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6.1
General Remarks

The carbon-centered radicals that one deals with in the free-radical chemistry 
of DNA are not simple alkyl radicals but carry substituents that determine the 
reactivity of the radical. The property of a radical (e.g., its redox property) may 
change considerably when a substituent is protonated or deprotonated. For this 
reason, the pKa values of radicals are discussed first. Besides redox-reactions, 
H-transfer reactions play an important role. In the free-radical chemistry of 
DNA, such H-transfer processes can even cause two opposite effects: repair by 
an external H-donor such as a thiol and damage amplification by intramolecular 
H-transfer. Addition of carbon-centered radicals to C=C double bonds is a well-
established process and technically widely exploited (cf. radical-induced polym-
erization), but it will be shown that an addition to C=N double bonds occurs as 
well. This reaction is of quite some importance in purine free-radical chemistry. 
The reverse of the addition reaction is the homolytic β-fragmentation. When 
adequately substituted, carbon-centered radicals also undergo heterolytic 
β-fragmentation, and in DNA such a reaction leads to strand breakage and a 
short-lived radical cation. The strong oxidative power of the radical cation can 
amplify the damage by oxidizing a neighboring G. Details of the DNA-related 
free-radical chemistry are discussed in Chapter 12, but the fundamental aspects 
are discussed here. Most carbon-centered radicals react with O2 at close to dif-
fusion-controlled rate forming peroxyl radicals. Thus, in a natural environment 
the slower ones of those free-radical reactions that are discussed in the present 
chapter will be interfered with by O2, and peroxyl radicals will be formed. The 
chemistry of peroxyl radicals is discussed in Chapter 8. There in now a wealth of 
rate constants of the reactions of carbon-centered radicals available (for a com-
pilation see Asmus and Bonifacic 1984; Beckwith et al. 1984; for the chemistry 
undergone by radical ions see, e.g. Schmittel and Ghorai 2001).

6.2
pKa Values of Radicals

Most of the pKa values of free radicals have been determined by pulse radiolysis, 
and it is therefore useful to recall, how fast pK equilibria become established. In 
general, the reaction of H+ with an acid anion is practically diffusion-controlled 
[reaction (2); k ranging between 5 × 109 dm3 mol−1 s−1 and 5 × 1010 dm3 mol−1 s−1 
(Eigen et al. 1964; Perrin et al. 1981)]. The same holds for the deprotonation of 
an acid by OH− [reaction (3)]. The rates of reaction (4) can be calculated from the 
pKa value taking into account that Kw = [H+] × [OH−] = 1014 mol2 dm−6.

AH  →  A− +  H+ (1)

Α−  +  H+  →  AH (2)

AH  +  OH− →  A−  +  H2O (3)
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Α−  +  H2O  → AH  +  OH− (4)

Thus, the pKa values of an acid is only determined by its rate of dissociation 
[reaction (1)]. Hence, in a homologous series, electron-withdrawing substitu-
ents reduce the pKa value by rendering the environment of the acidic function 
more positive and thereby accelerating the rate of dissociation of the (positively 
charged) proton. In contrast, an electron-donating substituent increases the pKa 
value.

The time required to reach equilibrium very much depends on the pKa value 
of the acid. An acid with a pKa value of 4, for example, deprotonates with a rate 
of ∼106 s−1. Thus, the equilibrium is established within a few microseconds. On 
the other hand, an acid with a pKa value of 7 dissociates with a rate of ca. 103 s−1, 
and the equilibrium becomes established only on the millisecond time range. In 
a pulse radiolytic experiment, a large part of the radicals will thus have disap-
peared in bimolecular termination reactions, before an equilibrium is reached. 
Buffers speed-up the protonation/deprotonation reactions, and their addition 
can overcome this problem. Yet, they deprotonate acids and protonate their cor-
responding anions typically two to three orders of magnitude more slowly than 
OH− and H+ (for a DNA-related example, see Chap. 10.4; for potential artifacts in 
the determination of pKa values using too low buffer concentrations, see, e.g., 
von Sonntag et al. 2002).

Rapid protonation is not restricted to carboxylate ions, but is generally val-
id for other heteroatom atoms such as oxygen, nitrogen and sulfur in alcohols, 
amines and thiols. Also in these reactions, no rehybridization and skeletal re-
arrangements reduces the rate below diffusion-controlled. On the other hand, 
such factors play a major role when carbanions are protonated, and the rate of 
their protonation is generally considerably slower. The same factors reduce the 
rate of deprotonation of acidic C–H groups. For example, the pKa value of barbi-
turic acid is 4.0. In this acid, the keto/enol equilibrium (5) is largely on the side of 
the keto form which dissociates with a rate of only 6.9 × 103 s−1 despite its low pKa 
value (Eigen et al. 1965; Koffer 1975; Schuchmann and von Sonntag 1982).



Table 6.1. pKa values of some radicals in comparison with those of their parent com-
pounds, wherefrom these radicals may be formed by H-abstraction. For comparison, the 
pKa values of some radicals are also given which can only produced by electron addition 
and subsequent protonation (indicated with an asterisk)

Radical pKa Parent com-
pound

∆pKa Reference

•CH2OH 10.71
10.7

MeOH −4.38 Laroff and Fessenden (1973)
Asmus et al. (1966)

•CH(CH3)OH 11.51
11.6

EtOH −4.42 Laroff and Fessenden (1973)
Asmus et al. (1966)

•C(CH3)2OH 12.03
12.2

2-PrOH −5.07 Laroff and Fessenden (1973)
Asmus et al. (1966)

•C(CF3)2OH 1.70 Hexafluoro-2-
PrOH

−8.1 Laroff and Fessenden (1973)

•CH(OH)2 9.5 Formaldehyde 
hydrate

−3.8 Stockhausen and Henglein 
(1971)

•CO2H 2.3 Formic acid −1.45 Flyunt et al. (2001)

•CH2C(O)OH 4.8
4.2

Acetic acid 0
−0.6

Neta et al. (1969)
Schuchmann et al. (1989)

•CH(NH3
+)CONH2 4.3 Glycinamide −3.6 Rao and Hayon (1975)

9.8 Glycine anhy-
dride

−12.2 Mieden and von Sonntag 
(1989)
Muñoz et al. (2000)

10.6 Alanine anhy-
dride

− Mieden and von Sonntag 
(1989)

•CH 2-CH=C(OR)OH 5.5 Acrylate* − Takács et al. (2000)

6.9 Thy* − Hayon (1969)
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This general phenomenon is also of some importance in the case of the proton-
ation of radical anions which can protonate at a heteroatom or at carbon. Kineti-
cally, protonation at the heteroatom is always faster even when protonation at 
carbon is thermodynamically favored. A case in point is the protonation of the 
Thy radical anion (Chap. 10.4).

α-Hydroxyalkyl radicals are less solvated than their parent alcohols due to a 
lower polarity of the C−O bond and lower H-bond acceptor ability of the oxygen 
atom (Block et al. 1999). They are considerably more acidic than their parent 
alcohols by four or more pK units (Table 6.1). The same effect is observed even 
more dramatically the case of the cyclic dipeptides (Merenyi et al. 1986; Mieden 
and von Sonntag 1989). This increase in acidity is possibly largely due to an in-
crease in mesomery such as shown in reaction (8), and captodative substituent 
effects (Viehe et al. 1985) seem to contribute further in the case of the peptide 
radicals.

Interestingly, the pKa values of acetic acid and its corresponding radical are 
practically identical (Table 6.1; Neta et al. 1969; Schuchmann et al. 1989, see also 
Schuchmann et al. 2000). In this case, not only the anion, but also the acid expe-
riences a gain in mesomery [reaction (9)].

There is a continuing discussion as to the pKa value of •CO2H radical. In the lit-
erature, values are found ranging from –0.2 (Jeevarajan et al. 1990), 1.4 (Buxton 
and Sellers 1973), 2.3 (Flyunt et al. 2001) to 3.9 (Fojtik et al. 1970). Why the value 

Table 6.1. Continued

Radical pKa Parent com-
pound

∆pKa Reference

2.8 Maleimide* − Hayon and Simic (1972)
von Sonntag et al. (2002)



of 2.3 has been chosen here (Table 6.1), has been discussed in the given refer-
ence.

Methyl substitution increases the electron density at the neighboring carbon 
due to hyperconjugation effects and thus shifts the pKa of the radical to higher 
values as it does with the parent compound (Table 6.1).

As expected, radical cations may have especially low pKa values due to their 
positive charge. A good example is phenol (pKa = 10) whose radical cation has a 
pKa value of –2 (Dixon and Murphy 1976). Here, the difference with respect to its 
parent is as large as 12 pK units [equilibrium (10)].

Similar effects are observed with the nucleobase-derived radical cations 
(Chap. 10.2).

6.3
Oxidation of Carbon-Centered Radicals

Reduction potentials of radicals may be determined by pulse radiolysis 
(Chap. 13.3) or photomodulated voltammetry (Wayner and Houman 1998; for a 
compilation, see Steenken 1985; Wardman 1989).

Carbon-centered radicals which are substituted by electron-donating groups 
such as −OR or −NR2 are readily oxidized. A convenient one-electron oxidant 
is Fe(CN)6

3−. For example, it oxidizes α-hydroxyalkyl or α-alkoxyalkyl radicals 
at practically diffusion-controlled rates (k ≈ 2 × 109 dm3 mol−1 s−1; Adams and 
Willson 1969). Substitution by electron-donating groups that are not capable of 
rapid deprotonation, such as  −OCH3, stabilizes the resulting carbocation. They 
then can have a considerable lifetime in water (Steenken et al. 1986b) while the 
lifetime of the parent, C2H4

•+, is only ∼100 fs (Mohr et al. 2000).
In the case of α-hydroxyalkyl radicals, the corresponding carbonyl com-

pounds are formed in full yields. In contrast, the oxidation of α-alkoxyalkyl 
radicals by Fe(CN)6

3− may not always be a straightforward outer-sphere ET reac-
tion (Janik et al. 2000a,b). Details are as yet not fully understood.

In studies on the •OH-induced aromatic hydroxylation, the oxidation of  hy-
droxycyclohexadienyl radicals by Fe(CN)6

3− has often been used for the determi-
nation of the yield of a given precursor radical (Volkert et al. 1967; Volkert and 
Schulte-Frohlinde 1968; Klein et al. 1975). Other oxidants such as Cu2+, Ag+, Fe3+ 
or Cr3+ give lower yields, and complications are apparent, since, for example, 
the oxidation potential of Ag+ (0.8 V) is higher than that of Fe(CN)6

3− (0.36 V; 
Bhatia and Schuler 1974). The substituent has a strong influence on the rate of 
oxidation (Table 6.2), and quantitative oxidation to the corresponding phenol 
[reaction (11)] is only observed with electron-donating substituents (Buxton et 
al. 1986). Even the terephthalate ion •OH-adduct requires the stronger oxidant 
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IrCl6
2− for complete (i.e., sufficiently rapid with respect to the bimolecular decay 

of the radicals) oxidation (Fang et al. 1996).

In these oxidation processes, often the kinetically favored rather than the ther-
modynamically favored product is formed. A case in point is the oxidation of 
pyrimidine-6-yl radicals by Fe(CN)6

3− to an isopyrimidine which is only a short-
lived intermediate that results in the formation of the pyrimidine and its hydrate 
(Chap. 10.3).

In pulse radiolysis experiments, TNM is often preferred as an oxidant over 
Fe(CN)6

3− because the strongly absorbing nitroform anion is formed which can 
be used to determine the yield of reducing radicals (Chap. 10.3). TNM is only 
capable of oxidizing strongly reducing radicals, but with less reducing radicals 
an adduct may be formed which usually absorbs at shorter wavelengths and has 
a lower absorption coefficient (Schuchmann et al. 1995). In fact, the formation 
of adducts is common in the oxidation of radicals by nitro compounds. These 
adducts may decompose into two directions [e.g., reactions (12) and (13)] (Nese 
et al. 1995).

Table 6.2. Rate constants of the oxidation of hydroxycyclohexadienyl radicals by IrCl6
2− 

and Fe(CN)6
3− (unit: 109 dm3 mol−1 s−1)

Substrate IrCl6
2− Fe(CN)6

3− Reference

Anisol 3.1 2.3 Buxton et al. (1986)

Acetylaniline 1.5 Buxton et al. (1986)

Toluene 3.0 0.16/0.019a Buxton et al. (1986)

Benzene 3.1 0.015 Buxton et al. (1986)

Benzene-d6 0.012 Buxton et al. (1986)

Fluorobenzene 2.4 0.01 Buxton et al. (1986)

Chlorobenzene 1.6 0.0055 Buxton et al. (1986)

Benzonitrile 0.45 <0.0002 Buxton et al. (1986)

Terephthalate 0.077 Fang et al. (1996)

aRates of oxidation of two different isomers



In rare cases, the one-electron oxidized products are also readily oxidized, and 
the three-electron oxidized product is observed. A case in point is the oxidation 
of the 4-chlorobenzyl radicals by Fe(CN)6

3− to the corresponding benzaldehyde. 
The 4-chlorobenzylalcohol is not the intermediate that is further oxidized by 
Fe(CN)6

3−, and thus the mechanism of the formation of 4-chlorobenzaldehyde 
is rather complex (Merga et al. 1996). Since Fe(CN)6

3− is commonly used as a 
simple and effective oxidant also in DNA free-radical chemistry, such potential 
complexities have to be kept in mind.

Although α-hydroxyalkyl radicals such as the hydroxymethyl radical are 
oxidized without an adduct being noticed [reaction (14); k = 1.6 × 108 dm3 mol−1 
s−1], such a complex becomes apparent in the case of β-hydroxyalkyl radicals [re-
actions (15) and (16); k15 = 3 × 107 dm3 mol−1 s−1; k16 = 330 s−1; Freiberg and Meyer-
stein 1980], whereby the epoxide is formed (Söylemez and von Sonntag 1980).

•CH2OH  +  Cu2+  → Cu+  +  CH2O  +  H+ (14)

Cu2+  +  •CH2−CH2OH  →  Cu−CH2−CH2OH2+ (15)

Although α-hydroxyalkyl radicals are good reducing agents their reduction po-

tential is often not sufficiently low to undergo electron transfer reactions. How-
ever, they might do so, when they are deprotonated. A case in point is the reac-
tion of the hydroxymethyl radical with nitrous oxide [reaction (17)] (Wang et 
al. 1996; for other reducing radicals that undergo chain reactions with nitrous 
oxide, see Sherman 1967a-c; Al-Sheikhly et al. 1985).

•CH2O−  +  N2O  →  CH2O  +  N2  +  O•− (17)

The reduction of disulfides is also only given by the hydroxymethyl radical an-
ion [reaction (18)] while the hydroxymethyl radical itself is practically unreac-
tive (Akhlaq et al. 1989).

RSSR  +  •CH2O−  →  RS−  +  RS •  +  CH2O (18)

The 2-hydroxy-2-propyl radical anion is a stronger reductant than the hydroxy-
methyl radical anion. Thus, a number of reactions are readily given by the for-
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mer, while the latter remains unreactive. For example, only 2-hydroxy-2-propyl 
radical anion transfers electron to 4-bromobenzonitrile thereby inducing an ef-
ficient chain reaction. The ET reaction (19) is so fast that it is not the rate-limit-
ing step in this chain reaction (Fang et al. 1997).
Typically, the reactivity of the halogen substituent follows the sequence I > Br 
> Cl (Lemmes and von Sonntag 1982), and three-electron-bonded adducts to 

the halogen are potential intermediates (for similar intermediates see Chapts 5.2 
and 7.4). This type of reaction is also given by 5IUra and 5BrUra (Chap. 10.7).

6.4
Reduction of Carbon-Centered Radicals by Electron Transfer

In the reduction of radicals by ET, simple carbanions are practically never formed, 
and one-electron reduction of a carbon-centered radicals is only effective if the 
electron can be accommodated by the substituent, e.g., a carbonyl group [reac-
tion (24), whereby upon electron transfer the enolate is formed (Akhlaq et al. 
1987)]. Thus, in their reduction reactions these radicals react like heteroatom-
centered radicals despite the fact that major spin density is at carbon.
The mesomeric forms of the pyrimidine C(6)-adduct radicals may be writ-
ten with the free spin at a heteroatom and hence have as oxidizing properties. 

Their yields have been determined with the help of a strong reductant, TMPD 
(Chap. 10.3). Other convenient probes for monitoring oxidizing radicals are, for 
example, ABTS and ascorbate (Wolfenden and Willson 1982; Bahnemann et al. 
1983).

Radical cations are especially strong oxidants, since they are highly electron 
deficient. They are intermediates in •OH-induced DNA strand breakage and are 
capable of oxidizing a neighboring G (Chaps 12.4 and 12.9).



6.5
H-Transfer Reactions

The C−H bond dissociation energies (BDEs) decrease in the sequence vinylic ≈ 
phenylic > primary > secondary > tertiary > allylic > pentadienylic ≈ benzylic 
considerably (Table 6.3).

R−H BDEs energies are certainly one parameter that has to be taken into ac-
count when discussing H-transfer reactions, yet many other aspects have to be 
considered to account for the kinetics of such a reaction (for the calculation of 
activation energies in H-abstraction reactions, see Zavitsas and Chatgilialoglu 
1995).

Table 6.3. Compilation of some R−H BDEs (unit: kJ mol−1)

R−H bond BDE/kJ mol-1 Reference

C−H (aromatic) 465 Berkowitz et al. (1994)

C−H (vinylic) 465 Berkowitz et al. (1994)

C−H (primary) 423 Berkowitz et al. (1994)

C−H (primary in MeOH) 402 Berkowitz et al. (1994)

C−H (secondary) 412 Berkowitz et al. (1994)

C−H (secondary in EtOH) 396 Reid et al. (2003)

C−H (tertiary) 403 Berkowitz et al. (1994)

C−H (tertiary in 2-PrOH) 393 Reid et al. (2003)

C−H (allylic) 367 Berkowitz et al. (1994)

C−H (benzylic) 367 Berkowitz et al. (1994)

C−H (pentadienylic) 343 Schöneich et al. (1990)

C−H (in peptides) 330−370 Reid et al. (2003)

O−H (alcoholic) 436 Berkowitz et al. (1994)

O−H (water) 499 Berkowitz et al. (1994)

O−H (phenolic) 360 Parsons (2000)

O−H (hydroperoxidic) 366 Golden et al. (1990)

S−H (thiolic) 366 Armstrong (1999)

S−H (thiophenolic) 330 Armstrong (1999)
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For inactivation of reactive free radicals by thiols and the repair of DNA 
radicals (Chaps 11.2 and 12.10), it is of relevance that the RS−H bond is espe-
cially weak and renders thiols good H-donors. Although phenols and hydro-
peroxides have also low O−H BDEs, they are rather poor H-donors in water. 
For example, the rate of H-abstraction of •CH3 from H2O2 is 1000-fold lower in 
water than in the gas phase (Ulanski et al. 1999; see also below). H-abstraction 
from O−H is strongly influenced by the solvent (Das et al. 1981), and the varia-
tion of the rate constant of H-abstraction from phenols and tert-butylhydro-
peroxide by the cumyloxyl radical with the solvent was interpreted in terms of 
hydrogen-bonding between solvent and phenol, i.e., the stronger the hydrogen 
bonding the lower the rate constant (Avila et al. 1995; for kinetic solvent effects 
in H-abstraction reactions see also Valgimigli et al. 1995; Banks et al. 1996; 
Snelgrove et al. 2001).

It is important to note that the rate of reaction of alkyl radicals with thiols 
does not simply correlate with the exothermicity of the reaction, i.e., with the 
BDE of the C−H bond to be formed. For example, the tertiary 2-hydroxypropyl 
radical reacts more readily with thiols than the primary hydroxymethyl radi-
cal, and this reacts even faster than the methyl radical (Table 6.4). The reason 
for this surprising behavior has been discussed in terms of the charge and 

Table 6.4. Compilation of the H-abstraction rate constants (unit: dm3 mol−1 s−1) of some 
radicals from alcohols in aqueous solution at room temperature

Radical Substrate Rate constant Reference

Uracil-5-yl 2-PrOH 4.1 × 107 Mertens and von Sonntag (1994)

Phenyl 2-PrOH 1.2 × 107 Mertens and von Sonntag (1994)

Vinyl 2-PrOH 2 × 105 Mertens and von Sonntag (1994)

Trichlorovinyl tBuOH 1.6 × 105 Mertens and von Sonntag (1994)

MeOH 6.3 × 106 Mertens and von Sonntag (1994)

EtOH 2.4 × 107 Mertens and von Sonntag (1994)

2-PrOH 4.1 × 107 Mertens and von Sonntag (1994)

Methyl MeOH 220 Thomas (1967)

EtOH 590 Thomas (1967)

2-PrOH 3400 Thomas (1967)

2-Hydroxypropyl 2-PrOH 430 Burchill and Wollner (1972)

2-Hydroxy-2-methyl-
propyl

2-PrOH ∼700 Schuchmann H-P and von 
Sonntag (1988)



spin polarization in the transition state, as determined by AIM analysis and 
in terms of orbital interaction theory (Reid et al. 2002).

The C−H BDE in peptides is even lower than that of the S−H BDE in thiols as a 
consequence of the exceptional stability of the radical products due to captoda-
tive stabilization (Viehe et al. 1985; Armstrong et al. 1996). Yet, the observed rate 
constants for the reaction of •CH3 and •CH2OH with, e.g., alanine anhydride are 
markedly slower than with a thiol. This behavior has been discussed in terms of 
the charge and spin polarization in the transition state, as determined by AIM 
analysis, and in terms of orbital interaction theory (Reid et al. 2003). With re-
spect to the ‘repair’ of DNA radicals by neighboring proteins, it follows that the 
reaction must be slow although thermodynamically favorable.

Although BDE is by far not the only factor that determines the kinetics of 
H-transfer reactions, within a given series of simple alkyl radical a correlation 
seems to hold (Table 6.4). In polymers, where the lifetime of the polymer-bound 
radicals may be long, radical transfer reactions by intramolecular H-abstrac-
tion (primary → secondary → tertiary) are common (Chap. 9.4). In general, 
whenever a system starts with a mixed radical system (e.g., in the reaction of 
•OH with 2-PrOH: 2-hydroxy-prop-2-yl and 2-hydroxypropyl) a steady-state is 
approached which is dominated by the lower-energy radical [here: 2-hydroxy-
prop-2-yl, cf. reaction (21)]. This process is favored by low initiation rates and 
high substrate concentrations, and these two factors determine whether such an 
H-transfer manifests itself is also in the final products.

As far as DNA is concerned, the most weakly bound hydrogen is the allylic hy-
drogen of the methyl group in Thy. For dGuo, the sequence of the C−H BDE has 
been calculated as C(1′) < C(4′) < C(3′) < C(2′) < C(5′) (Table 6.5). In DNA, ac-
cessibility as determined by the given structure often overruns factors that are 
connected with the R−H BDE (Chap. 12.2).

In DNA, an H-transfer from the methyl group in Thy and from the sugar 
moiety to DNA radicals may occur. A well-documented radical that is capable 
of reacting with the sugar moiety is the uracil-5-yl radical formed upon pho-
tolysis and radiolysis of 5BrUra-containing DNA (Chaps 10.7 and 12.6). From 
Table 6.4, it is seen that this radical is indeed very reactive and thus this kind 
of H-abstraction is not unexpected. Steric conditions permitting, it will ab-
stract any hydrogen from the sugar moiety. Less reactive radicals will undergo 
such a reaction not only more slowly but also much more selectively (note, for 
example, the high kinetic isotope effects of such reactions; •CH3 + CH3OH/
CD3OH: kH/kD = 8.2 at 150 °C in the gas phase; Gray and Herod 1968). In DNA, 
an H-transfer from the sugar moiety to a base radical has never been proven 
with certainty, but in model systems such as poly(U) and poly(C) it is quite evi-
dent (Chap. 11.2). Here, H-transfer is believed to occur from C(2′), a position 
that in the ribo-polynucleotides is activated by the neighboring OH group. In 
DNA, the corresponding hydrogen is bound more strongly.
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It has been mentioned above that the weakest C−H bond in DNA is that of the 
methyl group in the Thy moiety. In Thd, this position is attacked, albeit slowly, 
even by peroxyl radicals (Martini and Termini 1997), although they have only 
a low H-abstractive power (cf. the low BDE of ROO−H; Table 6.3). That this may 
also hold for DNA in vivo may be deduced from the observation that one of 
the corresponding oxidation products is excreted into the urine in rather large 
amounts (Chap. 12).

The (oxidizing) α-carboxyalkyl radicals do not react readily with thiols (Ta-
ble 6.4). They are, however, rapidly reduced by thiolate ions [reaction (20)]. The 
reactions of thiols with DNA radicals play a very important role in the chemi-
cal repair of DNA radicals in cells (Chaps 12.10 and 12.11). The reversibility of 
the H-donation of thiols, that is, H-abstraction by thiyl radicals, is discussed in 
Chapter 7.4.

6.6
Conversion of Reducing Radicals 
into Oxidizing Ones (Umpolung)

There are a number of reactions which change the redox property of the radical 
(Umpolung). A typical, DNA-relevant, case of Umpolung is the buffer-catalyzed 
conversion of the reducing Thy electron adduct protonated at oxygen into the 
oxidizing carbon-protonated tautomer (Chap. 10.3). Another example is the pro-
ton-catalyzed conversion of the (reducing) •OH-adduct at C(5) in pyrimidines to 
the oxidizing C(6) •OH-adducts (Chap. 10.3).

These reactions are real tautomerization reactions, but the quite common 
water elimination reactions can also completely change the redox property of 
a radical. A case in point is the radical derived from ethylene glycol which is 
a reducing α-hydroxyalkyl radical which is transformed by water elimination 
into the fomylmethyl radical (see below) whose oxidizing property has been 
discussed above [reaction (20)]. Similarly, the phenol •OH-adduct is a reason-

Table 6.5. Calculated bond dissociation energies (BDE) of the various C–H bonds in the 
sugar moiety of dGuo. (Steenken et al. 2001)

C–H bond BDE/kJ mol−1

C(1′) 367

C(2′) 399

C(3′) 385

C(4′) 378

C(5′) 386



ably good reductant, while the phenoxyl radical formed upon water elimination 
(Chap. 3.4) has oxidizing properties. Similar reactions play an important role in 
purine free-radical chemistry (Chap. 10.3).

6.7
Reactions with Hydrogen Peroxide

Hydrogen peroxide is rather unique in so far as it can act as an oxidant as well as 
an H-donor. This is exemplified its reaction with the hydroxymethyl radical. In 
this case, ET [reaction (22); k = 6 × 104 dm3 mol−1 s−1] is faster than H-abstraction 
[reaction (32); k = 2.75 × 103 dm3 mol−1 s−1 (Ulanski and von Sonntag 1999)].

•CH2OH  +  H2O2  →  CH2O  +  H+  +  OH−  +  •OH (22)

•CH2OH  +  H2O2  →  CH3OH  +  HO2
• (23)

While the former induces a chain reaction, the latter terminates the chain. The 
basic form of the hydroxymethyl radical, CH2O•− [pKa(•CH2OH) = 10.8], is a 
stronger reducing agent [reaction (24); k = 4 × 105 dm3 mol−1 s−1], and the chain 
length increases with increasing pH.

CH2O•−  +  H2O2  →  CH2O  +  OH−  +  •OH (24)

At very high pH, H2O2 also dissociates [pKa(H2O2) = 11.6]. Although the hy-
droxymethyl radical anion undergoes the H-abstraction even faster [reaction 
(25), k = 2.9 × 104 dm3 mol−1 s−1 ] the chain length comes to a halt, because the 
anion of H2O2 is no longer a good electron acceptor.

CH2O•−  +  HO2
−  →  CH3O−  +  O2

•− (25)

The methyl radicals can only undergo the H-abstraction reaction, and since the 
C−H BDE is higher by ca. 38 kJ mol−1 in methane than in MeOH (McMillen and 
Golden 1982; Golden et al. 1990; Berkowitz et al. 1994), the rate of reaction (26) 
is higher (k = 2.7 × 104 dm3 mol−1 s−1; Ulanski et al. 1999) than that of reaction 
(23).

•CH3  +  H2O2  →  CH4  +  HO2
• (26)

However, compared to the gas phase (k26 = 3.3 × 107 dm3 mol−1 s−1; Tsang and 
Hampson 1986), the reaction is three orders of magnitude slower. A similar situ-
ation is found for •OH [reaction (27); k(in water) = 2.7 × 107 dm3 mol−1 s−1 (Buxton 
et al. 1988); k(gas phase) = 1 × 109 dm3 mol−1 s−1 (Baulch et al. 1984)]. In water, a 
low rate constant has also been found for the reaction of •OH with tertiary butyl-
hydroperoxide [reaction (28); k = 107 dm3 mol−1 s−1; (Phulkar et al. 1990)].

•OH  +  H2O2  →  H2O  +  HO2
• (27)
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•OH  + (CH3)3COOH  →  H2O  +  (CH3)3COO• (28)

The reasons for this dramatic drop in the rate of reaction on going from the gas 
phase to aqueous solution have been discussed above. It may be recalled that 
the difference in the exothermicity of reactions (23) and (26) is as much as 38 kJ 
mol−1. The relatively small effect of the thermochemistry on the rate can be ratio-
nalized by invoking the polar effect in the transition state (Russell 1973; Pross et 
al. 1991; Roberts 1996). Quantum mechanical studies on the solvent effect on the 
rate of the •CH3 plus H2O2 system can reproduce the dramatic drop upon going 
from the gas phase to aqueous solutions and indicate that the major reason is the 
difference between the solvation energies of H2O2 and HO2

• in water (Delabie et 
al. 2000).

The rate constants that we are concerned with here are quite moderate for 
free-radical reactions. Although in vivo H2O2 is always present at a low steady-
state concentration, its reaction with DNA radicals will be negligible as com-
pared to a reaction with O2. However, such reactions may no longer be negligible 
in model studies using Fenton systems (Theruvathu et al. 2001) or in the deacti-
vation of micro-organisms by H2O2 (Chap. 12.7).

6.8
Addition to C−C and C−N Double Bonds

6.8.1
Addition to C−C Double Bonds

The addition of carbon-centered radicals to C−C double bonds (for a review see 
Giese 1983) is the key reaction in the free-radical-induced polymerization. In 
general, the rate constants of these reactions are only moderately high, but this 
process becomes fast and efficient, because in technical applications the polym-
erizing olefin is usually present at high concentrations. In aqueous solutions, 
the rate constant of the addition of the hydroxyethyl radical to ethene [reaction 
(29)], a non-activated C−C double bond, has been determined at ∼3 × 104 dm3 
mol−1 s−1 (Söylemez and von Sonntag 1980).

•CH2-CH2OH  +  CH2=CH2  →  HOCH2-CH2-CH2-CH2
• (29)

Alkyl radicals are nucleophilic radicals (cf. Walbiner et al. 1995; Wu and Fischer 
1995; Wu et al. 1995; Heberger and Lopata 1998), and the preferred position of 
addition at a polarized C−C double bond is reversed compared to that of the elec-
trophilic •OH. Thus, in the case of Ura, the hydroxymethyl radical adds pref-
erentially to the C(6)-position [k ≈ 104 dm3 mol−1 s−1 (Schuchmann et al. 1986; 
Chap. 10.5)].



6.8.2
Addition to C−N Double Bonds

Technically, the addition of carbon-centered radicals to C−N double bonds is 
as yet of little if any importance. In the free-radical chemistry of DNA it plays, 
however, a considerable role in the formation of the C(5′)−C(8) linkage between 
the sugar moiety and the purines (Chap. 10.5). Because of its importance, even 
an immune assay has been developed for the sensitive detection of this kind of 
damage in DNA (Chap. 13.2). The addition of the C(5′) radical to the C(8) posi-
tion of a purine is obviously facilitated for steric reasons (formation of a six-
membered ring), but the same kind of reaction also occurs as an intermolecular 
reaction. Since alkyl radicals are nucleophilic, the rate of this reaction is notice-
ably increased upon protonation of the purine (Aravindakumar et al. 1994; for 
rate constants see Chap. 10.5).

This addition reaction is not restricted to α-hydroxyalkyl radicals, although 
this type of radical has been most widely investigated. Thus, allylic radical de-
rived from 5MeCyt (Zhang and Wang 2003) and radicals derived from amino 
acids (Elad and Rosenthal 1969) are also reported to undergo this reaction. In 
DNA, they play a role in the formation of tandem lesions (Chap. 12.5), and it is 
likely that this kind of reaction contributes to free-radical-induced DNA/DNA 
and DNA/protein cross-linking.

6.9
β-Fragmentation Reactions

6.9.1
Homolytic Fragmentation

Carbon-centered radicals may undergo homolytic β-fragmentation reactions, 
whereby an olefin and a new radical is formed. This reaction is, in fact, the re-
verse of the polymerization reaction. With neighboring C−C bonds, these β-frag-
mentation reactions are usually slow, and only observable, at least on the pulse 
radiolysis time-scale with negatively-charged polymeric radicals whose lifetime 
is prolonged by electrostatic repulsion. Then, even the situation of equilibrium 
polymerization may be approached (Ulanski et al. 2000; Chap. 9.4).

In the nucleobases, this type of reaction is not possible due to the lack of ad-
equate structural elements.

There is a wealth of information available on the free-radical reactions of 
carbohydrates in aqueous solution and in the solid state (for reviews see von 
Sonntag 1980; von Sonntag and Schuchmann 2001). According to this, there is 
no indication that β-fragmentation involving C−C double bond formation is a 
major process in such systems. However, β-fragmentation forming a C−O double 
bond is quite common, e.g., in disaccharides, where such a process can lead to 
the scission of the glycosidic linkage. It is also observed in monosaccharides, no-
tably in 2-deoxyribose in the crystalline state (Hüttermann and Müller 1969a,b; 
von Sonntag et al. 1974; Schuchmann et al. 1981), where it is present as the β-py-
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ranose form. Reaction (30) is one step in an interesting and very efficient chain 
reaction which is governed by the crystal structure (Schuchmann et al. 1981).

When the binding energy of the bond to be broken is considerably lower than 
that of a C−C single bond such as a C−SR bond, the rate of β-fragmentation can 
go up dramatically. This is the reason why the addition of thiyl radicals to the 
double bonds of the nucleobases is so strongly reversible (Chaps 7.4 and 10.5).

6.9.2
Water Elimination, Heterolytic β-Fragmentation 
and Formation of Radical Cations

In DNA, the carbohydrate part has no free OH groups. Yet, salient aspects have 
been obtained by studying the free-radical chemistry of carbohydrates (von 
Sonntag 1984). A general feature in carbohydrate free-radical chemistry is the 
water elimination of 1,2-dihydroxyalkyl radicals [reactions (31)−(35)].

This reaction has been first observed by EPR (Buley et al. 1966) and subsequent-
ly established by product studies on ethylene glycol (Seidler and von Sonntag 
1969; von Sonntag and Thoms 1970; Burchill and Perron 1971), meso-erythri-
tol (Dizdaroglu et al. 1972) and 2-deoxy-D-ribose (Hartmann et al. 1970; Herak 
and Behrens 1986), D-ribose (von Sonntag and Dizdaroglu 1977; Herak and Beh-
rens 1986) and D-glucose (Dizdaroglu et al. 1975b); for reviews on carbohydrate 
free-radical chemistry see von Sonntag (1980); Ershov (1998); von Sonntag and 
Schuchmann (2001); for a review on the photochemistry of carbohydrates see 
Binkley (1981). The formylmethyl radical that is formed by water elimination 
from ethylene glycol [reactions (31)-(35)] is capable of abstracting a hydrogen 



from the substrate (von Sonntag and Thoms 1970). Possibly, this type of radical 
has to be made responsible for the formation of DNA SSBs induced by glycerol-
derived radicals at high scavenger concentrations (Chap. 12.1).

The mechanism of this water elimination and related reactions, where the 
OH group in β-position is replaced by another leaving group (L), has been stud-
ied in some detail (Samuni and Neta 1973; Steenken et al. 1974; Behrens and 
Schulte-Frohlinde 1976; Behrens and Koltzenburg 1985; Schuchmann et al. 1995; 
Müller et al. 1997; Bales et al. 2001). Two processes which compete with one an-
other have been recognized: heterolytic cleavage of the C−L bond which results 
in the formation of a radical cation followed by proton loss [reactions (36) and 
(37)] and the dissociation of the hydroxyl group followed by the loss of the leav-
ing group [reactions (38 and (39)].

The rate of the elimination of the ligand [reactions (39) and (39)] is determined 
by the electrophilicity of the frame and the nucleofugacity of the ligand (Beh-
rens and Koltzenburg 1985). Deprotonation of the frame [reaction (38)] strongly 
reduces its electrophilicity, and thus the radical anion may eliminate quite well 
also ligands which have an intrinsic poor nucleofugacity such as OH [see below; 
cf. reaction (39)]. The rate of reaction (38) is determined by the pKa value of the 
α-hydroxyalkyl radical and is thus strongly influenced by the substituents R and 
L. As a measure of the nucleofugacity the pKa value of the conjugate acid of the 
leaving group may be taken: HCl (negative pKa), CH3CO2H (4.7), NH4

+ (9.3), i.e. 
a high pKa corresponds to a low nucleofugacity. Thus, the OH group (pKa(H2O) 
= 14) is also a poor leaving group. However, upon protonation it becomes a very 
good leaving group (pKa(H3O+) is negative), and this is the reason why the water 
elimination is also acid catalyzed [cf. reaction (31); Steenken 1979; Steenken et 
al. 1986a].

A much simpler situation is the anion loss from an α-alkoxyalkyl radical 
with a leaving group in the β-position, such as the phosphate release from the 2-
phosphato-methoxyethyl radical (Behrens et al. 1978; for some further reactions 
of β-(phosphatoxy)alkyl radicals see Whitted et al. 1999; Crich et al. 2000). This 
reaction only proceeds by a heterolytic cleavage into a radical cation and a phos-
phate ion. The rate of this reaction strongly depends on the protonation state of 
the phosphate group [reactions (40)−(44)].
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From the viewpoint of the phosphate group, release of a proton or a radical cation 
is governed by the same principle. With increasing deprotonation (i.e., increas-
ing negative charge on the phosphate group), the rate of the release of a positively 
charged species (proton or radical cation) slows down. As a consequence, there 
is a good relationship of the rate of deprotonation of H3PO4, H2PO4

− and HPO4
2− 

(as can be calculated, see above, from their pKa values at 2.1, 7.2 and 12.7) and 
the rates of phosphate release from the 2-phosphato-methoxyethyl radical at dif-
ferent protonation states (Table 6.6). There is also a good correlation between the 
rate of phosphate elimination and some EPR coupling constants of the eliminat-
ing radical which indicates that considerable polarization exists already in the 
radical (Behrens et al. 1978).

The same type of reaction, starting from the radical at C(4′), leads to strand 
breakage in DNA [reaction (45) (Dizdaroglu et al. 1975a); Chap. 12.4].

The release of phosphate from the α-hydroxy-β-phosphato radicals derived from 
glycerol phosphates (Samuni and Neta 1973; Steenken et al. 1974) is much faster 
[k > 105 s-1 (Schuchmann et al. 1995)] than that of the corresponding methoxy-
substituted radical (k = 0.1-1 s−1, Table 6.6). Although methyl-substitution at the 
oxygen will increase the electrophilicity of the frame, this effect seems not to be 



sufficient to explain these differences in rate. It may hence be envisaged that a 
concerted proton loss speeds-up the phosphate release in the case of the α-hy-
droxy-β-phosphato radicals. In addition, intramolecular deprotonation by the 
phosphate group could further enhance the rate. In the free-radical chemistry 
of polyribonucleotides and RNA, this must have a bearing on the rate of strand 
breakage starting from the C(2′) radical [reaction (46); Chap. 11.2].

The radical cations formed in all these reactions are not stable but react quite 
rapidly with water. This reaction is to a large extent kinetically controlled, and 
hence also radicals that are thermodynamically disfavored are formed as well. 
Table 6.7 shows a compilation of the ratios of radicals formed as studied by EPR 
spectroscopy.

Proton catalysis which regenerates the radical cation ultimately leads to the 
thermodynamically most stable radical. This can even proceed in two well-sepa-
rated steps [reactions (47) and (48)]. Here, the second step is much slower and 
hence only observed at lower pH (Behrens et al. 1982).

Table 6.6. Approximate rate constants of phosphate release from some α-methoxy-β-
phosphatoalkyl radicals. (Behrens et al. 1978)

Radical Rate constant/s−1

•CH(OCH3)CH2OPO3H2 106

•CH(OCH3)CH2OPO3H− 103

•CH(OCH3)CH2OPO3
2− 0.1 - 1

•CH(OCH3)CH2OPO3(CH2CH2OCH3)H 107

•CH(OCH3)CH2OPO3(CH2CH2OCH3)− 103 - 104

•CH(OCH3)CH2OPO3(CH2CH2OCH3)2 4 × 107
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The gain in stabilization by substituents is compared for radicals and cations in 
Table 6.8. For radicals the change from methyl to ethyl or even  tertiary butyl is 
not linked to a large gain in stabilization energy. In cations, however, alkyl and 
alkoxyl substituents have a dramatic effect. Thus, the stabilizing effect of sub-
stituents on radical cations is mainly due to the stabilization of the cation and 
only to a small extent to that of the radical.

Considerable stabilization is achieved by two methoxy groups, and the radi-
cal cation resulting from reaction (49) is stable with respect to its reaction with 
water (k < 103 s−1) (Behrens et al. 1980). Its radical properties are not altered by 
the stabilization of the cation, and hence these radical cations decay bimolecu-
larly at diffusion-control rates.

The methylenedioxolane radical cation is somewhat less stable and reacts with 
water at a rate of 7 × 10−2 s−1 [reaction (51)] and (as other radicals cations also do) 
with phosphate  ions [reaction (50)]. The radical formed in reaction (51) opens 
the ring upon deprotonation [reaction (52)]. Reactions analogous to reaction 
(61) can be used as a probe to trap short-lived radical cations.

As expected, other radicals with a good leaving group in β-position can give rise 
to the formation of radical cations (Koltzenburg et al. 1982), but it is quite sur-
prising that radical cations can also be formed under certain conditions when 
the leaving group is in the γ-position, for example, reaction (53) (Koltzenburg et 
al. 1983). The lifetime of the radical is ca. 10−5 s and that of its radical cation with 
respect to its reaction with water has been estimated at about 10−8 s [using the 
competition with phosphate; cf. reaction (50)].



Table 6.7. Hydrolysis of radicals with good leaving groups (L) in β-position to the radical 
center. (Behrens et al. 1982)

Radical Product radicals

CH3O–CH–CH2–L
.

CH3O–CH–CH2–OH
.

70% 30%

100%

70% 30%

100%

100%

80%

20%

100%
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The observation of this γ-elimination reaction has raised the question, whether 
in DNA the related C(1′) radical can also lead to strand breakage. However due to 
the negative charge at the phosphate group in 3′-position, the rate of the γ-elimi-
nation reaction (54) should be considerably slower than that of reaction (53).

Aromatic radical cations are readily formed and have a measurable lifetime 
when they are stabilized by electron-donating substituents [e.g., reaction (55); 
O’Neill et al. 1975].

Table 6.8. Stabilization energies of some cations and radicals relative to the correspond-
ing methyl species. (According to G. Koltzenburg, compiled in von Sonntag 1987)

Cation kJ mol−1 Radical kJ mol−1

+CH3 0 •CH3 0

+CH2CH3 630 •CH2CH3 71

+CH2CH2CH3 685

+CH2CH(CH3)2 825

+CH(CH3)2 965 •CH(CH3)2 122

+C(CH3)3 1195 •C(CH3)3 193

+CH2OCH3 1160

+CH(OCH3)2CH3 1350

+CH(OCH3)2 1490

+C(OCH3)3 1580



They may be produced by biphotonic excitation or by a strong oxidant such as 
SO4

•−. The radical cations of methyl-substituted benzenes react with water form-
ing mainly hydroxycyclohexadienyl radicals and deprotonate at methyl only to a 
small extent yielding benzyl-type radicals (Sehested and Holcman 1978; Russo-
Caia and Steenken 2002). As expected, the lifetime of these radical cations in-
creases with increasing methyl substitution (toluene: k > 5 × 107 s−1, p-xylene: 
k ≈ 2 × 106 s−1, 1,2,4,5-tetramethylbenzene: k ≈ 4 × 104 s−1). In strongly acidic 
solution, the reaction becomes reversible, and aromatic radical cations can also 
be generated via •OH under such conditions. Since the deprotonation at meth-
yl is irreversible, benzyl-type radicals are the final products in acid solutions 
(Sehested et al. 1975, 2002). Aromatic radical cations also undergo oxidation of 
substituents in the side chain (Wang et al. 1993; Baciocchi et al. 1996, 1997, 1998, 
1999).

6.10
Hydration and Hydrolysis of Radicals

In principal, all steps in these water-elimination reactions are reversible. Be-
cause in the reactions discussed above the final products are thermodynamical-
ly more stable, the equilibrium lies fully on the right side (i.e., the reverse rates 
are very slow). However, there are also cases where hydration of a radical is a fast 
process. For example, reaction (67) occurs at a rate of 2 × 104 s−1 (Schuchmann 
MN and von Sonntag 1988), i.e., a million times faster than the rate of hydration 
of its non-radical parent, acetaldehyde.

The hydrolysis of the glycosidic linkage in disaccharides is usually a slow and 
acid-catalyzed process. It is remarkably speeded up, when at the site of the gly-
cosidic linkage the hydrogen has been replaced by a lone electron [reaction (68)] 
(for reviews see von Sonntag 1980; von Sonntag and Schuchmann 2001).

Details have not been investigated. Whether in DNA such a reaction plays also 
a role in the elimination of the nucleobases from the C(1′) radical, is as yet not 
known.
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6.11
Bimolecular Termination Reactions

In general, carbon-centered radicals disappear by recombination and dispro-
portionation (when β-hydrogens are available). The rate of reaction is usually 
somewhat below diffusion-controlled and may require some activation energy 
(e.g., ∼19 kJ mol−1 for •C(CH3)2OH; Mezyk and Madden 1999). Although recom-
bination is usually the preferred reaction, disproportionation plays an increas-
ing role, when the number of hydrogens in β-position is increased. A case in 
point is the series of α-hydroxyalkyl radicals. With the hydroxymethyl radical, 
where only one hydrogen (that at oxygen) is available for the disproportionation 
reaction, the disproportionation/recombination ratio is 0.17 (Wang et al. 1996) 
[cf. reactions (62) and (63)]; this ratio increases to ~2.3 in the case of the α-
hydroxyethyl radical (Seddon and Allen 1967; four hydrogens available for dis-
proportionation) and with the 2-hydroxyprop-2-yl this ratio is about 10 (Lehni 
and Fischer 1983). In the latter case seven hydrogens, six at the methyl groups 
and one oxygen-on, now facilitate disproportionation which is now the preferred 
mode of radical termination.. Although the formation of acetone [reaction (59)] 
is thermodynamically much favored over the formation of its enol [reaction 
(58)], the latter reaction is kinetically chosen preferentially (von Sonntag 1969; 
Blank et al. 1975; see also Laroff and Fischer 1973; Bargon and Seifert 1974).

The hydroxymethyl radicals display an interesting feature. Their neutral 
forms largely dimerize [reaction (62)], but their radical anions disproportionate 
[reaction (66)], although there are no longer any hydrogens available for dis-
proportionation (Wang et al. 1996). It has been suggested that this surprising 
disproportionation reaction may be due to a head-to-tail combination of the hy-
droxymethyl radical anions or it may proceed by a water-assisted reaction.

In termination reactions, all mesomeric structures may contribute. Cases in 
point, where one would not immediately expect this to play a significant role are 
the α-carboxymethyl radicals (Wang et al. 2001). For some of the nucleobase 
radicals also more than one mesomeric structure may be written (Chap. 10), and 
it is not unlikely that also here this aspect has to be taken into account.



The rates of these bimolecular termination reactions are usually close to dif-
fusion controlled except for equally charged radicals (Ulanski et al. 1997), nota-
bly polymeric radicals (Chap. 9.3). DNA belongs to this group.
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