
III

The Strain Tensor

III.1 Introduction

When the material points inside a solid body or a liquid mass suffer a displace-
ment, this may be a consequence of a rigid body motion or of a deformation.
Forces are not necessarily involved in a rigid body motion, unless the dis-
placement is accompanied by acceleration. On the contrary, the deformation
is almost always a consequence of internal forces. Other causes may be a tem-
perature variation or similar phenomena, like the retraction of a concrete mass
during the curing process.

In Solid Mechanics consideration of the deformation associated with the
displacement field is generally unavoidable, since, unless the case under con-
sideration fits into the rare category of fully statically determinate problems,
the way the material deforms influences the way the internal forces are dis-
tributed inside the body.

When the validity of the continuum hypothesis is accepted, the internal
forces may be defined by the stress tensor, as explained in the previous chap-
ter. In the same way, as mentioned in Chap. I, the deformations of a continuous
material may be defined independently of the geometrical dimensions of the
continuum, by means of the strain definition. If these strains are defined ap-
propriately, they define a symmetrical second order tensor, with exactly the
same mathematical characteristics as the stress tensor. This chapter analyses
both the properties of this tensor and the relations of its components with the
functions that represent the displacement field describing the motion of the
material points.

III.2 General Considerations

The deformation caused in a body by external forces or other actions gener-
ally varies from one point to another, i.e., it is not homogeneous. In fact, a
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homogeneous deformation is rare. It occurs, for example, in a body with iso-
static supports under a uniform temperature variation or in a slender member
under constant axial force.

A non-homogeneous deformation may by more clearly understood by imag-
ining small line segments in several places of the body, which, before the de-
formation, have the same infinitesimal length, ds , and are parallel. As a rule,
the deformation causes various rotations and elongations in the different line
segments, as represented schematically in Fig. 16.

s
ds

ds

ds

Fig. 16. Non-homogeneous deformation of a body

If the deformation is homogeneous, however, i.e., if it does not vary from
point to point, the elongation and the rotation are the same all along the line
segments, which means that two parallel straight lines of equal length (now not
necessarily infinitesimal) remain straight, parallel and with the same length
after the deformation. As a consequence, a homogeneous deformation trans-
forms triangles into triangles, rectangles into parallelograms, tetrahedra into
tetrahedra and rectangular parallelepipeds into, generally non-rectangular,
parallelepipeds (Fig. 17).

Fig. 17. Homogeneous deformation of a body

From these considerations we conclude that a homogeneous deformation
may be fully defined by the six quantities that are required to define the
shape and dimensions of a non-rectangular parallelepiped (e.g. the length of
the three sides and the three independent angles between non-parallel sides)
or of a tetrahedron (e.g. the length of its six sides). In the two-dimensional
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case the three quantities needed to define a parallelogram or a triangle, are
enough.

As mentioned above, the deformation is not usually homogeneous, but
varies from point to point. But it may be treated as such if we limit the defor-
mation analysis to an infinitesimal neighbourhood of a point. This statement
may be easily proved by developing in series the functions that define the
coordinates of the material points after the deformation [1].

A physical visualization is, however, more indicative. To this end, let us
consider the shapes which result from the non-homogeneous deformation of a
rectangle, a triangle and a rectangular parallelepiped (Fig. 18).

(a) (b) (c)

Fig. 18. Homogeneous deformation of an infinitesimal region

The non-homogeneous deformation results in the initially simple geomet-
rical shapes transforming into complex shapes, which cannot be described by
means of a reduced number of parameters. However, by subdividing the ini-
tial geometrical shapes into others of the same type, we find that the finer
the subdivision, the closer the deformation gets to a homogeneous deforma-
tion. Ultimately, when the dimensions of the smallest shape go to zero, the
deformation is homogeneous, since we can accept that the shaded rectangle
in Fig. 18-a has become a parallelogram, the shaded triangle in Fig. 18-b
remains a triangle and the rectangular parallelepiped with shaded faces in
Fig. 18-c changes into a (non-rectangular) parallelepiped. From these consid-
erations, we conclude that the definition of the state of deformation in an
infinitesimal neighbourhood around a point needs six parameters, and these
are the six quantities necessary to define a homogeneous deformation in the
three-dimensional case (or three, in the two-dimensional case).

The above considerations are valid irrespective of the size of the deforma-
tion. However, as will be seen later, the expressions which relate the func-
tions describing the displacement of the material points with the strain may
be greatly simplified if the deformations and rotations are sufficiently small
to be considered as infinitesimal quantities. Furthermore, the restriction on
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infinitesimal deformations and rotations allows the superposition of the strains
associated with different displacement fields.

III.3 Components of the Strain Tensor

The general considerations discussed in the previous section will now be quan-
tified by using a rectangular Cartesian reference frame, xyz. It will be seen
later that, in this reference system, the strain tensor has components, which,
for infinitesimal deformations, correspond to the elongation per unit length of
line segments having the direction of the reference axes, and to half the angu-
lar variation of what were initially right-angles between these line segments
(three pairs). The three elongations – the longitudinal strains – and the three
angular variations – the shearing strains – are the six quantities necessary
(and sufficient) to define the state of deformation around a point.
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Fig. 19. Displacement of a material point P inside a body: before the defor-
mation; after the deformation

Then the initial position of the material points of the body is described by
the coordinates x, y, z of the generic point P and its displacement is defined by
vector

−→
PP ′ with components u, v, w in the reference directions x, y, z, respec-

tively (Fig. 19). The position of the point after the deformation is therefore
given by the coordinates x + u, y + v, z + w. If the material is continuous
before and after the deformation, the functions u(x, y, x), v(x, y, z), w(x, y, z)
are continuous functions of the position coordinates of the body before the
deformation, x, y, z.

Now, let us consider a straight line of infinitesimal length dx , which is
parallel to axis x in the undeformed configuration and is defined by the two
close points P0(x0, y0, z0) and P1(x0 + dx, y0, z0), as represented in Fig. 20.
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Fig. 20. Computation of the strain εx

After the deformation, these points will occupy the positions defined by the
coordinates P ′

0(x0 +u0, y0 +v0, z0 +w0) and P ′
1(x0 + dx +u1, y0 +v1, z0 +w1).

As point P1 is at an infinitesimal distance from P0 and, in going from P0 to
P1 only the coordinate x suffers an increment dx (undeformed configuration),
we have ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1 = u0 + du = u0 +
∂u

∂x
dx

v1 = v0 + dv = v0 +
∂v

∂x
dx

w1 = w0 + dw = w0 +
∂w

∂x
dx .

The deformation transforms the line segment P0P1 into the line segment P ′
0P

′
1,

which is generally no longer parallel to axis x and suffers an elongation. The
projections of P ′

0P
′
1 in the reference directions are then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 + dx︸ ︷︷ ︸
x1

+u0 +
∂u

∂x
dx︸ ︷︷ ︸

u1

− (x0 + u0) =
(

1 +
∂u

∂x

)
dx

y0 + v0 +
∂v

∂x
dx︸ ︷︷ ︸

v1

− (y0 + v0) =
∂v

∂x
dx

z0 + w0 +
∂w

∂x
dx︸ ︷︷ ︸

w1

− (z0 + w0) =
∂w

∂x
dx .

(43)

Defining longitudinal strain (or simply strain) as the elongation per unit
length, the strain in direction x (strain of the line segment dx) takes the
value

εx =
P ′

0P
′
1 − P0P1

P0P1

=
P ′

0P
′
1 − dx

dx
⇒ P ′

0P
′
1 = (1 + εx) dx . (44)
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Using the Pythagorean theorem, the length P ′
0P

′
1 may be computed from

its projections in the coordinate axes, yielding, from expressions 43 and 44(
P ′

0P
′
1

)2

= (1 + εx)2 dx2

=

[(
1 +

∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2
]

dx2

⇒ εx +
ε2
x

2
=

∂u

∂x
+

1
2

[(
∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2
]

.

(45)

In the same way, the expressions relating strains in the directions y and z to
the displacement functions may be established, yielding

εy +
ε2
y

2
=

∂v

∂y
+

1
2

[(
∂u

∂y

)2

+
(

∂v

∂y

)2

+
(

∂w

∂y

)2
]

εz +
ε2
z

2
=

∂w

∂z
+

1
2

[(
∂u

∂z

)2

+
(

∂v

∂z

)2

+
(

∂w

∂z

)2
]

.

(46)

Let us consider now two straight lines of infinitesimal lengths, dx and dy,
which, in the undeformed configuration, are parallel to axes x and y and are
defined by points P0, P1 and P2 (Fig. 21). The deformation transforms these
straight lines into P ′

0P
′
1 and P ′

0P
′
2. Following the same line of reasoning as

above, these line segments have the components

P ′
0P

′
1 −→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 +

∂u

∂x

)
dx

∂v

∂x
dx

∂w

∂x
dx

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

and P ′
0P

′
2 −→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂y
dy(

1 +
∂v

∂y

)
dy

∂w

∂y
dy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

In accordance with the definition of strain given earlier, the line segments P ′
0P

′
1

and P ′
0P

′
2 have the lengths (1+εx)dx and (1+εy)dy , respectively. The scalar

product of vectors
−→
P ′

0P
′
1 and

−→
P ′

0P
′
2 may be expressed by (cos

(
π
2 − θ

)
= sin θ)

(1 + εx) dx (1 + εy) dy cos
(π

2
− θxy

)

=
(

1 +
∂u

∂x

)
dx

∂u

∂y
dy +

∂v

∂x
dx

(
1 +

∂v

∂y

)
dy +

∂w

∂x
dx

∂w

∂y
dy

⇒ sin θxy =
∂u
∂y + ∂v

∂x + ∂u
∂x

∂u
∂y + ∂v

∂x
∂v
∂y + ∂w

∂x
∂w
∂y

(1 + εx) (1 + εy)
.

(47)

Angle θxy represents the decrease of the initially right-angle between the line
segments dx and dy . It therefore defines the distortion (double shearing
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Fig. 21. Motion of the line segments dx = P0P1 and dy = P0P2 during the
deformation (not considering the displacement of P0 in direction z)

strain) of directions x and y after the deformation. In the same way, the
distortions θxz and θyz may be related to the derivatives of the displacement
functions, yielding

sin θxz =
∂u
∂z + ∂w

∂x + ∂u
∂x

∂u
∂z + ∂v

∂x
∂v
∂z + ∂w

∂x
∂w
∂z

(1 + εx) (1 + εz)

sin θyz =
∂v
∂z + ∂w

∂y + ∂u
∂y

∂u
∂z + ∂v

∂y
∂v
∂z + ∂w

∂y
∂w
∂z

(1 + εy) (1 + εz)
.

(48)

The quantities εx, εy, εz, θxy, θxz and θyz, described by expressions 45, 46, 47
and 48, fully define the state of deformation around point P0, since they are
enough to define the shape and dimensions of the generally non-rectangular
parallelepiped resulting from the homogeneous deformation of the rectangu-
lar parallelepiped, defined by the line segments dx, dy and dz , which are
parallel to the coordinate axes in the undeformed configuration. However, the
analytical treatment of these expressions is not simple, since they contain
those quantities implicitly.1 Moreover, they are not linear.

In most problems of Solid Mechanics that arise in structural Engineer-
ing the longitudinal and shearing strains are small enough to be considered
as infinitesimal quantities, which allows the simplifications ε2 + 2ε ≈ 2ε and

1For this reason, when the deformations are too large to be considered as in-
finitesimal, the strains are defined in a different way. Instead of considering the
elongation per unit length ε = l−l0

l0
, half the relative variation of the square of the

length E = 1
2

l2−l20
l20

is considered, which considerably simplifies the expressions, since

we have E = ε + ε2

2
.
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sin θ ≈ θ and makes it possible to disregard the strains in the denomina-
tors of expressions 47 and 48. The strains may therefore be defined by ex-
plicit expressions of the type (γxy is the infinitesimal distortion of directions x
and y)

εx =
∂u

∂x
+

1
2

[(
∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2
]

θxy

2
=

γxy

2
= εxy =

1
2

[
∂u

∂y
+

∂v

∂x
+

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y

]
.

(49)

Furthermore, if the rotations are sufficiently small to be considered as infini-
tesimal quantities, the squares and the products of the derivatives contained
in expressions 45 to 49 may be disregarded, since, with infinitesimal strains
and rotations, these derivatives will also be infinitesimal, as may easily be
concluded from Fig. 21. In this case, the strains may be defined by the linear
expressions2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx =
∂u

∂x

εy =
∂v

∂y

εz =
∂w

∂z

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γxy

2
= εxy =

1
2

(
∂u

∂y
+

∂v

∂x

)
γxz

2
= εxz =

1
2

(
∂u

∂z
+

∂w

∂x

)
γyz

2
= εyz =

1
2

(
∂v

∂z
+

∂w

∂y

)
.

(50)

We shall now consider that the strain-displacement relations are defined by
these simple expressions. One of the most useful consequences of this simpli-
fication is that it makes it possible to superpose the deformations associated
with distinct displacement fields. This is quite evident if we consider the dis-
placements u1, v1, w1 and u2, v2, w2, with which the strains 1ε and 2ε are
respectively associated. From expressions 50 we immediately conclude⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx =
∂ (u1 + u2)

∂x
=

∂u1

∂x
+

∂u2

∂x
= 1εx + 2εx

...

εyz =
1
2

[
∂ (v1 + v2)

∂z
+

∂ (w1 + w2)
∂y

]

=
1
2

(
∂v1

∂z
+

∂w1

∂y

)
+

1
2

(
∂v2

∂z
+

∂w2

∂y

)
= 1εyz + 2εyz .

(51)

In the case of a flowing liquid (Fluid Mechanics), the deformations and rota-
tions in relation to the original configuration obviously cannot be considered

2It must, however, be pointed out that, as a consequence of the last simplifica-
tion (infinitesimal rotations), the force-displacement relations obtained from these
linearized strain-displacement relations (cf. Sect. I.3) cannot capture instability phe-
nomena, in which sudden rotations of parts of the body occur.
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as infinitesimal. However, taking the position of the points constituting the
liquid mass in the instant t0 as reference configuration, the rotations and
deformations in instant t0 + dt (dt is an infinitesimal time step) may be con-
sidered as infinitesimal and therefore expressions 50 may be used. Obviously,
this also holds in the case of large deformations of solid bodies.

Expressions 50 furnish the components of the strain tensor in a rectangular
Cartesian reference system for infinitesimal deformations and rotations. As
we shall see below (Sect. III.6), the factor 1

2 in the expressions concerning
the shearing strains is necessary so that the quantities defining the state of
deformation, εx, εy, εz, εxy, εxz and εyz, can form a tensor in the Cartesian
space xyz, in the mathematical sense of the term.3 The main advantage of
having the deformation state defined as a tensor is that tensor mathematics
can be used in its analytical treatment, which is obviously the same, regardless
of the particular tensor under consideration: the stress tensor, the strain tensor
or any other symmetric second order tensor. This fact allows conclusions to be
drawn about the properties of the strain tensor, which are taken by analogy
with the stress tensor, as will be seen later.

III.4 Pure Deformation and Rigid Body Motion

In Sect. III.3 we developed expressions to compute the elements of the strain
tensor from the displacement functions u, v, w. The infinitesimal neighbour-
hood around a point suffers not only pure deformation but a rigid body mo-
tion, too, due to the deformation of other regions of the body. In the case of
infinitesimal deformations and rotations, the motions associated with different
displacement fields may be superposed, which allows the rigid body motion
of the infinitesimal region around a point to be identified.

The motion of the infinitesimal region is fully defined by the quantities u,
v, w, ∂u

∂x , ∂u
∂y , ∂u

∂z , ∂v
∂x , ∂v

∂y , ∂v
∂z , ∂w

∂x , ∂w
∂y and ∂w

∂z . Quantities u, v and w obviously
represent the translation motion. The remaining nine quantities contain the
deformation and the rigid body rotation. In order to identify the latter, we
should point out that, in a rigid body motion, longitudinal and shearing strains
vanish, which means (cf. (50))

3Following the mathematical definition of a second order tensor, its components
transform as defined by expression 15 (stress tensor), when the reference system ro-
tates. As we have already seen, the state of deformation may be defined by any set
of six quantities, enabling the quantification of the deformation of the elementary
parallelepiped. However, only the six quantities defined as represented in expres-
sion 50 define the components of a symmetric second order tensor in the Cartesian
reference frame xyz.
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx =
∂u

∂x
= 0

εy =
∂v

∂y
= 0

εz =
∂w

∂z
= 0

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γxy = 0 ⇒ ∂u

∂y
= −∂v

∂x

γxz = 0 ⇒ ∂u

∂z
= −∂w

∂x

γyz = 0 ⇒ ∂v

∂z
= −∂w

∂y
.

A displacement field ur, vr, wr, where we have ∂vr

∂x = −∂ur

∂y = ωxy, ∂ur

∂z =
−∂wr

∂x = ωxz and ∂wr

∂y = −∂vr

∂z = ωyz thus describes a rigid body rotation of
the infinitesimal region, with ωyz, ωxz and ωxy representing positive rotations
around the reference axes x, y and z, respectively. In this motion the pairs
of line segments (dy,dz), (dz,dx) and (dx,dy) rotate around axes x, y and z,
respectively, and remain perpendicular to each other.

If, in addition to the rigid body motion, the infinitesimal region suffers a
deformations, this does not take place anymore, as seen in Sect. III.3. However,
we can define the rigid body rotations around the reference axes, under the
action of the deformation field u, v, w, as the mean rotations of the line
segments dx, dy, and dz around those axes⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ωx =
1
2

(
∂w

∂y
− ∂v

∂z

)
= ωyz

ωy =
1
2

(
∂u

∂z
− ∂w

∂x

)
= ωxz

ωz =
1
2

(
∂v

∂x
− ∂u

∂y

)
= ωxy .

(52)

By subtracting the rigid body rotation from the total motion of the infinites-
imal region, the pure deformation is obtained, which is defined by a motion
where the mean rotations of the three pairs of line segments vanish. Figure 22
illustrates these situations, with the example of the rotation around axis z.
Obviously this decomposition eliminates the rigid body rotation only in the
infinitesimal region under consideration, since it generally varies from point
to point.

We will see later (Sect. III.6) that this definition of rigid body motion is
independent of the spatial orientation of the reference frame.

The additive decomposition of the strain tensor presented in this section
is only valid in the case of infinitesimal deformation, where the simplified lin-
ear form of the strain-displacement relations (50) can be used. However, it is
also possible to define a rigid body rotation in the case of large deformations
and rotations, by using the polar decomposition theorem, which is based on a
multiplicative decomposition of the deformation gradient (cf., e.g. [15]). Nev-
ertheless, in this case, the mean rotation of two orthogonal line segments (in
the initial configuration) does not define the rigid body rotation anymore. This
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Fig. 22. Decomposition of the motion of an infinitesimal region in pure deformation
and rigid body motion (infinitesimal deformations and rotations): εxy dx +ωxy dx =
1
2

(
∂u
∂y

+ ∂v
∂x

)
dx + 1

2

(
∂v
∂x

− ∂u
∂y

)
dx = ∂v

∂x
dx εxy dy − ωxy dy = 1

2

(
∂u
∂y

+ ∂v
∂x

)
dy −

1
2

(
∂v
∂x

− ∂u
∂y

)
dy = ∂u

∂y
dy

theorem is not given here, since a deeper insight into the finite deformation
theory is beyond the scope of this introductory text.

III.5 Equations of Compatibility

As mentioned in the first chapter, we accept that the material is continuous
before the deformation and remains continuous after it. This continuity condi-
tion will be satisfied if the displacement functions u, v and w are continuous,
since the coordinates of the material points after the deformation are given
by the expressions x′ = x+u, y′ = y+v and z′ = z+w. Therefore, if u, v and
w are continuous, two points, which lie at an infinitesimal distance from each
other before the deformation, will remain at an infinitesimal distance after it.

The question of the deformation’s compatibility arises when, given six
strain functions εx(x, y, z), . . . , γyz(x, y, z), we want to know if they repre-
sent a compatible deformation, i.e., a deformation where the material remains
continuous. It is expected that some conditions exist between the six strain
functions in a compatible deformation, as this is completely defined by the
three displacement functions, u, v and w, which means that the system of
equations formed by Expressions 50 has only three unknowns.

The existence of compatibility conditions may also be understood by
means of geometrical considerations. For this purpose, let us imagine the
continuum divided into very small parallelepipeds, so that the deformation of
each one may be considered as homogeneous. A compatible deformation will
be a deformation, in which the deformed parallelepipeds fit perfectly together.
An incompatible deformation, however, will lead either to gaps between the
parallelepipeds, or to other material discontinuities.
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The compatibility conditions are obtained by eliminating the displace-
ments u, v and w from the system formed by (50).

A first group is obtained from the relations between the longitudinal strains
εx, εy, εz and the displacement functions. Taking, for example, the longitudinal
strains in the xy-plane, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2εx

∂y2
=

∂3u

∂x∂y2

∂2εy

∂x2
=

∂3v

∂x2∂y
⇒ ∂2εx

∂y2
+

∂2εy

∂x2
=

∂2γxy

∂x∂y
.

∂2γxy

∂x∂y
=

∂3u

∂x∂y2
+

∂3v

∂x2∂y

Proceeding in the same way with the other two pairs of reference directions,
x, z and y, z, two other similar equations are obtained.

Another group of three equations may be obtained by derivation of the
shearing strains with respect to the coordinate, which is absent from its in-
dexes, and combining the obtained relations as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂γxy

∂z
=

∂2u

∂y∂z
+

∂2v

∂x∂z

∂γxz

∂y
=

∂2u

∂y∂z
+

∂2w

∂x∂y

∂γyz

∂x
=

∂2v

∂x∂z
+

∂2w

∂x∂y

⇒

∣∣∣∣∣∣∣∣∣
∂

∂x

(
∂γxy

∂z
+

∂γxz

∂y
− ∂γyz

∂x

)

= 2
∂3u

∂x∂y∂z
= 2

∂2εx

∂y∂z
.

Two other relations of this type are obtained by a similar process.
The complete set of conditions, to which the strain functions εx(x, y, z), . . . ,

γyz(x, y, z) must obey, in order to define a compatible deformation, in the sense
that the deformed infinitesimal parallelepipeds fit perfectly together are then

∂2εx

∂y2
+

∂2εy

∂x2
=

∂2γxy

∂x∂y
2

∂2εx

∂y∂z
=

∂

∂x

(
∂γxy

∂z
+

∂γxz

∂y
− ∂γyz

∂x

)
∂2εx

∂z2
+

∂2εz

∂x2
=

∂2γxz

∂x∂z
2

∂2εy

∂x∂z
=

∂

∂y

(
∂γxy

∂z
− ∂γxz

∂y
+

∂γyz

∂x

)
∂2εy

∂z2
+

∂2εz

∂y2
=

∂2γyz

∂y∂z
2

∂2εz

∂x∂y
=

∂

∂z

(
−∂γxy

∂z
+

∂γxz

∂y
+

∂γyz

∂x

)
.

(53)

These conditions are necessary to ensure deformation compatibility at the local
level, i.e., at the level of the infinitesimal neighbourhood of a point, since they
contain only derivatives of the strain functions.4 However, these conditions are

4Using the model of the infinitesimal parallelepipeds, local compatibility means
that each parallelepiped fits perfectly with those in contact with it.
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sufficient only in the case of simply-connected bodies. In a multiply-connected
body supplementary conditions are needed to ensure compatibility. These are
the integral conditions of compatibility.

The mathematical demonstration of these considerations is rather long and
time-consuming, so it is not presented here (cf. e.g. [2]). However, a physical
explanation on the basis of geometrical considerations is substantially simpler
and more indicative.

A simply-connected body is a body where any closed line, fully contained
in the body, can be shrunk to a point without leaving the body. Thus a two-
dimensional region will be simply-connected if its boundary is defined by only
one closed line, i.e., if it has no holes. A three-dimensional body may have holes
and be simply-connected: for example a body defined by the space between
two concentric spheres (a hollow sphere) is simply-connected, since any closed
lined defined in it can shrink to a point without touching the boundaries of
the body. An o-ring (torus), on the contrary, is not simply-connected, since
a closed line around the hole cannot shrink to a point, without leaving the
body.

The degree of connection may be defined as the number of cuts required to
render the body simply-connected plus one (the intersection of the cut with
the boundary of the body must be a closed line). It can also be defined as the
maximum number of cuts which can be made without dividing the body into
two, plus one. Some examples of the determination of the degree of connection
are presented in Fig. 23.

The fact that the local compatibility conditions are sufficient to ensure
the continuity of a simply-connected body after the deformation may be eas-
ily understood with the help of the two-dimensional example presented in
Fig. 24-a. Clearly, if the deformed parallelepipeds fit perfectly with the neigh-
bouring ones, i.e., if the local compatibility conditions are satisfied, the de-
formed body will be continuous.

1

2
3

1

2

3

4

5

6

1
2

34

5

(a) (b) (c)

Fig. 23. Cuts required to render a body simply-connected Degrees of connection:
(a) 4, (b) 7, (c) 6
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On the other side, in the doubly-connected example presented in Fig. 24-
b, despite the fact that in every point the local compatibility conditions are
satisfied (the line a′b′ fits perfectly with line a′′b′′, so that every infinites-
imal parallelepiped fits with the neighbouring ones), the deformation is not
compatible, since the deformed body displays a discontinuity in the points be-
longing to line ab. This is only possible, because the hole exists, i.e., because
the degree of connection is superior to one.

a

b

a

b

a

b

(a) (b)

Fig. 24. Local compatibility conditions: (a) simply-connected body: necessary and
sufficient condition; (b) doubly-connected body: necessary, but not sufficient condi-
tion

The expressions corresponding to the integral conditions of compatibility
are not shown here. They will be studied in the second part (Strength of
Materials), in the particular case of the computation of internal forces in
hyperstatic (statically indeterminate) frames.

III.6 Deformation in an Arbitrary Direction

In the preceding sections the deformations of line segments, which are parallel
to the reference axes in the undeformed configurations have been analysed.
These deformations define the elements of the strain tensor, so they there-
fore allow the computation of the longitudinal and shearing deformations in
arbitrary directions.

To this end, let us consider a line segment with infinitesimal unit length,
whose orientation in relation to the coordinate axes is defined by the direc-
tion cosines l,m, n, which simultaneously define the components of vector−→
OP . Figure 25 illustrates the motion of the infinitesimal region around the
line segment. Excluding the translations, this motion may be defined by the
displacement

−→
PP ′ of the tip P of the unit vector

−→
OP (Fig. 25-a). The projec-

tion in the xy-plane of the non rectangular parallelepiped, which resulted from
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(a) (b)

Fig. 25. Motion of the infinitesimal region around a point

the initial rectangular parallelepiped defined by the vector
−→
OP , is depicted in

Fig. 25-b.
The components in directions x and y of the displacement vector

−→
PP ′

may be obtained directly from Fig. 25-b. The projection of the deformed
parallelepiped in the yz or in the zx plane would show the three contributions
of the displacement in direction z. The components of vector

−→
PP ′ are then.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δx = l
∂u

∂x
+ m

∂u

∂y
+ n

∂u

∂z

δy = l
∂v

∂x
+ m

∂v

∂y
+ n

∂v

∂z

δz = l
∂w

∂x
+ m

∂w

∂y
+ n

∂w

∂z

⇔
⎧⎨
⎩

δx

δy

δz

⎫⎬
⎭ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎨
⎩

l
m
n

⎫⎬
⎭ .

(54)
These expressions could also be obtained by simple differentiation of the dis-
placement functions u, v and w, since the displacements δx, δy and δz, rep-
resent the difference between the displacements of points O and P in the
reference directions, and l, m and n are the increments of coordinates x, y
and z from point O to point P .

Since vector
−→
OP has unit length and only infinitesimal deformations and

rotations are considered, the longitudinal strain in its direction may by ob-
tained by the projection of vector

−→
PP ′ in the direction OP , yielding
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ε = lδx + mδy + nδz

= l2
∂u

∂x
+ m2 ∂v

∂y
+ n2 ∂w

∂z

+ lm

(
∂u

∂y
+

∂v

∂x

)
︸ ︷︷ ︸

γxy=2εxy

+ln

(
∂u

∂z
+

∂w

∂x

)
︸ ︷︷ ︸

γxz=2εxz

+mn

(
∂v

∂z
+

∂w

∂y

)
︸ ︷︷ ︸

γyz=2εyz

= l2εx + m2εy + n2εz + 2lmεxy + 2lnεxz + 2mnεyz . (55)

This expression is perfectly analogous to Expr. 11, which, in the stress state
around a point, gives the normal stress in a facet whose semi-normal has the
direction cosines l m and n. This analogy arises, because the elements of the
strain tensor have been used to define the homogeneous deformation of the
infinitesimal region around point O.

The transversal component δt of vector
−→
PP ′ gives the rotation of vector−→

OP . This rotation generally has a rigid body rotation and a shearing strain
component. The rigid body rotation may be eliminated by considering, instead
of the total displacements u, v and w, the displacements associated with the
pure deformation of the infinitesimal region under consideration u′, v′ and w′.
In this case we have (cf. Sect. III.4, Expr. 52 and Fig. 22)

ωx = ωy = ωz = 0 ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u′

∂y
=

∂v′

∂x
= εxy

∂u′

∂z
=

∂w′

∂x
= εxz

∂v′

∂z
=

∂w′

∂y
= εyz .

With this modification Expr. 55 does not change, since ∂u′
∂x = εx, . . . , ∂v′

∂z +
∂w′
∂y = γyz and Expr. 54 takes the symmetrical form⎧⎨

⎩
δ′x
δ′y
δ′z

⎫⎬
⎭︸ ︷︷ ︸

{δ′}

=

⎡
⎣ εx εxy εxz

εxy εy εyz

εxz εyz εz

⎤
⎦

︸ ︷︷ ︸
[ε]

⎧⎨
⎩

l
m
n

⎫⎬
⎭︸ ︷︷ ︸

{l}

. (56)

This expression is perfectly analogous to Expr. 10 of the strain tensor, with
the difference that it contains the elements of the strain tensor instead of the
elements of the stress tensor. As a matter of fact, the operations performed in
the analysis of the stress tensor after Expr. 10 are solely tensorial operations
on a second order symmetric tensor (note that no equilibrium conditions were
used in that development). These operations are therefore also valid in the
case of the deformation state, since it is also described by a symmetrical
second order tensor, although with different physical quantities. In this sense,
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Expr. 12, which furnishes the shearing stress in an arbitrary oriented facet,
is analogous to the expression of the transversal displacement in the pure
deformation displacement field δ′t, which is given by(δ′

→
= ε + δ′

→
)⎧⎪⎪⎨

⎪⎪⎩
δ′tx = δ′x − lε

δ′ty = δ′y − mε

δ′tz = δ′z − nε .

This analogy and the reciprocity of the shearing stresses allow the conclusion,
that the rotation of a line segment

−→
OQ, which has the same direction as δ′t, in

the plane defined by vectors
−→
OP and δ′

→
, is equal and has the opposite direction

to the rotation of vector
−→
OP . In fact, if

−→
OQ is a unit vector, then

−→|OQ|= −→|OP |
and, as a consequence of the analogy, δ′tP = δ′′tQ (cf. Fig. 26). Therefore, δ′t
actually represents the maximum shearing strain between direction

−→
OP and

orthogonal directions, i.e., δ′t = γ
2 =

√
δ′2
x + δ′2

y + δ′2
z − ε2.

This fact leads to the conclusion that the definition of pure deformation,
which was stated in Sect. III.4 for a reference system x, y, z, is independent
of the coordinate axes, since, once the rigid body rotation is eliminated for
those directions, it is also eliminated for all other directions.

τ

τ

O
γ
2

P

δtP

δtQ

δtQ

Q

γ
2

Fig. 26. Analogy between the reciprocity of the shearing stresses and the rotation
of two orthogonal directions in the pure deformation

The complete analogy between the tensor operations on the stress and
strain tensors, represented by the analogy between Expressions 10 and 56,
allows some immediate conclusions to be drawn about the strain tensor rep-
resenting a deformation state, as follows:

– The reference axes of the strain tensor may be transposed by means of the
matrix operation

[ε′] = [l]t[ε][l], (57)

– where [ε′] contains the tensor components in the new reference axes and the
orthogonal matrix [l] contains the same direction cosines as in Expr. 15.
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– In the deformation state around a point there are at least three orthogonal
directions which do not undergo shearing strain, i.e., where δ′t = 0. These
are the principal directions of the deformation state. The (longitudinal)
strains in these directions are the principal strains, ε1, ε2 and ε3; as a rule,
a descending order is adopted, ε1 > ε2 > ε3.

– The characteristic equation of the strain tensor is given by the expression

−ε3 + I1ε
2 − I2ε + I3 = 0 ,

– where I1, I2 and I3 are the invariants of the strain tensor and take the
values given by

I1 = εx + εy + εz

I2 =
∣∣∣∣ εx εxy

εxy εy

∣∣∣∣+
∣∣∣∣ εx εxz

εxz εz

∣∣∣∣+
∣∣∣∣ εy εyz

εyz εz

∣∣∣∣
I3 =

∣∣∣∣∣∣
εx εxy εxz

εxy εy εyz

εxz εyz εz

∣∣∣∣∣∣ .

– A Lamé’s ellipsoid may be drawn for the strain tensor, in the same way as
for the stress tensor (Fig. 9, with principal semi-axes OA = ε1, OB = ε2
and OC = ε3).

– The strain tensor may be decomposed into isotropic and deviatoric (distor-
tional) components (εm = εx+εy+εz

3 )⎡
⎣ εx εxy εxz

εxy εy εyz

εxz εyz εz

⎤
⎦ =

⎡
⎣ εm 0 0

0 εm 0
0 0 εm

⎤
⎦

︸ ︷︷ ︸
isotropic tensor component

+

⎡
⎣ εx − εm εxy εxz

εxy εy − εm εyz

εxz εyz εz − εm

⎤
⎦

︸ ︷︷ ︸
distortional tensor component

.

– The octahedral longitudinal and shearing strains are defined by the expres-
sions (cf. (29) and (31))

εoct =
εx + εy + εz

3
γoct

2
=

1
3

√
(εx − εy)2 + (εx − εz)

2 + (εy − εz)
2 + 6

(
ε2
xy + ε2

xz + ε2
yz

)
.

– A Mohr’s representation of the strain tensor, similar to that displayed in
Fig. 14 for the stress tensor, may be made, with the longitudinal strains ε
in the axis of abscissas and the shearing strain γ

2 in the axis of ordinates.

III.7 Volumetric Strain

The deformation usually causes a volume change. We define volumetric strain
as the volume change per unit of initial volume. Since, at this point, only
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small deformations are considered, the changes to the initially right angles of
the infinitesimal parallelepiped, γxy = 2εxy, γyz = 2εyz and γxz = 2εxz, may
be considered as infinitesimal quantities and, therefore, they do not cause
volume change. Thus, the volume V of the generally non-rectangular paral-
lelepiped, which results from the initial rectangular parallelepiped defined by
the infinitesimal distances dx, dy and dz, may be computed as though it were
rectangular, yielding (V0 = dx dy dz is the initial volume of the infinitesimal
parallelepiped)

V = (1 + εx) dx (1 + εy) dy (1 + εz) dz

= (1 + εx) (1 + εy) (1 + εz) V0 .

Bearing in mind, that the longitudinal strains are also infinitesimal quantities,
the products of these strains are infinitesimal quantities of higher order, so
they may be disregarded. Thus, the volumetric strain is given by

εv =
V − V0

V0
= εx + εy + εz + εxεy + εxεz + εyεz + εxεyεz

≈ εx + εy + εz = I1 . (58)

We may conclude that, in the case of small deformations, the first invariant
of the strain tensor takes the value of the volumetric strain.

III.8 Two-Dimensional Analysis of the Strain Tensor

III.8.a Introduction

In the same way as in the case of the stress tensor, a two-dimensional analysis
of the strain tensor can also be performed, if one of the principal directions is
known. If the principal strain associated with this direction is zero, we have
a state of plane strain.

As noted in Sect. II.9, for the plane state of stress, the two-dimensional
analysis of the strain tensor could be performed by particularizing the ex-
pressions developed for the general three-dimensional case to the stresses con-
tained in the plane defined by two principal directions. However, for the same
reasons as explained in that section, an independent development of the two-
dimensional expressions is preferable.

Only the general considerations presented in Sects. III.1 and III.2 are
needed to understand the following explanation. The expressions developed
here are only valid in the linear case, where both the deformations and the
rotations take infinitesimal values. For simplicity, we consider that the known
principal direction is direction z, so that the two-dimensional analysis is per-
formed in the xy plane.
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III.8.b Components of the Strain Tensor

As discussed in Sect. III.2, the homogeneous deformation of a rectangle may be
defined by the elongation of its sides and by the variation of the initially right-
angle between two sides. These three quantities (and the initial dimensions)
define the parallelogram, which results from the rectangle.

Let us now consider an infinitesimal rectangle, whose sides are parallel to
the Cartesian reference axes x, y and have the infinitesimal lengths dx and
dy. The elongation of its sides, ∆dx and ∆dy , divided by the initial lengths,
gives the longitudinal strains εx = ∆dx

dx and εy = ∆dy
dy . The variation of the

initially right-angle between dx and dy, γxy = 2εxy, defines the double shearing
strain or distortion. These three dimensionless quantities, εx, εy and γxy, fully
define the state of deformation around a point in the two-dimensional case,
since they allow the computation of the strain in any arbitrary direction of
plane xy, as will be seen in the following Sub-section.

As in the three-dimensional case, a sign convention is used, in which a
positive longitudinal strain corresponds to an increase in length and a positive
shearing strain corresponds to a decrease in the angle defined by the positive
directions of the reference axes (cf. Fig. 27).

x

y

dx εx dx

γxdx

δy

δx

δ

dsβ

θ

β

εy dy

dy

γydy

δx

θ

∆ds

δ
δy

δt

γy

γx

Fig. 27. Components of the deformation of a line segment with arbitrary direction

III.8.c Strain in an Arbitrary Direction

Let us consider an infinitesimal line segment with infinitesimal length ds and
orientation defined by the angle θ, measured from axis x in the positive di-
rection (from x to y), as represented in Fig. 27. As a consequence of the
longitudinal and shearing strains εx, εy and γxy this line segment undergoes a
longitudinal strain and a rotation. Denoting the rotations of the line segments
dx = ds cos θ and dy = ds sin θ by γx and γy, respectively, positive if they
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lead to a decrease in the angle between the positive semi-axes x and y, the
geometrical considerations depicted in Fig. 27 may be established.

In the displacements represented in this Figure the products of longitudinal
and shearing strains have been disregarded, since they are infinitesimal quanti-
ties of higher order, because only infinitesimal deformations and rotations are
considered (for example, we have considered γx (dx + εx dx) ≈ γx dx). Fur-
thermore, as all the rotations are infinitesimal the simplifications cos γ ≈ 1
and sin γ ≈ tan γ ≈ γ have been made.

The displacement δ of the tip of vector ds may be defined by its compo-
nents (cf. Fig. 27) {

δx = εx dx + γy dy
δy = εy dy + γx dx .

(59)

The projection of δx and δy in the direction of ds gives the elongation of this
line segment

∆ds = δx cos θ + δy sin θ , (60)

or, substituting (59) in (60) and dividing by the initial length ds

εθ =
∆ds

ds
= εx

dx

ds
cos θ + γy

dy

ds
cos θ + εy

dy

ds
sin θ + γx

dx

ds
sin θ .

Taking into consideration that dx
ds = cos θ and dy

ds = sin θ, we get

εθ = εx cos2 θ + εy sin2 θ + 2
γxy

2
sin θ cos θ , (61)

since γx + γy = γxy. This expression is analogous to Expr. 33, which furnishes
the stress in a facet, whose orientation is defined by angle θ (cf. Fig.11). By
projecting δx and δy on the normal direction to ds , the transversal displace-
ment δt of the tip of ds is obtained

δt = −δx sin θ + δy cos θ .

In this expression, the displacement δt is considered positive if it corresponds
to a rotation of ds in the counterclockwise direction. By dividing by ds and
taking (59) into consideration, as well as the relations dx = ds cos θ and
dy = ds sin θ, the rotation β (cf. Fig. 27) is obtained

β =
δt

ds
= (εy − εx) sin θ cos θ + γx cos2 θ − γy sin2 θ . (62)

The rotation β′ of a line segment ds′, which makes a right-angle, in the pos-
itive (counterclockwise) direction, with ds (cf. Fig. 27) may be computed by
substituting θ by θ + π

2 in (62), yielding

β′ = −(εy − εx) sin θ cos θ + γx sin2 θ − γy cos2 θ,
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since sin
(
θ + π

2

)
= cos θ and cos(θ + π

2 ) = − sin θ. The double shearing strain
γθ between the directions defined by the angles θ and θ + π

2 is then given by
(cf. Fig. 27).

γθ = β − β′ = (εy − εx) 2 sin θ cos θ +
(
γx + γy

)︸ ︷︷ ︸
=γxy

(
cos2 θ − sin2 θ

)
. (63)

Taking into consideration that an infinitesimal rotation of the reference axes
causes only infinitesimal changes in the components of the strain tensor (this
may be easily verified by substituting in (61) θ by dθ ⇒ εθ ≈ εx, or by
π
2 +dθ ⇒ εθ ≈ εy and in (63) θ by dθ ⇒ γθ ≈ γxy). Therefore, we may consider
in Fig. 27 and in (62) that γx = γy = γxy

2 . In this case, (62) immediately gives
the shearing strain γθ

2 in the orthogonal directions θ and θ + π
2 , yielding5

γx = γy =
γxy

2
⇒ β = −β′ =

γθ

2
= (εy − εx) sin θ cos θ +

γxy

2
(
cos2 θ − sin2 θ

)
.

(64)

Equation (64) is formally analogous to (34). By transforming (61) and (64)
in the same way as (33) and (34) were transformed in Subsect. II.9.b, we get,
from (61)

εθ =
εx + εy

2
+

εx − εy

2
cos 2θ +

γxy

2
sin 2θ . (65)

In the same way, we get from (64)

γθ

2
= −εx − εy

2
sin 2θ +

γxy

2
cos 2θ . (66)

These two expressions (65 and 66) are formally analogous to those obtained
in the two-dimensional analysis of the stress tensor for the normal and shear-
ing stresses in an arbitrary oriented facet ((35) and (36), respectively). As
the further developments based on these expressions were based solely on
mathematical considerations, they are also valid for the strain tensor, if we
substitute σx, σy and τxy by εx, εy and εxy = γxy

2 , respectively. The following
conclusions may therefore be drawn:

– There are two orthogonal directions, which do not suffer shearing strain
during the deformation. These are the principal directions of the strain
tensor and may be computed by an expression analogous to (37)

θ =
1
2

arctan
γxy

εx − εy
. (67)

5This conclusion confirms the considerations established in Sects. III.4 and III.6
about the decomposition of the motion of the material points in an infinitesimal
region in pure deformation and rigid body rotation. The infinitesimal rotation of
the reference axes, so that γx = γy, is equivalent to the elimination of the rigid body
motion.
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– The longitudinal strain ε reaches extreme values (maximum and minimum)
in the principal directions. These are the principal strains, which may be
computed by the expression

{
ε1
ε2

}
=

εx + εy

2

{
+
−
}√(

εx − εy

2

)2

+
(γxy

2

)2

.

– A Mohr’s circle may be drawn for the two-dimensional strain tensor, where
the axis of abscissas contains the longitudinal strains and the axis of ordi-
nates the shearing strains.

III.9 Conclusions

In this chapter we have mainly analysed the physical aspects of the defor-
mation. This has been possible because the conclusion that the state of de-
formation, as the state of stress, may be described by a symmetric second
order tensor, allows a full analogy between the purely mathematical tensor
transformations in the two cases. Thus, we have concluded that the tensorial
operations described in Sects. II.5 to II.8 for the stress tensor are also valid
in the case of the strain tensor.

As in Chap. II for the stress theory, the analysis is mainly performed in
an infinitesimal neighbourhood around a point. The functions describing the
evolution of the elements of the strain tensor in the continuum were taken
into consideration only for developing the equations of compatibility. Here it
should be noted that, while the six elements of the strain tensor are completely
independent of each other, the six functions defining the elements of the strain
tensor must obey the compatibility conditions.6

The two restrictions used in the development of the mathematical expres-
sions for the deformation state are of completely different nature.

The first – restriction of the analysis to an infinitesimal neighbourhood
around a point, so that the deformation may be considered as homogeneous
– has consequences on the level of the mathematical tools used: the simplifi-
cations made possible by the consideration of a a homogeneous deformation
impose the use of integral and differential calculus.7

The second – consideration of infinitesimal deformations and rotations –
has consequences on the level of the problem’s physics. As a consequence,
no matter how good the mathematical or numerical tools used are, an error

6The same conclusion may be drawn in relation to the functions defining the
stresses in the continuum: the six elements of the stress tensor are independent of
each other, but the six functions, which define the same stresses as functions of the
coordinates x, y, z must obey the differential equations of equilibrium (5).

7The corresponding restriction in the stress state is the consideration of infini-
tesimal facets. The consequences of this restriction are, as in the deformation state,
only on the level of the mathematical formulation of the problem.
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is always present, and this becomes larger when deformations and rotations
grow. As mentioned in Footnote 6, the restriction to small rotations even
excludes the capacity to consider structural instability phenomena. For this
reason, the analysis of the buckling of slender members (Chap. XI) is based
on the bending theory, where, as Chap. VII will show, the validity of the
relation between the motion of cross sections and strains is not limited to
small rotations.

III.10 Examples and Exercises

III.1. Displacements were measured in a deformed body, which may be ap-
proximated by the expressions⎧⎨

⎩
u = 5x2 + 3xy + 4 + 4y2 + 3yz
v = 6xy + 4y2 + 5 + 2z2

w = 4xz + 2y2 + 3y + 6z2 .

Knowing that both deformations and rotations are sufficiently small to
be considered as infinitesimal, determine the functions describing the
strains and the rotations in the body.

III.2. Displacements were measured in the deformation of a body, which may
be approximated by the expressions (A,B, . . . , H are constants)⎧⎨

⎩
u = Ax3 + By2 + Cyz
v = Dx2y + Ey3 + Fy2z
w = Gxz2 + Hyz2 .

Knowing that, although the rotations are of considerable magnitude,
the deformations are sufficiently small to be considered as infinitesimal,
compute the longitudinal strain of an infinitesimal line segment which
is parallel to axis x and located in an infinitesimal neighbourhood of
the point of coordinates (2,-3,5).

III.3. What are the degrees of connection of the following bodies:
(a) a body composed by six bars linked like the edges of a tetrahedron;
(b) a prism with a square base and an interior cavity, which intersects

the four side faces and does not intersect the top and bottom faces;
(c) a ring with a tubular cross section.

III.4. Write a computation sequence to verify the reciprocity of the rotations
in a pure deformation (cf. Fig. 26).

Resolution

Given data: elements of the strain tensor, εx, εy, εz, εxy, εxz and εyz; direction
cosines of direction OP , l, m and n.
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Computation Sequence

1. components of the displacement of the tip of vector
−→
OP :⎧⎪⎨

⎪⎩
δ′px = lεx + mεxy + nεxz

δ′py = lεxy + mεy + nεyz

δ′pz = lεxz + mεyz + nεz ;

2. longitudinal strain in direction OP :

εp = lδ′px + mδ′py + nδ′pz;

3. transversal displacement of the tip of vector
−→
OP :

δ′tp =
√

δ′2
px + δ′2

py + δ′2
pz − ε2

p ;

4. direction cosines of direction OQ (
−→
OQ‖)δ′tp

→
:

lq =
δ′px − lεp

δ′tp
mq =

δ′py − mεp

δ′tp
nq =

δ′pz − nεp

δ′tp
;

5. components of the displacement of the tip of vector
−→
OQ:⎧⎪⎨

⎪⎩
δ′qx = lqεx + mqεxy + nqεxz

δ′qy = lqεxy + mqεy + nqεyz

δ′qz = lqεxz + mqεyz + nqεz;

6. longitudinal strain in direction OQ:

εq = lqδ
′
qx + mqδ

′
qy + nqδ

′
qz;

7. components of the transversal displacement of the tip of vector
−→
OQ:

δ′tqx = δ′qx − lqεq δ′tqy = δ′qy − mqεq δ′tqz = δ′qz − nqεq;

8. projection of δ′tq in direction OP :

δ′′tq = lδ′tqx + mδ′tqy + nδ′tqz;

9. verification:
δ′′tq = δ′tp.




