γB)−2 with increasing field B.
It may be shown [30] that for simple random walks the asymptotic decay

of G(q)(t) is algebraic rather than exponential. However, for (20.16) to be
approximately valid it is sufficient that the correlation functions decay lin-
early with t for small times and faster than 1/t for large times. Since both
conditions are satisfied in the simple random walk case (for d = 3), the devi-
ations from the exponential decay do not lead to pronounced changes of the
standard behavior of 1/T1, according to (20.16).

20.3 Ion-Conducting Glasses: Models and Numerical
Technique

As discussed in the introduction (Sect 20.1), in most cases strong deviations
from the standard behavior are experimentally observed. We will show below
that for a more realistic description of the ionic transport that goes beyond
the simple random walk case, one has to take into account at least (a) the
Coulomb interaction between the mobile charge carriers and (b) the struc-
tural disorder of the host system.

In glassy systems the ions cannot enter all regions of the substrate but
are confined to diffusion paths with high mobility. Starting from a lattice
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gas model allowing nearest-neighbor hops, we thus make only a fraction p of
lattice sites accessible for the mobile ions, totally blocking the rest of them.
This construction is known as the site percolation model (Chap. 22, [45]). For
p well above the percolation threshold pc (pc

∼= 0.312 for the sc lattice), most
of the accessible sites belong to the “infinite percolation cluster” (IPC), which
connects opposite sides of the lattice. We disregard the small finite clusters
of accessible sites in the system and consider as our model for structural
disorder only the IPC where all mobile ions exhibit long-range mobility (see
Chap. 22 for a sketch of the IPC). This disordered structure of accessible
sites is reminiscent to a “connective tissue” or a “crumbled handkerchief”,
which has been suggested to model diffusion paths in ionic glasses [46]. In
the detailed numerical procedure we choose a simple cubic lattice of length L
with lattice constant a and use periodic boundary conditions. A fraction 1−p
(p > pc) of the lattice sites is randomly blocked and the IPC is determined
with the help of the Hoshen-Kopelmann algorithm [47].

The simple percolation model is sufficient to explain anomalous features
found in the relaxation spectra. However, it cannot explain the non-Arrhenius
behaviour observed in some fast ion conductors. In order to take into account
the energy scale associated with the disorder present in the diffusion paths
itself, we will also study a modified model, where instead of simply blocking
sites for the ions, an energy εi is assigned to each lattice site i drawn from a
Gaussian distribution P (ε) with zero mean and variance σ2

ε (see Chap. 18).
The percolative disorder can be regarded as a limiting case, where only two
site energies are allowed, one being zero (with probability p) and one being
infinite (with probability 1 − p).

In network glasses modified by alkali-oxides or -sulfides the diffusing alkali
ions will experience the Coulomb fields arising from immobile counterions. At
low doping level, this leads to the picture of well-separated, negatively charged
Coulomb traps, fixed at random positions R, which temporarily can bind
the diffusing cations and thus will have a strong influence on the conduction
process. To implement such a mechanism, we assume that cations diffuse on
a simple cubic lattice where a fraction c� 1 of randomly selected unit cubes
carry a counterion at their midpoint R. The eight corner sites of each such
cube will then constitute the binding sites for the mobile ions.

In the framework of Coulomb lattice gases, those three models of disorder
in the site energies can be summarized as follows:

I) Percolative disorder

εi =
{

0 probability p
∞ probability 1 − p

(20.17)

II) Gaussian disorder

P (ε) = (2πσ2
ε )−1/2 exp(−ε/2σ2

ε ) (20.18)
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III) Randomly placed counterions

εi = −
∑
R

nRe
2

|ri − R| . (20.19)

If c is the number of mobile ions per lattice site, then with probability c,
nR = 1, otherwise nR = 0. In this way charge neutrality is maintained.

In all these models, we assume that sites cannot be occupied by more than one
ion. The strength of the Coulomb interaction relative to the thermal energy
kBT is characterized by Γ ≡ Vc/(kBT ), where Vc ≡ e2/rs is the typical
interaction energy and rs ≡ (3/4πρ)1/3 the half mean distance between the
mobile ions. Here ρ = c/a3 denotes the ionic number density.

To model the diffusion process we use a standard Monte Carlo algorithm:
In each elementary step of the simulation, an ion is chosen randomly, and

a nearest neighbor site is also chosen, to which the ion attempts to jump.
If the neighboring site is blocked or occupied by another ion, the jump is
rejected. If the neighboring site is vacant, the ion jumps to it with probability
w = min{1, exp(−∆E/kBT )}, where ∆E is the change of the total energy
caused by the jump and is given by ∆E = ∆Es +∆Ec. Here ∆Es = εj − εi
is the site energy difference (∆Es ≡ 0 for the percolation model) and ∆Ec is
the energy difference due to the Coulomb interaction of the jumping particle
with all other particles. For the calculation of ∆Ec one has to take care of
the image charges caused by the periodic boundary conditions, which is done
by using Ewald’s method ( [48], see also Chap. 16). After each elementary
step, the time t is incremented by τ0/N , where τ0 = τ∞ exp(V0/kBT ) is the
mean residence time between two jumps of an ion in the absence of Coulomb
interactions and structural disorder (see Sect. 20.2).

Initially the particles are randomly distributed over the system. In order
to reach a thermalized state at the final simulation temperature, the system
is cooled down from a high temperature, kBT = 10 max{σε, Vc}, to the simu-
lation temperature by a linear increase of 1/T . After the cooling process, the
temperature is held constant for a time equal to the cooling time; then the
quantities of interest are determined. The time for the thermalization process
is chosen such that the mean total energy of the ion system does not change
significantly during the constant temperature phase, and is typically 3 to 5
times larger than the simulation time itself.

To obtain the mean square displacement 〈r2(t)〉, all particle positions
ri(0) are stored at time t = 0 after thermalization. At time t, the particles
are at positions ri(t), and the mean square displacement is calculated from
〈r2(t)〉 = (1/N)

∑N
i=1[ri(t)−ri(0)]2. To obtain the SLR correlation functions

G(q)(t), the magnetic field B is aligned along the z-direction and all pair
vectors rij(0) are stored at time t = 0 using the minimum image convention
[48]. At time t these pair vectors are rij(t), and the G(q)(t) are calculated
according to (20.15).



822 Armin Bunde et al.

The frequency dependent conductivity is determined by the current re-
sponse to a (small) external sinusoidal electric field E(t) = E0 sin(ωt)
aligned in the x-direction. The effect of the field is taken into account by
the way the neighboring site is chosen to which an ion attempts to jump
(see above). In the absence of the electric field, the 6 nearest neighbor
sites are equivalent and are chosen with equal probability 1/6. In the pres-
ence of the field, the sites in the ±x-direction are chosen with probability
(1 ± ε(t))/6, where ε(t) ≡ eE(t)a/2kBT � 1. The resulting current den-
sity jx(t) in the x-direction is determined by counting the number N+(t)
and N−(t) of jumps in the +x- and −x-direction in a small time interval
t − ∆t/2 ≤ t < t + ∆t/2, where ∆t � 2π/ω. The mean values of N+(t)
and N−(t), averaged over several samples, determine the mean current den-
sity jx(t) = ea(〈N+(t)〉 − 〈N−(t)〉)/L3 and, since jx(t) can be written as
jx(t) = σ′(ω)E0 sin(ωt)−σ′′(ω)E0 cos(ωt), the real and imaginary part σ′(ω)
and σ′′(ω) of the frequency dependent conductivity. In order to improve the
statistics, the results are finally averaged over typically 100 thermalized con-
figurations.

20.4 Dispersive Transport

For model I, most of our numerical simulations have been performed on a
simple cubic lattice of length L = 39a, fixed ion density c = 10−2 and fixed
η = e2/(rsV0) = 5, which defines our set of standard parameters. V0 denotes
the structural potential barrier. To investigate the effect of percolative dis-
order, we compare results for the ordered lattice (p = 1) with those for the
disordered substrate (p = 0.4). The strength of the Coulomb interactions,
represented by the plasma parameter Γ , is varied by changing the tempera-
ture.

Figures 20.1 (a) and (b) show the time dependent diffusion coefficient
D(t) ≡ 〈r2(t)〉/2dt in units of D0 ≡ a2/2dτ0 as a function of t/τ0 for Γ = 0,
40, and 80 in (a) the ordered lattice (p = 1) and (b) the disordered system
(p = 0.4). For t/τ0 � 1, 〈r2(t)〉 is proportional to the total number of success-
ful hops, which increases linearly with time and therefore D(t) is constant,
D(t) = Dst. For t/τ0 > 1, D(t) decreases with time t and finally approaches
Dtr. In the ordered system, the decrease of D(t) is comparatively weak, even
at large plasma parameters Γ (low temperatures), while in the disordered sys-
tem, D(t) decreases over several orders of magnitude for large Γ . This behav-
ior is reflected in the temperature dependence of the tracer correlation factor
ftr(Γ ) = D∞/Dst shown in Fig. 20.1 (c). In both the ordered and the dis-
ordered system, ftr is thermally activated, ftr(Γ ) = ftr(0) exp(−∆Ef/kBT ),
but the activation energy ∆Ef being the difference between the activation
energies for the long and short time diffusion coefficients, is much larger in
the disordered system (∆Ef = 0.05e2/rs = 0.27V0) than in the ordered one
(∆Ef = 0.01e2/rs = 0.06V0). We conclude that in order to obtain strong
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Fig. 20.1. Plot of (a) D(t) in the ordered lattice for Γ = 0 (�), 40 (◦), and 80
(�), (b) D(t) in the disordered system (model I) for Γ = 0 (�), 40 (•), and 80 (
),
and (c) the tracer correlation factor as a function of the plasma parameter Γ in the
ordered lattice (�) and in the disordered system (�). The full lines in (a) and (b)
are least-square fits according to (20.21).

dispersion in the diffusive transport, we need both Coulomb interactions and
structural disorder. In the following we will concentrate on this relevant case
only and consider the curves shown in Fig. 20.1 (b) in more detail.

For Γ ≥ 20, an intermediate time regime t1 < t < τD occurs, where D(t)
shows approximate power law behavior,

D(t) ∼ t−nD , t1 < t < τD. (20.20)

The upper crossover time τD and the exponent nD increase with increasing Γ
(decreasing temperature), while the lower crossover time t1 is approximately
independent of Γ and of the order of the inverse hopping rate a2/6Dst. The
whole time dependence of D(t) can be well described by the formula

D(t) = D∞ + (Dst −D∞)
(

1 +
t

t1

)−nD

, (20.21)

which has been suggested earlier by Funke on the basis of his jump relaxation
model [11].

From the Nernst-Einstein relation (20.9) we expect that the power law
behavior of D(t) at intermediate time scales is reflected in a power law be-
havior of σ̂(ω) at intermediate frequency scales, 1/τD < ω < 1/t1. To de-
termine σ̂(ω) we have studied the current response to an external electric
field E(t) = E0 sin(ωt) as described in Sect. 20.3. Figure 20.2 shows the real
and imaginary parts σ′(ω) and σ′′(ω) of the conductivity σ̂(ω) in units of
σ0 ≡ e2/2kBTaτ0 as a function of ωτ0 for (a) Γ = 0, (b) Γ = 40 and (c)
Γ = 80.

For comparison we show also the real and imaginary parts of σ̂D(ω) ≡
ρe2D̂(ω)/kBT (full lines in the figure), which one obtains for the complex
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Fig. 20.2. Real (�) and imaginary part (
) of the conductivity in model I for (a)
Γ = 0, (b) Γ = 40, and (c) Γ = 80. The full lines are explained in the text.

conductivity when neglecting the cross-correlations in the autocorrelation
function of the current density in (20.8). The frequency dependent tracer
diffusion coefficient D̂(ω) is obtained numerically by a Laplace transform
of 〈r2(t)〉 (see (20.6)). Since σ′′(ω) ≤ 0, we have plotted −σ′′(ω) in the
figure. For Γ = 0, σ̂(ω) and σ̂D(ω) coincide, since in this case the cross-
correlations practically vanish (the effect of the hard-core interaction between
the mobile ions can be neglected since c = 0.01 is very small). For Γ = 40
and 80, σ̂(ω) and σ̂D(ω) are equal at high frequencies, but deviate at lower
frequencies. Despite this, the overall behavior is quite similar. Both σ′(ω)
and σ′

D(ω) exhibit a dc plateau at low frequencies ω � 1/t2 and approach
σ∞ = ρe2Dst/kBT at high frequencies ω 
 1/t1. In between they can be
approximately described by

σ′(ω) ∼ (ωτ0)nσ , τ0/τσ � ωτ0 � τ0/t1, (20.22)

where nσ = nD and τσ ≈ τD. At very high frequencies the conductivity be-
comes constant again. This high frequencies plateau is difficult to detect ex-
perimentally, especially in glasses, because dynamical processes not included
in the lattice gas model, e.g. vibrations of the glassy matrix, become domi-
nant (see however [49]). In some crystalline ion conductors as e.g. RbAg4I5 or
Na-β′′-Alumina, however, a high frequency plateau was found ([3], Chap. 23).

Since the cross-correlations do not affect strongly the overall behavior of
σ(ω) one can hope to understand the origin of the conductivity dispersion
from the behavior of the time dependent tracer diffusion coefficient. Indeed,
to map the complex dynamics of the many-particle system to an effective
dynamics of a one-particle system, it has been suggested that the mutual
interactions between the ions can be described by an effective distribution
ψ(τw) of waiting times τw between successive jumps of a tracer particle. This
continuous time random walk model (CTRW) (see e.g. [50]) was proposed by
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Fig. 20.3. Plot for model I of (a) the distribution function of the waiting time τw

between successive jumps as a function of τw/τ0 for different plasma parameters,
Γ = 20 (�), 40 (•), 60 (
) and 80 (�), and (b) the real part of the diffusion coefficient
D′

w(ω)/D0 (obtained from the approximation (20.23)) (�) and the correct D′(ω)/D0

(obtained from (20.6)) (
) for Γ = 80.

Scher and Lax [51] to describe the dielectric response of amorphous semicon-
ductors.

To test if the CTRW model applies here, we have determined the number
N(τw) of waiting times τ ′w between two successive jumps of a tracer particle,
which lie in the interval τw − ∆τw ≤ τ ′w < τw + ∆τw. The waiting time
distribution ψ(τw) is related to N(τw) by ψ(τw) = AN(τw)/2∆τw, where
the prefactor A follows from the normalization condition,

∫∞
0
dτwψ(τw) = 1.

Figure 20.3 (a) shows ψ(τw) times τ0 as a function of τw/τ0 for various plasma
parameters Γ . For all values of Γ , τ0ψ(τw) � 10−1 is approximately constant
for τw/τ0 < 1 and decreases rapidly for τw/τ0 > 10. As one would expect,
the decrease is weaker for larger Γ , but no significant change of ψ(τw) occurs
if Γ is increased.

The one-sided Fourier transform of the waiting time distribution ψ(τw)
is (within the CTRW model) related to the frequency dependent diffusion
coefficient D̂w(ω) by [51]

D̂w(ω) =
a2

6
iωψ̂(ω)

1 − ψ̂(ω)
. (20.23)

In Fig. 20.3 (b) we compare D′
w(ω)/D0 (obtained from (20.23)) with the

correct D′(ω)/D0 (obtained from (20.6)) for Γ = 80. The two curves are
completely different: In contrast to D′(ω), D′

w(ω) shows only a very weak dis-
persion. The low-frequency limit of D′

w(ω) is the same as the high-frequency
limit of D′(ω).
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Fig. 20.4. Mean square displacement 〈r2(Nhop)〉 as a function of the
number of performed hops Nhop for different plasma parameters Γ .

These deviations show clearly the principle difficulties of the CTRW-
model (see also [52]). If the initial waiting time τ0

w, the tracer particle needs
for the first jump, is chosen according to the proper stationary distribution,
ψ0(τ0

w) =
∫∞
0 dτwψ(τ0

w + τw)/
∫∞
0 dτ0

w

∫∞
0 dτwψ(τ0

w + τw), then D(ω) shows
no dispersion at all, D(ω) = Dst just as in the simple random walk case. The
larger value of Dw at high frequencies is an artifact of the CTRW-model and
results from the fact that the initial time τ0

w is assumed to be distributed
according to ψ rather than to the stationary distribution.

Since the time inhomogeneities in the tracer motion can not be responsible
for the dispersion, we now study spatial correlations in the tracer trajectory.
We consider the mean square displacement 〈r2(Nhop)〉 as a function of the
number of performed hops Nhop, which is shown in Fig. 20.4 for various
plasma parameters Γ . At Nhop = 1, 〈r2(Nhop)〉/a2 = 1 for all Γ since a
tracer particle has moved the distance a after the first jump. At small plasma
parameters, 〈r2(Nhop)〉 increases monotonously with Nhop. At larger values
of Γ (Γ ≥ 20), a striking alternation of 〈r2(Nhop)〉 for even and odd Nhop

begins to emerge for 1 < Nhop < N
(2)
hop, which becomes more pronounced at

larger Γ . The upper crossover number N (2)
hop increases with increasing Γ and

is of the order of the product of the jump rate 6Dst/a
2 and the crossover

time t2 ≈ τσ, N (2)
hop � 6Dstt2/a

2. For even values of Nhop, 〈r2(Nhop)〉 shows
approximate power law behavior

〈r2(2Nhop)〉 ∼ (2Nhop)k, 1 < Nhop < N
(2)
hop, (20.24)



20 Ionic Transport in Disordered Materials 827

where k = 1 − nD = 1 − nσ is the exponent expected from the behavior of
〈r2(t)〉, if t is simply replaced by the average time 2Nhop/6Dst after 2Nhop

jumps of the tracer particle, 〈r2(2Nhop)〉 � 〈r2(t = 2Nhop/6Dst)〉.
The striking alternation of 〈r2(Nhop)〉 is caused by strong forward-backward

correlations in the tracer motion, which occurs on length scales of the order
of the lattice constant a. Before its first jump the tracer ion finds itself in
a deep energy minimum, which is created by the surrounding ions. After
its first jump the ion is in an energetically unfavourable situation and has
a large tendency to jump back to the original site. Thus 〈r2(Nhop = 2)〉 <
〈r2(Nhop = 1)〉 = a2. Repetition of these forward-backward jumps leads to
the alternating behavior of 〈r2(Nhop)〉. Sometimes it happens that an en-
ergetically unfavourable position is stabilized by jump relaxation processes
of the surrounding ions. This causes 〈r2(Nhop)〉 to increase slightly, but the
increase is much weaker than in the absence of the forward-backward cor-
relations. The presence of disorder is important for the forward backward
correlations to arise because the surrounding ions cannot follow the tracer
ion without making detours, which delays the local relaxation process con-
siderably. A similar suppression of the mobility of the surrounding ion cloud
can be expected to occur in ordered lattices by a complex lattice structure
with several sites per unit cell, as, for example, in the crystalline superi-
onic conductor RbAg4I5. In ordered Bravais lattices, the surrounding ions
can easily stabilize the position of the tracer ion and the forward-backward
correlations are very small. The forward-backward correlations dominate the
overall behavior on a length scale of the lattice constant. When 〈r2(Nhop)〉1/2

has reached a few lattice constants at Nhop 
 N
(2)
hop, the effect ceases to be

dominant and the dispersion becomes considerably weaker.
In order to understand why the even values of Nhop between 1 and N

(2)
hop

determine the behavior of 〈r2(t)〉 between t1 � 1/6Dst and t2 � N
(2)
hop/6Dst,

one must be aware that for a fixed time t the probability that the tracer ion
has performed an even number of jumps is much larger than the probability
that it has performed an odd number of jumps. After an odd number of jumps
the tracer ion mostly finds itself in an energetically unfavourable position and
stays there only for a short time (compared to the time spent on a site after an
even number of jumps). Hence the probability that a particle has performed
an odd number of jumps at a given time t is small, and does not contribute
to the mean square displacement at t.

The forward-backward correlations also cause characteristic changes of the
distribution function P (r, t) and its Fourier transforms. Fig. 20.5 (a) shows
log(P (r, t)/P (0, t)) as a function of the scaled distance r/R(t), where R(t) =
〈r2(t)〉1/2 is the root mean square displacement, in the disordered system for
Γ = 40 and 80, and several times t in the dispersive regime. It is remarkable
that although R(t) is small in this regime, the curves collapse, showing that
the simple scaling relation P (r, t)/P (0, t) = f(r/R(t)) holds as in the simple
random walk case. For Γ = 40 and 80, the scaling function f(x) is no longer
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Fig. 20.5. Plot of (a) the distribution function log(P (r, t)/P (0, t)) versus r/R(t)
in the disordered system I (p = 0.4) for Γ = 40 and 80, and (b) of 1 − S̃inc(k, t)
for k = 2π/10a as a function of t/τ0. In (a) different symbols refer to different
times: For Γ = 40: t/τ0 = 546 (�), 1130 (�), 2340 (◦), 4830 (•), and 10000 (�) and
for Γ = 80: t/τ0 = 113 (�), 264 (�), 616 (◦), 1440 (•), 3360 (�), and 7850 (
).
The data points for Γ = 80 have been multiplied by a factor of 4. In (b) different
symbols refer to different plasma parameters Γ = 0 (�), 40 (•), and 80 (
), and
the full lines are the approximation (20.26).

a Gaussian, but a stretched Gaussian, f(x) = exp(−cxu), with u � 1.2.
For Γ = 0 in contrast, P (r, t) shows the expected scaling behavior with a
Gaussian scaling function only at larger times (Fig. 20.5 (b)). It is interesting
to note that the exponent u satisfies the relation

u =
2

1 + nD

, (20.25)

which has been originally derived to describe the distribution function of
random walks on random fractal structures [53].

In order to discuss the Fourier transform of P (r, t), the intermediate scat-
tering function, we first remove any artificial effects of the lattice anisotropy
by averaging Sinc(k, t) over the k-vector orientation S̃inc(k, t) ≡ (4π)−1

∫
dΩ

Sinc(k, t). For kR(t) � 1 and R(t) � 1 it is easy to verify that S̃inc(k, t) can
be approximated by

S̃inc(k, t) � exp(−k2R2(t)
6

). (20.26)

Fig. 20.5 (b) shows 1 − S̃inc(k, t) for k = 2π/10a and Γ = 0, 40, and 80.
Quite surprisingly, the simple approximation (20.26) holds in the whole de-
cay regime, showing that the decay changes from a simple to a stretched
exponential when Γ becomes larger (see also [11]).
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SLR

S
L

R

Fig. 20.6. Plot of 1−G(2)(t)/G(2)(0) in model I (a) as a function of t/τ0 for p = 1
and Γ = 20 (�), 40 (◦), 60 (�) and 80 (	), (b) as a function of t/τ0 for p = 0.4 and
Γ = 20 (�), 40 (•), 60 (
) and 80 (�). Part (c) shows the correlation time τSLR for
p = 1 (�) and p = 0.4 (�) as a function of Γ , and part (d) 1 − G(2)(t)/G(2)(0) as
a function of the scaling parameter t/τSLR for p = 1 (open symbols), p = 0.4 (full
symbols) and Γ = 40 (�,�), 50 (◦, •), 60 (�, 
), 70 (	, �) and 80 (♦, �).

Next we discuss the SLR correlation functions G(q)(t), q = 1, 2. We again
compare our results for the ordered lattice (p = 1) and the disordered sub-
strate (p = 0.4). For sufficiently large values of Γ (Γ > 1) the distribution
of the mobile ions is isotropic and therefore G(2)(0) = 4G(1)(0) [43]. Numer-
ically we find that for Γ > 10, G(2)(t) ∼= 4G(1)(t) is valid for all times t,
and thus G(2)(t)/G(2)(0) ≡ G(1)(t)/G(1)(0). Since the G(q)(t) decay faster
than 1/t for very long times, the asymptotics is irrelevant for 1/T1 (see the
discussion above, Sect. 20.2.4), and the relevant decay regime is most con-
veniently discussed in terms of the functions 1 − G(q)(t)/G(q)(0), which are
shown in Fig. 20.6. Both in the ordered lattice (Fig. 20.6 (a)) and the dis-
ordered system (Fig. 20.6 (b)), 1 − G(q)(t)/G(q)(0) are proportional to t/τ0
for small t/τ0 values. Similar as in the diffusion coefficient, an intermediate
time regime can be well identified in the disordered system for Γ > 20, where
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Fig. 20.7. Spin-lattice relaxation rate 1/T1 in units of Cτ∞ as a function of V0/kBT
for (a) p = 1 and η = 5 (ordered system with Coulomb interaction), (b) p = 0.4
and η = 5 (disordered system with Coulomb interaction), and (c) p = 0.4 and
η = 0 (disordered system without Coulomb interaction). Different symbols denote
different frequencies. In (a) ωLτ∞ = 3 · 10−7 (�), 9.5 · 10−7 (•) und 3 · 10−6 (
), in
(b) ωLτ∞ = 3 ·10−9 (�), 9.5 ·10−9 (•) und 3 ·10−8 (
), and in (c) ωLτ∞ = 3 ·10−6

(�), 9.5 · 10−6 (•) und 3 · 10−5 (
).

1 − G(q)(t)/G(q)(0) ∼ (t/τ0)1−nSLR . The exponent nSLR is independent of
temperature, nSLR

∼= 0.73. In the ordered lattice, the decay of the G(q)(t) is
much faster and a corresponding intermediate time interval is hardly seen.

Figure 20.6 (c) shows the SLR correlation time τSLR, which we define
as the time, where G(q)(t) has decreased to 1/e of its initial value, i. e.
G(q)(τSLR)/G(q)(0) = 1/e. Due to strong correlations in the ionic motion,
τSLR is stronger activated than τ0, τSLR/τ0 = exp(∆ESLR/kBT ), ∆ESLR ≡
ESLR − V0 > 0. The activation energy ∆ESLR is smaller in the ordered
lattice (∆ESLR

∼= 0.04e2/rs = (0.04ηV0)) than in the disordered system
(∆ESLR

∼= 0.09e2/rs = (0.09ηV0)), where τSLR exceeds τ0 by more than 5
orders of magnitude for Γ = 80.

Fig. 20.6 (d) shows 1 −G(q)(t)/G(q)(0) as a function of t/τSLR. The data
collapse shows that on time scales larger than τ0, G(q)(t)/G(q)(0) is only a
function of t/τSLR (independent of Γ ), in particular 1 − G(q)(t)/G(q)(0) ∼
(t/τSLR)1−nSLR for τ0/τSLR � t/τSLR < 1. Accordingly in the relevant decay
regime, the correlation functions can be approximately written in KWW
form, G(q)(t) = G(q)(0) exp(−(t/τSLR)1−nSLR), in the relevant regime.

With (20.13) we obtain 1/T1(ωL, T ) by Fourier transformation. Fig-
ure 20.7 shows 1/T1(ω, T ) as a function of V0/kBT for η = 5 and various
Larmor frequencies ωL in (a) the ordered lattice, and (b) the disordered sys-
tem. For comparison, we show in (c) also the behavior of 1/T1 for uncharged
particles (η = 0, Γ ≡ 0) diffusing in the disordered system. Since in all cases
(a)–(c), the G(q)(t) decay faster than 1/t for large times, 1/T1 is independent
of ωL at the high temperature side of the maximum. For the uncharged par-
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Fig. 20.8. Plot of (a) the exponents nσ and nSLR and (b) the correlation times
τσ/τ0 and τSLR/τ0 as a function of V0/kBT for p = 0.4 and η = 5.

ticles (Fig. 20.7 (c)), 1/T1 shows no significant deviation from the standard
BPP behavior. For charged particles slight deviations occur in the ordered
lattice (Fig. 20.7 (a)), but the typical non-BPP behavior according to (20.5)
does not occur. The deviations predominantly show up in a weak asymmetry
of 1/T1 near the maximum. In case (b), when both disorder and Coulomb
interactions are present, we obtain the typical non-BPP behavior: The curves
are asymmetric in shape, the maximum occurs at ωLτSLR ≈ 1 
 ωLτ0 (note
that this relation is the only way to experimentally determine τSLR as a func-
tion of T ), and 1/T1 decreases as 1/T1 ∼ τ0(ωLτ0)nSLR−2 at low temperatures
(ωL 
 1/τSLR). The activation energies are ESLR

1
∼= 1.5V0 and ESLR

2
∼= 0.4V0.

Since ESLR
∼= 1.45V0 for η = 5 (see above) also ESLR � ESLR

1 is fulfilled. We
conclude that, similar to our result for the conductivity σ(ω), both structural
disorder and Coulomb interactions are needed to obtain qualitative agreement
with the experimental findings. Again, we concentrate on this relevant case
only.

As a consequence of the scaling behavior of G(q)(t), 1/T1(ωL, T ) obeys
the simple scaling relation

1
T1

(ωL, T ) = τSLRg(ωLτSLR), (20.27)

with g(x) = const. for x� 1 and g(x) ∝ xnSLR−2 for x
 1. Equation (20.27)
implies ESLR

1 = ESLR and the relation ESLR
2 = (1 − nSLR)ESLR

1 first proposed
by Ngai [31].

Next we compare the exponent nSLR and the correlation time τSLR with
the corresponding quantities in the conductivity spectra. Figure 20.8 (a)
shows that nσ is smaller than nSLR for V0/kBT < 16 and seems to approach
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nSLR at lower temperatures. Only at these very low temperatures we ex-
pect mean field approaches [11] yielding nσ = nSLR to be applicable. From
Fig. 20.8 (b) we find that the conductivity relaxation time τσ is less acti-
vated than the correlation time τSLR in spin-lattice relaxation, and therefore
τSLR/τσ 
 1 at lower temperatures. This is in accordance with experimental
results for, e.g., (LiCl)0.6(Li2O)0.7(B2O3)1.0 [54], glassy LiAl Si2O6 [55] and
LiAlSi4O10 [56], and flourozirconate glasses [7]. The reason for these differ-
ences is that although the phenomena observed in both experiments originate
from the same ion transport mechanism, they are governed by different cor-
relation functions: In spin-lattice relaxation, the correlation functions are
determined by diffusion of ion pairs, while in conductivity the current corre-
lation function is mainly determined by the diffusion of single ions.

20.5 Non-Arrhenius Behavior

In the preceding section, we have shown that simple percolative disorder
and the Coulomb interaction between the ions can account for the typical
anomalies found in several transport quantities. Another interesting effect
is the non-Arrhenius behaviour of fast ion conducting glasses [20]. Clearly it
would be desirable to confirm this effect also in tracer diffusion measurements
[57].

In order to explain non-Arrhenius behaviour, one has to include the en-
ergy fluctuations associated with the disorder present in the material. To
begin our discussion of energy fluctuations, we first assume non-interacting
particles moving between lattice sites with energies drawn form a Gaussian
distribution, as in model II, cf. (20.18). For that problem, the dc activation
energy at low T can be calculated analytically [33, 34]. Since double occu-
pancy of sites is forbidden, the ions in equilibrium are distributed according
to a Fermi distribution. At temperatures T � σε/kB, the activation energy
follows from a critical percolation path argument [58, 59], Eσ = εc − εf(c).
Here εf(c) is the Fermi energy, defined by

∫ εf
−∞ P (ε)dε = c, and εc is the criti-

cal energy given by
∫ εc
−∞ P (ε) = pc, where pc is the percolation threshold [45]

in the sc-lattice, pc � 0.3117. For c = 0.01 we obtain Eσ = 1.84σε. Because
of the weak dependence of εf on c (see Sect. 20.7), Eσ assumes similar values
for other reasonable concentrations c� 1.

At high temperatures T 
 σε/kB, the conductivity is well approx-
imated by σdc � σhf = ρq2a2W0/6kBT . As can be shown by a high-
temperature expansion, W0 is given by W0 � (1 − c)erfc(σε/(2kBT )) �
(1 − c) exp(−σε/

√
πkBT ), in leading order of σε/kBT . Hence we obtain a

high-temperature activation energy E0 = σε/
√
π ∼= 0.56σε that is smaller

than Eσ. Accordingly, the apparent activation energy E(T ) changes from Eσ

for low temperatures to E0 at a crossover temperature Tx � σε/kB. Fig-
ure 20.9 (a) shows the simulation results for σdc (data points) in comparison
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Fig. 20.9. Arrhenius plot of σdcT for Vc = 0 and c = 0.01 (open circles) (a)
in units of σ0 as a function of σε/kBT and (b) in units of the preexponen-
tial factor Aσ of the low-temperature Arrhenius law as a function of Eσ/kBT .
In (a) the full line shows the high temperature approximation (see text), the
dashed line corresponds to Aσ exp(−Eσ/kBT ), where Eσ = 1.84σε and Aσ was
taken to get the best fit to the data. For comparison, the experimental data for
0.4AgI+(0.6)[0.525Ag2S+0.475(B2S3:SiS2) are shown in (b) (filled symbols, re-
drawn from [20]). The solid line is drawn as guide for the eye.

with the analytical results (lines). Except for the crossover regime T ≈ Tx,
the calculated activation energy agrees perfectly with the simulation data.

At first glance, the crossover at high temperatures seems to be very sim-
ilar to recent experimental results for fast ion glasses [20]. Notice however,
that both Eσ and kBTx are of the same order of magnitude, determined by σε.
This is a serious disagreement to the experiments, where the non-Arrhenius
behavior sets in at temperatures more than one order of magnitude smaller
than Eσ/kB. The disagreement can be seen clearly in Fig. 20.9 (b), where we
have plotted both the simulation results in the absence of Coulomb interac-
tions (open circles) and the experimental data (filled circles) [20] as a function
of Eσ/kBT . The arrows indicate the crossover temperatures and show that
both disagree by about an order of magnitude.

Next we include the Coulomb interaction i. e. consider the complete model
II, cf. (20.18). That model now is characterized by the typical interaction en-
ergy Vc ≡ e2/rs and the disorder energy σε. Since we have found in Sect. 20.4
that the cross correlations give only a minor contribution to the conductiv-
ity, we have calculated the dc conductivity from the long-time limit of D(t)
by using (20.9) and neglecting the cross correlations. Figure 20.10 (a) shows
σdcT in units of σ0 as a function of Vc/kBT for c = 0.01 and σε/Vc = 0.0115,
0.018, 0.036, and 0.072. At low temperatures, each curve follows a straight
line corresponding to an Arrhenius law with constant activation energy Eσ,
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Fig. 20.10. Arrhenius plots of the dc conductivity σdcT (a) in model II, cf. (20.18)
in units of σ0 for σε/Vc = 0 (�), 0.0115 (◦), 0.018 (�), 0.036 (�), and 0.072 (♦), and
(b) for zAgI+(1−z)[0.525Ag2S+0.475(B2S3:SiS2)] in units of Ω−1cm−1K for z = 0
(�), 0.2 (
), 0.3 (�), and 0.4 (•) (redrawn from [20]). The dashed lines indicate the
upper mobility limit predicted by the model. In (c) the data from (a) and (b) are
shown together as functions of Eσ/kBT and are normalized with respect to the
preexponential factors Aσ in the corresponding Arrhenius laws. The solid lines in
(a) and (c) are drawn as guide for the eye.

and Eσ decreases with decreasing σε. The Arrhenius law is valid up to a
crossover temperature Tx, where the curves bend toward lower diffusivities.
In all cases, the crossover temperature Tx is of the order of σε/kB. For compar-
ison we have redrawn in Fig. 20.10 (b) the experimental conductivity data [20]
for zAgI+(1−z)[0.525Ag2S+0.475(B2S3:SiS2)] with mole fractions z between
zero and 0.4. Evidently, when increasing z, the experimental behavior is anal-
ogous to the model behavior when decreasing σε: Eσ becomes smaller and
the non-Arrhenius behavior starts to occur at lower T .

The similarity between the results found in the model and in the ex-
periment becomes even more evident in Fig. 20.10 (c), where the data from
Fig. 20.10 (a) and Fig. 20.10 (b) are plotted in the same way as in Fig. 20.9 (b).
The experimental curve for z = 0.4 is almost perfectly reproduced by the
model when σε = 0.0115Vc (see the filled and open circles in Fig. 20.10 (c)).
The experimental curves for z = 0, 0.2 and 0.3 correspond to disorder
strengths within a range 0.015Vc < σε < 0.036Vc. It is remarkable that
the model not only gives a good fit to the overall shape of the conductivity
curves but also reproduces the small values of kBTx/Eσ. Within the frame-
work of the model, the non-Arrhenius behaviour thus may be explained as a
cross-over from a high activation energy at low temperatures, where the ionic
motion is dominated by disorder and interaction effects, to a low activation
energy at high temperatures, where only the interaction is relevant.
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20.6 Counterion Model and the “Nearly Constant
Dielectric Loss” Response

Models with smooth distribution of uncorrelated site energies, as implied by
(20.18), have been studied also with respect to ac transport properties [39],
in addition to dc transport considered in the foregoing section. Generally
speaking, the outcome for time-dependent mean square displacements and
frequency-dependent conductivities in Coulomb lattice gases with Gaussian
and percolative disorder (Sect. 20.4) is similar, provided Γ 
 1. Qualitative
features of conductivity spectra are therefore robust with respect to the par-
ticular type of disorder, an issue which is important for understanding their
“universal” nature [26].

Let us turn now to yet another disorder model, the counterion model
(20.19), which will allow us to discuss both composition-dependent dc-
transport properties and dispersive effects, including “nearly constant loss”
(NCL)-type high-frequency phenomena [40].

Clearly, in that model with c � 1 two nearby counterions are separated
by a Coulomb barrier whose height is a sensitive function of their distance
2rs. Consequently, we observe Arrhenius behavior for both σdc and τσ with
an activation energy Eσ(c) determined by that Coulomb barrier, which grows
with decreasing concentration c. From simulations one can extract Eσ(c) �
const− 0.11(e2/a) ln c in the relevant concentration range, a variation with c
on an energy scale of order 1 electronvolt, which favourably compares with
some experiments, see also Sect. 20.7. Regarding dc transport, other notable
features of the counterion model are preexponential factors in the Arrhenius
law for σdc satisfying the Meyer-Neldel compensation rule [60] and Haven
ratios (see Sect. 20.2) which decrease sharply with increasing c for dilute
systems, in qualitative accord with the measurements [61].

The dynamic conductivity in the counterion model with c � 1 displays
four distinct frequency regimes and reflects the experimental behavior of di-
lute samples in a wide frequency range. Those regimes can directly be con-
nected with specific kinds of ionic motions in space and time [62]. Figure
20.11 shows a typical set of data for σ′(ω), normalized by the high-frequency
conductivity σ(∞). Below the usual high-frequency plateau (regime I, de-
fined by ω > τ−1

MC, where τMC is one Monte Carlo time step) a second regime
II appears where σ′(ω) raises with ω approximately in a linear fashion. This
effect will be discussed below in greater detail. A simultaneous analysis of the
mean square displacement shows that regime II has limits τ−1

1 < ω < τ−1
MC,

where τ1 is defined by 〈r2(τ1)〉 = a2. Therefore, in II, the ions essentially
remain bound to a counterion and are able to perform only local motions of
the character of dipolar reorientation steps. Regime III, related to the Jon-
scher regime, corresponds to escape processes out of the Coulomb trap. This
interpretation is confirmed by noting that the conductivity relaxation time
τσ in this model satisfies 〈r2(τσ)〉 = r2s , where rs = a(3/4πc)1/2 amounts to
half the distance between two counterions. Finally, for even lower frequencies
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Fig. 20.11. Frequency dependence of the conductivity (in a double-logarithmic
plot) in the counterion model for c = 0.03 and e2/akBT = 20. τMC corresponds to
one Monte Carlo time step (after [40]).

(regime IV, ω < τ−1
σ ) the ions can complete effective hops to the next or to

further distant counterions, and σ(ω) approaches the dc-plateau.
Now we return to the regime II, where σ′(ω) ∝ ω. As mentioned in the

introduction (Sect. 20.1), such a behavior in fact is widely observed in glassy
materials and defective crystals. The “universal dielectric response” repre-
sented by (20.1) therefore has to be supplemented by a high-frequency con-
tribution, see (20.3)

σNCL(ω) � A(T )ω; ω > ωNCL(T ) 
 τ−1
σ (20.28)

In view of the relationship χ̂(ω) = −4πiσ̂(ω)/ω between σ̂(ω) and the dielec-
tric susceptibility χ̂(ω), this amounts to a frequency-independent dielectric
loss, χ′′(ω) ∝ A(T ), known as NCL response. In distinction to the parame-
ters in (20.2), both A(T ) and ωNCL(T ) are not thermally activated, but only
weakly decrease with temperature [17,63]. Therefore, cooling to helium tem-
peratures, σdc ∝ τ−1

σ becomes unmeasurably small while the NCL response
(20.28) dominates and typically extends over several orders of magnitude in
frequency.

Up to now, the physical origin of the NCL response is unclear. A common
picture adheres to the “asymmetric double well potential (ADWP)” model,
which rests on the assumption of thermally activated local relaxational steps
of charged defects subject to a broad distribution of activation barriers [64].
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Fig. 20.12. Section of the dipolar lattice gas model (after [66]).

Recently, the idea has been advanced that long-range interactions among
dipolar centres can give rise to long-time tails in dielectric relaxation, con-
sistent with NCL-type spectra [65, 66]. Evidence for the relevance of this
mechanism arose from dynamic Monte Carlo simulations of a “dipolar lattice
gas”. This model consists of a spatially random assembly of dipolar centres,
where charged particles (ions) perform reorientational steps next to their
associated immobile counterion. Contrary to the ADWP-model, this model
requires no extrinsic local disorder within the individual centres, but empha-
sises the importance of dipole-dipole interactions.

Clearly, that dipolar lattice gas directly emerges from the counterion
model (see Sect. 20.3, (20.19)) and Fig. 20.11, simply by cutting the bonds
which leave the first shell surrounding a counterion. Moreover, it is required
that each such shell contains exactly one mobile charge carrier. For an illus-
tration see Fig. 20.12. The reduced number of configurations in comparison
with the full counterion model clearly facilitates numerical simulations and
also allows us to set up analytic approaches, namely exact diagonalization of
the underlying master equation for small systems and a dynamic pair approx-
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Fig. 20.13. Dielectric loss spectrum χ′′(ω) of a dipolar lattice gas with c = 10−3 at
different reduced temperatures θ = kBT/Vdip−dip, showing the gradual transition
between Debye and NCL behavior (for a specification of parameters see [66]).

imation [67, 68]. For details we refer to the original works. In Fig. 20.13 we
present a set of simulated loss spectra for a fairly dilute system with a fraction
c = 10−3 of dipolar centers relative to the total number of unit lattice cells.
Temperature enters via the ratio θ = kBT/Vdip−dip, where Vdip−dip denotes
the typical interaction strength between centers. Rather than simulating the
current correlation function, it is more convenient in this case to obtain the
correlation function of the total polarisation P (t) =

∑
pi(t), which is a sum

over the dipole moments of all centers, and to use

χ′′(ω) =
βω

3
Re

∫ ∞

0

〈P (t) · P (0)〉eiωt dt (20.29)

Similar to Sect. 20.4 it turns out that the qualitative behavior of χ′′(ω) is
already contained in the “self-part” χ′′

self(ω) being determined by the self-
correlation function 〈pi(t)pi(0)〉. This quantity can be decomposed into a
short-time contribution, which corresponds to relaxation of a selected dipole
in a static energy landscape due to the other dipoles and a long-time con-
tribution due to temporal renewals in the minimum energy position of that
individual dipole. The latter process turns out to be responsible for the slow
decay at long times and for NCL behavior, in contrast to the Debye-like
behavior of the initial decay [26].

Further notable features of this model are a significant enhancement of the
overall NCL response χ′′(ω) relative to the “self-part” χ′′

self(ω), the appear-
ance of different concentration-dependent scenarios in approaching a constant
loss under decreasing temperature and a robustness of the results against
changes in the character of positional disorder [66].
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20.7 Compositional Anomalies

In ion-conducting glasses long-range transport properties depend in an un-
expected anomalous way on the composition of mobile ions. One anomaly
refers to the dependence of the conductivity on the ionic concentration. Ex-
periments show that the dc conductivity σdc raises very steeply with the ion
content [69]. Taking Na2O-B2O3 glasses at 300◦C as an example, the conduc-
tivity increases approximately by a factor 106 as the mole fraction of Na2O
is increased from 0.15 to 0.5. As mentioned in Sect. 20.6, the variation of
the conductivity can in general be described by an activation energy that
decreases logarithmically with the ionic concentration c, Eσ � A − B ln(c).
This behavior corresponds to a power law dependence σdc ∼ cB/kBT , where
the exponent B/kBT becomes much larger than one at low T .

Another anomaly pertains to the variation of the conductivity if one type
of mobile ion A is successively replaced by a another type of mobile ion B.
As a function of the mixing ratio x = cB/(cA + cB), where cA = (1− x)c and
cB = xc are the partial concentrations (c = cA + cB), σdc(x) runs through
a minimum that becomes more pronounced with decreasing temperature.
Well below the calorimetric glass transition temperature Tg, the conductiv-
ity at the minimum is several orders of magnitude lower than the conduc-
tivities of the corresponding single ionic glasses (x = 0, 1). For example, in
xK2O(1−x)Li2O·2SiO2 glasses at 150◦C, the minimum conductivity is about
104 times smaller than that of either single cation glass. In fact, all proper-
ties of glasses that are strongly affected by long-range motions of mobile ions
(tracer diffusion coefficients, conductivity, internal friction, viscosity, etc.),
show strong deviations from a simple additive behavior upon mixing of two
different types of mobile ions. This phenomenon is known as the mixed alkali
effect [70] and occurs in all ionically conducting glasses, regardless of the types
of ions that are mixed and the type of network constituents forming the dis-
ordered host matrix for the ionic motion. Of fundamental importance for the
effect are the behaviors of the tracer diffusion coefficients DA and DB of ion
species A and B. When A ions are replaced by B ions, DA always decreases
and DB always increases (and vice versa). These changes in the diffusivities
are caused by changes in the respective activation energies EA,B, such that
DA and DB vary by several orders of magnitude at low temperatures T .

Like the dispersive transport properties, these compositional anomalies
can be understood from lattice gas models with fluctuating site energies. As
discussed in Sect. 20.5, the activation energy Eσ can, in the presence of a con-
tinuous distribution of site energies, be calculated from a critical percolation
path argument. Accordingly, Eσ(c) = εc − εf(c) is the difference between the
critical energy εc determined by the percolation threshold pc and the Fermi
energy εf(c) that, due to the filling up of low-energy sites, increases with c. A
calculation of this c-dependence [33, 71] for the Gaussian site energy model
(20.18) yields, at intermediate concentrations c, a behavior very similar to
a logarithmic increase of εf(c) with c. Accordingly, an approximate logarith-
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Fig. 20.14. Plot of the activation energy Eσ/σε as a function of the ionic concen-
tration c in a lattice gas with Gaussian distributed site energies (20.18). The open
circles represent the values obtained from Monte Carlo simulations, while the solid
line marks the result from the critical path analysis. The dashed lined is a fit with
respect to a logarithmic dependence of Eσ on c, Eσ = A − B ln(c) with A ∼= 0.23
and B ∼= 0.37 (redrawn from [71]).

mic decrease of Eσ(c) is found, in qualitative agreement with experiment, see
Fig. 20.14. For an exponential distribution of site energies, the logarithmic
decrease Eσ(c) = A−B ln c comes out exactly [72,73]. It is important to note
that the logarithmic behavior can prevail when the Coulomb interactions be-
tween the mobile ions are taken into account also [72]. As first shown in [30],
the activation energy Eσ(c) for the Coulomb lattice gas with uncorrelated
site energy disorder can be expressed as a sum of the “structural contribu-
tion” E(0)

σ (c) = A−B ln c coming from the critical percolation path analysis
and a Coulomb contribution Ecoul

σ ∝ q2/rs ∝ q2c1/3. For low concentrations
c, the behavior is dominated by the structural contribution. Moreover, the
logarithmic behavior can be supported by the Coulomb trapping effect of the
counterions discussed in Sect. 20.6.

In order to understand the mixed alkali effect one has to realize that dif-
ferent types of ions exhibit distinct local environments in the glassy network.
This has been shown by EXAFS measurements [74] and been verified also
by means of neutron and X-ray diffraction measurements on mixed alkali
phosphate glasses in combination with reverse Monte-Carlo simulations [75].
Accordingly, the energy landscapes εAi and εBi encountered by A and B ions,
respectively, must be different; a preferable low-energy site for an A ion is
not a preferable low-energy site for a B ion and vice versa. These experimen-
tal findings are the starting point of the “dynamic structure model” [76,77].
The central idea of the dynamic structure model is that sites are created in
response to the needs of the cations. Thus, in single and in mixed Na+/K+

ion glass, Na sites are created for Na+ ions and K sites for K+ ions. Structure
building in the molten or solid glass depends on the dynamic responses of
the network to the moving ions. The preferred sites are created mostly dur-
ing the cooling process (and possibly, although it is the subject of debate, in



20 Ionic Transport in Disordered Materials 841

the glass) by an accommodation of the network in the local environment of
each mobile ion. Thereby preferred diffusion paths for each type of ion are
formed. The dependence of the connectivity of these diffusion paths on the
ionic composition was shown to provide an explanation for both the mixed al-
kali effect and the steep increase of the conductivity with ionic concentration
in single modified glasses. For a further discussion of the mixed alkali effect
and further developments of the dynamic structure model, which take into
account cation size effects and interactions between interchange and network
structure, we refer to [78–80]. Signatures of the mixed alkali effect were also
found in molecular dynamics studies [37, 81].

Within our description of ionic transport in terms of lattice gases with
fluctuating site energies, the simplest approach is to assume that the two ion
species move independently of each other and that the sets of low-energy sites
for A and B ions are disjoint. Under these assumptions the activation energies
EA(x) and EB(x) for the tracer diffusion coefficients can be calculated from
the activation energies E

(0)
A (cA) and E

(0)
B (cB) of the corresponding single

ionic glasses by taking EA(x) = E
(0)
A ((1−x)c) and EB(x) = E

(0)
A (xc) [72,73].

Hence, with increasing replacement of A ions by B ions, i.e. increasing x,
EA(x) becomes larger while EB(x) is lowered. As a consequence,DA decreases
and DB increases very strongly with x at low temperatures.

Comparison with experimental data, however, reveals that this picture of
independent ion species is not sufficient. While the direction of changes in the
activation energies is in qualitative agreement with the experimental data, the
dependence of dEA(x)/dx and dEB(x)/dx on x is not correctly reproduced.
In linear-log plots of the mixing ratio versus the tracer diffusion coefficients,
this leads to “curvatures” ∂2 lnDA/∂x

2 and ∂2 lnDB/∂x
2 having wrong signs

in comparison with those found in measurements. As shown in Fig. 20.15,
however, this problem may be resolved by taking into account the Coulomb
interaction between the mobile ions. The Coulomb interaction seems to be of
particular importance in the “dilute foreign alkali regimes” x → 0 or x → 1.
Since the minority ions in these regimes are immobile on the diffusive time
scale of the majority ions, they can, due to the Coulomb repulsion, create
“blocking regions” for the majority ions on length scale large compared to
the typical jump distance. Immobile minority ions replacing the majority
ions in these dilute regimes are thus very effective in interfering the preferred
diffusion paths of the majority species and lead to a very strong reduction of
their mobility. The model of ions moving in energy landscapes being different
for different types of ions allows one to address further important issues [72]:
(i) the degree of validity of the empirical Meyer-Neldel rule (cf. Sect. 20.6),
(ii) the mixed alkali internal friction peaks occurring in mechanical relaxation
spectra, (iii) the behavior of a third tracer impurity ion in a binary mixed
alkali glass as measured in [82], and (iv) the question if a clustering of like
ions should be expected.
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Fig. 20.15. (a) Monte-Carlo results for normalised tracer diffusion coefficients
DA,B(x) of two ion types A and B as a function of their mixing ratio x =
cB/(cA + cB) in a lattice gas with exponentially distributed and uncorrelated site
energies εAi and εBi (redrawn from [72]). Long-range Coulomb interactions between
the mobile ions were taken into account in the simulations. Full symbols refer to ion
type A, open symbols to ion type B, and different symbol types refer to different
temperatures. The activation energies EA,B(x) are shown in (b). For a specification
of the parameters, see [72].

Before closing this section, we note that a mixed alkali effect also occurs
in certain crystals with structure of β- and β′′-alumina type, where the ionic
motion is confined to two-dimensional conduction planes [83–87]. For this ef-
fect a quantitative theoretical description is possible [88, 89] due to a wealth
of structural information (see e.g. [85, 90, 91]). This theory is based on the
fact that A and B ions have a different preference to become part of mobile
defects, and this preference is caused by a different interaction of the ions
with the local environment. Hence, the very origin of the mixed alkali effect
in crystals and glasses might be similar. On the other hand, since the con-
centration of mobile ions in the crystals is large and since there is no strong
structural disorder in the conduction planes, Fermi- and critical energies are
not relevant. Instead, blocking and redistribution effects of ions in the con-
duction planes are important to understand the mixed alkali effect in the
crystalline systems (see [88, 89] for a detailed discussion of these points).
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20.8 Ion-Conducting Polymers

In the preceding sections we discussed charge transport in lattice gases that
exhibit frozen disorder either by introducing at random a certain fraction
of inaccessible sites (percolative disorder) or through some randomness in
the site energies. The assumption of ion diffusion in a rigid matrix showing
structural randomness on interatomic length scales turned out to constitute
a general frame for the description of ionic transport in inorganic glasses and
highly defective crystals.

As indicated already in the introduction (Sect. 20.1), a significantly more
complex situation occurs in ion-conducting polymers [23,92]. Prototype mate-
rials are polymer-salt solutions based on polyethylene-oxide (PEO). The elec-
tronegative oxygen atom in the repeat unit of the PEO-chain tends to bind
cations and hence favors salt dissociation. Above their glass transition tem-
perature such systems can exhibit significant ionic conductivities. Distinctive
features in comparison with inorganic glasses are the simultaneous diffusion
of cations and anions and, most important, matrix fluctuations through the
polymer segmental motions, which stochastically provide pathways for ion
migration. This last issue is important also in problems of gas permeation
through polymer membranes [93], but coupling of the diffusing particles with
network degrees of freedom is much stronger in the polymer electrolytes dis-
cussed here.

Detailed insight into the coordination of cations by polymer chain seg-
ments and the resulting migration mechanisms emerged during recent years
from classical molecular dynamics simulations, mostly on alkali-halide/PEO-
systems [94–97]. Moreover, for understanding general trends in the ion and
chain diffusion properties under varying temperature, pressure and salt-
content, a coarse-grained description in terms of stochastic lattice models
has proved useful [98–100]. Below we briefly outline this kind of approach.
Subsequently we turn to a simplified, athermal model for particle diffusion
in a fluctuating network of chain molecules. A mapping of that model onto
dynamic percolation theory is proposed [101, 102]. Favorable tests against
Monte Carlo simulations suggest that dynamic percolation could become a
useful concept for studies of diffusion in fluctuating realistic structures. Fi-
nally, we adopt a more macroscopic viewpoint and summarize some ideas,
based on differential effective-medium theory [103], how to interpret the re-
cently discovered enhancement of ionic conductivities in stretched polymer
systems [104].

20.8.1 Lattice Model of Polymer Electrolytes

For PEO-type electrolytes we adopt a simple model of lattice chains, where
beads occupy a sequence of nearest-neighbour points on a simple cubic lat-
tice of spacing a. We distinguish between C-beads and X-beads in sequences
C(XCC)n, where X corresponds to an oxygen atom and C to a hydrocarbon
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Fig. 20.16. Temperature-dependent cation and anion diffusion coefficients D(±)

(normalized by the diffusion coefficient D0 of non-interacting point particle) ver-
sus inverse temperature (data points) and VFT-fits (dotted lines) for different ion
concentrations x = 0.08 (circles), x = 0.16 (squares) and x = 0.24 (triangles). The
inset shows the variation of the VFT-temperature T (+)(x) with x (after [100]).

group. The total length of the chain is r = 3n+1. Beads on nearest neighbor
positions interact with a common repulsion ε0 > 0, which drives the system
from the fluid to a glassy state upon lowering the temperature. Ions are rep-
resented as point particles carrying charges ±q, and experience their mutual
Coulomb forces. The asymmetry in the cation-chain and anion-chain interac-
tions is introduced by assuming that X-beads attract cations with strength
−ε < 0. In order to reduce the number of free parameters in our model, we
assume that ε0 = ε. Elementary moves of the chains follow the generalized
Verdier-Stockmayer algorithm [105,106], including kink jump, end jump and
crankshaft moves. Such moves are known to conform with Rouse-dynamics
in the case of sufficiently long chains (see Chap. 13). Ions simply perform
nearest-neighbor hops. Transition probabilities in our Monte Carlo simula-
tions are given by the Metropolis algorithm. For further details we refer to the
original literature [100]. Considering techniques of lattice Monte Carlo sim-
ulations for polymers, we should remark at this point that the dynamics of
dense polymer melts, especially their associated scaling properties, are most
efficiently investigated by using the bond-fluctuation model [107]. However,
in view of the chemical heterogeneity within a repeat unit in PEO-chains and
the specific interactions of ions with chain beads it seems more natural in the
present context to employ the lattice chain model described above.
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Now we turn to some representative results. Figure 20.16 shows Arrhenius
plots of the diffusion coefficients D(±) and D(P ) for cations, anions and the
polymer center of mass, respectively. The downward curvature of the data
allows fits in terms of the empirical Vogel-Fulcher-Tammann (VFT) equation,
well-known from relaxation studies in supercooled fluids [24],

D(α)(T, x) = D∞(x) exp
(
− Eα(x)
kB(T − T (α)(x))

)
(20.30)

where α = ±, P . The ion concentration enters through the parameter x which
measures the number of cations relative to the number ofX-beads in the sam-
ple. Eα(x) is a characteristic energy and T (α)(x) the VFT-temperature. For
low ion content, x � 1, one finds that T+(x) � T (P )(x), which confirms the
strong coupling of cations to the chain beads and suggests that freezing of the
network simultaneously suppresses cation diffusion. By contrast, anion diffu-
sion shows a much weaker temperature dependence, with T (−)(x) < T (P )(x).
VFT-temperatures generally increase with x, as indicated in the inset of
the figure. These findings agree qualitatively with diffusion measurements on
PEO-based electrolytes by the NMR pulsed-field gradient method [108], cf.
Chap. 10, and with the general experimental observation of an increase in
the glass transition temperature Tg with x [109].

The VFT-expressions (20.30) together with the equality T (+)(x) � T (P )(x)
for x � 1 immediately imply, for fixed x, that

D(+)(T, x) ∝ (D(P )(T, x))n+(x) (20.31)

where the exponent

n+(x) = E(+)(x)/E(P )(x) < 1 (20.32)

decreases with increasing x. Thus, when temperature is varied, the cation
diffusion coefficient depends in a power-law fashion on the diffusion coeffi-
cient for the chain center-of-mass motion. As shown in Fig. 20.17, such a
relationship holds over at least three decades in D(+). Qualitatively, we ex-
pect that diffusion coefficients of non-entangled chains reflect the behavior
of the viscosity η of the system, D(P ) ∼ η−1. Equation (20.31) would then
imply D(+) ∼ η−n+ . Such a relationship appears interesting in connection
with recent experimental observations of a “fractional Stokes-Einstein” law
in ionic melts [110]. Figure 20.17 also shows that under variation of both T
and x the anion diffusion coefficients can be represented by a unique function
of D(P ). This suggests that, for given T and x, anion diffusion depends only
on a single time scale that characterizes the chain motion, a result which
perfectly agrees with the idea of dynamic percolation. There one considers
a random walk in an environment with percolative disorder. As time pro-
ceeds, the disorder configurations are continually renewed at a certain rate.
In Sect. 20.8.2 we shall come back to this model in greater detail.
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Fig. 20.17. Self-diffusion coefficients D(±) of cations and anions (normalized by
the diffusion coefficient D0 of non-interacting point particle) against chain diffusion
coefficients D(P ), for different ion concentrations (after [100]).

Several further studies have been carried out in a reduced polymer elec-
trolyte model with only one species of mobile point-like particles. The lat-
ter assumption may directly apply to the so-called ionenes, where the an-
ions are chemically grafted to the chains [111]. By combining the quasi-
chemical approximation for the equation of state with standard simulations
at constant volume, information on the isobaric-isothermal ensemble can be
gained [112]. Ion diffusion coefficients in dense systems were found to de-
crease exponentially with pressure, in accord with experiments [111]. Further
studies considered the variation of VFT-temperatures with salt concentra-
tion, keeping the pressure fixed. As x becomes of the order of unity, the
VFT-temperatures T+(x) and T (P )(x) tend to saturate in this model and
get decoupled, T+(x) < T (P )(x), such that ions keep some mobility when
the network freezes.

20.8.2 Diffusion through a Polymer Network: Dynamic
Percolation Approach

With the aim to investigate generic aspects of random walks in a dynamically
disordered environment, several authors have developed models of dynamic
percolation (DP) [113–116]. The most common starting point is a bond per-
colation model with global, instantaneous renewals of the disorder configu-
rations. These renewal events occur in time according to some waiting time
distribution ψ(t). Denoting by 〈r2(t)〉0 the mean square displacement of the
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walker in the absence of renewals (frozen disorder), one can show [117] that
the long-time (zero-frequency) diffusion coefficient in d = 3 dimensions is
given by

D =
1
6

∞∫
0

dt ψ(t)〈r2(t)〉0
∞∫
0

dt ψ(t)t
(20.33)

In the special case of a Poisson renewal process with mean waiting time λ−1,
we have ψ(t) = λ−1e−λt, so that D = D0(λ), where D0(λ) is determined by
the Laplace transform of 〈r2(t)〉0. More generally, the frequency-dependent
diffusivity D(−iω) in the case of Poisson renewals satisfies the analytic con-
tinuation rule [113]

D(−iω) = D0(−iω + λ) (20.34)

In an attempt to map a random walk through a system of fluctuating
polymer chains onto that model, the primary task is to extract an appro-
riate waiting time distribution ψ(t), to be used in (20.33), from the actual
polymer dynamics. For that purpose the following scheme has been advanced
recently [102,118]. The function ψ(t) is related to the stochastic process ni(t),
representing the occupation of a site i by a polymer bead. That site i is cho-
sen to be a nearest neighbor of a fixed position of the walker. By this, the
correlation function 〈ni(t)ni(0)〉 reflects the closing or opening statistics of
a bond connected to the walker. Renewal events in an associated DP model
are now identified with occupational changes at site i. This will allow us to
express ψ(t) in terms of 〈ni(t)ni(0)〉.

To put this idea on a quantitative basis, we introduce the probability
Φ(t) with t > 0 that no renewal takes place in the interval [0, t], after a
previous renewal at an arbitrary time t0 < 0. Hence, with probability Φ(t)
the occupation of site i does not change, so that ni(t) = ni(0), with pos-
sible values 0 and 1, and ni(t)ni(0) = (ni(0))2 = ni(0). Conversely, with
probability 1 − Φ(t), one or more renewals occur within [0, t]. Then, since
configurations are randomly reassigned, ni(t) can be replaced by its average
c, and ni(t)ni(0) = c ni(0). Averaging in addition over the initial occupation
ni(0), we obtain

〈ni(t)ni(0)〉 = c Φ(t) + c2(1 − Φ(t)) (20.35)

or

Φ(t) =
〈ni(t)ni(0)〉 − c2

c(1 − c)
(20.36)

The final step is to utilize the result from renewal theory [117], that

ψ(t) = λ̄−1Φ′′(t) (20.37)
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Fig. 20.18. Comparison of tracer correlation factors from dynamic percolation
theory for chains of different lengths r (data points) with results from simulations
(full lines, representing fit functions of simulation data). The dashed-dotted line
shows the tracer correlation factor of a hard core lattice gas that corresponds to
r = 1.

where λ̄−1 =
∞∫
0

dt ψ(t)t is the mean renewal time. These arguments general-

ize earlier ideas of constructing effective-medium theories for many-particle
systems with the help of DP theory [119].

When applying this concept, based on (20.33), (20.36) and (20.37), to
tracer diffusion within a polymer host, one has to find the two input quanti-
ties 〈r2(t)〉0 and 〈ni(t)ni(0)〉 from simulations of the two separate problems:
random walk of a tracer particle through a frozen polymer host and local
occupational correlation function due to polymer segmental motions next to
a frozen tracer. Both of these problems are expected to be computationally
much less demanding than the simulation of the full system dynamics.

Recently that DP scheme has been tested against Monte Carlo simulations
for the case of an athermal model, where multiple occupation of lattice sites
by either chain beads or (point-like) tracer particles is excluded [102]. As
usual, we define the tracer correlation factor ftr(c, r) in terms of the tracer
diffusion coefficient D by

D = (1 − c)ftr(c, r)D0 (20.38)

which now depends both on the overall concentration c of occupied sites and
on the chain length r. Data points in Fig. 20.18 show DP results for ftr(c, r)
up to a chain length r = 20, while the full lines represent fits to Monte
Carlo simulations of the complete system dynamics. Obviously the agreement
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between both methods is excellent, suggesting that the DP description may
become a useful tool also in studies of more realistic systems. It is important
to note that in order to achieve this degree of accuracy in DP theory, the
non-Poisson character of the waiting-time distribution has to be taken into
account. In particular, the function Φ(t) reflecting the polymer dynamics
shows slow relaxation which for longer chains becomes even more pronounced.

Figure 20.18 includes data for the well-known case of a hard core lat-
tice gas, which emerges here as the limit r = 1. Since for c < 0.8 one
finds ftr(c, 1) < ftr(c, r) with r �= 1, we conclude that in this concentra-
tion range chain connectivity enhances tracer diffusion. This conforms with
the additional observation that a random walker in a 3 − d system of frozen
chains ceases to percolate at a threshold concentration ccrit(r) which increases
with r.

20.8.3 Diffusion in Stretched Polymers

Recent experiments on stretched PEO-based polymer electrolyte films have
revealed an enhancement of ionic diffusion and conductivity in the stretch
direction, while these transport coefficients in the normal direction decrease
[104]. A preferential migration of cations along the helical structure of the
PEO-chain, detected in molecular dynamics simulations [94], can in princi-
ple lead to that kind of macroscopic anisotropy when chains get oriented
through stretch. This situation has been described qualitatively by an effec-
tive two-phase model, where a highly conducting phase is associated with
those oriented molecular structures, but is surrounded by poorly conducting
boundary regions [103]. The effective conductivity was evaluated by using dif-
ferential effective-medium theory (DEMT), which accounts for the fact that
the highly conducting phase with conductivity σ2 never percolates; rather,
the conduction paths always have to pass the boundary phase with conduc-
tivity σ1 � σ2. Under stretch, the shape of one-phase regions changes from
spherical to prolate-ellipsoidal. As a stretch parameter one uses the ratio λ
between the long and the short axis of these ellipsoids. A version of DEMT
capable of taking into account these non-spherical shapes is due to Mendelson
et al. [120].

Conductivities perpendicular and parallel to the stretch direction are plot-
ted in Fig. 20.19 as a function of λ for different volume fractions f2 of the
highly conducting phase. While the directions of change in σ‖ and σ⊥ with
λ agree with experiments, the model calculations show further details which
remain to be tested against more refined measurements. For example, as f2

increases, σ‖(λ) becomes more sensitive to changes in λ, whereas σ⊥ becomes
less sensitive. Clearly, in the interpretation of these and other features of that
model, care has to be taken in relating the degree of macroscopic stretch to
anisotropies on the molecular level.
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Fig. 20.19. Ratio between conductivities of the stretched film in the stretch di-
rection (right) and perpendicular to it (left) and the conductivity in the isotropic
unstretched film (σ⊥(1) = σ‖(1)) as a function of the stretch parameter λ for several
values of the volume fraction f2 of the low-conductivity phase with σ1/σ2 = 10−4

(after [103]).

20.9 Conclusion

In Sects. 20.3–20.6, models for ionic transport in complex systems have been
presented which keep the essential physics: Coulombic interaction between
the ions and structural disorder in the substrate. These models are sim-
ple enough to be treated numerically by Monte-Carlo simulation techniques.
Several ionic transport quantities, such as the mean square displacement,
the frequency dependent conductivity and the spin-lattice relaxation rate,
have been discussed and it was found that both ingredients (structural dis-
order and Coulomb interactions) are needed to find the typical dispersion
behavior widely observed in experiments. It is remarkable that inclusion of
the simple percolative type of disorder allows one to account for the deli-
cate differences between conductivity relaxation and spin-lattice relaxation
found in experiments. However, for the theoretical understanding of the non-
Arrhenius behaviour observed in fast ion conductors the consideration of the
different energies associated with the different environments encountered by
the mobile ions becomes important.

In Sects. 20.4 and 20.5 it has been assumed that the charges of the mobile
cations are balanced by a homogeneous background charge, and that the en-
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ergetic disorder is spatially uncorrelated. On the other hand, the assumption
of randomly placed immobile counterions leads to a spatially correlated one-
particle energy landscape. Local motions of ions on binding sites next to an
associated counterion can give rise to a “nearly constant loss”-type response.
This was shown by additional simulations of a dipolar lattice gas discussed
in Sect. 20.6. Other effects caused by spatial correlations in the disorder are
considered in [121]. By taking into account that the energetic disorder is dif-
ferent for different types of mobile ions, a natural explanation for the mixed
alkali effect in glasses was discussed in Sect. 20.7. Coulomb interaction effects
are important to understand why the long-range mobility of a particular ion
type behaves quite differently if its concentration is changed via dilution or
if its (partial) concentration is changed via replacement by another type of
mobile ion.

Furthermore we have shown in Sect. 20.8 that a stochastic model of lattice
polymers and point-like particles (ions) with specific interactions can account
for characteristic conductance and network relaxational properties of polymer
electrolytes. On a coarse-grained level, dynamic percolation theory appears
as a promising tool to study ionic diffusion through a fluctuating polymer
matrix.

Notation

a, L lattice constant, system size
d space dimension
D, Dst long-time, short-time diffusion coefficient
D(t) time dependent diffusion coefficient
D̂(ω) complex frequency dependent diffusion coefficient
∆ESLR activation energy of the correlation time in spin-lattice relaxation
ESLR

1 , ESLR
2 activation energy of spin-lattice relaxation rate at high- and low-

temperature side of maximum
Eσ, ∆Ef activation energy of conductivity and tracer correlation factor
ftr tracer correlation factor
G(q)(t) correlation function for spin-lattice relaxation
ĤR(ω) complex Haven ratio
I, Q spin and quadrupole moment of nucleus
j(t) current density
〈j(t) · j(0)〉 current auto-correlation function
nσ, nD conductivity and diffusion exponent
p fraction of lattice sites accessible for mobile ions
pc percolation threshold
P (r, t) diffusion propagator
P (t) electric polarization
r length of polymer chains
〈r2(t)〉 mean square displacement
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〈r2(Nhop)〉 mean square displacement as a function of performed hops
Sinc(k, ω) incoherent structure factor
1/T1(ω, T ) spin-lattice relaxation rate
Tmax temperature of maximum in spin-lattice relaxation rate
T (α) Vogel-Fulcher-Tammann temperature for polymer chains (α =

P ), cations (α = +) and anions (α = −)
V0 structural energy barrier for hops
Vdip−dip dipole-dipole interaction energy
γ magnetogyric ratio
Γ plasma parameter
λ mean renewal rate
ν number of nearest neighbours
ρ number density
σ||, σ⊥ parallel, perpendicular conductivity in stretched polymer films
σ̂(ω), σdc complex dynamic conductivity, dc-conductivity
τ∞ rattling time or inverse attempt frequency for hops
τSLR correlation time in spin-lattice relaxation
τσ, τD conductivity and diffusion relaxation time
χ̂(ω) complex dielectric susceptibility
ψ(t) waiting time distribution for renewals
ψ(τw) effective distribution of waiting times τw
ωNCL cross-over frequency to “nearly constant loss” regime
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21 Concept of Mismatch and Relaxation for

Self-Diffusion and Conduction in Ionic
Materials with Disordered Structures

Klaus Funke, Cornelia Cramer, and Dirk Wilmer

21.1 Introduction

In the ion conducting materials to be discussed in this chapter, structural
and dynamic disorder is the key property. A simple scheme may serve to
highlight the remarkable implications of this property with regard to the
movements of the ions. In this scheme, perfectly ordered crystals are placed
at level one. At this level, there is no possibility for the ions to leave their sites;
thus no ionic transport can occur. Historically, the decisive step forward was
made when site disorder was discovered and point-defect thermodynamics
were developed. At this stage, which we call level two, ionic transport is
accomplished by point defects moving randomly from site to site. In fact,
modern materials science and engineering build on the concept of level two.

Dramatic changes are encountered as we move on to materials with dis-
ordered structures, i.e., from level two to level three. Now, point defects are
no longer isolated structural elements. It is even no longer sensible to speak
of defects, since the entire structure is disordered. Therefore, ionic transport
cannot be described in terms of individual defects performing random walks
in a static energy landscape. Instead, we are facing a challengingly compli-
cated many-particle problem, with the mobile ions interacting with each other
and with their surrounding matrix.

In materials with disordered structures, the number of available sites by
far exceeds the number of mobile ions, and it turns out to be impossible to
arrange the ions unambiguously in an optimised manner. These materials
may be crystalline or glassy. They are fast ion conductors, if the barrier to
be surmounted in a hop is of the order of the thermal energy.

The transition from level two to level three, i.e., from a random hopping
of individual defects to a non-random correlated motion of interacting ions,
is found to be accompanied by prominent changes in the shapes of functions
which are experimentally accessible. For instance, the ionic conductivity as-
sumes a characteristic frequency dependence, and spin-lattice relaxation rates
are no longer properly described by the model of Bloembergen, Purcell and
Pound [1] (cf. Chaps. 9 and 20). Surprisingly, the experimental phenomena
are very much the same in structurally disordered crystals such as RbAg4I5,
in glasses, and even in supercooled melts.
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level two,
random hopping:

∝ δ(t)

t0

〈Σvi(0)·vj(t)〉i, j

1..N

log σ

log ν

level three, 
correlated hopping:

t

〈Σvi(0)·vj(t)〉i, j

1..N
log σ

log ν

Fig. 21.1. Random versus correlated jump diffusion.

In this chapter, the diffusive motion of mobile ions in disordered materials
will be analysed on the basis of the frequency-dependent electrical (ionic) con-
ductivity, σ(ν). Figure 21.1 illustrates the change observed in the shape of this
function as random hopping is replaced by correlated hopping. In Fig. 21.1,
we have used a relationship from linear response theory which states that
σ̂(ν) is proportional to the Fourier transform of the autocorrelation function
of the current density [2]. If all mobile ions have the same charge, the current
density will be proportional to the sum of their velocities. Therefore, σ(ν)
is proportional to the Fourier transform of the velocity correlation function,
〈
∑1..N

i,j vi(0) · vj(t)〉.
If the ions (or mobile defects) are random walkers, as in level two, they

do not know of each other, and all the cross terms vanish. Also, random
walkers have no memory. Hence each hop is only correlated to itself. On a
time scale that does not resolve a few picoseconds, the velocity correlation
function is, therefore, proportional to a delta function at time zero, δ(t). The
Fourier transform of a delta function being a constant, σ(ν) will be constant
at least up to microwave frequencies. Such a behaviour is indeed observed
in the case of level-two materials such as AgBr. By contrast, ionic materials
with disordered structures display frequency-dependent conductivities, σ(ν),
as in Fig. 21.2. In this case, the conductivity caused by the hopping motion
of the ions is well described by a constant minus a bell-shaped contribution
centred at ν = 0. The corresponding velocity correlation function is, therefore,
characterised by a sharp peak at t = 0, plus a decaying negative contribution
at t > 0, see Fig. 21.1. While the sharp peak once again reflects the self-
correlation of the velocity during hops, the decaying negative contribution
results from a decaying probability for an ensuing backward hop, if the hop
performed at time t = 0 defines the forward direction. If the dc conductivity,
σdc = σ(0), is much smaller than the conductivity measured at microwave
frequencies, correlated forward-backward hops have to be considered the rule
rather than the exception.
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Fig. 21.2. Frequency-dependent conductivity, σ(ν), of crystalline Na-β′′-alumina
at 473 K [3]. Below 100 GHz, σ(ν) is essentially caused by the hopping motion of the
sodium ions, while above 1THz it is essentially due to the excitation of transverse
optical phonons.

There is a direct analogy between this effect and the Debye-Hückel-Onsa-
ger-Falkenhagen effect, cf. Fig. 21.3. In Fig. 21.3 (a), consider a dilute strong
liquid electrolyte. Suppose an ion is virtually displaced at time zero. As a
consequence, it is no longer at the centre of its ion cloud. Two competing
relaxation processes tend to restore equilibrium. The ion may move backward
or the cloud may move forward. This results in a flow of charge in the direction
opposite to the initial displacement, and Fourier transformation of the current
density autocorrelation function yields a small increase of the conductivity
as a function of frequency.

In a structurally disordered solid electrolyte, see Fig. 21.3 (b), the transla-
tional motion is achieved by hops, and the neighbouring mobile ions play the
role of the ion cloud. Again, there is a competition between two relaxation
processes. After each hop of a mobile ion, the ion may either hop backwards
or its neighbours may rearrange. However, there is a striking difference be-
tween Fig. 21.3 (a) and Fig. 21.3 (b) concerning the respective magnitude of
the effect. The amount of backward flow of charge and hence the resulting
dispersion of σ(ν) are dramatically larger in the solid than in the dilute liquid
electrolyte.

In this chapter, the correlated ionic motion in materials with disordered
structures is studied on the basis of experimental conductivity spectra, σ(ν).
In particular, a simple set of rules is derived that grasp the essential aspects
of the ion dynamics and outline their development with time. Indeed, experi-
mental conductivity spectra have led us to derive two coupled rate equations
which describe the ion dynamics in a very general fashion and provide a
means not only for reproducing the frequency-dependent conductivities, but
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Fig. 21.3. Schematic comparison of the current density autocorrelation function
and the conductivity dispersion in a) a dilute strong liquid electrolyte and b) a
structurally disordered solid electrolyte.

also for tracing the specific traits of the spectra back to their dynamic ori-
gins. These rate equations make up the concept of mismatch and relaxation
(CMR), to be presented and discussed in this chapter.

This chapter is organised as follows. In Sect. 21.2, the experimental tech-
niques used in conductivity spectroscopy are briefly introduced, and the char-
acteristic features of frequency- and temperature-dependent conductivities,
σ(ν, T ), are summarised. In Sect. 21.3, we give a brief outline of the for-
mal relationships between conductivities, σ(ν), and time-dependent correla-
tion functions. We also give interpretations of the experimental features and
present models for the ion dynamics on a microscopic scale. In Sect. 21.4, we
introduce the two rate equations of the CMR and show how time-dependent
functions and realistic model conductivity spectra are obtained from them.
Section 21.5 is devoted to a brief discussion of the scaling properties of the
model spectra. It also provides relationships between model parameters and
characteristic frequencies of the conductivity spectra, thus facilitating their
interpretation. The physical concept leading to the two rate equations of the
CMR is then outlined in Sect. 21.6. Examples of sets of complete conductivity
spectra (extending at least up to millimetre-wave frequencies) taken at differ-
ent temperatures are presented and discussed in Sects. 21.7 and 21.8, for solid
electrolytes and for a fragile supercooled ionic melt, respectively. Section 21.9
deals with the shape of frequency-dependent conductivities of many glassy
and crystalline materials as measured in the so-called impedance frequency
regime, below some 10MHz. In Sect. 21.10 we discuss localised movements
of interacting charged particles and their manifestation in σ(ν, T ).
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21.2 Conductivity Spectra of Ion Conducting Materials

Conductivity spectroscopy spans more than 17 decades on the frequency
scale, ranging from less than 10−3 Hz to more than 1014 Hz. The width of
the time scale thus covered is unsurpassed by any other technique. Besides
offering a broad variety of applications in the characterisation of materi-
als, the technique also provides a unique possibility to study the motion of
charged particles (ions or polarons) on rather different time scales, even re-
solving their elementary hopping processes. Therefore, it plays the role of an
extremely powerful ‘microscope in time’. A schematic survey of the requisite
spectroscopies is given in Fig. 21.4. Experimentally, four frequency regimes
may be discerned:

(i) the impedance regime, below some 10MHz,
(ii) the radio regime, from some 10MHz to a few GHz,
(iii) the microwave regime, from a few GHz to about 150GHz, and
(iv) the (far-) infrared regime, above 150GHz.

Electrodes are used only in (i). Guided electromagnetic waves are employed
in (ii) and (iii), and free ones in (iv). Coaxial waveguides are practicable up
to 18 GHz. At higher microwave frequencies, they are replaced by rectan-
gular waveguide systems. Fourier transform spectroscopy is the method of
choice in the (far) infrared. Although a number of different experimental set-
ups are required to cover the entire frequency range, the general procedure
towards the electrical characterisation of materials is essentially the same in
any part of the spectrum. The complex electrical conductivity, σ̂(ν), is always
determined by measurement of amplitudes and phases of quantities related
to the field-induced current in the sample. These are voltages and currents, if
electrodes are employed [4–6]. If the experimental technique is electrode-free,
the relevant quantities are, instead, complex field amplitudes of electromag-
netic waves transmitted or reflected by the sample [7]. In the latter case, the
complex conductivity, σ̂(ν), is obtained from the measured data by means
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Fig. 21.4. Schematic overview of different techniques for the measurement of
frequency-dependent conductivities.
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Fig. 21.5. Typical conductivity spectra of an ion conducting material, viz., glassy
B2O3 · 0.56 Li2O · 0.45 LiBr.

of Maxwell’s equations and the boundary conditions at the interfaces, which
guarantee the continuity of the electric and magnetic field components.

In spite of their potential for unravelling microscopic mechanisms of ionic
motion, complete conductivity spectra of ion conducting materials, like the
one presented in Fig. 21.2, are still very rare. In Fig. 21.5, we present another
example, viz., conductivity spectra of glassy B2O3 · 0.56 Li2O · 0.45 LiBr, ex-
tending up to 100 THz. Above 100 GHz, the conductivity is governed by
vibrational contributions featuring a ν2 frequency dependence on the low-
frequency flank. In amorphous materials without lattice periodicity there are
no selection rules for far-infrared absorption; hence the vibrational peaks are
much broader than in crystals, cf. Fig. 21.2.

Conductivity spectra of different ion conducting materials with disordered
structures show many common features. Phenomenologically, the following
characteristics have been identified:

(i) A dc conductivity plateau, σdc = σ(0), is attained at sufficiently low
frequencies. In ionic solids and strong ionic melts, σdc · T is usually
Arrhenius activated, viz., σdc · T = A · exp(−Edc/(kBT )), while fragile
melts show a pronounced deviation from the Arrhenius law [8].

(ii) The ac conductivity, σ(ν), increases monotonically with frequency [9],
at least up to millimetre-wave frequencies. In the very far infrared, dis-
placive and vibrational contributions to σ(ν) are usually hard to distin-
guish.

(iii) In some cases, however, this distinction has been possible, and the so-
called high-frequency plateau, σhf = σ(∞), has been identified. An
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example has been given in Fig. 21.2. Wherever detected, high-frequency
plateau conductivities are found to obey the Arrhenius law with an
activation energy lower than Edc [3, 7, 10–12].

(iv) Typically, the shape of σ(ν), as observed in a log-log plot below the
microwave regime, does not depend on temperature. Therefore, a master
curve is obtained when these sections of the conductivity spectra are
shifted and superimposed. This is the time-temperature superposition
principle [13–17].

(v) In a log-log plot of σ · T versus frequency, the onset of the dispersion is
often found to occur along a straight line with a slope of one, implying
that the onset frequency and σdc · T are both activated with Edc. This
is the so-called Summerfield scaling [18], exemplified in Fig. 21.6 where
conductivity spectra of glassy 0.3 Na2O · 0.7 B2O3 taken at different
temperatures have been scaled to fall on a single master curve.

(vi) Master curves constructed from spectra σ(ν) of a large number of dif-
ferent ionic materials with disordered structures are surprisingly similar
in shape [15, 17, 19].

(vii) At any temperature, the initial part of σ(ν) roughly follows the Jonscher
power law, i.e., σ(ν) − σ(0) ∝ νp with an exponent p between 0.6 and
0.7 in most cases. This behaviour, found in a broad variety of materials,
is often called universal dynamic response (UDR) [20].

(viii) Two-dimensional ion conductors such as the beta aluminas [21], crystals
and glasses with low number densities of mobile ions, see Sect. 21.9
and [17], and mixed cation glasses [22,23] exhibit a particularly gradual
onset of the dispersion of σ(ν).

(ix) As temperature is decreased, the slope of σ(ν) in the log-log plot
approaches the value of one at any given audio or radio frequency,
while the conductivity becomes decreasingly temperature-dependent,
cf. Fig. 21.5. As σ(ν) ∝ ν corresponds to a frequency-independent di-
electric loss, this feature has come to be known as nearly constant loss
(NCL) behaviour [24–26].

(x) As a consequence of (vii) and (ix), the typical shape of empirically con-
structed master curves of ionically conducting materials is characterised
by an apparent exponent which increases with increasing reduced fre-
quency, gradually approaching the value of one.

(xi) Remarkably, the NCL feature has also been found in ionic crystals and
glasses at cryogenic temperatures, where it is certainly not related to
ionic transport [27].
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Fig. 21.6. a) Experimental conductivity spectra of glassy 0.3 Na2O · 0.7 B2O3. b)
Scaled representation of the data presented in a).

21.3 Relevant Functions and Some Model Concepts for
Ion Transport in Disordered Systems

Conductivity spectra convey information on the microscopic dynamics of the
mobile charge carriers, since according to linear response theory [2], σ̂(ω),
with ω = 2πν, is the Fourier transform of the autocorrelation function of the
current density:
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σ̂(ω) =
V

3kBT
·
∫ ∞

0

〈i(0) · i(t)〉 exp(−iωt)dt . (21.1)

In (21.1), the current density,

i(t) =
1
V

N∑
i=1

qivi(t) , (21.2)

and its autocorrelation function are real functions of time. V is the volume of
the sample, and the summation is over all N charge carriers. Their charges
and velocities are denoted by qi and vi, respectively. In systems with only one
type of mobile charge carrier, the complex conductivity, σ̂(ω), is connected
with the complex coefficient of self diffusion of this carrier, D̂(ω), via

σ̂(ω) =
Nq2

V kBT
· 1

ĤR(ω)
· D̂(ω) . (21.3)

In (21.3), ĤR(ω) denotes the frequency-dependent complex Haven ratio,

ĤR(ω) =
N

∫∞
0 〈v(0) · v(t)〉 exp(−iωt) dt∫∞

0 〈
∑1..N

i,j vi(0) · vj(t)〉 exp(−iωt) dt
, (21.4)

which becomes a real number in its low-frequency limit: HR = ĤR(ω = 0). If
cross correlations between movements of different ions i, j may be neglected,
the Haven ratio becomes unity. Within this approximation we then obtain
the Nernst-Einstein relation,

σ̂(ω) =
Nq2

V kBT
· D̂(ω) . (21.5)

Monte-Carlo simulations by Maass et al. [28] have shown that the overall
shape of conductivity spectra is indeed well described, if only correlations
between hops of a single ion are taken into account. Within this “single
particle approximation”, the dynamic conductivity can be expressed by the
Fourier transform of the velocity autocorrelation function,

σ̂(ω) =
Nq2

3V kBT
·
∫ ∞

0

〈v(0) · v(t)〉 exp(−iωt) dt (21.6)

= −ω2 Nq2

6V kBT
· lim

ε→0

∫ ∞

0

〈r2(t)〉 exp(−εt− iωt) dt .

Here, 〈r2(t)〉 is the time-dependent mean square displacement of the mobile
ions. Equation (21.6) implies that the dynamic conductivity can be derived
from a model-based velocity autocorrelation function, 〈v(0) · v(t)〉.

In the most simple approach, the ions are assumed to be random walkers,
cf. Fig. 21.1, and the velocity autocorrelation function reads:
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〈v(0) · v(t)〉RW =
Γx2

0

2
· δ(t) . (21.7)

Here Γ and x0 are the hopping rate and the elementary jump distance of
the ions, respectively. Combination of (21.6) and (21.7) yields a hopping
conductivity which is real and constant up to about 100GHz:

σ̂RW = σRW =
Nq2x2

0Γ

6V kBT
, (21.8)

see also Fig. 21.1.
However, (21.8) is in marked contrast to experimental conductivity spec-

tra like those presented in Figs. 21.2 and 21.5. As outlined in Sect. 21.1,
correlated hopping processes of the ions have to be taken into account. In the
latter case, both the current density autocorrelation function, 〈i(0) · i(t)〉,
and the velocity autocorrelation function, 〈v(0) ·v(t)〉, strongly deviate from
those of a random walker, cf. Fig. 21.1.

Over the years, various concepts, models and computer simulations have
been published, all of them aiming at a realistic description of the nonrandom
ion transport in disordered systems. The most important ones are briefly
summarised in the following.

(i) In his coupling concept, Ngai described the time-dependent decay of an
electric field in an electrolyte by joining together an exponential and
a stretched-exponential (Kohlrausch-Williams-Watts) decay function.
The model yields σdc = σ(0), σhf = σ(∞), and a dispersive conductivity
in between [29–31].

(ii) The physical picture of mismatch and mismatch relaxation was first
introduced in the jump relaxation model. Being based on interactions
between the ions, the model was able to reproduce essential features of
the spectra in a closed expression [32, 33].

(iii) Introducing disorder on a square lattice, Bunde and co-workers obtained
time-correlation functions and spectra σ(ν) from Monte-Carlo simula-
tions [34] (see Chap. 20).

(iv) In their counter-ion model, Dieterich and co-workers considered both
disorder and interactions and were thus able to derive realistic spectra
from numerical simulations [35, 36] (see Chap. 20).

(v) It has been realised that the combined validity of the time-temperature
superposition principle and the Summerfield scaling implies that the
only effect of temperature is to change the hopping rates of the ions
while their hopping mechanism is preserved.

(vi) The asymmetric double well potential (ADWP) model [37] has been
used by Nowick, Jain, and their co-workers to explain the NCL behav-
iour. Jain coined the phrase “jellyfish” behaviour [38]. Both Nowick and
Jain have always regarded UDR and NCL as different features [26].
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(vii) On the other hand, concepts have also been developed which self-
consistently explain a continuous transition from UDR to NCL. One of
these is the random barrier model as treated mathematically by Dyre
and Schrøder [39, 40]. However, the comparatively large rms value of
the distance at which an ion loses memory of its previous position is an
unsolved problem of this approach.

(viii) The concept of mismatch and relaxation (CMR) also provides realistic
spectra including the UDR-NCL transition. It has the further advan-
tage of reproducing spectra with different shapes in a one-parameter
treatment, see the following section.

(ix) On the basis of the CMR, the non-Arrhenius dc conductivity encoun-
tered in fragile supercooled ionic melts has been shown to be a di-
rect consequence of a short-time behaviour characterised by Arrhenius-
activated elementary displacements normally followed by roll-back processes
[12].

(x) According to recent computer simulations [41], the NCL behaviour ob-
served at cryogenic temperatures can be explained by strictly localised
movements of interacting ions (cf. Chap. 20). The same result is ob-
tained from a suitably modified version of the CMR [42].

21.4 CMR Equations and Model Conductivity Spectra

Before embarking on the construction of the CMR, it is useful to consider
the shapes of some relevant functions. This is done with the help of Fig. 21.7,
where the approximation of (21.6) has been adopted, i. e., it is assumed that
no essential error is introduced by putting HR = 1, cf. [43]. For convenience,
one further function is introduced, viz., the time-dependent correlation factor,
W (t) [32]. This function is a normalised integral of 〈v(0) · v(t)〉 and, at the
same time, a normalised derivative of the mean square displacement, 〈r2(t)〉:

2
Γ0x2

0

∫ t

0

〈v(0) · v(t′)〉dt′ = W (t) =
1

Γ0x2
0

d
dt

〈r2(t)〉 . (21.9)

Here, Γ0 denotes the elementary hopping rate of the ions.
At very short times, when each ion performs at most one hop, correla-

tions are not yet visible. Therefore, we have W (0) = 1, and 〈r2(t)〉 increases
linearly with time, see Fig. 21.7 (b) and Fig. 21.7 (d). Note that the ballistic
short-time behaviour, with 〈r2(t)〉 ∝ t2, is not included as jump processes
are considered only. At longer times, when negative values of 〈v(0) · v(t)〉
contribute significantly to the expression in (21.9), W (t) is found to decay
with time, and 〈r2(t)〉 increases in a sublinear fashion. This time regime is
sometimes called “subdiffusive” or “anomalous” (cf. Chaps. 10, 18, 19, 22).
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Fig. 21.7. Schematic plot of relevant functions. (a) Normalised frequency-
dependent conductivity caused by the hopping motion of the ions, versus angular
frequency in a log-log representation. (b) Time-dependent correlation factor versus
time in a log-log representation. (c) Velocity autocorrelation function of the mobile
ions versus time. (d) Mean square displacement of the mobile ions versus time in a
log-log representation.

Only at much longer times, when 〈v(0)v(t)〉 becomes very small and, conse-
quently, W (t) tends to its long-time limit, W (∞), does 〈r2(t)〉 change from its
subdiffusive behaviour into its diffusive long-time behaviour, which is linear
in time, with 〈r2(t)〉 = 6Dt, where D is the coefficient of self-diffusion. Note
that σ(ν)/σ(∞) and W (t), in log-log representations, are almost perfect mir-
ror images of each other, see Fig. 21.7 (a) and Fig. 21.7 (b) as well as Fig. 21.8.
Although this approximate symmetry is useful for practical purposes, we will
not use it for deriving model spectra, σ(ν)/σ(∞). Rather, exploiting the re-
lationships between σ(ν) and 〈v(0)v(t)〉, and between 〈v(0)v(t)〉 and W (t),
we write

σ(ν)
σ(∞)

= 1 +
∫ ∞

0

Ẇ (t) cos(2πνt)dt . (21.10)

From (21.10) it is evident that σ(ν)/σ(∞) will be known as soon as W (t)
is known. The basic idea of the CMR is now to find W (t) from simple rate
equations that describe the development of the ion dynamics with time.

In the following, we present the equations that allow us to determine func-
tions W (t) and σ(ν)/σ(∞). We also present and discuss general features of
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the conductivity spectra thus obtained, while the explanation of the physical
concept of the model is postponed to Sect. 21.6.

The rate equations used in the CMR are

−ġ(t) = AgK(t)W (t) (21.11)

and
−Ẇ (t) = −BW (t) ġ(t) . (21.12)

These equations contain two time-dependent functions, W (t) and g(t).
Here W (t) is the time-dependent correlation factor, while g(t) is a normalised
mismatch function, see Sect. 21.6. They also contain three parameters, viz.,
A, B and K. The first parameter, A, is an internal frequency which turns out
to be proportional to the high-frequency conductivity, σ(∞). The second pa-
rameter, B, determines the ratio σ(0)/σ(∞) = W (∞) viaW (∞) = exp(−B).
In many cases, W (∞) is found to be Arrhenius activated which implies that
B should be proportional to the inverse temperature, 1/T . In the following
section, see (21.25), we will show that the ratio A/B is not only proportional
to σ(∞) ·T , and hence to the elementary hopping rate of the mobile ions, Γ0,
but that A/B and Γ0 may even be assumed to be identical (at least for the
example studied, within the limits of experimental error). The value of the
third parameter, K, influences the shape of the resulting conductivity spec-
tra in the vicinity of the onset of the dispersion, see the end of this section
as well as the discussion at the end of Sect. 21.6. In glassy and crystalline
electrolytes with high concentrations of mobile ions, K is typically found to
be 2 or close to 2.

Functions W (t) and g(t) satisfying the rate equations are shown in
Fig. 21.8 (a). The particular parameter values used are W (∞) = 0.001 and
K = 2. The time axis has been normalised by multiplication with the internal
frequency A. In a second step, application of (21.10) yields the normalised
conductivity spectrum, σ(ν)/σ(∞), represented in Fig. 21.8 (b) by the solid
line. Note that the broken line in Fig. 21.8 (b), obtained from W (t) by form-
ing the mirror image, provides a good approximation to the exact solution,
i.e.,

σ(ω)
σ(∞)

≈ W

(
2
πω

)
. (21.13)

Here, the factor 2/π arises as (21.13) is an approximation for an expres-
sion obtained by Fourier transformation. Figure 21.9 shows the shape of the
frequency-dependent conductivity for a fixed value of B (B = 25), and also
demonstrates the effect of varying the parameter K. In the first place, it is
important to note that, irrespective of the value of K, the model conduc-
tivity spectra do not obey a power law. Rather, as in Fig. 21.6, the appar-
ent slope in the log-log representation increases continuously, approaching
the value of one before the high-frequency plateau is attained. This is the
UDR–NCL transition. Of course, this transition can only be observed, if
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W (∞) = σ(0)/σ(∞) = exp(−B) is sufficiently small, i.e., at sufficiently low
temperatures. Otherwise, the high-frequency plateau will be attained before
the transition becomes visible.

Figure 21.9 also shows how the numerical value of K influences the shape
of the spectrum. As K is increased, the transition from σdc = σ(0) into the
dispersive regime becomes more and more gradual. Indeed, such a variation
has been observed experimentally, e.g., upon reducing the number density of
mobile ions in a solid electrolyte [17] or when moving from a binary alkali-ion
conducting glass into the mixed-alkali regime [22,23]. Examples will be given
in Sect. 21.9.

21.5 Scaling Properties of Model Conductivity Spectra

On the basis of (21.11) and (21.12) specific predictions can be made with re-
gard to the behaviour of W (t) and σ(ω)/σ(∞) in the vicinity of those times
and angular frequencies that mark the transitions from σdc into the disper-
sive regime and from the dispersive regime into σhf . We will in particular
show that model conductivity spectra possess the property of scaling in both
limiting cases. This means that the shapes of frequency-dependent model
conductivities are preserved in either frequency regime as the temperature is
varied. Of course, this requires sufficiently large ratios of σ(∞)/σ(0) as well
as a fixed value of the parameter K.

For the purpose of scaling, temperature-dependent angular frequencies
ωO and ωE will be introduced which mark the onset and the end of the
dispersion, respectively.

The situation is particularly simple at short times, when g(t) is still close
to one, cf. Fig. 21.8 (a). In this case, (21.11) and (21.12) may be combined
and approximated by

−Ẇ (t) = ABW 2(t) . (21.14)

Equation (21.14) has the solution

W (t) =
1

1 +ABt
. (21.15)

This implies that, according to the mirror image approach, the high-frequency
solution for the conductivity should be close to

σ(ω)
σ(∞)

=
1

1 + 2AB/(πω)
. (21.16)

We may, therefore, somewhat arbitrarily, define an “end angular frequency”
as

ωE = AB . (21.17)

Equation (21.16) is remarkable as it describes the nearly-constant-loss be-
haviour encountered at angular frequencies ω below ωE, provided g(1/ω) is
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Fig. 21.10. A CMR model conductivity spectrum, with B = 8 and K = 2. The
angular frequencies ωO and ωE mark the onset and the end of the dispersion.

still close to one. At sufficiently low temperatures, this requirement is indeed
satisfied in a wide range of angular frequencies that are still well below ωE.
In Fig. 21.10, the position of ωE has been marked in a plot of ln(σ(ω)/σ(∞))
versus ln(ωB/A). The plot also contains a mark for the corresponding “onset
angular frequency”, ωO. An expression for ωO is obtained by considering low
frequencies, corresponding to long times, where Wscaled = W (t)/W (∞) tends
to unity. In this case we combine (21.11) and (21.12) to form

− d
dt

lnWscaled(t) = AB exp(−B)Wscaled(t)
[
lnWscaled(t)

B

]K

(21.18)

or, with
ωO = AB1−K exp(−B) (21.19)

and
tscaled = tωO , (21.20)

− d
dtscaled

lnWscaled = Wscaled · (lnWscaled)K . (21.21)

Integration of (21.21) yields

tscaled =
∫ − ln W (∞)

ln Wscaled

x−Ke−x dx ≈
∫ ∞

lnWscaled

x−Ke−x dx . (21.22)

The approximation made on the right-hand side of (21.22) is always valid
at times that are much longer than 1/ωE. In particular, it is always valid in
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the “long-time regime” that corresponds to the impedance frequency range,
below 10MHz. This is important, because experimental conductivities used
for scaling purposes have almost exclusively been measured below 10MHz.

From (21.22) it is evident that in the long-time regime Wscaled is a unique
decaying function of tscaled. Correspondingly, σ(ω)/σ(∞) also exhibits scal-
ing, and the “onset angular frequency” may be chosen to be ωO from (21.19).
In the frequent case of K = 2, we have

ωO =
A

B
exp(−B) for K = 2 . (21.23)

This “onset angular frequency” ωO has been marked in Fig. 21.10.
The inverse onset angular frequency, 1/ωO , plays the role of a crossover

time at which macroscopic random diffusion is attained. Likewise, a crossover
distance, �O, may be defined by �O = (6D/ωO)1/2. The example of RbAg4I5
is particularly clear-cut. In this solid electrolyte, the density of mobile ions
is high, the value of K is found to be 2 as in Fig. 21.10, and the elementary
hopping distance, x0, is known. From the conductivity spectra of RbAg4I5,
to be discussed in Sect. 21.7, we find that within experimental error there is
no difference between x0 and the distance �O, after which random diffusion
prevails. This means that an ion, after a hop from one site to another, loses its
memory of the previous site as soon as it succeeds in stabilising its position
at the new one. Therefore, within experimental error, ωO can be identified
with the “random hopping rate” or “rate of successful hops” of the ions, Γ :

ωO ≈ Γ = 6D/x2
0 . (21.24)

Equation (21.24) is expected to hold not only in the particular case of
RbAg4I5 but in many other ionic materials as well.

As only a fraction Γ/Γ0 = W (∞) = exp(−B) of all hops are successful,
we find that the elementary hopping rate should be

Γ0 = Γ · exp(B) ≈ ωO exp(B) =
A

B
for K = 2 . (21.25)

As illustrated in Fig. 21.10, the position of A/B ≈ Γ0 is situated between
ωO ≈ Γ and ωE = AB on the frequency scale.

In most crystalline and glassy electrolytes, the dc conductivity, σdc =
σ(∞) exp(−B) is found to obey the Arrhenius law. This means that σdc · T
is proportional to exp(−Edc/kBT ), where Edc is the activation energy. In
those cases, where high-frequency conductivities, σ(∞), have also been de-
termined, they turn out to be Arrhenius activated as well, cf. Sect. 21.2.
Conductivity spectra of this kind are easily reproduced by the CMR, with
A and B depending on temperature in a known and simple fashion, and a
complete set of isothermal conductivity spectra at different temperatures is
readily constructed, as shown in Fig. 21.11. According to (21.24), the onset
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Fig. 21.11. Sketch of a set
of frequency-dependent conduc-
tivity isotherms as obtained from
the CMR for the case where dc
conductivity and high-frequency
conductivity both follow the Ar-
rhenius law. The value of the pa-
rameter K is again 2.

angular frequency is expected to be proportional to the coefficient of self-
diffusion and, because of the Nernst-Einstein relation, also proportional to
the product of dc conductivity and temperature. In Fig. 21.11, the onset of
the dispersion at different temperatures is, therefore, marked by a straight
line with a slope of one. This kind of scaling, with ωO ∝ σ(0) · T , is some-
times called “Summerfield scaling” [18] and has already been mentioned in
Sect. 21.2.

Figure 21.11 also shows that shifting individual conductivity spectra along
the line with slope one will result in a superposition of their low-frequency
sections. This procedure was applied in Fig. 21.6, producing one experimental
master curve and, likewise, one model master curve. The same procedure
has proved successful for many glassy and crystalline electrolytes. Further
examples are glassy B2O3 · 0.56 Li2O · 0.45 LiBr, cf. Fig. 21.12, and glassy
0.3 Li2O · 0.7 B2O3, cf. Fig. 21.18 in Sect. 21.9.

Experimentally, materials usually do not display noticeable variations
in the shapes of their low-frequency conductivities as the temperature is
changed. In the CMR, this corresponds to a fixed value of the parameter K.
Recently, changes in shape have, however, been observed in the temperature-
dependent conductivity spectra of the mixed alkali glass 0.3 [xLi2O · (1 −
x)Na2O] · 0.7 B2O3 [23].

21.6 Physical Concept of the CMR

The concept of mismatch and relaxation builds on the jump relaxation
model [32,33], the central idea being unchanged. Each mobile ion is assumed
to have vacant sites in its immediate neighbourhood, while other mobile ions
are present in its further surroundings, very much like the ion cloud in Debye-
Hückel theory. Due to their mutual repulsive interaction, the ions tend to stay
at some distance from each other. Each ion experiences a time-dependent ef-
fective potential which consists in part of the static potential provided by
the immobile crystalline or glassy network and in part of a time-dependent
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Fig. 21.12. Scaled representation of experimental and model conductivities (circles
and solid line, respectively) for B2O3 · 0.56 Li2O · 0.45 LiBr glass. The value of K is
again 2. For more details on this particular system, see [23].

cage-effect potential provided by its mobile neighbours. Suppose the ion per-
forms a hop to a neighbouring site. As a consequence, mismatch will usually
be created between its own position and the momentary arrangement of its
mobile neighbours. There are two possible ways for the system to reduce the
mismatch. Either the neighbours rearrange or the “central” ion hops back
into its previous site. This explains the existence of forward-backward corre-
lations of successive hops. Consequently, the mean square displacement ex-
hibits a “subdiffusive” behaviour, cf. Fig. 21.7 (d), and dispersion is observed
in frequency-dependent ionic conductivities.

Suppose mismatch is created by a hop of a mobile ion at time t = 0.
Then the mismatch function g(t), for t > 0, has the meaning of a normalised
distance between the actual position of the ion and the position at which
it would be optimally relaxed with respect to the momentary arrangement
of its mobile neighbours. The function g(t) varies with time from g(0) = 1
to g(∞) = 0, describing the way mismatch decays because the neighbouring
ions rearrange, while the “central” ion is supposed to stay at its position. The
negative time derivative, −ġ(t), is thus the rate of mismatch relaxation on
the “many-particle route”. On the other hand, −Ẇ (t)/W (t) is interpreted
as the rate of mismatch relaxation on the “single-particle route”, with the
ion hopping backwards. Here, the factor 1/W (t) is required, since we focus
on those cases where the ion has not yet moved backwards at time t. The
central assumption of the CMR is then expressed by (21.12), i.e., the rates of
relaxation on the single- and many-particle routes are assumed to be propor-
tional to each other at all times. In other words, the tendency for the central
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ion to hop backwards is assumed to be proportional to the tendency of its
neighbours to rearrange.

Up to this point, the CMR and its predecessor, the jump relaxation model,
are identical. The CMR differs from the jump relaxation model by inclusion
of (21.11). In this equation, we consider the rate of decay of g(t), −ġ(t).
Here it is important to realise that g(t) plays the role of a normalised dipole
moment. Its dipole field is the driving force felt by the neighbouring mobile
ions, inducing their rearrangement and, as a consequence, the concomitant
decay of g(t) itself. As the rearrangement of the surrounding “ion cloud”
proceeds, the central dipole will become increasingly shielded. This means
that two effects occur simultaneously. One is the decay of g(t) with time. The
other is the shrinking of the effective volume of the dipole field. In other words,
the effective number of mobile neighbours available for the relaxation becomes
time-dependent. It is evident that this is an extremely complicated dynamic
process, much more complicated than Debye-Hückel theory. Any attempt
to grasp its essence in a simple equation must contain approximations. For
deriving a suitable equation we start from the relation,

−ġ(t) ∝ g(t) ∗ 〈v(0)v(t)〉 · #(t) . (21.26)

Here, the rate of decay of g(t) at time t is expected to be proportional to
the convolution, denoted by “∗”, of the driving force and the velocity auto-
correlation function of the neighbouring mobile ions. No distinction is made
between the velocity autocorrelation function of the central ion and that of
its mobile neighbours. Furthermore, the rate of decay of g(t) is expected to
be also proportional to a function #(t) denoting the time-dependent effective
number of mobile neighbours available for the relaxation.

It is now easy to show numerically that g(t) varies with time much more
slowly than 〈v(0)v(t)〉 does. As a consequence, the convolution is well approx-
imated by the product of g(t) and the time integral of 〈v(0)v(t)〉, which is
proportional to W (t). Indeed, functions g(t) and W (t) obtained by use of the
approximation are found to satisfy the exact equation (with the convolution)
perfectly [12]. Equation (21.26) thus becomes

−ġ(t) ∝ g(t)W (t) · #(t) . (21.27)

While #(t) is certainly a decaying function of time, its shape is not easily
determined from simple model considerations. Therefore, in a more empirical
approach, we have tried to determine its shape by comparing experimental
spectra, σ(ν), and model spectra obtained from (21.10), (21.12), and (21.27)
using functions #(t) with different shapes. As a result, good agreement be-
tween model spectra and experimental spectra is obtained, if #(t) is assumed
to decay as g(t) or slightly faster. This results in (21.11) with K = 2 orK > 2.

Interestingly, the value of K appears to be related to the overall num-
ber density of mobile ions. If the number density is high, then K ≈ 2 gives
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excellent results in most cases, implying that #(t) should be roughly pro-
portional to g(t). Smaller number densities are reflected by a more gradual
increase of σ(ν) in the vicinity of the onset angular frequency, ωO. According
to Fig. 21.9, this corresponds to a larger value of K implying a more rapid
decay of #(t), cf. (21.27). A tentative simple explanation of this effect may be
as follows. Let us assume the unshielded effective volume of the dipole field
and the number of mobile ions contained in it do, indeed, decay with time in
the same fashion as g(t) does. Then, if the overall number density of mobile
ions is large, the difference between the number of mobile ions contained in
that volume and the number #(t) will not be significant, since it is only one
(the “central” ion). However, if the number density becomes smaller, then
this difference becomes increasingly significant. The function #(t) will then
decay faster than g(t), and the effect will be the more pronounced, the smaller
the number density is.

At this point, we should like to compare the model concept of the CMR
with approaches that focus on the effects of static disordered energy land-
scapes on the ion dynamics, see e.g. [39,44]. In either treatment, each mobile
ion encounters varying potentials in the course of time. In a static energy
landscape, this happens as the ion explores larger and larger parts of its
neighbourhood. In the CMR, however, this happens locally, as the potential
is considered time-dependent itself. Therefore, the characteristic length �O
after which a mobile ion loses memory of a previous site and starts to diffuse
at random will necessarily be larger in models with static energy landscapes
than it is in the CMR. Here it is important to note that, in agreement with
the CMR approach, we find �O = x0 from the data available for rubidium
silver iodide, see Sects. 21.5 and 21.7.

21.7 Complete Conductivity Spectra of Solid Ion
Conductors

The vast majority of measurements of frequency-dependent conductivities of
solid ion conductors have been performed in the impedance frequency regime,
below 10MHz. There are only few examples where measurements have been
extended into the radio, microwave and far-infrared frequency ranges. Of
course, measurement of such “complete” conductivity spectra is a prereq-
uisite for detecting the high-frequency plateau. Nevertheless, the detection
of the high-frequency plateau often poses severe experimental problems, in
particular in the case of glassy electrolytes, where it is usually swamped by
the vibrational contributions to the conductivity, cf. Sect. 21.2 and [45]. In a
few cases, however, the variation of the vibrational far-infrared conductivity
with frequency is so clear-cut that attempts to remove it appear justified.
An example is the glassy electrolyte silver thio germanate, of composition
0.5 Ag2S · 0.5 GeS2, where conductivity spectra have been taken continuously
up to infrared frequencies [46]. In this case it has been possible to prove that,
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Fig. 21.13. Conductivity spectra of 0.5 Ag2S · 0.5 GeS2 glass, after removal of
vibrational contributions. The solid lines result from the CMR. As in Fig. 21.11, the
values of A(T ) and B(T ) have been chosen such that both dc and hf conductivity
are Arrhenius activated. The value of K is 2.3.

within the limits of error, the low-frequency flank of the vibrational conduc-
tivity is exactly proportional to frequency squared [23]. In Fig. 21.13 we show
a set of non-vibrational conductivity spectra of glassy 0.5 Ag2S · 0.5 GeS2

which have been obtained from the original ones by removing the vibrational
component. Although the uncertainty introduced by this procedure is consid-
erable at microwave frequencies above 10GHz, it is evident that the spectra
of Fig. 21.13 closely resemble the model spectra of Fig. 21.11. The solid lines
included in Fig. 21.13 are CMR model spectra. Both A/B and exp(−B) are
thermally activated, the activation energies of A/B and σ(∞) ·T being iden-
tical. The best choice for the value of K is 2.3.

While the spectra of Fig. 21.13 suffer from the scatter of the data in
the microwave regime, the separation of the vibrational and non-vibrational
contributions to σ(ν) is less problematic in the case of crystalline rubidium
silver iodide, RbAg4I5, see Fig. 21.14.

RbAg4I5 is a prominent member of the class of optimised silver ion con-
ductors with structurally disordered silver sublattices [47–49]. High-frequency
conductivity spectra of RbAg4I5 extending up to infrared frequencies have
been published in [7,10,50]. In the microwave regime and below, the conduc-
tivity is dominated by the translational motion of the silver ions via tetrahe-
dral sites. Slow vibrations of the silver ions within their flat potentials have
been shown to be responsible for a maximum in σ(ν) observed in the far
infrared, at about 0.5THz [50]. Conductivity maxima beyond 1 THz are due
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Fig. 21.14. Radio and microwave conductivities of the crystalline fast ion conduc-
tor RbAg4I5 at different temperatures. The notation σred indicates that vibrational
contributions to the conductivity have been removed. The solid lines result from
the CMR, with K = 2, the shaded area marks the dispersive regime. For details,
see text.

to the excitation of transverse optical phonons (cf. Fig. 21.2 for the case of
Na-β′′-alumina).

The non-vibrational radio and microwave conductivity isotherms of Fig.
21.14 have been obtained from the experimental spectra by removing the
low-frequency flank of the slow vibrational contribution. At millimetre-wave
frequencies, they gradually approach their high-frequency plateaux. Again,
the product σ(∞) ·T is thermally activated, the activation energy now being
Ehf = 0.053 eV ± 0.005 eV. As noted earlier, this value is identical with the
potential barrier between adjacent tetrahedral sites in RbAg4I5 as derived
from a probability density contour map for the silver ions [50]. This identity
is not surprising, since elementary hops are registered individually in the
high-frequency limit.

In Fig. 21.14, CMR model spectra are presented along with the experimen-
tal ones. The values of the parameter A are found to be exactly proportional
to σ(∞), while the best choice for K is 2.0. For each dispersive spectrum, the
onset of the frequency dependence is marked in the figure at νO = ωO/(2π),
while its end is marked at νE = ωE/(2π). In Fig. 21.14, the onset frequencies
νO lie on a straight line with a slope of one, signifying the validity of the Sum-
merfield scaling on the low-frequency side of the dispersion. As noted earlier,
the values of ωO(T ) = (A(T )/B(T )) exp(−B(T )) and those of the random
hopping rate, Γ (T ), of the mobile silver ions are found to be identical within
the experimental limits of error:
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ωO(T ) ≈ Γ (T ) . (21.28)

To determine Γ (T ), we have used the Nernst-Einstein relation,

Γ (T ) ≈ 6σ(0)kBT

NV e2x2
0

, (21.29)

where NV and e denote the number density of the silver ions and the elemen-
tary charge, respectively. The Haven ratio has not been included in (21.29) as
it is close to one [43]. As a consequence of (21.28), the ratio A(T )/B(T ) has to
be interpreted as the elementary hopping rate, Γ0(T ), cf. Sect. 21.5. Equation
(21.28) also implies that the time when random diffusion is attained corre-
sponds to a root mean square displacement of about one elementary hopping
distance.

In Fig. 21.14, the marks for νO and νE are on the edge of a shaded area.
Within this area the spectra display dispersion, while they become flat out-
side. On the frequency scale, the width of the shaded area is found to shrink
as the temperature is increased, until a particular point is attained at its top,
resembling a critical point and signifying the end of the dispersive regime. We
thus observe, for the first time in a solid ion conductor, a smooth transition
from a non-random hopping at lower temperatures to a random hopping at
higher temperatures. In fact, at 298K the “ion cloud” appears to relax al-
most instantaneously after each hop of the “central ion”, leaving no energetic
advantage for a correlated backward hop and no memory of the previously
occupied site.

For W (∞) = exp(−B) we observe a gradual transition from a thermally
activated low-temperature behaviour to its high-temperature value of one.
Because of the relation σ(0) = exp(−B) · σ(∞), this has the following impli-
cation. In an Arrhenius plot of the dc conductivity, there is a slight, gradual
change of slope as σ(0) approaches σ(∞) with increasing temperature. In
fact, this kind of non-Arrhenius behaviour appears to be characteristic of
a number of fast ion conductors, both crystalline and glassy. Examples in-
clude Na-β′′-alumina [51,52], argyrodite (Ag7GeSe5I) [53], and glasses of the
system AgI − Ag2S − B2S3 − SiS2 [54].

21.8 Ion Dynamics in a Fragile Supercooled Melt

Comparing the dynamics of the mobile ions in glassy and crystalline elec-
trolytes on the one hand and in fragile supercooled ionic melts such as
0.6 KNO3 · 0.4 Ca(NO3)2 [11] and LiCl · 7 H2O [12] on the other, one finds
surprising similarities as well as characteristic differences. Both are outlined
in this section. Considering the fragile melt LiCl · 7 H2O, we show that the
CMR is, indeed, applicable to this system [42].



21 Concept of Mismatch and Relaxation 881

4 6 8 10 12 14

log10(ν/Hz)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g 10

(σ
 .  Ω

.  c
m

)

Fig. 21.15. Non-vibrational conductivity spectrum of the fragile supercooled ionic
melt LiCl · 7H2O at 253 K. The solid line is a CMR model spectrum, with K = 2.

In the case of supercooled LiCl · 7 H2O, careful removal of the low-
frequency part of the vibrational contribution to the conductivity results
in non-vibrational conductivity spectra as the one presented in Fig. 21.15. At
frequencies around 1THz, the spectrum of Fig. 21.15 is seen to level off and
to approach its high-frequency plateau. In the figure, a CMR model spectrum
is included for comparison. Here, the numerical value of K used for modelling
has again been chosen to be 2.0 [42]. The same value of K has also been used
for fitting four other σ(ν) isotherms, and the entire set of CMR model spectra
thus obtained is presented in Fig. 21.16. Interestingly, the high-frequency con-
ductivities of Fig. 21.16 turn out to follow the Arrhenius law, with a thermal
activation energy of 0.08 eV± 0.005 eV for σ(∞) · T [12].

The observation of a thermally activated high-frequency conductivity in
a melt impacts strongly on the assessment of model approaches for the ion
dynamics. Evidently, the melt behaves solid-like, if the time window is not
larger than a fraction of a picosecond. In this short-time regime, one may vi-
sualise individual activated displacements of individual ions. At longer times,
however, the structure does not remain rigid. Structural relaxation sets in,
and the concept of fixed sites has to be abandoned. Nevertheless, the CMR
equations, (21.11) and (21.12), still seem to apply. Conceptually, it is now
important to separate the two routes of relaxation expressed by the two
equations. In particular, it is important to note that by definition −ġ(t) is
the rate of mismatch relaxation due to the rearrangement of the neighbours
under the virtual condition W (t) ≡ 1, i.e., without considering the backward
motion of the central ion itself. Therefore, the factor W (t) is once again in-
cluded in (21.12). Also, the meaning of W (t) itself is different from what it
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Fig. 21.16. Set of CMR model isotherms for the fragile supercooled ionic melt LiCl·
7H2O obtained on the basis of experimental conductivity spectra as in Fig. 21.15,
with K = 2.

is in a solid. The function now denotes the average fraction of an original
displacement that is still encountered at time t.

It is most interesting to compare the conductivity isotherms of Fig. 21.16
with those of Fig. 21.11. The spectra shown in the two figures have many
properties in common. Firstly, they display the same shape, even the value of
K being identical. Secondly, the high-frequency conductivities are Arrhenius
activated in both cases. Thirdly, the time-temperature superposition princi-
ple appears to be satisfied not only in the solid electrolyte, but also in the
supercooled melt. Nevertheless, the two systems differ strongly with regard
to the temperature dependence of their dc conductivities. In contrast to the
example of Fig. 21.11, the dc conductivity is clearly non-Arrhenius in the case
of the fragile supercooled melt. Most remarkably, this property turns out to
be a direct consequence of the short-time dynamics of the mobile ions.

The key feature causing the non-Arrhenius behaviour of the dc conduc-
tivity is, in fact, the constancy of the crossover angular frequency at the end
of the dispersive regime, ωE = AB, as a function of temperature, which is
evident from Fig. 21.16. As a consequence of ωE(T ) = A(T )B(T ) = const.
and A(T ) ∝ σhf(T ), B(T ) is proportional to 1/σhf(T ). As the dc conductivity
varies with temperature as σdc(T ) = σhf(T ) exp(−B), we find

σdc(T ) = σhf(T ) · exp
(
− σ∗

σhf(T )

)
, (21.30)

where σ∗ is a constant. Equation (21.30) replaces the empirical Vogel-Fulcher-
Tammann [55–57] relation. Apart from resulting from the short-time dynam-
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Fig. 21.17. Dc conductivity data of LiCl · 7H2O. The solid line is from (21.30),
see main text.

ics, it has the further advantage of not predicting a singularity of the tem-
perature derivative of the dc conductivity.

The temperature-dependent dc conductivity of LiCl · 7 H2O is plotted in
Fig. 21.17. Here, the squares mark our data points [12], while the solid line is
obtained from (21.30) with Arrhenius-activated high-frequency conductivities
taken from Fig. 21.16. The meaning of the constant σ∗ becomes obvious by
extrapolating (21.30) to a higher temperature T ∗, where B is only one. For
that particular temperature, σ∗ and σhf are identical.

Finally, it is worth emphasising that the distinguishing mark of a fragile
melt, resulting in (21.30), is the absence of any temperature dependence
of the crossover angular frequency ωE. This feature corresponds to a non-
activated roll-back process occurring in most cases after a thermally activated
displacement. Such a view of the short-time dynamics is well in line with the
conception of a fragile melt as an ionic system whose structure does not easily
provide preexisting neighbouring sites for its mobile ions. The situation would
be different in a strong glass-forming melt, where (21.30) would not apply,
the reason being the existence of available neighbouring sites in the network.
The backward hop from such a site would require some activation energy,
and hence ωE would become temperature-dependent.

21.9 Conductivities of Glassy and Crystalline
Electrolytes Below 10 MHz

Below 10 MHz, where waveguide techniques are not required, conductivities of
materials are measured not only much more easily, but also with much higher
precision than at higher frequencies. Therefore, characteristic variations in
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the shapes of conductivity spectra of solid electrolytes are best detected in the
low-frequency range. In this section, low-frequency conductivities of various
glassy and crystalline ion conductors are presented and compared with CMR
model spectra. The result of the comparison turns out to be twofold. In the
first place, we find that the model conductivities always agree very well with
the experimental ones. However, to achieve good agreement, different values
of the parameter K have to be adopted, and the remaining question is how to
relate those values to the structures and dynamics of the materials studied.

In Fig. 21.18, we present frequency-dependent conductivities of a lithium
borate glass of composition 0.3 Li2O · 0.7 B2O3 as measured at four differ-
ent temperatures. The dc values of the conductivities follow the Arrhenius
law. The solid lines included in the figure are CMR model spectra calculated
with K = 2.0. Both the experimental and the model conductivities satisfy
the time-temperature superposition principle, and the Summerfield scaling
is found to apply. Utilising the Summerfield scaling, the four experimental
spectra can be collapsed in one master curve which is, indeed, indistinguish-
able from those already shown for other glasses in Fig. 21.6 and Fig. 21.12.
Likewise, the model spectra are automatically collapsed in one curve, if the
angular frequency is scaled in units of ωO = (A/B) exp(−B), as described in
Sect. 21.5. The master spectrum thus obtained and the one of Figs. 21.6 and
21.12 are identical, since the value of K is 2.0 in all cases.

More examples of low-frequency conductivity spectra of glassy electrolytes
are given in Figs. 21.19 and 21.20. The data have been taken from a silver
sulphate silver metaphosphate glass of composition 0.3 Ag2SO4 · 0.7 AgPO3

[42] and from a mixed alkali-alkaline-earth silicate glass of composition K2O ·

Fig. 21.18. Comparison of CMR model conductivities (solid lines, K = 2) and
experimental ones (symbols) for 0.3 Li2O · 0.7B2O3 glass at different temperatures.
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Fig. 21.19. Experimental conductivity isotherm of glassy 0.3 Ag2SO4 · 0.7 AgPO3

at 193 K (circles) and CMR model spectrum with K = 2.1 (solid line).

Fig. 21.20. Experimental conductivity isotherm of glassy K2O · 2BaO · 4 SiO2 at
113 K (circles) and CMR model spectrum with K = 2.6 (solid line).

2 BaO · 4 SiO2 [42], respectively. The data of Fig. 21.19 are best reproduced
with K = 2.1, while a considerably larger value of K, viz., 2.6, is required
to describe the frequency-dependent conductivity of the mixed cation glass
of Fig. 21.20. The rather gradual onset of the dispersion observed in Fig.
21.20 is reminiscent of many mixed alkali glasses, where the same feature
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Fig. 21.21. Experimental conductivity isotherm of Na-β-alumina at 113 K (circles)
[58] and CMR model spectrum with K = 2.3.

has been identified as a characteristic property of their frequency-dependent
conductivities [22].

Values of K larger than 2 are not only found for mixed-cation glasses,
but also for crystalline ion conductors with a reduced dimensionality of the
sublattice of the mobile ions. The effect of dimensionality on the shape of
conductivity spectra has recently been pointed out by Sidebottom [21]. (For
the influence of reduced dimensionality on neutron scattering and NMR spin-
lattice relaxation results see Chap. 3 and 9, respectively.) The most famous
two dimensional fast ion conductor is probably Na-β-alumina. In Fig. 21.21,
we reproduce conductivity data of this material published by Almond, West
and Grant [58]. To reproduce the data in terms of the CMR, the best choice
of K is 2.3.

Crystalline electrolytes in which the number of mobile ions is limited by
the particular defect structure constitute another interesting class of materi-
als. Examples are the low-temperature γ-phase of RbAg4I5, stable below the
first-order β-γ-transition at 122K [59] and β-AgI where the defect structure
is frozen-in at reduced temperatures. In both cases, the conductivity spectra
are well reproduced by the CMR, if K is chosen to be as high as 2.6 [42,60].
A spectrum of β-AgI is shown in Fig. 21.22, while the case of γ-RbAg4I5 will
be discussed in Sect. 21.10.

The impression that K may be causally related to the number density of
translationally mobile ionic charge cariers is thus corroborated. The view that
enhanced values of K correspond to a reduced number density of potentially
mobile ions in the neighbourhood of the “central” ion also seems to agree
with the observation that large values of K are found in mixed cation glasses
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Fig. 21.22. Experimental conductivity isotherm of β-AgI at 120 K (circles) [58]
and CMR model spectrum with K = 2.6.

as well. In such glasses, only a fraction of the neighbouring ions may be
considered mobile, since most of them are unable to find suitable sites in
their immediate neighbourhood. In spite of the above pieces of evidence,
it is felt that the tentative interpretation towards an understanding of the
meaning of K given at the end of Sect. 21.6 is not yet sufficiently conclusive.
Rather, further investigations are required to get a better insight into this
problem.

21.10 Localised Motion at Low Temperatures

The short-time solution for W (t) as given in (21.15) applies as long as g(t) is
close to one. This is the case in a broad interval on the logarithmic time scale,
if B is sufficiently large. Equation (21.15) then corresponds to a conductiv-
ity that increases almost linearly with frequency, before the high-frequency
plateau is attained. Approaching this regime from low frequencies, the CMR
predicts a continuous increase of the apparent power-law exponent, with one
as a limiting value. Experimentally, such a behaviour has been observed in
many ion-conducting solid materials, both crystalline and glassy, cf. Fig. 21.5.
Another agreement between experimental and model conductivities concerns
the very small temperature dependence in the NCL regime. As outlined in
Sect. 21.5, the low-frequency parts of spectra like those in Fig. 21.11 can be
superimposed by shifting them along a line with a slope of one. This implies
that at frequencies where σ (ω) ∝ ω is roughly satisfied, the temperature
dependence of the conductivity should, indeed, become very small.



888 Klaus Funke, Cornelia Cramer, and Dirk Wilmer

Fig. 21.23. Two conductivity isotherms of RbAg4I5 taken in the low-temperature
γ-phase (circles). The solid lines are CMR model spectra, with K = 2.6.

Interestingly, an approximately linear dependence σ (ω) ∝ ω has been
found in the impedance frequency regime not only in materials featuring non-
zero dc conductivities, but also in cases where, at a few Kelvin, ionic hopping
transport can be safely excluded as the cause of the effect [26, 27, 61, 62].
To explain such data, one has to envisage small localised displacements over
low potential barriers. It appears obvious that in this process interactions
between locally mobile ionic charge carriers will play an important role.

The purpose of this section is twofold. In the first place, we show that
the CMR equations, when slightly modified, are able to describe completely
localised movements of interacting ions, reproducing the low-temperature
NCL behaviour. Secondly, we present experimental conductivity spectra fea-
turing the CMR behaviour as outlined in Sects. 21.4 to 21.6 plus the low-
temperature NCL effect. In fact, in the γ-phase of rubidium silver iodide, cf.
Fig. 21.23, both types of ionic motion appear to contribute simultaneously to
the frequency-dependent conductivity. This will be discussed at the end of
this section.

In the literature, the low-temperature NCL behaviour is usually described
in terms of the asymmetric double well potential (ADWP) model [37]. In
that model, the potentials considered are static and exhibit particular distri-
butions of their barrier energies and asymmetries. The resulting conductivity
spectra have the same features as the one presented in Fig. 21.24. As the fre-
quency is increased, the slope in the log-log plot of σ (ω) changes first from
two to one and later from one to zero. The two crossover angular frequencies
correspond to a longest and a shortest relaxation time. However, there are
two aspects to the ADWP model that appear unsatisfactory. One is the ne-



21 Concept of Mismatch and Relaxation 889

↓ 

ωcross = 1/τ

↓

ωE = A B

log ω

 ← σ = σ(∞)

lo
g

σ(
ω

)

Fig. 21.24. CMR model conductivity spectrum for an assembly of interacting
localised ions in flat double-well potentials (B = 100, Aτ = 106).

cessity to assume particular distributions. The other is the lack of any time
dependence in the shape of the potentials. Of course, such a time dependence
has to be expected, reflecting the interactions with other ions which are also
locally mobile. Indeed, if the dynamics of local electric dipoles are simulated
on a computer, and if interactions between them are taken into account, par-
ticular distributions turn out to be unnecessary, and the spectra obtained
again display the features of the one shown in Fig. 21.24 [41] (cf. Chap. 20).

The derivation of the conductivity spectrum of Fig. 21.24 has not required
any particular distribution, nor a computer simulation. Instead, the CMR has
been used to introduce the interaction. The rationale is as follows. Without
any interaction, the dynamics of an individual ion in a flat double-well po-
tential would be properly described by an exponentially decaying function
W (t). This would imply −(dW (t)/dt)/W (t) = 1/τ , where τ is the relax-
ation time. Taking interactions with other dipoles into account, we replace
the right-hand side with −B · dg(t)/dt+ 1/τ and again describe the decay of
the normalised mismatch function, g(t), by the short-time version of (21.11):

− d
dt
g(t) = A · gK (t) ·W (t) � A ·W (t) (21.31)

−
(

d
dt
W (t)

)
· 1
W (t)

= −B · d
dt
g (t) +

1
τ
. (21.32)

At low temperatures, 1/τ is only a small additive constant on the right-
hand side of (21.32). At short times, when 1/τ is still much smaller than
−B · dg(t)/dt, the functions W (t) and σ (ω) /σ (∞) obtained from (21.31)
and (21.32) are almost identical with those obtained without inclusion of
1/τ . If the dc conductivity is extremely low, corresponding to a large value
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of B, and if 1/τ is small, we thus find a nearly-constant-loss behaviour in a
wide range of frequencies. At very long times, however, when −B · dg(t)/dt
becomes even smaller than 1/τ , W (t) will decay exponentially. This results
in a σ (ω) ∝ ω2 behaviour at low frequencies. Both features are clearly seen
in Fig. 21.24.

The crossover from the σ (ω) ∝ ω2 regime into the NCL regime occurs at
an angular frequency ωcross = 1/tcross. At the particular time tcross, the two
terms on the right-hand side of (21.32) become identical. As g(t) is still close
to unity, we find from (21.31) and (21.32) that W (tcross) should be 1/(ABτ).
On either axis of a σ (ω) plot, the corresponding crossover point and the high-
frequency crossover point (at angular frequency ωE = AB) should, therefore,
be apart from each other by a factor of ABτ . This implies

ωcross = 1/τ (21.33)

as indicated in Fig. 21.24.
In Fig. 21.23, the CMR model curves provide fits to the experimental con-

ductivities of γ-RbAg4I5 only at sufficiently low frequencies, while increasing
discrepancies are observed at higher frequencies. Forming the difference be-
tween the measured conductivity isotherms and the model curves we obtain
the same straight line with a slope of one at both temperatures. This extra
contribution to the conductivity of γ-RbAg4I5 is thus – within the limits of
experimental error – both linear in ω and temperature-independent. It is,
therefore, interpreted as resulting from a strictly localised ionic motion as
described by (21.31) and (21.32). In the α- and β-phases of RbAg4I5 where
all the silver ions are translationally mobile, this contribution to σ (ω) has
not been detected, as it is evidently swamped by the regular CMR spectrum.
For a complete and satisfactory description of the ion dynamics in γ-RbAg4I5
it will, of course, be important to elucidate the detailed structural properties
of this phase, which are still unknown.

The conductivity isotherms of Fig. 21.23 are especially valuable, as they
put an end to a long-standing discussion. Until now, there have been two
seemingly contradictory points of view. Authors who have been measuring
ionic conductivities over wide ranges of frequency and temperature have been
convinced that the NCL behaviour is observed in any structurally disordered
solid electrolyte, if σ(ν)/σ(0) is sufficiently large, but σhf is not yet attained,
the effect being caused by the short-time hopping dynamics of the mobile ions
[63, 64]. On the other hand, those who have been measuring nearly constant
losses at low temperatures, have been convinced that this effect is certainly
not related with ionic hopping and ionic transport [27, 62]. The two views
are now reconciled, since Fig. 21.23 provides an example where the strictly
localised kind of ionic motion is found to coexist with the translational one.
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21.11 Conclusion

Conductivity spectra of ionic materials with disordered structures contain
valuable information on the diffusion dynamics of the mobile ions. Phenom-
enologically, they display a number of common features. For any given ion
conducting material, these include the time-temperature superposition prin-
ciple and the UDR – NCL transition. With regard to different ion conducting
materials, they include surprisingly close similarities in the shapes of the spec-
tra of crystalline, glassy, and even molten systems. On the other hand, specific
differences are also observed concerning, e.g., the temperature dependence of
the dc conductivity and the way σ(ν) increases in the vicinity of the onset
frequency of the dispersion.

In this chapter, we have presented a set of simple rules, expressed in the
form of rate equations, which describe the development of the ion dynamics
with time. The rules reproduce the observed phenomena and explain them
in terms of microscopic processes. Our CMR model bears analogy to Debye-
Hückel-Falkenhagen theory in considering the coupling between mobile ions
and their surrounding ion clouds. It is able to reproduce and explain the time-
temperature superposition principle as well as the UDR – NCL transition
and the low-temperature NCL behaviour. The specific differences in shape
encountered in conductivity spectra of different ion conducting materials are
reproduced with the help of only one parameter, K. Although it is clear that
there is a connection between K and the number density of the mobile ions,
more work is required in order to quantify this relationship.

Notation

A parameter of the CMR model; internal frequency
B parameter of the CMR model: B = ln(σ(∞)/σ(0))
D coefficient of self diffusion
e elementary charge
Edc activation energy of the dc conductivity
g(t) normalised mismatch function, normalised dipole field
HR Haven ratio
i current density
〈i(0) · i(t)〉 current density autocorrelation function
i imaginary unit, i =

√
−1

kB Boltzmann constant
�O characteristic length for loss of memory
N number of mobile carriers
NV particle density
q electrical charge
〈r2(t)〉 mean square displacement
t time
T temperature
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v velocity
〈v(0) · v(t)〉 velocity autocorrelation function
V volume
W (t) time dependent correlation factor
x0 jump distance
Γ rate of “successful” hops, random hopping rate
Γ0 elementary hopping rate
ν frequency
σ electrical conductivity
ω angular frequency
ωO angular frequency marking the onset of dispersion
ωE angular frequency marking the end of dispersion
#(t) effective number of mobile ions available for relaxation

Complex quantities are marked by a circumflex (“̂”).
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22 Diffusion and Conduction in Percolation

Systems

Armin Bunde and Jan W. Kantelhardt

22.1 Introduction

Percolation is a standard model for disordered systems. Its applications range
from transport in amorphous and porous media and composites to the prop-
erties of branched polymers, gels and complex ionic conductors. Because of
universality the results do not depend on the specific model, and general
scaling laws can be deduced. In this chapter we give a short introduction to
percolation theory and describe one application to composites. We start with
the structural properties of site percolation clusters and their substructures
and report on other percolation systems after that. Then we turn to the dy-
namical properties of percolation clusters and discuss the way the laws of
diffusion and conduction are modified on random fractal structures. Finally,
we review a particular application of the percolation concept, transport in
heterogeneous ionic conductors.

22.2 The (Site-)Percolation Model

Percolation represents the basic model for a structurally disordered system
(for recent reviews see [1–3], for applications see [4, 5]). Let us consider a
square lattice, where each site is occupied randomly with probability p or is
empty with probability 1 − p (see Fig. 22.1). Occupied and empty sites may
stand for very different physical properties. For illustration, let us assume that
the occupied sites are electrical conductors, the empty sites represent insu-
lators, and that electrical current can only flow between nearest-neighbour
conductor sites.

At low concentration p, the conductor sites are either isolated or form
small clusters of nearest-neighbour sites. Two conductor sites belong to the
same cluster if they are connected by a path of nearest-neighbour conductor
sites, and a current can flow between them. At low p values, the mixture is an
insulator, since no conducting path connecting opposite edges of our lattice
exists. At large p values, on the other hand, many conducting paths between
opposite edges exist, where electrical current can flow, and the mixture is a
conductor. At some concentration in between, therefore, a threshold concen-
tration pc must exist where for the first time electrical current can percolate
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p = 0.2 p = 0.59 p = 0.8

Fig. 22.1. Site percolation on the square lattice: The small circles represent the
occupied sites for three different concentrations: p = 0.2, 0.59, and 0.80. Nearest-
neighbour cluster sites are connected by lines representing the bonds. Filled circles
are used for finite clusters, while open circles mark the large infinite cluster.

from one edge to the other. Below pc we have an insulator, above pc we have
a conductor. The threshold concentration is called the percolation threshold,
or, since it separates two different phases, the critical concentration.

If the occupied sites are superconductors and the empty sites are con-
ductors, pc separates a normal-conducting phase below pc from a supercon-
ducting phase above pc. Another example is a mixture of ferromagnets and
paramagnets, where the system changes at pc from a paramagnet to a ferro-
magnet.

In contrast to the more common thermal phase transitions, where the
transition between two phases occurs at a critical temperature, the perco-
lation transition described here is a geometrical phase transition, which is
characterized by the geometric features of large clusters in the neighbour-
hood of pc. At low values of p only small clusters of occupied sites exist. When
the concentration p is increased the average size of the clusters increases. At
the critical concentration pc a large cluster appears which connects opposite
edges of the lattice. We call this cluster the infinite cluster, since its size
diverges in the thermodynamic limit. When p is increased further the density
of the infinite cluster increases, since more and more sites become part of
the infinite cluster, and the average size of the finite clusters, which do not
belong to the infinite cluster, decreases. At p = 1, trivially, all sites belong
to the infinite cluster.

The critical concentration depends on the details of the lattice and in-
creases, for fixed dimension d of the lattice, with decreasing coordination
number z of the lattice: For the triangular lattice, z = 6 and pc = 1/2, for
the square lattice, z = 4 and pc

∼= 0.592746, and for the honeycomb lattice,
z = 3 and pc

∼= 0.6962. For fixed z, pc decreases if the dimension d is en-
hanced. In both the triangular lattice and the simple cubic lattice we have
z = 6, but pc for the simple cubic lattice is considerably smaller, pc

∼= 0.3116.
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Table 22.1. Critical exponents and fractal dimensions for percolation in two and
three dimensions. The numerical values are taken from [1,6,7].

Quantity Exp. d = 2 d = 3

Order parameter P∞(p) ∼ (p − pc)
β β 5/36 0.417 ± 0.003

Correlation length ξ(p) ∼ |p − pc|−ν ν 4/3 0.875 ± 0.008

Cluster mass M(r) ∼ rdf df 91/48 2.524 ± 0.008

Backbone mass MB(r) ∼ rdB dB 1.6432 ± 0.0008 1.855 ± 0.015

Chemical Path �(r) ∼ rdmin dmin 1.1307 ± 0.0004 1.374 ± 0.004

Random Walk 〈r2(t)〉 ∼ t2/dw dw 2.871 ± 0.001 3.80 ± 0.02

Conductivity σdc(p) ∼ (pc − p)µ µ 1.310 ± 0.001 1.99 ± 0.01

Superconductivity σS(p) ∼ (p − pc)
−s s 1.310 ± 0.001 0.74 ± 0.03

The percolation transition is characterized by the geometrical properties
of the clusters near pc [1, 2]. The probability P∞ that a site belongs to the
infinite cluster is zero below pc and increases above pc as

P∞ ∼ (p− pc)β . (22.1)

This behaviour is illustrated in Fig. 22.2. The linear size of the finite clusters,
below and above pc, is characterized by the correlation length ξ. The corre-
lation length is defined as the mean distance between two sites on the same
finite cluster and represents the characteristic length scale in percolation.
When p approaches pc, ξ increases as

ξ ∼ |p− pc|−ν , (22.2)

with the same exponent ν below and above the threshold (see also Fig. 22.2).
While pc depends explicitly on the type of the lattice, the critical exponents
β and ν are universal and depend only on the dimension d of the lattice, but
not on the type of the lattice. The values of the critical exponents are given
in Tab. 22.1 for two and three dimensions.

22.3 The Fractal Structure of Percolation Clusters
near pc

Near pc on length scales smaller than ξ both the infinite cluster and the finite
clusters are self-similar, i.e., if we cut a small part out of a large cluster,
magnify it to the original cluster size and compare it with the original, we
cannot tell the difference: Both look the same. This feature is illustrated in
Fig. 22.3, where a large cluster at pc is shown in four different magnifications.
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1

0
0 1pc

ξ ξ

P∞

P∞

0
p

ξ

103

Fig. 22.2. Schematic diagram of the proba-
bility P∞ (cf. (22.1), bold line) and the corre-
lation length ξ (cf. (22.2), thin line) versus the
concentration p of occupied sites.

We leave it to the reader to find out what is the original and what are the
magnifications.

We have learnt in Chap. 19 that – as a consequence of the (non-trivial)
self-similarity – the cluster is characterized by a “fractal” dimension, which
is smaller than the dimension d of the embedding lattice. The mean mass of
the cluster within a circle of radius r increases with r as

M(r) ∼ rdf , r � ξ, (22.3)

with the fractal dimension df . The numerical values of df can be found in
Table 22.1. Above pc on length scales larger than ξ the infinite cluster can be
regarded as an homogeneous system which is composed of many cells of size
ξ. Mathematically, this can be summarized as

M(r) ∼
{
rdf , if r � ξ,
rd, if r 
 ξ.

(22.4)

Fig. 22.4 shows a part of the infinite cluster above pc (p = 1.003 pc) on
different length scales. At large length scales (r 
 ξ, upper left) the cluster
appears homogeneous, while on lower length scales (r � ξ, lower pictures)
the cluster is self-similar.

The fractal dimension df can be related to β and ν in the following way:
Above pc, the mass M∞ of the infinite cluster in a large lattice of size Ld is
proportional to LdP∞. On the other hand, this mass is also proportional to
the number of unit cells of size ξ, (L/ξ)d, multiplied by the mass of each cell
which is proportional to ξdf . This yields (with (22.1) and (22.2))

M∞ ∼ LdP∞ ∼ Ld(p− pc)β ∼ (L/ξ)dξdf ∼ Ld(p− pc)νd−νdf , (22.5)

and hence, comparing the exponents of (p− pc),

df = d− β

ν
. (22.6)

Since β and ν are universal exponents, df is also universal.
A fractal percolation cluster is composed of several fractal substructures,

which are described by other exponents [1, 2]. Imagine applying a voltage
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Fig. 22.3. Four successive magnifications of the incipient infinite cluster that forms
at the percolation threshold on the square lattice. Three of the panels are magni-
fications of the center squares marked by black lines. In the figure that you see,
however, the labels of the four panels have been removed and the panels have been
scrambled. Attempt to put them back into sequence by eye – it is extremely dif-
ficult if the system is at the percolation threshold (p = pc). An educational game
is to time how long it takes each player to detect by eye which of the 24 possible
orderings is the correct one that arranges the four panels in increasing order of
magnification.
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Fig. 22.4. The same as Fig. 22.3 except that now the system is slightly (0.3 %)
above the percolation threshold and the panels are not scrambled. The upper left
picture shows the original and the other pictures are magnifications of the center
squares marked by black lines. The correlation length ξ is approximately equal to
the linear size of the third (lower left) picture. When comparing the two lower
pictures, the self-similarity at small length scales below ξ is easy to recognize.

between two sites at opposite edges of a metallic percolation cluster: The
backbone of the cluster consists of those sites (or bonds) which carry the
electric current. The topological distance between both points (also called
chemical distance) is the length of the shortest path on the cluster connecting
them. The dangling ends are those parts of the cluster which carry no current
and are connected to the backbone by a single site only. The red bonds (or
singly connected bonds), finally, are those bonds that carry the total current;
when they are cut the current flow stops.
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(a) (b)

Fig. 22.5. Further percolation systems: (a) Bond percolation cluster on a square
lattice and (b) continuum percolation of conductive material with circular holes of
fixed radius at the percolation threshold.

The fractal dimension dB of the backbone is smaller than the fractal
dimension df of the cluster, reflecting the fact that most of the mass of the
cluster is concentrated in the dangling ends. On the average, the topological
length � of the path between two points on the cluster increases with the
Euclidean distance r between them as � ∼ rdmin . The values of the fractal
dimensions dB and dmin are given in Table 22.1 for two and three dimensions.
The fractal dimensions of the red bonds dred are known from exact analytical
arguments. The mean number of red bonds varies with p as nred ∼ (p −
pc)−1 ∼ ξ1/ν ∼ r1/ν , and the fractal dimension of the red bonds is therefore
dred = 1/ν [1].

A further important substructure of the cluster is the external perimeter
(which is also called the hull). The hull consists of those sites of the cluster
which are adjacent to empty sites and are connected with infinity via empty
sites. It is an important model for random fractal interfaces. In two dimen-
sions, the hull has the fractal dimension dh = 7/4, while its mass seems to
be proportional to the mass of the cluster in d = 3, i.e. dh = df . In contrast
to the hull, the total perimeter also includes the holes in the cluster.

22.4 Further Percolation Systems

So far we have considered site percolation, where the sites of a lattice have
been occupied randomly. When the sites are all occupied, but the bonds
between the sites are randomly occupied with probability q, we speak of
bond percolation (see Fig. 22.5 (a)). Two occupied bonds belong to the same
cluster if they are connected by a path of occupied bonds, and the critical
concentration qc of bonds (qc = 1/2 in the square lattice and qc � 0.2488 in
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the simple cubic lattice) separates a phase of finite clusters of bonds from a
phase with an infinite cluster [1, 2].

If sites are occupied with probability p and bonds are occupied with prob-
ability q, we speak of site–bond percolation. Two occupied sites belong to the
same cluster if they are connected by a path of nearest-neighbour occupied
sites with occupied bonds in between. For q = 1, site–bond percolation re-
duces to site percolation, for p = 1 it reduces to bond percolation. In general,
both parameters characterize the state of the system. Accordingly, a critical
line in p-q space separates both phases, which for p = 1 and q = 1 takes the
values of the critical bond and site concentrations, respectively.

Perhaps the most common example of bond percolation in physics is a
random resistor network, where the metallic wires in a regular network are cut
randomly with probability 1−q. Here qc separates a conductive phase at large
q from an insulating phase at low q. A possible application of bond percolation
in chemistry is the polymerization process, where small branching molecules
can form large molecules by activating more and more bonds between them.
If the activation probability q is above the critical concentration, a network
of chemical bonds spanning the whole system can be formed, while below qc
only macromolecules of finite size can be generated. This process is called
a sol-gel transition. An example of this gelation process is the boiling of an
egg, which at room temperature is liquid and upon heating becomes a more
solid-like gel. Site–bond percolation can be relevant for gelation in dilute
media.

The most natural example of percolation is continuum percolation, where
the positions of the two components of a random mixture are not restricted
to the discrete sites of a regular lattice. As a simple example, consider a
sheet of conductive material, with circular holes punched randomly in it (see
Fig. 22.5 (b)). The relevant quantity now is the fraction p of remaining con-
ductive material. Compared with site and bond percolation, the critical con-
centration is further decreased: pc

∼= 0.312 for d = 2, when all circles have
the same radius. This picture can easily be generalized to three dimensions,
where spherical voids are generated randomly in a cube, and pc

∼= 0.034. Due
to its similarity to Swiss cheese, this model of continuous percolation is called
the Swiss cheese model. Similar models, where also the size of the spheres can
vary, are used to describe sandstone and other porous materials. Often also
the inverse model is considered, where the circular discs or spheres represent
the conductive material [8].

It is important that close to the percolation threshold all these different
percolation systems are characterized by the same critical exponents β, ν,
and df given in Table 22.1. The exponents are universal and depend neither
on the structural details of the lattice (e.g., square or triangular) nor on the
type of percolation (site, bond, or continuum), but only on the dimension d
of the system.
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e5

e16

Fig. 22.6. Random walk on a square
lattice. The lattice constant a = 1 is
equal to the jump length of the ran-
dom walker. Sixteen steps of the walk
are shown.

22.5 Diffusion on Regular Lattices

After we have discussed the structural properties of percolation systems close
to the percolation threshold, we will now focus on the dynamical properties
of percolation systems, where to each site or bond a physical property such as
conductivity is assigned. We show that due to the fractal nature of the perco-
lation clusters near pc, the physical laws of dynamics are changed essentially
and become anomalous .

At first, we consider regular lattices. The diffusion process is commonly
modelled by a simple random walk (see e. g., Chaps. 18 and 19), which ad-
vances one step of length a in one time unit. Each step brings the random
walker to a randomly chosen nearest-neighbour site on a given d-dimensional
lattice. Assume that the walker starts at time t = 0 at the origin of the lat-
tice. After t time steps, the actual position is described by the vector (see
Fig. 22.6)

r(t) = a
t∑

τ=1

eτ , (22.7)

where eτ denotes the unit vector pointing in the direction of the jump at the
τ th time step.

The mean distance the random walker has travelled after t time steps
is described by the root mean square displacement R(t) ≡ 〈r2(t)〉1/2, where
the average 〈· · · 〉 is over all random-walk configurations on the lattice. From
(22.7) we obtain

〈r2(t)〉 = a2
t∑

τ,τ ′=1

〈eτ · eτ ′〉 = a2t+
∑
τ �=τ ′

〈eτ · eτ ′〉. (22.8)

Since jumps at different steps τ and τ ′ are uncorrelated, we have 〈eτ · eτ ′〉 =
δττ ′, and we obtain the Einstein relation

〈r2(t)〉 = a2t, (22.9)
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which is equivalent to Fick’s first law (see Chap. 10). Note that (22.9) is
independent of the dimension d of the lattice.

In the general case, when the lengths of the steps of the random walker
may vary, (22.9) is modified into

〈r2(t)〉 = 2dDt, (22.10)

where D is the diffusion coefficient. The diffusion coefficient is (approxi-
mately) related to the dc conductivity σdc by the Nernst-Einstein equation,

σdc = n(e2/kBT )D, (22.11)

where n is the density and e the charge of the diffusing particles.
A more complete description of the diffusion process is possible with the

probability density P (r, t), which is the probability of finding the walker
after t time steps at a site within distance r from its starting point. The mean
square displacement can be obtained from P (r, t) via 〈r2(t)〉 =

∫
dr r2P (r, t).

For t 
 r, P (r, t) is described by a Gaussian: P (r, t) ∼= 1√
2πt

e−r2/2t. This
“normal” probability density – commonly referred to as the propagator (see
Chaps. 10, 18, and 23) – characterizes the diffusion on regular lattices. Next
we consider disordered structures.

22.6 Diffusion on Percolation Clusters

We start with the infinite percolation cluster at the critical concentration pc.
The cluster has loops and dangling ends, and both substructures slow down
the motion of a random walker. Due to self-similarity, loops and dangling ends
occur on all length scales, and therefore the motion of the random walker is
slowed down on all length scales. The time t the walker needs to travel a
distance R is no longer, as in regular systems, proportional to R2, but scales
as t ∼ Rdw , where dw > 2 is the fractal dimension of the random walk [1,2,9].
For the mean square displacement this yields immediately

〈r2(t)〉 ∼ t2/dw . (22.12)

The fractal dimension dw is approximately equal to 3df/2 [10]; the results of
numerical simulations can be found in Table 22.1. For continuum percolation
(Swiss cheese model) in d = 3, dw is enhanced: dw

∼= 4.2 [11]. Diffusion
processes described by (22.12) are generally referred to as anomalous diffusion
(cf. Chap. 10).

The probability density 〈P (r, t)〉N , averaged over N percolation clusters,
is not so easy to calculate. Analytical expressions for 〈P (r, t)〉N that fully
describe the data obtained from numerical simulations can be derived. The
derivation is beyond the scope of this book and we refer the interested reader
to [1, 12].
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Fig. 22.7. Schematic diagram of the (usual) dc
conductivity σdc (cf. (22.15), bold line) and the
conductivity σS for a conductor-superconductor
percolation network (cf. (22.20), thin line for p <
pc) versus the concentration p of occupied sites.
The cluster capacitance C is proportional to σS

for p < pc and diverges with the same exponent
for p > pc (see (22.25)).

Comparatively simple, however, is the scaling behaviour of 〈P (0, t)〉, that
denotes the probability of being, after t time steps, at the site where the
random walker started. Since for very large times each site has the same
probability of being visited, the probability of being at the origin is propor-
tional to the inverse of the number of distinct sites S(t) the random walker
visited. Since S(t) increases with R(t) ≡ 〈r2(t)〉1/2 as S(t) ∼ R(t)df , we have

〈P (0, t)〉 ∼ R(t)−df ∼ t−df/dw (22.13)

(see also Chap. 19). Above pc, fractal structures occur only within the corre-
lation length ξ(p) from (22.2). Thus the anomalous diffusion law, (22.12), oc-
curs only below the corresponding crossover time tξ ∼ R(tξ)dw ∼ ξdw , which
decreases proportional to (p− pc)−νdw , if p is further increased. Above tξ, on
large time scales, the random walker explores large length scales where the
cluster is homogeneous, and 〈r2(t)〉 follows Fick’s law (cf. (22.9) or (22.10))
increasing linearly with time t. Thus,

〈r2(t)〉 ∼
{
t2/dw , if t� tξ,
t, if t
 tξ.

(22.14)

22.7 Conductivity of Percolation Clusters

The diffusion coefficient is related to the dc conductivity σdc by the Nernst-
Einstein equation, (22.11). Below pc, there is no current between opposite
edges of the system, and σdc = 0. Above pc, σdc increases by a power law
(see Fig. 22.7 for illustration),

σdc ∼ (p− pc)µ, (22.15)

where the critical exponent µ is (semi)-universal. For percolation on a lattice,
µ depends only on d; the numerical results are contained in Table 22.1. For
continuum percolation (Swiss cheese model) in d = 3, however, µ is enhanced:
µ ∼= 2.38.

Combining (22.11) and (22.15), we can obtain the behaviour of the dif-
fusion coefficient D as a function of p − pc. Since only the particles on
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the infinite cluster contribute to the dc conductivity, we have (from (22.1))
n ∼ P∞ ∼ (p− pc)β in (22.11). This yields

D ∼ (p− pc)µ−β . (22.16)

Next we use scaling arguments to relate the exponent µ to dw. Equations
(22.16) and (22.10) imply that above tξ the mean square displacement 〈r2(t)〉
behaves as

〈r2(t)〉 ∼ (p− pc)µ−βt, t > tξ. (22.17)

On the other hand we know that for times below tξ on distances r < t
1/dw
ξ ,

〈r2(t)〉 ∼ t2/dw , t < tξ. (22.18)

By definition, for t = tξ, we have 〈r2(t)〉 ∼ ξ2. Substituting this into
(22.17) and (22.18) and equating both relations we obtain immediately
(p − pc)µ−βtξ ∼ t

2/dw
ξ . Using tξ ∼ ξdw ∼ (p − pc)−νdw (from (22.2)) we

get the relation between µ and dw,

dw = 2 + (µ− β)/ν. (22.19)

22.8 Further Electrical Properties

In the last section we have already seen that the dc conductivity in the
conductor-insulator system is zero below pc and increases with a power law
above pc. If we consider, instead, the corresponding superconductor-conduc-
tor system, the conductivity is infinite above pc and diverges with a power
law when approaching pc from below (see Fig. 22.7),

σS ∼ (pc − p)−s. (22.20)

The numerical results for s can be found in Tab. 22.1.
Next, for generalizing this result and for obtaining further electric prop-

erties, let us assume that each bond in the network represents (with proba-
bility p) a circuit consisting of a resistor with resistivity 1/σ0

A and a capac-
itor with capacitance CA, or (with probability 1 − p) a circuit consisting of
a resistor with resistivity 1/σ0

B and a capacitor with capacitance CB. The
(complex) conductivity of each bond is therefore either σA = σ0

A − iωCA

or σB = σ0
B − iωCB. This model is called equivalent circuit model. At the

percolation threshold the total conductivity follows a power law [1, 13, 14],

σ(ω) = σA(σA/σB)−u, (22.21)

where the exponent
u = µ/(µ+ s) (22.22)
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is related to the exponents µ and s from above, u = 0.5 in d = 2 and u ∼= 0.71
in d = 3 (see Tab. 22.1).

For extending this result to the critical regime below and above pc, we
multiply (22.21) by a complex scaling function S(z) that depends on z =
|p− pc|(σA/σB)Φ and can be different above and below pc [15, 16],

σ(ω) = σA(σA/σB)−u · S[|p− pc|(σA/σB)Φ]. (22.23)

The exponent Φ as well as the asymptotic behaviour of the scaling function
is determined by the asymptotic behaviour of σ(ω) in the limit ω → 0 and
(σA/σB) → ∞.

In the following, let us concentrate on the conductor-capacitor limit,
where σA = σ0

A and σB = −iωCB. Then the complex scaling variable z is
proportional to |p−pc|[σ0

A/(−iωCB)]Φ ∼ (τω)−Φ, and τ = |p−pc|−1/ΦCB/σ
0
A

defines the characteristic time scale in this short-circuit model. Splitting the
complex function (−i)uS(z) into its real part S1 and imaginary part S2, we
obtain for the complex conductivity

σ(ω) = σ0
A(CB/σ

0
A)u · ωu · [S1(τω)] + iS2(τω)], (22.24)

where S1 and S2 are real functions.
According to standard electrodynamics, in the limit of ω → 0 the real part

of the complex conductivity tends to σdc, while the imaginary part becomes
−ωC, with C the capacitance of the whole system:

σ(ω) →
{
σdc − iωC, if p > pc,
−iωC, if p < pc

(ω → 0). (22.25)

For satisfying these conditions, we must require that S1(τω) ∼ (τω)−u above
pc and S2(τω) ∼ (τω)1−u below and above pc. The first condition determines,
together with (22.15) and (22.22), the scaling exponent Φ, Φ = 1/(µ + s).
The second condition yields the new relation for the capacitance [1, 15, 16],

C ∼ S2(τω) ∼ |p− pc|(u−1)/Φ = |p− pc|−s, (22.26)

with the same exponent s below and above pc (see Fig. 22.7). The divergency
of C at pc has a simple physical interpretation: each pair of neighboured clus-
ters forms a capacitor. The effective surface increases when pc is approached
and tends to infinity at pc. Accordingly, the effective capacitance C of the
system also diverges. Next, we discuss a (non-trivial) application of the per-
colation concept, the ionic transport in heterogeneous ionic conductors. For
a recent application of the percolation concept in gas sensors, see [17].
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(a) (b) (c) (d)

Fig. 22.8. Illustration of the three-component percolation model for dispersed ionic
conductors, for different concentrations p of the insulating material. The insulator
is represented by the grey area, the ionic conductor by the white area. The bonds
can be highly conducting bonds (A bonds, bold lines), normal conducting bonds
(B bonds, thin lines), or insulating (C bonds, dashed lines). (a) p < p′

c, (b) p = p′
c,

(c) p = p′′
c , and (d) p > p′′

c (redrawn after [22]).

22.9 Application of the Percolation Concept:
Heterogeneous Ionic Conductors

22.9.1 Interfacial Percolation and the Liang Effect

Let us now turn to percolation models that describe electrical transport in
specific composite materials. A substantial amount of research has concen-
trated on “dispersed ionic conductors” after the discovery by Liang [18] that
insulating fine particles with sizes of the order of 1 µm, dispersed in a conduc-
tive medium (e. g. Al2O3 in LiI), can lead to a conductivity enhancement [19].
This effect has been found to arise from the formation of a defective, highly
conducting layer following the boundaries between the conducting and the
insulating phase [20]. Effectively, the system thus contains three phases. Theo-
retical studies therefore have focused on suitable three-component impedance
network models.

Figure 22.8 shows a two-dimensional illustration of such composites in a
discretized model [21, 22]. In its simplest version this model is constructed
by randomly selecting a fraction p of elementary squares on a square lattice,
which represent the insulating phase, while the remaining squares are the
conducting phase. The distribution of both phases leads to a correlated bond
percolation model with three types of bonds and associated bond conduc-
tances σα; α = A,B,C; as defined in Fig. 22.8. For example, bonds in the
boundary between conducting and insulating phases correspond to the highly
conducting component (A bonds). The analogous construction for three di-
mensions is obvious. Finite-frequency effects are readily included, when we
allow bond conductances to be complex [23]. For simplicity, we may assume
the ideal behaviour σα = σ0

α − iωCα, as in the previous section, but more
general forms can be chosen when necessary. Clearly, the experimental situ-
ation described above requires that σ0

A/σ
0
B = τ 
 1; σ0

C = 0. Thereby it is
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Fig. 22.9. (a) Normalized conductivity of the LiI-Al2O3 system as a function of
the mole fraction p of Al2O3 at different temperatures (after [24]). (b) Normalized
conductivity resulting from Monte Carlo simulations of the three-component per-
colation model, as a function of p, for σ0

A/σ0
B = 10 (circles), 30 (full squares), and

100 (triangles) (after [22]).

natural to assume that σ0
A and σ0

B are thermally activated, such that their
ratio τ ∝ exp(−∆E/kBT ) increases with decreasing temperature.

A remarkable feature of this model is the existence of two threshold con-
centrations. At p = p′c, interface percolation (i.e., percolation of A bonds)
sets in, whereas at p = p′′c = 1 − p′c (normally not accessible by experiment)
the system undergoes a conductor-insulator transition. In two dimensions we
have p′c = 0.41, while in d = 3, p′c = 0.097, corresponding to the threshold for
second-neighbour (d = 2) and third-neighbour (d = 3) site percolation on a
d-dimensional lattice, respectively. At zero frequency, the total conductivity
can be obtained from Monte Carlo simulation [21, 22].

Figure 22.9 shows experimental results for LiI-Al2O3 at four different
temperatures [24] and simulation results for d = 3 at three different tem-
peratures (corresponding to τ = 10, 30 and 100) [22]. Good agreement is
achieved, since both plots show a broad maximum. Changing τ (by varying
the temperature) offers the possibility to interpret the measured activation
energies as a function of p [25] and, in principle, also to detect the critical
transport behaviour associated with interface percolation. In the vicinity of
p′c it seems interesting in addition to study critical ac effects. For examples, at
p′c the effective capacitance develops a peak, whose height should scale with
τ as Ceff ∼ τ1−u, where u = µ/(µ+s), see (22.21) and (22.22). Ac properties
in the whole range of p-values have been calculated by renormalization group
techniques [23].

Several extensions of this model are conceivable. In the case of dc trans-
port (ω = 0), the variation of the total conductivity with the size of dis-
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Fig. 22.10. Plot of the dc conductivity of micro- and nanocrystalline (1 −
x)Li2O:xB2O3 composites vs volume fraction p (bottom scale) and mole fraction x
(top scale) of insulating B2O3, at T = 433 K. The experimental conductivity of the
nanocrystalline samples (open circles) shows an enhancement up to a maximum at
p ≈ 0.7 (x ≈ 0.5), while the conductivity of the microcrystalline composites (full
circles) decreases monotonically. The arrows indicate the compositions where the
dc conductivities fall below the detection limit. The dashed lines show the dc con-
ductivities obtained from the continuum percolation model discussed in the text
(after [37,39]).

persed particles has been calculated and successfully compared with experi-
ments [26–29]. In particular, it was found that as the particle size decreases
while the thickness of the highly conducting interfacial layer is fixed, the max-
imum in the total conductivity as a function of the insulator concentration p
shifts to smaller values of p. The observation of conductivity maxima at very
low volume fractions (� 10%) in certain composite electrolytes, however, was
interpreted by a grain boundary mechanism within the bulk of the electrolyte
phase [30].

Related work also emphasized aspects of continuum percolation in dis-
persed ionic conductors [27, 29], which, depending on the geometrical condi-
tions, can lead to dynamical critical properties differing from lattice percola-
tion (see e.g. Sect. 22.7).

22.9.2 Composite Micro- and Nanocrystalline Conductors

In the foregoing subsection, we have discussed dispersed ionic conductors
that were prepared by melting the ionic conductor and adding the insulator
(mainly Al2O3) to it. Next we consider diphase micro- and nanocrystalline
materials, which were prepared by mixing the two different powders and



22 Diffusion and Conduction in Percolation Systems 911

pressing them together to a pellet. This way, in contrast to the classic dis-
persed ionic conductors discussed above, the grain size of both ionic conductor
and insulator can be varied over several orders of magnitude. For reviews on
nanocrystalline materials, see e. g. [31–36] (cf. also Chap. 9).

Recently, the ionic conductivity of micro- and nanocrystalline (1−x)Li2O:
xB2O3 composites, for different contents x of insulator B2O3, has been stud-
ied [37–39]. In the nanocrystalline samples, with an average grain size of
about 20 nm, the dc conductivity increases with increasing content of B2O3

up to a maximum at x ≈ 0.5. Above 0.92, the dc conductivity vanishes.
In contrast, in the microcrystalline samples (grain size about 10 µm), the

dc conductivity decreases monotonically when x is increased and seems to
vanish above x ≈ 0.55 (see Fig. 22.10). The activation energy remains almost
constant in both cases, Eact

∼= 1 eV, for all x values.
To explain these surprising experimental observations, Indris et al. [37]

assumed that (as for the classical dispersed ionic conductors) (i) B2O3 acts
as an insulator for the lithium ions, (ii) the mobility of the Li ions along the
diphase boundaries between ionic conductor and B2O3 is larger than in the
bulk lithium oxide, and (iii) that the thickness λ of this highly conducting
interface is independent of the grain size.

For a quantitative treatment one has to note that the insulator content
x is related to the volume fraction p (considered in percolation theory) by
p = αx/(αx−x+1), where α = Vmol(B2O3)/Vmol(Li2O) ≈ 1.9065 is the ratio
between the mole volumes. Accordingly, the experimental results suggest the
existence of two different percolation thresholds for the conduction paths,
pc ≈ 0.7 for the microcrystalline samples and pc ≈ 0.96 for nanocrystalline
ones, above which the dc conductivity of the composite vanishes.

These different thresholds can be understood by simple geometrical argu-
ments. In the case of micro-crystalline samples, the highly conducting region
at the interface between B2O3 and Li2O grains does not play a role since
its width is negligible compared to the grain sizes, and conducting paths
can open up only when two Li2O grains get in direct contact to each other.
Qualitatively, we can expect a percolating conducting path when the Li2O
concentration gets larger than 0.3 (i.e., p = 0.7), which is between the per-
colation threshold of spheres in a three-dimensional continuum percolation
model and the percolation threshold of sites in the simple cubic lattice.

In the case of nanocrystalline samples, however, the width of the highly
conducting interface becomes comparable to the grain sizes. In this case, the
highly conducting region can act as a bridge between two Li2O grains not
in direct contact to each other, opening up additional paths for Li ions. A
percolating conducting path can be disrupted only at much higher concentra-
tions of B2O3 than for micrometer sized grains. Again, the value suggested
by the experiment is in the expected regime.

To describe the actual dependence of the dc conductivity of Li2O:B2O3

composites, σdc(p), on the insulator concentration p, Indris et al. [37] em-
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ployed a continuum percolation model similar to that studied earlier for dis-
persed ionic conductors [27]. In this model, the size of dispersed particles
is considered explicitly and the conductivity is estimated by means of the
effective-medium approximation (EMA), yielding an analytical expression
for σdc(p). Denoting by P0(p), PA(p), and PB(p) the concentrations of the
insulator, the highly conducting diphase boundaries and the ionic conductor,
respectively, σdc(p) is given within EMA by

σdc(p) = σ0
B

1
z − 2

{
−A+ [A2 + 2τ(z − 2 − zP0)]1/2

}
, (22.27)

where A = τ(1 − zPA/2) + (1 − zPB/2), z is a parameter determining the
percolation threshold pc at which σdc = 0, and τ = σ0

A/σ
0
B is (as before) the

enhancement factor, defined as the ratio between the conductivities of the
highly conducting interface and of pure Li2O, respectively. For details of the
treatment, we refer to [27, 37]. The concentrations of the three components
are given by P0(p) = p, PB(p) = (1 − p)η3

and PA(p) = 1 − p− PB(p), with

η =
R+ λ

R
, (22.28)

where R is the radius of the particles (R ∼= 10 nm for the nanoparticles and
R ∼= 5 µm for the microparticles) and λ between 1 and 2 nm.

According to (22.27), the percolation threshold for the disruption of con-
ducting paths, pc, is given by pc = (z − 2)/z. Thus, from our previous dis-
cussion, we expect that for nanocrystalline samples, pc ≈ 0.96, obtaining
znano = 59, while in the microcrystalline case pc ≈ 0.7 and zpoly = 7. The
remaining parameters, except the interface conductivity σ0

A can be easily es-
timated from the measurements. The theoretical results, obtained for a rea-
sonable fit of σ0

A, are displayed in Fig. 22.10 as dashed lines. The agreement
is quantitatively good in view of the simplicity of the model employed.

Both nanocrystalline and microcrystalline materials have been described
within the same model. The striking difference between both is the parameter
η; η − 1 describes the thickness of the interface in relation to the grain size.
For η close to one, the blocking effect of the large insulating grains dominates,
and the dc conductivity decreases monotonically, while for smaller grain sizes
a similar behaviour as in the classic dispersed ionic conductors occurs.

The results summarized here are consistent with results of nuclear mag-
netic resonance studies on the same composites, presented in Sect. 9.6.4 of
Chap. 9.

22.10 Conclusion

In this chapter we gave a short introduction to the standard model for dis-
ordered systems, the percolation model. Percolation clusters at the critical
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concentration are self-similar on all length scales and their structure as well
as several substructures can be described with the concept of fractal dimen-
sions. Because the clusters have loops and dangling ends on all length scales
diffusion processes on these structures are slowed down and become anom-
alous. Diffusion is related to electrical conductivity via the Nernst-Einstein
relation, and thus the scaling behaviour of the dc conductivity can be de-
duced from it. Other scaling arguments give the dependence of the capacity
on the concentration of conducting sites, and show that the capacity diverges
at the percolation threshold. In the last section, we reviewed experimental
results and numerical simulations for ionic conduction in heterogeneous ionic
conductors.

Notation

C capacitance
D diffusion coefficient
M cluster mass
p, q concentration of occupied sites, resp. bonds
pc, qc critical concentrations (percolation thresholds)
P∞ concentration of sites from infinite cluster
P (r, t) probability density of random walk
r, � Euclidean and topological (chemical) distance
R(t) ≡ 〈r2(t)〉1/2 root mean square displacement of random walk
ξ correlation length
σdc dc conductivity
σS conductivity in conductor-superconductor system
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23 Statistical Theory and Molecular Dynamics

of Diffusion in Zeolites

Reinhold Haberlandt

23.1 Introduction

That part of theoretical physics where the macroscopic behaviour of systems
is derived from their microscopic structure and from the properties of the
particles is called Statistical Physics.

In order to evaluate the structural, thermodynamic or transport behaviour
of macroscopic systems, statistical physics gives the starting quantities –
radial distribution functions, partition functions or correlation functions –
and the interrelations between them. The foundations will be sketched in the
next section. One finds more detailed descriptions in the literature [1–3].

The motion of systems with different numbers of particles can be discussed
within three levels

– mechanical : for small particle numbers (N < 3), allowing an analytical
solution of the equation of motions,

– statistical theory: for large numbers of particles (N ≈ 1023), by applying
methods of statistical physics on the basis of theoretical mechanics and
probability theory,

– computer simulations : in a wide range up to some thousand particle sys-
tems, which are already representative of macroscopic systems in many
properties (N < 105). This last level completes the treatment of systems
by use of computers and concepts of mechanics, statistics and probability
theory.

In general, however, there is some lack of knowledge in the statistical the-
ory itself (especially for irreversible processes) as well as in structural details,
such as, e. g., inter- and intramolecular potentials. Computer simulation can
help to overcome these difficulties in evaluating the properties one is inter-
ested in.

Figure 23.1 (left) shows the double role of such simulations in understand-
ing the behaviour of macroscopic objects following the detailed microscopic
motion of the particles belonging to the macroscopic system. For instance,
Fig. 23.1 (right) shows a snapshot of the diffusion of CH4 molecules through
different cavities of Linde type A (LTA) zeolites using special models for struc-
tures and potentials, respectively (more details will be given in Sect. 23.4).
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Fig. 23.1. Left: Role of computer simulations. Right: Snap shot of methane mole-
cules (small light grey spheres) in LTA zeolites. Large cavities are represented by
grey isopotential surfaces. The occupation number is I = 5 molecules. The initial
state is represented by small dark grey spheres in the lower left cavity.

The validity of the models used is checked by comparing the experimental
results with the simulations.

On the other hand, one can test the approximation of the theory by com-
paring its results with the simulations. Thus, computer simulations can give a
more detailed understanding of complex processes. This will be demonstrated
by the case of zeolitic diffusion in Sect. 23.4. Some features of computer sim-
ulations [4–13], especially molecular dynamics (MD), are given in Sect. 23.3.

23.2 Some Notions and Relations of Statistical Physics

In this section, the radial distribution function g(r) and the correlation func-
tion K(r, t), as two fundamental quantities of statistical thermodynamics and
non-equilibrium theory, are introduced and correlated with the observables
and system properties that can be evaluated.

23.2.1 Statistical Thermodynamics

General Mechanical Background

The mechanical state of a system of f degrees of freedom can be illustrated
geometrically in a so-called gas configuration space (Γ -space) using the gen-
eralized coordinates qi and the generalized velocities q̇i
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q1, q2, q3, . . . , qf , for short: q, q̇1, q̇2, q̇3, . . . , q̇f , for short: q̇ , (23.1a)

where the q̇i are related to the generalized momenta pi

pi =
∂L

∂q̇i
i = 1, 2, . . . , f, (23.1b)

L = L(qi, q̇i, t) is the Lagrangian function, connected with a Legendre-Trans-
formation to the Hamiltonian function

H(qi, pi, t) =
∑

i

piq̇i − L(qi, q̇i, t). (23.2)

The mechanical motion of the systems is governed by equations of motion,
e. g. Lagrange’s equations of motion or Hamilton’s (canonical) equations of
motion, respectively

d
dt
∂L

∂q̇i
− ∂L

∂qi
= 0; q̇i =

∂H

∂pi
, ṗi = −∂H

∂qi
(23.3a)

and – as an important starting point for molecular dynamics – Newton’s
equations of motion (Newton’s second law) for the radius vector ri of the ith
particle (in Cartesian coordinates)

mir̈i = F i, with Fi = −∂U

∂ri
, (23.3b)

with mi : particle masses, Fi : force components, U(ri) : potential energy.
The whole system is considered as a single super-molecule with f general-

ized coordinates and f generalized momenta. Following Gibbs, a large number
of physically equivalent systems – the Gibbs ensemble – is considered. This
ensemble can be visualized in the gas configuration space by a cloud of phase
points distributed with the particle density ρ(q, p, t). Its motion will charac-
terize the mechanical state of the system. With respect to different physical
situations there exist different ensembles, e. g. the microcanonical ensemble of
isolated systems (energy E, volume V , particle number N) and the canonical
ensemble of closed systems in contact with a heat bath for thermalization
(temperature T , volume V , particle number N). Initially, molecular dynam-
ics (MD) was conducted in the microcanonical ensemble and Monte Carlo
(MC) in the canonical ensemble. Today both MD and MC can use several
ensembles [5–8]. For macroscopic systems – in the thermodynamic limit with
N → ∞ and N/V = const – all ensembles yield equivalent results, differing
in fluctuations only, which are not important for our current purposes.

Distribution Functions

Considering an ensemble of ν systems with f degrees of freedom each (total
number of degrees of freedom F = ν× f in Γ -space) then ρ

(N)
ν (q, p, t)dqdp is
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the number of systems in the range q . . . q+ dq, p . . . p+ dp of Γ -space. Intro-
ducing the (normalized) phase space density or the N -particle distribution
function, respectively, ρ(N)(q, p, t) by

ρ(N)(q, p, t) =
1
ν
ρ(N)

ν (q, p, t), (23.4)

ρ(N)(q, p, t)dqdp is the probability to find the system – consisting of N par-
ticles – in q . . . q+dq, p . . . p+dp of the Γ -space. More often it is sufficient to
use so-called reduced distribution functions for finding k particles (k ≤ N)
only, defined by a k-particle distribution function

ρ(k)(q, p, t) =
∫
ρ(N)(q, p, t) dq(N−k)dp(N−k). (23.5a)

Particularly important are the two-particle distribution function (k = 2) and
the one-particle distribution function (k = 1). Integration over the momen-
tum space gives

n(2)(q) =
∫
ρ(2)(q, p, t) dp, n(1)(q) =

∫
ρ(1)(q, p, t) dp. (23.5b)

n(2)(qi, qj)dqidqj is the probability to find a particle i in qi . . . qi + dqi and
another particle j in qj . . . qj + dqj . n(1)(qi)dqi is the probability to find a
single particle i in qi . . . qi +dqi. For N 
 1, one can introduce a distribution
function g(qi, qji) by

n(2)(qi, qj) = n(1)(qi)n(1)(qj)g(qi, qji). (23.6)

g(qi, qji) tends towards one for qji = |qi − qj | → ∞. The deviation from one
is a measure for the correlation of the pairs of molecules (pair distribution
function). The total potential energy UN is assumed to be pair-wise additive:

UN (qi, qj) =
∑
i<j

u(qij).

In isotropic systems u(qij), g(qi, qji) are functions of the distance qji = r
only. The thus defined radial distribution function g(r) is very important
to evaluate structural and thermodynamic data and to compare them with
experimental data as well. As examples, some relations are given for the
internal energy U , the pressure p, the chemical potential µ and the static
structure factor S(k) – particularly important to compare theoretical data
with experiments (see, e. g. , Chaps. 3, 18, 20 and [14]):

U =
3
2
NkBT +

1
2
Nn

∞∫
0

u(r)g(r, n, T )4πr2 dr, (23.7a)
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p = kBTn− n2

6

∞∫
0

ru′(r)g(r, n, T )4πr2 dr, u′(r) = ∂u/∂r, (23.7b)

µ

kBT
= ln(nλ3) +

n

kBT

1∫
0

∞∫
0

u(r)g(r, ξ)4πr2 drdξ , λ =
(

h2

2πmkBT

)1/2

(23.7c)
with ξ as insertion parameter (0 ≤ ξ ≤ 1), the Boltzmann constant kB, and
the de Broglie wavelength λ [6]. The structure factor

S(k) = 1 + n

∫
{g(r) − 1} exp (ik · r) dr = 1 + nh(k) (23.7d)

plays an important role in the comparison between theoretical and exper-
imental data (scattering data: neutron, X-ray; see, e. g., Chaps. 3, 13, 15
and [15]). There are: n – density; h(k) – Fourier transform of {g(r) − 1}. The
limit for k → 0 gives

lim
k→0

S(k) = 1 + n

∫
{g(r) − 1} dr. (23.7e)

23.2.2 Statistical Theory of Irreversible Processes

Irreversible processes are driven by generalized forces X and characterized by
transport coefficients L [2,15,16]. It is very important to determine transport
coefficients – e. g. using the famous linear response theory (Kubo [17]) – via
correlation functions [18, 19]. The correlation functions are as powerful in
non-equilibrium as partition functions or radial distribution functions are in
equilibrium (see, e. g., (23.7)).

Transport Coefficients and Correlation Functions

In the linear approximation, the transport coefficients Lik are defined by
relations between the flux densities Ji and their corresponding generalized
forces Xk

J = L ·X + (higher terms) Ji =
∑

k

LikXik, (23.8)

with the Onsager-Casimir reciprocity relations Lik = Lki – valid near equi-
librium. For instance, in the case of diffusion the particle transport is caused
by concentration gradients:

Jz = −D · ∂n1

∂z
+ (higher terms). (23.9)

Using the ensemble average in the Γ -space



920 Reinhold Haberlandt

〈A〉Γ =
∫ ∫

A(q(t), p(t))ρ(q(t), p(t)) dqdp (23.10)

with the equilibrium phase space density (cf. (23.4)), classical time correlation
functions

KAB(t) = 〈A(t)B(0)〉Γ =
∫
· · ·

∫
A(q, p, t)B(q, p, 0)ρ(q, p) dqdp, (23.11)

for the phase space functions A{q(t), p(t)} = A(t) and B{q(t), p(t)} = B(t)
are defined by (23.11). With A = B, KAA(t) is called autocorrelation func-
tion, and for A = B = v (velocity): velocity autocorrelation function Kvv(t).
The spectral density f(ω), which is important for comparisons with experi-
mental data, is a Fourier transform of the velocity autocorrelation function

f(ω) =

∞∫
0

〈
v(0) · v(t)

〉〈
v(0)2

〉 cos(ωt) dt. (23.12)

Linear Response Theory – Green-Kubo and Einstein Relations

The linear response theory [17] is a bridge between microscopic theory and
experiment. It can be outlined as follows

– The linear response theory assumes near-equilibrium situations so that
linear relations are sufficient (e. g. also to describe relaxations back to
equilibrium).

– This linear response is determined by fluctuations from equilibrium.

The linear response theory yields relations between the irreversible behav-
iour of the systems and the observables to measure, but no instruction to
determine the transport properties. Here methods of statistical physics – in-
cluding molecular dynamics – and measurements come into play. Generalized
susceptibilities (transport coefficients) are Fourier transforms of correlation
functions

σ(ω) =

∞∫
0

exp(−iωt)〈Ȧ(t)Ḃ(0)〉Γ dt. (23.13a)

In the limit of long waves (ω → 0, k → 0) – sufficient for transport coefficients
– it is

σ =

∞∫
0

〈Ȧ(t)Ḃ(0)〉Γ dt Lij =

∞∫
0

〈J̇i(t)J̇j(0)〉Γ dt. (23.13b)

In the long-time limit (t → ∞) for autocorrelation functions, (23.13b) can be
substituted by Einstein relations of the kind
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2tσ = 〈(A(t) −A(0))2〉. (23.13c)

A further important quantity in comparing theoretical and experimental data
is the dynamic structure factor (see Chaps. 3, 13, 16, 20, and [14])

S(k, ω) =
1
2π

∞∫
−∞

F (k, t) exp iωtdt. (23.14a)

Here F (k, t) is the – numerically as well evaluable – scattering function
(Chaps. 2, 13 (cf. (13.1)))

F (k, t) =
1
N

〈ρ(k, t)ρ(−k, 0)〉, (23.14b)

which is related to the so-called Van Hove correlation function G(k, t) by

F (k, t) =
∫
G(r, t) exp (−ik · rj) dr (23.14c)

(cf Chap. 3, (3.10)) and can be determined by ensemble averaging 〈· · · 〉 over
the Fourier transform ρ(k, t) of the local one-particle density as well:

ρ(k, t) =
∑

j

exp (ik · rj(t)) =
∫
ρ(r, t) exp (ik · rj) dr. (23.14d)

In the limit ω → 0, k → 0 one has the usual static structure factor (see
(23.7d)).

As an example of the discussed general theory of irreversible processes
(see Table 23.1) here only relations for the (self-) diffusion coefficient are
given:

D =
1
3

∞∫
0

〈v(t) · v(0)〉dt; 2tD =
1
3
〈(r(t) − r(0))2〉. (23.15)

Table 23.1. Correlation functions – theoretical and experimental quantities

Observable Correlation Function Equation

spectral density 〈v(0) · v(t)〉 (23.12)
structure factor 〈ρ(k, t)ρ(−k, 0)〉 (23.14a)

transport coefficient 〈J̇i(t)J̇j(0)〉Γ (23.15)
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23.3 Molecular Dynamics

Due to the lack of analytical solutions, the motion of guest molecules in
zeolites must be evaluated numerically by computer simulations (molecular
dynamics (MD), Monte Carlo (MC)). Computer simulations are reviewed in
many text books [4–9], thus here only a few principles of MD simulations are
sketched.

23.3.1 General Remarks

The procedure of MD simulations may be subdivided into several steps:

– Analysis of the physical situation
– Derivation of the equations of motion (e. g. (23.3b))

mir̈i = −∂U

∂ri
(23.16)

– Selection of the interaction potential U(r).
From the great variety of (empirical) potential functions (e. g. [1]), Figs. 23.2
and 23.3 display only two examples:
a) Square well potential

U(r) = ∞ r < σ1

U(r) = −ε σ1 < r < σ2 (23.17)
U(r) = 0 r > σ2 ,

�

�
r

U(r)

−ε

σ1 σ2

Fig. 23.2. The square well potential.
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Fig. 23.3. Typical representative of the potentials used in MD simulations
(Lennard-Jones-potential U(r)).

b) Lennard-Jones potential

U = 4ε
{(σ

r

)12

−
(σ
r

)6
}

(23.18)

with ε denoting the minimum value of the potential energy and σ
defined by U(σ) = 0.

These and other potential functions [1] are often used, while quantum
chemical calculations of potential surfaces are restricted to systems being
not too complex.

– Selection of the computational model (algorithms, time steps (l), duration
(l × τ))

– Solution of the equations of motion (trajectories, propagators)
– Evaluation of the desired dynamical data via time averages of a single

system

〈A〉τ =
1
τ

n=l∑
n=1

A(n∆t) (23.19)

or ensemble averages 〈A〉Γ (cf. (23.10)) and correlation functions KAB(t),
(cf. (23.11)), respectively

– Discussion of the results.

23.3.2 Procedure of an MD Simulation

Starting with the first MD papers for hard sphere systems in 1957 [10] many
investigations and applications have been published using several different
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Fig. 23.4. Schematic representation of the procedure of MD simulations (left) and
of the periodic boundary conditions. (right)

algorithms to solve the equations of motion (e. g. [4–7,10–13]). Fig. 23.4 (left)
shows the principal organization of an MD program (Verlet algorithm).

To calculate the velocities in each step by the often used velocity-Verlet-
Algorithm one needs the knowledge of the already calculated forces and also
of those corresponding to the new sites. Therefore it is suitable to calculate
the new velocities in two steps: considering first that part, which needs only
the former forces and second the final new velocities using the new calculated
forces.

Here – as an example only – this often used Verlet algorithm (cf. (23.20b))
and its velocity version (cf. (23.20c,23.20d)) are outlined. Adding to the Tay-
lor series

ri(t+ h) = ri(t) + vih+
h2

2
r̈i(t) + ... (23.20a)

its analogue for ri(t− h), all terms with odd powers of the time increment h
will be cancelled and one gets up to terms of the fourth order

ri(t+ h) = 2ri(t) − ri(t− h) + h2r̈i(t). (23.20b)

As the velocity version of the Verlet algorithm one obtains in a similar way

ri(t+ h) = ri(t) + hvi(t) +
h2

2mi
F i(t), (23.20c)
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vi(t+ h) = vi(t) +
h

2mi
[F i(t) + F i(t+ h)]. (23.20d)

23.3.3 Methodical Hints

For the complete wealth of tricks in handling MD simulations one clearly has
to consult the relevant literature (see, e. g., [5, 6]). However, the following
methodical hints aim to summarize a few of the most basic procedures:

– Periodic boundary conditions – replication of the MD box by periodic
continuation (see Fig. 23.4 (right)) – can help to overcome artificial surface
effects due to spatially restricted systems.

– To avoid unnecessary calculations the interaction is taken into account
only in appropriate short distances (potential cutoff and shifted forces).
To take into account long-range interactions, special techniques (e. g. the
Ewald summation) must be used.

– To save computer time, the time steps should be as large as possible (but
the energy must be maintained) and as short as necessary (fast processes).
In some cases multiple step lengths are recommended (multiple time step
method).

– In order to avoid further time consuming calculations the number of pair
separations explicitly considered is reduced (Verlet neighbour list, up-
dated from time to time).

23.4 Simulation of Diffusion in Zeolites

23.4.1 Introduction

Diffusion processes in gases, liquids, solids and at interfaces have been studied
with different theoretical and experimental methods for a long time. The
present textbook provides a broad survey of this subject.

Bulk measurements of (self-) diffusion coefficients Ds over wide ranges of
temperature T are often described generally by the Arrhenius relation (cf
Chap. 1)

Ds = D0 exp
(
− EA

kBT

)
(23.21)

with the pre-exponential factor D0, an activation energy EA (in a certain
sense). This relation can be explained using the transition theory of Eyring,
but its range of validity is not quite clear.

In this section, MD simulations will be applied in helping to understand
the features of molecular diffusion in more microscopic detail, namely under
the influence of the confined geometries in microporous materials. These mi-
croporous materials – especially zeolites – have attained a steadily increasing
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role for both applications and fundamental research [14,20]. The study of dif-
fusion processes in zeolites is of great interest because these crystals contain
very regular internal surfaces and they have been used for many industrial
purposes [14].

Since the paper of Yashonath et al. [21], MD simulations (see Sect. 23.3,
[5, 6]) are applied to diffusion in zeolites to discuss the dynamics of kinetic
processes in zeolites in more detail. In the recent literature one finds some
reviews (e. g. [22–30]) and papers of several groups [39–81]).

MD simulations can use different models for guest molecules, lattices and
their interaction and allow, especially, variations in the system parameters
that are not possible in experiments. So, interrelations and dependences can
be examined.

In this section it will be discussed how MD simulations can answer ques-
tions like, e. g.:

1. Does there exist a macroscopic behaviour (i. e. thermalization, Maxwell-
Boltzmann distribution) of the few particles diffusing in the narrow holes
of zeolites?

2. What is the range of validity of the Arrhenius relation (23.21)?
3. How are the evaluated diffusion data influenced, e. g., by

a) small changes of parameter sets (structural, potential)?
b) idealization of the models used (neglecting of cations, fixed lattice)?
c) taking into account concentration gradients?
d) technical points with respect to the MD simulation?

4. How one can use additional theoretical tools – e. g. propagators – to
improve the understanding of diffusion processes in zeolites?

5. Can MD simulations at all describe experimental NMR data and/or
QENS data of diffusion?

6. What is the result for mixtures?

23.4.2 Simulations

To answer the above mentioned questions the calculations should at first be
restricted to simple model systems. Thus, in the beginning of this section,
the diffusion of (simple spherosymmetric) methane guest molecules through
idealized zeolites of LTA-type neglecting the exchangeable cations (for short:
ZK4) is examined. Then we will proceed with more complex guest molecules,
mixtures and take into account the cations of the zeolite lattice additionally.
Possible improvements of the model and application to mixtures of guest
molecules will be discussed later on.

Fig. 23.5 (left) shows the general structure of zeolites of type LTA used
for the calculations. The sodalite units form a cubic lattice with large cavities
connected by so-called windows consisting of eight oxygen atoms.
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Fig. 23.5. Structure of zeolites of type LTA (left: general view; right: interior view),
see text.

In Fig. 23.5 (right) the distribution of the lattice atoms around a large
cavity in the NaCaA zeolite is to be seen. Lattice atoms in front have been
removed in order to open the view into the interior of the cavity (windows
are marked by w).

One of the crucial points in determining diffusion coefficients in zeolites is
the knowledge of the inter- and intramolecular potentials. The forces acting
between the guest molecules and the zeolite lattice as well as among the guest
molecules must be known as good as possible in order to solve Newton’s
equations for the guest molecules in zeolites.

These forces can be derived from interaction potentials (for more details
see, e. g., [1, 22–24] and references therein). Potentials can be obtained from
quantum chemical calculations [24] and/or from fit procedures using experi-
mental results (for an illustrative example see [31] and [32–34]).

Alternatively – at least in the future –, the forces and potential energies
can be obtained by including quantum mechanical density functional calcu-
lations into an otherwise classical MD run [35–38]. However, such methods
are extremely computer-time consuming and can yield the trajectories only
for short times and/or small systems until now. So, they cannot be used for
long-time diffusion processes in large systems.

Here, for the interaction between the guest molecules CH4 and the lattice
atoms of a cation-free analogue of LTA zeolites (‘ZK4’), we again use (23.18),
the well-known Lennard-Jones (LJ) (12,6) potential.

For NaCaA zeolites, additional polarization energy terms due to the
cations have been included. Using the conventional microcanonical MD en-
semble the self-diffusivity is calculated, while a generalized non-equilibrium
(NEMD) ensemble is used to determine the transport-diffusivities [48].

In order to get appropriate diffusion coefficients, long-run simulations were
carried out with up to 6 000 000 time steps with short step lengths of 5 and 10
fs, respectively. The basic MD box contains between 8 and 343 large cavities
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with occupation numbers varying between 1 and 11 per cavity, respectively.
The velocity-Verlet-algorithm (see (23.20c), (23.20d)) is used [5, 6].

23.4.3 Results

Computer simulations not only yield the diffusion coefficients as the final
results, but, additionally, residence times, velocity autocorrelation functions
(vacf), potential surfaces, density distributions, and – last but not least –
propagators and Van Hove correlation functions. Thus a better understanding
of the diffusion processes is possible.

To demonstrate the influence of the potential the results of two sets of
potential parameters A and B (see Table 23.2, p. 932) are compared.

Applicability of the Diffusion Equation

First of all one must answer the non-trivial question whether or not systems
of a few particles in narrow-sized pores obey the diffusion equation. In the
kinetic theory of fluids this equation has been proven rigorously only in the
case of dilute gases. But, it is possible to check it here in the considered case
by computer experiments [42]. The validity of the diffusion equation (see,
e. g., Chaps. 1, 10, 18-20, and [2]) for an infinite system can be examined by
the propagator

P (r, r0, t, 0) = (4πDt)−3/2 exp
{
−(r − r0)2

4Dt

}
. (23.22)

P (r, r0, t, 0) is the (conditional) probability density to find a particle at a
site r at time t, which started at t = 0 at the site r0. It is the solution of the
diffusion equation

∂P/∂t = D∆P ∆ : Laplacian (23.23)

with the initial condition P (r, r0, t = 0) = δ(r − r0).
To examine the form of the solution of the diffusion equation, it is neces-

sary and sufficient that all moments 〈f(r)ν〉 of f(r) = (r − r0) (cf. (23.22,
23.24a)) will give the same diffusion coefficient. Applying the definition

〈f(r)ν〉 =
∫
P (r, r0, t)f(r)νdr (23.24a)

we find for the first four moments ν = 1, 2, 3, 4 of this distribution〈
| r − r0 |

〉
= 4

√
Dt

π
, (23.24b)

〈
(r − r0)2

〉
= 6Dt , (23.24c)
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Fig. 23.6. Ds from the first four moments of the displacement; left hand side:
methane in a cation-free LTA zeolite T = 300 K, parameter set A (see Table 23.2), 3
methane per cavity, right hand side: methane in a NaCaA zeolite, set B, T = 173 K,
7 methane per cavity.

〈
| (r − r0)3 |

〉
=

32(Dt)3/2

√
π

, (23.24d)〈
(r − r0)4

〉
= 60(Dt)2 . (23.24e)

From each one of these equations an expression for Dt can be obtained, e. g.
for the first moment

Dt = π 〈| r − r0 |〉2 /16 (23.24f)

or
D =

π

16
d
dt

〈| r − r0 |〉2 . (23.24g)

The differentiation (cf. (23.24g)) was used instead of simple division by t
(cf. (23.24f)) because one gets a faster convergence of the results. Corre-
spondingly one gets for the second moment – the mean square displacement
(MSD) –

D =
1
6

d
dt

〈
(r − r0)2

〉
. (23.24h)

This equation is usually used to obtain the diffusion coefficient from MD
simulations. If the diffusion equation is valid then the D values derived from
the different moments should agree [42]. In Fig. 23.6 (left) an example of the
diffusivities in the cation-free analogue of NaCaA (‘ZK4’) is given. It can be
seen that there is good agreement for times larger than about 50 ps. That
means that in this case the hydrodynamical state is reached and we conclude
that (23.22) is then valid. The diffusion equation can be simply obtained by
comparing space and time derivatives of (23.22) and, hence, it must be valid,
too. In [42] this was also checked for other occupation numbers.

If the diffusion coefficients are smaller – as in the case of NaCaA (see
Fig. 23.6 (right)) – the hydrodynamical state is reached later (for NaCaA in
about 6 000 ps) [44]. This is probably also due to the additional cations.
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Residence Times and Velocity Autocorrelation Functions

In trying to understand the diffusion behaviour in more detail we define
the residence time for a given guest molecule as the time difference between
successive passages of limiting planes situated in the centre of each window
perpendicular to the window axis.

Fig. 23.7 shows the probability density of the thus defined residence times
within the individual cavities for three different sorbate concentrations, i. e.
loadings I (given in molecules per supercage), and temperatures, respectively
(parameter set A, see Table 23.2). The first maximum at ∼ 0.3 ps corresponds
to times which are too short to allow a passage through the cavity to one
of the five other windows [43]. Therefore, this maximum must be attributed
to trajectories, which are reversed immediately after the molecule has passed
the window.

It is interesting to note that the intensity of this first maximum increases
with increasing sorbate concentration. It may be concluded, therefore, that
the reversal in the trajectory is mainly caused by the influence of the other ad-
sorbate molecules. The second maximum corresponds to the passage through
the adjacent windows and is therefore responsible for diffusion.

These conclusions are confirmed by minima in the velocity autocorrelation
function (vacf) (see [43]) where the dependence of these minima on temper-
ature and loading are in agreement with the above reasoning (see Fig. 23.8).

Fig. 23.1 shows a typical situation in a system where methane molecules
are enclosed in cavities of the cation-free LTA zeolite. The large cavities and
the windows connecting them are indicated by grey isopotential surfaces.
To illustrate the time development all methane molecules that were initially
situated in the left hand lower cavity are marked by dark spheres while the
other ones are fair. So the exchange can be observed.

p
(a

.u
.)

p
(a

.u
.)

Fig. 23.7. Probability density of residence times of particles as function of time
for different loadings I (left) and different temperatures T (right).
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Fig. 23.8. Velocity autocorrelation function (vacf) for different loadings (left) and
temperatures (right).

Density Distributions

The density distribution in cation-free LTA zeolites shown in Fig. 23.9 may
well be understood by isopotential lines (Fig. 23.10 and [43]) for the zeolites.
The density distributions – demonstrated in a plane through the centre of the
large cavity – show a remarkable structure. Corresponding to the potential
surface these distributions are different from zero practically only near the
cavity wall and have maxima in the window (set A, cf Table 23.2) and in
front of them (set B), respectively.

ÅÅ Å Å

Fig. 23.9. Density distribution of CH4 in a cation-free LTA with a loading of
I = 3 at T = 300 K monitored in a plane through the cavity centres (left: set
A; right: set B, cf Table 23.2) [51].

Influence of the Potential Parameters on D

The influence of potential parameters on the diffusion coefficients is remark-
able. Even small parameter changes may cause significant changes in the
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Table 23.2. Parameter sets used for the LJ potential (cf. (23.18)).

zeolite σ in Å ε in kJ/mol

LTA CH4 − CH4 3.817 1.232
LTA CH4 − Si 2.14 0.29
LTA CH4 − O (set A) 3.14 1.5
LTA CH4 − O (set B) 3.46 0.81
LTA C2H6 − O 3.775 1.536

silicalite CH4 − CH4 3.730 1.230
silicalite CH4 − O 3.214 1.108
silicalite Xe − Xe 4.064 1.870
silicalite Xe − O 3.296 1.679

diffusion processes (see Fig. 23.11). It has been shown that the choice of
the σ parameter of the Lennard-Jones potential, (23.18), for the methane–
oxygen interaction has a dramatic influence not only on the value of the
diffusion coefficient but on its concentration dependence. In [43], two differ-
ent Lennard-Jones potentials – based on the sets A,B of potential parameters
shown in Table 23.2 – have been compared.

Analogously to the density distribution (Fig. 23.9), Fig. 23.10 shows the
shape of the potential surface and visualizes the different behaviour in the
vicinity of the window, resulting from the parameter set A (left) and set B
(right), respectively. It can be seen that the potential values are high in the
centre of the large cavity and, of course, at the repulsive walls. The potential

Fig. 23.10. Potential surface plotted through one quarter of the planes considered
in Fig. 23.9 (left: set A; right: set B, cf Table 23.2).
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Fig. 23.11. Diffusion coefficient D for different loadings of methane in the cation-
free LTA zeolite (left: different temperatures, set B; right: T = 173 K, set A,B)

has a minimum in the window in set A, while for set B the maximum is in
front of the window and a saddle point in the centre of the window. This
threshold reduces the diffusivity in set B. From the larger value of σ in set
B, for the dominating oxygen–guest interaction in the zeolite there results a
narrower window between adjacent cavities. Especially for methane, which
has a similar size as the window, this causes dramatic changes. This effect
seems to be the consequence of the interrelation of two effects (reflection at
the inlet of the window, coming back after passing the window) with different
density dependence [43, 51].

Fig. 23.11 (left) shows that the diffusion coefficient D increases with in-
creasing mean number of guest molecules per cavity and temperature for set
B while this dependence for set A – demonstrated for T = 173 K – is re-
versed (right). Both cases show an Arrhenius-like behaviour (cf. (23.21)) (for
non-Arrhenius behaviour see, e. g., [67, 68]).

For higher loadings this figure shows an interesting cross-over of the two
curves. Increasing diffusivities with increasing concentration is in fact the
behaviour found for paraffin in A type zeolites experimentally by PFG NMR
(see Chap. 10).

Influence of Lattice Vibrations on the Diffusion Coefficients

The influence of lattice vibrations on the diffusion coefficient in the cation-free
LTA zeolite is not very large for both of the parameter sets under consider-
ation as can be seen in Fig. 23.12 (left) [22, 58, 60, 66, 67]. Thus, the result,
initially given by Suffritti and Demontis [47] was corrected, who found a much
stronger effect using a parameter set beyond the region of A and B. (Since
their parameters lead to a practically closed window, it is most likely that an
occasional opening of the windows by vibrations may drastically increase D
in such cases.) Moreover, Fig. 23.12 again shows how the potential parameter
σ may affect the influence of another feature of the system (viz. the lattice
flexibility) on the diffusion coefficients.
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Å

Fig. 23.12. Comparison of D with rigid and vibrating lattice (left: set A; right:
set B)

Influence of Cations on D

The dynamics of even small neutral molecules with saturated bindings is
strongly influenced by the presence of exchangeable cations [44, 46]. This is
investigated for the NaCaA zeolite with 4 Na+ and 4 Ca++ ions. In this case
the windows – marked by w in Fig. 23.5 (right) – are (as in the case of the
cation-free LTA) free from cations. The unexpected (see [20]) strong effect can
clearly be seen in Fig. 23.13 (left) and has been confirmed experimentally,
meanwhile ([105], see Chap. 10). In comparison with the cation-free LTA,
the self-diffusivity decreases by up to two orders of magnitude. It should
be noted that the computational effort is much larger in this case than in
the simulations for the cation-free form since much longer trajectories (up
to 5-10 ns) are necessary to evaluate such small diffusivities. Additionally,
the calculation of the forces resulting from the polarization energy is very

0 2 4 6 8

2.0

1.5

1.0

0.5

0

Fig. 23.13. Calculated diffusion coefficients compared with NMR data (left: D of
methane in NaCaA and cation-free LTA; right: mixture of CH4/Xe in silicalite at
a total loading of 8 guest molecules per unit cell. The ratio of Xe/CH4 content is
varied keeping the sum of concentrations constant.)
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time-consuming although the full Ewald sum can be replaced by a corrected
r space part of this sum.

Comparison between MD Simulations and Experimental NMR
Data

Fig. 23.13 (left) shows MD results for different situations. Comparison with
experimental results from NMR measurements [106] yields satisfactory agree-
ment in the case of set A.
Fig. 23.13 (right) shows that the agreement between numerical MD values
and measured NMR data is sufficient also in the case of methane and xenon
mixtures (for more details, see [107,108]).

Propagators and Related Functions

So-called propagators P (r, t |r0, 0) (see p. 928 and (23.22)) represent an-
other way to describe diffusion processes.

Experimentally accessible is the averaged propagator

P (r, t) =
∫
p (r0)P (r0 + r, t |r0, 0) d r0 , (23.25)

where p (r0) denotes the probability density of finding a molecule at posi-
tion r0. The averaged propagator represents the probability distribution of
molecular displacements r during the time interval t for an arbitrarily se-
lected molecule within the sample under study. The pulsed field gradient
(PFG NMR) technique [82] allows the determination of the averaged prop-
agator [83, 84] over time and space scales of typically milliseconds and mi-
crometers. As an example, Fig. 10.1 of Chap. 10 displays the propagation
patterns of ethane in beds of zeolite NaCaA with two different crystallite
sizes for different temperatures [83].

In statistical physics and quasielastic neutron scattering (QENS) – with
the relevant time and space scales of 1...100 ps and nanometers –, the averaged
propagator P (r, t ) is generally referred to as the self-part Gs(r, t) of the Van
Hove autocorrelation function G(r, t) [40, 54–58]

G(r, t) =
1
N

〈
N∑

j=1

N∑
�=1

δ[r + r�(0) − rj(t)]

〉
, (23.26)

with N denoting the particle number. This is seen to be the probability
density of finding some particle at time t at distance r from the position of
a particle at time t0 = 0. For distinguishable particles one can split G(r, t)
into the self-part Gs and the distinct-part Gd
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Å

Fig. 23.14. Propagator P (r, t) as function of r and t; left: in ideal bulk systems;
right: in ‘ZK4’ (set B, I = 3, T = 300 K).

G(r, t) = Gs(r, t) +Gd(r, t), (23.27)

Gs(r, t) =
1
N

〈
N∑

j=1

δ[r + rj(0) − rj(t)]

〉
, (23.28)

Gd(r, t) =
1
N

〈
N∑

j=1

N∑
�=1( �=j)

δ[r + r�(0) − rj(t)]

〉
. (23.29)

The self-part Gs correlates positions of the same particle (j = �) at different
times while Gd correlates positions of different ones (j �= �). Gs(r, t) gives the
probability density that within time t a particle moves by r, while Gd(r, t)
gives the probability density of finding a particle at time t at a distance r
from the position of another particle at time 0.

In a homogeneous system, the propagator P (r, t) (cf. (23.25)) is easily
found to have a Gaussian form

P (r, t) = (4πDt)−
3
2 exp

(
−r2/ (4Dt)

)
, (23.30)

with D denoting the self-diffusivity.
The evolution of the probability of particle displacements as contained in

the spatial-temporal dependence of the propagator, corresponding to (23.30),
is shown in Fig. 23.14 (left). Fig. 23.14 (right) illustrates that the heterogene-
ity of the host system leads to a fine-structure of the propagator – with spac-
ings given by the separation between adjacent pore centres. The propagator
in Fig. 23.14 (right) has been determined by MD simulations for methane in a
cation-free A-type zeolite (ZK4) for potential set B (see Table 23.2), loading
I = 3 and temperature T = 300K [54,55].

Fig. 23.15 shows – in another representation – the same behaviour for the
Van Hove function Gs(x, t), Gaussian in the free space (above) and structured
for methane in ZK4 at I = 3 and T = 300 K (below). The specific structur-
ization of the propagators (see Figs. 23.14 (right) and 23.19) is caused by the
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G x t( , )s
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x in Å

G x t( , )s

Fig. 23.15. Self-part Gs(x, t) of the Van Hove correlation function in the bulk
(above) and the diffusion of methane in ZK4 at I = 3 and T = 300 K (below).

reflections of the guest molecules at the walls of the cavities in the zeolites
which yield peaks in the correlation functions. For an ideal zeolite lattice, the
periodicity of the propagator is conserved over arbitrarily large space and
time scales. This is demonstrated by Fig. 23.15.

Figure 23.16 shows the dynamic structure factor S(k, ω) (k – wave vector,
ω – frequency), i. e. the double Fourier transform of the propagator (self-part
of the Van Hove function)

S(k, ω) =
1
2π

∫ ∞

−∞

∫
P (r, t)e−i(k·r−ωt)dr dt (23.31)

as the quantity directly accessible by QENS [52, 53] (see Chaps. 2 and 3).
S(k, ω) is a generalization of the static case in which the differential cross
section is expressed in terms of the pair distribution function (see (23.7d)).

Fig. 23.17 shows the intermediate scattering function F (k, t) of QENS,
which is defined by

F (k, t) =
∫
P (r, t) e−i k r d r , Gs (r, t) ≡ P (r, t) (23.32)
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-1

-1

Fig. 23.16. Self-part Ss(k, ω) of the dynamic structure factor for methane in ZK4
at I = 3 and T = 300 K.

k in Å

t in ps

F k t( , )s

-1

Fig. 23.17. Self-part Fs(k, t) of the scattering function for methane in ZK4 at
I = 3 and T = 300 K.

using the propagator of methane in cation-free zeolite LTA [54,55]. The scat-
tering vector k has been chosen to be parallel to one of the crystallographic
axes.

For zeolites of non-cubic structure, the propagator exhibits the differ-
ences of molecular propagation in different directions. This is exemplified by
Fig. 23.18 showing the propagator with respect to the x-, y- and z-axes for
methane in silicalite.

The over-all self-diffusion coefficient D evaluated from the corresponding
scattering factor S(k, ω) is 8.6 ·10−9 m2s−1, which is in good agreement with
the experimental value of 9.3 · 10−9 m2s−1 extrapolated from QENS data
measured by Jobic et al. [52]. Analytical approximations for Gs (r, t) and the
related quantities are given in [54,55]. The experimental observation of such
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Fig. 23.18. Self-part Gs of the Van Hove correlation function for the diffusion of
methane in silicalite in x-, y-, and z-direction at I = 3 and T = 300 K.

structured propagators is a challenging task for QENS. In the light of the
theory, such a behaviour should quite generally be expected.

Fig. 23.19 uses an alternative representation of the propagator for vi-
sualizing the diffusion behaviour of C2H6 in ZK4 in a time interval of
t = 1....1000 ps [57,61]. In this case, the propagator was calculated with re-
spect to two coordinates x, y. It can be seen that the propagator shows a more
complicated structure than in the case of CH4, most likely as a consequence
of the more intricate intermolecular interaction.
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Fig. 23.19. Two-dimensional graph of the time development of the propagator
P (x, y, t) (x, y in Å; t in ps) calculated from a trajectory (potential set A, see
Table 23.2, I = 3, T = 300 K, D = 2 · 10−9m2s−1) [61].
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Transport-Diffusivity, Corrected Diffusivity and Self-Diffusivity

While the self-diffusion coefficient D according to the Kubo theory may be
obtained from [2,6, 17, 27, 48]

D =
1

3N

N∑
j=1

∫ ∞

0

dt〈vj(0)vj(t)〉 , (23.33a)

the so-called corrected diffusion coefficient Dc includes the cross-correlations
between velocities of different particles

Dc =
1

3N

N∑
j=1

N∑
k=1

∫ ∞

0

dt〈vj(0)vk(t)〉 . (23.33b)

The diffusion coefficient that appears in Fick’s law is often called transport
diffusion coefficient DT [14]

J = −DT
dn
dx

, (23.33c)

J is the flux and n is the density. If the force F in the well-known relation

v = BF , (23.33d)

is substituted by the chemical potential µ one has

J = −nB dµ
dx

, (23.33e)

where B is the mobility. According to Kubo’s theory B is connected with the
corrected diffusivity by the relation

Dc = BkBT. (23.33f)

Comparison of (23.33c) and (23.33e) together with (23.33f) leads to

DT = Dc
n

kBT

dµ
dn

, (23.33g)

which is a somewhat unusual form of the well-known Darken equation and has
been used already in Sect. 4.4 of Chap. 10 (cf. (10.23)) [14]. These different
diffusivities obtained from equilibrium and non-equilibrium MD simulations
are compared with each other (Fig. 23.20 (right)). The self-diffusion coeffi-
cients have been obtained from the mean square displacement. DT results
from non-equilibrium simulations in which a density gradient (see Fig. 23.20
(left)) in six layers of cavities is created by randomly inserting particles that
leave the last layer and enter into the first layer. The flux has been evaluated
in the intermediate region only [48]. Dxy

s is obtained from the mean square
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Fig. 23.20. Transport diffusion coefficients (left: Concentration gradient versus
time; right: Transport diffusion coefficient DT from non-equilibrium MD) in com-
parison to self-diffusion coefficient D and corrected diffusion coefficient Dc.

displacement perpendicular to the density gradient. It turns out that the flux
has practically no influence on the self-diffusion in the direction perpendic-
ular to the flux. Dc is somewhat larger than D, which might be attributed
to the collective effects expressed by the cross-correlation terms in (23.33b).
Dc is obtained from DT by the Darken equation and compared with results
from another non-equilibrium MD experiment. In this experiment, a flux is
produced by an external field. Measuring this flux, Dc may be obtained from
(23.33f).

23.5 Conclusion

Diffusion coefficients of guest molecules in zeolites have been calculated under
different conditions:

1. Statistical physics and molecular dynamics provide the basis for the eval-
uation of diffusion coefficients of guest molecules in zeolites and for the
comparison to experimental data.

2. Summarizing this chapter one can state:
a) Even single particles diffusing through narrow cavities in zeolites show

a macroscopic behaviour, which obeys the diffusion equation for not
too small times and distances.

b) Temperature dependencies of diffusion coefficients of guest molecules
show very often an Arrhenius behaviour.

c) Small changes in lattice parameters can cause dramatic changes in
the diffusion coefficient, even in the dependence on concentration.

d) The presence of cations Na+, Ca++ strongly influences the diffusion
of even neutral molecules [46], while the assumption of a fixed lattice
seems to significantly affect the diffusion coefficients only in excep-
tional cases. Thus, as a rule, a fixed lattice can be used.
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e) MD calculations for single- and two-component adsorbates are in fair
agreement with measured NMR and QENS data [22, 53, 108].

f) Non-equilibrium simulations show that transport-diffusion includes
additional contributions in comparison with self-diffusion.

g) In order to get reliable data in evaluating the diffusion coefficients
one needs good statistics, i. e. long runs with short time steps (up to
millions of steps of 5-10 fs each) and a large number of MD boxes
(here used up to 343).

h) Hierarchical simulations lead to an extension of the possible time
scale of the examined processes by orders of magnitude.

3. More information, especially about the analytical treatment of the diffu-
sion of guest molecules in zeolites (using for instance the Maxwell–Stefan
formulation (MS method) [26,85,86]), transition state theory (TST), dy-
namically corrected transition state theory (DCTST), lattice gas theories
and dynamical Monte Carlo simulations, respectively), can be found in
the literature [22, 90–104].

4. More and more the potentials used will be determined by different meth-
ods such as fitting procedures (i. e. comparison with experimental data)
and more sophisticated methods in determining intermolecular potentials
(i. e. quantum mechanical calculations and, later on, density functional
methods) [27, 28, 67].

5. For the future, one can look forward to solving more complex and realistic
problems including diffusion and/or reaction – up to catalysis – of non-
reactive [107,108] and reactive mixtures of guest molecules. An overview
of a lot of recent examinations in the field of diffusion and also some
simple models of chemical reactions and catalysis can be found in [22,23,
67, 109–123].

Notation

〈A〉Γ , 〈A〉τ ensemble, time average
D, Ds (self-) diffusion coefficient
Dc, DT corrected, transport diffusivity
Fi force components
F (k, t) scattering function
f(ω) Fourier transform of

〈
v(0) · v(t)

〉
G(r, t) Van Hove auto correlation function
g(r) radial distribution function
H(qi, pi, t) Hamiltonian function
〈J̇i(t)J̇j(0)〉Γ transport coefficient
Ji, Xz flux densities, generalized forces
KAB(t) time correlation function 〈A(t)B(0)〉Γ
kB Boltzmann constant
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L(qi, q̇i, t) Lagrangian function
Lik Onsager coefficients
N particle number
n = N

V particle number density
n(1), n(2) single-, two-particle density in the q-space
P (r, t|r0, t0), P (r, t) propagator
q, p; qi, pi generalized coordinates and momenta
p pressure
r distance between particles
S(k), S(k, ω) (static, dynamic) structure factor
U internal energy
U(r), UN (qi, pi) intermolecular potential
u(r), u(qij) potential energy between two particles
〈v(0) · v(t)〉 spectral density
µ chemical potential
ν number of systems in ensembles of Γ -space
ρ(k)(qi, pi, t) k-particle distribution function in Γ -space (k ≤ N)
〈ρ(k, t)ρ(−k, 0)〉 structure factor
σ(ω) (generalized) susceptibility
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37. E. Nusterer, P. Blöchl, K. Schwarz: Chem. Phys. Lett. 253, 448 (1996)
38. F. Haase, J. Sauer: Microporous and Mesoporous Materials 35-36, 379 (2000)
39. S. Fritzsche, R. Haberlandt, J. Kärger, H. Pfeifer, M. Wolfsberg: Chem. Phys.

Lett. 171, 109 (1990)
40. S. Fritzsche, M. Gaub, R. Haberlandt, G. Hofmann: J. Mol. Model. 2, 286

(1996)
41. C.R.A. Catlow, C.M. Freeman, B. Vessal, S.M. Tomlinson, M. Leslie: J. Chem.

Faraday Trans. 87, 1947 (1991)
42. S. Fritzsche, R. Haberlandt, J. Kärger, H. Pfeifer, K. Heinzinger: Chem. Phys.

Letters 198, 283 (1992)



946 Reinhold Haberlandt

43. S. Fritzsche, R. Haberlandt, J. Kärger, H. Pfeifer, K. Heinzinger: Chem. Phys.
174, 229 (1993)

44. S. Fritzsche, R. Haberlandt, J. Kärger, H. Pfeifer, M. Waldherr-Teschner. In:
Studies in Surface Science and Catalysis, vol 84 (Elsevier, Amsterdam 1994)
p 2139

45. S. Fritzsche, M. Gaub, R. Haberlandt, G. Hofmann, J. Kärger. In: Studies in
Surface Science and Catalysis, vol 105 (Elsevier, Amsterdam 1997) p 1859

46. S. Fritzsche, R. Haberlandt, J. Kärger, H. Pfeifer, K. Heinzinger, M. Wolfs-
berg: Chem. Phys. Lett. 242, 361 (1995)

47. P. Demontis, G.B. Suffritti: Chem. Phys. Lett. 223, 355 (1994)
48. S. Fritzsche, R. Haberlandt, J. Kärger: Z. Phys. Chem. 189, 211 (1995)
49. P. Demontis, E.S. Fois, G.B. Suffritti, S. Quartieri: J. Phys. Chem. 94, 4329

(1990)
50. E.J. Maginn, A.T. Bell, D.N. Theodorou: J. Phys. Chem. 97, 4173 (1993)
51. S. Fritzsche, R. Haberlandt, G. Hofmann, J. Kärger, K. Heinzinger, M. Wolfs-

berg: Chem. Phys. Letters 265, 253 (1997)
52. H. Jobic, H. Bée, G. Kearly: Zeolites 9, 312 (1989)
53. H. Jobic: Physical techniques for solid materials. In: Catalyst Characterization,

ed by B. Imelik, J. Vedrine (Plenum Press, New York 1994) p 347
54. M. Gaub: Molekulardynamische Untersuchungen zur Diffusion von Methan in

Zeolithen. PhD thesis, University of Leipzig (1998)
55. M. Gaub, S. Fritzsche, R. Haberlandt, D.N. Theodorou: J. Phys. Chem. 103,

4721 (1999)
56. J. Kärger, D. Ruthven: Self–diffusion and diffusive transport in zeolite crystals.

In: Progress in Zeolite and Microporous Materials, ed by Y.U.H. Chon, S.-
K. Ihm (Elsevier, Amsterdam 1997) pp 1843–1858; Stud. Surf. Sci. Catal.
105, 1843 (1997)

57. R. Haberlandt, J. Kärger: Chem. Eng. J. 74, 15 (1999)
58. R. Haberlandt: Thin Solid Films 330, 34 (1998)
59. G. Schrimpf, M. Schlenkrich, J. Brickmann, Ph. Bopp: J. Phys. Chem. 96,

7404 (1992)
60. S. Fritzsche, M. Wolfsberg, R. Haberlandt, P. Demontis, G.B. Suffritti, A.

Tillocca: Chem. Phys. Lett. 296, 253 (1998)
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R. Haberlandt, J. Kärger: Appl. Catal. A 232, 59 (2002)
80. S. Fritzsche, J. Kärger: Stud. Surf. Sci. Catal. 142, 1955 (2002)
81. C. Bussai, S. Hannongbua, S. Fritzsche, R. Haberlandt: Stud. Surf. Sci. Catal.

142, 1979 (2002)
82. H. Pfeifer: Phys. Rep. 26, 293 (1976)
83. J. Kärger, W. Heink: J. Magn. Reson. 51, 1 (1983)
84. P. Callaghan: Principles of Nuclear Magnetic Resonance Microscopy (Claren-

don Press, Oxford 1991)
85. R. Krishna: Chem. Phys. Lett. 326, 447 (2000)
86. F. Kapteijn, J. Moulijn, R. Krishna: Chem. Engn. Sci. 55, 2923 (2000)
87. R. Krishna, B. Smit, T. Vlugt: J. Phys. Chem. A 102, 7727 (1998)
88. R. Krishna, D. Paschek: Ind. Eng. Chem. Res. 39, 2618 (2000)
89. T. Vlugt, R. Krishna, B. Smit: J. Phys. Chem. B 103, 1102 (1999)
90. J. Kärger, H. Pfeifer, R. Haberlandt: J. C. S. Faraday I 76, 1569 (1980)
91. R. June, A. Bell, D. Theodorou: J. Phys. Chem. 95, 8866 (1991)
92. R.Q. Snurr, A.T. Bell, D.N. Theodorou: J. Phys. Chem. 98, 11948 (1994)
93. T. Mosell, G. Schrimpf, J. Brickmann: J. Phys. Chem. 100, 4571 (1996)
94. T. Mosell, G. Schrimpf, J. Brickmann: J. Phys. Chem. 100, 4582 (1996)
95. B. Smit, L. Loyens, G. Verbist: Faraday Discuss. 106, 93 (1997)
96. F. Jousse, S. Auerbach: J. Chem. Phys. 107, 9629 (1997)
97. C. Tunca, D. Ford: J. Chem. Phys. 111, 2751 (1999)
98. A. Voter: J. Chem. Phys. 106, 4665 (1997)
99. A. Voter: Phys. Rev. Lett. 78, 3908 (1997)

100. S. Pal, K. Fichthorn: Chem. Eng. J. 74, 77 (1999)
101. S. Sarkar, A. A. Kumar, S. Yashonath: J. Chem. Phys. 112, 965 (2000)
102. J. Ray, H. Graben: Phys. Rev. A 44, 6905 (1991)
103. A. Voter, J. Doll: J. Chem. Phys. 82, 80 (1985)
104. D. Chandler: J. Chem. Phys. 68, 2959 (1978)
105. W. Heink, J. Kärger, S. Ernst, J. Weitkamp: Zeolites 14, 320 (1994)



948 Reinhold Haberlandt

106. W. Heink, J. Kärger, H. Pfeifer, P. Salverda, K.P. Datema, A. Nowak: J.
Chem. Soc. Faraday Trans. 88, 515 (1992)

107. S. Jost, S. Fritzsche, R. Haberlandt: Chem. Phys. Lett. 279, 385 (1997)
108. S. Jost, N.-K. Bär, S. Fritzsche, R. Haberlandt, J. Kärger: J. Phys. Chem. B

102, 6375 (1998)
109. R. June, A. Bell, D. Theodorou: J. Phys. Chem. 96, 1051 (1992)
110. M. Allen, P. Schofield: Mol. Phys. 39, 207 (1980)
111. D. Zichi, G. Ciccotti, J. Hynes, M. Ferrario: J. Phys. Chem. 93, 6261 (1989)
112. F. Delogu, P. Demontis, G. Suffritti, A. Tilocca: J. Chem. Phys. 109, 2865

(1998)
113. P. Demontis, G. Suffritti, A. Tilocca: J. Phys. Chem. B 103, 8141 (1999)
114. P. Demontis, G. B. Suffritti, A. Tilocca: J. Chem. Phys. 111, 5529 (1999)
115. F.J. Keil, M. Coppens: Monte Carlo Simulation of Reaction Rates by Zeo-

lites. In: Computer Modelling of Microporous and Mesoporous Materials, ed
by C. Catlow, R. van Santen, B. Smit (Academic Press, Amsterdam 2004)

116. F. Keil, J. Hinderer, A. Garayhi: Catal. Today 50, 637 (1999)
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Cu3Au rule 47
current density autocorrelation function

864

D03 structure 84
Darken equation 51, 296, 433, 557,

562, 573, 941
Darken-Manning relation 52
Darwin width 110
dc conductivity plateau 862
de Broglie wavelength 99, 919
Debye length 720
Debye-Hückel-Onsager-Falkenhagen

effect 859
Debye-Waller factor 67, 70, 74, 99,

113, 119, 138
defect chemistry 210
defect cluster 226
defect structure 210, 215
demixing 234, 236, 240, 703
density distribution 931
detailed balance 71, 767, 786
dichalcogenides 386
dielectric loss 835, 863
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differential effective-medium theory
849

diffusant 6

diffuse scattering 76
diffuser 6
diffusion

ambipolar 227
anomalous 417–421, 428, 434, 441,

448, 479, 488, 731, 797, 803, 867
cation 217, 224

chemical 226
collective 495, 641
continuous jump 371

correlated diffusion anisotropy
431–432

effective diffusivity 428
experimental methods 10

field-assisted 717
in aluminium 39
in amorphous alloys 262

in B2 intermetallics 44, 78
in bcc metals 35

in D03 intermetallics 84
in fcc metals 33

in gallium arsenide 184
in germanium 183

in L12 intermetallics 49
in lead 41

in liquids 251
in membranes 471
in nickel 31

in niobium 28, 29
in polymers 447, 519, 531, 675, 733,

843
in regular pore networks 427

in semiconductors 165
in silicon 166
in silver 38

in zeolites 427, 925
interstitial-substitutional 168

intracrystalline self-diffusion 429,
430, 445

isotope effects 13, 30, 253, 265, 272
lateral 477, 493
long-range 133

low-dimensional 371
molecular mechanism 132

multicomponent 427

mutual 556, 569, 600

normal 417–420, 426, 435, 450, 479,
555, 777, 798, 799

on percolation clusters 904

oxidation-enhanced 174
oxidation-retarded 174

oxygen 222, 223
pressure dependence 18
proton diffusion 131

reactive 54
rotational 477, 491, 635

single-file diffusion 434–437, 775
solute diffusion 35
solvent diffusion 35

surface diffusion 285, 302, 339
through membranes 500

transport diffusion 432–434, 943
diffusion coefficient 904, 921, 929, 931,

941

chemical 6, 8, 151, 227, 244
collective 289, 646, 780

distinct-diffusion 570, 571
foreign atom 8
frequency dependence 762

impurity 8
in grain boundaries 338

interdiffusion 654
self-diffusion 7
Stokes-Einstein 630

thermodynamic 561
tracer 7, 219, 286, 478

transport 941
vacancy 231

diffusion coefficient tensor 4, 439, 676

diffusion entropy 18
diffusion equation 5, 289, 494, 632,

752, 798, 928, see also Fick’s
second law

error function solution 6

source solution 230
thin-film solution 5

diffusion length 5, 479

diffusion mechanisms 23
diffusion-limited reaction 806–808

diffusional line broadening 70, 72, 94
diffusivity 4

effective 41, 170, 348, 420, 429, 453

thermal 597
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diffusivity tensor 4, 439, 676
direct current NMR (DCNMR) 718,

725
disorder models 753, 820
disordered solids

homogeneously 402
inhomogeneously 367, 390

disordered systems 372, 746, 753, 813,
857, 895

dispersive transport 822
dissociative mechanism 26
distribution of site energies 257
divacancy mechanism 25
dopant diffusion 172, 235
Doppler drive 111
double differential scattering cross-

section 95
drift flux 230, 232, 236
drift velocity 237, 717–720
dynamic conductivity 817
dynamic light scattering (DLS) 579,

589–597, 624
coherence 593

dynamic percolation 846
dynamic rotational disorder 153
dynamic structure factor 94, 521–526,

531, 538, 545, 568, 626, see also
scattering function

distinct 628
self- 628

dynamic structure model 840

effective activation energy 273
effective charge 236, 239
effective diffusivity 41, 170, 348, 420,

429, 453
effective-medium approximation 746,

758, 762, 912
self-consistency condition 761, 787

Einstein diffusion coefficient 8
Einstein relation 227, 420, 434, 555,

717, 903, 920
Einstein-Debye relation 635
Einstein-Smoluchowski relation 19,

see also Einstein relation
elastic incoherent structure factor

(EISF) 98, 119, 138, 139, 141
electric potential 226, 236
electric potential gradient 228

electro-osmosis 726, 737
electrochemical potential 226
electrokinetic potential 720
electrolyte solution 566, 574
electron hole 211, 212
electron microprobe analysis (EMPA)

14
electrophoresis 718
electrophoretic NMR (ENMR) 717
elementary diffusion step 65, 66, 68
encounter model 124, 128, 370
energy resolution 98
ensemble

canonical 917
microcanonical 917

entanglements 513, 531, 543
enthalpy of migration 22
entropic forces 529
entropy of migration 22
equivalent circuit model 906
error function solution 6
escape rate 121
eucryptite 405
excess charge 210, 228, 231
excess volume 269
exchange mechanism

interstitial-substitutional 26
ring 127

face-centered cubic metals 32
fast solute diffusion 40
FeAl 78
Fe3Al 80
Fermi level effect 172
Fe3Si 84
Fick’s first law 4, 494, 559, 798

non-local 643
Fick’s second law 5, 6, 165, 494, 752
field-assisted diffusion 717
Fisher model 337, 338
five-frequency model 36, 233
fixed-window method 113
fluctuation-dissipation relation 632
fluorescence correlation spectroscopy

(FCS) 669
fluorescence recovery after photo-

bleaching (FRAP) 481, 497,
661

forced Rayleigh scattering 613
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Fourier time window 100, 106
fractal 793

chemical kinetics 806
fractal dimension 446, 793, 897, 898,

904
fractional Brownian motion 794
fragile glass 254
fragile supercooled melt 880
Frank-Turnbull mechanism 26, 168
free induction decay (FID) 376, 400
free-volume model 253, 486
Frenkel

defects 211
equilibrium 210, 212

Γ -space 918
generalized force 919
Gibbs free energy of activation 19
Gibbs free energy of binding 24
Gibbs free energy of migration 22
glass

electrolyte 403
ion-conducting 402, 819
metallic 259
oxide 403, 405, 884

glass transition 255, 272, 519, 638
Gorski effect 16
grain boundary 337

diffusion coefficient 338
in nanocrystalline materials 352,

390, 391
large-angle 345, 346
segregation 339, 353, 357, 361
segregation energy 353
segregation factor 339, 353
small-angle 345, 346
width 338, 343, 911

grain boundary diffusion 337
activation energy 344
anisotropy 345
Arrhenius law 344
atomistic mechanisms 347, 362
comparison with bulk, surface, liquid

344
empirical rules 344
in intermetallic compounds 361
in moving boundaries 362
kinetic regimes 347
orientation dependence 346

Green-Kubo relation 495, 568, 638,
920

Grotthuß mechanism 131
growth constant 54
gyromagnetic ratio see magnetogyric

ratio

Harrison’s classification 348
Hart’s formula 349
Hartley-Crank relation 557
Hausdorff dimension 793
Haven ratio 127, 137, 148, 817, 865
Henry isotherm (of grain boundary

segregation) 358
heterodyne technique 587
homodyne technique 587
hopping rate see jump rate
H/Si(111) 308
Huang scattering 119, 153, 155
hybrid solutes 41
hydrodynamic function 678
hydrodynamic interaction 637, 659
hydrogen bond 131
hydrogen diffusion 29, 115

immobile (trapped) state 121
impedance spectroscopy 861
impurity diffusion

in grain boundaries 339
in metals 35, 77
in oxides 216
in semiconductors 168, 172, 177,

182, 183, 196
impurity diffusion coefficient 8
impurity-vacancy binding 219
impurity-vacancy pair 233, 239
incoherent scattering function 97–99,

102, 133, 141, 154, 818
incoherent structure factor see

incoherent scattering function
infinite percolation cluster 896
intercalation 367
intercalation compounds 384

graphite 384
titanium disulfide 386

interdiffusion 6, 49, 187, 263, 556, 651,
654

interdiffusion coefficient 6, 8, 191, 654
interfacial region 50, 352, 367, 390
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diffusion in 392, 908
intermediate dynamic structure factor

521
intermediate scattering function 73,

95, 100, 523, 818, 828
internal interfaces 360, 367

density of 367
interstitial cation 213, 217
interstitial diffusion 27, 242, 745
interstitial impurities 165
interstitial mechanism 23
interstitial-substitutional exchange

mechanism 26
interstitialcy mechanism 25
intrinsic diffusion coefficient 10
inversion-recovery experiment 378
ion-conducting glasses 402, 819, 861
ion-conducting materials 861
ion-conducting polymers 843
ionic conductivity 126, 224, 817, 861,

908
ionic mobility 717, 729, 737
ionic self-diffusion coefficient 717, 729
irreversible processes 564, 919
isotope effects 13, 30, 253, 265, 272

Jonscher power law 863, see also
universal dielectric response

jump length 7, 20, 105, 866, 903
jump rate 19–23, 65, 70–73, 124, 233,

373, 763, 866
jump relaxation 823, 866
jump vector 20, 65, 67, 68, 102, 140

kick-out mechanism 26, 168
kink atoms 286
Kirkendall effect 10, 51

opposite 263
Kirkwood-Buff theory 575
K2O·2BaO·4SiO2 885
Kohlrausch behavior 255, 521, 866
Kohlrausch-Williams-Watts (KWW)

behavior see Kohlrausch
behavior

Kröger-Vink
diagram 214
notation 210

Kubo formula 817, 941

Lamb-Mößbauer factor 67
Landau-Placzek ratio 582, 606
Langevin equation 530, 632
Langmuir-Hinshelwood reaction 808
lanthanum gallate 216, 225, 235
Laplace transformation 644, 760
Larmor condition 421
Larmor precession 74, 516
Larmor precession frequency 369, 814
layer-crystalline materials 367
LiC6, LiC12 384
LiCl·4D2O 403
LiCl·7H2O 881
line broadening in Mößbauer spec-

troscopy 68
line broadening in neutron scattering

68, 94
line narrowing in neutron scattering

104, 151
line narrowing in nuclear magnetic

resonance 374
linear response theory 150, 567, 858,

919
0.3Li2O·0.7B2O3 884
lipid 473
lipid bilayer 475
lithium 370
lithium aluminosilicates 405
lithium intercalation compounds 384
lithium ion conductors 390
lithium niobate 394
lithium oxide 399
lithium titanium disulfide 386
local reptation model 538
localized motion 106, 134, 405, 528,

887
Longini mechanism 26, 193
low energy electron diffraction (LEED)

304
low energy electron microscopy (LEEM)

305

macroscopic diffusion methods 11–15,
65, 368

magnetic field gradient 421, 720
magnetic relaxation methods 16
magnetite 217, 231
magnetogyric ratio 369, 375, 517, 720
majority defect 213
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Mandelbrot dimension 793

Markovian process 70, 749, 802, 804

mass action law 25, 40, 211, 807
master curves of ionic conductivity

863

master equation 102, 748, 772
McLean’s isotherm 358

mean residence time 7, 17, 21, 68,
70–72, 80, 127, 322, 369, 816

mean square displacement 20, 252,
286, 418–449, 478, 516, 531, 555,
629, 751–777, 799, 816, 826, 868,
903, 929

long time tail 761

mean-field theory 808
mechanical relaxation methods 16

mechanical sectioning technique 11

membrane 441, 471, 733
biological 145, 473

lateral diffusion 477

polypropylene 441

transverse diffusion 500
memory effect 117, 127, 632, 643

mesoporous materials 437–439

MCM-41 438

metallic glasses 264
metalorganic chemical vapor deposition

(MOCVD) 187
Meyer-Neldel compensation rule 835

micelles 736

microemulsion 737

microporous materials 427, 925
microscopic diffusion methods 15–17,

65, 368
minority defect 212, 213

mismatch relaxation 866

mixed alkali effect 840

mixed conductor 216
mobility of ions 717, 729, 737

mode coupling theory 256, 275, 691

molecular beam epitaxy (MBE) 187

molecular dynamics simulations 118,
480, 534, 916, 922–925

molecular traffic control 437
molten salt mixtures 566

Monte Carlo simulations 325, 491,
759, 815, 821, 830, 836, 840, 909,
917, 922

Mößbauer spectroscopy 65–68
motional narrowing of NMR lines

374, 393, 395
moving grain boundary 362
multifractal 797
multiphase diffusion 53
multiple scattering 115, 135, 528
muon 30
muon spin resonance (µSR) 31
mutual diffusion 556, 569, 600

nanocrystalline BaF2 394
nanocrystalline CaF2 391
nanocrystalline composites 399, 908
nanocrystalline LiNbO3 394
nanocrystalline LiTiS2 397
nanocrystalline materials 352, 367,

390
Na3PO4 154
nearly constant loss (NCL) behaviour

814, 835, 863, 888
Nernst field 227
Nernst-Einstein equation 126, 131,

817, 865, 880, 904
neutron backscattering (BSC)

spectrometer 106, 109, 111
neutron capture 382
neutron scattering 65, 68, 93, 514, 817
neutron spin-echo (NSE) spectrometer

519, 520
neutron spin-echo (NSE) spectroscopy

74, 516, 518
neutron time-of-flight (TOF) spectrom-

eter 106, 114
NiGa 82
Ni3Sb 86
NMR 368, 417, 717

correlation function 369, 818
correlation time 369, 373, 830
flow measurements 720
linewidth 373
PFG diffraction pattern 424–425
PFG effective observation time 426
PFG observation time 418, 421,

426, 427, 449, 455
pulsed field gradient (PFG) technique

417, 421–427
relaxation 369, 426, 814
relaxation techniques 375–380
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spectral density 369, 409, 818
spectrometer 379
spin echo 378, 379, 421, 721
spin-alignment echo technique 390
spin-echo attenuation 422, 424, 426,

440, 452
spin-locking experiment 378
static field gradient (SFG) technique

427
non-Arrhenius behaviour 767, 832
non-stoichiometric oxide 210, 219
normal diffusion 417–420, 426, 435,

450, 479, 555, 777, 798, 799
nuclear

magnetization 375, 421
methods in diffusion 16, 65, 368
polarization 380, 404
reactions for polarized β-emitters

381
spin-lattice relaxation 369

nuclear magnetic relaxation see NMR
relaxation

nuclear magnetic resonance see NMR
nuclear reaction analysis (NRA) 15
nuclear resonance scattering (NRS)

65

Onsager reciprocity relation 566, 919
Onsager regression hypothesis 579
Onsager transport coefficient 226, 566
O/Si(111) 307
O/W(110) 295
oxygen activity 209
oxygen deficit 211
oxygen excess 211
oxygen ion conductor 216
oxygen partial pressure 209
oxygen potential gradient 228
oxygen sublattice 209

paddle-wheel mechanism 153
pair correlation function 251, 575
particle distribution function 917
partition function 915, 919
Pb/Si(111) 313
percolation

bond 901
continuum 902
interface 908

site 895

percolation cluster 897
conductivity of 905
diffusion on 904

percolation model 755, 820, 895
percolation threshold 896
permeation 500

perovskite structure 225
petalite 405
phenomenological coefficient see

Onsager transport coefficient
phonon dispersion 125
phonon spectroscopy 77

photon correlation spectroscopy 579
plasma parameter 822

Poisson process 803
polarized neutron capture 382
polybutadiene 519, 528

polydimethylsiloxane (PDMS) 440,
443, 453, 531

polyethylene oxide (PEO) 451, 843

polyethylethylene (PEE) 453
polyisobutylene 528
polyisoprene 528

polymer
blends 697
diblock copolymer 453

electrolytes 843
reptation 449, 450
triblock copolymer 450, 451

polymeric systems 619
polypropylene membrane 441

polypropylene oxide (PPO) 451
polystyrene (PS) 440
polyvinylether 528

potential 922, 927
chemical 226
electric 226, 236

electrochemical 226
Lennard-Jones 923, 927, 932
square well 922

pre-exponential factor 18
pressure dependence of diffusion 268
principal diffusivities 4

propagator 419, 420, 422, 424, 429,
435, 798, 802, 928

mean 422–424, 935

proton conduction 139
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proton pump 146
proton tunneling 123
protonic conductor 131
pseudo Fermi level 782
pulsed field gradient (PFG) NMR

417, 421–427, 720

quantum diffusion 30
quasi-vacancies 261
quasielastic coherent structure factor

154
quasielastic helium scattering 293
quasielastic incoherent neutron

scattering (QINS) 136
quasielastic incoherent structure factor

141, 154
quasielastic light scattering 620
quasielastic linewidth 103, 105, 124,

151
quasielastic Mößbauer spectroscopy

67, 68
quasielastic methods 65, 66, 68, 73
quasielastic neutron scattering (QENS)

67, 68, 93
observation function 100, 105
observation time 100, 105, 133
observation volume 105
resolution function 105

radiotracer sectioning method 217,
340, see also tracer method

random barrier model 753, 867
random phase approximation 699
random trap model 754
random walk 747, 802, 806, 858, 865,

903
randomly blocked sites 755, 765
Rayleigh line 581
RbAg4I5 878, 890
reaction constant 806
reaction rate 120, 143
reactive diffusion 54
reflection high energy electron

diffraction (RHEED) 324
renewal theory 847
reptation

crossover 543
diffusion 537
model 514, 537–540, 543

residence time see mean residence
time

residual activity method 217
rotational diffusion 138, 491, 635, 658
Rouse model 514, 529–536, 844

generalized 538
rubber-like model 538
Rutherford backscattering spectrome-

try (RBS) 14

scanning tunneling microscopy (STM)
306

scattering amplitude 622
scattering cross section 95
scattering function 94, 149, 523, 921
scattering length 95, 101
scattering strength 621
scattering vector 93
Schottky

defects 211
equilibrium 210, 224

secondary ion mass spectrometry
(SIMS) 13, 222

sedimentation 647
sediments 446–447
segregation 234
self-affine fractal 797
self-correlation function 66–76, 97,

102, 419
self-diffusion 31, 121, 127, 136, 144,

152, 370, 555, 557, 637, 943
self-diffusion coefficient 7, 120, 128,

135, 147, 152, 216, 227, 659
self-interstitial charge state 166
self-similarity 795, 897
short-range order 260
Siegert relation 584, 626
Sierpinski fractal 794
silicon self-diffusion 166
simulations

molecular dynamics (MD) 925, 941
Monte Carlo (MC) 815, 821, 915,

922
Sinai model 746, 769
single-file diffusion 434–437, 775
site energy

disorder 747
exponential distribution 766, 781

site exclusion model 771
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site occupancy 104, 150

site percolation 895
six-jump cycle mechanism 46, 81
Smoluchowski equation 675

Smoluchowski theory 807
Snoek effect 16

soft phonon modes 77, 86
solid rotator phase 156
solid-state protonic conductor 131

solute diffusion 35
solute-vacancy pair 215, 220

solvent diffusion 35
Soret effect 606
sound attenuation 604

sound velocity 461, 604
specific surface area 446

spectral density 921
spin diffusion 382, 400, 403
spin echo

neutron 74, 516
NMR 378, 379, 421, 721

spin incoherent scattering 115
spin-lattice relaxation 369, 818

disorder effects 372

frequency dependence 372, 386,
387, 398, 407

homogeneous 404
inhomogeneous 404
laboratory frame 377, 409

low-dimensionality effects 372
rate 370

rotating frame 379, 409
spin-spin relaxation 378, 409
spinel 217

spodumene 405, 406
sputter sectioning technique 12

SrCl2 128
static field gradient (SFG) NMR 427
static structure factor 95, 150

stochastic process 800
stoichiometric point 212, 216, 228

Stokes-Einstein diffusion coefficient
630

Stokes-Einstein equation 254, 601,
660, 719

Stokesian dynamics simulation method
689

strain field 119, 130, 153

stretched polymers 849
structural relaxation 260
structure factor 153, 298, 919

dynamic 521–526, 921, 937
partial 652
static 918, 921

subdiffusive behaviour 417, 421, 801,
867

substitutional impurities 165
Summerfield scaling 863, 866
superlattice disordering 187
surface diffusion 285, 339

equilibrium measurements 297
non-equilibrium measurements 313
step 302
terrace 302

surface exchange coefficient 222
surface light scattering 608
surface tension 608
surface-to-volume ratio 444–447
synchrotron radiation 65, 73

thermal conductivity 597
thermal diffusivity 597
thermal grating 613
thermodynamic factor 10, 227, 243,

562
time correlation function 567, 920, see

also correlation function
time-dependent correlation factor 867
time-domain interferometry 76
time-temperature superposition

principle 863, 866
titanium 65, 77
titanium disulfide 386
topological distance 900
tortuosity 443, 454, 731
total scattering cross section 102
tracer diffusion 7, 230, 745, 771, 773,

816
tracer diffusion coefficient 7, 286
tracer method 11
tracer self-diffusion coefficient 7
transference number 227, 719, 729
transition rate 746, see also jump rate
transition state theory 943
transport coefficient 919–921, see also

Onsager transport coefficient
transport diffusion 432–434, 556, 943
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traps 121
saturation of 781
trapping rate 123

triple-defect mechanism 46, 81
tunneling of protons 123
two-dimensional diffusion 130, 143,

145, 372, 386, 387
two-state model 121, 122, 752

ultrasonic interferometer 462
ultrasonic wave velocity 462
universal dielectric response 814, 863
universal dynamic response see

universal dielectric response

vacancy
cation 212, 217
charge state 166
oxygen 211

vacancy availability factor 22
vacancy mechanism 23, 65, 124, 169,

232, 347
vacancy-pair mechanism 47
vacancy-wind corrections 52
Van Hove correlation function 66, 96,

98, 419, 689, 921, 935, 937
van Liempt rule 33
vehicle mechanism 132, 148
velocity autocorrelation function 858,

865, 920

velocity cross-correlation coefficients
570

Verlet algorithm 924, 928
vesicles 736
viscoelasticity 513
viscosity 601, 607, 608
Vogel-Fulcher-Tammann (VFT)

equation 255, 520, 845, 882
volume diffusion 339

Wagner formula 227
waiting time distribution 802, 825
walk dimension 801, 804
water in gels 466
water in living cells 466
Wiener process 794, 804

x-ray photon correlation spectroscopy
(XPCS) 76

Zener effect 16
zeolite 426–437, 925, 926

A-type 422, 427, 433
AlPO4-5 436
LTA-type 926
structure 926
X-type 445
ZK4 926
ZSM-5 type 431

zeta potential 720
zirconia 216, 224, 235
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