
II

The Stress Tensor

II.1 Introduction

Some physical quantities, like the mass of a body, its volume, its surface,
etc., are mathematically represented by a scalar, which means that only one
parameter is necessary to define them. Others, like forces, displacements, ve-
locities, etc., are vectorial entities, which need three quantities to be defined
in a three-dimensional space, or two in the case of a two-dimensional space.
Other physical entities, like the states of stress and strain around a material
point inside a body under internal forces, are tensorial quantities, which may
be described by nine components in a three-dimensional space, or by four in
a two-dimensional space.

In a more general and systematic way, a scalar may be defined as a tensor
of order zero with 30 = 1 components, and a vector as a first order tensor
with 31 = 3 components. A second order tensor, or simply, tensor, has 32 = 9
components. Higher order tensors may also be defined. An nth order tensor will
have 3n components in a three-dimensional space (or 2n in a two-dimensional
space). As will be seen later, the tensor components are not necessarily all
independent.

Below, the stress tensor is defined and some of its properties are analysed.

II.2 General Considerations

Consider a solid body under a system of self-equilibrating forces, as shown
in Fig. 1-a. Imagine that the body is divided in two parts by the section
represented in the same Figure. Internal forces act in the left surface of the
section, representing the action of the right part of the body on the left part.
Similarly, as a consequence of the equilibrium condition, in the right surface
forces act with the same magnitude and in opposite directions, as shown
in Fig. 1-b. The force F and the moment M represent the resultant of the
internal forces distributed in the section, which generally vary from point to
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point. However, by considering an infinitesimal area, dΩ, in the surface (Fig.
2-a), we may consider a homogeneous distribution of the internal force in this
area. Dividing the infinitesimal force dF , which acts in the infinitesimal area
dΩ, we get the internal force per unit of area or stress.

T =
dF

dΩ
. (1)
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Fig. 1. Internal forces in a solid body under a self-equilibrating system of forces
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Fig. 2. Stress in an infinitesimal surface (facet)

The orientation of the infinitesimal surface of area dΩ (facet) in a rectan-
gular Cartesian reference frame xyz may be defined by a unit vector n→, which
is perpendicular to the facet and points to the outside direction in relation to
the part of the body considered (Fig. 2-b). This vector n→, is the semi-normal
of the facet and, as a unit vector, its components are the cosines of the angles
between the vector and the coordinate axes – the direction cosines of the facet⎧⎨

⎩
nx = cos (n, x) = l
ny = cos (n, y) = m
nz = cos (n, z) = n .

As the vector has a unit length, we have

l2 + m2 + n2 = 1 . (2)

The stress acting on the facet may be decomposed into two components: a
normal one, with the direction of the semi-normal of the facet σ = T cos α,
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and a tangential or shearing component τ = T sin α, where α is the angle
between the semi-normal n→ and the total stress vector T (Fig. 2-b).

In the right surface of the section we may define a facet, which is coincident
with the left one, but has an opposite semi-normal with direction cosines
−l,−m,−n and stresses σ and τ with the same magnitude as in the left facet,
but opposite directions. In the case of a facet which is perpendicular to a
coordinate axis, it will be a positive facet if its semi-normal has the same
direction as the axis to which it is parallel, and it will be negative in the
opposite case. As the normal stress σ in these facets is parallel to one of the
coordinate axes, the shearing stress τ may be decomposed in the directions of
the other two coordinate axes.

In the presentation that follows the Von-Karman convention will be used
for the stresses. According to this convention, the stresses are positive if they
have the same direction as the coordinate axis to which they are parallel, in
the case of a positive facet. In the case of a negative facet, the stresses will be
positive, if they have the direction opposite to the corresponding coordinate
axis. We will denote the normal stresses parallel to the axes x, y and z by σx, σy

and σz, respectively. The shearing stresses are represented by the notation τij ,
where the first index represents the direction of the semi-normal of the facet
and the second one the direction of the shearing stress vector. For example τyz

denotes the shearing stress component which is parallel to the z coordinate
axis and acts in a facet whose semi-normal is parallel to the y axis.

External force components are positive if they have the same direction as
the coordinate axes to which they are parallel.

Figure 3 shows the stresses acting in a rectangular parallelepiped defined
by three pairs of facets, which are perpendicular to the three coordinate axis
and are located in an infinitesimal neighborhood of point P .
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Fig. 3. Positive normal and shearing stresses
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II.3 Equilibrium Conditions

Stresses and external forces must obey static and dynamic equilibrium condi-
tions. Using these conditions, some relations may be established in the interior
of the body, as well as in its boundary. These fundamental relations are de-
duced in the following two sub-sections.

II.3.a Equilibrium in the Interior of the Body

The static equilibrium of a body, or a part of it, under the action of a system of
forces demands that both its resulting force and its resulting moment vanish.
If the resulting moment is zero, we have rotation equilibrium; if the resulting
force is zero, equilibrium of translation is attained.

The forces acting in the rectangular parallelepiped defined by the three
pairs of facets in Fig. 3 are in equilibrium of translation, since the stress
vectors in each pair of facets are equal (more precisely, the difference between
them is infinitesimal) and have opposite directions. The external body forces
are therefore equilibrated by the infinitesimal difference between the stresses
in the negative and positive facets of the pair. The corresponding expressions
are presented later. We will first analyse the rotation equilibrium conditions.

Equilibrium of Rotation

Assuming that the translation equilibrium is guaranteed, the resulting mo-
ment will be zero or a couple. The latter will vanish if the moments of the
forces in relation to three axes, which have a common point, are non-parallel
and do not lie along to the same plane, are zero. For simplicity, we consider
axes, which are parallel to the reference system and contain the geometrical
center of the infinitesimal parallelepiped (Fig. 3). Considering, for example,
the axis x′ parallel to x, the only forces which have a non-zero moment in
relation to this axis are the resultants of τyz and τzy, as it can be confirmed
by looking at Fig. 3 and as represented in Fig. 4.

The condition of zero moment of the forces which result from the stresses
represented in Fig. 4, around the axis x′, may be expressed by the equation

2
(
τyz dx dz

dy

2

)
− 2

(
τzy dx dy

dz

2

)
= 0 ⇒ τzy = τyz . (3)

The conditions which express the equilibrium of rotation around the axes y′

and z′, parallel to the global axes y and z, respectively lead to the conclusion
that τxy = τyx and τxz = τzx. These expressions, together with expression 3,
represent the so-called reciprocity of shearing stresses in perpendicular facets.
Since the reference axes may have any spatial orientation, the reciprocity may
be expressed in the following way, which is independent of reference axes:
considering two perpendicular facets, the components of the shearing stresses
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Fig. 4. Equilibrium of rotation around axis x′

which are perpendicular to the common edge of the two facets have the same
magnitude and either both point to that edge or both diverge from it.1

Equilibrium of Translation

As stated above, the translation equilibrium, in terms of the forces, which
act on the faces of the infinitesimal parallelepiped (Fig. 3) is verified. These
forces are infinitesimal quantities of the second order: for example, the force
corresponding to the stress σy is σy dx dz . The body forces acting in the par-
allelepiped are infinitesimal quantities of the third order: for example, the
force corresponding to the body force per unit of volume in the direction x,
X, is X dx dy dz . For these reasons, the body forces can be related to the
forces corresponding to the variation of the stress, which are also infinitesimal
quantities of third order. Since σx, . . . , τzy are the mean values of the stresses
in the facet, it is only necessary to compute the variation of the stress in the
direction of the coordinate corresponding to the semi-normal of the facet, on
which the stress acts. Figure 5 displays the forces acting on the infinitesi-
mal parallelepiped, including the body forces and the variations of the stress
functions.

The condition of equilibrium of the forces acting in direction x leads to
the expression

dσx dy dz + dτyx dx dz + dτzx dx dy + X dx dy dz = 0 . (4)

1If the external loading were to include moments MX , MY , MZ , distributed in
the volume of the body, instead of equation (3) we would obtain the expression
τyz − τzy + MX = 0 and there would be no reciprocity of the shearing stresses.
However, this kind of loading does not usually have physical significance, except in
problems which are beyond the scope of this text, such as the case of the influence
of a strong magnetic field on the stress distribution in a magnetized body. For this
reason, in the discussion below, the reciprocity of the shearing stresses will will
always be considered valid.
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Fig. 5. Forces acting on the infinitesimal parallelepiped

By substituting the stress variations with their values as defined in Fig. 5
and eliminating the product dx dy dz , which appears in every element of the
resulting expression, we get the first of the differential equations of equilibrium,
which are ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂σx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ X = 0

∂τxy

∂x
+

∂σy

∂y
+

∂τzy

∂z
+ Y = 0

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
+ Z = 0 .

(5)

The last two expressions are obviously obtained from the conditions of equi-
librium of translation in directions y and z, respectively.

Expressions 5 have been obtained by using the equilibrium conditions in
a solid body in static equilibrium or in uniform motion. But it is very easy to
generalize them to solids or liquids in non-uniform motion, by including the
inertial forces in the body forces.

To this end, let us consider the situation represented in Fig. 5, for the case
of no static balance. In this case, the resulting force is not zero, but induces
an acceleration, which, in the most general case, has components in the three
coordinate axes. Taking the direction x, for example, instead of expression 4,
the fundamental equation of dynamics yields the relation

dσx dy dz + dτyx dx dz + dτzx dx dy + X dx dy dz︸ ︷︷ ︸
force

= ρdx dy dz︸ ︷︷ ︸
mass

acceleration︷︸︸︷
ax ⇒ ∂σx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ X −ρax︸ ︷︷ ︸

Xi

= 0 , (6)

where ax represents the acceleration component in direction x and ρ is the
density of the material. If we define the inertial forces
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⎩

Xi = −ρax

Yi = −ρay

Zi = −ρaz ,

these may be treated as body forces in a body in static equilibrium, as stated
by expression 6.

II.3.b Equilibrium at the Boundary

The balance conditions of the forces acting in the infinitesimal neighborhood
of a point belonging to the boundary of the body may be established by
considering an infinitesimal tetrahedron defined by three facets, whose semi-
normals are parallel to the coordinate axes and by a facet on the boundary.
Figure 6 shows this tetrahedron and the stresses and boundary forces per area
unit (X, Y , Z) acting on its faces. Since stresses and boundary forces may be
considered as uniformly distributed, their resultants act on the centroids of
the facets.
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Fig. 6. Infinitesimal tetrahedron defined at the boundary of a body

The conditions expressing the rotation equilibrium around the axis of X, Y
and Z confirm the reciprocity of the shearing stresses, since the moments of the
body forces acting on the tetrahedron do not need to be considered, because
they are infinitesimal quantities of the fourth order, while the moments of
the stress resultants are infinitesimal quantities of the third order (note that
boundary forces and normal stresses are on the same lines).
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The balance equation for the translation in direction x yields the expres-
sion (Fig. 6-a)

XΩ − σxΩx − τyxΩy − τzxΩz = 0 , (7)

where Ωx, Ωy, Ωz, Ω represent the areas of the triangles obc, oac, oab, abc,
respectively. Denoting the direction cosines of the semi-normal of the facet
abc by l, m, n, the following relations are easily stated (cf. Fig. 6-b)

Ωx = lΩ Ωy = mΩ Ωz = nΩ .

By substituting these relations in equation (7), we get the first of the boundary
balance equations, which are⎧⎪⎨

⎪⎩
lσx + mτyx + nτzx = X

lτxy + mσy + nτzy = Y

lτxz + mτyz + nσz = Z .

(8)

The last two equations are obviously obtained from the conditions of equi-
librium in the directions y and z, respectively. Expressions 8 are also valid
in presence of inertial forces, since these, as body forces, lead to infinitesimal
quantities of the higher order in the balance equations, so that they do not
need to be considered.

II.4 Stresses in an Inclined Facet

The stresses acting on an inclined facet (a facet whose semi-normal is not
parallel to any of the coordinate axes) may be obtained from the balance
equations of the forces acting in an infinitesimal tetrahedron similar to the
one in Fig. 6, with the difference that the triangle abc represents the inclined
facet inside the body (Fig. 7-a).
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Fig. 7. Stresses in an inclined facet

Denoting by Tx, Ty, Tz the components in the reference directions of the
stress vector acting on the facet abc and by l, m and n the direction cosines
of its semi-normal, expression 8 directly gives the Cauchy equations
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⎪⎩

Tx = lσx + mτyx + nτzx

Ty = lτxy + mσy + nτzy

Tz = lτxz + mτyz + nσz .

(9)

Using matrix notation, we may write⎧⎨
⎩

Tx

Ty

Tz

⎫⎬
⎭︸ ︷︷ ︸

{T}

=

⎡
⎣ σx τyx τzx

τxy σy τzy

τxz τyz σz

⎤
⎦

︸ ︷︷ ︸
[σ ]

⎧⎨
⎩

l
m
n

⎫⎬
⎭︸ ︷︷ ︸

{l}

. (10)

We may conclude that the elements of matrix [σ] are sufficient to compute the
stress in any inclined facet around point o, which means that they completely
define the state of stress around point o. This matrix therefore defines the
stress tensor. As a consequence of the reciprocity of the shearing stresses, only
six of its nine components are independent, which means that six quantities
are generally necessary (and sufficient) to define the stress state around a
point.

The normal stress component is the projection of vector T in the direction
of the semi-normal to the facet. Taking into consideration the reciprocity of
the shearing stresses (τxy = τyx, τxz = τzx and τyz = τzy), we get

σ = lTx + mTy + nTz

= l2σx + m2σy + n2σz + 2lmτxy + 2lnτxz + 2mnτyz . (11)

The magnitude of the shearing stress may be found by means of Pythago-
ras’ theorem, τ2 = T 2 − σ2 (Fig. 7-b). The components τx, τy and τz of the
shearing stress in the reference directions may be obtained by subtracting the
components of the normal stress σ to the components of the total stress T
yielding ⎧⎪⎨

⎪⎩
τx = Tx − lσ

τy = Ty − mσ

τz = Tz − nσ .

(12)

II.5 Transposition of the Reference Axes

Rotating the reference axes obviously causes a change in the components of the
stress tensor. These are the stresses that act in facets, which are perpendicular
to the new reference axes as shown in Fig. 8. Next we develop an expression
to compute the new components of the tensor when the Cartesian rectangular
reference system rotates.

Let us first consider the stress Tx′ , which acts on the facets with a semi-
normal x′ and has the components Tx′x, Tx′y and Tx′z in the original reference
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Fig. 8. Transposition of the reference axes

system (xyz). Changing the notation used for the direction cosines, expres-
sions 10 give⎧⎨

⎩
l = (x′, x)
m = (x′, y)
n = (x′, z)

⇒
⎧⎨
⎩

Tx′x
Tx′y
Tx′z

⎫⎬
⎭ =

⎡
⎣ σx τyx τzx

τxy σy τzy

τxz τyz σz

⎤
⎦
⎧⎨
⎩

(x′, x)
(x′, y)
(x′, z)

⎫⎬
⎭ .

Proceeding in the same way in relation to the stresses acting in the facets
with semi-normals y′ and z′, we get, in matrix notation⎡

⎣Tx′x Ty′x Tz′x
Tx′y Ty′y Tz′y
Tx′z Ty′z Tz′z

⎤
⎦

︸ ︷︷ ︸
[T ]

=

⎡
⎣ σx τyx τzx

τxy σy τzy

τxz τyz σz

⎤
⎦

︸ ︷︷ ︸
[σ ]

×
⎡
⎣ (x′, x) (y′, x) (z′, x)

(x′, y) (y′, y) (z′, y)
(x′, z) (y′, z) (z′, z)

⎤
⎦

︸ ︷︷ ︸
[ l ]

.

(13)
The elements of matrix [ T ] are the stresses acting in the new facets (semi-
normals x′, y′ and z′), but still represented by their components in the original
xyz reference system. The components of the tensor in the new reference
system x′y′z′ are the projections of the stresses [ T ] in the directions x′y′z′.
These components may be obtained by the matrix operation⎡
⎣ σx′ τy′x′ τz′x′

τx′y′ σy′ τz′y′

τx′z′ τy′z′ σz′

⎤
⎦

︸ ︷︷ ︸
[σ′ ]

=

⎡
⎣ (x′, x) (x′, y) (x′, z)

(y′, x) (y′, y) (y′, z)
(z′, x) (z′, y) (z′, z)

⎤
⎦

︸ ︷︷ ︸
[l]t

×
⎡
⎣Tx′x Ty′x Tz′x

Tx′y Ty′y Tz′y
Tx′z Ty′z Tz′z

⎤
⎦

︸ ︷︷ ︸
[T ]=[σ ][ l ]

.

(14)
Combining expressions 13 and 14, we get

[ σ′ ] = [ l ]t [ σ ] [ l ] . (15)

As the vectors in matrix [ l ] are orthogonal and have unit length and since
the scalar product of orthogonal vectors is zero, we get
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[ l ]t[ l ] = [ I ] = [ l ][ l ]t ⇒ [ σ ] = [ l ] [σ′ ] [ l ]t , (16)

where [ I ] represents the identity matrix.

II.6 Principal Stresses and Principal Directions

The stress tensor [σ] may be seen as a linear operator, which transforms the
unit vector represented by the semi-normal of the facet, with components l,
m and n, in the vector of components Tx, Ty, Tz (the stress on the facet), as
described by expression 10.

Since it is a symmetrical linear operator, it is known from the linear Alge-
bra that it can always be diagonalized, that the three roots of its characteristic
equation are all real and, if they are all different, its eigenvectors are orthog-
onal. Transposing these conclusions to the stress state around a point, this
means that there are always three facets, perpendicular to each other, where
the stress vector has the same direction as the normal to the facet. As a con-
sequence, the shearing stress vanishes. The stresses in those principal facets
are the principal stresses and their normals are the principal directions of the
stress state.

In the following exposition, these notions are analysed and expressions for
their computation from the components of the stress tensor in a rectangular
Cartesian system are deduced. As far as possible, a physical analysis of the
stress state will be preferred to a mathematical analysis of the linear operator
[σ], since, for the student of engineering, the physical understanding of the
underlying phenomena is of crucial importance.

Let us consider a principal facet. The stress acting on it has only the
normal component σ, so that the components of the stress vector are Tx = lσ,
Ty = mσ and Tz = nσ. Substituting these values in expression 10, we get the
homogeneous system of linear equations⎡

⎣σx − σ τxy τxz

τxy σy − σ τyz

τxz τyz σz − σ

⎤
⎦

︸ ︷︷ ︸
[C ]

⎧⎨
⎩

l
m
n

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ . (17)

Such a system of equations has the trivial solution l = m = n = 0, and
has other non-zero solutions only if there is a linear dependency between the
equations, that is, if the determinant of the system matrix, [C ], vanishes. The
direction cosines l, m and n cannot be zero simultaneously, since they are the
components of a unit vector. Thus, the second possibility (zero determinant)
must yield, as expressed by the condition∣∣∣∣∣∣

σx − σ τxy τxz

τxy σy − σ τyz

τxz τyz σz − σ

∣∣∣∣∣∣ = −σ3 + I1σ
2 − I2σ + I3 = 0 . (18)
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In this expression the quantities I1, I2 and I3 take the values

I1 = σx + σy + σz

I2 =
∣∣∣∣ σx τxy

τxy σy

∣∣∣∣+
∣∣∣∣ σx τxz

τxz σz

∣∣∣∣+
∣∣∣∣ σy τyz

τyz σz

∣∣∣∣
= σxσy + σxσz + σyσz − τ2

xy − τ2
xz − τ2

yz

I3 =

∣∣∣∣∣∣
σx τxy τxz

τxy σy τyz

τxz τyz σz

∣∣∣∣∣∣ = σxσyσz + 2τxyτxzτyz − σxτ2
yz − σyτ2

xz − σzτ
2
xy .

The roots of equation (18) are the stresses, which satisfy equation (17), with
non-simultaneous zero direction cosines l, m and n.2 They represent the nor-
mal stresses in facets, where the shearing stress is zero, which means that they
are principal stresses. The direction cosines of the normals to these facets –
the principal directions – may be computed by substituting in Expression 17
σ for one of the roots of equation (18) and considering the supplementary
condition l2 + m2 + n2 = 1, since, with that substitution, equations (17) be-
come linearly dependent (|C| = 0). Usually the principal stresses are denoted
by σ1, σ2 and σ3 with σ1 > σ2 > σ3 (cf. example II.1).

The roots of equation (18) must not vary when the reference system is
rotated, since they represent the principal stresses, which are intrinsic values
of the stress state and therefore must not depend on the particular reference
system used to describe the stress tensor. For this reason, equation (18) is
designated as the characteristic equation of the stress tensor. The roots of
this equation will be independent of the reference system if the coefficients I1,
I2, I3 are insensitive to coordinate changes. These coefficients are therefore
invariants of the stress tensor.

Sometimes (for example in elasto-plastic computations) it is more conve-
nient to define the invariants in the following way

J1 =
3∑

i=1

σii = I1

J2 =
1
2

3∑
i=1

3∑
j=1

σijσij =
1
2
I2
1 − I2

J3 =
1
3

3∑
i=1

3∑
j=1

3∑
k=1

σijσjkσki =
1
3
I3
1 − I1I2 + I3 , (19)

where σ11 = σx, σ22 = σy, σ33 = σz, σ12 = σ21 = τxy, σ13 = σ31 = τxz and
σ23 = σ32 = τyz. These relations may be verified by direct substitution. The
last verification is, however, rather time-consuming. Obviously, if I1, I2 and
I3 are invariant, J1, J2 and J3 will also be.

2As components of a unit vector these direction cosines must obey the condition
l2 + m2 + n2 = 1.
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II.6.a The Roots of the Characteristic Equation

The characteristic equation always has three real roots. In order to prove
this statement, let us first remember that a third order polynomial equation
always has at least one real root, since an odd-degree polynomial may take
arbitrary high values, positive or negative, by assigning sufficiently high pos-
itive or negative values to the variable. Now, let us assume that one of the
reference axes (for example axis z) is parallel to the principal direction, which
corresponds to that real root. For simplicity, we will consider σz ≡ σ3 (in this
section we abandon the convention σ1 > σ2 > σ3). In this case, the shearing
stresses τxz and τyz will vanish and expression 17 takes the form⎡

⎣σx − σ τxy 0
τxy σy − σ 0
0 0 σz − σ

⎤
⎦
⎧⎨
⎩

l
m
n

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ . (20)

The characteristic equation is therefore

(σz − σ)
∣∣∣∣σx − σ τxy

τxy σy − σ

∣∣∣∣ = 0

⇒ (σz − σ)
[
xσy − (σx + σy) σ + σ2 − τ2

xy

]
= 0 . (21)

One of the roots is obviously σ = σz = σ3, as expected, since z is a principal
direction. The other two roots may be obtained by solving the second degree
equation

σ2 − (σx + σy) σ +
(
σxσy − τ2

xy

)
= 0 .

The solution of this equation may be written as follows

σ =
σx + σy

2
± 1

2

√
σ2

x + 2σxσy + σ2
y − 4σxσy + 4τ2

xy

=
σx + σy

2
± 1

2

√
(σx − σy)2 + 4τ2

xy︸ ︷︷ ︸
≥0

. (22)

The roots of this equation are always real, since the binomial under the square
root cannot take negative values. Therefore, there are always three real roots
of the characteristic equation. The roots can, however, be double or even
triple. For example, if the binomial is zero, we have for any pair of reference
axes x, y of a plane perpendicular to axis z

(σx − σy)2 + 4τ2
xy = 0 ⇒

{
σx = σy

τxy = 0

⇒ σ1 = σ2 =
σx + σy

2
= σx = σy . (23)

From this expression the conclusion may be drawn that, if two roots are
equal (double root) and the third is different, then all the normal stresses of
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the plane, which is perpendicular to the principal direction corresponding to
the third root (in this case the direction z and the plane x, y, respectively),
are principal stresses and take the same value, since σ1 = σ2 = σx = σy and
τxy = 0. We have, in this case, a stress state, which is axis-symmetric, i.e.
symmetric in relation to an axis (the z axis, in this case).

If the three roots are equal (triple root), the shearing stress vanishes in
every facet, as a similar analysis in any plane containing the z axis easily
shows. Furthermore, the normal stress has the same value in every facet. Since
the stresses do not vary with the orientation of the facet, we have an isotropic
stress state. The components of this stress tensor are σx = σy = σz = σ and
τxy = τxz = τyz = 0, regardless of the orientation of the reference system.

II.6.b Orthogonality of the Principal Directions

In the case of three different principal stresses, the corresponding principal
directions are perpendicular to each other. This has already been implicitly
demonstrated in the previous considerations, since the plane xy is perpendic-
ular to direction z, which coincides with one of the principal directions. The
orthogonality may, however be proved more clearly from expression 20.

The last equation in this expression is linearly independent of the other
two, unless σ = σz = σ3. In this last case, we must have∣∣∣∣σx − σ τxy

τxy σy − σ

∣∣∣∣ �= 0 ,

since the value of σ, for which this determinant vanishes, is different from σ3

(cf. (21)). Thus, the direction cosines must take the values l = m = 0 and
n = 1, to obey equations (20). These are the direction cosines of direction z,
as expected.

In the case of σ �= σ3, equations (20) are satisfied only if

n = 0 and
∣∣∣∣σx − σ τxy

τxy σy − σ

∣∣∣∣ = 0 ,

since, in this case, l2 + m2 = 1. As n = 0, the principal directions corre-
sponding to the principal stresses σ1 and σ2 are in the plane xy, i.e. they are
perpendicular to z. As axis z is parallel any of the three principal directions,
they must be all be perpendicular to each other.

II.6.c Lamé’s Ellipsoid

In the previous section we have demonstrated that there are always three
orthogonal principal directions in a stress state. It is therefore always possible
to choose a rectangular Cartesian reference system which coincides with the
three principal directions. In this case, the shearing components of the stress
tensor vanish and it takes the form
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⎩

σx = σ1

σy = σ2

σz = σ3

and

⎧⎨
⎩

τxy = 0
τxz = 0
τyz = 0

⇒ [σ] =

⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦ . (24)

In an inclined facet, with a semi-normal defined by the direction cosines l,m, n,
the relation between the components of the stress vector and the principal
stresses may be deduced from expression 9, yielding

⎧⎨
⎩

T1 = lσ1

T2 = mσ2

T3 = nσ3

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l =
T1

σ1

m =
T2

σ2

n=
T3

σ3

.

(25)

Since the direction cosines must obey the condition l2+m2+n2 = 1, expression
25 gives

T 2
1

σ2
1

+
T 2

2

σ2
2

+
T 2

3

σ2
3

= 1 . (26)

If we consider a Cartesian reference system T1, T2, T3, this expression rep-
resents the equation of an ellipsoid, whose principal axes are the reference
system and where the points on the ellipsoid are the tips P of the stress vec-
tors

−→
OP (T1, T2, T3) acting in facets containing the point with the stress state

defined by expression 24 (point O, Fig. 9)

σ2
2

= 1

T1

T2

T3

O

A

B

C
P

Fig. 9. Lamé’s Ellipsoid or stress ellipsoid

This ellipsoid is a complete representation of the magnitudes of the stress
vectors in facets around point O. It allows an important conclusion about the
stress state: the magnitude of the stress in any facet takes a value between the
maximum principal stress σ1 and the minimum principal stress σ3. It must be
mentioned here that this conclusion is only valid for the absolute value of the
stress, since in expression 26 only the squares of the stresses are considered.
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From Fig. 9 we conclude immediately that if the absolute values of two
principal stresses are equal the ellipsoid takes a shape of revolution around
the third principal direction and if the three principal stresses have the same
absolute value the ellipsoid becomes a sphere.

In the first case, the stress
→
T acting in facets, which are parallel to the

third principal direction have the same absolute value. Besides, if these two
principal stresses have the same sign, we have an axisymmetric stress state,
as concluded in Sect. II.6.a.

In the second case (|σ1| = |σ2| = |σ3|), the stress
→
T has the same magnitude

in all facets. Furthermore, if σ1 = σ2 = σ3, we have an isotropic stress state
(cf. Sect. II.6.a).

II.7 Isotropic and Deviatoric Components
of the Stress Tensor

The stress tensor may be considered as a system of forces in equilibrium,
acting on an infinitesimal parallelepiped. Such a system may be decomposed
in subsystems of forces in equilibrium.

When applying the stress theory to isotropic materials it is often neces-
sary to separate the component of the stress tensor, which induces only volume
changes in the material, from the component, which causes distortions. For
example, as will be seen later in the study of the strain tensor and the con-
stitutive law, the volume change in an isotropic material depends only on the
isotropic component of the stress tensor⎡

⎣σm 0 0
0 σm 0
0 0 σm

⎤
⎦ with σm =

σx + σy + σz

3
=

I1

3
. (27)

The decomposition of the stress tensor may be described by the expression⎡
⎣ σx τyx τzx

τxy σy τzy

τxz τyz σz

⎤
⎦ =

⎡
⎣σm 0 0

0 σm 0
0 0 σm

⎤
⎦

︸ ︷︷ ︸
isotropic tensor
component

+

⎡
⎣σx − σm τyx τzx

τxy σy − σm τzy

τxz τyz σz − σm

⎤
⎦

︸ ︷︷ ︸
deviatoric tensor
component

.

(28)
In isotropic materials the deviatoric component of the stress tensor does not
cause volume change, as will be seen later. In this tensor component the first
invariant vanishes (I ′1 = σx + σx + σz − 3σm = 0), which means that J ′

2 = −I ′2
and J ′

3 = I ′3 (cf. (19)).
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II.8 Octahedral Stresses

Octahedral stresses are stresses acting in facets which are equally inclined
in relation to the principal directions. Considering a reference system, where
the axes lie in the principal directions of the stress state, the semi-normals of
these facets have direction cosines with equal absolute values. Since there are
eight facets obeying this condition (one in each of the eight trihedrons), they
define one octahedron, which is symmetrical in relation to the principal planes
(Fig. 10).

1 ≡ x

2 ≡ y

3 ≡ z

Fig. 10. Octahedron defined by equally inclined facets in relation to the principal
directions 1, 2, 3

The direction cosines of the octahedral semi-normals take the values

⎧⎪⎨
⎪⎩

|l| = |m| = |n|

l2 + m2 + n2 = 1 ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l = ± 1√
3

m = ± 1√
3

n = ± 1√
3

.

As the reference system is a principal one, the shearing components of the
stress tensor vanish. Therefore, the Cauchy equations (9) furnish the stress
components ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Tx = lσ1 = ± σ1√
3

Ty = mσ2 = ± σ2√
3

Tz = nσ3 = ± σ3√
3

.
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The normal component of the octahedral stress is then

σoct = lTx + mTy + nTz = l2σ1 + m2σ2 + n2σ3

=
σ1 + σ2 + σ3

3
=

I1

3
=

σx + σy + σz

3
.

(29)

This stress coincides with the isotropic stress (cf. (27)).
The magnitude of the shearing component of the octahedral stress may be

computed by using Pythagoras’ theorem (cf. Sect. II.4), yielding

τ2
oct = T 2

oct − σ2
oct = T 2

x + T 2
y + T 2

z − σ2
oct = l2σ2

1 + m2σ2
2 + n2σ2

3 − σ2
oct

=
1
3
(
σ2
1 + σ2

2 + σ2
3

)︸ ︷︷ ︸
I2
1−2I2

−I2
1

9
=

2
9
(
I2
1 − 3I2

)
. (30)

As the quantities I1 and I2 are insensitive to changes in the reference coordi-
nates, the octahedral shearing stress may be expressed directly as a function
of the components of the stress tensor in any rectangular Cartesian reference
system xyz

τoct =
√

2
3

√
I2
1 − 3I2

=
√

2
3

√
(σx + σy + σz)

2 − 3
(
σxσy + σxσz + σyσz − τ2

xy − τ2
xz − τ2

yz

)
=

1
3

√
(σx − σy)2 + (σy − σz)

2 + (σx − σz)
2 + 6

(
τ2
xy + τ2

xz + τ2
yz

)
.

(31)
By substituting in the last expression σx, σy and σz for σx − σm, σy − σm and
σz − σm, respectively, we conclude immediately that the octahedral shearing
stresses of the complete stress tensor and of its deviatoric component (28) are
equal. As we shall see later (Sect. IV.7.b.v), the octahedral shearing stress
plays an important role in one of the plastic yielding theories.

An even more simple expression of the octahedral shearing stress in terms
of the invariants (cf. (30)) may be obtained by considering only the deviatoric
tensor. For this purpose, we establish a relation between the second invariant
of the deviatoric tensor, I ′2, and the two first invariants of the complete stress
tensor I1 and I2 (cf. (28))

I ′2 =
∣∣∣∣σx − σm τxy

τxy σy − σm

∣∣∣∣+
∣∣∣∣σx − σm τxz

τxz σz − σm

∣∣∣∣+
∣∣∣∣σy − σm τyz

τyz σz − σm

∣∣∣∣
=
∣∣∣∣ σx τxy

τxy σy

∣∣∣∣+
∣∣∣∣ σx τxz

τxz σz

∣∣∣∣+
∣∣∣∣ σy τyz

τyz σz

∣∣∣∣
+ σ2

m − (σx + σy) σm + σ2
m − (σx + σz) σm + σ2

m − (σy + σz) σm︸ ︷︷ ︸
−3σ2

m
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⇒ I ′2 = I2 − I2
1

3
⇔ I2

1 − 3I2 = −3I ′2 .

Substituting in Expression 30, we get

τ2
oct = −2

3
I ′2 . (32)

From this expression we conclude that the second invariant of the deviatoric
stress tensor always takes a negative value.

The third invariant of the deviatoric stress tensor, I ′3, may also be ex-
pressed in terms of the invariants of the complete tensor, as follows

I ′3 =

∣∣∣∣∣∣
σx − σm τxy τxz

τxy σy − σm τyz

τxz τyz σz − σm

∣∣∣∣∣∣ =

∣∣∣∣∣∣
σx τxy τxz

τxy σy τyz

τxz τyz σz

∣∣∣∣∣∣
− (

σyσz + σxσz + σxσy − τ2
yz − τ2

xz − τ2
xy

)︸ ︷︷ ︸
I2

σm + (σx + σy + σz)︸ ︷︷ ︸
3σm

σ2
m − σ3

m

= I3 − I2σm + 2σ3
m = I3 − 1

3I1I2 + 2
27I3

1 .

II.9 Two-Dimensional Analysis of the Stress Tensor

II.9.a Introduction

In many applications of the stress theory, one of the principal directions is
known. As examples, we may refer the stress state at the surface of a body
(in the very common case of no tangential surface loads), the stress state in
a thin plate under in-plane forces, the stress states induced by the normal
and shear forces and by the bending and torsion moments in bars, etc. In
many cases, the principal stress, which corresponds to the known principal
direction, is zero, as in the referred case of the thin plate, or in the surface
of a body, where there are no external forces applied. In this case we have a
plane stress state.

In any of these cases, a two-dimensional analysis of the stress tensor is
enough to compute the remaining two principal stresses and directions. Since
the three principal directions are perpendicular to each other, the remaining
two principal directions act in facets, which are parallel to the known principal
direction. Therefore, only this family of facets needs to be considered. As this
two-dimensional analysis is considerably simpler than a three-dimensional one,
a deeper insight into the stress state is possible.

The two-dimensional analysis could be performed by particularizing the
expressions developed for the three-dimensional case and by developing them
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further in the simplified two-dimensional form. However, in the following ac-
count, the two-dimensional expressions will be deduced from scratch, i.e. with-
out using the three-dimensional framework described in the previous sections.
This option is useful because it allows the two-dimensional case to be under-
stood, without first having to learn the more demanding three-dimensional
one. As a side effect, some of the conclusions obtained in the general case will
be repeated in the two-dimensional analysis, although they are obtained in a
different way.

For simplicity, we will consider that the known principal direction is direc-
tion 3, and that that direction coincides with axis z. Thus the two-dimensional
analysis is performed in plane xy, by considering facets which are perpen-
dicular to this plane, and in which there are no shearing stresses with a z-
component, since z is a principal direction.

II.9.b Stresses on an Inclined Facet

Let us consider a triangular prism, where two of the lateral faces are per-
pendicular to the coordinate axes x and y and the third lateral face has
an orientation defined by the angle θ between its semi-normal and axis x.
Figure 11 illustrates this prism and the stresses acting in its facets.

The equilibrium condition of the forces acting in direction θ yields

σθ dz ds = σx dz dy cos θ + σy dz dx sin θ + τxy dz dy sin θ + τyx dz dx cos θ ,

or, as dx = ds sin θ and dy = ds cos θ,

σθ = σx cos2 θ + σy sin2 θ + 2τxy sin θ cos θ . (33)

Similarly, the equilibrium condition in the perpendicular direction (θ ± π
2 )

yields the relation

τθdz ds + σx dz dy sin θ + τyx dz dx sin θ = τxy dz dy cos θ + σy dz dx cos θ .

Simplifying, we get

τθ = (σy − σx) sin θ cos θ + τxy

(
cos2 θ − sin2 θ

)
. (34)

Expressions 33 to 34 show that the stresses σx, σy and τxy allow the computa-
tion of the stresses in an arbitrary facet, whose orientation is defined by angle
θ. They thus fully define the two-dimensional stress state around point P
(Fig. 11). These stresses are the components of the stress tensor in the refer-
ence system xy.

The expressions 33 and 34 may be given another form, if we take into
account the trigonometric relations

sin θ cos θ =
sin 2θ

2
sin2 θ =

1 − cos 2θ

2
cos2 θ =

1 + cos 2θ

2
.
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P

σ
θτθ
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σy

τxy

τyx

Fig. 11. Infinitesimal prism used in the two-dimensional analysis of the stress state

Substituting these relations in expression 33, we get

σθ =
σx + σy

2
+

σx − σy

2
cos 2θ + τxy sin 2θ . (35)

In the same way, expression 34 becomes

τθ = −σx − σy

2
sin 2θ + τxy cos 2θ . (36)

II.9.c Principal Stresses and Directions

Expressions 35 and 36 furnish the normal and shearing components of the
stress acting in facet θ, as functions of the stress tensor components σx, σy

and τxy. With these expressions, the evolution of σθ and τθ with the facet
orientation θ may be analysed. Differentiating expression 35 in relation to θ
and equating to zero gives

∂σθ

∂θ
= − (σx − σy) sin 2θ + 2τxy cos 2θ = 0

⇒ tan 2θ =
2τxy

σx − σy
⇒ θ =

1
2

arctan
2τxy

σx − σy
.

(37)

Expression 37 yields two values of θ (θ1 and θ2 = θ1+ π
2 ), which correspond to

a maximum and a minimum of σθ. By substituting expression 37 in expression
36, we get τθ = 0. This means that, in a two-dimensional stress state, there
are always two orthogonal directions which define facets where the shearing
stress takes a zero value and where the normal stress takes its minimum and
maximum values. These directions are the principal directions and the corre-
sponding values of the stress are the principal stresses. Usually, the maximum
principal stress is denoted by σ1 and the minimum by σ2.

3

3As we have seen in the three-dimensional analysis of the stress state, there is a
third principal stress in a parallel facet to the plane xy. A descending ordering of the
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These stresses may be computed by substituting in Expression 35 θ with
the values of θ1 and θ2 given by (37). To this end, the following trigonometric
relations are used

cos 2θ =
1

±
√

1 + tan2 2θ
sin 2θ =

tan 2θ
±
√

1 + tan2 2θ
.

By substituting the last but one of Equations 37 in these expressions and the
result in Expression 35, after some manipulation we get

{
σ1

σ2

}
=

σx + σy

2

{
+
−
}√(

σx − σy

2

)2

+ τ2
xy . (38)

It should be noted here that σ1 does not necessarily corresponds to the direc-
tion of θ1, as defined above, since in Equation 38 the convention σ1 ≥ σ2 is
used. These values are not known when the directions θ1 and θ2 are obtained
from Expression 37.

The value of θ, which corresponds to each of the principal stresses given
by expression 38 may, however, be computed easily by using a relation which
is deduced directly from the equilibrium condition, in direction x or y, of the
forces acting in the prism shown in Fig. 11. By considering θ = θ1 and, as
a consequence, σθ = σ1 and τθ = 0, the equilibrium condition in direction x
yields

σ1 ds cos θ1 = σx

dy︷ ︸︸ ︷
ds cos θ1 + τxy ds sin θ1︸ ︷︷ ︸

dx

⇒ tan θ1 =
σ1 − σx

τxy
.

The equilibrium condition in direction y gives the relation tan θ1 = τxy

σ1−σy
.

If the reference system coincides with the principal directions, the shearing
stress is zero and the normal and shearing stresses acting on an arbitrary facet
are ⎧⎨

⎩
σx = σ1

σy = σ2

τxy = 0
⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ =
σ1 + σ2

2
+

σ1 − σ2

2
cos 2α

τ = −σ1 − σ2

2
sin 2α ,

(39)

where α is the angle between the principal direction 1 and the semi-normal
to the facet, as shown in Fig. 11 (with the principal direction 1 in the place
of axis x).

principal stresses could demand a different ordering (for example, σz = σ1 or σz = σ2

instead of σz = σ3). However, for the sake of simplicity, in the two-dimensional case
we adopt the descending order only for the principal stresses lying in the plane xy.
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II.9.d Mohr’s Circle

In the last two sections we have implicitly adopted a sign convention for the
shearing stresses, where a positive stress corresponds to the y-direction in a
referential system, which is obtained by a rotation θ in the direct direction
(counterclockwise), of the xy referential system represented in Fig. 11. This
means that a positive shearing stress in the inclined facet corresponds to a
rotation, in the direct direction, around point P .

If we adopt the opposite convention – the shearing stress is positive, when
it defines a clockwise rotation – the negative sign in the second of Expressions
39 disappears. In this case, these expressions are the parametric equations of a
circle in a rectangular Cartesian reference system σ-τ . This circle can be used
to represent the whole stress state graphically, since each point in the circle
represents the stress vector in a facet, whose orientation is defined by angle α
(cf. (39)). This representation of the stress tensor was developed by the end of
the 19th century by Otto Mohr and it still remains very popular, despite the
decline of the graphic methods with the emergence of computational tools,
because of its simplicity and capacity for visualizing the whole stress state.

Representing the normal stresses in the axis of abscissas (horizontal direc-
tion), and the shearing stress in the axis of ordinates (with the second sign
convention defined above) Expressions 39 define a circle with radius σ1−σ2

2 ,
whose center is the point of abscissa σ1+σ2

2 and zero ordinate, as shown in
Fig. 12. Point A represents the facet with a semi-normal, whose orientation
is defined by an angle α measured from the principal direction 1, positive in
the counterclockwise direction. (Fig. 11, with θ = α). Orthogonal facets are
represented by opposite points in the Mohr’s circle, since an α-rotation of the
facet corresponds to a 2α-rotation of its representation.

From a quick glance at Fig. 12, the following conclusions may immediately
be drawn:

– the maximum value of the shearing stress is τmax = σ1−σ2
2 (radius of the

Mohr’s circle);
– the maximum shearing stress occurs in facets with a 45◦-orientation, in

relation to the principal directions (2α = 90◦ – point B – and 2α = 270◦ –
point C);

– in the facets where the normal stress attains its extreme values the shearing
stress takes a zero value (points on the axis of abscissas).

Irradiation Poles

The irradiation poles enable a graphic relation to be established between the
Mohr’s circle and the facet representation (Fig. 11). Irradiation poles for the
facets and for the normals to the facets may be defined. Figure 13 presents
the graphical construction leading to the facet irradiation pole.
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σ1+σ2
2

σ2

σ1

σ1−σ2
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τ

τ
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σ σ

A
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α
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σ

τ

σ1

σ2

Fig. 12. Mohr’s representation for the two-dimensional stress state

In this figure, the position of the facet irradiation pole If is first obtained
by drawing a parallel line to facet a, which contains the point representing this
facet in the Mohr’s circle (obviously, facet b could also be used). The point
representing the generic facet c on the Mohr’s circle may then be obtained by
drawing a line passing by the irradiation pole If , which is parallel to facet c.
This line intersects the Mohr’s circle in the point which represents facet c: σc

and τc are the normal and shearing stresses acting on facet c. The rightness
of this procedure is easily demonstrated: as the angle between facets a and
c is β, their representations on the Mohr’s circle (a and c on the circle, Fig.
13) are at the distance defined by the central angle 2β. As a consequence, the
circumferential angle (a, If , c) measures β, since it must take half the value of
2β. Thus, if the line aIf is parallel to the facet a, then the line cIf is parallel
to facet c.

If the direction of the normals to the facets is used instead of the facet
direction, the irradiation pole of the normals, If , is obtained (Fig. 13). Most
times, the irradiation pole of the facets is used. For simplicity, it is usually
denoted by I.

The principal directions may be obtained directly from the irradiation
poles:

– if the irradiation pole of the facets is used, the line joining this point with
the one representing the facet where the principal stress σ1 acts (point B),
is parallel to this facet; thus, it corresponds to principal direction 2; in the
same way the line If A gives the principal direction 1;
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Fig. 13. Irradiation poles

– if the irradiation pole of the normals is used, as principal direction 1 is the
normal to the facet, where σ1 acts (point B), then the line In B is parallel
to the principal direction 1.

II.10 Three-Dimensional Mohr’s Circles

If a two-dimensional analysis is performed in each of the principal planes
(planes defined by the principal directions), it is easily concluded that the
stresses in the three families of facets that are parallel to each of the three
principal directions may be represented in the Mohr’s plane by the three circles
defined by the three pairs of principal stresses, as shown in Fig. 14.

The facets which are not parallel to any of the principal directions are
represented by points contained in the shaded area of Fig. 14.4 The demon-
stration of this statement is based on the solution of the system of equations
(cf. (2), (11) and (12))⎧⎪⎨
⎪⎩

l2 + m2 + n2 = 1
l2σ1 + m2σ2 + n2σ3 = σ

l2σ2
1 + m2σ2

2 + n2σ2
3 = σ2 + τ2

⇔

⎡
⎢⎣ 1 1 1

σ1 σ2 σ3

σ2
1 σ2

2 σ2
3

⎤
⎥⎦
⎧⎨
⎩

l2

m2

n2

⎫⎬
⎭ =

⎧⎨
⎩

1
σ

σ2 + τ2

⎫⎬
⎭ .

(40)

4Only the upper half is considered, since it is not possible to make a general
distinction between positive and negative shearing stresses in an inclined facet in a
three-dimensional space.
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τ
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facets parallel to σ2

facets parallel to σ3

A

Fig. 14. Mohr’s representation of the stress state in the three-dimensional case

The solution of this system may be obtained by means of determinants, yield-
ing

l2 =
1
D

∣∣∣∣∣∣∣
1 1 1
σ σ2 σ3

σ2 + τ2 σ2
2 σ2

3

∣∣∣∣∣∣∣ =
τ2 + (σ − σ2) (σ − σ3)

(σ1 − σ2) (σ1 − σ3)

m2 =
1
D

∣∣∣∣∣∣∣
1 1 1
σ1 σ σ3

σ2
1 σ2 + τ2 σ2

3

∣∣∣∣∣∣∣ =
τ2 + (σ − σ1) (σ − σ3)

(σ2 − σ1) (σ2 − σ3)

n2 =
1
D

∣∣∣∣∣∣∣
1 1 1
σ1 σ2 σ
σ2
1 σ2

2 σ2 + τ2

∣∣∣∣∣∣∣ =
τ2 + (σ − σ1) (σ − σ2)

(σ3 − σ1) (σ3 − σ2)
,

where D = (σ1 − σ2) (σ2 − σ3) (σ3 − σ1) is the system’s determinant (Expr.
40). After some algebraic manipulations, these expressions may be given the
forms (cf. e.g. [1])

τ2 +
(

σ − σ2 + σ3

2

)2

=
(

σ1 −
σ2 + σ3

2

)2

l2 +
(

σ2 − σ3

2

)2 (
1 − l2

)
τ2 +

(
σ − σ1 + σ3

2

)2

=
(

σ2 −
σ1 + σ3

2

)2

m2 +
(

σ1 − σ3

2

)2 (
1 − m2

)
τ2 +

(
σ − σ1 + σ2

2

)2

=
(

σ3 −
σ1 + σ2

2

)2

n2 +
(

σ1 − σ2

2

)2 (
1 − n2

)
.

(41)
Considering the first of these equations, for example, we easily confirm that
it represents, in the (σ, τ)-plane, a family of circles with center in the point
of coordinates σ = σ2+σ3

2 and τ = 0. The radius of each circle depends on the
value of l2, which varies between 0 and 1. As this equation depends linearly on
l2, the extreme values of the radius are σ2−σ3

2 and σ1 − σ2+σ3
2 , respectively for

l2 = 0 and l2 = 1. The other two equations represent the other two families
of circles, as shown in Fig. 15.
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n = 1

m = 0

n = 0

l = 1

σ1σ2σ3 σ

τ

m = 1l = 0

Fig. 15. Families of circles described by Expressions 41 in the Mohr’s plane

The normal and shearing stresses, σ and τ , in a facet, whose semi-normal
has an orientation defined by the direction cosines l, m and n in a principal
reference system (axes parallel to the principal directions o the stress tensor),
must obey the three Expressions 41. As we have, simultaneously,

0 ≤ l2 ≤ 1 0 ≤ m2 ≤ 1 0 ≤ n2 ≤ 1 , (42)

the points representing facets of the stress state defined by σ1, σ2 and σ3 in the
Mohr’s plane must be on the surface containing the points whose coordinates
obey the conditions 41 and 42. They are therefore on the shaded area of
Fig. 14, which corresponds to the triple shaded area in Fig. 15.

The point representing a facet defined by a set of direction cosines may be
found by the intersection of two of the three circles defined by Equations 41,
for the corresponding values of l, m and n. The three circles intersect in this
point, since the three Equations 41 must be satisfied simultaneously.

The position of this point can also be obtained graphically. However, as
the explanation of the corresponding procedure is relatively lengthy and the
importance of the quantitative graphical methods has substantially declined
since the appearance of the computer, this method is not described here. Quite
a detailed description of this procedure can be found in reference [1].

The actual importance of the Mohr’s representation of the stress tensor
resides in the fact, that it provides a simple global visualization of the stress
state, making some conclusions obvious whose demonstration would be more
difficult by other methods. From it we conclude, for example, that the maxi-
mum shearing stress occurs in facets which are parallel to the middle principal
direction (direction of σ2) and make a 45◦-angle with the directions of the max-
imum and minimum principal stresses (point A in Fig. 14). In these facets the
normal and shearing stress take the values σ1+σ3
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Lamé’s ellipsoid, that σ1 and σ3 are the extreme values attained by the total
stress acting in the family of facets, passing through the point, whose stress
tensor has the principal stresses σ1, σ2 and σ3.

II.11 Conclusions

In the theory presented in this Chapter, we have mainly analysed the stress
state around a point, i.e. in an infinitesimal neighborhood of a point inside
or on the surface of a solid body, or of a liquid mass, under the action of
forces. This spatial restriction makes it possible to treat the stress state as
homogeneous, i.e., as if it would not vary from point to point.

The expressions defining the components of the stress tensor as functions of
the coordinates x, y and z were used only to develop the differential equations
of equilibrium (5). In the rest of the Chapter, only the elements of the stress
tensor at a given point were considered Those functions, however, play an
important role in the analytical solutions for the stress distribution inside a
body, which are obtained using the Theory of Elasticity (cf. e.g. Reference [4]).

In relation to the sign conventions used for the normal and shearing
stresses, it should be mentioned, that, while the same convention could al-
ways be retained for the normal stresses, in the case of the shearing stresses
it was necessary to abandon the initial convention (the Von-Karman conven-
tion), when studying the Mohr’s representation. This is a consequence of the
fact that the sign convention for the normal stresses is based on the physical
concept of the tensile force as a force which causes an increase of the distance
between two points, while such a physically grounded convention does not
exist for the shearing stresses. In fact, in the Von Karman convention the pos-
itive stress corresponds to the positive direction of the reference axes, which
have arbitrary directions; in the Mohr’s circle, the positive shearing stress is
defined by a direction of rotation, which depends on the observer’s position.
Finally, it is not possible to define a positive direction for the shearing stress
in a facet in the three-dimensional case. For these reasons, a physical distinc-
tion between positive and negative stresses only makes sense for the normal
stresses.

The validity of the theory expounded in this chapter is only limited by
the hypothesis of continuity. Thus, it is valid in a solid with small or large
deformations, in static equilibrium or in dynamic motion, or in a fluid in
steady or unsteady motion. However, in the case of a solid body under finite
deformations (deformations which are not small enough to be considered as
infinitesimal quantities), it should be noted, that the coordinates x, y, z of the
points of the body refer to the deformed configuration and not to the initial
geometry of the body.

There are, however, tensors which describe the stress state using the co-
ordinates corresponding to the undeformed geometry of the body, even in the
case of large deformations (Lagrange and Piola-Kirchhoff stress tensors, cf.,
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e.g. [2]). However, the deformations of the structures used in the engineering
problems, which are solved by means of the Solid Mechanics (Civil, Mechani-
cal, Aeronautical Engineering, etc. structures) are mostly small enough, to be
treated as infinitesimal quantities. Furthermore, as the study of these tensors
is rather involved and fairly abstract, they are not included in this introduc-
tion to the Mechanics of Materials.

II.12 Examples and Exercises

II.1. Using the theory described in Sects. II.6 to II.8, derive expressions for
the direct computation of the principal stresses and directions.

Principal Stresses

Considering only the deviatoric component of the stress tensor, the corre-
sponding characteristic equation takes the form

σ′3 + I ′2σ
′ − I ′3 = 0 ,

where I ′2 < 0, as demonstrated in Sect. II.8. As the three principal stresses
always exist (Sect. II.6.a), we can compute the roots of this equation using
the algorithm (cf., e.g. [5], Sect. 2.4.2.3, or [2], prob. 3.5)

σ′
1 = 2 3

√
α cos β

σ′
2 = 2 3

√
α cos

(
β +

4π

3

)
σ′
3 = 2 3

√
α cos

(
β +

2π

3

) with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α =

√
−I ′2

3

27

β =
1
3

arccos
(

I ′3
2α

)
.

α is always a real quantity, since I ′2 < 0. The expression of parameter β shows
that it takes values between 0 and π

3 , since 0 ≤ 3β ≤ π. With these limits, it
is easily verified that we always have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.5 ≤ cos β ≤ 1

−0.5 ≤ cos
(

β +
4π

3

)
≤ 0.5

−1 ≤ cos
(

β +
2π

3

)
≤ −0.5

⇒ cos β ≥ cos
(

β +
4π

3

)
≥ cos

(
β +

2π

3

)
.

From this we conclude that σ′
1 ≥ σ′

2 ≥ σ′
3.

The principal stresses of the total stress state may then be found by adding
the isotropic stress (mean normal stress) to the principal stress of the devia-
toric tensor component

σi = σ′
i +

σx + σy + σz

3
with i = 1, 2, 3 .

It is obvious that σ′
1 ≥ σ′

2 ≥ σ′
3 implies σ1 ≥ σ2 ≥ σ3.
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Principal Directions

An expression for the computation of the direction cosines of principal direc-
tion i may be obtained by ascertaining that the values of l, m and n given
by

l = KL m = KM n = KN ,

where K is an arbitrary constant and L, M and N take the values

L =
∣∣∣∣σy − σi τyz

τyz σz − σi

∣∣∣∣ M = −
∣∣∣∣ τxy τyz

τxz σz − σi

∣∣∣∣ N =
∣∣∣∣ τxy σy − σi

τxz τyz

∣∣∣∣ ,

satisfy (17). This is easily confirmed, since the product of the first line of
matrix [C ] with this vector of direction cosines {l,m, n} corresponds to the
product of K with the determinant of matrix [C ] computed by decomposition,
using the elements of the first line and their complementary minors. This
determinant vanishes, when σ takes the value of a principal stress, as is the
case. The products of the second and third lines of matrix [C ] by the same
vector are zero as well, since they represent determinants of matrices with two
equal lines.

The value of K may then be computed by means of Expression 2, yielding

L2K2 + M2K2 + N2K2 = 1 ⇒ K = ± 1√
L2 + M2 + N2

.

The two vectors obtained in this way, corresponding to the two possible signs
of K, represent the two opposite senses of principal direction i.

As an example, consider the stress state defined by the tensor

σx = 30 σy = −40 σz = 60 τxy = −20 τxz = 25 τyz = 50 .

Using the previously developed expressions on this tensor, the principal
stresses and directions are obtained

σ1 = 85.4719 l1 = 0.294148 m1 = 0.312980 n1 = 0.903062
σ2 = 33.3299 l2 = −0.914713 m2 = 0.366114 n2 = 0.171057
σ3 = −68.8017 l3 = 0.277086 m3 = 0.876358 n3 = −0.393978 .

The exactness of these values is easily verified by using (15). By transposing
the reference axes to the principal directions of the stress state, we get a
diagonal tensor with the principal stresses⎡
⎣ l1 m1 n1

l2 m2 n2

l3 m3 n3

⎤
⎦×

⎡
⎣ 30 −20 25
−20 −40 50

25 50 60

⎤
⎦×

⎡
⎣ l1 l2 l3

m1 m2 m3

n1 n2 n3

⎤
⎦ =

⎡
⎣ 85.47 0 0

0 33.33 0
0 0 −68.80

⎤
⎦ .

II.2. Verify the differential equations of equilibrium in the stress field installed
in a still liquid under its own weight.
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Resolution

Considering a reference system with the origin on the free surface of the
liquid, whose axis y is vertical and points downwards, the stress field has the
components

σx = σy = σz = ρy and τxy = τxz = τyz = 0 ,

where ρ represents the mass density of the liquid. Since the only body force
is the gravity force, we have

X = Z = 0 and Y = −ρ .

Substituting these values in Expressions 5, we immediately see that they are
satisfied.

II.3. In a body under a plane stress state the body forces are zero and the
stresses have been approximated by the expressions (η, ρ, H and λ are
constants)

σx = σy = ηρ
(
H − y − x

λ

)
τxy = 0 .

(a) Verify that these functions cannot represent the stress distribution
in the body.

(b) Determine the conditions which the body forces have to obey so that
these expressions can represent a possible stress distribution.




