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Fundamental Concepts of Strength of Materials

V.1 Introduction

In Chaps. I to IV expressions were developed for the mathematical description
of the relations between external forces, stresses, strains and displacements in
a body made of a material which may be considered as continuous. The com-
putation of the stresses and strains induced in the body by a given system of
external forces, or by imposed displacements, demands the direct or indirect
computation of the solution of systems of equations based on those expres-
sions. Generally, we deal with differential equations (note that many of the
main expressions presented in Chaps. I to IV are in differential form) with
a degree of complexity which depends on the geometry of the body, on the
rheological behaviour of the materials it is made of and on the magnitude
of the deformations and rotations. For these reasons, analytical solutions are
obtained only for those cases where deformations and rotations are sufficiently
small to be considered as infinitesimal, the material is isotropic and has lin-
ear elastic behaviour and the geometry of the body has a simple analytical
description.

Traditionally the solutions were obtained in two ways:

– Theory of Elasticity – this science mainly uses mathematical tools to get
analytical solutions for the problems of the Mechanics of Materials. Since
the differential equations describing those problems generally have a high
degree of complexity, only the simpler problems could be solved. Thus,
solutions have been obtained for two-dimensional problems with a simple
description for the body geometry and for the loading distribution, in rec-
tangular coordinates (bodies with a rectangular or right triangular border
under concentrated and uniformly or linearly distributed external forces),
or in polar coordinates (bodies with a circular and/or radial border, prob-
lems with some axisymmetry conditions in the stress distribution, etc.).
Solutions have also been obtained for some three-dimensional problems, by
using rectangular, cylindrical and spherical coordinates [4].
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The great advantage of the Theory of Elasticity is that it gives analytical
solutions, which allow, for example, a simple investigation about the way a
solution changes when the parameters included in it change, which cannot
be achieved directly with numerical solutions.

The bigger disadvantage is that it yields solutions only for the simplest
cases under ideal conditions. Furthermore, as a consequence of the math-
ematical approach employed, it is not easy to use physical considerations
to get approximate generalizations of its solutions for cases where those
conditions do not apply exactly (for example, a slight non-linearity of the
material constitutive law).

– Strength of Materials – this science favours a more physically grounded,
phenomenological and praxis oriented approach. Traditionally, its focus has
been on the computation of stresses and deformations in the special case of
slender members, although other kinds of structures are also analysed. In
fact, these cases belong to the class of problems which can be solved with-
out exaggerated use of mathematical formalism and their solutions were
developed prior the appearance of powerful numerical tools. The phenom-
enological approach and the relatively simple geometry of the problems
allow the treatment of a broader spectrum of constitutive laws, as some
particular cases of non-linear elasticity, plasticity, etc., the consideration of
some material discontinuities, as, for example, slender members made of
two or more materials and even non-infinitesimal rotations.

Summarizing, we can make the highly simplified statement that the Theory
of Elasticity furnishes mathematical solutions for problems whose geometry is
relatively complex (two- or three-dimensional problems), but whose material
behaviour is the simplest possible, while the Strength of Materials yields phys-
ical solutions for problems with a simpler geometry (slender members), but
with some incursions into more complex aspects of material behaviour and
non-infinitesimal displacements and rotations. These two sciences are comple-
mentary. In fact, the first frequently starts from solutions obtained by means of
the second, to develop analytical solutions, and the Strength of Materials often
uses solutions obtained by the Theory of Elasticity for particular problems,
either for testing a simplifying hypothesis, or to investigate the possibility of
generalizing some solutions to problems where the starting conditions are only
approximately satisfied.

With the appearance of machines for automatic computation – the com-
puter – it became possible to solve algebraic systems of equations with a large
number of unknowns, which made the development of a third method possi-
ble: the numerical simulation of structures. This method, by discretizing the
continuum and thus allowing the transformation of the differential equations
into algebraic equations, took only a few decades to become the most powerful
tool for solving problems of Solid Mechanics and, more generally, all contin-
uum problems. Of all the computational tools, the Finite Element Method
deserves a special reference, since its flexibility and modularity has allowed it
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to be successfully applied to practically all kinds of problems of Continuum
Mechanics.

This second part of the book introduces structural analysis and the theory
of slender members, using the approach which is traditionally called Strength
of Materials. In fact, despite of the success of numerical analysis, this subject
is still a core part of the Engineering Sciences that deal with Solid Mechanics,
since it yields a large number of directly applicable expressions for practical
problems. These expressions concern the computation of the effects of the
axial and shear forces and of the bending and torsion moments in slender
members. Furthermore, as a consequence of the physical approach and of the
large number of simple exercises which are solved, it develops in the student
a greater capacity for intuitively evaluating the way as a structure behaves.

The notions of stress, strain and rheological behaviour are explained again
at the beginning of this chapter. This is because the subjects are introduced
differently for the Strength of Materials, compared with Solid Mechanics, and
because its is intended that the reader of the second part is able to under-
stand it, without a deep study of the subjects dealt with in the first chap-
ters. However, the reader should already have some knowledge about the two-
dimensional analysis of a second order tensor, at least, especially in relation
to the transposition of reference axes and Mohr’s circle, and the computation
of reaction forces in statically determinate structures and internal forces in
slender members.

V.2 Ductile and Brittle Material Behaviour

The main characteristics of the rheological behaviour of materials are usu-
ally investigated by means of simple experimental tests, in which the rela-
tions between forces and deformations in a body with appropriate geometry,
made of the material to be studied (test specimen) are measured. The one-
dimensional tensile test is the most widely used way to study the behaviour of
current structural materials, such as metals. This test determines the relation
between an axial force N and the corresponding elongation ∆l, as represented
schematically in Fig. 47-a.

Consider a prismatic specimen with a doubly symmetric cross-section
made of mild steel. If the elongation ∆l is gradually increased from zero until
the value which causes the rupture of the specimen, and the corresponding
axial force N is measured, a relation between these two quantities is obtained.
This relation may be represented by a diagram, like that in Fig. 47.1

The diagram is typical for a ductile material and is characterized by a zone
of purely deformation plastic (irreversible) or yielding zone, where deformation

1The test is carried out with displacement control, i.e., by defining a value for the
elongation and measuring the corresponding value of the axial force. If force control
is used instead, the shape of the diagram in the descending zone, where the value of
force decreases as the deformation increases (softening), is not correctly captured.
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suddenly increases, without a significant increase of the axial force N (line
BC). In this diagram distinct zones may be identified. The first corresponds
to the straight line OA, where the elongation ∆l is completely recoverable
and proportional to the axial loading N . Since recoverable deformations are
defined as elastic, this region is called the linear elastic zone. Usually, the
deformations of structural materials are in this zone under service loads.
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Fig. 47. Force-elongation diagram of mild steel, obtained by means of a one-
dimensional tensile test

In the region AB the deformation is still elastic, but there is no propor-
tionality between forces and deformations anymore. Axial force Np indicates
the transition from the linear elastic to the non-linear elastic deformations
and is therefore called the limit of proportionality. When the loading attains
the value NY , yielding starts. Region BC is the yielding zone defined above
and NY is the yielding force. Between these two values (Np and NY ) an elas-
ticity limit Ne may be defined. This value indicates the maximum value of
N , which causes purely elastic deformation, i.e., the maximum value that N
can reach, so that the N -∆l diagrams in the loading and unloading phases
coincide. In practical terms, the difference between Np and NY is very small
so they may be considered to take the same value. In point C the hardening
of the material starts. In region DE a decrease of the axial force with defor-
mation increase (softening) takes place. This softening is only apparent, since
it is a consequence of a reduction of the cross-section (necking) which takes
place prior to rupture: in fact, the force per area unit in the necking cross-
section increases until rupture (cf. Sect. V.3). If the loading process is stopped
at any stage after point B and the axial force is reduced until zero, the N -∆l
relation follows a linear path, with the same angle as the initial straight line
OA, and a residual deformation remains, as represented by the line B′B′′. In
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a subsequent reloading the N -∆l diagram follows the path B′′B′CDE. If the
unloading occurs when the load is already in the hardening region (point C ′),
the material behaviour is the same: the unloading is linear (line C ′C ′′) and the
reloading follows the path C ′′C ′DE. This means that, in the reloading, the
first plastic deformations appear for a higher value of the axial force than in
the first loading. This is why the curve CC ′D is called the hardening region.

If, instead of a tensile force N , a compressive one is applied, the obtained
N -∆l diagram is approximately the same until point C ′. Since no necking
occurs in compression, the hardening continues indefinitely and no rupture
takes place, even for very large deformations. The proportionality and yielding
forces take the same value as in the tensile test. This behaviour is characteristic
of ductile materials.

In the case of brittle materials as cast iron, concrete, glass, rock, ceramic
materials, etc., the obtained force-elongation diagram takes a form of the
type represented in Fig. 48. The main differences between the diagrams for
brittle and ductile materials are: the linear elastic zone is less defined, i.e., the
tangent to the curve decreases steadily until rupture, which occurs with little
plastic deformations, and the behaviour under tensile and compressive forces is
different. Generally, these materials display more stiffness and strength under
compressive loading.
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Fig. 48. Force-elongation diagram in a brittle material

In many materials, especially metallic materials, ductility changes with
temperature, with less ductility for low temperatures.

V.3 Stress and Strain

In the previous section the relation between axial force and elongation was
described. This relation obviously depends on the dimensions of the test
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specimen. To be more specific, the larger the cross-section area and the smaller
the specimen’s length, the smaller the elongation will be, for the same axial
force N . It is, however, more convenient to express the material properties
independently of the specimen’s dimensions. This objective may be achieved
by means of the stress and strain definitions. Thus, we may define stress σ
as the force per cross-section unit Ω, σ = N

Ω
2 and strain ε as the elongation

per unit length l, ε = ∆l
l . It is evident that the stress-strain relation has

the same shape as the N -∆l diagram if Ω and l are approximately constant,
which happens while the specimen’s deformation is small. This is true in the
diagrams presented above, with exception of the necking zone (curve DE) in
Fig. 47. In the necking cross-section, although the axial force decreases with
the deformation, the stress increases.

The coefficient of proportionality E between stress and strain in the linear
elastic region (line OA, Fig. 47) is a rheological parameter of the material and
is called the longitudinal modulus of elasticity or Young’s modulus. In all kinds
of steel this parameter takes the value E = 206 × 109N/m2. In the curved
regions of the σ-ε diagram the stress is no longer proportional to the strain. In
this case a tangent elasticity modulus may be defined: Et = dσ

dε . A longitudinal
elongation is usually accompanied by a reduction of the transversal dimensions
and vice versa. The relation ν between the the transversal and longitudinal
strains, εt and ε, respectively, multiplied by −1 (εt = −νε), defines another
rheological parameter and is called the Poisson’s coefficient of the material.
In steel, as in most metals, this parameter takes a value of 0.3 in elastic
deformations and 0.5 in plastic deformations.

If we now consider an inclined section at an angle θ with the cross-section,
we can define a stress T = N

Ωinc
(Ωinc is the area of the inclined section). This

stress must have the direction of the axial force N , in order to be able to bal-
ance it, as represented in Fig. 49. Thus, this stress has a normal component σθ

(to the inclined section) and a tangential or shearing component τθ. Denoting
the cross-section area by Ω, we get

Ωinc =
Ω

cos θ
⇒ T =

N

Ωinc
=

N

Ω
cos θ.

The normal and shearing components are then, respectively,

σθ = T cos θ =
N

Ω
cos2 θ and τθ = T sin θ =

N

Ω
sin θ cos θ =

1
2

N

Ω
sin 2θ .

The maximum value of σθ clearly occurs for θ = 0 (cross-section). The shearing
stress attains its maximum value in an inclined section at a 45◦ angle with
the cross-section, as may be easily verified3

2In this expression a uniform distribution of the stress in the cross-section is
assumed. This hypothesis will be proved in Sect. VI.1).

3These conclusions may also be drawn by means of the Mohr circle or from (35)
and (36) (σx = N

Ω
, σy = τxy = 0, θ = 45◦).
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Fig. 49. Stresses in an inclined section

dτθ

dθ
=

N

Ω
cos 2θ = 0 ⇒ θ =

π

4
.

If, in the one-dimensional experimental test of a ductile material, a specimen
with a flat and polished lateral surface is used, careful observation shows lines
at a 45◦ angle with the longitudinal direction, when yielding takes place. These
lines, called Lüder-Hartman’s lines, have the directions corresponding to the
maximum shearing stress and indicate that the plastic deformation is mainly
a shearing deformation. This explains the same material behaviour observed
in tensile and compressive experiments, especially for the yielding stress σY =
NY

Ω . In fact, there is no physical difference between the shearing deformation in
compressive and tensile tests. In brittle materials deformation and rupture are
mainly influenced by cohesion, contact and friction forces between the material
particles. These forces are obviously different under tensile and compressive
loadings. Concrete is one example. In this material the tensile strength is
mainly influenced by the cohesion properties of the cement paste, while in
compression the properties of the aggregates play an important role, because
of the contact and friction forces between the rock particles.

V.4 Work of Deformation. Resilience and Tenacity

When a body deforms under the action of external forces, their points of
application suffer displacements and the forces do work. Physics defines the
work of a constant force in a straight displacement as the scalar product of
the vectors defining the force and the displacement of its point of application.

In the example of the prismatic steel bar under a tensile axial force
(Fig. 47-a) the work W0 done by force N , for a given elongation ∆li, may
be given by the expression

W0 =
∫ ∆li

0

N (∆l) d (∆l) . (112)

The integral is necessary because the force N is not constant, but varies during
the deformation as a function of ∆l, as shown in Fig. 47. In fact, the definition
of work given above is valid only for an infinitesimal displacement d (∆l) . By
introducing the definitions of stress and strain into (112), the work W done
per volume unit may be obtained



126 V Fundamental Concepts of Strength of Materials

σ

W

εi ε

Fig. 50. Work done per volume unit in the deformation εi

W0 =
∫ εi

0

σΩ︸︷︷︸
N

d(∆l)︷︸︸︷
ldε = V

∫ εi

0

σdε ⇒ W =
W0

V
=
∫ εi

0

σ (ε) dε ,

where V = Ωl represents the volume of the bar. This quantity takes the same
value as the area under the stress-strain diagram, as represented in Fig. 50.

From Physics we know that for the production of a given amount of work
an equal amount of energy U must be spent. If the strain εi is in the elastic
region of the stress-strain diagram, this energy is totally stored by the de-
formed material as elastic potential energy. This energy is recovered during
unloading. However, if the strain is larger than the value corresponding to the
elasticity limit, the energy is partly dissipated (transformed in heat) during
the plastic deformation. In this case, the elastic potential energy is only a
fraction of the work done in the deformation and is given by the expression

Ue =
∫ εi

εr

σ′ (ε) dε ,

where εr is the residual strain and σ′ (ε) is the stress corresponding to the
strain ε in the unloading. As stated above, in the unloading of a steel bar the
stress-strain relation is linear, even when the stress is larger than the propor-
tionality limit. The dissipated and potential elastic parts of the deformation
energy per volume unit (energy density) are represented in Fig. 51.

The amount of energy per volume unit needed to start plastic deforma-
tion, is called resilience. The amount of energy per volume unit needed to
cause rupture is called tenacity. These quantities play important roles in the
shock-absorbing capacity of a structure. Ductile materials have high tenacity,
as opposed to brittle materials, which display low tenacity. In a ductile mate-
rial the tenacity is much larger than the resilience, while in brittle materials
these quantities are similar since the plastic deformations are small. Ductile
materials usually have a much higher tenacity than brittle materials.
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Fig. 51. Dissipated energy (Ud) and elastic potential energy (Ue) in the deformation
of a steel bar

V.5 High-Strength Steel

As described in Sect. V.2, if a mild steel is deformed until the strain reaches
the hardening zone and the loading is subsequently removed, this steel displays
a higher elasticity limit in a later reloading, i.e., a larger linear elastic region
in the stress-strain diagram. Since the elasticity limit is usually considered
as the limit load under service conditions, the loading capacity of a steel
may be increased in this way. This method of increasing the elasticity limit
of a steel by means of pre-deformation, with the objective of increasing the
admissible stress, is called strain hardening. Obviously this process causes a
loss of tenacity, since part of the energy dissipation capacity of the material
is consumed by the pre-deformation in the hardening process. Conversely, the
resilience is increased since the elasticity limit is higher and the elasticity
modulus remains unchanged, as depicted in Fig. 52.

σ

resilience

tenacity

ε

Fig. 52. Resilience and tenacity of a mild steel and of a high strength steel
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Fig. 53. Variation of the stress-strain diagram with the carbon percentage

The hardened steel is therefore more brittle. Furthermore, the yielding
stress for a compressive axial force decreases in a steel bar that is hardened
by means of a tensile axial force. This is why the strain hardened bars used
in reinforced concrete are pre-deformed by torsion, which increases the tensile
and compressive limits of elasticity to the same extent.

The elasticity limit of steel can also be increased by increasing the quantity
of carbon added during the metallurgical process of steel production. This
process, called natural hardening, has the advantage of not disturbing the
isotropy of the material. Just as in the strain hardening process, the capacity
of plastic deformation (ductility) decreases as the elastic limit increases, as
indicated in Fig. 53.

High strength steels do not have a yielding zone where only plastic defor-
mations take place (cf. Figs. 52 and 53). As a consequence, the onset of the
plastic deformation is not clearly shown by the stress-strain diagram. For this
reason, the elastic limit is defined with the help of a convention, which states
that the elastic limit is the stress which causes an unrecoverable strain with
the value 0.2% = 0.002 (σ0.2, Fig. 54).

V.6 Fatigue Failure

In structural elements subjected to rapidly changing internal forces, such as
bridge elements under vibration loads caused by traffic or wind loads, machine
parts performing cyclic motions, aircraft structural elements, etc., fatigue fail-
ure may occur. This kind of failure usually takes place for substantially lower
stresses than in a monotonically increasing loading, as in the experimental
tests described in Sect. V.2.

The behaviour of structural materials under the action of loads varying
with great frequency is investigated by means of fatigue tests. In these tests a
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Fig. 54. Conventional elastic limit

specimen undergoes a generally one-dimensional loading which causes stresses
varying cyclically between two given values, usually a compressive and a ten-
sile stress. The loading cycles are repeated a large number of times until
rupture takes place. The higher the given stress values are, the smaller is the
number of cycles needed to cause rupture. In the simplest and commonest of
these experimental tests equal compressive and tensile stresses (σmin = −σmax)
are cyclically applied.

If, for example, several specimens of steel are tested under the same stress
level, the results are generally found to be widely dispersed, i.e., the number
of cycles necessary to cause rupture varies substantially from one test to an-
other. However, if the number of tests is sufficiently high and the experiments
are performed for different stress levels, results are obtained which may be ap-
proximated by a curve with the shape depicted in Fig. 55 [3]. This curve tends
asymptotically for a stress value σf , which means that for a sufficiently low
stress no fatigue failure occurs, irrespective of the number of loading cycles.
This stress value is called fatigue limit stress. In iron-carbon steel this stress
is approximately half the rupture stress, which is lower than the elastic limit
stress. In other more ductile materials like lead, copper, zinc or pure iron the
fatigue limit stress is higher then the elastic limit [3].

The value of the fatigue failure stress depends strongly on the specimen’s
surface, with a higher failure stress obtained when the surface is polished. This
is a consequence of the fact that rupture is initiated by a crack. The crack
starts at the surface and propagates to the interior of the specimen as the
cyclic loading goes on, until the uncracked part of the specimen’s cross-section
becomes too small to carry the applied loading and failure takes place. The
crack starts at a lower stress in the unpolished surface, since its imperfections
cause higher stress concentration, as will be seen later (Sect. VI.9). This crack
initiation mechanism explains the above-mentioned dispersion of the number
of cycles required to cause fatigue failure for the same stress level. It is also due
to the sensitivity to the imperfections that fatigue failure takes place for fewer
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Fig. 55. Relation between the maximum stress σ and the number of loading cycles
needed to cause rupture in fatigue tests with σmin = −σmax

cycles (or lower stresses) in the case of corrosive environments, since corrosion
initially affects the surface of the material and causes larger imperfections.

From these considerations we conclude that fatigue failure has the same
character as brittle failure, since it takes place without being preceded by
large plastic deformations. It is a dangerous kind of failure, since there are no
visible signs of the fatigue crack before rupture. Sensitivity to imperfections
is also a characteristic of brittle failure. As will be seen later (Sect. VI.5),
ductile structures are safer than structures made of brittle materials, since
the capacity for plastic deformation allows a redistribution of internal forces,
which automatically optimizes the distribution of internal forces until failure
occurs. However, if there is a risk of fatigue failure, the advantages of struc-
tures made of ductile materials are lost, since fatigue-induced rupture is of a
brittle nature, even when it occurs in ductile materials.

V.7 Saint-Venant’s Principle

Saint-Venant’s principle states that in a body under the action of a system of
forces which are applied in a limited region of its boundary, the stresses and
strains induced by those forces in another region of the body, located at a large
distance from the region where the forces are applied, do not depend on the
particular way the forces are applied, but only on their resultant. This “large
distance” may be considered, in most cases, as the largest dimension of the
region where the forces are applied.

This principle does not have a formal, general and exact demonstration
as yet, but it has been verified in so many cases, both experimentally and
numerically, that it is accepted as valid by the generality of authors on this
subject. It is a very useful principle, since complex force systems may be
reduced to their resultants, which substantially simplifies and reduces the
computation effort in practical problems. Besides, it is a very helpful tool in
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Fig. 56. Stress distribution in different cross-sections of a prismatic bar, caused by
three force systems with the same resultant

the theoretical development of solutions for problems in Theory of Elasticity
and Strength of Materials, as will be seen later.

As an example, let us consider the prismatic bar represented in Fig. 56
under the action of three systems of forces with equal resultants: the stresses
at a grater distance than the transversal dimension 2b from the upper end of
the bar may be accepted as equal in the three cases.

This principle is also valid in the cases of non-isotropic materials, non-
linear material behaviour, plastic and viscous deformations and material het-
erogeneity. Furthermore, the validity of this principle is not limited to small
deformations.

V.8 Principle of Superposition

In structures where the applied loading causes deformations and rotations
which are sufficiently small to be considered as infinitesimal and where the
rheological behavior of the material is linear (i.e., the proportionality limit
stress is not exceeded), the relation between the intensity of a force and the
effects it causes (stresses, strains, displacements) is linear, i.e., the effects are
proportional to the intensity of the force which causes them.

The increase of displacement corresponding to the increase of the force
which causes it is therefore independent of the intensity of the force before
the increment. Furthermore, as the geometry of the structure, after the appli-
cation of loading, is only infinitesimally different from the undeformed config-
uration, the initial geometry of the structure may always be used, regardless
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of the existence or not of other previously applied loads (geometrical linear-
ity). Under these conditions (material and geometrical linearity) the Principle
of Superposition is valid: the effect of the application of a force to a structure
is independent of the existence or not of other forces applied to the struc-
ture. As a consequence, the effects of applying different loading systems to
the structure may be computed separately and added.

This principle has a simple analytical demonstration. To this end, it suf-
fices to take into consideration that, in the case of infinitesimal deformations
and rotations, all the conditions relating applied forces, stresses, strains and
displacements are linear. These conditions are:

– the differential equations of equilibrium (5),
– boundary balance equations (8),
– the relations between strains and displacements (50),
– the local (53) and integral conditions of compatibility (the integration of

strains is a linear operation),
– the constitutive law (74), (75), (79), (81), (83) and (85).

As a consequence, the sum of two sets of forces, stresses, strains and displace-
ments also obeys these conditions.

A temperature variation is also a kind of loading whose effect is gener-
ally defined by a linear law: the strain induced by a temperature variation is
generally proportional to the value of that variation, with the thermal expan-
sion coefficient playing the role of the proportionality constant. The effect of
the temperature variation may be quantified by adding another element to
the expressions, allowing the computation of the longitudinal strains for given
stresses (e.g., (74)). Taking, for example, the longitudinal strain in direction x,
we have εx = 1

E [σx − ν (σy + σz)]+α∆T , where α is the coefficient of thermal
expansion.

From a physical (and practical) point of view we may make the simplified
statement that the effect of the application of a force to a supported body
depends only on two components: the constitutive law of the material and the
geometry of the body.

If the constitutive law is linear and if we can admit that its rheological
behaviour does not depend on temperature, the first component does not
change with the application of forces or with a temperature variation.

If, in addition, the deformations are small enough for it to be acceptable
that the geometry of the body does not change, the second component does
not change either. Thus, the effect of the force is independent of the previ-
ous application of forces and of temperature variations, which leads to the
principle of superposition as stated above.4

4It must be noted that possible interactions between the deformations and the
internal forces caused by the external loads are not taken into account in these
considerations. This interaction may occur in presence of infinitesimal deformations
and cause structural instability. As it will be seen later (Chap. XI), in the analysis
of this phenomenon the principle of superposition is not valid.
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This principle has many useful applications, both from a practical point of
view, since it allows the separate consideration of single loading cases and any
linear combination of their effects, and in theoretical analysis, as, for example,
in the demonstration of energy theorems for linear elastic structures. It must,
however, be noted that it is only valid for structures with linear elastic force-
displacement behaviour.

V.9 Structural Reliability and Safety

V.9.a Introduction

A structure must resist all the loadings that will act on it, in its expected life
and conditions of use. In the context of structural reliability “resist” means
that the structure must be able to carry out safely all the functions for which
it is designed.

We consider that the structure ceases to be able to carry out those func-
tions when a limit state occurs. Two kinds of limit states are usually consid-
ered: ultimate limit states and serviceability limit states.

The first are associated with the rupture, collapse or failure of the entire
structure or parts of it, such as failure of structural elements caused by ma-
terial rupture, structural instability of compressed members, fatigue failure,
displacements leading to loss of supports, etc.

The serviceability limit states include everything that may cause struc-
tural malfunction, although not inducing collapse. Examples of serviceability
limit states in Civil Engineering structures include: excessive deformation of a
structural frame which may cause cracking in non-structural walls, excessive
vibration of a pedestrian bridge which may cause discomfort to the users, too
large cracks in reinforced concrete members which may lead to corrosion of
the reinforcing steel bars, etc.

V.9.b Uncertainties Affecting the Verification
of Structural Reliability

When verifying the reliability of a structure it is not possible to use a to-
tally deterministic approach, since the quantification of the problem data –
the different kinds of loading (actions) and the rheological properties of the
materials – is always affected by some uncertainty, which makes it impossible
to define exact values. The main sources of uncertainty are:

– uncertainty in the value of the actions: all actions are characterized by a
smaller or larger dispersion in relation to their mean value; besides, it is
often impossible to define limiting values. Examples of loadings are those
caused by wind, snow, temperature variation, earthquakes, etc. Further-
more, it is generally not economically defensible to use the limiting values
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of the actions, when they exist, since the probability of their occurrence is
generally very small;

– statistical dispersion of the rheological properties of structural materials,
especially rupture stress, elasticity modulus, resilience, tenacity, etc.;

– uncertainty introduced by the dimensional tolerance of pre-moulded struc-
tural elements;

– execution imperfections, especially in Civil Engineering structures as in
concrete elements for example, introduce uncertainty into the geometri-
cal dimensions, on the position of the reinforcing bars, the verticalness of
columns, etc.;

– uncertainty introduced by the methods of analysis and computation, since
they are always based on idealized models, resulting from simplifying hy-
potheses, like the consideration of a linear stress-strain relation and of the
undeformed geometry of the structure, non-consideration of time-dependent
effects, such as viscous deformation, etc.

As a consequence of these random factors, the verification of structural re-
liability necessarily has a probabilistic basis, since a zero probability of failure
can never be guaranteed. The criteria of dimensioning and safety evaluation
are based on the definition of a sufficiently low probability for the structure to
reach a limit state. For ordinary Civil Engineering constructions the following
values are considered acceptable [3]:

– serviceability limit states < 5 × 10−2;
– ultimate limit states < 10−5.

In the case of structures with special safety requirements, like large dams
or nuclear power plants, the maximum values of these parameters are much
lower.

The above considerations lead to the conclusion, that a structure is safe if
the probability of it reaching a limit state is sufficiently low.

V.9.c Probabilistic Approach

The probabilistic approach consists of the direct computation of the proba-
bility that the structure reaches a limit state. Thus, from a theoretical point
of view, we can accept that either the actions and the resistance properties
of the structure (strength) may be represented by parameters A and R which
are described by probabilistic density curves fA(A) and fR(R), as represented
in Fig. 57.

The probability of the simultaneous occurrence of a value of the action A
within the interval dA and of a value of the strength R within the interval dR
(dA and dR are infinitesimal quantities) is given by

d (dPf ) = fA dAfR dR .

The probability of strength R taking a lower value than action A, or, more
precisely, of having the action in the interval dA and inferior values of the
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Fig. 57. Probabilistic density curves for action A and for strength R

strength R, may be obtained by integrating the previous expression for all
values of R < A, which yields

dPf = fA dA

∫ A

R=0

fR dR .

By integrating this expression for all possible values of the action, we get

Pf =
∫ ∞

A=0

dPf =
∫ ∞

A=0

fA

∫ A

R=0

fR dR dA .

This expression represents the probability of the action exceeding the strength,
that is, the probability of the structure reaching a limit state.

Using this methodology to verify the reliability of a structure is, however,
not easy in practice, since it is generally very difficult and laborious to define
and combine the multiple laws of probabilistic distribution for actions and
strength parameters for a particular structure. In the practical verification of
the reliability of ordinary structures, therefore, a semi-probabilistic approach
is used instead, as described in the next sub-section.

V.9.d Semi-Probabilistic Approach

The semi-probabilistic approach is based on the definition, with a probabilistic
basis, of nominal values for the actions and strength parameters, so that a
sufficiently low probability of failure is guaranteed, without the need for the
explicit computation of this probability.

The first step consists of defining characteristic values for the actions and
strength parameters.
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For actions these values are defined as values with a very low probability
of being exceeded (upper quantile of the probabilistic density curve), except
in the case of permanent actions with an advantageous effect on the safety of
the structure. In the latter case the lower quantiles are used (values which are
exceeded with a very high probability). However, in the case of permanent
actions with low dispersion values, i.e., actions with close upper and lower
quantiles, as the self-weight of structural materials, the mean value may be
used. This considerably simplifies reliability verification, since it is not nec-
essary to distinguish between permanent actions with beneficial and adverse
effects on the structural safety.

For the strength parameters only the inferior quantiles of the probabilistic
density curve are used as a rule (values which are exceeded with a very high
probability). However, cases may be imagined where the failure of a structural
element might be beneficial for the global failure safety. For these elements
the use of the upper quantiles would be the logical choice.

Common values for the probabilities corresponding to the lower and upper
quantiles are 5% and 95%, respectively. Generally, the values corresponding
to these quantiles are defined in the official standards relating to the different
types of structures and structural materials.

The second step consists of defining nominal values which are obtained
from the characteristic values by multiplying them by partial factors.

In the case of actions, these factors take into account the probability of the
characteristic values being exceeded, the reduced probability of all the actions
present in a given loading case simultaneously reaching their characteristic
values, the probability that the distribution of external forces resulting from
a particular action (wind, for example) may be different from the assumed
distribution, etc.

In the case of the strength parameters, the partial factors are intended
to cover the reduction of the material’s strength due to accidental mater-
ial defects, the reduction of the strength parameters with the time (aging),
small time-dependent deformations, the simplifying hypotheses used in the
definition of the material’s constitutive law, etc.

V.9.e Safety Stresses

Traditionally, the structural safety, used to be verified on the basis of safety
stresses, especially in the fields of Civil and Mechanical Engineering. This
method has been gradually abandoned and replaced by the semi-probabilistic
approach. However, a short description of it is entirely justified, both for
historical reasons and because it is still used.

The safety stress method has the same probabilistic basis as the semi-
probabilistic approach, since the safety stresses are defined on the basis of the
same characteristic values for the material strength parameters. The safety
verification is performed by computing the stresses induced by the same char-
acteristic values of the actions, which must not exceed the characteristic value
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of the strength (the yield stress in ductile metals), multiplied by a safety coeffi-
cient. This parameter plays the same role as the partial factors for the actions
and strength parameters, simultaneously, in the semi-probabilistic approach.

Obviously, this method leads to the same degree of safety as the semi-
probabilistic approach only if the structure behaves linearly until it reaches the
limit states: in this case, multiplying the actions by a factor leads to the same
result as dividing the allowable stress by the same factor. However, as seen
earlier, a linear stress-strain relation is generally only acceptable in the initial
loading phase and not until the limit states. For this reason, the results yielded
by the semi-probabilistic approach are generally better, since the increase
in safety due to multiplying the actions by a factor, whose objective is to
guarantee that the structure resists a larger loading than that expected, is not
”distorted” by the non-linear character of the relation between the external
forces and the stresses in a close to the limit state loading situation.

Furthermore, treating the different actions separately allows different fac-
tors to be considered for each one, in accordance with the degree of uncertainty
associated with it. As an example, let us consider two actions: the self-weight
of the structure of a building and the wind acting on it. The uncertainty as-
sociated with the self-weight is very low, since, once the characteristic value
of the density of the material has been defined, the computation of the corre-
sponding internal forces is not affected by significant uncertainties. In the case
of the wind action, on the other hand, the probabilistic analysis leading to the
characteristic value takes only the statistical dispersion of the wind velocity
into account, with a large degree of uncertainty remaining in relation to the
distribution of pressures caused by a wind with that velocity on the surface
of the building. This is why it is advisable to use a larger partial factor for
the wind than for the self-weight.

V.10 Slender Members

V.10.a Introduction

As mentioned in Sect. V.1, the relations between external forces, stresses,
strains and displacements are generally complex. The degree of complexity
depends on two components: the rheological behaviour of the structural ma-
terial and the geometry of the structure. For this reason, analytical solutions
for these relations are only possible if both components have particularly
simple forms, such as isotropy and linearity of the constitutive law, and a
geometry (and loading) with a simple description in a given reference system
(rectangular, spherical, cylindrical or polar coordinates). If the structure, or
structural component, does not obey these conditions, the solution must be
obtained numerically using, for example, the finite element method.

Slender members are an exception, since in these structural elements it
is possible to find relatively simple analytical relations between the internal
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forces which act symmetrically in relation to the cross-sections (constant axial
force and bending moment) and the corresponding stresses, especially if the
stress-strain relation is linear. For the shear force and torsional moment this
relation is not so simple, except for particular cross-section shapes: thin-walled
sections under shear force and closed thin-walled and circular sections under
torsion.

In Chaps. VI to VIII and X, these cases, where the solution may be con-
sidered as exact, are analysed and approximate solutions for other cases are
indicated: cross-sections with a symmetry axis under shear force and rectan-
gular and open thin-walled cross-sections under torsion.

Slender members are very often used as structural elements in the fields of
Civil Engineering (structures in buildings and bridges contain very often slen-
der members), Mechanical Engineering (many machine parts may be analysed
as slender members) and Aeronautical Engineering (the wings of gliders and
low speed airplanes, for example, may be considered as slender members).
Structures made of slender members are called framed structures.

V.10.b Definition of Slender Member

A slender member is a bar-shaped body, i.e., a three-dimensional body, in
which one dimension (the length of the bar) is considerably larger than any
of the other two (at least five times). More precisely, a slender member may
be understood as a solid body generated by a plane geometrical figure, when
it moves along a straight line (or a curved line with a large curvature radius,
in comparison to the dimensions of the figure), remaining perpendicular to
that line. The shape and dimensions of the plane figure – which represents
the cross-section of the slender member – may change during that motion,
but only gradually. The discontinuities corresponding to a sudden change of
the cross-section, or to a corner of the longitudinal line may be regarded as
a link between two slender members. The theory of slender members is not
valid in the region around these singularities.

Only prismatic bars are considered in the development of the theory of
slender members. The generalization of the theory to curved bars or to mem-
bers with a variable cross-section is only possible for bars with a large curva-
ture radius (as compared with the dimensions of the cross-section), or for a
gradually varying cross-section (cf. Sects. VI.7, VII.8 and VIII.5).

V.10.c Conservation of Plane Sections

The cross-sections of prismatic bars under the action of a constant axial force
and a constant bending moment remain plane and perpendicular to the axis
of the bar during the deformation. In order to demonstrate this statement,
let us consider a piece of the bar, whose ends are sufficiently far from the
ends of the bar and from the sections where the external forces are applied
for Saint-Venant’s principle to be valid (Fig. 58).
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Fig. 58. Symmetrical internal force resultants in a piece of a prismatic bar

Plane π (Fig. 58) is a symmetry plane, both in relation to the geometry
of the piece, and in relation to the applied forces (N and M). If, in addition,
the material is isotropic, or has, at least, a rheological plane of symmetry
parallel to plane π, then the problem is completely symmetric in relation to
that plane.

Using the symmetry principle, we conclude that the deformation of the
piece must also be symmetric in relation to plane π. Thus, the points of the
piece which are on the plane π, will remain there after the deformation, which
means, that this cross-section remains plane. The symmetry of the deforma-
tion also leads to the conclusion that, in an infinitesimal neighbourhood of
the plane, the bar axis (and any longitudinal axis parallel to it) remains per-
pendicular to plane π. Furthermore, by choosing the piece of prismatic bar
properly, any cross-section may be considered as the middle section of a piece.
Thus, the above conclusions are valid for any cross-section which is sufficiently
far from the above-mentioned singularities. Therefore, the following conclu-
sion may be drawn: in a prismatic bar under constant axial force and constant
bending moment, the cross-sections remain plane and perpendicular to the axis
of the bar during the deformation.

This statement was formulated as an hypothesis by J. Bernoulli in 1705,
[3], for the case of bending and is still known by his name in the literature
on Strength of Materials. With the demonstration above, it may be consid-
ered as a law, which is valid independently of any considerations about the
material properties, with the exception of the symmetry considerations. It is
also independent of the size of the deformation. However, it not valid for
non-symmetrical internal force resultants, such as the shear force, torsional
moment and varying axial force and bending moment.




