
VI

Axially Loaded Members

VI.1 Introduction

A slender member which has a straight axis in the undeformed configuration,
is said to be under purely axial loading if that axis remains a straight line
after deformation, which may be caused by a constant axial force or other
symmetrical actions, such as a uniform temperature variation. According to
this definition and to the law of conservation of plane sections, in a prismatic
bar under purely axial loading, any two cross-sections remain parallel after
the deformation, i.e., only the distance between them varies.

Considering, in a prismatic bar under purely axial loading, two cross-
sections at a distance l from each other in the undeformed bar, this distance
will change to a value l′ after the deformation and the strain defined by the
variation of that distance is given by the expression

ε =
l′ − l

l
. (113)

This strain is constant in the cross-section. Therefore, if the bar is homoge-
neous, i.e., if it is made of a material with the same rheological properties
in the whole member, the stress σ will also be constant. The position of the
resultant of the system of forces defined by the stresses acting in the cross-
section may be obtained by computing the moment of the stresses in relation
to any axis of the cross-section’s plane, which must be equal to the moment of
the resultant in relation to the same axis (Fig. 59). The moment of the force
acting in the infinitesimal area dΩ, dN = σdΩ, is dM = dN x = σdΩx.
Integrating this expression to the whole area Ω of the cross-section gives the
moment of the stresses. This moment must be equal to the moment of the re-
sultant axial force N = σ Ω, which takes the value N d = σ Ω d. The distance
d of the resultant to the reference axis r (Fig. 59) is then∫

Ω

σxdΩ = σΩd ⇒ d =

∫
Ω

xdΩ
Ω

. (114)
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Fig. 59. Determination of the position of the stress resultant in the cross section of
a slender member under purely axial loading

Equation (114) is also the expression used to compute the position of the
center of gravity or centroid of a plane area Ω. Thus, we may conclude that
in a homogeneous prismatic bar under purely axial loading the line of action
of the resultant of the applied forces contains the centroid of the cross-section.

VI.2 Dimensioning of Members Under Axial Loading

If the axial force is tensile, the cross-section area Ω must be given dimensions
which lead to a nominal value of the acting stress σEd that is smaller than
the nominal value of the material’s resisting stress (allowable stress) σall. This
condition may be expressed by the inequality

σEd =
NEd

Ω
≤ σall ⇒ Ω ≥ NEd

σall

, (115)

where NEd represents the nominal value of the axial force. In the following
exposition the indices “Ed”of the acting forces and stresses are omitted, i.e.,
the values of internal or external forces and stresses written without indices
are nominal values.

In compressed members (115) is a necessary but not a sufficient condition,
since the phenomenon of buckling may occur. This kind of problems is analysed
in Chap. XI. In this chapter we consider that the stability of the compressed
member is guaranteed.

VI.3 Axial Deformations

As seen above, in a bar under pure axial loading the stress state may be
considered as uniform, irrespective of how the forces are applied, provided
that the material points under consideration are not close to the region of
the member where the forces are applied (Saint-Venant’s principle). In axially
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loaded slender members these regions are generally a small part of the mem-
ber, so that a uniform distribution of the stresses may be accepted when the
elongation of the bar is computed.

In the case of a material with linear elastic rheological behaviour the elon-
gation ∆l is given by the expression (cf. ( 113))

∆l = l′ − l = εl =
σ

E
l =

Nl

EΩ
, (116)

where l and l′ represent the length of the bar, before and after the deformation,
respectively. The quantity EΩ represents the axial stiffness, since the larger
this value, the smaller the member’s deformation caused by the axial force.

If, in addition to the axial force a uniform temperature variation ∆T oc-
curs, the total elongation may be computed by the expression

∆l =
(

N

EΩ
+ α∆T

)
l , (117)

where α represents the coefficient of thermal expansion of the material.

VI.4 Statically Indeterminate Structures

VI.4.a Introduction

Statically determinate structures are freely deformable, in the sense that
their supports and internal connections do not restrict the deformations. This
means that a small change in the geometry or size of the structural elements
does not change the distribution of internal forces. For example, if the length
of the left bar of the plane truss represented in Fig. 60-a increases ∆l (e.g.,
due to a temperature increase), the truss adapts its geometry without the
need of internal forces.

In the statically indeterminate structure represented in Fig. 60-b, however,
there can be no change in the length of one of the bars without altering the

∆l

(a) (b) (c)

Fig. 60. Examples of structures with the same degree of kinematic indeterminacy
and different degrees of statical indeterminacy
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lengths of the other two: if, for example, the middle bar suffers a temper-
ature increase, the three bars can only remain connected if the middle bar
is compressed and the lateral bars are stretched, which requires tensile axial
forces.

A statically determinate structure only has internal forces if external forces
are applied, which means that they are insensitive to temperature change, ma-
terial retraction, or any other actions that alter the dimensions of structural
elements. Statically indeterminate structures, on the other hand, may have
internal forces in the absence of external forces, as seen in the example above.
Nevertheless, in these structures the release of a connection (for example, by
the yielding or rupture of one bar) does not necessarily imply structural col-
lapse, as statically indeterminate structures have a number of connections,
which is greater than the minimum necessary to guarantee the static equilib-
rium.

VI.4.b Computation of Internal Forces

Since in statically indeterminate structures the internal forces are not inde-
pendent of the deformation of structural elements, conditions of compatibility
of the deformations must be taken in account in order to compute the internal
forces. There are two main general methods to establish these conditions:

– Direct, by first releasing a number of connections equal to the degree of sta-
tical indeterminacy, and then computing the displacements which appear
in the released connections (these displacements are zero in the real struc-
ture) and the forces necessary to eliminate these displacements. Taking as
an example the truss represented in Fig. 60-b, the vertical restriction of the
middle support, for example, may be released. The vertical displacement
of the upper end of the middle bar (caused by external forces, temper-
ature, etc.) is then computed. The force needed to cause a displacement
in the opposite direction, i.e., to bring the upper end of the middle bar
back to the initial position, corresponds to the vertical reaction force of the
middle support. This force is the hyperstatic unknown or redundant force.
Once this force is computed, the remaining reaction and internal forces may
be obtained by means of static equilibrium considerations. This method is
known as the force method, since the unknowns are the forces acting on the
connections which were released in the first computation step.

– Indirect, taking as unknowns the displacements necessary to define fully
the deformed configuration of the structure. These displacements – the kine-
matic unknowns – are computed by establishing the relations between them
and the resultants of the internal forces in a deformed configuration. The
conditions of equilibrium between these resultants and the external forces
gives a system of equations, whose solution yields the unknown displace-
ments. Once these displacements are known, all the internal forces may
be computed. This method is known as the displacement method, as the
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unknowns are displacements. The displacement method is more easily gen-
eralized to structures with non-linear behaviour than the force method.

The number of equations to be solved corresponds to the degree of static
indeterminacy for the force method and to the degree of kinematic indeter-
minacy in the case of the displacement method. These two quantities are not
related. For example, all the three trusses represented in Fig. 60 have a degree
of kinematic indeterminacy of two (the two components of the displacement
vector in the connection node of the bars) and degrees of static indeterminacy
of zero, one and five, respectively. The detailed study of these two methods
and their systematization belong to the scope of the Theory of Structures.
Here they are only applied to simple structures in a general form.

VI.4.c Elasto-Plastic Analysis

The rheological behaviour of materials which display a well-defined yielding
zone, such as mild steel, may be approximated by the idealized constitutive
law represented in Fig. 61, provided that the the strain does not reach the
hardening zone (cf. Fig. 47). As seen in Sect. IV.3, such a rheological behaviour
is called elastic, perfectly plastic.

σ

σ
Y

−σY

εY
εr ε ε

A B

Fig. 61. Elastic, perfectly plastic rheological behaviour

The strain fraction corresponding to the yielding zone is generally much
larger than the maximum elastic strain εY . In mild steel, for example, yielding
starts with a strain of approximately 0.1% and hardening starts with ε ≈ 1.5%.
The yielding zone in this case is 14 times the maximum elastic strain. Thus, in
a structure made of a ductile material with a yielding zone, we usually admit
that in the structural elements where the yielding stress is first attained the
stress keeps this value until collapse, unless there is a decrease in deformation,
as defined by the constitutive law represented in Fig. 61.

Despite these simplifying assumptions, the computation of structures in
the elasto-plastic range is substantially more complex than in the linear case.
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The superposition principle is not valid any longer and the order of application
of the external forces must be taken into account, as well as the different
material behaviour when the strain changes from the elastic to the plastic
range or vice versa.

To illustrate these considerations the elasto-plastic behaviour of the hyper-
static truss represented in Fig. 62 is described in detail. In order to keep the
description as simple as possible, we assume that the three bars have equal
cross-section areas Ω and that the material behaviour follows the simplest
elasto-plastic constitutive law, as represented in Fig. 61. The displacement
method is used for the analysis.

The conditions of static equilibrium are valid in any range (elastic, elasto-
plastic or plastic). As a consequence of the symmetry of geometry and loading,
only the vertical condition of equilibrium needs to be considered, yielding the
relation

P = N1 + 2N2 cos 60◦ ⇒ P = N1 + N2 . (118)

The deformation’s conditions of compatibility, when expressed in terms of
displacements and strains are also valid in any range. In the present case the
degree of kinematic indeterminacy is one, since the deformed configuration
of the structure is completely defined by the vertical displacement of the
point of application of load P . Denoting this displacement by δ (Fig. 62)
and considering that it is sufficiently small to be considered as infinitesimal,
the relation between δ and the strains in the bars is given by (119) (the
dashed lines represent the deformed configuration with largely exaggerated
displacements)

δ = ∆l1 =
∆l2

cos 60◦ ⇒ ε1l =
ε2

l
cos 60◦

cos 60◦
⇒ ε1 = 4ε2 , (119)

since, in the case of infinitesimal rotations, the arcs of circumference used to
draw the undeformed length of bars 2 on the dashed lines may be substituted
by the normals to those lines (Fig. 62). ε1 and ε2 represent the strains in bars
1 and 2, respectively.

If the deformations are caused only by the axial force, i.e., in absence of
plastic deformations, temperature variation, residual strains, etc., the condi-
tion of compatibility may be expressed in terms of the axial forces, N1 and

2 1 2

60◦ 60◦
l

δ

∆l2 = δ cos 60◦

P

N1

N2 N2

P

Fig. 62. Conditions of equilibrium and compatibility
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N2, by the equation

δ =
N1l

EΩ
= 4

N2l

EΩ
⇒ N1 = 4N2 , (120)

Next the internal forces and the displacement δ in the different loading
stages are analysed.

– Elastic phase. In this stage the axial forces may be computed by solving the
system of two equations described by (118) and (120), yielding⎧⎪⎪⎪⎨

⎪⎪⎪⎩
N1 =

4
5
P

N2 =
1
5
P

⇒ δ =
4
5

l

EΩ
P ⇒ K1 =

∂P

∂δ
=

5
4

EΩ
l

, (121)

where K1 represents the structural stiffness corresponding to the displace-
ment δ.

Since the strain ε1 is always superior to the strain in bar 2 (119), bar
1 reaches the yielding strain at first. The values of the loading P and dis-
placement δ corresponding to the yielding of bar 1 may be obtained from
(121) and (120), taking the values

σ = σY ⇒ N1 = N1Y = ΩσY

⇒ P = P1 =
5
4
ΩσY ⇒ δ = δ1 =

σY l

E
.

(122)

– Elasto-plastic phase. When the load P exceeds the value P1, the axial force
in bar 1 remains constant, with the value N1Y , since the strain is in the
yielding zone. As this internal force is known, the structure becomes stati-
cally determinate. Thus, the axial force N2 may be obtained directly from
the equilibrium condition (118), yielding

P = N1Y + N2 ⇒ N2 = P − ΩσY with P > P1 . (123)

Taking in consideration that the lateral bars are still in the elastic range,
the first of (120) may be used to compute the displacement and stiffness in
the elasto-plastic phase, yielding

δ =
4N2l

EΩ
= (P − ΩσY )

4l

EΩ
⇒ K2 =

∂P

∂δ
=

1
4

EΩ
l

=
1
5
K1 . (124)

The structure collapses (yielding of the three bars) when the lateral bars
reach the yielding strain. From (123), (122) and (124) we get

N2 = N2Y = ΩσY ⇒

⎧⎪⎨
⎪⎩

P = PY = 2ΩσY =
8
5

5
4
ΩσY =

8
5
P1

δ = δY = 4
σY l

E
= 4δ1 .

(125)
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At the moment of collapse the strain in bar 1 is therefore four times the
yielding strain of the material, εY = σY

E , and the corresponding load PY is 8
5

times the maximum load in in elastic range. Assuming the structure is made
of mild steel, bar 1 is still at the beginning of the yielding zone when the
structure collapses.

If the structure is unloaded in the elasto-plastic phase, the middle bar,
which has already suffered some plastic deformation, has an elastic behaviour
in the unloading, but has a residual strain ε1r = ε1max − σY

E (ε1max is the
maximum value of the strain in the loading phase), as represented in Fig. 61
(dashed line). Let us now analyse the behaviour of the structure, as a function
of this residual strain. The strain in bar 1 is now given by

ε1 =
N1

EΩ
+ ε1r .

From this relation and the compatibility condition (119), we get

ε1 = 4ε2 ⇒ N1

EΩ
+ ε1r = 4

N2

EΩ
⇒ N1 = 4N2 − EΩε1r .

This expression and the equilibrium condition (118) define a system of
equations which allows the computation of the axial forces N1 and N2, yielding⎧⎪⎪⎨

⎪⎪⎩
N1 =

4
5
P − 1

5
EΩε1r

N2 =
1
5
P +

1
5
EΩε1r

⇒

∣∣∣∣∣∣∣∣
δ = 4ε2l = 4

N2

EΩ
l =

4
5

l

EΩ
P +

4
5
lε1r

⇒ K3 =
∂P

∂δ
=

5
4

EΩ
l

= K1 .

(126)

From this expression we verify that, in the unloading, the stiffness of the
structure is equal to the stiffness in the initial elastic phase. This is a conse-
quence of having all bars in the elastic phase.

Equation (126) remain valid while the middle bar has the residual strain
ε1r and the lateral bars are in the elastic phase. This situation changes only
if P exceeds the value which caused the the residual strain ε1r in the loading
phase (P = Pmax, Fig. 63), or if bar 1 attains the compressive yielding stress
(σ = −σY , Fig. 61). The value of P corresponding to the last situation may be
computed by means of the axial force in the middle bar, expressed as a function
of the maximum value of P in the loading phase Pmax (P1 < Pmax < PY ).
From (124) we get

ε1max =
δmax

l
= 4

Pmax − ΩσY

EΩ
⇒ ε1r = ε1max −

σY

E
= 4

Pmax

EΩ
−5

σY

E
. (127)

Substituting this value of ε1r in the first of (126), we get

N1 = ΩσY − 4
5

(Pmax − P ) . (128)
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Bar 1 attains the compressive yielding stress, when the axial force N1

reaches the value N1 = −ΩσY . From this condition and from (128) we get,
considering the value of P1 given by (122),

N1 = −ΩσY ⇒ P = P4 = Pmax − 5
2
ΩσY = Pmax − 2P1 . (129)

If the maximum value of P in the loading phase is P1, the middle bar
yields in compression for P4 = −P1, as might be expected, since no residual
deformations were caused in the loading phase and the material has the same
behaviour for tensile and compressive stresses. However, if a tensile plastic
deformation takes place in bar 1, which happens in the above-described elasto-
plastic phase (P1 < Pmax < PY ), there is a residual elongation of bar 1. As a
consequence, the structural behaviour for the positive and negative values of
P becomes different (P4 �= −P1).

The behaviour of the structure in the different loading stages analysed
above may be summarized by the force-displacement (P -δ) diagram presented
in Fig. 63. In this diagram the line OABC represents the load-displacement
relation in a first loading. Line OA represents the elastic phase, line AB the
elasto-plastic phase (the middle bar is in the yielding zone and the lateral
bars are still in linear-elastic regime) and line BC the plastic stage (structural
yielding or collapse). Line OGHI represents the structural behaviour in a first
loading with negative values of the force P .

O

A

B C
D

E

F

G

HI

P
PY

Pmax

P1

P4

−P1

−PY

−δY −δ1 δ1 δmax δY δ

2P1

α α

β K1 = tan α

K2 = tan β

Fig. 63. Load-displacement diagram of the truss represented in Fig. 62

The structural behavior in the unloading from a load Pmax in the elasto-
plastic phase is described by the line DE which is parallel to line OA, as seen
above (same structural stiffness: K3 = K1, (126)). If, after unloading from
Pmax (point E), a negative load is applied (reversed force P ), the structure
behaves elastically until point F , which represents the yielding of the middle
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bar in compression (129). Yielding of the lateral bars under compression takes
place for a displacement δ = −δY (point H), since the load Pmax did not cause
yielding of these bars, which means that its behaviour is the same as in a first
compressive loading (line OGHI).

In the reloading from any point of line FD the structure follows the line
EDBC, since at point D the structure re-enters in the elasto-plastic phase,
with a strain in the middle bar of ε1 = ε1r + σY

E ((127) and Fig. 61, point B).
In comparison with the first loading, the behaviour of the structure in

the reloading, which is represented by lines EDBC and EFGHI for positive
and negative values of P , respectively, shows an increase of the elastic load-
ing capacity (hardening: Pmax > P1) for positive values of P (line ED) and
softening (reduction of the elastic loading capacity: |P4| < |P1|) for negative
values (line EF ).

The hardening for positive loads is accompanied by a reduction of the
deformation capacity. Conversely, for negative P -values, softening and increase
of the deformation capacity took place (horizontal projection of EFGHI).

There is an analogy between the behaviour of this structure and the strain
hardening process of steel described in Sect. V.5. In fact, in both cases the pre-
deformation introduced by tensile forces increases the tensile elasticity limit
and the deformation capacity in compression and vice versa for a compressive
pre-deformation. The structure represented in Fig. 62 may therefore be seen as
a physical model for the strain hardening process of ductile materials. Figure 64
gives two other models. The second one includes a yielding zone. In this figure
the numbered corners in the diagrams represent a starting yielding of the
corresponding bars. In unloading followed by a reloading, model a follows the
dashed line which is parallel to line 01. Model b also has an elastic behaviour
in the unloading, which, however, is more complex than in the case of model
a. The analysis of the unloading in model b is left as an exercise for the reader.

VI.5 An Introduction to the Prestressing Technique

Let us consider now that the truss represented in Fig. 62 is made of a brittle
material with linear elastic behaviour until rupture, which occurs when the
stress attains the value σr. In order to make the comparisons easier, let us
consider σr = σY . Expressions 121 are still valid for representing the load-
displacement relation, since, in the elastic phase, the only material parameter
needed is the elasticity modulus E. However, when P reaches the value which
causes the rupture of the middle bar, P = Pr = 5

4Ωσr = 5
4Nr ((122); Nr is

the rupture load of a bar), the structure collapses totally. In fact, the loading
capacity of the lateral bars alone is not sufficient to sustain the load Pr, as
can be easily verified by the condition of equilibrium

P = 2N2 cos 60◦ ⇒ N2 = Pr =
5
4
Nr > Nr .
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Fig. 64. Physical models for the behaviour of a ductile material with hardening (a)
without yielding zone; (b) with yielding zone

This example shows that the strength reserves of a ductile structure, in
relation to the load causing the first plastic deformations (PY > P1 in the
ductile truss, Fig. 63), may not exist if the structure is made of a brittle
material.

However, the loading capacity of the brittle structure may also be in-
creased, by introducing prestressing residual forces. In order to introduce this
technique, let us assume that the undeformed middle bar does not have ex-
actly the length l, but is slightly longer, with a length l + lr. Under these
conditions the three bars can only be connected, if the middle bar is com-
pressed, which introduces tensile axial forces in the lateral bars. This means
that the structure will have residual internal forces, i.e., the internal forces will
not be zero, when the external forces vanish. In the analysis of the structure lr
may be treated as a residual elongation. Thus, the structural behaviour may
be defined by (126), if ε1r is substituted by lr

l , yielding⎧⎪⎪⎨
⎪⎪⎩

N1 =
4
5
P − 1

5
EΩlr

l

N2 =
1
5
P +

1
5

EΩlr
l

⇒ δ =
4
5

l

EΩ
P +

4
5
lr ⇒ K =

∂P

∂δ
=

5
4

EΩ
l

. (130)

The maximum loading capacity of the structure is achieved if the three
bars reach the rupture stress simultaneously, as may be easily concluded from
the equilibrium condition (118). This means that, at the collapse, we have
N1 = N2 = Ωσr. Introducing this condition in the first of (130), we get
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⎪⎪⎩

4
5
P − 1

5
EΩlr

l
= Ωσr

1
5
P +

1
5

EΩlr
l

= Ωσr

⇒

⎧⎪⎨
⎪⎩

P = 2Ωσr

lr =
3lσr

E
.

(131)

From this result we conclude that the optimal prestressing is obtained
by a residual elongation lr = 3lσr

E , which increases the loading capacity of
the structure from 5

4Ωσr to 2Ωσr. The displacement δ just before the collapse,
taking as reference configuration the structure without prestressing, i.e., when
the vertical distance between the connection node and the middle support is
exactly l, may be obtained from the elongation of the lateral bars, since they
have a zero axial force for δ = 0 (reference configuration). Thus, we obtain
from (119)

ε2 =
σr

E
⇒ δ = 4ε2l = 4

σrl

E
.

We conclude that, if the brittle and ductile structures have the same elas-
ticity modulus E and ultimate stress σr = σY , the deformation of the brittle
structure at the rupture takes the same value as the deformation of the ductile
structure when yielding starts (δY , (125)).

The initial internal forces caused by the prestressing may be obtained from
(130), by taking P = 0 and lr = 3l σr

E , yielding

N1 = −N2 =
3
5
Ωσr =

3
5
Nr .

In this case the initial axial forces are lower than the loading capacity of
the bars. However, it very often happens that minimum loads are required in
prestressed structures, in order to prevent the initial loads causing failure of
structural elements (cf. Example VI.10).

These two examples (ductile and brittle structure of Fig. 62) illustrate the
fundamental differences in the behaviour of structures made of ductile and
brittle materials:

– In ductile structures, a redistribution of the internal forces takes place au-
tomatically, which alters the relations between the internal forces in the
different elements and allows the most strained elements to keep their load-
ing capacity until the structure collapses. In the example, the middle bar
keeps its loading capacity until the lateral bars reach the yielding axial
force.1

– In brittle structures, the full loading capacity of the structural elements
can only be used by means of prestressing residual forces. The prestress-
ing technique must be implemented in a carefully controlled way, since
small changes in the prestressing parameters (in the example parameter
lr), caused by temperature differences, creep, shrinkage, etc., may cause

1If the ductile structure is prestressed with lr = 3lσr
E

(131) the three bars reach
the yielding strain simultaneously.
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substantial changes in the loading capacity of the structure. Furthermore,
the increase of loading capacity only takes place for the loading case under
consideration: in the example, the prestressing considered causes a decrease
in the compressive loading capacity of the structure. The above-mentioned
minimum loads may also be a drawback of prestressed structures.

From the above considerations we may conclude that ductile structures
are safer, since their capacity for internal force redistribution makes them
less sensitive to imperfections and construction errors, and also because their
failure does not happen unannounced, since it is usually preceded by large
plastic deformations.

VI.6 Composite Members

VI.6.a Introduction

In prismatic bars made of two or more materials, with a constant cross-section,
the law of conservation of plane sections remains valid, since the symmetry
conditions in relation to the cross-section’s plane still hold (Fig. 58). As a
consequence, in the case of purely axial loading, the strain is constant in the
cross-section. However, as the material is not the same throughout the cross-
section, the stresses will not be constant and will depend on the rheological
properties of the materials. We therefore have a statically indeterminate prob-
lem, which means that we may have internal forces without external loads,
caused, for example, by a temperature variation. The degree of static inde-
terminacy is equal to the number of materials minus one. The forces in the
connections between the different materials may be considered as the hyper-
static unknowns. The degree of kinematic indeterminacy is one, regardless of
the number of materials. The strain in the cross-section may be taken as the
kinematic unknown, since, once it is known, the stresses in all materials may
be computed directly.

In the present analysis the displacement method will be used. For the sake
of simplicity, members made of two linear elastic materials are considered. The
generalization of the analysis to any number of materials is straightforward
(cf. Example VI.14)

VI.6.b Position of the Stress Resultant

In a prismatic bar under purely axial loading the strain ε is constant in the
cross-section, as shown above. The stresses in materials a and b are then
σa = Eaε and σb = Ebε,2 where Ea and Eb represent the Young’s moduli
of materials a and b, respectively. By using the same line of reasoning as

2If the Poisson’s coefficients in the two materials are different, the axial loading
will generally cause stresses in longitudinal facets, since the transversal deforma-
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for homogeneous members (Fig. 59) and denoting by Ωa and Ωb the areas
occupied by the two materials in the cross-section, we get

moment of the stresses︷ ︸︸ ︷∫
Ωa

σaxdΩa +
∫

Ωb

σbxdΩb =

moment of the axial force︷ ︸︸ ︷
(σaΩa + σbΩb)d

⇒ d =
Ea

∫
Ωa

xdΩa + Eb

∫
Ωb

xdΩb

EaΩa + EbΩb
. (132)

Thus, the axial force will not cause bending, i.e., the axis of the bar will remain
a straight line, if its line of action contains the point defined by two distances
d, computed by means of (132), considering two non-parallel reference axes
of the cross-section’s plane. This expression also defines the position of the
section’s centroid, if the area occupied by each material is weighted with its
Young’s modulus. A fundamental difference between this expression and (114)
is that the latter does not depend on the material behaviour, as opposed to
this one, which is only valid for materials with linear elastic behaviour.

VI.6.c Stresses and Strains Caused by the Axial Force

As explained in Sect. VI.6.a, the determination of stresses in composite mem-
bers is a statically indeterminate problem, since a condition of deformation
compatibility must be taken into account. In the case of purely axial loading
that condition is represented by the relation εa = εb ⇒ σa

Ea
= σb

Eb
, as seen in

the previous section. The last of these relations and the equilibrium condition
N = σaΩa + σbΩb define a system of two equations, whose solution yields the
stresses in the two materials⎧⎪⎪⎨

⎪⎪⎩
σa =

N

EaΩa + EbΩb
Ea

σb =
N

EaΩa + EbΩb
Eb

⇒

⎧⎪⎪⎨
⎪⎪⎩

σa =
N

Ωa + maΩb

σb =
N

mbΩa + Ωb
.

(133)

In the last expressions ma = Eb

Ea
and mb = Ea

Eb
are called homogenizing coeffi-

cients, which allow the computation of the stresses in almost the same way, as
in the case of homogeneous sections. For example, the stress in material a may
be obtained by considering the cross-section area obtained by multiplying the

tions of the two materials will be different, which means that additional conditions
of compatibility would be necessary. The same happens in the case of a temper-
ature variation, if the coefficients of thermal expansion of the two materials are
different. However, it can be shown that these stresses are sufficiently small to be
ignored, which allows the use of the constitutive law in this one-dimensional form.
Section VII.6 gives an analysis of the error introduced by this approximation in the
case of axial force and bending.
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area of material b by the homogenizing coefficient of material b in material a,
ma.

The elongation of a bar of length l may be computed from the stress in
any material, since the strain is constant, yielding

ε =
σa

Ea
=

σb

Eb
⇒ ∆l = εl =

σa

Ea
l =

σb

Eb
l =

Nl

EaΩa + EbΩb
. (134)

VI.6.d Effects of Temperature Variations

As shown in Sect. VI.6.a, a temperature variation introduces stresses in a pris-
matic bar made of two materials with different thermal expansion coefficients.
Generally, even a uniform temperature variation causes bending, i.e., the axis
of the bar does not remain a straight line, as in the example given in Fig. 65
(αa and αb are the coefficients of thermal expansion of materials a and b).

material a

material b

(αa < αb)

T = T0 T = T0 + ∆T

Fig. 65. Effect of a uniform temperature variation on a composite bar

The study of the stresses generated by that bending requires the bending
theory which is explained in Chap. VII. However, if the cross section has
two symmetry axes, i.e., if the prismatic bar has two longitudinal symmetry
planes, its axis must remain a straight line, which means that the deformation
is purely axial.3

In order to analyse the internal forces in the connection between the two
materials, let us analyse the whole bar and not just a cross-section. The sym-
metry principle (Fig. 58) only permits the conclusion that the middle section
of the bar remains plane in the deformation. Thus, the strain is constant in
this section, which allows the computation of the stresses in the two materials,
using the same equilibrium and compatibility conditions as in the case of the
axial force, yielding

⎧⎨
⎩

ε =
σa

Ea
+ αa∆T =

σb

Eb
+ αb∆T

N = σaΩa + σbΩb = 0
⇒

⎧⎪⎪⎨
⎪⎪⎩

σa =
EaEbΩaΩb

EaΩa + EbΩb
∆T

αb − αa

Ωa

σb =
EaEbΩaΩb

EaΩa + EbΩb
∆T

αa − αb

Ωb
.

(135)
3The double symmetry of the cross-section is a sufficient condition for purely

axial deformation. This condition may, however, not be necessary (see examples
VI.20 and VI.21).
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If an axial force is also acting, the total stresses may be computed by
adding the stresses given by (133) and (135), since the superposition principle
may be applied in the case of temperature variation (cf. Sect. V.8).

The cross-sections located near by the ends of the bar can not remain
plane. In fact, if the end cross-sections remain plain, the stresses given by
(135) act on them. This is not possible, since no external forces are applied.
In order to clarify this issue, let us consider a rigid block connected to each end
of the bar, as represented in Fig. 66-a. In this case, all cross-sections remain
plain and (135) is valid for the whole bar.4

σ
b

σa

σ
b

σa
σ
b

material a
material b

rigid
block

−σ
b

−σa −σ
b

τ

σ
b

σa

τ

(a) (b) (c)

Fig. 66. Transmission of internal forces between the two materials in a composite
member under a uniform temperature variation (∆T > 0 and αa > αb or ∆T < 0
and αa < αb)

The real stress distribution in the bar may be obtained by the superposi-
tion principle. To this end, let us superpose upon the situation corresponding
to Fig. 66-a the loading situation illustrated in Fig. 66-b, where no tempera-
ture variation takes place and only end distributed loads act, corresponding to
the stress distribution given by (135) with reversed direction. These stresses
have a vanishing resultant (N = 0, cf. (135)). Thus, the Saint-Venant’s prin-
ciple leads to the conclusion that its effect is restricted to the region of the
bar around its ends. The stress distribution in this region depends on the
shape of the cross-section and cannot be obtained by means of the theory
of slender members. However, a qualitative analysis of Fig. 66-b leads to the
conclusion that shearing stresses τ must appear in the interface between the
two materials. By superposing the stresses corresponding to the loading situa-

4This conclusion is easily arrived at by symmetry considerations: considering the
part of the bar defined by the end and the central cross sections, we conclude that
the middle section of this piece (the quarter length cross-section) remains plane.
Further sub-division leads to the conclusion that every section must remain plane.
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tions represented in Figs. 66-a and 66-b, we may conclude that these shearing
stresses transmit the internal forces from one material to the other (Fig. 66-c).
This analysis allows the conclusion that, irrespective of the member’s length,
these shearing stresses appear only near by the ends of the bar. Furthermore,
they do not depend on the length of the bar.

VI.7 Non-Prismatic Members

VI.7.a Introduction

In the development of the expressions presented in the previous sections for
the stresses in members under axial loading, only prismatic bars were con-
sidered, since the symmetry conditions leading to the law of conservation of
plane sections are only valid for this special kind of slender members. How-
ever, these expressions are generally used for non-prismatic members, i.e. bars
with a curved axis or with a non-constant cross-section. This leads to errors,
since those expressions are only exact for prismatic bars. The magnitude of
these errors depends on the relation between the curvature radius and the
cross-section’s dimension in the direction of that radius, in the case of curved
members, and on the rate of variation of the cross-section’s dimensions, in the
case of a non-constant cross-section. In order to get an idea of the importance
of these errors, we can compare approximate solutions obtained by means of
the theory of prismatic bars with the exact results furnished by the Theory
of Elasticity in particular cases.

VI.7.b Slender Members with Curved Axis

As an example of a slender member with a curved axis, we may take a ring
defined by a slice of length b of a tube with constant wall thickness under an
internal pressure p. The tube’s dimensions are defined by the thickness e and
the mean radius rm, as shown in Fig. 67.

The mean stress acting on the tube’s wall σmed may be obtained by equi-
librium considerations on a half ring (Fig. 67)

p 2
(
rm − e

2

)
b = 2σmedeb ⇒

∣∣∣∣∣∣∣
σmed =

p
(
rm − e

2

)
e

= p

(
1
α
− 1

2

)
with α =

e

rm
.

(136)

This stress coincides with the solution obtained by considering the ring as
a slender member, since, according to the theory of prismatic members, the
stress is constant in the cross-section.

This problem is solved by Theory of Elasticity (Lamé’s problem [4]) using
polar coordinates. The solution is described by radial and circumferential
stresses. The latter coincide with the stresses in the cross-section of the ring.
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e
b

σmax
p

2 rm − e
2

rm

σmed

Fig. 67. Forces acting on a tube under internal pressure

The maximum circumferential stress occurs at the inner surface of the tube
(σmax, Fig. 67), taking the value

σmax =
p

α

(
1 +

α2

4

)
.

The relation between the maximum and mean stress (136) is given by

σmax

σmed
=

1 + α2

4

1 − α
2

.

The following table gives the error of the approximate solution furnished by
the theory of prismatic members, as a function of parameter α.5

α = e/rm 0.01 0.02 0.05 0.1 0.2

σmax/σmed 1.0051 1.0102 1.0263 1.0553 1.1222

Error 0.51% 1.02% 2.63% 5.53% 12.22%

If the value of 5% is accepted as the maximum admissible error, we con-
clude, generalizing to other cases of curved bars under axial force, that the
theory of prismatic bars does not introduce a significant error, while the di-
mension of the cross-section in the curvature plane is less than 0.1 times the
dimension of the mean radius of the member.

The cross-sections of the ring still remain plane, although the bar is not
prismatic, since the plane containing any cross-section of the ring is a sym-
metry plane. The inner pressure causes a diameter increase in the tube. If

5Equation (136), although similar, is not the same as the well known formula for
the computation of the mean stress in a thin-walled tube under internal pressure
σmed = prm/e. This expression is obtained in the same way as (136), with the
difference that the mean radius rm is used in place of the inner radius rm−e/2. If this
expression is used instead of (136), the error on the computation of the maximum
stress will be significantly lower. For example, for α = 0.2 an error of about 1%
is obtained. This expression was not used here, however, since the purpose of the
analysis is to investigate the error introduced by the use of the theory of prismatic
bars in curved members and not to compute the stresses in tubes.
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the deformation caused by the radial stresses is ignored, the elongation at the
inner and outer sides of the wall is equal. However, as the undeformed dis-
tance between two cross-sections is smaller at the inner side, the strain and,
consequently, the stress is larger there.

VI.7.c Slender Members with Variable Cross-Section

As a simple example of a member with variable cross-section, with an exact
solution furnished by the Theory of Elasticity, the wedge shaped element
represented in Fig. 68 is considered.

α

P

b

P α

r

ϕ

A

A

B

B

σ

Fig. 68. Stresses in a slender member with variable cross-section

The solution of Theory of Elasticity is obtained for this problem by means
of polar coordinates [4] and indicates that in a cylindrical section (AA′,
Fig. 68) the tangential (shearing) stress vanishes and the radial stress σ is
given by the expression below (r and ϕ are the polar coordinates)

σ =
2

α + sin α

P cos ϕ

br
.

For a given value of r, this normal stress reaches its maximum for ϕ = 0,
taking the value

ϕ = 0 ⇒ σ = σmax =
2

α + sin α

P

br
.

The theory of prismatic bars yields for the stress in the cross-section BB′

the value
σmed =

P

Ω
=

P

2br tan α
2

.

The error affecting the last solution may be expressed by the relation
between σmax and σmed

σmax

σmed
=

4 tan α
2

α + sin α
.

This relation depends only on angle α and takes the values
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α 10◦ 20◦ 30◦ 45◦ 60◦

σmax/σmed 1.0051 1.0206 1.0471 1.1101 1.2071

Error 0.51% 2.06% 4.71% 11.01% 20.71%

We conclude that for small values of angle α, which expresses in this case
the rate of variation of the cross-section’s dimensions, the error is very small.

VI.8 Non-Constant Axial Force – Self-Weight

The symmetry considerations used to demonstrate the law of conservation of
plane sections are not satisfied in the case of a non-constant axial axial force,
caused, for example, by the self-weight in non-horizontal bars, which means
that there is no guarantee that the cross-sections remain plane. Furthermore,
experimental observation shows that in the deformation caused by self-weight
the sections do not remain plane (Fig. 69).

Fig. 69. Deformation of a prism of jelly under its self-weight

However, the solution of the Theory of Elasticity for a vertical homoge-
neous prism under its self-weight, shows that the stress is constant in the cross-
section, although it does not remain plane (see example VI.12).6 Although the
generalization of this solution to other cases is not straightforward, it shows
that a uniform distribution of the stress in the cross-section is possible, even
without the conservation of plane sections. Besides, the self-weight of axially
loaded structural members usually causes only a very small fraction of the to-
tal axial force, so that only a very small loss of symmetry occurs in the forces
acting in a piece of the prismatic bar. For these reasons, the elongation ∆l of
a bar with length l, caused by a variable axial force N(z), may be computed
by the expression

6The law of conservation of plane sections is a sufficient condition to have a
constant stress in the cross-section of a bar under purely axial force. This condition
may, however, not be necessary, as the solution referred to shows.
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d∆l =
N

EΩ
dz ⇒ ∆l =

1
E

∫ l

0

N

Ω
dz , (137)

where z is a coordinate with the direction of the bar’s axis. This expression is
also valid in the case of a non-constant cross-section, provided that the rate
of variation is small, as seen in Sect. VI.7.

VI.9 Stress Concentrations

In the neighbourhood of discontinuities in the bar, such as holes, notches,
sudden changes of the cross-section, etc., the theory of prismatic bars is no
longer valid, the cross-sections do not remain plane and the stress distribution
is not uniform, which means that the maximum stress is larger than the mean
value furnished by the theory of prismatic members. In the example depicted
in Fig. 70 of a bar of constant thickness with two small semi-circular cuts
(r � b), the maximum stress in the cross-section which contains the centers
of the cuts is approximately twice the mean stress. We have in this case a
stress concentration factor of 2.

σY

b

r

σ

σ

σmax ≈ 2σ

Fig. 70. Example of stress concentration caused by two semi-circular cuts (r � b).
redistribution of stresses in the case of a ductile material by plastic deformation

The consideration of the stress concentrations in the safety evaluation is
especially important in the case of brittle materials, since in this case there
is no possibility of stress redistribution. The rupture process is similar to the
one described in Sect. V.6: a crack starts at the points of stress concentration
and propagates immediately to the rest of the cross-section, since the stress
concentration at the tip of the crack is even larger, as will be seen later.

In the case of a ductile material, stress redistribution takes place, since the
zones where the yielding strain is attained at first retain the loading capacity
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a

e

b

σ

σ

σmax

r

σ

σ

(a) (b)

Fig. 71. Examples of stress concentration

described by the yielding stress σY , until the whole cross-section yields, as
indicated by the dashed line in Fig. 70. This is why the stress concentration is
often not considered in the case of ductile materials. However, if the member
is under cyclically varying loads, the stress concentration must be taken into
account, due to the risk of fatigue failure, as seen in Sect. V.6.

In Fig. 71 two other examples of stress concentration are presented. In the
first one (Fig. 71-a) a bar with a rectangular cross-section and a small thickness
has an elliptical hole, with one of the ellipse’s principal axes coinciding with
the axis of the bar. The Theory of Elasticity furnishes a solution for the stress
distribution in this case. The maximum stress takes the value [4]

σmax =
(
1 + 2

a

b

)
σ ,

provided that the transversal dimension of the hole is very small, as compared
with the width of the bar (a � e). From this expression we conclude that for
a = b (circular hole) the stress concentration factor is 3 (σmax = 3σ). The
stress concentration increases if the larger axis has the transversal direction
(a > b) and decreases in the opposite case. In particular, for a = 0 (a crack
parallel to the axis of the bar) there will be no stress concentration. In the
opposite case b = 0 (perpendicular crack in relation to axial force) we have
an infinite stress concentration factor: σmax = ∞ !!! Obviously this value is
a purely theoretical one, since it is computed by considering that the mate-
rial is perfectly continuous and has a linear elastic behaviour. However, the
continuity hypothesis ceases to be acceptable when b takes a value similar to
the dimension of the metal crystals or other material particles. Besides, the
material does not retain linear elastic behaviour for large stress. It can be
proved that a very small plastic deformation substantially reduces the stress
concentration. Nevertheless, this example illustrates the danger of a transver-
sal crack to the safety of a structure, in the case of brittle material, or cyclic
loads (fatigue failure).
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In Fig. 71-b an example of a suddenly changing cross-section is pre-
sented, where the transition is made by means of circular fillets. The stress
concentration increases as the difference between the two cross-sections in-
creases and as the radius of the fillet decreases.

VI.10 Examples and Exercises

VI.1. The truss described in Fig. VI.1-a is made of a material with linear
elastic behaviour with a modulus of elasticity E.
(a) Considering a nominal strength σall and knowing that buckling is

prevented, determine the minimum cross-section area of bars AB
and BC.

(b) Considering these cross-section areas compute the displacement of
point B.

A

BC
α

P
l

(a)

NAB

NBC

α
P

(b)

α
B B3

B2

B1

δh

δv

α

B

(c)

Fig. VI.1

Resolution

(a) The axial forces in the bars may be computed by means of the vertical
and horizontal equilibrium conditions of the forces acting in node B (Fig.
VI.1-b), yielding

NAB =
P

sin α
NBC =

P

tan α
(compression) .

Equation (115) gives the minimum areas of the cross-sections

ΩAB =
NAB

σall

=
P

σall sin α
and ΩBC =

NBC

σall

=
P

σall tan α
.

(b) The displacement of point B is caused by the changes in the length of the
two bars. The corresponding values may be computed by means of (116),
yielding
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∆lAB =
NABlAB

EΩAB
=

P
sin α

l
cos α

E P
σall sin α

=
lσall

E cos α

and

∆lBC =
NBC lBC

EΩBC
=

P
tan α l

E P
σall tan α

=
lσall

E
.

As a consequence of the bars’ variations in length, the position of point B
changes to the intersection of the two circumference arcs, whose centers
are points A and C and whose radii are the lengths of the deformed
bars. Since the deformations are very small, as compared with the truss’
dimensions, the rotation of the bars will also be very small, which allows
the substitution of the circumference arcs by straight lines, as shown in the
graphic construction presented in Fig. VI.1-c. In this Figure the elongation
of bar AB is represented by the line segment BB1, the length reduction
of bar BC is BB2 and the circumference axes are approximated by the
line segments B1B′ and B2B′. The intersection of these segments (point
B′) defines the position of point B after the deformation.

The horizontal component of the displacement is then

δh = BB2 = ∆lBC =
lσall

E
.

The vertical component may be computed by means of the auxiliary dis-
tance BB3 = BB1

cos α = ∆lAB

cos α , yielding

δv = B2B′ =
B2B3

tan α
=

∆lBC + ∆lAB

cos α

tan α
=

lσall

E

(
1

tan α
+

1
sin α cos α

)
.

VI.2. The truss represented in Fig. VI.2-a is made of a material with an elas-
ticity modulus E and a thermal expansion coefficient α. Determine the
expressions required to compute the displacement of point B, caused
by the force P and by a temperature increase ∆T .

Resolution

The axial forces in the bars may be computed by means of the equilibrium
conditions of the forces acting in node B, which are represented by the system
of equations (Fig. VI.2-b){

N1 cos α1 = N2 cos α2

N1 sin α1 + N2 sin α2 = P .
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A α1

Ω1

B
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α2

Ω2

C

l N1

P

N2
∆l2

α2

d2

α2

δv

B

δh
B

α1

α1

∆l1

d1

(a) (b) (c)

Fig. VI.2

The deformation of the bars under the axial forces and the temperature vari-
ation may be computed by means of (117), yielding

∆l1 =
(

N1

EΩ1
+ α∆T

)
l

sin α1
and ∆l2 =

(
N2

EΩ2
+ α∆T

)
l

sin α2
.

The horizontal and vertical components of the displacement of point B (δh

and δv) may be computed by means of the graphical construction presented
in Fig. VI.2-c. From this Figure the following relations may be established.

δv = d1 cos α1 + ∆l1 sin α1 = d2 cos α2 + ∆l2 sin α2

δh = ∆l1 cos α1 − d1 sin α1 = d2 sin α2 − ∆l2 cos α2 .

By solving the system formed by the second equalities of each one of these
expressions the distances d1 and d2 may be obtained. After this, δv and δh

are immediately obtained. As an alternative, the projections of δv and δh on
the directions of ∆l1 and ∆l2 yield the following system of equations{

δv sin α1 + δh cos α1 = ∆l1

δv sin α2 − δh cos α2 = ∆l2 ,

whose solution directly gives δv and δh.

VI.3. Consider a bar of cross-section area Ω, with built-in supports in both
ends, made of a material with an elasticity modulus E and a thermal
expansion coefficient α. Using the force and the displacement methods,
compute the axial force introduced into the bar by a uniform tempera-
ture reduction ∆T , in relation to the construction temperature.

Resolution

Force method

Since it is known that all internal forces, except the axial force, vanish, the
degree of static indeterminacy is one, although the bar has twelve external
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connections (six at each end) and only six are necessary to guarantee the
static equilibrium.

If we suppose that one of the supports of the bar is removed, it becomes
statically determined and, as a consequence, the temperature variation does
not cause internal forces, but only a length reduction with the value

∆l = α∆T l ,

where l represents the bar’s length. The axial force in the bar with the two
supports is the force needed to prevent the length reduction. In other words,
it is the force which causes an elongation with the same value as the length
reduction caused by the temperature variation. Using (116) and this condition,
we get

α∆T l =
Nl

EΩ
⇒ N = EΩα∆T .

Displacement Method

The degree of kinematic indeterminacy of this structure is zero, since the dis-
placement of any cross-section is zero. We easily reach this conclusion by sym-
metry considerations: the middle cross-section has zero displacement; taking
half the bar, we conclude that its middle section (the quarter length section)
does not move, and so on. As a consequence, the total strain caused by the
axial force and by the temperature variation is also zero. From (117) we get,
since the temperature variation is negative (∆T < 0)

ε =
∆l

l
=

N

EΩ
− α∆T = 0 ⇒ N = EΩα∆T .

VI.4. Consider the bar represented in Fig. VI.4, which is made of a material
with elasticity modulus E and thermal expansion coefficient α and has
three zones with different cross-section areas. Using the force and the
displacement methods, compute the axial force introduced into the bar
by a uniform temperature reduction ∆T , in relation to the construction
temperature.

3Ω 2Ω Ω

A B C D

l l l

Fig. VI.4
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Resolution

Force Method

Using the same reasoning as in example VI.3, we conclude immediately that
the degree of static indeterminacy is one. The axial force may be computed
in the same way. The length reduction caused by the temperature variation
takes the value

∆l = 3α∆T l .

The elongation caused by the axial force is the sum of the elongations in the
three zones. Since this elongation must compensate for the length reduction
∆l, we have⎧⎪⎪⎨

⎪⎪⎩
∆lAB = Nl

3EΩ

∆lBC = Nl
2EΩ

∆lCD = Nl
EΩ

⇒ 3α∆T l =
Nl

EΩ

(
1
3

+
1
2

+ 1
)

⇒ N =
18
11

EΩα∆T .

Displacement Method

Resolving this problem by means of the displacement method is a little more
lengthy than by using the force method, since the degree of kinematic indeter-
minacy is two. In fact, if the displacements of points B and C are known, the
strains and stresses in each zone may be immediately computed. Denoting by
δ1 and δ2 the displacements of sections B and C, respectively, considered as
positive from left to right, we get from (117), taking into consideration that
the axial force N is the same in the whole bar

∆lAB = δ1 =
Nl

3EΩ
− α∆T l ⇒ N =

EΩ
l

(3δ1 + 3α∆T l)

∆lBC = δ2 − δ1 =
Nl

2EΩ
− α∆T l ⇒ N =

EΩ
l

[2 (δ2 − δ1) + 2α∆T l]

∆lCD = −δ2 =
Nl

EΩ
− α∆T l ⇒ N =

EΩ
l

(−δ2 + α∆T l) .

By eliminating N from these equations we get a system of two equations,
which allows the computation of δ1 and δ2, yielding{

3δ1 + 3α∆T l = 2 (δ2 − δ1) + 2α∆T l

3δ1 + 3α∆T l = −δ2 + α∆T l
⇒

{
δ1 = − 5

11α∆T l

δ2 = − 7
11α∆T l .

Any of the three relations between the axial force N and the displacements
δ1 and δ2 allows the computation of N . Using the first, for example, we get

N =
3EΩ

l
(δ1 + α∆T l) =

3EΩ
l

(
− 5

11
+ 1

)
α∆T l =

18
11

EΩα∆T .
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VI.5. The bar represented in Fig. VI.5 is made of a material with an elasticity
modulus E and a thermal expansion coefficient α. The bar has a rec-
tangular cross-section with a constant thickness a. Determine the axial
force caused by a uniform temperature reduction ∆T .

3a
2a

20a 20a 20a

Fig. VI.5

Resolution

The resolution of this problem by the displacement method requires the prior
computation of the relation between the axial force and the elongation in a
bar with variable cross-section. The problem is, however, easily solved by the
force method. The statically determinate base structure may be obtained by
removing the right support, for example. In this situation the temperature
variation causes the length reduction

∆lT = αl∆T = α60a∆T .

The axial force N must cause an elongation which compensates for this length
reduction. Considering a coordinate z with its origin on the left support, with
increasing values from left to right, we may express the cross-section area as
a function of z. For values of z between 0 and 20a we get

Ω(z) = 3a2 − a

20
z .

As the middle section of the bar is in a symmetry plane, the total elongation
caused by the axial force N is given by

∆lN =
∫ l

0

N

EΩ
dz = 2

∫ 20a

0

N

E
(
3a2 − a

20z
) dz +

∫ 20a

0

N

2Ea2
dz

= 2
N

E

[
−20

a
ln
(
3a2 − a

20
z
)]20a

0

+
10N

Ea
=
[
40 ln

(
3
2

)
+ 10

]
N

Ea
.

The equality ∆lT = ∆lN describes the condition of deformation compatibility.
The solution of this equation yields the value of the axial force

∆lT = ∆lN ⇒ N =
60αE∆Ta2

40 ln
(

3
2

)
+ 10

≈ 2.28845αE∆Ta2 .

VI.6. The bar AB of the structure represented in Fig. VI.6-a has a sufficiently
high stiffness to be considered as rigid. The three suspension cables
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A B

2l

l l l

P

1 2 3

Fig. VI.6-a

δ1 δ2

∆l3

P
Fig. VI.6-b

N1

N2

δ1
δ2

∆ l3

Fig. VI.6-c

have the same cross-section area Ω and are made of a material with an
elasticity modulus E.

Compute the axial forces in the cables using:
(a) the force method;
(b) the displacement method.

Resolution

(a) The structure has a degree of static indeterminacy of two. Thus, the stati-
cally determinate base structure is obtained by releasing two connections.
In this case, the vertical connections on the top of bars 1 and 2 are re-
leased (Fig. VI.6-b). Under these conditions the axial force in bar 3 takes
the value P . The corresponding elongation and the displacements of the
top ends of bars 1 and 2 are

N3 = P ⇒ ∆l3 =
P2l

EΩ
⇒

⎧⎪⎪⎨
⎪⎪⎩

δ1 =
1
3
∆l3 =

2
3

Pl

EΩ

δ2 =
2
3
∆l3 =

4
3

Pl

EΩ
.

The displacements caused by axial forces in bars 1 and 2, N1 and N2, in the
released connections of the statically determinate base structure, δ′1 and
δ′2 (Fig. VI.6-c), must compensate for the displacements δ1 and δ2 caused
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by force P . The axial compressive force in bar 3 and the corresponding
length reduction ∆′l3 (Fig. VI.6-c) take the values

N ′
3 =

1
3
N1 +

2
3
N2 ∆′l3 =

N ′
32l

EΩ
=

2
3

l

EΩ
(N1 + 2N2) .

The displacements δ′1 and δ′2 are caused by the rotation of the rigid bar
AB and by the elongations in bars 1 and 2, respectively

δ′1 =
1
3
∆′l3 +

N12l

EΩ
=

l

EΩ

(
20
9

N1 +
4
9
N2

)

δ′2 =
2
3
∆′l3 +

N22l

EΩ
=

l

EΩ

(
4
9
N1 +

26
9

N2

)
.

The conditions of compatibility of the deformations in the released con-
nections define a system of two equations, whose solution gives the values
of N1 and N2

⎧⎨
⎩

δ1 = δ′1

δ2 = δ′2
⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3

Pl

EΩ
=

l

EΩ

(
20
9

N1 +
4
9
N2

)
4
3

Pl

EΩ
=

l

EΩ

(
4
9
N1 +

26
9

N2

) ⇒

⎧⎪⎪⎨
⎪⎪⎩

N1 =
3
14

P

N2 =
6
14

P .

The axial force in bar 3 may now be obtained by equilibrium consider-
ations. The condition of equilibrium of moments in relation to point A
gives

N1l + N22l + N33l = P3l ⇒ N3 = P − 1
3
N1 − 2

3
N2 =

9
14

P .

(b) The solution of the problem by means of the displacement method is
substantially easier, since the degree of kinematic indeterminacy is one.
In fact, once the rotation of the rigid bar AB is known, the elongation
of the bars is defined, which allows the immediate computation of the
axial forces. Taking as kinematic parameter the displacement δ = ∆l3 of
point B (Fig. VI.6-d), we get the following values for the axial forces in
the three bars

∆l1 =
N12l

EΩ
=

1
3
δ ⇒ N1 =

EΩ
6l

δ ;

∆l2 =
N22l

EΩ
=

2
3
δ ⇒ N2 =

EΩ
3l

δ ;

∆l3 =
N32l

EΩ
= δ ⇒ N3 =

EΩ
2l

δ .

The condition of equilibrium of moments in relation to point A furnishes
a relation between P and δ, yielding
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N1
N2

N3

∆l1 ∆l2 ∆l3

PFig. VI.6-d

P3l = N1l + N22l + N33l =
(

1
6

+
2
3

+
3
2

)
EΩδ ⇒ δ =

18
14

Pl

EΩ
.

Substitution of this value in the relations above, yields the same values of
N1, N2 and N3, as obtained by the force method.

VI.7. In the structure represented in Fig. VI.7-a the bar AB may be con-
sidered as rigid. The suspension bars are made of an elastic, perfectly
plastic material with a modulus of elasticity E and a yielding stress σY .
(a) Determine the sequence of yielding of the bars, when the load P

varies from zero to the value which causes the collapse of the struc-
ture.

(b) Compute the value of P which causes the yielding of the structure
and the displacement of point C just before the collapse.

(c) Compute the values of the loads and displacements corresponding
to the yielding of the remaining bars.

4

3
4
a

5Ω

3

A

Ω

a

2

P

4Ω

a
2

C

1

2Ω

4Ω

a
2

a

P

Ω
α

B

β
5Ω

3
4
a

a

Fig. VI.7-a

Resolution

(a) The degree of kinematic indeterminacy is one, since the symmetry of the
structure leads to the conclusion that both the horizontal displacement
and the rotation of bar AB are zero. Choosing as kinematic parameter
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the vertical displacement δ of the rigid bar, we may express the strains in
the bars as functions of δ, obtaining (Fig. VI.7-b){
∆l1 = ∆l3 = δ

l1 = l3 = a
;∆l1 = ε1a = δ ⇒ ε1 = ε3 =

δ

a

{
∆l2 = δ cos α

l2 = a
cos α

;∆l2 = ε2l2 = ε2
a

cos α
= δ cos α ⇒ ε2 =

1
a

cos2 α δ = 0.5
δ

a{
∆l4 = δ cos β

l4 = a
cos β

;∆l4 = ε4l4 = ε4
a

cos β
= δ cos β ⇒ ε4 =

1
a

cos2 β δ = 0.64
δ

a
.

Since we have ε1 = ε3 > ε4 > ε2, we conclude that bars 1 and 3 yield at
first and are followed by bars 4. Bars 2 yield last, leading to the collapse
of the structure.

∆l4

A

A

β δ

B

α
B

∆l2

Fig. VI.7-b

N4

N3

N2

P

N1

N2

P

N3

N4

Fig. VI.7-c

(b) The structural collapse occurs when all suspension bars yield. At this
moment the stresses in all bars take the value of the yielding stress σY .
The corresponding value of P may be computed by means of the con-
dition of vertical equilibrium of the forces acting on the rigid bar AB
(Fig. VI.7-c), yielding

P =
N1

2
+ N2 cos α + N3 + N4 cos β

= ΩσY + 4ΩσY cos α + ΩσY + 5ΩσY cos β = 8.8284ΩσY .

As bars 2 yield last, the displacement of point C just before the collapse
is the value of δ corresponding to ε2 = εY . Thus, we have

ε2 =
σY

E
=

1
2a

δY ⇒ δY = 2
aσY

E
.

(c) When bars 1 and 3 start yielding, the kinematic parameter δ takes
the value corresponding to the yielding strain in these bars, which is
δ = aεY = aσY

E . The axial forces in the remaining bars may be obtained
from the relations between the strains and the displacement δ. The corre-
sponding value of P is then obtained by means of the vertical equilibrium
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condition. This computation sequence is summarized by the following ex-
pressions

δ = a
σY

E
⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N1 = 2ΩσY

N2 = 4ΩEε2 = 4ΩE 1
a cos2 α δ = 2ΩσY

N3 = ΩσY ⇒ P = 5.9742ΩσY .

N4 = 5ΩEε4 = 5ΩE 1
a cos2 β δ = 3.2ΩσY

Yielding of bars 4 takes place for δ = aεY

cos2 β = 1.5625aσY

E . At this stage
bars 1 and 3 are already over the yielding strain. Only bars 2 are still in
the elastic range. The axial force in these bars takes the value

N2 = 4ΩE
1
a

cos2 α 1.5625
aσY

E
= 3.125ΩσY .

The vertical equilibrium condition is then used to compute the corre-
sponding value of P , yielding P = 8.2097ΩσY .

We conclude therefore that the load-displacement (P -δ) diagram of this
structure has 4 straight line segments. The coordinates of the three corners,
which correspond to the yielding of the different bars, are the (P ,δ) pairs
(5.9742ΩσY , aσY

E ), (8.2097ΩσY , 1.5625aσY

E ) and (8.8284ΩσY , 2aσY

E ).

VI.8. In the structure represented in Fig. VI.8-a bars AB and BC may be
considered as rigid. The wires BD, EF and AC are made of a duc-
tile material with elastic, perfectly plastic behaviour, with an elasticity
modulus E and a yielding stress σY . Determine the yielding sequence of
the three wires, when the value of force P is gradually increased from
zero until the value which causes the collapse of the structure.

2a 2a 2a

a

a

A

B

CD

E F

P

d

θ
π
2

+ 2θ

Fig. VI.8-a Fig. VI.8-b

Resolution

The degree of kinematic indeterminacy of the structure is one, since once the
horizontal displacement of the support C is known, for example, the deformed
configuration of the structure is completely defined.
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Taking the rotation θ (Fig. VI.8-b) as the kinematic parameter, we get the
elongations given below for the wires BD, EF and AC

∆lBD = θ × d = θ × 2a sin
(
arctan 2a

4a

)
= 2 sin (arctan 0.5) aθ

∆lEF = 2θ × a = 2aθ

∆lAC = 2θ × 2a = 4aθ .

The undeformed lengths of these bars are

lBD = 2
√

5 a lEF = 2a lAC = 4a .

The corresponding strains are then

εBD =
2 sin (arctan 0.5) aθ

2
√

5 a
= 0.2 θ εEF =

2aθ

2a
= θ εAC =

4aθ

4a
= θ .

We conclude that the wires EF and AC yield at the same time for a value
θ = εY = σY

E . Yielding of bar DB takes place only for θ = 5εY .

VI.9. In the structure represented in Fig. VI.9-a the horizontal bar may be
considered as rigid. The inclined bars have different cross-section areas
and are made of a material with elastic, perfectly plastic behaviour.
Determine the yielding sequence of the inclined bars when the value of
force P is gradually increased from zero until the value which causes
the collapse of the structure.

Resolution

As in example VI.8, we have a structure with a degree of kinetic indeterminacy
one, so that the elongation in each inclined bar may be directly related to the
kinematic parameter. The cross-section areas do not play any role in that
relation nor, as a consequence, in the bars’ yielding sequence.

3a

a a a a a

P

1 2 3 4 5 θl sin α

l
cos α

α

θl
θ

l
Fig. VI.9-a Fig. VI.9-b

Taking the rotation θ (Fig. VI.9-b) as kinematic parameter, the strain in a
generic bar whose position is defined by the distance l from the support takes
the value
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ε =
θl sin α

l
cos α

= θ sin α cos α =
sin 2α

2
θ .

Particularizing this expression for each of the five inclined bars, we get

bar 1: l = a ⇒ α = arctan
3a

a
⇒ ε = 0.3 θ

bar 2: l = 2a ⇒ α = arctan
3a

2a
⇒ ε ≈ 0.46154 θ

bar 3: l = 3a ⇒ α = arctan
3a

3a
⇒ ε = 0.5 θ

bar 4: l = 4a ⇒ α = arctan
3a

4a
⇒ ε = 0.48 θ

bar 5: l = 5a ⇒ α = arctan
3a

5a
⇒ ε ≈ 0.44118 θ .

The yielding sequence of the inclined bars is defined by the descending
order of these strains, i.e., 3 → 4 → 2 → 5 → 1.

VI.10. The bar AB of the structure represented in Fig. VI.10 is sufficiently
stiff to be considered as rigid. The vertical bars are made of a brit-
tle material with linear elastic behaviour until rupture defined by a
Young’s modulus E and a rupture stress σr.

3l

A

3l

1 5Ω

3l

2 Ω
B

P

l

Fig. VI.10

(a) Determine the value of P which causes the collapse of the struc-
ture.

(b) Determine the increase in loading capacity that can be obtained
by prestressing the structure, so that the two vertical bars reach
the rupture stress simultaneously.

(c) Assuming that the prestressing is achieved by fabricating bar 1
with a length which is slightly different from the design length
3l and denoting by 3l + lr the undeformed length of this bar,
determine the value of lr which maximizes the loading capacity of
the structure.

(d) Ascertain whether the structure resists the initial internal forces
(P = 0) caused by the prestressing. If it does not resist, compute
the minimum value of force P .
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Resolution

The equilibrium condition of moments in relation to point A yields the relation

6lP = 3lN1 + 6lN2 ⇒ P =
N1

2
+ N2 .

Since the degree of kinematic indeterminacy is one, an infinitesimal ro-
tation of the rigid bar around point A yields the condition of deformation
compatibility of the vertical bars

∆l1 =
∆l2
2

⇒ ε2 = 6ε1 .

(a) The axial forces in the vertical bars may be computed from the previous
two conditions. The relations between the axial forces and the strains in
the two vertical bars are

ε1 =
N1

E5Ω
and ε2 =

N2

EΩ
.

Substituting these values in the compatibility relation, we get

N1 =
5
6
N2 .

This equation and the equilibrium condition define a system of two equa-
tions, whose solution yields the axial forces and the stresses⎧⎪⎪⎨

⎪⎪⎩
N1 =

10
17

P

N2 =
12
17

P .

⇒

⎧⎪⎪⎨
⎪⎪⎩

σ1 =
N1

5Ω
=

2
17

P

Ω

σ2 =
N2

Ω
=

12
17

P

Ω
.

The rupture of bar 2 occurs at first and takes place when force P reaches
the value

σ2 = σr ⇒ P =
17
12

Ωσr .

The rupture of this bar does not cause the collapse of the structure, since
bar 1 alone is able to support this value of P , as may be easily verified
from the equilibrium condition with N2 = 0

N1 = 2P =
34
12

Ωσr ⇒ σ1 =
N1

5Ω
=

17
30

σr < σr .

(The dynamic effects associated with the shock caused by the rupture of
a bar on the other structural elements is not considered here. The study
of this kind of problem is introduced in Chap. XII). The value of P which
causes the rupture of bar 1 and, as a consequence, the structural failure
is then

σ1 = σr ⇒ 2P

5Ω
= σr ⇒ P =

5
2
Ωσr = 2.5Ωσr .
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(b) The loading corresponding to the simultaneous rupture of the two bars in
the prestressed structure may be obtained directly from the equilibrium
condition and takes the value{

N1 = 5Ωσr

N2 = Ωσr

⇒ P =
1
2
5Ωσr + Ωσr = 3.5Ωσr .

We find that, prestressing the structure, its loading capacity may be in-
creased by 40%.

(c) The value of lr which introduces the optimum residual forces may be
obtained by considering it as a residual deformation in the constitutive
law of the material of bar 1. Under these conditions, the stress-strain
relation in this bar takes the form

ε1 =
lr
3l

+
σ1

E
.

Substituting this value in the condition of compatibility in terms of strains
and considering σ1 = σ2 = σr, we get

ε2 = 6ε1 ⇒ σr

E
= 6

(
lr
3l

+
σr

E

)
⇒ lr = −5

2
lσr

E
.

We conclude that, in order to have a simultaneous rupture of the two
bars, the undeformed length of bar 1 must be l1 = 3l − 2.5 lσr

E .
(d) The axial forces in the vertical bars under the actions of the prestressing

internal forces and load P may be computed by introducing the value of
lr into the compatibility condition, which yields

ε2 = 6ε1 ⇒ N2

EΩ
= 6

(
N1

E5Ω
− 5

2
lσr

E

1
3l

)
⇒ 6

5
N1 − N2 = 5Ωσr .

Solving the system formed by this equation and the equilibrium condition,
we get the axial forces

N1 =
10
17

P +
50
17

Ωσr and N2 =
24
34

P − 50
34

Ωσr .

The residual stresses are the stresses corresponding to P = 0, taking the
values

P = 0 ⇒

⎧⎪⎪⎨
⎪⎪⎩

N1 =
50
17

Ωσr

N2 = −50
34

Ωσr

⇒

⎧⎪⎪⎨
⎪⎪⎩

σ1 =
N1

5Ω
=

10
17

σr

σ2 =
N2

Ω
= −50

34
σr ≈ −1.47σr .

We conclude that bar 2 does not resist the initial internal forces, since for
P = 0 the stress exceeds the rupture stress. The minimum load necessary
for the internal force in bar 2 not to exceed its strength, is then

σ2 = −σr ⇒ N2 =
24
34

P − 50
34

Ωσr = −Ωσr ⇒ P =
2
3
Ωσr ≈ 0.19Pmax .
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VI.11. In the symmetrical structure depicted in Fig. VI.11-a the bending stiff-
ness of the horizontal bar is sufficiently high to consider the bar as
rigid. The vertical bars are cables made of a material with linear elas-
tic behaviour until rupture, defined by a modulus of elasticity E and
a rupture stress σr. In order to optimize the loading capacity of the
structure, the middle cable is slightly longer than the design length l.
Compute the exact undeformed length of this cable, so that the three
cables reach rupture stress at the same time.

l

l

P P

Fig. VI.11-a

l

l

δl0εr

l0

Pr Pr

Fig. VI.11-b

Resolution

As the cables are made of the same material, they must have the same strain
εr = σr

E at the moment of structural collapse. The lateral cables reach the
rupture strain, when the vertical displacement of the rigid bar attains the
value

δ = 2lεr = 2l
σr

E
.
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The situation of simultaneous rupture of the three cables is depicted in
Fig. VI.11-b. Denoting the undeformed length of the middle cable by l0, this
value may be obtained by the following equation

δ = 2lεr = l0 + l0εr − l ⇒ l0 =
1 + 2σr

E

1 + σr

E

l .

VI.12. Consider a homogeneous vertical prismatic bar supported in its bottom
cross-section, under its self-weight. The bar has height h and is made
of an isotropic material with linear elastic behaviour. Disregarding
the end effect introduced by the support, i.e., considering only the
part of the bar which is sufficiently far from the support to accept
the validity of Saint-Venant’s principle, show that a uniform stress
distribution in the cross-sections obeys every condition of equilibrium
and compatibility.

Resolution

Considering a reference frame with the axes x and y in the horizontal plane
containing the upper cross-section of the bar and axis z pointing from top to
bottom, the assumed stress distribution corresponds to the following compo-
nents of the stress tensor

σx = σy = τxy = τxz = τyz = 0 and σz = −qz ,

where q represents the weight of the material per unit of volume.
We conclude at once that the differential equations of equilibrium (5) are

satisfied, since the only body force is Z = q.
We also easily verify that the conditions of equilibrium at the boundary

(8) are satisfied at the upper cross-section (in this section both the stresses
and the boundary forces vanish) and at the lateral boundary (in this surface
we have σz �= 0 but also n = 0, so that the product nσz vanishes). At the
bottom cross-section, however, the conditions of equilibrium at the boundary
(Z = σz, (8) with l = m = 0 and n = 1) are only satisfied if the reaction force
is uniformly distributed on the contact surface (Z = −qh). Generally this does
not happen, since in order to have this stress distribution, the support would
have to deform in the same way as the bar at the bottom cross-section with
the assumed stress distribution (it may be shown that the cross-sections take
a spherical shape). However, in accordance with Saint-Venant’s principle, we
may assume a uniform stress distribution if we consider only points which are
not close to this section.

With respect to the equations of strain compatibility, only (53) have to
be considered if the bar is simply-connected, i.e., if the cross-section does not
have holes. From Hooke’s law for isotropic materials (74) and (75) we get the
strain functions in the bar, which take the forms

εx = εz = − ν

E
σz =

νq

E
z εz =

1
E

σz = − q

E
z γxy = γxz = γyz = 0 .
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We conclude immediately that the equations of strain compatibility are
satisfied, since these expressions are linear, which means that their second
derivatives are zero (74) and (75) contain only second derivatives of the strain
functions).

Since the bar is statically determinate, in terms of the way as it is sup-
ported, it is not necessary to verify whether the displacements are compatible
with the support conditions (which would be an integral condition of com-
patibility). Thus, the assumed stress distribution obeys all conditions of equi-
librium and compatibility. According to the Theorem of Uniqueness (cf. e.g.
[2]) the linear problems of Continuum Solid Mechanics (materials obeying the
Hooke’s law and linear strain displacement relations) admit only one solution.
This means that the assumed stress distribution is the actual solution of the
problem.

VI.13. Obtain Expression 133 by means of the force method.

Resolution

Let us first consider that, in order to get a statically determined base structure,
the connection between the two materials is released and that the axial force
N is a tensile one and is applied to the part of the bar made of material a.
Under these conditions, only the part of the bar which is made of material a
is deformed. The corresponding elongation takes the value

∆l =
Nl

EaΩa
,

where l represents the length of the bar. This deformation introduces a dis-
continuity in the cross-sections of the bar, which must be eliminated. To this
end, let us consider a tensile axial force N ′ acting on the part of the bar made
of material b and a compressive axial force with the same value N ′ acting on
the part of the bar made of material a. Since this pair of forces has a zero
resultant, it does not affect the total axial force considered in the first step.
The pair of axial forces N ′, which represents the hyperstatic unknown, causes
the deformations

∆l′a =
N ′l

EaΩa
(shortening) and ∆l′b =

N ′l
EbΩb

(elongation) .

The discontinuity in the cross-sections of the bar is eliminated if ∆l′a +
∆l′b = ∆l. This condition defines an equation, from which the value of the
hyperstatic unknown may be obtained, yielding

∆l = ∆l′a + ∆l′b ⇒ Nl

EaΩa
=

N ′l
EaΩa

+
N ′l

EbΩb
⇒ N ′ =

NEbΩb

EaΩa + EbΩb
.

The stresses in each material are then
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σa =
N − N ′

Ωa
=

NEa

EaΩa + EbΩb
and σb =

N ′

Ωb
=

NEb

EaΩa + EbΩb
.

The axial force N ′ is the resultant of the tangential stresses appearing in
the connection between the two materials, when the axial force is applied in
only one of the them. By means of the Saint-Venant’s principle, it can be
easily proved that these stresses appear only near to the cross-section where
the external forces are applied and that they are independent of the length of
the bar.

VI.14. Generalize (133) to a composite prismatic bar made of n materials.

Resolution

Since the degree of static indeterminacy is n − 1 and the degree of kinematic
indeterminacy is 1, it is more convenient to use the displacement method.

As the strain is the same in all materials, the stresses in each of them may
be expressed as functions of the stress in one of them. Thus, we have

ε =
σi

Ei
=

σj

Ej
⇒ σi =

σj

Ej
Ei .

The condition of static equilibrium requires that the resultant of the
stresses is equal to the axial force. Thus, we must have

N =
n∑

i=1

σiΩi .

Expressing all the stresses σi as functions of the stress σj and substituting
in the previous expression, we get the stress in material j

N =
σj

Ej

n∑
i=1

EiΩi ⇒ σj =
NEj∑n

i=1 EiΩi
.

VI.15. Figure VI.15-a represents the cross-section of a bar made of two mate-
rials, whose constitutive laws are defined by the stress-strain diagrams
presented in Fig. VI.15-b.
(a) Compute the maximum axial force that may be applied to the bar

with the two materials in the elastic regime.
(b) Compute the axial force which causes yielding of the bar.
(c) In order to maximize the tensile loading capacity of the bar with

both materials in the elastic regime, the bar is prestressed, by
applying a tensile axial force to the interior part of the bar (mate-
rial a) before the connection between the two materials is estab-
lished. This force is removed after the connection’s bonding.
Compute the value of the prestressing axial force, which leads to
the simultaneous yielding of the two materials.
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c

4c

c

c 4c

a

b

c

σ

3σ0

2σ0

ε0 4ε0

a

b

ε

Fig. VI.15-a Fig. VI.15-b

Resolution

The areas occupied by each material in the cross-section and the elasticity
moduli of the two materials take the values

Ωa = (4c)2 = 16c2; Ωb = (6c)2 − 16c2 = 20c2; Ea =
3σ0

4ε0
; Eb =

2σ0

ε0
.

(a) The maximum strain with both materials in the elastic regime is the
yielding strain of material b, ε = ε0, as is easily concluded from the stress-
strain diagrams (Fig. VI.15-b). The stresses corresponding to this strain
in the two materials are

σa = ε0Ea =
3
4
σ0 and σb = 2σ0 .

The axial force resulting from these stresses is then

N = σaΩa + σbΩb =
3
4
σ0 × 16c2 + 2σ0 × 20c2 = 52σ0c

2 .

(b) When the bar yields, the stresses in the two materials are the correspond-
ing yielding stresses. Thus the yielding axial force of this bar takes the
value

N = σaΩa + σbΩb = 3σ0 × 16c2 + 2σ0 × 20c2 = 88σ0c
2 .

(c) The prestressing force must take a value that leads to a strain in material
b with the value εb = ε0, when the strain in material a takes the value
εa = 4ε0. As at the moment of application of the prestressing force we
have σb = 0 ⇒ εb = 0, the strain needed in material a at the same time is

εa = 3ε0 ⇒ σa = Eaεa =
3
4

σ0

ε0
× 3ε0 =

9
4
σ0 .

The force which introduces the required prestressing is then
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c

c

cc

b mat. a

Fig. VI.16

N = σaΩa =
9
4
σ0 × 16c2 = 36σ0c

2 .

This prestressing force raises the maximum load in the elastic regime from
52σ0c

2 to the yielding stress of the bar (88σ0c
2).

VI.16. Figure VI.16 shows the cross-section of a prismatic bar made of two
materials, a and b, with linear elastic behaviour until rupture. The
elasticity moduli and the rupture stresses of the two materials take
the values {

Ea = 30E

Eb = E

{
σra = 150σr

σrb = σr .

(a) Disregarding dynamic effects compute the value of the tensile axial
force which causes the rupture of each material.

(b) In order to maximize the tensile axial loading capacity, the bar
is prestressed. The prestressing residual forces are introduced by
applying a tensile axial force to each of the bars of material a before
the connection between the two materials is established. These
forces are removed after the two materials are bonded together.

Compute the force to be applied to each bar of material a, in
order to obtain a simultaneous rupture of the two materials under
a tensile axial force applied to the composite bar.

(c) Under the conditions specified in question b), compute the value
of the tensile axial force which causes the rupture of the bar.

(d) Under the conditions specified in question b), compute the stresses
in the two materials, when the axial force is zero.

Resolution

(a) The areas occupied by each material and the corresponding rupture
strains take the values

Ωa = πc2 Ωb = (100 − π) c2 εra = 5
σr

E
εrb =

σr

E
.
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Since the strain is constant in the cross-section, material b reaches the
rupture strain at first. This rupture takes place when the stresses take
the values

ε =
σr

E
⇒

{
σa = Eaε = 30E σr

E = 30σr

σb = Ebε = E σr

E = σr .

The axial force which causes rupture of material b is then

N = σaΩa + σbΩb = 30σrπc2 + σr (100 − π) c2

= (29π + 100) c2σr ≈ 191.106 c2σr .

Since dynamic effects may be ignored, this axial force does not cause the
rupture of the bar. In fact, when the value of the axial force exceeds this
value, material b ceases to contribute to the resistance of the bar, but
material a only attains its rupture stress, when the axial force reaches the
value

N = Ωaσra = πc2150σr ≈ 471.239 c2σr .

(b) In order to achieve the simultaneous rupture of the two materials, material
a must already have a strain εa = 4σr

E , when the strain in material b is
zero. In this way, when the strain in the cross-section increases εrb = σr

E ,
we will have εb = σr

E and εa = 5σr

E = εra. The force needed to introduce
the required prestressing, i.e. to introduce the strain εa = 4σr

E into a bar
of material a, then takes the value

N = εaEa
Ωa

4
= 4

σr

E
30E

πc2

4
= 30πc2σr ≈ 94.248 c2σr .

(c) Since, under the conditions defined in the previous answer, the rupture
of both materials occurs for the same strain, the tensile axial force to
rupture the bar takes the value

N = σraΩa + σrbΩb

= 150σrπc2 + σr (100 − π) c2 = (100 + 149π) c2σr ≈ 568.097c2σr .

We conclude that the residual forces introduced by the prestressing pro-
cedure increase the tensile loading capacity of the bar from 471.239 c2σr

to 568.097c2σr.
(d) Taking as reference the strain in material b, the constitutive laws of the

two materials are defined by the expressions below (note that, when the
strain in material b is zero, the stress in material a is σa = 4σr

E 30E =
120σr)

σa = 120σr + 30Eε and σb = Eε .

The strain corresponding to a zero axial force may be computed from the
condition
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N = σaΩa + σbΩb = 0 ⇒ (120σr + 30Eε) πc2 + Eε (100 − π) c2 = 0

⇒ ε = − 120π

100 + 29π
σr

E
.

The stresses corresponding to this strain in each material are then

σa = Eaε = 120σr + 30E

(
− 120π

100 + 29π
σr

E

)
≈ 60.820σr

σb = Ebε = E

(
− 120π

100 + 29π
σr

E

)
≈ −1.973σr .

These stresses could also be computed by means of the superposition
principle, taking the stresses acting in the situation defined in question
b) (σa = 120σr and σb = 0) and adding to them the stresses caused
by the elimination of the axial force, i.e., by a compressive axial force
N = −σaΩa = −120πc2σr. These stresses could be computed by means
of (133).

Note that the absolute value of the initial strain obtained for material b
exceeds its tensile strength. If the material has the same rupture stress for
tensile and compressive forces, it will be necessary to have a minimum tensile
axial force, in order to prevent this material from failing under the action of
the prestressing forces. However, brittle materials usually have a much higher
strength in compression than under tensile forces.

This example describes a prestressing technique widely used in prefabri-
cated concrete structural elements called pre-tensioning. Another technique
called post-tensioning is more used in on-site prestressing, once the structure
is built. In this technique channels are left in the concrete element, where the
prestressing steel wires are introduced later. The prestressing forces in these
wires are usually introduced by means of hydraulic jacks which are supported
by the concrete element to be prestressed itself. In this situation the reaction
forces of the jacks are transmitted to the concrete element, so that the total
axial force is zero. In this situation, the axial force to be applied to the pre-
stressing wire is lower, corresponding to the stress computed in answer d). In
the present example, the force to be applied in each bar of material a would
be N = 60.82σr

πc2

4 = 47.768 c2σr.

VI.17. Determine the displacement of the cross-sections of a vertical cable
with length l and cross-section area Ω, supported in its upper end,
under the action of its self-weight and of a downwards vertical force P
applied in its bottom cross-section.

Resolution

Let us consider a vertical coordinate z originating in the bottom end of the
cable and pointing upwards. Denoting by q the self-weight of the cable per
unit length, the distribution of the axial force is defined by the expression
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N = P + qz .

The displacement of the cross-section at the distance z from the bottom
end may be computed by integrating the elongation of the infinitesimal pieces
of length dz′ (z′ ≡ z), between that section and the upper end (137), yielding

∆l(z) =
1

EΩ

∫ l

z

(P + qz′)dz ′ =
P

EΩ
(l − z) +

q

2EΩ
(l2 − z2) .

The displacement of the bottom end of the cable is then

z = 0 ⇒ ∆l =
1

EΩ

(
Pl − ql2

2

)
.

VI.18. Determine the longitudinal shape of a bar with square cross-section,
with a vertical axis, under the action of a force P and of its self-weight
q per volume unit, as represented in Fig. VI.18-a, in order to have the
same stress σ in the whole bar.

b b

P

z

b + db

σ

σ

dz

qΩdz

b

Fig. VI.18-a Fig. VI.18-b

Resolution

The condition of equilibrium of the vertical forces acting in a piece of bar with
an infinitesimal length dz (Fig. VI.18-b, Ω = b2) yields the equation

σΩ + qΩdz = σ(Ω + dΩ)
⇒ σdΩ = qΩdz

⇒ σ
dΩ
Ω

= qdz .

This differential equation is easily integrated, yielding
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σ ln Ω = qz + C ⇒ ln Ω =
qz + C

σ
⇒ Ω = C ′ e

qz
σ with C ′ = e

C
σ .

As the bottom cross-section (z = 0) only has to resist to the load P , this
cross-section has the area

z = 0 ⇒ Ω =
P

σ
.

The integration constant and the value of b as function of z are then

C ′ =
P

σ
⇒ Ω =

P

σ
e

qz
σ ⇒ b =

√
Ω =

√
P

σ
e

qz
2σ .

We find that the cross-section area grows exponentially with the length
of the bar (Fig. VI.18-a). However, the growth rate is very low for the usual
structural materials, since the number representing q is generally much smaller
than the number representing σ, so that the numerical value of e

qz
2σ is remains

very close to 1, even for significant values of the length of the bar. This means
that it is perfectly correct to apply the theory of prismatic members to this
bar, with variable cross-section.

VI.19. Compute the axial forces in the column represented in Fig. VI.19.
VI.20. Figure VI.20 represents the cross-section of a prismatic bar made of two

materials with linear elastic behaviour. The materials, a and b, have
elasticity moduli Ea = 2E and Eb = 5E and coefficients of thermal
expansion αa = 3α and αb = α, respectively.

2l

3l

4l

A

B

C

D

P P

2P 2P

Ω

2Ω

3Ω

2c

2c

c c

a b

b a

a

b

a

c

c

e

c 2c c

Fig. VI.19 Fig. VI.20 Fig. VI.21

Determine the stresses induced in this cross-section by a temperature
rise ∆T . Justify the analytical methodology used.
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VI.21. Figure VI.21 represents the cross-section of a prismatic bar made of two
materials, a and b, which have different thermal expansion coefficients.
Determine the value of the thickness e, so that a temperature variation
does not introduce curvature in the bar.




