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13.1
General Remarks

For the detection of free-radical-induced DNA damage and its repair, biochemi-
cal techniques are increasingly applied. It would exceed the allocated space to 
discuss these techniques here, and the reader is referred to the original litera-
ture. However, to assist biologists and biophysicists, some of the chemical tech-
niques for measuring typical DNA lesions are discussed. Most of the kinetic data 
concerning the free-radical chemistry of DNA and its model systems has been 
obtained by pulse radiolysis. This technique is only available in a few laborato-
ries worldwide. For this reason, it will be described in some detail here.

13.2
Detection of DNA Damage

In recent years, the sensitivity of the detection of free-radical-induced DNA 
damage has been considerably increased (for brief reviews, see Cadet and Wein-
feld 1993; Cadet et al. 1997a, b, 1999b). There is often a problem with lesions that 
are refractory to an enzymatic excision (Dizdaroglu et al. 1978, and further ex-
amples are reported below), but it is expected that when enzymatic degradation 
techniques have been further developed, acid hydrolysis and its marked prob-
lems will no longer be required.

13.2.1
Excision of Damaged Bases by Acid Hydrolysis

Damaged DNA bases are usually still attached to the DNA backbone via a nucle-
osidic linkage. In order to release them for analysis, the nucleosidic linkage has 
to be hydrolyzed. Common procedures use 60−88% formic acid at 140 °C for 2 h. 
As a milder condition, 35% HF in pyridine at 37 °C for 2 h has been suggested 
(Douki et al. 1996) and, in particular, FAPY-A and FAPY-G withstand concomi-
tant degradation much better (Douki et al. 1997). Nevertheless, all these condi-
tions are very severe, and the product may be altered by this treatment. A case 
in point are the cytosine glycols which do not withstand this acid treatment and 
are released as 5OHCyt and 5OHUra [reactions (1)−(5)] (Dizdaroglu et al. 1986; 
Douki et al. 1996).
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Although 35% HF in pyridine is considered to be milder than the formic acid 
treatment, HMUra is degraded under such conditions (Douki et al. 1996). More-
over, 60% formic acid is believed to be a stronger hydrolyzing agent as compared 
to 88% formic acid due to the higher degree of dissociation. Yet, the final yield 
of HMUra (in the plateau region after 2 h) is significantly lower in the case of the 
lower formic acid concentration (Douki et al. 1996). Thus, there is no ideal con-
dition, and for each DNA lesion special conditions may have to be worked out to 
avoid major artifacts (Cadet et al. 1997a). Apparently, the discussion on potential 
artifacts continues (Dizdaroglu 1998) and experimental expertise acquired over 
the years in one laboratory is difficult to transfer to another one.

13.2.2
Excision by Enzymatic Hydrolysis

Glycosylases excise damaged nucleobases (for a review see Krokan and Standal 
1997). They are grouped into ‘simple glycosylases’ that do not form DNA strand 
breaks and ‘glycosylases/abasic site lyases’ that concomitantly induce a stand 
break (Dodson and Lloyd 2002). This may have to be taken into account when 
using these enzymes for the detection of damaged sites (for the use of endonucle-
ases for fingerprinting of DNA damage, see Epe and Hegler 1994).

As mentioned briefly above, the enzymatic excision of damaged nucleobases 
may cause some problems. A case in point is the action of nuclease P1. While a 
single 8-oxo-G lesion is excised as the damaged nucleoside, the clustered 8-oxo-
G/Fo lesion is only obtained as modified dinucleotide (Maccubbin et al. 1992). 
Another example is the hydrolysis of dG*pC which severely inhibits the action of 
bovine spleen phosphodiesterase, while HMUrapA shows only very little inhibi-
tion (Maccubbin et al. 1991). Enzymatic hydrolysis of DNA is, in fact, the recom-
mended method for the determination of HMUra (Teebor et al. 1984; Frenkel et 
al. 1985). It is recalled that mammalian cells cope with this DNA lesion with the 
help of a hydroxymethyluracil glycosylase (Hollstein et al. 1984).



When the Tg lesions is opened by ammonolysis, the resulting product (α-
R-hydroxy-β-ureidoisobutyric acid) inhibits snake venom phosphodiesterase, λ 
exonuclease and the Klenow (exo−) fragment (Matray et al. 1995; see also Green-
berg and Matray 1997). It is, however, removed by E. coli Fpg and Nth proteins 
(Jurado et al. 1998).

A detailed study on the repair of the cA lesion is available (Brooks et al. 2000). 
The enzymatic excision of 8-oxo-A by Ogg1 from S. cerevisiae is only effective 
when this damage is paired with Cyt (but not Ade, Thy, Gua or Ura; Girard et al. 
1998; for a review on the action of this enzyme in excising 8-oxo-G see Nishimura 
2002). Substantial neighboring effects are also observed for the excision of other 
lesions such as 8-oxo-G or AP sites. Excision of 8-oxo-G by the E. coli Fpg protein 
is used as the first step for an improved detection of this lesion (Beckman et al. 
2000; ESCODD 2003). There is a large variation in the yields of 8-oxo-G and con-
comitant discussions as to the best method for the detection of this DNA lesion. 
Attention has been drawn that incomplete digestion of the damaged DNA by the 
enzymatic cocktails typically used may be one of the reasons for such discrepan-
cies, and an improved protocol has been suggested (Huang et al. 2001).

The development in this area of enzymatic action on the various damaged 
DNA sites continues to be very active. For this reason, only a very short account 
has been given as a kind of flavor for the reader to see in which direction re-
search in this field seems to expand.

13.2.3
Detection of DNA Lesions 
by Gas Chromatography/Mass Spectrometry

Most of our present knowledge of free-radical-induced DNA lesions is based upon 
their identification and often also quantification by GC/MS. In order to convert 
the nucleobases and their free-radical-induced products into sufficiently vola-
tile compounds the -NRH and -OH groups have to be trimethylsilylated. Carbo-
hydrate-type products resulting from an alteration of the sugar moiety may be 
reduced with NaBH4 after release or excision from DNA into the corresponding 
polyhydric alcohols (Beesk et al. 1979). Reduction with NaBD4 incorporates a 
deuterium atom at the position of a carbonyl function (two deuterium atoms at a 
carboxyl group). The mass spectra of the trimethylsilylated polyhydric alcohols 
usually allows a firm assignment of their structure when the number of carbon 
atoms is known from the GC retention time (Dizdaroglu et al. 1974). A methoxi-
mation of the carbonyl function in combination with a trimethylsilylation of the 
hydroxyl groups also converts carbohydrate products into volatile compounds, 
and their mass spectra may provide additional information (Dizdaroglu et al. 
1977). For the determination of the carbohydrate products, a polyhydric alcohol 
that is not formed under the given conditions can be used as internal standard. 
For the quantification of the base products, isotopically-labeled reference mate-
rial which also undergoes the various prepurification steps (e.g., by semi-pre-
parative HPLC) may be added (Bianchini et al. 1996; Douki et al. 1996; D’Ham 
et al. 1998). The determination of altered bases by GC/MS-SIM (SIM = single-
ion monitoring), after trimethylsilylation, has become the standard method for 
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their determination (Dizdaroglu 1985, 1990, 1991, 1992; Dizdaroglu and Bergtold 
1986; Fuciarelli et al. 1989; Dizdaroglu and Gajewski 1990; Jaruga et al. 2001).

13.2.4
Determination of DNA Lesions by Liquid Chromatography

When the term ‘liquid chromatography’ is used these days, it usually refers to 
HPLC (for reviews see Zakaria and Brown 1981; Scoble and Brown 1983), but 
valuable separations can also be achieved by TLC (Cadet et al. 1983). Although 
detection in HPLC is mainly by UV spectrophotometry (e.g., Cadet et al. 1982), 
electrochemical detection is the method of choice in the case of the strongly re-
ducing 8-oxo-G lesion (Floyd et al. 1986; Shigenaga et al. 1989, 1990; Berger et 
al. 1990; Mei et al. 2003). In a multi-laboratory test, this method proved to be 
much more reliable than GC/MS and HPLC/MS-MS methods (ESCODD 2003). 
The work-up of biological samples and the difficulties that one might encounter 
have been discussed (Claycamp and Ho 1993; Douki et al. 1997; Dany et al. 1999). 
This is of importance, since this compound is often used as a marker of oxidative 
DNA damage, for example, in assessing the role of dietary fats (Loft et al. 1998).

Electrochemical detection is also the method of choice for the reducing 
dCyd-derived products 5OHdCyd and 5OHdUrd that can be released enzymati-
cally from oxidized DNA (Wagner et al. 2004). After water elimination, the Ug 
may also be determined by this technique.

The sugar lesions FUR and 5-MF (Joshi and Ganesh 1994), as well as DNA-ad-
ducts (Park et al. 1989) have also be detected with the help of HPLC.

For optical detection, the product to be determined must have a reasonable 
absorption coefficient. Saturation of the pyrimidine C(5)−C(6) bond destroys the 
chromophore, and for the determination of Tg yields excreted into the urine, 
this product was reduced with HI into Thy prior to an HPLC analysis (Cathcart 
et al. 1984).

The combination of HPLC and MS (cf. Frelon et al. 2000) is expected to be-
come the method of choice in many cases. The state of the art has been reviewed 
(Cadet et al. 2002).

13.2.5
MALDI-TOF

Another very sensitive MS technique is MALDI-TOF. Its high-resolution mass 
spectra allowed, for example, the identification of the 8-oxo-G lesion by its +16-
Da mass shift in a oligonucleotide heptamer at picomol level (Bartolini and 
Johnston 2000).

13.2.6
Capillary and Pulsed Field Gel Electrophoresis

Capillary gel electrophoresis (CGE) has the advantage of a short analysis time, 
high degree of automation and reproducibility combined with a good resolving 
power for dsDNA fragments. The mobility of a DNA fragment is given by equa-



tion (6), where V is the steady-state velocity of the fragment, k a factor related 
the net polyanion charge Q, S the size of the fragment (also related to Q), E the 
electrical field, Ea the activation energy for the viscous flow, R the universal gas 
constant and T the absolute temperature.

 (6)

As an example for the study of DNA damage after irradiation using this tech-
nique may serve reference (Valenzuela et al. 2000).

In pulsed field gel electrophoresis (PFGE), intact DNA is treated with restric-
tion enzymes to generate pieces small enough to resolve by electrophoresis in an 
agarose or acrylamide gel. With each reorientation of the electric field relative to 
the gel, small-sized DNA will begin moving in the new direction more quickly 
than the larger DNA. Thus, the larger DNA lags behind providing a separation 
from the smaller DNA (for a review see Anand and Southern 1990). Among oth-
ers, PFGE seems to be the most sensitive technique for the determination of DSBs 
in cells (Rothkamm and Löbrich 2003).

13.2.7
32P-Postlabeling

The 32P-postlabeling technique allows to improve the sensitivity of the detection 
of DNA damage (Cadet et al. 1998). The damaged DNA is enzymatically degraded 
into nucleotide-3-phosphates [reaction (7)]. The resulting mixture of unchanged 
nucleoside-3-phosphates (dNp) and damaged ones (dXP) are separated by HPLC 
[reaction (8)]. They are then labeled at the 5′-position with 32P [reaction (9)] and 
subsequently dephosphorylated at the 3′-position [reaction (10)]. This allows to 
proceed with a second purification and their identification by, for example, two-
dimensional TLC [reactions (11) and (12)].

Factors that affect the determination of 8-oxo-G by this technique have been dis-
cussed in some detail (Möller et al. 1998). The determination of Tg by this tech-
nique (Hegi et al. 1989) is one of its most sensitive assays (Weinfeld and Soderlind 
1991), many orders of magnitude higher than the earlier determination by HPLC 
(Frenkel et al. 1981). A 32P-postlabeling assay for the cA lesion which blocks gene 
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expression and is repaired by the nucleotide excision repair pathway (Brooks et al. 
2000) has also been developed for the use in mammalian tissues (Randerath et al. 
2001). Ade-N-1-oxide, a product that is formed when DNA is exposed to H2O2, has 
also been determined using this technique (Mouret et al. 1990).

13.2.8
Detection of Hydroperoxides

Hydrogen peroxide and organic hydroperoxides can be reduced by molybdate-
activated iodide [Allen et al. 1952; reactions (13) and (14)]. The iodine atoms 
formed in these reactions combine to iodine which complexes with iodide [reac-
tions (15) and (16)], and it is this I3

− complex which is measured (ε(3540 nm) = 
25,000 dm3 mol−1 cm−1)

ROOH  +  I−  →  RO•  +  I•  +  OH− (13)

RO•  +  I−  →  RO−  +  I• (14)

2 I•  →  I2 (15)

I2  +  I−  →  I3
− (16)

Hydrogen peroxide reacts considerably faster with this reagent (t1/2 = 2.5 s) than 
organic hydroperoxides, and the differences in the rate of buildup not only al-
lows to determine H2O2 and organic hydroperoxides side by side, but often the 
rate of reaction of a given hydroperoxide with this reagent can be used as a fin-
gerprint for its presence (Dowideit and von Sonntag 1998; Flyunt et al. 2003). A 
certain disadvantage of this reagent is the fact that the iodine thus formed may 
react with other products (Al-Sheikhly et al. 1984). This problem can be over-
come in certain cases by combining it with an HPLC separation (post-column 
derivatization mode). For a quantification of a hydroperoxidic product by this 
method the slowness of reaction of some hydroperoxides with this reagent may 
require the heating of the reaction coil, but in unfavorable cases the reaction 
may still remain incomplete. This may result in an underestimate of the hydro-
peroxide yield.

Hydroperoxides also react readily with Fe2+ in acid media [reactions (17) 
and (18)]. The Fe3+ formed can be complexed with xylenol orange. This complex 
has a strong absorption coefficient in the visible (ε(540 nm) = 26,800 dm3 mol−1 
cm−1). This method has been used with some advantage in the identification of 
the hydroperoxides formed upon •OH-attack on Thd by HPLC using the post-
column derivatization technique (reagent: e.g. 2.3 × 10−4 mol dm−3 ammonium 
ferrous sulfate, 3.5 × 10−2 mol dm−3 sulfuric acid, 5.6 × 10−4 mol dm−3 xylenol 
orange; Wagner et al. 1990).

ROOH  +  Fe2+  →  RO•  +  OH−  +  Fe3+ (17)

RO•  +  Fe2+  →  RO−  +  Fe3+ (18)



As in the related Fricke actinometer, there is a given chance that more than two 
Fe3+ are formed, and using the Fe2+/xylenol orange system hydroperoxide yields 
may be overestimated as has been shown for the Fe2+/SCN− system (Mihaljevic et 
al. 1996). The alkoxyl radical, besides being reduced by Fe2+ [reaction (18)], may 
undergo rapid β-fragmentation (Chap. 7.2) and the alkyl radical thus formed 
adds O2, yielding a peroxyl radical which can be reduced by Fe2+ to the corre-
sponding hydroperoxide. This sequence is a chain reaction, only interrupted by 
the reduction of the alkoxyl radical [reaction (18)]. In the Fricke actinometer Cl− 
can be added which converts •OH into Cl2

•−. This radical reacts readily with Fe2+ 
but does not continue the chain reaction by reacting with organic impurities. 
In the above assay, the addition of Cl− will not have a beneficial effect, because 
alkoxyl radicals do not oxidize Cl− in acid solutions.

13.2.9
Malonaldehyde, Base Propenals and Related Compounds

Malonaldehyde and related compounds react readily with 2-thiobarbituric acid 
(TBA, typically 2 g dm−3, the resulting pH of the solution is thus around 2, at 
70 °C for several minutes, depending on the reactivity of the compound to be an-
alyzed) and turns yielding a pink color (in the case of malonaldehyde ε(532 nm) 
= 150,000 dm3 mol−1 cm−1). The rate of reaction of the base propenals is faster 
than that of malonaldehyde (Rashid et al. 1999), i.e., they do not hydrolyze prior 
to their reaction with TBA. The reaction of the 5′-aldehydes derived from Pur 
deoxynucleosides react more slowly (Langfinger and von Sonntag 1985; von 
Sonntag 1994), and the color tends to fade. Other lesions damaged sugar moi-
ety also give a positive TBA response, for example, 3′-oxo-dThd (Rashid et al. 
1999) and unknown DNA-bound damaged sites (Krushinskaya and Shalnov 
1967; Krushinskaya 1983; Rashid et al. 1999). The fact that there are definitely 
different products formed in the TBA reaction, although they all give rise to the 
same kind of absorption raises the question, whether the same absorption coef-
ficient as has been determined for malonaldehyde can also be used for the other 
TBA-reactive compounds. With dGuo-5′-aldehyde, this is clearly not the case 
(Langfinger and von Sonntag 1985).

To avoid some of the ambiguities of the common TBA assay described above, 
malonaldehyde may be converted with methylhydrazine under very mild condi-
tions into 1-methylpyrazol. The latter is extracted and determined by GC (Mat-
sufuji and Shibamoto 2004).

13.2.10
Guanidine Derivatives

Some Gua lesions are characterized by a guanidine residue that can be detected 
spectrophotometrically using 1,2-naphthoquinone-4-suphonate as the reagent 
(Kobayashi et al. 1987). The resulting product is shown in reaction (19).
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13.2.11
Immuno Assays

Immuno assays have been developed for a variety of DNA lesion such as UV-
damage (McConlogue et al. 1982; Eggset et al. 1987), Tg (Rajagopalan et al. 1984; 
Le et al. 1998) cA (Fuciarelli et al. 1985, 1987), Ade-N1-oxide (Signorini et al. 
1998), carcinogen-modified DNA (Müller et al. 1982), hydroxylation of guanine 
(Kasai and Nishimura 1986), 8-oxo-G (Yin et al. 1995), HMdUra (Lewis et al. 
1978), DNA base damage (Lewis and Ward 1978) and X-ray-induced damage 
(Waller et al. 1981).

A fluorescent 90-mer oligonucleotide in combination with laser-induced flu-
orescence and capillary electrophoresis has been used as a versatile probe for a 
detection of DNA damage (Carnelley et al. 2001).

13.2.12
Atomic Force Microscopy

Atomic force microscopy has been developed to a stage that DSBs and the length 
of the resulting fragments can be detected by this technique (Pang et al. 1996). 
In this context it is of interest that neutron irradiation leads to the formation of 
very small fragments (Pang et al. 1997).

13.2.13
Comet Assay

The comet assay (Ostling and Johanson 1984) makes use of the fact that the 
smaller DNA fractions that are formed when the molecular weight of the cellular 
DNA is reduced by free-radical-induced DSBs move faster in an applied electric 
field (after cell lysis) than the undamaged DNA. Staining the DNA yields a com-
et-like pattern. Purified repair enzymes, applied to DNA during the course of the 
comet assay procedure, can greatly enhance the sensitivity and specificity of the 
assay (Collins et al. 1997; Sauvaigo et al. 2002). This assay is now widely applied 
(cf. Pouget et al. 1999), and a combination with immunofluorescence detection 
techniques allows even the detection specific damage and its repair (Sauvaigo et 
al. 1998). For the application of the comet assay in assessing environmental haz-
ards, see Ündeger et al. (1999), for a comparison of γ-irradiated and BLM-treated 
cells, see Östling and Johanson (1987).



13.2.14
Detection of SSBs and DSBs with the Help of Supercoiled Plasmids

Plasmids are small pieces of circular supercoiled dsDNA. A SSB causes the plas-
mid to relax into the open circular form, a DSB into the ds linear form. These 
there forms can be separated by chromatographic methods (e.g., Bresler et al. 
1979). This assay is widely used for studying effects of various agents including 
the action of enzymes on damaged DNA.

13.2.15
Detection of Clustered Lesions

DNA damage induced by ionizing radiation leads single lesions also to the for-
mation of clustered lesions such as two close-by damaged bases on opposite 
strands (Chap. 12). For their detection, DNA is treated with an endonuclease 
that induces a SSB at a damaged site. If there are two closely separated lesions 
on opposite strands, such treatment induces a DSB which can be detected on a 
non-denaturing gel (Sutherland et al. 2000). The enzymes that have been used 
and their targets are compiled in Table 13.1.

13.3
Pulse Radiolysis and Laser Flash Photolysis

The pulse radiolysis technique is close to the better known laser flash photolysis 
(for a monograph see Bensasson et al. 1983). There is one essential difference: in 
pulse radiolysis the energy is absorbed by the solvent, e.g., by water in DNA solu-

Table 13.1. Enzymes used for the identification of clustered DNA base damage. (Suther-
land et al. 2000)

Enzyme Class recognized Lesion recognized

E. coli Fpg protein (for-
mamidopyrimidine-DNA 
glycosylase)

Oxidized purines FAPY-A, FAPY-G, 8-oxo-G, 8-oxo-
A, some abasic sites, to a lesser 
extent other modified purines

E. coli Nth protein (endo-
nuclease III)

Oxidized pyrimi-
dines

Ring-saturated or fragmented 
Thy residues, e.g. H2Thy, Tg, 5-
hydroxy-5-methylhydantoine, 
urea, DNA damaged at Gua, some 
abasic sites

E. coli Nfo protein (endo-
nuclease IV)

AP sites Several AP sites including oxi-
dized AP sites, urea
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tions, while in laser flash photolysis the energy of the photons is absorbed by the 
solute, e.g., by DNA. Although at high enough photon energies such as 193 nm 
or upon biphotonic excitation ionization does occur yielding radical cations and 
electrons, i.e. DNA radicals are formed upon UV-excitation, the application of 
laser flash photolysis in the study of DNA free-radical chemistry has found few 
applications so far. This is, however, changing as more and more photolabile 
compounds tailored to produce specific radicals are studied. In both techniques, 
the detection systems are the same, and the evaluation of the data follow the 
same principles. Some basics of these techniques will be described now.

The key reactions of the radiolysis of water leading to the formation of •OH, 
eaq

− and H• and the conversion of eaq
− into a further •OH have been discussed 

in Chapter 2.2. Here, it is sufficient to recall that the spur reactions are over in 
ca. 10−8 s, and from thereon the distribution of the radical species is practically 
homogeneous.

Short electron pulses are produced using Van de Graaff, LINAC or Febetron-
type accelerators. Detection of products (intermediates) that grow in and decay 
as the cascade of reactions initiated by the pulse proceeds may be based on opti-
cal absorption, optical emission, electrical conductivity, EPR, CIDNP, polarog-
raphy and light scattering. When pulse radiolysis is combined with a rapid-mix-
ing device, the reactions of long-lived radicals with added substrates can also be 
studied (see below). Opaque solid DNA sample can also be investigated using the 
diffuse-reflectance technique (Wilkinson et al. 1984; O’Neill et al. 1989). Differ-
ent types of pulse-generating and detection equipment have been described in 
the literature (Barker et al. 1970; Warman et al. 1980; Asmus and Janata 1982a,b; 
Janata 1982, 1992a,b; van Lith et al. 1983; Asmus 1984; Tabata et al. 1985; Pat-
terson 1987; von Sonntag 1989; Janata et al. 1993; Bothe and Janata 1994; von 
Sonntag and Schuchmann 1994).

In a typical pulse radiolysis experiment, a submicrosecond pulse of high-
energy electrons (2.5−10 MeV) passes through the cell containing the system to 
be investigated. Upon losing its energy, a 3-MeV electron (penetration depth in 
water ca. 10 mm) gives rise to as many as 1.8 × 108 radicals (•OH, eaq

− and H•) 
together with further charged particles (H+ and OH−) after completion of the 
spur reactions (Chap. 2.2). In pulse radiolysis, the number of primary radicals 
formed does not depend on the properties of the solute and its concentration. 
In laser flash photolysis, however, the substrate concentration and the absorp-
tion coefficient at the given excitation wavelength but also on the quantum yield 
of radical formation determine the efficiency of radical formation. The latter 
may often be the limiting factor for using this technique. Moreover in laser flash 
photolysis, detected intermediates are usually not only due to free radicals, but 
triplet states or non-radical products resulting from the reactions of the excited 
states may give rise to the observed effects as well.

Intermediates may be detected by UV-Vis spectroscopy. In a pulse radiolysis 
experiments, Čerenkov light is emitted as the high-energy electrons are slowed 
down. Hence, when the photon flux of the analyzing light (I0) is low, emission 
signals are observed despite the fact that absorbing species are formed (in laser 
flash-photolysis this phenomenon is only observed if the quantum yield of fluo-
rescence is high and the monitoring wavelength is set in this wavelength region). 



The problem can be overcome by boosting for a few milliseconds the power of 
the lamp providing the analyzing light (with a 450-W xenon lamp about tenfold). 
Thus, the I0 value of the analyzing light is now much higher than the intensity 
of the Čerenkov light (fluorescence) and signals reflect with sufficient accuracy 
the absorption properties of the intermediates formed during the pulse (laser 
flash). Recently, attention has been drawn to pitfalls by stray light (Czapski et 
al. 2005) and solute absobance (especially in laser flash photolysis; von Sonntag 
1999). Data acquisition and storage are computerized which allows multiple-
signal averaging. The dose in a pulse radiolysis experiment may be determined 
(Butler and Land 1996) by the thiocyanate dosimeter (Schuler et al. 1981), more 
recently revised (Buxton and Stuart 1995; G(SCN)2

•− × ε475 nm = (2.59 ± 0.05) × 
10−4 m2 J−1).

In many free-radical reactions, neutral radicals give rise to charged species. 
For example, neutral peroxyl radicals may release HO2

•/O2
•− (pKa(HO2

•) = 4.8; 
Chap. 8.11). The equivalence conductance of H+ and OH− is 315 and 175 Ω−1 mol−1 
cm−1, respectively. Monoanions and monocations have values in the range of 
45-60 Ω−1 mol−1 cm−1. When the neutralization is completed, the signal of the 
change of conductance produced by the charged species will be large and posi-
tive at pH below pH 7 [expression (20)], but smaller and negative above pH 7 
[expression (21)]. The neutralization reaction must not push the pH out of the 
basic range. The lowest pH at which an experiment can be carried out in basic 
solution is hence approximately pH 9.

Acid solution:
Pulse →  H+  +  X−  = + 315 + 45 Ω−1 mol−1 cm−1 (20)
∆κ = + 360 Ω−1 mol−1 cm−1

Basic solution:
Pulse →  H+  +  X−  =  + 315 + 45 Ω−1 mol−1 cm−1 (21)
Neutralization: H+  +  OH−  →  H2O  = − 315 − 170 Ω−1 mol−1 cm−1

∆κ = − 125 Ω−1 mol−1 cm−1

The available set-ups are very sensitive, and a pH range between 2.5 and 12 is 
accessible. Obviously, the presence of buffers will have a considerable effect on 
the signal height, but in favorable cases a computer analysis may allow the quan-
tification of the various contributions to the conductance signal even under such 
conditions (Das et al. 1987; Schuchmann et al. 1989).

For dosimetry, the reaction of the reaction of •OH with DMSO which yields 
methanesulfinic acid (92%; Veltwisch et al. 1980; Chap. 3.2) is usually used. This 
allows one to put the conductance signals on a quantitative basis (calculation 
of G values), and the rates of reactions that are kinetically of first order can be 
determined for the time dependence of the signal evolution. DMSO dosimetry 
yields only a relative dose. For the determination of second-order rate constants, 
however, the exact dose must be known, and this can be determined by the ‘zero 
conductivity change dosimetry’ or ‘neutralization kinetics dosimetry’ (Schuch-
mann et al. 1991).
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The application of the conductance changes has been of considerable impor-
tance in assessing the kinetics of free-radical-induced chain scission of charged 
polymers (Chap. 9.4). A polymeric electrolyte exerts a strong electric field in 
the vicinity of the polymer chain. This cause counterions to “condense” onto 
the polymer. When in single-stranded DNA, for example, •OH attacks the sugar 
moiety at, let us say at C(4′) [reaction (22), cf. Chap. 12.4], the number of con-
densed counterions does not change, nor at the very moment when the strand 
breaks upon the heterolytic cleavage of the phosphate bond [reaction (23)]. 
However, when the two ends diffuse apart, condensed counterions (e.g., K+) ions 
are released [reaction (24)]. This causes a conductance increase. Insofar as this 
process does not involve the formation of H+, the conductance change signal re-
mains positive even in an alkaline environment, since a neutralization reaction 
does not intervene. As long as the rate of the diffusive process (24) is fast com-
pared to the preceding reactions (22) and (23), the observed kinetics are those of 
strand breakage [reaction (23); the •OH reaction (22) is never rate-determining]. 
In all the systems investigated thus far, this requirement has always been met.

Detection by laser light-scattering (LLS) is another means of determining chang-
es in the molecular weight of polymers. This method is, of course, not restricted 
to charged polymers. LLS detection can be carried out at the 90° angle mode 
(Schnabel 1986 and references cited therein) but also at the low-angle mode (∼ 
7°, LALLS). The advantage of LLS is that the setup is simpler, and a better signal-
to-noise ratio is obtained, but problems arising from form factors are minimized 
with LALLS. Intermolecular cross-linking gives rise to an increase chain scis-
sion to a decrease in signal intensity. Upon folding of a rod-like polymer the LSI 



signal is also increased. Thus, in such a case, intramolecular cross-linking can 
also contribute to an increase in the LSI signal.

Although the signal-to-noise ratio in the case of the LALLS technique is much 
poorer than in the case of conductance method, one may have to use LALLS also 
in the case of charged polymers, whenever other sources of conductance changes 
are expected (e.g., release of HO2

•/O2
• − in peroxyl radical reactions; Chap. 8.4).

The volume of activation which can provide very valuable information con-
cerning the reaction mechanism is obtained by high-pressure pulse radiolysis 
(for a review in the area of transition metal ion chemistry, see van Eldik and 
Meyerstein 2000).

Single charged-particle beam irradiation of single cells has been developed 
to study various aspects of radiation biology such as the bystander effect. This 
subject exceeds the scope of this book, and only some reference to this technique 
is made here (Folkard et al. 1997a,b).

13.4
Gas Explosion and Rapid-Mixing Techniques

The gas explosion technique (Michael et al. 1973) allows one to change on the 
sub-millisecond time scale the environment of a target layer of plasmid DNA or 
cells by letting a burst of gases, e.g., O2 or H2S, enter the irradiation chamber at 
times before or after a short pulse of radiation has been given to the target. The 
gas burst is triggered by a solenoid valve, and the gas under pressure proceeds to 
the target at a typical speed of 70 m s−1.

Another way of changing the environment or adding a reactant at a given 
time before or after a short pulse of radiation is the rapid mixing technique (e.g., 
Bielski and Richter 1977). In a stopped-flow set-up, long-lived radicals such as 
O2

•− that have been generated from a solution contained in one syringe in the 
pulse-irradiated zone are reacted by mixing with a substrate contained in anoth-
er syringe. Distortions of the kinetics are prevented by a hard stop. The typical 
rise time of such a set-up used to be 10 ms, but advanced techniques now provide 
a rise time of about 1 ms.

With some modifications, such a technique has been used to study the time 
scale of the effects of O2 and sensitizers on cells in aqueous solution (Adams et al. 
1968; Whillans 1982; Whillans and Hunt 1982). The rapid lysis technique works 
on the same principle. It permits cells to be lysed at a given time after a dose of 
radiation (Johansen and Boye 1975; Johansen et al. 1975; Sapora et al. 1975, 1977; 
Fox et al. 1976; Millar et al. 1980). This allows the study of repair kinetics at early 
times.
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