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4.1
Some Basic Properties of H• and eaq

−

Much of basic free-radical chemistry of DNA and its constituents have been 
elucidated with the help of radiation techniques. This requires one to address 
briefly the properties of the H atom and the hydrated electron, eaq

−, which are 
important intermediates in the radiolysis of water (Chap. 2.2).

The •OH radical, which is also generated under these conditions, may be con-
verted into •H by reacting it with excess H2 (Christensen and Sehested 1983). 
This may require a special pressure cell (Christensen and Sehested 1980). The 
scavenging of •OH with tBuOH (k = 6 × 108 dm3 mol−1 s−1) is often the more con-
venient approach. Under adequate conditions, this leaves H• largely untouched, 
since its rate of reaction with tBuOH is low (k = 1.7 × 105 dm3 mol−1 s−1; Buxton et 
al. 1988; recently revised at 1.15 × 106 dm3 mol−1 s−1; Wojnárovits et al. 2004).

H• is the conjugate acid of eaq
− [pKa(H•) = 9.1; reactions (1), k = 2.2 × 107 dm3 

mol−1 s−1 and (2), k = 2.3 × 1010 dm3 mol−1 s−1 (Buxton et al. 1988), for the ther-
modynamic properties of this system, see Hickel and Sehested (1985)]. Thus, in 
pure water, the lifetime of eaq

− is quite long (Hart et al. 1966), even long enough 
to monitor its presence spectrophotometrically under steady-state 60Co-γ-radi-
olysis conditions (Gordon and Hart 1964).

 (1)

eaq
−  +  H+  →  H• (2)

Reaction (1) is best described as a proton transfer from the weak acid H• to the 
strong base OH− (Han and Bartels 1992). For the rapid conversion of eaq

− into H• 
in neutral solution (i.e., at low H+ concentration), phosphate buffer may be used 
[reaction (3); k = 1.1 × 107 dm3 mol−1 s−1 (Grabner et al. 1973)]. The rate constant 
depends somewhat on the phosphate concentration, and at 1 mol dm−3 phos-
phate (pH ∼5.7) the reported value is 1.85 × 107 dm3 mol−1 s−1 (Ye and Schuler 
1986).

eaq
−  +  H2PO4

−  →  H•  +  HPO4
2− (3)

The hydrated electron is characterized by its strong absorption at 720 nm (ε = 
1.9 × 104 dm3 mol−1 cm−1 (Hug 1981); the majority of the oscillator strength is 
derived from optical transitions from the equilibrated s state to the p-like ex-
cited state (cf. Kimura et al. 1994; Assel et al. 2000). The 720-nm absorption is 
used for the determination of its reaction rate constants by pulse radiolysis (for 
the dynamics of solvation see, e.g., Silva et al. 1998; for its energetics see, e.g., 
Zhan et al. 2003). H• only absorbs in the UV (Hug 1981), and rate constants have 
largely been determined by EPR (Neta et al. 1971; Neta and Schuler 1972; Mezyk 
and Bartels 1995) and competition techniques (for a compilation, see Buxton et 
al. 1988). In many aspects, H• and eaq

− behave very similarly, which made their 
distinction and the identification of eaq

− difficult (for early reviews, see Hart 
1964; Eiben 1970; Hart and Anbar 1970), and final proof of the existence of the 
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80  Chapter 4 · Hydrogen Atom and Hydrated Electron

latter was only obtained with the report of its EPR spectrum in frozen alkaline 
solution (Schulte-Frohlinde and Eiben 1962; Eiben and Schulte-Frohlinde 1965) 
and the advent of pulse radiolysis (Boag and Hart 1963; Keene 1963, 1964). There 
is now vast literature on the physical properties and reaction kinetics of eaq

−, 
and the latter data are only paralleled in number by those of •OH (Buxton et al. 
1988).

4.2
Redox Reactions

The hydrated electron is the most powerful reductant (E7 = −2.9 V); H• has a 
somewhat higher reduction potential (E7 = −2.4 V; for a compilation of reduction 
potentials, see Wardman 1989). Often, both •H and eaq

− are capable of reducing 
transition metal ions to their lower oxidation states [e.g., reactions (4) and (5)].

Ag+  +  H•  →  Ag  +  H+ (4)

Ag+  +  eaq
−  →  Ag (5)

However, there are cases where the reduction potential of H• is insufficient to re-
duce the metal ion, and the reduction reaction is only given by eaq

− [e.g., reaction 
(6) (Baxendale and Dixon 1963); for a review see Buxton and Sellers (1977); for a 
compilation of rate constants of ensuing reactions see Buxton et al. (1995)].

Zn2+  +  eaq
−  →  Zn+ (6)

In strongly acid solution, H• may even react as an oxidant. For example, H• oxi-
dizes Fe2+ to Fe3+ [reaction (7)]. A hydride, Fe3+H−, is thought to be an interme-
diate in this reaction.

Fe2+  +  H•  +  H+  →  Fe3+  +  H2 

4.3
Dissociative Electron Capture and Related Reactions

The hydrated electron reacts with many compounds which are capable of releas-
ing an anion by dissociative electron capture [e.g., reaction (8)], and, among 
others, it was this property which allowed the differentiation between eaq

− and 
H• [reactions (9) and (10)] (Armstrong et al. 1958; Hayon and Allen 1961; Jortner 
and Rabani 1962).

eaq
−  +  ClCH2CO2H  →  Cl−  +  •CH2CO2H (8)

H•  +  ClCH2CO2H  →  H2  +  •CHClCO2H (9)



The analogous reactions with N2O (Dainton and Peterson 1962) are commonly 
used to convert eaq

− into •OH [reaction (10); k = 9.1 × 109 dm3 mol−1 s−1 (Janata 
and Schuler 1982)], since N2O is largely inert against free-radical attack. Some 
much slower reactions, often leading to chain reactions, are given by other 
strongly reducing radicals (Cheek and Swinnerton 1964; Sherman 1967a-c; Ryan 
and Freeman 1977; Ryan et al. 1978; Al-Sheikhly et al. 1985; Wang et al. 1996).

eaq
−  +  N2O  →  N2  +  O•−   (O•−  +  H2O  →  •OH  +  OH−) (10)

The alternative of using H2O2 [reaction (11); k = 1.3 × 1010 dm3 mol−1 s−1] instead 
of N2O may lead to complications, since H2O2 also reacts with •OH, •H and many 
other radicals (Chap. 6).

eaq
−  +  H2O2  →  •OH  +  OH− (11)

In their reactions with tertiary butylhydroperoxide, •H and eaq
− show a differ-

ent selectivity (Phulkar et al. 1990). While •H undergoes reactions (12) and (13) 
with about equal probability, i.e., both tBuO• and •OH are formed, eaq

− yields 
only tBuO• [reaction (14)]. This preference in splitting the peroxidic bond is due 
to the much higher solvation energy of the hydroxide compared to the tertiary 
butoxide ion. For a detailed study on the reaction of •H with H2O2 see Mezyk and 
Bartels (1995).

tBuOOH  +  H•  →  tBuO•  +  H2O (12)

tBuOOH  +  H•  →  tBuOH  +  •OH (13)

tBuOOH  +  eaq
−  →  tBuO•  +  OH− (14)

With thiols, eaq
− reacts predominantly by dissociative ET [reaction (15)], but also 

formation of molecular hydrogen [reaction (16)] is observed (Hoffman and Ha-
yon 1973). As one might expect, there is a considerable drop in the rate constant 
when the thiol group is deprotonated (for a systematic study, see Mezyk 1995).

eaq
−  +  RSH  →  R•  +  SH− (15)

eaq
−  +  RSH  (+ H+)  →  RS •  +  H2 (16)

In a number of reactions that are written as dissociative electron attachments, 
short-lived radical anions are in fact intermediates. A case in point is 5BrUra 
(Chap. 10). An interesting behavior is shown by the radical anion of N-bromo-
succinimide which does not release a bromide ion but rather fragments into 
a bromine atom and a succinimide anion [reactions (17) and (18)] (Lind et al. 
1991).

The concerted (one-step) dissociative ET is undergone by σ* electrophores; 
the (σ* + π*) electrophores give rise to two-step processes (Savéant 1993; Schmit-
tel and Ghorai 2001).
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82  Chapter 4 · Hydrogen Atom and Hydrated Electron

The DNA backbone could be split, in principle, by dissociative electron capture 
[reactions (19)-(21)].

DNA strand breakage by eaq
− is not observed in dilute aqueous solution (von 

Sonntag 1987). DFT calculations show that these reactions are exoenergetic but 
require activation energy (Li et al. 2003; for quantum-mechanical calculations, 
see Berdys et al. 2004a; for base radical anions serving as a relay, see Berdys et 
al. 2004b). It has been envisaged that low-energy-electrons could induce this 
reaction in competition with other reactions such as thermalization/solvation 
and addition to the bases (for reviews on the reactions of low-energy electrons 
in their reactions with DNA, see Sanche 2002a,b). Reactions (19)-(21) have been 
indeed observed under certain conditions (Becker et al. 2003; Chap. 12). Subex-
citation electrons (<3 eV) may also release Thy from DNA (Abdoul-Carine et al. 
2004).

4.4
Addition Reactions

Dissociative electron capture can only occur when single-bonds are involved. 
There are, however, a large number of compounds with high electron affinity 
such as O2 and carbonyl, nitro- or cyano-groups containing compounds. With 
all these compounds, eaq

− reacts at diffusion-controlled rates by forming the cor-
responding radical anion [e.g., reactions (22); k = 1.9 × 1010 dm3 mol−1 s−1]. The 
radical anions thus-formed are themselves usually strong reductants (including, 
for example, the Thy radical anion; Chap. 10), and readily hand over an electron 
to a better electron acceptor (for ketyl radical anions see, e.g., Adams and Will-
son 1973; for nucleobase radical anions see, e.g., Adams and Willson 1972; Nese 
et al. 1992; for O2

•− see Chap. 8).

eaq
−  +  O2  →  O2

•− (22)



Simple olefins do not react with eaq
− at an appreciable rate, but compounds with 

an extended π-system such as butadiene can also accommodate an additional 
electron (k = 8 × 109 dm3 mol−1 s−1; Hart et al. 1964). However, as in the case 
of benzene, the rate is often below diffusion controlled [reaction (23); k = 7.2 × 
106 dm3 mol;1 s;1 (Gordon et al. 1977); in THF, the reaction of the solvated elec-
tron with benzene is even reversible (Marasas et al. 2003)], and the resulting 
radical anion is rapidly protonated by water [reaction (24)].

A rapid protonation by water of the electron adducts of spin traps such as DMPO 
or 2-methyl-2-nitroso-propane yields the same species as are expected for the 
reaction of H• (Sargent and Gardy 1975). This prevents a distinction between eaq

− 
and H• by using this technique.

H• readily adds to C−C double bonds. Like •OH, it is a pronounced electro-
philic radical (ρ = −0.45; Neta 1972) and thus shows a high regioselectivity in its 
addition reactions. With eaq

−, it shares a fast reaction with O2 [reaction (25); k = 
1.2 × 1010 dm3 mol−1 s−1].

H•  +  O2  →  HO2
• (25)

4.5
H-Abstraction Reactions

H• also undergoes H-abstraction reactions, albeit with much lower rates than 
•OH. This is also reflected in a higher H/D isotope effect [e.g., with 2-PrOH/2-
PrOH-d2 kH/kD ≈ 7.5, reactions (26) and (27) (Anbar and Meyerstein 1964); see 
also Vacek and von Sonntag (1969), vs. kH/kD = 1.5 for •OH (Anbar et al. 1966)].

•H  +  HC(CH 3)2OH  →  H2  +  •C(CH3)2OH (26)

•H  +  DC(CH 3)2OH  →  HD  +  •C(CH3)2OH (27)

If there is competition between addition and H-abstraction, addition is always 
preferred. As a consequence, H-abstraction from the sugar moiety is a very mi-
nor process in DNA and related compounds (Das et al. 1985).
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