
XI

Structural Stability

XI.1 Introduction

In the analysis of the behaviour of slender members performed until now,
equilibrium and compatibility conditions have been used in order to find the
internal forces and deformations. In the simplest cases, a structure’s safety is
evaluated by confirming that the maximum values computed for the stresses
are lower than the allowable stress defined for the material the structure is
made of. This is a necessary condition for structural safety, but it may not
be sufficient, either because the deformations are limited for some reason, or
because there is the risk that the equilibrium configuration of the structure
is not stable, i.e., that buckling may occur. In this chapter the study of the
conditions under which a structure is stable is introduced. Buckling may occur
when there are compressive internal forces in the structure. In fact, while
tensile forces may only do work if the material deforms or ruptures, for the
case of compression there is a third possibility – buckling – which consists of
a lateral deflection of the material, in relation to direction of actuation of the
compressive forces. The main subject of this chapter is the investigation of
the conditions under which buckling occurs in a slender member.

The concept of stability may be easily understood by means of the classical
example of a sphere which is in static equilibrium on a horizontal surface, as
represented in Fig. 154.

In this example physical evidence makes a deeper analysis unnecessary: in
the first case (concavity) the equilibrium is stable, while in the second case
(convexity) it is unstable. However, in the study of the stability of deformable
bodies, the physical evidence is almost completely lost, since stability or insta-
bility are determined by how the internal forces and stiffnesses are distributed
inside the body which, in most cases, is not an intuitive matter.

In order to solve this problem, two distinct approaches are usually taken
into consideration. Both of them are easily understood by analogy with the
example of the sphere.
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(a) (b) (c)

Fig. 154. Equilibrium of a sphere on a horizontal surface:(a) Stable equilibrium;
(b) Unstable equilibrium; (c) Neutral equilibrium

– The first is based on the concept of potential energy. In the example of
Fig. 154, the height of a point on the supporting surface defines the potential
energy. The equilibrium position is an extremum of this energy. If this
extremum is a minimum, the equilibrium will be stable (Fig. 154a), if it is
a maximum, it will be unstable (Fig. 154b).
In the equilibrium configuration of a deformed body the potential energy
also reaches an extremum (see Sect. XII.5). However, in this case it has
two distinct components: the potential energy of the applied forces and
the potential energy stored by the elastic deformation of the body. Both
vary when the deformation field in the body varies. In the same way as
in the example of the sphere, the stability or instability of an equilibrium
configuration may be investigated by determining if it corresponds to a
minimum or to a maximum of the potential energy.

– The second approach is based on the analysis of the effect of perturbations
to the equilibrium configuration. If the perturbation is amplified, the equi-
librium state is unstable; if it is damped, the equilibrium will be stable.
In the example of the sphere the perturbation may be given by a small
displacement from the equilibrium point. It is obvious that in the case of
Fig. 154a, when the force causing the displacement disappears, the sphere
returns to the equilibrium position, which means that the perturbation is
damped, i.e., that the equilibrium is stable. In the case of Fig. 154b any
displacement from the equilibrium point, no matter how small it is, will
cause the sphere to roll away from the equilibrium configuration, which
means that the perturbation is amplified. The situation of neutral equilib-
rium (Fig. 154-c) represents the transition from the the stable to the unsta-
ble phase. It corresponds to a situation in which the deformation state of
the structure can be changed without disturbing the equilibrium between
internal and external forces. This is the so-called critical phase.

In the analysis contained in this chapter the second approach will be used,
since it allows a better physical understanding of the buckling phenomenon.
Furthermore, with this option, the difficulties arising when the energy method
is applied in cases where energy dissipation takes place (plastic and viscous
deformation), may be circumvented.

The analysis of the effect of perturbations requires the analysis of the
equilibrium in a deformed configuration of the structure, as opposite to the
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analysis of the effects of the internal forces in slender members described
in the preceding chapters, where the equilibrium conditions have always been
stated in the undeformed configuration. For these reasons, the theories relating
to the buckling phenomena are sometimes called second-order theories, in
which the interaction between the deformations and the internal forces is
taken into consideration. It is this interaction (influence of the deformation
on the internal forces and vice versa) that may cause instability.

The need to take this interaction into account means that the structural be-
haviour may not be accepted as geometrically linear, since we cannot consider
that the geometry of the structure remains unchanged. As a consequence, the
superposition principle cannot generally be used when buckling is analysed.

Since buckling is always associated with compressive stresses, we consider
in this Chapter that compressive axial forces and stresses are positive.

XI.2 Fundamental Concepts

Before the main subject of this chapter – the buckling of axially compressed
slender members – is tackled, some very simple examples are analysed in
detail, in order to introduce fundamental concepts related to the study of
structural stability.

XI.2.a Computation of Critical Loads

In accordance with the considerations above, the stability of a structure may
be analysed by computing its critical load, i.e., the load corresponding to the
situation in which a perturbation of the deformation state does not disturb
the equilibrium between the external and internal forces. In order to illustrate
these considerations, we first analyse the column represented in Fig. 155a.

It is obvious that this structure is stable in the case of a tensile axial force
and unstable under compression. In order to give the structure the capacity
to withstand compressive forces, a spring with stiffness E is placed in point
B, as represented in Fig. 155b. The critical load of this new structure may be
found by analysing the force F which is needed to introduce the perturbation
represented by the horizontal displacement δ. Considering this displacement
as infinitesimal and denoting by θ the rotation angle of the bars, we have
sin θ = δ

l ≈ θ and N ≈ P . From the horizontal equilibrium condition of the
forces acting in node B we get (Eδ is the force in the spring)

2N sin θ + F = Eδ ⇒ F =
(

E − 2P

l

)
δ .

If force F is positive, i.e., if it takes the same direction as the displacement
δ, the structure is stable, since it is necessary to apply a force to disturb the
equilibrium configuration. A negative value of force F , however, means that it
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is necessary to apply a force in order to prevent displacement δ from increas-
ing, i.e., that the perturbation is amplified. Thus, the structure is unstable.
The critical load corresponds to the transition situation (F = 0), where the
equilibrium is neutral, since the perturbation δ does not affect the equilibrium.
The critical load is then

F = 0 ⇒ P = Pcr =
El

2
.

The quantity F
δ = E − 2P

l represents the horizontal stiffness of the struc-
ture in point B. When it becomes negative, the structure becomes unstable.
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Fig. 155. Simple examples of computation of the critical load

In the structure represented in Fig. 155c, the stability under compressive
loading is increased by means of a rotation spring linking the extremities of
the two bars converging in point B. The spring has a stiffness G, which means
that it is necessary to apply a bending moment M = 2Gθ to introduce the
relative rotation 2θ between bars AB and BC. The relation between the load
P , the force F and the rotation θ may be found by expressing the bending
moment in the rotation spring as a function of the load P . The reaction force
in support A is F

2 , as is easily concluded by means of the balance condition
of the moment with respect to point C. Considering the rotation angle θ as
infinitesimal, we get{

sin θ ≈ θ

cos θ ≈ 1
⇒ P × θl +

F

2
× l = 2Gθ ⇒ F =

(
4G

l
− 2P

)
θ .

In the critical situation the perturbation θ does not disturb the equilib-
rium, which means that the critical load is that corresponding to F = 0,
i.e.,

F = 0 ⇒ P = Pcr =
2G

l
.

From a qualitative point of view, this problem is analogous to the compres-
sion of a pin-ended bar. In fact, even without a deeper analysis, we intuitively
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know that the shorter the bar and the higher its bending stiffness (here repre-
sented by G), the higher the load required to induce buckling in a compressed
bar.

The critical load of the structure represented in Fig. 155d may be computed
in the same way, by considering the infinitesimal perturbation θ caused by
the force F . The rotation θ induces an elongation θl cos 45◦ in the spring. The
balance condition of the moment with respect to node B of the forces acting
in node A yields

F × l + P × θl +

force in the spring︷ ︸︸ ︷
Eθl

√
2

2
(sin 45◦θl − cos 45◦l) = 0 .

As in the two other examples, the critical load corresponds to F = 0,
which leads to (θ may be disregarded in the subtraction 1 − θ))

F = 0 ⇒ Pθl = Eθl

√
2

2
(l − θl)

√
2

2
⇒ P =

El

2
.

XI.2.b Post-Critical Behaviour

The three structures analysed in Subsect. XI.2.a exhibit different behaviour
after the critical load is reached. In order to analyse the differences it is nec-
essary, not only to consider deformed configurations, but also to abandon the
infinitesimal deformation domain and consider arbitrary values for the para-
meters defining the deformation.

Taking the first of the above analysed structures (Figs. 155a and 156a),
now with the deformation defined by angle θ (Fig. 156b), the load P neces-
sary to balance the force acting in the spring for a given value of θ, may be
computed by means of the horizontal balance condition of the forces acting
in node B. Thus, we have (Fs is the force in the spring)
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Fig. 156. Unstable post-critical behaviour
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N =
P

cos θ

Fs = El sin θ

⇒ 2N sin θ = Fs ⇒ 2P
sin θ

cos θ
= El sin θ .

In the undeformed configuration (θ = 0) equilibrium occurs for any value
of the load P , since sin θ = 0. However, when there is deformation (θ �= 0),
the equilibrium condition requires that P takes the value

P =
El

2
cos θ .

From this expression we conclude that, in a deformed configuration, equi-
librium is only possible for values of P that are lower than the critical load
El
2 . Furthermore, we conclude from the relation between P and θ (Fig. 156c)

that, in a deformed configuration, the stiffness is negative, since an increase
in the deformation θ corresponds to a decrease of the load P . As seen in Sub-
sect. XI.2.a, this means that the deformed situation is unstable. This structure
is said to have an unstable post-critical behaviour. The critical load obtained
for the undeformed configuration is, therefore, the maximum load that can be
supported by the structure.

Let us now consider the second of the structures analysed in Subsect. XI.2.a
(Figs. 155c and 157a).
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Fig. 157. Stable post-critical behaviour

The equilibrium condition in the deformed configuration defined by a given
value of angle θ (Fig. 157b), may be established by computing the bending
moment caused by load P in the rotation spring. Since the reaction force in
support A vanishes, we have

Pl sin θ = 2Gθ ⇒ P =
2G

l

θ

sin θ
. (248)

Since θ (measured in radians) is always superior to sin θ, the only possible
equilibrium configuration for values of P that are inferior to 2G

l is the unde-
formed configuration (θ = 0). Furthermore, the first of 248, confirms that the
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undeformed configuration is always an equilibrium configuration. As seen in
Subsect. XI.2.a, this configuration is stable for P < 2G

l .
When the value of P is higher than 2G

l , we conclude from (248) and from
Fig. 157c that there are three possible equilibrium configurations: the unde-
formed configuration which is unstable (point A) and the two roots of (248),
θ1 and −θ1 (points B and C). These two situations are stable, since an in-
crease of the deformation corresponds to an increase of the load P (positive
stiffness). We conclude that the loading capacity of this structure is not ex-
hausted when the critical load corresponding to the undeformed configuration
is attained, i.e., this structure has a stable post-critical behaviour. Neverthe-
less, for higher values of P than the critical load, a stable equilibrium requires
appreciable deformations, as the diagram in Fig. 157c shows.

The post-critical behaviour of these two structures (Figs 156a and 157a)
differs, but they do share a common feature: their behaviour is the same
for positive and negative values of the deformation. These structures have a
symmetrical post-critical behaviour. However, this is not always the case. For
example, the third of the structures analysed in Subsect. XI.2.a (Figs. 155d
and 158a) has a non-symmetrical behaviour. The relation between angle θ
and the corresponding value of P may be obtained in the same way as in the
previous two cases.
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Fig. 158. Non-symmetrical post-critical behaviour

Considering a finite value for the deformation θ (Fig. 158b), relations al-
lowing the computation of P from θ may be obtained

γ = arctan
cos θ

1 + sin θ
−→ Fs = El

(
1 + sin θ

cos γ
−
√

2
)

−→ P = Fs
cos γ cos θ − sin γ sin θ

sin θ
,

where Fs represents the force in the spring. The last expression is obtained
by computing the moment of the forces acting in node A, with respect to
hinge B, and equating to zero. The relation obtained between P and θ is
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represented in Fig. 158c. From this diagram we conclude that the structure
has a post-critical behaviour which is unstable for θ > 0 and is stable for
θ < 0.

XI.2.c Effect of Imperfections

In the two Sub-sections above, ideal structures have been analysed, that is,
the three columns represented in Fig. 155 and the loads P are perfectly ver-
tical and the loads act without any eccentricity on the centroids of the upper
cross-sections. Under these conditions, no internal forces are necessary in the
deformable elements (the springs) to balance the load P , so the analysis has
led to the conclusion that these columns do not deform until the critical load
is exceeded.

However, the unavoidable imperfections of the structures may influence
their stability behaviour considerably, with respect to the value of the critical
load, and even in terms of the characteristics of the deformation. In order to
find out about this influence, we analyse the three columns considered in the
previous Sub-sections, when they are affected by an imperfection represented
by a residual deformation.

Let us first consider the column represented in Fig. 159a which corresponds
to the column represented in Fig. 156a with an imperfection represented by
the residual deformation α, when P vanishes.
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α = 20◦

π
2 θ
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Fig. 159. Effect of an imperfection in a structure with unstable post-critical be-
haviour

The relation between P and θ may be computed in the same way as in
Subsect. XI.2.b. The condition of horizontal equilibrium of the forces acting
in node B (Fig. 159b) yields

2
P

cos θ
sin θ = El (sin θ − sin α) ⇒ P =

El

2

γ︷ ︸︸ ︷
cos θ (sin θ − sin α)

sin θ
. (249)
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In Fig. 159c curves representing this relation for several values of the im-
perfection parameter α are represented. We find that, contrary to the column
without imperfection, the deformation is present for any value of the load,
and that, even small values of the imperfection substantially reduce the max-
imum value of load the P . This value is given in the following table for the
same values of α used in Fig. 159c (γmax is the maximum value of parameter
γ defined in (249)).

α 0◦ 0.25◦ 0.5◦ 1◦ 5◦ 10◦ 20◦

γmax 1.000 0.960 0.937 0.901 0.720 0.572 0.365

If we consider now the second of the structures analysed in Subsect. XI.2.b
with an imperfection represented by angle α (Fig. 160a), the equilibrium con-
dition represented by (248) takes the form (Fig. 160b)

Pl sin θ = 2G (θ − α) ⇒ P =
2G

l

θ − α

sin θ
. (250)

Figure 160c shows the curves represented this relation, considering the
same values of the imperfection parameter α as in Fig. 159c.

Also in this case we verify that the deformation takes place for any value
of the load P . But this deformation suffers a significant increase when P
approaches the value corresponding to the critical load of the perfect column.
When compared with the column in Fig. 159, the principal difference is that
in this case a maximum value of P is not found, even for large values of the
imperfection. This difference is a consequence of the fact that this column
has a stable post-critical behaviour, while the column in Fig. 159 has unstable
behaviour. However, in actual structures the large deformations caused by
the imperfection, when the load gets close to the critical value, do limit the
loading capacity, even in the case of stable post-critical behaviour, as we will
see in Sub-Sects. XI.2.d and XI.4.a.

The analysis of the third column with imperfections may be performed in
a similar way. However, since in this case the post-critical behaviour is not
symmetric, we must consider imperfections for both sides of the equilibrium
configuration. Defining the imperfection by means of the angle α represented
in Fig. 161a and using a similar line of reasoning as in the perfect struc-
ture (Fig. 158), we arrive at the expressions which allow the computation of
the load P corresponding to the deformed configuration defined by angle θ
(Fig. 161b)

γ = arctan
cos θ

1 + sin θ
−→ Fs = El

(
1 + sin θ

cos γ
− 1 + sinα

cos γ0

)
−→ P = Fs

cos γ cos θ − sin γ sin θ

sin θ
with γ0 = arctan

cos α

1 + sinα
.
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Fig. 160. Effect of an imperfection in a structure with stable post-critical behaviour

From these expressions, using the same values of the imperfection parame-
ter α as in the two previous examples, we get the curves shown in Fig. 161c.
We conclude that the effect of the imperfection is similar to that found in
the first example (Fig. 159), in the case of positive values of α (unstable post-
critical behaviour), while for negative values of the imperfection parameter
α the behaviour is similar to that of the second example (Fig. 160 – stable
post-critical behaviour).
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Fig. 161. Effect of an imperfection in a structure with non-symmetrical post-critical
behaviour

The analysis expounded in this and the previous Sub-sections illustrates
two kinds of structural instability:

– in the perfect structures considered forces are not necessary in the deformed
elements, in order to guarantee the equilibrium, so that, before the critical
load is reached, no deformation takes place and there is only one equilibrium
configuration; when the critical value is attained more than one equilibrium
configuration is possible for the same external load; this kind of instability
is called instability by equilibrium bifurcation;
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– in the imperfect structures the deformation appears for any value of the
load, suffering a large increase when the load gets close to the critical value
of the corresponding perfect structure; in this case, we have the so-called
divergence instability;1

XI.2.d Effect of Plastification of Deformable Elements

When the deformable elements of a compressed structure enter the elasto-
plastic regime, the corresponding loss of stiffness usually causes a considerable
reduction in the maximum load of the structure. In order to get an idea about
the importance of this reduction and the conditions under which it occurs,
let us consider the example depicted in Figs. 155c and 157a, with the elasto-
plastic behaviour of the deformable element – the rotation spring – given by
the moment-rotation diagram depicted in Fig. 162.

M

ϕϕY

β1

β2

tan β1 = G

tan β2 = G

Fig. 162. Elasto-plastic behaviour of the rotation spring in the column represented
in Fig. 157a.

If θ is smaller than ϕY

2 , the relation between θ and the load P is given
by (248). When the rotation exceeds the value corresponding to yielding, ϕY ,
which happens for higher values of θ than ϕY

2 (Fig. 155c), this relation takes
the form

θ >
ϕY

2
⇒ Pl sin θ = GϕY +G′ (2θ − ϕY ) ⇒ P =

2G

l

ϕY

2 (1 − γ) + θγ

sin θ
,

1This definition is inspired by the small deformation theory where a post-critical
analysis is not carried out. For this reason, some authors do not consider this di-
vergence as instability, considering instead another kind of instability called “snap-
through”, which corresponds to a vanishing stiffness, as in the imperfect cases de-
picted in Fig. 159. According to this definition, instability never occurs in the imper-
fect cases represented in Fig. 160. The definition of divergence instability is retained
here, since it is useful in the definition of the point where the interaction between
deformation and internal forces becomes important.
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with γ = G′
G . In Fig. 163 the relations between P and θ, described by this

equation for θ >
ϕY

2 and by (248), for θ ≤ ϕY

2 , are depicted taking several
values of γ and ϕY .
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Fig. 163. P -θ relations of the column represented in Fig. 157a, with the consti-
tutivelaw of the rotation spring defined in Fig. 162, for several values of the (a)
elasto-plastic stiffness of the spring, G′ = γG; (b) yielding rotation of the spring,
ϕY , for γ = 0.

We conclude that yielding transforms the stable post-critical behaviour
into unstable, since, after yielding, an increase in the deformation causes a
decrease of the corresponding load P . Furthermore, especially for small val-
ues of the elasto-plastic stiffness G′ = γG and of the yielding rotation of the
spring, ϕY , the failure of the column has the characteristics of a brittle fail-
ure, although the behaviour of the spring is ductile. In fact, the yielding of
the spring substantially reduces the loading capacity of the column, which
practically vanishes when γ and ϕY take small values.

Since the post-critical behaviour may become unstable when elasto-plastic
deformations take place, it is very important to investigate the influence of im-
perfections on the loading capacity of the column. To this end, let us consider
the same column with the imperfection represented by the residual deforma-
tion α depicted in Fig. 160a. For smaller values of θ (Fig. 160b) than α + ϕY

2
the relation between the load P and the rotation θ is given by (250). For larger
deformations the same relation takes the form

θ > α + ϕY

2 ⇒ Pl sin θ = GϕY + G′ [2θ − (2α + ϕY )]

⇒ P =
2G

l

ϕY

2 + γ
(
θ − α − ϕY

2

)
sin θ

with γ =
G′

G
.

In Fig. 164 this relation is represented for the particular case of elastic
perfectly plastic behaviour (γ = 0), considering two values for the yielding
rotation of the spring, ϕY , and the same values for the imperfection parameter,
α, which have been used in Figs. 159 to 161.

We conclude that even small values of the imperfection cause generally a
considerable reduction in the loading capacity of the column. However, in the
particular case of a high yielding rotation ϕY and of a very small value of the
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Fig. 164. Effect of an imperfection α, in the case of elastic perfectly plastic behav-
iour

imperfection parameter α, it is possible to have a maximum load superior to
the critical load of the perfect structure (2G

l ), as shown in Fig. 164-b.
The conclusions reached in relation to the behaviour of the column repre-

sented in Fig. 157-a are also valid qualitatively for the case of a compressed
prismatic bar, which is of great practical interest and is analysed in the next
sections.

XI.3 Instability in the Axial Compression
of a Prismatic Bar

XI.3.a Introduction

The main difference between the buckling of an axially compressed prismatic
bar and the instability behaviour of the simple examples analysed in Sect. XI.2
is that in the prismatic bar the deformation is distributed throughout the
whole bar, while in the simple examples it is concentrated in a single de-
formable element. Furthermore, those examples have a degree of kinematic
indeterminacy of one, which means that only one quantity is needed to define
the deformed configuration, while in the prismatic bar the degree of kinematic
indeterminacy is infinite, as we will see. As a consequence the analysis of the
buckling phenomenon is substantially more complex than the simple examples
analysed in Sect. XI.2.

For these reasons, in the analysis presented in the remaining of this Chap-
ter only small deformations are considered, which means that the post-critical
behaviour cannot be analysed. However, as mentioned in Subsect. XI.2.a, the
buckling of a prismatic bar is qualitatively analogous to the example presented
in Figs. 155-c and 157, displaying also a stable post-critical behaviour [11].
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XI.3.b Euler’s Problem

Euler has found the critical load of an axially compressed bar by directly
analysing the critical state. As we saw in Sect. XI.1 and confirmed in Subsect.
XI.2.a, in the transition from a stable to an unstable state – the critical state –
we have a state of neutral equilibrium, which means that no forces are needed
to introduce a small change in the deformation state of the structure. Thus,
the critical axial load of a prismatic bar is a force which balances the internal
forces (the bending moment, in this case) in a slightly deflected configuration
of the bar, without the need of transversal forces, as represented in Fig. 165-a.
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Fig. 165. Euler’s problem: problem definition and buckling shapes

In the deformed configuration depicted in Fig. 165-a the bending moment
is given by the expression M = Py. Since we are considering only infini-
tesimal displacements, the rotations will be small. Furthermore, taking only
linear elastic material behaviour into consideration, the relation between the
bending moment and the deflection y is given by the second of (210). Thus,
the deformed configuration of the bar under the conditions represented in
Fig. 165-a is given by the solution of the differential equation⎧⎨

⎩
M = Py

|M |
EI

=
∣∣∣∣d2y

dz2

∣∣∣∣ ⇒ Py = −EI
d2y

dz2
⇒ d2y

dz2
+

P

EI
y = 0 . (251)

The minus sign affecting the bending stiffness results from the fact
that a positive value of y leads to a negative value of d2y

dz2 and vice versa.
Equation (251) is a linear homogeneous equation with constant coefficients,
whose solution takes the form

y = C1 sin(kz) + C2 cos(kz) with k =

√
P

EI
. (252)
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The compatibility conditions at the supports yield the relations2

z = 0 ⇒ y = 0 ⇒ C2 = 0

z = l ⇒ y = 0 ⇒ C1 sin(kl) = 0 ⇒ C1 = 0 ∨ kl = nπ .
(253)

The condition of zero deflection in support B shows that the integration
constant C1 is either zero, or indeterminate (sin(kl) = 0). The first possibility
means that the straight configuration is always an equilibrium configuration
(although it may be unstable). In the second possibility, the fact that C1 is
indeterminate reflects the fact that the equilibrium is neutral, which means
that the amplitude of the deflections does not influence the equilibrium. The
last of (253) yields a relation between the load P , the bending stiffness EI
and the bar’s length l

kl = nπ ⇒ k2 =
n2π2

l2
=

P

EI
⇒ P =

n2π2EI

l2
.

This expression furnishes an infinite number of values of the axial load P
(n = 1, 2, 3, . . . ,∞), for which P balances the bending moments in a slightly
deflected configuration. The deformed bar has a sinusoidal shape as indicated
by (252) (kl = nπ and C2 = 0). In Fig. 165 these shapes are shown for the three
smallest values of n. The critical load is that corresponding to n = 1, since it
is the minimum value of P which satisfies the necessary (but not sufficient)
condition of neutral equilibrium. It may be shown that the configurations
corresponding to values of n superior to one are unstable, unless the deflection
of the points with y = 0 is prevented. The critical load and the corresponding
critical stress are then

Pcr =
π2EI

l2
⇒ σcr =

Pcr

Ω
=

π2E

λ2
with λ =

l√
I
Ω

=
l

i
. (254)

The first expression is known as Euler’s formula and the value Pcr as the
Euler buckling load. The non-dimensional quantity λ is called the slenderness
ratio. It depends only on the geometry of the bar, represented by the length l
and the radius of gyration i of its cross-section. Associated with the modulus
of elasticity of the material it completely defines the critical stress.

XI.3.c Prismatic Bars with Other Support Conditions

Equation (254) is only valid for bars with the support conditions shown in
Fig. 165-a, i.e., for pin-ended bars. However, in some cases with different sup-
port conditions, symmetry considerations allow the generalization of Euler’s

2In this analysis the axial deformation does not need to be considered, since the
instability is caused by the interaction between the bending deformation and the
bending moment caused by the axial force P in a deflected configuration. The axial
deformation does not play a role in this interaction.



404 XI Structural Stability

solution ( 254), so that the corresponding differential equations do not need
to be solved.

In the case of the cantilever represented in Fig. 166-a the critical configu-
ration has the same shape as a pin-ended bar with the length 2l, which means
that the relation between the load P and the bending moment is the same.
Thus, the corresponding critical load takes the value

Pcr =
π2EI

(2l)2
=

π2EI

l2e
with le = 2l . (255)

This value will be confirmed below in the study of the case of composed
bending (Subsect. XI.4.a). The quantity le is called the effective length of the
column. It may be defined as the length that a pin-ended bar with the same
cross-section would need, in order to have the same critical load as the bar
under consideration.

l

Pcr Pcr

Pcr

2l

l
2

l
2

Pcr Pcr

l
4

l
2

l
4

Pcr

R

l − z

y

y

B

A

Pcr

z

l

(a) (b) (c) (d)

Fig. 166. Determination of effective lengths

Symmetry and antisymmetry considerations easily lead to the conclusion
that the effective lengths of the bars represented in Figs. 166-b and 166-c are,
respectively le = 2 l

2 = l and le = l
2 .

The critical load of the column represented in Fig. 166-d cannot be ob-
tained from Euler’s solution (254), since there are no symmetry or antisym-
metry conditions. This load must, therefore, be computed by solving the
differential equation of equilibrium in the critical phase, as was done for
Euler’s problem. To this end, let us consider the reference axes shown in
Fig. 166-d. Considering as positive the bending moments corresponding to a
positive curvature in this reference system and the reaction force R with the
shown direction, we get⎧⎨

⎩
M(z) = −Py + R(l − z)

M

EI
=

d2y

dz2

⇒ d2y

dz2
+

P

EI
y =

R

EI
(l − z) .
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This equation has a homogeneous part which coincides with (251) and
admits the particular integral y = R

P (l − z), so that its general solution takes
the form

y = C1 cos(kz) + C2 sin(kz) +
R

P
(l − z) with k2 =

P

EI
. (256)

The support conditions in the built-in end A define conditions expressing
the integration constants as functions of the reaction force R, yielding

z = 0 ⇒

⎧⎪⎨
⎪⎩

y = 0 ⇒ C1 = −Rl

P
dy

dz
= 0 ⇒ C2k − R

P
= 0 ⇒ C2 =

R

Pk
.

By substituting these values in the general solution ( 256) and using the
support condition in end B, we get

z = l ⇒ y = 0 ⇒ R

P

[
sin(kl)

k
− l cos(kl)

]
= 0

⇒ R = 0 ∨ sin(kl)
k

− l cos(kl) = 0 ⇔ kl = tan(kl) .

(257)

The first possibility, R = 0, corresponds to the equilibrium without buck-
ling, since it leads to y(z) = 0. The second possibility, kl = tan(kl), may be
used to find the critical load, since it corresponds to a deflected configuration,
as R may be different from zero. In this case the value of R is indeterminate,
which reflects the fact that the equilibrium is neutral in the critical phase.
The value of the critical load may be computed by solving the transcendental
equation kl = tan(kl). The minimum value of kl which satisfies this condi-
tion is kl = 4.493409. The corresponding critical load may be expressed as a
function of an effective length le, yielding

Pcr = EIk2 =
EI

l2
4.4934092 =

π2EI(
π

4.493409 l
)2 =

π2EI

l2e

with le =
π

4.493409
l = 0.6992l ≈ 0.7l .

Euler’s formula may thus be used for this column, provided that an effec-
tive length le = 0.7l is considered.

The critical load of columns with other support or loading conditions,
such as bars with intermediate supports, distributed axial loads, variable
cross-section, etc., may be computed by solving the corresponding differential
equations (see examples XI.11 to XI.13).

XI.3.d Safety Evaluation of Axially Compressed Members

The theory expounded so far in this Section is valid for a perfectly prismatic
bar with a perfectly axial force, i.e., a force whose line of action coincides
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with the line defined by the centroids of the cross-sections. Under these con-
ditions, the theory indicates that the bar axis remains straight until the critical
load is attained. However, actual members always have imperfections, both
in the way the load is applied (eccentricity with respect to the centroid of
the cross-sections or inclination with respect to the bar axis) and with re-
spect to the geometry of the bar (residual curvature, non perfectly constant
cross-section, etc.). As a consequence of these unavoidable perturbations, the
axial force causes bending even when it takes a value which is smaller that
the critical load, as shown in the introductory examples with imperfections
(Subsect. XI.2.c), and this will be confirmed in the study of the case of bend-
ing caused by an eccentric axial force (Sect. XI.4). The bending deformation
introduces additional stresses, which become larger when the load gets close
to the critical value. As a consequence, the critical load predicted by Euler’s
formula is usually not reached, since plastic deformations or material failure
take place before this point. Residual stresses introduced into the bar by the
manufacturing process are also an imperfection, since fibres with a residual
compressive stress may reach the limit of proportionality before the computed
critical stress (254) is attained, which would influence the value of the critical
load (see below).

In addition, as seen in Subsect. XI.2.d, the buckling failure of a bar has
the characteristics of a brittle failure, since its axial strength after buckling is
practically reduced to zero, even in the case of ductile material behaviour.

For these two reasons, in the safety evaluation of long members (bars in
which Euler’s critical stress is smaller than the proportionality limit stress)
by means of Euler’s formula, a supplementary safety coefficient, ψ, is used.
Thus, in the design of long axially compressed bars, the following condition
must be satisfied:

P ≤ π2EI

ψl2e
⇒ σ ≤ π2E

ψλ2
.

Coefficient ψ is usually considerably greater than one. A current value is
ψ = 1.8.

In the case of columns with intermediate slenderness, i.e., bars which are
stable for stresses higher than the proportionality limit, Euler’s theory may
still be used, provided that the tangent modulus of elasticity corresponding
to the critical stress is used. Since this stress itself depends on the elasticity
modulus, Euler’s critical load must be computed by means of an iterative
approach (see example XI.16). In order to avoid this process, and also because
it is not easy to define the exact value of the tangent modulus of elasticity,
the safety of columns with intermediate slenderness is commonly evaluated
by means of experimentally obtained curves which give the critical buckling
stress as a function of the slenderness ratio.

In the case of steel structures, the so-called Tetmeyer’s line is often recom-
mended, especially in the codes of European countries. Tetmeyer has approx-
imated by straight lines the experimental results for the relation between the
slenderness ratio and critical stress in columns with intermediate slenderness.
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These lines pass through the point where Euler’s theory ceases to be valid,
i.e., the point whose ordinate is the proportionality limit stress. For very low
values of the slenderness ratio (short columns) this line may give results which
are higher than the yielding stress of the material, so that Tetmeyer’s line is
not applicable to such columns. In these cases there is no buckling failure,
which means that the limit stress is the maximum allowable stress for the
material under consideration.

As an alternative to the Tetmeyer’s line, an approximation by means of a
parabola, known as Johnson’s parabola, is also used. This curve has a vanish-
ing tangent at the point corresponding to zero slenderness (λ = 0, σcr = σY ),
is tangent to the hyperbola defined by Euler’s theory σcr = π2E

λ2 and is valid
for columns with a lower slenderness than that corresponding to the contact
point between these two curves. It may easily be verified that the coordinates
of this point are λ = π

√
2E
σ

Y
and σcr = σall

2 and that the parabola has the
equation

σcr = σY − σ2
Y

4π2E
λ2 .

Figure 167 gives the two approximations. When used for safety evaluation,
the values defined by these curves must be affected by safety coefficients which,
as mentioned above, should have higher values in the case of long members.

σcr

σY

σ
P

σY
2

Johnson

Tetmeyer

π 2E
σ

Y

Euler

λ

Fig. 167. Approximation of experimental values in axially compressed members
· · · · · · experimental —— results

In the case of Tetmeyer’s approximation, it is usually considered that
for slenderness ratios below 20 there is no buckling failure. The Tetmeyer’s
straight line is thus used for slenderness ratios between 20 and the value cor-
responding to the limit of proportionality, σp, which depends on the steel type
under consideration. A value of σp ≈ 0.8σY is considered in some codes, which
leads to the following values of the slenderness ratio
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π2E

λ2
= 0.8 σY ⇒ λ = π

√
E

0.8 σY

⇒
⎧⎨
⎩

λ = 105 (S 235)
λ = 96 (S 275)
λ = 85 (S 355) ,

where S 235, S 275 and S 355 are current steel grades, which have the nominal
yielding stresses of 235, 275 and 355MPa, respectively. These considerations
are summarized in the design curves represented in Fig. 168.

355

275

235

156
122
102

34.9

σadm

(MPa)

20

S 355

S 275

S 235

85 96 105

σadm = π2E
1.8λ2

180 λ

Fig. 168. Design curves for axial compression for current steel grades (ψ = 1.8)

From these curves we conclude that the use of high-strength steel in bars
with a larger than 105 slenderness ratio does not increase the loading capacity.
This is because the only material parameter entering Euler’s formula is the
modulus of elasticity E which takes the same value for all steel grades.

If the bar has the same effective length in both principal bending planes,
buckling takes place by bending around the principal axis of inertia with
the lowest value of the moment of inertia, since the maximum slenderness
corresponds to the minimum value of the radius of gyration (254). However,
very often the effective length is not the same in the two principal bending
planes, and the smallest effective length corresponds to the smallest moment
of inertia. In these cases buckling takes place in the bending plane with the
highest slenderness ratio (see example XI.8).

If the cross-section of the column does not have two symmetry axes, the
centroid and the shear centre will have distinct positions. In these cases, buck-
ling may be accompanied by torsion, especially in bars with a small torsional
stiffness, such as open thin-walled cross-sections. This torsional effect is due
to small inclinations of the axial force with respect to the bar axis causing a
small shear force which induces torsion because it does not pass through the
shear centre.

There is also the possibility of torsional buckling, even in the case of doubly
symmetric cross-sections. This kind of instability may occur in columns with
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very thin cross-section walls and higher bending stiffness. The general study
of these phenomena is beyond the scope of this text, however, because it is
a relatively complex analysis which has no practical relevance, since, in usual
cross-sections, bending instability occurs before torsional instability. However,
an example of the computation of the torsional buckling load in a cruciform
cross-section is included (see example XI.15).

XI.3.e Optimal Shape of Axially Compressed Cross-Sections

From what has been explained above, we conclude that in most cases buckling
takes place by bending around the principal axis of inertia which corresponds
to the highest value of the slenderness ratio. If the cases with very different
effective lengths in the two principal bending planes are excluded, we conclude
that, in order to get high values of buckling strength, high flexural stiffness
in both principal bending planes is required. Since the material around the
centroid of the cross-section makes a lower contribution to the bending stiff-
ness, the cross-section of compressed members should have the most part of
the area far from the centroid and should have similar values in the two prin-
cipal moments of inertia. Furthermore, torsional effects in buckling may be
avoided by giving the cross-section a high torsional stiffness. A closed thin-
walled cross-section, such as a square or circular tube, satisfies all of these
conditions.

XI.4 Instability Under Composed Bending

XI.4.a Introduction and General Considerations

Instability phenomena under composed bending with a compressive axial force
may be analysed using the same tools as in the case of purely axial compres-
sion. There is, however, a much larger variety of differential equations to be
solved, since a distinct equation is obtained for each kind of transversal dis-
placement. For this reason, alternative, generally semi-empirical, expressions
are frequently used in the safety evaluation of compressed and bent members.
However, before some of those alternative expressions are presented, we first
analyse in detail a particular case of composed bending with compressive axial
force, in order to facilitate the physical understanding of the phenomenon of
interaction between deformation and internal forces.

Let us consider the cantilever column represented in Fig. 169 which is
eccentrically compressed by a force P . The differential equation expressing
the interaction between the deformation and the bending moment may be
obtained from the relations between bending moment and curvature and be-
tween bending moment and deflection. Considering only small rotations, we
have
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⎩

M = P (δ + e − y)

M = EI
d2y

dz2

⇒ d2y

dz2
+ k2y = k2 (δ + e) with k2 =

P

EI
. (258)

This equation admits the particular integral y = δ + e and has the same
homogeneous solution as (251). The general solution is then

y = C1 sin(kz) + C2 cos(kz) + δ + e .

The integration constants are computed from the support conditions in
cross-section A, yielding

z = 0 ⇒
⎧⎨
⎩

y = 0 ⇒ C2 = −δ − e

dy

dz
= 0 ⇒ C1 = 0

⇒ y = (δ + e) [1 − cos(kz)] .

The relation between the maximum deflection δ and load P is then

z = l ⇒ y = δ = (δ + e) [1 − cos(kl)] ⇒ δ = e
1 − cos(kl)

cos(kl)
. (259)

l

e

P

z
z

e

y

δ

δ + e − y

P

y
A

Fig. 169. Eccentric compression of a column

We conclude that when kl reaches the value π
2 the displacement δ be-

comes infinite. This means that the critical load has been attained, since the
column has lost stiffness to oppose the bending moment caused by load P .
In the case of Euler’s problem this bending moment vanishes, and so we have
neutral equilibrium in the critical phase. Remembering the analogy with the
example of the sphere (Fig. 154), this situation corresponds to having a small
horizontal force applied to the sphere: in the stable situation this force causes
a small displacement in relation to the point with zero slope; in the criti-
cal situation (Fig. 154-c) this force would cause an infinite displacement. This
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kind of instability, where the deformation gradually increases, going to infinite
values when the load attains the critical load, corresponds to the divergence
instability which has been defined at the end of Subsect. XI.2.c. The fact
that an infinite deformation is obtained for P = Pcr is a consequence of the
assumption of small rotations, which actually makes a post-critical analysis
impossible. As seen above, in the perfect bars under perfectly axial loading
there is no deformation until the critical load is attained. When this happens,
there is equilibrium in both the undeformed and slightly deformed config-
urations. In this case we have the bifurcation instability defined in Subsect.
XI.2.c. As already mentioned (Subsect. XI.2.c), actual columns always exhibit
divergence instability, since imperfections are unavoidable.3

The critical load is then

kl =
π

2
⇒ Pcr =

π2EI

(2l)2
.

This value coincides with that given by (255), which means that the bend-
ing moment introduced by the eccentricity of the load does not influence the
critical load. This conclusion may be generalized to other loading cases, since,
with the exception of the cases where the applied loads depend on the de-
formation (non-conservative loads), the bending moment only influences the
particular solution of the differential equation, while the critical load is deter-
mined by sin(kz) or cos(kz), which appear in the solution of the homogeneous
equation. A physical interpretation of the same phenomenon is that there is
no interaction between this bending moment and the deformation, that is, the
deformation does not increase the additional bending moment introduced by
the eccentricity of the axial load.

In composed bending with a compressive axial force the maximum ap-
plicable load is always smaller than the critical load, even in the case of long
members, since, as a consequence of the additional stresses introduced by
bending, the maximum allowable stress is reached before the load attains the
critical value. The maximum stress introduced by eccentric loading may be
computed by means of the so-called secant formula, which is obtained from
(259), yielding⎧⎨

⎩
Mmax = P (δ + e) = Pe

cos(kl)

σmax = P
Ω + Mmax

I
v

⇒ σmax =
P

Ω
+

Pe
I
v cos(kl)

. (260)

We conclude that the interaction between the bending moment and the
deformation causes an increase in the stress caused by bending which is rep-
resented by the factor 1

cos(kl) = sec(kl).4

3If we take e = 0 in (259) (purely axial loading), we also get an indeterminate
value for the deflection δ, if kl = nπ

2
.

4The stresses caused by the axial force and by the bending moment may be
computed separately and added together, although the superposition principle, in its
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Fig. 170. Eccentric axial loads which may be applied to steel columns for sev-
eral values of the eccentricity ratio α. α=0.001 α=0.01 α=0.1 α=0.25 α=0.5
α=0.75 α=1

The maximum value of the eccentric load P , for a given value of the
allowable stress, σall, may be related to the slenderness ratio of the bar. This
relation may be obtained from (260), yielding

⎧⎪⎨
⎪⎩

kl =

√
Pl2

EI
=

√
Pl2e

4EΩi2
=

√
λ2

4E

P

Ω

σmax = σall

⇒

∣∣∣∣∣∣∣∣∣
P

Ω
+ α

P
Ω

cos
√

λ2

4E
P
Ω

= σall

with α =
ve

i2
.

(261)
The relation between P

Ω , λ and σall depends on the eccentricity of the load
which is expressed by the non-dimensional parameter α, called the eccentricity
ratio. By ascribing fixed values to α and σall, a relation between λ and P

Ω is
obtained. This is actually a transcendental equation, so an explicit expression
for P

Ω cannot be found. The value of P
Ω corresponding to a given value of

λ may, however, be obtained by numerical means using, for example, the
Newton-Raphson algorithm. This has been done for the three steel grades
considered above (Fig. 168), yielding the results represented by the curves
depicted in Fig. 170.

most general form, cannot be applied when the interaction between internal forces
and deformations is taken into account. In fact, the non-linearity of the problem
appears in the relation between external and internal forces (P and Mmax in this
case) and not in the relation between internal forces and stresses.
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From these curves we conclude that, when the eccentricity goes to zero,
the load capacity of the column tends to the value defined by Euler’s formula,
if the corresponding critical stress is smaller than the maximum allowable
stress σall (i.e., if π2E

λ2 ≤ σall), while in less slender columns it tends to the
maximum allowable stress of the steel grade under consideration. Obviously,
these curves do not take into consideration the fact that the proportionality
limit stress may be smaller than the maximum allowable stress.

The maximum deflection δ may be expressed as a function of the ratio
between the applied and the critical loads, P

Pcr
, and of the eccentricity e.

From (259), we get

kl =

√
Pl2

EI
=

√
P
(π

2

)2 (2l)2

π2EI
=

π

2

√
P

Pcr
⇒ δ = e

1 − cos
(

π
2

√
P

Pcr

)
cos

(
π
2

√
P

Pcr

) .

Dividing both members of this expression by the length of the column, l,
the non-dimensional relations depicted in Fig. 171-a are obtained.
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Fig. 171. Deformations caused by an eccentric compression: (a) infinitesimal rota-
tions (b) finite rotations

The maximum value of the stress is attained when the deflection δ, reaches
a certain value, since M = P (δ + e). The diagrams in Fig. 171-a show that,
for a small eccentricity, the load-displacement curve is very close to Euler’s
solution (line OAB) and that the maximum allowable load gets very close to
Euler’s critical load (point C in the diagram).

Furthermore, we must remember that the differential (258) has been es-
tablished under the condition of infinitesimal rotations. The exact equation5

5The equation obtained without the restriction to infinitesimal rotations con-
tains, in the place of the second derivative of y with respect to z, the curvature
expression defined in (208) or (215). The solution of this equation may be found in
reference [11]. This solution has been obtained by means of a Lagrangian formulation
of the problem (see Footnote 61 in Chap. IX).
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yields the solution represented in a qualitative approach in Fig. 171-b. From
this curve we conclude that in a perfect column (that is, without eccentricity)
the maximum allowable load is always higher than Euler’s critical load (point
a on the diagram). This is due to the fact that an elastic column exhibits sta-
ble post-critical behaviour (note the similarity between the curves represented
in Fig. 171-b and the curves depicted in Fig. 160-c).

The imperfect column generally reaches the maximum allowable stress
before the load attains the critical value, as mentioned above (point b on the
diagram). However, in the same way as in the simple example analysed in
Subsect. XI.2.d, if the column is flexible enough and if the imperfections are
small, it may withstand a higher axial force than Euler’s critical load, even
with a small eccentricity (point c on the diagram).

In the same way as in the second of the simple examples analysed in
Subsect. XI.2.b, the bifurcation of the equilibrium state which occurs in the
perfect bar, when the load exceeds the critical value, becomes more clear in
the case of finite deformations. From Fig. 171-b we conclude that for higher
loads than the critical value, there are two equilibrium configurations: one,
corresponding to the undeformed configuration of the column (point a′) is
unstable; the other is stable and corresponds to the deformed configuration
represented by the abscissa of point a.

XI.4.b Safety Evaluation

Expressions of the type of (260) might be found for other loading cases (see
example XI.14). Some of these solutions are given in reference [3]. In the case
of inclined bending, the expression of the stress will have another term, corre-
sponding to the other principal bending moment. In the case of eccentric com-
pression with respect to the two principal axes of inertia of the cross-section,
(260) is replaced by the following expression (ex and ey are the eccentricities
with respect to the principal axes)6

σmax =
P

Ω
+

Pex(
I
v

)
x

cos (kxl)
+

Pey(
I
v

)
y
cos (kyl)

with

{
k2

x = P
EIx

k2
y = P

EIy
.

6A cross-section with a rectangular convex contour and a symmetry axis is as-
sumed when the section moduli with respect to the principal axes x and y, are
used.
It should be noted that both this expression and (260) are deduced without using the
superposition principle, since this principle is not valid when the interaction between
deformation and internal forces is taken into account, although the linear analysis
of composed bending ( 155) has been carried out on the basis of that principle. In
axial compression that is eccentric with respect to the two principal axes of the cross-
section, two independent equations of the type of (258) are established. Thus, they

may be solved separately, yielding the results δx = ex
1−cos(kxl)
cos(kxl)

and δy = ey
1−cos(kyl)

cos(kyl)

for the displacements of the upper end of the cantilever column in directions y and
x, respectively.
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When expressions like this are used in the safety evaluation, the following
three points must be taken into consideration:

– A semi-probabilistic approach (Subsect. V.9.d) should be used, that is, the
load is multiplied by a factor, instead of a safety coefficient being used for
the stresses, since they are not proportional to the load.

– These expressions are valid only in the linear elastic phase, i.e., only if the
stresses do not exceed the proportionality limit, and lead to an overestima-
tion of the safety degree (that is, the error is disadvantageous to safety),
when they are used above this limit.

– When the eccentricity vanishes, only the term σ = P
Ω remains, which ob-

viously does not take the buckling risk into account. For this reason a
residual eccentricity in both principal bending planes shall be considered,
which corresponds to considering imperfections in how the load is applied
or in the geometry of the column. As an alternative, the methods described
in Subsect. XI.3.d for axially compressed members may of course be used.

As mentioned at the beginning of this Section, semi-empirical expressions
are often used in the safety evaluation of compressed and bent members. The
more straightforward ones are based on the generalization of the linear ex-
pression for composed bending, (155), using the so-called buckling coefficient.
This coefficient is defined as the ratio between the maximum allowable stress
in axial compression, σadm (Fig. 168) and the nominal value of the allowable
stress for the material the bar is made of, σall, that is

ϕ =
σadm

σall

≤ 1 .

The simplest equation limits the value of the maximum stress to the value
obtained by multiplying the nominal value of the allowable stress defined for
the material by the buckling coefficient, which leads to the expression

P

Ωϕσall

+
Mx(

I
v

)
x

ϕσall

+
My(

I
v

)
y
ϕσall

≤ 1 .

However, in bars with a large bending moment and a small axial force,
this expression leads to exaggerated dimensions, since instability is caused
only by the interaction between the moment caused by the axial force and the
bending deformation. In these cases, the so-called interaction formula may be
used, in which the buckling coefficient affects only the term corresponding to
the axial force, yielding

P

Ωϕσall

+
Mx(

I
v

)
x

σall

+
My(

I
v

)
y
σall

≤ 1 .

It must be noted that this approximate expression may overestimate the
loading capacity of the bar (see example XI.17).
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In the design codes for metallic structures more elaborate expressions are
usually given, which take into account the way the bar is connected to the
rest of the structure, the risk of lateral buckling (buckling of the compressed
part of a bent beam), etc., as well as design rules for avoiding local instability
of elements of profile cross-sections, such as web and flanges.

XI.4.c Composed Bending with a Tensile Axial Force

In the case of a tensile axial force, the interaction between internal forces
and deformations (second-order effects) may be analysed with the same tools
described above for the case of compression. The results obtained are similar,
with the difference that hyperbolic functions appear in place of trigonometric
functions (sinh(kz) and cosh(kz) instead of sin(kz) and cos(kz)). Obviously,
there are no critical loads, since these hyperbolic functions never vanish when
the argument is other than zero.

From a physical point of view, it is obvious that the interaction between
the bending moment caused by the axial force and the bending deformation
reduces this deformation and, as a consequence, the stresses caused by bend-
ing. Thus, the error introduced when the second-order effects are not taken
into account is advantageous for safety, since larger stresses than the actual
ones are computed. For this reason, the second-order effects are usually not
considered, when the safety of members under composed bending with a ten-
sile axial force is analysed.

When the global critical load of framed structures, where tensile axial
forces appear, is to be computed, the beneficial effects of the tensile inter-
nal forces on global stability shall be considered, in order to get an accurate
estimate for that load. In Sect. XI.6 a global stability analysis of framed struc-
tures using the displacement method is introduced, which takes the influence
of the tensile forces in the bending stiffness into account.

XI.5 Examples and Exercises

XI.1. Determine the critical loads of the plane structures represented in
Figs. XI.1-a to XI.1-d.

Resolution

(a) The critical load may be obtained from the equilibrium condition between
the applied load and the forces in the springs in a slightly deformed con-
figuration, as depicted in Fig. XI.1-e.
Considering that the deformation represented by angle θ is infinitesimal,
and disregarding higher order infinitesimal quantities, the moment bal-
ance condition with respect to point A (Fig. XI.1-e), yields

Pcr × θl = Eθl × l ⇒ Pcr = El .
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Fig. XI.1-a Fig. XI.1-b Fig. XI.1-c Fig. XI.1-d

A

θ

θl

Pcr

θ

Eθl

θl

Fig. XI.1-e

θ l
2

Eθl
2

A

θ

θl

pcr

Eθl

θ l
2

Fig. XI.1-f

(b) The critical load of this structure may be computed in the same way as
the previous one. The condition of moment balance with respect to point
A leads to (Fig. XI.1-f)

pcrl × θl =
Eθl

2
× l

2
+ Eθl × l

2

⇒ pcr =
3
4
E .

(c) In this structure the critical load may be computed by means of the hori-
zontal balance condition of the forces acting on bar AB. From Fig. XI.1-g
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Eθl

θ

θl

Pcr
2

Pcr

Pcr
2

Eθl

Fig. XI.1-g

2Eθl

RB

2θ

θ

2θl

3θ

Pcr

A

Fig. XI.1-h

we conclude that, for an infinitesimal value of θ, this condition may be
expressed by

2Eθl = 2
Pcr

2
θ ⇒ Pcr = 2El .

(d) The critical load of this structure may also be computed by means of the
balance conditions of the forces acting on the structure in the deformed
configuration defined by angle θ (Fig. XI.1-h). The moment balance con-
dition with respect to point A yields the value of the reaction force in
support B (the elongation of the spring is 2θl)

RB × 3l = 2Eθl × 2l ⇒ RB =
4
3
Eθl .

The critical load may then be computed by means of the bending moment
needed to introduce a rotation 3θ into the rotation spring. Expressing this
moment as a function of the forces acting on node B, we get

Pcr × 2θl − 4
3
Eθl × l = 3θG ⇒ Pcr =

3
2

G

l
+

2
3
El .

XI.2 Consider the mechanism represented in Fig. XI.2-a under the action of
forces p and F . The stability of this structure depends on the value of
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force F . Considering the pin-ended bars as axially rigid, determine the
minimum value of force F , in order to have a stable structure.

Resolution

This problem may be solved with the same line of reasoning that was used in
problem XI.1. Thus, since in the critical situation an infinitesimal perturbation
does not disturb the equilibrium, we may find the minimum value of force F
by means of equilibrium considerations in the forces acting on the mechanism,
when it suffers the perturbation defined by the infinitesimal angle θ (Fig. XI.2-
b). The horizontal balance condition of the forces acting in bars AB and BC
yields

4
pl

2
× θ = Fmin × 2

3
θ ⇒ Fmin = 3pl .

l

l

A

l

p

B
C

F

3
2
l

θ

θ

θ

θ

pl
2
pl
2

pl
2
pl
2

θl θl θl

Fmin

Fmin

2
3
θ

Fig. XI.2-a Fig. XI.2-b

XI.3 Find the relation between the lengths l and l′, so that the mechanism
represented in Fig. XI.3-a is stable.

l

A

a a

B

P

l

δ
l

δ

P δ
l

2P

P

Fig. XI.3-a Fig. XI.3-b
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Resolution

Also in this case the stability analysis may be performed by means of the hori-
zontal balance condition of the forces acting on bar AB in a slightly disturbed
configuration. Thus, considering the perturbation defined by the infinitesimal
displacement δ, we conclude that the tensile axial force in the left pin-ended
bar, P , opposes the perturbation, while the compressive force 2P in the right
vertical bar has a component which tends to increase the perturbation. There-
fore, the structure will be stable if the horizontal component of the tensile force
is greater than the horizontal component of the compressive force, that is

P
δ

l
≥ 2P

δ

l′
⇒ l′ ≥ 2l .

We conclude that the stability of this structure does not depend on the value
of P , which is a consequence of the fact that the structure does not have
deformable elements opposing the deformation.

XI.4 In the structure represented in Fig. XI.4-a, load P may be displaced
along the beam. Without considering any deformation in the bars, de-
termine the region of the beam where the load may be to have a stable
situation.

l

2l

A

l

B

P

2l

C

l

D

δ
l

δ

P 2l−z
2l

z

P

δ
2l

δ

P z
2l

Fig. XI.4-a Fig. XI.4-b

Resolution

When the load P is on beam segment AB, the structure is stable, since the
two vertical bars have tensile axial forces. But if load P is on beam segment
CD, the equilibrium is unstable, since both vertical bars have compressive
axial forces. If the load is in segment BC, the structure will be stable if the
stabilizing force introduced by the tensile axial force in the left vertical bar
is larger than the destabilizing force corresponding to the compressive axial
force in the right vertical bar. Thus, considering the infinitesimal perturbation
δ represented in in Fig. XI.4-b, we conclude that stability requires the following
condition to be satisfied
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P
2l − z

2l

δ

l
> P

z

2l

δ

2l
⇒ 2l − z >

z

2
⇒ z <

4
3
l ≈ 1.333l .

Thus, the structure will be stable if the load is on beam segment AB, or in
beam segment BC at a smaller distance than 1.333l of point B.

XI.5 Determine the critical load of the structure represented in Fig. XI.1-b,
supposing that the load p remains perpendicular to bar BC.

Resolution

Under these conditions, the structure is stable for any value of p, since the
equilibrium between load p and the reaction force in support A is not affected
by a perturbation like that represented in Fig. XI.1-f.

XI.6 Determine the critical load of the structure represented in Fig. XI.6.

l 2I

l
4

P

l

I

l
4

A C

B
D

Fig. XI.6

Resolution

Buckling failure of this structure takes place when one of the vertical bars
buckles. Since the horizontal displacements in points A and C are prevented,
there is no interaction between the two vertical bars, that is, they buckle
independently of each other. Therefore, the critical load is the smallest of the
two values of P which correspond to the critical axial force in each column.
Taking the different effective lengths, support conditions and moments of in-
ertia into consideration, the critical axial forces of the two columns are

NAB
cr =

π2E2I

(0.7l)2
=

2
0.72

π2EI

l2
; NCD

cr =
π2EI

l2
.

Since the reaction forces in the supports B are D 4
5P and 1

5P , respectively,
the values of P which correspond to these two axial forces are, respectively

4
5
P =

2
0.72

π2EI

l2
⇒ P = 5.102

π2EI

l2
;

1
5
P =

π2EI

l2
⇒ P = 5

π2EI

l2
.

The critical load of this structure is the smallest of these two values, i.e.,
Pcr = 5π2EI

l2 .
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XI.7 Determine the increase of buckling strength that is obtained in the struc-
ture represented in Fig. XI.7 when a support is added which prevents
the horizontal displacement of point A.

1.5I

a

P

a

I

A

l
2

l
2

B

C

D

E

Fig. XI.7

Resolution

In the original situation (without the support in A) the right vertical buckles
at first. The corresponding value of force P is

NDE =
P

2
=

π2EI

l2
⇒ P = 2

π2EI

l2
.

When the horizontal displacement of point A is prevented, the first buckling
mode (Fig. 165, n = 1) cannot occur. Thus, the critical axial force of the
bar is that corresponding to the second mode (see Fig. 165 with n = 2 and
example XI.13), that is, Ncr = 4π2EI

l2 . Under these conditions, the values of
P corresponding to the critical axial forces in each column are

NBC = NBC
cr ⇒ P

2
=

π2E 1.5I

(0.7l)2
⇒ P ≈ 6.122

π2EI

l2

NDE = NDE
cr ⇒ P

2
=

4π2EI

l2
⇒ P =

8π2EI

l2
.

Since the critical load of the structure is the smallest of these two values, we
conclude that the horizontal support in point A raises the critical load from
2π2EI

l2 to 6.122π2EI
l2 .

XI.8 The column of the structure represented in Fig. XI.8 has a rectangular
cross-section, with the dimension a in the plane of the structure and 2a in
the perpendicular direction. The displacement of point A in the direction
perpendicular to the structure’s plane is not prevented. Determine the
critical load of this structure.
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10a

A
B

p

40a

50a

Fig. XI.8

Resolution

The column may buckle in the plane of the structure, with the buckling shape
depicted in Fig. 166-d, since the beam prevents the displacement of point A in
direction AB. Another possibility is buckling in the perpendicular plane with
the buckling shape depicted in Fig. 166-a. Of these two possibilities, the actual
buckling mode is that corresponding to the smallest value of the slenderness
ratio. In the first case, we have, since the cross-section has a height h = a and
a width b = 2a⎧⎨

⎩
i2 = I

Ω = 2a×a3

12 × 1
2a2 = a2

12

le = 0.7l = 0.7 × 50a = 35a
⇒ λ =

le
i

=
35a

a√
12

≈ 121.24 .

In the second case, the cross-section has a width b = a and a height h = 2a,
yielding⎧⎨

⎩ i2 = I
Ω = a×(2a)3

12 × 1
2a2 = a2

3

le = 2l = 2 × 50a = 100a
⇒ λ =

le
i

=
100a

a√
3

≈ 173.21 .

We conclude that the second possibility corresponds to the actual buckling
mode. Since the axial force in the column is N = 31.25pa, the critical load
takes the value

λ =
100a

a√
3

⇒ σcr =
π2E

λ2
=

π2E

30000
;

σ = σcr ⇒ N

Ω
=

31.25pcra

2a2
=

π2E

30000
⇒ pcr =

π2Ea

468750
.

XI.9 Consider a bar with two built-in ends, with length l and a cross-section
with area Ω and moment of inertia I, made of a material with an elas-
ticity modulus E and a thermal expansion coefficient α. Determine the
value of a uniform temperature increase ∆t which causes a transversal
deflection of the bar.
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Resolution

The uniform temperature increase ∆t introduces into the bar a compressive
axial force with the value (see example VI.3)

N = EΩα∆t .

The transversal deflection will take place when this value reaches the critical
load of the bar. Since the effective length of a bar with two built-in ends is l

2 ,
we have

N = Ncr ⇒ EΩα∆t =
π2EI(

l
2

)2 ⇒ ∆t =
4π2I

l2Ωα
=

4π2(
l
i

)2
α

.

Considering, for example, a steel bar (α = 1.2×10−5/◦C) with a ratio l
i = 300

(slenderness ratio λ = l
2i = 150), a temperature increase ∆t = 36.55◦C, is

enough to cause the transversal deflection.

XI.10 The plane structure represented in Fig. XI.10-a is stabilized by means
of the cables with cross-section area Ω represented in the Figure. The
columns and the cables are made of the same material which has an
elasticity modulus E. The cables are not connected to each other in
their intersection. The cross-section of the columns has the moment of
inertia I = Ωl2

125 .
Determine the critical load of this structure and indicate if it may be

able to withstand a higher load than the critical one.

l 5l l

l

p

Ω Ω

Fig. XI.10-a

Resolution

This structure may become unstable, either by buckling of the columns, or
by a horizontal translation of the beam with elongation of one of the cables.
The first situation will occur if load p reaches the value corresponding to the
buckling axial force of the columns. In this case, we have

Np =
7pl

2
=

π2EI

l2
⇒ 7pl

2
=

π2E Ωl2

125

l2
⇒ p=p1 =

2π2

875
EΩ
l

≈ 0.0225591
EΩ
l

.
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In the buckling mode corresponding to the horizontal translation of the beam,
the motion represented in Fig. XI.10-b takes place.

The compressive axial forces in the columns, Np, have a destabilizing hor-
izontal component, since it acts in the direction of the perturbation θl, while
the axial force, Nc, in the elongated cable has a stabilizing effect, since it
opposes the perturbation. The elongation of this cable and the corresponding
axial force take the values

∆l = θl cos
(

arctan
l

5l

)
⇒ Nc = ∆l

EΩ√
l2 + (5l)2

=
cos

(
arctan 1

5

)
√

26
EΩθ .

In the critical situation the horizontal components of the compressive axial
forces in the columns equilibrate the horizontal component of the tensile ax-
ial force in the cable. This condition may be used to get the critical load
corresponding to this buckling mode, yielding

2Npθ = Nc cos
(

arctan
1
5

)
⇒ 2

7pl

2
θ =

cos2
(
arctan 1

5

)
√

26
EΩθ

⇒ p = p2 =
cos2

(
arctan 1

5

)
7
√

26
EΩ
l

≈ 0.0269390
EΩ
l

.

Since p1 < p2, we conclude that the critical load of the structure takes the
value p = 2π2

875
EΩ

l . Furthermore, we may conclude that this structure may be
able to withstand a value of p greater than this (but smaller than p2), since
a compressed bar has a stable post-critical behaviour. If the second mode of
instability were to take place (Pcr = p2), the post-critical behaviour would be
of the same type as the examples in Figs. 155-d and 158-b, i.e., it would be
unstable.

θ θ

θl
p

Np NpNc

Fig. XI.10-b

XI.11 Considering as rigid the segment AB of the column represented in
Fig. XI.11-a, determine its effective length.

Resolution

The problem may be solved by means of a procedure which is similar to that
used to compute the effective length of the column represented in Fig. 166-d.
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Fig. XI.11-a Fig. XI.11-b

Considering the deformed configuration defined by the infinitesimal angle θ
(Fig. XI.11-b), the reaction force in support B may be computed by means of
the condition of a vanishing bending moment in hinge C, yielding

RB × l = P × θl′ ⇒ RB =
Pθl′

l
.

The differential equation defining the interaction between bending moments
and bending deformations may be found by expressing the bending moment
in the cross-section at the distance z from support B (M is positive when
it induces a positive curvature in reference system yz) as a function of the
curvature, yielding⎧⎨
⎩

M(z) = −P × (y + θl′) + Pθl′
l × z

M

EI
=

d2y

dz2

⇒ d2y

dz2
+

P

EI
y =

P

EI
θl′

(z

l
− 1

)
.

This equation admits the particular integral y = θl′
(

z
l − 1

)
. Thus, the general

solution takes the form

y = C1 cos(kz) + C2 sin(kz) + θl′
(z

l
− 1

)
with k2 =

P

EI
.

Differentiating with respect to z, we get the slope of the deflection line which
is given by the expression

dy

dz
= −kC1 sin(kz) + kC2 cos(kz) + θ

l′

l
.

By means of the compatibility condition in support B, C1 and C2 may be
expressed as functions of θ, yielding

z = 0 ⇒
⎧⎨
⎩

y = 0 ⇒ C1 = θl′

dy

dz
= θ ⇒ kC2 + θ l′

l = θ ⇒ C2 = θ l−l′
kl .
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Substituting these values in the general solution, we get

y = θ

[
l′ cos(kz) +

l − l′

kl
sin(kz) + l′

(z

l
− 1

)]
.

The condition of a vanishing deflection in point C leads to the conclusion

z = l ⇒ y = 0 ⇒ θ = 0 ∨ l′ cos(kl) +
l − l′

kl
sin(kl) = 0 .

The first alternative (θ = 0) corresponds to the undeformed configuration.
The second possibility corresponds to the equilibrium in a slightly deformed
configuration, allowing the computation of the critical load. This equation
takes especially simple forms in two cases. In the first, l′ = 0, we get Euler’s
solution for a pin-ended bar, sin(kl) = 0, as expected. In the second, l′ = l,
we have

l′ cos(kl) = 0 ⇒ kl =
π

2
⇒ P

EI
l2 =

(π

2

)2

⇒ P =
π2EI

l2e
with le = 2l .

In the general case the value of kl must be found by numerical means, since it
is a transcendental equation. Determining the least value of kl which satisfies
the condition

l′

l
cos(kl) +

(
1 − l′

l

)
sin(kl)

kl
= 0 ,

the effective length is given by the expression

(kl)2 =
Pl2

EI
⇒ P =

π2EI

l2e
with le =

π

kl
l .

The following Table gives the results obtained for some given values of the
ratio l′

l .

l′
l

0 0.1 0.5 1 2 4

kl π 2.836 2.029 1.571 1.166 0.845

le l 1.108l 1.549l 2l 2.695l 3.719l

XI.12 Determine the critical load of the column represented in Fig. XI.12-a
(do not consider the possibility of the buckling of bar AB alone).

Resolution

In the deformed configuration defined by the infinitesimal displacement ∆ in
hinge B (Fig. XI.12-b) the forces acting on the upper end of bar BC are those
represented in Fig. XI.12-c.
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l

P = Pcr
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y

δ

δ− y
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y

P δ
ll− z

Fig. XI.12-a Fig. XI.12-b Fig. XI.12-c

The differential equation of this problem is⎧⎨
⎩

M(z) = P (δ − y) + P δ
l′ (l − z)

M

EI
=

d2y

dz2

⇒ d2y

dz2
+

P

EI
y =

P

EI
δ

(
1 +

l − z

l′

)
.

This equation admits the particular integral y = δ
(
1 + l−z

l′
)
. Thus, the general

solution is

y = C1 cos(kz) + C2 sin(kz) + δ

(
1 +

l − z

l′

)
with k2 =

P

EI
.

Derivation with respect to z yields the slope of the deflection line

dy

dz
= −kC1 sin(kz) + kC2 cos(kz) − δ

l′
.

The compatibility conditions in support C enable the integration constants
C1 and C2 to be expressed as functions of δ, yielding

z = 0 ⇒
{

y = 0 ⇒ C1 + δ
(
1 + l

l′
)

= 0 ⇒ C1 = −δ l+l′
l′

dy
dz = 0 ⇒ kC2 − ∆

l′ = 0 ⇒ C2 = δ
kl′ .

Substituting these values in the general solution, we get

y = δ

[
sin(kz)

kl′
− l + l′

l′
cos(kz) + 1 +

l − z

l′

]
.

In point B this equation must yield the value δ. Thus, we have

z = l ⇒ y = δ ⇒ δ

[
sin(kl)

kl′
− l + l′

l′
cos(kl) + 1

]
= δ

⇒ δ

[
sin(kl)

kl′
− l + l′

l′
cos(kl)

]
= 0 ⇒ δ = 0 ∨ sin(kl)

kl′
− l + l′

l′
cos(kl) = 0 .

Like example XI.11 the first possibility (∆ = 0) corresponds to an unde-
formed configuration, so that it cannot be used to compute the critical load.
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The second alternative corresponds to the equilibrium in a slightly deformed
configuration. Thus, the critical load may be obtained from the condition

sin(kl)
kl′

=
l + l′

l′
cos(kl) ⇒

(
1 +

l′

l

)
kl = tan(kl) .

Note that for l′ = 0 we get to the same problem as that represented in Fig. 166-
d, kl = tan(kl), le = 0.7l. With l′ = ∞ the example in Fig. 166-a is obtained
(kl = π

2 ), le = 2l, since the pin-ended bar AB remains vertical for any value
of ∆. For other values of l′, we conclude that the higher the value of l′, the
higher is the critical load, as indicated in the following table.

l′
l

0 0.1 0.2 0.5 1 10 ∞
kl 4.493 0.5175 0.6955 0.9674 1.166 1.511 π

2

le 0.6992l 6.071l 4.517l 3.247l 2.695l 2.080l 2l

XI.13 Find the critical load of the column depicted in Fig. XI.13-a.

P

A

B

C

l

l

y

RC

z

P

z

RA = R

y

Fig. XI.13-a Fig. XI.13-b

Resolution

Considering the deformed configuration and the two reference systems repre-
sented in Fig. XI.13-b, the differential equation corresponding to segment AB
takes the form (M(z) = −Py + RAz)

d2y

dz2
+

P

EI
y =

RA

EI
z .

This equation admits the particular integral y = RA

P z. Thus, its general solu-
tion is given by the expression
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y = C1 cos(kz) + C2 sin(kz) +
RA

P
z with k2 =

P

EI
.

Using the conditions of zero deflection in supports A and B, the integration
constants may be related to the reaction force RA, yielding

z = 0 ⇒ y = 0 ⇒ C1 = 0

z = l ⇒ y = 0 ⇒ C2 sin(kl) +
RA

P
l = 0 ⇒ C2 = −RA

P

l

sin(kl)
.

Substituting these values in the general solution and derivating, we get the
rotation as a function of coordinate z

y =
RA

P

[
z − l

sin(kl)
sin(kz)

]
⇒ dy

dz
=

RA

P

[
1 − kl

sin(kl)
cos(kz)

]
.

In cross-section B this rotation takes the value(
dy

dz

)
z=l

=
RA

P

[
1 − kl

tan(kl)

]
=

R

P

[
1 − kl

tan(kl)

]
.

Note that by equating this rotation to zero, we get the problem represented
in Fig. 166-d.

This rotation may also be obtained from the deformation of the column
segment BC. The procedure is exactly the same as in segment AB, so we may
simply substitute y by y′, z by z′, l by l′ and RA by RC . Using the moment
balance condition with respect to point B, this reaction force may be related
to R, yielding RC = −R l

l′ . The minus sign is a consequence of the positive
directions adopted for the reaction forces, whose objective was that of having
analogous equations in segments AB and BC. The rotation of cross-section
B is then also given by the expression(

dy′

dz′

)
z′=l′

=
RC

P

[
1 − kl′

tan(kl′)

]
= −R

P

l

l′

[
1 − kl′

tan(kl′)

]
.

The condition of continuity in point B leads to the condition(
dy

dz

)
z=l

=
(

dy′

dz′

)
z′=l′

⇒ R

P

[
1 − kl

tan(kl)

]
= −R

P

l

l′

[
1 − kl′

tan(kl′)

]
.

If the reaction force R is not zero, this equation is equivalent to

1− kl

tan(kl)
= − l

l′
+

kl

tan(kl l′
l )

⇒ kl

tan(kl)
+

kl

tan
(

kl
α

) = 1+α with α =
l

l′
.

The smallest of the roots of this transcendental equation is the value of kl
which corresponds to the critical load. However, it must be noted that this
expression does not completely define the problem. In fact, if we have l = l′,
we will have R = 0, since the deformed configuration is antisymmetric, which
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means that the bending moment vanishes in cross-section B. This corresponds
to the second buckling mode in Fig. 165 (n = 2). In the case of l = l′ the
smallest of the roots of this equation is kl = 4.4934. However, the equilibrium
in a slightly deformed configuration requires that integration constant C2

does not vanish (C2 �= 0), since RA = 0. This implies that sin(kl) = 0, i.e.,
kl = nπ. When l �= l′, R cannot vanish, since this would mean that two pin-
ended columns with different lengths would have the same critical load. In the
following Table the smallest roots are given for some values of α.

α 0.01 0.05 0.1 0.5 0.99 1.01 2 5 10 ∞
kl 0.04479 0.2211 0.4352 1.928 3.126 3.157 3.857 4.223 4.352 4.493

XI.14 Determine the maximum bending moment in the column represented
in Fig. XI.14.

y

y

z

P

q l

Fig. XI.14

Resolution

Considering as positive the bending moments which correspond to a positive
curvature in reference system yz, the bending moment in the cross-section
defined by coordinate z is given by the expression

M = −Py − ql

2
z +

q

2
z2 .

Since the moment-curvature relation in the same reference system may also
be expressed by M = EI d2y

dz2 , the differential equation which defines the de-
formation of the column takes the form
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d2y

dz2
+

P

EI
y =

q

EI
y

(
− l

2
z +

z2

2

)
.

Since this equation admits the particular integral

y =
q

P

(
z2

2
− l

2
z

)
− EI

P 2
q ,

the general solution is

y = C1 sin(kz) + C2 cos(kz) +
q

P

(
z2

2
− l

2
z

)
− q

Pk2
with k2 =

P

EI
.

The integration constants may be found by means of the support conditions,
yielding

z = 0 ⇒ y = 0 ⇒ C2 = q
Pk2

z = l ⇒ y = 0 ⇒ C1 sin(kl) +
q

Pk2
cos(kl) − q

Pk2
= 0

⇒ C1 =
q

Pk2

1 − cos(kl)
sin(kl)

.

Substituting these quantities in the general solution, we get the displacement
y in the cross-section defined by coordinate z

y =
q

Pk2

[
1 − cos(kl)

sin(kl)
sin(kz) + cos(kz) − 1

]
+

q

P

(
z2

2
− l

2
z

)
.

This function reaches a maximum for z = l
2 , as may be concluded by symme-

try considerations, and is confirmed by differentiation

dy

dz
=

q

Pk2

[
1 − cos(kl)

sin(kl)
k cos(kz) − k sin(kz)

]
+

q

p

(
z − l

2

)
;

z =
l

2
⇒ dy

dz
=

q

Pk

[
1 − cos(kl)

sin(kl)
cos

(
k

l

2

)
− sin

(
k

l

2

)]

=
q

Pk

⎡
⎢⎢⎣

2 sin2

(
kl

2

)
2 sin

(
kl

2

)
cos

(
kl

2

) cos(k
l

2
) − sin(k

l

2
)

⎤
⎥⎥⎦ = 0 .

Thus, the maximum displacement occurs for z = l
2 and takes the value

z =
l

2
⇒ y = ymax =

q

Pk2

[
sin2

(
kl
2

)
cos

(
kl
2

) + cos
(

kl

2

)
− 1

]
− q

P

l2

8
,

since 1−cos(kl)
sin(kl) =

sin( kl
2 )

cos( kl
2 ) . The maximum value of the bending moment is then
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Mmax = Pymax +
ql2

8
=

q

k2

[
sin2

(
kl
2

)
cos

(
kl
2

) + cos
(

kl

2

)
− 1

]
=

q

k2

1 − cos
(

kl
2

)
cos

(
kl
2

) .

Instability by divergence takes place for kl = π (Mmax = ∞), as expected,
since the transversal load q does not influence the value of the critical load.
If we consider k = 0, the expression of Mmax becomes indeterminate. This
problem may be solved by means of L’Hôpital’s rule, yielding, as expected,
the expression of the maximum bending moment in a simply supported beam
with span l under the action of a uniformly distributed load q,

lim
k→0

Mmax = lim
k→0

q
1 − cos

(
kl
2

)
k2 cos

(
kl
2

) =
ql2

8
.

XI.15 Figure XI.15 represents the cross-section of a bar which supports an
axial compressive force P . Determine:
(a) the value of P which causes torsional buckling of the bar;
(b) the maximum slenderness ratio, so that torsional buckling occurs

before bending buckling, considering d = 20e and ν = 0.3.

e

d

e

d

d

d

Fig. XI.15

Resolution

(a) The critical load for torsional buckling may be found by means of the
equilibrium conditions of the forces applied to a bar segment with unit
length in the deformed configuration defined by the infinitesimal angle θ
(Fig. XI.15-a). The vector representing the force per surface unit acting
on each point of the upper cross-section may be decomposed into two
components: one parallel to the fibres (Fig. XI.15-b) and other in the plane
defined by the wall’s centre lines of the cross-section (Fig. XI.15-c). The
first one does not cause torsion, since it is balanced by the normal stresses
acting on facets that are perpendicular to the fibres of the deformed bar
(it may be accepted that the shearing stresses perpendicular to the wall
centre line vanish in all these facets, since this cross-section has thin walls).
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θd l = 1

σ

θr

σ

σθr

σ

σ

σθr⇔

Fig. XI.15-a Fig. XI.15-b Fig. XI.15-c Fig. XI.15-d

The second component, on the other side, introduces a twisting moment
in the same direction as the rotation θ.

The rotation of the fibres caused by the torsional deformation θ is θr, where
r is the distance of the fibre to the bar’s axis (0 ≤ r ≤ d). Thus, the second
component takes the value σθr (Fig. XI.15-d). The total twisting moment
needed to keep the torsional deformation defined by θ is then (GJ is the
torsional stiffness, as defined by (246))

T = GJθ − 4
∫ d

0

rσθredr = Gθ4
1
3
de3 − 4θσe

d3

3
=

4
3
θde

(
Ge2 − σd2

)
.

In the critical phase this twisting moment vanishes. Thus, the critical load for
torsional buckling takes the value

T = 0 ⇒ σ = σt
cr = G

( e

d

)2

⇒ P t
cr = Ωσt

cr = 4deσt
cr = 4G

e3

d
.

(b) For d = 20e the critical stress for torsional buckling takes the value

d = 20e ⇒ σt
cr =

G

400
.

In the case of bending buckling the critical stress takes the value

I =
2de3

12
+

e (2d)3

12
=

de

6
(
e2 + 4d2

)
⇒ i2 =

I

Ω
=

de
6

(
e2 + 4d2

)
4de

=
1
24

(
e2 + 4d2

)
=

1601
24

e2

⇒ σf
cr =

π2Ei2

l2
=

π2E

l2
1601
24

e2 .

Torsional buckling will take place if the corresponding critical stress is
smaller than the value corresponding to bending buckling, that is, if

σf
cr > σt

cr ⇒ π2E

l2
1601
24

e2 >
E

2 (1 + ν)
1

400

⇒ l2 < π2e2 1601
24

× 400 × 2 (1 + ν) .
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The given value for the Poisson coefficient (ν = 0.3) yields

ν = 0.3 ⇒ l < 827.48e = 41.37d .

The slenderness ratio corresponding to this length is

λ =
l

i
=

827.48√
1601
24

= 101.31 .

XI.16 The stress-strain relation for aluminium may be defined by means of the
so-called Ramberg-Osgood equation which takes the form (Fig. XI.16)

ε =
σ

E
+ 0.002

(
σ

σ0.2

)n

with

⎧⎪⎨
⎪⎩

E = 70 000 MPa

σ0.2 = 277 MPa

n = 18.55 .

(a) Verify the stability of a pin-ended bar with length l = 3m and hol-
low square cross-section with outside side-length of 15cm and wall-
thickness of 2.5mm, under a compressive axial force N = 250 kN .

(b) Determine the critical load.

σ
(MPa)

277

225

170

0.002 0.02 ε

Fig. XI.16

Resolution

(a) The area and the moment of inertia of the bar’s cross-section are, respec-
tively

Ω = 0.152 − 0.1452 = 1.475 × 10−3m2

I =
0.154 − 0.1454

12
= 5.350 × 10−6m4 .

Since the constitutive law is not linear, it is necessary to compute the
tangent modulus of elasticity corresponding to the stress acting on the
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bar. Since the strain is defined as a function of the stress, the computation
may be performed by the expressions

σ =
N

Ω
−→ Et =

dσ

dε
=
(

dε

dσ

)−1

=

[
1
E

+ 0.002 n

(
σ

σ0.2

)n−1 1
σ0.2

]−1

.

Substituting the parameters contained in these expressions by the given
values, we get

σ = 169.492 MPa −→ Et = 69.882 GPa .

If this value were to remain constant, the critical load of the bar would
be

Pcr =
π2EtI

l2
= 409988N .

This value exceeds the applied axial load, N = 250 kN . This is not the
actual value of the critical load, since the tangent elasticity modulus cor-
responding to this axial force (409988N) is smaller than the value used
which corresponds to 250 kN . However, the fact that this value is larger
than the applied axial force indicates that the actual value of the critical
load lies between these two values, which means that the bar is stable.

(b) The critical load may be obtained by means of successive approximations,
or by more sophisticated numerical methods for solving non-linear equa-
tions. Convergence is attained, when the critical load computed by means
of the procedure used in answer to question a) is equal to the value of the
axial force used to compute the tangent modulus of elasticity.
In the present case the solution has been computed by increasing the value
of N by 5% of the difference between N and the value of Pcr corresponding
to Et(N). Convergence has been reached after 60 iterations, yielding the
results

Pcr = 331483N, σcr = 224.734 MPa and Et = 56.501 GPa .

It must be noted that the simple successive substitution (substitution of
N by the value of Pcr obtained from it) does not converge in this case.

Remark: Although in the diagram presented in Fig. XI.16 (which exactly
represents the Ramberg-Osgood equation given) the difference between the
elasticity moduli corresponding to the given (σ ≈ 170MPa) and critical
(σ ≈ 225MPa) stresses is too small to be observed, the actual critical load is
substantially smaller than that corresponding to the first value. This example
illustrates the error introduced when Euler’s formula is used above the pro-
portionally limit without considering the reduction of the elasticity modulus.

XI.17 Compare the values obtained for the maximum load under eccentric
compression using the exact solution (261) and the interaction formula.
Consider a grade S 355 steel and the values 0.001, 0.25 and 1 (Fig. 170)
for the eccentricity ratio α.
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235

N
Ω

(MPa)

93 200 λ

Fig. XI.17

Resolution

In the case of plane composed bending caused by an eccentric compression
the interaction formula may be given the form⎧⎪⎪⎨

⎪⎪⎩
M = Pe
I = Ωi2

P

Ωϕ
+

M
I
v

≤ σall

⇒ P

Ω

(
1
ϕ

+
ve

i2

)
≤ σall ⇒ P

Ω

(
1
ϕ

+ α

)
≤ σall .

In order to facilitate the comparison, no safety coefficients are considered and
the allowable stress σall is assumed to be under the proportionality limit.
Under these conditions ϕ is given by Euler’s formula for values of λ higher
than

π2E

λ2
= σall ⇒ λ = π

√
E

σall

= π

√
206000

235
= 93.0 .

Thus, we get the following expressions for parameter ϕ

λ ≤ 93 ⇒ ϕ = 1 ; λ > 93 ⇒ ϕ =
π2E

λ2σall

.

The maximum load that may be applied, so that the stress does not exceed
the value σall, may thus be defined by the expression

P

Ω
=

σall
1
ϕ + α

.

The dashed lines in Fig. XI.17 represent the curves which define P
Ω as a func-

tion of λ for the given values of α. The solid lines represent the exact curves
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which are those depicted in Fig. 170. We find that for a small eccentricity
(α = 0.001) the curves practically coincide, since in this case the axial force is
virtually centred. For the other two values of α, considerable differences are
observed. Furthermore, the error has an adverse effect on structural safety,
since the loading capacity is overestimated. However, this error is covered by
the larger additional safety coefficients used in the safety evaluation of long
members. Furthermore, the error attains a maximum in the region where
Euler’s curve is usually substituted by smoother approximation curves (Fig.
167), which reduces the peak corresponding to λ = 93.

XI.18 Determine the eccentricities corresponding to the values of parameter
α considered in Fig. 170 in a rectangular cross-section with width b.

XI.19 In the structure represented in Fig. XI.19 the spring has a stiffness E
and bars AB and AC may be considered as rigid. Support C prevents
displacement in the direction of bar AC. Determine the critical load of
the structure.

XI.20 In the plane structure represented in Fig. XI.20 the column AB is
stabilized by means of cables BC and BD, which have a cross-section
area Ω and are made of a material with an elasticity modulus E. The
column has a bending stiffness EI. Determine the minimum value of
Ω, so that the structure has a stable post-critical behaviour.

3l 3l

4l

P

A

B C
E

4l

3l 3l

A

B

C D

P

Fig. XI.19 Fig. XI.20

XI.21 Determine whether the spring is necessary to stabilize the plane struc-
ture represented in Fig. XI.21. If it is, determine the critical load of the
structure.

XI.22 Using the results of example XI.13, determine the critical load of the
structure represented in Fig. XI.22.
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E

P

2P

3P

l

2l

2I

l p

3I l

l
2

Fig. XI.21 Fig. XI.22

XI.23 The beam represented in Fig. XI.23 has a bending stiffness EI. Taking
the interaction between deformation and internal forces into consider-
ation determine the maximum bending moment.

l
2

l
2

P

Q

Fig. XI.23

XI.6 Stability Analysis by the Displacement Method

XI.6.a Introduction

In Sects. XI.2 to XI.5 problems of stability have been analysed whose degrees
of kinematic indeterminacy are one (introductory examples in Sect. XI.2) or
infinite (Euler’s theory furnishes an infinite number of buckling shapes). How-
ever, in the modern computational analysis of structures, a finite number of
degrees of freedom is always considered, either in naturally discrete struc-
tures, such as framed structures, or in finite-element discretizations of two- or
three-dimensional structures.

In this section we will introduce the global stability analysis of framed
structures by means of the displacement method. However, this analysis does
not belong to the traditional field of Strength of Materials, since it is based
on the matrix formulation used in the systematization of the displacement
method, which is usually taught after the Strength of Materials has been
studied, in the disciplines of Structural Analysis. This is why this analysis is
explained as an appendix to Chap. XI.
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XI.6.b Simple Examples

As a first example of a naturally discrete structure with a degree of kinematic
indeterminacy superior to one, we shall analyse the stability behaviour of the
column represented in Fig. 172-a.

l

l

l

E

E

P

A

B

C

D

1

2

P

1

K21

K11

P

1

K12

K22

P = Pcr P

(a) (b) (c) (d) (e)

Fig. 172. Stability analysis of a structure with degree two of kinematic indetermi-
nacy

If the vertical bars are assumed to be axially non-deformable, this structure
has a degree two of kinematic indeterminacy, since, once the horizontal dis-
placements of points B and C are known (coordinates 1 and 2 in Fig. 172-a),
the deformed configuration of the structure is completely defined. Assuming
that there are no imperfections, no deformations will take place as long as the
structure is stable, since no forces are needed in the deformable elements to
balance the external force P .

Let us consider now that two forces, F1 and F2, are applied in coordinates
1 and 2, respectively. These forces will cause displacements D1 and D2. Con-
versely, we may state that, in order to get the deformed configuration defined
by displacements D1 and D2, corresponding forces F1 and F2 mus be applied
in coordinates 1 and 2. The force-displacement relations may be represented
by the expression {

F1 = F1 (D1, D2)

F2 = F2 (D1, D2) .

If the displacements D1 and D2 are infinitesimal, the corresponding forces
are given by the expressions⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dF1 =

∂F1

∂D1
dD1 +

∂F1

∂D2
dD2

dF2 =
∂F2

∂D1
dD1 +

∂F2

∂D2
dD2 .

(262)
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Using a matrix formulation, the expression may be written as

{
dF1

dF2

}
=

⎡
⎢⎣

∂F1

∂D1
= K11

∂F1

∂D2
= K12

∂F2

∂D1
= K21

∂F2

∂D2
= K22

⎤
⎥⎦

︸ ︷︷ ︸
[K]

{
dD1

dD2

}
.

Matrix [K] is the so-called stiffness matrix of the structure. It may be
shown that this matrix is symmetrical (see Sect. XII.4).

In the critical situation the equilibrium state is neutral, that is, it is not
disturbed when the equilibrium configuration suffers an infinitesimal pertur-
bation, which may be defined by the displacements dD1 and dD2. This means
that the infinitesimal forces corresponding to these displacements, dF1 and
dF2, vanish when force P attains the critical value. This condition may be
expressed by the relation[

K11 K12

K21 K22

]{
dD1

dD2

}
=
{

0
0

}
. (263)

This system of equations is homogeneous, which means that it only has
non-simultaneously vanishing solutions if matrix [K] is singular, i.e., if its de-
terminant is zero. Since this is what happens in the critical phase – a deformed
configuration is possible, without forces being applied in the nodal points –
the condition |K| = 0 may be used to find the critical load of the structure.

As an alternative to the derivation of the force-displacement relations
(262), which would require those functions to be found, the elements of the
stiffness matrix may be determined directly by means of equilibrium consid-
erations, assuming given values for the displacements dD1 and dD2. Thus, we
get from (262)

{
dD1 = 1

dD2 = 0
⇒

⎧⎪⎪⎨
⎪⎪⎩

dF1 =
∂F1

∂D1
= K11

dF2 =
∂F2

∂D1
= K21 .

(264)

From these expressions we conclude that the stiffness coefficients K11 and
K21 are the forces that must be applied in coordinates 1 and 2, to get the
deformed configuration depicted in Fig. 172-b. Since the unit displacement
dD1 is infinitesimal, the axial force in the bars is P and the rotations of
bars AB and BC are 1

l . Therefore, the stiffness coefficient K11 is the force
needed to induce a unit elongation in the spring and to balance the horizontal
components of the axial forces in bars AB and BC. K21 is the force required
to balance the horizontal component of the axial force in bar BC. Thus, these
coefficients take the values

K11 = E − 2
P

l
K21 =

P

l
.
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The two remaining coefficients may be found in a similar way, by consider-
ing the deformed configuration represented in Fig. 172-c (dD1 = 0, dD2 = 1).
The complete stiffness matrix is then

[K] =

[
E − 2P

l
P
l

P
l E − 2P

l

]
= E

[
1 0
0 1

]
︸ ︷︷ ︸
material
stiffness

+P

[−2 1
l

1
l

1
l −2 1

l

]
︸ ︷︷ ︸

geometrical
stiffness

. (265)

The material stiffness is the component of the stiffness matrix that depends
on the stiffness of the deformable elements of the structure: the stiffness of the
springs in this case, the modulus of elasticity and the Poisson’s coefficient in
the case of materials with linear elastic behavior. The geometrical stiffness rep-
resents the influence of the geometry change of the structure, when it deforms,
that is, the change in the nodal forces which equilibrate the internal forces,
caused by the change in the directions of the internal forces as a consequence
of the rotations. Thus, the geometrical stiffness depends on the internal forces.
Tensile internal forces cause a positive geometrical stiffness, while compres-
sive internal forces lead to a negative geometrical stiffness. Buckling occurs
when the negative influence of the geometrical stiffness caused by compressive
internal forces compensates the positive influence of the material stiffness and
of the geometrical stiffness corresponding to tensile internal forces.

Since the stiffness matrix depends on the forces applied to the structure,
when it includes the geometrical stiffness, the critical load may be computed
by means of the condition of a vanishing determinant, |K| = 0, yielding∣∣∣∣∣E − 2P

l
P
l

P
l E − 2P

l

∣∣∣∣∣ = E2 − 4E

l
P +

3
l2

P 2 = 0 ⇒ P =
El

3
∨ P = El .

(266)
Thus, there are two values of the load P which satisfy the condition of

neutral equilibrium which must be fulfilled in the transition from stable to
unstable equilibrium: the same internal forces balance the external loads both
in the undeformed and in a slightly deformed configuration. The critical load
corresponds to the smallest of these values, that is, the critical load takes the
value Pcr = El

3 .
However, the equilibrium in the slightly deformed configuration does not

occur for an arbitrary deformation shape, but only if some relations between
the nodal displacements are satisfied. These relations define the so-called buck-
ling modes. In Euler’s problem the buckling modes have sinusoidal shapes, as
seen in Subsect. XI.3.b. The shape corresponding to P = Pcr defines the de-
formation of the structure when buckling takes place. This shape, i.e., the
relation between dD1 and dD2 may be found by substituting P by Pcr in
the stiffness matrix and assuming a given value for one of the nodal displace-
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ments.7 Thus, if we take dD1 = 1, we get from (265) and (263)

⎧⎨
⎩ P = Pcr =

El

3
dD1 = 1

⇒

⎡
⎢⎢⎣

E

3
E

3

E

3
E

3

⎤
⎥⎥⎦
{

1

dD2

}
=

{
0

0

}
.

Any of the two equations of this system yields the value −1 for dD2. There-
fore, when the load attains the critical value, the equilibrium takes place both
in the undeformed configuration and in the slightly deformed configuration
represented in Fig. 172-d. This configuration defines the first buckling mode.
The second mode, corresponding to the second root of (266), may be found
in the same way as the first one, i.e., by substituting P by El in the stiffness
matrix, yielding the shape represented in Fig. 172-e. Obviously, this configu-
ration is unstable, since it corresponds to a larger load than the critical one.
This is demonstrated by the negative values of the diagonal elements of the
stiffness matrix, P = El ⇒ K11 = K22 = −E (see Subsect. XII.5.c).

As a second example of stability analysis in discrete problems with a de-
gree of kinematic indeterminacy superior to one, we shall analyse the column
represented in Fig. 173-a, where the stability is guaranteed by the bending
stiffness of the two rotational springs, B and C, which have stiffness G.

The line of reasoning used in the first example is obviously also valid in
this case, which means that the elements of the stiffness matrix corresponding
to the two represented degrees of freedom, 1 and 2, are the forces that must
be applied in these coordinates in order to keep the column in the deformed
configurations represented in Figs. 173-b (dD1 = 1, dD2 = 0) and 173-c
(dD1 = 0, dD2 = 1).

The computation of the stiffness coefficients is a little lengthier than in the
first example, since in this case the bars are not under purely axial loading,
when dD1 or dD2 are different from zero. For the computation of K11 and
K21 by means of equilibrium considerations we may first compute the reaction
force RA (Fig. 173-b), using the expression of the bending moment in spring
B as a function of RA, MB = P × 1 − RAl = G 2

l . Then K11 may be found
using the expression of the bending moment in spring C. Once RA and K11

are known, K21 may be obtained from the condition of zero bending moment
in hinge D. The same procedure, applied to the configuration represented in
Fig. 173-c, yields the values of K12 K22. The stiffness matrix is then given by

[K] =

[
5G
l2 − 2P

l − 7G
2l2 + P

l

− 7G
2l2 + P

l
13G
4l2 − 3P

2l

]
=

G

l2

[
5 − 7

2

− 7
2

13
4

]
︸ ︷︷ ︸

[Km]

+
P

l

[−2 1
1 − 3

2

]
︸ ︷︷ ︸

[Kg]

.

7It is not possible to compute dD1 and dD2 simultaneously because the two
equations of the system defined by (263) become linearly dependent for P = Pcr.
This means that it is not possible to find the amplitude of the deformation, which
reflects the fact that equilibrium is neutral in the critical phase.
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l

l

2l

A

B

C

D

P

1

2

RA

1
l

P

2
l

K21

K11
1
l

P

3
2l

K12

K22

P = Pcr
P =
7+

√
17

4
G
l

(a) (b) (c) (d) (e)

Fig. 173. Example of stability analysis in a column with bending stiffness

[Km] and [Kg] represent the material and geometrical components of the
stiffness matrix. The condition of a vanishing determinant yields the two val-
ues of P , for which equilibrium between the internal forces and P exists in a
slightly deformed configuration∣∣∣∣∣

5G
l2 − 2P

l − 7G
2l2 + P

l

− 7G
2l2 + P

l
13G
4l2 − 3P

2l

∣∣∣∣∣ = 0 ⇒ P =
7 −√

17
4

G

l
∨ P =

7 +
√

17
4

G

l
.

The critical load is thus Pcr = 7−√
17

4
G
l . The equilibrium configurations

which correspond to these two roots may be found in the same way as in the
first example, yielding the vectors

P = Pcr =
7 −√

17
4

G

l
⇒

{
dD1 = 1
dD2 = 1.281

and

P =
7 +

√
17

4
G

l
⇒

{
} dD1 = 1

dD2 = −0.781 .

The configurations corresponding to these two displacement-vectors are
represented in Figs. 173-d and 173-e. Thus, when buckling occurs, the column
deforms with the shape given in Fig. 173-d.

In structures with a high degree of kinematic indeterminacy the critical
load and the buckling shapes are not computed in the same way as in the
two simple examples analysed. Generally, a factor λ is required, by which the
applied load must be multiplied in order to find the critical load. It may be
shown that, if the material has linear elastic behaviour, if the displacements
are small enough to be considered as infinitesimal, and if the displacement of
a point of the structure may be expressed as a linear function of the displace-
ments of the nodal points, as happens in the two simple examples above and
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also in the most used finite-element discretizations, the material stiffness is
constant and the geometrical stiffness is proportional to the applied loads. Un-
der these conditions, the problem may be formulated as shown below ({dD}
is the vector containing the n kinematic unknowns and {0} is a vector with
n zeros)

[K] {dD} = {0} ⇒ ([Km] + λ [Kg]) {dD} = {0}
⇒ [Km] {dD} = −λ [Kg] {dD} .

(267)

The last equality in (267) may be reduced to the form of the algebraic
generalized symmetric eigenvalue problem

[ A ] {z} = λ′ [ B ] {z} , (268)

where the matrices [ A ] and [B ] are symmetrical and [B ] is positive definite.
The matrices [Km] and [Kg] are symmetrical. Furthermore, [Km] is positive
definite. Thus, rearranging the last of 267, we may put it in the form corre-
sponding to the generalized eigenvalue problem (268), that is⎧⎪⎨

⎪⎩
[ A ] = [Kg]
[ B ] = [Km]
{z} = {dD}
λ′ = − 1

λ

⇒
∣∣∣∣∣ [Kg] {dD} = − 1

λ [Km] {dD}
⇔ [ A ] {z} = λ′ [ B ] {z} .

The eigenvectors represent the buckling modes. The resolution of the two
simple problems (Figs. 172 and 173) with this method is left as an exercise
for the reader.

XI.6.c Framed Structures Under Bending

When the stability of a framed structure is guaranteed by the bending stiffness
of its members, the computation of the critical load requires the stiffness of
the bars to be expressed as functions of the corresponding axial forces. In this
Sub-section we develop expressions to compute the stiffness matrix of a bar
with four and three degrees of freedom, disregarding axial deformations (see
Footnote 77), and assuming that the rotations are small (see the last part of
Subsect. IX.1.b for an analysis of the error introduced by this assumption).
The last part includes examples of both the determination of critical loads and
of the approximate computation of displacements in framed structures, taking
the interaction between internal forces and deformations into consideration.

XI.6.c.i Stiffness Matrix of a Compressed Bar

The stiffness matrix of a bar with the four degrees of freedom represented
in Fig. 174-a may be found by integration of the differential equation which
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defines the relations between forces applied in the coordinates and the bending
moments, when the bending deformation is taken into account. To this end,
let us consider the column represented in Fig. 174-b, under the action of
the compressive axial force N , the transversal load V and the moment M .
The differential equation of this problem may be established considering the
curvature corresponding to the bending moment in the cross-section defined
by coordinate z (Fig. 174-b).

l

3

4

2

1

l − z

z

M

δ − y

N

δ θ

y

V

K31

K21

K41

1 N

K11

K32

K22

N
1

K42

K12

(a) (b) (c) (d)

Fig. 174. Determination of the stiffness matrix of a compressed bar

Denoting by ∆ the displacement of the upper cross-section (Fig. 174-b),
we get

1
ρ

=
d2y

dz2
=

1
EI

bending moment︷ ︸︸ ︷
[M + N (δ − y) + V (l − z)]

⇒ d2y

dz2
+

N

EI
y =

1
EI

[M + N∆ + V (l − z)] .

(269)

We may easily verify that this equation admits the particular integral

y =
M

N
+

V

N
(l − z) + δ .

Thus its general solution is

y = C1 cos(kz) + C2 sin(kz) +
M

N
+

V

N
(l − z) + δ with k2 =

N

EI
.

Derivating this expression with respect to z, we get the equation of the
rotations

dy

dz
= −kC1 sin(kz) + kC2 cos(kz) − V

N
.

The support conditions in the built-in end allow the determination of the
integration constants. Thus, we have
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z = 0 ⇒

⎧⎪⎪⎨
⎪⎪⎩

y = 0 ⇒ C1 = −M

N
− V l

N
− δ

dy

dz
= 0 ⇒ kC2 − V

N
= 0 ⇒ C2 =

V

kN
.

Substituting these values in the previous expressions, we get

y =
V

kN
sin(kz) −

(
δ +

M + V l

N

)
cos(kz) +

M

N
+

V

N
(l − z) + δ

dy

dz
=

V

N
cos(kz) +

(
δ +

M + V l

N

)
k sin(kz) − V

N
.

(270)

The displacement ∆ and the rotation θ of the upper end of the column
may be related to the applied forces, yielding

z = l ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y = δ ⇒ V

kN
sin(kl) −

(
δ +

M + V l

N

)
cos(kl) +

M

N
+ δ = δ

dy

dz
= θ ⇒ V

N
cos(kl) +

(
δ +

M + V l

N

)
k sin(kl) − V

N
= θ .

Rearranging this system of equations, the following form may be given to
it ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
k sin(kl)

N
M +

kl sin(kl) + cos(kl) − 1
N

V = θ − δk sin(kl)

1 − cos(kl)
N cos(kl)

M +
tan(kl) − kl

kN
V = δ .

By solving this system of equations, we get the force V and the moment
M required to introduce the displacement δ and the rotation θ in the upper
cross-section, for a given value of the axial force N . This solution takes the
form

M =
c1b2 − b1c2

a1b2 − a2b1
V =

a1c2 − c1a2

a1b2 − a2b1
(271)

with

a1 =
k sin(kl)

N

a2 =
1 − cos(kl)
N cos(kl)

b1 =
kl sin(kl) + cos(kl) − 1

N

b2 =
tan(kl) − kl

kN

c1 = θ − δk sin(kl)

c2 = δ .

From these expressions we get, after some manipulation,
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a1b2 − a2b1 =
2 [1 − cos(kl)] − kl sin(kl)

N2 cos(kl)

c1b2 − b1c2 =
θ [tan(kl) − kl] + ∆ [k − k cos(kl) − k sin(kl) tan(kl)]

kN

a1c2 − c1a2 =
θ [cos(kl) − 1] + ∆k sin(kl)

N cos(kl)
.

(272)

The same line of reasoning as used in the first example in Subsect. XI.6.b
(264), leads to the conclusion that the elements K11 and K21 of the stiffness
matrix are the transversal force V and the moment M required to induce the
deformation represented in Fig. 174-c, i.e., δ = 1 and θ = 0. Substituting
these values in (272) and the result of this substitution in (271), we get

V = K11 =
N

2 − 2 cos(kl) − kl sin(kl)
k sin(kl)

M = K21 =
N

2 − 2 cos(kl) − kl sin(kl)
[cos(kl) − 1] .

Elements K31 and K41 may then be found by means of equilibrium con-
siderations, yielding

K31 = K11 and K41 = −K11l − K21 − N = K21 .

The last equality is obtained by a moment equation with respect to the
built-in end. The antisymmetry of the deformation also leads directly to this
equality.

The elements K12 and K22 are the transversal force V and the moment
M needed to induce the deformation represented in Fig. 174-d, i.e., δ = 0 and
θ = 1. The same procedure as above leads to

V = K12 =
N

2 − 2 cos(kl) − kl sin(kl)
[cos(kl) − 1] = K21

M = K22 =
N

2 − 2 cos(kl) − kl sin(kl)
sin(kl) − kl cos(kl)

k
.

Elements K32 are K42 also obtained by means of equilibrium considerations,
which yield

K32 = K12 and K42 = −K22−K12l =
N

2 − 2 cos(kl) − kl sin(kl)
kl − sin(kl)

k
.

The two remaining columns of the stiffness matrix could be obtained by
considering unit displacements in coordinates 3 and 4. It is, however, obvious
that the results would the same as those obtained by interchanging the roles of
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indices 1 and 2 with indices 3 and 4, respectively. Thus, the complete stiffness
matrix takes the form

[K] =
N

2 − 2 cos(kl) − kl sin(kl)

×

⎡
⎢⎢⎢⎢⎢⎣

k sin(kl) cos(kl) − 1 k sin(kl) cos(kl) − 1

cos(kl) − 1 sin(kl)−kl cos(kl)
k cos(kl) − 1 kl−sin(kl)

k

k sin(kl) cos(kl) − 1 k sin(kl) cos(kl) − 1

cos(kl) − 1 kl−sin(kl)
k cos(kl) − 1 sin(kl)−kl cos(kl)

k

⎤
⎥⎥⎥⎥⎥⎦ . (273)

Sometimes it is also useful to know the stiffness matrix of a compressed
bar with the three coordinates represented in Fig. 175-a.

The corresponding stiffness coefficients may easily be obtained by solving
the problems represented in Figs. 175-b and 175-c. Since these problems do not
have any additional difficulty compared with those in Fig. 174, their detailed
analysis is left as an exercise to the reader. The resulting stiffness matrix takes
the form

N

sin(kl) − kl cos(kl)

⎡
⎢⎣ k cos(kl) − sin(kl) k cos(kl)
− sin(kl) l sin(kl) − sin(kl)
k cos(kl) − sin(kl) k cos(kl)

⎤
⎥⎦ . (274)

All examples of determination of the critical load presented in Sect. XI.3,
and also examples XI.11, XI.12 and XI.13, may easily be confirmed by
analysing particular elements of the two stiffness matrices above (273) and
(274).

Thus, the critical load of a pin-ended bar (Euler’s problem) is attained
when coefficient K22 of the matrix in (274) vanishes, that is, when the bar
ceases to have sufficient stiffness to resist the rotation of the upper cross-
section. The smallest non-zero value of kl for which this coefficient vanishes
is π, which coincides with Euler’s solution.

l

3

2

1

K31

N

1
K21

K11

K32

K22

1

N

K12

(a) (b) (c)

Fig. 175. Determination of the stiffness matrix of a bar with three coordinates
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The critical load of the example presented in Fig. 166-a is attained when
coefficient K33 of the matrix in (274) vanishes, which takes place for cos(kl) =
0, i.e., when the condition kl = (2n − 1) π

2 is satisfied, which leads to the
effective length 2l.

The critical load of the example in Fig. 166-b corresponds to a vanishing
value of coefficient K11 of (273), which takes place for sin(kl) = 0.

In the example of Fig. 166-c the critical load is reached when the bar
loses the stiffness needed to resist the transversal displacement of the mid-
height cross-section. Considering the column to be divided in two bars with
equal length l

2 , the horizontal stiffness of the column in the connection point
between the two bars is given by twice the coefficient K11 of (273), with the
length of the bar reduced to l

2 . Thus, buckling takes place when sin(k l
2 ) = 0,

that is, when k l
2 = π.

The critical load of the column depicted in Fig. 166-d is attained when the
coefficient K22 in (273) vanishes, which happens for sin(kl) = kl cos(kl). This
is exactly the expression used in Subsect. XI.3.c to find the effective length of
this column.

In example XI.11 the rotational stiffness of cross-section B has two compo-
nents, one corresponding to the deformation of column segment BC and other
corresponding to the rotation of the rigid segment AB. The first component
is given by coefficient K22 of the matrix in (274). The second takes the value
−Pl′, since, for a unit rotation θ, this is the moment needed in cross-section
B, to balance the moment caused by the load P . Thus, the total rotational
stiffness of cross-section B vanishes when the following condition is satisfied

K =
Pl sin(kl)

sin(kl) − kl cos(kl)
− Pl′ = 0 ⇒ l′ cos(kl) +

l − l′

kl
sin(kl) = 0 ,

which coincides with the expression obtained in example XI.11.
Also in example XI.12, the horizontal stiffness of the column in point B

has two components, one corresponds to the deformation of segment BC and
the other is the force needed to balance the horizontal component of the pin-
ended bar AB, when point B suffers a unit displacement. The first component
coincides with coefficient K33 of the matrix in (274). The second component
takes the value −P

l′ . Buckling occurs when the total stiffness vanishes, that
is, when the following condition is satisfied

K =
Pk cos(kl)

sin(kl) − kl cos(kl)
− P

l′
= 0 ⇒

(
1 +

l′

l

)
kl = tan(kl) .

Finally, in example XI.13 the rotational stiffness of cross-section B has the
components which correspond to the deformation of segments AB and BC.
These components are given by coefficient K22 of the matrix in (274), with
the lengths l and l′, respectively. The critical load may thus be obtained by
solving the equation

K =
Pl sin(kl)

sin(kl) − kl cos(kl)
+

Pl′ sin(kl′)
sin(kl′) − kl′ cos(kl′)

= 0 .
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This expression defines the problem completely, as opposed to the equation
obtained in example XI.13. In fact, if we have l = l′, we can see immediately
that sin(kl) = 0 ⇒ kl = nπ is a solution of the equation. The expression
found in XI.13 may be obtained from this one by dividing both terms (nu-
merator and denominator) of the fraction representing the first component by
sin(kl) and both terms of the second component by sin(kl′). When we have
l = l′, this operation eliminates the roots of the equation that are defined by
kl = nπ.

XI.6.c.ii Stiffness Matrix of a Tensioned Bar

The stiffness of a tensioned bar with the degrees of freedom represented in
Fig. 174-a may be obtained in the same way as in the case of the compressed
bar. The differential equation defining the relations between the forces applied
in the coordinates and the bending moments, when a tensile force is consid-
ered, takes a similar form to (269), but with a reversed sign in the elements
containing N (Fig. 174-b with N pointing upwards)

1
ρ

=
d2y

dz2
=

1
EI

[M − N (δ − y) + V (l − z)]

⇒ d2y

dz2
− N

EI
y =

1
EI

[M − Nδ + V (l − z)] .

This equation admits the particular integral

y = δ − M

N
− V

N
(l − z) ,

Since in this case the homogeneous equation does not have imaginary roots,
its general solution takes the form

y = C1 ekz + C2 e−kz + δ − M

N
− V

N
(l − z) with k2 =

N

EI
. (275)

In the same way as in the case of axial compression, the integration con-
stants may be eliminated by means of the support conditions in the built-in
end (Fig. 174-b). In this case we have

z = 0 ⇒

⎧⎪⎪⎨
⎪⎪⎩

y = 0 ⇒ C1 + C2 + δ − M

N
− V l

N
= 0

dy

dz
= 0 ⇒ kC1 − kC2 + V

N = 0 .

Solving this system of equations, we get

C1 =
M

2N
− V

2kN
+

V l

2N
− δ

2
and C2 =

M

2N
+

V

2kN
+

V l

2N
− δ

2
.



452 XI Structural Stability

Substituting these expressions in the general solution (275) and using the
definitions of hyperbolic sine and cosine (sinhx = ex−e−x

2 , cosh x = ex+e−x

2 ),
we may give (275) the following form

y =
(

M + V l

N
− δ

)
cosh(kz) − V

kN
sinh(kz) + δ − M

N
− V

N
(l − z) .

Derivating with respect to z, we get

dy

dz
=
(

M + V l

N
− δ

)
k sinh(kz) − V

N
cosh(kz) +

V

N
.

These two expressions are very similar to those obtained in the compressive
case ( 270), showing, in addition to the substitution of sine by hyperbolic sine
and of cosine by hyperbolic cosine, only sign differences in some elements. The
treatment of these expressions until the stiffness coefficients are obtained is
the same as in the case of axial compression, so it is not repeated here. The
resulting stiffness matrix takes the form

[K] =
N

2 − 2 cosh(kl) + kl sinh(kl)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

k sinh(kl) 1 − cosh(kl) k sinh(kl) 1 − cosh(kl)

1 − cosh(kl) kl cosh(kl)−sinh(kl)
k 1 − cosh(kl) sinh(kl)−kl

k

k sinh(kl) 1 − cosh(kl) k sinh(kl) 1 − cosh(kl)

1 − cosh(kl) sinh(kl)−kl
k 1 − cosh(kl) kl cosh(kl)−sinh(kl)

k

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(276)

In the case of the coordinates defined in Fig. 175-a the stiffness matrix for
a tensile axial force takes the form

[K] =
N

kl cosh(kl) − sinh(kl)

⎡
⎢⎣ k cosh(kl) − sinh(kl) k cosh(kl)
− sinh(kl) l sinh(kl) − sinh(kl)
k cosh(kl) − sinh(kl) k cosh(kl)

⎤
⎥⎦ . (277)

XI.6.c.iii Linearization of the Stiffness Coefficients

The stiffness matrices defined by (273), (274), (276) and (277) include the
influences of the bending stiffness (by means of the term EI contained in
k) and of the axial force. However, the stiffness coefficients are not used in
this form, as a rule, since the fact that it is not possible to decompose these
matrices in a component which is independent of the axial force (the material
stiffness), and in a component which is independent of the elasticity modulus
of the material the bar is made of (the geometrical stiffness), prevents the use
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of the algorithm based on the reduction of the problem to eigenvalue form
(267).8

This problem may be circumvented by linearizing the stiffness coefficients.
This may be achieved by computing the value of these coefficients and their
derivatives with respect to the axial force, for a vanishing axial force. These
operations are rather lengthy, since the elements of the stiffness matrices and
their derivatives become indeterminate for k = 0. However, by using a com-
putational program for symbolic manipulation, this virtually ceases to be a
problem. Performing these operations in the expressions relating to compres-
sion (273) and (274) and tension (276) and (277), we conclude that the func-
tions expressing the stiffness coefficients and their derivatives are continuous
in the point defined by a vanishing axial force. For example, in the case of
coefficient K11 in (273) and (276) we get

lim
N→0

[
N

2 − 2 cos(kl) − kl sin(kl)
k sin(kl)

]
=

12EI

l3

lim
N→0

[
N

2 − 2 cosh(kl) + kl sinh(kl)
k sinh(kl)

]
=

12EI

l3

lim
N→0

{
d

dN

[
N

2 − 2 cos(kl) − kl sin(kl)
k sin(kl)

]}
= − 6

5l

lim
N→0

{
d

dN

[
N

2 − 2 cosh(kl) + kl sinh(kl)
k sinh(kl)

]}
=

6
5l

.

The difference in the sign between the two last expressions is a consequence
of the fact that in the first one a compressive axial force is considered to be
positive, while in the second one the tensile force is positive. The linearized
form of this coefficient is then (a tensile axial force is considered as positive)

K11 =
12EI

l3
+ N

6
5l

.

Carrying out the same operations for all the stiffness coefficients, the fol-
lowing matrices are obtained

[K] = EI

⎡
⎢⎢⎢⎣

12
l3 − 6

l2
12
l3 − 6

l2

− 6
l2

4
l − 6

l2
2
l

12
l3 − 6

l2
12
l3 − 6

l2

− 6
l2

2
l − 6

l2
4
l

⎤
⎥⎥⎥⎦+ N

⎡
⎢⎢⎢⎣

6
5l − 1

10
6
5l − 1

10

− 1
10

2l
15 − 1

10 − l
30

6
5l − 1

10
6
5l − 1

10

− 1
10 − l

30 − 1
10

2l
15

⎤
⎥⎥⎥⎦ (278)

and

[K] = EI

⎡
⎢⎣

3
l3 − 3

l2
3
l3

− 3
l2

3
l − 3

l2

3
l3 − 3

l2
3
l3

⎤
⎥⎦+ N

⎡
⎢⎣

6
5l − 1

5
6
5l

− 1
5

l
5 − 1

5
6
5l − 1

5
6
5l

⎤
⎥⎦ , (279)

8In this problem the displacement of a point of the bar is not a linear function
of the displacements of the coordinates, as required for (267) to be valid.
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respectively for the coordinates indicated in Figs. 174-a and 175-a. The first
elements in each equation represent the material stiffness (proportional to
the elasticity modulus E) and the second ones are the geometrical stiffness
(proportional to the axial force N).

In Fig. 176 the exact and linearized forms of coefficient K11 of the first
matrix, as functions of N , are represented. The infinite peaks appearing in the
compressive part of the first diagram correspond to the values of kl for which
the denominator 2 − 2 cos(kl) − kl sin(kl) ( 273) vanishes. However, the very
high values of the stiffness coefficients do not have a physical correspondence.
In fact, the above theory is only valid for small rotations, since only under
these conditions may we accept that 1

ρ = d2y
dz2 (see the last part of Subsect.

IX.1.b). When the quantity 2 − 2 cos(kl) − kl sin(kl) gets close to zero, the
stiffness coefficients take high values, which leads to high rotation values, as
may be concluded from the second of (270) (M and V take the values of the
stiffness coefficients).

−2000

l3

EI
K11

−3000

Nl2

EI

−90

60

−60

90

Fig. 176. “Exact” (solid lines) and linearized (dashed-dotted line)forms of stiffness
coefficient K11 (Fig. 174-a)

Obviously, the linearization of the stiffness coefficient introduces errors
into the computation of buckling forces and shapes. However, these errors are
not large if only the critical load and the first buckling mode are required,
and if the kinematic coordinates are well-chosen. In the case of higher modes,
considerable errors may be introduced.

When the stiffness coefficients are used in their exact form ( 273), (274),
(276) and (277), we get an infinite number of buckling modes. As a conse-
quence of the linearization, the number of buckling modes obtained becomes
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equal to the degree of kinematic indeterminacy, as may be concluded from the
algebraic form of the problem (267).

When the linearized form of the stiffness coefficients is used, the correct
choice of the kinematic coordinates is very important, since local buckling
modes may only be captured with sufficient accuracy if the chosen coordinates
allow it. For this reason, in a systematic computational analysis it is advisable
to consider additional nodes in the middle or even in each third of the bars,
although these nodes are not needed to compute the internal forces.

In Subsect. XI.6.c.iv examples are presented to illustrate these considera-
tions.

XI.6.c.iv Examples of Application

As a first example of stability analysis of a framed structure using the dis-
placement method, let us consider the plane frame represented in Fig. 177-a.

l

P

I0

I1

b

P

I0

2 3

1

(a) (b)

Fig. 177. Stability analysis of a plane frame

This problem has an analytical solution which may be compared with the
solution yielded by the displacement method, both in the exact and in the
linearized formulation. This solution is defined by the expression (see, e.g.,
[11], Sect. 2.4)

kl

tan(kl)
= −6lI1

bI0
with k =

√
P

EI0
.

Giving numerical values to the geometrical parameters, we get the critical
load (E = 206GPa)

l = 5m
b = 10m
I0 = 20 × 10−6m4

I1 = 50 × 10−6m4

⇒

∣∣∣∣∣∣∣
kl

tan(kl)
= −7.5 ⇒ kl = 2.785931

⇒ Pcr = (kl)2
EI0

l2
= 1279081N = 1279.081kN .

To resolve this problem by means of the displacement method, the coordi-
nates represented in Fig. 177-b may be used. Denoting by K0 and K1 the stiff-
ness coefficients of the vertical and horizontal bars, respectively (Fig. 174-a),
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we conclude immediately that the forces required to introduce the deformation
depicted in Fig. 178-a (D1 = 1, D2 = D3 = 0) take the values

K11 = 2K0
11 K21 = K0

12 K31 = K0
12 .

Proceeding in the same way in the configurations represented in
Figs. 178-b (D2 = 1, D1 = D3 = 0) and 178-c (D1 = D2 = 0, D3 = 1),
we get the other elements of the stiffness matrix of this structure, which takes
the form

[K] =

⎡
⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎦ =

⎡
⎢⎣

2K0
11 K0

12 K0
12

K0
12 K0

22 + K1
22 K1

24

K0
12 K1

24 K0
22 + K1

22

⎤
⎥⎦ .

The critical load is the smallest value of P which makes this matrix singular
(|K| = 0).

K21

1 P
K31

P

K11

1

K22

P

1

K32

P

K12

K23

P
1

1

P

K33

K13

(a) (b) (c)

Fig. 178. Elements of the stiffness matrix

Writing a small computer program with the expression of the determi-
nant of matrix [K ], taking the stiffness coefficients K0 from (273) and the
coefficients K1 from the first matrix of (278) (the elements of (273) become
indeterminate for N = 0), we conclude that the smallest value of P that
leads to a vanishing determinant coincides with the above solution. When the
linearized form of the stiffness coefficients is used ( 278), we get the slightly
higher value P l

cr

P l
cr = 1290528N = 1290.528kN ⇒ P l

cr

Pcr
=

1290.528
1279.081

= 1.0089 .

The first buckling mode is defined by the displacement vector that satisfies
the condition

[K] {D} = {0} with P = Pcr ⇒ |K| = 0 .

Since we have only three coordinates, the components of vector {D} may
be computed by means of the same algorithm that has been used in the
resolution of exercise II.1. Thus, using the same line of reasoning as described
there, we easily conclude that a vector with the components
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D1 =
∣∣∣∣K12 K13

K22 K23

∣∣∣∣ D2 = −
∣∣∣∣K11 K13

K21 K23

∣∣∣∣ D3 =
∣∣∣∣K11 K12

K21 K22

∣∣∣∣
satisfies the equation above. The results obtained with these expressions are
practically the same, either taking the exact stiffness coefficients ((273), or the
linearized form ( 278). Multiplying the elements of this vector by a constant,
so that the displacement D1 takes the value of 10 cm, we get for the rotations
D2 = D3 = 0.010 radians. This buckling mode corresponds to the deformed
configuration represented in Fig. 179-a.

When the load corresponding to the second buckling mode is computed,
very different values are obtained from the exact and linearized forms of the
stiffness coefficients. Thus, using (273) we get P = 4304kN , while (278) gives
P = 8034kN . However, the corresponding buckling modes are similar, defining
the configuration represented in Fig. 179-b.

To illustrate the correct choice of the kinematic coordinates, when the
linearized form of the stiffness coefficients is used, let us consider the plane
structure represented in Fig. 180-a, where the horizontal and vertical bars
have cross-sections with moments of inertia 5I and I, respectively.

Since, when buckling occurs, a rotation of node B takes place, the corre-
sponding stiffness may be used to compute the critical value of load P . The
rotational stiffness of node B is the moment K which is needed to cause a unit
rotation of the ends of the bars converging in node B, that is, it is the sum of

Pcr Pcr P P

(a) (b)

Fig. 179. First and second buckling modes of the frame represented in Fig. 177-a
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l
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D

l

5I
C

l
2

l
2

1

3

2

P

(a) (b) (c)

Fig. 180. Example illustrating the importance of the correct choice of the kinematic
coordinates, when the linearized form of the stiffness coefficients is used
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the stiffness coefficients K22 both in the case represented in Fig. 174-a for the
vertical bar, and in the case represented in Fig. 175-a for the horizontal bars.
Thus, we get from the first matrix in (279) (horizontal bars, N = 0) and from
(273) (vertical bar)

K = 2 × 3E5I

l
+

P

k

sin(kl) − kl cos(kl)
2 − 2 cos(kl) − kl sin(kl)

.

Since we have P = k2EI, we may give this expression the following form

K =
EI

l

[
30 + kl

sin(kl) − kl cos(kl)
2 − 2 cos(kl) − kl sin(kl)

]
.

A simple numerical investigation shows that the smallest value of load P that
leads to a vanishing value of this stiffness is

K = 0 ⇒ kl = 6.083065 ⇒ P = Pcr = 37.00368
EI

l2
. (280)

Repeating this analysis with the linearized form of the stiffness coefficients
of the bars, we get from (278) and (279)

K = 2 × 3E5I

l
+

4EI

l
− P

2l

15
= 0 ⇒ P = 255

EI

l2
.

We find that the solution yielded by the linearized form of the stiffness
coefficients leads to an enormous error.

However, if instead of considering only the rotation coordinate in node B,
we consider the stiffness matrix corresponding to the three coordinates rep-
resented in Fig. 180-b, the results obtained using the linearized forms of the
stiffness coefficients come much closer to the exact solution. The procedure
leading to the computation of the critical load and the first buckling mode is
the same as in the case of the frame represented in Fig. 177, so it is not de-
scribed here. The critical load computed using the exact form of the stiffness
coefficients confirms the value given in (280). The linearized stiffness yields
the value Pcr = 37.453265EI

l2 . The error of this solution is approximately 1%.
The displacement vector corresponding to this load shows that instability is
caused almost exclusively by the buckling of the vertical bar: If we multiply
the displacement vector corresponding to the first buckling mode by a con-
stant factor, so that we get D2 = l

10 , we get for the rotations D1 and D3

the values −0.06035 radians (−3.4578◦) and 0.025357 radians (1.4528◦), re-
spectively. Figure 180-c shows the deformed configuration represented by this
displacement vector.

The fact that the rotation of node B plays a small role in the buckling of
the structure is confirmed by an approximate computation of the critical load
in which a vanishing rotation of node B is assumed. Under this condition,
the buckling load of the vertical bar may be computed with Euler’s formula,
considering an effective length le = l

2 , which yields the value
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Pcr =
π2EI(

l
2

)2 = 39.47842
EI

l2
.

It is the fact that this buckling mode, which has a very local character,
cannot be accurately described by a rotation coordinate in node B that leads
to the large error of the linearized solution. However, this fact does not af-
fect the accuracy of the solution yielded by the exact form of the stiffness
coefficients.

In the two examples above the geometrical component of the stiffness ma-
trix has been used to compute the critical load. The next example illustrates
the influence of the geometrical stiffness on the correct computation of the
displacements of frames with heavily compressed members. An example of
considerable practical interest is the computation of the displacements caused
by horizontal forces in frames with large compressive axial forces in their ver-
tical members. To this end let us consider the same frame that was considered
in the first example (Fig. 177), now under the action of the forces represented
in Fig. 181-a.

P

20P 20P
D1

P

20P 20P

(a) (b)

Fig. 181. Computation of the deformations caused by a horizontal load in a frame

As mentioned at the beginning of Subsect. XI.6.b, to introduce a deforma-
tion into a structure, which is represented by a given set of displacements in
chosen kinematic coordinates, a set of forces must be applied at the same co-
ordinate set. These forces are, therefore, functions of the given displacements.
In the case of a system with three degrees of freedom, like the structure rep-
resented in Fig. 181, these functions may be expressed by

F1 = F1 (D1, D2, D3)
F2 = F2 (D1, D2, D3)
F3 = F3 (D1, D2, D3) .

Conversely, a set of forces P1, P2, P3 applied at the same coordinates in-
troduces a set of displacements, D1, D2, D3, which must satisfy the conditions

F1 (D1, D2, D3) = P1

F2 (D1, D2, D3) = P2

F3 (D1, D2, D3) = P3 ,
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which represent the equilibrium conditions between internal and external
forces. In order to compute the values of D1, D2, D3 it is therefore neces-
sary to solve this system of equations, which is not linear, when the geo-
metrical stiffness is considered. One of the most effective methods for solving
non-linear systems of equations is the Newton-Raphson method. According
to this method, given a set of estimated solutions, {D1, D2, D3}i, another set
with improved approximation, {D1, D2, D3}i+1, may be computed by means
of the algorithm

⎧⎨
⎩

D1

D2

D3

⎫⎬
⎭

i+1︸ ︷︷ ︸
{D}i+1

=

⎧⎨
⎩

D1

D2

D3

⎫⎬
⎭

i︸ ︷︷ ︸
{D}i

+

⎡
⎢⎢⎢⎢⎢⎣

∂F1
∂D1

∂F1
∂D2

∂F1
∂D3

∂F2
∂D1

∂F2
∂D2

∂F2
∂D3

∂F3
∂D1

∂F3
∂D2

∂F3
∂D3

⎤
⎥⎥⎥⎥⎥⎦

−1

︸ ︷︷ ︸
[K]−1

i

⎧⎨
⎩

P1 − F1i

P2 − F2i

P3 − F3i

⎫⎬
⎭︸ ︷︷ ︸

{P−F}i

,

where F1i, F2i, F3i are the forces that must be applied at the coordinates in
order to introduce the displacements {D1, D2, D3}i. Since, for small rotations
and constant axial forces, the nodal forces are linear functions of the displace-
ments, as shown by (271) and (272,) those forces may be computed by means
of the matrix operation

⎧⎨
⎩

F1

F2

F3

⎫⎬
⎭

i︸ ︷︷ ︸
{F}i

=

⎡
⎢⎢⎢⎢⎢⎣

∂F1
∂D1

= K11
∂F1
∂D2

= K12
∂F1
∂D3

= K13

∂F2
∂D1

= K21
∂F2
∂D2

= K22
∂F2
∂D3

= K23

∂F3
∂D1

= K31
∂F3
∂D2

= K32
∂F3
∂D3

= K33

⎤
⎥⎥⎥⎥⎥⎦

i︸ ︷︷ ︸
[K]i

⎧⎨
⎩

D1

D2

D3

⎫⎬
⎭

i︸ ︷︷ ︸
{D}i

,

provided that the axial forces corresponding to the displacements {D}i are
used to compute the derivatives. Matrix [K]i coincides with the definition
of the stiffness matrix and depends on the axial forces installed in the bars.
Vector {P} has the components P1 = P and P2 = P3 = 0, since the vertical
forces are directly balanced by the axial forces in the vertical bars, and so
they do not need forces in the coordinates to be balanced.

The axial forces in the bars also depend on the displacements in the kine-
matic coordinates (Fig. 177-b). Thus, the axial force in the left vertical bar
depends on the load 20P and on the shear force at the left end of the horizon-
tal bar. This force depends on displacements D2 and D3. Applying the same
line of reasoning to the other two bars, and assuming that the displacements
may be considered as infinitesimal, we conclude that the axial forces in the
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P (N) D1 (cm) D1 (cm) D1 (cm)
(exact stiffness) (linearized stiffness) (linear analysis)

1 000 0.17373 0.17373 0.17103
2 000 0.35303 0.35301 0.34207
5 000 0.92709 0.92705 0.85507

10 000 2.0247 2.0243 1.7103
20 000 4.9645 4.9588 3.4207
30 000 9.6289 9.5960 5.1310
40 000 18.182 18.024 6.8413
50 000 39.009 38.091 8.5517
55 000 66.855 63.925 9.4068
60 000 161.26 144.31 10.262
65 000 – – 11.117

left (Nl), horizontal (Nh) and right (Nr) bars take the values given by the
expressions ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nl = −20P − K1
12D2 − K1

14D3

Nh = −P + K0
11D1 + K0

12D2

Nr = −20P + K1
32D2 + K1

34D3 ,

where K0 and K1 represent the same quantities as in the first example (Figs.
177 and 178) and are obtained from the previous iteration (i − 1). Once the
axial forces are defined, the new stiffness coefficients may be computed.

The iterative procedure may be summarized by the following scheme

{D}i →
⎧⎨
⎩

Nl, Nh, Nr → [K]i

{F}i

→ {D}i+1 = {D}i + [K]−1
i {P − F}i .

The process converges in a very small number of iterations, which depends
on the importance of the geometrical stiffness. In the following Table the re-
sults obtained for the horizontal displacement D1 (Fig. 181-b) are presented,
considering several values of P and the following alternatives for the stiff-
ness coefficients: exact form (2nd column), linearized form (3rd column) and
constant values, i.e., no geometrical stiffness (4th column)

When the geometrical stiffness is considered it is not possible to find the
displacement corresponding to the last value of P , since it is larger than
the critical load of the structure yielded by the procedure presented here
(see final comment). This load is slightly smaller than that computed in the
example without the horizontal load, which is because this load introduces a
compression in the horizontal bar and increases the axial force in the right
vertical bar. The determinant of the stiffness matrix of this structure vanishes
during the iterative process when the load exceeds the value
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Pcr = 63132N ⇒ 20Pcr = 1262640N .

This value has been computed using the exact form of the stiffness co-
efficients. If the linearized form is used instead, the value Pcr = 63804N is
obtained.

In most framed structures the displacements are relatively small, so the
influence of the deformation in the distribution of axial forces is also small. For
this reason, an insignificant error is generally introduced if the iterative proce-
dure described above is replaced by a direct computation, assuming that the
axial forces remain constant and equal to the values yielded by a linear com-
putation. This procedure reduces the non-linear problem to a sequence of two
linear problems: the usual linear computation of the axial forces disregarding
the effect of the geometrical stiffness, followed by another linear computation,
in which the displacements are computed by means of a corrected stiffness
matrix, where the influence of the axial forces (computed in the first step) in
the stiffness is taken into consideration. An even simpler alternative is to take
the axial forces obtained by locking the kinematic coordinates, when the bars
are considered as axially non-deformable.

Applying the latter alternative to the present problem, we have Nl =
−20P , Nr = −20P and Nh = −P . Determining the stiffness matrix which
corresponds to these axial forces, we get the following values of displacement
D1

D1 (cm) D1 (cm)
P (N) (exact stiffness) (linearized stiffness)

1 000 0.17373 0.17373
2 000 0.35303 0.35303
5 000 0.92719 0.92714

10 000 2.0252 2.0247
20 000 4.9672 4.9614
30 000 9.6389 9.6058
40 000 18.219 18.059
50 000 39.192 38.265
55 000 67.508 64.516
60 000 170.04 150.65

We find that, with exception of the last value, the differences are small
in relation to the results obtained by means of the iterative method. The
difference in the last value is a consequence of the size of the displacement.
This value, however, is no longer accurate, since the entire theory is based
on the assumption of small rotations (269), which is no longer acceptable for
P = 60 000N . An accurate computation, carried out by means of an algorithm
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which may be applied irrespective of rotation size [14], yields the results shown
in the last column of the following table

P (N) D1 (cm) D1 (cm)
(small rotations) (no rotation limit)

1 000 0.17373 0.17373
2 000 0.35303 0.35303
5 000 0.92709 0.92714

10 000 2.0247 2.0249
20 000 4.9645 4.9652
30 000 9.6289 9.6293
40 000 18.182 18.165
50 000 39.009 38.636
55 000 66.855 64.229
60 000 161.26 123.31
65 000 – 215.35

The second column of this table contains the results yielded by the above
described iterative method, considering the exact stiffness for small rotations.
In the computation without limiting the size of the rotations, the bars have
been considered as axially deformable with a cross-section area of 2 000 cm2.
Figure 182 shows the relations between the load P and the displacement

P

Pcr

P1

87.717 cm D1

exact solution (iterative computation
with finite rotations) [14])

computation with material and geo-
metrical stiffness (small rotations)

linear solution

Fig. 182. Relation between P and D1 in the structure represented in Fig. 181
(P1 = 57 500 N ≈ 0.9 Pcr)
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87.717 cm

Fig. 183. Deformed configurations of the structure represented in Fig. 181, corre-
sponding to the solution represented in Fig. 182, for P = 57 500 N

D1 that have been obtained by the three main types of analysis: linear (only
material stiffness); with material and geometrical stiffness and small rotations
(the analysis described here), and the analysis without limitation of the size of
displacements and rotations [14]. Figure 183 gives the corresponding deformed
configurations.

Comparing the results yielded by the methods based on both the exact
and the linearized stiffness for small rotations, with the results presented in
the third column of the last table, we conclude that all of them give good
results until about 90% of the critical load of the structure, (Pcr, Fig.182).
This is the load that leads to a vanishing determinant of the stiffness matrix,
which is obtained assuming small rotations. Actually, this frame supports
higher loads without instability, since the tangent stiffness matrix obtained
without restriction on the size of the rotations does not become singular, even
for substantially higher values of P . This is the reason why it was possible
to include the displacement corresponding to P = 65 000N in the last table
(215.35 cm).




