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Summary. Among seven problems, proposed for the XXI century by the Clay
Mathematical Institute [1], there are two stemming from physics. One of them is
called “Yang–Mills Existence and Mass Gap”. The detailed statement of the prob-
lem, written by A. Jaffe and E. Witten [2], gives both motivation and exposition
of related mathematical results, known until now. Having some experience in the
matter, I decided to complement their text by my own personal comments1 aimed
mostly to mathematical audience.

1 What is the Yang–Mills Field?

The Yang–Mills field bears the name of the authors of the famous paper [4],
in which it was introduced into physics. From a mathematical point of view it
is a connection in a fiber bundle with compact group G as a structure group.
We shall treat the case when the corresponding principal bundle E is trivial

E = M4 ×G

and the base M4 is a four-dimensional Minkowski space.
In our setting it is convenient to describe the Yang–Mills field as a one-form

A on M4 with the values in the Lie algebra G of G:

A(x) = Aa
µ(x)tadxµ .

Here xµ, µ = 0, 1, 2, 3 are coordinates on M4; t
a, a = 1, . . . ,dimG – basis

of generators of G and we use the traditional convention of taking sum over
indices entering twice.

Local rotation of the frame

ta → h(x)tah−1(x) ,

1 The first variant was published in [3]. In this new version more details are given
in the description of renormalization.
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where h(x) is a function onM4 with the values inG induces the transformation
of the A (gauge transformation)

A(x) → h−1(x)A(x)h(x) + h−1dh(x) = Ah(x) .

The important equivalence principle states that a physical configuration is not
a given field A, but rather a class of gauge equivalent fields. This principle
essentially uniquely defines the dynamics of the Yang–Mills field.

Indeed, the action functional, leading to the equation of motion via the
variational principle, must be gauge invariant. Only one local functional of
second order in derivatives of A can be constructed.

For that we introduce the curvature – a two-form with values in G

F = dA+A2 ,

where the second term in the RHS is the exterior product of a one-form and
a commutator in G. In more detail

F = F a
µνt

adxµ ∧ dxν ,

where
F a

µν = ∂µAν − ∂νAµ + fabcAb
µA

c
ν

and fabc are structure constants of G entering the basic commutation relation

[ta, tb] = fabctc .

The gauge transformation of F is homogenous

F → h−1Fh ,

so that the 4–form
A = trF ∧ F ∗ = F a

µνF
a
µνd4x

is gauge invariant. Here F ∗ is a Hodge–dual to F with respect to the
Minkowskian metric and d4x is corresponding volume element. It is clear
that S contains the derivatives of A at most in second order. The integral

S =
1

4g2

∫
M4

A (1)

can be taken as an action functional. The positive constant g2 in front of the
integral is a dimensionless parameter which is called a coupling constant. Let
us stress that it is dimensionless only in the case of four-dimensional space–
time.

Recall that the dimension of a physical quantity is in general a product
of powers of three fundamental dimensions – length [L], time [T] and mass
[M], with usual units of cm, sec and gr, respectively. However, in relativistic
quantum physics we have two fundamental constants – the velocity of light c
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and the Planck constant � and we use the convention that c = 1 and � = 1,
reducing the possible dimensions to the powers of length [L]. The Yang–Mills
field has dimension [A] = [L]−1, the curvature [F ] = [L]−2, the volume element
[d4x] = [L]4, so that an integral in S is dimensionless. Now, all of S should be
dimensionless, as it has the same dimension as �, thus g2 has dimension zero.

We see that S contains terms in powers of A of degrees two, three and
four

S = S2 + S3 + S4 ,

which means that the Yang–Mills field is self-interacting.
Among many approaches to quantizing the Yang–Mills theory the most

natural is that of the functional integral. Indeed, the equivalence principle is
taken into account in this approach by integrating over classes of equivalent
fields, so we shall use this approach in what follows. There is no place here
to describe in detail this purely heuristic method of quantization, moreover it
will hardly lead to a solution of the Clay Problem. However, it will be very
useful for an intuitive explanation of this problem, which we shall do here.

2 What is Mass?

It was the advent of special relativity which lead to a natural definition of
mass. A free massive particle has the following expression of the energy ω in
terms of its momentum p

ω(p) =
√
p2 +m2 ,

where m is called mass. In the quantum version mass appears as a parameter
(one out of two) of the irreducible representation of the Poincaré group (the
group of motion of the Minkowski space).

In quantum field theory this representation (insofar as m) defines a one-
particle space of states Hm for a particular particle entering the full spectrum
of particles. The state vectors in such a space can be described as functions
ψ(p) of momentum p and ω(p) defines the energy operator.

The full space of states has the structure

H = C⊕
(∑

i

⊕Hmi

)
⊕ · · · ,

where the one-dimensional space C corresponds to the vacuum state and · · ·
means spaces of many-particles states, being tensor products of one-particle
spaces. In particular, if all particles in the system are massive the energy
has zero eigenvalue corresponding to vacuum and then positive continuous
spectrum from minmk to infinity. In other words, the least mass defines the
gap in the spectrum. The Clay problem requires the proof of such a gap for
the Yang–Mills theory.
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We see an immediate difficulty. In our units m has dimension [m] = [L]−1,
but in the formulation of the classical Yang–Mills theory no dimensional pa-
rameter entered. On the other hand, the Clay Problem requires that in the
quantum version such parameter must appear. How come?

I decided to write these comments exactly for the explanation how quan-
tization can lead to the appearance of the dimensional parameter when clas-
sical theory does not have it. This possibility is connected with the fact that
quantization of the interacting relativistic field theories leads to infinities –
appearance of the divergent integrals which are dealt with by the process of
renormalization. Traditionally these infinities were considered as a plague of
the Quantum Field Theory. One can find very strong words denouncing them,
belonging to the great figures of several generations, such as Dirac, Feynmann
and others. However I shall try to show that the infinities in the Yang–Mills
theory are beneficial – they lead to the appearance of the dimensional para-
meter after the quantization of this theory.

This point of view was already emphasized by R. Jackiw [5] but to my
knowledge it is not shared yet by other specialists.

Sidney Coleman [6] coined the name “dimensional transmutation” for this
phenomenon, which I am now going to describe. Let us see what all this means.

3 Dimensional Transmutation

The most direct way to introduce the functional integral is to consider the gen-
erating functional for the scattering operator. This functional depends on the
initial and final configuration of fields, defined by the appropriate asymptotic
condition. In a naive formulation these asymptotic configurations are given as
solutions Ain and Aout of the linearized classical equations of motion. Through
these solutions the particle interpretation is introduced via well defined quan-
tization of the free fields. However, the more thorough approach leads to the
corrections, which take into account the self-interaction of particles. We shall
see below how it is realized in some consistent way.

Very formally, the generating functional W (Ain, Aout) is introduced as
follows

eiW (Ain,Aout) =

∫
A→Ain,t→−∞

Aout,t→+∞
eiS(A)dA , (2)

where S(A) is the classical action (1). The symbol dA denotes the integration
and we shall make it more explicit momentarily.

The only functional integral one can deal with is a Gaussian. To reduce
(2) to this form and, in particular, to identify the corresponding quadratic
form we make a shift of the integration variable

A = B + ga ,
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where the external variable B should take into account the asymptotic bound-
ary conditions and the new integration variable a has zero incoming and out-
going components.

We can consider both A and B as connections, then a will have only
homogeneous gauge transformation

a(x) → h−1(x)ah(x) .

However, for fixed B the transformation law for a is nonhomogeneous

a→ ah =
1

g
(Ah −B) . (3)

Thus the functional S(B + a) − S(B) is constant along such “gauge orbits”.
Integration over a is to take this into account. We shall denote W (Ain, Aout)
as W (B), keeping in mind that B is defined by Ain, Aout via some differential
equation. Here is the answer detailing the formula (2)

eiW (B) = eiS(B)

∫
exp i

{
S(B + a)− S(B) +

∫
1

2
tr(∇µaµ)2dx

}
× det

(
(∇µ + gaµ)∇µ

)∏
x

da(x) .
(4)

Here we integrate over all variables a(x), considered as independent coordi-
nates. Furthermore, ∇µ is a covariant derivative with respect to connection
B

∇µ = ∂µ +Bµ .

The quadratic form 1
2

∫
(∇µaµ)2dx regularizes the integration along the gauge

orbits (3) and the determinant provides the appropriate normalization. This
normalization was first realized by V. Popov and me [7] with additional clar-
ification by ’t Hooft [8]. I refer to the physical literature [9], [10] for all expla-
nations. One more trick consists in writing the determinant in terms of the
functional integral

det(∇µ + gaµ)∇µ =

∫
exp i
{∫

tr
(
(∇µ + gaµ)c̄∇µc

)
dx
}∏

x

dc̄(x)dc(x)

over the Grassman algebra with generators c̄(x), c(x) in the sense of Berezin
[11]. These anticommuting field variables play only accessory role, there are
no physical degrees of freedom corresponding to them.

The resulting functional which we should integrate over a(x), c̄(x), c(x)
assumes the form

exp i
{1

2
(M1a, a) + (M0c̄, c) +

1

g
Γ1(a)

+ gΓ3(a, a, a) + g2Γ4(a, a, a, a) + gΩ3(c̄, c, a)
}
, (5)
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where we use short notations for the corresponding linear, quadratic, cubic
and quartic forms in variables a and c̄, c. The linear form Γ1(a) is defined via
the classical equation of motion for the field Bµ(x)

Γ1(a) =

∫
tr(∇µFµν(x)aν (x))dx , (6)

the forms Γ3, Γ4 and Ω3 are given by

Γ3 =

∫
tr∇µaν [aµ, aν ]dx , (7)

Γ4 =
1

4

∫
tr
(
[aµ, aν ]

)2
dx , (8)

Ω3 =

∫
tr∇µc̄[aµ, c]dx (9)

and the operators M1 and M0 of the quadratic forms look like

M1 = −∇2
ρδµν − 2[Fµν , ·] , (10)

M0 = −∇2
ρ . (11)

The equation on the external field B in the naive approach would be the clas-
sical equation of motion, assuring that Γ1(a) vanishes. This would correspond
to the stationary phase method. However, we shall make a different choice
taking into account the appropriate quantum corrections.

It is instructive to use the simple pictures (Feynman diagrams) to visualize
the objects (6)–(9). For the forms Γ1, Γ3, Γ4 and Ω3 they look as vertices with
external lines, the number of which equals the number of fields a(x), c̄(x), c(x)

(12)

Γ1 Γ3 Γ4 Ω3

The Green functions G1 and G0 for operators M1 and M0 are depicted as
simple lines

(13)

G1 G0

Each end of the lines in (12) and (13) bears indices x, µ, a or x, a characterizing
the fields aa

µ(x) and c̄a(x), cb(x). The arrow on line distinguishes the
fields c̄ and c. Note, that Green functions are well defined due to homogeneous
boundary conditions for a(x), c̄(x), c(x).

Now simple combinatorics for the Gaussian integral which we get from
(4) expanding the exponent containing vertices in a formal series, gives the
following answer
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exp iW (B) = exp iS(B)(detM1)
−1/2 detM0

× exp{
∑

connected closed graphs} ,
(14)

where we get a graph by saturating the ends of vertices by lines, corresponding
to the Green functions. The term “closed” means that a graph has no external
lines.

We shall distinguish weakly and strongly connected graphs. A weakly con-
nected graph can be made disconnected by crossing one line. (In physical
literature the term “one particle reducible” is used for such graph.)

The quantum equation of motion, which we impose on B, can be depicted
as

+ = 0 , (15)

where the second term in the LHS is a sum of strongly connected graphs with
one external line. In the lowest approximation it looks as follows

+ g + g = 0 .

With this understanding the expression for W (B) is given by the series in the
powers of the coupling constant g2

W (B) =
1

g2

∫
tr(F ∧ F ∗) + ln detM0 −

1

2
ln detM1

+ g2
(

+ +
)

+

∞∑
k=3

g2(k−1)(strongly connected graphs with k loops) . (16)

From now on we use a “Euclidean trick” here, changing x0 to ix0, so that
M0 and M1 become elliptic operators. This answer can be considered as an
alternative definition of the functional integral (2). Two natural questions can
be asked:

1. Are the individual terms in (16) well defined?
2. Does the series converge?

Whereas we know almost nothing about the second question, the answer to
the first one is quite instructive. Here we are confronted with the problem of
divergences and renormalization.

Let us turn to the zero order in g2 term in (16). It is given by determinants
of operators M1 and M0, which clearly diverge and must be regularized. The
trivial regularization is the subtraction of an infinite constant, corresponding
to the dets for B = 0. Then we can use the formula

ln detMi(B)− ln detMi(0) = −
∫ ∞

0

dt

t
Tr
(
e−Mi(B)t − e−Mi(0)t

)
, (17)
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where i = 0, 1. The Green functions Di(x, y; t) of the parabolic equations

dDi

dt
+MiDi = 0, Di|t=0 = Iδ(x− y) (18)

has the well known expansion for small t

D(x, y; t) =
1

4π2t2
e−

|x−y|2

4t (a0(x, y) + ta1(x, y) + t2a2(x, y) + . . .) ,

where the coefficients a0, a1, a2, . . . are functionals of B. (Recall that we deal
with 4–dimensional space–time.) The trace in (17) means∫

trD(x, x; t)dx . (19)

The coefficient a0 is the holonomy for connection B along the straight line,
connecting points x and y. Clearly a0(x, x) equals unity and so its contribution
disappears from (17) due to the subtraction of exp(−M(0)t). Now a1(x, x)
for the operator M0 vanishes and same is true for tr a1(x, x) for M1. So what
remains is the contribution of a2 to (17) which diverges logarithmically in
the vicinity of t = 0. The expansion is valid for small t, so we divide the
integration in (17) as ∫ ∞

0

=

∫ µ

0

+

∫ ∞

µ

(20)

and regularize the first integral as∫ µ

ε

dt

t

∫
tr a2(x, x)dx

+

∫ µ

0

dt

t

∫ (
trD(x, x; t)− trD(x, x; t)|B=0 − tr a2(x, x) +O(t2)

)
dx .

In this way we explicitly separated the infinite part proportional to ln ε/µ.
(In the physics literature one uses large momentum cutoff Λ instead of short
auxiliary time ε; the ln ε/µ looks like −2 lnΛ/m, where m has the dimension
of mass.)

Now observe that
∫

tr a2(x, x)dx is proportional to the classical action∫
tr(F ∧ F ∗). This follows from general considerations of gauge invariance

and dimensionlessness, but can also be found explicitly together with the
corresponding numerical coefficient. We get

W (B) =
1

4

(
1

g2
+

11

48π2
C(G) ln

ε

µ

)∫
tr(F ∧ F ∗)

+ finite zero order terms + higher order loops .

(21)

Here C(G) is a value of a Casimir operator for group G in the adjoint repre-
sentation.



Mass in Quantum Yang–Mills Theory 71

Now we invoke the idea of renormalization à la Landau and Wilson: the
coupling constant g2 is considered to be a function of the regularizing para-
meter ε in such a way that the coefficient in front of the classical action stay
finite when ε→ 0

1

g2(ε)
+ β ln

ε

µ
=

1

g2ren
, β =

11

3

C

16π2
. (22)

This can be realized only if the coefficient β is positive, which is true in the
case of the Yang–Mills theory. Of course g2(ε) → 0 in this limit.

A similar investigation can be done for the quantum equation of motion
(15). The one loop diagrams are divergent, but the infinite term is proportional
to the classical equation of motion, so that (15) acquires the form

∇µFµν + g2ren(finite terms) = 0 .

Higher loops contribute corrections to the renormalization (22), however their
influence is not too drastic. I can not explain this here and mention only that it
is due to the important general statement, according to which the logarithmic
derivative of g2(ε) over ε does not depend on ε explicitly

dg2(ε)

d ln ε
= β
(
g2(ε)

)
,

where
β(g) = βg3 +O(g5) .

This relation is called the renormalization group equation; it follows from it
and the requirement that the renormalized charge does not depend on ε and
that the correction to (22) have form ln ln ε/µ and lower.

We stop here the exposition of the elements of quantum field theory and
return to our main question of mass. We have seen that the important feature
of the definition of W (B) and the equations of motion was the appearance
of the dimensional parameter. Thus the asymptotic states, which characterize
the particle spectrum, depend on this parameter and can be associated with
massive particles. Let us stress that the divergences are indispensable for this,
they lead to the breaking of the scale invariance of the classical theory.

In our reasoning it was very important that divergences have logarithmic
character, which is true only for the 4–dimensional space–time. All this and
positivity of the coefficients β in (22) distinguishes the Yang–Mills theory
as a unique quantum field theory, which has a chance to be mathematically
correct.

It is worth to mention that the disenchantment in quantum field theory
in the late fifties and sixties of the last century was connected with the prob-
lem of the charge renormalization. In the expressions, similar to (22), for all
examples, fashionable at that time, the coefficient β was negative. This was
especially stressed by Landau after investigation of the most successful exam-
ple of quantum field theory – quantum electrodynamics. The realization in the
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beginning of seventies of the fact that in Yang–Mills theory the coefficient β
is positive, which is due to ’t Hooft, Gross, Wilchek and Politzer, changed the
attitude of physicists towards the quantum theory and led to the formulation
of Quantum Chromodynamics. (This dramatic history can be found in [12].)

Conclusion

We have seen that the quantization of the Yang–Mills field theory leads to a
new feature, which is absent in the classical case. This feature – “dimensional
transmutation” – is the trading of the dimensionless parameter g2 for the
dimensional one µ with dimension [L]2. We have also seen that on a certain
level of rigour the quantization procedure is consistent. This gives us hope
that the Clay problem is soluble. Of course, the real work begins only now. I
believe that a promising direction is the investigation of the quantum equation
of motion, which should enable us to find solutions with nontrivial mass. One
possibility will be the search for solitonic solutions. Some preliminary formulas
in this direction can be found in [13].

I hope, that this text could be stimulating for a mathematician seriously
interested in an actual problem of the modern theoretical physics.
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