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1 Introduction

Our goal is to describe some of the mathematical challenges confronted, when
dealing with massive data sets. We point out that the trend set in hard analy-
sis by L Carleson, of integrating combinatorics with geometry and harmonic
analysis, is a powerful guide in the context of analytic geometry of data.

The task confronted by the scientist or engineer is to organize and struc-
ture enormously complex high dimensional clouds of points. More importantly,
the scientist is challenged by the need to approximate empirical functions de-
pending on many parameters effectively . Here effective methods are the ones
for which the complexity of the method does not grow exponentially with the
dimension. In effect no tools from classical approximation theory and analysis
exist.

Various methods for embedding high dimensional data sets in relatively
modest dimensions were introduced by various groups of researchers. In par-
ticular Johnson and Lindenstrauss have shown that N points in N dimensions
can almost always be projected to a space of dimension C logN with control
on the ratio of distances. J Bourgain has proved that any finite metric space
with N points can be embedded by a bi-Lipschitz map into logN dimen-
sional Euclidean space with bi-Lipschitz constant logN . Various randomized
versions of this theorem have become useful tools for protein mapping and
other data analysis tasks. These results indicate that in practice to address
the problem of functional approximation it would be enough to restrict our
attention to dimensions below 50.

� The results in this talk are joint work with S. Lafon, A. Lee, M. Maggioni,
S. Zucker.
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2 Diffusion Geometries and Data Organization

The situation is not so difficult when dealing with clouds of points in high di-
mensions which are distributed near lower dimensional manifolds or varifolds.
In particular empirical manifold learning is an active area of research.

We now would like to use Harmonic analysis as a tool to process empirical
data sets.
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Fig. 1. Hyperspectral image of a pathology slide (left) with associated spectrum
(right).

The hyperspectral image of a pathology slide to the left in Fig. 1 provides
an illustration of some of the issues mentioned above, here to each pixel of
the image is associated a spectrum (Fig. 1, right) representing the electro-
magnetic absorption of the tissue in 28 bands. This spectrum reflects the mix
of biological constituents. The coloring in RGB of the image provides at each
location a mix of three tissue types.

For physical reasons it is expected that these points in 28 dimensional
space lie on different low dimensional submanifolds.

Our goal is to provide a general methodology to describe and parame-
trize it. Our method provides a framework for structural multiscale harmonic
analysis on subsets (data) of Rn and on graphs. We use diffusion semigroups
to generate multiscale geometries in order to organize and represent complex
structures. We build the diffusions through an “infinitesimal” Markov process,
and will show that the top eigenfunctions of the Markov operator permit a
low dimensional geometric embedding of the data set into Rn so that the or-
dinary Euclidean distance in the embedding space measures intrinsic diffusion
metrics on the data. Moreover we will indicate how empirical functions on the
data can be naturally extended to all of space.

While some of these ideas appear in a variety of contexts of data analysis,
such as spectral graph theory, manifold learning, nonlinear principal compo-
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nents and kernel methods. We augment these approaches by showing that
the diffusion distances are key intrinsic geometric quantities linking spectral
theory of the Markov process (Laplace operator, or Kernels) to the correspond-
ing geometry of the data, relating localization in spectrum to localization in
space, opening the door to the application of methods from signal processing
to analyze functions and transformations on the data.

Initially, our goal is to describe efficiently (empirical) functions on a set
Γ (data) or on a discrete graph. In particular we consider the analysis of
restrictions of band limited functions to the data (i.e. functions whose Fourier
transform is supported in a ball B). Specifically, the space of restrictions of
band limited function to the data set Γ , is spanned by the eigenvectors of the
covariance operator

kB(x, y) =

∫
B

eξ(x)eξ(−y)dξ ,

λjϕj =

∫
Γ

kB(x, y)ϕj(y)dy .

These eigenfunctions have natural extensions as band limited functions in
Rn given by

φj(x) =
1

λj

∫
Γ

kB(x, y)ϕj(y)dy .

It turns out that φj(x) form an orthogonal set on Rn of band limited func-
tions whose norm is maximized on the set (generalizing the classical prolate
functions). For the example of the unit sphere these eigenfunctions are the
spherical harmonics which are the eigenfunctions of the Laplace operator. We
will refer to the extensions of these eigenfunctions as geometric harmonics
(since these extensions are characterized as the minimal norm band limited
extension of the given restriction to the set). We will use these extensions for
estimating empirical regression off the data set.

More generally for data lying on a submanifold of Rn, any restriction
of a positive radial kernel leads to approximations of eigenfunctions of the
Laplace–Beltrami operator on the manifold. We now extend results of Belkin
et al. relating kernels and Laplace–Beltrami operators on submanifolds of
Euclidean space.

We restrict a positive symmetric kernel to the data set, as an operator (or
matrix)

K(f) =

∫
Γ

k(x, y)f(y)dy

and diagonalize K as

k(x, y) =
∑

λ2
iϕi(x)ϕi(y) .

Then

D2(x, y) = k(x, x) + k(y, y)− 2k(x, y) =
∑

λ2
i

(
ϕi(x) − ϕi(y)

)2
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is the square of the metric D(x, y).
If the kernel is given as a function of some initially given metric d(x, y) (for

example d could be the geodesic metric), and k(x, y) = k(d2(x, y)), k′(0) = 1,
then

D(x, y) ≈ d(x, y)

1 + d(x, y)
= d0(x, y) .

This observation shows that for data on a compact submanifold of Rn, the
kernel metric is equivalent to the original metric.

A particularly important case arises from a scaled weighted Gaussian ker-
nel operator (by a density of point distribution p(y))∫

Γ

exp(−d(x, y)2/ε)f(y)p(y)dy .

This kernel has to be renormalized as follows; let

pε(x) =

∫
Γ

exp(−d(x, y)2/ε)p(y)dy

and

νε(x) =

∫
Γ

exp(−d(x, y)2/ε)p(y)dy
pε(x)

.

Then the operator2

Aε(f) =

∫
Γ

aε(x, y)f(y)p(y)dy ,

where

aε(x, y) =
exp(−d(x, y)2/ε)
νε(x)pε(y)

is an approximation to the Laplace–Beltrami diffusion kernel at time ε.
The operator Aε can be used to define a discrete approximate Laplace

operator

∆ε =
1

ε
(Aδ − I) = ∆0 +

√
εRδ ,

where R is bounded on band limited functions and ∆0 is the Laplace–Beltrami
operator on the manifold. From this we can deduce the following theorem:

Theorem 2.1.

(Aδ)
t/δ = (I + ε∆δ)

t/δ = (I + ε∆0)
t/δ +O(

√
ε) = exp(t∆0) +O(

√
ε)

and the kernel of (Aδ)
t/δ is given as

at(x, y) =
∑

λ
2t/δ
i ψi(x)ψi(y) =

∑
exp(−µlt)φl(x)φl(y) +O(

√
ε) ,

where the φ are the eigenfunctions of the limiting Laplace operator and all
estimates are relative to any fixed space of band limited functions.

2 Shoenberg proved that this operator is positive, if and only if the metric d embeds
isometrically in Hilbert space.
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Strictly speaking we assume here that the data is relatively densely sam-
pled (each ball of radius ε contains several points) on a closed compact man-
ifold. In case the data only covers a sub domain of the manifold, the Laplace
operator needs to be interpreted as the restriction of the Laplace operator
with Neumann boundary condition.

The fundamental observation is that the numerical rank of the powers of
A decreases rapidly (see Fig. 2 below) and therefore the diffusion distance
given by

at(x, x) + at(y, y)− 2at(x, y) = D2
t (x, y)

can be computed to high accuracy using only the corresponding eigenfunc-
tions. This choice of an embedding into Euclidean space so as to convert
diffusion distance on the manifold into Euclidean distance in the embedding
will be called a diffusion map.
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Fig. 2. Some examples of the spectra of powers of A.

We illustrate this point for the case of a closed rectifiable curve, for which
the first two non constant eigenfunctions give a realization of the arc length
parametrization onto the circle of the same length. In fact a simple computa-
tion relative to the arc length parametrization shows that the heat kernel is
given by

et(x, y) =
∑

exp(−k2t) cos
(
k(x− y)

)
and

etD2
t (x, y) = |eix − eiy|2

(
1 + e−3trt(x, y)

)
,

where r is bounded.
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In Fig. 3 we see points distributed (non uniformly) on the spiral on the
left, the next embedding into the plane is given by the conventional graph
Laplacian normalization, while the circle was obtained as above. The graph
on the right is the density of points on the circle.
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Fig. 3. From left to right: points distributed on a spiral—an embedding into the
plane—a circle obtained as above—a graph depicting the density of points on the
circle.

More generally we have the following theorem

Theorem 2.2. Let xi ∈ Γ ⊆ M be a data set in the compact Riemannian
manifold M so that each point in the manifold is at a distance ε from one
of the data points and let the matrix at(x, y) be defined as above on the data,
with

at(x, y) =
∑

λ
2t/ε
i ψi(x)ψi(y) .

Then there exists an m such for all t sufficiently large the diffusion map is an
embedding of M into m dimensional Euclidean space which is approximately
isometric relative to the extrinsic Euclidean distance.

x ∈M �→ x̃ =
(
λ

t/ε
1 ψ1(x), λ

t/ε
2 ψ2(x), . . . λ

t/ε
m ψm(x)

)
∈ Rm

D2
t (x, y) =

m∑
i=1

λ
2t/ε
i

(
ψi(x) − ψi(y)

)2(
1 +O(e−αt)

)
= |x̃− ỹ|2

(
1 +O(e−αt)

)
The proof of this theorem uses the fact that for small t and largem we have

an embedding, we then pick the smallest m for which we have a bi-Lipschitz
embedding and the next eigenvalue is strictly smaller (we can also maximize
the spectral gap to have higher precision).

The next example (Fig. 4) embeds an hourglass surface into three di-
mensional Euclidean space so that the diffusion distance in embedding space
between two points is the length of the chord connecting them.

Since the diffusion is slower through the bottle neck the two components
are farther apart in diffusion metric.

Figure 5 illustrates the organizational ability of the diffusion maps on
a collection of images that was given in random order as reordered by the
mapping given by the first two nontrivial eigenfunctions.
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Fig. 4. Original dumbbell (left) and embedding (right).
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Fig. 5. The first two eigenfunctions organize the small images which were provided
in random order.

Figure 6 shows the conventional nearest neighbor search compared with a
diffusion search. The data is a pathology slide, each pixel is a digital document
(spectrum below for each class).

3 Extension of Empirical Functions off the Data Set

An important point of this multiscale analysis involves the relation of the
spectral theory on the set to the localization on and off the set of the cor-
responding eigenfunctions. In the case of a smooth compact submanifold of
Euclidean space it can be shown that any band limited function of band B
can be expanded to exponential accuracy in terms of eigenfunctions of the
Laplace operator with eigenvalues µ2 not exceeding CB.

Conversely every eigenfunction of the Laplace operator satisfying this con-
dition extends as a band limited function with band C′B (both of these state-
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Fig. 6. Top-left to bottom-right: 256×256 image with 861 labeled points—spectrum
for each class–nearest neighbor search—extension to all points.

ments can be proved by observing that we can estimate the size of a derivatives
of order 2m of eigenfunctions of the Laplace operator as a power m of the
eigenvalue). If we extend the eigenfunctions as constant in the normal direc-
tion to the submanifold (by introducing an appropriate smooth partition of
unity in a neighborhood of the submanifold). It is easy to see that the Fourier
transform at ξ of such an extension is estimated by Cm(µ/|ξ|)m and this shows
that eigenfunctions of the Laplace operator corresponding to eigenvalue µ on
the manifold are well approximated by restrictions of band limited functions
of band Cµ.

We conclude that given an empirical function on the manifold which can
be approximated to some accuracy with eigenfunctions whose frequencies are
localized, or which is expanded in terms of a multiscale basis involving eigen-
values of the Laplace operator not exceeding µ, then such a function can be
extended as a band limited function off the set to a distance corresponding
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to Cµ−1 and the best band limited approximation can be obtained from the
corresponding Band limited projection kernel kB(x, y) defined above.
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