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8.1
General Remarks

Dioxygen, O2, is omnipresent in our environment. Its solubility in water is 1.35 × 
10−3 mol dm−3 at 20 °C (air-saturated: 2.8 × 10−4 mol dm−3), and at 37 °C it drops to 
77% of these values. Most experiments that are reported in the literature to have 
been carried out under ambient conditions will contain that much O2. However, 
as a free-radical-induced reaction continues to proceed it is likely to consume 
O2, and due to the low prevailing O2 concentration it may become consumed 
before the reaction has been stopped. This can lead to considerable artifacts.

It is often assumed that the O2 concentration in a cellular environment is 
the same as that in dilute aqueous solution. This assumption does not seem to 
be correct, not only because O2 may be consumed by metabolic processes, and 
its rediffusion to the target site, e.g. to the nucleus, may be too slow to replenish 
the O2 concentration to saturation level. More importantly, the solubility of O2 
in such highly concentrated solutions of proteins and nucleic acids that prevail 
in the nucleus is extremely low, that is, only a small fraction of that in water 
(Zander 1976a,b).

In radiobiology, O2 has a sensitizing effect on cell survival and other parame-
ters (Chap. 12.11). Moreover, the superoxide radical, O2

•−, may trigger important 
cellular reactions (although many of its reactions are slow; for a review see Biel-
ski and Gebicki 1970). For example, there is increasing evidence that O2

•− may 
play a role in the intercellular induction of apoptosis (Bauer 2000; Engelmann et 
al. 2000; Herdener et al. 2000).

8.2
Kinetics of the Reaction of Free Radicals with Oxygen

Details of the formation and decay of peroxyl radicals in an aqueous environ-
ment have been reviewed in some detail (von Sonntag and Schuchmann 1991, 
1997; Schuchmann and von Sonntag 1997), and its suffices here to report only 
the most important points.

Most organic radicals react practically irreversibly with O2 at close to dif-
fusion-controlled rates (typically at 2 × 109 dm3 mol−1 s−1), and in air-saturated 
aqueous solutions the lifetime of these radicals will only be ∼2 µs [reaction (1); 
for a compilation of rate constants see Neta et al. 1990].

 (1)

Not all encounters in the reaction of O2 with eaq
− lead to O2

•−, and the appropri-
ate spin factor for this is 2/3 because of the large zero-field splitting of triplet O2 
(Schmidt et al. 1995). Similarly, spin dephasing is observed for the reaction of 
H• with O2 (Han and Bartels 1994), and this may apply also to other R• plus O2 
reactions.

The R−OO• BDEs for alkylperoxyl radicals are around 125 kJ mol−1, for vinyl- 
and aryl-type peroxyl radicals they are even higher by about 63 kJ mol−1 (Kranen-
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burg et al. 2000). Only for the cyclohexadienyl radical, it is as low as 25 kJ mol−1, 
and this leads to noticeable reversibility (for DFT calculations see Naumov and 
von Sonntag 2005). For the related pentadienylperoxyl radical a BDE of 56 kJ 
mol−1 has been determined for the gas phase (Zils 2000; Zils et al. 2001).

As a rule of thumb, peroxyl radicals absorb at shorter wavelength and have 
lower and less structured absorptions than their parent radicals. There are only 
a few exceptions: vinyl- and phenyl-type peroxyl radicals (Alfassi et al. 1994, 
1995; Mertens and von Sonntag 1994; Fang et al. 1995b; Khaikin and Neta 1995) 
as well as thiylperoxyl radicals (Jayson et al. 1971; Tamba et al. 1986; Zhang et 
al. 1994) absorb in the near UV and visible, cf. Fig. 8.1, while their parent radi-
cals have barely any absorption in the wavelength region of interest (for a quan-
tum-chemical study of peroxyl radical absorption spectra see Naumov and von 
Sonntag 2005).

In the present context of nucleic acid free-radical chemistry, such a strong 
absorption in the visible of a vinylic peroxyl radical is observed in the case of the 
uracil-5-peroxyl radical (λmax = 570 nm; Mertens and von Sonntag 1994) which 
plays a role in the free-radical chemistry of 5BrUra.

When the C−OO• bond is weak, the R• + O2/ROO• system becomes reversible 
(k−1 now being quite fast). To date, examples of reversibility at room temperature 
has only been found for pentadienyl-type radicals (Chan et al. 1978; Pan and von 
Sonntag 1990; Pan et al. 1993; Fang et al. 1995a). Such radicals are formed, when 
a pentadienylic hydrogen is abstracted from polyunsaturated fatty acids or when 
•OH adds to aromatic compounds (forming hydroxycyclohexadienyl radicals). 
Hydroxycyclohexadienyl radicals absorb strongly near 310 nm (325 nm in the 
case of the one derived from anisole, Fig. 8.2), while the corresponding peroxyl 
radicals absorb only weakly at this wavelength. Due to the reversibility of the re-

Fig. 8.1. Pulse radiolysis of Ar/O2 (9:1)-saturated aqueous solution of tetrachloroethene. Absorp-
tion spectrum of the trichlorovinylperoxyl radical taken after completion of the reaction. Inset 
Rate of buildup of the trichlorovinylperoxyl radical as a function of the O2 concentration. (Source: 
Mertens and von Sonntag 1994, with permission)



action, the absorbance of the hydroxycyclohexadienyl radicals does not decay to 
the low level that would be given by the absorption of the remaining hydroxycy-
clohexadienylperoxyl radicals alone, but settles a higher "plateau" value (Fig. 8.2, 
inset). The height of this "plateau" decreases with increasing O2 concentration.

Subsequent to the rapid attainment of this near-equilibrium situation, the 
radicals decay more slowly by both unimolecular and bimolecular processes 
(discussed below). For this simple case, it can be shown that when the decay 
process is much slower than the rates of the forward and reverse reactions, the 
observed rate constant for the disappearance of R• is given by the expression kobs 
= kforward[O2] + kreverse. When kobs of the decay of the hydroxycyclohexadienyl 
radicals is plotted as a function of the O2 concentration, the slope represents the 
rate constant of the forward reaction, and the intercept that of the reverse reac-
tion (Fig. 8.3).

Stability constants of a number of differently substituted hydroxycyclohexa-
dienyl peroxyl radicals have been obtained from such data (for a compilation see 
von Sonntag and Schuchmann 1997).

The thiyl/thiylperoxyl radical system is also reversible [reaction (2); Tamba 
et al. 1986; Zhang et al. 1994], although the thiylperoxyl radicals are stabilized 
by an intramolecular charge transfer (Razskazovskii et al. 1995). The evalua-
tion of the equilibrium constant is not straightforward because the thiylperoxyl 
radical undergoes a thermal but also a light-induced (Sevilla et al. 1990a) re-
arrangement into the much more stable sulfonyl radical [reaction (3)] which is 
subsequently converted into the corresponding peroxyl radical [reaction (4)]. In 
addition, equilibrium (5) has to be taken into account, although this equilibrium 
lies largely on the side of the thiyl radical (Zhang et al. 1994; for DFT calculations 
see Naumov and von Sonntag 2005).

Fig. 8.2. Pulse radiolysis of N2O-saturated  aqueous solutions of anisole. Spectrum of the anisole-
derived hydroxycyclohexadienyl radicals. Inset shows their decay in the presence of 15% O2 and 
formation of the “plateau”. (Source: Fang et al. 1995a, with permission)

8.2 · Kinetics of the Reaction of Free Radicals with Oxygen  163



164  Chapter 8 · Peroxyl Radicals

While most carbon-centered radicals react fast or at least reversibly with O2, 
some highly conjugated radicals that have considerable spin density at a hetero-
atom do not react with O2 (for the reactions of heteroatom-centered radicals with 

O2, see Schuchmann and von Sonntag 1997). Typical examples are the phenoxyl 
radicals (Hunter et al. 1989; Jin et al. 1993) and the vinylogs of phenoxyl radicals 
(Benjan et al. 2001). They only show some reactivity when the electron density 
in the ring is increased by electron donating substituents (Wang et al. 1994). 
Other examples are the tryptophan-derived radical (Fang et al. 1998) and, most 
relevant to DNA, the guanyl radical, G• (von Sonntag 1994).

Fig. 8.3. Pulse radiolysis of N2O-saturated aqueous solutions of anisole. Plot of the rate of the de-
cay of the anisole-derived hydroxycyclohexadienyl radicals as a function of the O2 concentration. 
(Source: Fang et al. 1995a, with permission)



8.3
Geometries, Spin Densities, Oxidative Power 
and pKa Values of Peroxyl Radicals

Equilibrium geometries, harmonic vibrational frequencies, dipole moments and 
hyperfine couplings for a series of peroxyl radicals have been calculated by an 
ab initio method (Besler et al. 1986). The spin density of 17O-enriched peroxyl 
radicals correlates well with the Taft substituent parameter σ* and the ET rate 
with strong reductants (Sevilla et al. 1990b; for a theoretical study see Raiti and 
Sevilla 1999; for further studies on the reduction of peroxyl radicals see Packer 
et al. 1980; Alfassi et al. 1987; Asmus et al. 1988; Schuchmann and von Sonntag 
1988; Neta et al. 1989; El-Agamey and McGarvey 2002). The redox potential of 
simple alkylperoxyl radicals is E7 = 0.77 V; it is substantially increased by elec-
tron-withdrawing substituents [E7(CCl3OO•) = 1.15 V, E7(RC(O)OO•) = 1.6 V; 
Merényi et al. 1994; for arylperoxyl radicals, see Alfassi et al. 1995]. The highly 
chlorinated peroxyl radicals oxidize some nucleobase anions (at high pH) quite 
effectively (Kapoor and Gopinathan 1992), but their reduction potential is too 
low to oxidize even Gua at substantial rates in neutral solutions.

A similar gradation is observed, when O2
•− is the reductant. The rate of the re-

action of the most powerful peroxyl radical, the acetylperoxyl radical, with O2
•− 

is close to diffusion-controlled [reaction (7); k ≈ 109 dm3 mol−1 s−1; Schuchmann 
and von Sonntag 1988], while the α-hydroxyethylperoxyl radical reacts with O2

•− 
merely with a rate constant near 107 dm3 mol−1 s−1 (Bothe et al. 1983).

CH3C(O)OO•  +  O2
•−  →  CH3C(O)OO−  +  O2 (7)

The peroxyl radical group is among the most strongly electron-withdrawing 
substituents (Schuchmann et al. 1989), and in a plot of the pKa values of substi-
tuted acetic acids vs. the Taft σ* constant its value of 3.7 falls in between those 
of the cyano and nitro groups. This strong electron withdrawing property of the 
peroxyl radical function strongly lowers, of course, the pKa value of the peroxyl 
radical compared to that of the parent compound (acetic acid: Schuchmann et al. 
1989; malonic acid: Schuchmann et al. 2000; formamide: Muñoz et al. 2000). pKa 
values of peroxyl radicals can be predicted (Muñoz et al. 2000) using the above 
Taft σ* value and the compiled Taft parameters (Perrin et al. 1981).

8.4
HO2

•/O2
•−-Elimination Reactions

Peroxyl radicals undergo a number of unimolecular processes. The most ubiq-
uitous one is the elimination of HO2

•/O2
•−. They govern the peroxyl free-radical 

chemistry of carbohydrates (von Sonntag 1980) and prevent their autoxidation 
in aqueous solution (Schuchmann and von Sonntag 1978). The driving force of 
the HO2

• elimination is due to the formation of a double bond [e.g., reactions (8) 
and (9); k8 = 650 s−1; k9 = 800 s−1; Bothe et al. 1977, 1983; Pan and von Sonntag 
1990; Wang et al. 1993; Pan et al. 1993; Fang et al. 1995a]. It has been suggested 
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that this reaction occurs via a five-membered transition state (Bothe et al. 1977), 
and largely due to steric reasons only the 1,2- but not the 1,4-hydroxycyclohexa-
dienylperoxyl radical eliminates HO2

• (Pan et al. 1993).

The rate of HO2
• elimination from α-hydroxyalkylperoxyl radicals strongly de-

pends on the flanking substituents that also govern the strength of the resulting 
C−O double bond (for a compilation see von Sonntag and Schuchmann 1997).

The O2
•−-elimination reactions may be divided into three groups. Those per-

oxyl radicals that have an –OH or –NH function in the α-position make up the 
first group. Such peroxyl radicals play a major role in nucleobase peroxyl radical 
chemistry [cf. reactions (12) and (13)]. Upon deprotonation at the heteroatom 
by OH− [reactions (10) and (12)], the peroxyl radical anion is formed (cf. the en-
hancement of the acidity of the functions α to the peroxyl group discussed above; 
for the thermodynamics of the various equilibria that are involved in these reac-
tions see Goldstein et al. 2002). As before, the driving force for the elimination 
reaction is the formation of a double bond [in addition to the energy gain by the 
formation of the stabilized O2

•− radical [cf. reactions (11) and (13)].

The peroxyl radical anion formed in reaction (10) has an immeasurably short 
(<< 10−6 s−1) lifetime, i.e., k11 is much larger than k−10 × [H2O], and even at high 
[OH−] the rate of acetone formation is essentially given by k10 × [OH−] (Bothe et 
al. 1977). The situation is similar for other α-hydroxyalkylperoxyl radical an-
ions (Rabani et al. 1974; Ilan et al. 1976; Bothe et al. 1983) with the exception 



of the peroxyl radical derived from hydroxymalonic acid, where the O2
•−-elimi-

nation from the peroxyl radical anion is not much faster than the HO2
• elimi-

nation of from the protonated form (Schuchmann et al. 1995). Also relatively 
long lifetimes with respect to O2

•−-elimination are given by the peroxyl radical 
anions derived from uracil (Schuchmann and von Sonntag 1983; Schuchmann 
et al. 1984), atrazine (Tauber and von Sonntag 2000), formamide (Muñoz et al. 
2000) and cyclic dipeptides (Mieden et al. 1993). For the latter system more de-
tailed data are available (Table 8.1). Substitution of the prototype radical by an 
electron donating methyl group raises the pKa values. For the same reason, the 
rate of O2

•−-release is enhanced by methyl substitution.
The second group is related to the first group, but here a distant carbon-

bound hydrogen must be removed. A case in point is the 1-hydroxycyclohexadi-
enyl-4-peroxyl radical [reactions (14) and (15)].

Whereas base-induced deprotonation at a heteroatom is very fast (practically 
diffusion-controlled), deprotonation at carbon is generally much slower (Eigen 
et al. 1964, 1965). Thus, this type of O2

•−-elimination is observed at higher pH 
values compared to the reactions discussed before. The elimination of HO2

• is 
subject to steric restrictions,− but the OH−-induced O2

•−-elimination is not, and at 
high pH all hydroxycyclohexadienylperoxyl radicals eliminate O2

•− bringing the 
phenolate yield close to 100% [reactions (9) and (14)/(15)]; competing reactions 
(see below) are thereby suppressed.

Experiments are often and carried out in the presence of buffer. Thus, it is 
important to note that the O2

•−-elimination of α-hydroxyalkylperoxyl radicals is 
not only induced by OH− but also by buffer, albeit with a much lower rate con-
stant [1-hydroxyethylperoxyl radical: k(OH−) = 4 × 109 dm3 mol−1 s−1; k(HPO4

2−) = 
4 × 106 dm3 mol1 s−1; Bothe et al. 1983].

Table 8.1. pKa values of radical derived from glycine and alanine anhydrides. Rates of O2
•−-

elimination of their peroxyl radical anions. (Mieden and von Sonntag 1989; Mieden et al. 
1993)

Parameter Glycine anhydride Alanine anhydride

pKa of parent radical 9.8 10.6

pKa of peroxyl radical 10.7 11.2

k(O2
•− elimination) s−1 1.6 × 105 3.9 × 106
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The third class of peroxyl radicals is characterized by a dissociation into a 
carbocation and O2

•−. One example has been unequivocally established to date 
[reaction (16); k = 6.5 × 104 s−1; Schuchmann et al. 1990].

Here, the driving force is provided by the stabilization of the cation by the adja-
cent electron-donating groups. It is typical for ionic dissociation processes that 
the rates depend strongly on the stabilization energies of the ions formed, and it 
is hence not surprising that the peroxyl radicals derived from diisopropylether 
(Schuchmann and von Sonntag 1987) and 1,3-dioxane (Nese et al. 1995) do not 
display a similarly fast O2

•−-elimination, as the former lacks the second alkoxyl 
function and the latter the methyl substituent. It has been suggested that also in 
the case of the C(1′) nucleoside radicals (formed through the photolysis of the 
pivaloyl derivative) this reaction plays a role [reaction (17); Emanuel et al. 1999]. 
However, the observation that the radicals generated in the photolysis of di-tert-
butylketone undergo the same reactions has to be taken as a caveat.

In reactions (18) and (19) (Das et al. 1987), no peroxyl radical intermediates have 
been observed, but if they existed, they would compound among this group.

CO2
•−  +  O2  →  CO2  + O2

•− (18)

•CH2N(CH3)2  + O2  →  (CH3)2N=CH2
+  +  O2

•− (19)

The rate constant of reaction (18) is close to diffusion controlled, and values 
ranging between 2 × 109 dm3 mol−1 s−1 (Adams and Willson 1969; Buxton et al. 
1976) and 4.2 × 109 dm3 mol−1 s−1 (Ilan and Rabani 1976) have been reported.

8.5
Addition to the C−C Double Bond

The addition of peroxyl radicals to double bonds is generally not very fast, and 
even with β-carotene the rate constant is less than 106 dm3 mol−1 s−1 (Mortensen 
and Skibsted 1998). Nevertheless, peroxyl radicals of multi-unsaturated com-
pounds have been reported to undergo chain-like peroxidation if the C−C double 
bonds are suitably disposed [cf. reaction (20); Porter et al. 1980, 1981].



The autoxidation of polyunsaturated fatty acids (cf. Porter et al. 1981) is usually 
monitored by the formation of “malonaldehyde” using the 2-thiobarbituric acid 
essay. This is carried out under rather severe conditions which decomposes its 
precursor. This malonaldehyde-like product is obviously formed via a cycliza-
tion reaction of a peroxyl radical, followed by other processes such as further 
cyclization and hydroperoxide formation [reactions (21)−(23)]. The resulting 
hydroperoxides may eliminate malonaldehyde upon a homolytic cleavage of the 
endoperoxidic intermediate (Pryor and Stanley 1975).

In the series of hydroxycyclohexadienylperoxyl radicals, one encounters the 
competition between the HO2

•/O2
•− elimination leading to phenol [reactions (9) 

and (14)/(15)] and fragmentation of the ring (Pan et al. 1993). That latter has 
been attributed to an intramolecular addition of the peroxyl radical function to 
a diene double bond [reaction (24)]. This reaction is reversible [reaction (−24)], 
but when O2 adds to the newly created carbon-centered radical the endoperoxid-
ic function is locked in [reaction (25)]. In analogy to reaction (24), the first step 
of the trichloromethylperoxyl-radical-induced oxidation of indole is its addition 
to the indole C(2)−C(3) double bond (Shen et al. 1989).

OOH OOH
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In competition with O2-addition [reaction (25)], the β-alkylperoxide species 
may undergo radical-induced cleavage of the peroxide function [reaction (26); 
Bloodworth et al. 1984; Phulkar et al. 1990].

In allylperoxyl radicals, allylic rearrangement leads to the 1,3-migration of 
the peroxyl function, with the corresponding shift of the double bond [reaction 
(28); Schenck et al. 1958].

Evidence has been adduced that for many such systems, the apparently obvious 
cyclic intermediate 1,2-dioxanyl is not realized in the course of this rearrange-
ment: an O2–allylradical pair is postulated instead (Beckwith et al. 1989; Porter 
et al. 1994). Nevertheless, this cyclic structure has been invoked in the gas phase 
(Lodhi and Walker 1991; Bozzelli and Dean 1993), and an exothermicity of 96 kJ 
mol−1 has been computed for the formation of the cyclic intermediate relative to 
the level of allyl plus O2 (Bozzelli and Dean 1993).

In DNA free-radical chemistry allylperoxyl radicals play a major role in the 
free-radical-induced oxidation of Thy. Thus far, this kind of rearrangement has 
not yet been observed (but also not especially looked for) in this system.

8.6
Intramolecular and Intermolecular H-Abstraction Reactions

The H-abstraction reactions of peroxyl radicals are related to ET discussed above, 
as in both cases the same final product is formed, a hydroperoxide. Mechanisti-
cally, these two processes are, of course, different. Hydrogen-abstraction reac-
tions by peroxyl radical, including HO2

•, are common (cf. the autoxidation of 
polyunsaturated lipids;Hasegawa and Patterson 1978; Patterson and Hasegawa 
1978; Patterson 1981; Porter et al. 1981; Gebicki and Bielski 1981; Barclay et al. 
1989; Zhu and Sevilla 1990; Aikens and Dix 1991; Simic et al. 1992). This H-ab-
straction reaction may occur intramolecularly as well as intermolecularly [cf. 
reactions (29) and (30)].



The ROO−H BDE in hydroperoxides derived from weakly oxidizing peroxyl radi-
cals is ca. 360-370 kJ mol−1 (Khursan and Martem’yanov 1991; Denisov and Den-
isova 1993), and, for a peroxyl radical reaction to occur at an appreciable rate, 
the C−H BDE of the donor must be sufficiently low. A case in point is aliphatic 
amines, but even with these the rate constants are rather low (k < 500 dm3 mol−1 
s−1 at 350 K; Dambrova et al. 2000). In DNA, the weakest C−H bond is that of the 
allylic hydrogen in Thy, and this is the preferred site of peroxyl radical attack 
(Razskazovskii and Sevilla 1996; Martini and Termini 1997). In poly(U), nucleo-
base peroxyl radicals abstract the C(2′)−H that is activated by the neighboring 
OH group (Chaps 9.4 and 11.2), but C(2′)−H abstraction in DNA is inefficient due 
to the higher BDE of this hydrogen.

Because of the often slow rate of reaction, even of intramolecular H-abstrac-
tion and a favorable six-membered transition state such as in reaction (29) (k ≈ 
1 s−1; Schuchmann and von Sonntag 1982; for further examples see, e.g., Ulanski 
et al. 1996a,b), the reaction is only observed at a low steady-state of peroxyl radi-
cals, that is, when the lifetime of peroxyl radical is long. Kinetic parameters with 
pre-exponential factors near 108 and activation energies varying from 30-60 kJ 
mol−1 have been reported for the reactions of peroxyl radicals with various alco-
hols (Denisov and Denisova 1993).

As a consequence of the reformation of the starting radical, a chain sets in 
[reactions (31)-(33)].

R•  +  O2  →  RO2
• (31)

RO2
•  +  RH  →  RO2H  +  R• (32)

2 RO2
•  →  Products (33)

If this mechanism is strictly followed the chain length and hence the value of 
O2-uptake (see below) increases linearly with the substrate concentration and 
(initiation rate)−1/2 (i.e., in radiolytic studies the dose rate) and in charged poly-
mers also on the pH (cf. Ulanski et al. 1996a). In polymers, the chain reaction 
may mainly proceed intramolecularly (Ulanski et al. 1996a; Janik et al. 2000). 
An example for an efficient intramolecular autoxidation is poly(acrylic acid) [re-
actions (34)−(36); Ulanski et al. 1996a]. In these autoxidation reactions, hydro-
peroxides are formed which, in some cases, are quite unstable [e.g. reaction (37); 
see also Leitzke et al. 2001].

In micellar systems, the chain peroxidation reaction only becomes effective 
at the critical micelle concentration where the substrate molecules aggregate 
thereby forming locally high concentrations (Gebicki and Allen 1969).

The hydroperoxides that are formed in all these autoxidation reactions all 
have low O−H BDEs. As a consequence, hydroperoxides are good H-donors in 
non-aqueous media, and they are often used to intercept radicals by H-dona-
tion. However, in water, where this function is hydrogen-bonded, the H-abstrac-
tion rates can drop by several orders of magnitude; the same phenomenon is 
observed with phenols (Das et al. 1981; Avila et al. 1995; Valgimigli et al. 1995; 
Banks et al. 1996; see also Ulanski et al. 1999).
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8.7
O-Transfer Reactions

O-transfer reactions of peroxyl radicals are sometimes referred to as two-elec-
tron reductions (Bonifacic et al. 1991; Schöneich et al. 1991; Merényi et al. 1994), 
in analogy to the one-electron reduction discussed above, although the reac-
tion type is quite different. It requires the addition of the peroxyl radical to an 
electron-rich center and is thus reminiscent of the O-transfer in ozone reactions 
(Muñoz and von Sonntag 2000; Muñoz et al. 2001; Flyunt et al. 2003). In some 
cases, this complex may simply decay into an oxyl radical and an oxide as ob-
served with diaryltellurides (Engman et al. 1995), phosphines (Engman et al. 
1995) and disulfides [Schöneich et al. 1991; Bonifacic and Stefanic 2000; e.g., 
reaction (38)].

R-O-O•  +  (CH3)2S  →  R-O•  +  (CH3)2S=O (38)

In the case of tellurides, strongly oxidizing peroxyl radicals may also undergo 
ET in competition, and the adduct to phosphines may be sufficiently long-lived 
to react further with O2 (Engman et al. 1995).

The trichloromethylperoxyl radical adds to the iodide ion [reaction (39)] 
with subsequent decomposition into the trichloromethoxyl radical [reaction 
(40)] which is further reduced by iodide into trichloromethanol [reaction (41); 
Bonifacic et al. 1991]. Its decay is much faster [reaction (42), k ≥ 8 × 104 s−1] than 
the subsequent hydrolysis of phosgene [reaction (43), k = 9 s−1 at 25 °C, Ea = 53 kJ 
mol−1; Mertens et al. 1994].



The reaction of peroxyl radicals with alkenes may give rise to epoxides [reac-
tions (44) and (45); cf.; Morgan et al. 1984; Sawaki and Ogata 1984].

The rate constant increases with increasing electron-donating capacity of the 
C−C double bond (Shoute et al. 1994) and oxidative power of the peroxyl radi-
cal (Sawaki and Ogata 1984), and the addition of acylperoxyl radicals has been 
found to be about 105 times faster than that of alkylperoxyl radicals. In the gas 
phase, the propyl-2-peroxyl radical adds to 2,3-dimethylbut-2-ene with a rate 
constant of ≈ 6 dm3 mol−1 s−1 (Sway and Waddington 1982). With rate constants 
as low as this, the addition reaction (44) must be the rate determining step of 
epoxide formation, since the rate of the subsequent step (45) ranges from 102 s−1 
(Phulkar et al. 1990) to 106 s−1 (Bloodworth et al. 1984).

8.8
Bimolecular Decay of Peroxyl Radicals

Peroxyl radicals which do not decay by one of the unimolecular processes dis-
cussed above must disappear bimolecularly. In contrast to many other radicals, 
they cannot undergo disproportionation. Hence they are left to decay via the 
recombination process, the results of which is a tetroxide intermediate [reaction 
(46); an exception may be their reaction with O2

•−; cf. reaction (7)].,

 (46)

The tetroxide intermediate is a well-established in organic solvents at low tem-
peratures (Bartlett and Guaraldi 1967; Adamic et al. 1969; Bennett et al. 1970; 
Howard and Bennett 1972; Howard 1978; Furimsky et al. 1980). However at the 
temperatures accessible in aqueous solutions the tetroxide, owing to its low 
ROO−OOR BDE, estimated at 21-33 kJ mol−1 (Benson and Shaw 1970; Nangia and 
Benson 1979; Bennett et al. 1987; Francisco and Williams 1988), can only attain 
a very low steady-state concentration. Even at the high radical concentrations 
achievable in the pulse radiolysis experiment, it has not yet been detected. Vari-
ous decay processes of the tetroxide limits its steady-state concentration: the re-
verse reaction [reaction (−46)] and its decay into products [reactions (47)−(50), 
R = alkyl or H]. Most primary (and also some secondary) peroxyl radical decay 
with rate constants around 109 dm3 mol−1 s−1 (Neta et al. 1990).

R2CH-O4-CHR2  → R2C=O  +  R2CHOH  + O2 (47)

R2CH-O4-CHR2  → 2 R2C=O  +  H2O2 (48)
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R2CH-O4-CHR2  → 2 R2CHO•  +  O2 (49)

R2CH-O4-CHR2  → R2CHOOCHR2  + O2 (50)

Depending on the identity of the peroxyl radicals involved, reactions (47)-(50) 
may occur in differing proportions. In particular, the product-forming self re-
action of tertiary peroxyl radicals is restricted to path (49) and (50), since path 
(47) and (48) require the existence of C−H α to the peroxyl function. The exact 
mechanism of these reactions is still controversial, that is, whether the product-
forming processes are sequential or concerted. Reaction (47) has been described 
by Russell (1957) as a concerted process, and this process bears his name. It is 
formulated as having a six-membered transition state.

Starting from a singlet ground state, the tetroxide gives rise to the carbonyl com-
pound, a hydroxyl compound (usually an alcohol), and O2, perhaps as singlet 
dioxygen (O2

1∆g) (Nakano et al. 1976; Niu and Mendenhall 1992). Alternatively, 
O2 can be formed in its triplet ground state, and the carbonyl compound in its 
triplet excited state, which is the cause of the chemiluminescence observed in 
these reactions (Lee and Mendenhall 1988; Mendenhall et al. 1991; Vasvary and 
Gal 1993).

The concertedness of reaction (47) has been questioned on energetic and sev-
eral other grounds (Nangia and Benson 1980; Khursan et al. 1990). It has been 
proposed instead that the carbonyl oxide (RCH=O+−O−; the Criegee intermedi-
ate), and the alkoxyl radical R2CHO• play a central role. For aqueous media, this 
hypothesis which implies a chain reaction (Nangia and Benson 1980) must be 
ruled out, since on account of the rapid 1,2-H-shift of primary and secondary 
oxyl radicals under these conditions [reaction (51); Berdnikov et al. 1972; Gilbert 
et al. 1976, 1977; Schuchmann and von Sonntag 1981] they cannot fulfill their 
function as chain carrier. Moreover, in the case of the methylperoxyl radical, it 
could be shown that in aqueous solution the corresponding carbonyloxide may 
at best play a minor role (Schuchmann and von Sonntag 1984).

R2CH-O•  →  •CR2OH (51)

Asymmetric O−O bond homolysis of the tetroxide as a first step to product for-
mation has been invoked (Khursan et al. 1990), and the idea of the Russell mech-
anism replaced by a three-step mechanism [reactions (52)−(54)].



Process (48), sometimes termed Bennett mechanism, yields H2O2 and two 
carbonyl compounds. It has often been thought of as being concerted, proceed-
ing via two five-membered rings (Bennett and Summers 1974; Bothe and Schul-
te-Frohlinde 1978) or two six-membered rings involving two water molecules 
(see above). This has been criticized on account of the excessive entropic re-
quirements of the bicyclic transition state, and, following the lateral cleavage 
(55), reactions (56) and (57) have been proposed instead (Khursan et al. 1990; for 
a discussion, see von Sonntag and Schuchmann 1997).

R2CHO•  +  •OOOCHR2  →  R2C=O  +  HOOOCHR2 (55)

HOOOCHR2  →  HO2
•  +   •OCHR2 (56)

HO2
•  +   •OCHR2  →  H2O2  +  O=CHR2 (57)

As far as concerted reactions are concerned, it should be mentioned that two 
other processes of considerable concertedness have been recognized in the stud-
ies of the fate of the peroxyl radicals derived from cyclopentane and cyclohexane 
[e.g., reaction (58); Zegota et al. 1984] and acetate [reaction (59); Schuchmann 
et al. 1985].
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8.9
Alkoxyl Radicals in Peroxyl Radical Systems

In most peroxyl radical systems investigated so-far alkoxyl radicals play a cer-
tain, albeit often not dominating role [cf. reaction (49)]. As mentioned above and 
discussed in more detail in Chap. 7.2, primary and secondary alkoxyl radicals 
undergo in water rapid (k ≈ 106 s−1) 1,2-H-shift [reaction (51)]. In competition, 
β-fragmentation also occurs [reaction (60)].

R3C−O•  →  R•  +  R2C=O (60)

The rate of this reaction (which is the main decay of tertiary alkoxyl radicals) 
is also strongly enhanced in water as compared to the gas phase and organic 
solvents. If different substituents can be cleaved off, it is the more highly-substi-
tuted one (weaker C−C bond) that is broken preferentially (Rüchardt 1987). Thus 
in the case of secondary alkoxyl radicals, substitution in β-position also decides 
the ratio of 1,2-H-shift and β-fragmentation (Schuchmann and von Sonntag 
1982). Because of the fast 1,2-H-shift and β-fragmentation reactions in water, 
intermolecular H-abstraction reactions of alkoxyl radicals [reaction (61)] are 
usually inefficient, but intramolecular H-abstraction may occur quite readily if 
an H atom is in a favorable distance (e.g., six-membered transition state).

R3CO•  +  RH  →  R3COH  +  R• (61)

Because of the rapid 1,2-H-shift [reaction (51)] and the ready conversion of 
the ensuing α-hydroxyalkyl radical into HO2

•/O2
•− by O2 [cf. reactions (8) and 

(10)/(11)], primary and secondary peroxyl are often the precursor of O2
•− in the-

ses systems. Furthermore, the β-fragmentation reaction (60) creates a new radi-
cal and hence a new peroxyl radical, a situation which makes the elucidation of 
mechanistic details often very difficult if not impossible. The peroxyl radical 
systems that have been investigated in detail thus far have been discussed by von 
Sonntag and Schuchmann (1997).

8.10
Oxygen Uptake

Oxygen uptake measurements can give considerable mechanistic information. 
In normal peroxyl radical reactions the G(O2-uptake) will range between 3 × 10−7 
and 6 × 10−7 mol J−1 (Table 8.2). The lower value will be found when half of the 
O2 is reformed (for example, the formate system), the higher value when all O2 
is consumed during the decay of the peroxyl radicals. As soon as G(O2-uptake) 
exceeds the upper limit of 6 × 10−7 mol J−1, a chain reaction must prevail [exam-
ples are some polymers including poly(U)]. However, there is also the interesting 
situation that G(O2-uptake) is below 3 × 10−7 mol J−1. This means that some of the 
radicals do not react with O2. A case in point are the •OH-induced reactions of 
purines (Chap. 10.3).



Table 8.2. G values (unit: 10−7 mol J−1) of O2-uptake in the γ-radiolysis of several substrates 
in N2O/O2-saturated solutions. For substrate concentrations and dose rates see the original 
literature

Substrate •OH Tl(II) Reference

Formate 3.1
3.1

Isildar et al. (1982)
Al-Sheikhly (1994)

2-PrOH 3.1 Isildar et al. (1982)

tBuOH 4.5 Isildar et al. (1982)

Diethyl ether 4.7 Isildar et al. (1982)

Carbowax 20 M 10.6 Isildar et al. (1982)

Poly(acrylic acid), pH 10 100 Ulanski et al. (1996a)

Poly(methyl vinyl ether) 110 Janik et al. (2000)

2-Deoxyribose 3.1
3.1

 
0.77

Isildar et al. (1982)
Al-Sheikhly (1994)

Thy 4.2 Isildar et al. (1982)

Cyt 4.6 Isildar et al. (1982)

Ura 5.2 Isildar et al. (1982)

Thd 5.0 Isildar et al. (1982)

dAdo 1.4
1.75

0.72 Isildar et al. (1982)
Al-Sheikhly (1994)

Ade 2.7 0.82 Al-Sheikhly (1994)

dGuo 1.6 Isildar et al. (1982)

dGuo 1.5 0.72 Al-Sheikhly (1994)

Guo 1.5 0.72 Al-Sheikhly (1994)

TMP 4.6 Isildar et al. (1982)

dCMP 5.0 Isildar et al. (1982)

dAMP 2.0 Isildar et al. (1982)

dGMP 1.7 Isildar et al. (1982)

UMP 6.6 Isildar et al. (1982)

poly(U) 21.8 Isildar et al. (1982)

poly(A) 3.6 Isildar et al. (1982)

ssRNA 4.2 Isildar et al. (1982)

ssDNA 7.1 Isildar et al. (1982)

Mixture of 2′-deoxynucleotides as in DNA 3.3 Isildar et al. (1982)

Ditto calculated from the above data 3.3 Isildar et al. (1982)

8.10 · Dioxygen Uptake  177



178  Chapter 8 · Peroxyl Radicals

8.11
The Superoxide Radical

In the preceding paragraphs, various routes to HO2
•/O2

•− upon unimolecular 
and bimolecular decay of peroxyl radicals have been shown. Although these 
reactions will certainly contribute, in a living cell the main source of O2

•− is a 
side reaction in the energy-providing mitochondrial metabolism (Turrens 1997; 
for an estimate of cellular steady-state concentrations see Boveris and Cadenas 
1997). In a human, its production has been estimated at 0.2-0.4 mol/day. Espe-
cially, when cells residing in a hypoxic condition are exposed to O2, large quan-
tities of O2

•− are set free, an effect that contributes to, if it is not the cause of, 
ischemia. Moreover, O2

•− is produced in large quantities by macrophages as a 
part of their defense system. Thus, O2

•− is the most ubiquitous peroxyl radical. 
In a cellular environment it must exert severe damage (Fridovich 1978), and it is 
generally considered to be a major player in what is termed as "oxidative stress" 
(Sies 1986, 1991; for the repair of oxidative damage in mitochondrial DNA see 
Bohr 2002). Evolution produced enzymes, the superoxide dismutases (SOD), to 
keep cellular O2

•− steady-state concentration low (for reviews see Fridovich 1975; 
Oberley 1982).

There are three types of SOD. All SODs have transition metal ions in their 
reaction center, and the enzymes in both high and low oxidation states react 
readily (k ≈ 2 × 109 dm3 mol−1 s−1; Klug et al. 1972; Fielden et al. 1974; Pick et al. 
1974) with O2

•− [written with Cu as an example; reactions (62) and (63)] which 
allows the enzyme to be recycled.

SOD(Cu2+)  +  O2
•−  →  SOD(Cu+)  +  O2 (62)

SOD(Cu+)  +  O2
•−  + 2 H+  → SOD(Cu2+)  +  H2O2 (63)

The one isolated from bovine blood contains Cu in its reaction center as well 
as Zn which appears not to take part in the dismutation process. The other two 
types of SOD contain either Fe or Mn. The CuZn SOD has been found only in 
eukariotic cells, the Fe SOD only in prokaryotic cells, and the Mn SOD in both 
(Fee 1981). Aqua-Mn2+ cannot be reduced by O2

•−, but is forms a complex that 
dismutates giving rise to H2O2 and O2 (Jacobsen et al. 1997). Such intermediates 
may also play a role in Mn SOD.

For the study of its reaction in aqueous solutions, O2
•−/HO2

• may be generated 
by various means (for a review see Cabelli 1997). One possibility is the vacuum-
UV photolysis of aqueous solutions of EtOH at high pH (Bielski and Gebicki 1982; 
for a review on VUV photolysis of alcohols, see von Sonntag and Schuchmann 
1977). Under these conditions, α-hydroxyalkyl is generated which, as discussed 
above, is readily converted by O2 to O2

•−, which is long-lived at high pH (see be-
low). This method of generating O2

•− has the advantage that besides EtOH and 
some acetaldehyde no further potentially reactive material is present in these 
O2

•− solutions. For the photolytic generation of O2
•− at longer wavelengths, the 

reaction of n→π* excited benzophenone with alcohols in aqueous solution can 
be used as well (McDowell et al. 1983). Alternatively, it also can be generated 



radiolytically in O2-containing aqueous formate solution (Bielski and Richter 
1977). Dissolving KO2 in DMSO also affords O2

•−, and in a stopped-flow system 
this solution may be diluted with water, allowing the study of O2

•− at least at a 
moderately alkaline pH (Bull et al. 1983). The thermal decomposition of the azo 
compound di(4-caboxybenzoyl)hyponitrite (SOTS-1) also yields O2

•− (Ingold et 
al. 1997; Chap. 2.4). Most commonly, O2

•− is generated enzymatically by xan-
thine/xanthine oxidase. Thereby, the reduced xanthine oxidase reacts with O2 to 
produce O2

•− via a stepwise mechanism (Fridovich 1970), and altogether two O2
•− 

radicals are generated for each xanthine oxidized. A caveat has been expressed 
(Ingold et al. 1997) that the enzyme may contain an excess of transition metal 
ions which can lead to the formation of •OH via the Fenton reaction, which then 
can suggest a reactivity of O2

•−, which in fact does not exist. The fact that O2
•− is 

formed in some autoxidation reactions has been connected with the cytotoxic 
properties of such compounds (Cohen and Heikkila 1974).

In neutral solution, O2
•− dominates. The pKa(HO2

•) = 4.8 is the selected value 
(Bielski et al. 1985) from a series of determinations (Czapski and Bielski 1963; 
Czapski and Dorfman 1964; Sehested et al. 1968; Rabani and Nielsen 1969; Be-
har et al. 1970). The rate of self-termination of HO2

•/O2
•− strongly depends on 

pH, since only reactions (64) and (65) proceed at an appreciable rate (k64 = 8.6 × 
105 dm3 mol−1 s−1 ; k65 = 1.02 × 108 dm3 mol−1 s−1), while the self-termination of two 
O2

•− is too slow to be measurable (k < 0.35 dm3 mol−1 s−1; Bielski et al. 1985).

2 HO2
•  →  H2O2  +  O2 (64)

HO2
•  +  O2

•−  →  HO2
−  +  O2 (65)

As a consequence, the observed rate of bimolecular decay has a maximum at the 
pKa value, levels of at low pH at the rate constant of reaction (64), and at high pH 
continues to drop when logkobs is plotted vs. the pH. In acid solution, the acti-
vation energy of the bimolecular decay of HO2

• is 24 kJ mol−1 (Bielski and Saito 
1962), in D2O it rises to 29 kJ mol−1 (Bielski and Saito 1971). There is increasing 
evidence that little or no (<10%) singlet dioxygen (O2

1∆g) is formed upon the bi-
molecular decay of HO2

• (Foote et al. 1980; Aubry et al. 1981; Arudi et al. 1984).
The detection of O2

•− is usually based on its reducing properties (E7 = −0.33 V; 
Ilan et al. 1974; Wardman 1989). A typical example is its reaction with TNM 
[reaction (66); k = 1.9 × 109 dm3 mol−1 s−1; Asmus and Henglein 1964; Rabani 
et al. 1965] which yield the strongly absorbing nitroform anion (ε(350 nm) = 
15,000 dm3 mol−1 cm−1].

O2
•−  +  C(NO2)4  →  O2  +  C(NO2)3

−  +  •NO2 (66)

Similarly, nitro blue tetrazolium is reduced by O2
•− (k = 3 × 104 dm3 mol−1 s−1), 

and the mono-reduced species subsequently disproportionates yielding the two-
electron-reduced monoformazan which absorbs in the visible (ε(530) = 2.34 × 
103 dm3 mol−1 cm−1; Bielski et al. 1980; for some of the problems that one may 
encounter using this assay see Cabelli 1997].
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Except for ET reactions with strong oxidants, O2
•− is not very reactive (for a 

compilation of rate constants, see Bielski et al. 1985). For example, practically no 
reaction has been detected with amino acids (Bielski and Shiue 1979), and there 
is no reaction to speak of with the DNA constituents, that is, it is also practically 
unreactive towards DNA. However, where substantial reactivity has been recog-
nized, its main route of reaction seems to be by addition. This has not only been 
proposed for its reaction with pyrogallol and the propyl ester of gallic acid [k = 
3.4 × 105 and 2.6 × 105 dm3 mol−1 s−1, respectively; cf. reactions (67)−(71); Deeble 
et al. 1987, 1988], but it seems that an addition reaction triggers a number of 
chain reactions (von Sonntag et al. 1993, see below).

Interestingly, the reactivity of the (more oxidizing) HO2
• radical is much less 

than that of O2
•−, although as a net reaction an oxidation has occurred. This has 

been attributed to kinetic reasons, that is, HO2
• does not undergo addition reac-

tions as readily as O2
•−.

The reaction of O2
•− with ketomalonic acid leads to oxalic peracid and CO2 

[Schuchmann et al. 1991; reactions (72)−(74)].

Decarboxylation is also observed in its reaction with 3,4-dihydroxymandleic 
acid [reactions (75)−(79); Deeble and von Sonntag 1992].

With 1,4-dithiotreitol (DTT), O2
•− undergoes a chain reaction in basic solu-

tion. This reaction leads to 1,4-threo-dihydroxy-1,2-dithian (ox-DTT) and water 
(Zhang et al. 1991). However, when DTT is no longer deprotonated as in neutral 
solution, this chain reaction ceases. In acid solutions, where the HO2

• predomi-
nates, another chain reaction takes place. It now leads to ox-DTT and H2O2 (Lal 
et al. 1997).



Thus, O2
•− and HO2

• radicals behave very differently. While the HO2
• radical 

undergoes an H-abstraction [reactions (80)−(83)] and behaves like an ordinary 
peroxyl radical, the O2

•− reaction sequence is initiated by an addition reaction 
[reaction (84), see below]. The H-abstraction reaction (80) is slow (k = 120 dm3 
mol−1 s−1). Similar conclusions, revising an earlier report (Schulte-Frohlinde et al. 
1986), have been obtained by Hildenbrand and Schulte-Frohlinde (1997) for the 
reaction of DNA peroxyl radicals with GSH.
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The mechanistic proposal for the chain reaction of O2
•− with the DTT anion 

represented by reactions (84)−(89) (Lal et al. 1997) deviates slightly from the 
original proposal (Zhang et al. 1991). The essential aspect, however, remains the 
addition of O2

•− to the thiolate thereby forming a three-electron-bonded inter-
mediate [reaction (84); for other three-bonded intermediates see Chap. 7.4] and 
its subsequent decay into an oxidizing species [reaction (85)]. It has been calcu-
lated that the rate constant of the rate-determining step, reaction (84), is 35 dm3 
mol−1 s−1. This reaction is even slower than the H-abstraction reaction of the HO2

• 
radical discussed above.

The reactivity of a wider range of thiols toward O2
•− has been studied (Winter-

bourn and Metodiewa 1999), and it has been observed that at pH 7.4 only those 
thiols show an appreciable reactivity who have a low pKa value, such as penicil-
lamine and cysteine (at pH 7, the rate constant of O2

•− with N-actylcysteine is 
68 dm3 mol−1 s−1; Benrahmoune et al. 2000). This can be rationalized by assuming 
that a reasonable thiolate steady-state concentration is required for the reaction 
to proceed. In the case of GSH the disulfide was again the major product, but the 
formation of some glutathionesulfonic acid was also reported (Winterbourn and 
Metodiewa 1994). In the biological context, the reactivity of O2

•− with GSH is of 
major importance. Various rate constants are reported in the literature; the most 
recent re-evaluation gives now a value of ∼200 dm3 mol−1 s−1, indicating that in a 
cellular environment this reaction is too slow to compete with the elimination of 
O2

•− by SOD (Jones et al. 2002, 2003).
In the cellular environment, ascorbic acid (AH2) plays a major role. Its pKa 

value is at 4.3 [equilibrium (90)], and hence the ascorbate anion (AH−) predomi-
nates around neutrality.



Both HO2
• and O2

•− react with ascorbate [reactions (91)−(94); Nishikimi 1975; 
Cabelli and Bielski 1983].

AH2  +  HO2
•  →  A•−  +  H2O2  +  H+ (91)

AH2  +  O2
•−  →  A•−  +  H2O2 (92)

AH−  +  HO2
•  →  A•−  +  H2O2 (93)

AH−  +  O2
•−  →  product(s) (94)

The value for k91 is 1.4 × 104 dm3 mol−1 s−1, and that for k94 is 5 × 104 dm3 mol−1 
s−1. Kinetically, reactions (92) and (93) cannot be separated (k93 + 0.36 k92 = 1.2 
× 107 dm3 mol−1 s−1).

The ascorbate radicals also react very rapidly with O2
•−/HO2

• [reactions (95) 
and (96), k95 = 5 × 109 dm3 mol−1 s−1, k96 = 2.6 × 108 dm3 mol−1 s−1].

A•−  +  HO2
•  →  products (95)

A•−  +  O2
•−  →  products (96)

The ascorbate radical is one of the radicals that do not react readily with O2, but 
it reacts with O2

•−. The product of this reaction is not yet known. There are other 
radicals that have similar properties such as phenoxyl-type radicals. A promi-
nent member of this group is the vitamin E radical. In the phenoxyl radical series, 
addition as well as ET have been discussed (Jonsson et al. 1993; d'Alessandro et 
al. 2000). The reaction of the tyrosyl radical with O2

•− is an example showing that 
addition is the main route despite of its relatively high redox potential [reactions 
(97)−(99); only one pathway is shown; Jin et al. 1993].

The N-centered tryptophan (Fang et al. 1998) and bisbenzimidazole radicals 
(Adhikary et al. 2000) also do not react with O2, but readily with O2

•−, the former 
by addition. In the nucleobase series, a similar situation prevails for G• (k(G• + 
O2

•−) = 4.4 × 109 dm3 mol−1 s−1; von Sonntag 1994). Most of the reaction seems to 
occur by ET reforming G plus O2, but in competition about 15% to lead to prod-
ucts such as Iz and 8-oxo-G (Misiaszek et al. 2004).

The O2
•−/HO2

• radicals can be trapped by spin traps, but the rate constants 
are low and their lifetime is often only short (Lauricella et al. 2004), i.e., they 
give rise to the •OH-adduct radical upon hydrolysis (Chap. 3.4). To increase the 
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lifetime of the DEPMPO adduct, it has been suggested to freeze the solution to 
liquid nitrogen temperature for detection (Dambrova et al. 2000).

8.12
The ‘Haber-Weiss Reaction’

In their brilliant papers, Haber and Weiss (1932, 1934) studied the iron-cata-
lyzed decomposition of H2O2 and proposed the reaction of HO2

• with H2O2 as a 
single step [reaction (100)]. This has since been shown to proceed in two steps 
[reactions (101) and (102); Czapski and Ilan 1978; Bielski 1985; Rush and Bielski 
1985].

HO2
•  +  H2O2  →  H2O  +  O2  +  •OH (100)

HO2
•  +  Fe3+  →  O2  +  Fe2+  +  H+ (101)

Fe2+  +  H2O2  →  Fe3+  +  •OH  +  OH− (102)

The latter is well known as ‘Fenton reaction’ (Fenton and Jackson 1899). Over 
the years, the ‘Haber-Weiss reaction’ [reaction (100)] has often been assumed to 
be the source of •OH. The much greater likelihood of transition metal catalysis, 
which is also possible in biological systems, has often been overlooked. Traces of 
transition metal ions may be present in otherwise pure model systems (Fridov-
ich and Porter 1981), and may even be leached out of the glassware (Ulanski et 
al. 1996c). It is now clear that the uncatalyzed reaction (100) is slow [k = 0.2 dm3 
mol−1 s−1; Ferradini and Seide 1969; k = 0.5 dm3 mol−1 s−1, k(O2

•− + H2O2) = 0.13 × 
109 dm3 mol−1 s−1; Weinstein and Bielski 1979] and can be neglected for the ma-
jority of experimental conditions. The thermodynamics of the uncatalyzed and 
catalyzed ‘Haber-Weiss reaction’ has been discussed in some detail by Koppenol 
(1983).

In contrast to the Haber-Weiss reaction, the reaction of O2
•− with HOCl [reac-

tion (103)] proceeds without transition metal catalysis (Candeias et al. 1993).

HOCl  +  O2
•−  →  •OH  +  Cl−  +  O2 (103)

This reaction is considered to be an important step in the phagocytic killing of 
microorganisms by free-radical processes (Saran et al. 1999). In this reaction, 
also Cl• was considered to play a role (for the complexities of •OH/Cl− reactions 
in aqueous solution, see Yu and Barker 2003a,b; Yu et al. 2004).
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