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1 Purpose of the Article

The heritage of Fourier is many-sided.
First of all Fourier is a physicist and a mathematician. The name Fourier

is familiar to mathematicians, physicists, engineers and scientists in general.
The Fourier equation, meaning the heat equation, Fourier series, Fourier co-
efficients, Fourier integrals, Fourier transforms, Fourier analysis, Fast Fourier
Transforms, are everyday terms. The Analytical Theory of Heat is recognized
as a landmark in science.

But Fourier is known also as an Egyptologist. He wrote an extensive in-
troduction to the series of books entitled “Description de l’Egypte”. He was
in Egypt when the Rosetta stone was discovered, and Jean-François Cham-
pollion, who deciphered the hieroglyphs, was introduced in the subject by
Fourier.

He was also an administrator and a politician. He took part in the French
Revolution (Arago said that he was a pure product of the French Revolution,
because he was supposed first to become a priest), he followed Bonaparte
and Monge in Egypt as “secrétaire perpétuel de l’Institut d’Egypte”, then
Bonaparte elected him as prefect in Grenoble where he led a very important
action in health and education, and he became a member of both Académie
des sciences and Académie Française when he settled back in Paris after the
fall of Napoleon. He was elected as Secrétaire perpétuel de l’Académie des
sciences and played a role for the recognition of statistics in France.

His scientific work does not consist only in the analytical theory of heat
and the tools that he created for this theory. He was interested in algebraic
equations and his work on the localization of the roots is the transition from
Descartes to Sturm; unfortunately he neglected Galois. He himself was ne-
glected for his work on inequalities, what he called “Analyse indéterminée”.
Darboux considered that he gave the subject an exaggerated importance and
did not publish the papers on this question in his edition of the scientific works
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of Fourier. Had they been published, linear programming and convex analysis
would be included in the heritage of Fourier.

Fourier was a learned man and a philosopher in the sense of the eighteenth
century. In a way he is a late representative of the Age of Enlightenment. On
the other hand he is the main reference for Auguste Comte, a starting point
for the French “positivism” of the nineteenth century.

I shall concentrate on a narrow but important part of his scientific heritage,
namely the expansion of a function into a trigonometric series and the formulas
for computing the coefficients. It is a way to enter the way of thinking of
Fourier and its relation to physics and natural philosophy, as well as to explore
the purely mathematical continuation of his work.

About the way of thinking of Fourier my general theme is that it has
been disregarded for a long time, in France if not in Germany, and that it
became very popular quite recently. This will be explained by a few facts and
quotations.

About the continuation of his work on trigonometric series I shall focus
on a very few topics according to their historical and present interest. A good
part of the Conference on “Perspectives in Analysis” can be considered as a
illustration of the heritage of Fourier.

The main part of the article is made of quotations and comments (2.1 Vic-
tor Hugo, 2.2 Jacobi, 2.3 Fourier, 2.4 Dirichlet and Riemann). Section 3 is
devoted to the Riemann theory of trigonometric series and Sect. 4 to the
convergence problem (4.1 The Carleson Theorem, 4.2 Variations About Con-
vergence). The end, Sect. 5, is about the coming back of Fourier.

2 A Few Quotations

2.1 Victor Hugo

Let me begin with Victor Hugo. In 1862, he was in exile in the island of
Guernsey, where he wrote a large part of his work. It is the year when his
novel “Les misérables” was published. This novel contains a lot of information
on life in France at the beginning of the nineteenth century. One chapter is
entitled “1817”. Joseph Fourier appears in this chapter with a short sentence:

Il y avait à l’académie des sciences un Fourier célèbre que la
postérité a oublié, et dans je ne sais quel grenier un Fourier obscur
dont la postérité se souviendra.

(Les Misérables, Victor Hugo 1862)

There was at the Académie des sciences a celebrated Fourier whose
name is forgotten now, and in some attic an obscure Fourier who will
be remembered in times to come.
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The first is Joseph Fourier and the second is the utopist Charles Fourier.
Clearly Victor Hugo did not consider Joseph Fourier as a “gloire nationale”.
He was a friend of François Arago, who succeeded Fourier as “secrétaire
perpétuel de l’Académie des sciences”. After the death of Fourier in 1830,
Arago wrote an obituary in this quality, and Victor Cousin as member of the
Académie Française. Both obituaries are very rich and interesting about the
life of Joseph Fourier, but both ignore or underestimate his work as a math-
ematician. Arago, who was elected very young and long before Fourier as a
member of the Academy of sciences, likely remembered that Lagrange was
very reluctant towards the decomposition of a function into a trigonometric
series and knew that the Prize given to Fourier in 1811 for the Analytical
Theory of Heat expressed reservations on this theory, both from the point
of view of generality and of rigor. Fourier had competitors like Cauchy and
Poisson. All that can explain why the obituary by Arago looked as a beautiful
burial.

Actually, the French did not recognize the importance of Joseph Fourier
until recently. There is a “rue Charles Fourier” in Paris, no street Joseph
Fourier. In the first editions of Encyclopaedia Universalis, the French equiv-
alent to Encyclopaedia Britannica, there was no article on Joseph Fourier; it
was still the case in the sixth edition in 1974. I already said that Darboux
published only a part of his work in mathematics, essentially the Analytical
Theory of Heat, and the Collected Works were never published. Until re-
cently, the life and works of Joseph Fourier did not attract much attention in
France, at least outside Grenoble; in Grenoble, the Institute of Mathematics
was called Institut Fourier a long time ago, and the whole university to which
it belongs was called Université Joseph Fourier in 1987. In 1998, an excellent
book appeared: “Fourier, créateur de la physique mathématique”, by a math-
ematician, Jean Dhombres, and a physicist, Jean-Bernard Robert. There are
signs that the name of Joseph Fourier is not forgotten anymore in France.

2.2 Jacobi

More important is the appreciation of Carl Gustav Jacobi, then 26, a few
weeks after the death of Fourier. In a letter to Legendre he wrote:

M. Poisson n’aurait pas dû reproduire dans son rapport une phrase
peu adroite de feu M. Fourier, où ce dernier nous reproche, à Abel
et à moi, de ne pas nous être occupés de préférence du mouvement
de la chaleur. Il est vrai que M. Fourier avait l’opinion que le but
principal des mathématiques était l’utilité publique et l’explication des
phénomènes naturels; mais un philosophe comme lui aurait dû saisir
que le but unique de la science, c’est l’honneur de l’esprit humain,
et que, sous ce titre, une question de nombres vaut autant qu’une
question de système du monde.

(Jacobi, lettre à Legendre, 2 juillet 1830)
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M. Poisson should not have reproduced an ill-timed appreciation
of the late M. Fourier, reproaching Abel and me for not paying enough
attention to the movement of heat. In truth, M. Fourier thought that
public interest and explanation of natural phenomena were the main
purpose of mathematics. But, as a philosopher, he should have known
that the unique purpose of science is the honour of the human mind,
and that, in this respect, a question about numbers is as valuable as
a question about the universe.

The key word “l’honneur de l’esprit humain” became a motto for pure
mathematics, in opposition with Fourier’s point of view. In particular, it gave
the title of a famous book of Jean Dieudonné.

2.3 Fourier

The point of view of Fourier is expressed very clearly in a few sentences of
the general introduction (“Discours préliminaire”) of his Analytical Theory
of Heat. Here is a selection of such sentences:

Les équations du mouvement de la chaleur, comme celles qui ex-
priment les vibrations des corps sonores, ou les dernières oscillations
ds liquides, appartiennent à une des branches de la science du calcul
les plus récemment découvertes. . . Après avoir établi ces équations
différentielles, il fallait en obtenir les intégrales; ce qui consiste à passer
d’une expression commune à une solution propre assujettie à toutes
les conditions données. Cette recherche difficile exigeait une analyse
spéciale, fondée sur des théorèmes nouveaux. . . La méthode qui en
dérive ne laisse rien de vague ni d’indéterminé dans les solutions.
Elle les conduit jusqu’aux dernières applications numériques, condi-
tion nécessaire de toute recherche, et sans lesquelles on n’arriverait
qu’à des transformations inutiles. . .

(Joseph Fourier [2], Discours préliminaire)

L’étude approfondie de la nature est la source la plus féconde des
découvertes mathématiques. . .

Les équations analytiques. . . s’étendent à tous les phénomènes
généraux. Il ne peut y avoir de langage plus universel et plus sim-
ple, plus exempt d’erreurs et d’obscurités, c’est-à-dire plus digne
d’exprimer les rapports invariables des êtres naturels.

Considérée de ce point de vue, l’analyse mathématique est aussi
étendue que la nature elle même. . . Son attribut principal est la clarté.
Elle n’a point de signes pour exprimer les notions confuses. Elle rap-
proche les phénomènes les plus divers et découvre les analogies secrètes
qui unissent. . . Elle nous les rend présents et mesurables, et semble
être une faculté de la raison humaine, destinée à suppléer à la brièveté
de la vie et à l’imperfection des sens. (ibid)
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Let me begin with the second excerpt:

The thorough study of nature is the most productive source of
mathematical discoveries.

Analytic equations apply to all general phenomena. There is no
simpler and more universal language, more free from errors, and more
able to express permanent relations between natural bodies.

From this point of view mathematical analysis is as large as nature
itself. Its main feature is clarity. It has no sign for confuse notions.
It connects the most diverse phenomena and expresses their hidden
analogies. It makes them accessible and measurable, and it seems to
be a faculty of the human brain, making up for the brevity of life and
imperfection of our senses.

This is a glorious definition of mathematical analysis. By the way, Fourier
was interested also by the human life and industry, and this, parallel to “the
thorough study of nature”, was another important source of his mathematical
investigations and discoveries.

Here is an approximative translation of the first excerpt:

The heat equation, as well as the equations concerning vibrating
strings or motions of liquids, belongs to a quite recent brand of analy-
sis [namely, PDE]. After establishing the equations one has to find the
solutions, that is, go from a general expression to a particular solution
subject to prescribed conditions. This investigation was difficult and
needed a new kind of analysis, based on new theorems. . . The cor-
responding method leaves nothing vague in the solutions. It leads to
final numerical applications, as any investigation should do in order
to be useful.

The Fourier approach is very well described in the Discours préliminaire:
start from natural phenomena and end with numerical conclusions. In between
“a new kind of analysis” is needed, what we call now Fourier analysis. This
sounds more modern now, with modeling and computers, than 50 years ago,
and explains the comeback of Fourier’s views.

2.4 Dirichlet and Riemann

The main continuators of Fourier were Dirichlet and Riemann. Dirichlet met
Fourier when he stayed in Paris, between 1822 and 1825, not yet 20 years old.
In 1829, he published the first general and correct statement about the con-
vergence of Fourier series. The beginning of this article was a tribute payed
to Fourier (“l’illustre géomètre qui a ouvert une nouvelle carrière aux ap-
plications de l’analyse”) and a criticism of the approach of the convergence
problem by Cauchy. For Dirichlet as for Fourier, the starting point was a func-
tion given in some way. Then came integral formulas providing the coefficients
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of a trigonometric series. The problem was to show that this trigonometric
series converges to the function.

The treatment of the problem by Dirichlet was a masterpiece of analysis,
and it led to the celebrated Dirichlet conditions. It led also to an important
remark: the given function needs to satisfy some conditions in order that
the integral formulas make sense. As a comment, Dirichlet introduced his
famous example of a function taking a value on rational points and another
on irrational points: for him as later for Riemann, such a function is not
integrable on any interval.

Since Dirichlet the convergence problem of Fourier series (that is, trigono-
metric series whose coefficients are given by the Fourier integral formulas) is
linked to two major questions: what do you mean by a function? What do
you mean by an integral?

Actually, the term Fourier series (“Fouriersche Reihe”) appears for the
first time in the dissertation of Riemann on trigonometric series, written in
1854. The beginning of the dissertation is a history of the subject from the
controversy on vibrating strings in the 18th century to the article by Dirich-
let, with comments and remarks, on analytic and harmonic continuation on
one hand, and ordinary and absolute convergence of numerical series on the
other, inspired by the mistakes of Cauchy. A few pages are devoted to ordi-
nary and generalized integrals. The Riemann integral of a bounded function
on a bounded interval is defined in a few lines, and (before Lebesgue!) Rie-
mann gives an explicit necessary and sufficient condition for a function to be
integrable.

A leitmotiv of Riemann’s dissertation is the recognition of the role of
Fourier. After the controversy on vibrating strings in which d’Alembert, Euler,
Daniel Bernoulli and Lagrange took part, “for almost 50 years the question of
representing an arbitrary function by an analytic expression did not make any
essential progress. Then a remark of Fourier gave this question a new look,
and a new epoch began in this part of mathematics, which proved soon of
exceptional importance in the development of mathematical physics. Fourier
remarked that, given a trigonometric series f(x) = . . . , the coefficients are
well-defined by the formulas an = . . . , bn = . . . . He observed that this
definition of the series makes sense for quite arbitrary functions f(x); taking
for f(x) a so-called discontinuous function (the ordinate of a broken line above
the abscissa x), he obtained a series that actually gave always the value of the
function.”

Then, after discussing why Lagrange was reluctant and Poisson hostile,
Riemann states that “it was Fourier who actually recognized the nature of
trigonometric series in a complete and correct way; since then they were ap-
plied many times in mathematical physics for representing arbitrary functions,
and one can be easily convinced in each particular case that the Fourier series
converges indeed to the value of the function.”

A general proof was needed. After the attempt by Cauchy, this was re-
alized by Dirichlet for a large class of functions, covering (Riemann said) all
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possible needs of physics. Nevertheless “the application of Fourier series is
not restricted to researches in physics; they are now applied successfully in a
domain of pure mathematics, the theory of numbers, where it seems that the
most important functions are not those considered by Dirichlet.” Here are the
exact quotations of Riemann.

Fast fünfzig Jahre vergingen, ohne dass in der Frage über die
analytische Darstellbarkeit willkürlicher Functionen ein wesenticher
Fortschritt gemacht wurde. Da warf eine Bemerkung Fourier’s ein
neues Licht auf diesen Gegenstand; eine neue Epoche in der Entwick-
lung dieses Teils der Mathematik begann, die sich bald auch äusserlich
in grossartigen Erweiterungen der mathematischen Physik kund tat.
Fourier bemerkte, dass in der trigonometrischen Reihe

f(x) = a1 sinx+ a2 sin 2x+ · · ·+ 1
2b0 + b1 cosx+ b2 cos 2x+ · · · ,

die Coefficienten sich durch die Formeln

an =
1

π

∫ π

−π

f(x) sinnxdx , bn =
1

π

∫ π

−π

f(x) cosnxdx ,

bestimmten lassen. Er sah, dass diese Bestimmungsweise auch an-
wendbar bleibe, wenn die Function f(x) ganz willkürlich sei; er setzte
für f(x) eine so genannte discontinuirliche Function (die Ordinate
einer gebrochenen Linie für die Abcissa x) and erhielt eine Reihe,
welche in der That stets den Wert der Function gab.

(Bernhard Riemann [9])

Durch Fourier was nun zwar die Natur der trigonometrischen Rei-
hen vollkommen richtig erkannt; sie wurden seitdem in der mathe-
matischen Physik zur Darstellung willkürlicher Functionen vielfach
angewandt, und in jedem einzelnen Falle überzeugte man sich leicht,
dass die Fouriersche Reihe wirklich gegen den Werth der Function
convergire. (ibid)

Zweitens aber ist die Anwendbarkeit der Fourierschen Reihen nicht
auf physikalische Untersuchungen beschränkt; sie ist jetzt auch in
einem Gebiete der seinen Mathematik, der Zahlentheorie, mit Er-
folg angewandt, and hier scheinen gerade diejenigen Funktionen, deren
Darstellbarkeit durch eine trigonometrische Reihe Dirichlet nicht un-
tersucht hat, von Wichtigkeit zu sein. (ibid)

3 The Riemann Theory of Trigonometric Series

However, the main and most original part of Riemann’s dissertation does not
follow the lines traced by Fourier and Dirichlet. Instead of starting from a



90 Jean-Pierre Kahane

function and looking for the properties of the Fourier series, in particular
the convergence problem, Riemann started from an everywhere convergent
trigonometric series and looked for the properties of the sum as a function. The
machinery that he created is known as the Riemann theory of trigonometric
series. It implies double formal integration of the given series and formal
multiplication by sufficiently regular series (or functions): viewed from now, it
is an anticipation of the treatment of Schwartzs distributions. More directly,
it anticipates the “smooth functions” of Zygmund and the “pseudomeasures”
and “pseudofunctions” of Kahane and Salem.

The Riemann theory of trigonometric series played a major role in the
history of mathematics because of two questions that Riemann left open and
that were solved by Georg Cantor: prove that, if an everywhere convergent
trigonometric series converges everywhere, its coefficients tend to zero, and,
more difficult, that if it converges everywhere to zero it is the null series. This
last statement is the “uniqueness theorem” of Cantor. Then Cantor looked
for an “extension”: is the result valid when the assumption is weakened in
the form that the series converges to zero out of a given set? Cantor proved
that it was the case for “reducible” sets (with countable closure). It was his
first opportunity to develop his theory of real numbers and real sets, so that
trigonometric series appear as the first historical source of the theory of sets.

Sets of uniqueness (for which the answer to the question is positive) and
sets of multiplicity (the opposite) became a favorite field for applying methods
coming from real and functional analysis, probability, number theory, and log-
ics. The main contributors were Lebesgue, Marcel Riesz, Young, Menchoff, Ra-
jchman, Bari, Zygmund, Marcinkiewicz, Salem, then R. Kaufman, T. Körner,
J.-P. Kahane, B. Mandelbrot, Y. Katznelson, B. Connes, and more recently
A.S. Kechris and A. Louveau, G. Debs and J. Saint-Raymond, J. Bourgain,
M. Ash and G. Wang. A brief history of the subject can be found in [4].

The uniqueness theorem of Cantor means that, given the sum of an every-
where convergent trigonometric series, the coefficients are well-defined. In or-
der to compute them, a new kind of Fourier formulas is needed, with a new
meaning for the integral. It is the purpose of the second “totalization” the-
ory of A. Denjoy, and his “Leçons sur le calcul des coefficients d’une série
trigonométriques” (1941, 1949) is a complete exposition of the subject, in
four books.

4 The Convergence Problem After Dirichlet

The Riemann theory and the Cantor uniqueness theorem are part of the
heritage of Fourier, but not in the main direction.

The main direction was well described by Riemann himself. It is the di-
rection explored by Dirichlet, the convergence problem.

Dirichlet believed that the Fourier series of a continuous function should
converge pointwise to the function, though he was not able to prove it. This
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was disproved only in 1873, by Paul du Bois-Raymond. He constructed a
continuous function whose Fourier series diverges at a given point. The con-
struction is a kind of “condensation of singularities”. Variations were given
by Lebesgue and by Fejer. Today it appears as a standard application of the
Banach–Steinhaus theorem, using the fact that the L1–norms of the Dirichlet
kernel (the so-called “Lebesgue constants”) are not bounded.

Is it possible to construct a continuous function whose Fourier series di-
verges everywhere? The question was still open in 1965, before the Carleson
theorem, and Katznelson and I proved that either it is the case, or the Fourier
series of any continuous function converges almost everywhere to the function.
The key was to construct a continuous function whose Fourier series diverges
on a given null-set.

4.1 The Carleson Theorem

The question was settled by the Carleson theorem of 1966: the Fourier series
of a continuous function converges to the function almost everywhere and
nothing better can be said for continuous functions [1]. But much more can
be said, by enlarging the class of functions. Carleson proved that the result
holds for L2 (1966), and R. Hunt for Lp with p > 1 (1967). On the other
hand, the result does not hold for L1, since Kolmogorov constructed an L1–
function whose Fourier series diverges almost everywhere (1922) and even
everywhere (1926). The situation near L1 was investigated recently and raises
some puzzling questions, as we shall see later.

In order to understand the importance of Carleson–Hunt in 1966–67, let us
consult the successive editions and impressions of Zygmund’s book “Trigono-
metric series” [11]. For general L2–functions, the best known result before 1966
was due to Kolmogorov (1922): given a Hadamard lacunary sequence (nk),
for example nk = 2k, the partial sums of order nk tend to the function almost
everywhere. For general Lp–functions, p > 1, the same holds but the proof re-
lies on a highly sophisticated machinery, the Littlewood–Paley theory (1938).
Two chapters of the second edition of Zygmund’s book are devoted to the
Littlewood–Paley theory and to what was considered as its main application,
the almost everywhere convergence of partial sums of order nk. The discovery
of Carleson changed the landscape in a drastic way. First, Kolmogorov’s re-
sult was not the best anymore. Second, due to Hunt’s extension of Carleson’s
theorem for all Lp, p > 1, the Littlewood–Paley theorem became obsolete as
a means to study the convergence problem. This was a shock for Zygmund.
There were several new “impressions” of the second edition of “Trigonometric
series” during his life-time, but no “third edition”. A “third edition” would
have been a complete rewriting of the book: Carleson–Hunt would have been
included, and many partials results and related methods dropped; there would
have been no reason to keep the Littlewood–Paley theory. Fortunately, Zyg-
mund gave up such a rewriting and the book was kept with its beautiful
exposition of the Littlewood–Paley theory, without Carleson–Hunt.
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The situation near L1 is in close relation with the asymptotic behaviour of
the partial sums Sn(f, x) when f belongs to L1. The first important result is
due to Hardy (1913): if f ∈ L1, Sn(f, x) = o(logn) almost everywhere. Hardy
conjectured that it was a best possible result. In the opposite direction, the
Kolmogorov example of 1926 establishes the existence of f ∈ L1 such that
lim |Sn(f, x)| = ∞ everywhere. For which increasing sequences �(n) is it true
that there exists f ∈ L1 such that lim(|Sn(f, x)|/�(n)) = ∞ everywhere?
Until a few years ago, the best result was that �(n) = o(log logn) works (Chen
1962). In 1999, Konyagin [8] went as far as �(n) = o((log n/ log log n)1/2), and
Bochkarev proved in 2003 that �(n) = o((logn)1/2) is sufficient when the circle
is replaced by the Cantor group. It is a challenging problem now to improve
either Hardy or Konyagin. A test case is �(n) = (log n)p with 1/2 < p < 1.

4.2 Variations About Convergence

The revival of Fourier series in the twentieth century is due in a large part to
other ways to consider the convergence problem.

In the first place one can introduce summability processes instead of ordi-
nary convergence. This way was opened by Fejer in 1900 and it led to positive
kernels, approximate identities, multipliers and convolution. The most impor-
tant notion, convolution, was formalized rather late and actually no formal
definition covers the real range of the notion. It became better understood
with the convolution algebras of Wiener, one of the sources of the normed
rings (Banach algebras) of Gelfand.

On the other hand convergence can be considered in spaces of functions,
and summability as well. This direction created a strong link between Fourier
series and the beginning of functional analysis. The initial impulse was the
Lebesgue integral (1901) and its application to Fourier series (1906), followed
by the Riesz–Fischer theorem (1907). The simple statement “Lp is complete”
(needing first the definitions of Lp–spaces and complete metric spaces) belongs
to the heritage of Fourier.

Fourier series are a prototype of orthogonal series, and orthogonal series
appear in all parts of analysis. The L2–convergence is guaranteed, but prob-
lems on almost everywhere convergence are quite interesting, parallel to those
on classical Fourier series.

Thousands of papers and hundreds of books being written on these sub-
jects, I shall not insist on them any more.

5 Fourier Comes Back

Let us go back to Fourier.
His first and typical use of trigonometric series was a solution of a problem

on the distribution of temperatures in a given solid body, a cylinder based on
the half strip −π/2 ≤ x ≤ π/2, 0 ≤ y < ∞, with −∞ < z < ∞. The
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horizontal basis (y = 0) is at temperature 1, the vertical edges (x = ±π/2) at
temperature 0. At the state of equilibrium the temperature u(x, y) satisfies

∂2u

∂x2
+
∂2u

∂y2
= 0 ,

with u(±π/2, y) = 0 and u(x, 0) = 1 (−π/2 < x < π/2). A formal solution is

u(x, y) = a1e
−y cosx+ a3e

−3y cos 3x+ a5e
−5y cos 5x+ · · · (1)

and the last requirement is expressed by the condition

1 = a1 cosx+ a3 cos 3x+ a5 cos 5x+ · · · (−π/2 < x < π/2) . (2)

Before writing the integral formulas for the coefficients, Fourier computed
them in a strange way: differentiation, truncation, solution of a linear system.
Darboux said that this was a natural method and he was right. What Fourier
did was to look at trigonometric polynomials 1−

∑
an cosnx (n odd) of a given

degree that are as flat as possible at 0, and compute the limits of the an when
the degree increases to infinity, namely (−1)n+14/πn. The derivatives of these
trigonometric polynomials are as flat as possible at 0, odd, and their integral
on (−π/2, 0) is 1. In the sense of distributions they converge to 2(δ−π/2−δπ/2),
and this is enough in order to establish (1) when y > 0. The proof of (2) is
more delicate.

Of course, Fourier did not know the theory of distributions. But he had a
flair for the meaning of computations, and it may be wise to try to understand
what he did before condemning his methods and statements.

After giving the integral formulas Fourier observes that, due to the expo-
nential factors, the series (1) is very rapidly convergent when y > 0 (“très
convergente”, “extrèment convergente”). About series (2) he says that con-
vergence can be proved (“on démontre rigoureusement”) and actually he gives
a correct proof later in the chapter.

Then he extends the procedure to other functions, gives the Fourier formu-
las for general 2π–periodic functions, and states that this applies to arbitrary
functions and gives trigonometric series which always converge to the func-
tions. In a formal way this is wrong, and we just discussed some of the main
contributions of mathematicians in order to find the correct notions and state-
ments. Fourier was criticized, by Darboux in particular, for being inaccurate
in some of his statements, and that explains in part why he was so long in
disfavour with French people. But Fourier deserves to be appreciated not be-
cause he proved theorems and made perfect statements, but in the way he
launched a long-term program in mathematics.

Examples can be found in all parts of The Analytical Theory of Heat,
of statements that were considered as absurd and may also sound prophetic.
Here is one ([2] Chap. III, pp. 235). From the integral formulas for coefficients
Fourier derives the formula
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F (x) =
1

π

∫ π

−π

F (α)dα

(
1

2
+
∑

i

cos i(x− α)

)
.

The comment of Darboux is that the parenthesis has no possible meaning.
However, here is Fourier’s explanation:

L’expression (. . . ) représente une fonction de x et de α telle que,
si on la multiplie par une fonction quelconque F (α) et si, après avoir
écrit dα, on intégre entre les limites α = −π et α = π, on aura changé
la fonction proposée F (α) en une pareille fonction de x, multipliée par
la demi-circonférence. On verra par la suite quelle est la nature de ces
quantités, telles que 1/2+

∑
cos i(x−α), qui jouissent de la propriété

que l’on vient d’énoncer.

Clearly, I believe, Fourier had the intuition of the Dirac measure and the
way to use it (in particular, in later sections, derivation and representation as
a Fourier integral).

It should be noted that the first exposition by Laurent Schwartz of his
theory of distributions is an article (1946) entitled “Généralisation de la no-
tion de fonction, de dérivation, de transformation de Fourier, et applications
mathématiques et physiques” [10]. In a way, the theory of distributions be-
longs to the heritage of Fourier.

I shall be brief on more recent and spectacular reincarnations of Fourier
series. The Fast Fourier Transform of Cooley and Tuckey (1965), presented
as “An algorithm for the machine calculation of complex Fourier series”, has
invaluable applications in all parts of science, from astrophysics to biology.

The wavelets of Yves Meyer (1985) came from physicists and engineers,
and soon created a common ground for specialists of different fields of science
and industry. The story is well known and still in progress1 and there is no
point in telling it again.

As far as the heritage of Fourier is concerned, the main point is that FFT
and wavelets testify that the philosophy of Fourier, expressed in the excerpts
of the Discours préliminaire I gave above, makes a spectacular come-back.

I indicated at the beginning that I would restrict the heritage of Fourier
to his work as a mathematician and, to be more specific, to Fourier series. I
chose, actually, a very few points of interest in the history of Fourier series,
and I hardly mentioned one open problem. My oral communication was not
organized exactly in that way. But I feel better now to contribute to “Perspec-
tives in Analysis” by a reflection on the past than by a list of open problems
according to my taste. The past is very rich and the way in which it echoes
the most recent research in mathematics is actually part of “Perspectives in
Analysis”.

1 See Jaffard et al. [3] for example.
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