
VIII

Shear Force

VIII.1 General Considerations

Pure bending is a very rare loading condition. In fact, slender members are
very often under the action of shear forces caused by transversal loading or
by end moments. The presence of the shear force V implies that the bending
moment cannot be constant, since V = dM

dz (non-uniform bending: M �= 0
and V �= 0). The shear force is balanced by shearing stresses τzx and τzy, acting
on the cross-section of the bar. Denoting by Vx and Vy the components of the
shear force in the reference axes x and y, the shearing stress distribution in
the cross-section must obey the conditions∫

Ω

τzx dΩ = Vx and
∫

Ω

τzy dΩ = Vy . (184)

A supplementary condition is furnished by the reciprocity of shearing
stresses in perpendicular facets, which is also an equilibrium condition (see
Subsect. II.3.a). According to this condition, if there are no shear forces with
a component in the longitudinal direction, applied in the lateral surface of the
bar, the shearing stress will be zero in that direction and, as a consequence,
in the points of the cross-section which are close to the boundary, the com-
ponent of the shearing stress which is perpendicular to it will also be zero
(Fig. 101). Thus, in the points of the cross-section at an infinitesimal distance
to its boundary, the shearing stress will be tangent to the border line.

It is obvious that there are infinite stress distributions which obey this
condition and also satisfy (184). We have, therefore, a problem with an infinite
degree of indeterminacy. The law of conservation of plane sections cannot be
used to solve the problem, since, as explained in Sects. V.10 and VII.1, the
shear force is not a symmetrical internal force. Besides, the superposition
principle cannot be used to analyse the effects of the bending moment and
of the shear force separately. In fact, this principle refers to distinct sets of
external loads and it is not possible to find a system of transversal forces
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Fig. 101. Shearing stress at the boundary of the cross-section

which causes shear force without introducing a bending moment, since M =∫
V dz + C, although the opposite is possible, as seen in the analysis of the

bending moment.
For these reasons, the analysis of the effect of the shear force expounded

here is limited to prismatic bars made of materials with linear elastic be-
haviour. Furthermore, the following starting hypothesis must be considered
(Saint-Venant’s hypothesis): the normal stresses caused by the bending mo-
ment in the case of non-uniform bending may be computed by the expressions
developed for circular bending. The validity of this hypothesis will be discussed
later. First, it is used to develop the basic tool for the analysis of the effect
of the shear force acting on the cross-section: the expression for the computa-
tion of the longitudinal shear force, i.e., the shear force acting on longitudinal
cylindrical surfaces which are parallel to the bar’s axis.

VIII.2 The Longitudinal Shear Force

In a prismatic bar under non-uniform bending let us consider the piece defined
by two cross-sections at an infinitesimal distance dz from each other. In this
piece let us consider a longitudinal cylindrical surface, defined by the fibres
contained in a straight or curved line of the cross-section (Sect. VII.2), as
represented in Fig. 102 (squared surface). That line divides the cross-section
into two distinct parts, which means that the longitudinal surface divides the
piece of bar into two distinct bodies. In order to simplify the development, we
first analyse only the case of plane bending.

The equilibrium conditions of the piece of bar as a whole yield the well-
known relations between the transversal load P , the shear force in the cross-
section V and the bending moment M . Using the sign conventions represented
by considering as positive the directions depicted in Fig. 102, we get⎧⎨

⎩
∑

Fy = 0 ⇒ P = − dV
dz∑

Mx = 0 ⇒ V = dM
dz .

(185)
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Fig. 102. Longitudinal shear force in a prismatic bar under non-uniform bending

Let us now consider the equilibrium condition of the longitudinal forces
acting on the part of the bar defined by the hatched area Ωa of the left and
right cross-sections, which is separated from the remaining bar by the squared
longitudinal surface. In the areas Ωa of the left and right cross-sections, normal
stresses caused by the bending moment are acting. According to the Saint-
Venant’s hypothesis, the forces resulting from these stresses in the left and
right cross-sections are given by the expressions (Fig. 102)

σ =
My

I
⇒

⎧⎨
⎩

Na =
∫
Ωa

σdΩa = M
I

∫
Ωa

ydΩa = MS
I

Na + dNa = M+dM
I

∫
Ωa

ydΩa = MS
I + S dM

I .
(186)

In these expressions S =
∫
Ωa

ydΩa represents the first area moment of the
area Ωa with respect to the neutral axis. The resultant of these two opposite
forces – dNa – must be balanced by the longitudinal shear force dE , acting
on the contact surface between the two bodies (the squared surface). Thus,
this force takes the value (dM = V dz , (185))

dE = Na + dNa − Na =
S dM

I
=

V S

I
dz . (187)

If the equilibrium of the upper part were to be considered instead, an equal
force with opposite direction would be obtained, since the unbalanced force
dNa would have the opposite direction. The first area moment would be −S,
since the area moment of the whole cross-section in relation to the neutral
axis is zero. From (187) we can see that, of all possible longitudinal surfaces,
the neutral surface has the maximum longitudinal shear force, because the
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maximum absolute value of the first area moment S corresponds the whole
tensioned area (or to the whole compressed area) of the cross-section.1

The longitudinal shear force per unit length is called the longitudinal shear
flow and is given by the expression

f =
dE

dz
=

V S

I
. (188)

In the case of inclined bending, the longitudinal shear force may be com-
puted by superposing the forces corresponding to the decomposition of the
bending moment and the shear force in the principal axes of inertia, which
leads to the expression (cf.(150), dMx = Vy dz and dMy = −Vx dz )

dE =
(

VySx

Ix
+

VxSy

Iy

)
dz ,

where Sx =
∫
Ωa

ydΩa and Sy =
∫
Ωa

xdΩa are the first area moments of
Ωa with respect to the principal axes x and y, respectively. An alternative
expression for inclined bending is presented in Subsect. VIII.3.f.

In order to illustrate the importance of this internal force caused by the
shear force V , let us consider the cantilever beam depicted in Fig. 103, which
is made of two bars with square cross-section b × b.
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Fig. 103. Non-uniform bending of a built-up beam: (a) without friction in the
contact surface; (b) bars perfectly connected together

If the contact surface between the two bars is lubricated, so that the friction
force between the bars is eliminated, each bar will bend independently and a

1The same holds in the case of inclined bending, since the maximum value of dE
corresponds to the difference between the resultants of the normal stresses acting
on the whole tensioned area (or on the whole compressed area) of the cross-section.
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relative sliding in the contact surface of the bars takes place, leading to the
deformation and stress distribution represented in Fig. 103-a. The maximum
stress caused by the bending moment, which occurs in the left end cross-
section, may be computed considering the force P

2 acting on one beam with
square cross-section b × b, yielding

M = Mmax =
Pl

2
⇒ σa

max =
Mmax

I
v

=
Pl
2
b3

6

= 3
Pl

b3
.

In the same cross-section the curvature takes the value

1
ρa

=
Mmax

EI
=

Pl
2

E b4

12

= 6
Pl

Eb4
.

If the two bars are perfectly connected together, so that the above-
mentioned sliding is prevented, the two bars behave as a single unit with
a cross-section b × 2b. Thus, the deformation and the stress distribution take
the forms represented in Fig. 103-b. The maximum stress and curvature are
then given by

M = Mmax = Pl ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σb
max =

Mmax

I
v

=
Pl

b(2b)2

6

=
3
2

Pl

b3
=

1
2
σa
max

1
ρb

=
Mmax

EI
=

Pl

E b(2b)3

12

=
6
4

Pl

Eb4
=

1
4

1
ρa

.

We conclude that, by preventing the sliding in the contact surface, the
bending stiffness is multiplied by four and the loading capacity of the beam
duplicates, since the maximum stress caused by a given load P is divided by
two, i.e., twice the load may be applied for the same maximum stress. In this
case, the connection between the two bars must resist the shear flow (188)

f =
dE

dz
=

V S

I
=

Pb2 b
2

b(2b)3

12

=
3
4

P

b
.

In order to see how the cross-section deforms in the presence of a shear
force, let us consider a piece with infinitesimal length dz, of a bar with a
rectangular cross-section. The bar is under non-uniform plane bending with
the action axis parallel to height h, as represented in Fig. 104. The width b of
the cross-section is very small, compared with the height h, so the shearing
stresses in the cross-section may be considered as constant and parallel to the
sides of the cross-section in the whole width.

In the horizontal surface abcd the same shearing stress τ as in the cross-
section is acting, as a consequence of the reciprocity of the shearing stresses.
In this surface, the stress distribution may be admitted as uniform, since
the dimension dz is infinitesimal. The resultant of this shearing stress is the



256 VIII Shear Force

h

a

b

b
dE

dz

τ x

d

y

c

n.a.

y

τ

V

h
2

h
2 3

2
V
bh

Fig. 104. Shearing stresses caused by the shear force V in a rectangular cross-section
with small width

longitudinal shear force given by (187). Thus, the shearing stress takes the
value

τbdz = dE =
V S

I
dz ⇒ τ(y) =

V S(y)
Ib

⇒ τ(y) =
V

I

1
2

(
h2

4
− y2

)
. (189)

This expression defines a parabolic stress distribution, as represented in
Fig. 104. The maximum value of the shearing stress occurs on the neutral axis
(y = 0) and takes the value τmax = V h2

8I = 3
2

V
bh .

Since the shearing strain is proportional to the sharing stress
(
γ = τ

G

)
,

the cross-section must deform in such a way, that the shearing stress vanishes
in the fibres farthest from the neutral axis (y = h

2 ⇒ τ = 0) and attains a
maximum value on the neutral axis (y = 0 ⇒ τ = τmax). If the cross-section
were to remain plane, the shearing strain would be constant in the cross-
section (Fig. 105-a) and the distribution of shearing stresses would not be as
represented by (189). Thus, we conclude that, either the starting hypothesis
for the analysis of the effect of the shear force is wrong (the Saint-Venant
hypothesis), or the cross-section must deform as represented in Fig. 105-b.

However, by considering all pieces of infinitesimal length dz separately,
we verify that, provided that the shear force is constant, the same warping
in all cross-sections takes place. This means that the deformations of the
different pieces are compatible, i.e., that the deformed infinitesimal pieces fit
perfectly together. Thus, no additional normal stresses are needed to make
deformations compatible, which means that the strain distribution resulting
from Saint-Venant’s hypothesis obeys all conditions of compatibility.

This example shows that the cross-section may warp without the need to
change the length of the fibres (aa = a′a′, Fig. 105), provided that the shear
force does not vary along the axis of the bar. Since the deformation caused by
the shear force does not require changes in the fibres’ length, this force may be
resisted without altering the distribution of the normal stresses corresponding
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Fig. 105. Warping of a rectangular cross-section caused by the shear force V

to circular bending, i.e., there is no objection to the validity of the Saint-
Venant hypothesis. This conclusion may be generalized to a cross-section of
any shape, since the shearing strains corresponding to any distribution of
shearing stresses may occur without the need to change the length of the
fibres, provided that the warping is the same in all cross-sections.

These considerations are not a complete proof of the validity of the Saint-
Venant hypothesis in the case of constant shear force. However, they do show
that this possibility exists and the solutions of the Theory of Elasticity for par-
ticular problems confirm that, if the shear force is constant, the distribution
of normal stresses caused by the bending moment is the same as in circular
bending, i.e., it is the same as when the cross-sections remain plane and per-
pendicular to the bar’s axis. This means that the law of conservation of plane
sections is a sufficient condition for a linear distribution of the longitudinal
strains in the cross-section, although it may not be necessary, as we conclude
from the above considerations.

In the case of a non-constant shear force, this is no longer valid. However,
as discussed in Sect. VII.7, the error affecting the computation of the normal
stresses and, as a consequence, the computation of the longitudinal shear force
by means of (187), is very small and may even vanish (see Sect. VIII.6).

From a practical point of view, (187) may thus be considered exact. How-
ever, the computation of the shearing stress from the longitudinal shear force
always requires simplifying hypotheses, which introduce errors, whose impor-
tance depends on the shape of the cross-section. Thus, good approximations
for the shearing stress distribution are obtained for symmetrical cross-sections,
if the action axis of the shear force coincides with the symmetry axis and in the
cases of thin-walled cross-sections. In other cases it is generally not possible to
compute the shearing stresses by means of the elementary theory presented
in this book. These cases, as well as the errors introduced by the simplifying
hypotheses used are discussed below.
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Fig. 106. Shearing stress τzy in a rectangular cross-section: (a) real distribution;
(b) admitted distribution

VIII.3 Shearing Stresses Caused by the Shear Force

VIII.3.a Rectangular Cross-Sections

In rectangular cross-sections under plane bending the simplifying hypothesis
which consists of considering the shearing strain as constant in the width of
the cross-section is usually considered: that is, the stress varies only in the
direction parallel to the action axis of the shear force. This corresponds to
the generalization to rectangular sections with any width/height ratio of the
assumptions used in previous section for the small width case. In the case of
inclined non-uniform bending, the shear force is decomposed in the symmetry
axes. Thus, in a point defined by its coordinates x and y, the two components
of the shearing stress are ((189) and Fig. 104)⎧⎪⎨

⎪⎩
τzy = Vy

Ix

1
2

(
h2

4 − y2
)

= Vy

bh

[
3
2 − 6

(
y
h

)2]
τzx = Vx

Iy

1
2

(
b2

4 − x2
)

= Vx

bh

[
3
2 − 6

(
x
b

)2]
.

(190)

The Theory of Elasticity provides a solution for this problem, which is
obtained without the simplifying hypothesis above. This solution indicates
that the shearing stress is not constant in the direction perpendicular to the
action axis of the shear force unless the Poisson’s coefficient vanishes, but
it has a maximum in the points close to the lateral sides, as represented in
Fig. 106-a.

The maximum value of the shearing stress, which occurs for x = ± b
2 and

y = 0, may be computed by the expression (cf. e.g. [4])

τmax = α
3
2

T

Ω

with α = 1 +
ν

1 + ν

(
h

b

)2
[

2
3
− 4

π2

∞∑
n=1,2,3,...

1
n2 cosh

(
nπ h

b

)
]

.
(191)
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The coefficient α represents the correction to be applied to the maximum
stress obtained from (190), in the case of plane bending, τmax = 3

2
V
Ω . This

coefficient depends on the height/width ratio (h/b) and on the Poisson coeffi-
cient of the material, ν. The following table gives values of α, computed from
(191), for some cases.

α ν = 0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

h/b = 0.25 1.0000 1.2352 1.4491 1.6443 1.8233 1.9879 2.1399 2.4113 2.6466

0.50 1.0000 1.0944 1.1802 1.2585 1.3303 1.3964 1.4574 1.5663 1.6606

0.75 1.0000 1.0498 1.0951 1.1365 1.1744 1.2093 1.2415 1.2990 1.3488

1.00 1.0000 1.0301 1.0574 1.0823 1.1052 1.1263 1.1457 1.1804 1.2104

1.25 1.0000 1.0198 1.0379 1.0543 1.0694 1.0833 1.0961 1.1190 1.1388

1.50 1.0000 1.0140 1.0266 1.0382 1.0488 1.0586 1.0676 1.0837 1.0977

2.00 1.0000 1.0079 1.0151 1.0217 1.0277 1.0333 1.0384 1.0475 1.0554

4.00 1.0000 1.0020 1.0038 1.0054 1.0069 1.0083 1.0096 1.0119 1.0139

This table shows that the error of the solution furnished by (190) increases
with the value of the Poisson coefficient and decreases as the height/width ra-
tio increases. The dependence of the error on the relation h

b has greater practi-
cal relevance, since structural materials with a Poisson coefficient smaller than
0.05 are not common, while rectangular cross-sections with height/width ra-
tios superior to 2 are widely used.

VIII.3.b Symmetrical Cross-Sections

In practical applications cross-sections that are symmetrical with respect to
the action axis of the shear force are common. In these cases, the computation
of the shearing stresses may be carried out by considering two simplifying
hypotheses: the vertical component of the shearing stress τzy is constant in
the direction perpendicular to the symmetry axis; the total stress vectors τ in
a line perpendicular to the symmetry axis have directions converging to the
point defined by the two tangents to the cross-section’s contour on that line,
as represented in Fig. 107.

The vertical component of the shearing stress may then be computed in
the same way as in the rectangular cross-section, taking the value

τzy =
V S(y)
Ib(y)

. (192)

The horizontal component and the resultant stress may then be obtained
from this value and angle ψ, yielding

τzx = τzy tan ψ ⇔ τ =
√

τ2
zx + τ2

zy =
τzy

cos ψ
=

V S

Ib cos ψ
. (193)
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Fig. 107. Simplifying hypotheses for the computation of the shear force in a sym-
metrical cross-section

The maximum stress for a given value of y occurs clearly on the contour
of the cross-section, taking the value τmax = V S

Ib cos ϕ .
As an applied example let us consider a circular cross-section (Fig. 108).

The first area moment of the surface element defined by the central angle β
is given by the expression (Fig. 108)

dS =

x︷ ︸︸ ︷
r sin β

dy′︷ ︸︸ ︷
rdβ sin β

y′︷ ︸︸ ︷
r cos β = r3 sin2 β cos βdβ .

Integrating to the whole area defined by angle α (Fig. 108), we get

S =
∫ α

−α

r3 sin2 β cos βdβ =
2
3
r3 sin3 α . (194)

x
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Fig. 108. Computation of the shearing stress in a circular cross-section
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The shearing stress τzy corresponding to the area moment S (194) is then
(b = 2r sin α)

τzy(α) =
V S

Ib
=

V 2
3r3 sin3 α

πr4

4 2r sin α
=

4
3

V

πr2
sin2 α =

4
3

V

Ω
sin2 α .

For a given value α, the maximum stress occurs at the boundary. From
(193) we get

τ =
τzy

cos ϕ
=

τzy

sin α
=

4
3

V

Ω
sin α .

This expression attains a maximum for α = π
2 (neutral axis), which means

that the maximum shear stress in the cross-section takes the value

α =
π

2
⇒ τ = τmax =

4
3

V

Ω
.

The solution given by the Theory of Elasticity for this problem indicates
that, unless the Poisson coefficient takes the value ν = 0.5 (incompressible
material), the stress distribution is not uniform in the neutral axis. The max-
imum value occurs in the centre of the circle and takes the value [4]

τmax = γ
4
3

V

Ω
with γ =

9 + 6ν
8 (1 + ν)

.

The error for the approximate solution vanishes for ν = 0.5 (γ = 1) and
takes the maximum value for a vanishing Poisson’s coefficient (γ = 1.125).
For the mean value ν = 0.25, we get γ = 1.05. In the case of steel (ν = 0.3)
the error is 3.8% (γ = 1.038). We conclude that the error introduced by the
simplifying hypotheses is relatively small.

VIII.3.c Open Thin-Walled Cross-Sections

Many of the slender members currently used in structural engineering, espe-
cially in metallic constructions, have thin-walled cross-sections, i.e., cross-sec-
tions made of straight or curved elements with small thickness, in comparison
with the cross-section dimensions. Usual profile sections, such as I-beams,
channel beams, angle sections, Z-sections, T-beams, circular or rectangular
tubes, etc., are examples of this kind of member. In this Sub-section, we will
deal with open thin-walled cross-sections, i.e., simply-connected thin-walled
cross-sections.

As seen in the study of the shearing stresses in rectangular cross-sections,
if the width is small compared with the height, the simplifying hypothesis
of considering constant stresses in the thickness b is very close to the actual
distribution. The same happens in thin-walled cross-sections, like that rep-
resented in Fig. 109. Thus, by considering the longitudinal surface which is
perpendicular to the centre line of the cross-section wall and contains the
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point where the shearing stress is to be computed, the shearing stress may be
obtained from the longitudinal shear force dE. From (187) we get

dE = τedz =
V S

I
⇒ τ =

dE

edz
=

V S

Ie
, (195)

where e represents the wall thickness in the point where τ is computed. The
computation of the area moment S of thin walls may be simplified if the area
is considered as concentrated on the centre line. Denoting by s a coordinate
which follows that line (Fig. 109), we get for the first area moment needed to
compute the shearing stress in the point defined by s2

M
V

dE

dz

n.a.

s s

y V

M

Fig. 109. Longitudinal shear force in a thin-walled cross-section

S (s) =
∫ s

0

e(s′)y(s′)ds′ .

In order to illustrate these considerations, the shearing stress distribution in
the cross-section represented in Fig. 110, caused by a vertical shear force V is
analysed.

In the flange element AB the area moment corresponding to the point of
the centre line defined by the coordinate s1 may be expressed by

S(s1) = s1e

(
h

4
+

s1

2

)
.

The shearing stress in this point is then

τ(s1) =
V S(s1)

Ie
=

V

I

(
hs1

4
+

s2
1

2

)
.

2If the same approximation is made for the moment of inertia, a completely
consistent theory for thin-walled cross-sections with infinitesimal wall thickness is
obtained, in the sense that the computed resultant of the shearing stress exactly
balances the applied shear force. Otherwise, a discrepancy will appear, which is
introduced by the wall curvature or by angle points in the centre line.
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Fig. 110. Shearing stresses caused by a vertical positive shear force in a symmetrical
open thin-walled cross-section

The maximum stress occurs for the maximum value of s1 (point B), taking
the value

s1 =
h

4
⇒ τ = τAB

max =
3
32

h2 V

I
.

In the flange element BC the area moment and the shearing stress may be
expressed in terms of coordinate s2, yielding

S (s2) =
3h2e

32
+ s2e

h

2
⇒ τ =

V

I

(
h

2
s2 +

3h2

32

)
.

In this wall segment the stress is a linear function of s2 and takes the maximum
value in point C

s2 =
h

2
⇒ τ = τBC

max =
11
32

h2 V

I
.

Finally, in the web (wall segment CD) the area moment may be expressed as
a function of coordinate s3, yielding

S(s3) =
22
32

h2e + s3e

(
h

2
− s3

2

)
⇒ τ =

V

I

(
22
32

h2 +
s3h

2
− s2

3

2

)
.

This expression represents a parabolic stress distribution. The maximum value
occurs on the neutral axis and takes the value

s3 =
h

2
⇒ τ = τCD

max =
26
32

h2 V

I
.

The direction of the shearing stresses may be obtained from the direction
of the longitudinal shear force. For example, in order to get the stress direction
in the flange element AB, let us consider the balance of the longitudinal forces
acting on a piece of this flange element, as represented in Fig. 111.

Let us assume a positive shear force (downward direction). As the flange
element AB is above the neutral axis, it is in the compressed zone, if the
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Fig. 111. Determination of the direction of the shearing stresses in the flange
element AB (Fig. 110): (a) positive bending moment; (b) negative bending moment

bending moment is positive. A positive shear force will cause an increase in
the bending moment, as dM = V dz , which will cause an increase dN in the
compressive stress resultant N (Fig. 111-a). In the case of a negative bending
moment, the flange element AB will be in the tensioned zone. However, a
positive shear force will cause a decrease in the absolute value of the bending
moment (dM > 0 and M < 0) and, therefore, a decrease in the tensile stress
resultant N , as represented in Fig. 111-b. In both cases, the same direction is
obtained for the shearing stress τ , as expected, since this stress is caused by
the shear force, which is the same in the two cases.

The direction of the shearing stresses in the segments BC and CD could
be obtained in the same way. The symmetry of the cross-section leads to the
directions of the shearing stresses represented in Fig. 110.

An additional tool to obtain the direction of the shearing stresses is fur-
nished by the condition of constant shear flow in a point of convergence of two
or more centre lines of the cross-section walls, as points B and C (Fig. 110).
This condition may be obtained from the balance equation of the longitudinal

dN

e3

e2

e1

τ3

τ2

dz

τ1

dΩ

dN + ddN

Fig. 112. Shear flow in a nodal point of a thin-walled cross-section



VIII.3 Shearing Stresses Caused by the Shear Force 265

forces acting on an infinitesimal neighbourhood of one of these points (nodal
points). In the case represented in Fig. 112, this equation takes the form

infinitesimal quantity of second order︷ ︸︸ ︷
(−τ1e1 − τ2e2 + τ3e3) dz + dσ dΩ︸ ︷︷ ︸

infinite simal quantity of third order (ddN )

= 0 .

The product edz is an infinitesimal quantity of second order, since the
thickness e is infinitesimal (cf. Footnote 55). Because dΩ is also a second
order infinitesimal quantity, dσdΩ will be an infinitesimal quantity of third
order. Thus, dσdΩ is an infinitesimal quantity of higher order, which may be
neglected, yielding

ingoing shear flow︷ ︸︸ ︷
τ1e1 + τ2e2 = τ3e3︸︷︷︸

outgoing shear flow

. (196)

Generalizing (196) to a number n of centre lines converging to a nodal point,
we get

n∑
i=1

τiei = 0 .

Taking the reciprocity of shearing stresses into consideration, this expres-
sion means that the sum of the products τe heading into the nodal point is
equal to the sum of the products τe heading out. In other words, the shear
flow entering the node is equal to the shear flow leaving the node. For example,
in point C (Fig. 110) the shear flow entering the node is 2 × 11

32
V h2e

I and the
outgoing flow is 22

32
V h2e

I .

VIII.3.d Closed Thin-Walled Cross-Sections

If the cross-section is doubly-connected, i.e., if the centre line of the wall
is a closed line, a longitudinal cut, like the one represented in Fig. 109, is
not enough to separate the cross-section into two distinct parts. This means
that two cuts must be made and that the longitudinal shear force dE, given
by (187), is the sum of the resultants of two different longitudinal shearing
stresses, τ1 and τ2. The value of the shearing stress cannot be computed,
therefore, unless an additional relation between τ1 and τ2 is found. However,
in the case of a symmetrical cross-section, with respect to the action axis of
the shear force, these stresses will be equal, provided that the two cuts are
made in symmetrical points of the centre line, as represented in Fig. 118. In
this case, the shearing stress may be computed by the expression

2τedz = dE =
V S

I
dz ⇒ τ =

V S

2Ie
, (197)

where S is the first area moment of the shaded area in Fig. 113.



266 VIII Shear Force

e

τ

V

τ

e

Fig. 113. Computation of the shearing stress in a closed symmetrical thin-walled
cross section

If the cross-section is not symmetrical with respect to the action axis of the
shear force, the problem becomes a statically indeterminate one, whose solu-
tion may be computed by means of the force method. As seen in Sect. VI.4, this
method consists of releasing a sufficient number of connections to get a stati-
cally determinate problem, followed by the computation of the forces needed
to avoid displacements in the released connections. In the present problem,
the longitudinal connection in a point of the cross-section wall is released, so
that an open cross-section is obtained. Under the action of the shear force, the
two sides of the cut suffer a longitudinal relative displacement, as represented
in Fig. 114-a. This displacement must then be eliminated, by applying a pair
of shear forces dE to both sides of the cut (Fig. 114-b). The resulting stress in
any point of the cross-section may be obtained by the superposition principle,
by adding the stresses corresponding to the two situations (Fig. 114-c).

D

V

dz

(a)

V

τ0

D

A
dE

B

(b)

dE

A

B

τ1

(c)

V

τ0 + τ1

V

Fig. 114. Computation of the shear stresses in a non-symmetrical closed thin-walled
cross-section
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The relative displacement in direction z of two points of the centre line,
located at an infinitesimal distance ds of each other, is dD = γ0 ds .3 Thus, in
the open cross-section, the relative displacement D of both sides of the cut,
caused by the shear force V (Fig. 114-a), may be computed by integrating
the shear strain γ0 along the complete centre line of the wall, which yields
(τ0 = Gγ0)

D =
∮

γ0 ds =
1
G

∮
τ0 ds =

V

IG

∮
S

e
ds . (198)

In the situation depicted in Fig. 114-b, the shear flow f = τ1(s)e(s) is
constant along the whole centre line of the wall,4 since there are no other
forces applied to the bar apart from the pair of forces dE . This conclusion is
easily drawn by establishing the balance condition of the longitudinal forces
acting on the piece defined by the longitudinal cut AA′ and by any other
longitudinal surface BB′ (Fig. 114-b). This condition immediately means that
the product τ1e = dE

dz = f is constant, even if e varies along the centre line.
The longitudinal relative displacement D′ caused by the pair of forces dE , is
then (τ1 = f

e )

D′ =
∮

γ1 ds =
∮

τ1

G
ds =

f

G

∮
ds

e
. (199)

The condition of compatibility requires that the displacement D′ eliminates
displacement D, which allows the computation of the shear flow f

D + D′ = 0 ⇒ f = −V

I

∮
S
e ds∮
ds
e

⇒ τ1(s) =
f

e(s)
. (200)

The shearing stress in the closed cross-section (Fig. 114-c) may then be com-
puted by adding the stresses τ0 and τ1.

The closed line integrals appearing in the expressions above obviously refer
to the line limiting the closed part of the cross-section, that is, they do not
include simply-connected walls, as in the cross-section represented in Fig. 115.

The expressions above are valid for doubly-connected cross-sections, i.e.,
closed cross-sections with only one channel. In cross-sections with higher de-
grees of connection a number of longitudinal cuts equal to the degree of con-
nection minus one is necessary to get a statically determinate problem, i.e.,
an open cross-section. As a consequence, the conditions of compatibility of
the deformations in all the longitudinal cuts yield, instead of (200), a system

3This simple relation requires that the fibres remain parallel to each other in
the deformation caused by the shear force. This condition is satisfied if there is no
rotation of the cross-sections around a longitudinal axis of the prismatic bar, i.e., if
torsion does not take place (see example XII.8).

4This shear flow defines a torsional moment (twisting moment or torque, see
Chap. X.3). This moment corresponds to the translation of the shear force, from the
shear centre of the open cross-section to the shear centre of the closed cross-section
(see Sect. VIII.4 and example VIII.12).
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V

Fig. 115. Line, to which the closed line integrals in (198), (199) and (200) are
referred (dashed line)

with a number of equations equal to the degree of connection minus one (see
example VIII.7).

VIII.3.e Composite Members

In composite members the longitudinal shear force may be determined in the
same way as in the case of homogeneous bars (187). The normal stress is in
this case given by (169). Assuming, for simplicity, plane bending, as in the case
represented in Fig. 116, we get the following expression for the longitudinal
shear force (Fig. 116-b)⎧⎪⎪⎨

⎪⎪⎩
dσa =

dM Ea

Jn
y

dσb =
dM Eb

Jn
y

⇒
∣∣∣∣∣∣
dE =

∫
Ωa1

dσa dΩa +
∫
Ωb1

dσb dΩb

= V
Jn

(
Ea

∫
Ωa1

ydΩa + Eb

∫
Ωb1

ydΩb

)
dz .

(201)

(a)

Ωa

V

Ωb

n.a.

(b)

V

Ωb1

Ωa1

n.a.

Fig. 116. Determination of the longitudinal shear force in composite members
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In composite members, the longitudinal shear force in the contact surface
between the two materials must usually be computed. In this particular case
(201) takes a simpler form and the longitudinal shear force may be computed
by any of the following expressions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ωa1 = Ωa

⇒ dE

dz
=

V EaSa

Jn
=

V Sa

Iha
with Sa =

∫
Ωa

ydΩa

Ωb1 = 0

Ωa1 = 0

⇒ dE

dz
=

V EbSb

Jn
=

V Sb

Ihb
with Sb =

∫
Ωb

ydΩb .

Ωb1 = Ωb

(202)

VIII.3.f Non-Principal Reference Axes

In some cross-sections it is easy to compute the moments and product of
inertia with respect to non-principal central axes, as well as distances and
area moments. In Fig. 117 two examples of this kind of cross-section are
represented.

In these cases it may be useful to compute the normal and shearing stresses
directly from these axes, especially if one of them is parallel to the action axis.

The normal stresses may by computed by means of (140). From this equa-
tion an expression for the computation of the longitudinal shear force may
then be developed. If the bending moment has only the Mx component and
the axial force vanishes, the normal stress may be computed by the expression

σ =
Iyy − Ixyx

IxIy − I2
xy

Mx .

The same line of reasoning used to develop (186), leads to the following
expression for the longitudinal shear force (cf. Figs. 102 and 117)

x Mx

y

Ωa

x Mx

y

Ωa

Fig. 117. Computation of the longitudinal shear force with non-principal reference
axes
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dE =
∫

Ωa

Iyy − Ixyx

IxIy − I2
xy

dMx dΩa = Vy
IySx − IxySy

IxIy − I2
xy

dz

with Vy =
dMx

dz
, Sx =

∫
Ωa

ydΩa and Sy =
∫

Ωa

xdΩa .

(203)

The shearing stresses may be computed from this expression, in the same way
as was done on the basis of (187) (see example VIII.10).

VIII.4 The Shear Centre

When inclined circular bending was analysed (Sect. VII.4), we showed that a
parallel displacement of the action axis does not change the normal stresses
induced by the bending moment in the cross-section. However, if a shear
force is acting (non-uniform bending), the equilibrium condition requires that
the action axis of the shear force has a position which coincides with the
line of action of the resultant of the shearing stresses. The position of the
action axis of the shear force is therefore not arbitrary. There are two internal
forces introducing shearing stresses in the cross-section: the shear force and
the torsional moment. The expressions presented for the shearing stresses in
this Chapter only take the shear force into consideration, since they are all
based on the relation dM = V dz (185). It is therefore assumed that the
torsional moment is zero. If it is not, additional shearing stresses will appear.
These stresses will be analysed in Chap. X.

Thus, to avoid torsion, the action axis of the shear stress must coincide with
the line of action of the resultant of the shearing stresses computed by means
of the expressions which were developed from (187) (longitudinal shear force
caused by the cross-sectional shear force). By considering two shear forces
with the directions of the principal central axes of inertia, and computing the
position of the line of action of the resultant of the shearing stresses in each
case, a point is defined by the intersection of these two lines, which has the
following property: if the line of action of the shear force passes through this
point, it will not induce torsion of the bar. This point is the shear centre of
the cross-section.

The shear centre plays the same role in relation to the transversal forces,
as the centroid in relation to the longitudinal (axial) forces: if the resultant
axial force passes through the centroid of the cross-section, it will not induce
bending; otherwise, composed bending will take place, with a bending moment
given by the product of the axial force and the distance of its line of action
to the centroid. In the same way, if the resultant of the forces acting on the
cross-section plane (the shear force) does not pass through the shear centre,
it will introduce a torsional moment, with a value given by the product of the
shear force and the distance of its line of action to the shear centre.

The computation of the torsional moment must thus be made in relation
to the shear centre, while the bending moment is computed with respect to the
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centroid. In the case of a cross-section with a symmetry axis, the shear centre
is on this axis, since, for an action axis of the shear force coinciding with the
symmetry axis, the shearing stress distribution will also be symmetric, which
means that the line of action of its resultant coincides with the symmetry axis.
Thus, if the cross-section has two symmetry axes the centroid and the shear
centre will coincide. In other cases, these two points usually occupy different
positions in the cross-section’s plane.

We will demonstrate later (Chap. XII) that in prismatic bars made of
materials with linear elastic behaviour, the shear centre coincides with the
torsion centre, which is defined as the point around which the cross-section
rotates in the twisting deformation induced by the torsional moment. For this
reason, these two designations are sometimes indistinctly used.

While it is very easy to compute the position of the line of action of the re-
sultant of the normal stresses in the case of pure axial force, since these stresses
are constant in the cross-section, the computation of the line of action of the
resultant of the shearing stresses is often complex, since the distribution of
the stresses caused by the shear force is required. As seen in the previous sec-
tions, good approximations for these stresses are obtained only in the cases of
symmetrical cross-sections with respect to the action axis of the shear force
and in thin-walled cross-sections. In the first case, the position of the resultant
is known. In the case of non-symmetrical cross-sections which cannot be con-
sidered as thin-walled, the problem of computing the shear centre’s position
cannot be solved by the approach used in the Strength of Materials. But the
knowledge of the position of the shear centre is most important in the case of
open thin walled cross-sections, since this kind of member is very weak in tor-
sion, as will be seen in Chap. X. Fortunately, the stresses caused by the shear
force in these cross-sections are easily computed with good approximation, as
seen in Subsect. VIII.3.c.

In order to illustrate these considerations, the position of the shear centre
of the channel cross-section represented in Fig. 118 is computed. As this cross-
section has a symmetry axis, the shear centre will be located on this axis.

h

B

D

C

b

(a)

e
A

E

V
I

bh
2

V
I

h2

8

(b)

Ra

D

Rb

Rb

(c)
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d

Fig. 118. Computation of the position of the shear centre in a thin-walled cross-
section
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Thus, in order to determine its position, it is enough to compute the distance
d from the line of action of the resultant of the shearing stresses, introduced
by a shear force perpendicular to the symmetry axis, to the centre line of the
web (Fig. 118-c).

As the example of (Fig. 110) shows, the shearing stress has a linear dis-
tribution in the wall segments which are parallel to the neutral axis, and
a parabolic distribution in the others. Besides, we know that the maximum
stress occurs on the neutral axis. For these reasons, in example of (Fig. 118)
the stress distribution is completely defined by the values in points B and C.
For point B we get from (195)

S = be
h

2
⇒ τ =

V

I

bh

2
.

For point C the same expression yields the value

S =
beh

2
+

h

2
e
h

4
⇒ τ =

V

I

(
bh

2
+

h2

8

)
.

The resultants of the shearing stress in the web (Ra) and in the flanges (Rb)
may be computed from the diagram areas in Fig. 118-b, multiplied by the
thickness e, yielding

Ra =
V

I

(
bh

2
he +

2
3

h2

8
he

)
=

V

I

[
eh3

12︸︷︷︸
Ia

+ 2 × be

(
h

2

)2

︸ ︷︷ ︸
Ib− be3

12

]
≈ V

Rb
1
2

V

I

bh

2
be =

V

I

b2he

4
≈ 3(

h
b

)2
+ 6h

b

V .

(204)

It must be remarked here that, as mentioned in Footnote 55, an exact
balance between the shear force and the resultant of the shearing stresses is
only achieved if the moment of inertia of the flange, with respect to is centre
line ( be3

12 ), is neglected.5 The condition of equivalence of moments with respect
to point D (Fig. 118-c) allows the computation of the distance d, which defines
the position of the shear centre

Rbh = Rad ⇒ d =
3(

h
b

)2
+ 6h

b

h . (205)

5From a mathematical point of view, the theory expounded for thin-walled cross-
sections is only valid if the thickness of the walls is infinitesimal, in comparison with
the cross-section dimensions. In this case, the moment of inertia of the flange with

respect to its centre line, be3

12
, is an infinitesimal quantity of third order, which may

be neglected in presence of the infinitesimal quantity of first order resulting from

the parallel-axis theorem, beh2

4
.
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Fig. 119. Shear centre in thin-walled cross-sections with concurrent and straight
wall elements

The thin-walled cross-sections with concurrent and straight wall elements,
like those represented in Fig. 119, are a particularly simple case of determi-
nation of the shear centre. In fact, as the resultants of the shearing stresses in
the different wall elements pass through the intersection of the centre lines,
the moment of the shearing stress in relation to this point vanishes, which
means that it is the shear centre.

VIII.5 Non-Prismatic Members

VIII.5.a Introduction

The basic equation for the analysis of the effect of the shear force (187) has
been deduced for prismatic bars. So when the above expressions for the com-
putation of shearing stresses are applied to non-prismatic members, errors
are introduced. In order to get an idea of the importance of these errors, two
examples of non-prismatic members, which are simple enough for an exact
solution to be given by the Theory of Elasticity, are analysed.

VIII.5.b Slender Members with Curved Axis

As explained in Sect. VIII.2, the expression obtained for the shearing stress
in a rectangular cross-section with a small thickness (189) coincides with the
exact solution of the Theory of Elasticity. Thus, in a bar with the same cross-
section, but with a curved axis, the discrepancies between the exact solution
and the results obtained using (187) may be attributed to the fact that the
bar’s axis is not a straight line.

The bar represented in Fig. 120 has a circular axis and a rectangular cross-
section with the dimensions b×h (b � h). The shear force in the cross-section
B defined by the angle θ takes the value V = −P cos θ.

The shearing stress in that cross-section may be expressed as a function of
the dimensionless coordinate η, which, multiplied by the height of the cross-
section h, defines the distance to the centre line (− 1

2 ≤ η ≤ 1
2 , Fig. 120). The

exact solution obtained by the Theory of Elasticity for the shearing stress on
the cross-section defined by the angle θ may be defined by the expression [4]
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Fig. 120. Shearing stresses induced by the shear force in a bar with a curved axis

τ = −3
2

P cos θ

bh
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(
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4
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3 − 3
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(
1 + α2

4

)
ln 2+α

2−α︸ ︷︷ ︸
γ

with α =
h

rm
. (206)

In the limit case of a prismatic bar (α = 0, θ = π) this solution yields the
same value as (190)

(
τmax = 3

2
V
bh

)
.

When the relation α between the height of the cross-section and the cur-
vature radius of the centre line rm increases, the difference between the dis-
tributions of shearing stresses given by (206) and by the expression developed
for prismatic bars increases also. This difference remains small, however, even
for larger curvatures, as may be easily confirmed by computing the values of
η and γ corresponding to the maximum shearing stress (η = η0 ⇒ γ = γmax)
for some values of α

α 0.0000 0.1000 0.2500 0.5000 0.7500 1.0000 1.5000

η0 0.0000 0.0250 0.0626 0.1259 0.1905 0.2565 0.3885

γmax 1.0000 1.0009 1.0056 1.0233 1.0573 1.1166 1.4402

VIII.5.c Slender Members with Variable Cross-Section

In bars with variable cross-section the expressions developed on the basis of
(187) may lead to completely erroneous results, at least in relation to the loca-
tion of the maximum stress in the cross-section. For example, in the problem
represented in Fig. 86, the exact solution shows that the shearing stress van-
ishes in the neutral axis and attains the maximum value in the farthest points
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from the neutral axis, as may be easily ascertained by a two-dimensional analy-
sis of the stress state in those points, which totally contradicts the solution
developed for prismatic bars.

Regarding the value of the maximum shearing stress in the cross-section,
significant errors may also be introduced by the theory of prismatic bars, as
may be easily verified by computing the maximum shearing stress in cross-
section AA′ (Fig. 86). From (164) we find that the maximum radial stress
occurs in point A and takes the value

ϕ =
α

2
⇒ σr = σr−max =

2
α − sin α

P

br
sin

α

2
.

A two-dimensional analysis of the stress state shows that the shearing
stress in a vertical facet takes the value

τmax =
1
2
σr−max sin α = sin

α

2
cos

α

2
σr−max =

2 sin2 α
2 cos α

2

α − sin α

P

br
.

The theory of prismatic bars yields the following value for the maximum
shearing stress in the same cross-section, τmax−p⎧⎪⎪⎨

⎪⎪⎩
h = 2r sin α

2

⇒ τmax−p =
3
2

V

bh
=

3
4

1
sin α

2

P

br
.

V = P

The relation between the exact value τmax and the value yield by the
theory of prismatic bars, τmax−p, depends only on angle α and may expressed
by parameter β

β =
τmax

τmax−p
=

8
3

sin3 α
2 cos α

2

α − sin α
.

The following Table gives the values of β corresponding to some values of
angle α.

α 1◦ 10◦ 20◦ 30◦ 45◦ 60◦

β 1.999 1.988 1.952 1.892 1.764 1.593

This example shows that the actual value of the maximum shearing stress
in a slender member with a variable cross-section may be substantially higher
than the value given by the theory of prismatic bars.

VIII.6 Influence of a Non-Constant Shear Force

The solution of the Theory of Elasticity for the shearing stresses in the ex-
ample depicted in Fig. 85 (162) shows that (189) is exact (V = p

(
l
2 − z

)
),
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although the expression defining the normal stresses σz (162) is different from
the expression developed for the case of pure bending, on the basis of the law
of conservation of plane sections. The variation of the shear force thus affects
the distribution of normal stresses, but does not change the distribution of
shearing stresses. This is due to the fact that the second element of the ex-
pression of σz (which represents the correction to be added to (146), to take
the variation of the shearing stress into account) is independent of z, i.e., it
is constant in all cross-sections, so it does not introduce a longitudinal shear
force.

Also in the case of the example depicted in Fig. 120 the shear force is not
constant. However, the distribution of shearing stresses in the cross-section is
not altered by the variation of the shear force, since the exact solution (206)
shows that the shearing stress is proportional to the shear force V = −P cos θ.

Considering these examples and the fact that the normal stress computed
by means of the expressions developed on the basis of the Saint Venant hy-
pothesis are very close to the exact solution (Sect. VII.7), we may conclude
that the variation of the shear force does not affect the validity of the funda-
mental expression for studying the effect of the shear force (187).

VIII.7 Stress State in Slender Members

Generally, in slender members, the stresses that act on perpendicular facets to
the cross-section plane and are parallel to it – σx, σy and τxy – either vanish, as
happens if there are no forces applied on the bar element under consideration
and the Poisson coefficient is constant, or are sufficiently small to be neglected
(see example VIII.16). We thus have a plane stress state. Obviously, this
does not apply to the regions in the vicinity of sudden changes in the cross-
section dimensions, angle points of the bar’s axis or strongly concentrated
loads. However, in these cases the theory of prismatic bars is not valid.

According to these considerations, the stress state in a slender member un-
der non-uniform bending may be analysed in the plane perpendicular to the
cross-section which contains the shear force vector in the point under consid-
eration.6 In thin-walled cross-sections this is the longitudinal plane containing
the wall centre line. In this kind of cross-section and also in rectangular sec-
tions under plane bending, the plane stress state may be visualized by means
of the principal stress trajectories. These lines represent, in each point, the
principal directions of the stress state. As the stress tensor only has a normal
and a shearing component, the maximum principal stress is always a tensile
one and the minimum principal stress is always compressive, as may be easily
verified by drawing the Mohr circles corresponding to tensile and compressive

6This conclusion remains valid if a torsional moment is also acting, since this
internal force only causes shearing stresses in the cross-section and not σx, σy or τxy,
as will be seen in Chap. X.
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Fig. 121. Principal stress trajectories in a simply supported beam: tensile
trajectories; compressive trajectories

normal stresses σz, as represented in Fig. 121. The same Figure also shows
the principal stress trajectories in a simply supported beam under a uniformly
distributed load.

In the points on the neutral surface a purely deviatoric stress state is in-
stalled, since σ = 0. The principal direction are thus at 45◦ angles with the
cross-section plane. If there are no shearing loads applied on the surface of the
bar, one of the principal directions is perpendicular and the other is tangent to
the surface. However, in the right end cross-section the principal directions are
indeterminate, since there are no stresses in theses points. The principal stress
trajectories, with an inclination of 45◦, appearing in the left end cross-section
result from the fact that the principal directions were computed by means of
the theory of prismatic bars, assuming that the left reaction force is applied as
a shear force acting on that cross-section. In the same way, the perturbation
introduced by the concentrated load corresponding to the reaction force on
the right support was not considered. Actually, in this region the compres-
sive trajectories converge to the support. Furthermore, this reaction force was
considered to be distributed over a small length, in order to avoid disconti-
nuities in the shearing stress distribution, which would introduce corners into
the principal stress trajectories.

The safety evaluation in bars under non-uniform bending usually includes
three points:

– verification of the maximum normal stress in the fibres farthest from the
neutral axis;

– verification of the maximum shearing stress, which usually occurs on the
neutral axis;

– verification of the two-dimensional stress state in the points where the shear-
ing and normal stresses simultaneously reach higher values. In these points,
a yielding or a rupture criterion must be used. In ductile materials the von
Mises criterion is generally used (see example VIII.17).
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The third verification is especially important in I-beams and channels, in
the points where web and flange connect, in the case of cross-sections where
both the bending moment and the shear force attain higher values, as in the
cross-sections which are close to the right support in the beam represented in
Fig. 121. In these points, the normal stress is not much lower than the max-
imum value, since they are close to the fibres farthest from the neutral axis.
The shearing stress is also close to the maximum value appearing on the neu-
tral axis, because the area moment of the flanges is not substantially smaller
than the area moment of half section. These considerations are summarized
in Fig. 122.

σ τ

Fig. 122. Stress state (σ, τ) in connection points between web and flange in a I-beam

VIII.8 Examples and Exercises

VIII.1. Figure VIII.1 shows the cross-section of a simply supported beam with
a span 100a, under a uniformly distributed load p. The beam is made
by connecting a bar with rectangular cross-section a × 3a and four
bars with square cross-section a×a. Determine the longitudinal shear
force acting in each connection.

a

a

a

a a a

n.a.

Fig. VIII.1
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Resolution

The problem may be solved by directly applying (187). To this end, it is
necessary to compute the moment of inertia of the cross-section and the first
area moment S of one of the hatched areas in Fig. VIII.1 with respect to the
neutral axis. These quantities take the values

I =
(3a)4

12
− 2a × a3

12
=

79
12

a4 and S = a3 ,

respectively. The longitudinal shear force per unit length in each connection
is then

dE

dz
=

V S

I
= V

a3

79
12a4

=
12
79

V

a
.

Since the longitudinal shear force is proportional to the cross-sectional
shear force V , we conclude that it varies linearly between − 12

79
50pa

a = − 600
79 p

and 600
79 p (Vmax = 50pa).

VIII.2. Determine the maximum shearing stress in a cross-section with the
shape of an isosceles triangle of base b and height h, caused by a shear
force acting on the symmetry axis (Fig. VIII.2-a).

h

b

V

a.a.

y + 1
3

2
3
h − y b

2
3
h − y

y

n.a.

h
3

Fig. VIII.2-a Fig. VIII.2-b

Resolution

Since the cross-section is symmetrical with respect to the action axis of the
shear force, the problem may be solved by means of the theory expounded in
Subsect. VIII.3.b. The moment of inertia of the cross-section takes the value
I = bh3

36 (Fig. VIII.2-a). The first area moment of the area defined by the
distance y (shaded area in Fig. VIII.2-b) is given by the expression

S =
1
2
b′
(

2
3
h − y

)[
y +

1
3

(
2
3
h − y

)]
with b′ =

b

h

(
2
3
h − y

)
.
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The vertical component of the shearing stress may obtained from (192), yield-
ing

τxy =
V S

Ib′
=

V

I

(
1
9
hy +

2
27

h2 − 1
3
y2

)
.

Differentiating this expression in relation to y and equating to zero, the value
of y corresponding to the maximum shearing stress is obtained

dτxy

dy
= 0 ⇒ 1

9
h − 2

3
y = 0 ⇒ y =

h

6
.

The maximum value of the vertical component of the shearing stress is then

y =
h

6
⇒ τxy = τmax

xy =
1
12

V h2

I
=

1
12

36
bh3

V h2 = 3
V

bh
=

3
2

V

Ω
.

Since angle ϕ (Fig. 107) is constant, we conclude that the maximum shearing
stress occurs at the sides of the cross-section at the distance y = h

6 from the
neutral axis and takes the value (cf. (193))

τmax =
τmax
xy

cos ϕ
=

3
cos

(
arctan b

2h

) V

bh
.

As a rule, the maximum shearing stress occurs on the neutral axis. In this
case it does not take place, which is because the cross-section width is not
constant in the region around the neutral axis.

VIII.3. Determine the distribution of shearing stresses induced by a verti-
cal shear force V in the open thin-walled cross-section depicted in
Fig. VIII.3-a.

r

e
V

a.a.

α
φ

dφ

n.a.
τmax = 2V

πre

Fig. VIII.3-a Fig. VIII.3-b Fig. VIII.3-c

Resolution

Using polar coordinates, we may define the position of a point on the centre
line by means of angle α (Fig. VIII.3-a). Denoting the integration variable by
φ, the first area moment of the shaded area defined by angle α takes the value
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dS = erdφ × r sin φ ⇒ S (α) = er2

∫ α

0

sin φdφ = (1 − cos α) er2 .

The moment of inertia of the cross-section with respect to the neutral axis
may also be computed by integration along the centre line, yielding

I =
∫ 2π

0

(r sin φ)2 × erdφ = er3

∫ 2π

0

sin2 φdφ = πer3 .

The shearing stress is then defined by the expression

τ =
V S

Ie
=

V

πer
(1 − cos α) .

This stress distribution defines the diagram represented in Fig. VIII.3-b. The
direction of the shearing strain may be found, as described in Subsect. VIII.3.c
(Fig. 111), which leads to the directions represented in Fig. VIII.3-c.

VIII.4. Determine the distribution of shearing stresses in a thin-walled circu-
lar tube with a wall-thickness e and a radius of the center line r.

e.a.

V

φ

β
α

Fig. VIII.4

Resolution

Since we have a symmetrical cross-section, (197) may be used to compute the
shearing stresses. Defining the position of the two symmetrical longitudinal
cuts by angle β (Fig. VIII.4), we get, for the first area moment of the hatched
area,

S (β) = 2
∫ β

0

r cos φ × erdφ = 2er2 sin β .

The shearing stress then takes the value

τ =
V S

2Ie
=

V

I
r2 sin β .
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VIII.5. Determine the distribution of shearing stresses in the cross-section
considered in example VIII.4 without using symmetry considerations.

Resolution

The open cross-section considered in example VIII.3 may be used as the stat-
ically determinate base problem. Denoting the moment of inertia of the cross-
section by I, the shearing stress in the open cross-section is given by the
expression

τ0 =
V

I
r2 (1 − cos α) .

The closed line integrals contained in (200) are given by the expressions∮
S

e
ds =

∫ 2π

0

r2 (1 − cos α)︸ ︷︷ ︸
S
e

rdα︸︷︷︸
ds

= 2πr3 and
∮

ds

e
=

2πr

e
.

Substituting these expressions into (200), we get

τ1 = − V

Ie

∮
S
e ds∮
ds
e

= − V

Ie

2πr3

2πr
e

= −V

I
r2 .

The shearing stress in the closed cross-section is then

τ = τ0 + τ1 = −V

I
r2 cos α .

This value coincides with the solution obtained in example VIII.4, since
sin β = cos α. The difference in the sign results from the fact that in example
VIII.4 the shearing stress is considered positive when it has the direction of
progression of angle β, while in example VIII.3 the direction of progression of
angle α is adopted as positive.

VIII.6. Determine the distribution of shearing stresses in the thin-walled
cross-section represented in Fig. VIII.6-a. The cross-section wall has
a constant thickness e.

e

r

V

e.n.φ
αdφ

s

Fig. VIII.6-a Fig. VIII.6-b
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Resolution

Since the cross-section is doubly-connected and the action axis of shear force
is not coincident with, or parallel to a symmetry axis, the shearing stress
must be computed by means of (198)–(200). As a statically determinate base
problem the open thin-walled cross-section represented in Fig. VIII.6-b may
be used.

As in example VIII.3, the coordinate α may be considered to define
the position of a point in the centre line of the curved part of the wall
(Fig. VIII.6-b). Thus, the first area moment of the shaded area defined by
angle α may be computed by means of the expression

S(α) =
∫ α

0

r sin φ × erdφ = er2

∫ α

0

sin φdφ = (1 − cos α) er2 .

The shearing stress corresponding to this area moment is, then,

τ0(α) =
V S

Ie
=

V (1 − cos α) er2

Ie
=

V r2

I
(1 − cos α) .

In the straight wall, the position of a point on the centre line may be
defined by coordinate s (Fig. VIII.6-b). The first area moment and the corre-
sponding shearing stresses are then

S(s) = S
(
α =

π

2

)
+se

(
r − s

2

)
= er2+ers−e

s2

2
τ0(s) =

V

I

(
r2 + rs − s2

2

)
.

Evaluating the integrals contained in (200), we get∮
ds

e
=

1
e

(πr + 2r)∮
S

e
ds = 2

∫ π
2

0

(1 − cos α) er2

e
rdα︸︷︷︸

ds

+
∫ 2r

0

(
r2 + rs − s2

2

)
ds =

(
π +

2
3

)
r3 .

From (200) we get the shear flow

f = −V

I

∮
S
e ds∮
ds
e

= −V

I

(
π + 2

3

)
r3

1
e (πr + 2r)

= −V er2

I

3π + 2
3π + 6

.

Since the wall thickness is constant, the shearing stress corresponding to this
shear flow is also constant and takes the value

τ1 =
f

e
= −V r2

I

3π + 2
3π + 6

.

The total shearing stress in the close thin-walled cross-section may be obtained
by adding the stresses in the statically determinate base problem (τ0) to the
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stress τ1, which yields, respectively for the curved and straight walls, the
expressions

τ(α) = τ0(α) + τ1 =
V r2

I
(1 − cos α) − V r2

I

3π + 2
3π + 6

=
V r2

I

(
4

3π + 6
− cos α

)

τ(s) = τ0(s) + τ1 =
V

I

(
r2 + rs − s2

2
− 3π + 2

3π + 6

)
.

In Figs. VIII.6-c a diagram showing the distribution of the shearing stress
values in the cross-section is presented. Figure VIII.6-d shows the direction of
the shearing stresses.

V r2

I
3π+2
3π+6

V r2

I
4

3π+6

V r2

I
4

3π+6

V r2

I
3π+14
6π+12

α0

α0

α0

α0 = arccos 4
3π+6

Fig. VIII.6-c Fig. VIII.6-d

VIII.7. Develop expressions allowing the computation of the shearing stress
caused by the shear force in a triply-connected thin-walled cross-
section.

Resolution

The degree of static indeterminacy is two, since it is necessary to cut the
cross-section wall in two points to get an open thin-walled cross-section. Let
us assume that the two cuts are made in the points c1 and c2 (Fig. VIII.7).
Denoting the coordinates along the centre line in the three walls by s1, s2

and s3, the relative displacement D1 in cut c1 may be obtained by applying
(198) to the channel defined by points a, b and c1, which yields, considering as
positive the coordinates which define a clockwise rotation around the channel

D1 =
V

IG

∮
S

e
ds =

V

IG

(∫ b

c1

S

e
ds1 −

∫ b

a

S

e
ds3 +

∫ c1

a

S

e
ds1

)
.

In the same way, we get for the relative displacement D2 in cut c2

D2 =
V

IG

(∫ a

c2

S

e
ds2 +

∫ b

a

S

e
ds3 +

∫ c2

b

S

e
ds2

)
.
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c2

a

s1

s3

b
s2

c1

Fig. VIII.7

The displacements D1 and D2 are eliminated by the shear flows f1, f2 and
f3, corresponding to coordinates s1, s2 and s3, respectively (Fig. VIII.7). Ap-
plying (199) to the two channels of the cross-section, we get

D′
1 =

f

G

∮
ds

e
=

f1

G

∫ b

c1

ds1

e1

− f3

G

∫ b

a

ds3

e3

+
f1

G

∫ c1

a

ds1

e1

D′
2 =

f

G

∮
ds

e
=

f2

G

∫ a

c2

ds2

e2

+
f3

G

∫ b

a

ds3

e3

+
f2

G

∫ c2

b

ds2

e2

.

The shear flows f1, f2 and f3 are the unknowns of the problem, which may be
computed by solving the system of equations represented by the compatibility
conditions D1 + D′

1 = 0 and D2 + D′
2 = 0 and the condition of equilibrium of

the flows in node a or in node b, f1 + f3 = f2 (Fig. 112).

VIII.8. The beam represented in Fig. VIII.8 is made of concrete and reinforced
with two steel plates, as shown. Assuming that the concrete does not
crack in the tensioned zone, determine the longitudinal shear force in
each steel-concrete connection. Consider Esteel = 10Econcrete.

Resolution

The weighted moment of inertia of the cross-section takes the value (Es =
Esteel and Ec = Econcrete)

Jn = 2

[
b
(

b
10

)3
12

+
b2

10

(
b +

b

20

)2
]

Es + Ec
b (2b)3

12

= b4Es

[
0.2207 +

Ec

Es

2
3

]
= 0.2873b4Es .

The first moment of the area occupied by a steel plate in the cross-section is
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p

l

0.1827 pl
b

dE
dz

steel

steel

concrete

b

b
10

2b

b
10

Fig. VIII.8

Sa = b
b

10

(
b +

b

20

)
= 0.105b3 .

Substituting the values of Jn and Sa in the first of (202), we get the longitu-
dinal shear force per unit length

dE

dz
=

V EsSa

Jn
=

V Es0.105b3

0.2873b4Es
= 0.3654

V

b
.

This force attains the maximum value in the cross-sections over the supports,
taking the value (Fig. VIII.8)

Vmax =
pl

2
⇒

(
dE

dz

)
max

= 0.1827
pl

b
.

VIII.9. In the cantilever beam considered in example VII.11 (Fig. VII.11-a),
determine the distribution of the longitudinal shear force per unit
length in the connection between the two materials.

Resolution

The horizontal shear force Vx does not cause a longitudinal shear force in the
surface between the two materials, since axis y (Fig. VII.11-b) is a symmetry
axis and that surface is perpendicular to this axis. The longitudinal shear
force introduced by the cross-sectional shear force Vy may be computed by
means of (202).

The weighted moment of inertia of the cross-section takes the value
Jx = 1915.34Ea4 (cf. example VII.11). The moment of the area occupied
by material a, with respect to the neutral axis, is

Sa = 40a2 × 2.91176a ≈ 116.470 a3 .
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Considering a coordinate z with origin in the free end and pointing leftwards,
the shear force Vy is defined by the expression

Vy(z) = 10paz .

The longitudinal shear force per unit length, as function of coordinate z, takes
then the value (202)

E′(z) =
dE

dz
=

VySaEa

Jx
=

10paz × 116.470 a3 × 2E

1915.34Ea4
≈ 1.21618 pz .

This force attains the maximum value in the built-in end, yielding

z = zmax = 200a ⇒ E′ = E′
max = 243.236 pa .

VIII.10. Determine the shearing stress in the point of connection between the
web and a flange in the cross-section represented in Fig. VIII.10.

b
5

x

V

3b

b

y
b

b
10

3b

3b

b
5

Fig. VIII.10

Resolution

The problem may be solved by means of (203). To this end, it is necessary to
compute the moments and the product of inertia in relation to axes x and y.
These quantities take the values

Ix =
b
10 (3b)3

12
+ 2

[
4b
(

b
5

)3
12

+ 4b
b

5

(
1.5b +

b

10

)2
]

= 4.32633b4

Iy = 2

(
b
5 (3b)3

3
+

b
5b3

3

)
+

3b
(

b
10

)3
12

= 3.73358b4

Ixy = 4b × b

5
× b ×

(
1.5b +

b

10

)
× 2 = 2.56b4 .

In order to get the shearing stress in the connection point between the web
and a flange, the first area moments of a flange, with respect to axes x and y
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must be computed. Considering the bottom flange, these quantities are given
by the expressions

Sx = 4b × b

5
×
(

3
2
b +

b

10

)
= 1.28b3 and Sy = 4b × b

5
× b = 0.8b3 .

The longitudinal shear force per unit length in this point is, then, (203)

dE

dz
=

3.73358b4 × 1.28b3 − 2.56b4 × 0.8b3

4.32633b4 × 3.73358b4 − (2.56b4)2
V = 0.28450

V

b
.

Thus, the shearing stress in that point takes the value

τ =
dE
b
10 dz

=
0.2845
0.1b

V

b
= 2.845

V

b2
.

As an alternative, this stress could be determined by decomposing the shear
force in the two principal directions of inertia. However the volume of compu-
tation would be substantially larger, since it would be necessary to compute
the principal moments and directions of inertia and two shearing stresses (one
for each plane of bending).

VIII.11. Determine the position of the shear centre in the cross-section rep-
resented in Fig. VIII.3-a.

Resolution

As seen in example VIII.3, the stresses caused by the shear force in the cross-
section are given by the expression

τ =
V

πer
(1 − cos α) .

The position of the shear centre on the symmetry axis may be obtained by
the equivalence condition of the moments of the shearing stresses and of the
shear force with respect to any point of the cross-section’s plane. The point
which leads to the simplest expressions is the centre of the cross-section. In
this case, we have

M =
∫ 2π

0

r × τerdα =
V r

π

∫ 2π

0

(1 − cos α) dα = 2V r .

The shearing stress resultant obviously takes the value V (this may easily be
confirmed by evaluating the integral

∫ 2π

0
−τer cos αdα). The moment of the

stresses will be equal to the moment of the shear force if the action axis of V
is at a distance d from the cross-section centre given by the expression

V × d = 2V r ⇒ d = 2r .

Since the cross-section is symmetrical in relation to the horizontal axis passing
through the centre, the shear centre will be on this axis, at a distance 2r from
the centroid, to the left.
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VIII.12. Considering the cross-section defined in example VIII.6, determine
the position of the shear centre:
(a) in the statically determinate base problem (bar with the longi-

tudinal cut, Fig. VIII.6-b);
(b) in the closed cross-section.

s.c. s.c.
d1 d2

d1 = 6π−12
3π+4

r ≈ 0.51022 r d2 = 4π+24
3π2+10π+8

r ≈ 0.52976 r

Fig. VIII.12

Resolution

In order to determine the position of the shear centre, the moment of inertia
must be expressed as a function of the given geometrical data. Considering
that the cross-section is thin-walled, this quantity may be given by the ex-
pression (Fig. VIII.6-b)

I = 2
∫ π

2

0

(r sin φ)2 redφ +
e (2r)3

12
=
(

π

2
+

2
3

)
er3 . (VIII.12-a)

(a) The simplest expression for the moment of the shearing stresses is found if
the centre of the half-circumference defining the centre line of the curved
wall is used as reference point. This moment has a clockwise direction and
takes the value

τ0 =
V r2

I
(1 − cos α) ⇒

∣∣∣∣∣∣
M = 2

∫ π
2

0
r × τerdα

= 2V er4

I

∫ π
2

0
(1 − cos α) dα = V er4

I (π − 2) .

This moment will be equivalent to the moment of the shear force with
respect to the same point if its line of action is at a distance d to the right
of this point, so the following condition is satisfied

V d = M ⇒ V d =
V er4

I
(π − 2) ⇒ d =

er4

I
(π − 2) =

6π − 12
3π + 4

r .

where I has been substituted by (VIII.12-a).
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(b) In the case of the closed cross-section, the procedure is similar, the only
difference being, that the shearing stress in the curved wall is given by
the expression

τ(α) =
V r2

I

(
4

3π + 6
− cos α

)
.

The moment of the stresses with respect to the centre of the half-
circumference, considered as positive in the clockwise direction, is then
given by the expression

M =
2V er4

I

∫ π
2

0

(
4

3π + 6
− cos α

)
= −V er4

I

2π + 12
3π + 6

.

The equivalence condition of the moments of the stresses and the shear
force yields the position of the shear centre

V d = M ⇒ V d = −V er4

I

2π + 12
3π + 6

⇒ d = − 4π + 24
3π2 + 10π + 8

r .

The minus sign means that the shear centre is located to the left of the
reference point.

Figure VIII.12 shows these two cross-sections with their corresponding
shear centres. As mentioned in Footnote 57, the shear flow f computed in
example VIII.6 corresponds to a torsional moment. The relation between the
shear flow and the torsional moment will be studied in Sect. X.3. This relation
is given in (240) and may be written in the form T = 2Af , where A represents
the area limited by the wall’s centre line in the closed cross-section. In the
present case, we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f = V er3

I
3π+2
3π+6

A = πr2

2 ⇒ T = 2 × πr2

2 × V er3

(π
2 + 2

3 )er3
3π+2
3π+6 ≈ 1.03398V r .

I =
(

π
2 + 2

3

)
er3

This torsional moment is equal to V (d1 + d2), that is, it corresponds to the
translation of the shear force from the shear centre of the open cross-section
to the shear center of the closed section.

VIII.13. The cantilever beam represented in Fig. VIII.13-a has a closed cross-
section from A to B and an open cross-section from B to C. The wall
has constant thickness e. The plane of application of the distributed
load p contains the centre line of the web in segment BC of the beam.
Draw the diagram representing the torsional moment of the beam.
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A

B

C 10e

18e

100e

100e

p

Fig. VIII.13-a

+

V

200pe
100pe

A B C −
+

T

900pe2
450pe2

365.878pe2

A
C

Fig. VIII.13-b Fig. VIII.13-c

Resolution

The shear centre of the cross-section in segment AB coincides with the cen-
troid, since the cross-section is doubly symmetric. The distance from the ac-
tion axis of the shear force to the shear centre is 4.5 e. In the case of segment
BC, the position of the shear centre may be computed from (205). In this
case, we have⎧⎨

⎩
h = 17e

b = 9e
⇒ d =

3(
h
b

)2
+ 6h

b

h =
3(

17e
9.5e

)2 + 6 17e
9.5e

17e ≈ 3.65878 e .

The diagram representing the distribution of the shear force is given in Fig.
VIII.13-b. By multiplying the shear force by the distance of its line of action
to the shear centre, a negative torsional moment is obtained for segment AB,
while in part BC it takes a positive value, as represented in Fig. VIII.13-c.

VIII.14. Draw a diagram representing the distribution of torsional moment
in the cantilever beam considered in example VII.11 and represented
in Fig. VII.11-a.

Resolution

The beam has a thin-walled cross-section with straight centre lines converging
in a point, so that this point – the centroid of the rectangle made of material
a – coincides with the shear centre of the cross-section. In fact, the non-
homogeneity of the cross-section does not affect the validity of the line of
reasoning developed for this kind of cross-sections (Fig. 119).
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−

+

−
+

−10000pa3

5000pa3

−5000pa3

5000pa3

+ =

Fig. VIII.14-a, VIII.14-b VIII.14-c

The vertical load p causes a negative torsional moment with the value
Vy × 5a, as represented in Fig. VIII.14-a. The horizontal load P = 500pa2,
induces a constant positive torsional moment with the value P ×10a, which is
shown in Fig. VIII.14-b. By superposing these two diagrams, we get the total
moment given in Fig. VIII.14-c.

VIII.15 Figure VIII.15 represents a thin-walled cross-section made of two ma-
terials a (hatched areas) and b, with the moduli of elasticity Ea = 9E
and Eb = 3E. Determine the position of the shear centre of this
cross-section.

c

c

c
16c

12c

Fig. VIII.15

Resolution

The longitudinal shear force in composite bars under plane bending may be
computed by means of (201). Representing by Sa and Sb the first area mo-
ments contained in (201), we may develop the following expression for the
computation of the shearing stress

τ =
dE

edz
=

V (EaSa + EbSb)
Jne

.

Since the cross-section has a symmetry axis, the shear centre is on this axis and
its position may be obtained by considering a shear force with the direction of
the other principal axis of inertia (a vertical axis in this case). The weighted
moment of inertia, with respect to the horizontal axis takes the value

Jn =
c (16c)3

12
3E + 2 × 12c2 × (8c)2 × 9E = 14848Ec2 .
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The procedure leading to the computation of the position of the shearing stress
resultant from the above indicated expressions for the shearing stress τ and
for the moment of inertia I is exactly the same as that used in the example
described in Sect. VIII.4. The distribution of shearing stress takes the same
form, as indicated in Fig. 118-b. The stress in the angle point between the
web and a flange takes the value (Sa = 12c2 × 8c and Sb = 0)

τ1 =
V × 9E × 12c2 × 8c

14848Ec4 × c
=

27
464

V

c2
≈ 58.190 × 10−3 V

c2
.

As in the case of Fig. 118-b, we compute the difference between the maximum
stress in the web and τ1. This difference is defined by the first area moment
of the half web with respect to the neutral axis, taking the value

τ2 = τmax − τ1 =
V

14848Ec4 × c
8c2 × 4c × 3E =

3
464

V

c2
.

The resultant of the shearing stresses in a flange is equal to the area of the
stress diagram (triangular diagram, Fig. 118-b), multiplied by the thickness
e = c

Rb =
1
2
τ1 × 12c × c =

81
232

V .

The moment of the shearing stresses with respect to one of the angle points
of the wall’s centre line may be computed directly from Rb, yielding

M = Rb × 16c =
162
29

V c .

The resultant of the shearing stresses is equal to the shear force. This fact may
easily be confirmed by computing the stress resultant in the web, Ra, which
is simultaneously the total stress resultant, since the stresses in the flanges
are perpendicular to the shear force

Ra = τ1 × 16c2 +
2
3
τ2 × 16c2 =

(
27
464

× 16 +
2
3

3
464

× 16
)

V = V .

By equating the moment of the stresses to the moment of the shear force, we
get the distance d of the action axis of this force to the centre line of the web,
such that it does not induce torsion. This distance defines the position of the
shear centre (Fig. 118-c)

M = V × d ⇒ 162
29

V c = V d ⇒ d =
162
29

c ≈ 5.5862 c .

VIII.16. In the beam represented in Fig. 85, find the relation between the
maximum values of the stresses σy and σz (162), as a function of the
relation between the height h of the cross-section and the span l.
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Resolution

From the second of (162) we can see that the maximum value of σy occurs
in the points belonging to the upper fibres and that it takes the value −p.
Dividing this value by σz−max (162), we get the relation

σy−max

σz−max
=

−p

ph3

h3
12

[
1
16

(
l
h

)2
+ 1

60

] = − 5
15
4

(
l
h

)2
+ 1

.

In slender members we generally have l ≥ 10h. For l = 10h, σy−max is only
about 1% of σz−max.

VIII.17. Develop expressions for the direct application of the Tresca’s and von
Mises’ yielding criteria to the safety evaluation of slender members.

Resolution

The principal stresses of the stress state in a point of a slender member are
given by the expressions (cf. (38), with σx = σ, σy = 0 and τxy = τ)

σ1 =
σ

2
+

√(σ

2

)2

+ τ2 and σ3 =
σ

2
−
√(σ

2

)2

+ τ2 ,

where σ and τ are the normal and shearing stresses in a point of the cross-
section. Substituting these values in the expression of Tresca’s yielding crite-
rion (104), we get

σ1 − σ3 ≤ σall ⇒
√

σ2 + 4τ2 ≤ σall .

Using the same procedure in relation to von Mises’ yielding criterion (105),
we get (σ2 = 0)√

σ2
1 − σ1σ3 + σ2

3 ≤ σall ⇒
√

σ2 + 3τ2 ≤ σall .

4a

a

5a

a

Fig. VIII.19
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VIII.18. A cantilever beam of length l, carrying a uniformly distributed load
p, is made of two materials, a and b, as depicted in Fig. VII.24. The
two materials have linear elastic behaviour, with elasticity moduli
Ea = 4E and Eb = E. Determine the longitudinal shear force in the
connection between one rectangle of material a and the material b
around it.

VIII.19. Figure VIII.19 represents the cross-section of a cantilever beam of
length 100a. The beam is composed of two bars with rectangular
cross-section, connected as shown in the figure. The beam supports
a vertical, uniformly distributed load p.
(a) What is the longitudinal shear force in the connection between

the two bars?
(b) What should be the position of the plane containing the loading,

so that no torsion takes place?




