
4 Theory of and Experimental Methods for 
the Acoustic Characterization of Wood

This chapter highlights the potential uses of vibrational methods in ultrasonic 
and audible frequency range for the characterization of mechanical behavior of 
solids in general and of wood-based composites in particular. The analysis of me-
chanical wave propagation in media of various complexities enables us to focus 
our attention on the theoretical basis of the techniques used for the measurement 
of elastic properties such as elastic moduli, Poisson’s ratios, tensile or shear yield 
strengths, etc. The behavior of an acoustically vibrating body has been analyzed 
in fundamental reference books (Brillouin and Prodi 1956; Harris and Crede 
1961; Hearmon 1961; Snowdon 1968; Truell et al. 1969; Musgrave 1970; Auld 1973; 
Achenbach 1973; Green 1973; Stephens and Levinthall 1974; Edmonds 1981; Rose 
1999; Royer and Dieulesaint 2000).

The elastic properties of solids can be defined by the generalized Hooke’s law 
relating the volume average of stress [σij] to the volume average of the strains [εkl] 
by the elastic constants [Cijkl] in the form:

(4.1)

or

(4.2)

where [Cijkl] are termed elastic stiffnesses and [Sijkl] the elastic compliances, and 
i, j, k, or l correspond to 1, 2, 3, or 4. Stiffnesses and compliances are fourth-rank 
tensors. In his book, Hearmon (1961) noted that “the use of the symbols for com-
pliances [S] and [C] for stiffness is now almost invariably followed.” This is the 
notation that will be used hereafter.

[Cijkl] could be written, following the general convention on matrix notation, 
as [Cij], in terms of two-suffix stiffnesses, or symbolically as [C]. Similarly, [Sijkl] 
could be written as [Sij] or [S]. In many applications it is much simpler to write 
Eqs. (4.1) and (4.2) in the following condensed form:

(4.2’)

and

(4.2’’)

It is apparent that the stiffness matrix [C] is the inverse of the compliance matrix 
[S], as [C]=[S]−1 and [S]=[C]−1.

Experimentally, the terms of the [Cij] matrix could be determined from ultra-
sonic measurements, whereas those of the [Sij] matrix could be determined from 
static tests.

[σ ij] = [C ijkl] · [ε kl]

[ε kl] = [S ijkl] · [σ ij]

[σ ] = [C ] · [ε ]

[ε ] = [S ] · [σ ]
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From Eq. (4.1) it can be deduced that since strain is dimensionless the stiff-
nesses have the same dimensions as the stresses [the units used today are New-
tons per square meter (N/m2) or megapascals (MPa)]. As an example let us take 
the case of spruce in longitudinal direction, for which 
C11=150×108 N/m2=15,000 MPa=15 GPa.

For solids of different symmetries such as isotropic, transverse isotropic, or 
orthotropic, the stiffness matrix can be turned into a compliance matrix, fol-
lowing a specific procedure (Bodig and Jayne 1982). Symmetry features of solids 
are introduced by the material microstructural elements, i.e., orientation of the 
fibers.

4.1 Elastic Symmetry of Propagation Media

Because this chapter aims to provide the theoretical basis needed to understand 
wave propagation phenomena in solids, it was decided to analyze, first, the elastic 
symmetry of media of various complexity. For solid wood and for wood-based 
composites, orthotropic and transverse isotropic symmetries are most frequently 
observed. For simplicity, we will start by analyzing the isotropic solid. The solids 
are supposed to be homogeneous.

4.1.1 Isotropic Solids

The simplest elastic symmetry is that of an isotropic solid, with only two inde-
pendent constants, λ and µ. The relationships between those constants are shown 
as follows:

(4.3)

(4.4)

(4.5)

where E is Young’s modulus (which is the ratio of longitudinal stress to longitu-
dinal strain in the same direction of a rod), µ is the shear modulus (which is the 
ratio of the deviatoric stress to the deviatoric strain), V is the Poisson’s ratio (the 
ratio of the transverse contraction of a sample to its longitudinal extension, under 
tensile stress), and K is the bulk modulus, with λ and µ the Lamé coefficients.

For an isotropic solid the stiffnesses are:

(4.6)

(4.7)

(4.8)

µ =   
E

  
2(1+v)

λ =      
E·v

  
(1+v)·(1−2v)

K =   
E    

= λ + 
2

 µ
  

3(1−2v)    3

C11 = C22 = C33 = λ + 2µ

C12 = C23 = C13 = λ

C44 = C55 = C66 = µ



The velocity of propagation of a bulk longitudinal wave in an infinite isotropic 
solid, initially assumed to be stress-free, is related to the elastic constants as:

(4.9)

where ρ is the density, and λ and µ are the two Lamé constants.
The velocity of propagation of the transverse wave is related to the elastic con-

stants by 
.

4.1.2 Anisotropic Solids

The origin of anisotropy, perceived as the variation in material response with 
direction of the applied stress, lies in the preferred organization of the internal 
structure of the material. The structure might be, for example, the atomic array 
in monocrystals, the morphological texture in polycrystalline aggregates such as 
metals, rocks, sand, etc., the orientation of fibers in composites and human tis-
sue, or the orientation of layers in laminated plastics, plywood, etc.

One instance of complex elastic symmetry is that of an orthotropic solid, be-
cause constants are influenced by three mutually perpendicular planes of elastic 
symmetry. The corresponding stiffness matrix contains nine independent con-
stants: six diagonal terms (C11, C22, C33, C44, C55, C66) and three off-diagonal terms 
(C12, C13, C23), as can be seen from Eq. (4.11). For transverse isotropy, the material 
may possess an axis of symmetry in the sense that all directions at right angles to 
this axis are equivalent. The corresponding stiffness matrix (Eq. 4.12) contains 
five independent constants (C11, C22, C55), four diagonal terms and two off-diago-
nal terms (C12, C13). It can be shown that the transverse isotropy is a particular 
case of an orthotropic solid.

The terms of the independent elastic constants are given below for the solids 
exhibiting different elastic symmetry.

Monoclinic material: 21 independent terms, and Cij=Cji:

(4.10)

Orthotropic material: three symmetry axes, three symmetry planes, and nine 
independent terms of the stiffness matrix:

(4.11)
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VL = √ E11
  = √ λ + 2µ

      
ρ    ρ

VT = √ µ 

    
ρ

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
 0 0 0 C44 0 0
 0 0 0 0 C55 0
 0 0 0 0 0 C66
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Transverse isotropic material:

(4.12)

Isotropic material: two independent constants:

(4.13)

In summary, the number of constants for various types of anisotropic materials 
is 21 for monoclinic materials, 13 for triclinic materials, 9 for orthotropic ma-
terials, 5 for hexagonal or transversely isotropic materials, and 2 for isotropic 
materials.

The following is a brief discussion of the relationships between the engineer-
ing elastic parameters and the terms of stiffness and compliance matrices for 
solid wood, considered as an orthotropic material, and for composites of wood-
based materials (plywood, flakeboards, fiberboards, etc.) expected to exhibit 
transverse isotropy. The discussion is based on the data presented in several fun-
damental references (Love 1944; Hearmon 1961; Green and Zerna 1968; Jayne 
1972; Bodig and Jayne 1982; Guitard 1987).
First we consider the orthotropic symmetry of solid wood. The terms of the com-
pliance matrix are given by Eq. (4.14):

(4.14)

The physical significance of the compliances is as follows:
− S11 S22 S33 relate an extensional stress to an extensional strain, both in the same 

direction. For the particular symmetry of solid wood this relation gives the 
Young’s moduli EL, ER, and ET.

− S12 S13 S23 relate an extensional strain to a perpendicular extensional stress. In 
this way the six Poisson’s ratios can be calculated.

− S44 S55 S66 relate a shear strain to a shear stress in the same plane,. and are the 
inverse of the terms C44 C55 C66, corresponding to planes 23, 13, and 12.

 C11 C12 C13 0 0 0
   C11 C13 0 0 0
     C33 0 0 0
       C44 0 0
         C44 0
 symmetric         (C11 − C12)/2

 C11 C12 C12 0 0 0
   C11 C12 0 0 0
     C11 0 0 0
       (C11 − C12)/2 0 0
         (C11 − C12)/2 0
 symmetric         (C11 − C12)/2

 S11 S12 S13 0 0 0
 S21 S22 S23 0 0 0
 S31 S32 S33 0 0 0
       S44 0 0
         S55 0
 symmetric         S66



The relationships between the stiffness terms and the compliance terms (Bodig 
and Jayne 1982) for the orthotropic solid are:

(4.15)

where

(4.16)

The terms of the compliance matrix are similarly related to the terms of the stiff-
ness matrix, with the terms S replaced by the terms C.

When the axes are labeled 1, 2, 3 engineering constants are related to the com-
pliances in the following way:

(4.17)
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Finally, it is worth recalling the relationships between the terms of stiffness ma-
trix and the technical constants:

(4.18)

and

(4.18’)

Accurate measurement of the set of orthotropic constants is not an easy task. 
Among these constants, Poisson's ratios νij are perhaps the most difficult to mea-
sure. For a more thorough understanding of the problem, the realistic boundar-
ies of Poisson’s ratios have also to be considered. The reasons that underlie this 
observation are described below, first by analyzing the isotropic solids and sec-
ond by analyzing the orthotropic solids.

For an isotropic solid, the relationships (Green and Zerna 1968) between the 
Poisson’s ratios (defined as the quotient “lateral constriction/longitudinal exten-
sion”) for a specimen under tension and the elastic constants are:
− for the bulk modulus K

(4.19)

− for the shear modulus

(4.20)

where ν is the Poisson’s ratio, E is the Young’s modulus, and G is the shear modu-
lus, also called the Coulomb modulus.

The strain energy function is positive definite for an homogeneous isotro-
pic elastic continuum. This means that K>0 and G>0. Consequently E>0 and 
(1−2ν)>0 or (1−ν)>0. The boundary conditions for Poisson’s ratios are:

(4.21)

C11 = (1 − v23 · v32) · [E2 · E3 · S]–1

C22 = (1 − v13 · v13) · [E1 · E3 · S]–1

C33 = (1 − v13 · v12) · [E1 · E2 · S]–1

C12 = (v21 + v23 · v31) · [E2 · E3 · S]–1

C13 = (v13 + v12 · v23) · [E2 · E1 · S]–1

C23 = (v32 + v31 · v12) · [E1 · E3 · S]–1

C44 = G23; C55 = G13; C66 = G12

S = [1 − v12 · v21 − v23 · v32 − v13 · v31 − 2v21 · v32 · v31] · (E1 · E2 · E3)−1

− 1 < v < ½

G = 
E

 (1 + v)
   

2

− 1 < v < ½



For an orthotropic solid, the question is more complex due to the six Poisson’s 
ratios, corresponding to the three symmetry planes. Bearing in mind that the 
strain energy function W must be defined as positive, we form:

(4.22)

and similarly

(4.23)

Consequently, Cijkl >0 and Sijkl >0, meaning that all the terms of the stiffness 
and compliance matrices must be positive, or in other words:

(4.24)

(4.24’)

For a real material, the Young's moduli and the shear moduli must also be posi-
tive definite as:

(4.25)

Considering now the relationships between the terms of the [C] and [S] matrices 
and the engineering constants, we can deduce the boundary conditions for all 
Poisson’s ratios of an orthotropic solid. From Equation (4.18) we can establish the 
simultaneous relationships between all six Poisson’s numbers:

(4.26)

The relationships between two Poisson’s ratios, corresponding to a well-defined 
symmetry plane, are deduced from Eq. (4.18) when the terms C11, C22, and C33 are 
considered as

(4.27)

From these equation we recognize that the corresponding in-plane Poisson’s ra-
tios νrq and νqr could both have the same sign (+) or (−). On the other hand, the 
relationship between Poisson’s ratios and Young’s moduli is −νrq/Er=−νqr×/Eq, 
and

(4.28)

However, for anisotropic solids it is possible to have Er>Eq and therefore νqr>1.

Elastic Symmetry of Propagation Media   45

W = 
1

 · Cijkl · ε ij · ε kl · > 0
    

2

W = 
1

 · Sijkl · σ ij · σ kl · > 0
    

2

C11, C22, C33, C44, C55, C66, C12, C13, C23 > 0

S11, S22, S33, S44, S55, S66, S12, S13, S23 > 0

E1, E2, E3, G12, G13, G23 > 0

[1 − v12 · v21 − v23 · v32 − v13 · v31 − 2v21 · v32 · v31] > 0

1 − v12 · v21 > 0; 1 − v13 · v31 > 0; 1 − v32 · v23 > 0; 

vrq = vrq · Eq/Er
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Indeed, negative values of Poisson’s ratios or values greater than 1 may con-
tradict our intuition if our main experience is dealing with isotropic solids, but 
such data have been reported for composite materials (Jones 1975) and for foam 
material (Lipsett and Beltzer 1988), cellular materials (Gibson and Ashby 1988), 
crystals, wood (McIntyre and Woodhouse 1986), and wood-based composites 
(Bucur and Kazemi-Najafi 2002).

In their excellent review of methods used to measure mechanical properties, 
McIntyre and Woodhouse (1986) suggested that idealized two-dimensional hon-
eycomb patterns of transverse wood structure could produce a Poisson’s ratio νRT 
in the range: −1 to +∞.

Referring to the analysis above, the assumption of orthotropy suggests that nine 
independent stiffnesses or compliances characterize the elastic behavior of solid 
wood analyzed in a rectangular coordinate system. As a consequence, we find 12 

Table 4.1A. Engineering parameters of solid wood: Young’s moduli and shear moduli. (Hearmon 
1948)

Species Density Young’s moduli Shear moduli
 (kg/m3) (108N/m2) (108N/m2)

  E1=EL E2=ER E3=ET G44=GRT G55=GLT G66=GLR

Balsa 200 6.3 3.0 1.1 0.3 2.0 3.1
Yellow polar 380 97 8.9 4.1 1.1 6.7 7.2
Birch 620 163 11.1 6.2 1.9 9.2 11.8
Oak 660 53 21.4 9.7 3.9 7.6 12.9
Ash 670 158 15.1 8.0 2.7 8.9 13.4
Beech 750 137 22.4 11.4 4.6 10.6 16.1
Sitka spruce 390 116 9.0 5.0 0.39 7.2 7.5
Spruce 440 159 6.9 3.9 0.36 7.7 7.5
Douglas fir 450 157 10.6 7.8 0.88 8.8 8.8
Fir 450 127 9.3 4.8 1.40 7.5 9.3
Scotch pine 550 163 11.0 5.7 0.66 6.8 11.6

Table 4.1B. Engineering parameters of solid wood: Poisson’s ratios. (Hearmon 1948)

Species Density Poisson’s ratios
 (kg/m3) 

 ν12=νLR ν21=νRL ν13=νLT ν31=νTL ν23=νRT ν32=νTR

Balsa 200 0.23 0.018 0.49 0.009 0.66 0.24
Yellow polar 380 0.32 0.030 0.39 0.019 0.70 0.33
Birch 620 0.49 0.034 0.43 0.018 0.78 0.38
Oak 660 0.33 0.130 0.50 0.086 0.64 0.30
Ash 670 0.46 0.051 0.51 0.030 0.71 0.36
Beech 750 0.45 0.073 0.51 0.044 0.75 0.36
Sitka spruce 390 0.37 0.029 0.47 0.020 0.43 0.25
Spruce 440 0.44 0.028 0.38 0.013 0.47 0.25
Douglas fir 450 0.29 0.020 0.45 0.022 0.39 0.37
Fir 450 0.45 0.030 0.50 0.020 0.60 0.35
Scotch pine 550 0.42 0.038 0.51 0.015 0.68 0.31



engineering parameters: three Young's moduli, three shear moduli, and six Pois-
son's ratios. Table 4.1 gives some values of solid wood engineering parameters.

For a very wide range of European, American, and tropical species, Bodig and 
Goodmann (1973) as well as Guitard (1987) and Guitard and Geneveaux (1988) 
deduced statistical regression models able to predict the terms of the compliance 
matrix as a function of density. These data may be used by modelers in finite 
element calculations, or with nondestructively tested lumber when the elastic-
ity moduli are required. In engineering practice, however, the elastic constants 
of solid wood could be used for accurate estimation of the elastic properties of 
plywood. Gerhards (1987) defined a homogeneous “equivalent orthotropic mate-
rial” that enables conventional analysis methods to be applied for elastic charac-
terization of plywood. Gerhard's approach is deduced from the “strain energy” 
method. The properties of the proposed material are compared with those of an 
equivalent material deduced from the “law of mixtures” proposed previously by 
Bodig and Jayne (1982). The values of Young's moduli and shear moduli for the 
“equivalent plywood” and for solid wood are given in Table 4.2. Plywood exhibits 
less anisotropic mechanical properties than solid wood. Young's moduli E2 and 
E3 as well as shear modulus G23 for plywood are strongly increased compared to 
the same properties of solid wood.

Another interesting example of an orthotropic wood composite is that of ma-
chine-made paper. Mann et al. (1980) describe the measurement of nine elastic con-
stants using a transmission technique on a heavy milk carton stock (780 kg/m3). 
The engineering constants are presented in Table 4.3. These constants indicate that 
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Table 4.2. Elastic constants (×108 N/m2) of three ply “equivalent material” of birch and sitka spruce 
compared with those of solid wood. (Gerhards 1987, with permission)

Specimens Dynamic moduli (108N/m2)

 E1 E2 E3 G44 G55 G66

Birch three plywood 96.6 54.1 27.0 6.04 8.78 10.6
 95.1 53.3 22.4 6.04 8.78 10.6

Sitka spruce three plywood 79.6 42.3 9.9 0.57 10.6 7.2
 79.0 42.0 9.0 0.57 10.6 7.2

Birch solid wood 163 11 6.2 1.9 11.8 9.1

Sitka spruce solid wood 116 9.0 5.0 0.4 7.5 7.2

Table 4.3. Elastic constants of machine-made heavy bleached kraft milk carton stock. (Data from 
Baum et al. 1981)

Young’s moduli Shear moduli
(108N/m2) (108N/m2)

E1 E2 E3 G44 G55 G66

74.4 34.7 0.39 0.99 1.37 20.4

Poisson’s ratios

ν12 ν21 ν13 ν31 ν23 ν32

0.15 0.32 0.008 1.52 0.021 1.84



48   Theory of and Experimental Methods for the Acoustic Characterization of Wood

the paperboard is highly anisotropic. The Poisson’s ratios corresponding to the 
planes that include axis 3, the axis normal to the thickness, are remarkably high, 
undoubtedly tied-up with the misalignment of fibers in the plane of the sheet.

For wood composites exhibiting plane isotropy, also called transverse anisot-
ropy (seven constants), or for some tropical wood species, the terms of the stiff-
ness matrix can be reduced, bearing in mind that:

(4.29)

For this solid having transverse anisotropy (Vinh 1982), the corresponding re-
lationships between the terms of the stiffness matrix and the engineering con-
stants are:

(4.30)

The corresponding relationships between the terms of the compliance matrix and 
the engineering terms are given by Eq. (4.31), if E1=E2=E; ν12=ν21=ν; G12=G+E/
2(1+ν):

(4.31)

C11 = C22; and C66 = 
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Note that seven is the total number of independent stiffnesses or compliances 
derived from the particular form of Hooke’s law for plane isotropic solids. Cor-
respondingly, the number of engineering elastic parameters is nine, i.e., two 
Young’s moduli, two shear moduli, and five Poisson’s ratios. Using transverse 
isotropic hypothesis for the structure of a standing tree, Archer (1986) presented 
a procedure for growth strain estimation. The same symmetry was used by Baum 
and Bornhoeft (1979) for the estimation of Poisson’s ratios in paper.

4.2 Wave Propagation in Anisotropic Media

The propagation of waves in isotropic and anisotropic solids has been discussed 
in many reference books (Angot 1952; Hearmon 1961; Fedorov 1968; Musgrave 
1970; Auld 1973; Green 1973; Dieulesaint and Royer 1974; Alippi and Mayer 1987; 
Rose 1999).

Let us consider first the case of an isotropic solid in which bulk waves are 
propagating. When the particle motion is along the propagation direction, we 
have a longitudinal wave. When the particle motion is perpendicular to the 
propagation direction, we have a shear wave or a transverse wave. In anisotropic 
materials both longitudinal and transverse waves can propagate either along the 
principal symmetry directions or out of them. Figure 4.1 shows the case of an 
orthotropic solid. Surface waves can propagate in any direction on any isotropic 
or anisotropic substrate, and can be used for the characterization of elastically 
anisotropic solids having piezoelectric properties as well as the characterization 
of layered solids (Edmonds 1981).

In this section some theoretical considerations will be presented in relation 
to the propagation phenomena of ultrasonic waves in orthotropic solids. This 
symmetry was chosen because of the interest in the Cartesian orthotropic wood 
structure model. As can be seen in this chapter, the most rapid way to obtain 
stiffnesses is by the ultrasonic velocity method.

The notations used in this chapter are as follows:
[σ] =stress tensor
[ε] =strain tensor
ρ =density
[Cijkl] =stiffness tensor
[Sijkl] =compliance tensor
[Γij] =Christoffel tensor
u =displacement vector
n =propagation vector
Ui =components of the amplitude of the displacement vector
P =polarization vector
Pm =components of the unit vector in the direction of the displacement or

   polarization
km =wave vector component along the xm direction
k =wave vector
xm =position vector
ω =angular frequency
nk =direction cosines
α =angle of unit wave vector from symmetry direction
β =displacement angle
δik =Kronecker tensor; if i=k then δik=1 and if i≠k, δik=0
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Dij =flexural rigidities in plates
νij =Poisson’s ratios
t =time
vphase =V=phase velocity
v =group velocity
a1...a4 =coefficients depending on the supported conditions of a plate
A =amplitude

4.2.1 Propagation of Ultrasonic Bulk Waves in Orthotropic Media

The generalized Hook’s law can be written as we have seen previously (Eq. 4.1):

(4.32)

or in the form [σ]=[C][ε], where [σij] is the stress tensor and the stress is in direc-
tion i acting on the surface, with its normal in the direction j. The elasticity tensor 

Fig. 4.1. Ultrasonic  velocities in an orthotropic solid. V11=VLL, V22=VRR, V33=VTT, V44=VRT, V55=VLT, 
V66=VLR

σij = Cijkl · εkl



[Cijkl], also written as [C], is a fourth-order tensor with 81 components which de-
scribes the proportionality between the stress tensor and strain or deformation 
tensor, which are both second-rank tensors.

The strain tensor [εkl] of small deformation of the material under stress related 
linearly to the displacement u as:

(4.33)

The symmetry of the stress and strain tensors imposes the following restrictions 
on the stiffness tensor [C]: Cijkl=Cjikl=Cijlk=Cjilk. It also reduces the number of 
independent components from 81 to 21.

The elastodynamic equations for a continuum with no forces acting on it are:

(4.34)

By combining the before mentioned equations, the equation of wave can be writ-
ten as:

(4.35)

If we assume a plane harmonic wave with the displacement u propagating in the 
direction of the unit vector n, normal to the wavefront, we have:

(4.36)

The unit wave vector kj can be written as 

For the amplitude we can write Ai = APm where Pm are the components of the 
unit vector in the direction of displacement (polarization). After substitution, the 
equation of motion takes the form:

(4.37)

By introducing the Kelvin-Christoffel tensor, Γ, we can write

and

(4.38)

∂σ ij
∂� j

∂ 2u i
∂t 2

= ρ
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 2

 ∂ul
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⎛       ⎞
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ui = Ai · exp {i(kj ·xj − ωt)}

(Γik − δik  ρ  v2
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Γik = Cijkl  nj  nl
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These are the Christoffel’s equations valid for the most general kind of anisotro-
pic solids.

Christoffel’s equations supply the relations between the elastic constants 
Cijkl and the phase velocity vphase=V of ultrasonic waves propagating in the me-
dium.

The coefficients of the tensor 
 Γik=

are given in the following table, for the general case of stiffness tensor with 21 
terms (Dieulesaint and Royer 1974), for which Γ12=Γ21, Γ13=Γ31, and Γ23=Γ32:

Γij Terms of stiffness tensor

 Terms with n1
2n2

2n3
2 Terms with 2n2n3 Terms with 2n1n3 Terms with 2n1n2

Γ11 n1
2C11, n2

2C66, n3
2C55 C56  C15  C16

Γ22 n1
2C66, n2

2C22, n3
2C44 C24  C46  C26

Γ33 n1
2C55, n2

2C44, n3
2C33 C34  C35  C45

Γ12 n1
2C16, n2

2C26, n3
2C45 1/2(C25+C46) 1/2(C14+C56)  1/2(C12+C66)

Γ13 n1
2C15, n2

2C46, n3
2C35 1/2(C36+C45) 1/2(C13+C55)  1/2(C14+C56)

Γ23 n1
2C56, n2

2C24, n3
2C34 1/2(C23+C44) 1/2(C36+C45) 1/2(C25+C46)

Example: in the general case we have for Γ11=n1
2C11+n2

2C66+n3
2C55+2n2n3C56+

2n1n3C15+2n1n2C16.
For an orthotropic solid, with nine terms of stiffness tensor [C] and three elas-

tic symmetry planes we have:
− in symmetry plane 12: n1=cos α; n2=sin α; n3=0 and the stiffnesses C11; C22; 

C66; Γ11=C11n1
2+C66n2

2; Γ22=C22n2
2+C66n1

2; Γ12=(C12+C66)n1n2;
− in symmetry plane 13: n1=cos α; n3=sin α; n2=0 and the stiffnesses C11; C33; 

C55;Γ11=C11n1
2+C55n3

2; Γ33=C33n3
2+C55n1

2; Γ23=(C13+C55)n1n3;
− in symmetry plane 23: n2=cos α; n3=sin α; n1=0 and the stiffnesses C22; C33; 

C44; Γ22=C22n2
2+C44n3

2; Γ33=C33n3
2+C44n2

2; Γ23=(C23+C44)n2n3;

4.2.1.1 Velocities and Stiffnesses, the Eigenvalues of Christoffel’s Equations

The eigenvalues and the eigenvectors of Christoffel’s equations can be calculated 
for specific anisotropic materials. The nonzero values of the displacements − po-
larization − are obtained as characteristic eigenvectors corresponding with the 
characteristic eigenvalues which are the roots of Eq. (4.37).

(4.40)

This equation is a cubic polynomial in phase velocity squared. From it the first 
issue addressed is the determination of the elastic constants (Γij) of a given mate-
rial, when the phase velocity is known. This equation forms a set of simultaneous 
equations in pm (p1, p2, p3), or for a unique solution to those we have to fulfill the 
condition of Eq. (4.41):

 Γ11  Γ12 Γ13

 Γ21 Γ22  Γ23

 Γ31 Γ32 Γ33 

 Γ11 − ρ · V 2 Γ12 Γ13

 Γ21 Γ22 − ρ · V 2 Γ23

 Γ31 Γ32 Γ33 − ρ · V 2

p1

p2

p3

= 0



(4.41)

If this equation is written for wave propagation along the symmetry axes for an 
orthotropic solid, we obtain three solutions:

(4.42)

These solutions show that along every axis it is possible to have three types of 
waves, i.e., one longitudinal and two transverse, as can be seen from the follow-
ing equations (Eq. 4.43):

(4.43)

Such solutions enable us to calculate the six diagonal terms of stiffness matrix [C] 
by a relation which may be presented in the following general form:

(4.44)

The three off-diagonal stiffness components can be calculated when the propaga-
tion is out of the principal axes of symmetry of the solid as, for example, in plane 
12:

(4.45)

or in other words,

(4.46)

where Vα depends on the angle of propagation α, out of the principal direction of 
quasi-longitudinal or quasi-shear bulk waves, in infinite solids.

By permutations of indices we obtain the corresponding expression for C13 and 
C23. Details of the calculation are given in Table 4.4.

If we admit that the matrix [C] >0 and consequently Cij >0, then for the prop-
agation angle α, considered as 0<α<π/2 or π<α<3π/2, the expression under 
square root (Eq. 4.46) must be considered with the sign (+). For other angles the 
expression under the square root must be taken with the sign (−)
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 Γ11 − ρ · V 2 0 0
 0 Γ22 − ρ · V 2 0
 0 0 Γ33 − ρ · V 2

= 0

 Γ11 − ρ · V 2 Γ12 Γ13

 Γ21 Γ22 − ρ · V 2 Γ23

 Γ31 Γ32 Γ33 − ρ · V 2
= 0

Γ11 − ρ · V 2 =; ρ · V 2 = C11, corresponding to a longitudinal wave

Γ22 − ρ · V 2 = 0; ρ · V 2 = C66, corresponding to a fast shear wave

Γ33 − ρ · V 2 = 0; ρ · V 2 = C55, corresponding to a slow shear wave

Cii − ρ · V 2 where i = 1, 2, 3, ....6

 Γ11 − ρ · V 2 Γ12 0
 Γ21 Γ22 − ρ · V 2 0
 0 0 Γ33 − ρ · V 2

= 0

(C12 + C66)n1n2 = ± [(C11n2
1 + C66n2

2  − ρ · Vα
2) (C66n2

1 + C22n2
2 − ρ · Vα

2)]½
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In the interests of clarity, for the calculation of the off-diagonal terms of the 
stiffness matrix C12, C13, and C23 we insist on having the value of the velocity of a 
quasi-longitudinal or quasi-shear wave, or both of them. It should also be noted 
that those values are dependent on the propagation vector and consequently on 
the orientation of the specimen (angle α).

It is well known that the physical properties of wood are strongly dependent 
on the orientation of reference coordinates or, in other words, they are dependent 
on the angle α mentioned before. This directional dependency of wood constants 
renders conventional averaging techniques inapplicable when measurements are 
taken with specimens at different angles. For this reason Chapter 5 provides ra-
tional procedures for data averaging (or optimization) of directionally depen-
dent measurements.

Having now obtained optimized values for all nine terms of the stiffness ma-
trix [C], the calculation of engineering constants − Young’s moduli and Poisson’s 
ratios − can easily be carried out (Eq. 4.18). The matrix [C] is inverted to obtain 
the compliance terms of [S], and subsequently Young’s moduli and Poisson’s ra-
tios are determined using simple relations, as we have seen previously (Eq. 4.17).

The values of the [C] matrix, when an optimization procedure for off-diago-
nal terms was used (see Chap. 5), could be employed for the calculation of the 
characteristic velocity surfaces or its inverse, slowness (1/V) surfaces. The velocity 
surface is the locus of the radius vector, which has a length proportional to the 
velocity in the direction of the vector. The slowness surface is formed with the 

Table 4.4. Propagation of bulk waves in an orthotropic solid. L Longitudinal wave; T transverse 
wave; QL quasi-longitudinal wave ; QT quasi-transverse wave; bold indicates that for ±, one takes + 
for the calculation of the QL wave velocity and − for the calculation of the QT wave velocity

Propagation Wave Polarization Wave Velocity and
direction Normal vector Type stiffnesses

Propagation along principal directions of elastic symmetry

Axis X1 n1=1 X1 L V11
2×ρ=C11

 n2=0 X2 T V66
2×ρ=C66

 n3=0 X3 T V55
2×ρ=C55

Axis X2 n1=0 X1 T V66
2×ρ=C66

 n2=1 X2 L V22
2×ρ=C22

 n3=0 X3 T V44
2×ρ=C44

Axis X3 n1=0 X1 T V55
2×ρ=C55

 n2=0 X2 T V44
2×ρ=C44

 n3=1 X3 L V33
2×ρ=C33

Propagation out of principal directions

Plane: X1 X2 n1, n2 p1/p2=Γ12/(ρV2−Γ11)=(ρV2−Γ22)/Γ12 QL, QT 2ρV2
QL, QT=

    (Γ11+Γ22)±[(Γ11−Γ22)2+4Γ12
2]½

 n3=0 X3 T ρVT
2=C55 n1

2+C44 n2
2

Plane: X1 X3 n1, n3 p1/p3=Γ13/(ρV2−Γ11)=(ρV2−Γ33)/Γ13 QL, QT 2ρV2
QL, QT=

    (Γ11+Γ33)±[(Γ11−Γ33)2+4Γ13
2]½

 n2=0 X2 T ρVT
2=C66 n1

2+C44 n2
2

Plane: X2 X3 n2, n3 p1/p3=Γ23/(ρV2−Γ22)=(ρV2−Γ33)/Γ13 QL, QT 2ρV2
QL, QT=

    (Γ22+Γ33)±[(Γ22−Γ33)2+4Γ23
2]½

 n1=0 X1 T ρVT
2=C55 n1

2+C66 n2
2



radius proportional to (1/V). The normal to the slowness surface coincides with 
the direction of the flux energy. The wave surface is the polar reciprocal of the 
slowness surface. For isotropic materials both the slowness surface and the wave 
surface are spheres.

The velocity surface is known to be formed by the intersection of three sepa-
rate surfaces (sheets) (Musgrave 1970). These are named quasi-longitudinal (QL), 
quasi-transverse (also called quasi-shear and fast shear wave) (QT), and trans-
verse (also called slow shear wave) (T), and they are calculated using the corre-
sponding velocities.

As an example let us consider them in plane 12 of an orthotropic solid, with the 
following equations (Eq. 4.47):

(4.47)

Figure 4.2 shows the velocity surface of an orthotropic solid (beech). These curves 
help to establish the discrepancies between the theoretical and experimental val-
ues of velocities and to quantify the anisotropy of materials.

Musgrave (1970) demonstrated that wave propagation in any medium can be 
represented by the velocity surface, the slowness surface (the inverse of veloc-
ity), and the wave surface. Figure 4.3 shows, for historic interest, the slowness 
surface and wave surface of solids with orthorhombic symmetry (uranium and 
spruce). Several intersection points can be observed on the slowness surface be-
tween sheets, demonstrating the mode conversion phenomena. To identify the 
displacement vectors, the conditions of cusps must be studied on the wave sur-
face. The cusps are associated with the departure of the slowness surface from an 
elliptical shape.

Moreover, the flux energy in anisotropic media deviates from the wave nor-
mal. Figure 4.4 gives an example of energy flux deviation in transversely isotro-
pic graphite fibers (Kriz and Stinchcomb 1979). The deviation of energy flux from 
the wave normal can generate phenomena of conical refraction of waves.

Ultrasonic energy propagation through wood was studied by Berndt et al. 
(2000) and Bucur and Berndt (2001). In wood, as in other anisotropic materials, 
the group velocity vector generally differs from the phase velocity vector. The 
group velocity vector is normal to the slowness surface of a wave mode (Musgrave 
1970; Auld 1973). While the propagation vectors of the three modes (QL, QT, and 
T) are identical (at the angle α), the energy flux vectors depend on the mode. 
The angle of energy flux deviation can be calculated and verified experimentally, 
by holding the sending transducer stationary while scanning with the receiv-
ing transducer for the maximum energy for each mode, keeping the transducer 
axes parallel. The angle of flux deviation can be calculated from the lateral beam 
offset and the sample thickness, using simple trigonometry (Berndt et al. 2000). 
Figure 4.5 shows the flux deviation in QL and QT modes in the LT plane for oak 
and Douglas fir. The choice is very illustrative because of the high anisotropy in 
elastic properties between the L and T directions. Wave behavior in this plane is 
also important in the application of ultrasonics in wood evaluation, because this 
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2ρV 2 
QL

 = (Γ11 + Γ22) + [(Γ11 − Γ22)2 + 4Γ2
12]½ (corresponding to QL wave)

2ρV 2 
QT

 = (Γ11 + Γ22) − [(Γ11 − Γ22)2 + 4Γ2
12]½ (corresponding to QL wave

          = fast shear wave)

ρVT 2  = C55n1
2 + C44n2

2 (T wave = slow shear wave, with polarization   
        in axis 3)
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symmetry plane is often very accessible in practical situations. The anisotropy is 
more pronounced for Douglas fir than for oak, and leads to a large energy flux 
deviation of up to 45°. The QT wave mode in oak behaves almost like an isotropic 
mode, its phase velocities hardly changing with propagation angle. In oak, the 
energy flux deviations are quite small, not exceeding 12°; however, in Douglas fir, 
a strong maximum in the 60° propagation direction is observed. Mathematical 
modeling as well as practical experience show that the energy flux deviation of 

Fig. 4.2. Velocity surface of beech deduced from experimental values measured using broadband 
transducers that have a central frequency of 1 MHz

Fig. 4.3. Slowness surfaces and wave surface of solids with orthotropic symmetry (uranium and 
spruce). a Uranium slowness surface in plane 13; b uranium wave surface in plane 13; c spruce slow-
ness surface in plane 12; d spruce wave surface in plane 12. QL Quasi-longitudinal wave; QT quasi-
transverse wave; T transverse wave. In the figures for spruce, the intercept of all the curves with co-
ordinate axes should be at right angle. We should bear in mind that wood is not a perfect crystal and 
some deviations from the theoretical approach may be expected. (Musgrave 1970, with permission)
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the QT wave is particularly sensitive to the magnitude of the off-diagonal elastic 
constants.

Acknowledging the phenomena of energy partition and energy flux deviation 
and adjusting the experimental design to take advantage of the additional mea-
surable quantities will significantly improve the accuracy of ultrasonic determi-
nation of the off-diagonal elastic constants of wood.

4.2.1.2 The Eigenvectors of Christoffel's Equations

From Eq. (4.40) we can obtain the eigenvectors in a very simple way, if two off-
diagonal components of the tensor are zero. In plane 12, for an orthotropic solid, 
the linear equation for the displacement Pm (p1, p2, 0) associated with the qua-
dratic factor of Eq. (4.41) for (n1, n2, 0) is as follows:

(4.48)

where

(4.49)

If we let the polarization correspond to the same sign, i.e., p1=sin β and p2=cos β, 
where β is the displacement angle, we obtain:

(4.50)

Fig. 4.4. Energy flux deviation in the X1−X2 plane in a transverse isotropic graphite fiber material. 
(Kriz and Stinchcomb 1979), with permission)

(Γ11 − ρ V2) p1 + Γ12 p2 = 0

Γ12 p1 + (Γ22 − ρ V2) p2 = 0

tgβ = Γ12/(ρ V2 − Γ11)

p1/p2 = Γ12/(ρ V2 − Γ11) = (ρ V2 − Γ22) Γ12



and

(4.51)

Fig. 4.5. The flux energy 
deviation angle and slow-
nesses of QL and QT waves 
in a oak and b Douglas fir. 
(Bucur and Berndt 2001), 
with permission)
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p2 = cosβ = (ρ V2 − Γ11)/[(ρ V2 − Γ11)2 + Γ2
12]½
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Fig. 4.6. Displacement field in wood. a Velocity surfaces in all anisotropic planes in spruce; b cor-
responding displacement fields represented by “tadpoles” (Kriz and Ledbetter 1986, with permis-
sion); c the polarization vector is decomposed along local spherical coordinates (Lanceleur et al. 
1988, with permission); d tridimensional representation of slowness surface and corresponding 
displacements for spruce and oak (Bucur et al. 2002, with permission)

a b

c d



From Eq. (4.51) the particle displacement (polarization) is expressed in terms of 
phase velocity, propagation direction, and stiffness constants of the solid for each 
plane of symmetry. It can also be deduced that the polarization angle between 
the displacement vector belonging to the inner sheet of the slowness surface and 
the corresponding wave normal on the symmetry axis is 0°. On the axis the wave 
is a pure longitudinal wave . For pure shear waves, the angle between the propa-
gation and polarization vectors is π/2. The polarization angle changes when the 
propagation direction is out of the principal directions. The displacement fields 
for spruce were represented by Kriz and Ledbetter (1986) by “tadpoles” for a rela-
tively small number of angles (Fig. 4.6).

A better understanding of propagation phenomena in anisotropic solids is 
given by a tridimensional representation of slowness surfaces and corresponding 
displacements as suggested by Lanceleur et al. (1998) with a numerical model-
ing method. The polarization vector is decomposed along local spherical coor-
dinates in three components, corresponding to the longitudinal wave and to two 
shear waves, QT and T, or fast and slow shear waves (Fig. 4.7). The anisotropy of 
spruce is more pronounced than that of oak. For both species the inner slowness 
sheets (QL, axis X1 being the direction of the fiber) exhibited a flattened ellipsoi-
dal shape; on the other hand, the external sheets for shear waves showed clear 
differences between species behavior in the acoustic field. This representation 
underlines kinematic aspects of wave propagation related to progressive mode 
conversion and expresses better in a global way the differences between species 
in their acoustical behavior.
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Fig. 4.7. Displacements at different vibration modes of bars. a Longitudinal vibrations in bars; b 
torsional vibrations in bars; c f lexural vibrations. N Nodal point; E emission; R receiver. (Facaoaru 
and Jones 1971, with permission)
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4.2.2 Mechanical Vibrations in the Acoustic Frequency Range

The common audiofrequency acoustic methods for testing wood use frequencies 
below 20 kHz. Steady state or transient (impact) excitation can be used to test the 
dynamics at resonance vibration when elastic moduli are to be determined.

The direct, accurate measurement of engineering constants of wood (the three 
Young’s moduli, the three shear moduli, and the six Poisson’s ratios) is important 
in engineering and in product design. The most convenient technique for measur-
ing these parameters with high precision depends upon measurements of the res-
onance frequencies of longitudinal, flexural, or torsional resonant modes of both 
a bar-shaped sample of circular or rectangular cross section and a plate sample. 
The fact that the technique is resonant ensures that frequency measurements will 
be highly precise. Self-consistency of data, related for example to Young’s moduli, 
can be verified using the same bar-shaped sample with longitudinal and flexural 
resonant modes. The technique can be extended to measure the internal friction, 
if the quality factor Q or the logarithmic decrease are measured in addition to 
resonance frequency.

Experimental studies on the elasticity of solid wood and of wood-based com-
posites are extensive and a very large number of techniques have been devel-
oped. Free oscillation methods and methods with forced vibrations, or resonance 
methods, have been used for measurements in a wide range of frequencies, rang-
ing from 102 to 104Hz. The main disadvantage of the resonant technique is related 
to the shape of the specimen, rod or plate. It is well known that for solid wood it 
is easy to obtain rods or plates in LR or LT planes, but it is very difficult in the 
RT plane. Moreover, care must be taken to ensure that losses through the suspen-
sion system used to support the specimen are not significant compared to those 
intrinsic to the specimen (Kollmann and Krech 1960; Becker and Noack 1968; 
Kataoka and Ono 1975, 1976).

4.2.2.1 Resonance Vibration Modes in Rods and Plates

This section discusses the determination of the engineering constants of wood 
by resonance methods when the specimen is a rod or a plate. The most common 
vibratory resonant motions in a rod are longitudinal vibrations, flexural vibra-
tions, and torsional vibrations. They are the dynamic counterpart of static ten-
sion, static bending, and static torsion.

We saw in Section 4.1 that for full characterization of a wood species, nine 
elastic constants and nine damping constants are required. On a rod cut in the 
principal direction L, R, or T of the material, only one Young’s modulus and one 
shear modulus, with their corresponding damping constants, can be determined. 
On a thin quarter-cut plate four elastic constants together with four damping 
constants can be measured. These statements show the limitation of the men-
tioned technique. It is worth noting here that the main advantage of frequency 
resonance methods is related to the direct access by measurement to Young’s 
moduli, shear moduli, and Poisson’s ratios, as mentioned in several standard 
texts (Harris and Crede 1961; Hearmon 1961; Snowdon 1968; Cremer and Heckl 
1973; Read and Dean 1978; Bodig and Jayne 1982; Vinh 1982).

Because the theoretical considerations related to the vibrational resonances 
in bars and plates have been analyzed in the reference books cited above and are 



well known, only the final relationships between engineering constants and reso-
nance frequency of different types of specimens are explored here.

For a homogeneous and nondispersive medium, the Young’s modulus of a bar 
specimen can be deduced from the following equation:

(4.52)

where ρ is the density, L is the length of the specimen, and f L,n is the frequency of 
the longitudinal mode (n=1). For other modes (n=2, 3, etc.) this relation must be 
corrected with specific coefficients.

Young’s modulus can also be deduced from a flexural mode by the equation:

(4.53)

where A is the area of cross section of the bar. Thus we have:
− For a circular cross section inertia momentum I=πr4/4; where r is the radius of 

the cross section.
− For a square cross section I=a4/12, where a is the width.
− For a rectangular cross section I=bh3/12, where b is the width and h is the 

height.

The correction coefficient ki is related to n mode. For the first mode ki=4.730, for 
the second mode ki=7.853, for the third mode ki=10.996, etc.

The shear modulus can be deduced from torsional modes of bars of circular 
section, using the equation:

(4.54)

where fn
T is the torsional frequency of mode n (n=1, 2, 3, etc.).

Flexural modes at higher frequencies can be used for the simultaneous estima-
tion of Young’s modulus and shear modulus when the theory of a Timoshenko 
bar is applied. Figure 4.7 presents the displacements at different vibration modes 
of bars. When the vibration theory is used on a flat, thin quarter-cut plate, four 
wood elastic constants can be determined on a single specimen. The correspond-
ing theory was developed by McIntyre and Woodhouse (1978, 1985, 1988) and by 
Caldersmith (1984).

4.2.2.2 Engineering Constants

Table 4.5 gives the Young’s moduli of several species determined from the L, R, 
and T directions from longitudinal modes. The parameter measured was the 
resonance frequency.

The anisotropy of wood can be deduced from the values noted in Table 4.5, 
and may be expressed as the ratios of ER/EL lying between 7/100 and 16/100, or of 
ET/EL which lie between 5/100 and 9/100 and EL>>ER>ET, as expected.

Longitudinal modes of vibration of the bar-type specimens were also used for 
purposes other than characterization of elastic behavior as follows:
− for estimating the elastic parameters of the fine structure of the cell wall (So-

bue and Asano 1976; Tonosaki et al. 1983);
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E = 4ρL2(fL,n/n)2

E = [4π2 · ρ · L4(fF,n)2 A]/I · ki
4

G = 4ρ · l2 · (fn
T/n)2
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− for estimating the variation of the moisture content in wood (Tang and Hsu 
1972; Suzuki 1980; Olszewski and Struk 1983; James 1986; Rebic and Srepcic 
1988; Sasaki et al. 1988);

− for chemical modifications induced by acetylation and formaldehyde cross-
linking (Norimoto et al. 1988; Akitsu et al. 1991);

− for genetic variations observed as differences in tree clones (Takada et al. 1989; 
Fujisawa et al. 1992).

Longitudinal vibrations can also be produced by the stress-wave method 
(Dunlop 1978, 1980; Gerhards 1982c) in which the velocity was the measured 
parameter. When frequency analysis is performed on the power spectrum of 
the stress-wave signal, it is possible to determine the resonance frequencies 
of different modes and consequently to compute instantaneously the Young’s 
modulus on small clear specimens and on lumber of commercial size (the 
maximum reported dimensions are 20×20 cm×6 m and 114 kg). This very el-
egant approach was developed by Sobue (1986a,b,c) and involves tapping the 
specimen with a hammer and receiving the signal with a wireless microphone. 
A microcomputer connected to the system permitted the instantaneous treat-
ment of data.

Flexural modes have been extensively used for the measurements of E on 
small clear specimens, especially for the characterization of wood for musical 
instruments. This approach is discussed in Chapter 7. Other interesting appli-
cations of f lexural mode testing have been reported in the study of the anisot-
ropy of plywood related to the disposition of the veneer sheets (Sobue and Ywa-
saki 1981a; Sobue 1983), the effect of adhesives on laminated lumber (Sobue 

Table 4.5. Young’s moduli in the principal directions of wood deduced from longitudinal vibrations 
at 11% moisture content, in the frequency range 4−21 kHz. L, R, and T are the principal symmetry 
axes of wood (L longitudinal direction, R radial direction, and T tangential direction versus the an-
nual rings). (Ono and Norimoto 1985, with permission)

Species Direction Density Young’s moduli Anisotropy
  (kg/m3) (108N/m2) (%)

Sitka spruce L 460 128 100
 R 449 9.09 7.42
 T 454 6.24 5.19
Lauan L 481 118 100
 R 489 13.8 11.7
 T 478 6.38 5.40
Makoré L 669 136 100
 R 673 21.58 15.8
 T 670 12.3 9.07
Matoa L 795 194 100
 R 700 19.3 9.97
 T 674 11.4 5.58
Mizunara L 630 120 100
 R 654 15.8 13.2
 T 620 9.69 8.09
Yachidamo L 570 128 100
 R 548 13.6 10.6
 T 517 7.48 5.84



and Ywasaki 1981b), and the mechanical properties of epoxy-poplar composite 
materials (Moore et al. 1983).

For testing purposes, the f lexural mode offers the advantage of a relative-
ly low frequency range, with n=4 or n=5, on specimens of reasonable length 
(30 cm). Table 4.6 gives values of Young’s moduli, deduced by Hearmon (1948) 
from different testing configurations. Dynamic measurements with longitudi-
nal modes give values higher by a few per cent than those from flexural modes. 
When measurements were performed out of principal directions (Table 4.7) the 
moduli determined from longitudinal modes were between 1.02 and 1.16 higher 
than those measured from flexural modes.

Flexural testing modes afford a very useful opportunity to observe the cou-
pling effect between shear and extensional stress in wood. Dynamic methods of 
determining elastic constants, deduced from the f lexural vibrations of beams, 
were developed by Sobue (1986b) on small clear specimens and on samples 
of commercial size such as logs (Sobue 1990; Arima et al. 1991) and timber 
(Sobue 1988, Chui 1991). Figures 4.8 and 4.9 show the complex vibrations of a 
plank struck with a hammer and the corresponding displacements for different 
modes. Specimens were tapped with the hammer at the edge, at an end, and at 
a point located one-quarter of the length from the end, to enhance the peaks 
of the higher harmonics. The tap tone was detected with two condenser micro-

Wave Propagation in Anisotropic Media   65

Table 4.6. Young’s moduli EL from different modes of vibration, determined at 12% moisture con-
tent. (Hearmon 1948)

Mode of vibration Species Density EL

  (kg/m3) (108N/m2)

Bending of clamped specimen with additional mass Beech 630 112
Longitudinal mode, free−free   117
Bending of clamped specimen with additional mass Beech 710 121
Longitudinal mode, free−free   123
Bending of clamped specimen with additional mass Pine 570 75
Longitudinal mode, free−free   82

Table 4.7. Dynamic Young’s moduli determined by longitudinal and flexural vibrations in the LR 
plane at different angles for sitka spruce. 0° corresponds to the specimen in the L direction; 90° cor-
responds to the specimen in the R direction. (Tonosaki et al. 1983, with permission)

Angle Longitudinal test (L)  Flexural test (F) Ratio

(°) FL EL
L FF EL

F EL
L/EL

F

 (Hz) (108N/m2) (Hz) (108N/m2) 

0 9,531 141 581 138 1.02
15 9,530 68 943 58 1.17
30 6,194 15 612 25 0.60
45 4,906 16 472 15 1.06
60 4,269 18 410 11 1.63
75 4,057 19 382 10 1.90
90 3,797 19 359 9 2.11
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phones, as can be seen in Fig. 4.10. A very sophisticated signal treatment with 
an FFT analyzer (Fig. 4.11) enabled the separation of peaks corresponding to 
f lexural and twisting vibrations. The value of the frequency corresponding to 
each peak was determined precisely, and consequently the values of the elastic 
constants were deduced.

Fig. 4.8. Complex vibration of a plank struck with a hammer. (Sobue 1987, with permission)

Fig. 4.9. Displacement of a beam seen in transverse section at different vibration modes. a Flexural 
mode; b twisting mode; c f lexural and twisting mode. (Sobue 1988, with permission)

Fig. 4.10. Device used for the addition and subtraction of signals obtained from a plank struck with 
a hammer. (Sobue 1988, with permission)



Among the resonance methods, the technique using the torsional mode with 
bar specimens (Becker and Noack 1968; Morze et al. 1979; Olszewski and Struk 
1983) has been less used, probably because of practical difficulties related to the 
torsional pendulum and to the very small frequency band obtained during the 
testing. Some experimental difficulties could be overcome if we bear in mind 
that the temperature and frequency are equivalent parameters and a relatively 
low resonance frequency could be obtained by increasing the temperature of the 
specimen.

Becker and Noack (1968) published an interesting study on beech, which gave 
the relationship between shear modulus, temperature variation (20...100 °C), and 
moisture content (5...30%) in order to characterize the viscoelastic behavior of 
wood, as can be seen in Fig. 4.12.

Another way to determine the elastic constants of wood is to use plate vibra-
tion tests on which complex Young’s moduli, shear moduli, and Poisson’s ratios 
can be determined, as shown by Caldersmith and Rossing (1983), Nakao et al. 
(1985), Tonosaki and Okano (1985), McIntyre and Woodhouse (1988), Schum-
acher (1988), Molin and Janson (1989), Sobue and Katoh (1990), and Sobue and 
Kitazumi (1991).

Fig. 4.11. Power spectra 
deduced from a board 
of lumber (dimensions 
50 mm×100 mm×3 m). 
(Sobue 1987, 
with permission)

Wave Propagation in Anisotropic Media   67



68   Theory of and Experimental Methods for the Acoustic Characterization of Wood

On orthotropic plates the resonance frequencies fr(i,j) are related to the elastic 
parameters by the equation:

(4.55)

and

(4.56)

where ρ is the density of the material, h is the height, a is the length, and b is 
the width of the plate, a 1(ij)...a 4(ij) are coefficients depending on the supported 
condition of the plate (clamped, free, or simply supported), D11, D22, and D12 are 
flexural rigidities and D66 is the torsional rigidity. Table 4.8 gives the coefficients 
for the most common experimental condition, the free vibration mode.

Fig. 4.12. Influence of temperature and moisture content on the shear modulus in beech. FS Fiber 
saturation point. (Becker and Noak 1968, with permission)

fr(i, j) = ½π [S’/ρh]½

S’ = D11al(ij)a-4 + D22a2(ij)b-4 + 2D12a3(ij)a-2b-2 + 4D66a4(ij)a-2b-2



The engineering constants, Young’s moduli, shear modulus E1, E2, and G12, 
and Poisson’s ratio ν12 in the corresponding anisotropic plane (i.e., 12) can be 
calculated by the following equations:

(4.57)

(4.58)

(4.59)

(4.60)

Based on these theoretical assumptions, Sobue and Kitazumi (1991) precisely 
determined the resonance frequency of a rectangular free vibrating plate, iden-
tifying the corresponding peaks from the power spectrum of different vibration 
modes (i.e., [0,2], [1,1], [2,0], [2,2]). Figure 4.13 gives the typical power spectrum 
of a Western red cedar plate (300×300×10 mm). The misidentification of peaks 
corresponding to flexural or torsional modes was avoided since the phase of 
deflection was considered. The proposed procedure was used for the automatic 
identification of resonance peaks of the power spectrum and consequently for 
simultaneous, routine measurements of engineering constants E1, E2, and G12.

4.3 Velocity of Ultrasonic Waves in Wood

The measurement of ultrasonic wave velocities in wood, considered as an ortho-
tropic material, is the basis of the nondestructive evaluation of its elastic or vis-
coelastic properties.

The fundamentals of the propagation of ultrasound in homogeneous solids 
are given in McSkimin (1964) and in Papadakis (1990) in polycrystalline media. 
Given the existence of these excellent references the emphasis in this section is 
on theoretical aspects which are related directly to the measurement techniques 
appropriate for wood.

Table 4.8. Values of coefficients a1−-a4 from Eq. (4.56) for a completely free vibration of a rectangu-
lar orthotropic plate. X=(m−0.5)π and Y=(n−0.5)π. (Sobue and Kitazumi 1991, with permission)

 Vibration modes Coefficients
 m n a1 a2 a3 a4

 1 1 0 0 0 144
 0 2 0 500.6 0 0
 0 3, 4, etc. 0 Y4 0 0
 2 0 500.6 0 0 0
 3, 4, etc.  X4 0 0 0
 1 2 0 500.6 0 593.76
 1 3, 4, etc. 0 Y4 0 12.3Y(Y+6)
 2 1 500.6 0 0 593.76
 2 2 500.6 500.6 151.3 2448.3
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The principal wave types used for measuring wood properties are the bulk 
waves (longitudinal or transverse-shear) and surface waves (Rayleigh, Lamb, and 
Love waves). The waves are characterized by the direction of propagation and by 
the particle motion, i.e., for longitudinal waves the particle trajectory is in the 
direction of propagation, for transverse waves the particle motion is perpendicu-
lar to the direction of propagation; for Rayleigh waves the particle trajectory is 
elliptical in the plane that is perpendicular to the tested surface and parallel to 
the direction of propagation.

Fig. 4.13. Power spectra on a 
rectangular freely vibrating 
western red cedar plate. 
a Detected by the microphone; 
b separated by the subtraction 
procedure for twisting modes; 
c separated by the addition pro-
cedure for flexural modes; 
d vibrational modes of the 
plate. (Sobue and Kitazumi 
1991, with permission)



In dispersive media the ultrasonic velocity is dependent on frequency, and both 
phase and group velocities (or the velocity of the wave packet) can be measured. 
The relationships between group velocity v and phase velocity V have been exten-
sively commented on by Guilbot (1992) and can be summarized by the equation:

(4.61)

The phase velocity is

(4.62)

where ω=2π×f and f is the frequency, the propagation constant is     , and λ 
is the wavelength. When k=k(ω) and when also V is a function of frequency, the 
medium is dispersive. Dispersion may be induced by the geometry of the speci-
men, the nature of the material, the scattering produced by the inhomogeneities 
of the structure, the absorption of wave energy by the material during propaga-
tion, etc. Experimental methods for the determination of phase and group ve-
locities in dispersive solids are given in Sachse and Pao (1978) and Sahay et al. 
(1992).

4.3.1 Measurement System

Ultrasonic velocity measurements can be taken from broadband pulses or nar-
rowband bursts and are related to the measurement of time of flight and length 
of specimen. Either the immersion technique (when the specimen is immersed in 
a liquid) or the direct transmission technique (when the specimen is in contact 
with the transducer) can be used for wood material. The immersion technique is 
more appropriate for laboratory testing, while the direct transmission technique 
is convenient for both laboratory and field measurements. The principal advan-
tage of either technique is the flexibility in measuring velocity and attenuation 
of ultrasonic waves.

Wood material that is to be sensed and probed with ultrasonic waves may be 
most conveniently divided into three main groups: trees and logs, small clear 
specimens of solid wood, and wood-based composites and engineering products. 
The direct transmission technique seems to be the most generally appropriate 
technique for ultrasonic testing of all these types of wood.

4.3.1.1 Devices

The most usual block diagram for ultrasonic velocity and attenuation measure-
ments is presented in Fig. 4.14. The electrical signal is transmitted from the gen-
erator to the emitter (E), transducer to E, and transformed into an ultrasonic 
pulse. This pulse travels through the specimen and is received by the receiver 
(R), transducer to R, and is transformed again into an electric signal which is 
visualized on an oscilloscope. This allows the measurement of the time elapsed 
between emission and reception. The time delay is measured on the oscilloscope, 
over the path length of the ultrasonic signals. The technique is very simple and 
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the time measurements very accurate (error less than 1%). For more sophisti-
cated measurements related to attenuation or phase, a spectrum analyzer can be 
used.

4.3.1.2 Transducers

The physical basis for the generation and detection of ultrasonic signals with 
piezoelectric transducers has been extensively commented on in books and ar-
ticles on physical acoustics (Sachse and Hsu 1979; O’Donnell et al. 1981; Lyn-
nworth 1989; Hutchins and Hayward 1990; Hamstad 1997; Schmerr 1998; Papa-
dakis 1999). In the ultrasonic generation mode, the transducer incorporates a 
piezoelectric element which converts electrical signals into mechanical vibra-

Fig. 4.14. Block diagram for velocity and attenuation measurements using the direct transmission 
technique. 1 Ultrasonic generator; 2 transducer; 3 specimen; 4 mechanical device; 5 oscilloscope; 6 
spectrum analyzer; 7 computer. (Bucur and Böhnke 1994, with permission)

Table 4.9. Acoustic and piezoelectric parameters of piezoelectric materials for ultrasonic transduc-
ers. (O’Donnell et al. 1981, with permission)

 Symbol Parameter

 d Transmission constant (strain out/field in)
 g Receiving constant (field out/stress in)
 ρ Density
 V2 Ultrasonic velocity in a particular direction
 Zo Characteristic acoustic impedance
 εT Free dielectric constant (unclamped)
 KT Electromechanical coupling efficiency
 Qm Mechanical quality factor



tion. The inverse effect is used for the detection of ultrasonic waves traveling 
through the specimen.

The active element in a piezoelectric transducer is a disk, made from such 
ceramic materials as barium titanate, lead zirconate-titanate, lead metaniobate, 
etc., which have a favorable combination of mechanical, electrical, and piezoelec-
tric properties. Some data on the acoustic and piezoelectric parameters of mate-
rials used for ultrasonic transducers are given in Tables 4.9 and 4.10. The mode 
of vibration of piezoelectric ceramics (longitudinal shear, etc.) is determined by 
the orientation of the disk relative to an axis that is imposed onto the material 
during the sintering process. The polarization of the structure is achieved by first 
raising the temperature of the ceramics above the Curie point and then cooling 
the ceramics in a strong electric field.

The dimensions and shapes of several transducers commonly used for velocity 
and attenuation measurements in the 1980s and 1990s are given in Fig. 4.15. The 
time domain and frequency domain response of a 1-MHz broadband transducer 
are shown in Fig. 4.16.

The performance of transducers is related to their constructional parameters 
such as the radiation surface area, mechanical damping, the characteristics of 
the piezoelectric and backing materials, and the connection of electrical and 
acoustical components of the system. The choice of the piezoelectric material is 
dictated by the specific application required by the transducers, as can be seen 
from Tables 4.9 and 4.10. The efficiency as a transmitter is related to a large “d” 

Table 4.10. Piezoelectric material properties for longitudinal and transverse waves. Quartz*  Quartz 
0 X-cut; Quartz 1 quartz 0 Y-cut; Quartz 2 AT cut; AT thickness of shear cut when the quartz plate 
orientation is considered. Mode of vibration of crystalline piezoelectric material is determined by 
orientation of plate relative to crystalline axes. (O’Donnell et al. 1981, with permission)

Symbol Units Longitudinal waves
  Quartz* PZT-4 PZT-5 PZT-H PbNb2O6 BaTiO2

d 10−12 m/V 2 289 374 593 75 149
g 10−3 Vm/N 50 26 25 20 35 14
ρ kg/m3 2.50 7,600 7,500 7,500 5,900 5,700
V2 m/s 5,650 3,950 3,870 4,000 2,700 4,390
Zo 104 kg/m2 15 30 29 30 16 25
εT/ε0 – 4 1,300 1,700 3,400 240 1,700
kT % 11 70 70 75 40 48
Qm – <22,5000 <500 <75 <65 <5 <400

Symbol Units Transverse waves
  Quartz 1 Quartz 2 PZT-4 PZT-5 PZT-5H BaTiO2

d 10−12 m/V 4.4 3.4 496 584 741 260
g 10−3 Vm/N 110 80 38 38 27 20
ρ kg/m3 2,650 2,650 7,600 7,500 7,500 5,700
V2 m/s 3,850 3,320 1,850 1,680 1,770 2,725
Zo 104kg/m2 10 9 14 13 13 16
εT/ε0 – 5 5 1,475 1,730 3,130 1,450
kT % 14 9 71 68 65 50
Qm – >2,500 >25,000 <500 <75 <75 <300
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constant, whereas the sensitivity as a receiver is more dependent on a large “g” 
constant.

The basic requirements of an ultrasonic transducer are good sensitivity and 
resolution, controlled beam pattern, and reproducible performance under vari-
ous testing conditions and high signal to noise ratio. The source of many ex-
perimental limitations associated with piezoelectric transducers is the coupling 
medium with the specimen under test. Very often the ultrasonic signal is dis-
turbed and interference phenomena, phase shift, and attenuation of the signal 
are associated with the propagation in the coupling layer. Further comments on 
this subject are given in the following section.

Development of noncontact ultrasonic sensing using air or gas (Anderson 
et al. 1994) coupled transducers for industrial applications began around 1996, 
when several laboratories developed transducers to test solids with impedance in 
the range V×ρ=1,500 m/s×1 kg/m3=1.5×106 kg/m2, for example plastics, foamy 
plastics, wood, and liquids. Typical applications included object presence detec-
tion, height differentiation, measuring position, level measurement in bins, silos, 
level of water, registration of people, automatic door-openers, control of fine-arts 
objects (Grandia and Fortunko 1995; Papadakis 1999; Green 2001), particleboard 
blow detectors operating in the 25-kHz range (Birks 1972), measurements in 
gases (Gallego-Juarez et al. 1978), inspection of reinforced ceramics (Stoessel et 
al. 2002), estimation of material quality when velocity or density cannot be mea-
sured, and measurements at elevated temperatures (Bharadwaj et al. 2000).

4.3.2 Specimens for Ultrasonic Testing

It is appropriate to observe that measurements of ultrasonic velocity and attenu-
ation are influenced by requirements related to sample preparation, to the cou-
pling of the transducer to the sample, and to the refined signal processing. This 

Fig. 4.15. Sample broadband ultrasonic transducers for ultrasonic and attenuation measurements 
using the direst transmission technique. (Courtesy of Panametrics Inc., Waltham, Maryland)



section reviews some of the specific requirements for testing trees, small clear 
specimens, and wood-based composites.

4.3.2.1 Preparation of Samples

In the term “samples” we include all type of wood specimens such as trees, small 
clear specimens of solid wood, and wood-based composite specimens. The spe-
cific differences in the requirements of preparation of particular samples are dis-
cussed later.

Ultrasonic measurements of trees may be performed on the periphery of the 
trunk, with or without bark (Bucur 2003a). Measurements of logs can be carried 

Fig. 4.16. Time and frequency domain response characteristics of a 1-MHz broadband transducer. 
(Courtesy of Panametrics Inc., Waltham, Maryland)
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out on the transverse sections at both ends. In this case no specific care is needed, 
although the surfaces must be parallel and as flat as possible.

The potential of the ultrasonic velocity method has been demonstrated in the 
nondestructive measurement of the slope of the grain of living trees and when 
qualitative parameters for round wood were established (see Chap. 8). The range 
of ultrasonic velocities measured in wood at 12% moisture content at 1 MHz is 
between 6,000 m/s for longitudinal waves in the fiber direction and 400 m/s for 
shear waves in the radial-tangential plane. The values of the attenuation coef-
ficients are roughly 2 dB/cm for longitudinal waves in the fiber direction and 
15 dB/cm for shear waves in the transverse anisotropic plane.

The conditions for satisfactory specimen preparation depend essentially on 
the magnitude of attenuation of ultrasonic waves in the wood species under test. 
Generally the higher the attenuation, the greater the requirements concerning the 
flatness and parallelism of the specimen surfaces. In addition, the samples must 

Fig. 4.17. Pulse shape displayed 
when propagation of a 1-MHz 
signal in a 5-mm Douglas fir 
increment core occurs in the 
longitudinal direction. a Signal 
with the transducers in contact; 
b signal with increment core; 
c increment core for testing. 
(Bucur 1984a)



be accurately perpendicular to the principal direction or to the required direc-
tion out of the main symmetry axes along which the ultrasonic waves propagate. 
The geometric shape of typical small clear wood specimens used for acoustical 
measurements may be a rectangle, parallelepiped, cube, rod, multifaced disk, 
plate, polyhedron, or sphere . The choice of one of the geometrical shapes for the 
specimens is determined by the purpose of the research. Generally speaking, use 
of the ultrasonic immersion technique necessitates plates or spheres, while any 
specimen shape is suitable for the direct contact technique. If wave velocities are 
of interest along only a restricted range of directions (commonly the longitudinal 
direction), then the minimum requirement for specimen preparation is to have 
two-plane, parallel faces. The larger the specimen dimensions, the longer the 
propagation time of the ultrasonic signal in wood, and the higher the accuracy 
of measurement.

At relatively high frequencies the requirements on parallelness of the opposite 
faces of wood specimens become more severe and the bond between the trans-
ducers and the sample becomes more critical. In wood science literature, velocity 
measurements in the longitudinal direction have been reported for a very large 
range of dimensions, varying from the millimeter scale (Bucur 1984a) to meters 
(McDonald 1978).

Figure 4.17 shows the pulse shape displayed by propagation of a 1-MHz signal 
in a 5-mm-thick Douglas fir increment core in the longitudinal direction. In such 
an extreme case, attention should be paid to the excitation of the ultrasonic pulse 
and, if necessary, to the repetition rate, as well as to the excitation pulse length.

Errors may be introduced into the velocity measurements if the arrival time 
of the distorted pulse is compared with that of the undistorted pulse when the 
probes are in contact. The misalignment of the transducers and specimens is an-
other important introduced error. The error becomes larger when the sample is 
not accurately aligned with the transducer. One procedure used to diminish this 
effect is to maximize the amplitude of the signal from the interface.

If all the elastic stiffnesses of a wood species are required, the sample size and 
shape constraints are more severe. In laboratory measurements, we need to ma-
nipulate rather small specimens, to limit the effect of any spatial inhomogeneity 
of wood induced by its anatomical structure, and to allow the annual ring curva-
tures related to the T direction to be neglected. However, the specimen that would 
be used for the measurements of the nondiagonal terms of the stiffness matrix 
does allow the propagation of quasi-longitudinal and quasi-shear waves out of 
principal symmetry axes. The specimen and ultrasonic beam must be rotated 
relatively to each other. This may be done in several ways, e.g., (1) the ultrasonic 
beam may be rotated with respect to a fixed sample which has (or which has no) 
edges that coincide with the material symmetry axes; and (2) the ultrasonic beam 
is held in a fixed position while the specimen cut off-axis is rotated.

The first method is typically used in the immersion technique in which plate-
type specimens (45×45×10 mm) are used (Preziosa et al. 1981). Commonly three 
plates, one corresponding to each anisotropic plane, are employed for the charac-
terization of a wood species. The utilization of a sphere with the immersion tech-
nique, as a unique specimen for the measurement of all stiffness terms, avoids 
the natural variability introduced by the utilization of several specimens for the 
characterization of one species and has been demonstrated by Bucur and Ra-
solofosaon (1998). In the second method, used together with the direct contact 
technique, cubic specimens, multifaced disks, or polyhedral specimens are em-
ployed.
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The oldest method for the determination of effective elastic constants of com-
posites is to cut cubes at specific angles with respect to the principal directions 
and to measure the corresponding velocities (Zimmer and Cost 1970; Rose et al. 
1991a,b). Figure 4.18 shows the rotation (0, 15, 30, and 45°) of a cubic specimen 
with 16-mm sides in the LR plane, cut from a wooden plate. The same cubes were 
used to measure the velocities at 105°, 120, and 135°. Ten cubes were necessary for 
the determination of the terms of the stiffness matrix of one wood species (Bucur 
and Archer 1984). The cubic shape of the specimens should not present technical 
difficulties in the cutting process, but the great number of samples caused some 
practical difficulties.

In order to avoid this very tedious procedure and to restrict the natural vari-
ability of specimens, a multifaced disk sample could be use (Fig. 4.19). The di-
ameter of the disk is 35 mm. The faces are cut at 15°, 30°, 45°, and 75° as well as at 
0° and 90° (Bucur and Perrin 1988a). For experimental efficiency and economy 
of sample material and of time producing specimens, the disks seem to be an 
efficient sample type for ultrasonic measurements using the direct contact tech-
nique. Only three disks are needed for the complete characterization of a wood 
species. Improvement of this approach has been suggested by François (1995, 
2000) who used only one polyhedral specimen with 26 faces for the measurement 
of 21 terms of stiffness tensor. Bucur and Rasolofosaon (1998) used a sphere of 
5 cm diameter in the immersion technique and about 100 directions of propaga-
tion were ausculted for velocity measurements.

The influence of the natural variability of specimens, due to the biological 
nature of wood, on velocity and attenuation may be studied by choosing the fre-
quency of the source so that the acoustic wavelengths in the material lie in a 
range roughly between the maximum dimension of the anatomical elements and 
the minimum specimen dimension. Some comments on the accuracy of the re-
sults of velocity and attenuation measurements are appropriate here. Parameters 
such as the probe diameter, the maximum pulse width, the attenuation of the 
ultrasonic wave in wood in the principal three anisotropic planes, and the sepa-
ration time of quasi-longitudinal and quasi-transverse waves need to be consid-
ered when determining sampling strategy. Deviation of the energy flux vector of 
the quasi-longitudinal and quasi-transverse waves should not be ignored when 
determining the size of the specimen to be tested. A second consequence of the 

Fig. 4.18. Rotation of a cubic specimen in the LR plane. (Bucur 1984a)



energy flux deviation is that for certain directions out of the principal axes, the 
propagation of more than three modes can occur. This phenomenon must be ac-
counted for in order to avoid misinterpretation of the readings.

However, in anisotropic and inhomogeneous materials such as wood, a me-
chanical transducer will generate multiple modes simultaneously. This phenom-
enon is of special consequence to the ultrasonic investigation of thin specimens 
in the RT plane, since the repetition rate of the pulse is too great to allow the 
various modes to be separated in time. Consequently, misinterpretation of travel 
time or attenuation measurements can occur.

A lower limit to the size of the specimen is also imposed by the requirement 
that waves should have the character of plane waves in an infinite medium. The 
minimum size of the specimen (<2λ) must be established experimentally, since 
no good theoretical criterion exists for this purpose.

The presence of inhomogeneities in a sample limits the achievable accuracy of 
the readings. For example, in a sample where internal cracks or other disconti-
nuities are comparable with the pulse wavelength, the pulse is attenuated by scat-
tering at interfaces. The attenuation is frequency dependent if the pulse shape is 
changed, and errors in velocity and attenuation readings can occur. If the size 
of the discontinuities is much smaller than the wavelength, the change in pulse 
shape is smaller, allowing accurate data to be obtained. If inhomogeneity arises 
because of a gradual change in the measured property with position in a sample 
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ultrasonic measurements . a Multifaced disk-
type specimen. Three disks are needed for 
compete characterization of a wood species 
(Bucur and Perrin 1987). b Polyhedral speci-
men with 26 faces (François 1995, 2000)
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(caused perhaps by decay or other biological attack), then the wave velocity in 
a particular direction varies with the part of the specimen through which the 
ultrasonic pulse is traveling. Changes in the measurements of velocity or attenu-
ation would indicate the degree to which the sample was inhomogeneous in dif-
ferent zones.

This is a good place to drawn attention to the fact that other factors, such as 
internal and external conical refraction of the ultrasonic beams and the noncoin-
cidence of pure mode axes with the symmetry directions, need to be investigated 
further. However, the complexity discussed above needs to be taken into account 
as regards the most frequently used configuration, which consists of sending an 
ultrasonic wave in the direction parallel to the axis L.

Finally, it is worth remembering that the main advantage of using ultrasonic 
waves on wood specimens to measure velocities and attenuations is that the ma-
terial under test is not affected by the propagation phenomena. The sample can 
be retested because no deformation or destruction occurs. The ultrasonic tests 
can be repeated on the same sample and show little variation. The results may be 
repeated for similar samples and experimental conditions.

4.3.2.2 Coupling Media

Commercially available ultrasonic transducers are constructed with a layer of 
material covering and protecting the piezoceramic element. Vincent (1987) and 
D’Souza et al. (1989) have dealt with the specific effects of coupling and matching 
layers on the efficiency of ultrasonic transducers. Several types of coupling from 
transducer to sample are possible, as well as several arrangements of the trans-
ducers with respect to the specimen (Truell et al. 1969). A single transducer can 
be both the source and the receiver for the echoes that result from a single pulse. 
Alternatively two transducers on the opposite faces of the specimen can be used 
separately as emitter and receiver of an ultrasonic pulse. In the particular case 
of small clear wood samples^, the most suitable scheme seems to use two trans-
ducers. The scheme with a single transducer may be used only if the specimen 
does not exhibit too much attenuation. The limits depend on the thickness of the 
sample and its specific attenuation, which is most important in the RT plane.

In this section, attention is given first to the coupling media used with wood 
specimens in the direct transmission technique with two transducers. Coupling 
media are necessary to ensure the bonding of the transducer to the wood speci-
men. This is accomplished using a variety of materials (solids or liquids), de-
pending on the circumstances of use. Many bonding media have been used over a 
wide range of temperatures and moisture contents. Silicone resins, wax, mineral 
greases, and glycerine are commonly used at room temperature. Alcohols can be 
used at low temperatures. Methods of creating the bond vary with the testing con-
ditions (the nature of the method used for velocity or attenuation measurements, 
the temperature, the hardness of the wood sample, etc.). With hard woods, when 
the specimen is large enough, the transducer may be sometimes screwed into the 
sample and no coupling medium is needed.

Because the aim of our analysis is to report the way in which accurate ultra-
sonic measurements can be taken, it is evident that the coupling losses must be 
as small as possible at all frequencies. In any case the losses due to the trans-
ducer bond and to the system can be reasonably well measured by the method 
described in the previous sections of this chapter.



The effects of the thickness of the coupling medium can be neglected if a very 
thin coating couplant is used. For precise measurements, a well-defined pres-
sure applied to the specimen through the transducer is required for reproducible 
measurements of attenuation. Force transducers or strain gauges can be installed 
on the transducer holders to measure the applied pressure to the specimen. Great 
care is required with specimens of low density (e.g., balsa) because the applied 
pressure can affect the measured velocity and attenuation, particularly high 
frequency, or even break the fragile specimen. Table 4.11 reports observations 
concerning the influence of various types of coupling media on the ultrasonic 
velocity measurements.

In practice, the changes induced by the penetration of the coupling media into 
the wood specimen can produce unexpected experimental errors (Table 4.12). 
The error initially encountered is the apparent unstable velocity and attenuation 
measurements. Our understanding of these results is that the wood specimen 
absorbs the coupling medium to a significant degree, the characteristic acoustic 
impedance is changed, and the transmit−receive response is modified. To avoid 
such situations, the thin layer of coupling medium on the transducer surface can 
be covered with a cellophane sheet (transparent wrapping material made from 
viscose). (Also, note that the acoustic impedance of cellophane matches well that 
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Table 4.12. Effects of penetration of coupling materials in wood on velocity measured in sitka 
spruce. (Kamioka and Kataoka 1982, with permission)

Material Difference (%) in velocity in L, R, and T directions
 Coupling material effect Penetration effect
 L R T L R T

Vaseline 3.08 3.98 3.96 3.24 0.54 1.41

Grease  5.99 4.21 4.79 1.49 2.49 1.05

Machine oil 4.95 4.94 4.10 2.62 1.59 1.69

Water 5.20 2.81 4.81 2.47a 13.66a 13.29a

a Specimens immersed in water. The reference value is considered for measurements on specimens 
in direct contact with the transducer. (For small, clear specimens this reference must be considered 
with care.) (Data from Kamioka and Kataoka 1982)

Table 4.11. Influence of coupling media on velocity VTT of propagation of longitudinal waves in 
Pinus spp. at 12% moisture content. (Bucur 1984a)

Coupling media Velocity (m/s) Notes

No coupling 1,000 Transducers applied to the specimen under low pressure

Cellophane sheets
0.03 mm 1,029 If surface of the specimen is clean, the reading is easy to  
0.02 mm 973 perform; during experiment integrity of sheets must be  
  verified

Mineral grease 1,004 Grease could penetrate specimen, easy handling

Medical gel 1,004 No penetration of specimen, easy handling

Gel SWC Panametrics 1,050 Very good bond, very absorbent by wood
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of wood.) This protective layer keeps the surface of the wood clean and the results 
are reliable.

Progress in ultrasonic transducers used in the direct contact procedure has 
been achieved using a dry coupling layer or noncontact transducers, using the 
air as the coupling medium.

When the immersion technique is used, particular care is necessary to main-
tain the moisture content of the specimen. One of the best methods is to envelop 
the specimen in a surgical membrane that preserves the sample from the pen-
etration of external humidity.

4.3.2.3 Specimens of Finite Dimensions

Specimens of finite length and width can affect the conditions of the propaga-
tion of ultrasonic waves in an infinite medium. It is usually desirable to have the 
diameter of the sample several times greater than the diameter of the transducer 
(especially at low frequencies with highly divergent beam) in order to reduce side 
wall effects. However, larger-diameter transducers are more difficult to bond 
well to the sample. If the transducer fully covers the end of the sample, the trans-
mission phenomenon confines the wave to the specimen (cylindrical rod or slab, 
etc.) as in a wave guide.

Principally this section analyzes the influence of the finite size of specimens 
on ultrasonic longitudinal wave velocity measurements. To complete the discus-
sion two cases are presented, namely specimens of constant length and of vari-
able cross section, and specimens of constant cross section and variable length.

Spruce specimens of constant length (300 mm) and of initial cross section of 
120×100 mm were repeatedly planed to modify the ratio of width to thickness 
from 1 to 14. For every value of this ratio the longitudinal wave velocities VLL, 
VRR, and VTT were measured (Fig. 4.20). The velocity VLL is strongly and continu-
ously affected by the ratio b/h. The maximum velocity VLL is obtained when the 
ratio b/h lies between 1 and 2 and the specimen is a rod and b and h are greater 
than the wavelength. In this case the velocity of a longitudinal plane wave was 
probably measured. The minimum VLL was measured for the ratio b/h=13−14, 
when the specimen was a plate and h was smaller than the wavelength. The mea-
sured velocity corresponds to plate wave velocity (S0 mode). The values of the 
velocities VRR and VTT, corresponding to the measurements on the transverse 
section of the specimen, are less affected by the modification of the geometry of 
the section. It seems that for the ratio b/h=10 or higher, there is no influence of 
the cross section on VRR and VTT. We note that the dimensions of the specimen 
corresponding to the propagation in R and T directions are greater than 2λ. For 
this reason the velocities VRR and VTT are not influenced by the modification of 
the size of the specimen.

Figure 4.21 shows the measurements on beech specimens with constant cross 
section and variable length. Specimens of 600 mm initial length and cross sec-
tion of 10×10, 20×20, 30×30, and 40×40 mm were shortened successively from 
initial length to 25 mm. The longitudinal velocity VLL is nearly constant when the 
ratio of length to width is varied from 20 to 40. Below this limit VLL diminishes. 
From the same figure it can also be deduce that there is no influence of the length 
on VLL. The velocity in dry conditions (12% moisture content) is always higher 
than the velocity in green conditions.



The influence of path length on the velocity VLL when the specimen is simul-
taneously shortened and planed in cross section is shown in Table 4.13. The VLL 
diminishes by about 12% between the shorter and the longer length. This fact is 
connected with the reduction of the dimensions of the transverse section and can 
be explained by mode conversion phenomena (from bulk longitudinal waves in 
an infinite solid to longitudinal waves in a rod).

Another interesting aspect is to study the influence of the geometrical shape 
of the specimen on velocity values. Table 4.14 gives the values for horse chest-
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Fig. 4.20. Influence of specimen cross section on velocities measured in spruce, when length 
of specimen is constant. Dimensions of the specimens at begining of experiment were L=30 cm, 
b=10 cm, and h=10 cm. At end of experiment, L=30 cm, b=10 cm, and h=0.7 cm. For experimental 
reasons, the corresponding anisotropic axes were selected as follows: axis L following the length (L) 
of the specimen; axis R following the width (b) of the specimen; axis T following the thickness (h) 
of the specimen. (Bucur 1984a)
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Fig. 4.21. Influence of length of specimen on VLL, when the cross section is constant . Measurements 
on beech when green and at 12% moisture content. (Bucur 1984a)

Table 4.13. Influence of path length on ultrasonic velocity VLL measured in parallelepiped spruce 
specimens at 12% moisture content at 1 MHz using broadband transducers. (Bucur 1984a)

Specimen type Specimen dimensions (mm)  Ratio VLL

 Length (l) Width (b) Height (h) (lb) (m/s)

Infinite solid 180 60 60 3 5,570

Infinite solid 120 40 40 3 5,100

Rod 60 20 20 3 4,900

Table 4.14. Influence of path length on ultrasonic velocities in horse-chestnut wood at 12% mois-
ture content. Tone burst technique at 1.5 MHz with 12.5-mm-diameter transducers using the trans-
mission technique. (Bucur and Perrin 1988a, with permission)

 Characteristics of the specimen   
 Size (mm)  Section Ratio Velocity (m/s)
 L R T  R/T VLL VRR VTT

Cylinder 160 18 18 Circle 1 5,298 1,521 1,269

Parallelepiped 70 70 22 Rectangle 3 4,975 1,532 1,263

Disk 35 35 22 Square 1.6 5,013 1,562 1,261



nut for the longitudinal velocity VLL and for transverse velocities VLR and VLT 
on cylindrical specimens and on disks. From this experimental situation it can 
be deduced that the values of velocities are not affected by the geometry of the 
specimen.

The multiplicity of modes propagating in wood can be seen in Fig. 4.22 in 
which the typical behavior of cubic poplar wood specimens in the time domain 
and frequency domain are presented. From the frequency spectrum of longitu-
dinal waves we can see the lobe patterns corresponding to the geometry of the 
specimen as well as the peaks made by the vibration of fibers of 2−3 mm length in 
the region corresponding to frequency higher than 1.6 MHz. From the frequency 
spectrum of shear waves the annual ring width and the proportion of latewood in 
the annual ring can be deduced. The complexity of modes propagating in wood 
can also be seen in Fig. 4.23, when a disk-type specimen is excited at 45° with 
shear waves in four symmetric points. From this figure we can note the follow-
ing:
− The main amplitude of the signal corresponds to the arrival of the quasi-trans-

verse wave. This component is conserved and arrives at the same time for all 
excitation positions. There is no interference between the wavelength and the 
anatomical elements.

− The smaller amplitude of the signal corresponds to the arrival of the quasi-lon-
gitudinal wave. This component shows a displacement of ∆t. The wavelength 
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Fig. 4.22. Pulse excitation with longitudinal waves (a, b) and transverse waves (c, d) on a poplar 
cubic specimen in time and frequency domains. (Böhnke and Guyonnet 1991, with permission)
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is comparable with the fiber length. We suppose that the time difference illus-
trates the misalignment of fibers.

In the future, more elaborate techniques, such as ultrasonic spectroscopy (Gerike 
1970; Fitting and Adler 1981; Alippi 1989, 1992) and signal processing as high 
resolution spectral analysis (Chen 1988), and evaluation in the time-frequency 
domain by means of the Wigner-Ville distribution (Flandrin 1988), could im-
prove the understanding of phenomena related to ultrasonic wave propagation in 
wood microstructure.

4.3.2.4 Influence of the Physical Properties of Wood 
on Measurement of Ultrasonic Velocity

The physical properties of wood on which our attention is focused in this chapter 
are: the density, a parameter that characterizes each species; the moisture con-

Fig. 4.23. Mode conversion phenomena induced on a specimen excited at 45° with transverse waves. 
1, 2, 3, and 4 Signals corresponding to excitation points E1, E2, E3, and E4. The peak corresponding 
to the maximum of amplitude is related to the quasi-transverse wave. Position of this peak is con-
served for different points of excitation. The second peak in amplitude corresponds to the quasi-lon-
gitudinal wave and is affected by anatomical structure. This peak shows a ∆t displacement. (Bucur 
and Perrin 1988, with permission)



tent when wood is in the green condition or in the air-dried condition; and the 
structure of the annual rings, with the corresponding proportions of earlywood 
and latewood.

The experimental relationship between density (ranging from 200 to 900 kg/
m3) and sound velocity (2,500−5,800 m/s) in more than 40 species of softwoods 
and hardwoods, deduced from the resonance frequency method by Barducci and 
Pasqualini (1948), is statistically significant at 5%. This means that the empirical 
relationship between these parameters is not very strong. Generally speaking, 
small values of velocity VLL correspond to high densities. This seems natural if 
we consider the anisotropic nature of wood as well as its structural organization. 
For this purpose Burmester (1965) produced a more refined analysis in which he 
plotted separately the ultrasonic velocity and density of two species, spruce and 
limba. Burmester found that spruce reacts with ultrasonic waves as a complicat-
ed natural composite material, whereas limba behaves more like a homogeneous 
orthotropic solid.

Let us now analyse the influence of earlywood and latewood from the annual 
ring on ultrasonic velocity. The opinions of different authors are rather diver-
gent. Burmester (1965) agrees that the velocity in isolated earlywood is slower 
than that measured in solid wood. Yiannos and Taylor (1967) reported higher 
velocities in latewood than in earlywood in pine. Gerhards (1978) found that ear-
lywood or latewood had no effect on stress wave velocity measurements parallel 
to the grain in sitka spruce and southern pine. The data reported are strictly 
related to his experimental procedure, in which he used accelerometers clamped 
onto earlywood or latewood on transverse sections of specimens. It is surmised 
that the probe was not small enough and the two overlapped.

Technological progress in ultrasonic transducers in last 10 years has allowed 
fine measurements to be made, related to a contact surface of less than 1 mm2. 
Measurements on spruce in the 1-MHz frequency range (Table 4.15) with lon-
gitudinal waves in L and T directions are related to the density determined by 
an X-ray technique. Ultrasonic measurements were performed on the specimens 
required for microdensitometric analysis (3×3 mm2 section). The values of lon-
gitudinal velocities in L and T directions, VLL and VTT, are different in earlywood 
and latewood and smaller than those measured in solid wood, probably because 
of the dispersion induced by the geometry of the thin specimen. The velocities 
VLL and VTT in latewood are slightly higher than in earlywood.

Relationships statistically significant at 1% have been established between ve-
locities and corresponding density of earlywood. Prior data are primarily inter-

Table 4.15. Ultrasonic velocity in earlywood and latewood and density components in X-ray micro-
densitometric analysis of resonance in spruce. Measurements were made on very thin (3×3 mm2) ra-
diographic specimens. This fact induces dispersion of ultrasonic waves and could partially explain 
the relatively small values measured in earlywood and latewood when compared to solid wood. 
(Bucur 1983b)

Parameters Earlywood Latewood Solid wood
 74% annual ring 26% annual ring 100% annual ring

VLL (m/s) 3,226 3,650 5,500
VTT (m/s) 1,062 1,468 1,500
ρ=X-ray density (kg/m3) 364 636 426
Correlation coefficients between V and ρ 0.578** 0.613** –
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esting methodologically; nevertheless they can be used as reference for produc-
ing composites for the musical instrument industry.

The influence of the curvature of rings is a pertinent question in relation to 
the correct measurement of VRR, when bulk compressional waves propagate in 
the R direction, perpendicular to the annual ring. As regards this case, Wood-
house (1986) emphasized the sample-size constraint and pointed out that the 
continuum theory employed in ultrasonic characterization using an orthotropic 
model ignores this curvature. To clarify this point several experiments have been 
performed by Bucur and Perrin (1987). The effect of the curvature of rings on VRR 
was studied on two disks cut in the RT plane. The first was 10 cm in diameter rep-
resenting a cross section of a young spruce tree on which VRR was 1,574 m/s. The 
second disk was cut from the first and was 4 cm in diameter. On the second disk 
the relative curvature was greater but the velocity was the same, VRR=1,579 m/
s. Similarity of the values enables us to conclude that for the direct transmis-
sion technique, when longitudinal bulk waves of 1 MHz are used, the curvature 
of rings has no influence on VRR. The situation may be different for transverse 
waves (Fig. 4.24).

Using the acousto-ultrasonic technique, Lemaster and Quarles (1990) ana-
lyzed the influence of the layered structure on a parameter related to the ampli-
tude and energy of the ultrasonic signal [measured in root mean square (rms) 
voltage], induced by both the alternation of earlywood and latewood and that of 
the radius of curvature of the annual ring. When a direct transmission technique 
is employed, which probably leads to the propagation of a bulk longitudinal wave 
in the radial direction of the specimen, the curvature of the rings has no effect 
on the rms voltage. When “side excitation” was used, the measured rms signal 
(probably corresponding to a surface wave propagating in the LT plane) for pine 
for the concave interface was 1.2 V and was greater than that for the convex in-
terface (0.75 V). The high amplitude of the signal observed in this case could be 

Fig. 4.24. Discrepancy in transverse velocities VRT and VTR due to birefringency and to the wave-
guide effect in spruce. Note influence of annual ring width on VTR where the propagation vector is 
parallel to the layering (T). There is no influence on VRT where the propagation vector is parallel to 
R. (Bucur and Perrin 1988, with permission)



explained by the fact that for the concave situation the signal travels from ear-
lywood to latewood and the acoustic impedance of layers increases gradually. A 
similar situation could be observed for shear waves when VTR was measured.

It is well known that to define the C44 term of the stiffness matrix, the shear 
velocity VTR or VRT or both are measured. (Note that the first index is related to 
the propagation direction and the second index is related to the polarization di-
rection.) Modulation of the transverse waves by the structure is strongly related 
to the propagation and polarization directions and birefringence phenomenon is 
observed. Data are given in Fig. 4.24. It can be seen that VRT is not affected by the 
ring curvature, since the direction of propagation is R.

The opposite effect is observed on VTR in species with a pronounced difference 
between latewood and earlywood. This velocity is probably related to the guide 
wave effect induced by the latewood with thick walls and high density. For soft-
woods (spruce, Douglas fir) the difference between VTR and VRT is in the order of 
10−15% and the figure for ring porous oak is 17%. In diffuse porous hardwoods 
the discrepancy between the two values is only 5%. Further investigation of these 
effects requires that the waveguide effects and dispersive propagation due to the 
interaction of ultrasonic waves with the microstructure be related to the frequen-
cy and to the wavelength (Fig. 4.25).

Evidence of the stop bands effect induced by the presence of layered annual 
ring structure was demonstrated by Feeney et al. (1998), using the model devel-
oped by Brillouin and Prodi (1956) and James et al. (1995) which stated that a 
“finite number of layers, as little as five, can give rise to the existence of sonic 
band gaps”. Feeney et al. (1998) used the immersion technique, scanning the 
wood sample in L direction, with a 0.5-mm hydrophone with a focused trans-
ducer of 2 MHz, and clearly demonstrated that the pattern of velocity variation 
corresponds to the densitometric variations observed in annul rings. Velocities 
higher than 4,000 m/s were measured for latewood. For earlywood the velocities 
were in the range of 2,600−3,000 m/s. The presence of juvenile wood in spruce 
“gives rise to more potential stop bands than the mature wood” and “the sharp 
impedance step between earlywood and latewood provides a strong potential 
scattering source within the material along the radial axis”. “Even frequencies as 
low as 100 kHz give rise to wavelength of a similar order of magnitude as juvenile 
ring widths” (about 5 mm).

The influence of frequency on ultrasonic velocities was studied with the si-
nusoidal burst direct transmission technique as described by Bucur and Feeney 
(1992). The frequencies were 100, 250, 500, 1,000, and 1,500 kHz. Both longitudi-
nal and transverse waves were used. A pulse length of four cycles was employed, 
thus producing a narrow band ultrasonic wave at driven frequency. The follow-
ing observations can be made from Fig. 4.25a: V11=VLL is strongly influenced by 
frequency, with a large increase in velocity from 100 to 250 kHz and a steady, 
but smaller, increase in velocity from 250 to 1.5 MHz. The relatively small value 
of velocity measured at 100 kHz was probably induced by geometric dispersion. 
V22=VRR, V33=VTT, V44=VTR, V55=VLT, and V66=VLR are insensitive to the frequen-
cy variation for frequencies higher than 250 kHz.

Up to this point it has been assumed that the wavelength is much longer than 
the material structural dimensions. However, as soon as the wavelength matches 
the dimensions of layers or of cells, the velocity is dependent on frequency.

The choice of the most interesting frequency field of investigation must be 
related to a wavelength that is comparable with the dimensions of anatomical 
elements, which vibrate as elementary resonators. Only the frequency compo-
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nent that matches the natural frequency of those resonators (Fig. 4.25b − the fi-
bers vibrate in the range 1−1.5 MHz) can give a detailed answer to the ultrasonic 
wave−wood structure interaction, and can, at the same time, explain the overall 
wood acoustic properties.

The microstructure−wavelength interaction in the solid wood that behaves 
like a filter with alternate pass bands and stop bands using ultrasonic spectros-
copy is an interesting research aspect for the future.

4.4 Attenuation of Ultrasonic Waves in Wood

The basis of the ultrasonic evaluation of the viscoelastic behavior of wood is asso-
ciated with measurements of attenuation coefficients. Pioneering work on poly-

Fig. 4.25. Influence of frequency on ultrasonic velocity measurements. a Velocities versus frequen-
cy from 0.1−1.5 MHz; b wavelength corresponding to VLL versus frequency. Specimen geometry is 
seen at 0.1 MHz and fiber length at 1−1.5 MHz. d Dimension (size of the specimen) determining its 
geometry. (Bucur 1984a)



crystalline media (Papadakis 1965, 1967, 1968, 1990) and on biological tissues, 
polymers, and inhomogeneous media in general (Chivers 1973, 1991) has shown 
that attenuation is a valuable parameter which may give information about the 
structure and the environmentally influenced conditions of the polycrystalline 
and biological materials through which the ultrasonic waves are propagated. The 
parameters of ultrasonic wave propagating in solid structure can be influenced 
by a broad range of factors, such as the physical properties of the substrate, the 
geometrical characteristics of the specimen under test (macrostructural and mi-
crostructural features), the environmental conditions (temperature, moisture 
content, mechanical loading), and the measurement conditions (sensitivity and 
frequency response of the transducers, their size and location, the coupling me-
dium, and the dynamic characteristics of the electronic equipment).

The numerical significance of attenuation depends on the specific measure-
ment conditions (Bucur and Feeney 1992). For wood material, values of attenua-
tion coefficients have been reported by Bucur and Ghelmeziu (1977), Okyere and 
Cousin (1980) (αL=5 dB/10−2 m; αR=22 dB/10−2 m for red pine at 1 MHz and 48% 
moisture content), and by Böhnke (1993) (for dry sugi wood and longitudinal 
waves: αL=2.1 dB/10−2 m and αR=4.7 dB/10−2 m; and for shear waves: αLR=3.4 dB/
10−2 m and αRL=14.3 dB/10−2 m).

4.4.1 Theoretical Considerations

Up till now, we have assumed that wood is a viscoelastic linear solid, having an 
orthotropic symmetry. Therefore, we will consider the effective properties of an 
equivalent solid medium.

The scattering of an ultrasonic wave in this medium results in frequency-de-
pendent wave velocity and attenuation. The dispersion equation (Christensen 
1971, 1979; Hosten et al. 1987; Chevalier 1988, 1989; Hosten 1991) relating all the 
parameters of propagation phenomena in anisotropic solids (when the terms of 
the Christoffel tensor [Γij*] and stiffness tensor are complex, notably [Cij*], and 
also k is complex, k*=k-iα and V=ω/k*) is as follows:

(4.63)

where ω is the frequency and δij is the Kroneker tensor.
For in axis propagation, the dispersion equation takes the form:

(4.64)

The eigenvalue Λ* of the dispersion equation (Chevalier 1989) is:

(4.65)

where ρV2 is the real part of the diagonal stiffness tensor and
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is the ratio of the imaginary to the real part of the stiffness terms.

If         , the eigenvalue can be written as           , 

where 2α×V/ω is the ratio of the imaginary and real part of the stiffnesses.

4.4.2 Measurement Technique

Attenuation measurement can be performed either with broadband pulses (con-
taining a wide range of frequencies) using ultrasonic spectroscopy, or with nar-
row band pulses using burst excitation at a fixed frequency (Bucur and Böhnke 
1994). Both cases are analyzed below.

The calculation relationship adopted for attenuation coefficients is:

4.4.3 Factors Affecting Attenuation Measurements in Wood

The propagation of ultrasonic waves in wood may be attenuated by three main 
factors: the geometry of the radiation field, scattering, and absorption. The first 
factor is related to both the properties of the radiation field of the transducer 
used for measurements (beam divergence and diffraction) and wave reflection 
and refraction occurring at macroscopic boundaries of the medium. These fac-
tors are related to the geometry of the specimen. Scattering and absorption are 
phenomena related to the material characteristics.

4.4.3.1 Geometry of the Specimen

To study the influence of the geometry of specimens on ultrasonic attenuation, 
cylindrical samples of the same diameter and of different length were selected. 
Figure 4.26 shows attenuation expressed as amplitudes versus frequency for 
cylindrical specimens of beech (diameter: 20×10−3 m; length: 50, 100, 135, and 
200×10−3 m). For small specimens the attenuation decreased linearly with the 
frequency in the range 1−2 MHz. For long specimens, the central frequency 
moved to the lower frequency and no linearity was observed.

Both cut-off frequency and frequency for which there is an amplitude maxi-
mum depend on the insonified volume of specimen, which of course increases 
with the length of the sample. The wave guide effect is more evident for the speci-
men having small diameter.

For the specimen of length 50 mm, excited in the L direction, the cut-off fre-
quency is about 2 MHz, for a 135-mm-length specimen the cut-off frequency is 
about 1.35 MHz. For long specimens the frequencies are shifted to the lower rang-
es, which means that the attenuation is greater in long specimens than in short 
specimens. Thus, the proposed linear viscoelastic model seems to be quite satis-
factory. It is possible then that a recommendation could be made that relatively 
small specimens (20−50 mm length) be selected for laboratory measurements. In 
such a case it is vital to verify that the propagation phenomena take place in the 
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far field and no resonance occurs. For this reason the wavelength λ and the near 
field length were calculated (Table 4.16) when measurements were performed on 
short specimens, cubes, and cylinders of 20×10−3 m length. The reader should 
note that the dimensions of the cubic specimens are greater than the wavelength, 
in all anisotropic directions. The near field of radiation in the longitudinal di-
rection is between 1.8 and 5.5 mm; in the radial direction it is between 3.3 and 
11 mm; in the tangential direction it is between 4.5 and 16.3 mm. Short cylindri-
cal specimens must therefore be avoided.

As the microstructure of a solid governs its mechanical properties, it seems 
natural to consider that the mechanisms of wave attenuation should be related 
to the characteristics of the individual grain of the microstructure (the cell in 
the case of wood). Moreover it is interesting to compare now the wavelength with 
some data related to dimensions of wood anatomical elements. It is well known 
(Panshin and de Zeeuw 1980) that the length of wood cells (tracheids) in conifer 
species is about 3−4 mm and in broadleaved species the length of the fibers is 
about 1 mm. The dimension of cells in the T direction for spruce is about 30 µm. 
In the radial direction this dimension may be 50 µm. The proportion of medul-
lary rays is about 7% of the total volume.

Broadleaved species are very different and it is difficult to provide figures for 
general characteristics. For this reason we have selected maple (Acer spp.) as an 
example. In Acer spp. the percentages of the different elements of the total vol-
ume of wood are 18% vessels, 65% fibers, and 15% rays. The fiber length is about 
1 mm and the vessel length is about 0.5 mm. The diameter of the vessels is about 
300 µm. The fiber diameter is about 30 µm.

Coming back to the links between the wavelength and the dimensions of the 
anatomical elements, it is to be noted that in cubic specimens, insonified with 
longitudinal waves, in the longitudinal direction, the wavelength and the cell 
length are both on the scale of millimeters. Probably the propagation takes place 

Fig. 4.26. Attenuation (expressed as amplitude) versus frequency for cylindrical specimens of 
beech. (Bucur and Böhnke 1994, with permission)
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in the stochastic scattering regime. In the radial and tangential directions the 
wavelengths significantly exceed the mean cell dimensions (i.e., in the R direc-
tion λ=4 mm and the cell dimension may be 50 µm; in the T direction λ=3 mm 
and the cell dimension may be 30 µm). In this case, probably the propagation 
takes place within the Rayleigh scattering regime.

4.4.3.2 Characteristics of the Material

The influence of the characteristics of the material on scattering is analyzed in 
three typical situations: when wood is compared with an isotropic solid, when 
different anisotropic axes are compared in the same species, and when the same 
anisotropic axis is considered in different species.

When wood material is compared with an isotropic solid we need to analyze 
the amplitude spectrum (Fig. 4.27), in which we note for wood the shift in central 
frequency with respect to the low frequency region. The influence of the different 
material anisotropic directions on attenuation is shown in Fig. 4.28a, in which 
the signal in the time domain is shown for L, R, and T directions. It should be 
noted that for the same beech cubic specimen, the more dispersive the direc-
tion of propagation, the more the signal looses high frequency components and 
consequently becomes wider. In the frequency domain (Fig. 4.28b) we analyze 
the amplitude spectra corresponding to the L and T directions, insonified with 
longitudinal waves. In the spectrum corresponding to the L direction the struc-
tural vibration is between 600 and 700 kHz. From this spectrum, if the value of 
the phase velocity is known (i.e., 4,000 m/s) it is possible to determine the fiber 

Table 4.16. Length of radiation field, wavelength, and attenuation measurements expressed by sig-
nal amplitude at a given frequency in beech. (Böhnke 1993)

Anisotropic Velocity Attenuation Frequency Wavelength λ Φ2/4λ
direction (m/s) (dB) (kHz) (mm) (mm)

Cylinder 20 mm long, transducers 1 MHz, Φ=14 mm

L 4,887 17 151 32 1.5
R 2,492 12 79 32 1.5
T 1,735 14 75 23 2.0

Cube 20-mm size, transducers 1 MHz, Φ=14 mm

L 5,609 24 705 9 5.5
R 2,648 35 635 4 11.0
T 1,772 48 584 3 16.3

Cylinder 20 mm long, transducers 5 MHz, Φ=7 mm

L 4,734 16 195 24 0.5
R 2,151 13 254 9 1.5
T 1,576 13 159 8 1.5

Cube 20 mm size, transducers 5 MHz, Φ=7 mm

L 4,305 27 608 7 1.8
R 2,196 40 591 4 3.3
T 1,609 57 217 7 4.5



Fig. 4.27. Amplitude spectra 
of spruce and polyvinylchlo-
ride (PVC) with broadband 
transducers. (Bucur and 
Böhnke 1994, with permis-
sion)

Fig. 4.28. Amplitude in different anisotropic directions measured with the same cubic specimen of 
20 mm size. a In the time domain for propagation in L, R, and T directions, using broadband trans-
ducers of 1 MHz central frequency and longitudinal waves. b In the frequency domain for propaga-
tion in L and T directions, using broadband transducers of 5 MHz central frequency and longitudi-
nal waves. (Böhnke 1993, with permission)

a

b
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length (approximately 5 mm), but for this purpose the appropriate methodology 
for phase velocity measurements must first be developed.

In the T direction the spectrum is very complex and is similar to the spectrum 
obtained for periodic layered composites (Scott and Gordon 1977). The periodic-
ity observed in the specimen is induced by the annual rings, and coincides with 
the periodicity of the highest amplitude peaks in the spectrum.

When we compare the same anisotropic direction L (Fig. 4.29) in different spe-
cies (Douglas fir and poplar), we note that the broader signal is observed in the 
most heterogeneous species (Douglas fir). This behavior could be associated with 
the anatomical scatter in the structure. The richer the structure is in scatterers of 
various densities, the more important the dispersion phenomena are, as can be 
seen in the case of Douglas fir.

Table 4.17 shows the attenuation coefficients for all the anisotropic axes and 
planes calculated for excitation by both longitudinal and shear waves. It can be 
seen that:
− The attenuation coefficients increase with frequency for both longitudinal and 

transverse waves.
− For longitudinal waves, the T direction exhibits the highest attenuation.
− For transverse waves, generally, there were no significant differences between 

the attenuation coefficients of waves propagating in different directions.
− The attenuation coefficients of the longitudinal wave in L and R directions are 

higher in spruce than in maple. This is probably due to important differences 
in densities in annual ring zones (i.e., in spruce in earlywood the density is 
300 kg/m3 and in latewood the density is 900 kg/m3). In spruce the propor-
tion of the latewood is 15−20% of the annual ring width. In maple the latewood 
zone is very narrow, about 5%.

The propagation phenomena on the scale of the structure of ultrasonic waves 
in wood can be understood using a simplified acoustical model (Bucur 1980b). 
Wood cells may be treated as “tubes” of cellulosic crystalline substance embed-
ded in an amorphous matrix − lignin. Solid wood is then a rectangular array of 
tubes embedded in a matrix. The longitudinal orientation of the tubes is slightly 

Fig. 4.29. Propagation of ultrasonic waves in longitudinal direction in a cubic specimen of poplar 
and Douglas fir. (Bucur and Böhnke 1994, with permission)



disturbed by horizontal elements, the medullary rays. In the longitudinal direc-
tion the dissipation of acoustical energy takes place at the edges of the tubes. 
Accordingly, the longitudinal axes which are constructed from long elements 
provide high values of velocities and relatively small values of attenuation. The 
highest attenuation is expected in the T direction in which no continuous struc-
tural elements exist.

Statistical analysis of the influence of the natural variability of wood material 
on attenuation expressed by measured amplitude is given in Table 4.18. The coef-
ficient of variation in the longitudinal direction was 19%, which is in the same 
range as for other mechanical properties of wood.

This section obviously does not cover all aspects of attenuation measurements 
in wood, but it can be noted that the main factors affecting ultrasonic attenuation 
measurements in wood are related to the geometry of the radiation field, to wave 

Table 4.17. Attenuation coefficients α ij=−1/d lnP/Po (in Nepers/cm) and velocities (in m/s) in curly 
maple and common spruce, measured with the sinusoidal burst transmission technique and longi-
tudinal and transverse waves. 1 dB/10−2 m=8.69 Np/10−2 m. (Bucur and Böhnke 1994, with permis-
sion)

Parameters Frequency (MHz)
 0.10 0.25 0.50 1.0 1.5

Curly maple

Longitudinal waves
α11 1.55 1.62 1.62 1.75 1.90
V11 4,332 4,409 4,540 4,706 4,559
α22 2.30 2.25 2.29 2.47 2.63
V22 2,285 2,270 2,279 2,325 2,340
α33 2.82 2.82 3.03 3.22 3.22
V33 1,254 1,291 1,321 1,316 1,345

Transverse waves
α44 1.64 1.85 1.85 2.32 2.47
V44 8,69 966 918 918 –
α55 1.68 1.77 2.10 2.47 2.39
V55 1,214 1,350 1,394 1,428 1,399
α66 1.77 1.94 2.05 2.27 2.34
V66 1,342 1,552 1,566 1,602 1,580

Common spruce

Longitudinal waves
α11 2.17 2.07 2.10 2.29 2.47
V11 4,458 4,847 5,343 5,327 5,401
α22 2.83 3.02 3.22 3.22 –
V22 1,612 1,741 1,832 1,832 –
α33 2.71 3.02 3.03 3.02 3.22
V33 1,283 1,400 1,321 1,325 1,346

Transverse waves
α44 Signal not analyzed
V44 Signal not analyzed
α55 1.62 1.62 1.85 2.06 2.17
V55 1,310 1,320 1,356 1,383 1,372
α66 1.64 1.71 1.71 2.17 2.36
V66 1,250 1,372 1,383 1,822 1,839
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reflection and refraction occurring at the macroscopic boundary of the medium 
(the edge of the specimen), and to the scattering phenomena. Cubic specimens 
are appropriate for attenuation measurements. In cubes insonified using longitu-
dinal waves, the wavelength and the wood cell length are on the millimeter scale. 
In the longitudinal direction the propagation takes place in the stochastic scat-
tering regime whereas in the radial and tangential directions it takes place in the 
Rayleigh scattering regime because the wavelengths exceed the cell dimensions. 
The attenuation coefficients increase with frequency for both longitudinal and 
shear waves. Attenuation is lowest in the longitudinal direction and highest in 
the tangential direction. The richer the wood structure is in scatterers of various 
densities, the more important the dispersion phenomena.

4.5 Internal Friction in Wood in the Audible Frequency Range

In the audible frequency range the viscoelastic behavior of wood is associated 
with the magnitude of the damping coefficients. Theoretical bases for the estima-
tion of damping coefficients in solids are given in many reference books (Cremer 
and Heckl 1973; Read and Dean 1978; Main 1985; Beltzer 1988). Several param-
eters are used to describe the internal friction or the absorption of mechanical 
energy by solids in the audible frequency range. The most common are:
− the mechanical damping, tan δ, defined as the "logarithmic decrement", that 

is the logarithm of the ratio of two subsequent amplitudes of free vibrations 
calculated as 2π tan δ, where δ is the phase angle;

− the quality factor Q, for steady-state forced vibrations, defined by analogy with 
the theory of electric circuits, as the ratio of the width (∆f) of the resonance 
curve at half maximum amplitude or at half power level (or at −3 dB) to the 
resonance frequency fr    .

Very often the experimental results are expressed as Q−1.
The different parameters relevant to internal friction phenomena in solids in 

the audible frequency range and in the ultrasonic range are related as follows:

(4.67)

where V is the ultrasonic velocity and α is the ultrasonic attenuation. This rela-
tionship is valid for materials with tan δ <0.2 (Read and Dean 1978). Measure-
ments of internal friction parameters and of ultrasonic attenuation coefficient 

Table 4.18. Statistical analysis of the influence of natural variability of spruce wood on attenuation 
expressed by measured amplitude values. (Böhnke 1993)

Statistical parameters Density Velocity Amplitude Frequency
 (kg/m3) (m/s) (dB) (kHz)

Minimum 345 5,512 22.5 628
Maximum 600 6,694 69.7 980
Average 493 6,209 47.0 854
Coefficient of variation (%) 11 4 19 8

Q = 
∆ƒ

  
ƒr 

2π tan δ = 2π 
∆ƒ

 = 2π Q-1 = 2a 
V

        
ƒr           

ƒr



in various kind of solids (alloys, glass, ceramics) have been reported by Smith 
(1980).

4.5.1 Typical Values of Damping Coefficients

The most complete list of values of logarithmic decrement in L and R directions 
for a number of species is that of Haines (1979). Measurements in three anisotro-
pic directions for different modes are scarce, however, because of the difficulties 
in obtaining corresponding specimens for T direction tests. The measurements 
using the longitudinal mode reported by Ono and Norimoto (1985) are repro-
duced in Table 4.19.

It is worth noting that         and the anisotropy ratio deduced as

    is typically between 2.1 and 3.0 and

    is between 2.2 and 3.5. In addition, it may be said that the internal fric-
tion is smaller in the fiber direction and higher in the T direction.

The damping mechanism in solid wood is caused by the lignin regions. Cellu-
losic microfibrils are highly crystalline and consequently they have low damping. 
The variation of damping with the grain angle was reported by Ono (1983a) and 
some data are reproduced in Table 4.20. The general equation for the prediction 
of the internal friction with the grain angle is as follows:

(4.68)

where α is the grain angle.

4.5.2 Damping Coefficients as Indicators 
of Microstructural Modifications Induced by Different Factors

This section discusses the influence on the damping coefficients of wood of sev-
eral factors − temperature, moisture content, chemical treatment, and dynamic 
loading of the specimen.

Table 4.19. Internal friction in several species determined in L, R and T directions with longitudinal 
vibrations. Density of the specimens with main axis in L, R, or T direction. (Ono and Norimoto 1985, 
with permission)

Species Density (kg/m3) Internal friction (Q-1) Anisotropy
 L R T L R T L R T

Sitka spruce 460 449 454 11.2 23.2 24.4 1 2.10 2.20
Lauan 481 489 478 7.6 19.7 20.3 1 2.59 2.63
Makoré 669 673 670 9.5 28.0 33 1 2.95 3.47
Matoa 795 700 674 9.4 27.3 27.5 1 2.91 2.93
Mizunara 630 654 620 107 25.8 28.9 1 2.41 2.70
Yachidamo 570 548 517 8.8 25.1 26.9 1 2.82 3.03

QL
-1 << QR

-1 < QT
-1

QR
-1

QL
-1 

QT
-1

QL
-1 

Qα
-1 = Q0°

-1 + Q90°
-1 - [Q0°

-1 · Q90°
-1] · [Q0°

-1 · cos2 α + Q90°
-1 · sin2 α]
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4.5.2.1 Temperature and Moisture Content

We chose to indicate the way in which the parameter Q−1 is able to reflect fine 
structural modifications in wood induced by an increase in temperature. For this 
purpose internal friction spectra of beech as a function of temperature are given 
in Figs. 4.30 and 4.31. In Fig. 4.30 in both anisotropic directions (L and R), two 
peaks of Q−1 were observed associated with corresponding changes in frequen-
cies. At low temperatures, i.e., below 170 K, the molecular motion in amorphous 
lignin is probably frozen and therefore the frequency variations are very small. 
The increase in temperature permits dislocations and rearrangement of the 
structure, probably at the hemicellulose level. This begins at 210 K for specimens 
in the L direction and at 230 K for specimens in the R direction. A larger damping 
was observed for acoustic waves that propagate across the fibers (R direction). 
The increase in temperature softens the amorphous regions, and this is followed 
by a second transition, occurring in the range 260−300 K and characterized by 
a broadened peak in L-type specimens. The softening of the material has led to 
a large decrease in corresponding resonance frequency. With further increase in 
the temperature (390 K) a third transition is observed, probably corresponding 
to the glass transition of wood.

The effect of heat treatment on internal friction in woods used for musical in-
struments has also been reported by Nakao et al. (1983) and by Yano and Minato 
(1992).

The influence of moisture content on damping at room temperature has 
been reported by Suzuki (1980) and Sasaki et al. (1988). It was noted for hinoki 
(Chamaecyparis obtusa) that tan δ increased from 5.5 to 18.5×10−3 when mois-
ture content increased from 5 to 35%. In the low temperature range (Fig. 4.31) for 
beech conditioned at various equilibrium moisture contents (4 or 27%) a phase 
transition, similar to those reported in other porous water-absorbing materials, 
was observed. Near the fiber saturation point, or more exactly at 27% moisture 
content, a phase transition of the same nature as “the glass transition of the ab-
sorbed water” was observed at −100 °C. Decreasing the moisture content of speci-

Fig. 4.30. Internal friction and resonance frequency in beech as a function of temperature and 
moisture content. a In longitudinal direction; b in radial direction. (Khafagy et al. 1984, with per-
mission)



mens at 4% shifted the peak of internal friction to −60 °C, probably because of 
the presence of water mainly in the cell walls.

4.5.2.2 Chemical Treatment

The influence of chemical modification of the wood structure of Tilia japonica 
induced by a half-esterified treatment with zinc to obtain a succinylated wood 
ionomer can be observed by measuring tan δ in a wide temperature range (−120 
to 230 °C) (Fig. 4.32). Two peaks are observed on this graph − at 180 and at −60 °C 
− probably corresponding to the restricted motion of the main cellulosic chain 

Fig. 4.31. Internal friction in the low 
temperature range for beech with different 
moisture content (MC). perp. grain 
Perpendicular to the grain. 
(Sellevold et al. 1975, with permission)

Fig. 4.32. Influence of zinc content on the dynamic behavior of wood ionomer − succinylated wood 
containing zinc compared with natural, untreated wood of Tilia japonica. (Nakano et al. 1990, with 
permission)
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and to the side-chain motion, respectively (Nakano et al. 1990). In the region 
between −60 and 20 °C, corresponding to the micro-Brownian motion of half-
esterified cellulose in the amorphous region and to the local vibration of car-
boxyl groups related to water molecules, tan δ decreased dramatically. At 20 °C 
its value is at a minimum. The increase in tan δ as the temperature rises to 60 °C 
indicates an increase in internal friction. Zn ions form intermolecular crosslinks 
between cellulose chains, and this structural modification of solid wood was also 
observed in tan δ measurements. The presence of metallic ions in the wood iono-
mer retards the thermal degradation of this material above 100 °C, as can be seen 
from the plateau of the graph in Fig. 4.32.

Fig. 4.33. Variation in the modulus of elasticity 
(E), internal friction, and ratios of internal friction 
versus the amplitude and vibration time of continu-
ous flexural vibration of small amplitude [0.40 mm 
(solid line), 0.17 mm (dashed line), 0.03 mm 
(dotted line)] in spruce, measured in specimens 
of 35×5×400 mm, at frequency between 100 and 
170 Hz. (Sobue and Okayasu 1992, with permission)



4.5.2.3 Dynamic Loading

Sobue and Okayasu (1992) showed that internal friction parameters measured 
in wood could be used for the estimation of very fine modifications of cellular 
wall structure induced by continuous vibration of specimens even with relatively 
small amplitudes. In Fig. 4.33, we observe that the value of EL is not affected by 
the amplitude of 5 h of bending vibration, although the ratio tan δ/tan δ0 (tan δ0 
corresponding to the initial state) decreased at a rate dependent on the vibration 
time and amplitude (i.e., 8% for 3 h at 0.40 mm amplitude). These results have 
been related to the chemical hydrogen bonds between the chains connecting the 
microfibrils and the lignin, and have been explained through the rate theory. De-
tailed calculations using the rate theory in wood can also be seen in Mark (1967) 
and Cousins (1974).

The results reported by Sobue and Okayasu (1992) can be brought together 
with the earlier experiments by Murphy (1963) using static tests at low stress 
levels. He found that the crystallinity of wood, measured by X-ray diffraction, 
increases with the rate of applied load. This behavior was related to the moder-
ate-strength hydrogen bonds. Murphy proposed that when the matrix of the ma-
terial is squeezed under stress, the connections were readjusted to give new bond 
positions. The intensity of the stress then produced either an elastic or a plastic 
response of the specimen.

Kohara et al. (1999) studied the relationship between the internal friction un-
der a pulsated load and the acoustic emission behavior of spruce. The acoustic 
emission activity started at the limit of the linear viscoelastic region and the am-
plitudes of events were proportional to the internal friction. The damage proce-
dure that induced acoustic emission is closely related to that of internal friction.

4.6 Summary

This chapter has highlighted the use of acoustical methods − vibrational in the 
audible range and ultrasonic − for characterization of the mechanical behavior 
of solid wood and wood-based composites. The following aspects have been dis-
cussed:
− The elastic symmetry of isotropic and anisotropic solids. The origin of the 

anisotropy, perceived as the variation of material response with direction of 
applied stress, lies in the preferred organization of the internal structure of the 
material (the orientation of “fibers ” in solid wood or of layers in laminated 
wood-based composites). The terms of the independent elastic constants are 
presented: for example, 21 independent constants for monoclinic symmetry, 
nine constants for orthotropic symmetry, five for transverse isotropic mate-
rial, and two for isotropic solids. The relationships between the technical en-
gineering constants and the terms of stiffness and compliance matrices are 
discussed.

− The theoretical considerations related to wave propagation in anisotropic sol-
ids (Christoffel's equations), mainly in orthotropic solids, are presented be-
cause of the interest of the Cartesian orthotropic model for wood structure. 
Ultrasonic wave propagation phenomena in wood are illustrated in tridimen-
sional representation of slowness surfaces and corresponding displacements. 
This representation underlines the kinematics of wave propagation related to 
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the progressive mode conversion and expresses better in a global way the dif-
ferences between wood species in their acoustical behavior.

− The common audiofrequency acoustic methods for wood testing use frequen-
cies below 20,000 Hz. Steady-state or transient (impact) excitation can be used 
for the dynamic tests at resonance vibration when elastic moduli are to be de-
termined. The direct, accurate measurement of engineering constants of wood 
(three Young's moduli, three shear moduli, and six Poisson's ratios) is impor-
tant in engineering and in product design. The most convenient technique for 
measuring these parameters with high precision depends upon measurements 
of the resonance frequencies of longitudinal, flexural, or torsional resonant 
modes of bar-shaped samples or plates. The technique can be extended to 
measure the internal friction if the quality factor Q or the logarithmic decre-
ment are measured in addition to the resonance frequency.

− Specific aspects related to the measurement of the velocities of ultrasonic 
waves in wood are discussed. Wood material that is to be sensed and probed 
with ultrasonic waves might be divided into three main groups: trees and logs, 
small clear specimens, and engineering products. The practical success of ul-
trasonic methods is determined by the utilization of the appropriate trans-
ducers. The basic requirements of an ultrasonic transducer are: good sensitiv-
ity and resolution, controlled beam pattern, reproducible performance under 
various testing conditions, and high signal to noise ratio.

− The basis of the ultrasonic evaluation of the viscoelastic behavior of wood 
is associated with measurements of attenuation coefficients. The numerical 
significance of attenuation depends on the specific measurement conditions. 
Three main factors affecting the attenuation measurements in wood are the 
geometry of the radiation field (the geometry of the specimen) and the mate-
rial characteristics of scattering and absorption (dependent on species, aniso-
tropic direction, frequency, scale of observation, etc.). In the audible frequen-
cy range the viscoelastic behavior of wood is associated with the magnitude of 
the damping coefficients − the mechanical damping defined as “logarithmic 
decrement” or “tan δ” − for free vibrations and the quality factor Q for steady-
state forced vibrations. The damping coefficients are indicators of microstruc-
tural modifications induced by temperature and moisture content, chemical 
treatment, mechanical loading of specimens, etc.




