
VII

Bending Moment

VII.1 Introduction

As mentioned in Subsect. V.10.c, a prismatic bar under a constant bending
moment is a symmetric problem in relation to any plane containing a cross-
section and, as a consequence, the law of conservation of plane sections is
valid. Therefore, although the axis of a bar under a bending moment does
not remain a straight line – it acquires curvature – the cross-sections remain
plane and perpendicular to the bar axis, provided that the bending moment
is constant.

In the case of a varying bending moment the symmetry is lost not only
because the moments acting in both ends of a piece of bar are different, but
also due to the appearance of a shear force, which is equal to the derivative of
the function describing the bending moment, in relation to a coordinate with
the direction of the bar axis.

However, the stresses induced in a slender member by a constant bend-
ing moment, are not changed if a constant shear force is applied, and are
a very close approximation to the actual stress distribution caused by the
bending moment in the case of a non-constant shear force, as will be seen
later (Sect. VII.7 and Chap. VIII). For these reasons, the stresses induced by
bending are studied by considering a zero shear force, which means a constant
bending moment.

It is usual to distinguish between the following types of bending:

– Pure or circular bending. This type of bending occurs when the only internal
force in the bar is a constant bending moment, i.e., the axial (N) and
shear (V ) forces and the torsional moment (T ) are zero. The designation
of circular bending is suggested by the fact that the deformed axis of the
initially prismatic bar is an arc of circumference, when the bending moment
is constant (a constant moment implies a constant curvature).
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– Non-uniform bending. This designation is normally used for a loading caus-
ing bending moment and shear force, that is, for a non-constant bending
moment. The axial force and the torsional moment are zero.

– Composed bending. This designation is used in this book for a loading caus-
ing bending moment and axial force. The bending moment may be constant
(circular composed bending: M �= 0, N �= 0, V = 0, T = 0) or variable
(non-uniform composed bending: M �= 0, N �= 0, V �= 0, T = 0).

Each of these three types of bending may be sub-divided into plane and
inclined bending. In the first case the plane containing the deformed bar is
parallel to the plane containing the couple of forces which defines the bending
moment. In the second case, the first plane is inclined in relation to the second
one.

VII.2 General Considerations

When a bar is under the action of symmetrical internal forces (constant axial
force and bending moment) the symmetry of the problem leads to the conclu-
sion that the cross-sections remain plane and perpendicular to the bar’s axis,
as seen before. The same symmetry conditions allow the conclusion that the
shearing stress in the cross-section vanishes.1 We may also easily demonstrate
that, if Poisson’s coefficient is constant, the normal and shearing stresses
acting in facets which are perpendicular to the cross-section’s plane vanish
(cf. Sect. VII.6). Here we are considering the geometry of the member de-
fined in relation to a rectangular Cartesian reference frame x, y, z, with axis
z parallel to the bar’s axis. In accordance with these considerations, we will
have a one-dimensional stress state, i.e., a stress tensor with the components
σx = σy = τxy = τxz = τyz = 0 and σz �= 0.

The analysis of the normal stresses in the cross-section (σz �= 0) may
be carried out directly from the law of conservation of plane sections and
equilibrium considerations. To this end, let us consider two cross-sections of
a prismatic bar at an infinitesimal distance l0 from each other. Considering
a reference system with its origin in the centroid of the left cross-section,
the position of the points pertaining to the right section in the deformed
configuration may be defined by the equation of an inclined plane (Fig. 72)

z (x, y) = l0 + a1x + b1y + c1 .

In fact, it is easily demonstrated that, as l0 is an infinitesimal distance, the
displacements in the plane (x, y) are infinitesimal quantities of higher order,
as compared with the displacements in direction z, so they may be neglected.

1If there were any shearing stresses, they would be represented by vectors with
opposite directions in the end sections of a small piece of bar, which is not compatible
with the complete symmetry of the problem in relation to the middle cross-section
of any piece of the bar.
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The strain εz at the point of the cross-section defined by the coordinates
x and y is then

εz (x, y) =
l − l0

l0
=

z − l0
l0

=
a1

l0
x +

b1

l0
y +

c1

l0
. (138)

The validity of this expression does not depend on the rheological be-
haviour of the material of which the bar is made, since it depends directly
on the law of conservation of plane sections. The application of the law of
conservation of plane sections reduces to three (a1, b1 and c1) the number
of parameters needed to define completely the relative motion of two cross-
sections at an infinitesimal distance from each other. As this is exactly the
number of equilibrium conditions which may be established for a system of
parallel forces in a three-dimensional space (the stresses σz) the problem of
computation of the stresses induced by the bending moment becomes stati-
cally determinate. If the bar is homogeneous and is made of a material with
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Fig. 72. Relative motion of two cross-sections in the bending deformation:
original configuration; —— deformed configuration

linear elastic behaviour, we have σx = σy = 0, as mentioned above. Therefore,
the normal stress in the cross-section, σz, may be obtained by means of the
one-dimensional Hooke’s law, σ = Eε2

σ = σz = Eεz = ax + by + c with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a =
a1

l0
E

b =
b1

l0
E

c =
c1

l0
E .

The constants a, b and c may be obtained by means of the aforementioned
equilibrium conditions. Considering the components Mx and My of the bend-
ing moment as positive when they take the direction defined by a positive
(tensile) stress acting in a point with positive x and y coordinates, we get

2In this expression and in the following account the index z is omitted (σ = σz),
since σz is the only normal stress which needs to be considered in the theory of
bending.
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⎪⎪⎩

N =
∫
Ω

σdΩ =
∫
Ω

(ax + by + c) dΩ = cΩ

Mx =
∫
Ω

σydΩ =
∫
Ω

(
axy + by2 + cy

)
dΩ = aIxy + bIx

My =
∫
Ω

σxdΩ =
∫
Ω

(
ax2 + bxy + cx

)
dΩ = aIy + bIxy .

(139)

The first area moments
∫
Ω

xdΩ and
∫
Ω

ydΩ vanish, since the axes x and y
pass through the centroid of the cross-section. The quantities Ix =

∫
Ω

y2 dΩ,
Iy =

∫
Ω

x2 dΩ and Ixy =
∫
Ω

xydΩ are the moments and the product of inertia
with respect to the central x and y axes. Solving this system of equations, we
get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a =
MyIx − MxIxy

IxIy − I2
xy

b =
MxIy − MyIxy

IxIy − I2
xy

c =
N

Ω

⇒ σ =
MyIx − MxIxy

IxIy − I2
xy

x +
MxIy − MyIxy

IxIy − I2
xy

y +
N

Ω
.

(140)
This expression furnishes the stresses induced in the cross-section of a homoge-
neous prismatic member, made of a material with a linear elastic constitutive
law, under the action of a bending moment and an axial force. It is important
to note that the validity of this expression is not restricted to infinitesimal
relative rotations of the cross-sections (i.e., to an infinitesimal curvature of
the deformed member), since it was not necessary to use this approximation
to deduce (140).

The analysis of the different types of bending referred to in Sect. VII.1
could be performed from (140), by particularizing it to the different cases,
namely pure or composed and plane or inclined bending. However, in order
to make the physical understanding easier, we expound the bending theory
in the opposite sequence, i.e., we start with the most simple case (pure plane
bending) and progressively generalize the conclusions to more complex cases.
Equation (140) will however still be used for some particular problems. The
last part of this chapter contains some problems where (140) is not valid:
prismatic members made of two materials with linear elastic behaviour, and
members made of materials with nonlinear behaviour in particularly simple
cases.

In order to systematize the exposition of the theory of bending, some
frequently used concepts are first defined:

– action axis of the bending moment: axis defined in the plane of the cross-
section which is perpendicular to the vector representation of the bending
moment (moments are usually represented by double-headed arrows); an
equivalent definition is the intersection of the cross-section plane with the
plane containing the couple of forces which defines the bending moment;
this axis is simply called action axis, if it is not necessary to distinguish it
from the action axis of the shear force;
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– action axis of the shear force: line of action of the shear force acting on the
cross-section;3

– fibre: prism with an infinitesimal cross-section area (dΩ) with its axis par-
allel to the axis of the slender member;

– neutral axis: axis of rotation of a cross-section in relation to another, in-
finitesimally close, cross-section, in the deformation caused by the bending
moment (and by the axial force in the case of composed bending); this name
(neutral) comes from the fact, that the normal stress vanishes in the points
of the cross-section belonging to this axis, since there is no elongation of
the fibres passing through it; if the axial force is zero, or takes a sufficiently
small value, the neutral axis divides the cross-section in compression and
tension zones;

– neutral surface: surface defined by the points contained in the neutral axes
of the cross-sections in the deformed member; it is also the surface defined
by the fibres which do not suffer elongation or shortening (neutral fibres);

– deflection curve: line defining the shape of the bar’s axis after the deforma-
tion; it may or may not be contained in a plane;

– deflection plane: plane containing the deflection curve; if this curve is not
contained in a plane, the deflection plane varies along the deflection curve
and is defined in an infinitesimal axis’ length; this plane is perpendicular to
the neutral axis.

VII.3 Pure Plane Bending

A prismatic bar is said to be under pure plane bending if the bending moment
is constant and there is no axial force (pure bending) and the deflection plane is
perpendicular to the vector representing the bending moment (plane bending).
In this case, the cross-section rotates around an axis parallel to this vector,
which means that the action axis of the bending moment is perpendicular to
the neutral axis. This kind of bending takes place, for example, in a bar whose
cross-section has a symmetry axis, if the action axis coincides with that axis,
as represented in Fig. 73.

In the deformation of the bar, the neutral fibre AB did not change its
length l. As the bending moment is constant, the curvature of the deflec-
tion curve is also constant, which means that this curve has the shape of
a circumference arc. The angle ϕ, defining the relative rotation of the end
cross-sections, may be related to the curvature radius ρ by the expression

ρϕ = l ⇒ ϕ =
l

ρ
. (141)

3If the forces causing the non-uniform bending are all in the same plane and are
perpendicular to the axis of the bar, this plane may be called plane of actions. In
this case, the action axes of the bending moment and the shear force coincide with
the intersection of the plane of actions and the cross-section plane.
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Fibre CD, located at a distance y from the neutral axis, suffers a strain, which
may be related to the curvature 1

ρ by the expression (Fig. 73)

∆l = ϕ (ρ + y) − ϕρ = ϕy =
l

ρ
y ⇒ ε =

∆l

l
=

1
ρ
y . (142)

This relation between the curvature 1
ρ and the strain at the point defined by

coordinate y has been obtained directly by means of geometrical considera-
tions based of the law of conservation of plane sections. It is therefore valid
independently of the rheological properties of the material of the bar. Nor is
its validity limited by the size of the deformations.
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Fig. 73. Plane circular bending of a bar with a symmetric cross-section

If the bar is homogeneous and is made of a material with linear elastic
behaviour, the stress may be found using the one-dimensional Hooke’s law

σ = Eε =
Ey

ρ
. (143)

The position of the neutral axis is obtained by the condition of equilibrium
of the normal forces to the cross-section. As the axial force is zero, the resultant
of the normal stresses must vanish. This condition yields∫

Ω

σdΩ = 0 ⇒
∫

Ω

Ey

ρ
dΩ = 0 ⇒

∫
Ω

ydΩ = 0 . (144)

This integral represents the first area moment of the cross-section with
respect to the neutral axis (the distance y is defined in relation to this axis).
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As this moment is zero, the neutral axis must pass through the centroid of
the cross-section.

The resulting moment of the stresses acting in the cross-section must be
equal to the bending moment M . From this condition, a relation between the
curvature and the bending moment may be obtained

M =
∫

Ω

σydΩ =
E

ρ

∫
Ω

y2 dΩ ⇒ 1
ρ

=
M

EI
with I =

∫
Ω

y2 dΩ . (145)

In this expression I represents the moment of inertia of the cross-section in
relation to the neutral axis. The quantity EI = dM

d( 1
ρ ) is called the bending

stiffness, since it relates the amount of bending deformation (the curvature)
to the internal force causing it (the bending moment).

By substituting (145) in (143), we get a relation between the stress and
the bending moment

σ =
My

I
. (146)

It is obvious from (143) or (146), that the stress attains its maximum value
at the most distant point from the neutral axis. Denoting this distance by v
(v = |y|max), we get, for the maximum absolute value of the stress in the
cross-section,

|σ|max =
M(
I
v

) . (147)

The quantity
(

I
v

)
, which directly relates the bending moment to the max-

imum stress is called the section modulus. It depends only on the geometry
of the cross-section and allows the direct design of it from a given bending
moment and a given nominal value for strength of the used material.4 If the
maximum allowable stress is the nominal strength of the material, σall, the
section modulus must obey the design condition

σmax ≤ σall ⇒
(

I

v

)
≥ M

σall

.

For two reasons the part of the cross-section which is close to the neutral
axis plays a very small role in the resistance to the bending moment:

– the stress at a given point of the cross-section is proportional to the distance
to the neutral axis (146); if the highest allowable stress is installed in the
farthest fibres, in the points which are close to the neutral axis the stress
will be proportionally lower, which means that the material is only used in
a small part of its loading capacity;
4Usually the design problem is indeterminate, i.e., there is an infinite number of

solutions which obey the design condition represented by the maximum acting stress.
In the present case (as in the case of the axial force) the geometrical component of
the cross-section’s strength may be defined by only one parameter, which means
that it may be directly computed from this design condition.
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– the contribution of a given stress to the resistance to the bending moment
depends on the distance to the neutral axis, since the moment of the stress
increases with the distance to that axis; in fact, if the distance between the
lines of action of the tensile and compressive stress resultants increases, the
moment of the couple formed by these two forces also increases.5

For these reasons, from the point of view of economizing material, it is bet-
ter if the cross-section has a shape with as little material as possible placed
in the neighbourhood of the neutral axis. This may be achieved by increasing
the height of the cross-section (taken as the dimension perpendicular to the
neutral axis) or by giving it an appropriate form, such as an I-shape. In the
first case the height increase may be limited by a maximum allowable size (for
architectural reasons for example, in the case of Civil Engineering construc-
tions), or by the possibility of structural instability caused by the compressive
stresses (lateral buckling), if the width/height ratio is too small. In the second
case, the minimum thickness of the vertical element of the I-shaped section
(the web) may be imposed for stability reasons in the compressed zone as
well, or by the shearing stresses caused by a shear force, as it will be seen
later (Chap. VIII). Considering, for example, a rectangular cross-section and
an I-beam, the section moduli, expressed in terms of the section’s height h
and the cross-section’s area Ω are, respectively, (see example VII.5)(

I

v

)
=

bh2

6
≈ 0.167Ωh and

(
I

v

)
≈ 0.33Ωh .

We conclude that, for the same area and the same height, the bending
strength of the beam with the I-shaped cross-section is approximately twice
the strength of the beam with rectangular cross-section.

VII.4 Pure Inclined Bending

In the general case of an action axis which is not a symmetry axis of the
cross-section the angle between the neutral axis and the action axis is not
known a priori. In order to analyse this more general case, let us consider the
cross-section represented in Fig. 74, under the action of a bending moment M
with a vertical action axis.

The law of conservation of plane sections leads to the conclusion that, in
exactly the same way, as in the case of plane bending, the stress is proportional
to the distance to the neutral axis, as defined by (143). The condition of
equilibrium of the forces acting in the axial direction (z), used in the plane

5This conclusion becomes more obvious, if the stress does not vary with the
distance to the neutral axis, as happens in the case of materials with elastic perfectly
plastic behaviour, when the yielding strain is exceeded. This kind of problems is
introduced in Sect. VII.10.c (see example VII.26).
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Fig. 74. Inclined bending of a bar without symmetry axes

bending case, is valid in exactly the same way for inclined bending, leading
to the conclusion that the neutral axis passes through the centroid C of the
cross-section (Fig. 74), as expressed by (144).

As in plane bending, we may establish a relation between the curvature
of the deformed bar and the bending moment by means of the equilibrium
condition of the moments around the neutral axis. This condition and (143)
yield

M sin θ =
∫

Ω

σydΩ =
EIn

ρ
⇒ 1

ρ
=

M

EIθ
with Iθ =

In

sin θ
, (148)

where In represents the moment of inertia of the cross-section in relation to
the neutral axis. The curvature may be eliminated from this expression by
substituting (148) in (143), yielding

σ =
My

Iθ
. (149)

The orientation of the neutral axis i.e., the angle θ between the action and
neutral axes, is still unknown. In order to define it, the condition of equilibrium
of moments around the action axis may be used. Since the moment of the
stresses in relation to this axis must vanish, using (143) we get∫

Ω

σxdΩ = 0 ⇒ E

ρ

∫
Ω

xydΩ = 0 ⇒ Ixy = 0 ,

where Ixy =
∫
Ω

xydΩ is the product of inertia with respect to the action and
neutral axes. The condition Ixy = 0 means that those axes are conjugate in
relation to the ellipse of inertia of the point defined by its intersection.

If the action axis is displaced, remaining parallel to the original position,
the product of inertia does not change. In fact, denoting the translation of the
axis by a, the product of inertia considering the new position of the action
axis is given by
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Ω

(x + a) ydΩ = Ixy + aSn = 0 ,

where Sn =
∫
Ω

ydΩ. This integral represents the first area moment of the
cross-section in relation to the neutral axis. This quantity vanishes, since the
neutral axis passes through the section’s centroid. As the product of inertia
with respect to the neutral axis and any axis parallel to the action axis is zero,
we may conclude that the action and neutral axis are conjugate in relation to
the centroidal ellipse of inertia.

The conjugate of a principal axis of inertia is the other principal axis.6

Thus, we may conclude that bending will be plane, if the action axis is parallel
to a principal centroidal axis. If the two principal moments of inertia have the
same value, any axis passing through the centroid of the cross-section is a
principal axis, which means that in bars with such cross-sections the bending
is always plane. A square cross-section is an example of this kind of section.7

The angle θ could be obtained from the equation defined by Ixy = 0, by ex-
pressing Ixy as a function of θ. However, in most cases the principal moments
of inertia and the corresponding principal directions are easily computed or
may be obtained from tables with the geometrical characteristics of current
cross-sections. For this reason, the inclined bending is usually analysed by de-
composing the vector representing the bending moment (the moment vector)
in the centroidal principal directions of inertia, as represented in Fig. 75. In
this way, the inclined bending may be analysed as the superposition of two
cases of plane bending. In fact, as the moment vector is perpendicular to the
action axis, the bending will be plane, if this vector has the direction of a cen-
troidal principal direction of inertia. Another possibility for the computation
of the stresses in inclined bending is the use of non-principal reference axes
(140).

Considering the separate action of the principal bending moments Mx and
My, the stress acting in the point defined by the coordinate pair (x, y) is given
by the expression

σ =
Mx

Ix
y − My

Iy
x = M

(
cos α

Ix
y − sin α

Iy
x

)
. (150)

The minus sign appearing in the stress caused by My results from the
fact, that a bending moment My, positive when it has the same direction as

6Principal axes are two perpendicular axes, in respect of which the product of
inertia is zero. Principal axes and principal directions of the inertial tensor are
computed in the same way as the principal stresses and directions of the stress
tensor, in the two-dimensional case. If the cross-section has a symmetry axis, it is
one of the principal centroidal axes.

7These considerations are only valid if the material has a linear elastic behaviour.
However, if the cross-section is symmetric in relation to the action axis, the bending
will be plane, regardless of the linearity or nonlinearity of the material behaviour.



VII.4 Pure Inclined Bending 199

x

β

a.a.

Mx

α

M

C

My

y

n.a.

θ

Fig. 75. Decomposition of inclined bending in two cases of plane bending

axis y, causes compression (negative stresses) in the points with a positive
x-coordinate.8 Since in the points belonging to the neutral axis the stress
vanishes, the condition σ = 0 may be used to obtain its position, yielding

σ = 0 ⇒ y = x
Ix

Iy
tan α = x tan β with tan β =

Ix

Iy
tan α . (151)

From this expression we see that, if Ix > Iy then β > α, i.e., in the
inclined bending the neutral axis deviates from the perpendicular direction to
the action axis, rotating in the direction of the principal axis with the smallest
moment of inertia. In other words, the neutral axis is between the moment
vector M and the principal axis with the smallest moment of inertia.

The maximum stress obviously occurs in the farthest point from the neu-
tral axis. In many usual cross-sections, such as I-beams, C-channels, rectan-
gular sections, etc., it is possible to identify those points without having to
compute the orientation of the neutral axis. These cross-sections are particu-
lar cases of shapes with a rectangular convex contour and a symmetry axis.
In this kind of sections, the farthest point from the neutral axis is one of
the corners, which is also one of the farthest points in the two possible cases
of plane bending (M = Mx and M = My). In these cases, the maximum
absolute value of the normal stress may be obtained directly from the two
section moduli in plane bending, i.e., by adding the maximum stresses caused
by Mx and My

|σ|max =
|Mx|(

I
v

)
x

+
|My|(

I
v

)
y

. (152)

8This expression may also be obtained be particularizing (140) for pure bending
(N = 0) and the principal axes of inertia (Ixy = 0). In this case, the minus sign does
not appear, since, in the sign convention used in Sect. VII.2, the positive direction
of My coincides with the negative direction of axis y.
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In other types of cross-section, such as a curved contour or polygonal
sections with a larger number of sides, the position of the farthest point is
often not obvious, which means that the orientation of the neutral axis must
be computed, in order to identify the farthest point from the neutral axis
(151).

The total deformation may also be computed by superposing the curva-
tures around the principal axes x and y. Considering two sections located at
an infinitesimal distance dl from each other, their relative rotations around
axes x and y are (cf. (141) and (145))

dϕx =
Mx dl

EIx
and dϕy =

My dl

EIy
. (153)

These rotations are infinitesimal (even for a large curvature), which mean
that they may be treated as vectors with the directions of axes x and y,
respectively. The resultant vector takes the direction of the neutral axis, as
may be easily confirmed (cf. Fig. 75 and (151))

dϕy

dϕx
=

Ix

Iy

My

Mx
=

Ix

Iy
tan α = tan β .

The curvature of the bar is then given by the expression

dϕ =
√

dϕ2
x + dϕ2

y ⇒ 1
ρ

=
dϕ

dl
=

M

E

√
cos2 α

I2
x

+
sin2 α

I2
y

=
M

EIθ
. (154)

The last equality of this expression results from the two obtained expres-
sions for the curvature, (148) and (154). The analytical proof of this equality
is relatively lengthy, and so it is not presented here (see example VII.9).

As the quantities Mx, My, E, Ix and Iy, contained in (153) do not vary
along the axis of the bar, the integration of dϕ in a length l is straightforward,
yielding the relative rotation of two sections located at a distance l from each
other

ϕ =
∫

l

dϕ =
Ml

E

√
cos2 α

I2
x

+
sin2 α

I2
y

=
Ml

EIθ
.

It should be stressed that the validity of this expression is not restricted
to infinitesimal rotations, i.e., it is valid for any value of the rotation ϕ.

VII.5 Composed Circular Bending

Let us consider a prismatic bar under the action of forces whose resultant
is parallel to the axis of the bar. As seen in Sect. VI.1, if the line of action
of this resultant passes through the centroid of the cross-section, the axis of
the bar remains a straight line, which means that the bar is under pure axial
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Fig. 76. Bending moments caused by an eccentric tensile axial force

loading. If that does not happen, additional bending takes place. The bending
moment is given by the product of the axial force and the distance of its line
of action to the centroid of the cross-section. The action axis is in this case
the line joining the centroid to the point where the line of action of the axial
force intersects the cross-section’s plane. In the following description this point
is called the pressure centre. We therefore have circular composed bending,
since M �= 0, N �= 0, V = 0 and T = 0. This problem is usually analysed by
superposition of the effects of the bending moment and the axial force. In the
case of inclined bending the moment is decomposed in the principal axes of
inertia of the cross-section, as shown in Fig. 76.

The stress acting in a point with coordinates (x, y) may be obtained by
adding the stresses caused by the axial force N and by the bending moments
Mx = Ny0 and My = −Nx0 (Fig. 76). Taking (150) into consideration, we
get9

σ =
N

Ω
+

Ny0y

Ix
+

Nx0x

Iy
=

N

Ω

(
1 +

y0y

i2x
+

x0x

i2y

)
, (155)

where ix and iy represent the radii of gyration with respect to the principal
axis x and y (Ix = Ω i2x and Iy = Ω i2y). The position of the neutral axis may
be obtained by the condition of zero stresses, yielding

σ = 0 ⇒ 1 +
y0y

i2x
+

x0x

i2y
= 0 ⇒

⎧⎨
⎩

x = 0 ⇒ y = y1 = − i2x
y0

y = 0 ⇒ x = x1 = − i2y
x0

.
(156)

The position of the neutral axis may be defined by the coordinates of the
points where it intersects the principal axes of inertia (0, y1) and (x1, 0).

9This expression may also be determined by particularizing (140) to principal
axes of inertia (Ixy = 0). The sign convention used for the bending moments does
not play any role, since the eccentric axial force F is directly related to the stress.
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VII.5.a The Core of a Cross-Section

In composed bending the neutral axis does not pass through the centroid,
since there the stress corresponding to the axial force N is installed, as may
easily be confirmed by making x = y = 0 in (155). From (156) we con-
clude that the distance of the neutral axis to the centroid increases when
the coordinates of the pressure centre, x0 and y0 decrease, and vice versa.
In the limit case, x0 = 0 and y0 = 0, which corresponds to M = 0, that
distance is infinite. These considerations are illustrated in the example in
Fig. 77.

When the pressure centre is sufficiently close to the centroid, the neutral
axis does not intersect the cross-section, which means the the stresses are all
tensile, or all compressive. This region around the centroid, where the pressure
centre is located, when the neutral axis does not intersect the cross-section,
is called the core of the cross-section. If the pressure centre is on the core’s
border, the neutral axis is tangent to the cross-section, as in example 3 of
Fig. 77.

The determination of the cross-section core is important in the cases where
a single linear elastic constitutive law for tensile and compressive stresses is
not acceptable. This happens frequently with brittle materials, as for example,
concrete, stone, soil, etc., and also in contact interfaces which are only resistant
to compressive stresses. In these cases, (155) is only valid if the pressure centre
is in the core of the cross-section, since otherwise tensile and compressive
stresses will appear. This also applies to the material, whose constitutive law
is shown in Fig. 78.

The core’s limits may be directly computed from (156), by determining
the position of the pressure centre which corresponds to a neutral axis that
is tangent to the cross-section, and repeating this procedure for a sufficiently

z

core

1 2 3 4

N N N N

1

2

3

4

Fig. 77. Stress distribution in the cross-section of a prismatic bar, for different
values of the eccentricity of the axial force N
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σ

ε

Fig. 78. Material with different linear elastic behaviour for tensile and compressive
stresses

high number of pressure centres to define the core with acceptable precision.
This technique is useful in the case of a cross-section with a curved boundary.

In the case of a polygonal border, it is more convenient to use another
technique, which is based on the reciprocity of (155) in relation to the coor-
dinates of the pressure centre (x0, y0) and of a generic point (x, y). In fact,
we see immediately from (155) that applying an axial force N on the point
with the coordinates (x0, y0), we get in the point with coordinates (x, y) the
same stress that would be caused on point (x0, y0) by the same axial force
applied on point (x, y), since the interchange of the roles of x with x0 and
of y with y0 does not change the result.10 Therefore, if the axial force is at
first applied on (x0, y0) and the position of the corresponding neutral axis is
computed and, subsequently, the load is applied on different points of this
axis, neutral axes will be obtained, which will contain point (x0, y0). Thus, we
may conclude that the displacement of the pressure centre along a straight
line causes a rotation of the corresponding neutral axis around a point. This
point corresponds to the pressure centre, whose neutral axis is that straight
line.

The core of a polygonal cross-section may be determined by considering
a pressure centre on a corner of the cross-section contour and computing
the position of the corresponding neutral axis. Pressure centres located on a
segment of this axis correspond to neutral axes passing through the corner
of the cross-section contour, which do not intersect the cross-section. That
line segment is therefore on the limit of the core. By repeating this procedure
for all corners the complete core is obtained (Fig. 79-a). Another possibility
consists of using the inverse procedure: given a neutral axis joining two corners
of the section’s contour, the corresponding pressure centre is a corner of the
core.

It is obvious that, in the case of a cross-section whose boundary is not
completely convex, the tangents to the boundary at the concavities cannot be
used to define the core, since they intersect the cross-section. In this kind of

10This is a particular case of the Theorem of Maxwell, which is studied in
Chap. XII.
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(a) (b)
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A

Fig. 79. Determination of the core of a cross-section: (a) polygonal cross-section
boundary; (b) curved cross-section boundary

section the shape of the core is defined by the shape of the convex contour, as
represented in Fig. 79-b. The corner A corresponds to the straight part of the
convex contour (line aa). For this reason, the core of an I-beam has the same
shape (but not the same dimensions) as a rectangular cross-section (Fig. 80).

Fig. 80. Core shapes of some usual cross-sections

VII.6 Deformation in the Cross-Section Plane

In order to study the deformation of a cross-section in its plane, let us consider
a piece of a prismatic bar whose end sections are sufficiently far from the
points of application of the loading to accept the validity of the Saint-Venant
principle. If the bar is under circular bending (with or without axial force),
the strain distribution in the cross-section is defined by (142), i.e., it is linear,
as represented in Fig. 81. Since the validity of what follows is not limited to
materials with linear elastic behaviour, we may consider the more general case
of a nonlinear stress distribution (Fig. 81).

If we now consider the cross-section divided in narrow strips which are
perpendicular to the neutral axis and have an infinitesimal width, these strips
may be considered as rectangles under composed circular plane bending. We
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N
M

e.n. G
M

N

ε
σ

Fig. 81. Piece of a prismatic bar under composed circular bending

should now stress the fact that the division of the cross-section into strips
does not change the bending analysis presented above. The only additional
consideration is that the stresses σx, σy and τxy, which are admitted to vanish,
without this being demonstrated (Sect. VII.1), are actually zero in the cross-
section divided into strips, since no stresses are applied in its lateral faces,
and in the facets parallel to the neutral surface the normal stresses are like-
wise zero, as there are no lateral forces applied in the piece of the bar under
consideration.11

The transversal strain of a strip εt may be related to the longitudinal strain
in the fibre’s direction ε by means of the Poisson coefficient ν, yielding

εt = −νε = −ν

ρ
y .

During the deformation the sides of the strips remain straight, but not
parallel, since the transversal strain is proportional to the distance to the
neutral axis, provided that the Poisson’s coefficient is constant. The angle α
between the sides of the strip may be related to the curvature of the bar
1
ρ . The previous expression and the geometrical considerations depicted in
Fig. 82 yield the expression

α

2
=

1
2

dxεt

y
⇒ α = −ν

ρ
dx . (157)

The displacement δy of the points of the strip in the direction perpendic-
ular to the neutral axis may also be obtained from εt, and are given by the
expression

δy =
∫ y

0

εt dy = −ν

ρ

y2

2
.

11There will be normal stresses in these facets, in the case of a large curvature
introduced by bending. These stresses are the radial stresses which equilibrate the
longitudinal stresses acting on the fibres when they acquire curvature. These stresses
may, however, be neglected for small values of the curvature.
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Since the sides of the strip remain straight and since the displacement δy

only depends on the distance y (this means that δy is equal on both sides
of the line dividing two contiguous strips), the strips may be assembled after
the deformation, reconstructing the bar without any kind of discontinuities,
which means that the deformations represented by the previous expressions
are compatible. We may therefore conclude that the stresses σx, σy and τxy

also vanish in the undivided bar.

dx

n.a.

y

dx

ρt

dx(1 + εt)

α

Fig. 82. Transversal deformation of a strip of infinitesimal width and perpendicular
to the neutral axis

From Fig. 82 we conclude that, on assembling the deformed strips, the
neutral axis is transformed into a circumference arc, whose curvature 1

ρt
may

be obtained from (157), yielding

ρtα = dx ⇒ 1
ρt

=
α

dx
= −ν

1
ρ

.

The neutral surface therefore has an anticlastic shape, i.e., it has opposite
curvatures in the cross-section plane and in the deflection plane (saddle shape),
as represented in Fig. 83 for a bar with rectangular cross-section.

The considerations established in the present section are based only on
the law of conservation of plane sections and on a constant value for Poisson’s
coefficient. Thus, we may consider as demonstrated the statement made in
Sect. VII.2 without demonstration that the normal and shearing stresses act-
ing in facets which are perpendicular to the cross-section plane vanish if the
Poisson coefficient is constant. If this coefficient is not constant, as happens
in prismatic bars made of two or more materials, or when plastic deforma-
tions take place (cf. Sect. V.3), compatibility conditions for the transversal
deformations should be taken into account in the computation of stresses and
deformations.

However, these compatibility conditions are usually not considered in the
bending analysis of bars with a non-constant Poisson’s coefficient. In order to
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ρ

ρt

neutral surface

Fig. 83. Deformation caused by a positive bending moment in a bar with rectangular
cross-section

get an idea about the importance of the error introduced by this approxima-
tion, let us consider the bending of the composite bar represented in Fig. 84.
This bar is made of alternate thin layers of two isotropic materials, a and b,
which have the same modulus of elasticity E, but different Poisson’s coeffi-
cients, νa and νb. The layers all have the same thickness.

material a

material b

x

y

z
M

Fig. 84. Composite bar made of two isotropic materials

As the elasticity moduli of the two materials are equal, the solution ob-
tained for the pure plane bending of homogeneous materials is valid, if the
transversal compatibility conditions are not considered (143) and (145)

1
ρ

=
M

EI
⇒ aσz = bσz =

Ey

ρ
.

If the thickness of the layers is very small in relation to the section’s
dimensions, we may accept that the strain εy is the same in both materials.
Besides, as the thickness is the same in all layers, the condition of equilibrium
in direction y leads to the conclusion that the stresses σy are equal and have
opposite signs in the two materials ( aσy = − bσy). For simplicity, only the
extreme case of having the minimum value of the Poisson coefficient in one
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material (νa = 0) and the maximum value in the other (νb = 0.5), is analysed
here. The stress-strain relations in the two materials are then (cf. (74))⎧⎪⎪⎪⎨

⎪⎪⎪⎩
εz =

y

ρ
=

aσz

E

εy =
aσy

E

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aσz =
Ey

ρ

aσy = Eεy

(158)

for material a, and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εz =
y

ρ
=

1
E

(
bσz − 1

2
bσy

)

εy =
1
E

(
bσy − 1

2
bσz

) ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bσz =
4
3

Ey

ρ
+

2
3
Eεy

bσy =
2
3

Ey

ρ
+

4
3
Eεy

for material b.
The strain εy may be obtained from these expressions and the equilibrium

condition in direction y, yielding the stress bσz as function of the curvature

aσy = − bσy ⇒ εy = −2
7

y

ρ
⇒ bσz =

8
7

Ey

ρ
. (159)

The moment-curvature relation may be obtained from the condition of
equilibrium of moments and from the expressions relating the stresses in the
two materials with the curvature (158) and (159), yielding

M =
∫

Ω
2

aσzydΩ +
∫

Ω
2

bσzydΩ

=
∫

Ω
2

Ey2

ρ
dΩ +

∫
Ω
2

8
7

Ey2

ρ
dΩ ⇒ 1

ρ
=

14
15

M

EI
.

(160)

Substituting this value in (158) and (159), we get

aσz =
14
15

My

I
≈ 0.933

My

I
and bσz =

16
15

My

I
≈ 1.067

My

I
. (161)

From (160) and (161) we conclude that an error of about 6.7% is intro-
duced into both the computation of the stresses and into the curvature, if
the conditions of deformation compatibility in the cross-section plane are not
taken into account. However, it should be remembered that this analysis was
made for an extreme case (νa = 0, νb = 0.5). In current materials the error
will be smaller. Taking the more usual values νa = 0.15 and νb = 0.30, for
example, a similar analysis shows that the values of the errors decrease to
0.6% in the computation of the curvature and to 1.8% in the computation of
the stresses.12

12In the development of (133) and (134) (stresses induced by the axial force in
composite bars) the compatibility conditions of the deformations in the cross-section



VII.7 Influence of a Non-Constant Shear Force 209

VII.7 Influence of a Non-Constant Shear Force

As referred in Sect. VII.1, the stresses computed for the case of pure bending
are not changed if a constant shear force is applied. However, in the case of
a non-uniform shear force distribution, the stresses computed assuming pure
bending are no more an exact description of the actual stress distribution.

In order to get an idea about the importance of the error affecting the com-
putation of the normal stresses, when the expressions developed for circular
bending are applied to a bar under a non-constant shear force, we compare
the results obtained thereby, with the exact solution of a simple problem,
given by the Theory of Elasticity. Let us therefore consider the prismatic bar
with a rectangular cross-section, under a uniformly distributed loading p, as
represented in Fig. 85. The cross-section has a height h and a width b, which
is small compared with h, so that the stress distribution may be assumed as
plane. The solution of this problem is given by the functions describing the
elements of the stress tensor in plane yz [4]

σz =
pz (l − z)

2
y

I
+

p

2I

(
2
3
y3 − h2

10
y

)

σy = − p

2I

(
1
3
y3 − h2

4
y +

1
12

h3

)

τyz = p

(
l

2
− z

)
1
2I

(
h2

4
− y2

)
.

(162)

In the expression of σz the first term coincides with the solution given in
(146), since M = pz(l−z)

2 . Therefore, the second term, which depends only on
y, represents the error introduced when the stress is computed by means of
(146). It may be easily demonstrated, by making ∂σz

∂z = 0 and ∂σz

∂y = 0, that
the maximum value of σz occurs in the extreme fibres of the cross-section
(z = l

2 , y = ±h
2 ), if l >

√
0.4h. From the first of (162) we get⎧⎪⎪⎨

⎪⎪⎩
y = h

2

z = l
2

⇒ σz = σz−max =
ph3

I

(
α2

16
+

1
60

)
with α =

l

h
. (163)

The error introduced by (146) (σmax−approx = Mmaxh
2I = ph3

I
α2

16 ), may then
be expressed by the relation between 1

60 and α2

16 . This relation depends only
on the value of α. In slender members we usually have l ≥ 10h. For α = 10
the second term is only 0.27% of the first one. We conclude therefore that the
error introduced by (146) is negligible in this case.

plane were also not considered, so that an error with the same order of magnitude
should be expected (see Footnote 29).
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Fig. 85. Beam under a uniformly distributed load

VII.8 Non-Prismatic Members

VII.8.a Introduction

In the same way as in the study of the axial force, the error introduced, when
the expressions developed for prismatic members are applied to bars with
a non-constant cross-section or with a curved axis, is here investigated by
comparing exact solutions given by the Theory of Elasticity with the approxi-
mate solutions obtained from the theory of prismatic members in very simple
examples.

VII.8.b Slender Members with Variable Cross-Section

As an example of a bar with a non-constant cross-section, the wedge-shaped
element with a rectangular cross-section (Fig. 68) is considered again. The
force P is now perpendicular to the bar’s axis (Fig. 86), so that it causes a
bending moment Pr in the cross-section at the distance r of the point of
application of the load.

The solution of the Theory of Elasticity is obtained by using polar coor-
dinates (r and θ, Fig. 86) and it shows that in a cylindrical section at the

P

r

α

θ

A

A

Fig. 86. Stresses caused by bending in a wedge shaped bar
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distance r from the vertex the shearing stress vanishes and the radial stress13

is given by the expression [4]

σr =
2

α − sin α

P sin θ

br
. (164)

The maximum stress for a given value of r occurs for the maximum value
of θ, θ = α

2 . The theory of prismatic members gives, for the same points, the
stress σmax−p (cross-section AA′ → h = 2r sin α

2 , M = Pr cos α
2 , (147))

I

v
=

bh2

6
=

2
3
br2 sin2 α

2
⇒ σmax−p =

M
I
v

=
P

br

3
2

cos α
2

sin2 α
2

.

The error affecting this approximate expression may be defined by the re-
lation between the maximum stress obtained from (164), σr−max, and σmax−p,
which leads to

σr−max

σmax−p

=
4
3

sin3 α
2

(α − sin α) cos α
2

.

We verify that the error depends only only α and takes the value

α 10◦ 20◦ 30◦ 45◦ 60◦

σr−max/σmax−p 1.0015 1.0062 1.0141 1.0331 1.0622
error 0.15% 0.62% 1.41% 3.31% 6.22%

We conclude that, for low values of angle α, the error is very small.
The Theory of Elasticity yields also a solution, if the force P is substituted

by a moment M . In this case, the stress distribution is not purely radial, since
the shearing stress τrθ does not vanish. The solution is given by the expressions
(M has a counterclockwise direction)

σr =
2M

sin α − α cos α

sin 2θ

br2

σθ = 0

τrθ = − M

sin α − α cos α

cos 2θ − cos α

br2
.

We verify that the shearing stress attains a maximum for θ = 0 and that,
for values of θmax under 45◦ (α ≤ 90◦), the maximum normal stress occurs at
the fibres farthest from the neutral axis and takes the value

θ = θmax =
α

2
⇒ σr = σr−max =

1
br2

2M sin α

sin α − α cos α
=

M

br2

2
1 − α

tan α

.

(165)

13It may easily be verified, by evaluating the integral
∫ α

2
− α

2
σrbr sin θdθ , that the

vertical component of the radial stress balances the load P .
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This is the maximum principal stress of the stress tensor in point A (τrθ = 0
for θ = α

2 ). The solution of the theory of prismatic members for the same point
is

σmax−p =
M(
I
v

) =
M

br2

1
2
3 sin2 α

2

.

In the same way as in the previous case, the error introduced by the
approximate solution σmax−p may be expressed by the relation

σr−max

σmax−p

=
4
3

sin2 α
2

1 − α
tan α

.

As in the previous case, the error depends only on α and takes the values

α 10◦ 20◦ 30◦ 45◦ 60◦

σr−max/σmax−p 0.9954 0.9818 0.9594 0.9099 0.8430
error 0.46% 1.82% 4.06% 9.01% 15.70%

.

The error is larger than in the case of the bending moment introduced by
the load P but it is also small for low values of α. Besides, as in this case the
approximate solution overestimates the actual value of the stress, the error is
advantageous for the safety of the structure.

VII.8.c Slender Members with Curved Axis

The errors introduced by the theory of bending for prismatic members, when
this is applied to slender members with a curved axis, are studied by compar-
ing the approximate solution given by (147) with the exact solution furnished
by the Theory of Elasticity in a curved bar with a circular axis and rectangular
cross-section, under a constant bending moment, as represented in Fig. 87.

M σi

σ

rm

e
M

Fig. 87. Stresses introduced by bending in a curved bar
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The maximum stress occurs in the extreme fibres of the concave side (σi,
Fig. 87) and takes the value [4] (b is the cross-section width)

σmax = σi =
6M

be2

4α3 − 4α2β
(
1 + α + α2

4

)
3β2

(
4 − 2α2 + α2

4

)− 12α2
with

{
α = e

rm

β = ln 2+α
2−α .

As the approximate solution given by (147) is in this case σi−approx = 6M
be2 ,

the error depends only on the relation α between the dimension e of the bar
and the mean radius of curvature rm and may be expressed by the relation

γ =
σi

σi−approx
=

4α3 − 4α2β
(
1 + α + α2

4

)
3β2

(
4 − 2α2 + α2

4

)− 12α2
.

The application of the theory of bending developed for prismatic bars to
this curved bar thus leads to the errors

α 0.01 0.05 0.1 0.2 0.3 0.4
γ 1.00335 1.0170 1.0345 1.0717 1.112 1.155

error 0.335% 1.7% 3.45% 7.17% 11.2% 15.5%
.

Generalizing, we may conclude from these values that, for curved bars
where the dimension of the cross-section in the plane containing the axis
of the bar exceeds 0.1 times the mean radius of curvature of the bar, the
expressions developed for prismatic bars may lead to considerable errors in
the computation of bending stresses.

When the parameter α exceeds that value, a bending theory developed by
Winkler [8] for curved bars may be used. This theory, although it is based on
a simplifying hypothesis – it neglects the effect of the radial stresses (normal
stresses acting in facets perpendicular to the curvature radius) – gives results
which are very close to the solution furnished by the Theory of Elasticity. The
theory of Winkler is also based on the law of conservation of plane sections,
but, contrary to the theory of prismatic members, it considers the different
initial length of the fibers (the fibres close to the concave face are considerably
shorter than the outside fibres). As a consequence of this difference in the
initial length of the fibers, the strain and stress distribution is not linear, even
though the elongation is proportional to the distance to the neutral axis, but
takes a form which is similar to the diagram represented in Fig. 87.

VII.9 Bending of Composite Members

The stresses and deformations induced by a bending moment in a prismatic
bar made of more than one material (composite members) are analysed here
for the simplest case of a bar made of two materials with linear elastic be-
haviour. The deformation compatibility conditions in the cross-section plane
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are not taken into consideration. As a consequence, the theory described here
will lead to a small error in the computation of stresses and curvature if the
Poisson coefficients of the two materials are different, as seen in Sect. VII.6.
This error is not sufficiently high, however, to affect the practical application
of the theory.

The law of conservation of plane sections is still valid, since the symmetry
conditions used to demonstrate it (cf. Sect. V.10.c) are not affected by the fact
that the bar is not homogeneous, provided that the distribution of the two
materials in the cross-section is constant. The strain is therefore proportional
to the distance to the neutral axis and the strain-curvature relation is still
given by (142). Neglecting the stresses acting in facets perpendicular to the
cross-section (in accordance with the considerations above), the stresses in the
two materials may be related to the curvature of the bar by the expressions

ε =
y

ρ
⇒

⎧⎨
⎩

σa = Eay
ρ

σb = Eby
ρ ,

(166)

where Ea and Eb are the elasticity moduli of the two materials and y is the
distance of the point under consideration to the neutral axis. We consider here
the more general case of inclined bending, as represented in Fig. 88.

As the axial force is zero, the resultant of the normal stresses must vanish.
This condition is expressed by the relation∫

Ω

σdΩ = 0 ⇒ Ea

∫
Ωa

ydΩa + Eb

∫
Ωb

ydΩb = 0 . (167)

This expression represents the first moment of the areas occupied by each
material in the cross-section, with the moment of each area weighted with the
modulus of elasticity of the corresponding material, in relation to the neutral
axis. Since this moment must vanish, we conclude that the neutral axis passes
through the centroid of the cross-section, computed by weighting the first area
moment of each material with the corresponding modulus of elasticity.

The moment of the stresses in relation to the neutral axis must be equal
to the applied bending moment. This condition leads to the expression

M sin θ =
∫

Ω

σydΩ =
1
ρ
Jn with Jn = Ea

∫
Ωa

y2 dΩa + Eb

∫
Ωb

y2 dΩb .

(168)
Jn is the moment of inertia of the cross-section in relation to the neutral

axis, computed by weighting the moment of inertia of the area occupied by
each material with the corresponding elasticity modulus. The curvature and
the stresses introduced into the bar by the bending moment may be obtained
from (168) and (166), yielding

1
ρ

=
M

Jθ
⇒

⎧⎨
⎩

σa = MEa

Jθ
y

σb = MEb

Jθ
y

with Jθ =
Jn

sin θ
. (169)
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material b

Fig. 88. Circular inclined bending of a prismatic bar made of two materials

The bending stiffness is obviously defined by Jθ. The moment of the
stresses in relation to the action axis must vanish. This condition leads to
the relation∫

Ω

σxdΩ = 0 ⇒ Ea

∫
Ωa

xydΩa + Eb

∫
Ωb

xydΩb = 0 . (170)

This expression states that the weighted product of inertia with respect to
the action and neutral axes vanishes. From this, we conclude, by establishing
the same considerations as in the case of the inclined bending of homogeneous
bars (Sect. VII.4), that the action and neutral axes are conjugate in relation
to the central ellipse of inertia, if the centroid’s position and the moments and
product of inertia are computed weighting the areas of each material with the
corresponding modulus of elasticity. Thus, plane bending will take place if
the action axis is parallel to one of principal directions of inertia, computed
with weighting. In the same way as in the homogeneous bars, the moment
vector may be decomposed in the principal directions of inertia, allowing the
inclined bending to be treated as the superposition of two cases of plane
bending (Fig. 75).

In the practical applications we often deal with cross-sections with a sym-
metry axis and with a plane contact surface between the two materials that
is either parallel or perpendicular to the symmetry axis. In these cases the
concept of homogenization may be useful. This concept allows the composite
cross-section to be treated as homogeneous. In order to introduce it, let us
divide (167) by Ea and put this quantity in evidence in the expression of Jn

(168). For simplicity, let us assume plane bending (θ = 90◦). We get∫
Ωa

ydΩa + ma

∫
Ωb

ydΩb = 0

M =
1
ρ
EaIha ⇒ 1

ρ
=

M

EaIha

∣∣∣∣∣∣∣∣∣∣

with:

ma =
Eb

Ea
and

Iha =
∫

Ωa

y2 dΩa + ma

∫
Ωb

y2 dΩb ,

(171)
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where ma is the homogenizing coefficient of material b in material a. Equa-
tions 171 show that, changing the cross-section’s shape and dimensions, so
that the area of material b is multiplied by a factor ma, without altering the
distances to the neutral axis, i.e., by multiplying the dimensions which are
parallel to the neutral axis by ma, the resulting cross-section may be analysed
as homogeneous and made of material a when computing the centroid’s posi-
tion and the curvature caused by the bending moment. The stress in material
a may also be computed using the same expression as in the case of a ho-
mogeneous bar. Only for the computation of the stress in material b must
the homogenizing coefficient be used, as we conclude from (169) (θ = 90◦ ⇒
Jθ = Jn)

σa =
MEa

Jn
y =

MEa

EaIha
y =

My

Iha
and σb =

MEb

Jn
y =

MEb

EaIha
y = ma

My

Iha
.

Obviously, the cross-section could also be homogenized in material b, as
depicted in Fig. 89. In the case of inclined bending, the geometry of the
homogenized section is different for the two principal directions, as exemplified
in Fig. 90.

As in the case of homogeneous cross-sections, principal directions of inertia
x and y may be defined whose orientation is computed from the weighted
moments of inertia and the weighted product of inertia with respect to two
orthogonal axes originating in the centroid of the weighted cross-section (see
example VII.12). From (169) we easily conclude that the stresses in inclined
bending may be computed from the components of the bending moment in
the principal directions of inertia, Mx and My, by the expressions⎧⎪⎪⎨
⎪⎪⎩

σa = MxEa

Jx
y − MyEa

Jy
x

σb = MxEb

Jx
y − MyEb

Jy
x

with

⎧⎨
⎩

Jx = Ea

∫
Ωa

y2 dΩa + Eb

∫
Ωb

y2 dΩb

Jy = Ea

∫
Ωa

x2 dΩa + Eb

∫
Ωb

x2 dΩb .

(172)
The curvature of the bar may be computed by superposition of the curva-

tures around the principal axes, as in the case of the homogeneous members
(154)

1
ρ

=

√(
1
ρx

)2

+
(

1
ρy

)2

=

√
M2

x

J2
x

+
M2

y

J2
y

. (173)

The equation of the neutral axis may be obtained from any of the condi-
tions σa = 0 or σb = 0, yielding y = Jx

Jy

My

Mx
x.

VII.9.a Linear Analysis of Symmetrical Reinforced Concrete
Cross-Sections

When analysing reinforced concrete structural elements we generally neglect
the tensile strength, since concrete has a much higher resistance to compressive
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Fig. 89. Homogenization of a composite cross-section
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Fig. 90. Homogenization in inclined bending

than to tensile stresses, so that it is usually considered that these stresses are
resisted only by the steel bars. In the linear analysis of concrete structures, we
admit that the stress is proportional to the strain, as represented in Fig. 91.14

Looking at this diagram we can immediately see that the above theory for
composite bars is not directly applicable, since the stress-strain relation is
not defined by the same linear law in tension and compression. However, as
the internal tensile forces are supported by the steel bars, this difficulty may
be circumvented by considering only the compressed concrete as active. This
procedure raises the order of the equation to be solved to compute the position
of the section’s centroid. In the case of a cross-section that is symmetrical

14Practical design and safety evaluation of reinforced concrete slender members
are currently done by computing the failure bending moment. Under these condi-
tions, a linear stress-strain relation for the concrete is not admissible (see Subsect.
VII.10.d). Therefore, the present analysis is only intended to be an example of the
application of the theory of composite prismatic bars. However, in high strength
concrete, the stress-strain relation remains very close to a straight line almost until
rupture (Fig. 91), and so the better the concrete quality, the better the approxi-
mation of this analysis. The curvature of a bar under service loads may also be
computed, by considering a linear law.
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low strength
concrete

high strength
concrete

σ

ε

Fig. 91. Admitted stress-strain relation for concrete (solid line)

with respect to the action axis, the bending is always plane, regardless of
the material behaviour (see footnote 40). This means that the neutral axis
is perpendicular to the action axis and that the condition N = 0 suffices to
compute the position of the neutral axis.

In order to illustrate these considerations, the expressions needed to com-
pute the stresses and curvature caused by plane bending in a rectangular
cross-section are developed. The simplest case of having only one layer of
steel bars is considered (Fig. 92).

Denoting the areas of steel and concrete by Ωs and Ωc respectively, the
position of the neutral axis may be obtained from 167, yielding

EsΩs (1 − k) h = Ec bkh︸︷︷︸
Ωc

kh

2
⇒ k2 = 2 (1 − k) λ

⇒ k = −λ +
√

λ2 + 2λ with λ =
Es

Ec

Ωs

bh
.

(174)

The weighted moment of inertia of the cross-section in relation to the neutral
axis is given by the expression (cf. (168))

Jn = EsΩs (1 − k)2 h2 + Ec
b (kh)3

3
.

Using the first of (174), two other forms may be given to this expression

Jn = EsΩsh
2 (1 − k)

(
1 − 1

3
k

)

Jn =
1
2
Ecbh

3k2

(
1 − 1

3
k

)
.

The stress in the steel and the maximum stress in the concrete may then
be obtained by substituting these values of Jn in (169)
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Fig. 92. Reinforced concrete cross-section under a positive bending moment

⎧⎨
⎩

σs = MEs(1−k)h
Jn

= M
ZΩs

σc−max = MEckh
Jn

= 2M
Zkbh

with Z =
(

1 − 1
3
k

)
h .

Z is the arm of the couple of forces defined by the resultant of the compressive
stresses in the concrete, Rc, and by the resultant of the tensile forces in the
steel, Rs, (Fig. 92). The curvature of the bar may be computed from any of
the above expressions given for Jn, since 1

ρ = M
Jn

.
The superposition principle may be applied to this problem, only if the

active cross-section remains the same. Thus, the effects of two positive bending
moments with parallel action axes may be superposed, but not the effects of
a horizontal and a vertical bending moment. This is because of the lack of
complete linearity of the constitutive law considered for the concrete. As a
consequence, the analysis of inclined bending is more complicated and cannot
be performed on the basis of the bending theory for composite beams described
above.

VII.10 Nonlinear bending

VII.10.a Introduction

When the rheological behaviour of the material is not linear, there is no pro-
portionality of stresses and strains and the system of equations obtained from
the equilibrium conditions (139) is no longer linear, although the strain dis-
tribution remains linear owing to the law of conservation of plane sections
(138). In the most general case, the computation of the stresses caused by
a bending moment and an axial force in a prismatic bar made of a ma-
terial, whose one-dimensional constitutive law is described by the function
σ = f(ε) = f (ax + by + c)15 requires the solution of the system of equations

15We still assume that the stresses in facets perpendicular to the cross-section are
zero (see SectionVII.6).
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⎪⎪⎪⎪⎪⎪⎪⎩

N =
∫

Ω

σdΩ =
∫

Ω

f (ax + by + c) dΩ

Mx =
∫

Ω

σydΩ =
∫

Ω

f (ax + by + c) ydΩ

My =
∫

Ω

σxdΩ =
∫

Ω

f (ax + by + c) xdΩ .

(175)

The degree of complexity of these equations depends on the shape of the
cross-section and on the function f (ε). The system of equations may admit
more than one set of solutions (a, b, c) or be impossible. On the other hand, the
computation of the set of internal forces, N , Mx and My which corresponds
to a given deformation, defined by a set of parameters a, b, and c, is always a
determinate problem, as (175) shows.16

From these considerations, we can see at once that nonlinear bending is
a very wide field. The detailed general analysis of this kind of problems goes
beyond the scope of this book, and so only some particularly simple cases are
explained.

VII.10.b Nonlinear Elastic Bending

As an example of bending in a nonlinear elastic regime, let us consider a rec-
tangular cross-section under pure plane bending (action axis coinciding with
a symmetry axis of the cross-section) made of a material with the constitutive
law which is schematically represented in Fig. 93.

Since the compressive and tensile stress-strain relations may be different,
the neutral axis generally does not pass through the centroid of the cross-
section. Its position may be determined from the condition N = 0, as in the
linear case, yielding (y1 and y2 are defined in absolute value, Fig. 94)

∫
Ω

σdΩ = 0 ⇒

⎧⎪⎨
⎪⎩
∫ y2

−y1

σbdy = 0

y = ρε

⇒
∫ 0

ε1

σ (ε) dε = −
∫ ε2

0

σ (ε) dε . (176)

From (176) we conclude that the neutral axis must take a position which
leads to equal compressive and tensile areas defined by the used region of the
stress-strain diagram (A1 = A2, Fig. 94). As the shape of this diagram may
not be the same in tension and compression, the position of the neutral axis is
not independent of the magnitude of the bending moment, i.e., it may change
as the moment increases.

16This conclusion is valid for most of the problems of Solid Mechanics. The com-
putation of the internal forces corresponding to a given set of displacements is always
a determinate problem, while the inverse problem is often not determinate. For this
reason, the generalization of the displacement method to nonlinear problems is much
easier than in the case of the force method.
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Fig. 93. Nonlinear elastic behaviour

y1

y2

b

n.a.

y
dy

dΩ = bdy

ε1

ε2

σ1

A1

yG2

yG1

A2

σ2

Fig. 94. Bending in nonlinear elastic regime

The bending moment corresponding to the curvature 1
ρ = ε

y (142) may be
computed in two steps: first y1 and y2 are obtained from the curvature, which
can be done by computing the difference between the maximum (tensile) and
minimum (compressive) strains

ε2 − ε1 =
y2

ρ
+

y1

ρ
=

h

ρ

and computing the values of ε1 and ε2 which lead to A1 = A2; the correspond-
ing bending moment may then by computed by the expression{

y1 = −ρε1

y2 = ρε2

⇒ M =
∫

Ω

σydΩ = b

∫ y2

−y1

σydy = A1b yG1 + A2b yG2 = A1b (yG1 + yG2) .

In this expression yG1 and yG2 represent the distances from the neutral
axis of the centroids of the areas defined by the stress-strain diagram in com-
pression and in tension, respectively, as represented in Fig. 94.

VII.10.c Bending in Elasto-Plastic Regime

If the yielding strain of a ductile material is exceeded, the stress-strain relation
becomes non-linear, which means that the linear bending theory is not valid
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anymore. Furthermore the material behaviour becomes different for loading
and unloading. The analysis of this kind of problem is described in detail here
for the example of the elasto-plastic plane bending of a bar with a rectangular
cross-section, made of a material with elastic perfectly plastic behaviour (Fig.
61). In the last part of this Sub-section, the plastic analysis of cross-sections
with one or two symmetry axes under plane bending is described.

Considering the rectangular cross-section represented in Fig. 95, we con-
clude that the neutral axis divides the cross-section in two equal parts, since
the material behaviour is the same for compressive and tensile stresses.

n.a.

b

h

ε −σY

σY

(a)

he

−σY

σY

(b)

−σY

σY

(c)

Fig. 95. Plane bending of a rectangular cross-section in the elasto-plastic regime

If the bending moment exceeds the value corresponding to the yielding
strain in the fibres farthest from the neutral axis (Fig. 95-a), which is the
highest possible bending moment in the elastic phase, the fibres undergoing
more strain yield and the bar enters in the elasto-plastic regime (Fig. 95-b).
In this phase, the relation between the bending moment and the curvature
may be obtained from the strain in the fibres which are still under elastic
deformation. With he being the height of the part of the section still under
elastic deformations (Fig. 95-b), this quantity may be related to the curvature
by the expression

y =
he

2
⇒ ε = εY =

1
ρ

he

2
⇒ he = 2ρεY =

2ρσY

E
. (177)

The moment of the stresses with respect to the neutral axis must be equal
to the bending moment. From this condition, a relation between the bending
moment M and he may be obtained

M =
b

4
σY

(
h2 − h2

e

3

)
⇒ M = Me

[
3
2
− 1

2

(
he

h

)2
]

with Me =
bh2

6
σY .

(178)
Substituting, in (178), he with the value given by (177), the relation be-

tween the curvature and the bending moment is obtained
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1
ρ

=
2σY

hE

1√
3 − 2 M

Me

with M ≥ Me . (179)

From this expression we conclude that the curvature 1
ρ goes to infinity, as

the bending moment M goes to 3
2Me. The maximum bending moment sup-

ported by the bar is therefore 1.5 times the maximum bending moment in
the elastic regime Me, i.e., Mp = 1.5Me. Mp represents the yielding bending
moment. It corresponds to the limit case represented in Fig. 95-c, as may be
easily verified by making he = 0 in (178). The relation between the yield-
ing bending moment Mp and the maximum bending moment in the elastic
regime Me is called the shape factor of the cross-section ϕ = Mp

Me
. Thus, in a

rectangular cross-section, we have ϕ = 1.5.
Let us now consider non-rectangular cross-sections with a symmetry axis.

If the action axis is parallel to this axis we will have plane bending. The same
happens if the action axis is perpendicular to the symmetry axis. In fact, as the
material has the same behaviour in tension and compression, the neutral axis
will be the symmetry axis, since, under these conditions, the moment of the
stresses in relation to the action axis will vanish, as required by the equilibrium
conditions (see Sect. VII.4). A general elasto-plastic analysis of any of these
cases is, however, substantially more complex than the rectangular case, since
the width of the cross-section is not constant.

Anyway, the most important issue in elasto-plastic analysis is the compu-
tation of the yielding bending moment Mp, also called the plastic moment.
This problem is substantially simpler than the computation of the moment-
curvature relation in the elasto-plastic phase, since only the limit case of
having a constant tensile or compressive stress σY (yielding stress) on each
side of the neutral axis needs to be analysed. Considering the symmetrical
cross-section represented in Fig. 96, the condition of equilibrium of the forces
acting in the direction of the bar’s axis leads to the relation

σY Ω1 − σY Ω2 = 0 ⇒ Ω1 = Ω2 =
Ω
2

.

n.a.

a.a.

Ω2

Ω1

yG2

yG1

−σY

σY

Ω2σY

yG2

yG1

Ω1σY

Fig. 96. Fully plastified symmetrical cross-section
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Thus, the neutral axis divides the cross-section into two equal areas, which
means that it will generally not pass through the centroid, unless it is a
symmetry axis. The plastic moment Mp is equal to the moment of the stresses
with respect to the neutral axis, taking the value below (yG1 and yG2 are the
distances from the centroids of the tensioned and compressed zones of the
cross-section to the neutral axis)

Mp =
∫

Ω

σydΩ = σY

∫
Ω

|y|dΩ = Ω1 σY yG1+Ω2 σY yG2 =
Ω
2

(yG1 + yG2) σY .

(180)
The quantity Z = Mp

σ
Y

= Ω
2 (yG1 + yG2) depends only on the geometry of

the cross-section and is called the plastic section modulus or simply plastic
modulus. The shape factor may be obtained from Z and the elastic section
modulus

(
I
v

)
, ϕ = Mp

Me
= Z

( I
v ) . In the following Table, the shape factors of

some current symmetrical cross-sections are indicated.

Cross-section shape factor – ϕ

rectangle 1.5

isosceles triangle 2.343

rhombus 2

circle 1.7

I-beam ≈1.15

channel ≈1.2

From these examples we conclude that, the less specialized the section for
the resistance to the bending moment, the higher its shape factor. This is due
to the fact that such sections have more material in the region around the
centroid, whose contribution to the bending strength is not exhausted until
the cross-section is totally plastified.

Plastification is a gradual process which, from a theoretical point of view,
is only finished for an infinite curvature of the bar, as seen above. However,
when the height of the elastic zone is small, we may consider the cross-section
as totally plastified, since in that case the contribution of the elastic zone
to the resistance to the bending moment is very small. The curvature may
then be increased practically without any increase in the bending moment,
i.e., yielding of the entire cross-section takes place. In this case, we say that
a plastic hinge has been formed. In Fig. 97 the formation process of such a
hinge is schematically represented.

If the bar is unloaded after the maximum bending moment in the elas-
tic phase is exceeded, the internal stresses do not disappear totally, since the
material behaves elastically in the unloading process (Fig. 61) and some resid-
ual deformation is left in the fibres where the yielding strain was exceeded.
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Fig. 97. Formation of a plastic hinge: (a) elastic phase; (b) elasto-plastic phase;
(c) plastic phase

M −M (M ≤ 2Me)

σre

he

Fig. 98. Residual stresses after unloading in the elasto-plastic regime

The unloading may be understood as the application of a bending moment
with the same magnitude and opposite direction. In terms of stresses, the
unloading corresponds to the superposition of a linear elastic diagram on the
elasto-plastic diagram resulting from the loading, as represented in Fig. 98.

The unloading bending moment will cause yielding of the fibres farthest
from the neutral axis, only if the bending moment in the elastic phase exceeds
twice the maximum bending moment in the elastic phase. In fact, after yielding
under a tensile stress, a stress decrease of 2σY is needed to cause yielding under
compressive stress and vice versa in compression (Fig. 61). Obviously, this is
only possible if the cross-section has a shape factor greater than 2, which does
not happen in cross-sections used currently to absorb bending moments, as
seen above.17

17This line of reasoning is only accurate if there is no displacement of the neutral
axis in the elasto-plastic deformation, i.e., if the neutral axis is a symmetry axis. If
it is not, the stress may not decrease in the unloading in part of the fibres located
close to the neutral axis. However, in usual cross-sections the displacement of the
neutral axis is small and the stresses in the region where it occurs are low, so that the
error introduced by this procedure will be small, if any. Anyway, this error would be
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The residual curvature of the bar may be computed from the residual
stress in the fibres where yielding did not take place in the unloading. Thus,
we have

ε =
1
ρ
y ⇒ 1

ρ
=

ε

y
=

2σre

Ehe
. (181)

As an alternative, if the curvature in the loading phase has been com-
puted, the residual curvature may be computed by superposing the curvature
recovered in the unloading on it. As the latter is elastic, we have(

1
ρ

)
residual

=
(

1
ρ

)
loading

− M

EI
. (182)

It should be noted that this operation is valid regardless of the size of the
displacements and rotations caused by the deformation, since it is the addition
of two angles (the curvature is the relative rotation, measured in radians, of
two cross-sections at a unit distance from each other). In fact, the results
given by (181) and (182) are exactly the same (see example VII.13).

VII.10.d Ultimate Bending Strength
of Reinforced Concrete Members

As a final example of the application of the nonlinear bending theory, the
ultimate bending strength of a reinforced concrete member, with a rectan-
gular cross-section is computed. The cross-section of the bar is the same as
considered in Sect. VII.9. In this example, the rheological behaviour of steel
and concrete recommended in the Portuguese concrete norms is used: the
steel is considered as elastic perfectly plastic and to have a limit strain of
0.01; the one-dimensional constitutive law for the concrete is described by
a parabola for smaller strains (0 < ε < 0.002), followed by a yielding zone
(0.002 < ε < 0.0035), as represented in Fig. 99.18

The limit bending moment is reached when the steel reaches a strain of
0.01, or when the maximum strain in the concrete reaches 0.0035. In ac-
cordance with the above defined constitutive laws, there are four analytical
possibilities of ultimate bending strength, which are:19

immediately detected, since it would lead to larger stresses than the yielding stress
σY .

18In the recent European standards (Eurocode 2) different constitutive laws are
recommended. Among other differences, the limit strains both for the steel and for
the concrete vary with the type of material: for example, high strength concrete has
a lower limit strain. For the steel, either an elastic perfectly plastic or a hardening
elasto-plastic behaviour may be considered, with no limiting value for the strain in
the first case. The constitutive law for concrete is described by a unique curve, which
includes a softening zone.

19In these expressions and the ones that follow, we consider the compressive
stresses and strains in the concrete as positive.
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Fig. 99. Stress-strain diagram used in the computation of the ultimate strength of
concrete elements

steel failure︷ ︸︸ ︷{
εs = 0.01
εc ≤ 0.002

{
εs = 0.01

0.002 ≤ εc ≤ 0.0035

concrete failure︷ ︸︸ ︷{
εs ≤ σY

Es

εc = 0.0035

{ σY

Es
≤ εs ≤ 0.01

εc = 0.0035 .

As an example, only the fourth possibility is analysed, i.e., the case of
having the ultimate strain in the concrete and the steel in the yielding zone.20

Under these conditions, the tensile force borne by the steel is Ns = ΩsσY ,
where σY is the nominal value of the yielding stress and Ωs is the area of
steel in the cross-section. Representing the position of the neutral axis by its
distance from the upper side of the cross-section kh (with 0 ≤ k ≤ 1), from
the equilibrium condition of the stress resultants we get

2
3

2
3.5

bkhσrc︸ ︷︷ ︸
Nc13(parabola)

+

Nc23(rectangle)︷ ︸︸ ︷
1.5
3.5

bkhσrc = ΩsσY︸ ︷︷ ︸
Ns

⇒ k =
17
21

Ωs

bh

σY

σrc

.

The strain in the steel may then be computed from this value. The analysis
will be valid if

σY

Es
≤ εs = 0.0035

1 − k

k
≤ 0.01 . (183)

The ultimate bending moment may then be obtained by computing the
moment of the stresses with respect to the neutral axis

M = Ns (1 − kh) + Nc1
5
14

kh + Nc2
11
14

kh with

⎧⎪⎨
⎪⎩

Ns = ΩsσY

Nc1 = 8
21bkhσrc

Nc2 = 3
7bkhσrc .

20In the case of mild reinforcing steel, the yielding zone is about 9
10

of the total
range of strains considered in the stress-strain diagram. For this reason, with the
quantities of steel used in current members, the failure takes place under these
conditions.
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Fig. 100. Limit state of a reinforced concrete rectangular cross-section

The other possibilities of failure may be physically grouped in two. One
occurs in members with a very low amount of reinforcing steel, where the
steel reaches the maximum strain εs = 0.01 before the concrete (εs > 0.01
in (183)). The other possibility occurs in members with a very high amount
of steel, where the maximum strain in the concrete is attained with the steel
in the elastic phase (εs <

σY

Es
). Members with this kind of failure should be

avoided, since the collapse is not preceded by plastic deformations, i.e., it is
a brittle failure, which is not desirable from the point of view of the safety,
as explained in Sect. VI.5. The other failure possibilities could be analysed in
the same way as the situation analysed above, by means of the equilibrium
conditions of the forces acting in the cross-section.

VII.11 Examples and Exercises

VII.1. Determine the bending strength of a bar with a square cross-section,
when the action axis is parallel to:
(a) one of the sides;
(b) one of the diagonals.

Resolution

(a) The moment of inertia of a rectangular cross-section with height h, with
respect to the symmetry axis which is parallel to the base b, is given by
the expression

I =
bh3

12
.

Since the maximum distance to the neutral axis is in this case a
2 , the

section modulus takes the value (b = h = a)

I

v
=

a4

12
a
2

=
a3

6
.
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Denoting by σall the nominal value of the material’s resisting stress, the
resisting bending moment is

Ma
all =

a3

6
σall .

(b) If the action axis is parallel to one of the square’s diagonals, the neutral
axis is the other diagonal. The moment of inertia with respect to this axis
is also I = a4

12 . In fact, in a square, the moment of inertia is the same with
respect to any axis passing through the centroid, since the two principal
moments of inertia are equal. The maximum distance to the neutral axis
is, in this case, v = a√

2
. Thus, the resisting bending moment takes the

value

Mb
all =

I

v
σall =

a4

12
a√
2

σall =
a3

6
√

2
σall =

1√
2
Ma

all ≈ 0.707Ma
all .

VII.2. A tree trunk with circular cross-section of diameter d is to be cut
to a rectangular cross-section of base b and height h. Determine the
dimensions b and h, in order to maximize:
(a) the bending stiffness;
(b) the bending strength.

Resolution

(a) The geometrical parameter which enters into the definition of the bending
stiffness is the moment of inertia. Since the diagonal of the rectangle
cannot exceed the diameter of the trunk d, the moment of inertia may be
expressed as a function of b, yielding (h2 + b2 = d2)

I =
bh3

12
=

b
(
d2 − b2

) 3
2

12
.

The value of b which maximizes I may be obtained from the condition of a
zero derivative in order to b, which gives

dI

db
= 0 ⇒ d2−4b2 = 0 ⇒ b =

d

2
⇒ h =

√
3

2
d ⇒ h

b
=

√
3 ≈ 1.732 .

(b) To obtain the maximum bending strength, the section modulus must be
maximized. The same procedure as before yields

I

v
=

bh2

6
=

b
(
d2 − b2

)
6

;
d
db

(
I

v

)
= 0 ⇒ d2 − 3b2 = 0

⇒ b =
d√
3

⇒ h =
√

2√
3
d ⇒ h

b
=

√
2 ≈ 1.414 .
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VII.3. Compare the section moduli of the three following rectangular cross-
sections with the same area Ω = bh. The action axis is parallel to the
height h.
(a) Base b and height h.
(b) Base b

2 and height 2h.
(c) Base 2b and height h

2 .

VII.4. Wire made of S 235 steel [10] with a circular cross-section of diameter
d is wound around a cylindrical drum for transportation. Determine
the minimum diameter D of the winding needed to avoid residual de-
formation, when the wire is unwound.

Resolution

The wire will not have a residual curvature, if the yielding strain is not ex-
ceeded during the winding process, i.e, if the curvature does not exceed the
value ((142), y = d

2 )

εmax =
1
ρ

d

2
≤ εY ⇒ 1

ρ
≤ 2εY

d
.

The yielding stress of this steel and its modulus of elasticity are σY = 235MPa
and E = 206GPa [10], respectively. Thus, the minimum diameter of the wind-
ing will be

D = 2ρ =
d

εY

=
Ed

σY

=
206 × 109

235 × 106
≈ 877d .

The exact minimum diameter of the drum would be Ddrum = D − d
2 .

VII.5. Express the section modulus and the moment of inertia as functions of
the cross-section area Ω and the height h in the following cross-sections
(the action axis is parallel to the height h):
(a) rectangle of base b and height h;
(b) circle of radius r;
(c) isosceles triangle of base b and height h;
(d) rhombus with a horizontal dimension b and height h;
(e) I-beam INP200 [9];
(f) I-beam HE200B [9].

Resolution

(a) Rectangle

I =
bh3

12
=

1
12

bhh2 =
1
12

Ωh2 ≈ 0.0833Ωh2;
I

v
=

I
h
2

=
1
6
Ωh ≈ 0.1667Ωh .
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(b) Circle

I =
πr4

4
= πr2 (2r)2

16
=

1
16

Ωh2 = 0.0625Ωh2;

I

v
=

I
h
2

= 0.125Ωh .

(c) Triangle

I =
bh3

36
=

1
18

bh

2
h2 =

1
18

Ωh2 ≈ 0.0556Ωh2;

I

v
=

I
2
3h

=
1
12

Ωh ≈ 0.0833Ωh .

(d) Rhombus:

I =
bh3

48
=

1
24

bh

2
h2 =

1
24

Ωh2 ≈ 0.0417Ωh2;

I

v
=

I
h
2

=
1
12

Ωh ≈ 0.0833Ωh .

(e) I-beam INP200 ([9], 7.1.1):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I = 2140cm4

Ω = 33.5cm3

h = 20cm

⇒
⎧⎨
⎩

I = 2140
33.5×202 Ωh2 ≈ 0.1597Ωh2

I
v = I

h
2
≈ 0.3194Ωh .

(f) I-beam HE200B ([9], 7.1.3):⎧⎪⎪⎨
⎪⎪⎩

I = 5696cm4

Ω = 78.1cm3

h = 20cm

⇒
⎧⎨
⎩

I = 5696
78.1×202 Ωh2 ≈ 0.1823Ωh2

I
v = I

h
2
≈ 0.3647Ωh .

From these examples, we conclude that, by choosing cross-sections with less
material in the region around the neutral axis, like the I-beams, both the
bending stiffness and the bending strength are substantially increased, without
there being any need to increase the amount of material (represented by Ω)
or the height of the cross-section.

VII.6. The bar with the square cross-section represented in Fig. VII.6 is made
of a brittle material with linear elastic behaviour until rupture. Deter-
mine the increase that can be obtained in bending strength by cutting
the bar as represented in the Figure.
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b

b

2kb

2b

kb

(1 − k)b

Fig. VII.6

Resolution

Since the material is brittle, rupture takes place for tensile stresses, when
the rupture strain is attained, which causes a crack in a transversal direction
to the fibres. As a consequence of the stress concentration at the tip of the
crack (see Sect. VI.9), it propagates immediately to the whole cross-section
causing the failure of the bar. For this reason, the bending strength can only
be increased by improving the elastic loading capacity, i.e., by improving the
section modulus. The two small symmetrical cuts shown in the Figure reduce
the maximum distance to the neutral axis, v without a great reduction of the
moment of inertia I, which may increase the section modulus I

v .
The moment of inertia of the cross-section with the cuts defined by kb, may

be computed from the expressions for the moment of inertia of a rhombus
(I = bh3

48 ) and of a triangle (I = bh3

36 ) and from the parallel-axis theorem,
yielding (Fig. VII.6)

I =
2b (2b)3

48
− 2

[
2kb (kb)3

36
+

1
2
2kb kb

(
1 − 2

3
k

)2

b2

]

=

[
1
3
− k4

9
− 2k2

(
1 − 2

3
k

)2
]

b4 .

The section modulus takes the value

I

v
=

I

(1 − k) b
=

b3

1 − k

[
1
3
− k4

9
− 2k2

(
1 − 2

3
k

)2
]

.

The value of k which maximizes this quantity may be computed by an-
alytical or numerical means, leading to the conclusion that, for k = 1

9 , the
section modulus attains the maximum value 0.35117b3. Comparing this value
with the section modulus of the original cross-section, we get⎧⎪⎨

⎪⎩
k = 0 ⇒ I

v = b3

3 = 0.33333b3

k = 1
9 ⇒ I

v =
(

I
v

)
max

= 0.35117b3 ⇒
(

I
v

)
max(
I
v

) = 1.0535 .
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We conclude that the cuts can increase the bending strength of the bar by
5.35%.

VII.7. Figure VII.7 represents the cross-section of a bar supporting the indi-
cated bending moment M . Justifying the procedure used, determine
the variation of the failure bending moment, when the top and bottom
small rectangles (top: 2a×4a; bottom: 2×a×4a) are removed, so that
an I-shaped cross-section is obtained, for:

(a) a brittle material with linear elastic behaviour and rupture stress σr;
(b) a ductile material with elastic perfectly plastic behaviour with yielding

stress σY .

2a

4a

4a

aa

4a

4a

20a

15a15a

M

Fig. VII.7

Resolution

(a) In the case of a brittle material with linear elastic behaviour until rupture,
the relation between the ultimate bending moments, with and without the
small rectangles, coincides with the relation between the section moduli
in the two situations. In the case of the original section (Fig. VII.7), the
moment of inertia and the section modulus are given by the expressions

I1 =
2a(36a)3

12
+

30a(28a)3

12
− 30a(20a)3

12
= 42656a4

⇒
(

I

v

)
1

=
42656a4

18a
=

21328
9

a3 ≈ 2369.78a3 .

In the case of the cross-section without the small rectangles, the same
quantities take the values

I2 =
32a(28a)3

12
− 30a(20a)3

12
=

115616a4

3
≈ 38538.67a4

⇒
(

I

v

)
2

=
115616a4

3

14a
≈ 2752.76a3 .

The relation between the section moduli in the two situations is then
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I
v

)
2(

I
v

)
1

≈ 1.16161 .

We conclude that the removal of the small rectangles increases the ultimate
bending strength by 16%

(b) In the case of a ductile material with elastic perfectly plastic behaviour,
the relation between the ultimate bending moments is given by the rela-
tion between the plastic section moduli. In the original cross-section (Fig.
VII.7) this quantity takes the value

Z1 = 2 × (18a × 2a × 9a + 30a × 4a × 12a) = 3528a3 .

The removal of the small rectangles causes a fall in the plastic section modulus,
which corresponds to the first moment of the removed area

Z2 = Z1 − 2 × 2a × 4a × 16a = 3272a3 .

The relation between the plastic section moduli in the two situations is then

Z2

Z1
=

3272a3

3528a3
≈ 0.92744 ,

which represents a reduction in the ultimate strength of 7.256%.

VII.8. A bar with a rectangular cross-section with the dimensions b× 2b sup-
ports a bending moment whose action axis is vertical and makes an
angle of 45◦ with the symmetry axis of the rectangle. Determine:

(a) the maximum stress in the cross-section;
(b) the position of the neutral axis;
(c) the curvature of the bar.
(d) Compare the answers to questions a) and c), with the corresponding quan-

tities obtained when the bar is rotated so that the action axis becomes
parallel to the larger sides of the rectangle.

Resolution

(a) Since we have a cross-section which has a rectangular convex contour with
a symmetry axis, (152) may be used to compute the maximum stress. To
this end, it is necessary to compute the following quantities (axis y is
parallel to the largest side of the rectangle)

(
I

v

)
x

=
bh2

6
=

b (2b)2

6
=

2
3
b3

(
I

v

)
y

=
hb2

6
=

2bb2

6
=

1
3
b3

Mx = M cos α =
√

2
2

M My = M sin α =
√

2
2

M .
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Substituting these values in (152), we get

σmax =

√
2

2 M
2
3b3

+

√
2

2 M
1
3b3

=
9
√

2
4

M

b3
≈ 3.182

M

b3
.

(b) The position of the neutral axis is defined by angle β, which may be
obtained by means of (151), yielding

tan β =
Ix

Iy
tan 45◦ =

b(2b)3

12
2bb3

12

= 4 ⇒ β = arctan(4) ≈ 75.96◦ .

We conclude that the deflection plane makes an angle of 75.96◦ − 45◦ =
30.96◦ with the vertical plane

(c) The curvature may be computed by means of (154), yielding

1
ρ

=
M

E

√√√√√ 1
2[

b(2b)3

12

]2 +
1
2(

2bb3

12

)2 ≈ 4.373
M

b4E
.

(d) If the cross-section is rotated so that the larger sides of the rectangle
become vertical, the maximum stress and the curvature take the values

σmax =
M
2
3b3

= 1.5
M

b3

(
instead of 3.182

M

b3

)

1
ρ

=
M

E b(2b)3

12

= 1.5
M

b4E

(
instead of 4.373

M

b4E

)
.

VII.9. Demonstrate the last equality of (154).

Resolution

The last equality of (154) is equivalent to the expression

sin2 θ

I2
n

=
cos2 α

I2
x

+
sin2 α

I2
y

, (a)

since we have Iθ = In

sin θ (148). Equality (a) may be demonstrated on the basis
of the following expressions

tan α =
Iy

Ix
tan β ( 151) (b)

θ =
π

2
− β + α (Fig. 75) (c)

In = Ix cos2 β + Iy sin2 β (d)

sin2 α =
tan2 α

1 + tan2 α
(e)

cos2 α =
1

1 + tan2 α
(f)

sin (a + b) = sin a cos b + cos a sin b (g) .
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Substituting sin2 α and cos2 α in the second term of (a) by (e) and (f),
respectively, and using (b), we may establish the relation

cos2 α

I2
x

+
sin2 α

I2
y

=
1

I2
x cos2 β + I2

y sin2 β
. (h)

By means of (g), we may express sin θ as a function of angles α and β,
yielding

sin θ = sin
[(π

2
− β

)
+ α

]
= cos α (cos β + sin β tan α)

= cos α

(
cos β + sinβ

Iy

Ix
tan β

)
.

Using this expression, the first term of (a) may be transformed, so that it
is expressed in terms of Ix, Iy and β

sin2 θ

I2
n

= cos2 α

(
cos β + sinβ

Iy

Ix
tan β

)2

I2
n

=

cos2 α︷ ︸︸ ︷
1

1 + I2
y

I2
x

tan2 β

cos2 β + 2
Iy

Ix
sin2 β +

I2
y

I2
x

sin4 β

cos2 β

I2
n

=
1
I2
n

I2
n( d)︷ ︸︸ ︷

I2
x cos4 β + 2IxIy sin2 β cos2 β + I2

y sin4 β

I2
x cos2 β + I2

y sin2 β
=

1
I2
x cos2 β + I2

y sin2 β
.

This result coincides with (h), which shows that (a) is correct.

VII.10. Determine the shape and dimensions of the core of the following cross-
sections:
(a) rectangle with base b and height h;
(b) circle with radius r;
(c) rhombus with symmetry axes b and h;
(d) equilateral triangle with side length a;
(e) ellipse with semi-axes lengths a and b.

VII.11. The cantilever beam represented in Fig. VII.11-a is made of two ma-
terials, a and b, with elasticity moduli Ea = 2E and Eb = 5E. The
beam supports a vertical loading p by surface unit and a horizontal
concentrated force P = 500pa2, as indicated in the Figure. Determine
the maximum normal stress in each of the materials.
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Resolution
Both the bending moments caused by the vertical and horizontal forces attain
maximum values at the built-in end, so that the maximum values of the normal
stress occur in that cross-section.

As the beam is made of two materials with linear elastic behaviour, it is
necessary to compute the centroid’s position, weighting the first area moments
with the elasticity moduli of the two materials, as given by (167). Since the
cross-section has a vertical axis of symmetry, the position of the centroid is
completely defined by the distance d (Fig. VII.11-b)

d =
ΩadaEa + ΩbdbEb

ΩaEa + ΩbEb
=

241
34

a ≈ 7.08824a

with
{

da = 10a
db = 4.5a

and
{

Ωa = 40a2

Ωb = 18a2 .

10a

p

200a

2a

2a

9a
9a

9a
material a

material b
P

Fig. VII.11-a

The weighted moments of inertia of the cross-section with respect to the
principal axes x and y (Fig. VII.11-b) take the values (172)
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d

A

B

x

y

Mx

My
e.n.

Fig. VII.11-b

Jx = Ea

∫
Ωa

y2 dΩa +Eb

∫
Ωb

y2 dΩb

= 2E
[

20a(2a)3

12 + 40a2(2.91176a)2
]

+ 5E
[

2a(9a)3

12 + 18a2(2.58824a)2
]

≈ 1915.34Ea4

Jy = Ea

∫
Ωa

x2 dΩa + Eb

∫
Ωb

x2 dΩb

= 2E
[

2a(20a)3

12

]
+ 5E

[
9a(2a)3

12

]
≈ 2696.67Ea4 .

The bending moments at the left end cross-section (built-in end) take the
values

Mx = −10pa (200a)2

2
= −2×105pa3 My = −500pa2(200a) = −1×105pa3 .

Since the neutral axis must be in the same quadrant as the resultant
bending moment (Fig. VII.11-b), points A and B are the farthest points from
the neutral axes in materials a and b, respectively. The stresses in these points
may be computed by means of (172), yielding

σa−max =
MxEa

Jx
y − MyEa

Jy
x

=
−2 × 105pa3(2E)

1915.34a4E
(−3.91176a) − −1 × 105pa3(2E)

2696.67a4E
(10a) ≈ 1558.59 p ,

σb−max =
MxEb

Jx
y − MyEb

Jy
x

=
−2 × 105pa3(5E)

1915.34a4E
(7.08824a) − −1 × 105pa3(5E)

2696.67a4E
(−a) ≈ −3886.18 p .
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x
θ1

1

1.789c

β

α

a.a.

y θ2 2

θ

n.a.

2.236c

A
B

Fig. VII.12

VII.12. Consider the cross-section of a composite bar as depicted in Fig. VI.20.
The moduli of elasticity of materials a and b are, respectively, Ea =
2E and Eb = E.
(a) Determine the orientation of the principal axes of bending, i.e.,

the orientation of the action axes which cause plane bending.
(b) Determine the orientation of the neutral axes and the maximum

stresses in the two materials, caused by a bending moment M
with a vertical action axis.

Resolution

(a) The principal bending axes may be computed from the weighted moments
and the product of inertia with respect to the axes x and y represented
in Fig. VII.12. These quantities take the values (cf. (168) and (170))

Jx = 2E c(4c)3

12 + E c(4c)3

12 = 16Ec4

Jy = 2E 2c(2c)3

12 + E 2c(2c)3

12 = 4Ec4

Jxy = −2E c2(2c)2

4 × 2 + E c2(2c)2

4 × 2

= −2Ec4 .

The principal directions of bending may be determined by means of the
same expression that is used for the computation of the principal direc-
tions of inertia in homogeneous cross-sections, yielding

tan 2θ = − 2Jxy

Jx − Jy
=

4
16 − 4

⇒
⎧⎨
⎩

θ1 = 9.22◦

θ2 = 99.22◦ .
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(b) The orientation of the neutral axis may be found by means of the ex-
pression resulting from the condition σa = 0 in (172), which yields
β = arctan

(
J1
J2

tan α
)
, where 1 and 2 are the weighted principal directions

of inertia (the principal directions of bending), α is the angle between the
positive directions of the moment vector and axis 1 and β is the angle be-
tween the neutral axis and the positive direction of axis 1. The weighted
principal moments of inertia may be computed from the values of Jx, Jy

and Jxy above, by means of the expressions of rotation of reference axes
of inertia

J1 = Jx cos2 θ1 + Jy sin2 θ1 − 2Jxy sin θ1 cos θ1 = 16.32Ec4

J2 = Jx cos2 θ2 + Jy sin2 θ2 − 2Jxy sin θ2 cos θ2 = 3.675Ec4 .

Since the position of the moment vector (direction x, Fig. VII.12) is in
this case given by α = −9.22◦, we get for angle β the value (Fig. VII.12)

β = arctan
[
J1

J2
tan(−9.22◦)

]
= −35.79◦ .

The stresses could be obtained from (172). As an alternative, (169) may
be used. In order to use the second possibility, the moment of inertia with
respect to the neutral axis is needed

Jn = J1 cos2 β + J2 sin2 β = 12.00Ec4 .

From Fig. VII.12 we conclude that the angle between the action and
neutral axes is

θ = 180◦ − (35.79◦ − 9.22◦) − 90◦ = 63.43◦ .

The maximum distances to the neutral axis are⎧⎨
⎩

va = 2c cos (35.79◦ − 9.22◦) = 1.789c

vb = 2c cos (35.79◦ − 9.22◦) + c sin (35.79◦ − 9.22◦) = 2.236c ,

respectively for materials a and b (points A and B, Fig. VII.12). The
maximum stresses in the two materials are then (169)

Jθ =
12.00Ec4

sin 63.43◦
= 13.42Ec4 ⇒

⎧⎨
⎩

σa−max = M2E
13.42Ec4 1.789c = 0.267M

c3

σb−max = ME
13.42Ec4 2.236c = 0.167M

c3 .

VII.13. Consider a prismatic bar that has a rectangular cross-section with a
height h, made of a material with elastic perfectly plastic behaviour
characterized by the elasticity modulus E and the yielding stress σY .
A bending moment with an action axis parallel to the height h, with
the magnitude M = 1.3Me (Me is the maximum bending moment in
the elastic regime) is applied and subsequently removed. Determine:
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(a) the curvature of the bar in the loading phase;
(b) the residual curvature after unloading;
(c) the residual stresses.

Resolution

(a) The curvature in the loading phase is given directly by (179), yielding

1
ρ

=
2σY

hE

1√
3 − 2 × 1.3

= 1.581
2σY

hE
= 1.581

1
ρe

,

where ρe is the curvature radius for M = Me.
(b) The deformation recovery in the unloading is elastic and proportional to

the removed bending moment. Thus, we have

1
ρunload

= −1.3
1
ρe

⇒ 1
ρ residual

= (1.581 − 1.3)
1
ρe

= 0.281
1
ρe

.

(c) To compute the residual stresses it is necessary to determine the height of
the cross-section which remains in the elastic regime in the loading phase
(he, Fig. 98). To this end, (178) may be used, yielding

M = Me

[
3
2
− 1

2

(
he

h

)2
]

⇒ he =
√

3 − 2
M

Me
h =

√
0.4h ≈ 0.632h .

According to Fig. 98, the stresses caused by unloading are 1.3σY and√
0.4 × 1.3σY ≈ 0.822σY , respectively in the farthest fibers and in the

fibres at distance he

2 from the neutral axis. Thus, the residual stresses
distribution takes the form represented in the last diagram of Fig. 98,
with a residual stress in the farthest fibres of 0.3σY , while in the fibres
at distance he

2 from the neutral axis the residual stress takes the value
σY − 0.822σY = 0.178σY . The residual curvature may also be computed
from this last stress (181), yielding

1
ρ residual

=
2 × 0.178σY

E × 0.632h
= 0.281

2σY

Eh
= 0.281

1
ρe

.

VII.14. Compute the shape factors of the I-beams INP200 and IPE200 [9].

Resolution

INP200
The plastic section modulus ((180) and following text) may be expressed as
a function of the first area moment of half cross-section with respect to the
neutral axis (Sx, [9], 7.1.1), i.e.,

Sx = 125cm3 ⇒ Z = 2Sx = 250cm3 .
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The shape factor may be given by the relation between the plastic (Z) and
the elastic

(
I
v

)
section moduli, yielding

I

v
= 214cm3 ⇒ ϕ =

Z
I
v

=
250
214

≈ 1.168 .

IPE200
The same procedure gives the result ([9], 7.1.2)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Sx = 110cm3

I

v
= 194cm3

⇒ ϕ =
2 × 110

194
≈ 1.134 .

VII.15. Consider the cantilever beam with a rectangular cross-section and
variable height represented in Fig. VII.15. Compare the exact value
of the stress in point A, obtained from the solutions of the Theory
of Elasticity, with the approximate solution furnished by the bending
theory for the same stress. The cross-section has a constant width b.

P 2a

B

2a 3a

α

A

A

A

α
2

3a

C
4a

Fig. VII.15

Resolution

According to the theory of prismatic members, in cross-section AA′ we have
shear force and bending moment, which induces in point A the normal stress⎧⎨

⎩
M = 7Pa

AA′ = 2.5a
⇒ σ =

7Pa
b(2.5a)2

6

= 6.72
P

ab
.

The solution of the Theory of Elasticity may be obtained by combining the
solutions presented in Sects. VI.7.c and VII.8.b for the wedge shaped element.
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To this end, it is necessary to consider the system of forces, which is statically
equivalent to force P , but acting in point B. Force P is decomposed into two
components, one (N) in the direction of the wedge axis (segment BC), and
other (V ) in the perpendicular direction. Thus, we have

M = 2Pa V = P cos
α

2
N = −P sin

α

2
.

In accordance with (165), the bending moment M causes the stress (α =
arccos 1

2 , r = 5a)

σM =
2Pa

b (5a)2
2

1 − α
tan α

≈ 2.2007
P

ab
.

The stress caused by the shear force V may be computed from (164),
yielding

σV =
2

α − sin α

P cos α
2 sin α

2

b5a
≈ 5.4425

P

ab
.

The axial force N induces the stress (cf. Subsect. VI.7.c)

σN =
2

α + sin α

−P sin α
2 cos α

2

b5a
≈ −0.0982

P

ab
.

Thus, the total stress in point A is

σ = σM + σV + σN = 7.545
P

ab
.

This value is about 12% larger than the solution of the bending theory,
which exceeds the predictions indicated in Subsect. VII.8.b. This is because
there, a perpendicular section to the wedge axis was considered. In fact, if we
consider, instead of section AA′, the section AA′′, the solution of the bending
theory becomes substantially closer to the exact solution, exceeding it by
about 5%.

AA′′ = 2 × 5a sin
α

2
⇒ σ =

7Pa

b(10 sin α
2 a)2

6

= 7.9566
P

ab
.

VII.16. The prismatic bar with the cross-section depicted in Fig. VII.16-a is
made of two materials, a and b, and undergoes a uniform temperature
increase ∆t. The materials have linear elastic behaviour defined by the
parameters

Ea = E Eb = 2E αa = α αb = 2α .

(a) Determine the elongation and the curvature introduced by ∆t
(the bar has length l).

(b) Determine the distribution of stresses in the cross-section.
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×Eα∆t
33

18
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Fig. VII.16

Resolution

(a) The temperature variation causes bending in the bar, as explained in Sect.
VI.6.d (Fig. 65). In order to compute the corresponding curvature, let us
first suppose that the bending is prevented by applying adequate bending
moments at both ends of the bar. Under these conditions, the stresses
in the cross-section are given by (135), since the bar remains straight,
yielding (Ωa = Ωb = c2)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σa1 =

2E2c4

Ec2 + 2Ec2
∆t

α

c2
=

2
3
Eα∆t

σb1 =
2E2c4

Ec2 + 2Ec2
∆t

−α

c2
= −2

3
Eα∆t .

The couple of forces corresponding to the stress distribution in the cross-
section (Fig. VII.16-b) is the bending moment needed to prevent bending.
This moment takes the value

M = σa1c
2 × c =

2
3
c3Eα∆t .

The elongation of the bar is not affected by this bending moment, and
so it may be computed from the stress in one of the materials. Using, for
example, σa1, we get from (117)

∆l = l

(
α∆t +

σa1

Ea

)
= l

(
α∆t +

2
3
α∆t

)
=

5
3
α∆tl .

If a bending moment M ′ = −M , is subsequently applied to the bar, the
total bending moment vanishes and only the temperature variation re-
mains. Thus, the curvature acquired by the bar in this second loading
phase is the curvature caused by the temperature variation. This curva-
ture may be obtained by the theory of bending of composite members
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described in Sect. VII.9. To this end, the position of the neutral axis must
be computed ((167) and Fig. VII.16-a)

c2
( c

2
+ d

)
E = c2

( c

2
− d

)
2E ⇒ d =

c

6
.

The weighted moment of inertia takes the value (168)

Jn = E

[
c4

12
+ c2

( c

2
+

c

6

)2
]

+ 2E
[

c4

12
+ c2

( c

2
− c

6

)2
]

=
11
12

Ec4 .

The curvature is then (169, θ = 90◦)

1
ρ

=
M ′

Jn
=

2
3c3Eα∆t

11
12Ec4

=
8
11

α∆t

c
.

(b) The stresses caused by the bending moment M ′ may by computed by
means of (169), yielding⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
σa2 =

MEa

Jn
y =

2
3c3Eα∆tE

11
12Ec4

y =
8
11

Eα∆t
y

c

σb2 =
MEb

Jn
y =

2
3c3Eα∆t2E

11
12Ec4

y =
16
11

Eα∆t
y

c
.

By superposing the stresses caused by the temperature variation in the
straight bar to the bending stresses, the total stresses are obtained⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σa = σa1 + σa2 =

(
2
3

+
8
11

y

c

)
Eα∆t

σb = σb1 + σb2 =
(
−2

3
+

16
11

y

c

)
Eα∆t .

Particularizing these stresses for the upper fibres (y = − (c + d) = − 7
6c),

to the interface between the two materials (y = − c
6 ) and to the bottom

fibres (y = c−d = 5
6c), the stress distribution represented in Fig. VII.16-c

is obtained.

VII.17. Figure VII.17-a represents the cross-section of a beam made of a duc-
tile material with elastic perfectly plastic behaviour. The bending
moment M acts in the cross-section. Compute the shape factor of
this cross-section.

Resolution

The shape factor is the relation between the plastic moment Mp and the
maximum moment in the elastic regime Me, which is equivalent to the relation
between the plastic and elastic section moduli, Z and I

v , respectively
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d

Fig. VII.17-a Fig. VII.17-b

ϕ =
Mp

Me
=

Z(
I
v

) .

Since the cross-section does not have a horizontal axis of symmetry, the
neutral axis does not have the same position in the elastic and plastic phase,
suffering a displacement during the elasto-plastic phase, from the centroid of
the cross-section, to a position which divides the cross-section into two equal
areas.

The centroid’s position may be defined by the distance d (Fig. VII.17-b),
which takes the value

d =
6a2 a

2 + 3a2( 5
2a + 9

2a)
12a2

= 2a .

The moment of inertia, with respect to the elastic neutral axis, is

I =
6a2

12
+ 6a2

(
3
2
a

)2

+
a (3a)3

12
+ 3a2

(
1
2
a

)2

+
3a4

12
+ 3a2

(
5
2
a

)2

= 36a4 .

The elastic section modulus is then

I

v
=

36a4

3a
= 12a3 .

The plastic section modulus may be computed from (180), with the neutral
axis in the position indicated in Fig. VII.17-b (plastic n.a.), yielding

Z =
Ω
2

(yG1 + yG2) = 6a2
(a

2

)
+ 3a2

(
3
2
a +

7
2
a

)
= 18a3 .

The shape factor is then

ϕ =
Z(
I
v

) =
18a3

12a3
= 1.5 .
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VII.18. Figure VII.18 represents the cross-section of a bar made of a mater-
ial with elastic perfectly plastic behaviour with a yielding stress σY .
Determine the maximum values of the bending moment which can
be applied to this cross-section in elastic and in elasto-plastic regime.
What is the shape factor of this cross-section?

b

3
5
b

3
5
b

3
5
b

M

c

a

b

a

c

2c

c

c

c
10

c
5

c

c
5

Fig. VII.18 Fig. VII.20 Fig. VII.22

VII.19. A steel wire with a yielding stress εY and rectangular cross-section
with dimensions a×3a is wound around a cylindrical drum. Determine
the minimum diameter the drum can have in order to avoid permanent
deformations in the wire. enddescription

VII.20. Figure VII.20 represents the cross-section of a bar made of two ma-
terials, a and b, which have elasticity moduli Ea = 2E and Eb = 3E
and coefficients of thermal expansion αa = 3α and αb = 2α. The
bar undergoes a uniform temperature increase ∆t and supports the
bending moment M . Determine:
(a) the elongation of the bar, knowing that it has an initial length l;
(b) the curvature of the bar;
(c) the distribution of stresses in the cross-section.

VII.21. To the bar considered in example VI.15 a bending moment M is
applied, whose action axis makes a 30◦ angle with the vertical.
(a) Determine the curvature of the bar, if only elastic deformations

occur.
(b) If M is gradually increased, which of the two materials yields at

first? Justify the answer and determine the relation between the
maximum stress in this material and moment M , considering only
elastic deformations.

VII.22. Supposing that the bar with the cross-section represented in Fig.
VII.22 is made of a brittle material with linear elastic behaviour until
rupture, ascertain if it is possible to increase its bending strength by
removing the two small rectangles, so that a square cross-section c×c
is obtained. Justify the answer.
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Answer the same question, supposing now that the material is duc-
tile and that the bar does not undergo cyclic loading.

VII.23. The bar with the cross-section represented in Fig. VII.23 is made of a
material with elastic perfectly plastic rheological behaviour, defined
by the yielding stress σY and by the elasticity modulus E. Determine:
(a) the bending moment which is needed to plastify the flanges, while

the web remains in the elastic regime;
(b) the residual stresses, when this bending moment is removed;
(c) the residual curvature of the bar.

a a a

a

2a

a

2c

c
4

a

c
2

a

c

b

c
4

c
4
c
4

c
4
c
4

a

a

d

a

a

d
a

A

e.a.

2a

B
P

Fig. VII.23 Fig. VII.24 Fig. VII.25

VII.24. The bar whose cross-section is represented in Fig. VII.24 is made of
two materials, a and b, with linear elastic behaviour defined by the
elasticity moduli Ea = 4E and Eb = E, respectively. Determine the
maximum stresses in each material caused by a bending moment M
with a vertical action axis.

VII.25. The cantilever beam AB (Fig. VII.25) is made of a material with lin-
ear elastic behaviour and is obtained by assembling four bars, so that
the cross-section represented in Fig. VII.25 is obtained. Determine the
distance d, so that the displacement of point B has the same direction
as the line of action of the force P . Justify the procedure used.

VII.26. Determine and compare the plastic section moduli of the cross-section
depicted in Fig. VII.23 and of a rectangular cross-section with the
same area and the same height.

Resolution

The cross-section represented in Fig. VII.23 has a area Ω = 8a2. A rectangular
cross-section with the same area and the same height has a width 2a. The
plastic moduli of the cross-section depicted in Fig. VII.23 (Z1) and of the
rectangular cross-section (Z2) are, respectively
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Z1 = 2 ×
(

3a2 × 3
2
a + a2 × a

2

)
= 10a3

and
Z2 = 2 × 4a2 × a = 8a3 .

We confirm that, even in the case of constant tensile and compressive stresses,
the cross-section with less material in the region around the neutral axis has
a larger resisting moment, as mentioned in Sect. VII.3 (see Footnote 38).

VII.27. Show that the solution obtained for the pure bending of a prismatic
bar made of a material with linear elastic behaviour obeys every con-
dition of equilibrium and compatibility.

Resolution

Considering a reference system, where axis x coincides with the neutral axis
and axis z is the centroidal axis of the bar, the solution of the problem may
be described by the expressions

σz =
Ey

ρ
; εz =

y

ρ
; σx = σy = τxy = τyz = τxz = εx = εy = γxy = γyz = γxz = 0 .

These expressions obey the constitutive law of the material (σ = Eε).
Substituting them in the differential equations of equilibrium (5), we find at
once that they are satisfied (∂σz

∂z = 0). The same happens with the conditions
of equilibrium at the lateral boundary (8, n = 0 ⇒ nσz = 0). In the end
cross-sections we have n = 1, i.e., Z = nσz = σz, which means that the
equilibrium conditions are satisfied only if the bending moments are applied
by means of forces distributed as defined by the linear law defining σz. If this
does not happen, the solution is only valid for points which are sufficiently
far from the end cross-sections for Saint-Venant’s principle to be considered
valid.

The local conditions of strain compatibility (53) are automatically satis-
fied, since the only non-zero stress (σz) is a linear function of coordinate y. In
the case of a multiply connected cross-section, the integral conditions of com-
patibility would have to be verified, which would require the analysis of the
displacement functions corresponding to the above strain distribution. This
analysis is, however, not presented here (see, e.g. [1] or [4]). We may also con-
clude that the integral conditions of compatibility are satisfied by the analysis
explained in Sect. VII.6.




