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1 Introduction

The Mumford–Shah functional was introduced in [20] as a tool for image
segmentation. In this context, we are given a simple domain Ω (the screen)
and a bounded function g on Ω (representing the image), and we look for a
simplified approximation u of g. Here simplified means that we would like u to
have only slow variations on Ω, except that we want to allow jumps on a nice
singular set K, which we think of as a set of boundaries. In the good cases,
it is hoped that the pair (u,K), or even K or u alone, will retain important
information on g and drop less interesting details or noise.

Mumford and Shah proposed to get image segmentations by minimizing
the following functional, which we already define on Rn to save time (but so
far image processing corresponds to n = 2). Set

J(u,K) = Hn−1(K) +

∫
Ω\K

|∇u|2 +

∫
Ω\K

|u− g|2 , (1)

where we restrict to pairs (u,K) such that K is a closed set in Ω, with finite
Hausdorff measure Hn−1(K) of codimension 1, and u lies in the Sobolev space
W 1,2(Ω \K), which means that it has a derivative in L2 on that open set. For
the purpose of this lecture, it would be enough to restrict to u ∈ C1(Ω \K),
because this is the case for minimizers, but this would be less natural.

The three terms in the functional correspond to the three constraints on
u that were mentioned above, except perhaps that Hn−1(K) does not really
measure how simple K is. We shall return to this soon. In principle one should
multiply two of the three terms by tuning constants, but we can normalize
out one of them by multiplying u and g by a constant, and the other one by
dilating everything.

The existence of pairs (u,K) for which J(u,K) is minimal (we shall
call them minimizers) is far from trivial, because we can easily find min-
imizing sequences {(uk,Kk)} that converge to pairs (u,K), but for which
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Hn−1(K) > lim supk→+∞H
n−1(Kk). Nevertheless, minimizers always exist;

this was proved by Ambrosio [2] and De Giorgi, Carriero, Leaci [15].
Then we can ask what minimizing pairs look like. Let us first observe that

when K is fixed, minimizing J(u,K) in terms of u is rather simple. The two
last terms of the functional are convex in u, so there is a unique minimizer; in
addition this minimizer is rather regular (away from K), for instance because
it satisfies the elliptic equation ∆u = u − g on Ω \K. As for regularity near
K, the best way to get is to show first that K is nice. In this respect, it
may help the reader to think about the special case of dimension 2 and the
simpler local minimization of

∫
Ω\K |∇u|2 in Ω \ K. In this case, we can use

the fact that energy integrals are conformally invariant to map K locally into
something nicer (like a line) by a conformal mapping ψ; the regularity of u
will then depend mostly on the size of ψ′. The general case (with the extra
term

∫
|u− g|2 and in higher dimensions) is not very different.

So the main problem is the regularity of the singular set K. Observe that
if we add a set of Hn−1–measure 0 to K, we do not change J(u,K) but
our description of K may become more complicated. For this reason we shall
restrict to reduced minimizers, i.e., minimizers (u,K) for which we cannot
find K1 ⊂ K, K1 	= K, such that u has an extension in W 1,2(Ω \K1). It is
rather easy to see that for each minimizer (u,K) there is a reduced minimizer
(u1,K1) such that K1 ⊂ K and u1 is an extension of u.

In dimension n = 2, Mumford and Shah conjectured that if (u,K) is a
reduced minimizer for J and Ω is bounded and smooth, K is a finite union of
C1 arcs of curves, that may only meet by sets of three, at their ends, and with
angles of 120◦. The reader should not pay too much importance to the precise
statement, with the C1 curves. The point is to get some minimal amount of
regularity; once we know that K is a C1 curve near a point, it is easy to get
additional regularity (like C1,1, see [5], and even better if g is smooth).

In higher dimensions, it is reasonable to expect that there is a set of
codimension 2 in K out of which K is locally a C1 hypersurface, but there is
no very precise conjecture on the shape of that set of codimension 2. We shall
return to this in Sect. 6.

Many partial results are known. We shall try to describe a few in the next
sections, but the main goal of this text is rather to convince the reader that
there are many interesting open questions besides the celebrated Mumford–
Shah conjecture above; in addition, some of them could even be easy.

Before we move to a rapid discussion of known regularity results, let us
observe that they are also good news for image segmentation. First they mean
that even though we only put the term Hn−1(K) in the functional, singular
sets of minimizers are actually smoother than this term suggest, and in par-
ticular they look like what we would normally think boundaries in an image
should look like. If minimizers for J had often been unrectifiable Cantor sets, J
would probably have been much less used for image segmentation. Also, good
regularity properties for minimizers probably mean better resistance to noise
(because the functional cannot render noise, even if it tries to), and should



Open Questions on the Mumford–Shah Functional 39

help with the computations of minimizers, both because it should make them
more stable and because we already know what to look for.

Nonetheless, it seems fair to say that J and its variants are a little less
used in image segmentation nowadays, probably because people prefer to use
algorithms that include some a priori knowledge, often of a statistical nature,
on the images to be treated. See [18] and the references therein for more
information on image processing.
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2 First Regularity Results

Let (u,K) be a reduced minimizer for J in a domain Ω ⊂ Rn. A first remark-
able property of K is its local Ahlfors–regularity: there is a constant C, that
depends only on n and ||g||∞, such that

C−1rn−1 ≤ Hn−1(K ∩B(x, r)) ≤ Crn−1 (2)

when x ∈ K, 0 < r ≤ 1, and B(x, r) ⊂ Ω. The second inequality is very
easy (and does not require B(x, r) to be contained in Ω): simply consider
the competitor (v,G) obtained by keeping G = K and v = u out of B(x, r),
setting K = ∅ and v = 0 in B(x, r), and adding ∂B(x, r) ∩ Ω to G to allow
jumps across ∂B(x, r). Thus we take G = [K \B(x, r)]∪ [∂B(x, r)∩Ω]. When
we write that J(u,K) ≤ J(v,G), we get that

Hn−1(K ∩B(x, r)) +

∫
Ω∩B(x,r)\K

|∇u|2

≤ Hn−1(∂B(x, r) ∩Ω) +

∫
B(x,r)∩Ω

|g|2 ≤ Crn−1 + Crn||g||2∞ , (3)

which yields the second inequality in (2) when r ≤ 1.
The first inequality in (2) is due to Dal Maso, Morel, and Solimini [8]

when n = 2, and to Carriero and Leaci [7] in higher dimensions, and it is
more subtle. It means that it does not help to put just a small amount of K
somewhere, because it will not be enough to create big jumps across K and
release the tension. That is, suppose we have a ball B such that Hn−1(K∩B)
is very small; we want to say that you could do better by removing K ∩ B
from the singular set. This will allow you to save Hn−1(K ∩ B) in the first
term of J , but of course you will have to replace u in B with a function ũ that
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does not jump across K ∩B. A good choice is to take the harmonic extension
of the values of u on ∂B. Then we can estimate how much larger

∫
|∇ũ|2 has

to be (one shows that the contributions that come from the |u− g| term can
be neglected). An integration by parts shows that the price we have to pay is
essentially the integral on K ∩B of a product Jump(u)× ∂

�

u
∂n , of the jump of u

across K ∩B times the derivative of ũ in a direction perpendicular to K. The
computations can essentially be done like this when n = 2, and this is the
essence of the proof in [8]. The point is that the jump of u can be estimated,
and it is at most CH1(K ∩B)1/2. Then the integral of Jump(u)× ∂

�

u
∂n is much

smaller than H1(K ∩B), and we get the desired contradiction. When n > 2,
complications appear, in particular because we may not be able choose B so
that ∂B ∩K is empty, and the proof of [7] uses a compactness argument.

Notice that (2) is already good to know for image processing.
We talked a lot about (2) because it is a very useful tool for proving other

estimates, for instance because it says that K is a space of homogeneous type.
Let us just give an example. Set

ωp(x, r) = r1−2n/p

{∫
B(x,r)\K

|∇u|p
}2/p

, (4)

for 1 ≤ p ≤ 2, x ∈ K, and B(x, r) ⊂ Ω; do not pay too much attention to
the normalizations, the main point is to have a dimensionless quantity. The
trivial estimate (3) says that ω2(x, r) ≤ C for r ≤ 1, but with (2), (3), Hölder,
and Fubini, one can readily show the Carleson measure estimate∫

y∈K∩B(x,r)

∫ r

t=0

ωp(y, t)
dHn−1(y)dt

t
≤ Cpr

n−1 , (5)

for x ∈ K and 0 < r ≤ 1 such that B(x, 3r) ⊂ Ω, provided that we take
p < 2 [12]. It often turns out that replacing 2 with a smaller exponent p is a
very small price to pay, compared to the fact that (5) gives lots of pairs such
that ωp(y, t) is as small as we want. For instance (5) is a very good starting
point for the results quoted just below; the good balls mentioned below are
precisely balls where ωp(y, Ct) is small.

Next (and omitting quite a few interesting results), K is locally uniformly
rectifiable and contains big pieces of Lipschitz graphs ([12], [14]). But even
more is true ([9], [3], [21]): we can find lots of balls where K is C1. More
precisely, there is a constant C such that, for each x ∈ K and r ∈ (0, 1] such
that B(x, r) ⊂ Ω, we can find y ∈ K ∩B(x, r/2) and t ∈ [r/C, r/2] such that
K ∩ B(y, t) is the intersection of B(y, t) with the graph of a 10−2–Lipschitz
and C1 function.

As a consequence there is a small set, in fact of Hausdorff dimension less
than n− 1, out of which K is locally nice and C1. But we would like to know
more about that small set, and the way the different pieces are attached to
each other.
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See [4], [10], [13], [18] and their references for proofs and lots of other
regularity results on K. Here we shall just say a little more about a result of
Bonnet [5]:

Fact 2.1. In dimension 2, every isolated connected component of K is a finite
union of C1 curves.

The reason why we mention this is because the approach that led to it is
very important. Notice that Fact 2.1 is much more precise than the C1 result
mentioned above, but only if we can find an isolated component.

3 Blow-up Limits and Global Minimizers

We start with a very simple observation on dilation invariance. Pick a point
x ∈ Ω (typically, x ∈ K) and a small radius t, and dilate everything so
that B(x, t) becomes the unit ball. That is, set Ωx,t = t−1(Ω − x), Kx,t =
t−1(K −x), gx,t(y) = 1√

t
g(x+ ty) for y ∈ Ωx,t, and ux,t(y) = 1√

t
u(x+ ty) for

y ∈ Ωx,t \Kx,t. We divided by
√
t so that the two first terms of J in (1) would

scale the same way. A simple computation shows that if (u,K) minimizes J ,
(ux,t,Kx,t) is a minimizer for Jx,t, where

Jx,t(v,G) = Hn−1(G) +

∫
Ωx,t\G

|∇v|2 + t2
∫

Ωx,t\G

|v − gx,t|2 . (6)

Notice that when t gets small, the third term becomes less and less im-
portant, even though ||g||2∞ is divided by t. This corresponds to the (desired
for image segmentation) effect that the third term of J in (1) should have
little influence at small scales, and is one of the basic facts of the theory. It
is thus surprising that we had to wait till [5] before one actually decided to
take blow-up sequences and study their limits, as follows.

Fix a point x ∈ K, and take a sequence {tk} that tends to 0. Set (uk,Kk) =
(ux,tk

,Kx,tk
) to simplify notation. One hopes that limits of such pairs are

simpler, and that they will help us study (u,K).
The first thing to check is that given any sequence {(uk,Kk)} as above,

we can extract subsequences that converge. Note that Ωx,tk
converges to Rn,

so the limits should be pairs (v,G) that live on Rn.
We do not have too much choice when defining the convergence of {Kk} to

a limit K∞; if we want to be sure to have convergent subsequences, we have
to use the local convergence in Hausdorff distance, which is also the most
reasonable notion. The convergence of {uk} to v is a little more delicate to
define, because the L∞ norms of the uk will normally tend to +∞. On the
other hand, we have a good uniform control on the gradients away from G,
by (3), so we just require the convergence of the gradients ∇uk in some Lp,
on compact subsets of Rn \G. Equivalently (and this is the definition used in
[10]) we require the following property.
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Property 3.1. For each connected component V of Rn \ G, there exists con-
stants αV,k such that {uk − αV,k} converges to v in L1(H) for every compact
subset H of V .

This looks a little strange at first, because we have to subtract constants (and
then v in only known up to an additive constant in each component of Rn\G),
but this is the right way to deal with the fact that ||uk||∞ tends to +∞.

With these definitions, it is not hard to extract convergent subsequences
from any {(uk,Kk)} as above. One of the main points of [5] is the following.

Fact 3.2. If (u,K) is a reduced minimizer for J and {(uk,Kk)} converges to
(v,G), then (v,G) is a reduced global minimizer in Rn.

We shall see the definition in a moment, but let us first comment a little.
First of all, Fact 3.2 is not trivial, once again because its verification involves
checking that

Hn−1(G ∩ U) ≤ lim
k→+∞

Hn−1(Kk ∩ U) , (7)

for every open set U ⊂ Ω, and this would brutally fail for a general sequence
of sets Kk. But it turns out that since the Kk come from Mumford–Shah min-
imizers, they have a very nice property, the so-called uniform concentration
property.

To simplify things slightly, we shall say that this property holds when, for
every ε > 0, we can find C > 0 such that, for each ball B(x, r) contained
in Ω, centered on a Kk, and with radius r ≤ 1, we can find another ball
B(y, t) ⊂ B(x, t), centered on the same Kk, with radius t ≥ C−1r, and for
which we have the nearly optimal concentration

Hn−1(Kk ∩B(y, t)) ≥ (1 − ε)ωn−1 t
n−1 , (8)

where ωn−1 is the Hn−1–measure of the unit ball in Rn−1. Thus the measure
in (8) is at least almost as large as if Kk were a hyperplane through y. Then
(7) holds as soon as the uniform concentration property holds.

We simplified things a little, because the uniform concentration property of
[8] also allows us to modify slightly the quantifiers above (but the important
thing is still to keep C independent of k); also their result still works in
(integer) dimensions d < n− 1. See [8] or [18] for details.

Uniform concentration was introduced in [8], and proved for minimizers in
[8] when n = 2 and [22] when n > 2. Also see in [10] for a proof with uniform
rectifiability.

Once we get the semicontinuity of Hausdorff measure as in (7), the rest
of the proof of Fact 3.2 is a technical, but not surprising argument. See [5]
for the initial proof in two dimensions, [16] for a first generalization, and [17],
[10] for extensions to higher dimensions and different limiting situations.

It is time to define global minimizers. Let us only consider “acceptable
pairs” (v,G) such that G is a closed subset of Rn, v ∈ W 1,2

loc (Rn \G), and in
addition
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Hn−1(G ∩B(0, R)) +

∫
B(0,R)\G

|∇v|2 < +∞ ,

for every R > 0. A competitor for (v,G) is another acceptable pair (ṽ, G̃) such

that for R large enough, the pair (ṽ, G̃) coincides with (v,G) out of B(0, R),
and in addition G satisfies the following topological condition.

Property 3.3. If x, y ∈ Rn \ [G∪B(0, R)] lie in different connected components

of Rn \G, then they lie in different connected components of Rn \ G̃.

We say that the acceptable pair (v,G) is a global minimizer if

Hn−1(G ∩B(0, R)) +

∫
B(0,R)\G

|∇v|2

≤ Hn−1(G̃ ∩B(0, R)) +

∫
B(0,R)\

�

G

|∇ṽ|2 , (9)

for every competitor (ṽ, G̃) for (v,G), and R as above. Note that (9) does not
depend on R large.

The topological constraint of Property 3.3 on competitors may seem a little
strange, but it is imposed to us by the fact that we needed to work modulo
constants when taking limits. If we did not ask for Property 3.3, taking for G
a straight line and v a locally constant function on R2 \ G would not give a
global minimizer. This would be bad, because we know that such a pair shows
up each time you take the blow-up limit of a Mumford–Shah minimizer (u,K)
at a point where K is a C1 curve.

So we have a definition of global minimizers, and we define reduced
global minimizers as we did for Mumford–Shah minimizers in a domain. Thus
Fact 3.2 makes sense.

Our big hope, once we have Fact 3.2, is that global minimizers in R2,
for instance, will turn out to be so simple that we can list them completely
(and later return to the Mumford–Shah minimizers in a domain if we are still
interested). Of course the definition of global minimizer is a little more com-
plicated, because of this strange Dirichlet condition at infinity where (v,G)
itself gives the Dirichlet data, but at least we lost the auxiliary function g and
we have just two terms to worry about.

4 Global Minimizers in the Plane

Here is a list of global minimizers in the plane. For the first three, we take
v = 0, or equivalently v constant on each component of R2 \G. This works if
and only if G is a minimal set. Here our definition of minimal set, suggested
by Property (3.3) and (9), is that you cannot make it shorter by compact
modifications that do not merge the connected components near infinity. But
it is easy to see that it is equivalent to the more usual notion, where we say
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that we cannot make G shorter by deforming it in a bounded region. The only
options for G are the empty set, or a line, or the union of three half lines with
a same origin, and that make angles of 120◦ with each other (we shall call
this a Y ). In these three cases the verification that (v,G) is a reduced global
minimizer is rather easy.

There is a fourth known type of global minimizer, where G is a half line.
By translation and rotation invariance, we may assume that G is the negative
first axis {(x, 0) ; x ≤ 0}; then we take

v(r cos θ, r sin θ) = ±
√

2r

π
sin(θ/2) + C , (10)

for r > 0 and −π < θ < π, where the choice of constants ± and C does not
matter.

It is not too hard to see that (when G is the half line) the only choices of v
for which (v,G) is a global minimizer must given by (10), but the verification
that (10) gives a global minimizer is long and painful [6].

Here is the natural analogue of the Mumford–Shah conjecture in the
present context.

Conjecture 4.1. Every reduced global minimizer in the plane is of one of the
four types described just above.

Conjecture 4.1 implies the Mumford–Shah conjecture. See [10], but this
was essentially known by Bonnet [5], who only wrote down the part he needed
to show that the result quoted below (when G is connected) implies Fact 2.1.

A priori Conjecture 4.1 is a little stronger, because there could be global
minimizers in the plane that do not arise as blow-up limits of Mumford–Shah
minimizers in a domain. But it is hard to imagine that the Mumford–Shah
conjecture will be proved without Conjecture 4.1.

Only partial results are known so far. Here is a short list; see [10] and [17]
for more.

If (v,G) is a reduced global minimizer in Rn, then G is Ahlfors–regular,
uniformly rectifiable, and we can even find lots of balls centered on G where G
is a 10−2–Lipschitz and C1 graph. The statements and proofs are the same as
in the local case in the domain, except that we no longer need the restrictions
that r ≤ 1 or B(x, r) ⊂ Ω.

Conjecture 4.1 holds when

• G is connected [5],
• G is contained in a countable union of lines [16],
• G is symmetric with respect to the origin [11], [17],
• R2 \ G has at least two connected components, or when G contains two

disjoint connected unbounded sets [11].

Many of the results listed here use a monotonicity argument, in addition
to the usual techniques of finding alternative competitors. Again the trend
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started in [5], where one of the main ingredients of the proof was to show the
following.

Fact 4.2. If (v,G) is a global minimizer in R2 and G is connected, then

Φ(r) =
1

r

∫
B(x,r)\G

|∇v|2

is a nondecreasing function of r, for each x ∈ R2.

This was proved by computing Φ′, integrating by parts, and then using an
inequality of Wirtinger. But (unfortunately) the connectedness of K was used
to remove the mean value of u in some intervals, and it seems to be really
needed in the argument.

Things become easier once you have Fact 4.2, because the proof of Fact 4.2
also gives the form of (u,K) when Φ is constant. This can be used to control
blow-up and blow-in limits of (v,G), because the analogue of Φ for those is
constant. Then we get a better local description of (u,K), and we can use
it to conclude. The proof takes some time though. The improvement of the
situation when we have a monotonicity result like Fact 4.2 should probably
be compared with what happens with minimal surfaces, where an analogous
monotonicity result implies that the tangent objects to the set are minimal
cones.

In [11] also one shows monotonicity, but for the different function Ψ(r) =
2Φ(r) + r−1H1(G ∩ B(x, r)). The proof uses a combination of the Bonnet
estimate and direct comparison with various competitors constructed by hand.

J.-L. Léger [16] found a nice formula that allows you to compute v in terms
of G (modulo the obvious invariance of the problem) when (v,G) is a global
minimizer in R2. Identify R2 with the complex plane, and set

F (z) =
∂v

∂x
− i
∂v

∂y
= 2

∂v

∂z
,

for z ∈ R2 \G. Notice that F is holomorphic in R2 \G, because v is real and
harmonic. Léger says that F 2 is the Beurling transform of H1

|G, i.e.,

F (z)2 = − 1

2π

∫
G

dH1(w)

(z − w)2
for z ∈ R2 \G . (11)

Finally, let us mention that global minimizers in a half plane P are easier
to characterize: the only possibilities for G are the empty set, or a half line
starting from ∂P and perpendicular to it, and in both cases v is constant
on each component of P \ G. We can use this to return to Mumford–Shah
minimizers in a bounded smooth domain and prove that near ∂Ω, K is only
composed of C1 curves that meet ∂Ω perpendicularly. See [17] or [11] and
[10].

See [10] and its references for more results about global minimizers.
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5 General Questions

We start with a few questions in the plane. Besides the Mumford–Shah con-
jecture (or partial questions), of course.

There is no uniqueness in general for minimizers of the Mumford–Shah
functional. For instance, if you take Ω = R2 and g equal to the characteristic
function of B(0, r), there is one value of r for which J has exactly two min-
imizers, one with K = ∂B(0, r) and one with K = ∅. See for instance [13]
or [10]. It is easy to construct lots of examples of the same type, where the
lack of uniqueness comes from a jump in the solution. But maybe we still have
uniqueness for generic data g. This question also holds in Rn.

We do not know yet that the global minimizer in (10) ever shows up as
the blow-up limit of some Mumford–Shah minimizer in a domain. Even if we
restrict to Ω = B(0, 1) and take g = v, we do not know how to show that the
restriction of (v,G) to Ω minimizes J . See [1] for the corresponding positive
answer for a Y .

Suppose that the minimizer in (10) is a blow-up limit at x of the Mumford–
Shah minimizer (u,K) in a domain Ω. We know that in a pointed neighbor-
hood of x, K is a C1 curve that looks flatter as we get near x (see for instance
Sect. 69 of [10]), but we do not know precisely how K behaves at x (is the
curve C1 up to x, or can it turn infinitely many times around x, for instance?).

The easier case of a half plane suggests that it may be interesting to look
at global minimizers in other planar domains, or even in larger 2–dimensional
surfaces. So far we only know about sectors with aperture < 3π/2 [11].

Many of the partial results in the plane become questions in higher di-
mensions. For instance, it is not known whether every connected component
of Rn \G is a John domain with center at infinity; we just know that they are
unbounded. Or whether v can be constant in a component of Rn \G without
being constant on every component. When n = 2, these things are true, and
we even know that R2 \G is connected in the interesting cases.

We would also like to generalize some of our perturbations results. We
know from [3] that if (u,K) is a Mumford–Shah minimizer or a global mini-
mizer, in any dimension, and if B(x, r) is a small ball centered on K where K
is very flat (i.e., close to a plane) and r1−n

∫
B(x,r) |∇u|2 is very small, then

K ∩ B(x, r/2) is a nice C1 hypersurface, i.e., a C1 perturbation of a plane.
We would like to know whether in such a statement, we can replace planes
with other minimal sets. We know about the case of the Y in the plane [9],
and we would like to know about the product of the Y with a line (in R3), for
instance. This would also be an excuse for understanding these minimal sets
better.

A little more difficult would be to obtain analogues of the result that
says that if some blow-in limit of the global minimizer (v,G) is the cracktip
minimizer from (10), then (v,G) itself is as in (10) [6]. All these things should
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be useful if we want study global minimizers systematically, or go from results
on global minimizers to their counterpart for minimizers in a domain.

Can a same set G correspond to two really different global minimizers
(i.e., that would not be obtained from each other by multiplying v by ±1 and
adding a constant to it in each component of Rn \ G)? When n = 2, this is
impossible because of the formula (11).

Could it be that when we take complex or vector-valued functions, we get
fundamentally new global minimizers? We do not know this even in the plane,
but it seems even more unlikely there.

6 What is the Mumford–Shah Conjecture in Dimension
3?

We would also like to have a description of all global minimizers in R3, even
if we can’t prove it. Let us already enumerate the ones we know.

We start with the case when g is locally constant, and hence G is a minimal
set. Jean Taylor essentially showed that there are only four possibilities: the
empty set, a plane, the product of a Y with an orthogonal line (i.e., three
half planes that meet along their common boundary with 120◦ angles), and a
set composed of six faces bounded by four half lines that start from the same
origin and make maximal equal angles with each other. [Think about dividing
a regular tetrahedron into for equal parts that all touch the center and three
vertices.] These are the same sets that show up as tangent objects to soap
films.

We also get a global minimizer in R3 by taking the product of the cracktip
in a plane (as in (10)) by an orthogonal line (so that v, for instance, will not
depend on the last variable); the verification is rather easy.

Now it seems that there should be at least one other global minimizer, and
it is not too obvious to guess what it should be.

Let us first try to say why we may think that the list above is not complete.
The argument will be vague and indirect, but there are not many arguments
in the other direction either.

Consider the Mumford–Shah functional J in the domain Ω = B(0, 1) ×
(−N,N) ⊂ R3 and with a function g of the form g(x, y, z) = ϕ(z) g0(x, y),
where ϕ is a smooth function such that 0 ≤ ϕ ≤ 1, ϕ(z) = 1 for z ≤ −1, and
ϕ(z) = 0 for z ≥ 1. To define g0, let Y be the intersection with B(0, 1) ⊂ R2 of
the union of three half lines starting from the origin and making 120◦ angles.
Call D1, D2, and D3 the three connected components of B(0, 1) \ Y , and set
g0(x, y) = 2j − 2 on Dj . We take N reasonably large, to make sure that the
last term of J will have some importance in the discussion.

If we restricted to the smaller domain B(0, 1) × (−N,−1), (u,K) would
coincide with (g, Y × (−N,−1)). This is because (g0, P ) is the only minimizer
of the 2–dimensional analogue of J where g = g0, by [1]; the argument for the
reduction to the plane is the same as for the cracktip minimizer just above.
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It is reasonable to think that K ∩ [B(0, 1)× (−N,−N/2)], say, looks a lot like
Y × (−N,−N/2), with three almost vertical walls that meet along a curve γ
with 120◦ angles. If there is no other global minimizers than the five mentioned
above, all the blow-up limits of (u,K) are among the five. If in addition we
have a perturbation theorem for the case when K is close to the product of
a Y by a line, we should be able to follow the curve γ (where the blow-up
limits of K are products of Y ’s by lines), as long as no other type of blow-up
limit shows up on γ. We cannot really exclude the possibility that this never
happens, because γ may go all the way to ∂Ω. However, it seems very unlikely
that γ will go all the way to the top boundary (because g = 0 on the top part
of Ω; there would be no good reason for the existence of three high walls),
and still unlikely that γ will turn and hit the side of ∂Ω (even though our
function g is not symmetric).

So let us assume that γ ends somewhere in Ω, at a point x0 where some
other blow-up limit shows up. If we get the minimal set with six faces, and we
have a perturbation theorem near this minimal set, there will be three new
curves like γ that leave from x0, and we can try to follow them again. The
case when all curves eventually end up on ∂Ω also seems unlikely: it is not
clear why it would be needed to isolate three components near the bottom,
rather than allowing gentle variations of u. But this is definitely a weak point
of the argument. Anyway, if this does not happen, some other blow-up limit
shows up, with a global minimizer that is not in the list above. Obviously
some numerical experiments could be useful here.

Let us even try to guess what the setG for this new global minimizer should
look like. The simplest bet would be to take something like Y × (−∞, 0], but
this may be a little too naive. For one thing, even though Y ×(−∞, 0] is nicely
invariant under rotations of 120◦, the corresponding function v could not be
(the increments of v along an orbit of 3 points always add up to 0, so they
cannot all be equal or opposite). So, if there is a global minimizer (v,G) with
G = Y × (−∞, 0], we are sure to lose the essential uniqueness of v given G.
This is not so bad in itself, but since the function g will not be rotation
invariant anyway, it does not seem so important to require G to be invariant.
Probably making one of the walls a little higher than the others could help
accommodate the corresponding slightly larger variations of v along that wall.

The author’s bet is that there is indeed one more global minimizer, whereG
is the cone over three arcs of great circle Γi ⊂ S2; the Γi are vertical, start from
the south pole where they make angles of 120◦, and there are two shorter ones
and a longer one. The lengths should be determined by all sorts of constraints,
the main one being that we also guess that v will be homogeneous of degree
1/2, and we know it must be harmonic with Neumann boundary conditions
∂v
∂n = 0. All these suggestions are based on essentially nothing, so the reader
may find it fun to make any other bet. For instance, that there is a global
minimizer for which function λ → e−λ/2v(eλx) is almost periodic (but not
periodic), or has a period

√
2. [Added in proof: since the lecture, Benoit Merlet
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did computations that indicate that the most obvious scenario suggested by
the author is impossible.]

Our difficulty with rotations of order 3 leads us to wonder whether the
situation would be different with functions v valued in R2, because then v
could be rotation invariant. This seems tempting because we like symmetry,
but I don’t think this is too serious.

The interested reader may consult Sects. 76 and 80 of [10] for a few addi-
tional questions, or details about the questions above.

References
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