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1 Introduction

In this paper I want to present some typical recent results in the subject to the
general public. A serious effort has been made to make this paper accessible
to the nonexpert. The only prerequisite is the definition of a Lie group and
its Haar measure, and of the convolution product. Even the definition of the
Lie algebra will not be essential and it will be given in Sect. 3 below. Some
specialized notions, such as the semigroup 7; = e *» generated by the closure
of a subelliptic operator A = — >~ X?, where X; are left-invariant vector fields
on the real connected Lie group G (the letter G will be reserved throughout
to denote such a group), will crop up. The nonspecialist can ignore these, or
any other unknown word for that matter, and simply read on, this paper is
so structured that this is possible.

The heart of the matter lies in Sect. 2.2 below, Sect. 4 makes comments
on the previous sections and Sect. 5 gives some further results. There were
several possibilities for the further results presented in Sect. 5. My choice
was dictated by the following two considerations. On one hand I wanted to
present some natural problems in the subject that sooner or later will have
to be addressed and which I am sure, have a satisfactory answer. On the
other hand I wanted to highlight some much more speculative prospects that
emerge from the results presented here. These “speculations” have to do with
combinatorial group theory.

Convention

I use throughout the convention that, in a formula, the letters C or ¢, possibly
with suffixes, indicate, possibly different, positive constants that are indepen-
dent of the important parameters of the formula.
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2 The Analysis and the Geometry

2.1 Riemannian Structures on a Lie Group G

For every prescribed inner product (-, -) on the tangent space T.(G), where
e € (G is the neutral element of GG, we can define a left invariant Riemannian
structure on G, simply by left translating (L, : * — gz) (-, ) to an inner
product on T,(G) (g € G). A different inner product (-, - )™V gives rise to
a new Riemannian structure that is quasi-isometric to the initial one in the
sense that:

C_I‘I‘Old < |l,|new < C|l‘|01d , Vi € G,

where |z| = d(z, e) denotes the Riemannian distance to the origin.

2.2 Convolution Powers

Let 1 € P(G) be some probability measure on G, with continuous and com-
pactly supported density ¢ € Co(G) with respect to the right Haar measure
d"r on G: du(x) = ¢(x)d"x. We introduce the following notation, for any
integer n > 1:
wWr=px-oxp (ntimes), dp™(x) = @n(z)d"x,
and  ®(n) = D(n; G, p) = pnle) .

To avoid the obvious pathology (e.g. G = R, suppu C positive axis with
@(n) =0 Vn > 0), we shall suppose that p is symmetric i.e. du(z=1) = du(x).
2.3 Spectral Gap and Amenability

I shall denote [|u]lop (1 € P(G)) the L? — L? operator norm of f — f*u on
L?(G,d"z) and define A = A\(G, ) by e = ||u]|op. It is important to recall
that, for G fixed, either A(G, ) = 0 for all 4 € P(G) as above, and then we
say that G is amenable, or A(G, ) > 0 for all 4 € P(G) as above, and then
we say that G is not amenable (cf. [11]).

2.4 Basic Analytic Definitions [16]

We shall say that G is a B—group if, for all 4 € P(G) and A = A(G, p) as in
Sect. 2.2 and Sect. 2.3, there exist C,Cs, ¢1,co > 0 such that:

Cy exp(=An — can'/?) < &(n) < Cy exp(=An — e1nt/3) .

We shall say that G is an NB—group if, for all 4 € P(G) and A = A\(G, )
as above, there exist v = v(G, ) > 0 and C' > 0 such that:

Cn7ve ™ < d(n) < Cn~Ye ",
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2.5 The Basic Geometric Definition ([4], [18])

We shall say that G (here G is equipped with a Riemannian structure as
in Sect. 2.1) admits the polynomial homotopy property (PHP in short) if the
following holds: Let 2 < n < dim G, let o : é" = S"' — @ be some C™
mapping of the unit Euclidean sphere into G (€™ stands for the boundary of
the unit Euclidean n — cell ™) and let us assume that «(é™) is homotopic to
zero in G i.e. that o extends to a continuous mapping & : € — G (which
simply means that [a] is zero in the (n — 1)*® homotopy group m,_1(G) of G
[6]). Then the extension & : " — G can be chosen in order that

Vol,, [@(e™)] < C(1+ Volu—1[a(e™)])°,
for some positive constants C' and ¢ depending only on G.

Vol,.(-) denotes here the r—dimensional Hausdorff measure with respect to
the Riemannian structure (counted with multiplicity, cf. [10]). Observe that
the above conditions are vacuous if dimG = 1 and that then G admits the
PHP.

2.6 The Classification: Analytic—-Geometric

Theorem A—G. A group G as above is a B—group, resp. an NB—group if and
only G does not, resp. does admit the PHP.

The above definitions and results extend to measures p € P(G) that are
symmetric but not necessarily compactly supported, provided that they sat-
isfy Gaussian estimates at infinity, which amount grosso modo to imposing
p{r € G| |z| > R} = O(e’CR2) (cf. [16], [19] for the exact definition). The
importance of these Gaussian measures lies in the fact that the heat diffusion
kernel of the semigroup Ty = e~ ** (cf. Sect. 1) is Gaussian (cf. [16], [22]).

3 The Algebra

3.1 Review of Lie Algebra and Definitions ([9], [12])

Let g = T.(G) be the (real) Lie algebra of G. Recall that every vector & €
T.(G) extends by left translations (cf. Sect. 2.1) to a (left invariant) vector
field X on G:

X(.T) = (deLm)(f) s

and that the Lie bracket on g is induced by the bracket of vector fields, viewed
as first order differential operators:

[€1,&] = [X1, Xa](e) = (X10 Xy — Xp0 Xy)| _ .

Recall furthermore that g = g ® C denotes the complexified Lie algebra and
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ad : ge) — L))

the (complezified) adjoint representation, defined by (ad§)(¢) = [£,¢]. The
Lie algebra g is solvable if the complexified adjoint representation can be
simultaneously triangularized:

A1(€) *
ad & = :

0 A

Let us decompose A\; = Re\; +ilm\; € g = g* + ig* and let us consider
the (possibly empty) subset A = {L1,..., L} of g*, consisting of all distinct
Re )\j 75 0.

3.2 The Algebraic Definition (Solvable Case) ([13], [18])

Let g be some solvable real Lie algebra and let A = {Lq,..., L} C q* be as
above. We then say that q is a C—algebra (C originally stands for Condition)
if A is not empty and if its convex hull contains 0. We say that q is NC
(Non—C) otherwise.

3.3 Review of the Structure of Lie Groups ([7], [12])

It is the fundamental theorem in Lie theory that every real Lie algebra g is the
Lie algebra of a unique (up to isomorphism) simply connected real Lie group
G. Furthermore every Lie group whose Lie algebra is isomorphic to g is locally
isomorphic to G. One basic but standard fact in that direction is that if g is
solvable then the corresponding simply connected group G is diffeomorphic
to RY.

What is also standard is the following structure theorem: Let G be some
simply connected real Lie group. Then

G=QK, (1)

where @Q and K are simply connected closed subgroups of G such that

(i) QNK ={e},

(ii) @ is solvable,

(iii) K contains a cocompact discrete closed subgroup Z which is central in
G (cocompact meaning that K/Z is compact).

Remark 3.1. If G is amenable, @ is the radical and (1) is the Levi decom-
position. If G is semisimple, then Q@ = NA in the Iwasawa decomposition
G = NAK. Unless G is amenable, () cannot be normal and in general (1) is
related to the Borel decomposition for algebraic groups [8].
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3.4 The Algebraic Definition (General Case) [16]

Let g be some real Lie algebra, let Gy be the corresponding simply connected
Lie group and let Gp = QK as in (1) We say that g is a B—algebra if Q is
a C—group. The fact that this definition does not depend on the particular
decomposition (1) needs proving. If @ is NC, we say that g is NB (B is the
letter preceding C' in the Latin alphabet and NB stands for Non—B, and not
for the initials in the Greek alphabet of N.BapomovAos!). For any connected
Lie group we say that G is algebraically B (resp. NB) if its Lie algebra is a B
(resp. NB) algebra.

Ezxample 3.2. All semisimple Lie groups, compact or not, are NB.

3.5 The Classification: Analytic—Algebraic

Theorem A—A. G is a B-group, resp. an NB-group if and only if it is
algebraically-B, resp. algebraically-NB.

4 Comments

4.1 Unimodular Groups

When G is unimodular i.e. when the Haar measure on G is both left and right
invariant, a different classification on the basis of #(n) was carried out in the
80’s (cf. [22]). What is involved there are not homotopy considerations but
the volume growth of G:

~(n) = Haar measure of a ball of radiusn > 1in G .

What we can say then is that when v(n) ~ n” (D =0,1,...) we have ®(n) ~
n~P/2 and when ~y(n) > n® (for all a > 0) we have &(n) < exp(—cn'/3).

This is a much coarser classification than the one we have here but it
has the advantage that it generalizes to all the compactly generated locally
compact groups, connected or not.

In terms of our classification given here, the unimodular NB—groups have
the additional property that v = v(G) € Z i.e. v = v(G) is a half integer
which depends only on G and not on p (cf. [14], [17] for a formula that gives v;
cf. [3], [22] for proofs of this when G is respectively semisimple or amenable).

4.2 The State of the Art on Theorem A—A

A complete proof of Theorem A—A when G is amenable can be found in [13].
In [16] one finds a proof for general groups of a slightly weaker result where the
NB-condition in Sect. 2.2 is replaced by C~le™*"n="1 < d(n) < Ce™ n~v2,
To prove that ;1 = v5 and to compute this index is a truly formidable task,
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and it takes from end to end several hundred pages to carry out. The reason
is that, among other things, the solution of that problem relies on difficult es-
timates in potential theory (cf. [21]). It is a fortunate fact that these potential
theoretic estimates have, very recently, come on their own and have given rise
to interesting new results in classical probability (and potential) theory. Let
me explain.

Let u € P(R?) be some centered probability distribution with a high
enough moment, and let D = {z = (21,2') € R = Rx R4 | 27 > ¢(a’)} be
some Lipschitz domain in R?, where |o(z") —@(y')| < A2’ —y/| (z',y' € RI71).
Let

P(n,x)=P;[Z; € D;j=1,2,...,n]

be the probability of life (or the gambler’s ruin estimate, depending on the
point of view) of the random walk Z;, Zs, - -- € R? controlled by , i.e.:

]P)[Zﬂrl*l Gdy//Zn:‘T} :d’u(l'*y)7 l’,yERd, n:0a172a"' .

Very precise estimates of P(n,z) can be obtained in the above generality
(cf. [21]). These estimates are essential for Theorem A-A, where D is then
an appropriate conical domain in g (= R? as a linear space) defined by the
positivity of the relevant roots (i.e. D is a generalized Weyl chamber [5], [13]).

Be that as it may, the complete proof of Theorem A—A will appear in a
forthcoming paper [20].

4.3 The State of the Art on Theorem A—-G

In [18] one finds a proof, among other things, of Theorem A-G when G is
solvable and simply connected. What allows one to pass to a general con-
nected Lie group G is that, if T C G denotes the maximal normal torus of G,
then G/T ~ @Q x K is quasi-isometrically diffeomorphic (but not necessarily
homeomorphic) to the product of a simply connected solvable group @ and of
a compact group K (cf. [18]; the proof of this is not difficult and it will appear
in [20]). This allows us to reduce the problem to compact groups and what
has to be proved is that every connected compact group admits the PHP.

I claim to have a proof of this fact on compact groups (which is quite
involved). This is in the spirit of differential topology and Morse theory. The
details of this have not yet been written out in full and, since in addition I
am not an expert in differential topology, I feel that I have to warn the reader
that unpleasant surprises in that direction are not to be excluded altogether
(in plain terms my proof might collapse). Even without the above result for
compact groups however, the results of [18] give a, perhaps less elegant to
describe, but equally pertinent, B-NB geometric classification of Lie groups.

What emerges also from the results of [18] is a cohomological classification
of Lie groups. (These results have been stated precisely in [18] but the proofs
remain to be written out. These proofs are however easy to extract from [18].)
Grosso modo, let us say that G, equipped with a Riemannian structure as
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in Sect. 2.1, has the cohomological polynomial property if, for every smooth
differential form w € A(G) that grows polynomially at infinity (cf. [18] for
precise statements), that is closed (i.e. dw = 0), and that represents the zero
cohomology class of G, we can find § € A(G), also with polynomial growth at
infinity, such that df = w. The cohomological classification of Lie groups states
then that G is an NB—group if and only if it has the polynomial cohomology

property.

5 Further Results and Prospects

5.1 A Direct Proof of Theorem A-G

The most significant progress in the direction that I described in the previous
sections would be to give a “direct” proof of Theorem A—G. By this I mean a
proof that does not use the Algebraic classification of Sect. 3.2. This should
be done in the spirit of [22] where in fact the above task is carried out for
unimodular amenable G.

The reason why such a project is significant is that there would then be
hope to extend the result to discrete groups. I shall discuss the problem of
discrete groups in Sect. 5.2 below. But before I do that I wish to put the above
project in perspective by considering another closely related, better posed, but
also less interesting problem.

Let @ be some simply connected soluble Lie Group and let use assume
that it is possible to assign such a group with a left invariant Riemannian
structure with non positive curvature (necessary and sufficient conditions on
the Lie Algebra for this to be possible exist [1]). We can then use the Geodesic
Flow to show that then @ admits the PHP and even obtain optimal estimates
in the definition e.g. for n = 2 in Sect. 2.5 we have

Vola[é(e?)] < C(1 + Voly[a(¢?)])?

and analogous results for every homotopy group .

It is very likely and probably not even very hard to adapt [18] and go again
via the Lie Algebra to show that the above optimal estimates on the volumes
of the m,’s can be used to characterize the negatively curved groups Q.

Question 5.1. First of all is the above correct?
Question 5.2. If so, can one give a direct proof without going through [1]?

The interest of the above is that it would perhaps give some clue of how
to go about a direct proof of the Theorem A-G.
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5.2 Combinatorial Group Theory [2]

Let G be a finitely presented discrete group. We can glue to the Cayley graph
of GG associated to the generators, the 2—cells that correspond to the relations,
and obtain thus a 2-dimensional G invariant CW—-complex. 1-dim and 2—dim
Hausdorff measures that are G invariant can clearly be assigned and the PHP
for dimension n = 2 of Sect. 2.5 can clearly be defined. Analogous definitions
for n > 2 can also be given, and all in all, the statement of Theorem A-G
“makes sense”.

Question 5.3. The issue is to decide if such a theorem in some appropriate
form is provable?

The importance of the above PHP adapted to discrete groups has been
recently stressed by several authors (e.g.[4]), and of course it can be restated
and it gives an equivalent description of the word problem.

Ezample 5.4. Let G = m1(K) where K is a negatively curved compact mani-
fold be a hyperbolic group. We can use then the geodesic flow on the universal
cover K to generate the homotopy and obtain the so called Dehn algorithm
for the word problem.

5.3 More Concrete Problems

The project that I described in Sects. 5.1 and 5.2 may well be “daydreaming”.
There certainly does not seem to be much lead of how to start.

A much more realistic project, but also much more esoteric, is to examine
in more detail the “polynomial property” of the various dimensionsn = 2, - - - ,
for the homotopies of Sect. 2.5 or the cohomologies of Sect. 4.3. Some dimen-
sions may have the polynomial property and others not. Many examples can
be given of all short of situations [4] [18]. A complete classification in terms
of the GLj—geometry (cf. Sect. 3.2) of the roots (like the C—condition but
more refined) is no doubt within reach. Let us assume that we can write down
such a classification. The question then arises whether we can read off these
properties in terms of “Analytic” or rather Potential theoretic conditions as
in Sect. 2.47 In other words:

Question 5.5. Can we refine Theorem A-G in terms of the polynomial behav-
iour of the “various homotopy groups m,(G)”?

This also would be a first step towards the speculations of Sect. 5.1. But
even here it is hard to make the right conjectures.

Observe that in Sect. 5.2 it is not the discreetness of the groups G that
is the problem it is the lack of the Lie algebra. So we could simplify G and
assume that it is, say, a cocompact lattice in some (non compact) semi-simple
Lie group. What can we say about ®(n, u) of Sects. 2.2 and 2.3 then. For
instance:
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Question 5.6. Can we assert, that @(n) ~ n=%*" (cf. Sect. 4.1) where A > 0
will have to depend on p but @ = a(G) is a genuine group invariant?

This is what happens for the semi-simple Lie group itself [3]. The above is a
concrete problem and it is probably within reach (there was a point that I
even thought I could prove this. I have since drifted away from the subject
and now I do not know any more). Problems like this may have an arithmetic
significance. I am however very ignorant on arithmetic questions and any
comment from me in that direction would be inappropriate.

5.4 Hardy—Littlewood Results ([14], [15])

An interesting direction where the final results remain to be worked out are
the LP — L7 mapping properties of

1 o0
A2 = / /2= 4t 2
T(@/2) Jo dt @)

where a > 0 and 1 < p < ¢ < +00. Here I use the semigroup Laplace
transform definition of the fractional powers of the Laplacian, and the notation
of Sect. 1. Fairly satisfactory general results in that direction only exist in the
unimodular case (cf. [14], [22]). What renders the above problem difficult is
that the range of parameters («, p, q), for which A=®/2 . [P — L[4, depends
in general (if G is not unimodular) on the particular Laplacian A and does
not only depend on G (just as the v(G, u) in Sect. 3 depends in general on
1)

A moment’s reflexion shows that, for amenable groups, what is relevant
for (2) are the following parameters:

d'l‘
d‘z = left Haar measure , m(z) = dlj: )
~ 1 T
T =m0 T om 12 q) = Jim  log||Tilh—q ,

L =inf{qg>1]¢(q) =0},

where we take here the L' — L7 operator norm w.r.t. dz, and where we
have to consider here T}, because the original semigroup 7} (cf. Sect. 1) is not
symmetric. L is the cut point between the exponential and the subexponential
growth of ||T;||1—4 and it is easy to see that 1 < L < 2. The following result
is sharp, but unfortunately, very limited in scope and not easy to prove:

Fact 5.7. L = L(G) only depends on G and is independent of the particular
laplacian A. Furthermore L = 1 if and only if G is unimodular and L = 2 if
and only if G is WNC.

WNC (Weak-NC) is a variant of the NB and NC definitions given in
Sect. 3 (cf. [15]). The above can be reformulated by saying that, if the operator
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(2) with T} replaced by ﬁ, is bounded for some v > 0 and 1 < p < q < 2,
then G is a WNB—group. This is very much in the spirit of the results that we
expect to hold. Unfortunately what the correct conjectures are, is not clear.

Working out in full generality the above Hardy-Littlewood theory is chal-
lenging and, I feel, is within reach. The only problem is that it cannot be
done by easy and superficial contributions. It would take a competent man
(or woman. Why not !) several years to complete this project. I am probably
too old to attempt this, but others should try. Just to qualify this last state-
ment, I could also say that convincing applications, outside the subject itself
(e.g. arithmetic results on lattices), would have to exist, before a competent
man decides to spend several years on such a problem.

Acknowledgment

I would like to thank J.-Ph. Anker for many helpful suggestions and for the
hard work he put in editing a first version of this paper.

References

1. R. Azencott, E.N. Wilson: Proc. A.M.S. Math. 215, 323 (1976)
2. R.C. Lyndon, P.E. Schupp: Combinatorial group theory (Springer, Berlin New
York 1977)
3. Ph. Bougerol: Ann. Sci. Ec. Norm. Sup. 4° Sér. 14, 403 (1981)
4. M. Gromov: Asymptotic invariants of infinite groups. In: Geometric group the-
ory, vol 2, ed by G.A. Niblo, M.A. Roller (Cambridge University Press 1993)
pp 1-295
5. S. Helgason: Differential geometry, Lie groups, and symmetric spaces (Acad-
emic Press, New York London 1978)
6. P.J. Hilton: An introduction to homotopy theory (Cambridge University Press,
Cambridge 1953)
7. G. Hochschild: The structure of Lie groups (Holden—Day, San Francisco London
Amsterdam 1965)
8. J.E. Humphreys: Linear algebraic groups (Springer, New York Heidelberg 1975)
9. N. Jacobson: Lie algebras (Interscience, New York London 1962)
10. H.H. Lawson Jr: Lectures on minimal submanifolds. Vol. I 2nd edn (Publish or
Perish, Wilmington 1980)
11. H. Reiter: Classical harmonic analysis and locally compact groups (Clarendon
Press, Oxford 1968)
12. V.S. Varadarajan: Lie groups, Lie algebras, and their representations (Springer,
New York 1984)
13. N.Th. Varopoulos: Canad. J. Math. 46, 438, 1073 (1994), 48, 641 (1996)
14. N.Th. Varopoulos: Ann. Inst. H. Poincaré Probab. Statist. 31, 669 (1995)
15. N.Th. Varopoulos: Rev. Mat. Iberoamericana 12, 147 (1996)
16. N.Th. Varopoulos: Rev. Mat. Iberoamericana 12, 791 (1996)
17. N.Th. Varopoulos: The local theorem for symmetric diffusion on Lie groups. An
overview. In: Harmonic analysis and number theory, vol 21, ed by S.W. Drury,
M. Ram Murty (Amer. Math. Soc., Providence 1997) pp 143-152



18.
19.
20.
21.
22.

Analysis on Lie Groups 293

N.Th. Varopoulos: Rev. Mat. Iberoamericana 16, 1 (2000)

N.Th. Varopoulos: Canad. J. Math. 53, 412 (2000)

N.Th. Varopoulos: Analysis on Lie groups II, to appear

N.Th. Varopoulos: Canad. J. Math. 53, 1057 (2001)

N.Th. Varopoulos, L. Saloff-Coste, T. Coulhon: Analysis and geometry on
groups (Cambridge University Press, Cambridge 1992)





