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Summary. Now that the low temperature properties of quantum-mechanical many-
body systems (bosons) at low density, ρ, can be examined experimentally it is ap-
propriate to revisit some of the formulas deduced by many authors 4–5 decades ago,
and to explore new regimes not treated before. For systems with repulsive (i.e. pos-
itive) interaction potentials the experimental low temperature state and the ground
state are effectively synonymous – and this fact is used in all modeling. In such
cases, the leading term in the energy/particle is 2π�2aρ/m where a is the scatter-
ing length of the two-body potential. Owing to the delicate and peculiar nature of
bosonic correlations (such as the strange N7/5 law for charged bosons), four decades
of research failed to establish this plausible formula rigorously. The only previous
lower bound for the energy was found by Dyson in 1957, but it was 14 times too
small. The correct asymptotic formula has been obtained by us and this work will
be presented. The reason behind the mathematical difficulties will be emphasized. A
different formula, postulated as late as 1971 by Schick, holds in two dimensions and
this, too, will be shown to be correct. With the aid of the methodology developed to
prove the lower bound for the homogeneous gas, several other problems have been
successfully addressed. One is the proof by us that the Gross-Pitaevskii equation
correctly describes the ground state in the ‘traps’ actually used in the experiments.
For this system it is also possible to prove complete Bose condensation and su-
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perfluidity, as we have shown. On the frontier of experimental developments is the
possibility that a dilute gas in an elongated trap will behave like a one-dimensional
system; we have proved this mathematically. Another topic is a proof that Foldy’s
1961 theory of a high density Bose gas of charged particles correctly describes its
ground state energy; using this we can also prove the N7/5 formula for the ground
state energy of the two-component charged Bose gas proposed by Dyson in 1967.
All of this is quite recent work and it is hoped that the mathematical methodology
might be useful, ultimately, to solve more complex problems connected with these
interesting systems.

Foreword

At the conference “Perspectives in Analysis” at the KTH, Stockholm, June
23, 2003, one of us (E.H.L.) contributed a talk with the title above. This talk
covered material by all the authors listed above. This contribution is a much
expanded version of the talk and of [47]. It is based on, but supersedes, the
article [52].1
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4 Generalized Poincaré Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Bose–Einstein Condensation and Superfluidity for
Homogeneous Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Gross–Pitaevskii Equation for Trapped Bosons . . . . . . . . . . . . 129

7 Bose–Einstein Condensation and Superfluidity for Dilute
Trapped Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 One-Dimensional Behavior of Dilute Bose Gases in Traps . 150

9 The Charged Bose Gas, the One- and Two-Component
Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

1 Note added in proof: A more extensive version of these notes, together with
developments obtained after submission of the manuscript, recently appeared in
the book: E.H. Lieb, R. Seiringer, J.P. Solovej and J. Yngvason, The Mathematics
of the Bose Gas and its Condensation, vol. 34, Oberwolfach Seminars Series,
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1 Introduction

Schrödinger’s equation of 1926 defined a new mechanics whose Hamiltonian
is based on classical mechanics, but whose consequences are sometimes non-
intuitive from the classical point of view. One of the most extreme cases is
the behavior of the ground (= lowest energy) state of a many-body system
of particles. Since the ground state function Ψ(x1, ...,xN) is automatically
symmetric in the coordinates xj ∈ R3 of the N particles, we are dealing
necessarily with ‘bosons’. If we imposed the Pauli exclusion principle (anti-
symmetry) instead, appropriate for electrons, the outcome would look much
more natural and, oddly, more classical. Indeed, the Pauli principle is essential
for understanding the stability of the ordinary matter that surrounds us.

Recent experiments have confirmed some of the bizarre properties of
bosons close to their ground state, but the theoretical ideas go back to the
1940’s – 1960’s. The first sophisticated analysis of a gas or liquid of interacting
bosons is due to Bogolubov in 1947. His approximate theory as amplified by
others, is supposed to be exact in certain limiting cases, and some of those
cases have now been verified rigorously (for the ground state energy) — 3 or
4 decades after they were proposed.

The discussion will center around five main topics.

1. The dilute, homogeneous Bose gas with repulsive interaction (2D and 3D).
2. Repulsive bosons in a trap (as used in recent experiments) and the “Gross–

Pitaevskii” equation.
3. Bose condensation and superfluidity for dilute trapped gases.
4. One-dimensional behavior of three-dimensional gases in elongated traps.
5. Foldy’s “jellium” model of charged particles in a neutralizing background

and the extension to the two-component gas.

Note that for potentials that tend to zero at infinity ‘repulsive’ and ‘pos-
itive’ are synonymous — in the quantum mechanical literature at least. In
classical mechanics, in contrast, a potential that is positive but not monoton-
ically decreasing is not called repulsive.

The discussion below of topic 1 is based on [62] and [63], and of topic 2
on [53] and [54]. See also [64, 55, 78, 56].

The original references for topic 3 are [51] and [57], but for transparency
we also include here a section on the special case when the trap is a rectan-
gular box. This case already contains the salient points, but avoids several
complications due the inhomogeneity of the gas in a general trap. An essen-
tial technical tool for topic 3 is a generalized Poincaré inequality, which is
discussed in a separate section.

Topic 4 is a summary of the work in [58].
The discussion of topic 5 is based on [60] and [61].
Topic 1 (3-dimensions) was the starting point and contains essential ideas.

It is explained here in some detail and is taken, with minor modifications
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(and corrections), from [64]. In terms of technical complexity, however, the
fifth topic is the most involved and can not be treated here in full detail.

The interaction potential between pairs of particles in the Jellium model in
topic 5 is the repulsive, long-range Coulomb potential, while in topics 1–4 it is
assumed to be repulsive and short range. For alkali atoms in the recent experi-
ments on Bose Einstein condensation the interaction potential has a repulsive
hard core, but also a quite deep attractive contribution of van der Waals type
and there are many two body bound states [69]. The Bose condensate seen in
the experiments is thus not the true ground state (which would be a solid) but
a metastable state. Nevertheless, it is usual to model this metastable state as
the ground state of a system with a repulsive two body potential having the
same scattering length as the true potential, and this is what we shall do. In
this paper all interaction potentials will be positive.

2 The Dilute Bose Gas in 3D

We consider the Hamiltonian for N bosons of mass m enclosed in a cubic box
Λ of side length L and interacting by a spherically symmetric pair potential
v(|xi − xj |):

HN = −µ
N∑

i=1

∆i +
∑

1≤i<j≤N

v(|xi − xj |) . (2.1)

Here xi ∈ R3, i = 1, . . . , N are the positions of the particles, ∆i the Laplacian
with respect to xi, and we have denoted �2/2m by µ for short. (By choosing
suitable units µ could, of course, be eliminated, but we want to keep track of
the dependence of the energy on Planck’s constant and the mass.) The Hamil-
tonian (2.1) operates on symmetric wave functions in L2(ΛN , dx1 · · ·dxN ) as
is appropriate for bosons. The interaction potential will be assumed to be
nonnegative and to decrease faster than 1/r3 at infinity.

We are interested in the ground state energy E0(N,L) of (2.1) in the
thermodynamic limit when N and L tend to infinity with the density ρ =
N/L3 fixed. The energy per particle in this limit is

e0(ρ) = lim
L→∞

E0(ρL
3, L)/(ρL3) . (2.2)

Our results about e0(ρ) are based on estimates on E0(N,L) for finite N and L,
which are important, e.g., for the considerations of inhomogeneous systems in
[53]. To define E0(N,L) precisely one must specify the boundary conditions.
These should not matter for the thermodynamic limit. To be on the safe
side we use Neumann boundary conditions for the lower bound, and Dirichlet
boundary conditions for the upper bound since these lead, respectively, to the
lowest and the highest energies.

For experiments with dilute gases the low density asymptotics of e0(ρ) is
of importance. Low density means here that the mean interparticle distance,
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ρ−1/3 is much larger than the scattering length a of the potential, which is
defined as follows. The zero energy scattering Schrödinger equation

−2µ∆ψ + v(r)ψ = 0 (2.3)

has a solution of the form, asymptotically as |x| = r → ∞ (or for all r > R0

if v(r) = 0 for r > R0),
ψ0(x) = 1− a/|x| (2.4)

(The factor 2 in (2.3) comes from the reduced mass of the two particle prob-
lem.) Writing ψ0(x) = u0(|x|)/|x| this is the same as

a = lim
r→∞

r − u0(r)

u′0(r)
, (2.5)

where u0 solves the zero energy (radial) scattering equation,

−2µu′′0(r) + v(r)u0(r) = 0 (2.6)

with u0(0) = 0.
An important special case is the hard core potential v(r) = ∞ if r < a

and v(r) = 0 otherwise. Then the scattering length a and the radius a are the
same.

Our main result is a rigorous proof of the formula

e0(ρ) ≈ 4πµρa (2.7)

for ρa3 � 1, more precisely of

Theorem 2.1 (Low density limit of the ground state energy).

lim
ρa3→0

e0(ρ)

4πµρa
= 1 . (2.8)

This formula is independent of the boundary conditions used for the definition
of e0(ρ) . It holds for every positive radially symmetric pair potential such that∫∞

R
v(r)r2dr <∞ for some R, which guarantees a finite scattering length, cf.

Appendix A in [63].
The genesis of an understanding of e0(ρ) was the pioneering work [7] of

Bogolubov, and in the 50’s and early 60’s several derivations of (2.8) were
presented [36], [44], even including higher order terms:

e0(ρ)

4πµρa
= 1 + 128

15
√

π
(ρa3)1/2 + 8

(
4π
3 −

√
3
)

(ρa3) log(ρa3) +O(ρa3) (2.9)

These early developments are reviewed in [45]. They all rely on some special
assumptions about the ground state that have never been proved, or on the
selection of special terms from a perturbation series which likely diverges. The
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only rigorous estimates of this period were established by Dyson, who derived
the following bounds in 1957 for a gas of hard spheres [17]:

1

10
√

2
≤ e0(ρ)

4πµρa
≤ 1 + 2Y 1/3

(1− Y 1/3)2
(2.10)

with Y = 4πρa3/3. While the upper bound has the asymptotically correct
form, the lower bound is off the mark by a factor of about 1/14. But for
about 40 years this was the best lower bound available!

Under the assumption that (2.8) is a correct asymptotic formula for the
energy, we see at once that understanding it physically, much less proving it, is
not a simple matter. Initially, the problem presents us with two lengths, a�
ρ−1/3 at low density. However, (2.8) presents us with another length generated
by the solution to the problem. This length is the de Broglie wavelength, or
‘uncertainty principle’ length (sometimes called ‘healing length’)

�c ∼ (ρa)−1/2 . (2.11)

The reason for saying that �c is the de Broglie wavelength is that in the hard
core case all the energy is kinetic (the hard core just imposes a ψ = 0 boundary
condition whenever the distance between two particles is less than a). By the
uncertainty principle, the kinetic energy is proportional to an inverse length
squared, namely �c. We then have the relation (since ρa3 is small)

a� ρ−1/3 � �c (2.12)

which implies, physically, that it is impossible to localize the particles rela-
tive to each other (even though ρ is small). Bosons in their ground state are
therefore ‘smeared out’ over distances large compared to the mean particle
distance and their individuality is entirely lost. They cannot be localized with
respect to each other without changing the kinetic energy enormously.

Fermions, on the other hand, prefer to sit in ‘private rooms’, i.e., �c is
never bigger than ρ−1/3 by a fixed factor. In this respect the quantum nature
of bosons is much more pronounced than for fermions.

Since (2.8) is a basic result about the Bose gas it is clearly important to
derive it rigorously and in reasonable generality, in particular for more general
cases than hard spheres. The question immediately arises for which interaction
potentials one may expect it to be true. A notable fact is that it is not true for
all v with a > 0, since there are two body potentials with positive scattering
length that allow many body bound states. (There are even such potentials
without two body bound states but with three body bound states [3].) For
such potentials (2.8) is clearly false. Our proof, presented in the sequel, works
for nonnegative v, but we conjecture that (2.8) holds if a > 0 and v has no
N -body bound states for any N . The lower bound is, of course, the hardest
part, but the upper bound is not altogether trivial either.

Before we start with the estimates a simple computation and some heuris-
tics may be helpful to make (2.8) plausible and motivate the formal proofs.
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With ψ0 the zero energy scattering solution, partial integration, using (2.3)
and (2.4), gives, for R ≥ R0,∫

|x|≤R

{2µ|∇ψ0|2 + v|ψ0|2}dx = 8πµa
(
1− a

R

)
→ 8πµa for R→∞ .

(2.13)
Moreover, for positive interaction potentials the scattering solution minimizes
the quadratic form in (2.13) for each R ≥ R0 with the boundary condition
ψ0(|x| = R) = (1−a/R). Hence the energy E0(2, L) of two particles in a large
box, i.e., L� a, is approximately 8πµa/L3. If the gas is sufficiently dilute it
is not unreasonable to expect that the energy is essentially a sum of all such
two particle contributions. Since there are N(N −1)/2 pairs, we are thus lead
to E0(N,L) ≈ 4πµaN(N − 1)/L3, which gives (2.8) in the thermodynamic
limit.

This simple heuristics is far from a rigorous proof, however, especially for
the lower bound. In fact, it is rather remarkable that the same asymptotic
formula holds both for ‘soft’ interaction potentials, where perturbation the-
ory can be expected to be a good approximation, and potentials like hard
spheres where this is not so. In the former case the ground state is approx-
imately the constant function and the energy is mostly potential : According
to perturbation theory E0(N,L) ≈ N(N − 1)/(2L3)

∫
v(|x|)dx. In particular

it is independent of µ, i.e. of Planck’s constant and mass. Since, however,∫
v(|x|)dx is the first Born approximation to 8πµa (note that a depends on

µ!), this is not in conflict with (2.8). For ‘hard’ potentials on the other hand,
the ground state is highly correlated, i.e., it is far from being a product of single
particle states. The energy is here mostly kinetic, because the wave function is
very small where the potential is large. These two quite different regimes, the
potential energy dominated one and the kinetic energy dominated one, can-
not be distinguished by the low density asymptotics of the energy. Whether
they behave differently with respect to other phenomena, e.g., Bose–Einstein
condensation, is not known at present.

Bogolubov’s analysis [7] presupposes the existence of Bose–Einstein con-
densation. Nevertheless, it is correct (for the energy) for the one-dimensional
delta-function Bose gas [48], despite the fact that there is (presumably) no
condensation in that case [72]. It turns out that BE condensation is not re-
ally needed in order to understand the energy. As we shall see, ‘global’ con-
densation can be replaced by a ‘local’ condensation on boxes whose size is
independent of L. It is this crucial understanding that enables us to prove
Theorem 2.1 without having to decide about BE condensation.

An important idea of Dyson was to transform the hard sphere potential
into a soft potential at the cost of sacrificing the kinetic energy, i.e., effectively
to move from one regime to the other. We shall make use of this idea in our
proof of the lower bound below. But first we discuss the simpler upper bound,
which relies on other ideas from Dyson’s beautiful paper [17].
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2.1 Upper Bound

The following generalization of Dyson’s upper bound holds [53], [77]:

Theorem 2.2 (Upper bound). Let ρ1 = (N−1)/L3 and b = (4πρ1/3)−1/3.
For non-negative potentials v and b > a the ground state energy of (2.1) with
periodic boundary conditions satisfies

E0(N,L)/N ≤ 4πµρ1a
1− a

b +
(

a
b

)2
+ 1

2

(
a
b

)3(
1− a

b

)8 . (2.14)

Thus in the thermodynamic limit (and for all boundary conditions)

e0(ρ)

4πµρa
≤

1− Y 1/3 + Y 2/3 − 1
2Y

(1 − Y 1/3)8
, (2.15)

provided Y = 4πρa3/3 < 1.

Remark. The bound (2.14) holds for potentials with infinite range, provided
b > a. For potentials of finite range R0 it can be improved for b > R0 to

E0(N,L)/N ≤ 4πµρ1a
1−
(

a
b

)2
+ 1

2

(
a
b

)3(
1− a

b

)4 . (2.16)

Proof. We first remark that the expectation value of (2.1) with any trial wave
function gives an upper bound to the bosonic ground state energy, even if
the trial function is not symmetric under permutations of the variables. The
reason is that an absolute ground state of the elliptic differential operator
(2.1) (i.e., a ground state without symmetry requirement) is a nonnegative
function which can be symmetrized without changing the energy because (2.1)
is symmetric under permutations. In other words, the absolute ground state
energy is the same as the bosonic ground state energy.

Following [17] we choose a trial function of the following form

Ψ(x1, . . . ,xN ) = F1(x1)F2(x1,x2) · · ·FN (x1, . . . ,xN ) . (2.17)

More specifically, F1 ≡ 1 and Fi depends only on the distance of xi to its
nearest neighbor among the points x1, . . . ,xi−1 (taking the periodic boundary
into account):

Fi(x1, . . . ,xi) = f(ti), ti = min (|xi − xj |, j = 1, . . . , i− 1) , (2.18)

with a function f satisfying

0 ≤ f ≤ 1 , f ′ ≥ 0 . (2.19)

The intuition behind the ansatz (2.17) is that the particles are inserted into the
system one at the time, taking into account the particles previously inserted.
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While such a wave function cannot reproduce all correlations present in the
true ground state, it turns out to capture the leading term in the energy
for dilute gases. The form (2.17) is computationally easier to handle than an
ansatz of the type

∏
i<j f(|xi−xj |), which might appear more natural in view

of the heuristic remarks after (2.13).
The function f is chosen to be

f(r) =

{
f0(r)/f0(b) for 0 ≤ r ≤ b ,
1 for r > b ,

(2.20)

with f0(r) = u0(r)/r the zero energy scattering solution defined by (2.6). The
estimates (2.14) and (2.16) are obtained by somewhat lengthy computations
similar as in [17], but making use of (2.13). For details we refer to [53] and
[77]. � 

2.2 Lower Bound

It was explained previously in this section why the lower bound for the bosonic
ground state energy of (2.1) is not easy to obtain. The three different length
scales (2.12) for bosons will play a role in the proof below.

• The scattering length a.
• The mean particle distance ρ−1/3.
• The ‘uncertainty principle length’ �c, defined by µ�−2

c = e0(ρ), i.e., �c ∼
(ρa)−1/2.

Our lower bound for e0(ρ) is as follows.

Theorem 2.3 (Lower bound in the thermodynamic limit). For a pos-
itive potential v with finite range and Y small enough

e0(ρ)

4πµρa
≥ (1− C Y 1/17) (2.21)

with C a constant. If v does not have finite range, but decreases faster than
1/r3 (more precisely,

∫∞
R v(r)r2dr <∞ for some R) then an analogous bound

to (2.21) holds, but with CY 1/17 replaced by o(1) as Y → 0.

It should be noted right away that the error term −C Y 1/17 in (2.21) is of no
fundamental significance and is not believed to reflect the true state of affairs.
Presumably, it does not even have the right sign. We mention in passing that
C can be taken to be 8.9 [77].

As mentioned at the beginning of this section after (2.2), a lower bound on
E0(N,L) for finiteN and L is of importance for applications to inhomogeneous
gases, and in fact we derive (2.21) from such a bound. We state it in the
following way:
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Theorem 2.4 (Lower bound in a finite box). For a positive potential v
with finite range there is a δ > 0 such that the ground state energy of (2.1)
with Neumann boundary conditions satisfies

E0(N,L)/N ≥ 4πµρa
(
1− C Y 1/17

)
(2.22)

for all N and L with Y < δ and L/a > C′Y −6/17. Here C and C′ are positive
constants, independent of N and L. (Note that the condition on L/a requires
in particular that N must be large enough, N > (const.)Y −1/17.) As in The-
orem 2.3 such a bound, but possibly with a different error term holds also for
potentials v of infinite range that decrease sufficiently fast at infinity.

The first step in the proof of Theorem 2.4 is a generalization of a lemma
of Dyson, which allows us to replace v by a ‘soft’ potential, at the cost of
sacrificing kinetic energy and increasing the effective range.

Lemma 2.5. Let v(r) ≥ 0 with finite range R0. Let U(r) ≥ 0 be any function
satisfying

∫
U(r)r2dr ≤ 1 and U(r) = 0 for r < R0. Let B ⊂ R3 be star

shaped with respect to 0 (e.g. convex with 0 ∈ B). Then for all differentiable
functions ψ ∫

B

[
µ|∇ψ|2 + 1

2v|ψ|
2
]
≥ µa

∫
B
U |ψ|2 . (2.23)

Proof. Actually, (2.23) holds with µ|∇ψ(x)|2 replaced by the (smaller) radial
kinetic energy, µ|∂ψ(x)/∂r|2, and it suffices to prove the analog of (2.23) for
the integral along each radial line with fixed angular variables. Along such a
line we write ψ(x) = u(r)/r with u(0) = 0. We consider first the special case
when U is a delta-function at some radius R ≥ R0, i.e.,

U(r) =
1

R2
δ(r −R) . (2.24)

For such U the analog of (2.23) along the radial line is∫ R1

0

{µ[u′(r) − (u(r)/r)]2 + 1
2v(r)|u(r)|

2}dr

≥
{

0 if R1 < R

µa|u(R)|2/R2 if R ≤ R1

(2.25)

where R1 is the length of the radial line segment in B. The case R1 < R is
trivial, because µ|∂ψ/∂r|2 + 1

2v|ψ|2 ≥ 0. (Note that positivity of v is used
here.) If R ≤ R1 we consider the integral on the left side of (2.25) from 0 to
R instead of R1 and minimize it under the boundary condition that u(0) = 0
and u(R) is a fixed constant. Since everything is homogeneous in u we may
normalize this value to u(R) = R − a. This minimization problem leads to
the zero energy scattering equation (2.6). Since v is positive, the solution is a
true minimum and not just a stationary point.
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Because v(r) = 0 for r > R0 the solution, u0, satisfies u0(r) = r − a for
r > R0. By partial integration,∫ R

0

{µ[u′0(r) − (u0(r)/r)]
2 + 1

2v(r)|u0(r)]
2}dr = µa|R− a|/R

≥ µa|R− a|2/R2 .

(2.26)

But |R − a|2/R2 is precisely the right side of (2.25) if u satisfies the normal-
ization condition.

This derivation of (2.23) for the special case (2.24) implies the general
case, because every U can be written as a superposition of δ-functions, U(r) =∫
R−2δ(r −R)U(R)R2dR, and

∫
U(R)R2dR ≤ 1 by assumption. � 

By dividing Λ for given points x1, . . . ,xN into Voronoi cells Bi that contain
all points closer to xi than to xj with j 	= i (these cells are star shaped w.r.t.
xi, indeed convex), the following corollary of Lemma 2.5 can be derived in the
same way as the corresponding Eq. (28) in [17].

Corollary 2.6. For any U as in Lemma 2.5

HN ≥ µaW (2.27)

with W the multiplication operator

W (x1, . . . ,xN ) =

N∑
i=1

U(ti) , (2.28)

where ti is the distance of xi to its nearest neighbor among the other points
xj, j = 1, . . . , N , i.e.,

ti(x1, . . . ,xN ) = min
j, j �=i

|xi − xj | . (2.29)

(Note that ti has here a slightly different meaning than in (2.18), where it
denoted the distance to the nearest neighbor among the xj with j ≤ i− 1.)

Dyson considers in [17] a one parameter family of U ’s that is essentially
the same as the following choice, which is convenient for the present purpose:

UR(r) =

{
3(R3 −R3

0)
−1 for R0 < r < R

0 otherwise.
(2.30)

We denote the corresponding interaction (2.28) by WR. For the hard core gas
one obtains

E(N,L) ≥ sup
R

inf
(x1,...,xN )

µaWR(x1, . . . ,xN ) (2.31)

where the infimum is over (x1, . . . , xN ) ∈ ΛN with |xi−xj | ≥ R0 = a, because
of the hard core. At fixed R simple geometry gives
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inf
(x1,...,xN )

WR(x1, . . . ,xN ) ≥
(
A

R3
− B

ρR6

)
(2.32)

with certain constantsA andB. An evaluation of these constants gives Dyson’s
bound

E(N,L)/N ≥ 1

10
√

2
4πµρa . (2.33)

The main reason this method does not give a better bound is that R must
be chosen quite big, namely of the order of the mean particle distance ρ−1/3, in
order to guarantee that the spheres of radius R around the N points overlap.
Otherwise the infimum of WR will be zero. But large R means that WR is
small. It should also be noted that this method does not work for potentials
other than hard spheres: If |xi − xj | is allowed to be less than R0, then the
right side of (2.31) is zero because U(r) = 0 for r < R0.

For these reasons we take another route. We still use Lemma 2.5 to get
into the soft potential regime, but we do not sacrifice all the kinetic energy
as in (2.27). Instead we write, for ε > 0

HN = εHN + (1− ε)HN ≥ εTN + (1 − ε)HN (2.34)

with TN = −
∑

i ∆i and use (2.27) only for the part (1− ε)HN . This gives

HN ≥ εTN + (1 − ε)µaWR . (2.35)

We consider the operator on the right side from the viewpoint of first order
perturbation theory, with εTN as the unperturbed part, denoted H0.

The ground state of H0 in a box of side length L is Ψ0(x1, . . . ,xN ) ≡
L−3N/2 and we denote expectation values in this state by 〈·〉0. A computation,
cf. Eq. (21) in [62] (see also (3.15)–(3.20)), gives

4πρ
(
1− 1

N

)
≥ 〈WR〉0/N

≥ 4πρ
(
1− 1

N

) (
1− 2R

L

)3 (
1 + 4πρ(R3 −R3

0)/3
)−1

.
(2.36)

The rationale behind the various factors is as follows: (1− 1
N ) comes from the

fact that the number of pairs is N(N −1)/2 and not N2/2, (1−2R/L)3 takes
into account the fact that the particles do not interact beyond the boundary
of Λ, and the last factor measures the probability to find another particle
within the interaction range of the potential UR for a given particle.

The estimates (2.36) on the first order term look at first sight quite promis-
ing, for if we let L → ∞, N → ∞ with ρ = N/L3 fixed, and subsequently
take R → 0, then 〈WR〉0/N converges to 4πρ, which is just what is desired.
But the first order result (2.36) is not a rigorous bound on E0(N,L), we need
error estimates, and these will depend on ε, R and L.

We now recall Temple’s inequality [83] for the expectation values of an
operatorH = H0+V in the ground state 〈·〉0 ofH0. It is a simple consequence
of the operator inequality
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(H − E0)(H − E1) ≥ 0 (2.37)

for the two lowest eigenvalues, E0 < E1, of H and reads

E0 ≥ 〈H〉0 −
〈H2〉0 − 〈H〉20
E1 − 〈H〉0

(2.38)

provided E1 − 〈H〉0 > 0. Furthermore, if V ≥ 0 we may use E1 ≥ E
(0)
1 =

second lowest eigenvalue of H0 and replace E1 in (2.38) by E
(0)
1 .

From (2.36) and (2.38) we get the estimate

E0(N,L)

N
≥ 4πµaρ (1− E(ρ, L,R, ε)) (2.39)

with

1− E(ρ,L,R, ε)

= (1− ε)
(
1− 1

ρL3

) (
1− 2R

L

)3 (
1 + 4π

3 ρ(R
3 −R3

0)
)−1

×
(

1−
µa
(
〈W 2

R〉0 − 〈WR〉20
)

〈WR〉0
(
E

(0)
1 − µa〈WR〉0

)) .

(2.40)

To evaluate this further one may use the estimates (2.36) and the bound

〈W 2
R〉0 ≤ 3

N

R3 −R3
0

〈WR〉0 (2.41)

which follows from U2
R = 3(R3 −R3

0)
−1UR together with the Schwarz in-

equality. A glance at the form of the error term reveals, however, that it is
not possible here to take the thermodynamic limit L → ∞ with ρ fixed:

We have E
(0)
1 = επ2µ/L2 (this is the kinetic energy of a single particle in

the first excited state in the box), and the factor E
(0)
1 − µa〈WR〉0 in the de-

nominator in (2.40) is, up to unimportant constants and lower order terms,
∼ (εL−2 − aρ2L3). Hence the denominator eventually becomes negative and
Temple’s inequality looses its validity if L is large enough.

As a way out of this dilemma we divide the big box Λ into cubic cells of
side length � that is kept fixed as L→∞. The number of cells, L3/�3, on the
other hand, increases with L. The N particles are distributed among these
cells, and we use (2.40), with L replaced by �, N by the particle number, n,
in a cell and ρ by n/�3, to estimate the energy in each cell with Neumann
conditions on the boundary. For each distribution of the particles we add the
contributions from the cells, neglecting interactions across boundaries. Since
v ≥ 0 by assumption, this can only lower the energy. Finally, we minimize over
all possible choices of the particle numbers for the various cells adding up to
N . The energy obtained in this way is a lower bound to E0(N,L), because
we are effectively allowing discontinuous test functions for the quadratic form
given by HN .
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In mathematical terms, the cell method leads to

E0(N,L)/N ≥ (ρ�3)−1 inf
∑
n≥0

cnE0(n, �) (2.42)

where the infimum is over all choices of coefficients cn ≥ 0 (relative number
of cells containing exactly n particles), satisfying the constraints∑

n≥0

cn = 1 ,
∑
n≥0

cnn = ρ�3 . (2.43)

The minimization problem for the distributions of the particles among
the cells would be easy if we knew that the ground state energy E0(n, �)
(or a good lower bound to it) were convex in n. Then we could immediately
conclude that it is best to have the particles as evenly distributed among the
boxes as possible, i.e., cn would be zero except for the n equal to the integer
closest to ρ�3. This would give

E0(N,L)

N
≥ 4πµaρ (1− E(ρ, �, R, ε)) (2.44)

i.e., replacement of L in (2.39) by �, which is independent of L. The blow up
of E for L→∞ would thus be avoided.

Since convexity of E0(n, �) is not known (except in the thermodynamic
limit) we must resort to other means to show that n = O(ρ�3) in all boxes.
The rescue comes from superadditivity of E0(n, �), i.e., the property

E0(n+ n′, �) ≥ E0(n, �) + E0(n
′, �) (2.45)

which follows immediately from v ≥ 0 by dropping the interactions between
the n particles and the n′ particles. The bound (2.45) implies in particular
that for any n, p ∈ N with n ≥ p

E0(n, �) ≥ [n/p]E0(p, �) ≥
n

2p
E0(p, �) (2.46)

since the largest integer [n/p] smaller than n/p is in any case ≥ n/(2p).
The way (2.46) is used is as follows: Replacing L by �, N by n and ρ by

n/�3 in (2.39) we have for fixed R and ε

E0(n, �) ≥
4πµa

�3
n(n− 1)K(n, �) (2.47)

with a certain function K(n, �) determined by (2.40). We shall see that K is
monotonously decreasing in n, so that if p ∈ N and n ≤ p then

E0(n, �) ≥
4πµa

�3
n(n− 1)K(p, �) . (2.48)
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We now split the sum in (2.42) into two parts. For n < p we use (2.48), and
for n ≥ p we use (2.46) together with (2.48) for n = p. The task is thus to
minimize ∑

n<p

cnn(n− 1) + 1
2

∑
n≥p

cnn(p− 1) (2.49)

subject to the constraints (2.43). Putting

k := ρ�3 and t :=
∑
n<p

cnn ≤ k (2.50)

we have
∑

n≥p cnn = k− t, and since n(n− 1) is convex in n and vanishes for
n = 0, and

∑
n<p cn ≤ 1, the expression (2.49) is

≥ t(t− 1) + 1
2 (k − t)(p− 1) . (2.51)

We have to minimize this for 1 ≤ t ≤ k. If p ≥ 4k the minimum is taken at
t = k and is equal to k(k − 1). Altogether we have thus shown that

E0(N,L)

N
≥ 4πµaρ

(
1− 1

ρ�3

)
K(4ρ�3, �) . (2.52)

What remains is to take a closer look at K(4ρ�3, �), which depends on the
parameters ε and R besides �, and choose the parameters in an optimal way.
From (2.40) and (2.41) we obtain

K(n, �) = (1− ε)
(
1− 2R

�

)3 (
1 + 4π

3 (R3 −R3
0)
)−1

×
(

1− 3

π

an

(R3 −R3
0)(πε�

−2 − 4a�−3n(n− 1))

)
.

(2.53)

The estimate (2.47) with this K is valid as long as the denominator in the last
factor in (2.53) is ≥ 0, and in order to have a formula for all n we can take 0
as a trivial lower bound in other cases or when (2.47) is negative. As required
for (2.48), K is monotonously decreasing in n. We now insert n = 4ρ�3 and
obtain

K(4ρ�3, �) ≥ (1− ε)
(
1− 2R

�

)3 (
1 + (const.)Y (�/a)3(R3 −R3

0)/�
3
)−1

×
(

1− �3

(R3 −R3
0)

(const.)Y

(ε(a/�)2 − (const.)Y 2(�/a)3)

) (2.54)

with Y = 4πρa3/3 as before. Also, the factor(
1− 1

ρ�3

)
= (1− (const.)Y −1(a/�)3) (2.55)

in (2.52) (which is the ratio between n(n− 1) and n2) must not be forgotten.
We now make the ansatz
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ε ∼ Y α, a/� ∼ Y β , (R3 −R3
0)/�

3 ∼ Y γ (2.56)

with exponents α, β and γ that we choose in an optimal way. The conditions
to be met are as follows:

• ε(a/�)2−(const.)Y 2(�/a)3 > 0. This holds for all small enough Y , provided
α+ 5β < 2 which follows from the conditions below.

• α > 0 in order that ε→ 0 for Y → 0.
• 3β − 1 > 0 in order that Y −1(a/�)3 → 0 for for Y → 0.
• 1− 3β + γ > 0 in order that Y (�/a)3(R3 −R3

0)/�
3 → 0 for for Y → 0.

• 1− α− 2β − γ > 0 to control the last factor in (2.54).

Taking
α = 1/17 , β = 6/17 , γ = 3/17 (2.57)

all these conditions are satisfied, and

α = 3β − 1 = 1− 3β + γ = 1− α− 2β − γ = 1/17 . (2.58)

It is also clear that 2R/� ∼ Y γ/3 = Y 1/17, up to higher order terms. This
completes the proof of Theorems 2.3 and 2.4, for the case of potentials with
finite range. By optimizing the proportionality constants in (2.56) one can
show that C = 8.9 is possible in Theorem 2.3 [77]. The extension to potentials
of infinite range but finite scattering length is obtained by approximation by
finite range potentials, controlling the change of the scattering length as the
cut-off is removed. See Appendix A in [63] and Appendix B in [53] for details.
We remark that a slower decrease of the potential than 1/r3 implies infinite
scattering length. � 

The exponents (2.57) mean in particular that

a� R� ρ−1/3 � �� (ρa)−1/2 , (2.59)

whereas Dyson’s method required R ∼ ρ−1/3 as already explained. The con-
dition ρ−1/3 � � is required in order to have many particles in each box and
thus n(n − 1) ≈ n2. The condition � � (ρa)−1/2 is necessary for a spectral
gap � e0(ρ) in Temple’s inequality. It is also clear that this choice of � would
lead to a far too big energy and no bound for e0(ρ) if we had chosen Dirichlet
instead of Neumann boundary conditions for the cells. But with the latter the
method works!

3 The Dilute Bose Gas in 2D

In contrast to the three-dimensional theory, the two-dimensional Bose gas
began to receive attention only relatively late. The first derivation of the
correct asymptotic formula was, to our knowledge, done by Schick [75] for a
gas of hard discs. He found
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e(ρ) ≈ 4πµρ| ln(ρa2)|−1 . (3.1)

This was accomplished by an infinite summation of ‘perturbation series’ dia-
grams. Subsequently, a corrected modification of [75] was given in [32]. Positive
temperature extensions were given in [73] and in [22]. All this work involved
an analysis in momentum space, with the exception of a method due to one
of us that works directly in configuration space [44]. Ovchinnikov [68] derived
(3.1) by using, basically, the method in [44]. These derivations require several
unproven assumptions and are not rigorous.

In two dimensions the scattering length a is defined using the zero energy
scattering equation (2.3) but instead of ψ(r) ≈ 1 − a/r we now impose the
asymptotic condition ψ(r) ≈ ln(r/a). This is explained in the appendix to
[63].

Note that in two dimensions the ground state energy could not possibly
be e0(ρ) ≈ 4πµρa as in three dimensions because that would be dimensionally
wrong. Since e0(ρ) should essentially be proportional to ρ, there is apparently
no room for an a dependence — which is ridiculous! It turns out that this
dependence comes about in the ln(ρa2) factor.

One of the intriguing facts about (3.1) is that the energy for N particles is
not equal to N(N − 1)/2 times the energy for two particles in the low density
limit — as is the case in three dimensions. The latter quantity, E0(2, L), is,

asymptotically for large L, equal to 8πµL−2
[
ln(L2/a2)

]−1
. (This is seen in an

analogous way as (2.13). The three-dimensional boundary condition ψ0(|x| =
R) = 1−a/R is replaced by ψ0(|x| = R) = ln(R/a) and moreover it has to be
taken into account that with this normalization ‖ψ0‖2 = (volume)(ln(R/a))2

(to leading order), instead of just the volume in the three-dimensional case.)
Thus, if the N(N−1)/2 rule were to apply, (3.1) would have to be replaced by

the much smaller quantity 4πµρ
[
ln(L2/a2)

]−1
. In other words, L, which tends

to ∞ in the thermodynamic limit, has to be replaced by the mean particle
separation, ρ−1/2 in the logarithmic factor. Various poetic formulations of this
curious fact have been given, but the fact remains that the non-linearity is
something that does not occur in more than two dimensions and its precise
nature is hardly obvious, physically. This anomaly is the main reason that the
two-dimensional case is not a trivial extension of the three-dimensional one.

Equation (3.1) was proved in [63] for nonnegative, finite range two-body
potentials by finding upper and lower bounds of the correct form, using similar
ideas as in the previous section for the three-dimensional case. We discuss
below the modifications that have to be made in the present two-dimensional
case. The restriction to finite range can be relaxed as in three dimensions,
but the restriction to nonnegative v cannot be removed in the current state
of our methodology. The upper bounds will have relative remainder terms
O(| ln(ρa2)|−1) while the lower bound will have remainder O(| ln(ρa2)|−1/5).
It is claimed in [32] that the relative error for a hard core gas is negative and
O(ln | ln(ρa2)|| ln(ρa2)|−1), which is consistent with our bounds.
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The upper bound is derived in complete analogy with the three dimen-
sional case. The function f0 in the variational ansatz (2.20) is in two dimen-
sions also the zero energy scattering solution — but for 2D, of course. The
result is

E0(N,L)/N ≤ 2πµρ

ln(b/a)− πρb2
(
1 + O([ln(b/a)]−1)

)
. (3.2)

The minimum over b of the leading term is obtained for b = (2πρ)−1/2. In-
serting this in (3.2) we thus obtain

E0(N,L)/N ≤ 4πµρ

| ln(ρa2)|
(
1 + O(| ln(ρa2)|−1)

)
. (3.3)

To prove the lower bound the essential new step is to modify Dyson’s
lemma for 2D. The 2D version of Lemma 2.5 is:

Lemma 3.1. Let v(r) ≥ 0 and v(r) = 0 for r > R0. Let U(r) ≥ 0 be any
function satisfying∫ ∞

0

U(r) ln(r/a)rdr ≤ 1 and U(r) = 0 for r < R0 . (3.4)

Let B ⊂ R2 be star-shaped with respect to 0 (e.g. convex with 0 ∈ B). Then,
for all functions ψ in the Sobolev space H1(B),∫

B

(
µ|∇ψ(x)|2 + 1

2v(|x|)|ψ(x)|2
)

dx ≥ µ
∫
B
U(|x|)|ψ(x)|2 dx . (3.5)

Proof. In polar coordinates, r, θ, one has |∇ψ|2 ≥ |∂ψ/∂r|2. Therefore, it
suffices to prove that for each angle θ ∈ [0, 2π), and with ψ(r, θ) denoted
simply by f(r),∫ R(θ)

0

(
µ|∂f(r)/∂r|2 + 1

2v(r)|f(r)|
2
)
rdr ≥ µ

∫ R(θ)

0

U(r)|f(r)|2 rdr , (3.6)

where R(θ) denotes the distance of the origin to the boundary of B along the
ray θ.

If R(θ) ≤ R0 then (3.6) is trivial because the right side is zero while the
left side is evidently nonnegative. (Here, v ≥ 0 is used.)

If R(θ) > R0 for some given value of θ, consider the disc D(θ) = {x ∈
R2 : 0 ≤ |x| ≤ R(θ)} centered at the origin in R2 and of radius R(θ). Our
function f defines a spherically symmetric function, x �→ f(|x|) on D(θ), and
(3.6) is equivalent to∫

D(θ)

(
µ|∇f(|x|)|2 +

1

2
v(|x|)|f(|x|)|2

)
dx ≥ µ

∫
D(θ)

U(|x|)|f(|x|)|2dx .

(3.7)
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Now choose some R ∈ (R0, R(θ)) and note that the left side of (3.7) is
not smaller than the same quantity with D(θ) replaced by the smaller disc
DR = {x ∈ R2 : 0 ≤ |x| ≤ R}. (Again, v ≥ 0 is used.) We now minimize this
integral over DR, fixing f(R). This minimization problem leads to the zero
energy scattering equation. Plugging in the solution and integrating by parts
leads to

2π

∫ R(θ)

0

(
µ|∂f(r)/∂r|2 +

1

2
v(r)|f(r)|2

)
rdr ≥ 2πµ

ln(R/a)
|f(R)|2 . (3.8)

The proof is completed by multiplying both sides of (3.8) by U(R)R ln(R/a)
and integrating with respect to R from R0 to R(θ). � 

As in Corollary 2.6, Lemma 3.1 can be used to bound the many body
Hamiltonian HN from below, as follows:

Corollary 3.2. For any U as in Lemma 3.1 and any 0 < ε < 1

HN ≥ εTN + (1− ε)µW (3.9)

with TN = −µ
∑N

i=1 ∆i and

W (x1, . . . ,xN ) =

N∑
i=1

U

(
min
j, j �=i

|xi − xj |
)
. (3.10)

For U we choose the following functions, parameterized by R > R0:

UR(r) =

{
ν(R)−1 for R0 < r < R

0 otherwise
(3.11)

with ν(R) chosen so that ∫ R

R0

UR(r) ln(r/a)r dr = 1 (3.12)

for all R > R0, i.e.,

ν(R) =

∫ R

R0

ln(r/a)r dr

= 1
4

{
R2
(
ln(R2/a2)− 1

)
−R2

0

(
ln(R2

0/a
2)− 1

)}
.

(3.13)

The nearest neighbor interaction (3.10) corresponding to UR will be denoted
WR.

As in Sect. 2.2 we shall need estimates on the expectation value, 〈WR〉0, of
WR in the ground state of εTN of (3.9) with Neumann boundary conditions.
This is just the average value of WR in a hypercube in R2N . Besides the
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normalization factor ν(R), the computation involves the volume (area) of the
support of UR, which is

A(R) = π(R2 −R2
0) . (3.14)

In contrast to the three-dimensional situation the normalization factor
ν(R) is not just a constant (R independent) multiple of A(R); the factor
ln(r/a) in (3.4) accounts for the more complicated expressions in the two-
dimensional case. Taking into account that UR is proportional to the charac-
teristic function of a disc of radius R with a hole of radius R0, the following
inequalities for n particles in a box of side length � are obtained by the same
geometric reasoning as lead to (2.36), cf. [62]:

〈WR〉0 ≥
n

ν(R)

(
1− 2R

�

)2 [
1− (1−Q)(n−1)

]
(3.15)

〈WR〉0 ≤
n

ν(R)

[
1− (1−Q)(n−1)

]
(3.16)

with
Q = A(R)/�2 (3.17)

being the relative volume occupied by the support of the potential UR. Since
U2

R = ν(R)−1UR we also have

〈W 2
R〉0 ≤

n

ν(R)
〈WR〉0 . (3.18)

As in [62] we estimate [1− (1−Q)(n−1)] by

(n− 1)Q ≥
[
1− (1−Q)(n−1)

]
≥ (n− 1)Q

1 + (n− 1)Q
(3.19)

This gives

〈WR〉0 ≥
n(n− 1)

ν(R)

Q

1 + (n− 1)Q
, (3.20)

〈WR〉0 ≤
n(n− 1)

ν(R)
Q . (3.21)

From Temple’s inequality [83] we obtain like in (2.38) the estimate

E0(n, �) ≥ (1− ε)〈WR〉0

(
1−

µ
(
〈W 2

R〉0 − 〈WR〉20
)

〈WR〉0
(
E

(0)
1 − µ〈WR〉0

)) (3.22)

where
E

(0)
1 =

εµ

�2
(3.23)

is the energy of the lowest excited state of εTn. This estimate is valid for

E
(0)
1 /µ > 〈WR〉0, i.e., it is important that � is not too big.
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Putting (3.20)–(3.22) together we obtain the estimate

E0(n, �) ≥
n(n− 1)

�2
A(R)

ν(R)
K(n) (3.24)

with

K(n) = (1− ε)
(1− 2R

� )2

1 + (n− 1)Q

(
1− n

(ε ν(R)/�2)− n(n− 1)Q

)
. (3.25)

Note that Q depends on � and R, and K depends on �, R and ε besides n.
We have here dropped the term 〈WR〉20 in the numerator in (3.22), which is
appropriate for the purpose of a lower bound.

We note that K is monotonically decreasing in n, so for a given n we may
replace K(n) by K(p) provided p ≥ n. As explained in the previous section,
(2.45)–(2.52), convexity of n �→ n(n − 1) together with superadditivity of
E0(n, �) in n leads, for p = 4ρ�2, to an estimate for the energy of N particles
in the large box when the side length L is an integer multiple of �:

E0(N,L)/N ≥ ρA(R)

ν(R)

(
1− 1

ρ�2

)
K(4ρ�2) (3.26)

with ρ = N/L2.
Let us now look at the conditions on the parameters ε, R and � that have

to be met in order to obtain a lower bound with the same leading term as the
upper bound (3.3).

From (3.13) we have

A(R)

ν(R)
=

4π

(ln(R2/a2)− 1)

(
1−O((R2

0/R
2) ln(R/R0)

)
(3.27)

We thus see that as long as a < R < ρ−1/2 the logarithmic factor in the
denominator in (3.27) has the right form for a lower bound. Moreover, for
Temple’s inequality the denominator in the third factor in (3.25) must be
positive. With n = 4ρ�2 and ν(R) ≥ (const.)R2 ln(R2/a2) for R � R0, this
condition amounts to

(const.)ε ln(R2/a2)/�2 > ρ2�4 . (3.28)

The relative error terms in (3.26) that have to be � 1 are

ε ,
1

ρ�2
,

R

�
, ρR2 ,

ρ�4

εR2 ln(R2/a2)
. (3.29)

We now choose

ε ∼ | ln(ρa2)|−1/5 , � ∼ ρ−1/2| ln(ρa2)|1/10 ,

R ∼ρ−1/2| ln(ρa2)|−1/10 .
(3.30)
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Condition (3.28) is satisfied since the left side is > (const.)| ln(ρa2)|3/5 and
the right side is ∼ | ln(ρa2)|2/5. The first three error terms in (3.29) are all
of the same order, | ln(ρa2)|−1/5, the last is ∼ | ln(ρa2)|−1/5(ln | ln(ρa2)|)−1.
With these choices, (3.26) thus leads to the following:

Theorem 3.3 (Lower bound). For all N and L large enough such that
L > (const.)ρ−1/2| ln(ρa2)|1/10 and N > (const.)| ln(ρa2)|1/5 with ρ = N/L2,
the ground state energy with Neumann boundary condition satisfies

E0(N,L)/N ≥ 4πµρ

| ln(ρa2)|
(
1−O(| ln(ρa2)|−1/5)

)
. (3.31)

In combination with the upper bound (3.3) this also proves

Theorem 3.4 (Energy at low density in the thermodynamic limit).

lim
ρa2→0

e0(ρ)

4πµρ| ln(ρa2)|−1
= 1 (3.32)

where e0(ρ) = limN→∞ E0(N, ρ
−1/2N1/2)/N . This holds irrespective of bound-

ary conditions.

As in the three-dimensional case, Theorem 3.4 is also valid for an infinite
range potential v provided that v ≥ 0 and for some R we have

∫∞
R v(r)r dr <

∞, which guarantees a finite scattering length.

4 Generalized Poincaré Inequalities

This section contains some lemmas that are of independent mathematical
interest, but whose significance for the physics of the Bose gas may not be
obvious at this point. They will, however, turn out to be important tools for
the discussion of Bose–Einstein condensation (BEC) and superfluidity in the
next section.

The classic Poincaré inequality [49] bounds the Lq-norm of a function, f ,
orthogonal to a given function g in a domain K, in terms of some Lp-norm
of its gradient in K. For the proof of BEC we shall need a generalization
of this inequality where the estimate is in terms of the gradient of f on a
subset Ω ⊂ K and a remainder that tends to zero with the volume of the
complement Ωc = K \ Ω. For superfluidity it will be necessary to generalize
this further by adding a vector potential to the gradient. This is the most
complex of the lemmas because the other two can be derived directly from
the classical Poincaré inequality using Hölder’s inequality. The first lemma
is the simplest variant and it is sufficient for the discussion of BEC in the
case of a homogeneous gas. In this case the function g can be taken to be
the constant function. The same holds for the second lemma, which will be
used for the discussion of superfluidity in a homogeneous gas with periodic
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boundary conditions, but the modification of the gradient requires a more
elaborate proof. The last lemma, that will be used for the discussion of BEC in
the inhomogeneous case, is again a simple consequence of the classic Poincaré
and Hölder inequalities. For a more comprehensive discussion of generalized
Poincaré inequalities with further generalizations we refer to [59].

Lemma 4.1 (Generalized Poincaré inequality: Homogeneous case).
Let K ⊂ R3 be a cube of side length L, and define the average of a function
f ∈ L1(K) by

〈f〉K =
1

L3

∫
K
f(x) dx . (4.1)

There exists a constant C such that for all measurable sets Ω ⊂ K and all
f ∈ H1(K) the inequality∫

K
|f(x)− 〈f〉K|2dx ≤ C

(
L2

∫
Ω

|∇f(x)|2dx + |Ωc|2/3

∫
K
|∇f(x)|2dx

)
(4.2)

holds. Here Ωc = K \Ω, and | · | denotes the measure of a set.

Proof. By scaling, it suffices to consider the case L = 1. Using the usual
Poincaré–Sobolev inequality on K (see [49], Thm. 8.12), we infer that there
exists a C > 0 such that

‖f − 〈f〉K‖2
L2(K) ≤ 1

2C‖∇f‖
2
L6/5(K)

≤ C
(
‖∇f‖2

L6/5(Ω) + ‖∇f‖2
L6/5(Ωc)

)
.

(4.3)

Applying Hölder’s inequality

‖∇f‖L6/5(Ω) ≤ ‖∇f‖L2(Ω)|Ω|1/3 (4.4)

(and the analogue with Ω replaced by Ωc), we see that (4.2) holds. � 

In the next lemma K is again a cube of side length L, but we now replace
the gradient ∇ by

∇ϕ := ∇+ i(0, 0, ϕ/L) , (4.5)

where ϕ is a real parameter, and require periodic boundary conditions on K.

Lemma 4.2 (Generalized Poincaré inequality with a vector poten-
tial). For any |ϕ| < π there are constants c > 0 and C <∞ such that for all
subsets Ω ⊂ K and all functions f ∈ H1(K) with periodic boundary conditions
on K the following estimate holds:

‖∇ϕf‖2
L2(Ω) ≥

ϕ2

L2
‖f‖2

L2(K) +
c

L2
‖f − 〈f〉K‖2

L2(K)

− C
(
‖∇ϕf‖2

L2(K) +
1

L2
‖f‖2

L2(K)

)(
|Ω|c
L3

)1/2

.

(4.6)

Here |Ωc| is the volume of Ωc = K \Ω, the complement of Ω in K.
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Proof. We shall derive (4.6) from a special form of this inequality that holds
for all functions that are orthogonal to the constant function. Namely, for any
positive α < 2/3 and some constants c > 0 and C̃ <∞ (depending only on α
and |ϕ| < π) we claim that

‖∇ϕh‖2
L2(Ω) ≥

ϕ2 + c

L2
‖h‖2

L2(K) − C̃
(
|Ωc|
L3

)α

‖∇ϕh‖2
L2(K) , (4.7)

provided 〈1, h〉K = 0. (Remark: Equation (4.7) holds also for α = 2/3, but
the proof is slightly more complicated in that case. See [59].) If (4.7) is known
the derivation of (4.6) is easy: For any f , the function h = f − L−3〈1, f〉K is
orthogonal to 1. Moreover,

‖∇ϕh‖2
L2(Ω) = ‖∇ϕh‖2

L2(K) − ‖∇ϕh‖2
L2(Ωc)

= ‖∇ϕf‖2
L2(Ω) −

ϕ2

L2
|〈L−3/2, f〉K|2

(
1 +

|Ωc|
L3

)
+ 2

ϕ

L
Re 〈L−3/2, f〉K〈∇ϕf, L

−3/2〉Ωc

≤ ‖∇ϕf‖2
L2(Ω) −

ϕ2

L2
|〈L−3/2, f〉K|2

+
|ϕ|
L

(
L‖∇ϕf‖2

L2(K) +
1

L
‖f‖2

L2(K)

)(
|Ωc|
L3

)1/2

(4.8)

and

ϕ2 + c

L2
‖h‖2

L2(K) =
ϕ2

L2

(
‖f‖2

L2(K) − |〈L−3/2, f〉K|2
)

+
c

L2
‖f − L−3〈1, f〉K‖2

L2(K) .
(4.9)

Setting α = 1
2 , using ‖∇ϕh‖L2(K) ≤ ‖∇ϕf‖L2(K) in the last term in (4.7) and

combining (4.7), (4.8) and (4.9) gives (4.6) with C = |ϕ|+ C̃.
We now turn to the proof of (4.7). For simplicity we set L = 1. The general

case follows by scaling. Assume that (4.7) is false. Then there exist sequences
of constants Cn →∞, functions hn with ‖hn‖L2(K) = 1 and 〈1, hn〉K = 0, and
domains Ωn ⊂ K such that

lim
n→∞

{
‖∇ϕhn‖2

L2(Ωn) + Cn|Ωc
n|α‖∇ϕhn‖2

L2(K)

}
≤ ϕ2 . (4.10)

We shall show that this leads to a contradiction.
Since the sequence hn is bounded in L2(K) it has a subsequence, denoted

again by hn, that converges weakly to some h ∈ L2(K) (i.e., 〈g, hn〉K →
〈g, h〉K for all g ∈ L2(K)). Moreover, by Hölder’s inequality the Lp(Ωc

n) norm
‖∇ϕhn‖Lp(Ωc

n) = (
∫

Ωc
n
|∇ϕh(x)|pdx)1/p is bounded by |Ωc

n|α/2‖∇ϕhn‖L2(K)

for p = 2/(α + 1). From (4.10) we conclude that ‖∇ϕhn‖Lp(Ωc
n) is bounded

and also that ‖∇ϕhn‖Lp(Ωn) ≤ ‖∇ϕhn‖L2(Ωn) is bounded. Altogether, ∇ϕhn
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is bounded in Lp(K), and by passing to a further subsequence if necessary,
we can therefore assume that ∇ϕhn converges weakly in Lp(K). The same
applies to ∇hn. Since p = 2/(α + 1) with α < 2/3 the hypotheses of the
Rellich–Kondrashov Theorem [49, Thm. 8.9] are fulfilled and consequently hn

converges strongly in L2(K) to h (i.e., ‖h−hn‖L2(K) → 0). We shall now show
that

lim inf
n→∞

‖∇ϕhn‖2
L2(Ωn) ≥ ‖∇ϕh‖2

L2(K) . (4.11)

This will complete the proof because the hn are normalized and orthogonal
to 1 and the same holds for h by strong convergence. Hence the right side of
(4.11) is necessarily > ϕ2, since for |ϕ| < π the lowest eigenvalue of −∇2

ϕ,
with constant eigenfunction, is non-degenerate. This contradicts (4.10).

Equation (4.11) is essentially a consequence of the weak lower semicon-
tinuity of the L2 norm, but the dependence on Ωn leads to a slight com-
plication. First, (4.10) and Cn → ∞ clearly imply that |Ωc

n| → 0, be-
cause ‖∇ϕhn‖2

L2(K) > ϕ2. By choosing a subsequence we may assume that∑
n |Ωc

n| <∞. For some fixed N let Ω̃N = K \ ∪n≥NΩ
c
n. Then Ω̃N ⊂ Ωn for

n ≥ N . Since ‖∇ϕhn‖2
L2(Ωn) is bounded, ∇ϕhn is also bounded in L2(Ω̃N )

and a subsequence of it converges weakly in L2(Ω̃N ) to ∇ϕh. Hence

lim inf
n→∞

‖∇ϕhn‖2
L2(Ωn) ≥ lim inf

n→∞
‖∇ϕhn‖2

L2(
�

ΩN )
≥ ‖∇ϕh‖2

L2(
�

ΩN )
. (4.12)

Since Ω̃N ⊂ Ω̃N+1 and ∪N Ω̃N = K (up to a set of measure zero), we can
now let N → ∞ on the right side of (4.12). By monotone convergence this
converges to ‖∇ϕh‖2

L2(K). This proves (4.11) which, as remarked above, con-

tradicts (4.10). � 

The last lemma is a simple generalization of Lemma 4.1 with K ⊂ Rm

a bounded and connected set that is sufficiently nice so that the Poincaré–
Sobolev inequality (see [49, Thm. 8.12]) holds on K. In particular, this is the
case if K satisfies the cone property [49] (e.g. if K is a rectangular box or
a cube). Moreover, the constant function on K is here replaced by a more
general bounded function.

Lemma 4.3 (Generalized Poincaré inequality: Inhomog. case). For
d ≥ 2 let K ⊂ Rd be as explained above, and let h be a bounded function with∫
K h = 1. There exists a constant C (depending only on K and h) such that

for all measurable sets Ω ⊂ K and all f ∈ H1(K) with
∫
K fh dx = 0, the

inequality∫
K
|f(x)|2dx ≤ C

(∫
Ω

|∇f(x)|2dx +

(
|Ωc|
|K|

)2/d ∫
K
|∇f(x)|2dx

)
(4.13)

holds. Here | · | denotes the measure of a set, and Ωc = K \Ω.
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Proof. By the usual Poincaré–Sobolev inequality on K (see [49, Thm. 8.12]),

‖f‖2
L2(K) ≤ C̃‖∇f‖2

L2d/(d+2)(K)

≤ 2C̃
(
‖∇f‖2

L2d/(d+2)(Ω) + ‖∇f‖2
L2d/(d+2)(Ωc)

)
,

(4.14)

if d ≥ 2 and
∫
K fh = 0. Applying Hölder’s inequality

‖∇f‖L2d/(d+2)(Ω) ≤ ‖∇f‖L2(Ω)|Ω|1/d (4.15)

(and the analogue with Ω replaced by Ωc), we see that (4.6) holds with
C = 2|K|2/dC̃. � 

5 Bose–Einstein Condensation and Superfluidity for
Homogeneous Gases

5.1 Bose–Einstein Condensation

Bose–Einstein condensation (BEC) is the phenomenon of a macroscopic occu-
pation of a single one-particle quantum state, discovered by Einstein for ther-
mal equilibrium states of an ideal Bose gas at sufficiently low temperatures
[20]. We are here concerned with interacting Bose gases, where the question
of the existence of BEC is highly nontrivial even for the ground state. Due to
the interaction the many body ground state is not a product of one-particle
states but the concept of a macroscopic occupation of a single state acquires
a precise meaning through the one-particle density matrix. Given the normal-
ized ground state wave function this is the operator on L2(Rd) (d = 2 or 3)
given by the kernel

γ(x,x′) = N

∫
Ψ0(x,X)Ψ0(x

′,X)dX , (5.1)

where we introduced the short hand notation

X = (x2, . . . ,xN ) and dX =
N∏

j=2

dxj . (5.2)

Then
∫
γ(x,x)dx = Tr [γ] = N . BEC in the ground state means, by definition,

that this operator has an eigenvalue of order N in the thermodynamic limit.
Since γ is a positive kernel and, hopefully, translation invariant in the ther-
modynamic limit, the eigenfunction belonging to the largest eigenvalue must
be the constant function L−d/2. Therefore, another way to say that there is
BEC in the ground state is that

1

Ld

∫ ∫
γ(x, y)dxdy = O(N) (5.3)
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as N → ∞, L → ∞ with N/Ld fixed; more precisely (5.3) requires that
there is a c > 0 such that the left side is > cN for all large N . This is also
referred to as off-diagonal long range order. Unfortunately, this is something
that is frequently invoked but has so far never been proved for many body
Hamiltonians with genuine interactions — except for one special case: hard
core bosons on a lattice at half-filling (i.e., N = half the number of lattice
sites). The proof is in [38] and [19].

The problem remains open after more than 75 years since the first investi-
gations on the Bose gas [9, 20]. Our construction in Sect. 2 shows that (in 3D)
BEC exists on a length scale of order ρ−1/3Y −1/17 which, unfortunately, is not
a ‘thermodynamic’ length like volume1/3. The same remark applies to the 2D
case of Sect. 3, where BEC is proved over a length scale ρ−1/10| ln(ρa2)|1/10.

In a certain limit, however, one can prove (5.3), as has been shown in [51].
In this limit the interaction potential v is varied with N so that the ratio a/L
of the scattering length to the box length is of order 1/N , i.e., the parameter
Na/L is kept fixed. Changing a with N can be done by scaling, i.e., we write

v(|x|) =
1

a2
v1(|x|/a) (5.4)

for some v1 having scattering length 1, and vary a while keeping v1 fixed. It
is easily checked that the v so defined has scattering length a. It is important
to note that, in the limit considered, a tends to zero (as N−2/3 since L =
(N/ρ)1/3 ∼ N1/3 for ρ fixed), and v becomes a hard potential of short range.
This is the opposite of the usual mean field limit where the strength of the
potential goes to zero while its range tends to infinity.

We shall refer to this as the Gross–Pitaevskii (GP) limit since Na/L will
turn out to be the natural interaction parameter for inhomogeneous Bose
gases confined in traps, that are described by the Gross–Pitaevskii equation
discussed in Sects. 6 and 7. Its significance for a homogeneous gas can also
be seen by noting that Na/L is the ratio of ρa to 1/L2, i.e., in the GP limit
the interaction energy per particle is of the same order of magnitude as the
energy gap in the box, so that the interaction is still clearly visible, even
though a→ 0. Note that ρa3 ∼ N−2 in the GP limit, so letting N →∞ with
ρ fixed and Na/L fixed can be regarded as a simultaneous thermodynamic
and low density limit. For simplicity, we shall here treat only the 3D case.

Theorem 5.1 (BEC in a dilute limit). Assume that, as N → ∞, ρ =
N/L3 and g = Na/L stay fixed, and impose either periodic or Neumann
boundary conditions for H. Then

lim
N→∞

1

N

1

L3

∫ ∫
γ(x, y)dxdy = 1 . (5.5)

The reason we do not deal with Dirichlet boundary conditions at this point
should be clear from the discussion preceding the theorem: There would be
an additional contribution ∼ 1/L2 to the energy, i.e. of the same order as
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the interaction energy, and the system would not be homogeneous any more.
Dirichlet boundary conditions can, however, be treated with the methods of
Sect. 7.

By scaling, the limit in Theorem 5.1 is equivalent to considering a Bose
gas in a fixed box of side length L = 1, and keeping Na fixed as N → ∞,
i.e., a ∼ 1/N . The ground state energy of the system is then, asymptotically,
N × 4πNa, and Theorem 5.1 implies that the one-particle reduced density
matrix γ of the ground state converges, after division by N , to the projection
onto the constant function. An analogous result holds true for inhomogeneous
systems as will be discussed in Sect. 7.

The proof of Theorem 5.1 has two main ingredients. One is localization of
the energy that is stated as Lemma 5.2 below. This lemma is a refinement of
the energy estimates of Sect. 2.2 and says essentially that the kinetic energy
of the ground state is concentrated in a subset of configuration space where
at least one pair of particles is close together and whose volume tends to
zero as a → 0. The other is the generalized Poincaré inequality, Lemma 4.1
from which one deduces that the one particle density matrix is approximately
constant if the kinetic energy is localized in a small set.

The localization lemma will be proved in a slightly more general version
that is necessary for Theorem 5.1, namely with the gradient ∇ replaced by
∇ϕ = ∇+ i(0, 0, ϕ/L), cf. (4.5). We denote by H ′

N the corresponding many-
body Hamiltonian (2.1) with ∇ϕ in place of ∇. This generalization will be
used in the subsequent discussion of superfluidity, but a reader who wishes to
focus on Theorem 5.1 only can simply ignore the ϕ and the reference to the
diamagnetic inequality in the proof. We denote the gradient with respect to
x1 by ∇1, and the corresponding modified operator by ∇1,ϕ.

Lemma 5.2 (Localization of energy). Let K be a box of side length L.
For all symmetric, normalized wave functions Ψ(x1, . . . ,xN ) with periodic
boundary conditions on K, and for N ≥ Y −1/17,

1

N
〈Ψ,H ′

NΨ〉 ≥
(
1− const. Y 1/17

)
×
(
4πµρa+ µ

∫
KN−1

dX

∫
ΩX

dx1

∣∣∇1,ϕΨ(x1,X)
∣∣2) , (5.6)

where X = (x2, . . . ,xN ), dX =
∏N

j=2 dxj, and

ΩX =

{
x1 : min

j≥2
|x1 − xj | ≥ R

}
(5.7)

with R = aY −5/17.

Proof. Since Ψ is symmetric, the left side of (5.6) can be written as∫
KN−1

dX

∫
K

dx1

[
µ
∣∣∇1,ϕΨ(x1,X)

∣∣2 + 1
2

∑
j≥2

v(|x1 − xj |)|Ψ(x1,X)|2
]
. (5.8)
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For any ε > 0 and R > 0 this is

≥ εT + (1 − ε)(T in + I) + (1− ε)T out
ϕ , (5.9)

with

T = µ

∫
KN−1

dX

∫
K

dx1

∣∣∇1|Ψ(x1,X)|
∣∣2 , (5.10)

T in = µ

∫
KN−1

dX

∫
Ωc

X

dx1

∣∣∇1|Ψ(x1,X)|
∣∣2 , (5.11)

T out
ϕ = µ

∫
KN−1

dX

∫
ΩX

dx1

∣∣∇1,ϕΨ(x1,X)
∣∣2 , (5.12)

and

I = 1
2

∫
KN−1

dX

∫
K

dx1

∑
j≥2

v(|x1 − xj |)|Ψ(x1,X)|2 . (5.13)

Here
Ωc

X = {x1 : |x1 − xj | < R for some j ≥ 2} (5.14)

is the complement of ΩX, and the diamagnetic inequality [49] |∇ϕf(x)|2 ≥
|∇|f(x)||2 has been used. The proof is completed by using the estimates used
for the proof of Theorem 2.4 in particular (2.52) and (2.54)–(2.57), which tell
us that for ε = Y 1/17 and R = aY −5/17

εT + (1− ε)(T in + I) ≥
(
1− const. Y 1/17

)
4πµρa (5.15)

as long as N ≥ Y −1/17. � 

Proof (Theorem 5.1). We combine Lemma 5.2 (with ϕ = 0 and hence H ′
N =

HN ) with Lemma 4.1 that gives a lower bound to the second term on the
right side of (5.6). We thus infer that, for any symmetric Ψ with 〈Ψ, Ψ〉 = 1
and for N large enough,

1

N
〈Ψ,HNΨ〉

(
1− const. Y 1/17

)−1

≥ 4πµρa− CY 1/17
( 1

L2
− 1

N

〈
Ψ,
∑

j∇2
jΨ
〉)

+
c

L2

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ(x1,X)− L−3
[∫

KdxΨ(x,X)
]∣∣∣2 ,

(5.16)

where we used that |Ωc| ≤ 4π
3 NR

3 = const. L3Y 2/17. Since the kinetic energy,
divided by N , is certainly bounded independent of N , as the upper bound
(2.14) shows, and since the upper and the lower bound to E0 agree in the
limit considered, the positive last term in (5.16) has to vanish in the limit.
I.e., we get that for the ground state wave function Ψ0 of HN

lim
N→∞

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ0(x1,X)− L−3
[∫

KdxΨ0(x,X)
]∣∣∣2 = 0 . (5.17)
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This proves (5.5), since∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ0(x1,X)− L−3
[∫

KdxΨ0(x,X)
]∣∣∣2

= 1− 1

NL3

∫
K×K

γ(x,x′)dxdx′ . (5.18)

� 

5.2 Superfluidity

The phenomenological two-fluid model of superfluidity (see, e.g., [84]) is based
on the idea that the particle density ρ is composed of two parts, the density
ρs of the inviscid superfluid and the normal fluid density ρn. If an external
velocity field is imposed on the fluid (for instance by moving the walls of the
container) only the viscous normal component responds to the velocity field,
while the superfluid component stays at rest. In accord with these ideas the
superfluid density in the ground state is often defined as follows [34]: Let E0

denote the ground state energy of the system in the rest frame and E′
0 the

ground state energy, measured in the moving frame, when a velocity field v
is imposed. Then for small v

E′
0

N
=
E0

N
+ (ρs/ρ)

1
2mv2 +O(|v|4) (5.19)

where N is the particle number and m the particle mass. At positive tempera-
tures the ground state energy should be replaced by the free energy. (Remark:
It is important here that (5.19) holds uniformly for all large N ; i.e., that the
error term O(|v|4) can be bounded independently of N . For fixed N and a
finite box, (5.19) with ρs/ρ = 1 always holds for a Bose gas with an arbitrary
interaction if v is small enough, owing to the discreteness of the energy spec-
trum.2) There are other definitions of the superfluid density that may lead to
different results [74], but this is the one we shall use here and shall not dwell
on this issue since it is not clear that there is a “one-size-fits-all” definition
of superfluidity. For instance, in the definition we use here the ideal Bose gas
is a perfect superfluid in its ground state, whereas the definition of Landau
in terms of a linear dispersion relation of elementary excitations would indi-
cate otherwise. Our main result is that with the definition adopted here there

2 The ground state with v = 0 remains an eigenstate of the Hamiltonian with
arbitrary v (but not necesssarily a ground state) since its total momentum is
zero. Its energy is 1

2
mNv2 above the ground state energy for v = 0. Since in a

finite box the spectrum of the Hamiltonian for arbitrary v is discrete and the
energy gap above the ground state is bounded away from zero for v small, the
ground state for v = 0 is at the same time the ground state of the Hamiltonian
with v if 1

2
mNv2 is smaller than the gap.
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is 100% superfluidity in the ground state of a 3D Bose gas in the GP limit
explained in the previous subsection.

One of the unresolved issues in the theory of superfluidity is its relation
to Bose–Einstein condensation (BEC). It has been argued that in general
neither condition is necessary for the other (c.f., e.g., [35, 2, 41]), but in the
case considered here, i.e., the GP limit of a 3D gas, we show that 100% BEC
into the constant wave function (in the rest frame) prevails even if an external
velocity field is imposed. A simple example illustrating the fact that BEC is
not necessary for superfluidity is the 1D hard-core Bose gas. This system is
well known to have a spectrum like that of an ideal Fermi gas [24] (see also
Sect. 8), and it is easy to see that it is superfluid in its ground state in the
sense of (5.19). On the other hand, it has no BEC [43, 72]. The definition of
the superfluid velocity as the gradient of the phase of the condensate wave
function [34, 4] is clearly not applicable in such cases.

We consider a Bose gas with the Hamiltonian (2.1) in a box K of side length
L, assuming periodic boundary conditions in all three coordinate directions.
Imposing an external velocity field v = (0, 0,±|v|) means that the momentum
operator p = −i�∇ is replaced by by p−mv, retaining the periodic boundary
conditions. The Hamiltonian in the moving frame is thus

H ′
N = −µ

N∑
j=1

∇2
j,ϕ +

∑
1≤i<j≤N

v(|xi − xj |) , (5.20)

where ∇j,ϕ = ∇j + i(0, 0, ϕ/L) and the dimensionless phase ϕ is connected to
the velocity v by

ϕ =
±|v|Lm

�
. (5.21)

Let E0(N, a, ϕ) denote the ground state energy of (5.20) with periodic
boundary conditions. Obviously it is no restriction to consider only the case
−π ≤ ϕ ≤ π, since E0 is periodic in ϕ with period 2π (see Remark 1 below).
For Ψ0 the ground state of H ′

N , let γN be its one-particle reduced density
matrix. We are interested in the Gross–Pitaevskii (GP) limit N → ∞ with
Na/L fixed. We also fix the box size L. This means that a should vary like
1/N which, as explained in the previous subsection, can be achieved by writing
v(r) = a−2v1(r/a), where v1 is a fixed potential with scattering length 1, while
a changes with N .

Theorem 5.3 (Superfluidity and BEC of homogeneous gas).
For |ϕ| ≤ π

lim
N→∞

E0(N, a, ϕ)

N
= 4πµaρ+ µ

ϕ2

L2
(5.22)

in the limit N → ∞ with Na/L and L fixed. Here ρ = N/L3, so aρ is fixed
too. In the same limit, for |ϕ| < π,

lim
N→∞

1

N
γN (x,x′) =

1

L3
(5.23)
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in trace class norm, i.e., limN→∞ Tr
[ ∣∣γN/N − |L−3/2〉〈L−3/2|

∣∣ ] = 0.

Note that, by the definition (5.19) of ρs and (5.21), (5.22) means that
ρs = ρ, i.e., there is 100% superfluidity. For ϕ = 0, (5.22) follows from (2.8),
while (5.23) for ϕ = 0 is the BEC of Theorem 5.1.3

Remarks. 1. By a unitary gauge transformation,(
UΨ
)
(x1, . . . ,xN ) = eiϕ(

�
i zi)/L Ψ(x1, . . . ,xN ) , (5.24)

the passage from (2.1) to (5.20) is equivalent to replacing periodic boundary
conditions in a box by the twisted boundary condition

Ψ(x1 + (0, 0, L),x2, . . . ,xN ) = eiϕΨ(x1,x2, . . . ,xN ) (5.25)

in the direction of the velocity field, while retaining the original Hamiltonian
(2.1).

2. The criterion |ϕ| ≤ π means that |v| ≤ π�/(mL). The corresponding
energy 1

2m(π�/(mL))2 is the gap in the excitation spectrum of the one-particle
Hamiltonian in the finite-size system.

3. The reason that we have to restrict ourselves to |ϕ| < π in the second
part of Theorem 5.3 is that for |ϕ| = π there are two ground states of the
operator (∇ + iϕ/L)2 with periodic boundary conditions. All we can say in
this case is that there is a subsequence of γN that converges to a density
matrix of rank ≤ 2, whose range is spanned by these two functions

Proof (Theorem 5.3). As in the proof of Theorem 5.1 we combine the localiza-
tion Lemma 5.2, this time with ϕ 	= 0, and a generalized Poincaré inequality,
this time Lemma 4.2. We thus infer that, for any symmetric Ψ with 〈Ψ, Ψ〉 = 1
and for N large enough,

1

N
〈Ψ,H ′

NΨ〉
(
1− const. Y 1/17

)−1

≥ 4πµρa+ µ
ϕ2

L2
− CY 1/17

( 1

L2
− 1

N

〈
Ψ,
∑

j∇2
j,ϕΨ
〉)

+
c

L2

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ(x1,X)− L−3
[∫

KdxΨ(x,X)
]∣∣∣2 ,

(5.26)

where we used that |Ωc| ≤ 4π
3 NR

3 = const. L3Y 2/17. From this we can infer
two things. First, since the kinetic energy, divided by N , is certainly bounded
independently of N , as the upper bound shows, we get that

lim inf
N→∞

E0(N, a, ϕ)

N
≥ 4πµρa+ µ

ϕ2

L2
(5.27)

3 The convention in Theorem 5.1, where ρ and Na/L stay fixed, is different from
the one employed here, where L and Na/L are fixed, but these two conventions
are clearly equivalent by scaling.
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for any |ϕ| < π. By continuity this holds also for |ϕ| = π, proving (5.22). (To
be precise, E0/N − µϕ2L−2 is concave in ϕ, and therefore stays concave, and
in particular continuous, in the limit N →∞.) Secondly, since the upper and
the lower bounds to E0 agree in the limit considered, the positive last term
in (5.16) has to vanish in the limit. I.e., we get that for the ground state wave
function Ψ0 of H ′

N

lim
N→∞

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ0(x1,X)− L−3
[∫

KdxΨ0(x,X)
]∣∣∣2 = 0 . (5.28)

Using again (5.18), this proves (5.23) in a weak sense. As explained in [51, 52],
this suffices for the convergenceN−1γN → |L−3/2〉〈L−3/2| in trace class norm.

� 

Theorem 5.3 can be generalized in various ways to a physically more real-
istic setting, for example replacing the periodic box by a cylinder centered at
the origin. We shall comment on such extensions at the end of Sect. 7.

6 Gross–Pitaevskii Equation for Trapped Bosons

In the recent experiments on Bose condensation (see, e.g., [39]), the particles
are confined at very low temperatures in a ‘trap’ where the particle density
is inhomogeneous, contrary to the case of a large ‘box’, where the density is
essentially uniform. We model the trap by a slowly varying confining potential
V , with V (x) →∞ as |x| → ∞. The Hamiltonian becomes

H =

N∑
i=1

{−µ∆i + V (xi)}+
∑

1≤i<j≤N

v(|xi − xj |) . (6.1)

Shifting the energy scale if necessary we can assume that V is nonnegative.
The ground state energy, �ω, of −µ∆ + V (x) is a natural energy unit and
the corresponding length unit,

√
�/(mω) =

√
2µ/(�ω) ≡ Losc, is a measure

of the extension of the trap.
In the sequel we shall be considering a limit where a/Losc tends to zero

while N → ∞. Experimentally a/Losc can be changed in two ways: One
can either vary Losc or a. The first alternative is usually simpler in practice
but very recently a direct tuning of the scattering length itself has also been
shown to be feasible [13]. Mathematically, both alternatives are equivalent, of
course. The first corresponds to writing V (x) = L−2

oscV1(x/Losc) and keeping
V1 and v fixed. The second corresponds to writing the interaction potential as
v(|x|) = a−2v1(|x|/a) like in (5.4), where v1 has unit scattering length, and
keeping V and v1 fixed. This is equivalent to the first, since for given V1 and
v1 the ground state energy of (6.1), measured in units of �ω, depends only
on N and a/Losc. In the dilute limit when a is much smaller than the mean
particle distance, the energy becomes independent of v1.
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We choose Losc as a length unit. The energy unit is �ω = 2µL−2
osc = 2µ.

Moreover, we find it convenient to regard V and v1 as fixed. This justifies the
notion E0(N, a) for the quantum mechanical ground state energy.

The idea is now to use the information about the thermodynamic limiting
energy of the dilute Bose gas in a box to find the ground state energy of (6.1)
in an appropriate limit. This has been done in [53, 54] and in this section we
give an account of this work. As we saw in Sects. 2 and 3 there is a difference
in the ρ dependence between two and three dimensions, so we can expect a
related difference now. We discuss 3D first.

6.1 Three Dimensions

Associated with the quantum mechanical ground state energy problem is the
Gross–Pitaevskii (GP) energy functional [30, 31, 71]

EGP[φ] =

∫
R3

(
µ|∇φ|2 + V |φ|2 + 4πµa|φ|4

)
dx (6.2)

with the subsidiary condition ∫
R3

|φ|2 = N . (6.3)

As before, a > 0 is the scattering length of v. The corresponding energy is

EGP(N, a) = inf� |φ|2=N
EGP[φ] = EGP[φGP] , (6.4)

with a unique, positive φGP. The existence of the minimizer φGP is proved by
standard techniques and it can be shown to be continuously differentiable, see
[53], Sect. 2 and Appendix A. The minimizer depends on N and a, of course,
and when this is important we denote it by φGP

N,a.
The variational equation satisfied by the minimizer is the GP equation

−µ∆φGP(x) + V (x)φGP(x) + 8πµaφGP(x)3 = µGPφGP(x) , (6.5)

where µGP is the chemical potential, given by

µGP = dEGP(N, a)/dN = EGP(N, a)/N + (4πµa/N)

∫
|φGP(x)|4dx . (6.6)

The GP theory has the following scaling property:

EGP(N, a) = NEGP(1, Na) , (6.7)

and
φGP

N,a(x) = N1/2φGP
1,Na(x) . (6.8)

Hence we see that the relevant parameter in GP theory is the combination
Na.
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We now turn to the relation of EGP and φGP to the quantum mechanical
ground state. If v = 0, then the ground state of (6.1) is

Ψ0(x1, . . . ,xN ) =
∏N

i=1φ0(xi) (6.9)

with φ0 the normalized ground state of −µ∆+V (x). In this case clearly φGP =√
N φ0, and then EGP = N�ω = E0. In the other extreme, if V (x) = 0 for x

inside a large box of volume L3 and V (x) = ∞ otherwise, then φGP ≈
√
N/L3

and we get EGP(N, a) = 4πµaN2/L3, which is the previously considered
energy E0 for the homogeneous gas in the low density regime. (In this case,
the gradient term in EGP plays no role.)

In general, we expect that for dilute gases in a suitable limit

E0 ≈ EGP and ρQM(x) ≈
∣∣φGP(x)

∣∣2 ≡ ρGP(x) , (6.10)

where the quantum mechanical particle density in the ground state is defined
by

ρQM(x) = N

∫
|Ψ0(x,x2, . . . ,xN )|2dx2 · · ·dxN . (6.11)

Dilute means here that
ρ̄a3 � 1 , (6.12)

where

ρ̄ =
1

N

∫
|ρGP(x)|2dx (6.13)

is the mean density.
The limit in which (6.10) can be expected to be true should be chosen so

that all three terms in EGP make a contribution. The scaling relations (6.7)
and (6.8) indicate that fixing Na as N →∞ is the right thing to do (and this
is quite relevant since experimentally N can be quite large, 106 and more, and
Na can range from about 1 to 104 [14]). Fixing Na (which we refer to as the
GP case) also means that we really are dealing with a dilute limit, because
the mean density ρ̄ is then of the order N (since ρ̄N,a = Nρ̄1,Na) and hence

a3ρ̄ ∼ N−2 . (6.14)

The precise statement of (6.10) is:

Theorem 6.1 (GP limit of the QM ground state energy and density).
If N →∞ with Na fixed, then

lim
N→∞

E0(N, a)

EGP(N, a)
= 1 , (6.15)

and

lim
N→∞

1

N
ρQM

N,a(x) =
∣∣φGP

1,Na(x)
∣∣2 (6.16)

in the weak L1-sense.
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Convergence can not only be proved for the ground state energy and den-
sity, but also for the individual energy components:

Theorem 6.2 (Asymptotics of the energy components). Let ψ0 denote
the solution to the zero-energy scattering equation for v (under the boundary
condition lim|x|→∞ ψ0(x) = 1) and s =

∫
|∇ψ0|2/(4πa). Then 0 < s ≤ 1 and,

in the same limit as in Theorem 6.1 above,

lim
N→∞

∫
|∇x1Ψ0(x1,X)|2dx1 dX

=

∫
|∇φGP

1,Na(x)|2dx + 4πNas

∫
|φGP

1,Na(x)|4dx , (6.17a)

lim
N→∞

∫
V (x1)|Ψ0(x1,X)|2dx1 dX =

∫
V (x)|φGP

1,Na(x)|2dx , (6.17b)

lim
N→∞

1
2

N∑
j=2

∫
v(|x1 − xj |)|Ψ0(x1,X)|2dx1 dX

= (1− s)4πNa
∫
|φGP

1,Na(x)|4dx . (6.17c)

Here we introduced again the short hand notation (5.2). Theorem 6.2 is a
simple consequence of Theorem 6.1 by variation with respect to the different
components of the energy, as was also noted in [11]. More precisely, (6.15) can
be written as

lim
N→∞

1

N
E0(N, a) = EGP(1, Na) . (6.18)

The ground state energy is a concave function of the mass parameter µ, so it
is legitimate to differentiate both sides of (6.18) with respect to µ. In doing
so, it has to be noted that Na depends on µ through the scattering length.
Using (2.13) one sees that

d(µa)

dµ
=

1

4π

∫
|∇ψ0|2dx (6.19)

by the Feynman–Hellmann principle, since ψ0 minimizes the left side of (2.13).
We remark that in the case of a two-dimensional Bose gas, where the

relevant parameter to be kept fixed in the GP limit is N/| ln(a2ρ̄N )| (c.f.
Sects. 3 and 6.2.), the parameter s in Theorem 6.2 can be shown to be always
equal to 1. I.e., in 2D the interaction energy is purely kinetic in the GP limit
(see [10]).

To describe situations where Na is very large, it is appropriate to consider
a limit where, as N →∞, a� N−1, i.e. Na→∞, but still ρ̄a3 → 0. In this
case, the gradient term in the GP functional becomes negligible compared to
the other terms and the so-called Thomas–Fermi (TF) functional
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ETF[ρ] =

∫
R3

(
V ρ+ 4πµaρ2

)
dx (6.20)

arises. (Note that this functional has nothing to do with the fermionic theory
invented by Thomas and Fermi in 1927, except for a certain formal analogy.)
It is defined for nonnegative functions ρ on R3. Its ground state energy ETF

and density ρTF are defined analogously to the GP case. (The TF functional is
especially relevant for the two-dimensional Bose gas. There a has to decrease
exponentially with N in the GP limit, so the TF limit is more adequate; see
Sect. 6.2 below).

Our second main result of this section is that minimization of (6.20) re-
produces correctly the ground state energy and density of the many-body
Hamiltonian in the limit when N → ∞, a3ρ̄ → 0, but Na → ∞ (which we
refer to as the TF case), provided the external potential is reasonably well
behaved. We will assume that V is asymptotically equal to some function W
that is homogeneous of some order s > 0, i.e., W (λx) = λsW (x) for all λ > 0,
and locally Hölder continuous (see [54] for a precise definition). This condi-
tion can be relaxed, but it seems adequate for most practical applications and
simplifies things considerably.

Theorem 6.3 (TF limit of the QM ground state energy and density).
Assume that V satisfies the conditions stated above. If g ≡ Na → ∞ as
N →∞, but still a3ρ̄→ 0, then

lim
N→∞

E0(N, a)

ETF(N, a)
= 1 , (6.21)

and

lim
N→∞

g3/(s+3)

N
ρQM

N,a(g
1/(s+3)x) = ρ̃TF

1,1(x) (6.22)

in the weak L1-sense, where ρ̃TF
1,1 is the minimizer of the TF functional under

the condition
∫
ρ = 1, a = 1, and with V replaced by W .

In the following, we will present the essentials of the proofs Theorems 6.1
and 6.3. We will derive appropriate upper and lower bounds on the ground
state energy E0.

The proof of the lower bound in Theorem 6.1 presented here is a modified
version of (and partly simpler than) the original proof in [53].

The convergence of the densities follows from the convergence of the ener-
gies in the usual way by variation with respect to the external potential. For
simplicity, we set µ ≡ 1 in the following.

Proof (Theorems 6.1 and 6.3). Part 1: Upper bound to the QM energy. To
derive an upper bound on E0 we use a generalization of a trial wave function
of Dyson [17], who used this function to give an upper bound on the ground
state energy of the homogeneous hard core Bose gas (c.f. Sect. 2.1). It is of
the form



134 E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason

Ψ(x1, . . . ,xN ) =

N∏
i=1

φGP(xi)F (x1, . . . ,xN ) , (6.23)

where F is constructed in the following way:

F (x1, . . . ,xN ) =
N∏

i=1

f(ti(x1, . . . ,xi)) , (6.24)

where ti = min{|xi − xj |, 1 ≤ j ≤ i − 1} is the distance of xi to its nearest
neighbor among the points x1, . . . ,xi−1, and f is a function of r ≥ 0. As in
(2.20) we choose it to be

f(r) =

{
f0(r)/f0(b) for r < b ,

1 for r ≥ b , (6.25)

where f0 is the solution of the zero energy scattering equation (2.3) and b is
some cut-off parameter of order b ∼ ρ̄−1/3. The function (6.23) is not totally
symmetric, but for an upper bound it is nevertheless an acceptable test wave
function since the bosonic ground state energy is equal to the absolute ground
state energy.

The result of a somewhat lengthy computation (see [53] for details) is the
upper bound

E0(N, a) ≤ EGP(N, a)
(
1 +O(aρ̄1/3)

)
. (6.26)

Part 2: Lower bound to the QM energy, GP case. To obtain a lower bound for
the QM ground state energy the strategy is to divide space into boxes and use
the estimate on the homogeneous gas, given in Theorem 2.4, in each box with
Neumann boundary conditions. One then minimizes over all possible divisions
of the particles among the different boxes. This gives a lower bound to the
energy because discontinuous wave functions for the quadratic form defined by
the Hamiltonian are now allowed. We can neglect interactions among particles
in different boxes because v ≥ 0. Finally, one lets the box size tend to zero.
However, it is not possible to simply approximate V by a constant potential
in each box. To see this consider the case of noninteracting particles, i.e.,
v = 0 and hence a = 0. Here E0 = N�ω, but a ‘naive’ box method gives only
minx V (x) as lower bound, since it clearly pays to put all the particles with a
constant wave function in the box with the lowest value of V .

For this reason we start by separating out the GP wave function in each
variable and write a general wave function Ψ as

Ψ(x1, . . . ,xN ) =

N∏
i=1

φGP(xi)F (x1, . . . ,xN ) . (6.27)

Here φGP = φGP
N,a is normalized so that

∫
|φGP|2 = N . Equation (6.27) defines

F for a given Ψ because φGP is everywhere strictly positive, being the ground
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state of the operator −∆ + V + 8πa|φGP|2. We now compute the expecta-
tion value of H in the state Ψ . Using partial integration and the variational
equation (6.5) for φGP, we see that

〈Ψ |HΨ〉
〈Ψ |Ψ〉 − EGP(N, a) = 4πa

∫
|ρGP|2 +Q(F ) , (6.28)

with

Q(F ) =

N∑
i=1

∫ ∏N
k=1 ρ

GP(xk)
(
|∇iF |2 +

[
1
2

∑
j �=i v(|xi − xj |)− 8πaρGP(xi)

]
|F |2
)

∫ ∏N
k=1 ρ

GP(xk)|F |2
.

(6.29)

We recall that ρGP(x) = |φGP
N,a(x)|2. For computing the ground state energy

of H we have to minimize the normalized quadratic form Q. Compared to
the expression for the energy involving Ψ itself we have thus obtained the
replacements

V (x) → −8πaρGP(x) and

N∏
i=1

dxi →
N∏

i=1

ρGP(xi)dxi . (6.30)

We now use the box method on this problem. More precisely, labeling the
boxes by an index α, we have

inf
F
Q(F ) ≥ inf

{nα}

∑
α

inf
Fα

Qα(Fα) , (6.31)

where Qα is defined by the same formula as Q but with the integrations
limited to the box α, Fα is a wave function with particle number nα, and the
infimum is taken over all distributions of the particles with

∑
nα = N .

We now fix some M > 0, that will eventually tend to ∞, and restrict
ourselves to boxes inside a cube ΛM of side length M . Since v ≥ 0 the contri-
bution to (6.31) of boxes outside this cube is easily estimated from below by
−8πNa supx/∈ΛM

ρGP(x), which, divided byN , is arbitrarily small forM large,

since Na is fixed and φGP/N1/2 = φGP
1,Na decreases faster than exponentially

at infinity ([53], Lemma A.5).
For the boxes inside the cube ΛM we want to use Lemma 2.5 and therefore

we must approximate ρGP by constants in each box. Let ρα,max and ρα,min,
respectively, denote the maximal and minimal values of ρGP in box α. Define

Ψα(x1, . . . ,xnα) = Fα(x1, . . . ,xnα)

nα∏
k=1

φGP(xk) , (6.32)

and
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Ψ (i)
α (x1, . . . ,xnα) = Fα(x1, . . . ,xnα)

nα∏
k=1
k �=i

φGP(xk) . (6.33)

We have, for all 1 ≤ i ≤ nα,∫ nα∏
k=1

ρGP(xk)
(
|∇iFα|2 + 1

2

∑
j �=i

v(|xi − xj |)|Fα|2
)

≥ ρα,min

∫ (
|∇iΨ

(i)
α |2 + 1

2

∑
j �=i

v(|xi − xj |)|Ψ (i)
α |2
)
. (6.34)

We now use Lemma 2.5 to get, for all 0 ≤ ε ≤ 1,

(6.34) ≥ ρα,min

∫ (
ε|∇iΨ

(i)
α |2 + a(1− ε)U(ti)|Ψ (i)

α |2
)

(6.35)

where ti is the distance to the nearest neighbor of xi, c.f., (2.29), and U the
potential (2.30).

Since Ψα = φGP(xi)Ψ
(i)
α we can estimate

|∇iΨα|2 ≤ 2ρα,max|∇iΨ
(i)
α |2 + 2|Ψ (i)

α |2NCM (6.36)

with

CM =
1

N
sup

x∈ΛM

|∇φGP(x)|2 = sup
x∈ΛM

|∇φGP
1,Na(x)|2 . (6.37)

Since Na is fixed, CM is independent of N . Inserting (6.36) into (6.35), sum-
ming over i and using ρGP(xi) ≤ ρα,max in the last term of (6.29) (in the box
α), we get

Qα(Fα) ≥ ρα,min

ρα,max
EU

ε (nα, L)− 8πaρα,maxnα − εCMnα , (6.38)

where L is the side length of the box and EU
ε (nα, L) is the ground state energy

of
nα∑
i=1

(− 1
2ε∆i + (1− ε)aU(ti)) (6.39)

in the box (c.f. (2.35)). We want to minimize (6.38) with respect to nα and
drop the subsidiary condition

∑
α nα = N in (6.31). This can only lower the

minimum. For the time being we also ignore the last term in (6.38). (The
total contribution of this term for all boxes is bounded by εCMN and will be
shown to be negligible compared to the other terms.)

Since the lower bound for the energy of Theorem 2.4 was obtained precisely
from a lower bound to the operator (6.39), we can use the statement and proof
of Theorem 2.4. From this we see that

EU
ε (nα, L) ≥ (1− ε)4πan2

α

L3
(1− CY 1/17

α ) (6.40)
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with Yα = a3nα/L
3, provided Yα is small enough, ε ≥ Y

1/17
α and nα ≥

(const.)Y
−1/17
α . The condition on ε is certainly fulfilled if we choose ε = Y 1/17

with Y = a3N/L3. We now want to show that the nα minimizing the right
side of (6.38) is large enough for (6.40) to apply.

If the minimum of the right side of (6.38) (without the last term) is taken
for some n̄α, we have

ρα,min

ρα,max

(
EU

ε (n̄α + 1, L)− EU
ε (n̄α, L)

)
≥ 8πaρα,max . (6.41)

On the other hand, we claim that

Lemma 6.4. For any n

EU
ε (n+ 1, L)− EU

ε (n,L) ≤ 8πa
n

L3
. (6.42)

Proof. Denote the operator (6.39) by H̃n, with nα = n, and let Ψ̃n be its
ground state. Let t′i be the distance to the nearest neighbor of xi among
the n+ 1 points x1, . . . ,xn+1 (without xi) and ti the corresponding distance
excluding xn+1. Obviously, for 1 ≤ i ≤ n,

U(t′i) ≤ U(ti) + U(|xi − xn+1|) (6.43)

and

U(t′n+1) ≤
n∑

i=1

U(|xi − xn+1|) . (6.44)

Therefore

H̃n+1 ≤ H̃n − 1
2ε∆n+1 + 2a

n∑
i=1

U(|xi − xn+1|) . (6.45)

Using Ψ̃n/L
3/2 as trial function for H̃n+1 we arrive at (6.42). � 

Equation (6.42) together with (6.41) shows that n̄α is at least ∼ ρα,maxL
3.

We shall choose L ∼ N−1/10, so the conditions needed for (6.40) are fulfilled
for N large enough, since ρα,max ∼ N and hence n̄α ∼ N7/10 and Yα ∼ N−2.

In order to obtain a lower bound on Qα we therefore have to minimize

4πa

(
ρα,min

ρα,max

n2
α

L3

(
1− CY 1/17

)
− 2nαρα,max

)
. (6.46)

We can drop the requirement that nα has to be an integer. The minimum of
(6.46) is obtained for

nα =
ρ2α,max

ρα,min

L3

(1 − CY 1/17)
. (6.47)

By (6.28) this gives the following lower bound, including now the last term in
(6.38) as well as the contributions from the boxes outside ΛM ,
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E0(N, a)− EGP(N, a)

≥ 4πa

∫
|ρGP|2 − 4πa

∑
α⊂ΛM

ρ2α,minL
3

(
ρ3α,max

ρ3α,min

1

(1 − CY 1/17)

)
− Y 1/17NCM − 4πaN sup

x/∈ΛM

ρGP(x) .

(6.48)

Now ρGP is differentiable and strictly positive. Since all the boxes are in the
fixed cube ΛM there are constants C′ <∞, C′′ > 0, such that

ρα,max − ρα,min ≤ NC ′L, ρα,min ≥ NC ′′ . (6.49)

Since L ∼ N−1/10 and Y ∼ N−17/10 we therefore have, for large N ,

ρ3α,max

ρ3α,min

1

(1− CY 1/17)
≤ 1 + (const.)N−1/10 (6.50)

Also,

4πa
∑

α⊂ΛM

ρ2α,minL
3 ≤ 4πa

∫
|ρGP|2 ≤ EGP(N, a) . (6.51)

Hence, noting that EGP(N, a) = NEGP(1, Na) ∼ N since Na is fixed,

E0(N, a)

EGP(N, a)
≥ 1− (const.)(1 + CM )N−1/10 − (const.) sup

x/∈ΛM

|φGP
1,Na|2 , (6.52)

where the constants depend on Na. We can now take N → ∞ and then
M →∞.

Part 3: Lower bound to the QM energy, TF case. In the above proof of the
lower bound in the GP case we did not attempt to keep track of the dependence
of the constants on Na. In the TF case Na→∞, so one would need to take
a closer look at this dependence if one wanted to carry the proof directly over
to this case. But we don’t have to do so, because there is a simpler direct
proof. Using the explicit form of the TF minimizer, namely

ρTF
N,a(x) =

1

8πa
[µTF − V (x)]+ , (6.53)

where [t]+ ≡ max{t, 0} and µTF is chosen so that the normalization condition∫
ρTF

N,a = N holds, we can use

V (x) ≥ µTF − 8πaρTF(x) (6.54)

to get a replacement as in (6.30), but without changing the measure. More-
over, ρTF has compact support, so, applying again the box method described
above, the boxes far out do not contribute to the energy. However, µTF (which
depends only on the combination Na) tends to infinity as Na → ∞. We
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need to control the asymptotic behavior of µTF, and this leads to the restric-
tions on V described in the paragraph preceding Theorem 6.3. For simplic-
ity, we shall here only consider the case when V itself is homogeneous, i.e.,
V (λx) = λsV (x) for all λ > 0 with some s > 0.

In the same way as in (6.6) we have, with g = Na,

µTF(g) = dETF(N, a)/dN = ETF(1, g) + 4πg

∫
|ρTF

1,g(x)|2dx . (6.55)

The TF energy, chemical potential and minimizer satisfy the scaling relations

ETF(1, g) = gs/(s+3)ETF(1, 1) , (6.56)

µTF(g) = gs/(s+3)µTF(1) , (6.57)

and
g3/(s+3)ρTF

1,g(g1/(s+3)x) = ρTF
1,g(x) . (6.58)

We also introduce the scaled interaction potential, v̂, by

v̂(x) = g2/(s+3)v(g1/(s+3)x) (6.59)

with scattering length
â = g−1/(s+3)a . (6.60)

Using (6.54), (6.55) and the scaling relations we obtain

E0(N, a) ≥ ETF(N, a) + 4πNgs/(s+3)

∫
|ρTF

1,1 |2 + g−2/(s+3)Q (6.61)

with

Q = inf� |Ψ |2=1

∑
i

∫ (
|∇iΨ |2 + 1

2

∑
j �=i

v̂(xi − xj)|Ψ |2 − 8πNâρTF
1,1(xi)|Ψ |2

)
.

(6.62)
We can now proceed exactly as in Part 2 to arrive at the analogy of (6.48),
which in the present case becomes

E0(N, a)− ETF(N, a) ≥ 4πNgs/(s+3)

∫
|ρTF

1,1 |2

− 4πNâ
∑

α

ρ2α,maxL
3(1− CŶ 1/17)−1 .

(6.63)

Here ρα,max is the maximum of ρTF
1,1 in the box α, and Ŷ = â3N/L3. This

holds as long as L does not decrease too fast with N . In particular, if L is
simply fixed, this holds for all large enough N . Note that

ρ̄ = Nρ̄1,g ∼ Ng−3/(s+3)ρ̄1,1 , (6.64)
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so that â3N ∼ a3ρ̄ goes to zero as N → ∞ by assumption. Hence, if we first
let N → ∞ (which implies Ŷ → 0) and then take L to zero, we of arrive at
the desired result

lim inf
N→∞

E0(N, a)

ETF(N, a)
≥ 1 (6.65)

in the limit N → ∞, a3ρ̄ → 0. Here we used the fact that (because V ,
and hence ρTF, is continuous by assumption) the Riemann sum

∑
α ρ

2
α,maxL

3

converges to
∫
|ρTF

1,1 |2 as L→ 0. Together with the upper bound (6.26) and the

fact that EGP(N, a)/ETF(N, a) = EGP(1, Na)/ETF(1, Na) → 1 as Na→∞,
which holds under our regularity assumption on V (c.f. Lemma 2.3 in [54]),
this proves (6.15) and (6.21).

Part 4: Convergence of the densities. The convergence of the energies implies
the convergence of the densities in the usual way by variation of the external
potential. We show here the TF case, the GP case goes analogously. Set again
g = Na. Making the replacement

V (x) −→ V (x) + δgs/(s+3)Z(g−1/(s+3)x) (6.66)

for some positive Z ∈ C∞
0 and redoing the upper and lower bounds we see

that (6.21) holds with W replaced by W + δZ. Differentiating with respect to
δ at δ = 0 yields

lim
N→∞

g3/(s+3)

N
ρQM

N,a(g
1/(s+3)x) = ρ̃TF

1,1(x) (6.67)

in the sense of distributions. Since the functions all have L1-norm 1, we can
conclude that there is even weak L1-convergence. � 

6.2 Two Dimensions

In contrast to the three-dimensional case the energy per particle for a dilute
gas in two dimensions is nonlinear in ρ. In view of Schick’s formula (3.1)
for the energy of the homogeneous gas it would appear natural to take the
interaction into account in two dimensional GP theory by a term

4π

∫
R2

| ln(|φ(x)|2a2)|−1|φ(x)|4dx , (6.68)

and such a term has, indeed, been suggested in [80] and [40]. However, since
the nonlinearity appears only in a logarithm, this term is unnecessarily com-
plicated as far as leading order computations are concerned. For dilute gases
it turns out to be sufficient, to leading order, to use an interaction term of
the same form as in the three-dimensional case, i.e, define the GP functional
as (for simplicity we put µ = 1 in this section)
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EGP[φ] =

∫
R2

(
|∇φ|2 + V |φ|2 + 4πα|φ|4

)
dx , (6.69)

where instead of a the coupling constant is now

α = | ln(ρ̄Na
2)|−1 (6.70)

with ρ̄N the mean density for the GP functional at coupling constant 1 and
particle number N . This is defined analogously to (6.13) as

ρ̄N =
1

N

∫
|φGP

N,1|4dx (6.71)

where φGP
N,1 is the minimizer of (6.69) with α = 1 and subsidiary condition∫

|φ|2 = N . Note that α in (6.70) depends on N through the mean density.
Let us denote the GP energy for a given N and coupling constant α by

EGP(N,α) and the corresponding minimizer by φGP
N,α. As in three dimensions

the scaling relations

EGP(N,α) = NEGP(1, Nα) (6.72)

and
N−1/2φGP

N,α = φGP
1,Nα , (6.73)

hold, and the relevant parameter is

g ≡ Nα . (6.74)

In three dimensions, where α = a, it is natural to consider the limitN →∞
with g = Na= const. The analogue of Theorem 6.1 in two dimensions is

Theorem 6.5 (Two-dimensional GP limit theorem). If, for N → ∞,
a2ρ̄N → 0 with g = N/| ln(a2ρ̄N )| fixed, then

lim
N→∞

E0(N, a)

EGP(N, 1/| ln(a2ρ̄N )|) = 1 (6.75)

and

lim
N→∞

1

N
ρQM

N,a(x) =
∣∣φGP

1,g (x)
∣∣2 (6.76)

in the weak L1-sense.

This result, however, is of rather limited use in practice. The reason is
that in two dimensions the scattering length has to decrease exponentially
with N if g is fixed. The parameter g is typically very large in two dimensions
so it is more appropriate to consider the limit N → ∞ and g → ∞ (but still
ρ̄Na

2 → 0).
For potentials V that are homogeneous functions of x, i.e.,
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V (λx) = λsV (x) (6.77)

for some s > 0, this limit can be described by the a ‘Thomas–Fermi’ energy
functional like (6.20) with coupling constant unity:

ETF[ρ] =

∫
R2

(
V (x)ρ(x) + 4πρ(x)2

)
dx . (6.78)

This is just the GP functional without the gradient term and α = 1. Here ρ
is a nonnegative function on R2 and the normalization condition is∫

ρ(x)dx = 1 . (6.79)

The minimizer of (6.78) can be given explicitly. It is

ρTF
1,1(x) = (8π)−1[µTF − V (x)]+ (6.80)

where the chemical potential µTF is determined by the normalization condi-
tion (6.79) and [t]+ = t for t ≥ 0 and zero otherwise. We denote the corre-
sponding energy by ETF(1, 1). By scaling one obtains

lim
g→∞

EGP(1, g)/gs/(s+2) = ETF(1, 1) , (6.81)

lim
g→∞ g

2/(s+2)ρGP
1,g (g1/(s+2)x) = ρTF

1,1(x) , (6.82)

with the latter limit in the strong L2 sense.
Our main result about two-dimensional Bose gases in external potentials

satisfying (6.77) is that analogous limits also hold for the many-particle quan-
tum mechanical ground state at low densities:

Theorem 6.6 (Two-dimensional TF limit theorem). In two dimensions,
if a2ρ̄N → 0, but g = N/| ln(ρ̄Na

2)| → ∞ as N →∞ then

lim
N→∞

E0(N, a)

gs/s+2
= ETF(1, 1) (6.83)

and, in the weak L1 sense,

lim
N→∞

g2/(s+2)

N
ρQM

N,a(g
1/(s+2)x) = ρTF

1,1(x) . (6.84)

Remarks. 1. As in Theorem 6.3, it is sufficient that V is asymptotically equal
to some homogeneous potential, W . In this case, ETF(1, 1) and ρTF

1,1 in Theo-
rem 6.6 should be replaced by the corresponding quantities for W .

2. From (6.82) it follows that

ρ̄N ∼ Ns/(s+2) (6.85)

for large N . Hence the low density criterion a2ρ̄ � 1, means that a/Losc �
N−s/2(s+2).
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We shall now comment briefly on the proofs of Theorems 6.5 and 6.6,
mainly pointing out the differences from the 3D case considered previously.

The upper bounds for the energy are obtained exactly in a same way as in
three dimensions. For the lower bound in Theorem 6.5 the point to notice is
that the expression (6.46), that has to be minimized over nα, is in 2D replaced
by

4π

(
ρα,min

ρα,max

n2
α

L2

1

| ln(a2nα/L2)|

(
1− C

| ln(a2N/L2)|1/5

)
− 2nαρα,max

| ln(a2ρ̄N )|

)
,

(6.86)
since (6.40) has to be replaced by the analogous inequality for 2D (c.f. (3.31)).
To minimize (6.86) we use the following lemma:

Lemma 6.7. For 0 < x, b < 1 and k ≥ 1 we have

x2

| lnx| − 2
b

| ln b|xk ≥ − b2

| ln b|

(
1 +

1

(2| ln b|)2

)
k2 . (6.87)

Proof. Replacing x by xk and using the monotonicity of ln we see that it
suffices to consider k = 1. Since lnx ≥ − 1

dex
−d for all d > 0 we have

x2

b2
| ln b|
| lnx| − 2

x

b
≥ | ln b|

b2
edx2+d − 2x

b
≥ c(d)(bded | ln b|)−1/(1+d) (6.88)

with

c(d) = 2(2+d)/(1+d)

(
1

(2 + d)(2+d)/(1+d)
− 1

(2 + d)1/(1+d)

)
≥ −1− 1

4
d2 .

(6.89)

Choosing d = 1/| ln b| gives the desired result. � 

Applying this lemma with x = a2nα/L
2, b = a2ρα,max and

k =
ρα,max

ρα,min

(
1− C

| ln(a2N/L2)|1/5

)−1 | ln(a2ρα,max)|
| ln(a2ρ̄N )| (6.90)

we get the bound

(6.86) ≥ −4π
ρ2α,maxL

2

| ln(a2ρ̄N )|

(
1 +

1

4| ln(a2ρα,max)|2

)
k . (6.91)

In the limit considered, k and the factor in parenthesis both tend to 1 and
the Riemann sum over the boxes α converges to the integral as L→ 0.

The TF case, Thm. 6.6, is treated in the same way as in three dimensions,
with modifications analogous to those just discussed when passing from 3D
to 2D in GP theory.
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7 Bose–Einstein Condensation and Superfluidity for
Dilute Trapped Gases

It was shown in the previous section that, for each fixed Na, the minimization
of the GP functional correctly reproduces the large N asymptotics of the
ground state energy and density of H – but no assertion about BEC in this
limit was made. We will now extend this result by showing that in the Gross–
Pitaevskii limit there is indeed 100% Bose condensation in the ground state.
This is a generalization of the homogeneous case considered in Theorem 5.1
and although it is not the same as BEC in the thermodynamic limit it is quite
relevant for the actual experiments with Bose gases in traps. In the following,
we concentrate on the 3D case, but analogous considerations apply also to the
2D case. We also discuss briefly some extensions of Theorem 5.3 pertaining
to superfluidity in trapped gases.

As in the last section we choose to keep the length scale Losc of the con-
fining potential fixed and thus write Na instead of Na/Losc. Consequently
the powers of N appearing in the proofs are different from those in the proof
Theorem 5.1, where we kept Na/L and N/L3 fixed.

For use later, we define the projector

PGP = |φGP〉〈φGP| . (7.1)

Here (and everywhere else in this section) we denote φGP ≡ φGP
1,Na for simplic-

ity, where φGP
1,Na is the minimizer of the GP functional (6.2) with parameter

Na and normalization condition
∫
|φ|2 = 1 (compare with (6.8)). Moreover,

we set µ ≡ 1.
In the following, Ψ0 denotes the (nonnegative and normalized) ground

state of the Hamiltonian (6.1). BEC refers to the reduced one-particle density
matrix γ(x,x′) of Ψ0, defined in (5.1). The precise definition of BEC is is that
for some c > 0 this integral operator has for all large N an an eigenfunction
with eigenvalue ≥ cN .

Complete (or 100%) BEC is defined to be the property that 1
N γ(x,x

′) not
only has an eigenvalue of order one, as in the general case of an incomplete
BEC, but in the limit it has only one nonzero eigenvalue (namely 1). Thus,
1
N γ(x,x

′) becomes a simple product ϕ(x)∗ϕ(x′) as N →∞, in which case ϕ
is called the condensate wave function. In the GP limit, i.e., N →∞ with Na
fixed, we can show that this is the case, and the condensate wave function is,
in fact, the GP minimizer φGP.

Theorem 7.1 (Bose–Einstein condensation in a trap).
For each fixed Na

lim
N→∞

1

N
γ(x,x′) = φGP(x)φGP(x′) (7.2)

in trace norm, i.e., Tr
∣∣ 1
N γ − PGP

∣∣→ 0.
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We remark that Theorem 7.1 implies that there is also 100% condensation
for all n-particle reduced density matrices

γ(n)(x1, . . . ,xn;x′
1, . . . ,x

′
n) =

n!

(
N

n

)∫
Ψ0(x1, . . . ,xN )Ψ0(x

′
1, . . . ,x

′
n,xn+1, . . .xN )dxn+1 · · ·dxN (7.3)

of Ψ0, i.e., they converge, after division by the normalization factor, to the
one-dimensional projector onto the n-fold tensor product of φGP. In other
words, for n fixed particles the probability of finding them all in the same
state φGP tends to 1 in the limit considered. To see this, let a∗, a denote the
boson creation and annihilation operators for the state φGP, and observe that

1 ≥ lim
N→∞

N−n〈Ψ0|(a∗)nan|Ψ0〉 = lim
N→∞

N−n〈Ψ0|(a∗a)n|Ψ0〉 , (7.4)

since the terms coming from the commutators [a, a∗] = 1 are of lower order
as N →∞ and vanish in the limit. From convexity it follows that

N−n〈Ψ0|(a∗a)n|Ψ0〉 ≥ N−n〈Ψ0|a∗a|Ψ0〉n , (7.5)

which converges to 1 as N →∞, proving our claim.
Another corollary, important for the interpretation of experiments, con-

cerns the momentum distribution of the ground state.

Corollary 7.2 (Convergence of momentum distribution). Let

ρ̂(k) =

∫ ∫
γ(x,x′) exp[ik · (x− x′)]dxdx′ (7.6)

denote the one-particle momentum density of Ψ0. Then, for fixed Na,

lim
N→∞

1

N
ρ̂(k) = |φ̂GP(k)|2 (7.7)

strongly in L1(R3). Here, φ̂GP denotes the Fourier transform of φGP.

Proof. If F denotes the (unitary) operator ‘Fourier transform’ and if h is an
arbitrary L∞-function, then∣∣∣∣ 1N

∫
ρ̂h−

∫
|φ̂GP|2h

∣∣∣∣ = ∣∣Tr [F−1(γ/N − PGP)Fh]
∣∣

≤ ‖h‖∞Tr |γ/N − PGP| , (7.8)

from which we conclude that

‖ρ̂/N − |φ̂GP|2‖1 ≤ Tr |γ/N − PGP| . (7.9)

� 
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As already stated, Theorem 7.1 is a generalization of Theorem 5.1, the
latter corresponding to the case that V is a box potential. It should be noted,
however, that we use different scaling conventions in these two theorems: In
Theorem 5.1 the box size grows as N1/3 to keep the density fixed, while in
Theorem 7.1 we choose to keep the confining external potential fixed. Both
conventions are equivalent, of course, c.f. the remarks in the second paragraph
of Sect. 6, but when comparing the exponents of N that appear in the proofs
of the two theorems the different conventions should be born in mind.

As in Theorem 5.1 there are two essential components of our proof of
Theorem 7.1. The first is a proof that the part of the kinetic energy that
is associated with the interaction v (namely, the second term in (6.17a)) is
mostly located in small balls surrounding each particle. More precisely, these
balls can be taken to have radius roughly N−5/9, which is much smaller than
the mean-particle spacing N−1/3. (The exponents differ from those of Lemma
5.2 because of different scaling conventions.) This allows us to conclude that
the function of x defined for each fixed value of X by

fX(x) =
1

φGP(x)
Ψ0(x,X) ≥ 0 (7.10)

has the property that ∇xfX(x) is almost zero outside the small balls centered
at points of X.

The complement of the small balls has a large volume but it can be a weird
set; it need not even be connected. Therefore, the smallness of ∇xfX(x) in
this set does not guarantee that fX(x) is nearly constant (in x), or even that
it is continuous. We need fX(x) to be nearly constant in order to conclude
BEC. What saves the day is the knowledge that the total kinetic energy of
fX(x) (including the balls) is not huge. The result that allows us to combine
these two pieces of information in order to deduce the almost constancy of
fX(x) is the generalized Poincaré inequality in Lemma 4.3. The important
point in this lemma is that there is no restriction on Ω concerning regularity
or connectivity.

Using the results of Theorem 6.2, partial integration and the GP equation
(i.e., the variational equation for φGP, see (6.5)) we see that

lim
N→∞

∫
|φGP(x)|2|∇xfX(x)|2dx dX = 4πNas

∫
|φGP(x)|4dx . (7.11)

The following Lemma shows that to leading order all the energy in (7.11) is
concentrated in small balls.

Lemma 7.3 (Localization of the energy in a trap). For fixed X let

ΩX =

{
x ∈ R3

∣∣∣∣min
k≥2

|x− xk| ≥ N−1/3−δ

}
(7.12)

for some 0 < δ < 2/9. Then
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lim
N→∞

∫
dX

∫
ΩX

dx|φGP(x)|2|∇xfX(x)|2 = 0 . (7.13)

Remark. In the proof of Theorem 5.1 we chose δ to be 4/51, but the following
proof shows that one can extend the range of δ beyond this value.

Proof. We shall show that∫
dX

∫
Ωc

X

dx |φGP(x)|2|∇xfX(x)|2

+

∫
dX

∫
dx|φGP(x)|2|fX(x)|2

⎡⎣1
2

∑
k≥2

v(|x− xk|)− 8πNa|φGP(x)|2
⎤⎦

≥ −4πNa

∫
|φGP(x)|4dx− o(1) (7.14)

as N → ∞. We claim that this implies the assertion of the Lemma. To see
this, note that the left side of (7.14) can be written as

1

N
E0 − µGP −

∫
dX

∫
ΩX

dx|φGP(x)|2|∇xfX(x)|2 , (7.15)

where we used partial integration and the GP equation (6.5), and also the
symmetry of Ψ0. The convergence of the energy in Theorem 6.1 and the rela-
tion (6.6) now imply the desired result.

The proof of (7.14) is actually just a detailed examination of the lower
bounds to the energy derived in [53] and [62] and described in Sects. 2 and 6.
We use the same methods as there, just describing the differences from the
case considered here.

Writing

fX(x) =
∏
k≥2

φGP(xk)F (x,X) (7.16)

and using that F is symmetric in the particle coordinates, we see that (7.14)
is equivalent to

1

N
Qδ(F ) ≥ −4πNa

∫
|φGP|4 − o(1) , (7.17)

where Qδ is the quadratic form

Qδ(F ) =

N∑
i=1

∫
Ωc

i

|∇iF |2
N∏

k=1

|φGP(xk)|2dxk

+
∑

1≤i<j≤N

∫
v(|xi − xj |)|F |2

N∏
k=1

|φGP(xk)|2dxk

− 8πNa

N∑
i=1

∫
|φGP(xi)|2|F |2

N∏
k=1

|φGP(xk)|2dxk .

(7.18)
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Here Ωc
i denotes the set

Ωc
i = {(x1,X) ∈ R3N | min

k �=i
|xi − xk| ≤ N−1/3−δ} . (7.19)

While (7.17) is not true for all conceivable F ’s satisfying the normalization
condition ∫

|F (x,X)|2
N∏

k=1

|φGP(xk)|2dxk = 1 , (7.20)

it is true for an F , such as ours, that has bounded kinetic energy (7.11).
Looking at Sect. 6, we see that (6.28)–(6.29), (6.48)–(6.52) are similar to
(7.17), (7.18) and almost establish (7.17), but there are differences which we
now explain.

In our case, the kinetic energy of particle i is restricted to the subset of R3N

in which mink �=i |xi − xk| ≤ N−1/3−δ. However, looking at the proof of the
lower bound to the ground state energy of a homogeneous Bose gas discussed
in Sect. 2, which enters the proof of Theorem 6.1, we see that if we choose
δ ≤ 4/51 only this part of the kinetic energy is needed for the lower bound,
except for some part with a relative magnitude of the order ε = O(N−2α)
with α = 1/17. (Here we use the a priori knowledge that the kinetic energy is
bounded by (7.11).) We can even do better and choose some 4/51 < δ < 2/9,
if α is chosen small enough. (To be precise, we choose β = 1/3 + α and
γ = 1/3 − 4α in the notation of (2.56), and α small enough). The choice of
α only affects the magnitude of the error term, however, which is still o(1) as
N →∞. � 

Proof (Theorem 7.1). For some R > 0 let K = {x ∈ R3, |x| ≤ R}, and define

〈fX〉K =
1∫

K |φGP(x)|2dx

∫
K
|φGP(x)|2fX(x) dx . (7.21)

We shall use Lemma 4.3, with d = 3, h(x) = |φGP(x)|2/
∫
K |φGP|2,Ω = ΩX∩K

and f(x) = fX(x) − 〈fX〉K (see (7.12) and (7.10)). Since φGP is bounded on
K above and below by some positive constants, this Lemma also holds (with
a different constant C′) with dx replaced by |φGP(x)|2dx in (4.6). Therefore,∫

dX

∫
K

dx|φGP(x)|2 [fX(x)− 〈fX〉K]
2

≤ C′
∫

dX

[∫
ΩX∩K

|φGP(x)|2|∇xfX(x)|2dx

+
N−2δ

R2

∫
K
|φGP(x)|2|∇xfX(x)|2dx

]
,

(7.22)

where we used that |Ωc
X ∩ K| ≤ (4π/3)N−3δ. The first integral on the right

side of (7.22) tends to zero as N → ∞ by Lemma 7.3, and the second is
bounded by (7.11). We conclude, since
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K
|φGP(x)|2fX(x)dx ≤

∫
R3

|φGP(x)|2fX(x)dx (7.23)

because of the positivity of fX, that

lim inf
N→∞

1

N
〈φGP|γ|φGP〉 ≥

∫
K
|φGP(x)|2dx lim

N→∞

∫
dX

∫
K

dx|Ψ0(x,X)|2

=

[∫
K
|φGP(x)|2dx

]2
, (7.24)

where the last equality follows from (6.16). Since the radius of K was arbitrary,
we conclude that

lim
N→∞

1

N
〈φGP|γ|φGP〉 = 1 , (7.25)

implying convergence of γ/N to PGP in Hilbert–Schmidt norm. Since the
traces are equal, convergence even holds in trace norm (cf. [81], Thm. 2.20),
and Theorem 7.1 is proven. � 

We remark that the method presented here also works in the case of a
two-dimensional Bose gas. The relevant parameter to be kept fixed in the GP
limit is N/| ln(a2ρ̄N )|, all other considerations carry over without essential
change, using the results in [54, 63], c.f. Sects. 3 and 6.2. It should be noted
that the existence of BEC in the ground state in 2D is not in conflict with its
absence at positive temperatures [33, 66]. In the hard core lattice gas at half
filling precisely this phenomenon occurs [38].

Finally, we remark on generalizations of Theorem 5.3 on superfluidity from
a torus to some physically more realistic settings. As an example, let C be a
finite cylinder based on an annulus centered at the origin. Given a bounded,
real function a(r, z) let A be the vector field (in polar coordinates) A(r, θ, z) =
ϕa(r, z)êθ, where êθ is the unit vector in the θ direction. We also allow for a
bounded external potential V (r, z) that does not depend on θ.

Using the methods of Appendix A in [53], it is not difficult to see that there
exists a ϕ0 > 0, depending only on C and a(r, z), such that for all |ϕ| < ϕ0

there is a unique minimizer φGP of the Gross–Pitaevskii functional

EGP[φ] =

∫
C

(∣∣(∇+ iA(x)
)
φ(x)
∣∣2 + V (x)|φ(x)|2 + 4πµNa|φ(x)|4

)
dx (7.26)

under the normalization condition
∫
|φ|2 = 1. This minimizer does not depend

on θ, and can be chosen to be positive, for the following reason: The relevant
term in the kinetic energy is T = −r−2[∂/∂θ + iϕr a(r, z)]2. If |ϕr a(r, z)| <
1/2, it is easy to see that T ≥ ϕ2a(r, z)2, in which case, without raising the
energy, we can replace φ by the square root of the θ-average of |φ|2. This can
only lower the kinetic energy [49] and, by convexity of x→ x2, this also lowers
the φ4 term.
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We denote the ground state energy of EGP by EGP, depending on Na and
ϕ. The following Theorem 7.4 concerns the ground state energy E0 of

HA
N =

N∑
j=1

[
−
(
∇j + iA(xj)

)2
+ V (xj)

]
+

∑
1≤i<j≤N

v(|xi − xj |) , (7.27)

with Neumann boundary conditions on C, and the one-particle reduced density
matrix γN of the ground state, respectively. Different boundary conditions can
be treated in the same manner, if they are also used in (7.26).

Remark. As a special case, consider a uniformly rotating system. In this case
A(x) = ϕrêθ, where 2ϕ is the angular velocity. HA

N is the Hamiltonian in the
rotating frame, but with external potential V (x)+A(x)2 (see e.g. [4, p. 131]).

Theorem 7.4 (Superfluidity in a cylinder). For |ϕ| < ϕ0

lim
N→∞

E0(N, a, ϕ)

N
= EGP(Na, ϕ) (7.28)

in the limit N →∞ with Na fixed. In the same limit,

lim
N→∞

1

N
γN (x,x′) = φGP(x)φGP(x′) (7.29)

in trace class norm, i.e., limN→∞ Tr
[ ∣∣γN/N − |φGP〉〈φGP|

∣∣ ] = 0.

In the case of a uniformly rotating system, where 2ϕ is the angular velocity,
the condition |ϕ| < ϕ0 in particular means that the angular velocity is smaller
than the critical velocity for creating vortices [79, 21].

Remark. In the special case of the curl-free vector potential A(r, θ) = ϕr−1êθ,
i.e., a(r, z) = r−1, one can say more about the role of ϕ0. In this case, there is
a unique GP minimizer for all ϕ 	∈ Z+ 1

2 , whereas there are two minimizers for
ϕ ∈ Z+ 1

2 . Part two of Theorem 7.4 holds in this special case for all ϕ 	∈ Z+ 1
2 ,

and (7.28) is true even for all ϕ.

8 One-Dimensional Behavior of Dilute Bose Gases in
Traps

Recently it has become possible to do experiments in highly elongated traps on
ultra-cold Bose gases that are effectively one-dimensional [8, 27, 29, 76, 65].
These experiments show peculiar features predicted by a model of a one-
dimensional Bose gas with repulsive δ-function pair interaction, analyzed long
ago by Lieb and Liniger [48]. These include quasi-fermionic behavior [24], the
absence of Bose–Einstein condensation (BEC) in a dilute limit [43, 72, 26],
and an excitation spectrum different from that predicted by Bogoliubov’s
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theory [48, 37, 42]. The theoretical work on the dimensional cross-over for the
ground state in elongated traps has so far been based either on variational
calculations, starting from a 3D delta-potential [67, 15, 25], or on numerical
Quantum Monte Carlo studies [6, 1] with more realistic, genuine 3D potentials,
but particle numbers limited to the order of 100. This work is important and
has led to valuable insights, in particular about different parameter regions
[70, 16], but a more thorough theoretical understanding is clearly desirable
since this is not a simple problem. In fact, it is evident that for a potential with
a hard core the true 3D wave functions do not approximately factorize in the
longitudinal and transverse variables (otherwise the energy would be infinite)
and the effective 1D potential can not be obtained by simply integrating out
the transverse variables of the 3D potential (that would immediately create
an impenetrable barrier in 1D). It is important to be able to demonstrate
rigorously, and therefore unambiguously, that the 1D behavior really follows
from the fundamental Schrödinger equation. It is also important to delineate,
as we do here, precisely what can be seen in the different parameter regions.
The full proofs of our assertions are long and are given in [58]. Here we state
our main results and outline the basic ideas for the proofs.

We start by describing the setting more precisely. It is convenient to write
the Hamiltonian in the following way (in units where � = 2m = 1):

HN,L,r,a =

N∑
j=1

(
−∆j + V ⊥

r (x⊥
j ) + VL(zj)

)
+

∑
1≤i<j≤N

va(|xi − xj |) (8.1)

with x = (x, y, z) = (x⊥, z) and with

V ⊥
r (x⊥) =

1

r2
V ⊥(x⊥/r) ,

VL(z) =
1

L2
V (z/L) , va(|x|) =

1

a2
v(|x|/a) .

(8.2)

Here, r, L, a are variable scaling parameters while V ⊥, V and v are fixed.
We shall be concerned with the ground state of this Hamiltonian for large

particle number N , which is appropriate for the consideration of actual exper-
iments. The other parameters of the problem are the scattering length, a, of
the two-body interaction potential, v, and two lengths, r and L, describing the
transverse and the longitudinal extension of the trap potential, respectively.

The interaction potential v is supposed to be nonnegative, of finite range
and have scattering length 1; the scaled potential va then has scattering length
a. The external trap potentials V and V ⊥ confine the motion in the longitudi-
nal (z) and the transversal (x⊥) directions, respectively, and are assumed to
be continuous and tend to ∞ as |z| and |x⊥| tend to ∞. To simplify the dis-
cussion we find it also convenient to assume that V is homogeneous of some
order s > 0, namely V (z) = |z|s, but weaker assumptions, e.g. asymptotic
homogeneity (cf. Sect. 6), would in fact suffice. The case of a simple box with
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hard walls is realized by taking s = ∞, while the usual harmonic approxima-
tion is s = 2. It is understood that the lengths associated with the ground
states of −d2/dz2 +V (z) and −∆⊥ +V ⊥(x⊥) are both of the order 1 so that
L and r measure, respectively, the longitudinal and the transverse extensions
of the trap. We denote the ground state energy of (8.1) by EQM(N,L, r, a)

and the ground state particle density by ρQM
N,L,r,a(x). On the average, this 3D

density will always be low in the parameter range considered here (in the
sense that distance between particles is large compared to the 3D scattering
length). The effective 1D density can be either high or low, however.

In parallel with the 3D Hamiltonian we consider the Hamiltonian for n
Bosons in 1D with delta interaction and coupling constant g ≥ 0 , i.e.,

H1D
n,g =

n∑
j=1

−∂2/∂z2j + g
∑

1≤i<j≤n

δ(zi − zj) . (8.3)

We consider this Hamiltonian for the zj in an interval of length � in the
thermodynamic limit, � → ∞, n → ∞ with ρ = n/� fixed. The ground state
energy per particle in this limit is independent of boundary conditions and
can, according to [48], be written as

e1D0 (ρ) = ρ2e(g/ρ) , (8.4)

with a function e(t) determined by a certain integral equation. Its asymptotic
form is e(t) ≈ 1

2 t for t� 1 and e(t) → π2/3 for t→∞. Thus

e1D0 (ρ) ≈ 1
2gρ for g/ρ� 1 (8.5)

and
e1D0 (ρ) ≈ (π2/3)ρ2 for g/ρ� 1 . (8.6)

This latter energy is the same as for non-interacting fermions in 1D, which
can be understood from the fact that (8.3) with g = ∞ is equivalent to a
Hamiltonian describing free fermions.

Taking ρe1D0 (ρ) as a local energy density for an inhomogeneous 1D system
we can form the energy functional

E [ρ] =

∫ ∞

−∞

(
|∇√ρ(z)|2 + VL(z)ρ(z) + ρ(z)3e(g/ρ(z))

)
dz . (8.7)

Its ground state energy is obtained by minimizing over all normalized densi-
ties, i.e.,

E1D(N,L, g) = inf

{
E [ρ] : ρ(z) ≥ 0,

∫ ∞

−∞
ρ(z)dz = N

}
. (8.8)

Using convexity of the map ρ �→ ρ3e(g/ρ), it is standard to show that there
exists a unique minimizer of (8.7) (see, e.g., [53]). It will be denoted by ρN,L,g.
We also define the mean 1D density of this minimizer to be
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ρ̄ =
1

N

∫ ∞

−∞
(ρN,L,g(z))

2
dz . (8.9)

In a rigid box, i.e., for s = ∞, ρ̄ is simply N/L (except for boundary correc-
tions), but in more general traps it depends also on g besides N and L. The
order of magnitude of ρ̄ in the various parameter regions will be described
below.

Our main result relates the 3D ground state energy of (8.1) to the 1D
density functional energy E1D(N,L, g) in the large N limit with g ∼ a/r2

provided r/L and a/r are sufficiently small. To state this precisely, let e⊥

and b(x⊥), respectively, denote the ground state energy and the normalized
ground state wave function of −∆⊥ + V ⊥(x⊥). The corresponding quantities
for −∆⊥ + V ⊥

r (x⊥) are e⊥/r2 and br(x
⊥) = (1/r)b(x⊥/r). In the case that

the trap is a cylinder with hard walls b is a Bessel function; for a quadratic
V ⊥ it is a Gaussian.

Define g by

g =
8πa

r2

∫
|b(x⊥)|4dx⊥ = 8πa

∫
|br(x⊥)|4dx⊥ . (8.10)

Our main result of this section is:

Theorem 8.1 (From 3D to 1D). Let N →∞ and simultaneously r/L→ 0
and a/r → 0 in such a way that r2ρ̄×min{ρ̄, g} → 0. Then

lim
EQM(N,L, r, a)−Ne⊥/r2

E1D(N,L, g)
= 1 . (8.11)

An analogous result hold for the ground state density. Define the 1D QM
density by averaging over the transverse variables, i.e.,

ρ̂QM
N,L,r,a(z) ≡

∫
ρQM

N,L,r,a(x
⊥, z)dx⊥ . (8.12)

Let L̄ := N/ρ̄ denote the extension of the system in z-direction, and define
the rescaled density ρ̃ by

ρ1DN,L,g(z) =
N

L
ρ̃(z/L̄) . (8.13)

Note that, although ρ̃ depends on N , L and g, ‖ρ̃‖1 = ‖ρ̃‖2 = 1, which shows
in particular that L̄ is the relevant scale in z-direction. The result for the
ground state density is:

Theorem 8.2 (1D limit for density). In the same limit as considered in
Theorem 8.1,

lim

(
L̄

N
ρ̂QM

N,L,r,a(zL̄)− ρ̃(z)
)

= 0 (8.14)

in weak L1 sense.
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Note that because of (8.5) and (8.6) the condition r2ρ̄×min{ρ̄, g} → 0 is
the same as

e1D0 (ρ̄) � 1/r2 , (8.15)

i.e., the average energy per particle associated with the longitudinal motion
should be much smaller than the energy gap between the ground and first
excited state of the confining Hamiltonian in the transverse directions. Thus,
the basic physics is highly quantum-mechanical and has no classical counter-
part. The system can be described by a 1D functional (8.7), even though the
transverse trap dimension is much larger than the range of the atomic forces.

8.1 Discussion of the Results

We will now give a discussion of the various parameter regions that are in-
cluded in the limit considered in Theorems 8.1 and 8.2 above. We begin by
describing the division of the space of parameters into two basic regions. This
decomposition will eventually be refined into five regions, but for the moment
let us concentrate on the basic dichotomy.

In Sect. 6 we proved that the 3D Gross–Pitaevskii formula for the energy
is correct to leading order in situations in which N is large but a is small
compared to the mean particle distance. This energy has two parts: The energy
necessary to confine the particles in the trap, plus the internal energy of
interaction, which is N4πaρ3D. This formula was proved to be correct for a
fixed confining potential in the limit N → ∞ with a3ρ3D → 0. However, this
limit does not hold uniformly if r/L gets small as N gets large. In other words,
new physics can come into play as r/L→ 0 and it turns out that this depends
on the ratio of a/r2 to the 1D density, or, in other words, on g/ρ̄. There are
two basic regimes to consider in highly elongated traps, i.e., when r � L.
They are

• The 1D limit of the 3D Gross–Pitaevskii regime
• The ‘true’ 1D regime.

The former is characterized by g/ρ̄ � 1, while in the latter regime g/ρ̄ is
of the order one or even tends to infinity. (If g/ρ̄ → ∞ the particles are
effectively impenetrable; this is usually referred to as the Girardeau–Tonks
region.) These two situations correspond to high 1D density (weak interaction)
and low 1D density (strong interaction), respectively. Physically, the main
difference is that in the strong interaction regime the motion of the particles
in the longitudinal direction is highly correlated, while in the weak interaction
regime it is not. Mathematically, this distinction also shows up in our proofs.
The first region is correctly described by both the 3D and 1D theories because
the two give the same predictions there. That’s why we call the second region
the ‘true’ 1D regime.

In both regions the internal energy of the gas is small compared to the
energy of confinement. However, this in itself does not imply a specifically



The Quantum-Mechanical Many-Body Problem: The Bose Gas 155

1D behavior. (If a is sufficiently small it is satisfied in a trap of any shape.)
1D behavior, when it occurs, manifests itself by the fact that the transverse
motion of the atoms is uncorrelated while the longitudinal motion is correlated
(very roughly speaking) in the same way as pearls on a necklace. Thus, the
true criterion for 1D behavior is that g/ρ̄ is of order unity or larger and not
merely the condition that the energy of confinement dominates the internal
energy.

We shall now briefly describe the finer division of these two regimes into five
regions altogether. Three of them (Regions 1–3) belong to the weak interaction
regime and two (Regions 4–5) to the strong interaction regime. They are
characterized by the behavior of g/ρ̄ as N →∞. In each of these regions the
general functional (8.7) can be replaced by a different, simpler functional, and
the energy E1D(N,L, g) in Theorem 8.1 by the ground state energy of that
functional. Analogously, the density in Theorem 8.2 can be replaced by the
minimizer of the functional corresponding to the region considered.

The five regions are

• Region 1, the Ideal Gas case: In the trivial case where the interaction
is so weak that it effectively vanishes in the large N limit and everything
collapses to the ground state of −d2/dz2 + V (z) with ground state energy
e‖, the energy E1D in (8.11) can be replaced by Ne‖/L2. This is the case if
g/ρ̄ � N−2, and the mean density is just ρ̄ ∼ N/L. Note that g/ρ̄ � N−2

means that the 3D interaction energy per particle ∼ aρ3D � 1/L2.

• Region 2, the 1D GP case: In this region g/ρ̄ ∼ N−2, with ρ̄ ∼ N/L.
This case is described by a 1D Gross–Pitaevskii energy functional of the form

EGP[ρ] =

∫ ∞

−∞

(
|∇√ρ(z)|2 + VL(z)ρ(z) + 1

2gρ(z)
2
)
dz , (8.16)

corresponding to the high density approximation (8.5) of the interaction
energy in (8.7). Its ground state energy, EGP, fulfills the scaling relation
EGP(N,L, g) = NL−2EGP(1, 1, NgL).

• Region 3, the 1D TF case: N−2 � g/ρ̄ � 1, with ρ̄ being of the
order ρ̄ ∼ (N/L)(NgL)−1/(s+1), where s is the degree of homogeneity of the
longitudinal confining potential V . This region is described by a Thomas–
Fermi type functional

ETF[ρ] =

∫ ∞

−∞

(
VL(z)ρ(z) + 1

2gρ(z)
2
)
dz . (8.17)

It is a limiting case of Region 2 in the sense that NgL � 1, but a/r is
sufficiently small so that g/ρ̄ � 1, i.e., the high density approximation in
(8.5) is still valid. The explanation of the factor (NgL)1/(s+1) is as follows: The
linear extension L̄ of the minimizing density of (8.16) is for large values ofNgL
determined by VL(L̄) ∼ g(N/L̄), which gives L̄ ∼ (NgL)1/(s+1)L. In addition
condition (8.15) requires gρ̄� r−2, which means that Na/L(NgL)1/(s+1) �
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1. The minimum energy of (8.17) has the scaling property ETF(N,L, g) =
NL−2(NgL)s/(s+1)ETF(1, 1, 1).

• Region 4, the LL case: g/ρ̄ ∼ 1 , with ρ̄ ∼ (N/L)N−2/(s+2), described
by an energy functional

ELL[ρ] =

∫ ∞

−∞

(
VL(z)ρ(z) + ρ(z)3e(g/ρ(z))

)
dz . (8.18)

This region corresponds to the case g/ρ̄ ∼ 1, so that neither the high
density (8.5) nor the low density approximation (8.6) is valid and the full
LL energy (8.4) has to be used. The extension L̄ of the system is now
determined by VL(L̄) ∼ (N/L̄)2 which leads to L̄ ∼ LN2/(s+2). Condi-
tion (8.15) means in this region that Nr/L̄ ∼ Ns/(s+2)r/L → 0. Since
Nr/L̄ ∼ (ρ̄/g)(a/r), this condition is automatically fulfilled if g/ρ̄ is bounded
away from zero and a/r→ 0. The ground state energy of (8.18), ELL(N,L, g),
is equal to Nγ2ELL(1, 1, g/γ), where we introduced the density parameter
γ := (N/L)N−2/(s+2).

• Region 5, the GT case: g/ρ̄� 1, with ρ̄ ∼ (N/L)N−2/(s+2), described by
a functional with energy density ∼ ρ3, corresponding to the Girardeau–Tonks
limit of the LL energy density. It corresponds to impenetrable particles, i.e,
the limiting case g/ρ̄→∞ and hence formula (8.6) for the energy density. As
in Region 4, the mean density is here ρ̄ ∼ γ. The energy functional is

EGT[ρ] =

∫ ∞

−∞

(
VL(z)ρ(z) + (π2/3)ρ(z)3

)
dz , (8.19)

with minimum energy EGT(N,L) = Nγ2EGT(1, 1).

As already mentioned above, Regions 1–3 can be reached as limiting cases
of a 3D Gross–Pitaevskii theory. In this sense, the behavior in these regions
contains remnants of the 3D theory, which also shows up in the fact that BEC
prevails in Regions 1 and 2 (See [58] for details.) Heuristically, these traces of
3D can be understood from the fact that in Regions 1–3 the 1D formula for
energy per particle, gρ ∼ aN/(r2L), gives the same result as the 3D formula,
i.e., scattering length times 3D density. This is no longer so in Regions 4 and
5 and different methods are required.

8.2 Outline of Proof

We now outline the main steps in the proof of Theorems 8.1 and 8.2, referring
to [58] for full details. To prove (8.11) one has to establish upper and lower
bounds, with controlled errors, on the QM many-body energy in terms of the
energies obtained by minimizing the energy functionals appropriate for the
various regions. The limit theorem for the densities can be derived from the
energy estimates in a standard way by variation with respect to the external
potential VL.
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The different parameter regions have to be treated by different methods,
a watershed lying between Regions 1–3 on the one hand and Regions 4–5 on
the other. In Regions 1–3, similar methods as in the proof of the 3D Gross–
Pitaevskii limit theorem discussed in Sect. 6 can be used. This 3D proof
needs some modifications, however, because there the external potential was
fixed and the estimates are not uniform in the ratio r/L. We will not go into
the details here, but mainly focus on Regions 4 and 5, where new methods
are needed. It turns out to be necessary to localize the particles by dividing
the trap into finite ‘boxes’ (finite in z-direction), with a controllable particle
number in each box. The particles are then distributed optimally among the
boxes to minimize the energy, in a similar way as (2.52) was derived from
(2.47).

A core lemma for Regions 4–5 is an estimate of the 3D ground state energy
in a finite box in terms of the 1D energy of the Hamiltonian (8.3). I.e., we will
consider the ground state energy of (8.1) with the external potential VL(z)

replaced by a finite box (in z-direction) with length �. Let EQM
D (n, �, r, a) and

EQM
N (n, �, r, a) denote its ground state energy with Dirichlet and Neumann

boundary conditions, respectively.

Lemma 8.3. Let E1D
D (n, �, g) and E1D

N (n, �, g) denote the ground state energy
of (8.3) on L2([0, �]n), with Dirichlet and Neumann boundary conditions, re-
spectively, and let g be given by (8.10). Then there is a finite number C > 0
such that

EQM
N (n, �, r, a)− ne

⊥

r2
≥ E1D

N (n, �, g)

×
(

1− Cn
(a
r

)1/8
[
1 +

nr

�

(a
r

)1/8
])

.

(8.20)

Moreover,

EQM
D (n, �, r, a)− ne

⊥

r2
≤ E1D

D (n, �, g)

×
(

1 + C

[(na
r

)2
(

1 +
a�

r2

)]1/3
)
,

(8.21)

provided the term in square brackets is less than 1.

This Lemma is the key to the proof of Theorems 8.1 and 8.2. The reader
interested in the details is referred to [58]. Here we only give a sketch of the
proof of Lemma 8.3.

Proof (Lemma 8.3). We start with the upper bound (8.21). Let ψ de-
note the ground state of (8.3) with Dirichlet boundary conditions, normal-

ized by 〈ψ|ψ〉 = 1, and let ρ
(2)
ψ denote its two-particle density, normal-

ized by
∫
ρ
(2)
ψ (z, z′)dzdz′ = 1. Let G and F be given by G(x1, . . . ,xn) =
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ψ(z1, . . . , zn)
∏n

j=1 br(x
⊥
j ) and F (x1, . . . ,xn) =

∏
i<j f(|xi − xj |). Here f is

a monotone increasing function, with 0 ≤ f ≤ 1 and f(t) = 1 for t ≥ R
for some R ≥ R0. For t ≤ R we shall choose f(t) = f0(t)/f0(R), where f0
is the solution to the zero-energy scattering equation for va (2.3). Note that
f0(R) = 1 − a/R for R ≥ R0, and f ′0(t) ≤ t−1 min{1, a/t}. We use as a trial
wave function

Ψ(x1, . . . ,xn) = G(x1, . . . ,xn)F (x1, . . . ,xn) . (8.22)

We first have to estimate the norm of Ψ . Using the fact that F is 1 whenever
no pair of particles is closer together than a distance R, we obtain

〈Ψ |Ψ〉 ≥ 1− n(n− 1)

2

πR2

r2
‖b‖4

4 . (8.23)

To evaluate the expectation value of the Hamiltonian, we use

〈Ψ | −∆j |Ψ〉 = −
∫
F 2G∆jG+

∫
G2|∇jF |2 (8.24)

and the Schrödinger equation Hn,gψ = E1D
D ψ. This gives

〈Ψ |H |Ψ〉 =
(
E1D

D +
n

r2
e⊥
)
〈Ψ |Ψ〉 − g〈Ψ |

∑
i<j

δ(zi − zj)|Ψ〉

+

∫
G2

⎛⎝ n∑
j=1

|∇jF |2 +
∑
i<j

va(|xi − xj |)|F |2
⎞⎠ .

(8.25)

Now, since 0 ≤ f ≤ 1 and f ′ ≥ 0 by assumption, F 2 ≤ f(|xi − xj |)2, and

n∑
j=1

|∇jF |2 ≤ 2
∑
i<j

f ′(|xi − xj |)2 + 4
∑

k<i<j

f ′(|xk − xi|)f ′(|xk − xj |) . (8.26)

Consider the first term on the right side of (8.26), together with the last term
in (8.25). These terms are bounded above by

n(n−1)

∫
br(x

⊥)2br(y
⊥)2ρ

(2)
ψ (z, z′)

(
f ′(|x− y|)2 + 1

2va(|x− y|)f(|x− y|)2
)
.

(8.27)
Let

h(z) =

∫ (
f ′(|x|)2 + 1

2va(|x|)f(|x|)2
)
dx⊥ . (8.28)

Using Young’s inequality for the integration over the ⊥-variables, we get

(8.27) ≤ n(n− 1)

r2
‖b‖4

4

∫
R2

ρ
(2)
ψ (z, z′)h(z − z′)dzdz′ . (8.29)
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By similar methods, one can show that the contribution from the last term in
(8.26) is bounded by

2

3
n(n− 1)(n− 2)

‖b‖2
∞
r2

‖b‖4
4

r2
‖k‖∞

∫
R2

ρ
(2)
ψ (z, z′)k(z − z′)dzdz′ , (8.30)

where

k(z) =

∫
f ′(|x|)dx⊥ . (8.31)

Note that both h and k are supported in [−R,R].
Now, for any φ ∈ H1(R),

∣∣|φ(z)|2 − |φ(z′)|2
∣∣ ≤ 2|z − z′|1/2

(∫
R

|φ|2
)1/4

(∫
R

∣∣∣∣dφdz
∣∣∣∣2
)3/4

. (8.32)

Applying this to ρ
(2)
ψ (z, z′), considered as a function of z only, we get∫

R2

ρ
(2)
ψ (z, z′)h(z − z′)dzdz′ −

∫
R

h(z)dz

∫
ρ
(2)
ψ (z, z)dz

≤ 2R1/2

∫
R

h(z)dz

〈
ψ

∣∣∣∣− d2

dz21

∣∣∣∣ψ〉3/4

, (8.33)

where we used Schwarz’s inequality, the normalization of ρ
(2)
ψ and the sym-

metry of ψ. The same argument is used for (8.30) with h replaced by k.
It remains to bound the second term in (8.25). As in the estimate for the

norm of Ψ , we use again the fact that F is equal to 1 as long as the particles
are not within a distance R. We obtain

〈Ψ |
∑
i<j

δ(zi − zj)|Ψ〉 ≥
n(n− 1)

2

∫
ρ
(2)
ψ (z, z)dz

(
1− n(n− 1)

2

πR2

r2
‖b‖4

4

)
.

(8.34)

We also estimate g 1
2n(n − 1)

∫
ρ
(2)
ψ (z, z)dz ≤ E1D

D and 〈ψ| − d2/dz21 |ψ〉 ≤
E1D

D /n. We have
∫
h(z)dz = 4πa(1 − a/R)−1, and the terms containing k

can be bounded by ‖k‖∞ ≤ 2πa(1 + ln(R/a))/(1 − a/r) and
∫
k(z)dz ≤

2πaR(1− a/(2R))/(1− a/r). Putting together all the bounds, and choosing

R3 =
ar2

n2(1 + g�)
, (8.35)

this proves the desired result.
We are left with the lower bound (8.20). We write a general wave function

Ψ as

Ψ(x1, . . . ,xn) = f(x1, . . . ,xn)

n∏
k=1

br(x
⊥
k ) , (8.36)
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which can always be done, since br is a strictly positive function. Partial
integration gives

〈Ψ |H |Ψ〉 =

ne⊥

r2
+

n∑
i=1

∫ ⎡⎣|∇if |2 + 1
2

∑
j, j �=i

va(|xi − xj |)|f |2
⎤⎦ n∏

k=1

br(x
⊥
k )2dxk . (8.37)

Choose some R > R0, fix i and xj , j 	= i, and consider the Voronoi cell
Ωj around particle j, i.e., Ωj = {x : |x − xj | ≤ |x − xk| for all k 	= j}. If
Bj denotes the ball of radius R around xj , we can estimate with the aid of
Lemma 2.5∫

Ωj∩Bj

br(x
⊥
i )2
(
|∇if |2 + 1

2va(|xi − xj |)|f |2
)
dxi

≥
minx∈Bj br(x

⊥)2

maxx∈Bj br(x
⊥)2

a

∫
Ωj∩Bj

br(x
⊥
i )2U(|xi − xj |)|f |2 . (8.38)

Here U is given in (2.30). For some δ > 0 let Bδ be the subset of R2

where b(x⊥)2 ≥ δ, and let χBδ
denote its characteristic function. Estimat-

ing maxx∈Bj br(x
⊥)2 ≤ minx∈Bj br(x

⊥)2 + 2(R/r3)‖∇b2‖∞, we obtain

minx∈Bj br(x
⊥)2

maxx∈Bj br(x
⊥)2

≥ χBδ
(x⊥

j /r)

(
1− 2

R

r

‖∇b2‖∞
δ

)
. (8.39)

Denoting k(i) the nearest neighbor to particle i, we conclude that, for 0 ≤
ε ≤ 1,

n∑
i=1

∫ ⎡⎣|∇if |2 + 1
2

∑
j, j �=i

va(|xi − xj |)|f |2
⎤⎦ n∏

k=1

br(x
⊥
k )2dxk

≥
n∑

i=1

∫ [
ε|∇if |2 + (1− ε)|∇if |2χmink |zi−zk|≥R(zi)

+ a′U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)|f |2
] n∏

k=1

br(x
⊥
k )2dxk ,

(8.40)

where a′ = a(1− ε)(1− 2R‖∇b2‖∞/rδ).
Define F (z1, . . . , zn) ≥ 0 by

|F (z1, . . . , zn)|2 =

∫
|f(x1, . . . ,xn)|2

n∏
k=1

br(x
⊥
k )2dx⊥

k . (8.41)

Neglecting the kinetic energy in ⊥-direction in the second term in (8.40) and
using the Schwarz inequality to bound the longitudinal kinetic energy of f by
the one of F , we get the estimate
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〈Ψ |H |Ψ〉 − ne
⊥

r2

≥
n∑

i=1

∫ [
ε|∂iF |2 + (1− ε)|∂iF |2χmink |zi−zk|≥R(zi)

] n∏
k=1

dzk

+

n∑
i=1

∫ [
ε|∇⊥

i f |2 + a′U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)|f |2
]

×
n∏

k=1

br(x
⊥
k )2dxk ,

(8.42)

where ∂j = d/dzj, and ∇⊥ denotes the gradient in ⊥-direction. We now
investigate the last term in (8.42). Consider, for fixed z1, . . . , zn, the expression

n∑
i=1

∫ [
ε|∇⊥

i f |2 + a′U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)|f |2
] n∏

k=1

br(x
⊥
k )2dx⊥

k .

(8.43)
To estimate this term from below, we use Temple’s inequality, as in Sect. 2.2.
Let ẽ⊥ denote the gap above zero in the spectrum of −∆⊥ + V ⊥ − e⊥, i.e.,
the lowest non-zero eigenvalue. By scaling, ẽ⊥/r2 is the gap in the spec-
trum of −∆⊥ + V ⊥

r − e⊥/r2. Note that under the transformation φ �→ b−1
r φ

this latter operator is unitarily equivalent to ∇⊥∗ · ∇⊥ as an operator on
L2(R2, br(x

⊥)2dx⊥), as considered in (8.43). Hence also this operator has
ẽ⊥/r2 as its energy gap. Denoting

〈Uk〉 =

∫ ( n∑
i=1

U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)

)k n∏
k=1

br(x
⊥
k )2dx⊥

k , (8.44)

Temple’s inequality implies

(8.43) ≥ |F |2a′〈U〉
(

1− a′ 〈U
2〉

〈U〉
1

εẽ⊥/r2 − a′〈U〉

)
. (8.45)

Now, using (2.30) and Schwarz’s inequality, 〈U2〉 ≤ 3n(R3 −R3
0)

−1〈U〉, and

〈U〉 ≤ n(n− 1)
‖b‖4

4

r2
3πR2

R3 − R3
0

. (8.46)

Therefore
(8.45) ≥ |F |2a′′〈U〉 , (8.47)

where we put all the error terms into the modified coupling constant a′′. It
remains to derive a lower bound on 〈U〉. Let

d(z − z′) =

∫
R4

br(x
⊥)2br(y

⊥)2U(|x− y|)χBδ
(y⊥/r)dx⊥dy⊥ . (8.48)
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Note that d(z) = 0 if |z| ≥ R. An estimate similar to (2.36) gives

〈U〉 ≥
∑
i�=j

d(zi − zj)
(

1− (n− 2)
πR2

r2
‖b‖2

∞

)
. (8.49)

Note that, for an appropriate choice of R, d is close to a δ-function with the
desired coefficient. To make the connection with the δ-function, we can use a
bit of the kinetic energy saved in (8.42) to obtain∫ [

ε

n− 1
|∂iF |2 + a′′′d(zi − zj)|F |2

]
dzi

≥ 1
2g

′ max
|zi−zj|≤R

|F |2χ[R,�−R](zj)

(
1−
(

2(n− 1)

ε
g′R
)1/2
)
. (8.50)

Putting all the previous estimates together, we arrive at

〈Ψ |H |Ψ〉 − ne
⊥

r2
≥

n∑
i=1

∫ [
(1 − ε)|∂iF |2χmink |zi−zk|≥R(zi)

] n∏
k=1

dzk

+
∑
i�=j

1
2g

′′
∫

max
|zi−zj|≤R

|F |2χ[R,�−R](zj)
∏

k, k �=i

dzk

(8.51)

for an appropriate coupling constant g′′ that contains all the error terms. Now
assume that (n+ 1)R < �. Given an F with

∫
|F |2dz1 · · ·dzn = 1, define, for

0 ≤ z1 ≤ z2 ≤ · · · ≤ zn ≤ �− (n+ 1)R,

ψ(z1, . . . , zn) = F (z1 +R, z2 + 2R, z3 + 3R, . . . , zn + nR) , (8.52)

and extend the function to all of [0, � − (n + 1)R]n by symmetry. A simple
calculation shows that

(8.51) ≥ 〈ψ|H ′|ψ〉 ≥ (1− ε)E1D
N (n, �− (n+ 1)R, g′′)〈ψ|ψ〉

≥ (1− ε)E1D
N (n, �, g′′)〈ψ|ψ〉 ,

(8.53)

where H ′ is the Hamiltonian (8.3) with a factor (1− ε) in front of the kinetic
energy term.

It remains to estimate 〈ψ|ψ〉. Using that F is related to the true ground
state Ψ by (8.41), we can estimate it in terms of the total QM energy, namely

〈ψ|ψ〉 ≥ 1− 2R

g′′

(
EQM

N (N, �, r, a)− ne
⊥

r2

)
− 2n

R

�
− 4nR

(
1

n
EQM

N (n, �, r, a)− e
⊥

r2

)1/2

.

(8.54)

Collecting all the error terms and choosing

R = r
(a
r

)1/4

, ε =
(a
r

)1/8

, δ =
(a
r

)1/8

, (8.55)

(8.53) and (8.54) lead to the desired lower bound. � 



The Quantum-Mechanical Many-Body Problem: The Bose Gas 163

As already noted above, Lemma 8.3 is the key to the proof of Theorems 8.1
and 8.2. The estimates are used in each box, and the particles are distributed
optimally among the boxes. For the global lower bound, superadditivity of
the energy and convexity of the energy density ρ3e(g/ρ) are used, generalizing
corresponding arguments in Sect. 2. We refer to [58] for details.

9 The Charged Bose Gas, the One- and Two-Component
Cases

The setting now changes abruptly. Instead of particles interacting with a short-
range potential v(|xi − xj |) they interact via the Coulomb potential

v(|xi − xj |) = |xi − xj |−1 (9.1)

(in 3 dimensions). The unit of electric charge is 1 in our units.
We will here consider both the one- and two-component gases. In the

one-component gas (also referred to as the one-component plasma or bosonic
jellium) we consider positively charged particles confined to a box with a
uniformly charged background. In the two-component gas we have particles
of both positive and negative charges moving in all of space.

9.1 The One-Component Gas

In the one-component gas there are N positively charged particles in a large
box Λ of volume L3 as before, with ρ = N/L3.

To offset the huge Coulomb repulsion (which would drive the particles to
the walls of the box) we add a uniform negative background of precisely the
same charge, namely density ρ. Our Hamiltonian is thus

H
(1)
N =

N∑
i=1

−µ∆i − V (xi) +
∑

1≤i<j≤N

v(|xi − xj |) + C (9.2)

with

V (x) = ρ

∫
Λ

|x− y|−1dy and C =
1

2
ρ

∫
Λ

V (x)dx . (9.3)

We shall use Dirichlet boundary conditions. As before the Hamiltonian acts
on symmetric wave functions in L2(ΛN , dx1 · · ·dxN ).

Each particle interacts only with others and not with itself. Thus, despite
the fact that the Coulomb potential is positive definite, the ground state
energy E0 can be (and is) negative (just take Ψ =const.). This time, large ρ
is the ‘weakly interacting’ regime.

We know from the work in [50] that the thermodynamic limit e0(ρ) defined
as in (2.2) exists. It also follows from this work that we would, in fact, get the
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same thermodynamic energy if we did not restrict the number of particles N ,
but considered the grand-canonical case where we minimize the energy over
all possible particle numbers, but keeping the background charge ρ fixed.

Another way in which this problem is different from the previous one is
that perturbation theory is correct to leading order. If one computes (Ψ,HΨ)
with Ψ =const, one gets the right first order answer, namely 0. It is the next
order in 1/ρ that is interesting, and this is entirely due to correlations. In 1961
Foldy [23] calculated this correlation energy according to the prescription of
Bogolubov’s 1947 theory. That theory was not exact for the dilute Bose gas,
as we have seen, even to first order. We are now looking at second order,
which should be even worse. Nevertheless, there was good physical intuition
that this calculation should be asymptotically exact. Indeed it is, as proved
in [60] and [82].

The Bogolubov theory states that the main contribution to the energy
comes from pairing of particles into momenta k,−k and is the bosonic ana-
logue of the BCS theory of superconductivity which came a decade later. I.e.,
Ψ0 is a sum of products of terms of the form exp{ik · (xi − xj)}.

The following theorem is the main result for the one-component gas.

Theorem 9.1 (Foldy’s law for the one-component gas).

lim
ρ→∞

ρ−1/4e0(ρ) = −2

5

Γ (3/4)

Γ (5/4)

(
2

µπ

)1/4

. (9.4)

This is the first example (in more than 1 dimension) in which Bogolubov’s
pairing theory has been rigorously validated. It has to be emphasized, however,
that Foldy and Bogolubov rely on the existence of Bose–Einstein condensa-
tion. We neither make such a hypothesis nor does our result for the energy
imply the existence of such condensation. As we said earlier, it is sufficient to
prove condensation in small boxes of fixed size.

Incidentally, the one-dimensional example for which Bogolubov’s theory
is asymptotically exact to the first two orders (high density) is the repulsive
delta-function Bose gas [48], for which there is no Bose–Einstein condensation.

To appreciate the −ρ1/4 nature of (9.4), it is useful to compare it with
what one would get if the bosons had infinite mass, i.e., the first term in (9.2)
is dropped. Then the energy would be proportional to −ρ1/3 as shown in [50].
Thus, the effect of quantum mechanics is to lower 1

3 to 1
4 .

A problem somewhat related to bosonic jellium is fermionic jellium. Graf
and Solovej [28] have proved that the first two terms are what one would
expect, namely

e0(ρ) = CTFρ
5/3 − CDρ

4/3 + o(ρ4/3) , (9.5)

where CTF is the usual Thomas–Fermi constant and CD is the usual Dirac
exchange constant.

It is supposedly true, for both bosonic and fermionic particles, that there is
a critical mass above which the ground state should show crystalline ordering
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(Wigner crystal), but this has never been proved and it remains an intriguing
open problem, even for the infinite mass case. A simple scaling shows that
large mass is the same as small ρ, and is thus outside the region where a
Bogolubov approximation can be expected to hold.

As for the dilute Bose gas, there are several relevant length scales in the
problem of the charged Bose gas. For the dilute gas there were three scales.
This time there are just two. Because of the long range nature of the Coulomb
problem there is no scale corresponding to the scattering length a. One rel-
evant length scale is again the interparticle distance ρ−1/3. The other is the
correlation length scale �cor ∼ ρ−1/4 (ignoring the dependence on µ). The
order of the correlation length scale can be understood heuristically as fol-
lows. Localizing on a scale �cor requires kinetic energy of the order of �−2

cor.
The Coulomb potential from the particles and background on the scale �cor is
(ρ�3cor)/�cor. Thus the kinetic energy and the Coulomb energy balance when
�cor ∼ ρ−1/4. This heuristics is however much too simplified and hides the
true complexity of the situation.

Note that in the high density limit �cor is long compared to the interparticle
distance. This is analogous to the dilute gas where the scale �c is also long
compared to the interparticle distance [see (2.12)]. There is however no real
analogy between the scale �cor for the charged gas and the scale �c for the
dilute gas. In particular, whereas e0(ρ) for the dilute gas is, up to a constant,
of the same order as the kinetic energy ∼ µ�−2

c we have for the charged gas
that e0(ρ) 	∼ �−2

cor = ρ1/2. The reason for this difference is that on average only
a small fraction of the particles in the charged gas actually correlate.

9.2 The Two-Component Gas

Now we consider N particles with charges ±1. The Hamiltonian is thus

H
(2)
N =

N∑
i=1

−µ∆i +
∑

1≤i<j≤N

eiej
|xi − xj |

. (9.6)

This time we are interested in E
(2)
0 (N) the ground state energy of H

(2)
N min-

imized over all possible combination of charges ei = ±1, i.e., we do not nec-
essarily assume that the minimum occurs for the neutral case. Restricting to
the neutral case would however not change the result we give below.

An equivalent formulation is to say that E
(2)
0 (N) is the ground state energy

of the Hamiltonian acting on all wave functions of space and charge, i.e.,
functions in L2

(
(R3 × {−1, 1})N

)
. As mentioned in the introduction, and

explained in the beginning of the proof of Thm. 2.2, for the calculation of the
ground state energy we may as usual restrict to symmetric functions in this
Hilbert space.

For the two-component gas there is no thermodynamic limit. In fact, Dyson

[18] proved that E
(2)
0 (N) was at least as negative as −(const)N7/5 as N →∞.
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Thus, thermodynamic stability (i.e., a linear lower bound) fails for this gas.
Years later, a lower bound of this −N7/5 form was finally established in [12],
thereby proving that this law is correct.

The connection of this −N7/5 law with the jellium −ρ1/4 law (for which a
corresponding lower bound was also given in [12]) was pointed out by Dyson
[18] in the following way. Assuming the correctness of the −ρ1/4 law, one can
treat the 2-component gas by treating each component as a background for
the other. What should the density be? If the gas has a radius L and if it hasN
bosons then ρ = NL−3. However, the extra kinetic energy needed to compress
the gas to this radius is NL−2. The total energy is then NL−2 −Nρ1/4, and
minimizing this with respect to L gives L ∼ N−1/5 and leads to the −N7/5

law. The correlation length scale is now �cor ∼ ρ−1/4 ∼ N−2/5.

In [18] Dyson conjectured an exact asymptotic expression for E
(2)
0 (N) for

large N . That this asymptotics, as formulated in the next theorem, is indeed
correct is proved in [61] and [82].

Theorem 9.2 (Dyson’s law for the two-component gas).

lim
N→∞

E
(2)
0 (N)

N7/5
= inf

{
µ

∫
R3

|∇Φ|2 − I0
∫

R3

Φ5/2

∣∣∣∣ 0 ≤ Φ,
∫

R3

Φ2 = 1

}
, (9.7)

where I0 is the constant from Foldy’s law:

I0 =
2

5

Γ (3/4)

Γ (5/4)

(
2

µπ

)1/4

. (9.8)

This asymptotics can be understood as a mean field theory for the gas
density, very much like the Gross–Pitaevskii functional for dilute trapped
gases, where the local energy described by Foldy’s law should be balanced by
the kinetic energy of the gas density. Thus if we let the gas density be given
by φ2 then the “mean field” energy should be

µ

∫
R3

|∇φ|2 − I0
∫

R3

φ5/2 . (9.9)

Here
∫
φ2 = N . If we now define Φ(x) = N−8/5φ(N−1/5x) we see that

∫
Φ2 =

1 and that the above energy is

N7/5

(
µ

∫
R3

|∇Φ|2 − I0
∫

R3

Φ5/2

)
. (9.10)

It may be somewhat surprising that it is exactly the same constant I0 that
appears in both the one- and two-component cases. The reason that there are
no extra factors to account for the difference between one and two components
is, as we shall see below, a simple consequence of Bogolubov’s method. The
origin of this equivalence, while clear mathematically, does not appear to have
a simple physical interpretation.
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9.3 The Bogolubov Approximation

In this section we shall briefly explain the Bogolubov approximation and how
it is applied in the case of the charged Bose gas. The Bogolubov method relies
on the exact diagonalization of a Hamiltonian, which is quadratic in creation
and annihilation operators. For the charged Bose gas one only needs a very
simple case of the general diagonalization procedure. On the other hand, the
operators that appear are not exact creation and annihilation operators. A
slightly more general formulation is needed.

Theorem 9.3 (Simple case of Bogolubov’s method). Assume that b±,±
are four (possibly unbounded) commuting operators satisfying the operator in-
equality [

bτ,e, b
∗
τ,e

]
≤ 1 for all e, τ = ± . (9.11)

Then for all real numbers A,B+,B− ≥ 0 we have

A
∑

τ,e=±1

b∗τ,ebτ,e

+
∑

e,e′=±1

√
BeBe′ee′(b∗+,eb+,e′ + b∗−,eb−,e′ + b∗+,eb

∗
−,e′ + b+,eb−,e′)

≥ −(A+ B+ + B−) +
√

(A+ B+ + B−)2 − (B+ + B−)2 . (9.12)

If b±,± are four annihilation operators then the lower bound is sharp.

Proof. Let us introduce

d∗± = (B+ + B−)−1/2(B1/2
+ b∗±,+ − B1/2

− b∗±,−) , (9.13)

and
c∗± = (B+ + B−)−1/2(B1/2

− b∗±,+ + B1/2
+ b∗±,−) . (9.14)

Then these operators satisfy

[d+, d
∗
+] ≤ 1, [d−, d

∗
−] ≤ 1 . (9.15)

The operator that we want to estimate from below may be rewritten as

A(d∗+d+ + d∗−d− + c∗+c+ + c∗−c−)

+ (B+ + B−)
(
d∗+d+ + d∗−d− + d∗+d

∗
− + d+d−

)
. (9.16)

We may now complete the squares to write this as

A(c∗+c+ + c∗−c−) +D(d∗+ + λd−)(d∗+ + λd−)∗

+D(d∗− + λd+)(d∗− + λd+)∗ −Dλ2([d+, d
∗
+] + [d−, d

∗
−]) (9.17)

if
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D(1 + λ2) = A+ B+ + B−, 2Dλ = B+ + B− . (9.18)

We choose the solution

λ = 1 +
A

B+ + B−
−

√(
1 +

A
(B+ + B−)

)2

− 1 . (9.19)

Hence

Dλ2 = 1
2

(
A+ B+ + B− −

√
(A+ B+ + B−)2 − (B+ + B−)2

)
. (9.20)

� 

In the theorem above one could of course also have included linear terms
in bτ,e in the Hamiltonian. In the technical proofs in [60, 61] the Bogolubov
diagonalization with linear terms is indeed being used to control certain error
terms. Here we shall not discuss the technical details of the proofs. We have
therefore stated the theorem in the simplest form in which we shall need it to
derive the leading contribution.

In our applications to the charged Bose gas the operators b±,e will corre-
spond to the annihilation of particles with charge e = ± and momenta ±k for
some k ∈ R3. Thus, only equal and opposite momenta couple. In a translation
invariant case this would be a simple consequence of momentum conservation.
The one-component gas is not translation invariant, in our formulation. The
two-component gas is translation invariant, but it is natural to break trans-
lation invariance by going into the center of mass frame. In both cases it is
only in some approximate sense that equal and opposite momenta couple.

In the case of the one-component gas we only need particles of one sign.
In this case we use the above theorem with b±,− = 0 and B− = 0.

We note that the lower bounds in Theorem 9.3 for the one- and two-
component gases are the same except for the replacement of B+ in the one-
component case by B+ + B− in the two-component case. In the application
to the two-component gas B+ and B− will be proportional to the particle
densities for respectively the positive or negatively charged particles. For the
one-component gas B+ is proportional to the background density.

The Bogolubov diagonalization method cannot be immediately applied to

the operators H
(1)
N or H

(2)
N since these operators are not quadratic in creation

and annihilation operators. In fact, they are quartic. They have the general
form ∑

α,β

tαβa
∗
αaβ + 1

2

∑
α,β,µ,ν

wαβµνa
∗
αa

∗
βaνaµ , (9.21)

with
tαβ = 〈α|T |β〉, wαβµν = 〈αβ|W |µν〉 , (9.22)

where T is the one-body part of the Hamiltonian andW is the two-body-part
of the Hamiltonian.
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The main step in Bogolubov’s approximation is now to assume Bose–
Einstein condensation, i.e., that almost all particles are in the same one-
particle state. In case of the two-component gas this means that almost half
the particles are positively charged and in the same one-particle state as al-
most all the other half of negatively charged particles. We denote this con-
densate state by the index α = 0 in the sums above. Based on the assumption
of condensation Bogolubov now argues that one may ignore all terms in the
quartic Hamiltonian above which contain 3 or 4 non-zero indices and at the
same time replace all creation and annihilation operators of the condensate
by their expectation values. The result is a quadratic Hamiltonian (includ-
ing linear terms) in the creation and annihilation with non-zero index. This
Hamiltonian is of course not particle number preserving, reflecting the simple
fact that particles may be created out of the condensate or annihilated into
the condensate.

In Sect. 9.5 below it is explained how to construct trial wave functions for
the one- and two-component charged gases whose expectations agree essen-
tially with the prescription in the Bogolubov approximation. The details are
to appear in [82]. This will imply upper bounds on the energies corresponding
to the asymptotic forms given in Theorems 9.1 and 9.2.

In [60, 61] it is proved how to make the steps in the Bogolubov approxi-
mation rigorous as lower bounds. The main difficulty is to control the degree
of condensation. As already explained it is not necessary to prove condensa-
tion in the strong sense described above. We shall only prove condensation
in small boxes. Put differently, we shall not conclude that most particles are
in the same one-particle state, but rather prove that most particles occupy
one-particle states that look the same on short scales, i.e., that vary slowly.
Here the short scale is the correlation length scale �cor.

9.4 The Rigorous Lower Bounds

As already mentioned we must localize into small boxes of some fixed size �.
This time we must require �cor � �. For the one-component gas this choice
is made only in order to control the degree of condensation. For the two-
component gas it is required both to control the order of condensation, and
also to make a local constant density approximation. The reason we can con-
trol the degree of condensation in a small box is that the localized kinetic
energy has a gap above the lowest energy state. In fact, the gap is of order
�−2. Thus if we require that � is such that N�−2 is much greater than the
energy we may conclude that most particles are in the lowest eigenvalue state
for the localized kinetic energy. We shall always choose the localized kinetic
energy in such a way that the lowest eigenstate, and hence the condensate, is
simply a constant function.
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Localizing the Interaction

In contrast to the dilute gas the long range Coulomb potential prevents us
from simply ignoring the interaction between the small boxes. To overcome
this problem we use a sliding technique first introduced in [12].

Theorem 9.4 (Controlling interactions by sliding). Let χ be a smooth
approximation to the characteristic function of the unit cube centered at the
origin. For � > 0 and z ∈ R3 let χz(x) = χ((x− z)/�). There exists an ω > 0
depending on χ (in such a way that it tends to infinity as χ approximates the
characteristic function) such that

∑
1≤i<j≤N

eiej
|xi − xj |

≥
(∫

χ2

)−1 ∫
R3

∑
1≤i<j≤N

eiejw�z(xi,xj)dz−
Nω

2�
,

(9.23)
for all x1, . . . ∈ R3 and e1, . . . = ±1, where

wz(x,y) = χz(x)Yω/�(x− y)χz(y) (9.24)

with Yµ(x) = |x|−1 exp(−µ|x|) being the Yukawa potential.

The significance of this result is that the two-body potential wz is localized
to the cube of size � centered at �z. The lower bound above is thus an integral
over localized interactions sliding around with the integration parameter.

We have stated the sliding estimate in the form relevant to the two-
component problem. There is an equivalent version for the one-component gas,
where the sum of the particle-particle, particle-background, and background-
background interactions may be bounded below by corresponding localized
interactions.

Since � � �cor the error in the sliding estimate is much smaller than
ωN/�cor, which for both the one and two-component gases is of order ω times
the order of the energy. Thus, since � is much bigger than �cor, we have room
to let ω be very large, i.e., χ is close to the characteristic function.

Localizing the Kinetic Energy

Having described the technique to control the interaction between localized
regions we turn next to the localization of the kinetic energy.

For the two-component gas this is done in two steps. As already mentioned
it is natural to break the translation invariance of the two-component gas. We
do this by localizing the system into a box of size L′ � N−1/5 (which as we
saw is the expected size of the gas) as follows. By a partition of unity we
can divide space into boxes of this size paying a localization error due to the
kinetic energy of order NL′−2 � N7/5. We control the interaction between
these boxes using the sliding technique.
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We may now argue, as follows, that the energy is smallest if all the particles
are in just one box. For simplicity we give this argument for the case of two
boxes. Suppose the two boxes have respective wave functions ψ and ψ̃. The
total energy of these two non-interacting boxes is E + Ẽ. Now put all the
particles in one box with the trial function Ψ = ψψ̃. The fact that this function
is not bosonic (i.e., it is not symmetric with respect to all the variables) is
irrelevant because the true bosonic ground state energy is never greater than
that of any trial state (Perron–Frobenius Theorem). The energy of Ψ is

E + Ẽ +

∫∫
ρψ(x)|x− y|−1ρ �

ψ(y)dxdy , (9.25)

where ρψ and ρ �

ψ are the respective charge densities of the states ψ and ψ̃.
We claim that the last Coulomb term can be made non-positive. How? If it
is positive then we simply change the state ψ̃ by interchanging positive and
negative charges (only in ψ̃ and not in ψ). The reader is reminded that we
have not constrained the number of positive and negative particles but only
their sum. This change in ψ̃ reverses the relative charge of the states ψ and ψ̃
so, by symmetry the energies E and Ẽ do not change, whereas the Coulomb
interaction changes sign.

The localization into smaller cubes of size � can however not be done by
a crude partition of unity localization. Indeed, this would cost a localization
error of order N�−2, which as explained is required to be of much greater
order than the energy.

For the one-component charged gas we may instead use a Neumann local-

ization of the kinetic energy, as for the dilute Bose gas. If we denote by ∆
(z)
�

the Neumann Laplacian for the cube of size � centered at z we may, in the
spirit of the sliding estimate, write the Neumann localization Laplacian in all
of R3 as

−∆ =

∫
−∆

(�z)
� dz . (9.26)

In order to write the localized kinetic energy in the same form as the localized
interaction we must introduce the smooth localization χ as in Theorem 9.4.
This can be achieved by ignoring the low momentum part of the kinetic energy.

More precisely, there exist ε(χ) and s(χ) such that ε(χ) → 0 and s(χ) → 0
as χ approaches the characteristic function of the unit cube and such that
(see Lemma 6.1 in [60])

−∆
(z)
� ≥ (1 − ε(χ))Pzχz(x)F�s(χ)(−∆)χz(x)Pz (9.27)

where Pz denotes the projection orthogonal to constants in the cube of size �
centered at z and

Fs(u) =
u2

u+ s−2
. (9.28)

For u � s−2 we have that Fs(u) � u. Hence the effect of F in the operator
estimate above is to ignore the low momentum part of the Laplacian.
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For the two-component gas one cannot use the Neumann localization as
for the one-component gas. Using a Neumann localization ignores the kinetic
energy corresponding to long range variations in the wave function and one
would not get the kinetic energy term

∫
µ|∇Φ|2 in (9.7). This is the essential

difference between the one- and two-component cases. This problem is solved
in [61] where a new kinetic energy localization technique is developed. The
idea is again to separate the high and low momentum part of the kinetic en-
ergy. The high momentum part is then localized as before, whereas the low
momentum part is used to connect the localized regions by a term correspond-
ing to a discrete Laplacian. (For details and the proof the reader is referred
to [61].)

Theorem 9.5 (A many body kinetic energy localization). Let χz, Pz

and Fs be as above. There exist ε(χ) and s(χ) such that ε(χ) → 0 and s(χ) → 0
as χ approaches the characteristic function of the unit cube and such that for
all normalized symmetric wave functions Ψ in L2((R3 × {−1, 1})N) and all
Ω ⊂ R3 we have

(1 + ε(χ))

(
Ψ,

N∑
i=1

−∆iΨ

)
≥
∫

Ω

[
(Ψ,P�zχ�z(x)F�s(χ)(−∆)χ�z(x)P�zΨ)

+ 1
2�

−2
∑
y∈Z

3

|y|=1

(SΨ (�(z + y))− SΨ (�z))2
]
dz

− const. �−2Vol(Ω) ,

(9.29)

where

SΨ (z) =
√(
Ψ, (a∗0+(z)a0+(z) + a∗0−(z)a0−(z))Ψ

)
+ 1− 1 (9.30)

with a0±(z) being the annihilation of a particle of charge ± in the state given
by the normalized characteristic function of the cube of size � centered at z.

The first term in the kinetic energy localization in this theorem is the same as
in (9.27). The second term gives rise to a discrete Laplacian for the function
SΨ (�z), which is essentially the number of condensate particles in the cube of
size � centered at �z. Since we will eventually conclude that most particles are
in the condensate this term will after approximating the discrete Laplacian
by the continuum Laplacian lead to the term

∫
µ|∇φ|2 in (9.9). We shall not

discuss this any further here.
When we apply this theorem to the two-component gas the set �Ω will be

the box of size L′ discussed above. Hence the error term �−2Vol(Ω) will be
of order L′3/�−5 � (N2/5�)−5(N1/5L′)3N7/5. Thus since �� N−2/5 we may
still choose L′ � N−1/5, as required, and have this error term be lower order
than N7/5.
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Controlling the Degree of Condensation

After now having localized the problem into smaller cubes we are ready to
control the degree of condensation. We recall that the condensate state is the
constant function in each cube. Let us denote by n̂z the number of excited
(i.e., non-condensed particles) in the box of size � centered at z. Thus for the
two-component gas n̂z + a∗0+(z)a0+(z) + a∗0−(z)a0−(z) is the total number of
particles in the box and a similar expression gives the particle number for the
one-component gas.

As discussed above we can use the fact that the kinetic energy localized
to a small box has a gap above its lowest eigenvalue to control the number
of excited particles. Actually, this will show that the expectation (Ψ, n̂zΨ) is
much smaller than the total number of particles in the box for any state Ψ
with negative energy expectation.

One needs, however, also a good bound on (Ψ, n̂2
zΨ) to control the Coulomb

interaction of the non-condensed particles. This is more difficult. In [60] this
is not achieved directly through a bound on (Ψ, n̂zΨ) in the ground state.
Rather it is proved that one may change the ground state without changing
its energy very much, so that it only contains values of n̂z localized close to
(Ψ, n̂zΨ). The following theorem gives this very general localization technique.
Its proof can be found in [60].

Theorem 9.6 (Localizing large matrices). Suppose that A is an N + 1×
N + 1 Hermitean matrix and let Ak, with k = 0, 1, ..., N , denote the matrix
consisting of the kth supra- and infra-diagonal of A. Let ψ ∈ CN+1 be a
normalized vector and set dk = (ψ,Akψ) and λ = (ψ,Aψ) =

∑N
k=0 dk. (ψ

need not be an eigenvector of A.)
Choose some positive integer M ≤ N + 1. Then, with M fixed, there is

some n ∈ [0, N + 1 −M ] and some normalized vector φ ∈ CN+1 with the
property that φj = 0 unless n + 1 ≤ j ≤ n +M (i.e., φ has length M) and
such that

(φ,Aφ) ≤ λ+
C

M2

M−1∑
k=1

k2|dk|+ C
N∑

k=M

|dk| , (9.31)

where C > 0 is a universal constant. (Note that the first sum starts with
k = 1.)

To use this theorem we start with a ground state (or approximate ground
state) Ψ to the many body problem. We then consider the projections of Ψ
onto the eigenspaces of n̂z. Since the possible eigenvalues run from 0 to N
these projections span an at most N + 1 dimensional space.

We use the above theorem with A being the many body Hamiltonian
restricted to this N + 1 dimensional subspace. Since the Hamiltonian can
change the number of excited particles by at most two we see that dk vanishes
for k ≥ 3. We shall not here discuss the estimates on d1 and d2 (see [60, 61]).
The conclusion is that we may, without changing the energy expectation of
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Ψ too much, assume that the values of n̂z run in an interval of length much
smaller than the total number of particles. We would like to conclude that
this interval is close to zero. This follows from the fact that any wave function
with energy expectation close to the minimum must have an expected number
of excited particles much smaller than the total number of particles.

The Quadratic Hamiltonian

Using our control on the degree of condensation it is now possible to estimate
all unwanted terms in the Hamiltonian, i.e., terms that contain 3 or more
creation or annihilation operators corresponding to excited (non-condensate)
states. The proof which is a rather complicated bootstrapping argument is
more or less the same for the one- and two-component gases. The result, in
fact, shows that we can ignore other terms too. In fact if we go back to the
general form (9.21) of the Hamiltonian it turns out that we can control all
quartic terms except the ones with the coefficients:

wαβ00, w00αβ , wα00β , and w0αβ0 . (9.32)

To be more precise, let uα, α = 1, . . . be an orthonormal basis of real functions
for the subspace of functions on the cube of size � centered at z orthogonal
to constants, i.e, with vanishing average in the cube. We shall now omit the
subscript z and let a0± be the annihilation of a particle of charge ±1 in the
normalized constant function in the cube (i.e., in the condensate). Let aα±
with α 	= 0 be the annihilation operator for a particle of charge±1 in the state
uα. We can then show that the main contribution to the localized energy of
the two-component gas comes from the Hamiltonian

Hlocal =

∞∑
α,β=1
e=±1

tαβa
∗
αeaβe

+ 1
2

∑
α,β=1

e,e′=±1

ee′wαβ(2a∗0ea
∗
αe′a0e′aβe + a∗0ea

∗
0e′aαe′aβe + a∗αea

∗
βe′a0e′a0e) ,

(9.33)

where
tαβ = µ(uα,Pzχz(x)F�s(χ)(−∆)χz(x)Pzuβ) (9.34)

and

wαβ = �−3

∫∫
uα(x)χz(x)Yω/�(x− y)χz(y)uβ(x)dxdy . (9.35)

InHlocal we have ignored all error terms and hence also ε(χ) ≈ 0 and
∫
χ2 ≈ 1.

In the case of the one-component gas we get exactly the same local Hamil-
tonian, except that we have only one type of particles, i.e, we may set aα− = 0
above.
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Let ν± =
∑∞

α=0 a
∗
α±aα± be the total number of particles in the box with

charge ±1. For k ∈ R3 we let χk,z(x) = χz(x)eik·x. We then introduce the
operators

bk± = (�3ν±)−1/2a±(Pzχk,z)a
∗
0± , (9.36)

where a±(Pzχk,z) =
∑∞

α=1(χk,z, uα)aα± annihilates a particle in the state
χk,z with charge ±1. It is then clear that the operators bk± all commute and
a straightforward calculation shows that

[bk±, b
∗
k±] ≤ (�3ν±)−1‖Pzχz‖2a∗0±a0± ≤ 1 . (9.37)

If we observe that

∞∑
α,β=1
e=±1

tαβa
∗
αeaβe = (2π)−3

∫
µF�s(χ)(k

2)
∑
e=±

ae(Pzχk,z)
∗ae(Pzχk,z)dk

≥ (2π)−3�3
∫
µF�s(χ)(k

2)
∑
e=±

b∗kebke , (9.38)

we see that

Hlocal ≥ 1
2 (2π)−3

∫ [
µ�3F�s(χ)(k

2)
∑
e=±

(b∗kebke + b∗−keb−ke)

+
∑

ee′=±
Ŷω/�(k)

√
νeνe′ee′(b∗kebk,e′ + b∗−keb−k,e′ + b∗keb

∗
−k,e′ + b−kebk,e′)

]
dk

−
∑

αβ=1

wαβ(a∗α+aβ+ + a∗α−aβ−) (9.39)

The last term comes from commuting a∗0±a0± to a0±a
∗
0±. It is easy to see that

this last term is a bounded operator with norm bounded by

const. (ν+ + ν−)�−3‖Ŷω/�‖∞ ≤ const. ω−2(ν+ + ν−)�−1 . (9.40)

When summing over all boxes we see that the last term above gives a con-
tribution bounded by const. ω−2N�−1 = ω−2(N2/5�)−1N7/5 which is lower
order than the energy.

The integrand in the lower bound on Hlocal is precisely an operator of the
form treated in the Bogolubov method Theorem 9.3. Thus up to negligible
errors we see that the operator Hlocal is bounded below by

1
2 (2π)−3

∫
−(A(k) + B(k)) +

√
(A(k) + B(k))2 − B(k)2 dk , (9.41)

where
A(k) = µ�3F�s(χ)(k

2) and B(k) = νŶω/�(k) (9.42)

with ν = ν+ + ν− being the total number of particles in the small box. A
fairly simple analysis of the above integral shows that we may to leading
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order replace A by µ�3k2 and B(k) by 4πν|k|−2, i.e., we may ignore the cut-
offs. The final conclusion is that the local energy is given to leading order
by

−1

2(2π)3

∫
4πν|k|−2 + µ�3|k|2 −

√
(4πν|k|−2 + µ�3|k|2)2 − (4πν|k|−2)2 dk

= −21/2π−3/4ν

(
ν

µ�3

)1/4 ∫ ∞

0

1 + x4 − x2(2 + x4)1/2 dx . (9.43)

If we finally use that∫ ∞

0

1 + x4 − x2(2 + x4)1/2 dx =
23/4

√
πΓ (3/4)

5Γ (5/4)
(9.44)

we see that the local energy to leading order is −I0ν(ν/�3)1/4. For the one-
component gas we should set ν = ρ�3 and for the two-component gas we
should set ν = φ2�3 (see (9.9)). After replacing the sum over boxes by an
integral and at the same time replace the discrete Laplacian by a continuum
Laplacian, as described above, we arrive at asymptotic lower bounds as in
Theorems 9.1 and 9.2.

There is one issue that we have not discussed at all and which played an
important role in the treatment of the dilute gas. How do we know the number
of particles in each of the small cubes? For the dilute gas a superadditivity
argument was used to show that there was an equipartition of particles among
the smaller boxes. Such an argument cannot be used for the charged gas. For
the one-component gas one simply minimizes the energy over all possible
particle numbers in each little box. It turns out that charge neutrality is
essentially required for the energy to be minimized. Since the background
charge in each box is fixed this fixes the particle number.

For the two-component there is a-priori nothing that fixes the particle
number in each box. More precisely, if we ignored the kinetic energy between
the small boxes it would be energetically favorable to put all particles in one
small box. It is the kinetic energy between boxes, i.e., the discrete Laplacian
term in Theorem 9.5, that prevents this from happening. Thus we could in
principle again minimize over all particle numbers and hope to prove the
correct particle number dependence (i.e., Foldy’s law) in each small box. This
is essentially what is done except that boxes with very many or very few
particles must be treated somewhat differently from the “good” boxes. In the
“bad” boxes we do not prove Foldy’s law, but only weaker estimates that are
adequate for the argument.
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9.5 The Rigorous Upper Bounds

The Upper Bound for the Two-component Gas

To prove an upper bound on the energy E
(2)
0 (N) of the form given in Dyson’s

formula Theorem 9.2 we shall construct a trial function from the prescription
in the Bogolubov approximation. We shall use as an input a minimizer Φ
for the variational problem on the right side of (9.7). That minimizers exist
can be easily seen using spherical decreasing rearrangements. It is however
not important that a minimizer exists. An approximate minimizer would also
do for the argument given here. Define φ0(x) = N3/10Φ(N1/5x). Then again∫
φ2

0 = 1. In terms of the unscaled function φ in (9.9), φ0(x) = N−1φ(x).
Let φα, α = 1, . . . be an orthonormal family of real functions all orthogonal

to φ0. We choose these functions below.
We follow Dyson [18] and choose a trial function which does not have a

specified particle number, i.e., a state in the bosonic Fock space.
As our trial many-body wave function we now choose

Ψ = exp
(
−λ2

0 + λ0a
∗
0+ + λ0a

∗
0−
)

×
∏
α�=0

(1 − λ2
α)1/4 exp

(
−
∑

e,e′=±1

∑
α�=0

λα

4
ee′a∗α,ea

∗
α,e′

)
|0〉 , (9.45)

where a∗α,e is the creation of a particle of charge e = ±1 in the state φα,
|0〉 is the vacuum state, and the coefficients λ0, λ1, . . . will be chosen below
satisfying 0 < λα < 1 for α 	= 0.

It is straightforward to check that Ψ is a normalized function.
Dyson used a very similar trial state in [18], but in his case the exponent

was a purely quadratic expression in creation operators, whereas the one used
here is only quadratic in the creation operators a∗αe, with α 	= 0 and linear
in a∗0±. As a consequence our state will be more sharply localized around the
mean of the particle number.

In fact, the above trial state is precisely what is suggested by the Bogolubov
approximation. To see this note that one has

(a0± − λ0)Ψ = 0, and
(
a∗α+ − a∗α− + λα(aα+ − aα−)

)
Ψ = 0 (9.46)

for all α 	= 0. Thus the creation operators for the condensed states can be
replaced by their expectation values and an adequate quadratic expression in
the non-condensed creation and annihilation operators is minimized.

Consider now the operator

γ =

∞∑
α=1

λ2
α

1− λ2
α

|φα〉〈φα| . (9.47)

A straightforward calculation of the energy expectation in the state Ψ gives
that
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Ψ,

∞∑
N=0

H
(2)
N Ψ

)
= 2λ2

0µ

∫
(∇φ0)

2 + Tr (−µ∆γ)

+ 2λ2
0Tr
(
K
(
γ −
√
γ(γ + 1)

))
,

(9.48)

where K is the operator with integral kernel

K(x,y) = φ0(x)|x− y|−1φ0(y) . (9.49)

Moreover, the expected particle number in the state Ψ is 2λ2
0 +Tr(γ). In order

for Ψ to be well defined by the formula (9.45) we must require this expectation
to be finite.

Instead of making explicit choices for the individual functions φα and the
coefficients λα, α 	= 0 we may equivalently choose the operator γ. In defining
γ we use the method of coherent states. Let χ be a non-negative real and
smooth function supported in the unit ball in R3, with

∫
χ2 = 1. Let as

before N−2/5 � �� N−1/5 and define χ�(x) = �−3/2χ(x/�). We choose

γ = (2π)−3

∫
R3×R3

f(u, |p|)P⊥
φ0
|θu,p〉〈θu,p|P⊥

φ0
dudp (9.50)

where P⊥
φ0

is the projection orthogonal to φ0,

θu,p(x) = exp(ip · x)χ�(x− u) , (9.51)

and

f(u, |p|) =
1

2

(
p4 + 16πλ2

0µ
−1φ0(u)2

p2 (p4 + 32πλ2
0µ

−1φ0(u)2)
1/2

− 1

)
. (9.52)

We note that γ is a positive trace class operator, γφ0 = 0, and that all
eigenfunctions of γ may be chosen real. These are precisely the requirements
needed in order for γ to define the orthonormal family φα and the coefficients
λα for α 	= 0.

We use the following version of the Berezin–Lieb inequality [5, 46]. Assume
that ξ(t) is an operator concave function of R+ ∪ {0} with ξ(0) ≥ 0. Then if
Y is a positive semi-definite operator we have

Tr (Y ξ(γ)) ≥ (2π)−3

∫
ξ(f(u, |p|))

(
θu,p,P⊥

φ0
Y P⊥

φ0
θu,p

)
dudp . (9.53)

We use this for the function ξ(t) =
√
t(t+ 1). Of course, if ξ is the identity

function then (9.53) is an identity. If Y = I then (9.53) holds for all concave
ξ with ξ(0) ≥ 0.

Proving an upper bound on the energy expectation (9.48) is thus reduced
to the calculations of explicit integrals. After estimating these integrals one
arrives at the leading contribution (for large λ0)
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2λ2
0µ

∫
(∇φ0)

2 +

∫∫ (
µp2 + 2λ2

0φ0(u)2
4π

p2

)
f(u, |p|)

− 4π

p2
2λ2

0φ0(u)2
√
f(u, |p|)(f(u, |p|) + 1) dpdu

= 2λ2
0µ

∫
(∇φ0)

2 − I0
∫

(2λ2
0)

5/4φ
5/2
0 , (9.54)

where I0 is as in Theorem 9.2.
If we choose λ0 =

√
N/2 we get after a simple rescaling that the energy

above is N7/5 times the right side of (9.7) (recall that Φ was chosen as the
minimizer). We also note that the expected number of particles is

2λ2
0 + Tr(γ) = N +O(N3/5) , (9.55)

as N →∞.
The only remaining problem is to show how a similar energy could be

achieved with a wave function with a fixed number of particles N , i.e., how to

show that we really have an upper bound on E
(2)
0 (N). We indicate this fairly

simple argument here.
We construct a trial function Ψ ′ as above, but with an expected particle

number N ′ chosen appropriately close to, but slightly smaller than N . More
precisely, N ′ will be smaller than N by an appropriate lower order correction.
It is easy to see then that the mean deviation of the particle number distrib-
ution in the state Ψ ′ is lower order than N . In fact, it is of order

√
N ′ ∼

√
N .

Using that we have a good lower bound on the energy E
(2)
0 (n) for all n and

that Ψ ′ is sharply localized around its mean particle number, we may, with-
out changing the energy expectation significantly, replace Ψ ′ by a normalized
wave function Ψ that only has particle numbers less than N . Since the func-

tion n �→ E
(2)
0 (n) is a decreasing function we see that the energy expectation

in the state Ψ is, in fact, an upper bound to E
(2)
0 (N).

The Upper Bound for the One-component Gas

The upper bound for the one-component gas is proved in a very similar way
as for the two-component gas. We shall simply indicate the main differences
here. We will again choose a trial state without a fixed particle number, i.e., a
grand canonical trial state. Since we know that the one-component gas has a
thermodynamic limit and that there is equivalence of ensembles [50], it makes
no difference whether we choose a canonical or grand-canonical trial state.

For the state φ0 we now choose a normalized function with compact sup-
port in Λ, that is constant on the set {x ∈ Λ | dist(x, ∂Λ) > r}. We shall
choose r > 0 to go to zero as L→∞. Let us also choose the constant n such
that nφ2

0 = ρ on the set where φ0 is constant. Then n ≈ ρL3.
Let again φα, α = 1, . . . be an orthonormal family of real functions orthog-

onal to φ0. As our trial state we choose, this time,
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Ψ =
∏
α�=0

(1− λ2
α)1/4 exp

(
−λ2

0/2 + λ0a
∗
0 −
∑
α�=0

λα

2
a∗αa

∗
α

)
|0〉 , (9.56)

where a∗α is the creation of a particle in the state φα. We will choose Ψ
implicitly by choosing the operator γ defined as in (9.47).

This time we obtain(
Ψ,

∞∑
N=0

H
(1)
N Ψ
)

= λ2
0µ

∫
(∇φ0)

2

+ 1
2

∫∫ |γ(x,y)|2
|x− y| dxdy + 1

2

∫∫ |
√
γ(γ + 1)(x,y)|2
|x− y| dxdy

+ 1
2

∫∫
Λ×Λ

(
ρ− ργ(x)− λ2

0φ0(x)2
) (
ρ− ργ(y)− λ2

0φ0(y)2
)

|x− y| dxdy

+ Tr (−µ∆γ) + λ2
0Tr
(
K
(
γ −
√
γ(γ + 1)

))
,

(9.57)

where ργ(x) = γ(x,x) and K is again given as in (9.49). We must show that
we can make choices such that the first four terms on the right side above are
lower order than the energy, and can therefore be neglected.

We choose

γ = γε = (2π)−3

∫
|p|>ερ1/4

f(|p|)P⊥
φ0
|θp〉〈θp|P⊥

φ0
dp , (9.58)

where ε > 0 is a parameter which we will let tend to 0 at the end of the
calculation. Here P⊥

φ0
as before is the projection orthogonal to φ0 and this

time

f(|p|) =
1

2

(
p4 + 8πµ−1ρ

p2 (p4 + 16πµ−1ρ)
1/2

− 1

)
(9.59)

and
θp(x) =

√
nρ−1 exp(ip · x)φ0(x) . (9.60)

Note that nρ−1φ0(x)2 is 1 on most of Λ. We then again have the Berezin–Lieb
inequality as before. We also find that

ργ(x) = (2π)−3

∫
|p|>ερ1/4

f(|p|)dpnρ−1φ0(x)2
(
1 +O(ε−1ρ−1/4L−1)

)
= Aε(ρ/µ)

3/4nρ−1φ0(x)2
(
1 +O(ε−1ρ−1/4L−1)

)
, (9.61)

where Aε is an explicit function of ε. We now choose λ0 such that λ2
0 =

n(1−Aερ
−1/4µ−3/4), i.e., such that

λ2
0φ

2
0(x) + ργ(x) = nφ0(x)2(1 +O(ε−1ρ−1/2L−1)) ≈ ρ . (9.62)
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It is easy to see that the first term in (9.57) is of order ρL3(rL)−1 and the
fourth term in (9.57) is of order ρL3(ε−2 + ρr2). We may choose r, depending
on L, in such a way that after dividing by ρL3 and letting L → ∞ only the
error ε−2 remains. This allows choosing ε� ρ−1/8.

To estimate the second term in (9.57) we use Hardy’s inequality to deduce∫∫ |γ(x,y)|2
|x− y| dxdy ≤ 2(Tr γ2)1/2Tr (−∆γ2)1/2 , (9.63)

and these terms can be easily estimated using the Berezin–Lieb inequality in
the direction opposite from before, since we are interested now in an upper
bound. The third term in (9.57) is controlled in exactly the same way as the
second term. We are then left with the last two terms in (9.57). They are
treated in exactly the same way as for the two-component gas again using the
Berezin–Lieb inequality.
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