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This book is dedicated to Lennart Carleson
on the occasion of his 75th birthday



Preface

The Conference “Perspectives in Analysis” was held during May 26–28, 2003
at the Royal Institute of Technology in Stockholm, Sweden. The purpose of
the conference was to consider the future of analysis along with its relations
to other areas of mathematics and physics, and to celebrate the seventy-fifth
birthday of Lennart Carleson. The scientific theme was one with which the
name of Lennart Carleson has been associated for over fifty years. His modus
operandi has long been to carry out a twofold approach to the selection of
research problems. First one should look for promising new areas of analy-
sis, especially those having close contact with physically oriented problems of
geometric character. The second step is to select a core set of problems that
require new techniques for their resolutions. After making a central contribu-
tion, Lennart would usually move on to a new area, though he might return
to the topic of his previous work if new techniques were developed that could
break old mathematical log jams. Lennart’s operating approach is based on
fundamental realities of modern mathematics as well as his own inner con-
victions. Here we first refer to an empirical fact of mathematical research:
All topics have a finite half-life, with fifteen years being an upper bound for
most areas. After that time it is usually a good idea to move on to some-
thing new. Secondly, the divorce between mathematics and physics, though
never complete, was a disaster for analysis in the middle of the twentieth cen-
tury. Physics and physical intuition have always led to many of the deepest
advances in analysis. The past two and a half decades have seen analysis be-
come increasingly dominated by this philosophy once again, with areas such
as Stochastic Loewner Evolutions and critical lattice models, both of which
have deep ties to conformal field theory, being in the vanguard over the past
five years. Lennart has been a forceful advocate of both these newer areas as
well as a recurrent theme of his own research: Find and explain the funda-
mental mechanisms underlying the behavior exhibited in key physical features
of a problem. This, however, was only the first step for his work in an area.
The other crucial aspect of his lifework has been to discover young talents
and nurture the brightest of these. This step could not be taken without de-
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veloping an international group of experts covering many aspects of analysis.
There were then conferences and programs to be arranged, and Lennart has
also spent enormous time on this aspect of mathematics.

After completing high school in 1945, Lennart started his college studies
in Uppsala, where he continued with his graduate studies. With the mercur-
ial genius Arne Beurling as his thesis advisor, Lennart rapidly struck out on
his own. His 1950 thesis on Sets of Uniqueness led to important results pub-
lished in Acta Mathematica. Continuing his research in complex analysis, in
the late 1950’s he classified the interpolating sequences for bounded analytic
functions on the disk. Here the key idea was the introduction of what is now a
cornerstone of modern analysis, namely Carleson Measures. (Lennart’s name
for these was much more prosaic.) This led a few years later to his solution
of the Corona Problem for the disk. It is interesting to note that after this
solution of a famous, long-standing conjecture, Lennart turned his attention
to other areas, basically leaving corona problems until the early 1980’s, when
new methods led him to return and prove an extension of the Corona theorem
for the case of uniformly thick Denjoy domains. Instead Lennart turned his
attention to the Lusin conjecture on almost everywhere convergence of Fourier
series for L2 functions. His celebrated solution, published in Acta Mathemat-
ica in 1966, is regarded as one of the greatest accomplishments in analysis
during the twentieth century. The technical difficulty of this result is hard
to overstate and it is only within the past few years that almost everywhere
convergence has been more fully integrated with the rest of the machinery of
harmonic analysis. In the 1970’s one of Lennart’s fundamental contribution
was to prove the Lifting Theorem for quasiconformal mappings in the case of
R3 to R4. Lifting from R to R2 had been proven by Ahlfors and Beurling, and
Ahlfors had later handled the case for R2 to R3. The key idea in Carleson’s
theorem was to replace the complex analytic methods of Ahlfors (using quasi-
conformal factorization) and find an extension by applying the philosophy of
Beurling–Ahlfors plus a complicated geometric innovation. (This led several
years later to a full solution of the Lifting Problem by Tukia and Väisälä.)
In the 1980’s there was a reblossoming of interest in dynamical systems and
Lennart turned his attention there. (Few remember that in the 1960’s Lennart
had been the advisor for H. Brolin’s thesis, which introduced the Brolin po-
tential for polynomial Julia sets.) In a paper with M. Benedicks, he gave a
new proof of Jacobson’s theorem on chaotic behavior of x2 + a, for positive
measure of parameters a ∈ (−2,−2 + ε). The new feature here was a pow-
erful combinatorial argument on forward images of intervals and how these
images behaved when they came near the origin. In a later paper Carleson
and Benedicks found a far-reaching extension that allowed them to prove the
existence of a Cantor set of positive measure (in parameter space) where the
associated Hénon map has a strange attractor. It seems that Lennart’s focus
is always on the newest problem or area of research, and what comes next
from him we cannot guess.
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Lennart’s devotion to mathematics is not limited to his mathematical
output and influence. He has worked tirelessly for the promotion of inter-
national cooperation in mathematics. In the late 1960’s he restarted the Insti-
tut Mittag-Leffler, which had been more or less moribund since the death of
Mittag-Leffler in the 1920’s. He served as its director until the 1984, leaving it
in its present status as a jewel of Swedish mathematics and a world center of
research. In the early 1980’s, at a time of great international tensions, Lennart
served as president of the International Mathematical Union. In its most dif-
ficult hour, when the political circumstances of 1982 led to postponement of
the (quadrennial) International Congress, Lennart provided the leadership to
bring off a successful Congress one year later. These two accomplishments give
only a hint of Lennart’s work; he was one of the past century’s most influential
leaders in the cause of furthering international cooperation in mathematics.

With this background in mind, the 2003 conference on Perspectives in
Mathematics was planned with the theme of new and developing directions in
analysis. Experts from a wide spectrum of the analysis world presented their
visions or prognostications for the future. Our hope is that these proceedings
will provide a source of inspiration for the new generation of analysts, and
that Lennart will accept this volume as a small token of affection from his
many devoted friends all over the world of mathematics.

The conference was made possible due to the generosity of the Swedish
Foundation for International Cooperation in Research and Higher Education
(STINT), the Swedish Research Council (Vetenskapsr̊adet), and the Göran
Gustafssons Foundation. We thank them very much for their support. We
also thank Björn Winckler for his excellent work as technical editor of this
volume and the accompanying DVD.

Stockholm, Sweden, Michael Benedicks
February 2005 Peter W. Jones

Stanislav Smirnov
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The Rosetta Stone of L-functions

Enrico Bombieri

Institute for Advanced Study, School of Mathematics, Princeton, NJ 08540, USA
eb@math.ias.edu

THE ROSETTA STONE

The Rosetta stone (1808)

British Museum

The Rosetta Stone carries an identical text with
parallel inscriptions in hieroglyphs, demotic and
Greek. It is associated with the famous egyptol-
ogist Champollion (1790–1832), who used it, af-
ter he had deciphered demotic, as the starting
point for reading hieroglyphs. He recognized on the
Rosetta stone the name Ptolmys in Greek and de-
motic, and from there he identified the same name
in hieroglyphs, written in a cartouche. Three years
later, in 1821, while studying corresponding hiero-
glyphic and Greek texts on an obelisk transported
to England by Giovanni Belzoni (1778–1823), he
recognized the name Kliopadra, thus getting the
values of twelve hieroglyphs. From there, he was
able to complete the monumental task he had
started in 1808 at the age of eighteen.

ZETA AND L-FUNCTIONS [13]

Number fields. The Dedekind zeta function of a number field K is defined
by

ζK(s) =
∑

a

1

N(a)s
=
∏
p

(
1− 1

N(p)s

)−1

,

where a runs over all integral ideals of K, p over all prime ideals of K, and
where N(a) is the absolute norm from K to Q.

This is a generalization of ζ(s) with similar good properties.
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ZETA AND L-FUNCTIONS, II [13]

Theorem 1.1 (Hecke 1920).

(i) The Dedekind zeta function is meromorphic of order 1 with a simple pole
at s = 1 with residue 2r1(2π)r2Rh/(w

√
|∆(K)|), where r1 is the number

of real embeddings of K, r2 is the number of pairs of complex embeddings
of K, w is the order of the group of roots of unity in K, R is the regulator
of K, h is the class number and ∆(K) the discriminant of K.

(ii) We have a functional equation:

|∆(K)|s/2
(
π−s/2Γ (s/2)

)r1
(
(2π)−sΓ (s)

)r2
ζK(s)

which remains invariant by the change of variable s �→ 1− s.

HECKE CHARACTERS [13]

Absolute values. For each place v, let ‖x‖v be the associated absolute value:

‖x‖v =

⎧⎪⎨⎪⎩
N(p)− ordp(x) if v = p,

|x| if v = R,

|x|2 if v = C.

Ideles. The idele group J is J =
∏

vK
×
v , with the product restricted to

elements x with almost every factor ‖xv‖v = 1, together with a suitable
topology. Note that K× ⊂ J via the diagonal embedding.

Hecke Grössencharacter. A continuous homomorphism ψ : K×\J → T.

HECKE CHARACTERS, II [13]

The conductor. A place v is unramified for ψ if

ψv(xv) := ψ((1, ..., 1, xv, 1, ...)) = 1

whenever ‖xv‖ = 1. The conductor f of ψ is the ideal

f =
∏

p ramified

pmv ,

where mv is the smallest exponent for which ψv(xv) = 1 for xv ∈ 1 + pmv .

Grössencharacter of an ideal. It suffices to define it on prime ideals, as
ψ(p) = ψ(�v) with �v a uniformizer of p if p � f, and 0 otherwise.
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HECKE L-FUNCTIONS [13]

For Kv = R or C, we have

ψv(xv) =
( xv

|xv|
)mv

|xv|iτv ,

where mv = 0 or 1 if Kv = R and mv ∈ Z if Kv = C.

Theorem 1.2 (Hecke 1920).

(i) The L-function

L(s, ψ) =
∑

a

ψ(a)

N(a)s
=

∏
p unramified

(
1− ψ(p)

N(p)s

)−1

attached to a non-trivial Grössencharacter ψ is entire of order 1.
(ii) Let ∆ψ = |∆(K)|N(fψ) and define

Λ(s, ψ) = (∆ψ)s/2
∏

Kv=R

π−s/2Γ
(

s
2 + cv

) ∏
Kv=C

(2π)−sΓ (s+ cv)L(s, ψ) ,

where cv = (iτv + |mv|)/2. Then

Λ(s, ψ) = w(ψ)Λ(1 − s, ψ) ,

for some complex number w(ψ) with |w(ψ)| = 1.

ARTIN L-FUNCTIONS [13]

L/K is a Galois extension of degree d of K with Galois group G. Let π : G→
GLn(C) be a representation of G.

The lift pOL to L of a prime ideal p of K factors as

pOL =

r∏
i=1

Pe
i .

e is the ramification index, |OL/Pi| = |OK/p|f and efr = d.
G acts on {P1, . . . ,Pr} by permutations; the subgroup GP fixing P is the

decomposition group of P. The elements σ ∈ GP with

σx ≡ xN(p) (mod P)

form a right and left coset (P, L/K) (the Frobenius substitution) of the inertia
group IP fixing K(P) = OL/P. Changing P into ηP yields (ηP, L/K) =
η(P, L/K)η−1.
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ARTIN L-FUNCTIONS, II [13]

Let χ = Tr(π) be the character of π and define for σ ∈ (P, L/K):

χ(pm) = |Ip|−1
∑
τ∈Ip

χ(σmτ) .

Then χ(pm) is independent of the choices of P and σ.

The local L-function.

Lp(s, χ, L/K) := exp
( ∞∑

m=1

1

m
χ(pm)N(p)−ms

)
.

The Artin L-function.

L(s, χ, L/K) =
∏
p

Lp(s, χ, L/K) .

THE ARTIN FORMALISM [13]

L(s, 1, L/K) = ζ(s,K).

Direct sum.

L(s, χ1 + χ2, L/K) = L(s, χ1, L/K)L(s, χ2, L/K) .

Restriction. Let L′ ⊃ L ⊃ K be Galois extensions. Then

L(s, χ, L′/K) = L(s, χ, L/K) .

Induction. Let L′ ⊃ L ⊃ K be Galois extensions and let χ∗ be the character
of G = Gal(L′/K) induced by a character χ of H = Gal(L′/L). Then

L(s, χ, L′/L) = L(s, χ∗, L′/K) .

The character χ∗ is the unique character such that (χ∗, ψ)G = (χ, ψ|H)H

where ( , )G is the scalar product on central functions on G normalized with
(1, 1)G = 1.

ARTIN L-FUNCTIONS, III

Theorem 1.3 (Artin 1923). We have

L(s, χ, L/K) =
∏
p

det

[
I − π(p)

N(p)s

]−1

,

where
π(p) = π(σ)|Ip|−1

∑
τ∈Ip

π(τ) .

For the proof, note that |Ip|−1
∑

τ∈Ip
π(τ) is an idempotent.
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AN EXAMPLE

G = {±1}, L/K = Q(
√
D)/Q, D squarefree. ∆ = D if D ≡ 1 (mod 4),

otherwise ∆ = 4D.

Case 1: p � ∆, (p) = pp. Here Gp = {1} and (p, G) = (p, G) = 1 by Fermat’s
Little Theorem.

Case 2: p � ∆, (p) prime. Here Gp = {±1}, Ip = {1} and ((p), G) = −1,
because if (p) does not split then D is not a quadratic residue (mod p).

Case 3: p | ∆, (p) = p2. Here Gp = {±1}, Ip = {±1} and (p, G) = {±1}.

AN EXAMPLE, II

Take π to be the regular representation

π{1,−1} =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
.

The local factors are:

det

[
1− p−s 0

0 1− p−s

]
= (1 − p−s)2 if p splits;

det

[
1 −p−s

−p−s 1

]
= 1− p−2s if p remains prime;

det

[
1− 1

2p
−s − 1

2p
−s

− 1
2p

−s 1− 1
2p

−s

]
= 1− p−s if p ramifies.

Then L(s, π, L/K) = ζ(s)L(s, (∆
· )).

AN EXAMPLE, III

Identifying L(s, π, L/K) = ζ(s)L(s, (∆
· )) (where (∆

· ) is the Kronecker symbol)
with ζ(s, L/K) = ζ(s)L(s, χ∆), where now χ∆ is the Dirichlet character, is
the quadratic reciprocity law. In the general case of abelian extensions L/K,
the corresponding result is Artin’s reciprocity law of class field theory. For
example, it implies as a special case the famous Kronecker–Weber theorem
that every abelian extension of Q is a subfield of a cyclotomic field.

ARTIN L-FUNCTIONS, IV

Artin’s Conjecture. The L-function L(s, χπ, L/K) associated to a non-
trivial irreducible representation π of Gal(L/K) is an entire function of s
of order 1.



6 Enrico Bombieri

Known only in special cases. For G abelian, Artin. Also known for charac-
ters expressible as linear combinations with positive coefficients of characters
induced by cyclic subroups of G. For dim(π) = 2 and G = S3 and G = S4,
Langlands [15], Tunnell [22]. For G = A5 with some conditions, Taylor [20],
Shepherd-Barron & Taylor [18], Buzzard & Dickinson & Shepherd-Barron &
Taylor [2], Buzzard & Stein [3].

Brauer’s Theorem. L(s, χπ, L/K) is meromorphic of order 1 and satisfies
a functional equation (Λ = L× {Γ -factors})

Λ(s, χπ, L/K) = w(χπ , L/K)Λ(1− s, χ̃π, L/K) ,

where χ̃π is the character of the contragredient of π.

SOME MODULAR FORMS

Let f(z) be a holomorphic modular form of weight k for a subgroup Γ < Γ (1)
generated by z �→ z + h and z �→ −1/z:

f(γz) = ε(γ)(cz + d)kf(z) , γ =

[
a b
c d

]
,

with ε(γ) an appropriate set of multipliers (Nebentypus).
Then f(z) is periodic and has a Fourier expansion

f(z) =
∞∑

n=0

ane2πiz/h .

By the Mellin transform, L(s, f) =
∑∞

n=1 ann
−s is meromorphic of order 1,

with a simple pole at s = k if a0 	= 0, and

(2π/h)−sΓ (s)L(s, f) = w (2π/h)s−kΓ (k − s)L(k − s, f) ,

for w = ikε([z �→ −1/z]).

A CONVERSE THEOREM

Theorem 1.4 (Hecke 1936). Conversely, given L(s, f) with the above prop-
erties one recovers a modular form f of weight k for Γ , by setting a0 = i−kw
in case L(s, f) has a pole at s = k.

Example. Take h = 2 and

θ(z) =
1

2

∞∑
n=−∞

eπin2z .

Then θ(z) is a modular form of weight 1/2, multiplier 1 and L(s, θ) = ζ(2s).
The space of such forms for Γ has dimension 1, hence ζ(2s) is the unique (up
to a scalar) Dirichlet series satisfying the same functional equation as ζ(2s).



The Rosetta Stone of L-functions 7

A CONVERSE THEOREM, II [25]

Hecke’s converse result uses only the cusp at i∞. Weil’s new idea: Control
of the Fourier expansions at every cusp by ‘twisting’ the Dirichlet series with
Dirichlet characters.

Theorem 1.5 (Weil 1967). Let L(s, f) =
∑
ann

−s and write, for a Dirich-
let character χ (mod r):

Λ(s, f ⊗ χ) = (2π)−sΓ (s)
∞∑

n=1

anχ(n)n−s .

Suppose there are N , k such that for every primitive χ (mod r) with (r,N) = 1
we have that Λ(s, f ⊗ χ) is entire of order 1 and

Λ(s, f ⊗ χ) = wχr
−1(r2N)k/2−sΛ(k − s, f ⊗ χ)

with wχ = ikχ(N)G(χ)2 and G(χ) =
∑

n (mod r) χ(n) exp(2πin/r).

Then L(s) = L(s, f) with f a holomorphic cusp form for Γ0(N).

THE HASSE–WEIL ZETA FUNCTION

The Hasse–Weil zeta function. Let V/K be a variety over a number field.
Then for all except finitely many prime ideals p the reduction V p is defined
over the finite field OK/p and yields a Zeta function Z(T, V p). The global
zeta function of V is now ∏

p

Z(N(p)−s, V p) ,

where the product runs over all prime ideal where the reduction is defined.

If V ′/K is another model of V the zeta functions are the same up to finitely
many factors.

A difficulty. Define ‘good factors’ even at places of bad reduction and ‘good
models’ for which the zeta function behaves nicely.

SOME EXAMPLES

Example. Let V be the projective space Pn/OK . Then

ζ(s, V ) = ζK(s)ζK(s− 1) · · · ζK(s− n) .
Example (Deuring, 1953–57). Let E be an elliptic curve over a number
field L, with complex multiplication in the imaginary quadratic field K =
End(E) ⊗ Q. Assume K ⊂ L. Then there is a model of E/L and a Hecke
Grössencharacter ψ of L such that

ζ(s, E) = ζL(s)ζL(s− 1)L(s− 1/2, ψ)L(s− 1/2, ψ) .

Example (Taniyama, 1957). The previous example extends to abelian va-
rieties of CM type.
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THE TANIYAMA CONJECTURE

Eichler (1953) proved the functional equation for zeta functions of modular
curvesX0(N) = H/Γ0(N) of genus 1, by showing that in this case L(s,X0(N))
was the Mellin transform of a cusp form of weight 2. Shimura [19] extended
this to certain other cases. On the basis of this evidence, Taniyama suggested
this held in general.

Conjecture 1.6 (Taniyama 1955, Shimura, Weil, . . . ). Every elliptic
curve over Q is uniformized by a cusp form of weight 2 for Γ0(N). Equiva-
lently, every elliptic curve E/Q admits the modular curve X0(N) as a ramified
covering, for some N .

Proved by Wiles [26], Wiles & Taylor [21], in the semistable case (namely
multiplicative bad reduction only) and now in general by Breuil & Conrad &
Diamond & Taylor [1].

FIBONACCI AND CONGRUENT NUMBERS [8]

Fibonacci

Fibonacci sequence
1, 1, 2, 3, 5, 8, . . . ; fn+1 = fn + fn−1

The Liber Quadratorum
Fibonacci’s formula

(a2 + b2)(c2 + d2) = (ad± bc)2 + (ac∓ bd)2

Congruent numbers m
h2 +m = �, h2 −m = �

h2 = a2 + b2, m = 2ab = 4× area
Fibonacci: m 	= �

The congruent number 157
The smallest solution is (Zagier)

a = 3401649243913217525608770
411340519227716149383203 ,

b = 411340519227716149383203
43333111387429522619220 .

CONGRUENT NUMBERS, II [23]

The solution? (Tunnell 1983). Let g = q
∏

(1 − q8n)(1 − q16n), θ2 =∑
q2n2

, θ4 =
∑
q4n2

, q = eπiz, and define cusp forms of weight 3/2 for
Γ0(32):

gθ2 =
∑

a(n)qn , gθ4 =
∑

b(n)qn .
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Then a squarefree m is not a congruent number if a(m) 	= 0 (m odd), and if
b(m/2) 	= 0 (m even). The converse is true if the B & S-D conjecture holds
for y2 = x3 −m2x (or my2 = x3 − x).

Comments on proof: m is congruent if and only if the curve Em defined
by my2 = x3− x has rational solutions with y 	= 0. The connection with cusp
forms uses a deep result of Waldspurger for computing L(1, Em) (for example,
for odd m it yields L(1, Em) = βa(m)2/(4

√
m), β =

∫∞
1 (x3 − x)−1/3dx =

2.62205 . . .), theta lifts and the B&S-D conjecture.

THE NEW ROSETTA STONE

The intertwining of geometry, automorphic theory, and L-functions, was com-
pared by André Weil with the reading of a Rosetta stone for mathematics.

Motivic writing. L-functions can be defined from geometry (Hasse, Weil,
. . . )

Galois writing. L-functions can be defined from finite dimensional repre-
sentations of the absolute Galois group Gal(K/K) acting on a vector space
V (Artin, Weil, Serre, . . . )

Automorphic writing. L-functions can be defined globally from automor-
phic forms on algebraic groups modulo discrete subgroups (Hecke, Langlands,
. . . )

AUTOMORPHIC L-FUNCTIONS [16]

Langlands ∼ 1970. Vastly extended the concept of automorphic form and
automorphic L-function.

Remark. A Hecke character is nothing else than a representation of GL1(A)
in the space of continuous functions on GL1(K)\GL1(A).

An automorphic representation is an irreducible component π of a rep-
resentation of the group GLn(A) on the space of continuous functions on
GLn(K)\GLn(A) (with technical conditions). One can then attach to π an
L-function, with functional equation L(s, π) = w(π)L(1−s, π̃) with π̃ the con-
tragredient. Also π decomposes as a tensor product ⊗πv of local components,
yielding an Euler product for L(s, π) with standard factors of degree n.

AUTOMORPHIC L-FUNCTIONS, II [16]

Automorphic L-functions (Langlands [14]). A concept which fuses to-
gether the Artin and Hecke concepts. Given a connected reductive group G/K
and a finite extension L/K, one considers an extension LG of G by Gal(L/K),
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a finite dimensional complex representation ρ of LG, and a representation π
of G(A). The theory of Hecke operators gives us, for each local factor πv of π,
a conjugacy class gv = g(πv) ∈ LG which generalizes the notion of Frobenius
substitution.

The automorphic L-function associated to ρ and π is a product of local
factors where for almost every v one has

Lv(s, πv, ρ) = det
(
I − ρ(gv)N(p)−s

)−1
.

AUTOMORPHIC L-FUNCTIONS, III [16]

The goal. The reciprocity law, namely: Given ρ and π there is π′ of G(A)
such that Lv(s, πv, ρ) = Lv(s, π

′
v) for almost every v and L(s, π, ρ) = L(s, π′).

The first tool. The principle of functoriality. If H and G are two reductive
groups and LG→ Gal(L/K) factors as

LG
ϕ→ LH → Gal(L/K) ,

then one expects for each π for G to attach Π for H such that one has the
equality of conjugacy classes {g(Πv)} = {ϕ(g(πv))} for almost every v. An
important special case is base change [15], known in some cases.

Others tools. Converse theorems (Cogdell and Piatetski-Shapiro [4]), theta-
liftings, the Selberg–Arthur trace formula.

READING THE ROSETTA STONE

Automorphic = Galois. This is a key step with very deep implications. For
GL1, it is Artin’s abelian reciprocity law of class field theory, a vast gener-
alization of the quadratic reciprocity law. For GL2 it is known for dihedral
(reduces to GL1), tetrahedral and octahedral representations and many (but
not yet all) icosahedral representations, i.e. G = S3, S4, A5 ([15], [23], [20],
[18], [2], [3]).

Galois = Motivic. This is also a key step, understood in very few cases,
namely GL1 (Artin, Hecke), elliptic curves E/Q (the Taniyama conjecture).

Motivic = Automorphic. Known in very few cases. Possibly there are
more automorphic L-functions than motivic L-functions coming from geome-
try.
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APPLICATIONS

If
L(s, f) =

∏
v

(
1− ω1(p)N(p)−s

)−1(
1− ω2(p)N(p)−s

)−1

the symmetric k-th power is

L(s,Symk f) =
∏
v

k∏
j=0

(
1− ω1(p)jωk−j

2 (p)N(p)−s
)−1

.

A deep conjecture is that these symmetric powers have analytic continuation
and functional equation. A success of these methods has been to prove such a
conjecture for k = 2, 3, 4 (k = 2 by Rankin and Selberg for classical cusp forms,
Gelbart and Jacquet [7] in general, k = 3 and 4 by Kim and Shahidi [11]).

CLASSICAL PROBLEMS

We have a good formal understanding for L-functions for Dirichlet char-
acters and cusp forms for congruence subgroups of Γ (1), but only limited
information on analytical behavior. The functional equation has the form
Λ(s, f) = w(f)Λ(k − s, f), k = 1 or 2. An Euler product for L(s, f) has local
factors given by polynomials of degree k. The integer k is the degree of L(s, f).

The Generalized Riemann Hypothesis (GRH). The zeros of the func-
tions Λ(s, f) with Euler product all lie on the vertical line at the center k/2
of the critical strip (the critical line).

The Generalized Lindelöf Hypothesis (GLH). For every fixed ε > 0,
L(s, f) has order Nε(|s|+ 1)ε in the half-plane to the right of the critical line
(except at a possible pole). Here N is the conductor.

CLASSICAL PROBLEMS, II

Let µ(σ, f) be defined as the best exponent for which

|L(σ + it, f)| �
(
N(|t|+ 1)

)µ(σ,f)+ε
.

Then the functional equation and convexity yields µ(σ, f) ≤ (k − σ)/2 for
0 ≤ σ ≤ k. The Lindelöf hypothesis is µ(σ, f) = 0 for k/2 ≤ σ ≤ k; a
subconvexity bound is the statement µ(σ) < (k − σ)/2 for k/2 ≤ σ ≤ k. Such
a statement has deep arithmetic consequences which are unattainable using
the convexity bound alone. The estimate in the conductor is particularly hard
(Duke & Friedlander & Iwaniec [5], [6]).
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CLASSICAL PROBLEMS, III

The Generalized Ramanujan Conjecture (GRC). Ramanujan conjec-
tured, on the basis of numerical evidence, that |τ(p)| ≤ 2p11/2 for every prime
p. In general, this is about the coefficients an in L(s, f) =

∑
ann

−s. Then
GRC is the statement

|an| � n(k−1)/2+ε ,

for every fixed ε > 0.

GRC is a deep statement. For K = Q and k = 2, it is known when f is a
holomorphic cusp form of even integral weight for Γ (1), as a consequence of
Deligne’s GRH for varieties over finite fields (1974). It is open already for f a
non-holomorphic cusp form (Maaß wave form) for Γ (1).

FAMILIES

Let {λj} be a real sequence, λj ∼ j. Consider the gaps ∆j = λj+1 − λj and
set

µ1(N)[a, b] =
1

N
#{j : ∆j ∈ [a, b]} , 0 ≤ j < N .

Quite often one finds a Cauchy–Poisson distribution

µ1(N) → e−xdx .

Example. This is expected for the sequence {pj/ log pj}, although it remains
hopeless to prove.

Example. Again, expected for the (ordered) sequence {π2−9/4(m2 +
√

2n2)}
and, again, completely open.

Problem. What is the expected behavior for {1/(2π) γ log γ}, where ζ(1/2+
iγ) = 0 and γ > 0? (There are applications.)

FAMILIES, II [9]

For A ∈ U(N), consider the eigenvalues z1, . . . , zN on the unit circle ordered
by increasing argument (mod 2π). Let

µk,N (A)[a, b] =
1

N
#
{
j :
N

2π
arg(zj+k/zj) ∈ [a, b]

}
.

Theorem 1.7 (Gaudin 1961, Katz & Sarnak 1999).∫
U(N)

µk,N (A)dA→ µk([a, b]) ,

(here dA is the normalized Haar measure) with
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dµk =
d2

ds2

( k−1∑
j=0

k − j
j!

( ∂
∂T

)j

det
(
I + TK(s)

)∣∣
T=1

)
ds

and K(s) the operator defined by

K(s)φ(x) =

∫ s/2

−s/2

sin(x− y)
π(x− y) φ(y)dy .

Conjecture 1.8 (Montgomery, Katz & Sarnak). The sequence of zeros
of ζ(s) satisfies the above U(N) statistics for eigenvalues of random unitary
matrices.

FAMILIES, III

Extensive calculation by Odlyzko [17] with zeros of ζ(s) around 1020 show a
total agreement with the prediction. The only problem is: Why is this so?

There are similar formulas for the other classical groups SU(N), O(N),
SO(N), USp(N). The amazing thing is that certain families of L functions
seem to follow the same correlations. For example, the distribution of the j-th
zero of L(s, χ), χ a primitive quadratic character, follows the USp predic-
tion. Instead, the j-th zero of L(s, E ⊗ χ), E an elliptic curve, follows the O
prediction (two cases, according to the sign ± in the functional equation, cor-
responding to the two connected components O± of O). There is numerical
evidence that these are the true statistics and some consequences of them,
pertaining to the behaviour of moments of small order of L-functions on the
critical line, have also been verified unconditionally.

FAMILIES, IV

Katz and Sarnak have shown that in the function field analogue the prediction
are verified for families for which Deligne’s theory applies, and the associated
groups are nothing else than the monodromy groups of the families.

Question. For families of classical L-functions, what should replace mon-
odromy so as to explain how these laws arise?

Question. Is this phenomenon peculiar to L-functions or is it instead the
expression of a ‘universality law ’ which holds in a much wider context?

Question. Is there a way of formulating a program to prove GRH following
Deligne’s blueprint in this new context?
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FAMILIES, V

The predictions on correlations have changed our way of thinking about L-
functions.

Example. Until very recently, most analytic number theorists thought that
the maximum order of magnitude of log+|ζ(1/2 + it)| was

√
log|t| log log|t|,

based on the known Gaussian behavior of log|ζ(1/2 + it)|/
√
π log log|t| and a

probabilistic extrapolation. On RH, it was known that this maximum order
cannot exceed log|t|/ log log|t|, but this is only an upper bound and the gap
between the two was ascribed to an intrinsic ‘weakness’ of analytic methods.

Today, the work of Keating and Snaith [10] leads us to believe that the
true maximum order of log+|ζ(1/2 + it)| is log|t|/ log log|t|. This came as a
total surprise to experts.

FAMILIES, VI

In the function field case, the discovery by Ulmer [24] of elliptic curves over
Fp with rank as big as logN/ log logN (N is the conductor) confirms, via a
Birch & Swinnerton–Dyer conjecture, the new prediction that the maximum
order of log+|ζ(1/2 + it)| is O(log|t|/ log log|t|).

Conclusion. The analogy with the function field case is often a good predic-
tor for the classical case too.

Conclusion. The recent proof by Lafforgue [12] in the function field case
that motivic = automorphic gives support to the hoped deciphering of the
new Rosetta stone, namely that motivic = automorphic also holds in the
classical case.

References

1. C. Breuil, B. Conrad, F. Diamond, R. Taylor: J. Amer. Math. Soc. 14, 843
(2001)

2. K. Buzzard, M. Dickinson, N.I. Shepherd-Barron, R. Taylor: Duke Math.
J. 109, 283 (2001)

3. K. Buzzard, W.A. Stein: Pacific J. Math. 203, 265 (2002)
4. J.W. Cogdell, I.I. Piatetski-Shapiro: J. reine angew. Math. 507, 165 (1999)
5. W. Duke, J.B. Friedlander, H. Iwaniec: Inventiones Math. 143, 221 (2001)
6. W. Duke, J.B. Friedlander, H. Iwaniec: Inventiones Math. 149, 489 (2002)
7. S. Gelbart, H. Jacquet: Ann. Sci. École Norm. Sup. (4) 11, 471 (1978)
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New Encounters in Combinatorial Number
Theory: From the Kakeya Problem to

Cryptography
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1 Basic Definitions and Previous Results

A Kakeya set in Rd is a Borel measurable set S ⊂ Rd (d ≥ 2) containing a
line segment in every direction.

Conjecture 1.1. If S ⊂ Rd is a Kakeya set, then dimS = d (‘dim’ denotes
Hausdorff dimension).

Such sets may be of zero Lebesgue measure (construction for d = 2 due to
Besicovitch [1]).

The conjecture has been verified for d = 2 (see [15]) but it remains open
for d = 3. In the case d = 3, dimS ≥ 5/2 (see [29]) and this is essentially the
best result to date. In general, dimS ≥ d/2 + 1.

This problem has relevance to various issues in Harmonic Analysis involv-
ing curvature, such as

• the disproof of the ball multiplier conjecture [19]
• bounds on oscillatory integrals, see in particular [3].
• E. Stein’s restriction conjecture [26]:

Let µ ∈M(S2) such that ‖dµ
dσ‖∞ <∞. Then µ̂ ∈ Lp(R3) for all p > 3.

The first improvements beyond the Stein–Tomas estimate ‖µ̂‖4 ≤ C‖dµ
dσ‖2

appears in [2] where the problem is also linked to the above Conjecture. The
best result to date is due to T. Tao [27], namely ‖µ̂‖p ≤ C‖dµ

dσ‖∞ for p > 10/3.

1.1 Relevance to the Distribution of Dirichlet Sums
(Montgomery’s Conjectures)

These conjectures originate from density problems (such as the density con-
jecture) for the zeros of the ζ–function and Dirichlet L–functions. A detailed
presentation of the interrelation between these different topics may be found
in [31] and [4]. Those survey papers of course do not cover more recent devel-
opments.
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2 Recent Developments

There are several new connections with Combinatorics and Combinatorial
Number Theory.

2.1 Connections with Combinatorics

Theorem 2.1 (Wolff [30]). Let A ⊂ R2 be a Borel measurable set containing
a circle of arbitrary radius ρ ∈ [1, 2]. Then dimA = 2.

The proof is based on methods from computational geometry (the cell
decomposition technique), see [13].

2.2 Connections with Combinatorial Number Theory

Key results involved in the link with Combinatorial Number Theory were
provided by

• Freiman (structure of sets with ‘small’ sum-sets)
• Plunnecke (sum-sets inequalities)
• Rusza ( -, new proof of Freiman’s theorem)
• Gowers (new proof of the Balog–Szemeredi theorem)

In this spirit significant improvements are obtained in large dimension
(d ≥ 5) using methods from Additive Number Theory. For example

Theorem 2.2 ([22]). If S is a Kakeya set in Rd then

dimS ≥ (2−
√

2)(d− 4) + 3 .

The Kakeya problem turns out to be embedded in a class of questions from
combinatorial number theory, often with a large gap between what is likely
to be true and what may be proven with the present knowledge. There are
many partial but few final results.

3 Geometric and Algebraic Counterparts

There has been no significant numerical progress in d = 3 beyond 5/2. Prob-
lems appear already on purely geometric or algebraic level (without metrical
structure).
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3.1 Geometric Setting

Let S ⊂ R3 be a finite set and L a collection of N2 lines such that no plane
in R3 contains more than N lines from L. Assume that for each � ∈ L

|� ∩ S| ≥ N .

Is it then true that
|S| � N3−ε ?

Remark 3.1. The Szemeredi–Trotter theorem implies that

|S|2 > cN2N3 ⇒ |S| > cN5/2

(using only that L consists of distinct lines).

Small improvement known: |S| > N5/2+δ.

3.2 Algebraic Setting

Let S ⊂ F3
p (p prime) contain a line in every direction. Is it true that

|S| � p3−ε ?

It is known (see [12]) that
|S| > p5/2+δ .

4 The Relation with Sum-product Problems

This development originates from [23].
It appears that the Kakeya (and related) conjectures require a better un-

derstanding of purely one-dimensional issues, basically expressing that either
the sum or the product set of a given set A is significantly larger than A itself.
This ‘principle’ has dimensional, arithmetical and metrical appearances.

4.1 Erdös–Volkman Ring Problem, 1966

Let S be a Borel subring of R (x, y ∈ S ⇒ x+ y, x · y ∈ S). Then

dimS = 0 or dimS = 1 .

This problem was solved by Edgar–Miller [18] and independently by the au-
thor [7].
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4.2 The Erdös–Szemeredi Sum-product Problem, 1986

Let A be a finite subset of Z (or R). Then is it true that

|A+A|+ |A ·A| � |A|2−ε ?

This problem is still open. The best result to date is the following result by
J. Solymosi [24]

|A+A|+ |A · A| > |A|14/11

(log |A|)3 .

4.3 The ‘Discretized’ Ring Problem [23], 2001

Let A ⊂ [1, 2] be a union of δ-intervals and satisfying (0 < σ < 1)

(i) |A| > δ1−σ+,
(ii) |A ∩ I| < rσδ1−σ for all δ < r < 1 and I an interval of size r.

Is it then true that

|A+A|+ |A ·A| > δ1−σ′

for σ′(σ) > σ ?

The answer to this problem has been proven to be affirmative (see [7]).

4.4 The Sum-product Problem in Fp [12], 2003

For every ε > 0 there exists a δ > 0 such that if A ⊂ Fp and pε < |A| < p1−ε,
then

|A+A|+ |A · A| > |A|1+δ .

The same conclusion holds assuming |A| < p1−ε (see [11]). The approach to
prove this is closely related to the work of Edgar–Miller.

It turns out that besides the lower bound |S| > p5/2+δ, if S is a Kakeya set
in F3

p, the sum-product theorem in Fp permits us quite substantial progress
on issues of bounding various exponential sums (that seem to lie beyond the
reach of ‘conventional’ technology). In the remainder of this exposé, we will
review a few recent results obtained by this method.

5 Exponential Sum Estimates

The sum-product theorem in Fp offers a new approach to exponential sum
estimates.
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Theorem 5.1 (Bourgain–Konyagin [11]). Let G be a subgroup of F∗
p and

|G| > pδ (p prime, δ > 0 an arbitrary fixed constant). Then

max
a∈F∗

∣∣∣∣∑
x∈G

exp
(
2πi
ax

p

)∣∣∣∣ ≤ |G|p−γ ,

where γ = exp(−Cδ−C) and C is some constant.

Earlier results have been obtained by Korobov (δ > 1/2), Shparlinski (δ >
3/7), Heath–Brown–Konyagin (δ > 1/3) and finally by Konyagin (δ > 1/4).
The latter three approaches were based on Stepanov’s method. See [21] for a
survey and references.

Corollary 5.2. If k < p1−δ then there is an estimate on the Gauss-sum

max
a∈F∗

p

|Gp(a, k)| < p1−δ′

δ′ = δ′(δ) > 0 ,

where

Gp(a, k) =

p−1∑
x=0

ep(ax
k) .

Remark 5.3. (i) The classical estimate is |Gp(a, k)| ≤ (k, p − 1)
√
p. This is

always nontrivial for k < p1/2−ε.
(ii) In general, if f(x) ∈ Z[x] is a polynomial of degree k then∣∣∣∣ p−1∑

j=0

ep
(
f(x)
)∣∣∣∣ < k√p .

This is due to A. Weil. Deligne made a generalization to varieties.
In certain cases, Mordell’s estimate is better.
There is an improved version (see [16]) stated as follows: Let f(x) =∑r

i=1 aix
ki , ai ∈ F∗

p, 1 ≤ k1 < k2 < · · · < kr < p− 1. Then

∣∣∣∣ p−1∑
x=1

ep(f(x))

∣∣∣∣ ≤ 41/r(k1, . . . , kr)
1/r2

p1−1/2r .

See also [17] for the binomial case.
(iii) Corollary 5.2 is previously known for k < p3/4−ε, a result by Konyagin [20].

Theorem 5.4 ([5]). Let θ ∈ F∗
p be of multiplicative order t and t ≥ t1 > pδ.

Then

max
a∈F∗

∣∣∣∣ t1∑
s=1

ep(aθ
s)

∣∣∣∣ < t1p−δ′

δ′ = δ′(δ) > 0 .
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Theorem 5.5 ([5]). Let θ ∈ F∗
p be of multiplicative order t > pδ. Then

max
(a,c,p)=1

t∑
s′=1

∣∣∣∣ t∑
s=1

ep(aθ
s + cθss′

)

∣∣∣∣ < t2p−δ′

.

Corollary 5.6. Let θ ∈ F∗
p be of multiplicative order t > pδ. Then

max
(a,b,c,p)=1

∣∣∣∣ t∑
s=1

t∑
s′=1

ep(aθ
s + bθs′

+ cθss′

)

∣∣∣∣ < t2p−δ′

.

Corollary 5.7. Let θ ∈ Z be of multiplicative order t > pδ modulo p. Then
the triples ({θx

p

}
,
{θy

p

}
,
{θxy

p

})
x,y=1,...,t

have discrepancy D < p−δ′

.

Remark 5.8. (i) Theorem 5.5 and Corollaries 5.6 and 5.7 are previously known
for t > p3/4+ε. See in particular the paper [14].

(ii) If we fix θ ∈ Z, then the multiplicative order t of θ modulo p satisfies
t > p1/2−ε for almost all primes p.
There are infinitely many primes p such that p − 1 has a prime divisor
t > pα, α > 0.677 (see [10]).

(iii) (θx, θy, θxy) are the Diffie–Hellman triples in cryptography and θxy is the
D-H secret key.
The DHC-assumption: ‘there is no polynomial-time algorithm that, given
p, θ, θx, θy, computes θxy’.
More precisely: Let p be an n-bit prime and let θ ∈ F∗

p be of multiplicative

order t > pδ. Then ‘the distribution of binary strings that represents
(θx, θy, θxy), where x, y are chosen uniformly in F∗

p, has statistical distance
from the uniform distribution that is exponentially small in n’.
This result is established in [14] for t > p3/4+ε.

6 The Method

Assume that H < F∗
p is a multiplicative subgroup, where |H | > pδ. Iterating

the sum-product theorem, it follows that

∀ε > 0, ∃k = k(δ, ε) such that |kH| = |H + · · ·+H︸ ︷︷ ︸
k

| > p1−ε .

It turns out there is the following stronger property on the decay of con-
volutions.
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Theorem 6.1. Let H be as above. For all ε > 0, there is a k = k(ε, δ) such
that denoting

ν =
1

|H |
∑
x∈H

δx ,

we have
max

x
|ν(k)(x)| < p−1+ε ν(k) = ν ∗ · · · ∗ ν︸ ︷︷ ︸

k

.

Assuming that H is symmetric (which we may), it follows that

pν(2k)(0) =
∑
ξ∈Fp

|ν̂(ξ)|2k =
∑
ξ∈Fp

|H |−2k

∣∣∣∣ ∑
x∈H

ep(xξ)

∣∣∣∣2k

< pε .

Fix a ∈ F∗
p. By invariance∑

x∈H

ep(ax) =
∑
x∈H

ep(ahx) , ∀h ∈ H ,

and from the preceding

|H |
∣∣∣∣ ∑

x∈H

ep(ax)

∣∣∣∣2k

< |H |2kpε

∣∣∣∣ ∑
x∈H

ep(ax)

∣∣∣∣ < |H |p(ε−δ)/2k < p−δ/4k|H |

and Theorem 5.1 follows.

Remark 6.2. (i) The previous Theorem remains valid under weaker assump-
tions on H ⊂ Fp. It suffices that |H | > pδ and H has a small product set,
i.e.

|H ·H | < C|H | .
As a consequence we obtain Theorem 5.4 by taking

H = {θs | s = 1, . . . , t1} .

(ii) There are versions of the Theorem for subgroups H ⊂ F∗
p × F∗

p (and more
general products). Notice that clearly in Fp × Fp = R, there is no sum-
product theorem valid without some restrictions. However, the following
holds

Theorem 6.3. Let H ⊂ F∗
p × F∗

p, |H | > pδ and |H ·H | < C|H |. Let

ν =
1

|H |
∑

x∈H∪(−H)

δx
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and assume that there is an integer k (bounded) such that

|ν(2k)(0)| < p−1−ε ,

for some ε > 0. Then there is a k1 = k1(k, ε) such that

|ν(2k1)(0)| < p−2+ε .

Theorem 5.5 follows by taking H = Hs′ = {(θs, θs′s) | s = 1, . . . , t}.
(iii) The basic philosophy of the Theorem is at least formally reminiscent of

results obtained in the 80’s by N. Varopoulos (see e.g. [28]) for random
walks on finitely generated groups: growth of balls defined by the word-
metric implies transience properties of the random walk.

7 Some Other Applications

7.1 Uniform Distribution of Mersenne Numbers

The Mersenne numbers are defined as Mq = 2q − 1, where q is prime.

Theorem 7.1. For almost all primes p, the sequence{Mq

p

}
q=1,...,t2+εq prime

is uniformly distributed, t = multiplicative order of 2 modulo p.

The proof is obtained by combining the Vinogradov–Vaughan estimate of∑
n≤N Λ(n)f(n), where Λ(n) is the Von Mangoldt function, with Theorems

5.4 and 5.5. This result was established earlier in [9], assuming GRH.

7.2 Prime Divisors of ‘Sparse Integers’

For g ≥ 2 and s ≥ 1 two integers and D = {di}s
i=0 a sequence of s+1 non-zero

integers, denote

Sg,s(D) = {d0 + d1g
m1 + · · ·+ dsg

ms | mi ∈ Z+} .

Theorem 7.2 ([5]). For all δ > 0, there is a s(δ) such that if s > s(δ), for
most primes p, there is a n ∈ Sg,s(D) such that p | n and log n < pδ.

This was known for δ > 1/2 (see [25]).

7.3 Mordell Type Estimate on Multiplicative Subgroups

Theorem 7.3 ([6]). Let G � F∗
p, |G| > pδ and d > 0 a fixed integer. Then

max
(a1,...,ad,p)=1

∣∣∣∣∑
x∈G

ep
(
a1x+ a2x

2 + · · ·+ adx
d
)∣∣∣∣ < |G|p−δ′

,

with δ′ = δ′(δ, d) > 0.
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7.4 Further Applications

Further applications of the method involve a full understanding of the sum-
product theorem in product spaces F2

p. One may then establish a Mordell-type
exponential sum estimate in basically optimal form.

Theorem 7.4 ([6]). Let p be prime. Given r ∈ Z+ and ε > 0, there is a
δ = δ(r, ε) > 0 satisfying the following property: If

f(x) =

r∑
i=1

aix
ki ∈ Z[x] and (ai, p) = 1 ,

where the exponents 1 ≤ ki < p− 1 satisfy

(ki, p− 1) < p1−ε for all 1 ≤ i ≤ r ,
(ki − kj , p− 1) < p1−ε for all 1 ≤ i 	= j ≤ r ,

then there is an exponential sum estimate∣∣∣∣ p−1∑
x=1

ep
(
f(x)
)∣∣∣∣ < p1−δ .

Theorem 7.4 may be reformulated for exponential sums associated to
power residues. In this setting, the result remains valid for incomplete sums,
generalizing Theorem 5.4 to several generators θ1, . . . , θr. Thus

Theorem 7.5 ([6]). Let θ1, . . . , θr ∈ F∗
p satisfy for some ε > 0 the estimates

O(θi) > p
ε for all i = 1, . . . , r ,

O(θiθ
−1
j ) > pε for all 1 ≤ i 	= j ≤ r .

Then, letting t1 > p
ε

max
ai∈F∗

p

∣∣∣∣ t1∑
s=1

ep

( r∑
i=1

aiθ
s
i

)∣∣∣∣ < t1p−δ ,

with δ = δr(ε).
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1 Introduction

Our goal is to describe some of the mathematical challenges confronted, when
dealing with massive data sets. We point out that the trend set in hard analy-
sis by L Carleson, of integrating combinatorics with geometry and harmonic
analysis, is a powerful guide in the context of analytic geometry of data.

The task confronted by the scientist or engineer is to organize and struc-
ture enormously complex high dimensional clouds of points. More importantly,
the scientist is challenged by the need to approximate empirical functions de-
pending on many parameters effectively . Here effective methods are the ones
for which the complexity of the method does not grow exponentially with the
dimension. In effect no tools from classical approximation theory and analysis
exist.

Various methods for embedding high dimensional data sets in relatively
modest dimensions were introduced by various groups of researchers. In par-
ticular Johnson and Lindenstrauss have shown that N points in N dimensions
can almost always be projected to a space of dimension C logN with control
on the ratio of distances. J Bourgain has proved that any finite metric space
with N points can be embedded by a bi-Lipschitz map into logN dimen-
sional Euclidean space with bi-Lipschitz constant logN . Various randomized
versions of this theorem have become useful tools for protein mapping and
other data analysis tasks. These results indicate that in practice to address
the problem of functional approximation it would be enough to restrict our
attention to dimensions below 50.

� The results in this talk are joint work with S. Lafon, A. Lee, M. Maggioni,
S. Zucker.
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2 Diffusion Geometries and Data Organization

The situation is not so difficult when dealing with clouds of points in high di-
mensions which are distributed near lower dimensional manifolds or varifolds.
In particular empirical manifold learning is an active area of research.

We now would like to use Harmonic analysis as a tool to process empirical
data sets.
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Fig. 1. Hyperspectral image of a pathology slide (left) with associated spectrum
(right).

The hyperspectral image of a pathology slide to the left in Fig. 1 provides
an illustration of some of the issues mentioned above, here to each pixel of
the image is associated a spectrum (Fig. 1, right) representing the electro-
magnetic absorption of the tissue in 28 bands. This spectrum reflects the mix
of biological constituents. The coloring in RGB of the image provides at each
location a mix of three tissue types.

For physical reasons it is expected that these points in 28 dimensional
space lie on different low dimensional submanifolds.

Our goal is to provide a general methodology to describe and parame-
trize it. Our method provides a framework for structural multiscale harmonic
analysis on subsets (data) of Rn and on graphs. We use diffusion semigroups
to generate multiscale geometries in order to organize and represent complex
structures. We build the diffusions through an “infinitesimal” Markov process,
and will show that the top eigenfunctions of the Markov operator permit a
low dimensional geometric embedding of the data set into Rn so that the or-
dinary Euclidean distance in the embedding space measures intrinsic diffusion
metrics on the data. Moreover we will indicate how empirical functions on the
data can be naturally extended to all of space.

While some of these ideas appear in a variety of contexts of data analysis,
such as spectral graph theory, manifold learning, nonlinear principal compo-
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nents and kernel methods. We augment these approaches by showing that
the diffusion distances are key intrinsic geometric quantities linking spectral
theory of the Markov process (Laplace operator, or Kernels) to the correspond-
ing geometry of the data, relating localization in spectrum to localization in
space, opening the door to the application of methods from signal processing
to analyze functions and transformations on the data.

Initially, our goal is to describe efficiently (empirical) functions on a set
Γ (data) or on a discrete graph. In particular we consider the analysis of
restrictions of band limited functions to the data (i.e. functions whose Fourier
transform is supported in a ball B). Specifically, the space of restrictions of
band limited function to the data set Γ , is spanned by the eigenvectors of the
covariance operator

kB(x, y) =

∫
B

eξ(x)eξ(−y)dξ ,

λjϕj =

∫
Γ

kB(x, y)ϕj(y)dy .

These eigenfunctions have natural extensions as band limited functions in
Rn given by

φj(x) =
1

λj

∫
Γ

kB(x, y)ϕj(y)dy .

It turns out that φj(x) form an orthogonal set on Rn of band limited func-
tions whose norm is maximized on the set (generalizing the classical prolate
functions). For the example of the unit sphere these eigenfunctions are the
spherical harmonics which are the eigenfunctions of the Laplace operator. We
will refer to the extensions of these eigenfunctions as geometric harmonics
(since these extensions are characterized as the minimal norm band limited
extension of the given restriction to the set). We will use these extensions for
estimating empirical regression off the data set.

More generally for data lying on a submanifold of Rn, any restriction
of a positive radial kernel leads to approximations of eigenfunctions of the
Laplace–Beltrami operator on the manifold. We now extend results of Belkin
et al. relating kernels and Laplace–Beltrami operators on submanifolds of
Euclidean space.

We restrict a positive symmetric kernel to the data set, as an operator (or
matrix)

K(f) =

∫
Γ

k(x, y)f(y)dy

and diagonalize K as

k(x, y) =
∑

λ2
iϕi(x)ϕi(y) .

Then

D2(x, y) = k(x, x) + k(y, y)− 2k(x, y) =
∑

λ2
i

(
ϕi(x) − ϕi(y)

)2
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is the square of the metric D(x, y).
If the kernel is given as a function of some initially given metric d(x, y) (for

example d could be the geodesic metric), and k(x, y) = k(d2(x, y)), k′(0) = 1,
then

D(x, y) ≈ d(x, y)

1 + d(x, y)
= d0(x, y) .

This observation shows that for data on a compact submanifold of Rn, the
kernel metric is equivalent to the original metric.

A particularly important case arises from a scaled weighted Gaussian ker-
nel operator (by a density of point distribution p(y))∫

Γ

exp(−d(x, y)2/ε)f(y)p(y)dy .

This kernel has to be renormalized as follows; let

pε(x) =

∫
Γ

exp(−d(x, y)2/ε)p(y)dy

and

νε(x) =

∫
Γ

exp(−d(x, y)2/ε)p(y)dy
pε(x)

.

Then the operator2

Aε(f) =

∫
Γ

aε(x, y)f(y)p(y)dy ,

where

aε(x, y) =
exp(−d(x, y)2/ε)
νε(x)pε(y)

is an approximation to the Laplace–Beltrami diffusion kernel at time ε.
The operator Aε can be used to define a discrete approximate Laplace

operator

∆ε =
1

ε
(Aδ − I) = ∆0 +

√
εRδ ,

where R is bounded on band limited functions and ∆0 is the Laplace–Beltrami
operator on the manifold. From this we can deduce the following theorem:

Theorem 2.1.

(Aδ)
t/δ = (I + ε∆δ)

t/δ = (I + ε∆0)
t/δ +O(

√
ε) = exp(t∆0) +O(

√
ε)

and the kernel of (Aδ)
t/δ is given as

at(x, y) =
∑

λ
2t/δ
i ψi(x)ψi(y) =

∑
exp(−µlt)φl(x)φl(y) +O(

√
ε) ,

where the φ are the eigenfunctions of the limiting Laplace operator and all
estimates are relative to any fixed space of band limited functions.

2 Shoenberg proved that this operator is positive, if and only if the metric d embeds
isometrically in Hilbert space.
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Strictly speaking we assume here that the data is relatively densely sam-
pled (each ball of radius ε contains several points) on a closed compact man-
ifold. In case the data only covers a sub domain of the manifold, the Laplace
operator needs to be interpreted as the restriction of the Laplace operator
with Neumann boundary condition.

The fundamental observation is that the numerical rank of the powers of
A decreases rapidly (see Fig. 2 below) and therefore the diffusion distance
given by

at(x, x) + at(y, y)− 2at(x, y) = D2
t (x, y)

can be computed to high accuracy using only the corresponding eigenfunc-
tions. This choice of an embedding into Euclidean space so as to convert
diffusion distance on the manifold into Euclidean distance in the embedding
will be called a diffusion map.
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Fig. 2. Some examples of the spectra of powers of A.

We illustrate this point for the case of a closed rectifiable curve, for which
the first two non constant eigenfunctions give a realization of the arc length
parametrization onto the circle of the same length. In fact a simple computa-
tion relative to the arc length parametrization shows that the heat kernel is
given by

et(x, y) =
∑

exp(−k2t) cos
(
k(x− y)

)
and

etD2
t (x, y) = |eix − eiy|2

(
1 + e−3trt(x, y)

)
,

where r is bounded.
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In Fig. 3 we see points distributed (non uniformly) on the spiral on the
left, the next embedding into the plane is given by the conventional graph
Laplacian normalization, while the circle was obtained as above. The graph
on the right is the density of points on the circle.
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Fig. 3. From left to right: points distributed on a spiral—an embedding into the
plane—a circle obtained as above—a graph depicting the density of points on the
circle.

More generally we have the following theorem

Theorem 2.2. Let xi ∈ Γ ⊆ M be a data set in the compact Riemannian
manifold M so that each point in the manifold is at a distance ε from one
of the data points and let the matrix at(x, y) be defined as above on the data,
with

at(x, y) =
∑

λ
2t/ε
i ψi(x)ψi(y) .

Then there exists an m such for all t sufficiently large the diffusion map is an
embedding of M into m dimensional Euclidean space which is approximately
isometric relative to the extrinsic Euclidean distance.

x ∈M �→ x̃ =
(
λ

t/ε
1 ψ1(x), λ

t/ε
2 ψ2(x), . . . λ

t/ε
m ψm(x)

)
∈ Rm

D2
t (x, y) =

m∑
i=1

λ
2t/ε
i

(
ψi(x) − ψi(y)

)2(
1 +O(e−αt)

)
= |x̃− ỹ|2

(
1 +O(e−αt)

)
The proof of this theorem uses the fact that for small t and largem we have

an embedding, we then pick the smallest m for which we have a bi-Lipschitz
embedding and the next eigenvalue is strictly smaller (we can also maximize
the spectral gap to have higher precision).

The next example (Fig. 4) embeds an hourglass surface into three di-
mensional Euclidean space so that the diffusion distance in embedding space
between two points is the length of the chord connecting them.

Since the diffusion is slower through the bottle neck the two components
are farther apart in diffusion metric.

Figure 5 illustrates the organizational ability of the diffusion maps on
a collection of images that was given in random order as reordered by the
mapping given by the first two nontrivial eigenfunctions.
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Fig. 4. Original dumbbell (left) and embedding (right).
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Fig. 5. The first two eigenfunctions organize the small images which were provided
in random order.

Figure 6 shows the conventional nearest neighbor search compared with a
diffusion search. The data is a pathology slide, each pixel is a digital document
(spectrum below for each class).

3 Extension of Empirical Functions off the Data Set

An important point of this multiscale analysis involves the relation of the
spectral theory on the set to the localization on and off the set of the cor-
responding eigenfunctions. In the case of a smooth compact submanifold of
Euclidean space it can be shown that any band limited function of band B
can be expanded to exponential accuracy in terms of eigenfunctions of the
Laplace operator with eigenvalues µ2 not exceeding CB.

Conversely every eigenfunction of the Laplace operator satisfying this con-
dition extends as a band limited function with band C′B (both of these state-
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Fig. 6. Top-left to bottom-right: 256×256 image with 861 labeled points—spectrum
for each class–nearest neighbor search—extension to all points.

ments can be proved by observing that we can estimate the size of a derivatives
of order 2m of eigenfunctions of the Laplace operator as a power m of the
eigenvalue). If we extend the eigenfunctions as constant in the normal direc-
tion to the submanifold (by introducing an appropriate smooth partition of
unity in a neighborhood of the submanifold). It is easy to see that the Fourier
transform at ξ of such an extension is estimated by Cm(µ/|ξ|)m and this shows
that eigenfunctions of the Laplace operator corresponding to eigenvalue µ on
the manifold are well approximated by restrictions of band limited functions
of band Cµ.

We conclude that given an empirical function on the manifold which can
be approximated to some accuracy with eigenfunctions whose frequencies are
localized, or which is expanded in terms of a multiscale basis involving eigen-
values of the Laplace operator not exceeding µ, then such a function can be
extended as a band limited function off the set to a distance corresponding
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to Cµ−1 and the best band limited approximation can be obtained from the
corresponding Band limited projection kernel kB(x, y) defined above.
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1 Introduction

The Mumford–Shah functional was introduced in [20] as a tool for image
segmentation. In this context, we are given a simple domain Ω (the screen)
and a bounded function g on Ω (representing the image), and we look for a
simplified approximation u of g. Here simplified means that we would like u to
have only slow variations on Ω, except that we want to allow jumps on a nice
singular set K, which we think of as a set of boundaries. In the good cases,
it is hoped that the pair (u,K), or even K or u alone, will retain important
information on g and drop less interesting details or noise.

Mumford and Shah proposed to get image segmentations by minimizing
the following functional, which we already define on Rn to save time (but so
far image processing corresponds to n = 2). Set

J(u,K) = Hn−1(K) +

∫
Ω\K

|∇u|2 +

∫
Ω\K

|u− g|2 , (1)

where we restrict to pairs (u,K) such that K is a closed set in Ω, with finite
Hausdorff measure Hn−1(K) of codimension 1, and u lies in the Sobolev space
W 1,2(Ω \K), which means that it has a derivative in L2 on that open set. For
the purpose of this lecture, it would be enough to restrict to u ∈ C1(Ω \K),
because this is the case for minimizers, but this would be less natural.

The three terms in the functional correspond to the three constraints on
u that were mentioned above, except perhaps that Hn−1(K) does not really
measure how simple K is. We shall return to this soon. In principle one should
multiply two of the three terms by tuning constants, but we can normalize
out one of them by multiplying u and g by a constant, and the other one by
dilating everything.

The existence of pairs (u,K) for which J(u,K) is minimal (we shall
call them minimizers) is far from trivial, because we can easily find min-
imizing sequences {(uk,Kk)} that converge to pairs (u,K), but for which
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Hn−1(K) > lim supk→+∞H
n−1(Kk). Nevertheless, minimizers always exist;

this was proved by Ambrosio [2] and De Giorgi, Carriero, Leaci [15].
Then we can ask what minimizing pairs look like. Let us first observe that

when K is fixed, minimizing J(u,K) in terms of u is rather simple. The two
last terms of the functional are convex in u, so there is a unique minimizer; in
addition this minimizer is rather regular (away from K), for instance because
it satisfies the elliptic equation ∆u = u − g on Ω \K. As for regularity near
K, the best way to get is to show first that K is nice. In this respect, it
may help the reader to think about the special case of dimension 2 and the
simpler local minimization of

∫
Ω\K |∇u|2 in Ω \ K. In this case, we can use

the fact that energy integrals are conformally invariant to map K locally into
something nicer (like a line) by a conformal mapping ψ; the regularity of u
will then depend mostly on the size of ψ′. The general case (with the extra
term

∫
|u− g|2 and in higher dimensions) is not very different.

So the main problem is the regularity of the singular set K. Observe that
if we add a set of Hn−1–measure 0 to K, we do not change J(u,K) but
our description of K may become more complicated. For this reason we shall
restrict to reduced minimizers, i.e., minimizers (u,K) for which we cannot
find K1 ⊂ K, K1 	= K, such that u has an extension in W 1,2(Ω \K1). It is
rather easy to see that for each minimizer (u,K) there is a reduced minimizer
(u1,K1) such that K1 ⊂ K and u1 is an extension of u.

In dimension n = 2, Mumford and Shah conjectured that if (u,K) is a
reduced minimizer for J and Ω is bounded and smooth, K is a finite union of
C1 arcs of curves, that may only meet by sets of three, at their ends, and with
angles of 120◦. The reader should not pay too much importance to the precise
statement, with the C1 curves. The point is to get some minimal amount of
regularity; once we know that K is a C1 curve near a point, it is easy to get
additional regularity (like C1,1, see [5], and even better if g is smooth).

In higher dimensions, it is reasonable to expect that there is a set of
codimension 2 in K out of which K is locally a C1 hypersurface, but there is
no very precise conjecture on the shape of that set of codimension 2. We shall
return to this in Sect. 6.

Many partial results are known. We shall try to describe a few in the next
sections, but the main goal of this text is rather to convince the reader that
there are many interesting open questions besides the celebrated Mumford–
Shah conjecture above; in addition, some of them could even be easy.

Before we move to a rapid discussion of known regularity results, let us
observe that they are also good news for image segmentation. First they mean
that even though we only put the term Hn−1(K) in the functional, singular
sets of minimizers are actually smoother than this term suggest, and in par-
ticular they look like what we would normally think boundaries in an image
should look like. If minimizers for J had often been unrectifiable Cantor sets, J
would probably have been much less used for image segmentation. Also, good
regularity properties for minimizers probably mean better resistance to noise
(because the functional cannot render noise, even if it tries to), and should
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help with the computations of minimizers, both because it should make them
more stable and because we already know what to look for.

Nonetheless, it seems fair to say that J and its variants are a little less
used in image segmentation nowadays, probably because people prefer to use
algorithms that include some a priori knowledge, often of a statistical nature,
on the images to be treated. See [18] and the references therein for more
information on image processing.
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2 First Regularity Results

Let (u,K) be a reduced minimizer for J in a domain Ω ⊂ Rn. A first remark-
able property of K is its local Ahlfors–regularity: there is a constant C, that
depends only on n and ||g||∞, such that

C−1rn−1 ≤ Hn−1(K ∩B(x, r)) ≤ Crn−1 (2)

when x ∈ K, 0 < r ≤ 1, and B(x, r) ⊂ Ω. The second inequality is very
easy (and does not require B(x, r) to be contained in Ω): simply consider
the competitor (v,G) obtained by keeping G = K and v = u out of B(x, r),
setting K = ∅ and v = 0 in B(x, r), and adding ∂B(x, r) ∩ Ω to G to allow
jumps across ∂B(x, r). Thus we take G = [K \B(x, r)]∪ [∂B(x, r)∩Ω]. When
we write that J(u,K) ≤ J(v,G), we get that

Hn−1(K ∩B(x, r)) +

∫
Ω∩B(x,r)\K

|∇u|2

≤ Hn−1(∂B(x, r) ∩Ω) +

∫
B(x,r)∩Ω

|g|2 ≤ Crn−1 + Crn||g||2∞ , (3)

which yields the second inequality in (2) when r ≤ 1.
The first inequality in (2) is due to Dal Maso, Morel, and Solimini [8]

when n = 2, and to Carriero and Leaci [7] in higher dimensions, and it is
more subtle. It means that it does not help to put just a small amount of K
somewhere, because it will not be enough to create big jumps across K and
release the tension. That is, suppose we have a ball B such that Hn−1(K∩B)
is very small; we want to say that you could do better by removing K ∩ B
from the singular set. This will allow you to save Hn−1(K ∩ B) in the first
term of J , but of course you will have to replace u in B with a function ũ that
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does not jump across K ∩B. A good choice is to take the harmonic extension
of the values of u on ∂B. Then we can estimate how much larger

∫
|∇ũ|2 has

to be (one shows that the contributions that come from the |u− g| term can
be neglected). An integration by parts shows that the price we have to pay is
essentially the integral on K ∩B of a product Jump(u)× ∂

�

u
∂n , of the jump of u

across K ∩B times the derivative of ũ in a direction perpendicular to K. The
computations can essentially be done like this when n = 2, and this is the
essence of the proof in [8]. The point is that the jump of u can be estimated,
and it is at most CH1(K ∩B)1/2. Then the integral of Jump(u)× ∂

�

u
∂n is much

smaller than H1(K ∩B), and we get the desired contradiction. When n > 2,
complications appear, in particular because we may not be able choose B so
that ∂B ∩K is empty, and the proof of [7] uses a compactness argument.

Notice that (2) is already good to know for image processing.
We talked a lot about (2) because it is a very useful tool for proving other

estimates, for instance because it says that K is a space of homogeneous type.
Let us just give an example. Set

ωp(x, r) = r1−2n/p

{∫
B(x,r)\K

|∇u|p
}2/p

, (4)

for 1 ≤ p ≤ 2, x ∈ K, and B(x, r) ⊂ Ω; do not pay too much attention to
the normalizations, the main point is to have a dimensionless quantity. The
trivial estimate (3) says that ω2(x, r) ≤ C for r ≤ 1, but with (2), (3), Hölder,
and Fubini, one can readily show the Carleson measure estimate∫

y∈K∩B(x,r)

∫ r

t=0

ωp(y, t)
dHn−1(y)dt

t
≤ Cpr

n−1 , (5)

for x ∈ K and 0 < r ≤ 1 such that B(x, 3r) ⊂ Ω, provided that we take
p < 2 [12]. It often turns out that replacing 2 with a smaller exponent p is a
very small price to pay, compared to the fact that (5) gives lots of pairs such
that ωp(y, t) is as small as we want. For instance (5) is a very good starting
point for the results quoted just below; the good balls mentioned below are
precisely balls where ωp(y, Ct) is small.

Next (and omitting quite a few interesting results), K is locally uniformly
rectifiable and contains big pieces of Lipschitz graphs ([12], [14]). But even
more is true ([9], [3], [21]): we can find lots of balls where K is C1. More
precisely, there is a constant C such that, for each x ∈ K and r ∈ (0, 1] such
that B(x, r) ⊂ Ω, we can find y ∈ K ∩B(x, r/2) and t ∈ [r/C, r/2] such that
K ∩ B(y, t) is the intersection of B(y, t) with the graph of a 10−2–Lipschitz
and C1 function.

As a consequence there is a small set, in fact of Hausdorff dimension less
than n− 1, out of which K is locally nice and C1. But we would like to know
more about that small set, and the way the different pieces are attached to
each other.
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See [4], [10], [13], [18] and their references for proofs and lots of other
regularity results on K. Here we shall just say a little more about a result of
Bonnet [5]:

Fact 2.1. In dimension 2, every isolated connected component of K is a finite
union of C1 curves.

The reason why we mention this is because the approach that led to it is
very important. Notice that Fact 2.1 is much more precise than the C1 result
mentioned above, but only if we can find an isolated component.

3 Blow-up Limits and Global Minimizers

We start with a very simple observation on dilation invariance. Pick a point
x ∈ Ω (typically, x ∈ K) and a small radius t, and dilate everything so
that B(x, t) becomes the unit ball. That is, set Ωx,t = t−1(Ω − x), Kx,t =
t−1(K −x), gx,t(y) = 1√

t
g(x+ ty) for y ∈ Ωx,t, and ux,t(y) = 1√

t
u(x+ ty) for

y ∈ Ωx,t \Kx,t. We divided by
√
t so that the two first terms of J in (1) would

scale the same way. A simple computation shows that if (u,K) minimizes J ,
(ux,t,Kx,t) is a minimizer for Jx,t, where

Jx,t(v,G) = Hn−1(G) +

∫
Ωx,t\G

|∇v|2 + t2
∫

Ωx,t\G

|v − gx,t|2 . (6)

Notice that when t gets small, the third term becomes less and less im-
portant, even though ||g||2∞ is divided by t. This corresponds to the (desired
for image segmentation) effect that the third term of J in (1) should have
little influence at small scales, and is one of the basic facts of the theory. It
is thus surprising that we had to wait till [5] before one actually decided to
take blow-up sequences and study their limits, as follows.

Fix a point x ∈ K, and take a sequence {tk} that tends to 0. Set (uk,Kk) =
(ux,tk

,Kx,tk
) to simplify notation. One hopes that limits of such pairs are

simpler, and that they will help us study (u,K).
The first thing to check is that given any sequence {(uk,Kk)} as above,

we can extract subsequences that converge. Note that Ωx,tk
converges to Rn,

so the limits should be pairs (v,G) that live on Rn.
We do not have too much choice when defining the convergence of {Kk} to

a limit K∞; if we want to be sure to have convergent subsequences, we have
to use the local convergence in Hausdorff distance, which is also the most
reasonable notion. The convergence of {uk} to v is a little more delicate to
define, because the L∞ norms of the uk will normally tend to +∞. On the
other hand, we have a good uniform control on the gradients away from G,
by (3), so we just require the convergence of the gradients ∇uk in some Lp,
on compact subsets of Rn \G. Equivalently (and this is the definition used in
[10]) we require the following property.
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Property 3.1. For each connected component V of Rn \ G, there exists con-
stants αV,k such that {uk − αV,k} converges to v in L1(H) for every compact
subset H of V .

This looks a little strange at first, because we have to subtract constants (and
then v in only known up to an additive constant in each component of Rn\G),
but this is the right way to deal with the fact that ||uk||∞ tends to +∞.

With these definitions, it is not hard to extract convergent subsequences
from any {(uk,Kk)} as above. One of the main points of [5] is the following.

Fact 3.2. If (u,K) is a reduced minimizer for J and {(uk,Kk)} converges to
(v,G), then (v,G) is a reduced global minimizer in Rn.

We shall see the definition in a moment, but let us first comment a little.
First of all, Fact 3.2 is not trivial, once again because its verification involves
checking that

Hn−1(G ∩ U) ≤ lim
k→+∞

Hn−1(Kk ∩ U) , (7)

for every open set U ⊂ Ω, and this would brutally fail for a general sequence
of sets Kk. But it turns out that since the Kk come from Mumford–Shah min-
imizers, they have a very nice property, the so-called uniform concentration
property.

To simplify things slightly, we shall say that this property holds when, for
every ε > 0, we can find C > 0 such that, for each ball B(x, r) contained
in Ω, centered on a Kk, and with radius r ≤ 1, we can find another ball
B(y, t) ⊂ B(x, t), centered on the same Kk, with radius t ≥ C−1r, and for
which we have the nearly optimal concentration

Hn−1(Kk ∩B(y, t)) ≥ (1 − ε)ωn−1 t
n−1 , (8)

where ωn−1 is the Hn−1–measure of the unit ball in Rn−1. Thus the measure
in (8) is at least almost as large as if Kk were a hyperplane through y. Then
(7) holds as soon as the uniform concentration property holds.

We simplified things a little, because the uniform concentration property of
[8] also allows us to modify slightly the quantifiers above (but the important
thing is still to keep C independent of k); also their result still works in
(integer) dimensions d < n− 1. See [8] or [18] for details.

Uniform concentration was introduced in [8], and proved for minimizers in
[8] when n = 2 and [22] when n > 2. Also see in [10] for a proof with uniform
rectifiability.

Once we get the semicontinuity of Hausdorff measure as in (7), the rest
of the proof of Fact 3.2 is a technical, but not surprising argument. See [5]
for the initial proof in two dimensions, [16] for a first generalization, and [17],
[10] for extensions to higher dimensions and different limiting situations.

It is time to define global minimizers. Let us only consider “acceptable
pairs” (v,G) such that G is a closed subset of Rn, v ∈ W 1,2

loc (Rn \G), and in
addition
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Hn−1(G ∩B(0, R)) +

∫
B(0,R)\G

|∇v|2 < +∞ ,

for every R > 0. A competitor for (v,G) is another acceptable pair (ṽ, G̃) such

that for R large enough, the pair (ṽ, G̃) coincides with (v,G) out of B(0, R),
and in addition G satisfies the following topological condition.

Property 3.3. If x, y ∈ Rn \ [G∪B(0, R)] lie in different connected components

of Rn \G, then they lie in different connected components of Rn \ G̃.

We say that the acceptable pair (v,G) is a global minimizer if

Hn−1(G ∩B(0, R)) +

∫
B(0,R)\G

|∇v|2

≤ Hn−1(G̃ ∩B(0, R)) +

∫
B(0,R)\

�

G

|∇ṽ|2 , (9)

for every competitor (ṽ, G̃) for (v,G), and R as above. Note that (9) does not
depend on R large.

The topological constraint of Property 3.3 on competitors may seem a little
strange, but it is imposed to us by the fact that we needed to work modulo
constants when taking limits. If we did not ask for Property 3.3, taking for G
a straight line and v a locally constant function on R2 \ G would not give a
global minimizer. This would be bad, because we know that such a pair shows
up each time you take the blow-up limit of a Mumford–Shah minimizer (u,K)
at a point where K is a C1 curve.

So we have a definition of global minimizers, and we define reduced
global minimizers as we did for Mumford–Shah minimizers in a domain. Thus
Fact 3.2 makes sense.

Our big hope, once we have Fact 3.2, is that global minimizers in R2,
for instance, will turn out to be so simple that we can list them completely
(and later return to the Mumford–Shah minimizers in a domain if we are still
interested). Of course the definition of global minimizer is a little more com-
plicated, because of this strange Dirichlet condition at infinity where (v,G)
itself gives the Dirichlet data, but at least we lost the auxiliary function g and
we have just two terms to worry about.

4 Global Minimizers in the Plane

Here is a list of global minimizers in the plane. For the first three, we take
v = 0, or equivalently v constant on each component of R2 \G. This works if
and only if G is a minimal set. Here our definition of minimal set, suggested
by Property (3.3) and (9), is that you cannot make it shorter by compact
modifications that do not merge the connected components near infinity. But
it is easy to see that it is equivalent to the more usual notion, where we say
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that we cannot make G shorter by deforming it in a bounded region. The only
options for G are the empty set, or a line, or the union of three half lines with
a same origin, and that make angles of 120◦ with each other (we shall call
this a Y ). In these three cases the verification that (v,G) is a reduced global
minimizer is rather easy.

There is a fourth known type of global minimizer, where G is a half line.
By translation and rotation invariance, we may assume that G is the negative
first axis {(x, 0) ; x ≤ 0}; then we take

v(r cos θ, r sin θ) = ±
√

2r

π
sin(θ/2) + C , (10)

for r > 0 and −π < θ < π, where the choice of constants ± and C does not
matter.

It is not too hard to see that (when G is the half line) the only choices of v
for which (v,G) is a global minimizer must given by (10), but the verification
that (10) gives a global minimizer is long and painful [6].

Here is the natural analogue of the Mumford–Shah conjecture in the
present context.

Conjecture 4.1. Every reduced global minimizer in the plane is of one of the
four types described just above.

Conjecture 4.1 implies the Mumford–Shah conjecture. See [10], but this
was essentially known by Bonnet [5], who only wrote down the part he needed
to show that the result quoted below (when G is connected) implies Fact 2.1.

A priori Conjecture 4.1 is a little stronger, because there could be global
minimizers in the plane that do not arise as blow-up limits of Mumford–Shah
minimizers in a domain. But it is hard to imagine that the Mumford–Shah
conjecture will be proved without Conjecture 4.1.

Only partial results are known so far. Here is a short list; see [10] and [17]
for more.

If (v,G) is a reduced global minimizer in Rn, then G is Ahlfors–regular,
uniformly rectifiable, and we can even find lots of balls centered on G where G
is a 10−2–Lipschitz and C1 graph. The statements and proofs are the same as
in the local case in the domain, except that we no longer need the restrictions
that r ≤ 1 or B(x, r) ⊂ Ω.

Conjecture 4.1 holds when

• G is connected [5],
• G is contained in a countable union of lines [16],
• G is symmetric with respect to the origin [11], [17],
• R2 \ G has at least two connected components, or when G contains two

disjoint connected unbounded sets [11].

Many of the results listed here use a monotonicity argument, in addition
to the usual techniques of finding alternative competitors. Again the trend
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started in [5], where one of the main ingredients of the proof was to show the
following.

Fact 4.2. If (v,G) is a global minimizer in R2 and G is connected, then

Φ(r) =
1

r

∫
B(x,r)\G

|∇v|2

is a nondecreasing function of r, for each x ∈ R2.

This was proved by computing Φ′, integrating by parts, and then using an
inequality of Wirtinger. But (unfortunately) the connectedness of K was used
to remove the mean value of u in some intervals, and it seems to be really
needed in the argument.

Things become easier once you have Fact 4.2, because the proof of Fact 4.2
also gives the form of (u,K) when Φ is constant. This can be used to control
blow-up and blow-in limits of (v,G), because the analogue of Φ for those is
constant. Then we get a better local description of (u,K), and we can use
it to conclude. The proof takes some time though. The improvement of the
situation when we have a monotonicity result like Fact 4.2 should probably
be compared with what happens with minimal surfaces, where an analogous
monotonicity result implies that the tangent objects to the set are minimal
cones.

In [11] also one shows monotonicity, but for the different function Ψ(r) =
2Φ(r) + r−1H1(G ∩ B(x, r)). The proof uses a combination of the Bonnet
estimate and direct comparison with various competitors constructed by hand.

J.-L. Léger [16] found a nice formula that allows you to compute v in terms
of G (modulo the obvious invariance of the problem) when (v,G) is a global
minimizer in R2. Identify R2 with the complex plane, and set

F (z) =
∂v

∂x
− i
∂v

∂y
= 2

∂v

∂z
,

for z ∈ R2 \G. Notice that F is holomorphic in R2 \G, because v is real and
harmonic. Léger says that F 2 is the Beurling transform of H1

|G, i.e.,

F (z)2 = − 1

2π

∫
G

dH1(w)

(z − w)2
for z ∈ R2 \G . (11)

Finally, let us mention that global minimizers in a half plane P are easier
to characterize: the only possibilities for G are the empty set, or a half line
starting from ∂P and perpendicular to it, and in both cases v is constant
on each component of P \ G. We can use this to return to Mumford–Shah
minimizers in a bounded smooth domain and prove that near ∂Ω, K is only
composed of C1 curves that meet ∂Ω perpendicularly. See [17] or [11] and
[10].

See [10] and its references for more results about global minimizers.
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5 General Questions

We start with a few questions in the plane. Besides the Mumford–Shah con-
jecture (or partial questions), of course.

There is no uniqueness in general for minimizers of the Mumford–Shah
functional. For instance, if you take Ω = R2 and g equal to the characteristic
function of B(0, r), there is one value of r for which J has exactly two min-
imizers, one with K = ∂B(0, r) and one with K = ∅. See for instance [13]
or [10]. It is easy to construct lots of examples of the same type, where the
lack of uniqueness comes from a jump in the solution. But maybe we still have
uniqueness for generic data g. This question also holds in Rn.

We do not know yet that the global minimizer in (10) ever shows up as
the blow-up limit of some Mumford–Shah minimizer in a domain. Even if we
restrict to Ω = B(0, 1) and take g = v, we do not know how to show that the
restriction of (v,G) to Ω minimizes J . See [1] for the corresponding positive
answer for a Y .

Suppose that the minimizer in (10) is a blow-up limit at x of the Mumford–
Shah minimizer (u,K) in a domain Ω. We know that in a pointed neighbor-
hood of x, K is a C1 curve that looks flatter as we get near x (see for instance
Sect. 69 of [10]), but we do not know precisely how K behaves at x (is the
curve C1 up to x, or can it turn infinitely many times around x, for instance?).

The easier case of a half plane suggests that it may be interesting to look
at global minimizers in other planar domains, or even in larger 2–dimensional
surfaces. So far we only know about sectors with aperture < 3π/2 [11].

Many of the partial results in the plane become questions in higher di-
mensions. For instance, it is not known whether every connected component
of Rn \G is a John domain with center at infinity; we just know that they are
unbounded. Or whether v can be constant in a component of Rn \G without
being constant on every component. When n = 2, these things are true, and
we even know that R2 \G is connected in the interesting cases.

We would also like to generalize some of our perturbations results. We
know from [3] that if (u,K) is a Mumford–Shah minimizer or a global mini-
mizer, in any dimension, and if B(x, r) is a small ball centered on K where K
is very flat (i.e., close to a plane) and r1−n

∫
B(x,r) |∇u|2 is very small, then

K ∩ B(x, r/2) is a nice C1 hypersurface, i.e., a C1 perturbation of a plane.
We would like to know whether in such a statement, we can replace planes
with other minimal sets. We know about the case of the Y in the plane [9],
and we would like to know about the product of the Y with a line (in R3), for
instance. This would also be an excuse for understanding these minimal sets
better.

A little more difficult would be to obtain analogues of the result that
says that if some blow-in limit of the global minimizer (v,G) is the cracktip
minimizer from (10), then (v,G) itself is as in (10) [6]. All these things should
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be useful if we want study global minimizers systematically, or go from results
on global minimizers to their counterpart for minimizers in a domain.

Can a same set G correspond to two really different global minimizers
(i.e., that would not be obtained from each other by multiplying v by ±1 and
adding a constant to it in each component of Rn \ G)? When n = 2, this is
impossible because of the formula (11).

Could it be that when we take complex or vector-valued functions, we get
fundamentally new global minimizers? We do not know this even in the plane,
but it seems even more unlikely there.

6 What is the Mumford–Shah Conjecture in Dimension
3?

We would also like to have a description of all global minimizers in R3, even
if we can’t prove it. Let us already enumerate the ones we know.

We start with the case when g is locally constant, and hence G is a minimal
set. Jean Taylor essentially showed that there are only four possibilities: the
empty set, a plane, the product of a Y with an orthogonal line (i.e., three
half planes that meet along their common boundary with 120◦ angles), and a
set composed of six faces bounded by four half lines that start from the same
origin and make maximal equal angles with each other. [Think about dividing
a regular tetrahedron into for equal parts that all touch the center and three
vertices.] These are the same sets that show up as tangent objects to soap
films.

We also get a global minimizer in R3 by taking the product of the cracktip
in a plane (as in (10)) by an orthogonal line (so that v, for instance, will not
depend on the last variable); the verification is rather easy.

Now it seems that there should be at least one other global minimizer, and
it is not too obvious to guess what it should be.

Let us first try to say why we may think that the list above is not complete.
The argument will be vague and indirect, but there are not many arguments
in the other direction either.

Consider the Mumford–Shah functional J in the domain Ω = B(0, 1) ×
(−N,N) ⊂ R3 and with a function g of the form g(x, y, z) = ϕ(z) g0(x, y),
where ϕ is a smooth function such that 0 ≤ ϕ ≤ 1, ϕ(z) = 1 for z ≤ −1, and
ϕ(z) = 0 for z ≥ 1. To define g0, let Y be the intersection with B(0, 1) ⊂ R2 of
the union of three half lines starting from the origin and making 120◦ angles.
Call D1, D2, and D3 the three connected components of B(0, 1) \ Y , and set
g0(x, y) = 2j − 2 on Dj . We take N reasonably large, to make sure that the
last term of J will have some importance in the discussion.

If we restricted to the smaller domain B(0, 1) × (−N,−1), (u,K) would
coincide with (g, Y × (−N,−1)). This is because (g0, P ) is the only minimizer
of the 2–dimensional analogue of J where g = g0, by [1]; the argument for the
reduction to the plane is the same as for the cracktip minimizer just above.
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It is reasonable to think that K ∩ [B(0, 1)× (−N,−N/2)], say, looks a lot like
Y × (−N,−N/2), with three almost vertical walls that meet along a curve γ
with 120◦ angles. If there is no other global minimizers than the five mentioned
above, all the blow-up limits of (u,K) are among the five. If in addition we
have a perturbation theorem for the case when K is close to the product of
a Y by a line, we should be able to follow the curve γ (where the blow-up
limits of K are products of Y ’s by lines), as long as no other type of blow-up
limit shows up on γ. We cannot really exclude the possibility that this never
happens, because γ may go all the way to ∂Ω. However, it seems very unlikely
that γ will go all the way to the top boundary (because g = 0 on the top part
of Ω; there would be no good reason for the existence of three high walls),
and still unlikely that γ will turn and hit the side of ∂Ω (even though our
function g is not symmetric).

So let us assume that γ ends somewhere in Ω, at a point x0 where some
other blow-up limit shows up. If we get the minimal set with six faces, and we
have a perturbation theorem near this minimal set, there will be three new
curves like γ that leave from x0, and we can try to follow them again. The
case when all curves eventually end up on ∂Ω also seems unlikely: it is not
clear why it would be needed to isolate three components near the bottom,
rather than allowing gentle variations of u. But this is definitely a weak point
of the argument. Anyway, if this does not happen, some other blow-up limit
shows up, with a global minimizer that is not in the list above. Obviously
some numerical experiments could be useful here.

Let us even try to guess what the setG for this new global minimizer should
look like. The simplest bet would be to take something like Y × (−∞, 0], but
this may be a little too naive. For one thing, even though Y ×(−∞, 0] is nicely
invariant under rotations of 120◦, the corresponding function v could not be
(the increments of v along an orbit of 3 points always add up to 0, so they
cannot all be equal or opposite). So, if there is a global minimizer (v,G) with
G = Y × (−∞, 0], we are sure to lose the essential uniqueness of v given G.
This is not so bad in itself, but since the function g will not be rotation
invariant anyway, it does not seem so important to require G to be invariant.
Probably making one of the walls a little higher than the others could help
accommodate the corresponding slightly larger variations of v along that wall.

The author’s bet is that there is indeed one more global minimizer, whereG
is the cone over three arcs of great circle Γi ⊂ S2; the Γi are vertical, start from
the south pole where they make angles of 120◦, and there are two shorter ones
and a longer one. The lengths should be determined by all sorts of constraints,
the main one being that we also guess that v will be homogeneous of degree
1/2, and we know it must be harmonic with Neumann boundary conditions
∂v
∂n = 0. All these suggestions are based on essentially nothing, so the reader
may find it fun to make any other bet. For instance, that there is a global
minimizer for which function λ → e−λ/2v(eλx) is almost periodic (but not
periodic), or has a period

√
2. [Added in proof: since the lecture, Benoit Merlet
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did computations that indicate that the most obvious scenario suggested by
the author is impossible.]

Our difficulty with rotations of order 3 leads us to wonder whether the
situation would be different with functions v valued in R2, because then v
could be rotation invariant. This seems tempting because we like symmetry,
but I don’t think this is too serious.

The interested reader may consult Sects. 76 and 80 of [10] for a few addi-
tional questions, or details about the questions above.
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Summary. If a mathematical model contains many different scales the computa-
tional cost for its numerical solution is very large. The smallest scale must be resolved
over the distance of the largest scale. A huge number of unknowns are required and
until recently many such problems could not be treated computationally. We will
discuss a new set of numerical techniques that couples models for different scales in
the same simulation in order to handle many realistic multi-scale problems. In most
of this presentation we shall survey existing methods but we shall also give some
new observations.

1 Introduction

Multi-scale problems naturally pose severe challenges for scientific computing.
The smaller scales must be well described over the range of the larger scales.
Multi-scale objects must thus typically be resolved by a very large set of
unknowns. The larger the ranges of scales, the more unknowns are needed and
the larger the computational cost. Even with the power of todays computers
many such problems cannot be treated by traditional numerical methods.

The notion of scales in the physical world is quite intuitive. As an example,
the flow of the air in a room on the scale of meters and seconds depends on
the details of smaller swirling eddies. The motion of these eddies depends on
the interaction of molecules on substantially finer scales in space and time.
We can go further and see how the forces between the molecules depend on
the motion of electrons on scales of 10−15 seconds in time and less than 10−10

meters in space.
The distribution of scales in a function can naturally be defined math-

ematically by its Fourier transform or by other scale-based representations.
One recent such example is wavelet decomposition. In some of our examples
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below we will use scaling laws to define functions with different scales. The
function fε(x) is said to have scales of orders 1 and ε when,

fε(x) = f(x, x/ε) , f(x, y): 1–periodic in y . (1)

If the ε–scale is localized, as in the physical example of a boundary layer, a
mathematical model can be the following,

fε(x) = f(x, x/ε) , f(x, y) → F (x), as y →∞, y ≥ 0 . (2)

Typically, a narrow range of scales is modeled by effective equations for that
particular range. Turbulence models would then describe the coarsest scales of
the flow phenomena mentioned above. The finer scales could be approximated
by the Navies–Stokes equations, the Boltzmann equation and the Schroedinger
equation respectively. For many processes such effective equations does not
exist and it is those that we are focusing on in this presentation. For conve-
nience we restrict most of our discussion to problems with mainly two scales
as in (1) and (2) above and let the O(1) scale be the macro-scale and O(ε) the
micro-scale. This setting is quite common with the macro-scale the contin-
uum scale and the micro-scale the atomistic scale. There are also many such
examples in biology.

Ideally, we are able to derive an effective equation for the scale we are in-
terested in. This equation should include the influence from all other scales in
the original multi-scale problem. A classical example is geometrical optics as
an approximation to high frequency wave propagation. Very often this deriva-
tion is done in the applied sciences but there are also general mathematical
techniques as, for example, homogenization of partial differential equations,
[2] and averaging of dynamical systems, [1].

We will consider the challenging and common cases when such focused ef-
fective equations are not available. In Sect. 2 we will discuss the computational
cost for multi-scale simulations. Mathematically this touches on numerical er-
ror estimation and information theory. After a few comments on the evolution
of scientific computing as a background we shall discuss standard numerical
multi-scale methods in Sect. 4. In this traditional class of methods the full
multi-scale problem is discretized and highly efficient numerical methods are
then applied to accurately compute the full range of scales.

In a more recent type of computational multi-scale methods only a frac-
tion of the micro-scale space is included in order to restrict the number of
unknowns. This is needed when the range of scales is very large as it is in
many realistic applications. The macro-scale and the micro-scale are coupled
during the calculation in such a way that the overall computational cost is
minimal. The micro-scale is not described all over the full domain of the inde-
pendent variables but only sampled in order to give the necessary input to the
macro-scale model. A good example of this new class of methods is the quasi-
continuum method by Tadmor and collaborators, [14]. This technique couples
a continuum model to molecular dynamics. We shall present a framework for
these methods in the final section.
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As an example of the sampling technique we shall also give a new method
for very fast Fourier transform. This method has simple stochastic features.
For other stochastic multi-scale models see the work of E and collaborators [8].
Compare the comments by Carleson in [5] regarding stochastic analysis in the
application of mathematics.

2 Computational Complexity

Let us start with discussing computational complexity since that is the reason
for why special multi-scale methods are being developed. We mentioned in the
introduction the computational challenge of mathematically describing multi-
scale processes. Just in order to represent a band limited real function of one
real variable over the length of order 1 and with the smallest wavelength ε we
need O(ε−1) data points, Shannon [13]. We first give a simple direct estimate
that the process of a traditional numerical solution for a multi-scale function
typically requires even more unknowns and more arithmetic operations. We
will however see in Sect. 2.2 that there are opportunities for reduction in the
complexity if the functions have some added structure as for example scale
separation.

2.1 Complexity of Numerical Algorithms

With computational complexity we will here mean the number of arithmetical
operations that are needed to solve for an unknown function to the accuracy δ,
measured in an appropriate norm. A typical estimate for a quadrature method
or discretizations of differential or integral equations is,

#op = O(N(ε)ε−1)dr = O(ε−dr(s+1)) ≤ Cε−d . (3)

Here N(ε) = O(ε−s) denotes the number of data points per wavelength of
the unknown function that is needed for a given error tolerance. This depends
on the numerical methods and, for example, on the regularity of the solution.
The number of dimensions is d and thus the total number of unknowns are
at least O(ε−d(s+1)). The exponent r depends on the numerical method and
determines the number of operations that is required for a given number
of unknowns. For an explicit method where the solution is given by a finite
number operations per unknown, s = 1. If a Gaussian elimination with a dense
matrix is required: s = 3. The reduction of the exponent r to a value close to
one is the goal of the classical numerical methods mentioned in Sect. 4.

There has to be at least 2 data points per wave length and thus N(ε) ≥ 2,
[13]. More unknowns are often required to achieve a given accuracy with,
N(ε) = O(ε−1), a typical value for first order methods. Higher order methods
generally require N(ε) = ε−α, 0 ≤ α < 1. The following derivation is not on
a standard numerical analysis form but gives a transparent direct estimate of
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the complexity. Consider the Euler approximation un of the complex valued
solution u to the ordinary differential equation (un ≈ u(xn)),

du

dt
= (2πi/ε)u , u(0) = u0 |u0| = 1 , 0 < x ≤ 1 ,

uj+1 = uj + (2πi∆x/ε)uj , xj = j∆x , j = 0, 1, . . . , J .
(4)

The error tolerance δ applied at x = 1 implies an upper bound on ∆x and
thus a lower bound on N(ε),

δ = |u(xJ)− uJ | =
∣∣e2πiJ∆x/ε − (1 + 2πi∆x/ε)J

∣∣|u0|

=
∣∣1− (e−2πi∆x/ε(1 + 2πi∆x/ε)

)J ∣∣
=
∣∣1− (1 + 2(π∆x/ε)2 +O((∆x/ε)3)

)J ∣∣ ,
hence (

1 + 2(π∆x/ε)2 +O((∆x/ε)3)
)J

= 1 + δ

and consequently

J log
(
1 + 2(π∆x/ε)2 +O((∆x/ε)3)

)
= log(1 + δ) .

With δ > 0 fixed, J = O((ε/∆x)2) from above and withN(ε) = Jε, J = ∆x−1

we have N(ε) = O(ε−1).

2.2 Representation of Functions

The Shannon sampling theorem, quoted above, tells us how much data is
needed to fully represent a band-limited function. If it is given by its values
on a uniform grid we need at least 2ε−1 data points per unit length if ε is
the minimal wavelength corresponding to the highest frequency. For serious
multi-scale problems the number of unknowns just to represent a function
is prohibitively large. We will see below that many modern computational
methods exploit special features of the multi-scale problems as for example
scale separation. Below is a simple but illustrative argument for the possible
reduction in the number of data points needed in the representation of function
with scale separation.

Consider a multi-scale function fε(x) = f(x, x/ε) = f(x, y) of the form
(1) that is band limited in both variables x and y. We shall also assume it is
1–periodic in both variables with ε = 1/L1 and L1 a positive integer,

f(x, y) =
N∑

n=0

M∑
m=0

fn,m exp
(
2πi(nx+my)

)
.

If we only knew that fε(x) = f(x, x/ε), as a function of x was band limited
with a uniform grid spacing, ∆x, we need ∆x < 1/(N + M/ε) in order to
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guarantee that fε can be determined. This means that without the knowledge
of the special structure of fε(x) giving scale separation into O(1) and O(ε)
scales we need to resolve the function everywhere on the ε–scale. With the
knowledge of scale separation we can reduce the number of data points to
O(1) instead of O(ε−1). In both cases the constants in the order estimate
depend on M and N .

Let us cluster the data points for which we know fε in groups with ∆x =
1/L2, L2 and L1/L2 positive integers in order to fit with the periodicity
assumptions,

xj,k = j∆x+ kδx , j = 1, . . . , J , k = 1, . . . ,K , (δx� ∆x) .

We will show that the set of equations,

N∑
n=0

M∑
m=0

fn,m exp(2πi(nxj,k +mxj,k/ε)) = fε(xj,k) ,
j = 1, . . . , J

k = 1, . . . ,K
(5)

have a unique solution if J > N , K > M , when δx < ε/M and ∆x < 1/N .
With J = N + 1 and K = M + 1 the coefficients in the system (5) form an
(N + 1)(M + 1) by (N + 1)(M + 1) matrix

A =
(

exp
(
2πi(nxj,k +mxj,k/ε)

))
=
(

exp
(
2πi(nj∆x+ nkδx+mj∆x/ε+mkδx/ε)

))
=
(

exp
(
2πinj∆x

)(
1 +O(ε)

)
exp
(
2πimjL1/L2

)
exp
(
2πimkδx/ε

))
=
((

e2πi∆x
)nj
)
⊗
((

e2πiδx/ε
)mk
)

+O(ε) = A∆ ⊗Aδ +O(ε) ,

where Af̄ = f̄ε, f̄ = (f0,0, . . . , fJ,K)T and f̄ε = (fε(x1,1), . . . , fε(xN,M ))T .
This matrix A is a tensor product of two Vandermonde matrices plus a matrix
the norm of which → 0 as ε→ 0 for given N andM . The matrices A∆ and Aδ

are nonsingular if the inequalities of δx and ∆x above are satisfied and A is
thus non-singular for ε small enough. There is a unique solution for J = N+1,
K +M + 1 and the same solution is still valid for larger values of N , M that
result in over determined systems.

3 Background

The new classes of multi-scale methods signal an important emerging phase
in computational science. Let us briefly look back at the earlier development
to see how it fits in.

Before the era of computers and in the early days of the computers it was
necessary to perform most computational problem analytically. The problem
needed a clean mathematical form and an analytic solution, for example, in
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closed form or in terms of tabulated functions. The computational complexity
was minimal.

The improvement in computers, starting in the late 1940s, changed this
structure. Not only could computations be made much faster and more accu-
rately, it was not necessary to have an analytic solution. The problem could
be discretized directly by, for example, replacing an integral by a Riemann
sum or by other quadrature methods. Differential equations were replaced by
finite difference or finite element methods. This was a clear paradigm shift and
it gave rise to a second phase, a golden era for numerical theory and practice.
Moderate size multi-scale problems could be handled.

The theoretical foundation for stability and convergence was developed
as symbolized by the Lax equivalence theorem. This was a central factor for
the 2005 Abel Prize. The type of mathematics that was needed changed from
interpolation techniques, special function theory and asymptotic methods to
richer part of analysis including a priory estimates and compactness argu-
ments.

Some of the numerical algorithms that are used today were developed be-
fore this period and carry the names of scientists like Newton and Gauss.
Most current methods were, however developed during this period. Examples
are the following methods: conjugate gradient, QR, singular value decomposi-
tion, linear programming, multi-grid, multi-pole, the Fast Fourier Transform
(FFT) and finite elements.

For all these methods it was, however necessary to have access to an ef-
fective equation that described the solution within a limited range of scales.
In the third phase, the one that is now emerging, different scales and dif-
ferent physical processes can be coupled in the same computer simulation.
Fundamental physical principles can now be the basis for practical engineer-
ing applications. A necessary condition for this development is the present
capacity of computers but we also need new computational methods as in the
earlier paradigm shift. A new set of mathematical tools are becoming impor-
tant in the analysis of this approach that includes stochastic processes and
statistical mechanics.

4 Numerical Multi-scale Methods

In the classical numerical multi-scale methods the goal is to have a computa-
tional complexity of the order of the number of unknowns, i.e. r = 1 in (3).
The overall complexity will never be less than O(ε−d) and the methods are
thus practical only for moderate ranges of scales.

These numerical multi-scale methods that have been invented during the
last few decades have been highly successful. Multi-grid, the fast multi-pole
method and hierarchical domain decomposition have been able to reduce the
computational complexity to the order of the number of unknowns or close
to that for important classes of problems [4], [9]. The applications include
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systems of linear equations originating from realistic differential and integral
equations. The algorithms in their original form rely on properties of the solu-
tion operator related to scales in order to achieve their optimal computational
complexity. This is where the multi-scale features of the algorithms enter. The
solution at a point or value in an array might be sensitive to high frequencies in
the data nearby and not as sensitive to higher frequencies that originate from
far away. This is the property of Calderon–Zygmund operators. The target
problems of many of these methods were elliptic partial differential equations.

Other methods in this class are the FFT and the conjugate gradient (CG)
method. The mechanisms that make these latter techniques efficient are some-
what different from the earlier ones. The FFT relies on trigonometric identities
and the CG method accelerates convergence in the solution of linear systems
of equations if the eigenvalues are clustered. The clustering of eigenvalues
often corresponds to clustering of scales.

Wavelet based methods can be seen as techniques of this class. In Beylkin,
Coifman and Rokhlin [3] it is proved that Calderon–Zygmund operators can
be represented by a sparse matrix with a high degree of accuracy. If this rep-
resentation is combined with an iterative method that converges to a prede-
termined accuracy in a finite number of iterations we have an optimal method
with the exponent r = 1.

The wavelet methods also indicate a way for the new class of techniques
described in the next section. We are then talking about methods for which
some sort of sampling of the unknowns are necessary in order to reduce their
number. A thresholded wavelet expansion can be such a representation, which
we symbolically can write,

f(x) =
∑
j,k

f̂j,kψj,k(x) ≈
∑

j,k∈I

f̂j,kψj,k(x) ,

where I is the index set corresponding to |f̂j,k| ≥ δ, and δ is an error threshold.

5 Current Multi-scale Modeling

We have seen that even with the fastest computers and the fastest standard
numerical methods it is not possible to accurately approximate serious multi-
scale problems. We can no longer expect to resolve the finest scales all over
the space and time domains. A new class of computational methods is aiming
at reducing the total number of unknowns in a simulation by using properties
like scale separation.

In the simplest case, called type A in [6], the micro-scale is confined to a
small part of the computational domain, compare (2) above. A typical appli-
cation could be crack propagation. Linear elasticity might be a good model
for most of the domain but a micro-scale atomistic model may be required
to describe the details at the crack tip. The challenge is to couple these two
models with appropriate boundary conditions.



58 Björn Engquist

In type B problems the micro-scale exists everywhere and influences the
macro-scale. Densely distributed local micro-scale simulations are a possibility.
This form of sampling of the micro-scale is the basis for the quasicontinuum
method, [14]. It is also the basis for the heterogeneous multi-scale method,
[6], [7], described below and the so-called equation free method by Kevrekides
and collaborators, [12].

5.1 The Heterogeneous Multi-scale Method (HMM)

The HMM is a framework for this new class of multi-scale and often also multi-
physics methods. It is a framework for both analysis and for the development
of new algorithms. The basic idea is to use as much knowledge as possible of
the macro-scale model and then use a micro-scale model to supply the missing
data.

The general setting can be presented schematically as follows. We are given
a micro-scale system f with state variable u that is assumed to be accurate
but too detailed and computationally costly for a full simulation,

f(u, d) = 0 .

The data d is a set of auxiliary conditions as, for example, initial and boundary
conditions. Here we are not primarily interested in the microscopic details of
u, but rather the macroscopic state of the system, which we denote by U . The
macro-scale variable U satisfies some abstract macroscopic equation,

F (U,D) = 0 ,

where D = D(u) stands for the data that is missing in the system and that
will be supplied by the micro-scale model. Even if we do not have the ideal
situation of an effective equation for U we can use the structure of such an
equation, for example, a conservation form. The auxiliary conditions or con-
straints d depends on the macroscopic state, d = d(U) and we get a coupled
self consistent system,

F (U,D(u)) = 0 ,

f(u, d(U)) = 0 .

After discretization, for example by a finite difference or finite element meth-
ods we have the symbolic algorithm,

F∆

(
U∆, D∆(uδ)

)
= 0 , (6)

fδ

(
uδ, dδ(U∆)

)
= 0 . (7)

This can be compactly be formulated,

F∆

(
U∆, D̃∆(U∆)

)
= 0 . (8)
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In convergence proofs the HMM (8) is compared to an effective equation,

F∆

(
Ū∆, D̄∆(Ū∆)

)
= 0 . (9)

The structure but not the details of this equation is needed. The proofs are
based on the numerical stability of (9), which implies a bounded inverse and
application of an implicit function theorem, [6]. The resulting error estimate
takes the form,

‖U∆ − Ū∆‖ ≤ C
(
∆xp + e(HMM)

)
.

The constant C depends on the stability properties and the exponent p is the
numerical order of the methods (8) and (9). The term e(HMM) is the error
in the data estimation. Here it means the difference between D̄∆ and D̃∆ for
an appropriate class of U∆. This latter type of estimate is not standard in
numerical analysis and other fields of mathematics are required. The norm
above must be chosen depending on application.

In a typical application (6) may be a finite difference or finite volume
method for the Navier–Stokes equations but with no explicit formula for the
flux. Instead of an empirical flux formula the flux data will be simulated by
a local molecular dynamics computation (7) at every macro grid cell. See [6]
for more examples.

5.2 Faster than FFT

We mentioned the fast Fourier transform as an example of a multi-scale
method in Sect. 4. The computational complexity with N components is
O(N logN). In order to do better we cannot expect to determine all Fourier
modes. If we have an input vector of N values and only need the M largest
discrete Fourier components to a given error tolerance δ with probability 1−δ,
there is a very recent algorithm with complexity O(poly(M logN)), [11]. We
have for simplicity used the same quantifier for both the error estimate and
the probability and “poly” stands for “polynomial in”. The algorithm requires
that theseM modes are dominant and much larger than the rest of the Fourier
modes. Not all N function values can be involved in the computation and we
have again the situation where sampling is required.

The strategy is briefly to first redistribute the M larger modes such that
they are not clustered. This is done by a mapping of the independent vari-
ables similarly to what is done in random number generators, [10], [11]. After
this step the full spectral interval 0 ≤ ω ≤ N − 1, ω ∈ Z, is divided into I
sub-intervals of the same length, Ωk, k = 1, . . . , I. The norms ‖Kk ∗ f‖L2 are
then estimated by Monte Carlo simulations. The kernel in the convolution
corresponds to a band pass filter for Ωk, K̂(ω) is the characteristic function
of Ωk. This process will locate the modes within the appropriate Ωk with the
prescribed probability. A further hierarchical decomposition of those Ωk con-
taining Fourier modes will locate them to given accuracy in O(poly(M logN))
operations.
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We can actually do better than the above algorithm and reduce the com-
plexity to O(M) by the following new algorithm. The other conditions are the
same but the gap between the M largest values and the rest of the Fourier
components should be even larger than above. In order to be practical the
algorithm must be improved but it is of interest to know where the limit of
computational complexity is.

Assume f(x) =
∑

j∈J aj exp(2πiωjx), 0 < a ≤ |aj | ≤ A, where J is and
index set of M integers 0 ≤ j ≤ N − 1. The function f is known for the
integers values 1 ≤ x ≤ N .

Let Q(g) be a Monte Carlo estimator of the integral expression for the
discrete L2 norm of g. With f of bounded variance it is well known that with
a finite number of evaluation of f we have, [10],∣∣‖f‖L2 −Q(f)

∣∣ ≤ δ , with probability ≥ 1− δ, δ > 0 .

Define ω̄ = [ω̃+1/2], ω̃ = log(Q(K∗f)/Q(f)). The bracket denotes the integer
part and K is the inverse discrete Fourier transform of K̂(ω) = eω.

Decompose the spectral domain into three parts,

Ω− = {ω, ω < ω̄} ,
Ω0 = {ω, ω = ω̄} ,
Ω+ = {ω, ω > ω̄} .

(10)

If the Monte Carlo estimate is exact andM = 1 then Q(K ∗f) = exp(ω1)|a1|,
Q(f) = |a1| and ω̄ = ω1. The set Ω0 will consist of the correct frequency
ω1, the sets Ω−, Ω+ will be empty and the coefficient a1 can be determined
arbitrary well by a Monte Carlo approximation of the inner product,

a1 =
1

N

N∑
j=1

f(j) exp(2πiω1j) ≈
1

s

N∑
j∈S

f(j) exp(2πiω1j) ,

where S is a random set of s integers, 1 ≤ j ≤ N .
If M > 1 then

Q(K ∗ f) =

√∑
j∈J

exp(2ωj)|aj |2 , Q(f) =

√∑
j∈J

|aj |2

and
min
j∈J

ωj < ω̃ < max
j∈J

ωj .

At most one of the sets in (10) will be empty. The maximum number of
elements in Ω− or Ω+ is strictly less than M . The procedure can now be re-
peated in the subsets Ω− and Ω+ untilM = 1. When the procedure continues
in the subsets the argument in the Q–estimator should be convolved with the
appropriate band pass filter.
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It remains to analyze the impact of the error in the Monte Carlo estimate.
In the M = 1 case the error in ω̃ with a finite sample can be bounded by Cδ
based on bounds of the variances of K ∗ f and f ,∣∣‖K ∗ f‖ −Q(K ∗ f)

∣∣ ≤ C1e
ω1δ ,

∣∣‖f‖ −Q(f)
∣∣ ≤ C2δ ,

with probability larger than 1− δ. This implies,

ω̃ = log
(
‖K ∗ f‖/‖f‖+O(eω1δ)

)
, |ω1 − ω̃| ≤ Cδ .

The effect of the error in the case M > 1 can be analyzed similarly.
The algorithm does not change if there are other than the M large modes

present. Their corresponding amplitudes must, however, be extremely small
not to invalidate the error estimates. The details of the algorithm and the
error estimates will be given elsewhere.
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Mass in Quantum Yang–Mills Theory
(Comment on a Clay Millennium Problem)

L. D. Faddeev

St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg,
Russia faddeev@pdmi.ras.ru

Summary. Among seven problems, proposed for the XXI century by the Clay
Mathematical Institute [1], there are two stemming from physics. One of them is
called “Yang–Mills Existence and Mass Gap”. The detailed statement of the prob-
lem, written by A. Jaffe and E. Witten [2], gives both motivation and exposition
of related mathematical results, known until now. Having some experience in the
matter, I decided to complement their text by my own personal comments1 aimed
mostly to mathematical audience.

1 What is the Yang–Mills Field?

The Yang–Mills field bears the name of the authors of the famous paper [4],
in which it was introduced into physics. From a mathematical point of view it
is a connection in a fiber bundle with compact group G as a structure group.
We shall treat the case when the corresponding principal bundle E is trivial

E = M4 ×G

and the base M4 is a four-dimensional Minkowski space.
In our setting it is convenient to describe the Yang–Mills field as a one-form

A on M4 with the values in the Lie algebra G of G:

A(x) = Aa
µ(x)tadxµ .

Here xµ, µ = 0, 1, 2, 3 are coordinates on M4; t
a, a = 1, . . . ,dimG – basis

of generators of G and we use the traditional convention of taking sum over
indices entering twice.

Local rotation of the frame

ta → h(x)tah−1(x) ,

1 The first variant was published in [3]. In this new version more details are given
in the description of renormalization.
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where h(x) is a function onM4 with the values inG induces the transformation
of the A (gauge transformation)

A(x) → h−1(x)A(x)h(x) + h−1dh(x) = Ah(x) .

The important equivalence principle states that a physical configuration is not
a given field A, but rather a class of gauge equivalent fields. This principle
essentially uniquely defines the dynamics of the Yang–Mills field.

Indeed, the action functional, leading to the equation of motion via the
variational principle, must be gauge invariant. Only one local functional of
second order in derivatives of A can be constructed.

For that we introduce the curvature – a two-form with values in G

F = dA+A2 ,

where the second term in the RHS is the exterior product of a one-form and
a commutator in G. In more detail

F = F a
µνt

adxµ ∧ dxν ,

where
F a

µν = ∂µAν − ∂νAµ + fabcAb
µA

c
ν

and fabc are structure constants of G entering the basic commutation relation

[ta, tb] = fabctc .

The gauge transformation of F is homogenous

F → h−1Fh ,

so that the 4–form
A = trF ∧ F ∗ = F a

µνF
a
µνd4x

is gauge invariant. Here F ∗ is a Hodge–dual to F with respect to the
Minkowskian metric and d4x is corresponding volume element. It is clear
that S contains the derivatives of A at most in second order. The integral

S =
1

4g2

∫
M4

A (1)

can be taken as an action functional. The positive constant g2 in front of the
integral is a dimensionless parameter which is called a coupling constant. Let
us stress that it is dimensionless only in the case of four-dimensional space–
time.

Recall that the dimension of a physical quantity is in general a product
of powers of three fundamental dimensions – length [L], time [T] and mass
[M], with usual units of cm, sec and gr, respectively. However, in relativistic
quantum physics we have two fundamental constants – the velocity of light c
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and the Planck constant � and we use the convention that c = 1 and � = 1,
reducing the possible dimensions to the powers of length [L]. The Yang–Mills
field has dimension [A] = [L]−1, the curvature [F ] = [L]−2, the volume element
[d4x] = [L]4, so that an integral in S is dimensionless. Now, all of S should be
dimensionless, as it has the same dimension as �, thus g2 has dimension zero.

We see that S contains terms in powers of A of degrees two, three and
four

S = S2 + S3 + S4 ,

which means that the Yang–Mills field is self-interacting.
Among many approaches to quantizing the Yang–Mills theory the most

natural is that of the functional integral. Indeed, the equivalence principle is
taken into account in this approach by integrating over classes of equivalent
fields, so we shall use this approach in what follows. There is no place here
to describe in detail this purely heuristic method of quantization, moreover it
will hardly lead to a solution of the Clay Problem. However, it will be very
useful for an intuitive explanation of this problem, which we shall do here.

2 What is Mass?

It was the advent of special relativity which lead to a natural definition of
mass. A free massive particle has the following expression of the energy ω in
terms of its momentum p

ω(p) =
√
p2 +m2 ,

where m is called mass. In the quantum version mass appears as a parameter
(one out of two) of the irreducible representation of the Poincaré group (the
group of motion of the Minkowski space).

In quantum field theory this representation (insofar as m) defines a one-
particle space of states Hm for a particular particle entering the full spectrum
of particles. The state vectors in such a space can be described as functions
ψ(p) of momentum p and ω(p) defines the energy operator.

The full space of states has the structure

H = C⊕
(∑

i

⊕Hmi

)
⊕ · · · ,

where the one-dimensional space C corresponds to the vacuum state and · · ·
means spaces of many-particles states, being tensor products of one-particle
spaces. In particular, if all particles in the system are massive the energy
has zero eigenvalue corresponding to vacuum and then positive continuous
spectrum from minmk to infinity. In other words, the least mass defines the
gap in the spectrum. The Clay problem requires the proof of such a gap for
the Yang–Mills theory.
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We see an immediate difficulty. In our units m has dimension [m] = [L]−1,
but in the formulation of the classical Yang–Mills theory no dimensional pa-
rameter entered. On the other hand, the Clay Problem requires that in the
quantum version such parameter must appear. How come?

I decided to write these comments exactly for the explanation how quan-
tization can lead to the appearance of the dimensional parameter when clas-
sical theory does not have it. This possibility is connected with the fact that
quantization of the interacting relativistic field theories leads to infinities –
appearance of the divergent integrals which are dealt with by the process of
renormalization. Traditionally these infinities were considered as a plague of
the Quantum Field Theory. One can find very strong words denouncing them,
belonging to the great figures of several generations, such as Dirac, Feynmann
and others. However I shall try to show that the infinities in the Yang–Mills
theory are beneficial – they lead to the appearance of the dimensional para-
meter after the quantization of this theory.

This point of view was already emphasized by R. Jackiw [5] but to my
knowledge it is not shared yet by other specialists.

Sidney Coleman [6] coined the name “dimensional transmutation” for this
phenomenon, which I am now going to describe. Let us see what all this means.

3 Dimensional Transmutation

The most direct way to introduce the functional integral is to consider the gen-
erating functional for the scattering operator. This functional depends on the
initial and final configuration of fields, defined by the appropriate asymptotic
condition. In a naive formulation these asymptotic configurations are given as
solutions Ain and Aout of the linearized classical equations of motion. Through
these solutions the particle interpretation is introduced via well defined quan-
tization of the free fields. However, the more thorough approach leads to the
corrections, which take into account the self-interaction of particles. We shall
see below how it is realized in some consistent way.

Very formally, the generating functional W (Ain, Aout) is introduced as
follows

eiW (Ain,Aout) =

∫
A→Ain,t→−∞

Aout,t→+∞
eiS(A)dA , (2)

where S(A) is the classical action (1). The symbol dA denotes the integration
and we shall make it more explicit momentarily.

The only functional integral one can deal with is a Gaussian. To reduce
(2) to this form and, in particular, to identify the corresponding quadratic
form we make a shift of the integration variable

A = B + ga ,
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where the external variable B should take into account the asymptotic bound-
ary conditions and the new integration variable a has zero incoming and out-
going components.

We can consider both A and B as connections, then a will have only
homogeneous gauge transformation

a(x) → h−1(x)ah(x) .

However, for fixed B the transformation law for a is nonhomogeneous

a→ ah =
1

g
(Ah −B) . (3)

Thus the functional S(B + a) − S(B) is constant along such “gauge orbits”.
Integration over a is to take this into account. We shall denote W (Ain, Aout)
as W (B), keeping in mind that B is defined by Ain, Aout via some differential
equation. Here is the answer detailing the formula (2)

eiW (B) = eiS(B)

∫
exp i

{
S(B + a)− S(B) +

∫
1

2
tr(∇µaµ)2dx

}
× det

(
(∇µ + gaµ)∇µ

)∏
x

da(x) .
(4)

Here we integrate over all variables a(x), considered as independent coordi-
nates. Furthermore, ∇µ is a covariant derivative with respect to connection
B

∇µ = ∂µ +Bµ .

The quadratic form 1
2

∫
(∇µaµ)2dx regularizes the integration along the gauge

orbits (3) and the determinant provides the appropriate normalization. This
normalization was first realized by V. Popov and me [7] with additional clar-
ification by ’t Hooft [8]. I refer to the physical literature [9], [10] for all expla-
nations. One more trick consists in writing the determinant in terms of the
functional integral

det(∇µ + gaµ)∇µ =

∫
exp i
{∫

tr
(
(∇µ + gaµ)c̄∇µc

)
dx
}∏

x

dc̄(x)dc(x)

over the Grassman algebra with generators c̄(x), c(x) in the sense of Berezin
[11]. These anticommuting field variables play only accessory role, there are
no physical degrees of freedom corresponding to them.

The resulting functional which we should integrate over a(x), c̄(x), c(x)
assumes the form

exp i
{1

2
(M1a, a) + (M0c̄, c) +

1

g
Γ1(a)

+ gΓ3(a, a, a) + g2Γ4(a, a, a, a) + gΩ3(c̄, c, a)
}
, (5)
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where we use short notations for the corresponding linear, quadratic, cubic
and quartic forms in variables a and c̄, c. The linear form Γ1(a) is defined via
the classical equation of motion for the field Bµ(x)

Γ1(a) =

∫
tr(∇µFµν(x)aν (x))dx , (6)

the forms Γ3, Γ4 and Ω3 are given by

Γ3 =

∫
tr∇µaν [aµ, aν ]dx , (7)

Γ4 =
1

4

∫
tr
(
[aµ, aν ]

)2
dx , (8)

Ω3 =

∫
tr∇µc̄[aµ, c]dx (9)

and the operators M1 and M0 of the quadratic forms look like

M1 = −∇2
ρδµν − 2[Fµν , ·] , (10)

M0 = −∇2
ρ . (11)

The equation on the external field B in the naive approach would be the clas-
sical equation of motion, assuring that Γ1(a) vanishes. This would correspond
to the stationary phase method. However, we shall make a different choice
taking into account the appropriate quantum corrections.

It is instructive to use the simple pictures (Feynman diagrams) to visualize
the objects (6)–(9). For the forms Γ1, Γ3, Γ4 and Ω3 they look as vertices with
external lines, the number of which equals the number of fields a(x), c̄(x), c(x)

(12)

Γ1 Γ3 Γ4 Ω3

The Green functions G1 and G0 for operators M1 and M0 are depicted as
simple lines

(13)

G1 G0

Each end of the lines in (12) and (13) bears indices x, µ, a or x, a characterizing
the fields aa

µ(x) and c̄a(x), cb(x). The arrow on line distinguishes the
fields c̄ and c. Note, that Green functions are well defined due to homogeneous
boundary conditions for a(x), c̄(x), c(x).

Now simple combinatorics for the Gaussian integral which we get from
(4) expanding the exponent containing vertices in a formal series, gives the
following answer
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exp iW (B) = exp iS(B)(detM1)
−1/2 detM0

× exp{
∑

connected closed graphs} ,
(14)

where we get a graph by saturating the ends of vertices by lines, corresponding
to the Green functions. The term “closed” means that a graph has no external
lines.

We shall distinguish weakly and strongly connected graphs. A weakly con-
nected graph can be made disconnected by crossing one line. (In physical
literature the term “one particle reducible” is used for such graph.)

The quantum equation of motion, which we impose on B, can be depicted
as

+ = 0 , (15)

where the second term in the LHS is a sum of strongly connected graphs with
one external line. In the lowest approximation it looks as follows

+ g + g = 0 .

With this understanding the expression for W (B) is given by the series in the
powers of the coupling constant g2

W (B) =
1

g2

∫
tr(F ∧ F ∗) + ln detM0 −

1

2
ln detM1

+ g2
(

+ +
)

+

∞∑
k=3

g2(k−1)(strongly connected graphs with k loops) . (16)

From now on we use a “Euclidean trick” here, changing x0 to ix0, so that
M0 and M1 become elliptic operators. This answer can be considered as an
alternative definition of the functional integral (2). Two natural questions can
be asked:

1. Are the individual terms in (16) well defined?
2. Does the series converge?

Whereas we know almost nothing about the second question, the answer to
the first one is quite instructive. Here we are confronted with the problem of
divergences and renormalization.

Let us turn to the zero order in g2 term in (16). It is given by determinants
of operators M1 and M0, which clearly diverge and must be regularized. The
trivial regularization is the subtraction of an infinite constant, corresponding
to the dets for B = 0. Then we can use the formula

ln detMi(B)− ln detMi(0) = −
∫ ∞

0

dt

t
Tr
(
e−Mi(B)t − e−Mi(0)t

)
, (17)
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where i = 0, 1. The Green functions Di(x, y; t) of the parabolic equations

dDi

dt
+MiDi = 0, Di|t=0 = Iδ(x− y) (18)

has the well known expansion for small t

D(x, y; t) =
1

4π2t2
e−

|x−y|2

4t (a0(x, y) + ta1(x, y) + t2a2(x, y) + . . .) ,

where the coefficients a0, a1, a2, . . . are functionals of B. (Recall that we deal
with 4–dimensional space–time.) The trace in (17) means∫

trD(x, x; t)dx . (19)

The coefficient a0 is the holonomy for connection B along the straight line,
connecting points x and y. Clearly a0(x, x) equals unity and so its contribution
disappears from (17) due to the subtraction of exp(−M(0)t). Now a1(x, x)
for the operator M0 vanishes and same is true for tr a1(x, x) for M1. So what
remains is the contribution of a2 to (17) which diverges logarithmically in
the vicinity of t = 0. The expansion is valid for small t, so we divide the
integration in (17) as ∫ ∞

0

=

∫ µ

0

+

∫ ∞

µ

(20)

and regularize the first integral as∫ µ

ε

dt

t

∫
tr a2(x, x)dx

+

∫ µ

0

dt

t

∫ (
trD(x, x; t)− trD(x, x; t)|B=0 − tr a2(x, x) +O(t2)

)
dx .

In this way we explicitly separated the infinite part proportional to ln ε/µ.
(In the physics literature one uses large momentum cutoff Λ instead of short
auxiliary time ε; the ln ε/µ looks like −2 lnΛ/m, where m has the dimension
of mass.)

Now observe that
∫

tr a2(x, x)dx is proportional to the classical action∫
tr(F ∧ F ∗). This follows from general considerations of gauge invariance

and dimensionlessness, but can also be found explicitly together with the
corresponding numerical coefficient. We get

W (B) =
1

4

(
1

g2
+

11

48π2
C(G) ln

ε

µ

)∫
tr(F ∧ F ∗)

+ finite zero order terms + higher order loops .

(21)

Here C(G) is a value of a Casimir operator for group G in the adjoint repre-
sentation.
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Now we invoke the idea of renormalization à la Landau and Wilson: the
coupling constant g2 is considered to be a function of the regularizing para-
meter ε in such a way that the coefficient in front of the classical action stay
finite when ε→ 0

1

g2(ε)
+ β ln

ε

µ
=

1

g2ren
, β =

11

3

C

16π2
. (22)

This can be realized only if the coefficient β is positive, which is true in the
case of the Yang–Mills theory. Of course g2(ε) → 0 in this limit.

A similar investigation can be done for the quantum equation of motion
(15). The one loop diagrams are divergent, but the infinite term is proportional
to the classical equation of motion, so that (15) acquires the form

∇µFµν + g2ren(finite terms) = 0 .

Higher loops contribute corrections to the renormalization (22), however their
influence is not too drastic. I can not explain this here and mention only that it
is due to the important general statement, according to which the logarithmic
derivative of g2(ε) over ε does not depend on ε explicitly

dg2(ε)

d ln ε
= β
(
g2(ε)

)
,

where
β(g) = βg3 +O(g5) .

This relation is called the renormalization group equation; it follows from it
and the requirement that the renormalized charge does not depend on ε and
that the correction to (22) have form ln ln ε/µ and lower.

We stop here the exposition of the elements of quantum field theory and
return to our main question of mass. We have seen that the important feature
of the definition of W (B) and the equations of motion was the appearance
of the dimensional parameter. Thus the asymptotic states, which characterize
the particle spectrum, depend on this parameter and can be associated with
massive particles. Let us stress that the divergences are indispensable for this,
they lead to the breaking of the scale invariance of the classical theory.

In our reasoning it was very important that divergences have logarithmic
character, which is true only for the 4–dimensional space–time. All this and
positivity of the coefficients β in (22) distinguishes the Yang–Mills theory
as a unique quantum field theory, which has a chance to be mathematically
correct.

It is worth to mention that the disenchantment in quantum field theory
in the late fifties and sixties of the last century was connected with the prob-
lem of the charge renormalization. In the expressions, similar to (22), for all
examples, fashionable at that time, the coefficient β was negative. This was
especially stressed by Landau after investigation of the most successful exam-
ple of quantum field theory – quantum electrodynamics. The realization in the
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beginning of seventies of the fact that in Yang–Mills theory the coefficient β
is positive, which is due to ’t Hooft, Gross, Wilchek and Politzer, changed the
attitude of physicists towards the quantum theory and led to the formulation
of Quantum Chromodynamics. (This dramatic history can be found in [12].)

Conclusion

We have seen that the quantization of the Yang–Mills field theory leads to a
new feature, which is absent in the classical case. This feature – “dimensional
transmutation” – is the trading of the dimensionless parameter g2 for the
dimensional one µ with dimension [L]2. We have also seen that on a certain
level of rigour the quantization procedure is consistent. This gives us hope
that the Clay problem is soluble. Of course, the real work begins only now. I
believe that a promising direction is the investigation of the quantum equation
of motion, which should enable us to find solutions with nontrivial mass. One
possibility will be the search for solitonic solutions. Some preliminary formulas
in this direction can be found in [13].

I hope, that this text could be stimulating for a mathematician seriously
interested in an actual problem of the modern theoretical physics.
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On Scaling Properties of Harmonic Measure
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1 Introduction

This short article gives an exposition of some open problems concerning har-
monic measure for domains in Euclidean space. This is an area where Lennart
Carleson has been a leading figure for about fifty years. Like many other ana-
lysts, this author had his career shaped to a large extent by Lennart, and this
provides me an opportunity to both wish him a happy birthday and thank
him for all the assistance he has given me for nigh thirty years.

Recall that the harmonic measure for a base point z0 ∈ Ω is the (unique)
probability measure ω on ∂Ω so that

F (z0) =

∫
F (z)dω(z)

for all harmonic functions F on Ω that are (modulo small technicalities) con-
tinuous up to ∂Ω. Despite decades of intensive research, we are far from un-
derstanding the “fine structure” of harmonic measure. Certainly the greatest
achievement here is N. Makarov’s theorem [11] that on any simply connected
planar domain, ω (for any base point) is supported on a set of Hausdorff
dimension one, and ω puts no mass on any set of dimension less than one.
In modern parlance this is written as dim(ω) = 1. A related, surprising the-
orem due to Carleson [5] is that for “square” Cantor sets (as boundary) in
the plane, dim(ω) < 1, no matter how large the dimension of the Cantor set.
In Rd, d ≥ 3, our knowledge is much less complete, though notable results
due to Bourgain [4], Wolff [12], and others provide some knowledge of basic
scaling laws.

It was understood in the 1990’s (see [6]) that dynamical systems and Con-
formal Field Theory were intimately tied to these problems, at least in dimen-
sion two. It is a curious state of affairs that CFT as it is understood today,
makes no notable predictions for these problems. This is perhaps even more
surprising in light of the great success CFT has had with SLE. Exactly how
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the full story will unfold remains mysterious. My guess is that we are missing
fundamental concepts, and that the future will bring some unsuspected, closer
connections between analysis and statistical physics. If the situation is murky
for d = 2, it is much worse for d ≥ 3. All results known there are the end
products of arguments of real variable type, and therefore cannot yield sharp
constants. Whether there can be a unified approach to all dimensions seems
now to be an untouchable problem. If we are very lucky, the new generation
may give us the solution due to the rise of a young star of Lennart Carleson’s
caliber and vision.

2 Harmonic Measure in the Plane

We discuss here various conjectures concerning the fine structure of harmonic
measure. In the plane one has some extra measure of confidence in these
conjectures due to experience from conformal mappings as well as Conformal
Field Theory. A guiding principle taken from CFT is that all expressions
should be simple and analytic (in the parameter values). We start with some
examples from dimension two and then turn to d ≥ 3 in the following section.

The first conjecture we discuss concerns conformal mappings h : D → Ω,
where Ω is a bounded domain. (All conjectures are the same for mappings h
of {|z| > 1} to Ω, where h(∞) = ∞.) Let t ∈ C be a complex number and
consider the growth of integral means for |(h′)t|. Define βh(t) ≥ 0 to be the
smallest real number such that∫ 2π

0

|h′(reiθ)t|dθ = O
(
(1 − r)−βh(t)

)
.

Similarly we define the pressure spectrum,

βsc(t) = supβh(t) ,

where the supremum is taken over all conformal maps h to bounded domains.
(The “sc” stands for simply connected.) It is a nontrivial fact (the “snowflake
construction”) that for every ε > 0 and every t there is an h such that∫ 2π

0

|h′(reiθ)t|dθ ≥ c(1− r)ε−βsc(t)

holds for all r < 1. (See e.g. [6] for the case t = 1.)
The first conjecture we list is

βsc(t) = |t|2/4 , |t| ≤ 2 (1a)

and

βsc(t) = |t| − 1 , |t| ≥ 2 . (1b)
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The phase transition at |t| = 2 can be (partially) understood by looking at
t = 2 and noticing the bound |h′(r exp{iθ})| ≤ c(1− r)−1, which is due to the
finite area of the image domain. (Thus (1b) holds for t ≥ 2.) The conjecture
in (1) was introduced by Kraetzer [9], but now carries the slightly ungainly
name of the Brennan–Carleson–Jones–Kraetzer Conjecture. (This is because
Brennan’s Conjecture was for the special value t = −2, while Carleson and
Jones had made the conjecture for t = 1.) Actually, I. Binder’s name should be
added to the list of names mentioned because he had the idea of introducing
complex values of t.

If we restrict to real values of t ∈ [−2, 2], the conjecture has two equivalent
forms. The first of these is in terms of the multifractal formalism, which has
the additional feature of adding Beurling’s estimate on harmonic measure in
a more transparent form. Recall that if ω is a (locally finite) Borel measure,
the f(α) spectrum is defined by

f(α) = Dimension(Eα) ,

where we understand the dimension in question to be the Hausdorff dimension
and where (without getting too technical)

Eα =
{
z | ω

(
D(z, r)

)
∼ rα

}
.

Here D(z, r) is the disk centered at z and of radius r, and the ∼ symbol means
that this holds as r → 0. The reformulation of (1) (for t ≥ −2) is that for ω
the harmonic measure on a bounded, simply connected domain,

f(α) ≤ 2− 1/α . (2)

Again, the conjecture implicitly states that the estimate in (2) is optimal. We
define as before

fsc(α) = sup f(α) ,

where the supremum is now taken over all simply connected domains. (Unlike
βsc, the estimates for f(α) do not depend on whether the domain is bounded
or not.) Thus the conjecture is

fsc(α) = 2− 1/α , α ≥ 1/2 . (3)

The proof that conjectures (1) and (3) are equivalent involves a stopping
time argument followed by a renormalization procedure. The algebra involved
yields the relationship

t = 2− 2/α

for α ≥ 1/2. One builds by a snowflake construction a conformal map h where

|h′(reiθ)| ≤ c(1− r)ε+1−1/α

and where only this maximal growth is used to estimate βh(t). Conversely,
given h one estimates f(α) by a similar construction.
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This reasoning can be extended to give another (equivalent) formulation
for Hölder domains. Recall that a simply connected domain Ω is called a
γ Hölder domain, 0 < γ < 1, if (any) Riemann map h : D → Ω is in the
Hölder space Λγ , |f(z)− f(w)| ≤ c|z−w|γ , z, w ∈ D (equivalently D). This is
the same as |f ′(z)| ≤ c′(1−|z|)γ−1. The conjectures (1) and (3) are equivalent
(for the appropriate range of t) to the conjecture

Ω is a γ Hölder domain =⇒ dim(∂Ω) ≤ 2− γ . (4)

The algebra used here is the relation α = 1/γ, and the understanding of (4)
is that the estimate 2− γ is best possible.

There is yet another formulation that is believed to be equivalent (for
the range t ∈ [−2, 2]) in terms of quasiconformal mappings. For a globally
quasiconformal map F let k be the bound for the lower dilatation. (So 0 ≤ k <
1 and k = 0 if and only if F is conformal.) Let βk(t) be the pressure function
where the supremum is taken over all h having a globally quasiconformal
extension F with bound k. The conjecture for t ∈ [−2, 2] is that

βk(t) = β(kt) . (5)

Some support for this is given by a remarkable theorem of Smirnov (un-
published), which is one of the few conjectured upper bounds that has been
proven. Smirnov’s result is that if h has an extension F with bound k, then

dim
(
F (S1)

)
≤ 1 + k2 .

Recall that Beurling’s theorem states that for a simply connected domain,

ω
(
D(z, r)

)
≤ cr1/2

where c depends only on the inradius of the base point for harmonic measure.
Here D(z, r) is the disk centered at z with radius r. A trivial consequence of
Beurling’s theorem is

fsc(α) = 0 , α < 1/2 ,

because the sets in question are empty.
What is the evidence for conjectures (1), (3) and (4)? First we note that (1)

is true for t ≥ 2. For t = −2 this is Brennan’s conjecture, which is supposed
to correspond to the (Beurling-type) conjecture fsc(1/2) = 0. For t = 1 the
conjecture is due to Carleson–Jones [6], who also provided some computer
evidence. A small surprise there is the tie to coefficient problems for the class
Σ of functions univalent on {|z| > 1} having Laurent expansion

z +

∞∑
n=1

bnz
−n .
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Unlike the case for de Brange’s theorem (|an| ≤ n) for the class S, there seems
to be no natural guess for the maximal size of bn. Instead it is shown that if
Bn = sup|bn|, the supremum being taken over Σ, then

lim
n→+∞

logBn

logn
= γ

Σ

exists and (surprise) γ
Σ

= β(1)− 1. (Thus the conjecture that γ
Σ

= −3/4.)

Returning to other evidence, the value α = 1, which corresponds to t =
0, should be understood as the theorem of Makarov [11]: For any simply
connected domain the harmonic measure is supported on a set of (exactly)
Hausdorff dimension one. (More precisely, Makarov’s theorem tells one that
the |t|2/4 conjecture is correct for t = 0 in the sense that βsc(t) should be
quadratic near t = 0.) Another way of rephrasing these results and conjectures
is the following list:

α = 1/2 ↔ t = −2 ↔ Brennan’s Conjecture and Beurling’s Theorem
α = 1 ↔ t = 0 ↔ Makarov’s Theorem

α = 2 ↔ t = 1 ↔ Carleson–Jones Conjecture and �(Γε) ∼ ε−1/4

By the last entry we mean that if Ω is a bounded domain then Γε is the curve
{z | G(z, z0) = ε}, where G is Green’s function for Ω with base point z0. If we
integrate |h′| over {G(z, 0) = ε} on the disk (essentially the circle of radius
1 − ε about the origin). The |t|2/4 conjecture says that the extremal case is
the length of Γε (which is exactly the integral of |h′|) should be O(ε−1/4).

The upshot is that for these three special values there is a corresponding
“physical” quantity that is either known (Beurling’s or Makarov’s Theorem)
or reasonably conjectured (t = 1, α = 2). It would be interesting to see if
there is a longer list of natural, “physical” values of t, α. (Of course t = 2,
α = +∞ corresponds to finite area.)

For the fsc(α) conjecture it should be noted that the asymptotics are
correct. By the results of [7], there are constants c1 and c2 such that for
α ≥ 1,

2− c1/α ≤ fsc(α) ≤ 2− c2/α . (6)

Now the study of f(α) is also well defined for general (i.e. non-simply
connected) domains in R2 (as well as in Rd). The results of [7] are actually for
general domains, and can be expressed as bounds for the “universal” spectrum:

2− c1/α ≤ fu(α) ≤ 2− c2/α , α ≥ 1 . (7)

Here fu(α) = sup f(α), the supremum being taken over all planar domains.
For general domains in R2 one cannot have conjecture (3) for α < 1, as the
correct result there is fu(α) = α. (It pays to use Cantor sets as boundaries.)
One might think that by using Cantor sets one could obtain fu(α) > fsc(α) at
least in the range α > 1. (By the theorem of Jones–Wolff [8], fu(1) = 1.) How-
ever, this turns out not to be the case. Binder and Jones have announced [2]:
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fu(α) = fsc(α) , α ≥ 1 . (8)

As a consequence, the correct conjecture is

fu(α) = 2− 1/α , α > 1 , (9)

with the value α = 1 being a theorem. Note that by (7) the asymptotic
behavior is correct. Before discussing (8) let us remark on a general (d = 2)
philosophy: All such expressions are analytic functions of low complexity. This
philosophy is the simple consequence of adopting a CFT point of view. It seems
curious that conjectures (1) and (3) do not seem to exactly fit into our present
understanding of CFT, even if all arguments (e.g. renormalization) are from
the philosophy of CFT. The point here is that the correct universality class
of domains does not come from the canonical lists of CFT, which include
SLE. Those domains are very far from extremal (for (1) and (3)) because
(e.g. 0 < κ ≤ 4) the two sides of the SLE trace are statistically the same. One
expects the extremal domains for (1) and (3) to be “one sided”, i.e. the exterior
domain does not have extremal behavior. It is, however, not impossible that
CFT could be directly brought to bear on these problems.

The result (8) has a somewhat curious history, and it is unclear if the
methodology used is optimal. In any case, the proof is via a two step argument.
The first step is to show that if a choice of domain Ω and α > 0 are given,
then (for ε > 0) there is a polynomial P , with Julia set J , such that

f(α, Jc) ≥ f(α,Ω)− ε .

The polynomial P has attached to it both good news and bad news. The
good news is that P can be assumed to act hyperbolically on its Julia set
J . In addition, the Julia set can be chosen to be of pure Cantor type, i.e. all
critical points are outside of J and in the basin of infinity, Pn(c) → ∞ for
all critical points c. (If Ω is simply connected, one can alternatively demand
that J is a Jordan curve, and P is hyperbolic on J .) The bad news is that as
ε→ 0, the polynomial constructed by [2] has degree tending to infinity. This
“bad” behavior is indeed necessary if J is to approximate ∂Ω in the correct
technical sense. Step two in the proof of (8) is to invoke a remarkable result
due to Binder–Makarov–Smirnov: If P and J are of pure Cantor type, there is
a polynomial Q, degree(Q) = degree(P ), such that the Julia set is connected
and

f(α,A∞) ≥ f(α, Jc) ,

where A∞ is the basin of infinity for Q. It is worth remarking that while this
theorem of Binder, Makarov and Smirnov appears to be simply the maximum
principle, no elementary proof is known at present. To sum up, to prove (6)
one first “approximates” the boundary of Ω by a polynomial Julia set of pure
Cantor type, so that f(α, Jc) ≥ f(α,Ω) − ε. Then one applies the result
of Binder, Makarov and Smirnov to “homotopy” Jc to the compliment of a
connected Julia set J̃ . This means that for α ≥ 1,
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fu(α) = fdsc(α) , (10)

where the subscript d stands for (conformal) dynamic. It is indeed remarkable
that (10) holds, even if there were early hints in [6] that this would be the
case. (There one built a non-conformal dynamical system.)

The boldest form of the conjecture is that for (10) one need not consider
high degree polynomials, but may restrict to Julia sets for z2 + c, where c is
in the Mandelbrot set. Though the evidence for this is slight, it is positive. If
this were indeed true, it would show an unexpected form of universality for
quadratic Julia sets. Only slightly stronger is the conjecture that, for all α,
the complement of the Mandelbrot set (M) is extremal. This is because if c
is a boundary point of M and J is the Julia set for the parameter c, “near c,
M looks like J”.

It should also be remarked that numerical evidence for conjecture (1) was
given by Kraetzer [9]. It seems there is more work to be done here, especially
for complex values of t. A very nice idea has been introduced by D. Beliaev [1].
He defines a class of “conformal snowflakes” by using a particular random-
ization process. He is then able to get rigorous, computer assisted proofs of
lower bounds for the pressure function β(t).

An amusing aspect of these problems is that it seems likely that the proofs
for upper bounds (e.g. β(t) ≤ |t|2/4, |t| ≤ 2) will be quite different from those
for the corresponding lower bounds. On this point, the only thing that seems
evident is that one should take unbounded domains with compact boundaries
(of log-capacity one). This is of course also the natural setting for polynomial
dynamics.

3 Harmonic Measure in Rd

Our knowledge of harmonic measure and the f(α) spectrum is much less
complete in Rd, d ≥ 3, than for d = 2. What we do know corresponds to
experience from CFT: Dimension two is special. As an example of this consider
the support of Harmonic measure for a domain Ω. In d = 2 the results of
Makarov and Jones–Wolff show that there is always a set of dimension one
that supports harmonic measure and (Makarov) if Ω is simply connected
one cannot use a smaller dimension. In other words, f(α) < α for α > 1
and for simply connected domains f(1) = 1. This means f(1) is given by
∂Ω = S1. Now for d ≥ 3 this might lead one to expect that f(α) < α for
α > d−1, i.e. there is a set of dimension at most d−1 that supports harmonic
measure (the Øksendal Conjecture). However, Tom Wolff [12] has provided
counterexamples (of “snowball-type”) showing this is false. On the positive
side we know (Bourgain [4]) that harmonic measure is always supported on a
set of dimension ≤ d−ε(d). The weakest conjecture that fits known properties
for the dimension of the support of harmonic measure is
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dim(ω) ≤ d− ε(d) , (11)

where ε(d) → 0 as d → +∞. It is likely that this is relatively easy. As
justification for this conjecture one could cite Jones–Makarov [7], where it is
shown that in Rd,

d− c1/αd−1 ≤ fu(α) ≤ d− c2/αd−1 , (12)

where c1 and c2 are dimension dependent.
One of the reasons that we are presently lacking precise knowledge of

dim(ω) in d ≥ 3 is the lack of arguments of complex variables type. A (very)
formal attempt to generalize the proof of Jones–Wolff to higher dimensions
leads to the conjecture

dim(ω) ≤ d− 1

d− 1
(13)

because (!) if ∆u = 0 in Rd, then |gradient(u)|p is subharmonic for p ≥
(d− 2)/(d− 1). Corresponding to (13) is the statement

fu

(
d− 1

d− 1

)
= d− 1

d− 1

as well as

f(α) < α , α > d− 1

d− 1
.

If one now makes the supposition that fu(α) = d − cdα−d+1 for large α,
one comes to a somewhat reasonable looking formula. We first denote by α(ω)
the (universal) dimension of harmonic measure, so that by conjecture (13),
α(ω) = d− (d− 1)−1. Algebra then leads one to the possibility

fu(α) = d− 1

d− 1

(
α(ω)

α

)d−1

(14)

for values α ≥ α(ω). Notice that this has the correct asymptotics as α→ +∞,
and has fu(α) < α for α > α(ω). If we set d = 2 we also recover the conjecture
fu(α) = 2 − 1/α, α ≥ 1. On the other hand we have f ′(α(ω)) < 1, which
seems unreasonable. If we wish also to make f ′(α(ω)) = 1, thus providing for
a smoother phase transition, the next and perhaps more reasonable guess is

f(α) = d− 1

d− 1

(
α+ 1− α(ω)

)1−d
, (15)

for α ≥ α(ω). Of course, whether one chooses (14) or (15), one should have
f(α) = α for 0 ≤ α ≤ α(ω). Conjecture (15) has the advantage that f ′ exists
for all α (and f ′(α(ω)) = 1). I am unsure whether one can provide any other
justification for (14) and (15) beyond the following: They fit all known facts;
give us the “correct” conjecture in d = 2; are based on “simple” (here rational)
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functions; and interpolate analytically through dimensions. The interpretation
of (14) or (15) for non-integer dimensions is unclear to me.

As is the case for d = 2, it seems clear that, whatever the correct answer
is for fu(α), the proofs of upper versus lower bounds will be quite different.
An examination of the arguments of [6] and [12] makes it clear that near
extremals for fu(α) can be built from non-conformal dynamical systems. But
in d ≥ 3 there is no natural analogue of Julia sets and/or conformal dynamics,
or rather it seems unlikely that this is how one should proceed. Perhaps there
are natural dynamical systems in d ≥ 3 that give rise to the appropriate
domain, but it would seem that if this were the case, those dynamical systems
are not among the ones we now are aware of. It also seems unlikely that
simply connected domains could be useful when d ≥ 3. This is due to the
fact that the potential theory in d ≥ 3 puts zero capacity on line segments,
and consequently fu(α) = fsc(α) actually holds for all α > 0. (As far as I am
aware, no one has written down the proof of this rather elementary statement.)
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1 Purpose of the Article

The heritage of Fourier is many-sided.
First of all Fourier is a physicist and a mathematician. The name Fourier

is familiar to mathematicians, physicists, engineers and scientists in general.
The Fourier equation, meaning the heat equation, Fourier series, Fourier co-
efficients, Fourier integrals, Fourier transforms, Fourier analysis, Fast Fourier
Transforms, are everyday terms. The Analytical Theory of Heat is recognized
as a landmark in science.

But Fourier is known also as an Egyptologist. He wrote an extensive in-
troduction to the series of books entitled “Description de l’Egypte”. He was
in Egypt when the Rosetta stone was discovered, and Jean-François Cham-
pollion, who deciphered the hieroglyphs, was introduced in the subject by
Fourier.

He was also an administrator and a politician. He took part in the French
Revolution (Arago said that he was a pure product of the French Revolution,
because he was supposed first to become a priest), he followed Bonaparte
and Monge in Egypt as “secrétaire perpétuel de l’Institut d’Egypte”, then
Bonaparte elected him as prefect in Grenoble where he led a very important
action in health and education, and he became a member of both Académie
des sciences and Académie Française when he settled back in Paris after the
fall of Napoleon. He was elected as Secrétaire perpétuel de l’Académie des
sciences and played a role for the recognition of statistics in France.

His scientific work does not consist only in the analytical theory of heat
and the tools that he created for this theory. He was interested in algebraic
equations and his work on the localization of the roots is the transition from
Descartes to Sturm; unfortunately he neglected Galois. He himself was ne-
glected for his work on inequalities, what he called “Analyse indéterminée”.
Darboux considered that he gave the subject an exaggerated importance and
did not publish the papers on this question in his edition of the scientific works
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of Fourier. Had they been published, linear programming and convex analysis
would be included in the heritage of Fourier.

Fourier was a learned man and a philosopher in the sense of the eighteenth
century. In a way he is a late representative of the Age of Enlightenment. On
the other hand he is the main reference for Auguste Comte, a starting point
for the French “positivism” of the nineteenth century.

I shall concentrate on a narrow but important part of his scientific heritage,
namely the expansion of a function into a trigonometric series and the formulas
for computing the coefficients. It is a way to enter the way of thinking of
Fourier and its relation to physics and natural philosophy, as well as to explore
the purely mathematical continuation of his work.

About the way of thinking of Fourier my general theme is that it has
been disregarded for a long time, in France if not in Germany, and that it
became very popular quite recently. This will be explained by a few facts and
quotations.

About the continuation of his work on trigonometric series I shall focus
on a very few topics according to their historical and present interest. A good
part of the Conference on “Perspectives in Analysis” can be considered as a
illustration of the heritage of Fourier.

The main part of the article is made of quotations and comments (2.1 Vic-
tor Hugo, 2.2 Jacobi, 2.3 Fourier, 2.4 Dirichlet and Riemann). Section 3 is
devoted to the Riemann theory of trigonometric series and Sect. 4 to the
convergence problem (4.1 The Carleson Theorem, 4.2 Variations About Con-
vergence). The end, Sect. 5, is about the coming back of Fourier.

2 A Few Quotations

2.1 Victor Hugo

Let me begin with Victor Hugo. In 1862, he was in exile in the island of
Guernsey, where he wrote a large part of his work. It is the year when his
novel “Les misérables” was published. This novel contains a lot of information
on life in France at the beginning of the nineteenth century. One chapter is
entitled “1817”. Joseph Fourier appears in this chapter with a short sentence:

Il y avait à l’académie des sciences un Fourier célèbre que la
postérité a oublié, et dans je ne sais quel grenier un Fourier obscur
dont la postérité se souviendra.

(Les Misérables, Victor Hugo 1862)

There was at the Académie des sciences a celebrated Fourier whose
name is forgotten now, and in some attic an obscure Fourier who will
be remembered in times to come.
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The first is Joseph Fourier and the second is the utopist Charles Fourier.
Clearly Victor Hugo did not consider Joseph Fourier as a “gloire nationale”.
He was a friend of François Arago, who succeeded Fourier as “secrétaire
perpétuel de l’Académie des sciences”. After the death of Fourier in 1830,
Arago wrote an obituary in this quality, and Victor Cousin as member of the
Académie Française. Both obituaries are very rich and interesting about the
life of Joseph Fourier, but both ignore or underestimate his work as a math-
ematician. Arago, who was elected very young and long before Fourier as a
member of the Academy of sciences, likely remembered that Lagrange was
very reluctant towards the decomposition of a function into a trigonometric
series and knew that the Prize given to Fourier in 1811 for the Analytical
Theory of Heat expressed reservations on this theory, both from the point
of view of generality and of rigor. Fourier had competitors like Cauchy and
Poisson. All that can explain why the obituary by Arago looked as a beautiful
burial.

Actually, the French did not recognize the importance of Joseph Fourier
until recently. There is a “rue Charles Fourier” in Paris, no street Joseph
Fourier. In the first editions of Encyclopaedia Universalis, the French equiv-
alent to Encyclopaedia Britannica, there was no article on Joseph Fourier; it
was still the case in the sixth edition in 1974. I already said that Darboux
published only a part of his work in mathematics, essentially the Analytical
Theory of Heat, and the Collected Works were never published. Until re-
cently, the life and works of Joseph Fourier did not attract much attention in
France, at least outside Grenoble; in Grenoble, the Institute of Mathematics
was called Institut Fourier a long time ago, and the whole university to which
it belongs was called Université Joseph Fourier in 1987. In 1998, an excellent
book appeared: “Fourier, créateur de la physique mathématique”, by a math-
ematician, Jean Dhombres, and a physicist, Jean-Bernard Robert. There are
signs that the name of Joseph Fourier is not forgotten anymore in France.

2.2 Jacobi

More important is the appreciation of Carl Gustav Jacobi, then 26, a few
weeks after the death of Fourier. In a letter to Legendre he wrote:

M. Poisson n’aurait pas dû reproduire dans son rapport une phrase
peu adroite de feu M. Fourier, où ce dernier nous reproche, à Abel
et à moi, de ne pas nous être occupés de préférence du mouvement
de la chaleur. Il est vrai que M. Fourier avait l’opinion que le but
principal des mathématiques était l’utilité publique et l’explication des
phénomènes naturels; mais un philosophe comme lui aurait dû saisir
que le but unique de la science, c’est l’honneur de l’esprit humain,
et que, sous ce titre, une question de nombres vaut autant qu’une
question de système du monde.

(Jacobi, lettre à Legendre, 2 juillet 1830)
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M. Poisson should not have reproduced an ill-timed appreciation
of the late M. Fourier, reproaching Abel and me for not paying enough
attention to the movement of heat. In truth, M. Fourier thought that
public interest and explanation of natural phenomena were the main
purpose of mathematics. But, as a philosopher, he should have known
that the unique purpose of science is the honour of the human mind,
and that, in this respect, a question about numbers is as valuable as
a question about the universe.

The key word “l’honneur de l’esprit humain” became a motto for pure
mathematics, in opposition with Fourier’s point of view. In particular, it gave
the title of a famous book of Jean Dieudonné.

2.3 Fourier

The point of view of Fourier is expressed very clearly in a few sentences of
the general introduction (“Discours préliminaire”) of his Analytical Theory
of Heat. Here is a selection of such sentences:

Les équations du mouvement de la chaleur, comme celles qui ex-
priment les vibrations des corps sonores, ou les dernières oscillations
ds liquides, appartiennent à une des branches de la science du calcul
les plus récemment découvertes. . . Après avoir établi ces équations
différentielles, il fallait en obtenir les intégrales; ce qui consiste à passer
d’une expression commune à une solution propre assujettie à toutes
les conditions données. Cette recherche difficile exigeait une analyse
spéciale, fondée sur des théorèmes nouveaux. . . La méthode qui en
dérive ne laisse rien de vague ni d’indéterminé dans les solutions.
Elle les conduit jusqu’aux dernières applications numériques, condi-
tion nécessaire de toute recherche, et sans lesquelles on n’arriverait
qu’à des transformations inutiles. . .

(Joseph Fourier [2], Discours préliminaire)

L’étude approfondie de la nature est la source la plus féconde des
découvertes mathématiques. . .

Les équations analytiques. . . s’étendent à tous les phénomènes
généraux. Il ne peut y avoir de langage plus universel et plus sim-
ple, plus exempt d’erreurs et d’obscurités, c’est-à-dire plus digne
d’exprimer les rapports invariables des êtres naturels.

Considérée de ce point de vue, l’analyse mathématique est aussi
étendue que la nature elle même. . . Son attribut principal est la clarté.
Elle n’a point de signes pour exprimer les notions confuses. Elle rap-
proche les phénomènes les plus divers et découvre les analogies secrètes
qui unissent. . . Elle nous les rend présents et mesurables, et semble
être une faculté de la raison humaine, destinée à suppléer à la brièveté
de la vie et à l’imperfection des sens. (ibid)
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Let me begin with the second excerpt:

The thorough study of nature is the most productive source of
mathematical discoveries.

Analytic equations apply to all general phenomena. There is no
simpler and more universal language, more free from errors, and more
able to express permanent relations between natural bodies.

From this point of view mathematical analysis is as large as nature
itself. Its main feature is clarity. It has no sign for confuse notions.
It connects the most diverse phenomena and expresses their hidden
analogies. It makes them accessible and measurable, and it seems to
be a faculty of the human brain, making up for the brevity of life and
imperfection of our senses.

This is a glorious definition of mathematical analysis. By the way, Fourier
was interested also by the human life and industry, and this, parallel to “the
thorough study of nature”, was another important source of his mathematical
investigations and discoveries.

Here is an approximative translation of the first excerpt:

The heat equation, as well as the equations concerning vibrating
strings or motions of liquids, belongs to a quite recent brand of analy-
sis [namely, PDE]. After establishing the equations one has to find the
solutions, that is, go from a general expression to a particular solution
subject to prescribed conditions. This investigation was difficult and
needed a new kind of analysis, based on new theorems. . . The cor-
responding method leaves nothing vague in the solutions. It leads to
final numerical applications, as any investigation should do in order
to be useful.

The Fourier approach is very well described in the Discours préliminaire:
start from natural phenomena and end with numerical conclusions. In between
“a new kind of analysis” is needed, what we call now Fourier analysis. This
sounds more modern now, with modeling and computers, than 50 years ago,
and explains the comeback of Fourier’s views.

2.4 Dirichlet and Riemann

The main continuators of Fourier were Dirichlet and Riemann. Dirichlet met
Fourier when he stayed in Paris, between 1822 and 1825, not yet 20 years old.
In 1829, he published the first general and correct statement about the con-
vergence of Fourier series. The beginning of this article was a tribute payed
to Fourier (“l’illustre géomètre qui a ouvert une nouvelle carrière aux ap-
plications de l’analyse”) and a criticism of the approach of the convergence
problem by Cauchy. For Dirichlet as for Fourier, the starting point was a func-
tion given in some way. Then came integral formulas providing the coefficients
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of a trigonometric series. The problem was to show that this trigonometric
series converges to the function.

The treatment of the problem by Dirichlet was a masterpiece of analysis,
and it led to the celebrated Dirichlet conditions. It led also to an important
remark: the given function needs to satisfy some conditions in order that
the integral formulas make sense. As a comment, Dirichlet introduced his
famous example of a function taking a value on rational points and another
on irrational points: for him as later for Riemann, such a function is not
integrable on any interval.

Since Dirichlet the convergence problem of Fourier series (that is, trigono-
metric series whose coefficients are given by the Fourier integral formulas) is
linked to two major questions: what do you mean by a function? What do
you mean by an integral?

Actually, the term Fourier series (“Fouriersche Reihe”) appears for the
first time in the dissertation of Riemann on trigonometric series, written in
1854. The beginning of the dissertation is a history of the subject from the
controversy on vibrating strings in the 18th century to the article by Dirich-
let, with comments and remarks, on analytic and harmonic continuation on
one hand, and ordinary and absolute convergence of numerical series on the
other, inspired by the mistakes of Cauchy. A few pages are devoted to ordi-
nary and generalized integrals. The Riemann integral of a bounded function
on a bounded interval is defined in a few lines, and (before Lebesgue!) Rie-
mann gives an explicit necessary and sufficient condition for a function to be
integrable.

A leitmotiv of Riemann’s dissertation is the recognition of the role of
Fourier. After the controversy on vibrating strings in which d’Alembert, Euler,
Daniel Bernoulli and Lagrange took part, “for almost 50 years the question of
representing an arbitrary function by an analytic expression did not make any
essential progress. Then a remark of Fourier gave this question a new look,
and a new epoch began in this part of mathematics, which proved soon of
exceptional importance in the development of mathematical physics. Fourier
remarked that, given a trigonometric series f(x) = . . . , the coefficients are
well-defined by the formulas an = . . . , bn = . . . . He observed that this
definition of the series makes sense for quite arbitrary functions f(x); taking
for f(x) a so-called discontinuous function (the ordinate of a broken line above
the abscissa x), he obtained a series that actually gave always the value of the
function.”

Then, after discussing why Lagrange was reluctant and Poisson hostile,
Riemann states that “it was Fourier who actually recognized the nature of
trigonometric series in a complete and correct way; since then they were ap-
plied many times in mathematical physics for representing arbitrary functions,
and one can be easily convinced in each particular case that the Fourier series
converges indeed to the value of the function.”

A general proof was needed. After the attempt by Cauchy, this was re-
alized by Dirichlet for a large class of functions, covering (Riemann said) all
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possible needs of physics. Nevertheless “the application of Fourier series is
not restricted to researches in physics; they are now applied successfully in a
domain of pure mathematics, the theory of numbers, where it seems that the
most important functions are not those considered by Dirichlet.” Here are the
exact quotations of Riemann.

Fast fünfzig Jahre vergingen, ohne dass in der Frage über die
analytische Darstellbarkeit willkürlicher Functionen ein wesenticher
Fortschritt gemacht wurde. Da warf eine Bemerkung Fourier’s ein
neues Licht auf diesen Gegenstand; eine neue Epoche in der Entwick-
lung dieses Teils der Mathematik begann, die sich bald auch äusserlich
in grossartigen Erweiterungen der mathematischen Physik kund tat.
Fourier bemerkte, dass in der trigonometrischen Reihe

f(x) = a1 sinx+ a2 sin 2x+ · · ·+ 1
2b0 + b1 cosx+ b2 cos 2x+ · · · ,

die Coefficienten sich durch die Formeln

an =
1

π

∫ π

−π

f(x) sinnxdx , bn =
1

π

∫ π

−π

f(x) cosnxdx ,

bestimmten lassen. Er sah, dass diese Bestimmungsweise auch an-
wendbar bleibe, wenn die Function f(x) ganz willkürlich sei; er setzte
für f(x) eine so genannte discontinuirliche Function (die Ordinate
einer gebrochenen Linie für die Abcissa x) and erhielt eine Reihe,
welche in der That stets den Wert der Function gab.

(Bernhard Riemann [9])

Durch Fourier was nun zwar die Natur der trigonometrischen Rei-
hen vollkommen richtig erkannt; sie wurden seitdem in der mathe-
matischen Physik zur Darstellung willkürlicher Functionen vielfach
angewandt, und in jedem einzelnen Falle überzeugte man sich leicht,
dass die Fouriersche Reihe wirklich gegen den Werth der Function
convergire. (ibid)

Zweitens aber ist die Anwendbarkeit der Fourierschen Reihen nicht
auf physikalische Untersuchungen beschränkt; sie ist jetzt auch in
einem Gebiete der seinen Mathematik, der Zahlentheorie, mit Er-
folg angewandt, and hier scheinen gerade diejenigen Funktionen, deren
Darstellbarkeit durch eine trigonometrische Reihe Dirichlet nicht un-
tersucht hat, von Wichtigkeit zu sein. (ibid)

3 The Riemann Theory of Trigonometric Series

However, the main and most original part of Riemann’s dissertation does not
follow the lines traced by Fourier and Dirichlet. Instead of starting from a
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function and looking for the properties of the Fourier series, in particular
the convergence problem, Riemann started from an everywhere convergent
trigonometric series and looked for the properties of the sum as a function. The
machinery that he created is known as the Riemann theory of trigonometric
series. It implies double formal integration of the given series and formal
multiplication by sufficiently regular series (or functions): viewed from now, it
is an anticipation of the treatment of Schwartzs distributions. More directly,
it anticipates the “smooth functions” of Zygmund and the “pseudomeasures”
and “pseudofunctions” of Kahane and Salem.

The Riemann theory of trigonometric series played a major role in the
history of mathematics because of two questions that Riemann left open and
that were solved by Georg Cantor: prove that, if an everywhere convergent
trigonometric series converges everywhere, its coefficients tend to zero, and,
more difficult, that if it converges everywhere to zero it is the null series. This
last statement is the “uniqueness theorem” of Cantor. Then Cantor looked
for an “extension”: is the result valid when the assumption is weakened in
the form that the series converges to zero out of a given set? Cantor proved
that it was the case for “reducible” sets (with countable closure). It was his
first opportunity to develop his theory of real numbers and real sets, so that
trigonometric series appear as the first historical source of the theory of sets.

Sets of uniqueness (for which the answer to the question is positive) and
sets of multiplicity (the opposite) became a favorite field for applying methods
coming from real and functional analysis, probability, number theory, and log-
ics. The main contributors were Lebesgue, Marcel Riesz, Young, Menchoff, Ra-
jchman, Bari, Zygmund, Marcinkiewicz, Salem, then R. Kaufman, T. Körner,
J.-P. Kahane, B. Mandelbrot, Y. Katznelson, B. Connes, and more recently
A.S. Kechris and A. Louveau, G. Debs and J. Saint-Raymond, J. Bourgain,
M. Ash and G. Wang. A brief history of the subject can be found in [4].

The uniqueness theorem of Cantor means that, given the sum of an every-
where convergent trigonometric series, the coefficients are well-defined. In or-
der to compute them, a new kind of Fourier formulas is needed, with a new
meaning for the integral. It is the purpose of the second “totalization” the-
ory of A. Denjoy, and his “Leçons sur le calcul des coefficients d’une série
trigonométriques” (1941, 1949) is a complete exposition of the subject, in
four books.

4 The Convergence Problem After Dirichlet

The Riemann theory and the Cantor uniqueness theorem are part of the
heritage of Fourier, but not in the main direction.

The main direction was well described by Riemann himself. It is the di-
rection explored by Dirichlet, the convergence problem.

Dirichlet believed that the Fourier series of a continuous function should
converge pointwise to the function, though he was not able to prove it. This
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was disproved only in 1873, by Paul du Bois-Raymond. He constructed a
continuous function whose Fourier series diverges at a given point. The con-
struction is a kind of “condensation of singularities”. Variations were given
by Lebesgue and by Fejer. Today it appears as a standard application of the
Banach–Steinhaus theorem, using the fact that the L1–norms of the Dirichlet
kernel (the so-called “Lebesgue constants”) are not bounded.

Is it possible to construct a continuous function whose Fourier series di-
verges everywhere? The question was still open in 1965, before the Carleson
theorem, and Katznelson and I proved that either it is the case, or the Fourier
series of any continuous function converges almost everywhere to the function.
The key was to construct a continuous function whose Fourier series diverges
on a given null-set.

4.1 The Carleson Theorem

The question was settled by the Carleson theorem of 1966: the Fourier series
of a continuous function converges to the function almost everywhere and
nothing better can be said for continuous functions [1]. But much more can
be said, by enlarging the class of functions. Carleson proved that the result
holds for L2 (1966), and R. Hunt for Lp with p > 1 (1967). On the other
hand, the result does not hold for L1, since Kolmogorov constructed an L1–
function whose Fourier series diverges almost everywhere (1922) and even
everywhere (1926). The situation near L1 was investigated recently and raises
some puzzling questions, as we shall see later.

In order to understand the importance of Carleson–Hunt in 1966–67, let us
consult the successive editions and impressions of Zygmund’s book “Trigono-
metric series” [11]. For general L2–functions, the best known result before 1966
was due to Kolmogorov (1922): given a Hadamard lacunary sequence (nk),
for example nk = 2k, the partial sums of order nk tend to the function almost
everywhere. For general Lp–functions, p > 1, the same holds but the proof re-
lies on a highly sophisticated machinery, the Littlewood–Paley theory (1938).
Two chapters of the second edition of Zygmund’s book are devoted to the
Littlewood–Paley theory and to what was considered as its main application,
the almost everywhere convergence of partial sums of order nk. The discovery
of Carleson changed the landscape in a drastic way. First, Kolmogorov’s re-
sult was not the best anymore. Second, due to Hunt’s extension of Carleson’s
theorem for all Lp, p > 1, the Littlewood–Paley theorem became obsolete as
a means to study the convergence problem. This was a shock for Zygmund.
There were several new “impressions” of the second edition of “Trigonometric
series” during his life-time, but no “third edition”. A “third edition” would
have been a complete rewriting of the book: Carleson–Hunt would have been
included, and many partials results and related methods dropped; there would
have been no reason to keep the Littlewood–Paley theory. Fortunately, Zyg-
mund gave up such a rewriting and the book was kept with its beautiful
exposition of the Littlewood–Paley theory, without Carleson–Hunt.
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The situation near L1 is in close relation with the asymptotic behaviour of
the partial sums Sn(f, x) when f belongs to L1. The first important result is
due to Hardy (1913): if f ∈ L1, Sn(f, x) = o(logn) almost everywhere. Hardy
conjectured that it was a best possible result. In the opposite direction, the
Kolmogorov example of 1926 establishes the existence of f ∈ L1 such that
lim |Sn(f, x)| = ∞ everywhere. For which increasing sequences �(n) is it true
that there exists f ∈ L1 such that lim(|Sn(f, x)|/�(n)) = ∞ everywhere?
Until a few years ago, the best result was that �(n) = o(log logn) works (Chen
1962). In 1999, Konyagin [8] went as far as �(n) = o((log n/ log log n)1/2), and
Bochkarev proved in 2003 that �(n) = o((logn)1/2) is sufficient when the circle
is replaced by the Cantor group. It is a challenging problem now to improve
either Hardy or Konyagin. A test case is �(n) = (log n)p with 1/2 < p < 1.

4.2 Variations About Convergence

The revival of Fourier series in the twentieth century is due in a large part to
other ways to consider the convergence problem.

In the first place one can introduce summability processes instead of ordi-
nary convergence. This way was opened by Fejer in 1900 and it led to positive
kernels, approximate identities, multipliers and convolution. The most impor-
tant notion, convolution, was formalized rather late and actually no formal
definition covers the real range of the notion. It became better understood
with the convolution algebras of Wiener, one of the sources of the normed
rings (Banach algebras) of Gelfand.

On the other hand convergence can be considered in spaces of functions,
and summability as well. This direction created a strong link between Fourier
series and the beginning of functional analysis. The initial impulse was the
Lebesgue integral (1901) and its application to Fourier series (1906), followed
by the Riesz–Fischer theorem (1907). The simple statement “Lp is complete”
(needing first the definitions of Lp–spaces and complete metric spaces) belongs
to the heritage of Fourier.

Fourier series are a prototype of orthogonal series, and orthogonal series
appear in all parts of analysis. The L2–convergence is guaranteed, but prob-
lems on almost everywhere convergence are quite interesting, parallel to those
on classical Fourier series.

Thousands of papers and hundreds of books being written on these sub-
jects, I shall not insist on them any more.

5 Fourier Comes Back

Let us go back to Fourier.
His first and typical use of trigonometric series was a solution of a problem

on the distribution of temperatures in a given solid body, a cylinder based on
the half strip −π/2 ≤ x ≤ π/2, 0 ≤ y < ∞, with −∞ < z < ∞. The
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horizontal basis (y = 0) is at temperature 1, the vertical edges (x = ±π/2) at
temperature 0. At the state of equilibrium the temperature u(x, y) satisfies

∂2u

∂x2
+
∂2u

∂y2
= 0 ,

with u(±π/2, y) = 0 and u(x, 0) = 1 (−π/2 < x < π/2). A formal solution is

u(x, y) = a1e
−y cosx+ a3e

−3y cos 3x+ a5e
−5y cos 5x+ · · · (1)

and the last requirement is expressed by the condition

1 = a1 cosx+ a3 cos 3x+ a5 cos 5x+ · · · (−π/2 < x < π/2) . (2)

Before writing the integral formulas for the coefficients, Fourier computed
them in a strange way: differentiation, truncation, solution of a linear system.
Darboux said that this was a natural method and he was right. What Fourier
did was to look at trigonometric polynomials 1−

∑
an cosnx (n odd) of a given

degree that are as flat as possible at 0, and compute the limits of the an when
the degree increases to infinity, namely (−1)n+14/πn. The derivatives of these
trigonometric polynomials are as flat as possible at 0, odd, and their integral
on (−π/2, 0) is 1. In the sense of distributions they converge to 2(δ−π/2−δπ/2),
and this is enough in order to establish (1) when y > 0. The proof of (2) is
more delicate.

Of course, Fourier did not know the theory of distributions. But he had a
flair for the meaning of computations, and it may be wise to try to understand
what he did before condemning his methods and statements.

After giving the integral formulas Fourier observes that, due to the expo-
nential factors, the series (1) is very rapidly convergent when y > 0 (“très
convergente”, “extrèment convergente”). About series (2) he says that con-
vergence can be proved (“on démontre rigoureusement”) and actually he gives
a correct proof later in the chapter.

Then he extends the procedure to other functions, gives the Fourier formu-
las for general 2π–periodic functions, and states that this applies to arbitrary
functions and gives trigonometric series which always converge to the func-
tions. In a formal way this is wrong, and we just discussed some of the main
contributions of mathematicians in order to find the correct notions and state-
ments. Fourier was criticized, by Darboux in particular, for being inaccurate
in some of his statements, and that explains in part why he was so long in
disfavour with French people. But Fourier deserves to be appreciated not be-
cause he proved theorems and made perfect statements, but in the way he
launched a long-term program in mathematics.

Examples can be found in all parts of The Analytical Theory of Heat,
of statements that were considered as absurd and may also sound prophetic.
Here is one ([2] Chap. III, pp. 235). From the integral formulas for coefficients
Fourier derives the formula
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F (x) =
1

π

∫ π

−π

F (α)dα

(
1

2
+
∑

i

cos i(x− α)

)
.

The comment of Darboux is that the parenthesis has no possible meaning.
However, here is Fourier’s explanation:

L’expression (. . . ) représente une fonction de x et de α telle que,
si on la multiplie par une fonction quelconque F (α) et si, après avoir
écrit dα, on intégre entre les limites α = −π et α = π, on aura changé
la fonction proposée F (α) en une pareille fonction de x, multipliée par
la demi-circonférence. On verra par la suite quelle est la nature de ces
quantités, telles que 1/2+

∑
cos i(x−α), qui jouissent de la propriété

que l’on vient d’énoncer.

Clearly, I believe, Fourier had the intuition of the Dirac measure and the
way to use it (in particular, in later sections, derivation and representation as
a Fourier integral).

It should be noted that the first exposition by Laurent Schwartz of his
theory of distributions is an article (1946) entitled “Généralisation de la no-
tion de fonction, de dérivation, de transformation de Fourier, et applications
mathématiques et physiques” [10]. In a way, the theory of distributions be-
longs to the heritage of Fourier.

I shall be brief on more recent and spectacular reincarnations of Fourier
series. The Fast Fourier Transform of Cooley and Tuckey (1965), presented
as “An algorithm for the machine calculation of complex Fourier series”, has
invaluable applications in all parts of science, from astrophysics to biology.

The wavelets of Yves Meyer (1985) came from physicists and engineers,
and soon created a common ground for specialists of different fields of science
and industry. The story is well known and still in progress1 and there is no
point in telling it again.

As far as the heritage of Fourier is concerned, the main point is that FFT
and wavelets testify that the philosophy of Fourier, expressed in the excerpts
of the Discours préliminaire I gave above, makes a spectacular come-back.

I indicated at the beginning that I would restrict the heritage of Fourier
to his work as a mathematician and, to be more specific, to Fourier series. I
chose, actually, a very few points of interest in the history of Fourier series,
and I hardly mentioned one open problem. My oral communication was not
organized exactly in that way. But I feel better now to contribute to “Perspec-
tives in Analysis” by a reflection on the past than by a list of open problems
according to my taste. The past is very rich and the way in which it echoes
the most recent research in mathematics is actually part of “Perspectives in
Analysis”.

1 See Jaffard et al. [3] for example.
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perfluidity, as we have shown. On the frontier of experimental developments is the
possibility that a dilute gas in an elongated trap will behave like a one-dimensional
system; we have proved this mathematically. Another topic is a proof that Foldy’s
1961 theory of a high density Bose gas of charged particles correctly describes its
ground state energy; using this we can also prove the N7/5 formula for the ground
state energy of the two-component charged Bose gas proposed by Dyson in 1967.
All of this is quite recent work and it is hoped that the mathematical methodology
might be useful, ultimately, to solve more complex problems connected with these
interesting systems.
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Birkhäuser (2005).



The Quantum-Mechanical Many-Body Problem: The Bose Gas 99

1 Introduction

Schrödinger’s equation of 1926 defined a new mechanics whose Hamiltonian
is based on classical mechanics, but whose consequences are sometimes non-
intuitive from the classical point of view. One of the most extreme cases is
the behavior of the ground (= lowest energy) state of a many-body system
of particles. Since the ground state function Ψ(x1, ...,xN) is automatically
symmetric in the coordinates xj ∈ R3 of the N particles, we are dealing
necessarily with ‘bosons’. If we imposed the Pauli exclusion principle (anti-
symmetry) instead, appropriate for electrons, the outcome would look much
more natural and, oddly, more classical. Indeed, the Pauli principle is essential
for understanding the stability of the ordinary matter that surrounds us.

Recent experiments have confirmed some of the bizarre properties of
bosons close to their ground state, but the theoretical ideas go back to the
1940’s – 1960’s. The first sophisticated analysis of a gas or liquid of interacting
bosons is due to Bogolubov in 1947. His approximate theory as amplified by
others, is supposed to be exact in certain limiting cases, and some of those
cases have now been verified rigorously (for the ground state energy) — 3 or
4 decades after they were proposed.

The discussion will center around five main topics.

1. The dilute, homogeneous Bose gas with repulsive interaction (2D and 3D).
2. Repulsive bosons in a trap (as used in recent experiments) and the “Gross–

Pitaevskii” equation.
3. Bose condensation and superfluidity for dilute trapped gases.
4. One-dimensional behavior of three-dimensional gases in elongated traps.
5. Foldy’s “jellium” model of charged particles in a neutralizing background

and the extension to the two-component gas.

Note that for potentials that tend to zero at infinity ‘repulsive’ and ‘pos-
itive’ are synonymous — in the quantum mechanical literature at least. In
classical mechanics, in contrast, a potential that is positive but not monoton-
ically decreasing is not called repulsive.

The discussion below of topic 1 is based on [62] and [63], and of topic 2
on [53] and [54]. See also [64, 55, 78, 56].

The original references for topic 3 are [51] and [57], but for transparency
we also include here a section on the special case when the trap is a rectan-
gular box. This case already contains the salient points, but avoids several
complications due the inhomogeneity of the gas in a general trap. An essen-
tial technical tool for topic 3 is a generalized Poincaré inequality, which is
discussed in a separate section.

Topic 4 is a summary of the work in [58].
The discussion of topic 5 is based on [60] and [61].
Topic 1 (3-dimensions) was the starting point and contains essential ideas.

It is explained here in some detail and is taken, with minor modifications
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(and corrections), from [64]. In terms of technical complexity, however, the
fifth topic is the most involved and can not be treated here in full detail.

The interaction potential between pairs of particles in the Jellium model in
topic 5 is the repulsive, long-range Coulomb potential, while in topics 1–4 it is
assumed to be repulsive and short range. For alkali atoms in the recent experi-
ments on Bose Einstein condensation the interaction potential has a repulsive
hard core, but also a quite deep attractive contribution of van der Waals type
and there are many two body bound states [69]. The Bose condensate seen in
the experiments is thus not the true ground state (which would be a solid) but
a metastable state. Nevertheless, it is usual to model this metastable state as
the ground state of a system with a repulsive two body potential having the
same scattering length as the true potential, and this is what we shall do. In
this paper all interaction potentials will be positive.

2 The Dilute Bose Gas in 3D

We consider the Hamiltonian for N bosons of mass m enclosed in a cubic box
Λ of side length L and interacting by a spherically symmetric pair potential
v(|xi − xj |):

HN = −µ
N∑

i=1

∆i +
∑

1≤i<j≤N

v(|xi − xj |) . (2.1)

Here xi ∈ R3, i = 1, . . . , N are the positions of the particles, ∆i the Laplacian
with respect to xi, and we have denoted �2/2m by µ for short. (By choosing
suitable units µ could, of course, be eliminated, but we want to keep track of
the dependence of the energy on Planck’s constant and the mass.) The Hamil-
tonian (2.1) operates on symmetric wave functions in L2(ΛN , dx1 · · ·dxN ) as
is appropriate for bosons. The interaction potential will be assumed to be
nonnegative and to decrease faster than 1/r3 at infinity.

We are interested in the ground state energy E0(N,L) of (2.1) in the
thermodynamic limit when N and L tend to infinity with the density ρ =
N/L3 fixed. The energy per particle in this limit is

e0(ρ) = lim
L→∞

E0(ρL
3, L)/(ρL3) . (2.2)

Our results about e0(ρ) are based on estimates on E0(N,L) for finite N and L,
which are important, e.g., for the considerations of inhomogeneous systems in
[53]. To define E0(N,L) precisely one must specify the boundary conditions.
These should not matter for the thermodynamic limit. To be on the safe
side we use Neumann boundary conditions for the lower bound, and Dirichlet
boundary conditions for the upper bound since these lead, respectively, to the
lowest and the highest energies.

For experiments with dilute gases the low density asymptotics of e0(ρ) is
of importance. Low density means here that the mean interparticle distance,
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ρ−1/3 is much larger than the scattering length a of the potential, which is
defined as follows. The zero energy scattering Schrödinger equation

−2µ∆ψ + v(r)ψ = 0 (2.3)

has a solution of the form, asymptotically as |x| = r → ∞ (or for all r > R0

if v(r) = 0 for r > R0),
ψ0(x) = 1− a/|x| (2.4)

(The factor 2 in (2.3) comes from the reduced mass of the two particle prob-
lem.) Writing ψ0(x) = u0(|x|)/|x| this is the same as

a = lim
r→∞

r − u0(r)

u′0(r)
, (2.5)

where u0 solves the zero energy (radial) scattering equation,

−2µu′′0(r) + v(r)u0(r) = 0 (2.6)

with u0(0) = 0.
An important special case is the hard core potential v(r) = ∞ if r < a

and v(r) = 0 otherwise. Then the scattering length a and the radius a are the
same.

Our main result is a rigorous proof of the formula

e0(ρ) ≈ 4πµρa (2.7)

for ρa3 � 1, more precisely of

Theorem 2.1 (Low density limit of the ground state energy).

lim
ρa3→0

e0(ρ)

4πµρa
= 1 . (2.8)

This formula is independent of the boundary conditions used for the definition
of e0(ρ) . It holds for every positive radially symmetric pair potential such that∫∞

R
v(r)r2dr <∞ for some R, which guarantees a finite scattering length, cf.

Appendix A in [63].
The genesis of an understanding of e0(ρ) was the pioneering work [7] of

Bogolubov, and in the 50’s and early 60’s several derivations of (2.8) were
presented [36], [44], even including higher order terms:

e0(ρ)

4πµρa
= 1 + 128

15
√

π
(ρa3)1/2 + 8

(
4π
3 −

√
3
)

(ρa3) log(ρa3) +O(ρa3) (2.9)

These early developments are reviewed in [45]. They all rely on some special
assumptions about the ground state that have never been proved, or on the
selection of special terms from a perturbation series which likely diverges. The
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only rigorous estimates of this period were established by Dyson, who derived
the following bounds in 1957 for a gas of hard spheres [17]:

1

10
√

2
≤ e0(ρ)

4πµρa
≤ 1 + 2Y 1/3

(1− Y 1/3)2
(2.10)

with Y = 4πρa3/3. While the upper bound has the asymptotically correct
form, the lower bound is off the mark by a factor of about 1/14. But for
about 40 years this was the best lower bound available!

Under the assumption that (2.8) is a correct asymptotic formula for the
energy, we see at once that understanding it physically, much less proving it, is
not a simple matter. Initially, the problem presents us with two lengths, a�
ρ−1/3 at low density. However, (2.8) presents us with another length generated
by the solution to the problem. This length is the de Broglie wavelength, or
‘uncertainty principle’ length (sometimes called ‘healing length’)

�c ∼ (ρa)−1/2 . (2.11)

The reason for saying that �c is the de Broglie wavelength is that in the hard
core case all the energy is kinetic (the hard core just imposes a ψ = 0 boundary
condition whenever the distance between two particles is less than a). By the
uncertainty principle, the kinetic energy is proportional to an inverse length
squared, namely �c. We then have the relation (since ρa3 is small)

a� ρ−1/3 � �c (2.12)

which implies, physically, that it is impossible to localize the particles rela-
tive to each other (even though ρ is small). Bosons in their ground state are
therefore ‘smeared out’ over distances large compared to the mean particle
distance and their individuality is entirely lost. They cannot be localized with
respect to each other without changing the kinetic energy enormously.

Fermions, on the other hand, prefer to sit in ‘private rooms’, i.e., �c is
never bigger than ρ−1/3 by a fixed factor. In this respect the quantum nature
of bosons is much more pronounced than for fermions.

Since (2.8) is a basic result about the Bose gas it is clearly important to
derive it rigorously and in reasonable generality, in particular for more general
cases than hard spheres. The question immediately arises for which interaction
potentials one may expect it to be true. A notable fact is that it is not true for
all v with a > 0, since there are two body potentials with positive scattering
length that allow many body bound states. (There are even such potentials
without two body bound states but with three body bound states [3].) For
such potentials (2.8) is clearly false. Our proof, presented in the sequel, works
for nonnegative v, but we conjecture that (2.8) holds if a > 0 and v has no
N -body bound states for any N . The lower bound is, of course, the hardest
part, but the upper bound is not altogether trivial either.

Before we start with the estimates a simple computation and some heuris-
tics may be helpful to make (2.8) plausible and motivate the formal proofs.



The Quantum-Mechanical Many-Body Problem: The Bose Gas 103

With ψ0 the zero energy scattering solution, partial integration, using (2.3)
and (2.4), gives, for R ≥ R0,∫

|x|≤R

{2µ|∇ψ0|2 + v|ψ0|2}dx = 8πµa
(
1− a

R

)
→ 8πµa for R→∞ .

(2.13)
Moreover, for positive interaction potentials the scattering solution minimizes
the quadratic form in (2.13) for each R ≥ R0 with the boundary condition
ψ0(|x| = R) = (1−a/R). Hence the energy E0(2, L) of two particles in a large
box, i.e., L� a, is approximately 8πµa/L3. If the gas is sufficiently dilute it
is not unreasonable to expect that the energy is essentially a sum of all such
two particle contributions. Since there are N(N −1)/2 pairs, we are thus lead
to E0(N,L) ≈ 4πµaN(N − 1)/L3, which gives (2.8) in the thermodynamic
limit.

This simple heuristics is far from a rigorous proof, however, especially for
the lower bound. In fact, it is rather remarkable that the same asymptotic
formula holds both for ‘soft’ interaction potentials, where perturbation the-
ory can be expected to be a good approximation, and potentials like hard
spheres where this is not so. In the former case the ground state is approx-
imately the constant function and the energy is mostly potential : According
to perturbation theory E0(N,L) ≈ N(N − 1)/(2L3)

∫
v(|x|)dx. In particular

it is independent of µ, i.e. of Planck’s constant and mass. Since, however,∫
v(|x|)dx is the first Born approximation to 8πµa (note that a depends on

µ!), this is not in conflict with (2.8). For ‘hard’ potentials on the other hand,
the ground state is highly correlated, i.e., it is far from being a product of single
particle states. The energy is here mostly kinetic, because the wave function is
very small where the potential is large. These two quite different regimes, the
potential energy dominated one and the kinetic energy dominated one, can-
not be distinguished by the low density asymptotics of the energy. Whether
they behave differently with respect to other phenomena, e.g., Bose–Einstein
condensation, is not known at present.

Bogolubov’s analysis [7] presupposes the existence of Bose–Einstein con-
densation. Nevertheless, it is correct (for the energy) for the one-dimensional
delta-function Bose gas [48], despite the fact that there is (presumably) no
condensation in that case [72]. It turns out that BE condensation is not re-
ally needed in order to understand the energy. As we shall see, ‘global’ con-
densation can be replaced by a ‘local’ condensation on boxes whose size is
independent of L. It is this crucial understanding that enables us to prove
Theorem 2.1 without having to decide about BE condensation.

An important idea of Dyson was to transform the hard sphere potential
into a soft potential at the cost of sacrificing the kinetic energy, i.e., effectively
to move from one regime to the other. We shall make use of this idea in our
proof of the lower bound below. But first we discuss the simpler upper bound,
which relies on other ideas from Dyson’s beautiful paper [17].
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2.1 Upper Bound

The following generalization of Dyson’s upper bound holds [53], [77]:

Theorem 2.2 (Upper bound). Let ρ1 = (N−1)/L3 and b = (4πρ1/3)−1/3.
For non-negative potentials v and b > a the ground state energy of (2.1) with
periodic boundary conditions satisfies

E0(N,L)/N ≤ 4πµρ1a
1− a

b +
(

a
b

)2
+ 1

2

(
a
b

)3(
1− a

b

)8 . (2.14)

Thus in the thermodynamic limit (and for all boundary conditions)

e0(ρ)

4πµρa
≤

1− Y 1/3 + Y 2/3 − 1
2Y

(1 − Y 1/3)8
, (2.15)

provided Y = 4πρa3/3 < 1.

Remark. The bound (2.14) holds for potentials with infinite range, provided
b > a. For potentials of finite range R0 it can be improved for b > R0 to

E0(N,L)/N ≤ 4πµρ1a
1−
(

a
b

)2
+ 1

2

(
a
b

)3(
1− a

b

)4 . (2.16)

Proof. We first remark that the expectation value of (2.1) with any trial wave
function gives an upper bound to the bosonic ground state energy, even if
the trial function is not symmetric under permutations of the variables. The
reason is that an absolute ground state of the elliptic differential operator
(2.1) (i.e., a ground state without symmetry requirement) is a nonnegative
function which can be symmetrized without changing the energy because (2.1)
is symmetric under permutations. In other words, the absolute ground state
energy is the same as the bosonic ground state energy.

Following [17] we choose a trial function of the following form

Ψ(x1, . . . ,xN ) = F1(x1)F2(x1,x2) · · ·FN (x1, . . . ,xN ) . (2.17)

More specifically, F1 ≡ 1 and Fi depends only on the distance of xi to its
nearest neighbor among the points x1, . . . ,xi−1 (taking the periodic boundary
into account):

Fi(x1, . . . ,xi) = f(ti), ti = min (|xi − xj |, j = 1, . . . , i− 1) , (2.18)

with a function f satisfying

0 ≤ f ≤ 1 , f ′ ≥ 0 . (2.19)

The intuition behind the ansatz (2.17) is that the particles are inserted into the
system one at the time, taking into account the particles previously inserted.
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While such a wave function cannot reproduce all correlations present in the
true ground state, it turns out to capture the leading term in the energy
for dilute gases. The form (2.17) is computationally easier to handle than an
ansatz of the type

∏
i<j f(|xi−xj |), which might appear more natural in view

of the heuristic remarks after (2.13).
The function f is chosen to be

f(r) =

{
f0(r)/f0(b) for 0 ≤ r ≤ b ,
1 for r > b ,

(2.20)

with f0(r) = u0(r)/r the zero energy scattering solution defined by (2.6). The
estimates (2.14) and (2.16) are obtained by somewhat lengthy computations
similar as in [17], but making use of (2.13). For details we refer to [53] and
[77]. � 

2.2 Lower Bound

It was explained previously in this section why the lower bound for the bosonic
ground state energy of (2.1) is not easy to obtain. The three different length
scales (2.12) for bosons will play a role in the proof below.

• The scattering length a.
• The mean particle distance ρ−1/3.
• The ‘uncertainty principle length’ �c, defined by µ�−2

c = e0(ρ), i.e., �c ∼
(ρa)−1/2.

Our lower bound for e0(ρ) is as follows.

Theorem 2.3 (Lower bound in the thermodynamic limit). For a pos-
itive potential v with finite range and Y small enough

e0(ρ)

4πµρa
≥ (1− C Y 1/17) (2.21)

with C a constant. If v does not have finite range, but decreases faster than
1/r3 (more precisely,

∫∞
R v(r)r2dr <∞ for some R) then an analogous bound

to (2.21) holds, but with CY 1/17 replaced by o(1) as Y → 0.

It should be noted right away that the error term −C Y 1/17 in (2.21) is of no
fundamental significance and is not believed to reflect the true state of affairs.
Presumably, it does not even have the right sign. We mention in passing that
C can be taken to be 8.9 [77].

As mentioned at the beginning of this section after (2.2), a lower bound on
E0(N,L) for finiteN and L is of importance for applications to inhomogeneous
gases, and in fact we derive (2.21) from such a bound. We state it in the
following way:
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Theorem 2.4 (Lower bound in a finite box). For a positive potential v
with finite range there is a δ > 0 such that the ground state energy of (2.1)
with Neumann boundary conditions satisfies

E0(N,L)/N ≥ 4πµρa
(
1− C Y 1/17

)
(2.22)

for all N and L with Y < δ and L/a > C′Y −6/17. Here C and C′ are positive
constants, independent of N and L. (Note that the condition on L/a requires
in particular that N must be large enough, N > (const.)Y −1/17.) As in The-
orem 2.3 such a bound, but possibly with a different error term holds also for
potentials v of infinite range that decrease sufficiently fast at infinity.

The first step in the proof of Theorem 2.4 is a generalization of a lemma
of Dyson, which allows us to replace v by a ‘soft’ potential, at the cost of
sacrificing kinetic energy and increasing the effective range.

Lemma 2.5. Let v(r) ≥ 0 with finite range R0. Let U(r) ≥ 0 be any function
satisfying

∫
U(r)r2dr ≤ 1 and U(r) = 0 for r < R0. Let B ⊂ R3 be star

shaped with respect to 0 (e.g. convex with 0 ∈ B). Then for all differentiable
functions ψ ∫

B

[
µ|∇ψ|2 + 1

2v|ψ|
2
]
≥ µa

∫
B
U |ψ|2 . (2.23)

Proof. Actually, (2.23) holds with µ|∇ψ(x)|2 replaced by the (smaller) radial
kinetic energy, µ|∂ψ(x)/∂r|2, and it suffices to prove the analog of (2.23) for
the integral along each radial line with fixed angular variables. Along such a
line we write ψ(x) = u(r)/r with u(0) = 0. We consider first the special case
when U is a delta-function at some radius R ≥ R0, i.e.,

U(r) =
1

R2
δ(r −R) . (2.24)

For such U the analog of (2.23) along the radial line is∫ R1

0

{µ[u′(r) − (u(r)/r)]2 + 1
2v(r)|u(r)|

2}dr

≥
{

0 if R1 < R

µa|u(R)|2/R2 if R ≤ R1

(2.25)

where R1 is the length of the radial line segment in B. The case R1 < R is
trivial, because µ|∂ψ/∂r|2 + 1

2v|ψ|2 ≥ 0. (Note that positivity of v is used
here.) If R ≤ R1 we consider the integral on the left side of (2.25) from 0 to
R instead of R1 and minimize it under the boundary condition that u(0) = 0
and u(R) is a fixed constant. Since everything is homogeneous in u we may
normalize this value to u(R) = R − a. This minimization problem leads to
the zero energy scattering equation (2.6). Since v is positive, the solution is a
true minimum and not just a stationary point.
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Because v(r) = 0 for r > R0 the solution, u0, satisfies u0(r) = r − a for
r > R0. By partial integration,∫ R

0

{µ[u′0(r) − (u0(r)/r)]
2 + 1

2v(r)|u0(r)]
2}dr = µa|R− a|/R

≥ µa|R− a|2/R2 .

(2.26)

But |R − a|2/R2 is precisely the right side of (2.25) if u satisfies the normal-
ization condition.

This derivation of (2.23) for the special case (2.24) implies the general
case, because every U can be written as a superposition of δ-functions, U(r) =∫
R−2δ(r −R)U(R)R2dR, and

∫
U(R)R2dR ≤ 1 by assumption. � 

By dividing Λ for given points x1, . . . ,xN into Voronoi cells Bi that contain
all points closer to xi than to xj with j 	= i (these cells are star shaped w.r.t.
xi, indeed convex), the following corollary of Lemma 2.5 can be derived in the
same way as the corresponding Eq. (28) in [17].

Corollary 2.6. For any U as in Lemma 2.5

HN ≥ µaW (2.27)

with W the multiplication operator

W (x1, . . . ,xN ) =

N∑
i=1

U(ti) , (2.28)

where ti is the distance of xi to its nearest neighbor among the other points
xj, j = 1, . . . , N , i.e.,

ti(x1, . . . ,xN ) = min
j, j �=i

|xi − xj | . (2.29)

(Note that ti has here a slightly different meaning than in (2.18), where it
denoted the distance to the nearest neighbor among the xj with j ≤ i− 1.)

Dyson considers in [17] a one parameter family of U ’s that is essentially
the same as the following choice, which is convenient for the present purpose:

UR(r) =

{
3(R3 −R3

0)
−1 for R0 < r < R

0 otherwise.
(2.30)

We denote the corresponding interaction (2.28) by WR. For the hard core gas
one obtains

E(N,L) ≥ sup
R

inf
(x1,...,xN )

µaWR(x1, . . . ,xN ) (2.31)

where the infimum is over (x1, . . . , xN ) ∈ ΛN with |xi−xj | ≥ R0 = a, because
of the hard core. At fixed R simple geometry gives
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inf
(x1,...,xN )

WR(x1, . . . ,xN ) ≥
(
A

R3
− B

ρR6

)
(2.32)

with certain constantsA andB. An evaluation of these constants gives Dyson’s
bound

E(N,L)/N ≥ 1

10
√

2
4πµρa . (2.33)

The main reason this method does not give a better bound is that R must
be chosen quite big, namely of the order of the mean particle distance ρ−1/3, in
order to guarantee that the spheres of radius R around the N points overlap.
Otherwise the infimum of WR will be zero. But large R means that WR is
small. It should also be noted that this method does not work for potentials
other than hard spheres: If |xi − xj | is allowed to be less than R0, then the
right side of (2.31) is zero because U(r) = 0 for r < R0.

For these reasons we take another route. We still use Lemma 2.5 to get
into the soft potential regime, but we do not sacrifice all the kinetic energy
as in (2.27). Instead we write, for ε > 0

HN = εHN + (1− ε)HN ≥ εTN + (1 − ε)HN (2.34)

with TN = −
∑

i ∆i and use (2.27) only for the part (1− ε)HN . This gives

HN ≥ εTN + (1 − ε)µaWR . (2.35)

We consider the operator on the right side from the viewpoint of first order
perturbation theory, with εTN as the unperturbed part, denoted H0.

The ground state of H0 in a box of side length L is Ψ0(x1, . . . ,xN ) ≡
L−3N/2 and we denote expectation values in this state by 〈·〉0. A computation,
cf. Eq. (21) in [62] (see also (3.15)–(3.20)), gives

4πρ
(
1− 1

N

)
≥ 〈WR〉0/N

≥ 4πρ
(
1− 1

N

) (
1− 2R

L

)3 (
1 + 4πρ(R3 −R3

0)/3
)−1

.
(2.36)

The rationale behind the various factors is as follows: (1− 1
N ) comes from the

fact that the number of pairs is N(N −1)/2 and not N2/2, (1−2R/L)3 takes
into account the fact that the particles do not interact beyond the boundary
of Λ, and the last factor measures the probability to find another particle
within the interaction range of the potential UR for a given particle.

The estimates (2.36) on the first order term look at first sight quite promis-
ing, for if we let L → ∞, N → ∞ with ρ = N/L3 fixed, and subsequently
take R → 0, then 〈WR〉0/N converges to 4πρ, which is just what is desired.
But the first order result (2.36) is not a rigorous bound on E0(N,L), we need
error estimates, and these will depend on ε, R and L.

We now recall Temple’s inequality [83] for the expectation values of an
operatorH = H0+V in the ground state 〈·〉0 ofH0. It is a simple consequence
of the operator inequality
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(H − E0)(H − E1) ≥ 0 (2.37)

for the two lowest eigenvalues, E0 < E1, of H and reads

E0 ≥ 〈H〉0 −
〈H2〉0 − 〈H〉20
E1 − 〈H〉0

(2.38)

provided E1 − 〈H〉0 > 0. Furthermore, if V ≥ 0 we may use E1 ≥ E
(0)
1 =

second lowest eigenvalue of H0 and replace E1 in (2.38) by E
(0)
1 .

From (2.36) and (2.38) we get the estimate

E0(N,L)

N
≥ 4πµaρ (1− E(ρ, L,R, ε)) (2.39)

with

1− E(ρ,L,R, ε)

= (1− ε)
(
1− 1

ρL3

) (
1− 2R

L

)3 (
1 + 4π

3 ρ(R
3 −R3

0)
)−1

×
(

1−
µa
(
〈W 2

R〉0 − 〈WR〉20
)

〈WR〉0
(
E

(0)
1 − µa〈WR〉0

)) .

(2.40)

To evaluate this further one may use the estimates (2.36) and the bound

〈W 2
R〉0 ≤ 3

N

R3 −R3
0

〈WR〉0 (2.41)

which follows from U2
R = 3(R3 −R3

0)
−1UR together with the Schwarz in-

equality. A glance at the form of the error term reveals, however, that it is
not possible here to take the thermodynamic limit L → ∞ with ρ fixed:

We have E
(0)
1 = επ2µ/L2 (this is the kinetic energy of a single particle in

the first excited state in the box), and the factor E
(0)
1 − µa〈WR〉0 in the de-

nominator in (2.40) is, up to unimportant constants and lower order terms,
∼ (εL−2 − aρ2L3). Hence the denominator eventually becomes negative and
Temple’s inequality looses its validity if L is large enough.

As a way out of this dilemma we divide the big box Λ into cubic cells of
side length � that is kept fixed as L→∞. The number of cells, L3/�3, on the
other hand, increases with L. The N particles are distributed among these
cells, and we use (2.40), with L replaced by �, N by the particle number, n,
in a cell and ρ by n/�3, to estimate the energy in each cell with Neumann
conditions on the boundary. For each distribution of the particles we add the
contributions from the cells, neglecting interactions across boundaries. Since
v ≥ 0 by assumption, this can only lower the energy. Finally, we minimize over
all possible choices of the particle numbers for the various cells adding up to
N . The energy obtained in this way is a lower bound to E0(N,L), because
we are effectively allowing discontinuous test functions for the quadratic form
given by HN .
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In mathematical terms, the cell method leads to

E0(N,L)/N ≥ (ρ�3)−1 inf
∑
n≥0

cnE0(n, �) (2.42)

where the infimum is over all choices of coefficients cn ≥ 0 (relative number
of cells containing exactly n particles), satisfying the constraints∑

n≥0

cn = 1 ,
∑
n≥0

cnn = ρ�3 . (2.43)

The minimization problem for the distributions of the particles among
the cells would be easy if we knew that the ground state energy E0(n, �)
(or a good lower bound to it) were convex in n. Then we could immediately
conclude that it is best to have the particles as evenly distributed among the
boxes as possible, i.e., cn would be zero except for the n equal to the integer
closest to ρ�3. This would give

E0(N,L)

N
≥ 4πµaρ (1− E(ρ, �, R, ε)) (2.44)

i.e., replacement of L in (2.39) by �, which is independent of L. The blow up
of E for L→∞ would thus be avoided.

Since convexity of E0(n, �) is not known (except in the thermodynamic
limit) we must resort to other means to show that n = O(ρ�3) in all boxes.
The rescue comes from superadditivity of E0(n, �), i.e., the property

E0(n+ n′, �) ≥ E0(n, �) + E0(n
′, �) (2.45)

which follows immediately from v ≥ 0 by dropping the interactions between
the n particles and the n′ particles. The bound (2.45) implies in particular
that for any n, p ∈ N with n ≥ p

E0(n, �) ≥ [n/p]E0(p, �) ≥
n

2p
E0(p, �) (2.46)

since the largest integer [n/p] smaller than n/p is in any case ≥ n/(2p).
The way (2.46) is used is as follows: Replacing L by �, N by n and ρ by

n/�3 in (2.39) we have for fixed R and ε

E0(n, �) ≥
4πµa

�3
n(n− 1)K(n, �) (2.47)

with a certain function K(n, �) determined by (2.40). We shall see that K is
monotonously decreasing in n, so that if p ∈ N and n ≤ p then

E0(n, �) ≥
4πµa

�3
n(n− 1)K(p, �) . (2.48)
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We now split the sum in (2.42) into two parts. For n < p we use (2.48), and
for n ≥ p we use (2.46) together with (2.48) for n = p. The task is thus to
minimize ∑

n<p

cnn(n− 1) + 1
2

∑
n≥p

cnn(p− 1) (2.49)

subject to the constraints (2.43). Putting

k := ρ�3 and t :=
∑
n<p

cnn ≤ k (2.50)

we have
∑

n≥p cnn = k− t, and since n(n− 1) is convex in n and vanishes for
n = 0, and

∑
n<p cn ≤ 1, the expression (2.49) is

≥ t(t− 1) + 1
2 (k − t)(p− 1) . (2.51)

We have to minimize this for 1 ≤ t ≤ k. If p ≥ 4k the minimum is taken at
t = k and is equal to k(k − 1). Altogether we have thus shown that

E0(N,L)

N
≥ 4πµaρ

(
1− 1

ρ�3

)
K(4ρ�3, �) . (2.52)

What remains is to take a closer look at K(4ρ�3, �), which depends on the
parameters ε and R besides �, and choose the parameters in an optimal way.
From (2.40) and (2.41) we obtain

K(n, �) = (1− ε)
(
1− 2R

�

)3 (
1 + 4π

3 (R3 −R3
0)
)−1

×
(

1− 3

π

an

(R3 −R3
0)(πε�

−2 − 4a�−3n(n− 1))

)
.

(2.53)

The estimate (2.47) with this K is valid as long as the denominator in the last
factor in (2.53) is ≥ 0, and in order to have a formula for all n we can take 0
as a trivial lower bound in other cases or when (2.47) is negative. As required
for (2.48), K is monotonously decreasing in n. We now insert n = 4ρ�3 and
obtain

K(4ρ�3, �) ≥ (1− ε)
(
1− 2R

�

)3 (
1 + (const.)Y (�/a)3(R3 −R3

0)/�
3
)−1

×
(

1− �3

(R3 −R3
0)

(const.)Y

(ε(a/�)2 − (const.)Y 2(�/a)3)

) (2.54)

with Y = 4πρa3/3 as before. Also, the factor(
1− 1

ρ�3

)
= (1− (const.)Y −1(a/�)3) (2.55)

in (2.52) (which is the ratio between n(n− 1) and n2) must not be forgotten.
We now make the ansatz
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ε ∼ Y α, a/� ∼ Y β , (R3 −R3
0)/�

3 ∼ Y γ (2.56)

with exponents α, β and γ that we choose in an optimal way. The conditions
to be met are as follows:

• ε(a/�)2−(const.)Y 2(�/a)3 > 0. This holds for all small enough Y , provided
α+ 5β < 2 which follows from the conditions below.

• α > 0 in order that ε→ 0 for Y → 0.
• 3β − 1 > 0 in order that Y −1(a/�)3 → 0 for for Y → 0.
• 1− 3β + γ > 0 in order that Y (�/a)3(R3 −R3

0)/�
3 → 0 for for Y → 0.

• 1− α− 2β − γ > 0 to control the last factor in (2.54).

Taking
α = 1/17 , β = 6/17 , γ = 3/17 (2.57)

all these conditions are satisfied, and

α = 3β − 1 = 1− 3β + γ = 1− α− 2β − γ = 1/17 . (2.58)

It is also clear that 2R/� ∼ Y γ/3 = Y 1/17, up to higher order terms. This
completes the proof of Theorems 2.3 and 2.4, for the case of potentials with
finite range. By optimizing the proportionality constants in (2.56) one can
show that C = 8.9 is possible in Theorem 2.3 [77]. The extension to potentials
of infinite range but finite scattering length is obtained by approximation by
finite range potentials, controlling the change of the scattering length as the
cut-off is removed. See Appendix A in [63] and Appendix B in [53] for details.
We remark that a slower decrease of the potential than 1/r3 implies infinite
scattering length. � 

The exponents (2.57) mean in particular that

a� R� ρ−1/3 � �� (ρa)−1/2 , (2.59)

whereas Dyson’s method required R ∼ ρ−1/3 as already explained. The con-
dition ρ−1/3 � � is required in order to have many particles in each box and
thus n(n − 1) ≈ n2. The condition � � (ρa)−1/2 is necessary for a spectral
gap � e0(ρ) in Temple’s inequality. It is also clear that this choice of � would
lead to a far too big energy and no bound for e0(ρ) if we had chosen Dirichlet
instead of Neumann boundary conditions for the cells. But with the latter the
method works!

3 The Dilute Bose Gas in 2D

In contrast to the three-dimensional theory, the two-dimensional Bose gas
began to receive attention only relatively late. The first derivation of the
correct asymptotic formula was, to our knowledge, done by Schick [75] for a
gas of hard discs. He found
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e(ρ) ≈ 4πµρ| ln(ρa2)|−1 . (3.1)

This was accomplished by an infinite summation of ‘perturbation series’ dia-
grams. Subsequently, a corrected modification of [75] was given in [32]. Positive
temperature extensions were given in [73] and in [22]. All this work involved
an analysis in momentum space, with the exception of a method due to one
of us that works directly in configuration space [44]. Ovchinnikov [68] derived
(3.1) by using, basically, the method in [44]. These derivations require several
unproven assumptions and are not rigorous.

In two dimensions the scattering length a is defined using the zero energy
scattering equation (2.3) but instead of ψ(r) ≈ 1 − a/r we now impose the
asymptotic condition ψ(r) ≈ ln(r/a). This is explained in the appendix to
[63].

Note that in two dimensions the ground state energy could not possibly
be e0(ρ) ≈ 4πµρa as in three dimensions because that would be dimensionally
wrong. Since e0(ρ) should essentially be proportional to ρ, there is apparently
no room for an a dependence — which is ridiculous! It turns out that this
dependence comes about in the ln(ρa2) factor.

One of the intriguing facts about (3.1) is that the energy for N particles is
not equal to N(N − 1)/2 times the energy for two particles in the low density
limit — as is the case in three dimensions. The latter quantity, E0(2, L), is,

asymptotically for large L, equal to 8πµL−2
[
ln(L2/a2)

]−1
. (This is seen in an

analogous way as (2.13). The three-dimensional boundary condition ψ0(|x| =
R) = 1−a/R is replaced by ψ0(|x| = R) = ln(R/a) and moreover it has to be
taken into account that with this normalization ‖ψ0‖2 = (volume)(ln(R/a))2

(to leading order), instead of just the volume in the three-dimensional case.)
Thus, if the N(N−1)/2 rule were to apply, (3.1) would have to be replaced by

the much smaller quantity 4πµρ
[
ln(L2/a2)

]−1
. In other words, L, which tends

to ∞ in the thermodynamic limit, has to be replaced by the mean particle
separation, ρ−1/2 in the logarithmic factor. Various poetic formulations of this
curious fact have been given, but the fact remains that the non-linearity is
something that does not occur in more than two dimensions and its precise
nature is hardly obvious, physically. This anomaly is the main reason that the
two-dimensional case is not a trivial extension of the three-dimensional one.

Equation (3.1) was proved in [63] for nonnegative, finite range two-body
potentials by finding upper and lower bounds of the correct form, using similar
ideas as in the previous section for the three-dimensional case. We discuss
below the modifications that have to be made in the present two-dimensional
case. The restriction to finite range can be relaxed as in three dimensions,
but the restriction to nonnegative v cannot be removed in the current state
of our methodology. The upper bounds will have relative remainder terms
O(| ln(ρa2)|−1) while the lower bound will have remainder O(| ln(ρa2)|−1/5).
It is claimed in [32] that the relative error for a hard core gas is negative and
O(ln | ln(ρa2)|| ln(ρa2)|−1), which is consistent with our bounds.
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The upper bound is derived in complete analogy with the three dimen-
sional case. The function f0 in the variational ansatz (2.20) is in two dimen-
sions also the zero energy scattering solution — but for 2D, of course. The
result is

E0(N,L)/N ≤ 2πµρ

ln(b/a)− πρb2
(
1 + O([ln(b/a)]−1)

)
. (3.2)

The minimum over b of the leading term is obtained for b = (2πρ)−1/2. In-
serting this in (3.2) we thus obtain

E0(N,L)/N ≤ 4πµρ

| ln(ρa2)|
(
1 + O(| ln(ρa2)|−1)

)
. (3.3)

To prove the lower bound the essential new step is to modify Dyson’s
lemma for 2D. The 2D version of Lemma 2.5 is:

Lemma 3.1. Let v(r) ≥ 0 and v(r) = 0 for r > R0. Let U(r) ≥ 0 be any
function satisfying∫ ∞

0

U(r) ln(r/a)rdr ≤ 1 and U(r) = 0 for r < R0 . (3.4)

Let B ⊂ R2 be star-shaped with respect to 0 (e.g. convex with 0 ∈ B). Then,
for all functions ψ in the Sobolev space H1(B),∫

B

(
µ|∇ψ(x)|2 + 1

2v(|x|)|ψ(x)|2
)

dx ≥ µ
∫
B
U(|x|)|ψ(x)|2 dx . (3.5)

Proof. In polar coordinates, r, θ, one has |∇ψ|2 ≥ |∂ψ/∂r|2. Therefore, it
suffices to prove that for each angle θ ∈ [0, 2π), and with ψ(r, θ) denoted
simply by f(r),∫ R(θ)

0

(
µ|∂f(r)/∂r|2 + 1

2v(r)|f(r)|
2
)
rdr ≥ µ

∫ R(θ)

0

U(r)|f(r)|2 rdr , (3.6)

where R(θ) denotes the distance of the origin to the boundary of B along the
ray θ.

If R(θ) ≤ R0 then (3.6) is trivial because the right side is zero while the
left side is evidently nonnegative. (Here, v ≥ 0 is used.)

If R(θ) > R0 for some given value of θ, consider the disc D(θ) = {x ∈
R2 : 0 ≤ |x| ≤ R(θ)} centered at the origin in R2 and of radius R(θ). Our
function f defines a spherically symmetric function, x �→ f(|x|) on D(θ), and
(3.6) is equivalent to∫

D(θ)

(
µ|∇f(|x|)|2 +

1

2
v(|x|)|f(|x|)|2

)
dx ≥ µ

∫
D(θ)

U(|x|)|f(|x|)|2dx .

(3.7)
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Now choose some R ∈ (R0, R(θ)) and note that the left side of (3.7) is
not smaller than the same quantity with D(θ) replaced by the smaller disc
DR = {x ∈ R2 : 0 ≤ |x| ≤ R}. (Again, v ≥ 0 is used.) We now minimize this
integral over DR, fixing f(R). This minimization problem leads to the zero
energy scattering equation. Plugging in the solution and integrating by parts
leads to

2π

∫ R(θ)

0

(
µ|∂f(r)/∂r|2 +

1

2
v(r)|f(r)|2

)
rdr ≥ 2πµ

ln(R/a)
|f(R)|2 . (3.8)

The proof is completed by multiplying both sides of (3.8) by U(R)R ln(R/a)
and integrating with respect to R from R0 to R(θ). � 

As in Corollary 2.6, Lemma 3.1 can be used to bound the many body
Hamiltonian HN from below, as follows:

Corollary 3.2. For any U as in Lemma 3.1 and any 0 < ε < 1

HN ≥ εTN + (1− ε)µW (3.9)

with TN = −µ
∑N

i=1 ∆i and

W (x1, . . . ,xN ) =

N∑
i=1

U

(
min
j, j �=i

|xi − xj |
)
. (3.10)

For U we choose the following functions, parameterized by R > R0:

UR(r) =

{
ν(R)−1 for R0 < r < R

0 otherwise
(3.11)

with ν(R) chosen so that ∫ R

R0

UR(r) ln(r/a)r dr = 1 (3.12)

for all R > R0, i.e.,

ν(R) =

∫ R

R0

ln(r/a)r dr

= 1
4

{
R2
(
ln(R2/a2)− 1

)
−R2

0

(
ln(R2

0/a
2)− 1

)}
.

(3.13)

The nearest neighbor interaction (3.10) corresponding to UR will be denoted
WR.

As in Sect. 2.2 we shall need estimates on the expectation value, 〈WR〉0, of
WR in the ground state of εTN of (3.9) with Neumann boundary conditions.
This is just the average value of WR in a hypercube in R2N . Besides the
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normalization factor ν(R), the computation involves the volume (area) of the
support of UR, which is

A(R) = π(R2 −R2
0) . (3.14)

In contrast to the three-dimensional situation the normalization factor
ν(R) is not just a constant (R independent) multiple of A(R); the factor
ln(r/a) in (3.4) accounts for the more complicated expressions in the two-
dimensional case. Taking into account that UR is proportional to the charac-
teristic function of a disc of radius R with a hole of radius R0, the following
inequalities for n particles in a box of side length � are obtained by the same
geometric reasoning as lead to (2.36), cf. [62]:

〈WR〉0 ≥
n

ν(R)

(
1− 2R

�

)2 [
1− (1−Q)(n−1)

]
(3.15)

〈WR〉0 ≤
n

ν(R)

[
1− (1−Q)(n−1)

]
(3.16)

with
Q = A(R)/�2 (3.17)

being the relative volume occupied by the support of the potential UR. Since
U2

R = ν(R)−1UR we also have

〈W 2
R〉0 ≤

n

ν(R)
〈WR〉0 . (3.18)

As in [62] we estimate [1− (1−Q)(n−1)] by

(n− 1)Q ≥
[
1− (1−Q)(n−1)

]
≥ (n− 1)Q

1 + (n− 1)Q
(3.19)

This gives

〈WR〉0 ≥
n(n− 1)

ν(R)

Q

1 + (n− 1)Q
, (3.20)

〈WR〉0 ≤
n(n− 1)

ν(R)
Q . (3.21)

From Temple’s inequality [83] we obtain like in (2.38) the estimate

E0(n, �) ≥ (1− ε)〈WR〉0

(
1−

µ
(
〈W 2

R〉0 − 〈WR〉20
)

〈WR〉0
(
E

(0)
1 − µ〈WR〉0

)) (3.22)

where
E

(0)
1 =

εµ

�2
(3.23)

is the energy of the lowest excited state of εTn. This estimate is valid for

E
(0)
1 /µ > 〈WR〉0, i.e., it is important that � is not too big.
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Putting (3.20)–(3.22) together we obtain the estimate

E0(n, �) ≥
n(n− 1)

�2
A(R)

ν(R)
K(n) (3.24)

with

K(n) = (1− ε)
(1− 2R

� )2

1 + (n− 1)Q

(
1− n

(ε ν(R)/�2)− n(n− 1)Q

)
. (3.25)

Note that Q depends on � and R, and K depends on �, R and ε besides n.
We have here dropped the term 〈WR〉20 in the numerator in (3.22), which is
appropriate for the purpose of a lower bound.

We note that K is monotonically decreasing in n, so for a given n we may
replace K(n) by K(p) provided p ≥ n. As explained in the previous section,
(2.45)–(2.52), convexity of n �→ n(n − 1) together with superadditivity of
E0(n, �) in n leads, for p = 4ρ�2, to an estimate for the energy of N particles
in the large box when the side length L is an integer multiple of �:

E0(N,L)/N ≥ ρA(R)

ν(R)

(
1− 1

ρ�2

)
K(4ρ�2) (3.26)

with ρ = N/L2.
Let us now look at the conditions on the parameters ε, R and � that have

to be met in order to obtain a lower bound with the same leading term as the
upper bound (3.3).

From (3.13) we have

A(R)

ν(R)
=

4π

(ln(R2/a2)− 1)

(
1−O((R2

0/R
2) ln(R/R0)

)
(3.27)

We thus see that as long as a < R < ρ−1/2 the logarithmic factor in the
denominator in (3.27) has the right form for a lower bound. Moreover, for
Temple’s inequality the denominator in the third factor in (3.25) must be
positive. With n = 4ρ�2 and ν(R) ≥ (const.)R2 ln(R2/a2) for R � R0, this
condition amounts to

(const.)ε ln(R2/a2)/�2 > ρ2�4 . (3.28)

The relative error terms in (3.26) that have to be � 1 are

ε ,
1

ρ�2
,

R

�
, ρR2 ,

ρ�4

εR2 ln(R2/a2)
. (3.29)

We now choose

ε ∼ | ln(ρa2)|−1/5 , � ∼ ρ−1/2| ln(ρa2)|1/10 ,

R ∼ρ−1/2| ln(ρa2)|−1/10 .
(3.30)
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Condition (3.28) is satisfied since the left side is > (const.)| ln(ρa2)|3/5 and
the right side is ∼ | ln(ρa2)|2/5. The first three error terms in (3.29) are all
of the same order, | ln(ρa2)|−1/5, the last is ∼ | ln(ρa2)|−1/5(ln | ln(ρa2)|)−1.
With these choices, (3.26) thus leads to the following:

Theorem 3.3 (Lower bound). For all N and L large enough such that
L > (const.)ρ−1/2| ln(ρa2)|1/10 and N > (const.)| ln(ρa2)|1/5 with ρ = N/L2,
the ground state energy with Neumann boundary condition satisfies

E0(N,L)/N ≥ 4πµρ

| ln(ρa2)|
(
1−O(| ln(ρa2)|−1/5)

)
. (3.31)

In combination with the upper bound (3.3) this also proves

Theorem 3.4 (Energy at low density in the thermodynamic limit).

lim
ρa2→0

e0(ρ)

4πµρ| ln(ρa2)|−1
= 1 (3.32)

where e0(ρ) = limN→∞ E0(N, ρ
−1/2N1/2)/N . This holds irrespective of bound-

ary conditions.

As in the three-dimensional case, Theorem 3.4 is also valid for an infinite
range potential v provided that v ≥ 0 and for some R we have

∫∞
R v(r)r dr <

∞, which guarantees a finite scattering length.

4 Generalized Poincaré Inequalities

This section contains some lemmas that are of independent mathematical
interest, but whose significance for the physics of the Bose gas may not be
obvious at this point. They will, however, turn out to be important tools for
the discussion of Bose–Einstein condensation (BEC) and superfluidity in the
next section.

The classic Poincaré inequality [49] bounds the Lq-norm of a function, f ,
orthogonal to a given function g in a domain K, in terms of some Lp-norm
of its gradient in K. For the proof of BEC we shall need a generalization
of this inequality where the estimate is in terms of the gradient of f on a
subset Ω ⊂ K and a remainder that tends to zero with the volume of the
complement Ωc = K \ Ω. For superfluidity it will be necessary to generalize
this further by adding a vector potential to the gradient. This is the most
complex of the lemmas because the other two can be derived directly from
the classical Poincaré inequality using Hölder’s inequality. The first lemma
is the simplest variant and it is sufficient for the discussion of BEC in the
case of a homogeneous gas. In this case the function g can be taken to be
the constant function. The same holds for the second lemma, which will be
used for the discussion of superfluidity in a homogeneous gas with periodic
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boundary conditions, but the modification of the gradient requires a more
elaborate proof. The last lemma, that will be used for the discussion of BEC in
the inhomogeneous case, is again a simple consequence of the classic Poincaré
and Hölder inequalities. For a more comprehensive discussion of generalized
Poincaré inequalities with further generalizations we refer to [59].

Lemma 4.1 (Generalized Poincaré inequality: Homogeneous case).
Let K ⊂ R3 be a cube of side length L, and define the average of a function
f ∈ L1(K) by

〈f〉K =
1

L3

∫
K
f(x) dx . (4.1)

There exists a constant C such that for all measurable sets Ω ⊂ K and all
f ∈ H1(K) the inequality∫

K
|f(x)− 〈f〉K|2dx ≤ C

(
L2

∫
Ω

|∇f(x)|2dx + |Ωc|2/3

∫
K
|∇f(x)|2dx

)
(4.2)

holds. Here Ωc = K \Ω, and | · | denotes the measure of a set.

Proof. By scaling, it suffices to consider the case L = 1. Using the usual
Poincaré–Sobolev inequality on K (see [49], Thm. 8.12), we infer that there
exists a C > 0 such that

‖f − 〈f〉K‖2
L2(K) ≤ 1

2C‖∇f‖
2
L6/5(K)

≤ C
(
‖∇f‖2

L6/5(Ω) + ‖∇f‖2
L6/5(Ωc)

)
.

(4.3)

Applying Hölder’s inequality

‖∇f‖L6/5(Ω) ≤ ‖∇f‖L2(Ω)|Ω|1/3 (4.4)

(and the analogue with Ω replaced by Ωc), we see that (4.2) holds. � 

In the next lemma K is again a cube of side length L, but we now replace
the gradient ∇ by

∇ϕ := ∇+ i(0, 0, ϕ/L) , (4.5)

where ϕ is a real parameter, and require periodic boundary conditions on K.

Lemma 4.2 (Generalized Poincaré inequality with a vector poten-
tial). For any |ϕ| < π there are constants c > 0 and C <∞ such that for all
subsets Ω ⊂ K and all functions f ∈ H1(K) with periodic boundary conditions
on K the following estimate holds:

‖∇ϕf‖2
L2(Ω) ≥

ϕ2

L2
‖f‖2

L2(K) +
c

L2
‖f − 〈f〉K‖2

L2(K)

− C
(
‖∇ϕf‖2

L2(K) +
1

L2
‖f‖2

L2(K)

)(
|Ω|c
L3

)1/2

.

(4.6)

Here |Ωc| is the volume of Ωc = K \Ω, the complement of Ω in K.
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Proof. We shall derive (4.6) from a special form of this inequality that holds
for all functions that are orthogonal to the constant function. Namely, for any
positive α < 2/3 and some constants c > 0 and C̃ <∞ (depending only on α
and |ϕ| < π) we claim that

‖∇ϕh‖2
L2(Ω) ≥

ϕ2 + c

L2
‖h‖2

L2(K) − C̃
(
|Ωc|
L3

)α

‖∇ϕh‖2
L2(K) , (4.7)

provided 〈1, h〉K = 0. (Remark: Equation (4.7) holds also for α = 2/3, but
the proof is slightly more complicated in that case. See [59].) If (4.7) is known
the derivation of (4.6) is easy: For any f , the function h = f − L−3〈1, f〉K is
orthogonal to 1. Moreover,

‖∇ϕh‖2
L2(Ω) = ‖∇ϕh‖2

L2(K) − ‖∇ϕh‖2
L2(Ωc)

= ‖∇ϕf‖2
L2(Ω) −

ϕ2

L2
|〈L−3/2, f〉K|2

(
1 +

|Ωc|
L3

)
+ 2

ϕ

L
Re 〈L−3/2, f〉K〈∇ϕf, L

−3/2〉Ωc

≤ ‖∇ϕf‖2
L2(Ω) −

ϕ2

L2
|〈L−3/2, f〉K|2

+
|ϕ|
L

(
L‖∇ϕf‖2

L2(K) +
1

L
‖f‖2

L2(K)

)(
|Ωc|
L3

)1/2

(4.8)

and

ϕ2 + c

L2
‖h‖2

L2(K) =
ϕ2

L2

(
‖f‖2

L2(K) − |〈L−3/2, f〉K|2
)

+
c

L2
‖f − L−3〈1, f〉K‖2

L2(K) .
(4.9)

Setting α = 1
2 , using ‖∇ϕh‖L2(K) ≤ ‖∇ϕf‖L2(K) in the last term in (4.7) and

combining (4.7), (4.8) and (4.9) gives (4.6) with C = |ϕ|+ C̃.
We now turn to the proof of (4.7). For simplicity we set L = 1. The general

case follows by scaling. Assume that (4.7) is false. Then there exist sequences
of constants Cn →∞, functions hn with ‖hn‖L2(K) = 1 and 〈1, hn〉K = 0, and
domains Ωn ⊂ K such that

lim
n→∞

{
‖∇ϕhn‖2

L2(Ωn) + Cn|Ωc
n|α‖∇ϕhn‖2

L2(K)

}
≤ ϕ2 . (4.10)

We shall show that this leads to a contradiction.
Since the sequence hn is bounded in L2(K) it has a subsequence, denoted

again by hn, that converges weakly to some h ∈ L2(K) (i.e., 〈g, hn〉K →
〈g, h〉K for all g ∈ L2(K)). Moreover, by Hölder’s inequality the Lp(Ωc

n) norm
‖∇ϕhn‖Lp(Ωc

n) = (
∫

Ωc
n
|∇ϕh(x)|pdx)1/p is bounded by |Ωc

n|α/2‖∇ϕhn‖L2(K)

for p = 2/(α + 1). From (4.10) we conclude that ‖∇ϕhn‖Lp(Ωc
n) is bounded

and also that ‖∇ϕhn‖Lp(Ωn) ≤ ‖∇ϕhn‖L2(Ωn) is bounded. Altogether, ∇ϕhn
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is bounded in Lp(K), and by passing to a further subsequence if necessary,
we can therefore assume that ∇ϕhn converges weakly in Lp(K). The same
applies to ∇hn. Since p = 2/(α + 1) with α < 2/3 the hypotheses of the
Rellich–Kondrashov Theorem [49, Thm. 8.9] are fulfilled and consequently hn

converges strongly in L2(K) to h (i.e., ‖h−hn‖L2(K) → 0). We shall now show
that

lim inf
n→∞

‖∇ϕhn‖2
L2(Ωn) ≥ ‖∇ϕh‖2

L2(K) . (4.11)

This will complete the proof because the hn are normalized and orthogonal
to 1 and the same holds for h by strong convergence. Hence the right side of
(4.11) is necessarily > ϕ2, since for |ϕ| < π the lowest eigenvalue of −∇2

ϕ,
with constant eigenfunction, is non-degenerate. This contradicts (4.10).

Equation (4.11) is essentially a consequence of the weak lower semicon-
tinuity of the L2 norm, but the dependence on Ωn leads to a slight com-
plication. First, (4.10) and Cn → ∞ clearly imply that |Ωc

n| → 0, be-
cause ‖∇ϕhn‖2

L2(K) > ϕ2. By choosing a subsequence we may assume that∑
n |Ωc

n| <∞. For some fixed N let Ω̃N = K \ ∪n≥NΩ
c
n. Then Ω̃N ⊂ Ωn for

n ≥ N . Since ‖∇ϕhn‖2
L2(Ωn) is bounded, ∇ϕhn is also bounded in L2(Ω̃N )

and a subsequence of it converges weakly in L2(Ω̃N ) to ∇ϕh. Hence

lim inf
n→∞

‖∇ϕhn‖2
L2(Ωn) ≥ lim inf

n→∞
‖∇ϕhn‖2

L2(
�

ΩN )
≥ ‖∇ϕh‖2

L2(
�

ΩN )
. (4.12)

Since Ω̃N ⊂ Ω̃N+1 and ∪N Ω̃N = K (up to a set of measure zero), we can
now let N → ∞ on the right side of (4.12). By monotone convergence this
converges to ‖∇ϕh‖2

L2(K). This proves (4.11) which, as remarked above, con-

tradicts (4.10). � 

The last lemma is a simple generalization of Lemma 4.1 with K ⊂ Rm

a bounded and connected set that is sufficiently nice so that the Poincaré–
Sobolev inequality (see [49, Thm. 8.12]) holds on K. In particular, this is the
case if K satisfies the cone property [49] (e.g. if K is a rectangular box or
a cube). Moreover, the constant function on K is here replaced by a more
general bounded function.

Lemma 4.3 (Generalized Poincaré inequality: Inhomog. case). For
d ≥ 2 let K ⊂ Rd be as explained above, and let h be a bounded function with∫
K h = 1. There exists a constant C (depending only on K and h) such that

for all measurable sets Ω ⊂ K and all f ∈ H1(K) with
∫
K fh dx = 0, the

inequality∫
K
|f(x)|2dx ≤ C

(∫
Ω

|∇f(x)|2dx +

(
|Ωc|
|K|

)2/d ∫
K
|∇f(x)|2dx

)
(4.13)

holds. Here | · | denotes the measure of a set, and Ωc = K \Ω.
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Proof. By the usual Poincaré–Sobolev inequality on K (see [49, Thm. 8.12]),

‖f‖2
L2(K) ≤ C̃‖∇f‖2

L2d/(d+2)(K)

≤ 2C̃
(
‖∇f‖2

L2d/(d+2)(Ω) + ‖∇f‖2
L2d/(d+2)(Ωc)

)
,

(4.14)

if d ≥ 2 and
∫
K fh = 0. Applying Hölder’s inequality

‖∇f‖L2d/(d+2)(Ω) ≤ ‖∇f‖L2(Ω)|Ω|1/d (4.15)

(and the analogue with Ω replaced by Ωc), we see that (4.6) holds with
C = 2|K|2/dC̃. � 

5 Bose–Einstein Condensation and Superfluidity for
Homogeneous Gases

5.1 Bose–Einstein Condensation

Bose–Einstein condensation (BEC) is the phenomenon of a macroscopic occu-
pation of a single one-particle quantum state, discovered by Einstein for ther-
mal equilibrium states of an ideal Bose gas at sufficiently low temperatures
[20]. We are here concerned with interacting Bose gases, where the question
of the existence of BEC is highly nontrivial even for the ground state. Due to
the interaction the many body ground state is not a product of one-particle
states but the concept of a macroscopic occupation of a single state acquires
a precise meaning through the one-particle density matrix. Given the normal-
ized ground state wave function this is the operator on L2(Rd) (d = 2 or 3)
given by the kernel

γ(x,x′) = N

∫
Ψ0(x,X)Ψ0(x

′,X)dX , (5.1)

where we introduced the short hand notation

X = (x2, . . . ,xN ) and dX =
N∏

j=2

dxj . (5.2)

Then
∫
γ(x,x)dx = Tr [γ] = N . BEC in the ground state means, by definition,

that this operator has an eigenvalue of order N in the thermodynamic limit.
Since γ is a positive kernel and, hopefully, translation invariant in the ther-
modynamic limit, the eigenfunction belonging to the largest eigenvalue must
be the constant function L−d/2. Therefore, another way to say that there is
BEC in the ground state is that

1

Ld

∫ ∫
γ(x, y)dxdy = O(N) (5.3)



The Quantum-Mechanical Many-Body Problem: The Bose Gas 123

as N → ∞, L → ∞ with N/Ld fixed; more precisely (5.3) requires that
there is a c > 0 such that the left side is > cN for all large N . This is also
referred to as off-diagonal long range order. Unfortunately, this is something
that is frequently invoked but has so far never been proved for many body
Hamiltonians with genuine interactions — except for one special case: hard
core bosons on a lattice at half-filling (i.e., N = half the number of lattice
sites). The proof is in [38] and [19].

The problem remains open after more than 75 years since the first investi-
gations on the Bose gas [9, 20]. Our construction in Sect. 2 shows that (in 3D)
BEC exists on a length scale of order ρ−1/3Y −1/17 which, unfortunately, is not
a ‘thermodynamic’ length like volume1/3. The same remark applies to the 2D
case of Sect. 3, where BEC is proved over a length scale ρ−1/10| ln(ρa2)|1/10.

In a certain limit, however, one can prove (5.3), as has been shown in [51].
In this limit the interaction potential v is varied with N so that the ratio a/L
of the scattering length to the box length is of order 1/N , i.e., the parameter
Na/L is kept fixed. Changing a with N can be done by scaling, i.e., we write

v(|x|) =
1

a2
v1(|x|/a) (5.4)

for some v1 having scattering length 1, and vary a while keeping v1 fixed. It
is easily checked that the v so defined has scattering length a. It is important
to note that, in the limit considered, a tends to zero (as N−2/3 since L =
(N/ρ)1/3 ∼ N1/3 for ρ fixed), and v becomes a hard potential of short range.
This is the opposite of the usual mean field limit where the strength of the
potential goes to zero while its range tends to infinity.

We shall refer to this as the Gross–Pitaevskii (GP) limit since Na/L will
turn out to be the natural interaction parameter for inhomogeneous Bose
gases confined in traps, that are described by the Gross–Pitaevskii equation
discussed in Sects. 6 and 7. Its significance for a homogeneous gas can also
be seen by noting that Na/L is the ratio of ρa to 1/L2, i.e., in the GP limit
the interaction energy per particle is of the same order of magnitude as the
energy gap in the box, so that the interaction is still clearly visible, even
though a→ 0. Note that ρa3 ∼ N−2 in the GP limit, so letting N →∞ with
ρ fixed and Na/L fixed can be regarded as a simultaneous thermodynamic
and low density limit. For simplicity, we shall here treat only the 3D case.

Theorem 5.1 (BEC in a dilute limit). Assume that, as N → ∞, ρ =
N/L3 and g = Na/L stay fixed, and impose either periodic or Neumann
boundary conditions for H. Then

lim
N→∞

1

N

1

L3

∫ ∫
γ(x, y)dxdy = 1 . (5.5)

The reason we do not deal with Dirichlet boundary conditions at this point
should be clear from the discussion preceding the theorem: There would be
an additional contribution ∼ 1/L2 to the energy, i.e. of the same order as
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the interaction energy, and the system would not be homogeneous any more.
Dirichlet boundary conditions can, however, be treated with the methods of
Sect. 7.

By scaling, the limit in Theorem 5.1 is equivalent to considering a Bose
gas in a fixed box of side length L = 1, and keeping Na fixed as N → ∞,
i.e., a ∼ 1/N . The ground state energy of the system is then, asymptotically,
N × 4πNa, and Theorem 5.1 implies that the one-particle reduced density
matrix γ of the ground state converges, after division by N , to the projection
onto the constant function. An analogous result holds true for inhomogeneous
systems as will be discussed in Sect. 7.

The proof of Theorem 5.1 has two main ingredients. One is localization of
the energy that is stated as Lemma 5.2 below. This lemma is a refinement of
the energy estimates of Sect. 2.2 and says essentially that the kinetic energy
of the ground state is concentrated in a subset of configuration space where
at least one pair of particles is close together and whose volume tends to
zero as a → 0. The other is the generalized Poincaré inequality, Lemma 4.1
from which one deduces that the one particle density matrix is approximately
constant if the kinetic energy is localized in a small set.

The localization lemma will be proved in a slightly more general version
that is necessary for Theorem 5.1, namely with the gradient ∇ replaced by
∇ϕ = ∇+ i(0, 0, ϕ/L), cf. (4.5). We denote by H ′

N the corresponding many-
body Hamiltonian (2.1) with ∇ϕ in place of ∇. This generalization will be
used in the subsequent discussion of superfluidity, but a reader who wishes to
focus on Theorem 5.1 only can simply ignore the ϕ and the reference to the
diamagnetic inequality in the proof. We denote the gradient with respect to
x1 by ∇1, and the corresponding modified operator by ∇1,ϕ.

Lemma 5.2 (Localization of energy). Let K be a box of side length L.
For all symmetric, normalized wave functions Ψ(x1, . . . ,xN ) with periodic
boundary conditions on K, and for N ≥ Y −1/17,

1

N
〈Ψ,H ′

NΨ〉 ≥
(
1− const. Y 1/17

)
×
(
4πµρa+ µ

∫
KN−1

dX

∫
ΩX

dx1

∣∣∇1,ϕΨ(x1,X)
∣∣2) , (5.6)

where X = (x2, . . . ,xN ), dX =
∏N

j=2 dxj, and

ΩX =

{
x1 : min

j≥2
|x1 − xj | ≥ R

}
(5.7)

with R = aY −5/17.

Proof. Since Ψ is symmetric, the left side of (5.6) can be written as∫
KN−1

dX

∫
K

dx1

[
µ
∣∣∇1,ϕΨ(x1,X)

∣∣2 + 1
2

∑
j≥2

v(|x1 − xj |)|Ψ(x1,X)|2
]
. (5.8)
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For any ε > 0 and R > 0 this is

≥ εT + (1 − ε)(T in + I) + (1− ε)T out
ϕ , (5.9)

with

T = µ

∫
KN−1

dX

∫
K

dx1

∣∣∇1|Ψ(x1,X)|
∣∣2 , (5.10)

T in = µ

∫
KN−1

dX

∫
Ωc

X

dx1

∣∣∇1|Ψ(x1,X)|
∣∣2 , (5.11)

T out
ϕ = µ

∫
KN−1

dX

∫
ΩX

dx1

∣∣∇1,ϕΨ(x1,X)
∣∣2 , (5.12)

and

I = 1
2

∫
KN−1

dX

∫
K

dx1

∑
j≥2

v(|x1 − xj |)|Ψ(x1,X)|2 . (5.13)

Here
Ωc

X = {x1 : |x1 − xj | < R for some j ≥ 2} (5.14)

is the complement of ΩX, and the diamagnetic inequality [49] |∇ϕf(x)|2 ≥
|∇|f(x)||2 has been used. The proof is completed by using the estimates used
for the proof of Theorem 2.4 in particular (2.52) and (2.54)–(2.57), which tell
us that for ε = Y 1/17 and R = aY −5/17

εT + (1− ε)(T in + I) ≥
(
1− const. Y 1/17

)
4πµρa (5.15)

as long as N ≥ Y −1/17. � 

Proof (Theorem 5.1). We combine Lemma 5.2 (with ϕ = 0 and hence H ′
N =

HN ) with Lemma 4.1 that gives a lower bound to the second term on the
right side of (5.6). We thus infer that, for any symmetric Ψ with 〈Ψ, Ψ〉 = 1
and for N large enough,

1

N
〈Ψ,HNΨ〉

(
1− const. Y 1/17

)−1

≥ 4πµρa− CY 1/17
( 1

L2
− 1

N

〈
Ψ,
∑

j∇2
jΨ
〉)

+
c

L2

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ(x1,X)− L−3
[∫

KdxΨ(x,X)
]∣∣∣2 ,

(5.16)

where we used that |Ωc| ≤ 4π
3 NR

3 = const. L3Y 2/17. Since the kinetic energy,
divided by N , is certainly bounded independent of N , as the upper bound
(2.14) shows, and since the upper and the lower bound to E0 agree in the
limit considered, the positive last term in (5.16) has to vanish in the limit.
I.e., we get that for the ground state wave function Ψ0 of HN

lim
N→∞

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ0(x1,X)− L−3
[∫

KdxΨ0(x,X)
]∣∣∣2 = 0 . (5.17)
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This proves (5.5), since∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ0(x1,X)− L−3
[∫

KdxΨ0(x,X)
]∣∣∣2

= 1− 1

NL3

∫
K×K

γ(x,x′)dxdx′ . (5.18)

� 

5.2 Superfluidity

The phenomenological two-fluid model of superfluidity (see, e.g., [84]) is based
on the idea that the particle density ρ is composed of two parts, the density
ρs of the inviscid superfluid and the normal fluid density ρn. If an external
velocity field is imposed on the fluid (for instance by moving the walls of the
container) only the viscous normal component responds to the velocity field,
while the superfluid component stays at rest. In accord with these ideas the
superfluid density in the ground state is often defined as follows [34]: Let E0

denote the ground state energy of the system in the rest frame and E′
0 the

ground state energy, measured in the moving frame, when a velocity field v
is imposed. Then for small v

E′
0

N
=
E0

N
+ (ρs/ρ)

1
2mv2 +O(|v|4) (5.19)

where N is the particle number and m the particle mass. At positive tempera-
tures the ground state energy should be replaced by the free energy. (Remark:
It is important here that (5.19) holds uniformly for all large N ; i.e., that the
error term O(|v|4) can be bounded independently of N . For fixed N and a
finite box, (5.19) with ρs/ρ = 1 always holds for a Bose gas with an arbitrary
interaction if v is small enough, owing to the discreteness of the energy spec-
trum.2) There are other definitions of the superfluid density that may lead to
different results [74], but this is the one we shall use here and shall not dwell
on this issue since it is not clear that there is a “one-size-fits-all” definition
of superfluidity. For instance, in the definition we use here the ideal Bose gas
is a perfect superfluid in its ground state, whereas the definition of Landau
in terms of a linear dispersion relation of elementary excitations would indi-
cate otherwise. Our main result is that with the definition adopted here there

2 The ground state with v = 0 remains an eigenstate of the Hamiltonian with
arbitrary v (but not necesssarily a ground state) since its total momentum is
zero. Its energy is 1

2
mNv2 above the ground state energy for v = 0. Since in a

finite box the spectrum of the Hamiltonian for arbitrary v is discrete and the
energy gap above the ground state is bounded away from zero for v small, the
ground state for v = 0 is at the same time the ground state of the Hamiltonian
with v if 1

2
mNv2 is smaller than the gap.
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is 100% superfluidity in the ground state of a 3D Bose gas in the GP limit
explained in the previous subsection.

One of the unresolved issues in the theory of superfluidity is its relation
to Bose–Einstein condensation (BEC). It has been argued that in general
neither condition is necessary for the other (c.f., e.g., [35, 2, 41]), but in the
case considered here, i.e., the GP limit of a 3D gas, we show that 100% BEC
into the constant wave function (in the rest frame) prevails even if an external
velocity field is imposed. A simple example illustrating the fact that BEC is
not necessary for superfluidity is the 1D hard-core Bose gas. This system is
well known to have a spectrum like that of an ideal Fermi gas [24] (see also
Sect. 8), and it is easy to see that it is superfluid in its ground state in the
sense of (5.19). On the other hand, it has no BEC [43, 72]. The definition of
the superfluid velocity as the gradient of the phase of the condensate wave
function [34, 4] is clearly not applicable in such cases.

We consider a Bose gas with the Hamiltonian (2.1) in a box K of side length
L, assuming periodic boundary conditions in all three coordinate directions.
Imposing an external velocity field v = (0, 0,±|v|) means that the momentum
operator p = −i�∇ is replaced by by p−mv, retaining the periodic boundary
conditions. The Hamiltonian in the moving frame is thus

H ′
N = −µ

N∑
j=1

∇2
j,ϕ +

∑
1≤i<j≤N

v(|xi − xj |) , (5.20)

where ∇j,ϕ = ∇j + i(0, 0, ϕ/L) and the dimensionless phase ϕ is connected to
the velocity v by

ϕ =
±|v|Lm

�
. (5.21)

Let E0(N, a, ϕ) denote the ground state energy of (5.20) with periodic
boundary conditions. Obviously it is no restriction to consider only the case
−π ≤ ϕ ≤ π, since E0 is periodic in ϕ with period 2π (see Remark 1 below).
For Ψ0 the ground state of H ′

N , let γN be its one-particle reduced density
matrix. We are interested in the Gross–Pitaevskii (GP) limit N → ∞ with
Na/L fixed. We also fix the box size L. This means that a should vary like
1/N which, as explained in the previous subsection, can be achieved by writing
v(r) = a−2v1(r/a), where v1 is a fixed potential with scattering length 1, while
a changes with N .

Theorem 5.3 (Superfluidity and BEC of homogeneous gas).
For |ϕ| ≤ π

lim
N→∞

E0(N, a, ϕ)

N
= 4πµaρ+ µ

ϕ2

L2
(5.22)

in the limit N → ∞ with Na/L and L fixed. Here ρ = N/L3, so aρ is fixed
too. In the same limit, for |ϕ| < π,

lim
N→∞

1

N
γN (x,x′) =

1

L3
(5.23)
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in trace class norm, i.e., limN→∞ Tr
[ ∣∣γN/N − |L−3/2〉〈L−3/2|

∣∣ ] = 0.

Note that, by the definition (5.19) of ρs and (5.21), (5.22) means that
ρs = ρ, i.e., there is 100% superfluidity. For ϕ = 0, (5.22) follows from (2.8),
while (5.23) for ϕ = 0 is the BEC of Theorem 5.1.3

Remarks. 1. By a unitary gauge transformation,(
UΨ
)
(x1, . . . ,xN ) = eiϕ(

�
i zi)/L Ψ(x1, . . . ,xN ) , (5.24)

the passage from (2.1) to (5.20) is equivalent to replacing periodic boundary
conditions in a box by the twisted boundary condition

Ψ(x1 + (0, 0, L),x2, . . . ,xN ) = eiϕΨ(x1,x2, . . . ,xN ) (5.25)

in the direction of the velocity field, while retaining the original Hamiltonian
(2.1).

2. The criterion |ϕ| ≤ π means that |v| ≤ π�/(mL). The corresponding
energy 1

2m(π�/(mL))2 is the gap in the excitation spectrum of the one-particle
Hamiltonian in the finite-size system.

3. The reason that we have to restrict ourselves to |ϕ| < π in the second
part of Theorem 5.3 is that for |ϕ| = π there are two ground states of the
operator (∇ + iϕ/L)2 with periodic boundary conditions. All we can say in
this case is that there is a subsequence of γN that converges to a density
matrix of rank ≤ 2, whose range is spanned by these two functions

Proof (Theorem 5.3). As in the proof of Theorem 5.1 we combine the localiza-
tion Lemma 5.2, this time with ϕ 	= 0, and a generalized Poincaré inequality,
this time Lemma 4.2. We thus infer that, for any symmetric Ψ with 〈Ψ, Ψ〉 = 1
and for N large enough,

1

N
〈Ψ,H ′

NΨ〉
(
1− const. Y 1/17

)−1

≥ 4πµρa+ µ
ϕ2

L2
− CY 1/17

( 1

L2
− 1

N

〈
Ψ,
∑

j∇2
j,ϕΨ
〉)

+
c

L2

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ(x1,X)− L−3
[∫

KdxΨ(x,X)
]∣∣∣2 ,

(5.26)

where we used that |Ωc| ≤ 4π
3 NR

3 = const. L3Y 2/17. From this we can infer
two things. First, since the kinetic energy, divided by N , is certainly bounded
independently of N , as the upper bound shows, we get that

lim inf
N→∞

E0(N, a, ϕ)

N
≥ 4πµρa+ µ

ϕ2

L2
(5.27)

3 The convention in Theorem 5.1, where ρ and Na/L stay fixed, is different from
the one employed here, where L and Na/L are fixed, but these two conventions
are clearly equivalent by scaling.
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for any |ϕ| < π. By continuity this holds also for |ϕ| = π, proving (5.22). (To
be precise, E0/N − µϕ2L−2 is concave in ϕ, and therefore stays concave, and
in particular continuous, in the limit N →∞.) Secondly, since the upper and
the lower bounds to E0 agree in the limit considered, the positive last term
in (5.16) has to vanish in the limit. I.e., we get that for the ground state wave
function Ψ0 of H ′

N

lim
N→∞

∫
KN−1

dX

∫
K

dx1

∣∣∣Ψ0(x1,X)− L−3
[∫

KdxΨ0(x,X)
]∣∣∣2 = 0 . (5.28)

Using again (5.18), this proves (5.23) in a weak sense. As explained in [51, 52],
this suffices for the convergenceN−1γN → |L−3/2〉〈L−3/2| in trace class norm.

� 

Theorem 5.3 can be generalized in various ways to a physically more real-
istic setting, for example replacing the periodic box by a cylinder centered at
the origin. We shall comment on such extensions at the end of Sect. 7.

6 Gross–Pitaevskii Equation for Trapped Bosons

In the recent experiments on Bose condensation (see, e.g., [39]), the particles
are confined at very low temperatures in a ‘trap’ where the particle density
is inhomogeneous, contrary to the case of a large ‘box’, where the density is
essentially uniform. We model the trap by a slowly varying confining potential
V , with V (x) →∞ as |x| → ∞. The Hamiltonian becomes

H =

N∑
i=1

{−µ∆i + V (xi)}+
∑

1≤i<j≤N

v(|xi − xj |) . (6.1)

Shifting the energy scale if necessary we can assume that V is nonnegative.
The ground state energy, �ω, of −µ∆ + V (x) is a natural energy unit and
the corresponding length unit,

√
�/(mω) =

√
2µ/(�ω) ≡ Losc, is a measure

of the extension of the trap.
In the sequel we shall be considering a limit where a/Losc tends to zero

while N → ∞. Experimentally a/Losc can be changed in two ways: One
can either vary Losc or a. The first alternative is usually simpler in practice
but very recently a direct tuning of the scattering length itself has also been
shown to be feasible [13]. Mathematically, both alternatives are equivalent, of
course. The first corresponds to writing V (x) = L−2

oscV1(x/Losc) and keeping
V1 and v fixed. The second corresponds to writing the interaction potential as
v(|x|) = a−2v1(|x|/a) like in (5.4), where v1 has unit scattering length, and
keeping V and v1 fixed. This is equivalent to the first, since for given V1 and
v1 the ground state energy of (6.1), measured in units of �ω, depends only
on N and a/Losc. In the dilute limit when a is much smaller than the mean
particle distance, the energy becomes independent of v1.
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We choose Losc as a length unit. The energy unit is �ω = 2µL−2
osc = 2µ.

Moreover, we find it convenient to regard V and v1 as fixed. This justifies the
notion E0(N, a) for the quantum mechanical ground state energy.

The idea is now to use the information about the thermodynamic limiting
energy of the dilute Bose gas in a box to find the ground state energy of (6.1)
in an appropriate limit. This has been done in [53, 54] and in this section we
give an account of this work. As we saw in Sects. 2 and 3 there is a difference
in the ρ dependence between two and three dimensions, so we can expect a
related difference now. We discuss 3D first.

6.1 Three Dimensions

Associated with the quantum mechanical ground state energy problem is the
Gross–Pitaevskii (GP) energy functional [30, 31, 71]

EGP[φ] =

∫
R3

(
µ|∇φ|2 + V |φ|2 + 4πµa|φ|4

)
dx (6.2)

with the subsidiary condition ∫
R3

|φ|2 = N . (6.3)

As before, a > 0 is the scattering length of v. The corresponding energy is

EGP(N, a) = inf� |φ|2=N
EGP[φ] = EGP[φGP] , (6.4)

with a unique, positive φGP. The existence of the minimizer φGP is proved by
standard techniques and it can be shown to be continuously differentiable, see
[53], Sect. 2 and Appendix A. The minimizer depends on N and a, of course,
and when this is important we denote it by φGP

N,a.
The variational equation satisfied by the minimizer is the GP equation

−µ∆φGP(x) + V (x)φGP(x) + 8πµaφGP(x)3 = µGPφGP(x) , (6.5)

where µGP is the chemical potential, given by

µGP = dEGP(N, a)/dN = EGP(N, a)/N + (4πµa/N)

∫
|φGP(x)|4dx . (6.6)

The GP theory has the following scaling property:

EGP(N, a) = NEGP(1, Na) , (6.7)

and
φGP

N,a(x) = N1/2φGP
1,Na(x) . (6.8)

Hence we see that the relevant parameter in GP theory is the combination
Na.
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We now turn to the relation of EGP and φGP to the quantum mechanical
ground state. If v = 0, then the ground state of (6.1) is

Ψ0(x1, . . . ,xN ) =
∏N

i=1φ0(xi) (6.9)

with φ0 the normalized ground state of −µ∆+V (x). In this case clearly φGP =√
N φ0, and then EGP = N�ω = E0. In the other extreme, if V (x) = 0 for x

inside a large box of volume L3 and V (x) = ∞ otherwise, then φGP ≈
√
N/L3

and we get EGP(N, a) = 4πµaN2/L3, which is the previously considered
energy E0 for the homogeneous gas in the low density regime. (In this case,
the gradient term in EGP plays no role.)

In general, we expect that for dilute gases in a suitable limit

E0 ≈ EGP and ρQM(x) ≈
∣∣φGP(x)

∣∣2 ≡ ρGP(x) , (6.10)

where the quantum mechanical particle density in the ground state is defined
by

ρQM(x) = N

∫
|Ψ0(x,x2, . . . ,xN )|2dx2 · · ·dxN . (6.11)

Dilute means here that
ρ̄a3 � 1 , (6.12)

where

ρ̄ =
1

N

∫
|ρGP(x)|2dx (6.13)

is the mean density.
The limit in which (6.10) can be expected to be true should be chosen so

that all three terms in EGP make a contribution. The scaling relations (6.7)
and (6.8) indicate that fixing Na as N →∞ is the right thing to do (and this
is quite relevant since experimentally N can be quite large, 106 and more, and
Na can range from about 1 to 104 [14]). Fixing Na (which we refer to as the
GP case) also means that we really are dealing with a dilute limit, because
the mean density ρ̄ is then of the order N (since ρ̄N,a = Nρ̄1,Na) and hence

a3ρ̄ ∼ N−2 . (6.14)

The precise statement of (6.10) is:

Theorem 6.1 (GP limit of the QM ground state energy and density).
If N →∞ with Na fixed, then

lim
N→∞

E0(N, a)

EGP(N, a)
= 1 , (6.15)

and

lim
N→∞

1

N
ρQM

N,a(x) =
∣∣φGP

1,Na(x)
∣∣2 (6.16)

in the weak L1-sense.
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Convergence can not only be proved for the ground state energy and den-
sity, but also for the individual energy components:

Theorem 6.2 (Asymptotics of the energy components). Let ψ0 denote
the solution to the zero-energy scattering equation for v (under the boundary
condition lim|x|→∞ ψ0(x) = 1) and s =

∫
|∇ψ0|2/(4πa). Then 0 < s ≤ 1 and,

in the same limit as in Theorem 6.1 above,

lim
N→∞

∫
|∇x1Ψ0(x1,X)|2dx1 dX

=

∫
|∇φGP

1,Na(x)|2dx + 4πNas

∫
|φGP

1,Na(x)|4dx , (6.17a)

lim
N→∞

∫
V (x1)|Ψ0(x1,X)|2dx1 dX =

∫
V (x)|φGP

1,Na(x)|2dx , (6.17b)

lim
N→∞

1
2

N∑
j=2

∫
v(|x1 − xj |)|Ψ0(x1,X)|2dx1 dX

= (1− s)4πNa
∫
|φGP

1,Na(x)|4dx . (6.17c)

Here we introduced again the short hand notation (5.2). Theorem 6.2 is a
simple consequence of Theorem 6.1 by variation with respect to the different
components of the energy, as was also noted in [11]. More precisely, (6.15) can
be written as

lim
N→∞

1

N
E0(N, a) = EGP(1, Na) . (6.18)

The ground state energy is a concave function of the mass parameter µ, so it
is legitimate to differentiate both sides of (6.18) with respect to µ. In doing
so, it has to be noted that Na depends on µ through the scattering length.
Using (2.13) one sees that

d(µa)

dµ
=

1

4π

∫
|∇ψ0|2dx (6.19)

by the Feynman–Hellmann principle, since ψ0 minimizes the left side of (2.13).
We remark that in the case of a two-dimensional Bose gas, where the

relevant parameter to be kept fixed in the GP limit is N/| ln(a2ρ̄N )| (c.f.
Sects. 3 and 6.2.), the parameter s in Theorem 6.2 can be shown to be always
equal to 1. I.e., in 2D the interaction energy is purely kinetic in the GP limit
(see [10]).

To describe situations where Na is very large, it is appropriate to consider
a limit where, as N →∞, a� N−1, i.e. Na→∞, but still ρ̄a3 → 0. In this
case, the gradient term in the GP functional becomes negligible compared to
the other terms and the so-called Thomas–Fermi (TF) functional
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ETF[ρ] =

∫
R3

(
V ρ+ 4πµaρ2

)
dx (6.20)

arises. (Note that this functional has nothing to do with the fermionic theory
invented by Thomas and Fermi in 1927, except for a certain formal analogy.)
It is defined for nonnegative functions ρ on R3. Its ground state energy ETF

and density ρTF are defined analogously to the GP case. (The TF functional is
especially relevant for the two-dimensional Bose gas. There a has to decrease
exponentially with N in the GP limit, so the TF limit is more adequate; see
Sect. 6.2 below).

Our second main result of this section is that minimization of (6.20) re-
produces correctly the ground state energy and density of the many-body
Hamiltonian in the limit when N → ∞, a3ρ̄ → 0, but Na → ∞ (which we
refer to as the TF case), provided the external potential is reasonably well
behaved. We will assume that V is asymptotically equal to some function W
that is homogeneous of some order s > 0, i.e., W (λx) = λsW (x) for all λ > 0,
and locally Hölder continuous (see [54] for a precise definition). This condi-
tion can be relaxed, but it seems adequate for most practical applications and
simplifies things considerably.

Theorem 6.3 (TF limit of the QM ground state energy and density).
Assume that V satisfies the conditions stated above. If g ≡ Na → ∞ as
N →∞, but still a3ρ̄→ 0, then

lim
N→∞

E0(N, a)

ETF(N, a)
= 1 , (6.21)

and

lim
N→∞

g3/(s+3)

N
ρQM

N,a(g
1/(s+3)x) = ρ̃TF

1,1(x) (6.22)

in the weak L1-sense, where ρ̃TF
1,1 is the minimizer of the TF functional under

the condition
∫
ρ = 1, a = 1, and with V replaced by W .

In the following, we will present the essentials of the proofs Theorems 6.1
and 6.3. We will derive appropriate upper and lower bounds on the ground
state energy E0.

The proof of the lower bound in Theorem 6.1 presented here is a modified
version of (and partly simpler than) the original proof in [53].

The convergence of the densities follows from the convergence of the ener-
gies in the usual way by variation with respect to the external potential. For
simplicity, we set µ ≡ 1 in the following.

Proof (Theorems 6.1 and 6.3). Part 1: Upper bound to the QM energy. To
derive an upper bound on E0 we use a generalization of a trial wave function
of Dyson [17], who used this function to give an upper bound on the ground
state energy of the homogeneous hard core Bose gas (c.f. Sect. 2.1). It is of
the form
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Ψ(x1, . . . ,xN ) =

N∏
i=1

φGP(xi)F (x1, . . . ,xN ) , (6.23)

where F is constructed in the following way:

F (x1, . . . ,xN ) =
N∏

i=1

f(ti(x1, . . . ,xi)) , (6.24)

where ti = min{|xi − xj |, 1 ≤ j ≤ i − 1} is the distance of xi to its nearest
neighbor among the points x1, . . . ,xi−1, and f is a function of r ≥ 0. As in
(2.20) we choose it to be

f(r) =

{
f0(r)/f0(b) for r < b ,

1 for r ≥ b , (6.25)

where f0 is the solution of the zero energy scattering equation (2.3) and b is
some cut-off parameter of order b ∼ ρ̄−1/3. The function (6.23) is not totally
symmetric, but for an upper bound it is nevertheless an acceptable test wave
function since the bosonic ground state energy is equal to the absolute ground
state energy.

The result of a somewhat lengthy computation (see [53] for details) is the
upper bound

E0(N, a) ≤ EGP(N, a)
(
1 +O(aρ̄1/3)

)
. (6.26)

Part 2: Lower bound to the QM energy, GP case. To obtain a lower bound for
the QM ground state energy the strategy is to divide space into boxes and use
the estimate on the homogeneous gas, given in Theorem 2.4, in each box with
Neumann boundary conditions. One then minimizes over all possible divisions
of the particles among the different boxes. This gives a lower bound to the
energy because discontinuous wave functions for the quadratic form defined by
the Hamiltonian are now allowed. We can neglect interactions among particles
in different boxes because v ≥ 0. Finally, one lets the box size tend to zero.
However, it is not possible to simply approximate V by a constant potential
in each box. To see this consider the case of noninteracting particles, i.e.,
v = 0 and hence a = 0. Here E0 = N�ω, but a ‘naive’ box method gives only
minx V (x) as lower bound, since it clearly pays to put all the particles with a
constant wave function in the box with the lowest value of V .

For this reason we start by separating out the GP wave function in each
variable and write a general wave function Ψ as

Ψ(x1, . . . ,xN ) =

N∏
i=1

φGP(xi)F (x1, . . . ,xN ) . (6.27)

Here φGP = φGP
N,a is normalized so that

∫
|φGP|2 = N . Equation (6.27) defines

F for a given Ψ because φGP is everywhere strictly positive, being the ground
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state of the operator −∆ + V + 8πa|φGP|2. We now compute the expecta-
tion value of H in the state Ψ . Using partial integration and the variational
equation (6.5) for φGP, we see that

〈Ψ |HΨ〉
〈Ψ |Ψ〉 − EGP(N, a) = 4πa

∫
|ρGP|2 +Q(F ) , (6.28)

with

Q(F ) =

N∑
i=1

∫ ∏N
k=1 ρ

GP(xk)
(
|∇iF |2 +

[
1
2

∑
j �=i v(|xi − xj |)− 8πaρGP(xi)

]
|F |2
)

∫ ∏N
k=1 ρ

GP(xk)|F |2
.

(6.29)

We recall that ρGP(x) = |φGP
N,a(x)|2. For computing the ground state energy

of H we have to minimize the normalized quadratic form Q. Compared to
the expression for the energy involving Ψ itself we have thus obtained the
replacements

V (x) → −8πaρGP(x) and

N∏
i=1

dxi →
N∏

i=1

ρGP(xi)dxi . (6.30)

We now use the box method on this problem. More precisely, labeling the
boxes by an index α, we have

inf
F
Q(F ) ≥ inf

{nα}

∑
α

inf
Fα

Qα(Fα) , (6.31)

where Qα is defined by the same formula as Q but with the integrations
limited to the box α, Fα is a wave function with particle number nα, and the
infimum is taken over all distributions of the particles with

∑
nα = N .

We now fix some M > 0, that will eventually tend to ∞, and restrict
ourselves to boxes inside a cube ΛM of side length M . Since v ≥ 0 the contri-
bution to (6.31) of boxes outside this cube is easily estimated from below by
−8πNa supx/∈ΛM

ρGP(x), which, divided byN , is arbitrarily small forM large,

since Na is fixed and φGP/N1/2 = φGP
1,Na decreases faster than exponentially

at infinity ([53], Lemma A.5).
For the boxes inside the cube ΛM we want to use Lemma 2.5 and therefore

we must approximate ρGP by constants in each box. Let ρα,max and ρα,min,
respectively, denote the maximal and minimal values of ρGP in box α. Define

Ψα(x1, . . . ,xnα) = Fα(x1, . . . ,xnα)

nα∏
k=1

φGP(xk) , (6.32)

and
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Ψ (i)
α (x1, . . . ,xnα) = Fα(x1, . . . ,xnα)

nα∏
k=1
k �=i

φGP(xk) . (6.33)

We have, for all 1 ≤ i ≤ nα,∫ nα∏
k=1

ρGP(xk)
(
|∇iFα|2 + 1

2

∑
j �=i

v(|xi − xj |)|Fα|2
)

≥ ρα,min

∫ (
|∇iΨ

(i)
α |2 + 1

2

∑
j �=i

v(|xi − xj |)|Ψ (i)
α |2
)
. (6.34)

We now use Lemma 2.5 to get, for all 0 ≤ ε ≤ 1,

(6.34) ≥ ρα,min

∫ (
ε|∇iΨ

(i)
α |2 + a(1− ε)U(ti)|Ψ (i)

α |2
)

(6.35)

where ti is the distance to the nearest neighbor of xi, c.f., (2.29), and U the
potential (2.30).

Since Ψα = φGP(xi)Ψ
(i)
α we can estimate

|∇iΨα|2 ≤ 2ρα,max|∇iΨ
(i)
α |2 + 2|Ψ (i)

α |2NCM (6.36)

with

CM =
1

N
sup

x∈ΛM

|∇φGP(x)|2 = sup
x∈ΛM

|∇φGP
1,Na(x)|2 . (6.37)

Since Na is fixed, CM is independent of N . Inserting (6.36) into (6.35), sum-
ming over i and using ρGP(xi) ≤ ρα,max in the last term of (6.29) (in the box
α), we get

Qα(Fα) ≥ ρα,min

ρα,max
EU

ε (nα, L)− 8πaρα,maxnα − εCMnα , (6.38)

where L is the side length of the box and EU
ε (nα, L) is the ground state energy

of
nα∑
i=1

(− 1
2ε∆i + (1− ε)aU(ti)) (6.39)

in the box (c.f. (2.35)). We want to minimize (6.38) with respect to nα and
drop the subsidiary condition

∑
α nα = N in (6.31). This can only lower the

minimum. For the time being we also ignore the last term in (6.38). (The
total contribution of this term for all boxes is bounded by εCMN and will be
shown to be negligible compared to the other terms.)

Since the lower bound for the energy of Theorem 2.4 was obtained precisely
from a lower bound to the operator (6.39), we can use the statement and proof
of Theorem 2.4. From this we see that

EU
ε (nα, L) ≥ (1− ε)4πan2

α

L3
(1− CY 1/17

α ) (6.40)
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with Yα = a3nα/L
3, provided Yα is small enough, ε ≥ Y

1/17
α and nα ≥

(const.)Y
−1/17
α . The condition on ε is certainly fulfilled if we choose ε = Y 1/17

with Y = a3N/L3. We now want to show that the nα minimizing the right
side of (6.38) is large enough for (6.40) to apply.

If the minimum of the right side of (6.38) (without the last term) is taken
for some n̄α, we have

ρα,min

ρα,max

(
EU

ε (n̄α + 1, L)− EU
ε (n̄α, L)

)
≥ 8πaρα,max . (6.41)

On the other hand, we claim that

Lemma 6.4. For any n

EU
ε (n+ 1, L)− EU

ε (n,L) ≤ 8πa
n

L3
. (6.42)

Proof. Denote the operator (6.39) by H̃n, with nα = n, and let Ψ̃n be its
ground state. Let t′i be the distance to the nearest neighbor of xi among
the n+ 1 points x1, . . . ,xn+1 (without xi) and ti the corresponding distance
excluding xn+1. Obviously, for 1 ≤ i ≤ n,

U(t′i) ≤ U(ti) + U(|xi − xn+1|) (6.43)

and

U(t′n+1) ≤
n∑

i=1

U(|xi − xn+1|) . (6.44)

Therefore

H̃n+1 ≤ H̃n − 1
2ε∆n+1 + 2a

n∑
i=1

U(|xi − xn+1|) . (6.45)

Using Ψ̃n/L
3/2 as trial function for H̃n+1 we arrive at (6.42). � 

Equation (6.42) together with (6.41) shows that n̄α is at least ∼ ρα,maxL
3.

We shall choose L ∼ N−1/10, so the conditions needed for (6.40) are fulfilled
for N large enough, since ρα,max ∼ N and hence n̄α ∼ N7/10 and Yα ∼ N−2.

In order to obtain a lower bound on Qα we therefore have to minimize

4πa

(
ρα,min

ρα,max

n2
α

L3

(
1− CY 1/17

)
− 2nαρα,max

)
. (6.46)

We can drop the requirement that nα has to be an integer. The minimum of
(6.46) is obtained for

nα =
ρ2α,max

ρα,min

L3

(1 − CY 1/17)
. (6.47)

By (6.28) this gives the following lower bound, including now the last term in
(6.38) as well as the contributions from the boxes outside ΛM ,
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E0(N, a)− EGP(N, a)

≥ 4πa

∫
|ρGP|2 − 4πa

∑
α⊂ΛM

ρ2α,minL
3

(
ρ3α,max

ρ3α,min

1

(1 − CY 1/17)

)
− Y 1/17NCM − 4πaN sup

x/∈ΛM

ρGP(x) .

(6.48)

Now ρGP is differentiable and strictly positive. Since all the boxes are in the
fixed cube ΛM there are constants C′ <∞, C′′ > 0, such that

ρα,max − ρα,min ≤ NC ′L, ρα,min ≥ NC ′′ . (6.49)

Since L ∼ N−1/10 and Y ∼ N−17/10 we therefore have, for large N ,

ρ3α,max

ρ3α,min

1

(1− CY 1/17)
≤ 1 + (const.)N−1/10 (6.50)

Also,

4πa
∑

α⊂ΛM

ρ2α,minL
3 ≤ 4πa

∫
|ρGP|2 ≤ EGP(N, a) . (6.51)

Hence, noting that EGP(N, a) = NEGP(1, Na) ∼ N since Na is fixed,

E0(N, a)

EGP(N, a)
≥ 1− (const.)(1 + CM )N−1/10 − (const.) sup

x/∈ΛM

|φGP
1,Na|2 , (6.52)

where the constants depend on Na. We can now take N → ∞ and then
M →∞.

Part 3: Lower bound to the QM energy, TF case. In the above proof of the
lower bound in the GP case we did not attempt to keep track of the dependence
of the constants on Na. In the TF case Na→∞, so one would need to take
a closer look at this dependence if one wanted to carry the proof directly over
to this case. But we don’t have to do so, because there is a simpler direct
proof. Using the explicit form of the TF minimizer, namely

ρTF
N,a(x) =

1

8πa
[µTF − V (x)]+ , (6.53)

where [t]+ ≡ max{t, 0} and µTF is chosen so that the normalization condition∫
ρTF

N,a = N holds, we can use

V (x) ≥ µTF − 8πaρTF(x) (6.54)

to get a replacement as in (6.30), but without changing the measure. More-
over, ρTF has compact support, so, applying again the box method described
above, the boxes far out do not contribute to the energy. However, µTF (which
depends only on the combination Na) tends to infinity as Na → ∞. We
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need to control the asymptotic behavior of µTF, and this leads to the restric-
tions on V described in the paragraph preceding Theorem 6.3. For simplic-
ity, we shall here only consider the case when V itself is homogeneous, i.e.,
V (λx) = λsV (x) for all λ > 0 with some s > 0.

In the same way as in (6.6) we have, with g = Na,

µTF(g) = dETF(N, a)/dN = ETF(1, g) + 4πg

∫
|ρTF

1,g(x)|2dx . (6.55)

The TF energy, chemical potential and minimizer satisfy the scaling relations

ETF(1, g) = gs/(s+3)ETF(1, 1) , (6.56)

µTF(g) = gs/(s+3)µTF(1) , (6.57)

and
g3/(s+3)ρTF

1,g(g1/(s+3)x) = ρTF
1,g(x) . (6.58)

We also introduce the scaled interaction potential, v̂, by

v̂(x) = g2/(s+3)v(g1/(s+3)x) (6.59)

with scattering length
â = g−1/(s+3)a . (6.60)

Using (6.54), (6.55) and the scaling relations we obtain

E0(N, a) ≥ ETF(N, a) + 4πNgs/(s+3)

∫
|ρTF

1,1 |2 + g−2/(s+3)Q (6.61)

with

Q = inf� |Ψ |2=1

∑
i

∫ (
|∇iΨ |2 + 1

2

∑
j �=i

v̂(xi − xj)|Ψ |2 − 8πNâρTF
1,1(xi)|Ψ |2

)
.

(6.62)
We can now proceed exactly as in Part 2 to arrive at the analogy of (6.48),
which in the present case becomes

E0(N, a)− ETF(N, a) ≥ 4πNgs/(s+3)

∫
|ρTF

1,1 |2

− 4πNâ
∑

α

ρ2α,maxL
3(1− CŶ 1/17)−1 .

(6.63)

Here ρα,max is the maximum of ρTF
1,1 in the box α, and Ŷ = â3N/L3. This

holds as long as L does not decrease too fast with N . In particular, if L is
simply fixed, this holds for all large enough N . Note that

ρ̄ = Nρ̄1,g ∼ Ng−3/(s+3)ρ̄1,1 , (6.64)
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so that â3N ∼ a3ρ̄ goes to zero as N → ∞ by assumption. Hence, if we first
let N → ∞ (which implies Ŷ → 0) and then take L to zero, we of arrive at
the desired result

lim inf
N→∞

E0(N, a)

ETF(N, a)
≥ 1 (6.65)

in the limit N → ∞, a3ρ̄ → 0. Here we used the fact that (because V ,
and hence ρTF, is continuous by assumption) the Riemann sum

∑
α ρ

2
α,maxL

3

converges to
∫
|ρTF

1,1 |2 as L→ 0. Together with the upper bound (6.26) and the

fact that EGP(N, a)/ETF(N, a) = EGP(1, Na)/ETF(1, Na) → 1 as Na→∞,
which holds under our regularity assumption on V (c.f. Lemma 2.3 in [54]),
this proves (6.15) and (6.21).

Part 4: Convergence of the densities. The convergence of the energies implies
the convergence of the densities in the usual way by variation of the external
potential. We show here the TF case, the GP case goes analogously. Set again
g = Na. Making the replacement

V (x) −→ V (x) + δgs/(s+3)Z(g−1/(s+3)x) (6.66)

for some positive Z ∈ C∞
0 and redoing the upper and lower bounds we see

that (6.21) holds with W replaced by W + δZ. Differentiating with respect to
δ at δ = 0 yields

lim
N→∞

g3/(s+3)

N
ρQM

N,a(g
1/(s+3)x) = ρ̃TF

1,1(x) (6.67)

in the sense of distributions. Since the functions all have L1-norm 1, we can
conclude that there is even weak L1-convergence. � 

6.2 Two Dimensions

In contrast to the three-dimensional case the energy per particle for a dilute
gas in two dimensions is nonlinear in ρ. In view of Schick’s formula (3.1)
for the energy of the homogeneous gas it would appear natural to take the
interaction into account in two dimensional GP theory by a term

4π

∫
R2

| ln(|φ(x)|2a2)|−1|φ(x)|4dx , (6.68)

and such a term has, indeed, been suggested in [80] and [40]. However, since
the nonlinearity appears only in a logarithm, this term is unnecessarily com-
plicated as far as leading order computations are concerned. For dilute gases
it turns out to be sufficient, to leading order, to use an interaction term of
the same form as in the three-dimensional case, i.e, define the GP functional
as (for simplicity we put µ = 1 in this section)



The Quantum-Mechanical Many-Body Problem: The Bose Gas 141

EGP[φ] =

∫
R2

(
|∇φ|2 + V |φ|2 + 4πα|φ|4

)
dx , (6.69)

where instead of a the coupling constant is now

α = | ln(ρ̄Na
2)|−1 (6.70)

with ρ̄N the mean density for the GP functional at coupling constant 1 and
particle number N . This is defined analogously to (6.13) as

ρ̄N =
1

N

∫
|φGP

N,1|4dx (6.71)

where φGP
N,1 is the minimizer of (6.69) with α = 1 and subsidiary condition∫

|φ|2 = N . Note that α in (6.70) depends on N through the mean density.
Let us denote the GP energy for a given N and coupling constant α by

EGP(N,α) and the corresponding minimizer by φGP
N,α. As in three dimensions

the scaling relations

EGP(N,α) = NEGP(1, Nα) (6.72)

and
N−1/2φGP

N,α = φGP
1,Nα , (6.73)

hold, and the relevant parameter is

g ≡ Nα . (6.74)

In three dimensions, where α = a, it is natural to consider the limitN →∞
with g = Na= const. The analogue of Theorem 6.1 in two dimensions is

Theorem 6.5 (Two-dimensional GP limit theorem). If, for N → ∞,
a2ρ̄N → 0 with g = N/| ln(a2ρ̄N )| fixed, then

lim
N→∞

E0(N, a)

EGP(N, 1/| ln(a2ρ̄N )|) = 1 (6.75)

and

lim
N→∞

1

N
ρQM

N,a(x) =
∣∣φGP

1,g (x)
∣∣2 (6.76)

in the weak L1-sense.

This result, however, is of rather limited use in practice. The reason is
that in two dimensions the scattering length has to decrease exponentially
with N if g is fixed. The parameter g is typically very large in two dimensions
so it is more appropriate to consider the limit N → ∞ and g → ∞ (but still
ρ̄Na

2 → 0).
For potentials V that are homogeneous functions of x, i.e.,
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V (λx) = λsV (x) (6.77)

for some s > 0, this limit can be described by the a ‘Thomas–Fermi’ energy
functional like (6.20) with coupling constant unity:

ETF[ρ] =

∫
R2

(
V (x)ρ(x) + 4πρ(x)2

)
dx . (6.78)

This is just the GP functional without the gradient term and α = 1. Here ρ
is a nonnegative function on R2 and the normalization condition is∫

ρ(x)dx = 1 . (6.79)

The minimizer of (6.78) can be given explicitly. It is

ρTF
1,1(x) = (8π)−1[µTF − V (x)]+ (6.80)

where the chemical potential µTF is determined by the normalization condi-
tion (6.79) and [t]+ = t for t ≥ 0 and zero otherwise. We denote the corre-
sponding energy by ETF(1, 1). By scaling one obtains

lim
g→∞

EGP(1, g)/gs/(s+2) = ETF(1, 1) , (6.81)

lim
g→∞ g

2/(s+2)ρGP
1,g (g1/(s+2)x) = ρTF

1,1(x) , (6.82)

with the latter limit in the strong L2 sense.
Our main result about two-dimensional Bose gases in external potentials

satisfying (6.77) is that analogous limits also hold for the many-particle quan-
tum mechanical ground state at low densities:

Theorem 6.6 (Two-dimensional TF limit theorem). In two dimensions,
if a2ρ̄N → 0, but g = N/| ln(ρ̄Na

2)| → ∞ as N →∞ then

lim
N→∞

E0(N, a)

gs/s+2
= ETF(1, 1) (6.83)

and, in the weak L1 sense,

lim
N→∞

g2/(s+2)

N
ρQM

N,a(g
1/(s+2)x) = ρTF

1,1(x) . (6.84)

Remarks. 1. As in Theorem 6.3, it is sufficient that V is asymptotically equal
to some homogeneous potential, W . In this case, ETF(1, 1) and ρTF

1,1 in Theo-
rem 6.6 should be replaced by the corresponding quantities for W .

2. From (6.82) it follows that

ρ̄N ∼ Ns/(s+2) (6.85)

for large N . Hence the low density criterion a2ρ̄ � 1, means that a/Losc �
N−s/2(s+2).
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We shall now comment briefly on the proofs of Theorems 6.5 and 6.6,
mainly pointing out the differences from the 3D case considered previously.

The upper bounds for the energy are obtained exactly in a same way as in
three dimensions. For the lower bound in Theorem 6.5 the point to notice is
that the expression (6.46), that has to be minimized over nα, is in 2D replaced
by

4π

(
ρα,min

ρα,max

n2
α

L2

1

| ln(a2nα/L2)|

(
1− C

| ln(a2N/L2)|1/5

)
− 2nαρα,max

| ln(a2ρ̄N )|

)
,

(6.86)
since (6.40) has to be replaced by the analogous inequality for 2D (c.f. (3.31)).
To minimize (6.86) we use the following lemma:

Lemma 6.7. For 0 < x, b < 1 and k ≥ 1 we have

x2

| lnx| − 2
b

| ln b|xk ≥ − b2

| ln b|

(
1 +

1

(2| ln b|)2

)
k2 . (6.87)

Proof. Replacing x by xk and using the monotonicity of ln we see that it
suffices to consider k = 1. Since lnx ≥ − 1

dex
−d for all d > 0 we have

x2

b2
| ln b|
| lnx| − 2

x

b
≥ | ln b|

b2
edx2+d − 2x

b
≥ c(d)(bded | ln b|)−1/(1+d) (6.88)

with

c(d) = 2(2+d)/(1+d)

(
1

(2 + d)(2+d)/(1+d)
− 1

(2 + d)1/(1+d)

)
≥ −1− 1

4
d2 .

(6.89)

Choosing d = 1/| ln b| gives the desired result. � 

Applying this lemma with x = a2nα/L
2, b = a2ρα,max and

k =
ρα,max

ρα,min

(
1− C

| ln(a2N/L2)|1/5

)−1 | ln(a2ρα,max)|
| ln(a2ρ̄N )| (6.90)

we get the bound

(6.86) ≥ −4π
ρ2α,maxL

2

| ln(a2ρ̄N )|

(
1 +

1

4| ln(a2ρα,max)|2

)
k . (6.91)

In the limit considered, k and the factor in parenthesis both tend to 1 and
the Riemann sum over the boxes α converges to the integral as L→ 0.

The TF case, Thm. 6.6, is treated in the same way as in three dimensions,
with modifications analogous to those just discussed when passing from 3D
to 2D in GP theory.
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7 Bose–Einstein Condensation and Superfluidity for
Dilute Trapped Gases

It was shown in the previous section that, for each fixed Na, the minimization
of the GP functional correctly reproduces the large N asymptotics of the
ground state energy and density of H – but no assertion about BEC in this
limit was made. We will now extend this result by showing that in the Gross–
Pitaevskii limit there is indeed 100% Bose condensation in the ground state.
This is a generalization of the homogeneous case considered in Theorem 5.1
and although it is not the same as BEC in the thermodynamic limit it is quite
relevant for the actual experiments with Bose gases in traps. In the following,
we concentrate on the 3D case, but analogous considerations apply also to the
2D case. We also discuss briefly some extensions of Theorem 5.3 pertaining
to superfluidity in trapped gases.

As in the last section we choose to keep the length scale Losc of the con-
fining potential fixed and thus write Na instead of Na/Losc. Consequently
the powers of N appearing in the proofs are different from those in the proof
Theorem 5.1, where we kept Na/L and N/L3 fixed.

For use later, we define the projector

PGP = |φGP〉〈φGP| . (7.1)

Here (and everywhere else in this section) we denote φGP ≡ φGP
1,Na for simplic-

ity, where φGP
1,Na is the minimizer of the GP functional (6.2) with parameter

Na and normalization condition
∫
|φ|2 = 1 (compare with (6.8)). Moreover,

we set µ ≡ 1.
In the following, Ψ0 denotes the (nonnegative and normalized) ground

state of the Hamiltonian (6.1). BEC refers to the reduced one-particle density
matrix γ(x,x′) of Ψ0, defined in (5.1). The precise definition of BEC is is that
for some c > 0 this integral operator has for all large N an an eigenfunction
with eigenvalue ≥ cN .

Complete (or 100%) BEC is defined to be the property that 1
N γ(x,x

′) not
only has an eigenvalue of order one, as in the general case of an incomplete
BEC, but in the limit it has only one nonzero eigenvalue (namely 1). Thus,
1
N γ(x,x

′) becomes a simple product ϕ(x)∗ϕ(x′) as N →∞, in which case ϕ
is called the condensate wave function. In the GP limit, i.e., N →∞ with Na
fixed, we can show that this is the case, and the condensate wave function is,
in fact, the GP minimizer φGP.

Theorem 7.1 (Bose–Einstein condensation in a trap).
For each fixed Na

lim
N→∞

1

N
γ(x,x′) = φGP(x)φGP(x′) (7.2)

in trace norm, i.e., Tr
∣∣ 1
N γ − PGP

∣∣→ 0.
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We remark that Theorem 7.1 implies that there is also 100% condensation
for all n-particle reduced density matrices

γ(n)(x1, . . . ,xn;x′
1, . . . ,x

′
n) =

n!

(
N

n

)∫
Ψ0(x1, . . . ,xN )Ψ0(x

′
1, . . . ,x

′
n,xn+1, . . .xN )dxn+1 · · ·dxN (7.3)

of Ψ0, i.e., they converge, after division by the normalization factor, to the
one-dimensional projector onto the n-fold tensor product of φGP. In other
words, for n fixed particles the probability of finding them all in the same
state φGP tends to 1 in the limit considered. To see this, let a∗, a denote the
boson creation and annihilation operators for the state φGP, and observe that

1 ≥ lim
N→∞

N−n〈Ψ0|(a∗)nan|Ψ0〉 = lim
N→∞

N−n〈Ψ0|(a∗a)n|Ψ0〉 , (7.4)

since the terms coming from the commutators [a, a∗] = 1 are of lower order
as N →∞ and vanish in the limit. From convexity it follows that

N−n〈Ψ0|(a∗a)n|Ψ0〉 ≥ N−n〈Ψ0|a∗a|Ψ0〉n , (7.5)

which converges to 1 as N →∞, proving our claim.
Another corollary, important for the interpretation of experiments, con-

cerns the momentum distribution of the ground state.

Corollary 7.2 (Convergence of momentum distribution). Let

ρ̂(k) =

∫ ∫
γ(x,x′) exp[ik · (x− x′)]dxdx′ (7.6)

denote the one-particle momentum density of Ψ0. Then, for fixed Na,

lim
N→∞

1

N
ρ̂(k) = |φ̂GP(k)|2 (7.7)

strongly in L1(R3). Here, φ̂GP denotes the Fourier transform of φGP.

Proof. If F denotes the (unitary) operator ‘Fourier transform’ and if h is an
arbitrary L∞-function, then∣∣∣∣ 1N

∫
ρ̂h−

∫
|φ̂GP|2h

∣∣∣∣ = ∣∣Tr [F−1(γ/N − PGP)Fh]
∣∣

≤ ‖h‖∞Tr |γ/N − PGP| , (7.8)

from which we conclude that

‖ρ̂/N − |φ̂GP|2‖1 ≤ Tr |γ/N − PGP| . (7.9)

� 
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As already stated, Theorem 7.1 is a generalization of Theorem 5.1, the
latter corresponding to the case that V is a box potential. It should be noted,
however, that we use different scaling conventions in these two theorems: In
Theorem 5.1 the box size grows as N1/3 to keep the density fixed, while in
Theorem 7.1 we choose to keep the confining external potential fixed. Both
conventions are equivalent, of course, c.f. the remarks in the second paragraph
of Sect. 6, but when comparing the exponents of N that appear in the proofs
of the two theorems the different conventions should be born in mind.

As in Theorem 5.1 there are two essential components of our proof of
Theorem 7.1. The first is a proof that the part of the kinetic energy that
is associated with the interaction v (namely, the second term in (6.17a)) is
mostly located in small balls surrounding each particle. More precisely, these
balls can be taken to have radius roughly N−5/9, which is much smaller than
the mean-particle spacing N−1/3. (The exponents differ from those of Lemma
5.2 because of different scaling conventions.) This allows us to conclude that
the function of x defined for each fixed value of X by

fX(x) =
1

φGP(x)
Ψ0(x,X) ≥ 0 (7.10)

has the property that ∇xfX(x) is almost zero outside the small balls centered
at points of X.

The complement of the small balls has a large volume but it can be a weird
set; it need not even be connected. Therefore, the smallness of ∇xfX(x) in
this set does not guarantee that fX(x) is nearly constant (in x), or even that
it is continuous. We need fX(x) to be nearly constant in order to conclude
BEC. What saves the day is the knowledge that the total kinetic energy of
fX(x) (including the balls) is not huge. The result that allows us to combine
these two pieces of information in order to deduce the almost constancy of
fX(x) is the generalized Poincaré inequality in Lemma 4.3. The important
point in this lemma is that there is no restriction on Ω concerning regularity
or connectivity.

Using the results of Theorem 6.2, partial integration and the GP equation
(i.e., the variational equation for φGP, see (6.5)) we see that

lim
N→∞

∫
|φGP(x)|2|∇xfX(x)|2dx dX = 4πNas

∫
|φGP(x)|4dx . (7.11)

The following Lemma shows that to leading order all the energy in (7.11) is
concentrated in small balls.

Lemma 7.3 (Localization of the energy in a trap). For fixed X let

ΩX =

{
x ∈ R3

∣∣∣∣min
k≥2

|x− xk| ≥ N−1/3−δ

}
(7.12)

for some 0 < δ < 2/9. Then
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lim
N→∞

∫
dX

∫
ΩX

dx|φGP(x)|2|∇xfX(x)|2 = 0 . (7.13)

Remark. In the proof of Theorem 5.1 we chose δ to be 4/51, but the following
proof shows that one can extend the range of δ beyond this value.

Proof. We shall show that∫
dX

∫
Ωc

X

dx |φGP(x)|2|∇xfX(x)|2

+

∫
dX

∫
dx|φGP(x)|2|fX(x)|2

⎡⎣1
2

∑
k≥2

v(|x− xk|)− 8πNa|φGP(x)|2
⎤⎦

≥ −4πNa

∫
|φGP(x)|4dx− o(1) (7.14)

as N → ∞. We claim that this implies the assertion of the Lemma. To see
this, note that the left side of (7.14) can be written as

1

N
E0 − µGP −

∫
dX

∫
ΩX

dx|φGP(x)|2|∇xfX(x)|2 , (7.15)

where we used partial integration and the GP equation (6.5), and also the
symmetry of Ψ0. The convergence of the energy in Theorem 6.1 and the rela-
tion (6.6) now imply the desired result.

The proof of (7.14) is actually just a detailed examination of the lower
bounds to the energy derived in [53] and [62] and described in Sects. 2 and 6.
We use the same methods as there, just describing the differences from the
case considered here.

Writing

fX(x) =
∏
k≥2

φGP(xk)F (x,X) (7.16)

and using that F is symmetric in the particle coordinates, we see that (7.14)
is equivalent to

1

N
Qδ(F ) ≥ −4πNa

∫
|φGP|4 − o(1) , (7.17)

where Qδ is the quadratic form

Qδ(F ) =

N∑
i=1

∫
Ωc

i

|∇iF |2
N∏

k=1

|φGP(xk)|2dxk

+
∑

1≤i<j≤N

∫
v(|xi − xj |)|F |2

N∏
k=1

|φGP(xk)|2dxk

− 8πNa

N∑
i=1

∫
|φGP(xi)|2|F |2

N∏
k=1

|φGP(xk)|2dxk .

(7.18)
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Here Ωc
i denotes the set

Ωc
i = {(x1,X) ∈ R3N | min

k �=i
|xi − xk| ≤ N−1/3−δ} . (7.19)

While (7.17) is not true for all conceivable F ’s satisfying the normalization
condition ∫

|F (x,X)|2
N∏

k=1

|φGP(xk)|2dxk = 1 , (7.20)

it is true for an F , such as ours, that has bounded kinetic energy (7.11).
Looking at Sect. 6, we see that (6.28)–(6.29), (6.48)–(6.52) are similar to
(7.17), (7.18) and almost establish (7.17), but there are differences which we
now explain.

In our case, the kinetic energy of particle i is restricted to the subset of R3N

in which mink �=i |xi − xk| ≤ N−1/3−δ. However, looking at the proof of the
lower bound to the ground state energy of a homogeneous Bose gas discussed
in Sect. 2, which enters the proof of Theorem 6.1, we see that if we choose
δ ≤ 4/51 only this part of the kinetic energy is needed for the lower bound,
except for some part with a relative magnitude of the order ε = O(N−2α)
with α = 1/17. (Here we use the a priori knowledge that the kinetic energy is
bounded by (7.11).) We can even do better and choose some 4/51 < δ < 2/9,
if α is chosen small enough. (To be precise, we choose β = 1/3 + α and
γ = 1/3 − 4α in the notation of (2.56), and α small enough). The choice of
α only affects the magnitude of the error term, however, which is still o(1) as
N →∞. � 

Proof (Theorem 7.1). For some R > 0 let K = {x ∈ R3, |x| ≤ R}, and define

〈fX〉K =
1∫

K |φGP(x)|2dx

∫
K
|φGP(x)|2fX(x) dx . (7.21)

We shall use Lemma 4.3, with d = 3, h(x) = |φGP(x)|2/
∫
K |φGP|2,Ω = ΩX∩K

and f(x) = fX(x) − 〈fX〉K (see (7.12) and (7.10)). Since φGP is bounded on
K above and below by some positive constants, this Lemma also holds (with
a different constant C′) with dx replaced by |φGP(x)|2dx in (4.6). Therefore,∫

dX

∫
K

dx|φGP(x)|2 [fX(x)− 〈fX〉K]
2

≤ C′
∫

dX

[∫
ΩX∩K

|φGP(x)|2|∇xfX(x)|2dx

+
N−2δ

R2

∫
K
|φGP(x)|2|∇xfX(x)|2dx

]
,

(7.22)

where we used that |Ωc
X ∩ K| ≤ (4π/3)N−3δ. The first integral on the right

side of (7.22) tends to zero as N → ∞ by Lemma 7.3, and the second is
bounded by (7.11). We conclude, since
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K
|φGP(x)|2fX(x)dx ≤

∫
R3

|φGP(x)|2fX(x)dx (7.23)

because of the positivity of fX, that

lim inf
N→∞

1

N
〈φGP|γ|φGP〉 ≥

∫
K
|φGP(x)|2dx lim

N→∞

∫
dX

∫
K

dx|Ψ0(x,X)|2

=

[∫
K
|φGP(x)|2dx

]2
, (7.24)

where the last equality follows from (6.16). Since the radius of K was arbitrary,
we conclude that

lim
N→∞

1

N
〈φGP|γ|φGP〉 = 1 , (7.25)

implying convergence of γ/N to PGP in Hilbert–Schmidt norm. Since the
traces are equal, convergence even holds in trace norm (cf. [81], Thm. 2.20),
and Theorem 7.1 is proven. � 

We remark that the method presented here also works in the case of a
two-dimensional Bose gas. The relevant parameter to be kept fixed in the GP
limit is N/| ln(a2ρ̄N )|, all other considerations carry over without essential
change, using the results in [54, 63], c.f. Sects. 3 and 6.2. It should be noted
that the existence of BEC in the ground state in 2D is not in conflict with its
absence at positive temperatures [33, 66]. In the hard core lattice gas at half
filling precisely this phenomenon occurs [38].

Finally, we remark on generalizations of Theorem 5.3 on superfluidity from
a torus to some physically more realistic settings. As an example, let C be a
finite cylinder based on an annulus centered at the origin. Given a bounded,
real function a(r, z) let A be the vector field (in polar coordinates) A(r, θ, z) =
ϕa(r, z)êθ, where êθ is the unit vector in the θ direction. We also allow for a
bounded external potential V (r, z) that does not depend on θ.

Using the methods of Appendix A in [53], it is not difficult to see that there
exists a ϕ0 > 0, depending only on C and a(r, z), such that for all |ϕ| < ϕ0

there is a unique minimizer φGP of the Gross–Pitaevskii functional

EGP[φ] =

∫
C

(∣∣(∇+ iA(x)
)
φ(x)
∣∣2 + V (x)|φ(x)|2 + 4πµNa|φ(x)|4

)
dx (7.26)

under the normalization condition
∫
|φ|2 = 1. This minimizer does not depend

on θ, and can be chosen to be positive, for the following reason: The relevant
term in the kinetic energy is T = −r−2[∂/∂θ + iϕr a(r, z)]2. If |ϕr a(r, z)| <
1/2, it is easy to see that T ≥ ϕ2a(r, z)2, in which case, without raising the
energy, we can replace φ by the square root of the θ-average of |φ|2. This can
only lower the kinetic energy [49] and, by convexity of x→ x2, this also lowers
the φ4 term.
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We denote the ground state energy of EGP by EGP, depending on Na and
ϕ. The following Theorem 7.4 concerns the ground state energy E0 of

HA
N =

N∑
j=1

[
−
(
∇j + iA(xj)

)2
+ V (xj)

]
+

∑
1≤i<j≤N

v(|xi − xj |) , (7.27)

with Neumann boundary conditions on C, and the one-particle reduced density
matrix γN of the ground state, respectively. Different boundary conditions can
be treated in the same manner, if they are also used in (7.26).

Remark. As a special case, consider a uniformly rotating system. In this case
A(x) = ϕrêθ, where 2ϕ is the angular velocity. HA

N is the Hamiltonian in the
rotating frame, but with external potential V (x)+A(x)2 (see e.g. [4, p. 131]).

Theorem 7.4 (Superfluidity in a cylinder). For |ϕ| < ϕ0

lim
N→∞

E0(N, a, ϕ)

N
= EGP(Na, ϕ) (7.28)

in the limit N →∞ with Na fixed. In the same limit,

lim
N→∞

1

N
γN (x,x′) = φGP(x)φGP(x′) (7.29)

in trace class norm, i.e., limN→∞ Tr
[ ∣∣γN/N − |φGP〉〈φGP|

∣∣ ] = 0.

In the case of a uniformly rotating system, where 2ϕ is the angular velocity,
the condition |ϕ| < ϕ0 in particular means that the angular velocity is smaller
than the critical velocity for creating vortices [79, 21].

Remark. In the special case of the curl-free vector potential A(r, θ) = ϕr−1êθ,
i.e., a(r, z) = r−1, one can say more about the role of ϕ0. In this case, there is
a unique GP minimizer for all ϕ 	∈ Z+ 1

2 , whereas there are two minimizers for
ϕ ∈ Z+ 1

2 . Part two of Theorem 7.4 holds in this special case for all ϕ 	∈ Z+ 1
2 ,

and (7.28) is true even for all ϕ.

8 One-Dimensional Behavior of Dilute Bose Gases in
Traps

Recently it has become possible to do experiments in highly elongated traps on
ultra-cold Bose gases that are effectively one-dimensional [8, 27, 29, 76, 65].
These experiments show peculiar features predicted by a model of a one-
dimensional Bose gas with repulsive δ-function pair interaction, analyzed long
ago by Lieb and Liniger [48]. These include quasi-fermionic behavior [24], the
absence of Bose–Einstein condensation (BEC) in a dilute limit [43, 72, 26],
and an excitation spectrum different from that predicted by Bogoliubov’s
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theory [48, 37, 42]. The theoretical work on the dimensional cross-over for the
ground state in elongated traps has so far been based either on variational
calculations, starting from a 3D delta-potential [67, 15, 25], or on numerical
Quantum Monte Carlo studies [6, 1] with more realistic, genuine 3D potentials,
but particle numbers limited to the order of 100. This work is important and
has led to valuable insights, in particular about different parameter regions
[70, 16], but a more thorough theoretical understanding is clearly desirable
since this is not a simple problem. In fact, it is evident that for a potential with
a hard core the true 3D wave functions do not approximately factorize in the
longitudinal and transverse variables (otherwise the energy would be infinite)
and the effective 1D potential can not be obtained by simply integrating out
the transverse variables of the 3D potential (that would immediately create
an impenetrable barrier in 1D). It is important to be able to demonstrate
rigorously, and therefore unambiguously, that the 1D behavior really follows
from the fundamental Schrödinger equation. It is also important to delineate,
as we do here, precisely what can be seen in the different parameter regions.
The full proofs of our assertions are long and are given in [58]. Here we state
our main results and outline the basic ideas for the proofs.

We start by describing the setting more precisely. It is convenient to write
the Hamiltonian in the following way (in units where � = 2m = 1):

HN,L,r,a =

N∑
j=1

(
−∆j + V ⊥

r (x⊥
j ) + VL(zj)

)
+

∑
1≤i<j≤N

va(|xi − xj |) (8.1)

with x = (x, y, z) = (x⊥, z) and with

V ⊥
r (x⊥) =

1

r2
V ⊥(x⊥/r) ,

VL(z) =
1

L2
V (z/L) , va(|x|) =

1

a2
v(|x|/a) .

(8.2)

Here, r, L, a are variable scaling parameters while V ⊥, V and v are fixed.
We shall be concerned with the ground state of this Hamiltonian for large

particle number N , which is appropriate for the consideration of actual exper-
iments. The other parameters of the problem are the scattering length, a, of
the two-body interaction potential, v, and two lengths, r and L, describing the
transverse and the longitudinal extension of the trap potential, respectively.

The interaction potential v is supposed to be nonnegative, of finite range
and have scattering length 1; the scaled potential va then has scattering length
a. The external trap potentials V and V ⊥ confine the motion in the longitudi-
nal (z) and the transversal (x⊥) directions, respectively, and are assumed to
be continuous and tend to ∞ as |z| and |x⊥| tend to ∞. To simplify the dis-
cussion we find it also convenient to assume that V is homogeneous of some
order s > 0, namely V (z) = |z|s, but weaker assumptions, e.g. asymptotic
homogeneity (cf. Sect. 6), would in fact suffice. The case of a simple box with
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hard walls is realized by taking s = ∞, while the usual harmonic approxima-
tion is s = 2. It is understood that the lengths associated with the ground
states of −d2/dz2 +V (z) and −∆⊥ +V ⊥(x⊥) are both of the order 1 so that
L and r measure, respectively, the longitudinal and the transverse extensions
of the trap. We denote the ground state energy of (8.1) by EQM(N,L, r, a)

and the ground state particle density by ρQM
N,L,r,a(x). On the average, this 3D

density will always be low in the parameter range considered here (in the
sense that distance between particles is large compared to the 3D scattering
length). The effective 1D density can be either high or low, however.

In parallel with the 3D Hamiltonian we consider the Hamiltonian for n
Bosons in 1D with delta interaction and coupling constant g ≥ 0 , i.e.,

H1D
n,g =

n∑
j=1

−∂2/∂z2j + g
∑

1≤i<j≤n

δ(zi − zj) . (8.3)

We consider this Hamiltonian for the zj in an interval of length � in the
thermodynamic limit, � → ∞, n → ∞ with ρ = n/� fixed. The ground state
energy per particle in this limit is independent of boundary conditions and
can, according to [48], be written as

e1D0 (ρ) = ρ2e(g/ρ) , (8.4)

with a function e(t) determined by a certain integral equation. Its asymptotic
form is e(t) ≈ 1

2 t for t� 1 and e(t) → π2/3 for t→∞. Thus

e1D0 (ρ) ≈ 1
2gρ for g/ρ� 1 (8.5)

and
e1D0 (ρ) ≈ (π2/3)ρ2 for g/ρ� 1 . (8.6)

This latter energy is the same as for non-interacting fermions in 1D, which
can be understood from the fact that (8.3) with g = ∞ is equivalent to a
Hamiltonian describing free fermions.

Taking ρe1D0 (ρ) as a local energy density for an inhomogeneous 1D system
we can form the energy functional

E [ρ] =

∫ ∞

−∞

(
|∇√ρ(z)|2 + VL(z)ρ(z) + ρ(z)3e(g/ρ(z))

)
dz . (8.7)

Its ground state energy is obtained by minimizing over all normalized densi-
ties, i.e.,

E1D(N,L, g) = inf

{
E [ρ] : ρ(z) ≥ 0,

∫ ∞

−∞
ρ(z)dz = N

}
. (8.8)

Using convexity of the map ρ �→ ρ3e(g/ρ), it is standard to show that there
exists a unique minimizer of (8.7) (see, e.g., [53]). It will be denoted by ρN,L,g.
We also define the mean 1D density of this minimizer to be
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ρ̄ =
1

N

∫ ∞

−∞
(ρN,L,g(z))

2
dz . (8.9)

In a rigid box, i.e., for s = ∞, ρ̄ is simply N/L (except for boundary correc-
tions), but in more general traps it depends also on g besides N and L. The
order of magnitude of ρ̄ in the various parameter regions will be described
below.

Our main result relates the 3D ground state energy of (8.1) to the 1D
density functional energy E1D(N,L, g) in the large N limit with g ∼ a/r2

provided r/L and a/r are sufficiently small. To state this precisely, let e⊥

and b(x⊥), respectively, denote the ground state energy and the normalized
ground state wave function of −∆⊥ + V ⊥(x⊥). The corresponding quantities
for −∆⊥ + V ⊥

r (x⊥) are e⊥/r2 and br(x
⊥) = (1/r)b(x⊥/r). In the case that

the trap is a cylinder with hard walls b is a Bessel function; for a quadratic
V ⊥ it is a Gaussian.

Define g by

g =
8πa

r2

∫
|b(x⊥)|4dx⊥ = 8πa

∫
|br(x⊥)|4dx⊥ . (8.10)

Our main result of this section is:

Theorem 8.1 (From 3D to 1D). Let N →∞ and simultaneously r/L→ 0
and a/r → 0 in such a way that r2ρ̄×min{ρ̄, g} → 0. Then

lim
EQM(N,L, r, a)−Ne⊥/r2

E1D(N,L, g)
= 1 . (8.11)

An analogous result hold for the ground state density. Define the 1D QM
density by averaging over the transverse variables, i.e.,

ρ̂QM
N,L,r,a(z) ≡

∫
ρQM

N,L,r,a(x
⊥, z)dx⊥ . (8.12)

Let L̄ := N/ρ̄ denote the extension of the system in z-direction, and define
the rescaled density ρ̃ by

ρ1DN,L,g(z) =
N

L
ρ̃(z/L̄) . (8.13)

Note that, although ρ̃ depends on N , L and g, ‖ρ̃‖1 = ‖ρ̃‖2 = 1, which shows
in particular that L̄ is the relevant scale in z-direction. The result for the
ground state density is:

Theorem 8.2 (1D limit for density). In the same limit as considered in
Theorem 8.1,

lim

(
L̄

N
ρ̂QM

N,L,r,a(zL̄)− ρ̃(z)
)

= 0 (8.14)

in weak L1 sense.
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Note that because of (8.5) and (8.6) the condition r2ρ̄×min{ρ̄, g} → 0 is
the same as

e1D0 (ρ̄) � 1/r2 , (8.15)

i.e., the average energy per particle associated with the longitudinal motion
should be much smaller than the energy gap between the ground and first
excited state of the confining Hamiltonian in the transverse directions. Thus,
the basic physics is highly quantum-mechanical and has no classical counter-
part. The system can be described by a 1D functional (8.7), even though the
transverse trap dimension is much larger than the range of the atomic forces.

8.1 Discussion of the Results

We will now give a discussion of the various parameter regions that are in-
cluded in the limit considered in Theorems 8.1 and 8.2 above. We begin by
describing the division of the space of parameters into two basic regions. This
decomposition will eventually be refined into five regions, but for the moment
let us concentrate on the basic dichotomy.

In Sect. 6 we proved that the 3D Gross–Pitaevskii formula for the energy
is correct to leading order in situations in which N is large but a is small
compared to the mean particle distance. This energy has two parts: The energy
necessary to confine the particles in the trap, plus the internal energy of
interaction, which is N4πaρ3D. This formula was proved to be correct for a
fixed confining potential in the limit N → ∞ with a3ρ3D → 0. However, this
limit does not hold uniformly if r/L gets small as N gets large. In other words,
new physics can come into play as r/L→ 0 and it turns out that this depends
on the ratio of a/r2 to the 1D density, or, in other words, on g/ρ̄. There are
two basic regimes to consider in highly elongated traps, i.e., when r � L.
They are

• The 1D limit of the 3D Gross–Pitaevskii regime
• The ‘true’ 1D regime.

The former is characterized by g/ρ̄ � 1, while in the latter regime g/ρ̄ is
of the order one or even tends to infinity. (If g/ρ̄ → ∞ the particles are
effectively impenetrable; this is usually referred to as the Girardeau–Tonks
region.) These two situations correspond to high 1D density (weak interaction)
and low 1D density (strong interaction), respectively. Physically, the main
difference is that in the strong interaction regime the motion of the particles
in the longitudinal direction is highly correlated, while in the weak interaction
regime it is not. Mathematically, this distinction also shows up in our proofs.
The first region is correctly described by both the 3D and 1D theories because
the two give the same predictions there. That’s why we call the second region
the ‘true’ 1D regime.

In both regions the internal energy of the gas is small compared to the
energy of confinement. However, this in itself does not imply a specifically
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1D behavior. (If a is sufficiently small it is satisfied in a trap of any shape.)
1D behavior, when it occurs, manifests itself by the fact that the transverse
motion of the atoms is uncorrelated while the longitudinal motion is correlated
(very roughly speaking) in the same way as pearls on a necklace. Thus, the
true criterion for 1D behavior is that g/ρ̄ is of order unity or larger and not
merely the condition that the energy of confinement dominates the internal
energy.

We shall now briefly describe the finer division of these two regimes into five
regions altogether. Three of them (Regions 1–3) belong to the weak interaction
regime and two (Regions 4–5) to the strong interaction regime. They are
characterized by the behavior of g/ρ̄ as N →∞. In each of these regions the
general functional (8.7) can be replaced by a different, simpler functional, and
the energy E1D(N,L, g) in Theorem 8.1 by the ground state energy of that
functional. Analogously, the density in Theorem 8.2 can be replaced by the
minimizer of the functional corresponding to the region considered.

The five regions are

• Region 1, the Ideal Gas case: In the trivial case where the interaction
is so weak that it effectively vanishes in the large N limit and everything
collapses to the ground state of −d2/dz2 + V (z) with ground state energy
e‖, the energy E1D in (8.11) can be replaced by Ne‖/L2. This is the case if
g/ρ̄ � N−2, and the mean density is just ρ̄ ∼ N/L. Note that g/ρ̄ � N−2

means that the 3D interaction energy per particle ∼ aρ3D � 1/L2.

• Region 2, the 1D GP case: In this region g/ρ̄ ∼ N−2, with ρ̄ ∼ N/L.
This case is described by a 1D Gross–Pitaevskii energy functional of the form

EGP[ρ] =

∫ ∞

−∞

(
|∇√ρ(z)|2 + VL(z)ρ(z) + 1

2gρ(z)
2
)
dz , (8.16)

corresponding to the high density approximation (8.5) of the interaction
energy in (8.7). Its ground state energy, EGP, fulfills the scaling relation
EGP(N,L, g) = NL−2EGP(1, 1, NgL).

• Region 3, the 1D TF case: N−2 � g/ρ̄ � 1, with ρ̄ being of the
order ρ̄ ∼ (N/L)(NgL)−1/(s+1), where s is the degree of homogeneity of the
longitudinal confining potential V . This region is described by a Thomas–
Fermi type functional

ETF[ρ] =

∫ ∞

−∞

(
VL(z)ρ(z) + 1

2gρ(z)
2
)
dz . (8.17)

It is a limiting case of Region 2 in the sense that NgL � 1, but a/r is
sufficiently small so that g/ρ̄ � 1, i.e., the high density approximation in
(8.5) is still valid. The explanation of the factor (NgL)1/(s+1) is as follows: The
linear extension L̄ of the minimizing density of (8.16) is for large values ofNgL
determined by VL(L̄) ∼ g(N/L̄), which gives L̄ ∼ (NgL)1/(s+1)L. In addition
condition (8.15) requires gρ̄� r−2, which means that Na/L(NgL)1/(s+1) �
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1. The minimum energy of (8.17) has the scaling property ETF(N,L, g) =
NL−2(NgL)s/(s+1)ETF(1, 1, 1).

• Region 4, the LL case: g/ρ̄ ∼ 1 , with ρ̄ ∼ (N/L)N−2/(s+2), described
by an energy functional

ELL[ρ] =

∫ ∞

−∞

(
VL(z)ρ(z) + ρ(z)3e(g/ρ(z))

)
dz . (8.18)

This region corresponds to the case g/ρ̄ ∼ 1, so that neither the high
density (8.5) nor the low density approximation (8.6) is valid and the full
LL energy (8.4) has to be used. The extension L̄ of the system is now
determined by VL(L̄) ∼ (N/L̄)2 which leads to L̄ ∼ LN2/(s+2). Condi-
tion (8.15) means in this region that Nr/L̄ ∼ Ns/(s+2)r/L → 0. Since
Nr/L̄ ∼ (ρ̄/g)(a/r), this condition is automatically fulfilled if g/ρ̄ is bounded
away from zero and a/r→ 0. The ground state energy of (8.18), ELL(N,L, g),
is equal to Nγ2ELL(1, 1, g/γ), where we introduced the density parameter
γ := (N/L)N−2/(s+2).

• Region 5, the GT case: g/ρ̄� 1, with ρ̄ ∼ (N/L)N−2/(s+2), described by
a functional with energy density ∼ ρ3, corresponding to the Girardeau–Tonks
limit of the LL energy density. It corresponds to impenetrable particles, i.e,
the limiting case g/ρ̄→∞ and hence formula (8.6) for the energy density. As
in Region 4, the mean density is here ρ̄ ∼ γ. The energy functional is

EGT[ρ] =

∫ ∞

−∞

(
VL(z)ρ(z) + (π2/3)ρ(z)3

)
dz , (8.19)

with minimum energy EGT(N,L) = Nγ2EGT(1, 1).

As already mentioned above, Regions 1–3 can be reached as limiting cases
of a 3D Gross–Pitaevskii theory. In this sense, the behavior in these regions
contains remnants of the 3D theory, which also shows up in the fact that BEC
prevails in Regions 1 and 2 (See [58] for details.) Heuristically, these traces of
3D can be understood from the fact that in Regions 1–3 the 1D formula for
energy per particle, gρ ∼ aN/(r2L), gives the same result as the 3D formula,
i.e., scattering length times 3D density. This is no longer so in Regions 4 and
5 and different methods are required.

8.2 Outline of Proof

We now outline the main steps in the proof of Theorems 8.1 and 8.2, referring
to [58] for full details. To prove (8.11) one has to establish upper and lower
bounds, with controlled errors, on the QM many-body energy in terms of the
energies obtained by minimizing the energy functionals appropriate for the
various regions. The limit theorem for the densities can be derived from the
energy estimates in a standard way by variation with respect to the external
potential VL.
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The different parameter regions have to be treated by different methods,
a watershed lying between Regions 1–3 on the one hand and Regions 4–5 on
the other. In Regions 1–3, similar methods as in the proof of the 3D Gross–
Pitaevskii limit theorem discussed in Sect. 6 can be used. This 3D proof
needs some modifications, however, because there the external potential was
fixed and the estimates are not uniform in the ratio r/L. We will not go into
the details here, but mainly focus on Regions 4 and 5, where new methods
are needed. It turns out to be necessary to localize the particles by dividing
the trap into finite ‘boxes’ (finite in z-direction), with a controllable particle
number in each box. The particles are then distributed optimally among the
boxes to minimize the energy, in a similar way as (2.52) was derived from
(2.47).

A core lemma for Regions 4–5 is an estimate of the 3D ground state energy
in a finite box in terms of the 1D energy of the Hamiltonian (8.3). I.e., we will
consider the ground state energy of (8.1) with the external potential VL(z)

replaced by a finite box (in z-direction) with length �. Let EQM
D (n, �, r, a) and

EQM
N (n, �, r, a) denote its ground state energy with Dirichlet and Neumann

boundary conditions, respectively.

Lemma 8.3. Let E1D
D (n, �, g) and E1D

N (n, �, g) denote the ground state energy
of (8.3) on L2([0, �]n), with Dirichlet and Neumann boundary conditions, re-
spectively, and let g be given by (8.10). Then there is a finite number C > 0
such that

EQM
N (n, �, r, a)− ne

⊥

r2
≥ E1D

N (n, �, g)

×
(

1− Cn
(a
r

)1/8
[
1 +

nr

�

(a
r

)1/8
])

.

(8.20)

Moreover,

EQM
D (n, �, r, a)− ne

⊥

r2
≤ E1D

D (n, �, g)

×
(

1 + C

[(na
r

)2
(

1 +
a�

r2

)]1/3
)
,

(8.21)

provided the term in square brackets is less than 1.

This Lemma is the key to the proof of Theorems 8.1 and 8.2. The reader
interested in the details is referred to [58]. Here we only give a sketch of the
proof of Lemma 8.3.

Proof (Lemma 8.3). We start with the upper bound (8.21). Let ψ de-
note the ground state of (8.3) with Dirichlet boundary conditions, normal-

ized by 〈ψ|ψ〉 = 1, and let ρ
(2)
ψ denote its two-particle density, normal-

ized by
∫
ρ
(2)
ψ (z, z′)dzdz′ = 1. Let G and F be given by G(x1, . . . ,xn) =
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ψ(z1, . . . , zn)
∏n

j=1 br(x
⊥
j ) and F (x1, . . . ,xn) =

∏
i<j f(|xi − xj |). Here f is

a monotone increasing function, with 0 ≤ f ≤ 1 and f(t) = 1 for t ≥ R
for some R ≥ R0. For t ≤ R we shall choose f(t) = f0(t)/f0(R), where f0
is the solution to the zero-energy scattering equation for va (2.3). Note that
f0(R) = 1 − a/R for R ≥ R0, and f ′0(t) ≤ t−1 min{1, a/t}. We use as a trial
wave function

Ψ(x1, . . . ,xn) = G(x1, . . . ,xn)F (x1, . . . ,xn) . (8.22)

We first have to estimate the norm of Ψ . Using the fact that F is 1 whenever
no pair of particles is closer together than a distance R, we obtain

〈Ψ |Ψ〉 ≥ 1− n(n− 1)

2

πR2

r2
‖b‖4

4 . (8.23)

To evaluate the expectation value of the Hamiltonian, we use

〈Ψ | −∆j |Ψ〉 = −
∫
F 2G∆jG+

∫
G2|∇jF |2 (8.24)

and the Schrödinger equation Hn,gψ = E1D
D ψ. This gives

〈Ψ |H |Ψ〉 =
(
E1D

D +
n

r2
e⊥
)
〈Ψ |Ψ〉 − g〈Ψ |

∑
i<j

δ(zi − zj)|Ψ〉

+

∫
G2

⎛⎝ n∑
j=1

|∇jF |2 +
∑
i<j

va(|xi − xj |)|F |2
⎞⎠ .

(8.25)

Now, since 0 ≤ f ≤ 1 and f ′ ≥ 0 by assumption, F 2 ≤ f(|xi − xj |)2, and

n∑
j=1

|∇jF |2 ≤ 2
∑
i<j

f ′(|xi − xj |)2 + 4
∑

k<i<j

f ′(|xk − xi|)f ′(|xk − xj |) . (8.26)

Consider the first term on the right side of (8.26), together with the last term
in (8.25). These terms are bounded above by

n(n−1)

∫
br(x

⊥)2br(y
⊥)2ρ

(2)
ψ (z, z′)

(
f ′(|x− y|)2 + 1

2va(|x− y|)f(|x− y|)2
)
.

(8.27)
Let

h(z) =

∫ (
f ′(|x|)2 + 1

2va(|x|)f(|x|)2
)
dx⊥ . (8.28)

Using Young’s inequality for the integration over the ⊥-variables, we get

(8.27) ≤ n(n− 1)

r2
‖b‖4

4

∫
R2

ρ
(2)
ψ (z, z′)h(z − z′)dzdz′ . (8.29)
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By similar methods, one can show that the contribution from the last term in
(8.26) is bounded by

2

3
n(n− 1)(n− 2)

‖b‖2
∞
r2

‖b‖4
4

r2
‖k‖∞

∫
R2

ρ
(2)
ψ (z, z′)k(z − z′)dzdz′ , (8.30)

where

k(z) =

∫
f ′(|x|)dx⊥ . (8.31)

Note that both h and k are supported in [−R,R].
Now, for any φ ∈ H1(R),

∣∣|φ(z)|2 − |φ(z′)|2
∣∣ ≤ 2|z − z′|1/2

(∫
R

|φ|2
)1/4

(∫
R

∣∣∣∣dφdz
∣∣∣∣2
)3/4

. (8.32)

Applying this to ρ
(2)
ψ (z, z′), considered as a function of z only, we get∫

R2

ρ
(2)
ψ (z, z′)h(z − z′)dzdz′ −

∫
R

h(z)dz

∫
ρ
(2)
ψ (z, z)dz

≤ 2R1/2

∫
R

h(z)dz

〈
ψ

∣∣∣∣− d2

dz21

∣∣∣∣ψ〉3/4

, (8.33)

where we used Schwarz’s inequality, the normalization of ρ
(2)
ψ and the sym-

metry of ψ. The same argument is used for (8.30) with h replaced by k.
It remains to bound the second term in (8.25). As in the estimate for the

norm of Ψ , we use again the fact that F is equal to 1 as long as the particles
are not within a distance R. We obtain

〈Ψ |
∑
i<j

δ(zi − zj)|Ψ〉 ≥
n(n− 1)

2

∫
ρ
(2)
ψ (z, z)dz

(
1− n(n− 1)

2

πR2

r2
‖b‖4

4

)
.

(8.34)

We also estimate g 1
2n(n − 1)

∫
ρ
(2)
ψ (z, z)dz ≤ E1D

D and 〈ψ| − d2/dz21 |ψ〉 ≤
E1D

D /n. We have
∫
h(z)dz = 4πa(1 − a/R)−1, and the terms containing k

can be bounded by ‖k‖∞ ≤ 2πa(1 + ln(R/a))/(1 − a/r) and
∫
k(z)dz ≤

2πaR(1− a/(2R))/(1− a/r). Putting together all the bounds, and choosing

R3 =
ar2

n2(1 + g�)
, (8.35)

this proves the desired result.
We are left with the lower bound (8.20). We write a general wave function

Ψ as

Ψ(x1, . . . ,xn) = f(x1, . . . ,xn)

n∏
k=1

br(x
⊥
k ) , (8.36)
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which can always be done, since br is a strictly positive function. Partial
integration gives

〈Ψ |H |Ψ〉 =

ne⊥

r2
+

n∑
i=1

∫ ⎡⎣|∇if |2 + 1
2

∑
j, j �=i

va(|xi − xj |)|f |2
⎤⎦ n∏

k=1

br(x
⊥
k )2dxk . (8.37)

Choose some R > R0, fix i and xj , j 	= i, and consider the Voronoi cell
Ωj around particle j, i.e., Ωj = {x : |x − xj | ≤ |x − xk| for all k 	= j}. If
Bj denotes the ball of radius R around xj , we can estimate with the aid of
Lemma 2.5∫

Ωj∩Bj

br(x
⊥
i )2
(
|∇if |2 + 1

2va(|xi − xj |)|f |2
)
dxi

≥
minx∈Bj br(x

⊥)2

maxx∈Bj br(x
⊥)2

a

∫
Ωj∩Bj

br(x
⊥
i )2U(|xi − xj |)|f |2 . (8.38)

Here U is given in (2.30). For some δ > 0 let Bδ be the subset of R2

where b(x⊥)2 ≥ δ, and let χBδ
denote its characteristic function. Estimat-

ing maxx∈Bj br(x
⊥)2 ≤ minx∈Bj br(x

⊥)2 + 2(R/r3)‖∇b2‖∞, we obtain

minx∈Bj br(x
⊥)2

maxx∈Bj br(x
⊥)2

≥ χBδ
(x⊥

j /r)

(
1− 2

R

r

‖∇b2‖∞
δ

)
. (8.39)

Denoting k(i) the nearest neighbor to particle i, we conclude that, for 0 ≤
ε ≤ 1,

n∑
i=1

∫ ⎡⎣|∇if |2 + 1
2

∑
j, j �=i

va(|xi − xj |)|f |2
⎤⎦ n∏

k=1

br(x
⊥
k )2dxk

≥
n∑

i=1

∫ [
ε|∇if |2 + (1− ε)|∇if |2χmink |zi−zk|≥R(zi)

+ a′U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)|f |2
] n∏

k=1

br(x
⊥
k )2dxk ,

(8.40)

where a′ = a(1− ε)(1− 2R‖∇b2‖∞/rδ).
Define F (z1, . . . , zn) ≥ 0 by

|F (z1, . . . , zn)|2 =

∫
|f(x1, . . . ,xn)|2

n∏
k=1

br(x
⊥
k )2dx⊥

k . (8.41)

Neglecting the kinetic energy in ⊥-direction in the second term in (8.40) and
using the Schwarz inequality to bound the longitudinal kinetic energy of f by
the one of F , we get the estimate
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〈Ψ |H |Ψ〉 − ne
⊥

r2

≥
n∑

i=1

∫ [
ε|∂iF |2 + (1− ε)|∂iF |2χmink |zi−zk|≥R(zi)

] n∏
k=1

dzk

+

n∑
i=1

∫ [
ε|∇⊥

i f |2 + a′U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)|f |2
]

×
n∏

k=1

br(x
⊥
k )2dxk ,

(8.42)

where ∂j = d/dzj, and ∇⊥ denotes the gradient in ⊥-direction. We now
investigate the last term in (8.42). Consider, for fixed z1, . . . , zn, the expression

n∑
i=1

∫ [
ε|∇⊥

i f |2 + a′U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)|f |2
] n∏

k=1

br(x
⊥
k )2dx⊥

k .

(8.43)
To estimate this term from below, we use Temple’s inequality, as in Sect. 2.2.
Let ẽ⊥ denote the gap above zero in the spectrum of −∆⊥ + V ⊥ − e⊥, i.e.,
the lowest non-zero eigenvalue. By scaling, ẽ⊥/r2 is the gap in the spec-
trum of −∆⊥ + V ⊥

r − e⊥/r2. Note that under the transformation φ �→ b−1
r φ

this latter operator is unitarily equivalent to ∇⊥∗ · ∇⊥ as an operator on
L2(R2, br(x

⊥)2dx⊥), as considered in (8.43). Hence also this operator has
ẽ⊥/r2 as its energy gap. Denoting

〈Uk〉 =

∫ ( n∑
i=1

U(|xi − xk(i)|)χBδ
(x⊥

k(i)/r)

)k n∏
k=1

br(x
⊥
k )2dx⊥

k , (8.44)

Temple’s inequality implies

(8.43) ≥ |F |2a′〈U〉
(

1− a′ 〈U
2〉

〈U〉
1

εẽ⊥/r2 − a′〈U〉

)
. (8.45)

Now, using (2.30) and Schwarz’s inequality, 〈U2〉 ≤ 3n(R3 −R3
0)

−1〈U〉, and

〈U〉 ≤ n(n− 1)
‖b‖4

4

r2
3πR2

R3 − R3
0

. (8.46)

Therefore
(8.45) ≥ |F |2a′′〈U〉 , (8.47)

where we put all the error terms into the modified coupling constant a′′. It
remains to derive a lower bound on 〈U〉. Let

d(z − z′) =

∫
R4

br(x
⊥)2br(y

⊥)2U(|x− y|)χBδ
(y⊥/r)dx⊥dy⊥ . (8.48)



162 E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason

Note that d(z) = 0 if |z| ≥ R. An estimate similar to (2.36) gives

〈U〉 ≥
∑
i�=j

d(zi − zj)
(

1− (n− 2)
πR2

r2
‖b‖2

∞

)
. (8.49)

Note that, for an appropriate choice of R, d is close to a δ-function with the
desired coefficient. To make the connection with the δ-function, we can use a
bit of the kinetic energy saved in (8.42) to obtain∫ [

ε

n− 1
|∂iF |2 + a′′′d(zi − zj)|F |2

]
dzi

≥ 1
2g

′ max
|zi−zj|≤R

|F |2χ[R,�−R](zj)

(
1−
(

2(n− 1)

ε
g′R
)1/2
)
. (8.50)

Putting all the previous estimates together, we arrive at

〈Ψ |H |Ψ〉 − ne
⊥

r2
≥

n∑
i=1

∫ [
(1 − ε)|∂iF |2χmink |zi−zk|≥R(zi)

] n∏
k=1

dzk

+
∑
i�=j

1
2g

′′
∫

max
|zi−zj|≤R

|F |2χ[R,�−R](zj)
∏

k, k �=i

dzk

(8.51)

for an appropriate coupling constant g′′ that contains all the error terms. Now
assume that (n+ 1)R < �. Given an F with

∫
|F |2dz1 · · ·dzn = 1, define, for

0 ≤ z1 ≤ z2 ≤ · · · ≤ zn ≤ �− (n+ 1)R,

ψ(z1, . . . , zn) = F (z1 +R, z2 + 2R, z3 + 3R, . . . , zn + nR) , (8.52)

and extend the function to all of [0, � − (n + 1)R]n by symmetry. A simple
calculation shows that

(8.51) ≥ 〈ψ|H ′|ψ〉 ≥ (1− ε)E1D
N (n, �− (n+ 1)R, g′′)〈ψ|ψ〉

≥ (1− ε)E1D
N (n, �, g′′)〈ψ|ψ〉 ,

(8.53)

where H ′ is the Hamiltonian (8.3) with a factor (1− ε) in front of the kinetic
energy term.

It remains to estimate 〈ψ|ψ〉. Using that F is related to the true ground
state Ψ by (8.41), we can estimate it in terms of the total QM energy, namely

〈ψ|ψ〉 ≥ 1− 2R

g′′

(
EQM

N (N, �, r, a)− ne
⊥

r2

)
− 2n

R

�
− 4nR

(
1

n
EQM

N (n, �, r, a)− e
⊥

r2

)1/2

.

(8.54)

Collecting all the error terms and choosing

R = r
(a
r

)1/4

, ε =
(a
r

)1/8

, δ =
(a
r

)1/8

, (8.55)

(8.53) and (8.54) lead to the desired lower bound. � 
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As already noted above, Lemma 8.3 is the key to the proof of Theorems 8.1
and 8.2. The estimates are used in each box, and the particles are distributed
optimally among the boxes. For the global lower bound, superadditivity of
the energy and convexity of the energy density ρ3e(g/ρ) are used, generalizing
corresponding arguments in Sect. 2. We refer to [58] for details.

9 The Charged Bose Gas, the One- and Two-Component
Cases

The setting now changes abruptly. Instead of particles interacting with a short-
range potential v(|xi − xj |) they interact via the Coulomb potential

v(|xi − xj |) = |xi − xj |−1 (9.1)

(in 3 dimensions). The unit of electric charge is 1 in our units.
We will here consider both the one- and two-component gases. In the

one-component gas (also referred to as the one-component plasma or bosonic
jellium) we consider positively charged particles confined to a box with a
uniformly charged background. In the two-component gas we have particles
of both positive and negative charges moving in all of space.

9.1 The One-Component Gas

In the one-component gas there are N positively charged particles in a large
box Λ of volume L3 as before, with ρ = N/L3.

To offset the huge Coulomb repulsion (which would drive the particles to
the walls of the box) we add a uniform negative background of precisely the
same charge, namely density ρ. Our Hamiltonian is thus

H
(1)
N =

N∑
i=1

−µ∆i − V (xi) +
∑

1≤i<j≤N

v(|xi − xj |) + C (9.2)

with

V (x) = ρ

∫
Λ

|x− y|−1dy and C =
1

2
ρ

∫
Λ

V (x)dx . (9.3)

We shall use Dirichlet boundary conditions. As before the Hamiltonian acts
on symmetric wave functions in L2(ΛN , dx1 · · ·dxN ).

Each particle interacts only with others and not with itself. Thus, despite
the fact that the Coulomb potential is positive definite, the ground state
energy E0 can be (and is) negative (just take Ψ =const.). This time, large ρ
is the ‘weakly interacting’ regime.

We know from the work in [50] that the thermodynamic limit e0(ρ) defined
as in (2.2) exists. It also follows from this work that we would, in fact, get the
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same thermodynamic energy if we did not restrict the number of particles N ,
but considered the grand-canonical case where we minimize the energy over
all possible particle numbers, but keeping the background charge ρ fixed.

Another way in which this problem is different from the previous one is
that perturbation theory is correct to leading order. If one computes (Ψ,HΨ)
with Ψ =const, one gets the right first order answer, namely 0. It is the next
order in 1/ρ that is interesting, and this is entirely due to correlations. In 1961
Foldy [23] calculated this correlation energy according to the prescription of
Bogolubov’s 1947 theory. That theory was not exact for the dilute Bose gas,
as we have seen, even to first order. We are now looking at second order,
which should be even worse. Nevertheless, there was good physical intuition
that this calculation should be asymptotically exact. Indeed it is, as proved
in [60] and [82].

The Bogolubov theory states that the main contribution to the energy
comes from pairing of particles into momenta k,−k and is the bosonic ana-
logue of the BCS theory of superconductivity which came a decade later. I.e.,
Ψ0 is a sum of products of terms of the form exp{ik · (xi − xj)}.

The following theorem is the main result for the one-component gas.

Theorem 9.1 (Foldy’s law for the one-component gas).

lim
ρ→∞

ρ−1/4e0(ρ) = −2

5

Γ (3/4)

Γ (5/4)

(
2

µπ

)1/4

. (9.4)

This is the first example (in more than 1 dimension) in which Bogolubov’s
pairing theory has been rigorously validated. It has to be emphasized, however,
that Foldy and Bogolubov rely on the existence of Bose–Einstein condensa-
tion. We neither make such a hypothesis nor does our result for the energy
imply the existence of such condensation. As we said earlier, it is sufficient to
prove condensation in small boxes of fixed size.

Incidentally, the one-dimensional example for which Bogolubov’s theory
is asymptotically exact to the first two orders (high density) is the repulsive
delta-function Bose gas [48], for which there is no Bose–Einstein condensation.

To appreciate the −ρ1/4 nature of (9.4), it is useful to compare it with
what one would get if the bosons had infinite mass, i.e., the first term in (9.2)
is dropped. Then the energy would be proportional to −ρ1/3 as shown in [50].
Thus, the effect of quantum mechanics is to lower 1

3 to 1
4 .

A problem somewhat related to bosonic jellium is fermionic jellium. Graf
and Solovej [28] have proved that the first two terms are what one would
expect, namely

e0(ρ) = CTFρ
5/3 − CDρ

4/3 + o(ρ4/3) , (9.5)

where CTF is the usual Thomas–Fermi constant and CD is the usual Dirac
exchange constant.

It is supposedly true, for both bosonic and fermionic particles, that there is
a critical mass above which the ground state should show crystalline ordering
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(Wigner crystal), but this has never been proved and it remains an intriguing
open problem, even for the infinite mass case. A simple scaling shows that
large mass is the same as small ρ, and is thus outside the region where a
Bogolubov approximation can be expected to hold.

As for the dilute Bose gas, there are several relevant length scales in the
problem of the charged Bose gas. For the dilute gas there were three scales.
This time there are just two. Because of the long range nature of the Coulomb
problem there is no scale corresponding to the scattering length a. One rel-
evant length scale is again the interparticle distance ρ−1/3. The other is the
correlation length scale �cor ∼ ρ−1/4 (ignoring the dependence on µ). The
order of the correlation length scale can be understood heuristically as fol-
lows. Localizing on a scale �cor requires kinetic energy of the order of �−2

cor.
The Coulomb potential from the particles and background on the scale �cor is
(ρ�3cor)/�cor. Thus the kinetic energy and the Coulomb energy balance when
�cor ∼ ρ−1/4. This heuristics is however much too simplified and hides the
true complexity of the situation.

Note that in the high density limit �cor is long compared to the interparticle
distance. This is analogous to the dilute gas where the scale �c is also long
compared to the interparticle distance [see (2.12)]. There is however no real
analogy between the scale �cor for the charged gas and the scale �c for the
dilute gas. In particular, whereas e0(ρ) for the dilute gas is, up to a constant,
of the same order as the kinetic energy ∼ µ�−2

c we have for the charged gas
that e0(ρ) 	∼ �−2

cor = ρ1/2. The reason for this difference is that on average only
a small fraction of the particles in the charged gas actually correlate.

9.2 The Two-Component Gas

Now we consider N particles with charges ±1. The Hamiltonian is thus

H
(2)
N =

N∑
i=1

−µ∆i +
∑

1≤i<j≤N

eiej
|xi − xj |

. (9.6)

This time we are interested in E
(2)
0 (N) the ground state energy of H

(2)
N min-

imized over all possible combination of charges ei = ±1, i.e., we do not nec-
essarily assume that the minimum occurs for the neutral case. Restricting to
the neutral case would however not change the result we give below.

An equivalent formulation is to say that E
(2)
0 (N) is the ground state energy

of the Hamiltonian acting on all wave functions of space and charge, i.e.,
functions in L2

(
(R3 × {−1, 1})N

)
. As mentioned in the introduction, and

explained in the beginning of the proof of Thm. 2.2, for the calculation of the
ground state energy we may as usual restrict to symmetric functions in this
Hilbert space.

For the two-component gas there is no thermodynamic limit. In fact, Dyson

[18] proved that E
(2)
0 (N) was at least as negative as −(const)N7/5 as N →∞.
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Thus, thermodynamic stability (i.e., a linear lower bound) fails for this gas.
Years later, a lower bound of this −N7/5 form was finally established in [12],
thereby proving that this law is correct.

The connection of this −N7/5 law with the jellium −ρ1/4 law (for which a
corresponding lower bound was also given in [12]) was pointed out by Dyson
[18] in the following way. Assuming the correctness of the −ρ1/4 law, one can
treat the 2-component gas by treating each component as a background for
the other. What should the density be? If the gas has a radius L and if it hasN
bosons then ρ = NL−3. However, the extra kinetic energy needed to compress
the gas to this radius is NL−2. The total energy is then NL−2 −Nρ1/4, and
minimizing this with respect to L gives L ∼ N−1/5 and leads to the −N7/5

law. The correlation length scale is now �cor ∼ ρ−1/4 ∼ N−2/5.

In [18] Dyson conjectured an exact asymptotic expression for E
(2)
0 (N) for

large N . That this asymptotics, as formulated in the next theorem, is indeed
correct is proved in [61] and [82].

Theorem 9.2 (Dyson’s law for the two-component gas).

lim
N→∞

E
(2)
0 (N)

N7/5
= inf

{
µ

∫
R3

|∇Φ|2 − I0
∫

R3

Φ5/2

∣∣∣∣ 0 ≤ Φ,
∫

R3

Φ2 = 1

}
, (9.7)

where I0 is the constant from Foldy’s law:

I0 =
2

5

Γ (3/4)

Γ (5/4)

(
2

µπ

)1/4

. (9.8)

This asymptotics can be understood as a mean field theory for the gas
density, very much like the Gross–Pitaevskii functional for dilute trapped
gases, where the local energy described by Foldy’s law should be balanced by
the kinetic energy of the gas density. Thus if we let the gas density be given
by φ2 then the “mean field” energy should be

µ

∫
R3

|∇φ|2 − I0
∫

R3

φ5/2 . (9.9)

Here
∫
φ2 = N . If we now define Φ(x) = N−8/5φ(N−1/5x) we see that

∫
Φ2 =

1 and that the above energy is

N7/5

(
µ

∫
R3

|∇Φ|2 − I0
∫

R3

Φ5/2

)
. (9.10)

It may be somewhat surprising that it is exactly the same constant I0 that
appears in both the one- and two-component cases. The reason that there are
no extra factors to account for the difference between one and two components
is, as we shall see below, a simple consequence of Bogolubov’s method. The
origin of this equivalence, while clear mathematically, does not appear to have
a simple physical interpretation.
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9.3 The Bogolubov Approximation

In this section we shall briefly explain the Bogolubov approximation and how
it is applied in the case of the charged Bose gas. The Bogolubov method relies
on the exact diagonalization of a Hamiltonian, which is quadratic in creation
and annihilation operators. For the charged Bose gas one only needs a very
simple case of the general diagonalization procedure. On the other hand, the
operators that appear are not exact creation and annihilation operators. A
slightly more general formulation is needed.

Theorem 9.3 (Simple case of Bogolubov’s method). Assume that b±,±
are four (possibly unbounded) commuting operators satisfying the operator in-
equality [

bτ,e, b
∗
τ,e

]
≤ 1 for all e, τ = ± . (9.11)

Then for all real numbers A,B+,B− ≥ 0 we have

A
∑

τ,e=±1

b∗τ,ebτ,e

+
∑

e,e′=±1

√
BeBe′ee′(b∗+,eb+,e′ + b∗−,eb−,e′ + b∗+,eb

∗
−,e′ + b+,eb−,e′)

≥ −(A+ B+ + B−) +
√

(A+ B+ + B−)2 − (B+ + B−)2 . (9.12)

If b±,± are four annihilation operators then the lower bound is sharp.

Proof. Let us introduce

d∗± = (B+ + B−)−1/2(B1/2
+ b∗±,+ − B1/2

− b∗±,−) , (9.13)

and
c∗± = (B+ + B−)−1/2(B1/2

− b∗±,+ + B1/2
+ b∗±,−) . (9.14)

Then these operators satisfy

[d+, d
∗
+] ≤ 1, [d−, d

∗
−] ≤ 1 . (9.15)

The operator that we want to estimate from below may be rewritten as

A(d∗+d+ + d∗−d− + c∗+c+ + c∗−c−)

+ (B+ + B−)
(
d∗+d+ + d∗−d− + d∗+d

∗
− + d+d−

)
. (9.16)

We may now complete the squares to write this as

A(c∗+c+ + c∗−c−) +D(d∗+ + λd−)(d∗+ + λd−)∗

+D(d∗− + λd+)(d∗− + λd+)∗ −Dλ2([d+, d
∗
+] + [d−, d

∗
−]) (9.17)

if
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D(1 + λ2) = A+ B+ + B−, 2Dλ = B+ + B− . (9.18)

We choose the solution

λ = 1 +
A

B+ + B−
−

√(
1 +

A
(B+ + B−)

)2

− 1 . (9.19)

Hence

Dλ2 = 1
2

(
A+ B+ + B− −

√
(A+ B+ + B−)2 − (B+ + B−)2

)
. (9.20)

� 

In the theorem above one could of course also have included linear terms
in bτ,e in the Hamiltonian. In the technical proofs in [60, 61] the Bogolubov
diagonalization with linear terms is indeed being used to control certain error
terms. Here we shall not discuss the technical details of the proofs. We have
therefore stated the theorem in the simplest form in which we shall need it to
derive the leading contribution.

In our applications to the charged Bose gas the operators b±,e will corre-
spond to the annihilation of particles with charge e = ± and momenta ±k for
some k ∈ R3. Thus, only equal and opposite momenta couple. In a translation
invariant case this would be a simple consequence of momentum conservation.
The one-component gas is not translation invariant, in our formulation. The
two-component gas is translation invariant, but it is natural to break trans-
lation invariance by going into the center of mass frame. In both cases it is
only in some approximate sense that equal and opposite momenta couple.

In the case of the one-component gas we only need particles of one sign.
In this case we use the above theorem with b±,− = 0 and B− = 0.

We note that the lower bounds in Theorem 9.3 for the one- and two-
component gases are the same except for the replacement of B+ in the one-
component case by B+ + B− in the two-component case. In the application
to the two-component gas B+ and B− will be proportional to the particle
densities for respectively the positive or negatively charged particles. For the
one-component gas B+ is proportional to the background density.

The Bogolubov diagonalization method cannot be immediately applied to

the operators H
(1)
N or H

(2)
N since these operators are not quadratic in creation

and annihilation operators. In fact, they are quartic. They have the general
form ∑

α,β

tαβa
∗
αaβ + 1

2

∑
α,β,µ,ν

wαβµνa
∗
αa

∗
βaνaµ , (9.21)

with
tαβ = 〈α|T |β〉, wαβµν = 〈αβ|W |µν〉 , (9.22)

where T is the one-body part of the Hamiltonian andW is the two-body-part
of the Hamiltonian.
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The main step in Bogolubov’s approximation is now to assume Bose–
Einstein condensation, i.e., that almost all particles are in the same one-
particle state. In case of the two-component gas this means that almost half
the particles are positively charged and in the same one-particle state as al-
most all the other half of negatively charged particles. We denote this con-
densate state by the index α = 0 in the sums above. Based on the assumption
of condensation Bogolubov now argues that one may ignore all terms in the
quartic Hamiltonian above which contain 3 or 4 non-zero indices and at the
same time replace all creation and annihilation operators of the condensate
by their expectation values. The result is a quadratic Hamiltonian (includ-
ing linear terms) in the creation and annihilation with non-zero index. This
Hamiltonian is of course not particle number preserving, reflecting the simple
fact that particles may be created out of the condensate or annihilated into
the condensate.

In Sect. 9.5 below it is explained how to construct trial wave functions for
the one- and two-component charged gases whose expectations agree essen-
tially with the prescription in the Bogolubov approximation. The details are
to appear in [82]. This will imply upper bounds on the energies corresponding
to the asymptotic forms given in Theorems 9.1 and 9.2.

In [60, 61] it is proved how to make the steps in the Bogolubov approxi-
mation rigorous as lower bounds. The main difficulty is to control the degree
of condensation. As already explained it is not necessary to prove condensa-
tion in the strong sense described above. We shall only prove condensation
in small boxes. Put differently, we shall not conclude that most particles are
in the same one-particle state, but rather prove that most particles occupy
one-particle states that look the same on short scales, i.e., that vary slowly.
Here the short scale is the correlation length scale �cor.

9.4 The Rigorous Lower Bounds

As already mentioned we must localize into small boxes of some fixed size �.
This time we must require �cor � �. For the one-component gas this choice
is made only in order to control the degree of condensation. For the two-
component gas it is required both to control the order of condensation, and
also to make a local constant density approximation. The reason we can con-
trol the degree of condensation in a small box is that the localized kinetic
energy has a gap above the lowest energy state. In fact, the gap is of order
�−2. Thus if we require that � is such that N�−2 is much greater than the
energy we may conclude that most particles are in the lowest eigenvalue state
for the localized kinetic energy. We shall always choose the localized kinetic
energy in such a way that the lowest eigenstate, and hence the condensate, is
simply a constant function.
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Localizing the Interaction

In contrast to the dilute gas the long range Coulomb potential prevents us
from simply ignoring the interaction between the small boxes. To overcome
this problem we use a sliding technique first introduced in [12].

Theorem 9.4 (Controlling interactions by sliding). Let χ be a smooth
approximation to the characteristic function of the unit cube centered at the
origin. For � > 0 and z ∈ R3 let χz(x) = χ((x− z)/�). There exists an ω > 0
depending on χ (in such a way that it tends to infinity as χ approximates the
characteristic function) such that

∑
1≤i<j≤N

eiej
|xi − xj |

≥
(∫

χ2

)−1 ∫
R3

∑
1≤i<j≤N

eiejw�z(xi,xj)dz−
Nω

2�
,

(9.23)
for all x1, . . . ∈ R3 and e1, . . . = ±1, where

wz(x,y) = χz(x)Yω/�(x− y)χz(y) (9.24)

with Yµ(x) = |x|−1 exp(−µ|x|) being the Yukawa potential.

The significance of this result is that the two-body potential wz is localized
to the cube of size � centered at �z. The lower bound above is thus an integral
over localized interactions sliding around with the integration parameter.

We have stated the sliding estimate in the form relevant to the two-
component problem. There is an equivalent version for the one-component gas,
where the sum of the particle-particle, particle-background, and background-
background interactions may be bounded below by corresponding localized
interactions.

Since � � �cor the error in the sliding estimate is much smaller than
ωN/�cor, which for both the one and two-component gases is of order ω times
the order of the energy. Thus, since � is much bigger than �cor, we have room
to let ω be very large, i.e., χ is close to the characteristic function.

Localizing the Kinetic Energy

Having described the technique to control the interaction between localized
regions we turn next to the localization of the kinetic energy.

For the two-component gas this is done in two steps. As already mentioned
it is natural to break the translation invariance of the two-component gas. We
do this by localizing the system into a box of size L′ � N−1/5 (which as we
saw is the expected size of the gas) as follows. By a partition of unity we
can divide space into boxes of this size paying a localization error due to the
kinetic energy of order NL′−2 � N7/5. We control the interaction between
these boxes using the sliding technique.
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We may now argue, as follows, that the energy is smallest if all the particles
are in just one box. For simplicity we give this argument for the case of two
boxes. Suppose the two boxes have respective wave functions ψ and ψ̃. The
total energy of these two non-interacting boxes is E + Ẽ. Now put all the
particles in one box with the trial function Ψ = ψψ̃. The fact that this function
is not bosonic (i.e., it is not symmetric with respect to all the variables) is
irrelevant because the true bosonic ground state energy is never greater than
that of any trial state (Perron–Frobenius Theorem). The energy of Ψ is

E + Ẽ +

∫∫
ρψ(x)|x− y|−1ρ �

ψ(y)dxdy , (9.25)

where ρψ and ρ �

ψ are the respective charge densities of the states ψ and ψ̃.
We claim that the last Coulomb term can be made non-positive. How? If it
is positive then we simply change the state ψ̃ by interchanging positive and
negative charges (only in ψ̃ and not in ψ). The reader is reminded that we
have not constrained the number of positive and negative particles but only
their sum. This change in ψ̃ reverses the relative charge of the states ψ and ψ̃
so, by symmetry the energies E and Ẽ do not change, whereas the Coulomb
interaction changes sign.

The localization into smaller cubes of size � can however not be done by
a crude partition of unity localization. Indeed, this would cost a localization
error of order N�−2, which as explained is required to be of much greater
order than the energy.

For the one-component charged gas we may instead use a Neumann local-

ization of the kinetic energy, as for the dilute Bose gas. If we denote by ∆
(z)
�

the Neumann Laplacian for the cube of size � centered at z we may, in the
spirit of the sliding estimate, write the Neumann localization Laplacian in all
of R3 as

−∆ =

∫
−∆

(�z)
� dz . (9.26)

In order to write the localized kinetic energy in the same form as the localized
interaction we must introduce the smooth localization χ as in Theorem 9.4.
This can be achieved by ignoring the low momentum part of the kinetic energy.

More precisely, there exist ε(χ) and s(χ) such that ε(χ) → 0 and s(χ) → 0
as χ approaches the characteristic function of the unit cube and such that
(see Lemma 6.1 in [60])

−∆
(z)
� ≥ (1 − ε(χ))Pzχz(x)F�s(χ)(−∆)χz(x)Pz (9.27)

where Pz denotes the projection orthogonal to constants in the cube of size �
centered at z and

Fs(u) =
u2

u+ s−2
. (9.28)

For u � s−2 we have that Fs(u) � u. Hence the effect of F in the operator
estimate above is to ignore the low momentum part of the Laplacian.
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For the two-component gas one cannot use the Neumann localization as
for the one-component gas. Using a Neumann localization ignores the kinetic
energy corresponding to long range variations in the wave function and one
would not get the kinetic energy term

∫
µ|∇Φ|2 in (9.7). This is the essential

difference between the one- and two-component cases. This problem is solved
in [61] where a new kinetic energy localization technique is developed. The
idea is again to separate the high and low momentum part of the kinetic en-
ergy. The high momentum part is then localized as before, whereas the low
momentum part is used to connect the localized regions by a term correspond-
ing to a discrete Laplacian. (For details and the proof the reader is referred
to [61].)

Theorem 9.5 (A many body kinetic energy localization). Let χz, Pz

and Fs be as above. There exist ε(χ) and s(χ) such that ε(χ) → 0 and s(χ) → 0
as χ approaches the characteristic function of the unit cube and such that for
all normalized symmetric wave functions Ψ in L2((R3 × {−1, 1})N) and all
Ω ⊂ R3 we have

(1 + ε(χ))

(
Ψ,

N∑
i=1

−∆iΨ

)
≥
∫

Ω

[
(Ψ,P�zχ�z(x)F�s(χ)(−∆)χ�z(x)P�zΨ)

+ 1
2�

−2
∑
y∈Z

3

|y|=1

(SΨ (�(z + y))− SΨ (�z))2
]
dz

− const. �−2Vol(Ω) ,

(9.29)

where

SΨ (z) =
√(
Ψ, (a∗0+(z)a0+(z) + a∗0−(z)a0−(z))Ψ

)
+ 1− 1 (9.30)

with a0±(z) being the annihilation of a particle of charge ± in the state given
by the normalized characteristic function of the cube of size � centered at z.

The first term in the kinetic energy localization in this theorem is the same as
in (9.27). The second term gives rise to a discrete Laplacian for the function
SΨ (�z), which is essentially the number of condensate particles in the cube of
size � centered at �z. Since we will eventually conclude that most particles are
in the condensate this term will after approximating the discrete Laplacian
by the continuum Laplacian lead to the term

∫
µ|∇φ|2 in (9.9). We shall not

discuss this any further here.
When we apply this theorem to the two-component gas the set �Ω will be

the box of size L′ discussed above. Hence the error term �−2Vol(Ω) will be
of order L′3/�−5 � (N2/5�)−5(N1/5L′)3N7/5. Thus since �� N−2/5 we may
still choose L′ � N−1/5, as required, and have this error term be lower order
than N7/5.



The Quantum-Mechanical Many-Body Problem: The Bose Gas 173

Controlling the Degree of Condensation

After now having localized the problem into smaller cubes we are ready to
control the degree of condensation. We recall that the condensate state is the
constant function in each cube. Let us denote by n̂z the number of excited
(i.e., non-condensed particles) in the box of size � centered at z. Thus for the
two-component gas n̂z + a∗0+(z)a0+(z) + a∗0−(z)a0−(z) is the total number of
particles in the box and a similar expression gives the particle number for the
one-component gas.

As discussed above we can use the fact that the kinetic energy localized
to a small box has a gap above its lowest eigenvalue to control the number
of excited particles. Actually, this will show that the expectation (Ψ, n̂zΨ) is
much smaller than the total number of particles in the box for any state Ψ
with negative energy expectation.

One needs, however, also a good bound on (Ψ, n̂2
zΨ) to control the Coulomb

interaction of the non-condensed particles. This is more difficult. In [60] this
is not achieved directly through a bound on (Ψ, n̂zΨ) in the ground state.
Rather it is proved that one may change the ground state without changing
its energy very much, so that it only contains values of n̂z localized close to
(Ψ, n̂zΨ). The following theorem gives this very general localization technique.
Its proof can be found in [60].

Theorem 9.6 (Localizing large matrices). Suppose that A is an N + 1×
N + 1 Hermitean matrix and let Ak, with k = 0, 1, ..., N , denote the matrix
consisting of the kth supra- and infra-diagonal of A. Let ψ ∈ CN+1 be a
normalized vector and set dk = (ψ,Akψ) and λ = (ψ,Aψ) =

∑N
k=0 dk. (ψ

need not be an eigenvector of A.)
Choose some positive integer M ≤ N + 1. Then, with M fixed, there is

some n ∈ [0, N + 1 −M ] and some normalized vector φ ∈ CN+1 with the
property that φj = 0 unless n + 1 ≤ j ≤ n +M (i.e., φ has length M) and
such that

(φ,Aφ) ≤ λ+
C

M2

M−1∑
k=1

k2|dk|+ C
N∑

k=M

|dk| , (9.31)

where C > 0 is a universal constant. (Note that the first sum starts with
k = 1.)

To use this theorem we start with a ground state (or approximate ground
state) Ψ to the many body problem. We then consider the projections of Ψ
onto the eigenspaces of n̂z. Since the possible eigenvalues run from 0 to N
these projections span an at most N + 1 dimensional space.

We use the above theorem with A being the many body Hamiltonian
restricted to this N + 1 dimensional subspace. Since the Hamiltonian can
change the number of excited particles by at most two we see that dk vanishes
for k ≥ 3. We shall not here discuss the estimates on d1 and d2 (see [60, 61]).
The conclusion is that we may, without changing the energy expectation of
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Ψ too much, assume that the values of n̂z run in an interval of length much
smaller than the total number of particles. We would like to conclude that
this interval is close to zero. This follows from the fact that any wave function
with energy expectation close to the minimum must have an expected number
of excited particles much smaller than the total number of particles.

The Quadratic Hamiltonian

Using our control on the degree of condensation it is now possible to estimate
all unwanted terms in the Hamiltonian, i.e., terms that contain 3 or more
creation or annihilation operators corresponding to excited (non-condensate)
states. The proof which is a rather complicated bootstrapping argument is
more or less the same for the one- and two-component gases. The result, in
fact, shows that we can ignore other terms too. In fact if we go back to the
general form (9.21) of the Hamiltonian it turns out that we can control all
quartic terms except the ones with the coefficients:

wαβ00, w00αβ , wα00β , and w0αβ0 . (9.32)

To be more precise, let uα, α = 1, . . . be an orthonormal basis of real functions
for the subspace of functions on the cube of size � centered at z orthogonal
to constants, i.e, with vanishing average in the cube. We shall now omit the
subscript z and let a0± be the annihilation of a particle of charge ±1 in the
normalized constant function in the cube (i.e., in the condensate). Let aα±
with α 	= 0 be the annihilation operator for a particle of charge±1 in the state
uα. We can then show that the main contribution to the localized energy of
the two-component gas comes from the Hamiltonian

Hlocal =

∞∑
α,β=1
e=±1

tαβa
∗
αeaβe

+ 1
2

∑
α,β=1

e,e′=±1

ee′wαβ(2a∗0ea
∗
αe′a0e′aβe + a∗0ea

∗
0e′aαe′aβe + a∗αea

∗
βe′a0e′a0e) ,

(9.33)

where
tαβ = µ(uα,Pzχz(x)F�s(χ)(−∆)χz(x)Pzuβ) (9.34)

and

wαβ = �−3

∫∫
uα(x)χz(x)Yω/�(x− y)χz(y)uβ(x)dxdy . (9.35)

InHlocal we have ignored all error terms and hence also ε(χ) ≈ 0 and
∫
χ2 ≈ 1.

In the case of the one-component gas we get exactly the same local Hamil-
tonian, except that we have only one type of particles, i.e, we may set aα− = 0
above.
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Let ν± =
∑∞

α=0 a
∗
α±aα± be the total number of particles in the box with

charge ±1. For k ∈ R3 we let χk,z(x) = χz(x)eik·x. We then introduce the
operators

bk± = (�3ν±)−1/2a±(Pzχk,z)a
∗
0± , (9.36)

where a±(Pzχk,z) =
∑∞

α=1(χk,z, uα)aα± annihilates a particle in the state
χk,z with charge ±1. It is then clear that the operators bk± all commute and
a straightforward calculation shows that

[bk±, b
∗
k±] ≤ (�3ν±)−1‖Pzχz‖2a∗0±a0± ≤ 1 . (9.37)

If we observe that

∞∑
α,β=1
e=±1

tαβa
∗
αeaβe = (2π)−3

∫
µF�s(χ)(k

2)
∑
e=±

ae(Pzχk,z)
∗ae(Pzχk,z)dk

≥ (2π)−3�3
∫
µF�s(χ)(k

2)
∑
e=±

b∗kebke , (9.38)

we see that

Hlocal ≥ 1
2 (2π)−3

∫ [
µ�3F�s(χ)(k

2)
∑
e=±

(b∗kebke + b∗−keb−ke)

+
∑

ee′=±
Ŷω/�(k)

√
νeνe′ee′(b∗kebk,e′ + b∗−keb−k,e′ + b∗keb

∗
−k,e′ + b−kebk,e′)

]
dk

−
∑

αβ=1

wαβ(a∗α+aβ+ + a∗α−aβ−) (9.39)

The last term comes from commuting a∗0±a0± to a0±a
∗
0±. It is easy to see that

this last term is a bounded operator with norm bounded by

const. (ν+ + ν−)�−3‖Ŷω/�‖∞ ≤ const. ω−2(ν+ + ν−)�−1 . (9.40)

When summing over all boxes we see that the last term above gives a con-
tribution bounded by const. ω−2N�−1 = ω−2(N2/5�)−1N7/5 which is lower
order than the energy.

The integrand in the lower bound on Hlocal is precisely an operator of the
form treated in the Bogolubov method Theorem 9.3. Thus up to negligible
errors we see that the operator Hlocal is bounded below by

1
2 (2π)−3

∫
−(A(k) + B(k)) +

√
(A(k) + B(k))2 − B(k)2 dk , (9.41)

where
A(k) = µ�3F�s(χ)(k

2) and B(k) = νŶω/�(k) (9.42)

with ν = ν+ + ν− being the total number of particles in the small box. A
fairly simple analysis of the above integral shows that we may to leading
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order replace A by µ�3k2 and B(k) by 4πν|k|−2, i.e., we may ignore the cut-
offs. The final conclusion is that the local energy is given to leading order
by

−1

2(2π)3

∫
4πν|k|−2 + µ�3|k|2 −

√
(4πν|k|−2 + µ�3|k|2)2 − (4πν|k|−2)2 dk

= −21/2π−3/4ν

(
ν

µ�3

)1/4 ∫ ∞

0

1 + x4 − x2(2 + x4)1/2 dx . (9.43)

If we finally use that∫ ∞

0

1 + x4 − x2(2 + x4)1/2 dx =
23/4

√
πΓ (3/4)

5Γ (5/4)
(9.44)

we see that the local energy to leading order is −I0ν(ν/�3)1/4. For the one-
component gas we should set ν = ρ�3 and for the two-component gas we
should set ν = φ2�3 (see (9.9)). After replacing the sum over boxes by an
integral and at the same time replace the discrete Laplacian by a continuum
Laplacian, as described above, we arrive at asymptotic lower bounds as in
Theorems 9.1 and 9.2.

There is one issue that we have not discussed at all and which played an
important role in the treatment of the dilute gas. How do we know the number
of particles in each of the small cubes? For the dilute gas a superadditivity
argument was used to show that there was an equipartition of particles among
the smaller boxes. Such an argument cannot be used for the charged gas. For
the one-component gas one simply minimizes the energy over all possible
particle numbers in each little box. It turns out that charge neutrality is
essentially required for the energy to be minimized. Since the background
charge in each box is fixed this fixes the particle number.

For the two-component there is a-priori nothing that fixes the particle
number in each box. More precisely, if we ignored the kinetic energy between
the small boxes it would be energetically favorable to put all particles in one
small box. It is the kinetic energy between boxes, i.e., the discrete Laplacian
term in Theorem 9.5, that prevents this from happening. Thus we could in
principle again minimize over all particle numbers and hope to prove the
correct particle number dependence (i.e., Foldy’s law) in each small box. This
is essentially what is done except that boxes with very many or very few
particles must be treated somewhat differently from the “good” boxes. In the
“bad” boxes we do not prove Foldy’s law, but only weaker estimates that are
adequate for the argument.
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9.5 The Rigorous Upper Bounds

The Upper Bound for the Two-component Gas

To prove an upper bound on the energy E
(2)
0 (N) of the form given in Dyson’s

formula Theorem 9.2 we shall construct a trial function from the prescription
in the Bogolubov approximation. We shall use as an input a minimizer Φ
for the variational problem on the right side of (9.7). That minimizers exist
can be easily seen using spherical decreasing rearrangements. It is however
not important that a minimizer exists. An approximate minimizer would also
do for the argument given here. Define φ0(x) = N3/10Φ(N1/5x). Then again∫
φ2

0 = 1. In terms of the unscaled function φ in (9.9), φ0(x) = N−1φ(x).
Let φα, α = 1, . . . be an orthonormal family of real functions all orthogonal

to φ0. We choose these functions below.
We follow Dyson [18] and choose a trial function which does not have a

specified particle number, i.e., a state in the bosonic Fock space.
As our trial many-body wave function we now choose

Ψ = exp
(
−λ2

0 + λ0a
∗
0+ + λ0a

∗
0−
)

×
∏
α�=0

(1 − λ2
α)1/4 exp

(
−
∑

e,e′=±1

∑
α�=0

λα

4
ee′a∗α,ea

∗
α,e′

)
|0〉 , (9.45)

where a∗α,e is the creation of a particle of charge e = ±1 in the state φα,
|0〉 is the vacuum state, and the coefficients λ0, λ1, . . . will be chosen below
satisfying 0 < λα < 1 for α 	= 0.

It is straightforward to check that Ψ is a normalized function.
Dyson used a very similar trial state in [18], but in his case the exponent

was a purely quadratic expression in creation operators, whereas the one used
here is only quadratic in the creation operators a∗αe, with α 	= 0 and linear
in a∗0±. As a consequence our state will be more sharply localized around the
mean of the particle number.

In fact, the above trial state is precisely what is suggested by the Bogolubov
approximation. To see this note that one has

(a0± − λ0)Ψ = 0, and
(
a∗α+ − a∗α− + λα(aα+ − aα−)

)
Ψ = 0 (9.46)

for all α 	= 0. Thus the creation operators for the condensed states can be
replaced by their expectation values and an adequate quadratic expression in
the non-condensed creation and annihilation operators is minimized.

Consider now the operator

γ =

∞∑
α=1

λ2
α

1− λ2
α

|φα〉〈φα| . (9.47)

A straightforward calculation of the energy expectation in the state Ψ gives
that
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Ψ,

∞∑
N=0

H
(2)
N Ψ

)
= 2λ2

0µ

∫
(∇φ0)

2 + Tr (−µ∆γ)

+ 2λ2
0Tr
(
K
(
γ −
√
γ(γ + 1)

))
,

(9.48)

where K is the operator with integral kernel

K(x,y) = φ0(x)|x− y|−1φ0(y) . (9.49)

Moreover, the expected particle number in the state Ψ is 2λ2
0 +Tr(γ). In order

for Ψ to be well defined by the formula (9.45) we must require this expectation
to be finite.

Instead of making explicit choices for the individual functions φα and the
coefficients λα, α 	= 0 we may equivalently choose the operator γ. In defining
γ we use the method of coherent states. Let χ be a non-negative real and
smooth function supported in the unit ball in R3, with

∫
χ2 = 1. Let as

before N−2/5 � �� N−1/5 and define χ�(x) = �−3/2χ(x/�). We choose

γ = (2π)−3

∫
R3×R3

f(u, |p|)P⊥
φ0
|θu,p〉〈θu,p|P⊥

φ0
dudp (9.50)

where P⊥
φ0

is the projection orthogonal to φ0,

θu,p(x) = exp(ip · x)χ�(x− u) , (9.51)

and

f(u, |p|) =
1

2

(
p4 + 16πλ2

0µ
−1φ0(u)2

p2 (p4 + 32πλ2
0µ

−1φ0(u)2)
1/2

− 1

)
. (9.52)

We note that γ is a positive trace class operator, γφ0 = 0, and that all
eigenfunctions of γ may be chosen real. These are precisely the requirements
needed in order for γ to define the orthonormal family φα and the coefficients
λα for α 	= 0.

We use the following version of the Berezin–Lieb inequality [5, 46]. Assume
that ξ(t) is an operator concave function of R+ ∪ {0} with ξ(0) ≥ 0. Then if
Y is a positive semi-definite operator we have

Tr (Y ξ(γ)) ≥ (2π)−3

∫
ξ(f(u, |p|))

(
θu,p,P⊥

φ0
Y P⊥

φ0
θu,p

)
dudp . (9.53)

We use this for the function ξ(t) =
√
t(t+ 1). Of course, if ξ is the identity

function then (9.53) is an identity. If Y = I then (9.53) holds for all concave
ξ with ξ(0) ≥ 0.

Proving an upper bound on the energy expectation (9.48) is thus reduced
to the calculations of explicit integrals. After estimating these integrals one
arrives at the leading contribution (for large λ0)
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2λ2
0µ

∫
(∇φ0)

2 +

∫∫ (
µp2 + 2λ2

0φ0(u)2
4π

p2

)
f(u, |p|)

− 4π

p2
2λ2

0φ0(u)2
√
f(u, |p|)(f(u, |p|) + 1) dpdu

= 2λ2
0µ

∫
(∇φ0)

2 − I0
∫

(2λ2
0)

5/4φ
5/2
0 , (9.54)

where I0 is as in Theorem 9.2.
If we choose λ0 =

√
N/2 we get after a simple rescaling that the energy

above is N7/5 times the right side of (9.7) (recall that Φ was chosen as the
minimizer). We also note that the expected number of particles is

2λ2
0 + Tr(γ) = N +O(N3/5) , (9.55)

as N →∞.
The only remaining problem is to show how a similar energy could be

achieved with a wave function with a fixed number of particles N , i.e., how to

show that we really have an upper bound on E
(2)
0 (N). We indicate this fairly

simple argument here.
We construct a trial function Ψ ′ as above, but with an expected particle

number N ′ chosen appropriately close to, but slightly smaller than N . More
precisely, N ′ will be smaller than N by an appropriate lower order correction.
It is easy to see then that the mean deviation of the particle number distrib-
ution in the state Ψ ′ is lower order than N . In fact, it is of order

√
N ′ ∼

√
N .

Using that we have a good lower bound on the energy E
(2)
0 (n) for all n and

that Ψ ′ is sharply localized around its mean particle number, we may, with-
out changing the energy expectation significantly, replace Ψ ′ by a normalized
wave function Ψ that only has particle numbers less than N . Since the func-

tion n �→ E
(2)
0 (n) is a decreasing function we see that the energy expectation

in the state Ψ is, in fact, an upper bound to E
(2)
0 (N).

The Upper Bound for the One-component Gas

The upper bound for the one-component gas is proved in a very similar way
as for the two-component gas. We shall simply indicate the main differences
here. We will again choose a trial state without a fixed particle number, i.e., a
grand canonical trial state. Since we know that the one-component gas has a
thermodynamic limit and that there is equivalence of ensembles [50], it makes
no difference whether we choose a canonical or grand-canonical trial state.

For the state φ0 we now choose a normalized function with compact sup-
port in Λ, that is constant on the set {x ∈ Λ | dist(x, ∂Λ) > r}. We shall
choose r > 0 to go to zero as L→∞. Let us also choose the constant n such
that nφ2

0 = ρ on the set where φ0 is constant. Then n ≈ ρL3.
Let again φα, α = 1, . . . be an orthonormal family of real functions orthog-

onal to φ0. As our trial state we choose, this time,
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Ψ =
∏
α�=0

(1− λ2
α)1/4 exp

(
−λ2

0/2 + λ0a
∗
0 −
∑
α�=0

λα

2
a∗αa

∗
α

)
|0〉 , (9.56)

where a∗α is the creation of a particle in the state φα. We will choose Ψ
implicitly by choosing the operator γ defined as in (9.47).

This time we obtain(
Ψ,

∞∑
N=0

H
(1)
N Ψ
)

= λ2
0µ

∫
(∇φ0)

2

+ 1
2

∫∫ |γ(x,y)|2
|x− y| dxdy + 1

2

∫∫ |
√
γ(γ + 1)(x,y)|2
|x− y| dxdy

+ 1
2

∫∫
Λ×Λ

(
ρ− ργ(x)− λ2

0φ0(x)2
) (
ρ− ργ(y)− λ2

0φ0(y)2
)

|x− y| dxdy

+ Tr (−µ∆γ) + λ2
0Tr
(
K
(
γ −
√
γ(γ + 1)

))
,

(9.57)

where ργ(x) = γ(x,x) and K is again given as in (9.49). We must show that
we can make choices such that the first four terms on the right side above are
lower order than the energy, and can therefore be neglected.

We choose

γ = γε = (2π)−3

∫
|p|>ερ1/4

f(|p|)P⊥
φ0
|θp〉〈θp|P⊥

φ0
dp , (9.58)

where ε > 0 is a parameter which we will let tend to 0 at the end of the
calculation. Here P⊥

φ0
as before is the projection orthogonal to φ0 and this

time

f(|p|) =
1

2

(
p4 + 8πµ−1ρ

p2 (p4 + 16πµ−1ρ)
1/2

− 1

)
(9.59)

and
θp(x) =

√
nρ−1 exp(ip · x)φ0(x) . (9.60)

Note that nρ−1φ0(x)2 is 1 on most of Λ. We then again have the Berezin–Lieb
inequality as before. We also find that

ργ(x) = (2π)−3

∫
|p|>ερ1/4

f(|p|)dpnρ−1φ0(x)2
(
1 +O(ε−1ρ−1/4L−1)

)
= Aε(ρ/µ)

3/4nρ−1φ0(x)2
(
1 +O(ε−1ρ−1/4L−1)

)
, (9.61)

where Aε is an explicit function of ε. We now choose λ0 such that λ2
0 =

n(1−Aερ
−1/4µ−3/4), i.e., such that

λ2
0φ

2
0(x) + ργ(x) = nφ0(x)2(1 +O(ε−1ρ−1/2L−1)) ≈ ρ . (9.62)
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It is easy to see that the first term in (9.57) is of order ρL3(rL)−1 and the
fourth term in (9.57) is of order ρL3(ε−2 + ρr2). We may choose r, depending
on L, in such a way that after dividing by ρL3 and letting L → ∞ only the
error ε−2 remains. This allows choosing ε� ρ−1/8.

To estimate the second term in (9.57) we use Hardy’s inequality to deduce∫∫ |γ(x,y)|2
|x− y| dxdy ≤ 2(Tr γ2)1/2Tr (−∆γ2)1/2 , (9.63)

and these terms can be easily estimated using the Berezin–Lieb inequality in
the direction opposite from before, since we are interested now in an upper
bound. The third term in (9.57) is controlled in exactly the same way as the
second term. We are then left with the last two terms in (9.57). They are
treated in exactly the same way as for the two-component gas again using the
Berezin–Lieb inequality.
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1 Introduction

This paper touches upon several traditional topics of 1D linear complex analy-
sis including distribution of zeros of entire functions, completeness problem for
complex exponentials and for other families of special functions, some prob-
lems of spectral theory of selfadjoint differential operators. Their common
feature is the close relation to the theory of complex Fourier transform of
compactly supported measures or, more generally, Fourier–Weyl–Titchmarsh
transforms associated with selfadjoint differential operators with compact re-
solvent.

The last part of the title is a reference to the monograph [19], which
contains a large collection of results that could be described by the (informal)
statement: “it is impossible for a non-zero function and its Fourier transform
to be simultaneously very small.” For example, if a function is supported

� The first author is supported by N.S.F. Grant No. 0201893
�� The second author is supported by N.S.F. Grant No. 020699
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on a small interval, then the set of zeros of its Fourier transform has to be
sparse. Another example: a small amount of information about the potential
of a Schrödinger operator requires a large amount of information about the
spectral measure to determine the operator uniquely.

Our goal is to present a unified approach to certain problems of this type.
The method is based on the reduction (complete or partial) to the injectivity
problem for Toeplitz operators, which makes it possible to use the full strength
of the theory of Hardy–Nevanlinna classes and Hilbert transform rather than
rely on the standard techniques of the theory of entire function (Jensen type
formulae, canonical products, Phragmen–Lindelöf principle). We have been
able to reinterpret various classical results (often with shorter proofs and
stronger conclusions) in a way that allows further generalizations. We explain
the reason for such generalizations (and their nature) below. We begin by
briefly describing the background.

1.1 Complex Exponentials, Paley–Wiener Spaces, and Cartwright
Functions

If a > 0 and Λ ⊂ C, then by the very definition of the classical Fourier
transform,

f(t) �→ f̂(z) =

∫
eiztf(t)dt , (1)

the family of exponential functions EΛ =
{
eiλt : λ ∈ Λ

}
is not complete in

L2(−a, a) if and only if there is a non-trivial function F from the Paley–
Wiener space

PWa = {f̂ : f ∈ L2(−a, a)} ,
such that F = 0 on Λ. According to Paley–Wiener’s theorem, see [33], PWa

can be characterized as the space of entire functions which have exponential
type at most a and are square summable on the real line R.

The Cartwright class Carta, a ≥ 0, consists of entire functions F of expo-
nential type at most a satisfying a weaker integrability condition on R:

log+ |F | ∈ L1(R, Π) , dΠ(t) :=
dt

1 + t2
.

Cartwright functions are considered in detail in the monographs [29], [6], [28],
[12], [25], [19]. The following Krein’s theorem [26] is important for the purpose
of this discussion: an entire function is Cartwright if and only if it belongs
to the Nevanlinna class in the lower and in the upper halfplanes. In a sense,
Paley–Wiener spaces are to Cartwright spaces as the Hardy space H2 is to the
Smirnov–Nevanlinna class N+. The precise meaning of this analogy, which is
only true up to an arbitrarily small gap in the exponential type, is a part of
the deep Beurling–Malliavin theory [4], [5].

The growth limitations (exponential type and integrability conditions on
R) on Paley–Wiener and Cartwright functions carry with them severe limi-
tations on the distribution of zeros. This is a central theme of the classical
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theory of entire functions, and numerous results have been obtained in the
study of the relation between the growth and zeros. Let us mention some
principle facts. For a set Λ we denote by N(R) the number of points λ ∈ Λ
satisfying |λ| < R, and by N±(R) the number of points λ, |λ| < R, such that
$λ > 0 and $λ < 0 respectively.

Density and symmetry of zeros. If F is a non-trivial Cartwright function
and Λ is the set of all zeros, then the limits

lim
R→∞

N±(R)

R

exist, are finite and equal. Moreover, there exists a finite limit

v.p.
∑ 1

λ
≡ lim

R→∞

∑
|λ|<R

1

λ
.

See, e.g., [28], [25].
Levinson’s completeness theorem. If F is a non-trivial function in PWa and

F = 0 on Λ (so EΛ is not complete in L2[−a, a]), then

lim
R→∞

[∫ R

1

N(t)

t
dt− 2a

π
R+

1

2
logR

]
= −∞ .

Some other sufficient conditions for completeness are known, as well as some
necessary conditions, see [38], [41]. On the other hand, finding an effective
general metric criterion does not seem to be realistically possible.

Beurling–Malliavin theory. The most interesting and deep result in the
completeness problem is the metric characterization of the “radius of com-
pleteness”,

R(Λ) = sup{a : EΛ complete in L2(−a, a)} ,

obtained in [4]–[5]. Beurling and Malliavin described R(Λ) as a certain “den-
sity” dBM(Λ), which is defined in a non-trivial but completely computable
way. We recall the definition of dBM(Λ) and discuss the Beurling–Malliavin
theory in the last part of the paper.

Let us now explain how the completeness problem can be restated in terms
of Toeplitz kernels.

1.2 Model Spaces and Toeplitz Operators

By the Paley–Wiener theorem, the Fourier transform (1) identifies L2(0,∞)
with the Hardy space H2 in the upper halfplane C+, and therefore it identi-
fies L2(±a,∞) with S±aH2. Here and throughout the paper, S denotes the
singular inner function

S(z) = eiz .
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It follows that the Paley–Wiener spaces have the following representation:

PWa = S−a
[
H2 % S2aH2

]
.

The subspace H2 % S2aH2 is the so called model space of the inner function
S2a. More generally, one defines model spaces

KΘ ≡ K[Θ] = H2 %ΘH2

for all inner functions Θ in C+; these spaces play an important role in the
modern function theory and also in the spectral theory, see [34], [27]. Strictly
speaking, the elements of KΘ are functions in C+ but if Θ is a meromorphic
inner function, then every element has a meromorphic continuation to the
whole complex plane. In particular, the completeness problem for exponentials
is exactly the problem of describing the uniqueness sets of the model spaces
K[S2a].

If U ∈ L∞(R), then the Toeplitz operator with symbol U is the map

TU : H2 → H2 , F �→ P+(UF ) ,

where P+ is the orthogonal projection in L2(R) onto H2. A one line argument
shows that Λ ⊂ C+ is a uniqueness set of KΘ if and only if the kernel of the
Toeplitz operator TU is trivial, where

U = Θ̄BΛ , BΛ Blaschke product .

(There is a similar statement for general sets Λ ⊂ C, see Sect. 4.1.)
The injectivity problem – to characterize symbols U such that ker TU = 0

– is of interest in its own right as part of the spectral theory of Toeplitz op-
erators, see [8], [35]. Compared with some other aspects of the theory such
as invertibility problem, the injectivity problem has attracted relatively lit-
tle attention. Let us mention the important paper [23] where the idea to use
(invertibility) properties of Toeplitz operators in the study of bases of expo-
nentials was introduced, see also [3].

We can now explain our goal more clearly. We would like to see if the
classical results mentioned above could be extended to Toeplitz operators
with more general symbols. More precisely, we’ll be considering real-analytic
symbols U = eiγ , γ ∈ Cω(R), so that infinity is the only “singularity” of the
symbol. A special case (which is in fact just as general, see [9]) is the case of
symbols of the form

U = Θ̄J ,

where Θ and J are meromorphic inner functions. We will show now that the
injectivity problem for operators with such symbols appears as naturally as
in the special case Θ = S2a.
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1.3 Spectral Theory

Consider the Schrödinger equation

−ü+ qu = λu (2)

on some interval (a, b) and assume that the potential q(t) is locally integrable
and a is a regular point, i.e. a if finite and q is L1 at a. Let us fix some
selfadjoint boundary condition at b and consider the Weyl m–function

m(λ) =
u̇λ(a)

uλ(a)
, λ 	∈ R ,

where uλ(t) is any non-trivial solution of (2) satisfying the boundary condi-
tion. We will deal only with the compact resolvent case, which is equivalent
to saying that m extends to a meromorphic function. Then we can define the
meromorphic inner function

Θ =
m− i

m+ i
,

which we call the Weyl inner function associated with the potential and the
fixed boundary condition at b.

The transformation

f(t) �→ F (λ) =

∫ b

a

f(t)
uλ(t)

u̇λ(a) + iuλ(a)
dt (3)

identifies L2(a, b) with the model space KΘ in the same way as the classical
Fourier transform (times Sa) identifies L2(−a, a) with K[S2a]. This allows us
to interpret the completeness problem for families of solutions {uλ : λ ∈ Λ} as
a problem of uniqueness sets in the model space of Θ. Completeness problems
of this type, particularly problems involving families of special functions, are
well-known in the literature, see e.g. [20]. As we explained, they are equivalent
to the invertibility problem for symbols Θ̄J , where Θ is a Weyl inner function.

Similar invertibility problems appear in connection with the uniqueness
part of the inverse spectral problem. We discuss such applications in Sect. 4.
Here we only mention that the results represent a rather broad generaliza-
tion of such well-known facts as Borg’s two spectra theorem [7]: two different
spectra of a Schrodinger operator with compact resolvent determine the oper-
ator uniquely, and Hochstadt–Liberman theorem [21] that states that a regular
Schrödinger operator on a finite interval is determined by its spectrum and
the potential on one half of the interval. In the language of inner functions,
the corresponding problems can be stated as follows.

Given a meromorphic inner function Θ and one of its factors Ψ , the prob-
lem is to decide whether this factor and the set {Θ = 1} determine Θ uniquely.
The second problem is to describe defining sets of a given meromorphic inner
function Φ. We say that Λ ⊂ R is defining if

Φ̃ = Φ , arg Φ̃ = argΦ on Λ ⇒ Φ̃ ≡ Φ .
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1.4 Content of the Paper

Section 2. Meromorphic Inner Functions and Spectral Theory.

2.1–2.4: We recall standard facts concerning meromorphic inner functions,
their model spaces, and Weyl–Titchmarsh functions of second order selfadjoint
differential operators.

2.5: We discuss the modified Fourier transform (3). In the case of regular
operators, this is essentially the usual Weyl–Titchmarsh transform, but the
construction is probably new in the (more interesting) singular case.

2.6–2.8: Basics of de Branges functions and associated spaces of Paley–Wiener
and Cartwright type.

Section 3. Toeplitz Kernels.

3.1–3.4: We define the kernels and state some general (mostly known) facts. As
an example, we give a Toeplitz kernel interpretation of a standard asymptotic
formula for solutions of a regular Schrödinger equation.

3.5–3.6: Basic criterion for non-triviality of a Toeplitz kernel with real analytic
symbol. For instance, the kernel is non-trivial in the Smirnov–Nevanlinna class
if and only if the argument γ of the symbol has a representation γ = −α+ h̃,
where α ∈ Cω is an increasing function and h ∈ L1

Π . Though this observation
is very simple (and its versions in the non-analytic case are well known), the
criterion turns out to be quite workable, and the rest of the paper is mostly
the study and applications of this criterion.

3.7–3.8: Kolmogorov’s type criterion. This is a special case where the symbol is
H̄/H ,H is an outer function, and the kernel is a priory finite dimensional. This
situation is typical when we explicitly know the de Branges functions. Another
useful example is the twin inner function theorem: if {Θ = 1} = {J = 1},
then ker TΘ̄J = 0.

3.9–3.11: General form of Levinson’s completeness theorem. We obtain a
sufficient condition for triviality of a Toeplitz kernel that improves Levinson’s
theorem (and other similar results) even in the classical situation. The key
ingredient of the proof is the Titchmarsh–Uly’anov theorem involving the so
called A–integrals.

Section 4. Some Applications.

4.1–4.2: Completeness and minimality problem, and uniqueness sets of the
model and de Branges spaces.

4.3–4.4: Distribution of zeros of functions in Cartwright–de Branges spaces. In
particular, we give a new proof of the density and symmetry result mentioned
in Sect. 1.1, which is based on our basic criterion and the Titchmarsh–Uly’anov
theorem.
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4.5–4.7: Applications to the mixed data spectral problem stated in Sect. 1.3.
For the inner function version of the Hochstadt–Liberman problem we estab-
lish some necessary and some sufficient conditions in terms of Toeplitz kernels.
We also give a spectral theory interpretation of these conditions indicating
stronger versions of practically all known results in this area.

4.8–4.9: Remarks on defining sets of inner functions and regular Schrödinger
operators.

Section 5. Beurling–Malliavin Theory.

5.1–5.2: Multiplier theorems. First we state a multiplier theorem for Toeplitz
kernels in Hp–spaces. Then we discuss some consequences of the Beurling–
Malliavin multiplier theorem for Toeplitz kernels in the Smirnov–Nevanlinna
class. We make no comments on the proof of the Beurling–Malliavin multiplier
theorem itself. The presence of the Dirichlet space condition remains the most
amazing feature of the theory.

5.3–5.6: Second Beurling–Malliavin and little multiplier theorems. For sym-
bols U = eiγ with γ′ > −const, we present a complete proof of the metric
criterion for (non-)triviality of a Toeplitz kernel in the Smirnov–Nevanlinna
class up to a gap S±ε. The proof is of course not totally original but our
version, we believe, is better fit for generalizations.

5.7–5.9: We discuss possible generalizations of the Beurling–Malliavin theory.
We mention partial results, examples, and indicate applications in the case
γ′(t) > −const |t|a.

2 Meromorphic Inner Functions and Spectral Theory

Function Theory in the Halfplane

2.1 Basic Notations

C+ is the upper half plane {$z > 0}. For general references concerning Hardy–
Nevanlinna theory in C+ see [16] and [35].

We use the standard notation Hp = Hp(C+), 0 < p ≤ ∞, for the Hardy
spaces, and N+ = N+(C+) for the V. I. Smirnov (or Smirnov–Nevanlinna)
class in C+. The elements in N+ are ratios G/H , where G,H ∈ H∞ and H
is an outer function. Functions in N+ have angular boundary values (almost
everywhere) on the real line. As a general rule, we identify functions in the
halfplane with their boundary values on R. In this sense, we have

Hp = N+ ∩ Lp(R) ,

and
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F ∈ N+ ⇒ log |F | ∈ L1
Π ≡ L1(R, Π) ,

where Π is the Poisson measure

dΠ(t) =
dt

1 + t2
.

If h ∈ L1
Π is a real-valued function, then its Schwarz integral is

Sh(z) =
1

πi

∫ [
1

t− z −
t

1 + t2

]
h(t)dt .

The real and the imaginary parts of Sh are the Poisson and the conjugate
Poisson integrals of h:

Sh = Ph+ iQh .
Outer functions are functions of the form

H = eSh , h ∈ L1
Π ;

note that H ∈ N+ and H has modulus eh on R. Every function F in N+ has
a unique factorization F = IH, where H is the outer function with modulus
|F | on R and I is an inner function, i.e. I ∈ H∞ and |I| = 1 on R.

The Hilbert transform of h ∈ L1
Π is the angular limit of Qh, so the outer

function eSh is equal to eh+ih̃ on R. The Hilbert transform can also be defined
as a singular integral:

h̃(x) =
1

π
v.p.

∫ [
1

x− t +
t

1 + t2

]
h(t)dt .

For further references, we recall some properties of the Hilbert transform. If
both h and g = h̃ are in L1

Π , then g̃ = −h+ const, i.e.

Sh̃ = −iSh+ iSh(i) .

If h ∈ L1
Π , then h̃ ∈ Lo(1,∞)

Π (the weak L1 space), i.e.

Π{|h̃| > A} = o

(
1

A

)
, A→∞ ,

in particular h̃ ∈ Lp
Π for all p < 1.

2.2 Meromorphic Inner Functions and Herglotz Functions

A meromorphic inner function is an inner function Θ in C+ which has a mero-
morphic extension to C. Such a function can be characterized by parameters
(a, Λ) in the canonical (Riesz–Smirnov) factorization

Θ = BΛS
a , (4)
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where a ≥ 0, and Λ is a discrete set (possibly with multiple points) in C+

satisfying the Blaschke condition∑ &λ
1 + |λ|2 <∞ ;

BΛ denotes the corresponding Blaschke product and Sa(z) = eiaz. Let us
mention an obvious but important property of meromorphic inner functions:

Θ = eiθ on R , θ is a real analytic, increasing function.

A meromorphic Herglotz function is a meromorphic function m such that

&m > 0 in C+ , m(z̄) = m(z) .

One can establish a one-to-one correspondence between meromorphic inner
and Herglotz functions by means of the equations

m = i
1 +Θ

1−Θ , Θ =
m− i

m+ i
. (5)

Meromorphic Herglotz functions (and therefore inner functions) can be de-
scribed by parameters (b, c, µ) in the Herglotz representation

m(z) = bz + c+ iSµ , (6)

where b ≥ 0, c ∈ R, and µ is a positive discrete measure on R satisfying∫
dµ(t)

1 + t2
<∞ .

It is convenient to interpret the number πb as a point mass of µ at infinity. In
the case m = mΘ, see (5), we call this extended measure µΘ the spectral (or
Herglotz ) measure of Θ. By definition, the (point) spectrum of Θ is the set

σ(Θ) = suppµΘ = {Θ = 1} or {Θ = 1} ∪ {∞} ,

and by residue calculus we have

µΘ(t) =
2π

|Θ′(t)| , t ∈ σ(Θ) . (7)

The following equivalent conditions are necessary and sufficient for µΘ(∞) 	=
0, see e.g. [36]:

(i) Θ − 1 ∈ H2 ; (ii) Θ(∞) = 1 , ∃Θ′(∞) ; (iii)
∑

&λ <∞ .

In (ii), Θ(∞) and Θ′(∞) mean the angular limit and angular derivative at
infinity:
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Θ(∞) = lim
y→+∞

Θ(iy) , Θ′(∞) = lim
y→+∞

y2Θ′(iy)

and in (iii) we also require that the singular factor is trivial.
Riesz–Smirnov and Herglotz parametrizations (4)–(6) reflect two different

structures – multiplicative and convex – in the set of inner functions. These
structures are related in a non-trivial and intriguing way. For example, the
middle point of the segment [Θ1, Θ2], i.e. the inner function such that its
Herglotz measure is the average of µΘ1 and µΘ2 , is the function

Θ =
Θ1 +Θ2 − 2Θ1Θ2

2−Θ1 −Θ2
,

and we observe that
Ψ |Θ1 , Ψ |Θ2 ⇒ Ψ |Θ ,

where the notation Ψ |Θ for two inner functions means that Ψ is a factor of
Θ, i.e. Θ/Ψ is also an inner function.

2.3 Model Spaces

The H2–model space of an inner function Θ,

KΘ ≡ K[Θ] = H2 %ΘH2 = H2 ∩ΘH̄2 ,

is a Hilbert space with reproducing kernel:

kΘ
λ (z) =

1

2πi

1−Θ(λ)Θ(z)

λ̄− z
, λ ∈ C+ . (8)

If Θ is meromorphic, then all elements of KΘ are meromorphic, and one can
extend (8) to all λ ∈ R.

The monograph [34] provides a comprehensive study of model spaces. One
of the important facts of the theory is the following Plancherel theorem (see
Clark’s paper [10] for the case of general inner functions):

Theorem 2.1. The restriction map

CΘ : f �→ f |σ(Θ) (9)

is a unitary operator KΘ → L2(µΘ).

We also define the model spaces in the Smirnov class and in general Hardy
spaces:

K+
Θ = {F ∈ N+ ∩ Cω(R) : ΘF̄ ∈ N+} ,

and
Kp

Θ = K+
Θ ∩ Lp(R) .

If p ≥ 1, we can drop the requirement F ∈ Cω(R) by Morera’s theorem.
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Second Order Differential Operators

2.4 Weyl Inner Functions

Meromorphic inner functions appear in the theory of second order selfadjoint
differential operators with compact resolvent. We will only discuss the case
of Schrödinger operators though similar theories exist for general canonical
systems. See [32] and [30] for the basics of the spectral theory.

Let q be a real locally integrable function on (a, b). We always assume that
selfadjoint operators associated with the differential operation u �→ −ü + qu
have compact resolvent. We suppose that a is a regular point but we allow b
to be infinite and/or singular. Let us fix a selfadjoint boundary condition β
at b; for example, β means u ∈ L2 at b in the limit point case. The Weyl–
Titchmarsh m–function of (q; b, β) evaluated at a,

m(λ) = ma
b,β(λ) , λ ∈ C ,

is defined by the formula

m(λ) =
u̇λ(a)

uλ(a)
,

where uλ(·) is a non-trivial solution of the Schrödinger equation satisfying the
boundary condition at b. It is well-known that m is a Herglotz function, and
therefore we can define the corresponding inner function Θa

b,β by (5). We will
call Θa

b,β the Weyl (or Weyl–Titchmarsh) inner function of q.
Similarly, if b ∈ R is a regular point and α is a selfadjoint boundary

condition at a ∈ [−∞, b), we can consider them–function of (q; a, α) evaluated
at b,

mb
a,α(λ) = − u̇λ(b)

uλ(b)

(mind the sign!) and define the corresponding Weyl inner function Θb
a,α.

Example 2.2. The Weyl inner functions of the potential q ≡ 0 on [0, 1] with
Dirichlet and, respectively, Neumann boundary conditions at a = 0 are

ΘD(λ) =

√
λ cos

√
λ+ i sin

√
λ√

λ cos
√
λ− i sin

√
λ
, ΘN (λ) =

√
λ sin

√
λ− i cos

√
λ√

λ sin
√
λ+ i cos

√
λ
. (10)

(The m–functions are mD(λ) = −
√
λ cot

√
λ and mN (λ) =

√
λ tan

√
λ.)

More generally, for ν ≥ −1/2 consider the potential

q(t) =
ν2 − 1

4

t2
on (0, 1) ,

and let the boundary condition α at a = 0 be satisfied by the solution

uλ(t) =
√
tJν(t

√
λ)
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of the Schrödinger equation. For example, if ν = −1/2 then α = (N), and if
ν = 1/2 then α = (D), and we have the limit point case if ν ≥ 1. Jν is of
course the standard notation for the Bessel function of order ν. Since

uλ(1) = Jν(
√
λ) , u̇λ(1) =

1

2
Jν(

√
λ) +

√
λJ ′

ν(
√
λ) ,

the corresponding Weyl inner function is

Θν(λ) =

√
λJ ′

ν(
√
λ) + (1/2 + i)Jν(

√
λ)√

λJ ′
ν(
√
λ) + (1/2− i)Jν(

√
λ)
. (11)

In particular, we have Θ−1/2 = ΘN and Θ1/2 = ΘD.

One can give many other similar examples involving special functions. We
will continue to discuss Bessel inner function in Sects. 2.6 and 4.7. Our goal
is to illustrate certain constructions in the singular case as opposed to the
regular case, which is well presented in the literature.

2.5 Modified Fourier Transform

Let Θ = Θa
b,β be the Weyl–Titchmarsh inner function of a potential q defined

in the previous section. We will construct a unitary operator L2(a, b) → KΘ,
which is a modification of the Weyl–Titchmarsh Fourier transform. We modify
the usual construction so that the case of a singular endpoint b could be
included.

For every z ∈ C we choose a non-trivial solution uz(t) of the Schrödinger
equation satisfying the boundary condition β. (For real z such a solution exists
because of the compact resolvent assumption.) If z ∈ C+∪R, then the solution

wz(t) =
uz(t)

u̇z(a) + iuz(a)

does not depend on the choice of uz, and wz ∈ L2(a, b). The transform W is
defined as follows:

W : f(t) �→ F (z) =

∫ b

a

f(t)wz(t)dt , (z ∈ C+ ∪R) . (12)

To state the main result we introduce the dual reproducing kernel of the
model space KΘ. For λ ∈ C+ ∪ R we define

k∗λ(z) =
1

2πi

Θ(z)−Θ(λ)

z − λ , (z ∈ C+ ∪ R) , (13)

so we have
Θ̄kΘ

λ = k∗λ on R ,

and k∗λ ∈ KΘ. Note that if λ ∈ R, then k∗λ = const kΘ
λ .
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Theorem 2.3. The modified Fourier transform W is (up to a factor
√
π) a

unitary operator L2(a, b) → KΘ. Furthermore, we have

Wwλ = πk∗λ , Ww̄λ = πkλ (λ ∈ C+ ∪ R) . (14)

Proof. The formulae (14) follow from the Lagrange identity

(z − λ)
∫ b

a

uλuz = uλ(a)u̇z(a)− u̇λ(a)uz(a) .

(The Wronskian at b is zero because the two solutions satisfy the same bound-
ary conditions.) The rest is straightforward:

(w̄λ, w̄µ)L2 =

∫ b

a

wµw̄λ = Ww̄λ(µ) = πkλ(µ) = π(kλ, kµ)KΘ ,

etc. � 

Note that Weyl inner functions of Schrödinger operators have no point
masses at infinity, so if Θ = Θa

b,β , then

σ(Θ) = σ(q,D, β) , σ(−Θ) = σ(q,N, β) .

Here σ(q,D, β) means the spectrum of the Schrödinger operator with potential
q, Dirichlet boundary condition at a, and boundary condition β at b. More
generally, for α ∈ R let α denote the following selfadjoint boundary condition
at a regular endpoint a:

cos
α

2
u(a) + sin

α

2
u̇(a) = 0 . (15)

Then
σ(e−iαΘ) = σ(q, α, β) .

By definition, the spectral measure of the Schrödinger operator (q, α, β) is the
Herglotz measure of the inner function e−iαΘ.

Corollary 2.4. Let Θ = Θa
b,β. The composition of the modified Fourier trans-

form and the Plancherel–Clark operator (9),

L2(a, b)
W−→ KΘ

CΘ−→ L2(µΘ) ,

is a unitary operator; it provides a spectral representation of the Schrödinger
operator (q,D, β).
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Entire Functions

2.6 de Branges Functions

Following [28] we say that an entire function E is of Hermite–Biehler class
(HB) if E has no real zeros and

z ∈ C+ ⇒ |E(z̄)| < |E(z)| .

Every E ∈(HB) defines a meromorphic inner function

ΘE =
E#

E
, E#(z) := E(z̄) .

Conversely, given an inner function Θ, any E ∈ (HB) satisfying Θ = ΘE is
called a de Branges function of Θ.

It can be shown, see [12], that every meromorphic inner function has at
least one de Branges function. In some cases one can construct de Branges
functions explicitly.

Example 2.5. Let (a, b) be a finite interval and q ∈ L1(a, b). Given a selfadjoint
boundary condition (15) at a, let uλ(t) denote the solution of the initial value
problem

uλ(a) = − sin
α

2
, u̇λ(a) = cos

α

2
. (16)

for the Schrödinger equation. Then

E(λ) = −u̇λ(b) + iuλ(b) (17)

is a de Branges function of the Weyl inner function Θ = Θb
a,α. Indeed, we

have

Θ(λ) =
−u̇λ(b)− iuλ(b)

−u̇λ(b) + iuλ(b)
,

and the functions λ �→ uλ(b) and λ �→ u̇λ(b) are entire because of the fixed
initial conditions; clearly, they can not be both zero at the same point λ ∈ R.

Example 2.6. Consider now the Bessel inner functions Θν , see (11). Note that
the above construction does not apply in the singular case. From the theory
of Bessel’s functions we know that

Jν(z) = zνGν(z) ,

where Gν is an even real entire function and Gν(0) 	= 0. We also introduce an
even real entire function

Fν(z) = zG′
ν(z) .

Since zJ ′
ν = zν(νGν + Fν), we have
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Θν(λ) =
Fν(

√
λ) + (1/2 + ν + i)Gν(

√
λ)

Fν(
√
λ) + (1/2 + ν − i)Gν(

√
λ)
.

The function
Eν(λ) := Fν(

√
λ) + (1/2 + ν − i)Gν(

√
λ)

does not vanish at λ = 0 and therefore it has no zeros on R. It follows that Eν

is a de Branges function of Θν . Similar considerations work for other special
functions.

Example 2.7. Some more elementary (but important) examples include the
following. If a > 0, then E(z) = e−iaz is a de Branges function of Θ = S2a.
Polynomials with all roots in C− are de Branges functions of finite Blaschke
products.

2.7 Spaces of Entire Functions

We first define the Cartwright–de Branges space B+(E) of entire functions
associated with a Hermite–Biehler function E:

B+(E) =
{
F : F/E, F#/E ∈ N+(C+)

}
.

Proposition 2.8. B+(E) = EK+ [ΘE ] .

Proof. If G ∈ K+
Θ , then its meromorphic extension to C− is equal to H#/Θ#

for some H ∈ N+(C+). Since E = Θ#E# in C−, the function

F =

{
E(z) G(z) z ∈ C+ ,

E#(z)H#(z) z ∈ C− ,

is entire and F ∈ B+(E). The opposite direction is similar. � 

The special case E = S−a gives Cartwright spaces

Carta = B+
(
S−a
)

= S−aK+
[
S2a
]
, (a ≥ 0) .

Next we define the de Branges space associated with E ∈ (HB), see [12]:

B(E) = B+(E) ∩ L2
(
|E(x)|−2dx

)
= EK [ΘE ] .

The special case E = S−a gives the Paley–Wiener spaces

PWa = B
(
S−a
)

= Carta ∩ L2(R) , (a > 0).

De Branges space B(E) has a natural Hilbert space structure so that the
multiplication operator

E : K [ΘE ] → B(E)

is an isometry. We denote by KE
λ , (λ ∈ C), the reproducing kernel of B(E).

Theorem 2.3 has the following corollary, which is a counterpart of the Paley–
Wiener theorem concerning the classical Fourier transform. Recall that W
denotes the modified Fourier transform (12).
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Corollary 2.9. Let E be a de Branges function of the Weyl inner function
Θa

b,β associated with a potential q on (a, b). Then the map

F : L2(a, b) → B(E) , f �→ E · Wf ,

is a unitary operator. Furthermore, we have

Fuλ = const KE
λ̄ , λ ∈ C ,

where uλ is any non-trivial solution of the Schrödinger equation satisfying the
boundary condition β.

In the regular case a, b ∈ R and q ∈ L1(a, b), the map F is precisely the
Weyl–Titchmarsh transform

f �→
∫ b

a

f(t)uλ(t)dt ,

where the solutions uλ(t) are normalized by initial conditions (16) and the de
Branges function is given by (17).

The classical Fourier transform (1) originates from the first order self-
adjoint operator u �→ −iu′. Alternatively, it can be related to the Weyl–
Titchmarsh transforms corresponding to q ≡ 0 by a general construction
which we describe below, cf. [14].

2.8 Square Root Transformation

It is well-known that if m is a Herglotz function such that

0 < m < +∞ on R− ,

then m∗(λ) = λm(λ2) is again a Herglotz function. If Θ = (m − i)/(m + i),
then the inner function corresponding to m∗ is

Θ∗(z) =
(z + 1)Θ(z2) + (z − 1)

(z − 1)Θ(z2) + (z + 1)

We call Θ∗ the square root transform of Θ. Suppose now that E = A+ iB is
a de Branges function of Θ, where A and B are real entire functions, and also
suppose B(0) 	= 0. Then

E∗(z) = zA(z2) + iB(z2)

is a de Branges function of Θ∗.

Example 2.10. Let q ∈ L1[0, 1] be such that the operator L(q,D,N) ≥ 0.
Consider the function
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m(λ) =
u(λ)

u̇(λ)
:=
uλ(1)

u̇λ(1)
,

where uλ is the solution of the Schrödinger equation with initial conditions
uλ(0) = 0 and u̇λ(0) = 1. (In other words, m is the Herglotz function of
−Θ1

0,D.) Then we have E = u+ iu̇ and therefore

E∗(z) = zu(z2) + iu̇(z2) .

In particular, if q ≡ 0, then E∗(z) = ie−iz, and we get the classical Paley–
Wiener space.

3 Toeplitz Kernels

Some Generalities

3.1 Definition of Toeplitz Kernels

Recall that to every U ∈ L∞(R), there corresponds the Toeplitz operator
TU : H2 → H2. We need to consider only the case of unimodular symbols

U = eiγ , γ : R → R ,

and we will concentrate on the question whether the Toeplitz kernel

N [U ] = ker TU

is trivial or non-trivial. The best known situation is when γ ∈ C(R) and
there exist finite limits γ(±∞). (This corresponds to the case of piecewise
continuous symbols in the theory on the unit circle.) If we denote

δ = γ(+∞)− γ(−∞) ,

then
N [U ] = 0 if δ > −π , N [U ] 	= 0 if δ < −π .

(If δ = −π, then either case is possible.)
Along with H2–kernels, we define Toeplitz kernels in the Smirnov class,

N+[U ] = {F ∈ N+ ∩ L1
loc(R) : Ū F̄ ∈ N+} ,

and in all Hardy spaces,

Np[U ] = N+[U ] ∩ Lp(R) , (0 < p ≤ ∞) .

These definitions are oriented to studying the case where ∞ is the only “sin-
gularity” of the symbol. In particular, if Θ is a meromorphic inner function,
then N+[Θ̄] = K+

Θ and Np[Θ̄] = Kp
Θ.
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We use the notation b for the Blaschke factor

b(z) =
i− z
i + z

.

The argument 2 arctan(x) of b increases from −π at −∞ to +π at +∞. One
can characterize the dimension of a Toeplitz kernel by multiplying the symbol
by integer powers of b.

Lemma 3.1. For n ∈ N, dim Np[U ] = n+ 1 iff dim Np[bnU ] = 1.

Proof. If, for instance, dim Np[U ] ≥ 2, then we can find an F ∈ Np[U ] such
that F (i) = 0, and so b̄F ∈ Np[bU ] and dim Np[bU ] ≥ 1. In the opposite
direction, if G ∈ Np[bU ], then both G and bG are in Np[U ]. � 

One can also consider fractional powers of b:

bs(x) = exp(2si arctanx) , (s ∈ R) .

The identity
b̄s(1 − b)s = (b̄− 1)s

shows that N∞[b̄s] 	= 0 for s ≥ 0. It follows that for every U and p > 0 there
is a critical value s∗ ∈ R ∪ {±∞} such that

Np[b̄sU ] 	= 0 if s > s∗ , Np[b̄sU ] = 0 if s < s∗ .

One can interpret s∗ as a fractional and possibly negative “dimension” of the
kernel. For example, “dim” N [1] = −1/2, but “dim” N [Θ̄NΘD] = −1/4 for
the Dirichlet and Neumann inner functions (10), see Sect. 3.7 below.

3.2 Basic Criterion

The following well-known observation is extremely simple but quite useful. In
fact, most of our further constructions are built upon this lemma.

Lemma 3.2. Np[U ] 	= 0 iff the symbol has the following representation:

U = Φ̄
H̄

H
,

where H ∈ Hp ∩ L1
loc(R) is an outer function and Φ is an inner function.

Proof. If UF = Ḡ, then |F | = |G| on R. Consider the inner-outer factoriza-
tion: F = FiFe and G = GiGe. We have Fe = Ge and

U = (F̄iḠi)
F̄e

Fe
.

The converse is obvious. � 
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Corollary 3.3. If γ ∈ L∞ ∩ C(R), then ∃p > 0, “dim” Np[eiγ ] > −∞.

A more precise statement is

‖γ‖∞ <
π

p
⇒ Np[b̄2/peiγ ] 	= 0 ,

which follows from the Smirnov–Kolmogorov estimate

‖h‖∞ <
π

2
⇒ eh̃ ∈ L1

Π ,

and from the construction of outer functions.
Of course, instead of ‖γ‖∞ < ∞ we can only require that γ be the sum

of a decreasing and a BMO functions, and we don’t need continuity if p ≥ 1.
It is also important to realize that p can not be arbitrary in the statement
of the corollary. For instance, it is easy to construct γ ∈ Cω(R) such that
‖γ‖∞ = π/2 but N [b̄neiγ ] = 0 for all n > 0.

3.3 Sufficient Conditions for dim Np[u] < ∞

The following statement is a version of Coburn’s lemma, which states that
either ker TU = 0 or ker TŪ = 0.

Lemma 3.4. If 1/p+ 1/q > s, then

N q[Ū ] ∩ L2
loc(R) 	= 0 ⇒ Np[b̄sU ] ∩ L2

loc(R) = 0 .

Proof. Suppose both kernels are non-trivial:

ŪF1 = Ḡ1 , b̄sUF2 = Ḡ2 ,

for some F1, G1 ∈ Hq and F2, G2 ∈ Hp. Then

(i + z)sF1(z)F2(z) = (i− z̄)sḠ1(z̄)Ḡ2(z̄) on R ,

so we have an entire Cartwright function with at most a polynomial growth
along iR. The growth at +i∞ is

ysy−1/qy−1/p ,

so the entire function is zero if 1/p+ 1/q > s. � 

Corollary 3.5. If γ is the sum of an increasing and a bounded functions, then
for all p > 0, dimNp[eiγ ] <∞.

Corollary 3.6. If U = H̄/H and H is an outer function such that

∃q > 0 ∃N ,
1

H
∈ Lq

(
dt

1 + |t|N

)
,

then for all p > 0, dim Np[U ] <∞.
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3.4 Trivial Factors

The following lemma is obvious.

Lemma 3.7. If V = H̄/H with H±1 ∈ H∞, then Np[UV ] 	= 0 iff Np[U ] 	= 0.

We will call such functions V trivial factors of the symbol.

Example 3.8. If B1 and B2 are finite Blaschke products of the same degree,
then Np[U ] = 0 iff Np[B̄1B2U ] = 0.

Example 3.9. If we modify a smooth symbol on a compact part of R, then this
does not affect (non-)triviality of the Toeplitz kernels. Thus the injectivity
property depends only on the behavior of a smooth symbol at infinity.

Example 3.10. It is shown in [9] that up to a trivial factor every unimodular
function is the ratio of two inner functions.

More relevant to the subject of the paper is our next

Example 3.11 (Weyl inner functions of regular operators). Let q ∈ L1[0, 1]
and let α be a non-Dirichlet selfadjoint boundary condition at a = 0. Denote
by Θ the Weyl inner function of (q, α) computed at b = 1, i.e. Θ = Θb

α,a

in the notation of Sect. 2.4. We want to compare Θ with the “Neumann”
inner function ΘN , see (10), which corresponds to the special case q ≡ 0 and
α = (N).

Claim. The ratio Θ/ΘN is a trivial factor.

In other words, in all problems involving Toeplitz kernels we are free to
replace regular potentials with the trivial potential, and any non-Dirichlet
boundary condition with the Neumann condition.

Proof. We will express the ratio of the Weyl inner functions in terms of their
de Branges functions. The de Branges function of ΘN is

EN (λ) = cos
√
λ− i

√
λ sin

√
λ ,

and by (17) the de Branges function of Θ is

E(λ) = −u̇(λ) + iu(λ) , u(λ) := uλ(1) , u̇(λ) := u̇λ(1) ,

where uλ(t) is the solution of the Schrödinger equation with boundary condi-
tion α and initial value uλ(0) = 1. We have

Θ

ΘN
=
H̄

H
, H =

E

EN
.

Since both de Branges functions are outer in C+, all we need to check is that
|E| ' |EN | on R. To this end we can use the standard asymptotic formulae
for solutions of a regular Schrödinger equation, see e.g. [30]:
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|u(λ)− cos
√
λ| =

(
1√
λ

)
, |u̇(λ) +

√
λ sin

√
λ| = O(1) , (λ→ ±∞) .

For instance if q ≡ 0 but α 	= (N), then

u(λ) =
cos(

√
λ+ ψ(λ))

cosψ(λ)
,

√
λ tanψ(λ) = cot

α

2
,

and the asymptotic is obvious.
If λ→ +∞, then

|E(λ)|2 , |EN (λ)|2 ' [cos
√
λ+O(λ−1/2)]2+λ[sin

√
λ+O(λ−1/2)]2 := I+II ,

and we consider three cases:

• if | sin
√
λ| � λ−1/2, then I ' 1 and 0 ≤ II � 1, so I + II ' 1;

• if | cos
√
λ| � λ−1/2, then sin2

√
λ ≈ 1 and both |E|2 and |EN |2 are ' λ;

• if | sin
√
λ| and | cos

√
λ| are � λ−1/2, then I + II ' cos2

√
λ+ λ sin2

√
λ.

The estimates for λ→ −∞ are even easier. � 

Toeplitz Kernels with Real Analytic Symbols

From now on we will be considering unimodular functions with real analytic
arguments, U = eiγ , γ ∈ Cω(R). In this case, all elements of the Toeplitz
kernels are also real analytic on R.

Lemma 3.12. If γ ∈ Cω(R), then N+[eiγ ] ⊂ Cω(R).

Proof. Let F ∈ N+[U ] and let G− be the analytic extension of UF to C−.
Since U 	= 0 in a neighborhood of R and F = U−1G− on R, F can be extended
to a neighborhood of R. � 

3.5 Basic Criterion in N+

Proposition 3.13. Let γ ∈ Cω(R). Then N+[eiγ ] 	= 0 iff γ has a representa-
tion

γ = −α+ h̃ ,

where α ∈ Cω(R) is an increasing function and h ∈ L1
Π.

Proof. We first observe that N+[u] 	= 0 iff

U = Φ̄
H̄

H
on R , (18)

or some outer function H ∈ Cω(R) that does not vanish on R, and some
meromorphic inner function Φ. Indeed, suppose N+[U ] 	= 0. Reasoning as in
Lemma 3.2, we see that
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U = Ī
F̄

F
,

for some meromorphic inner function I and an outer function F ∈ Cω(R). The
outer function may have zeros on the real line. Suppose the zeros are simple.
Take any meromorphic inner function J such that {J = 1} = {F = 0}. Then
the outer function

H =
F

1− J (19)

is zero-free on R and

U = Ī
1− J̄
1− J

H̄

H
= −Ī J̄ H̄

H
:= Φ̄

H̄

H
.

If F has multiple zeros, then we simply repeat this reasoning taking care of
the convergence.

Next we restate (18) in terms of the arguments of the involved functions.
Since H is an outer function, it has the following representation:

H = e−(h+ih̃)/2 , h ∈ L1
Π ,

and since H is zero free we have h̃ ∈ Cω(R). It follows that γ = −φ+ h̃, where
φ is a continuous argument of Φ. Since φ is strictly increasing, this gives the
“only if” part of the theorem. To prove the “if” part, we observe that given
an increasing function α, we can find an inner function with argument φ such
that

β := α− φ ∈ L∞(R) ,

so
γ = −α+ h̃ = −φ− β + h̃ = −φ+ h̃1 , h1 := h+ β̃ .

� 

3.6 Basic Criterion in Hp

Proposition 3.14. Let U = eiγ with γ ∈ Cω(R). Then Np[U ] 	= 0 iff

U = Φ̄
H̄

H
,

where H is an outer function in Hp ∩ Cω(R), H 	= 0 on R and Φ is a mero-
morphic inner function. Alternatively, Np[U ] 	= 0 iff

γ = −φ+ h̃ , h ∈ L1
Π , e−h ∈ Lp/2(R) , (20)

where φ is the argument of some meromorphic inner function.

To prove the statement we just repeat the previous proof using the fol-
lowing lemma, in which we construct the Herglotz measure of a meromorphic
inner function J so that the function H in (19) in the previous proof belongs
to Hp.
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Lemma 3.15. If 0 < p ≤ ∞ and F ∈ Hp ∩ Cω(R), then there is a finite
positive measure ν supported exactly on {F = 0} ∩ R such that

F · Sν ∈ Hp ∩ Cω(R) , Sν(z) :=

∫
dν(t)

t− z .

Proof. Let {bk} be all real zeros of F ; we assume for simplicity that the zeros
are simple. Choose small positive numbers εk,∑

εk < 1 , (21)

such that the εk–neighborhoods of bk are disjoint. We have

|F (z)| ≤ Ck|z − bk| ,

if z is in the εk-neighborhood of bk. Take

ν =
∑

νkδbk
, νk = C−1

k 2−kεk ,

and observe that
|Sν(z)| ≤

∑
k

νk

|z − bk|
.

If z is outside of all neighborhoods, then

|FSν|(z) ≤ |F (z)|
∑

2−k = |F (z)| .

If z is in the k:th neighborhood, then

|FSν|(z) ≤ |F (z)|+ |F (z)|νk

|z − bk|
≤ |F (z)|+ Ckνk ≤ |F (z)|+ 1 .

We have FSν ∈ Hp by (21). � 

3.7 Kolmogorov–Type Criterion

The basic criterion is particularly useful in the case when we can represent γ
as the argument of some explicitly given outer function, e.g., when U is the
ratio of two inner functions with known de Branges functions.

Proposition 3.16. Let U = H̄/H, and H is an outer function real analytic
and zero free on R. Suppose dimNp[U ] <∞. Then

Np[U ] 	= 0 ⇔ H ∈ Hp .

Proof. If Np[U ] 	= 0, then dimNp[bsU ] = 1 for some s ≥ 0. We have

bsU = H̄s/Hs , Hs = (1− b)−sH .
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By Proposition 3.14 we have a representation

H̄s/Hs = F̄ /F ,

for some outer function F ∈ Hp ∩Cω(R), F 	= 0 on R. Since the function Hs

is also outer and zero-free, it follows that H = const(1− b)sF and so H ∈ Hp.
The converse is trivial. � 

Remark 3.17. If p = 2 and 1/H ∈ H2, then the proof shows that the con-
clusion is true even without the assumption H ∈ Cω(R). The corresponding
statement in the unit disc is equivalent to Kolmogorov’s minimality criterion
in the theory of stationary Gaussian processes: {zn} is minimal in L2(w) iff
w−1 ∈ L1.

Remark 3.18. The condition dim Np[u] < ∞ is essential and related to the
concept of “rigid functions”, see [37]. We already mentioned two sufficient
conditions for dim Np[u] <∞ in Sect. 3.3.

Example 3.19. This simple example is meant to illustrate the above criterion.
Let ΘD and ΘN be the Weyl inner functions (10) for potential q = 0 on [0, 1]
with Dirichlet and Neumann boundary conditions at 0. We claim that the
“fractional dimension” of the kernel N [Θ̄NΘD] is −1/4, see Sect. 3.1.

Proof. We represent the ratio ΘD/ΘN in terms of de Branges functions:

ΘD

ΘN
=
H̄

H
, H =

ED

EN
,

where

EN (λ) = cos
√
λ− i

√
λ sin

√
λ , ED(λ) =

sin
√
λ√
λ

+ i cos
√
λ ,

so

U :=
H̄

H
, H =

1√
λ

sin
√
λ+ i

√
λ cos

√
λ

cos
√
λ− i

√
λ sin

√
λ
.

Clearly, dimN [U ] < ∞, and by Kolmogorov’s criterion we have N [b̄sU ] 	= 0
iff F := (1− b)sH ∈ L2(R). If x > 0, then

|H(x)|2 =
1

x

sin2√x+ x cos2
√
x

cos2
√
x+ x sin2√x

.

Let us estimate |F |2 on an interval In about π2n2 where | sin√x| � 1. If we
write x = π2n2 + s, so

|
√
x− πn| ' |s|

n
, sin2√x ' s2

n2
, x sin2√x ' s2 ,

then
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|H(x)|2 ' 1

x

x

1 + x sin2√x
' 1

1 + s2
,

|F (x)|2 ' n−4s 1

1 + s2
,

∫
In

|F |2 ' n−4s .

Thus F ∈ L2(R+) iff 4s > 1. Finally we note that

|H(x)| ∼ 1√
|x|
, x→ −∞ ,

and so F ∈ L2(R−) iff s > 0. � 

Similarly one can show that “dim” N [Θ̄DΘN ] = −5/4. One can also com-
pute the dimensions of kernels in other Hardy spaces. In particular, “dim”
N∞[Θ̄NΘD] = 0 and “dim” N∞[Θ̄DΘN ] = −1; moreover, N∞[Θ̄NΘD] 	= 0
and N∞[b̄Θ̄DΘN ] 	= 0.

3.8 Twin Inner Functions

We say that two meromorphic inner functions are twins if they have the same
point spectrum (possibly including infinity). Twin functions appear in several
applications (see, e.g., Sect. 4.5 below), and the main result is that the Toeplitz
operator corresponding to their ratio is injective. This fact is quite different
from Levinson’s type conditions discussed later in this section.

Theorem 3.20. Let Θ and J be twin meromorphic inner functions. Then
N [Θ̄J ] = 0.

Proof. We have

Θ̄J =
H̄

H
, H =

1−Θ
1− J .

Since H±1 ∈ Cω(R), we can apply Kolmogorov’s criterion. (The kernel is
finite dimensional because the argument of Θ̄J is bounded.) We claim that
H 	∈ H2. Indeed, if Θ has no point mass at infinity, then

|H | ≥ 1

2
|1−Θ| 	∈ L2 .

If both functions have a point mass at infinity, then by l’Hôpital’s rule the
angular limit

lim
∞

1−Θ
1− J =

Θ′(∞)

J ′(∞)

exists and is non-zero (see Sect. 2.2), so H can not be in H2. � 

Remark 3.21. The proof shows that N [Θ̄J ] = 0 if we have {Θ = 1} = {J = 1}
and ∞ 	∈ σ(Θ). Moreover, it can be shown that

σ(Θ) ⊂ σ(J) ⇒ N [Θ̄J ] = 0 .



210 N. Makarov and A. Poltoratski

Remark 3.22. Similar technique applies to symbols of the form u = Θ̄JH̄/H
where Θ and J are twin inner functions, and H is an outer function real-
analytic and zero free on R. If dim Np[H̄/H ] <∞, then

Np[b̄sΘ̄JH̄/H ] 	= 0 ⇔ (1− b)s 1−Θ
1− J H ∈ Hp .

General Form of Levinson’s Completeness Theorem

As we mentioned in Sect. 3.1, if ∃ γ(±∞), then

δ = γ(+∞)− γ(−∞) > −2π

p
⇒ Np[eiγ ] = 0 , (0 < p <∞) .

We extend this fact to general symbols by considering the “mean” behavior
at +∞ of the function

δ(x) = γ(x) − γ(−x) .

Our result has the same form as Kolmogorov’s type condition in Sect. 4.7, but
this time we don’t assume a priory that the kernel is finite dimensional. The
new idea is to apply the Poisson A–integral transform to the equation (20) in
the basic criterion. (See Sect. 4.4 for another application of this idea.)

3.9 Titchmarsh and Uly’anov Theorems

Let h ∈ L1
loc(R) be a real valued function. For each A > 0 we denote

hA =

{
h(x) |h(x)| ≤ A ,
0 |h(x)| ≥ A .

The Schwarz A–integral of h is defined by the formula

S(A)h(z) = lim
A→∞

SfA(z) , z ∈ C+ ,

provided that the limit exists for all z. Similarly, one defined the Poisson and
the conjugate Poisson A–integrals P(A)h and Q(A)h respectively so that

S(A)h = P(A)h+ iQ(A)h .

Recall that if h, h̃ ∈ L1
Π , then Sh̃ = −iSh+ iSh(i).

Theorem 3.23. If h ∈ L1
Π, then the Schwarz A–integral of h̃ exists, and we

have
S(A)h̃(z) = −iSh(z) + iSh(i) , z ∈ C+ . (22)
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The real part of the equation (22), or rather its special case

P(A)h̃(i) = 0 , (23)

is due to Titchmarsh, see [42], and the imaginary part of (22),

Q(A)h̃ = −Ph+ Ph(i) , (24)

is the Uly’anov’s theorem, see [2] for a shorter proof. Note that we use a
slightly different definition of the A–transforms but the definitions are in fact

equivalent because h̃ ∈ Lo(1,∞)
Π .

3.10 A Sufficient Condition for Np[U ] = 0

For an odd function δ : R → R we define

Lδ(y) =
2

π

∫ ∞

0

[
1

1 + t2
− 1

y2 + t2

]
tδ(t) dt , y > 0 .

The integral makes sense (it might be ±∞) if we assume that

either

∫ ∞
δ+(t) t−3dt <∞ or

∫ ∞
δ−(t) t−3dt <∞ , (25)

where, as usual, δ± := max{±δ, 0}. Note that if δ ∈ L1
Π , then Lδ(y) = δ̃(iy).

Theorem 3.24. Let γ ∈ Cω(R) and let δ(x) = γ(x) − γ(−x) satisfy (25).
Then

Np[eiγ ] 	= 0 ⇒ ∃F ∈ Hp/4(C+), eLδ(y) ≤ |F (iy)|, (y > 1) .

Proof. By (20) we have

γ = −φ+ h̃1 , h1 ∈ L1
Π , e−h1 ∈ Lp/2 .

Then
−γ(−x) = φ(−x) + h̃2(x) , h2 ∈ L1

Π , e−h2 ∈ Lp/2 .

It follows that

δ = −ψ + h̃ , h ∈ L1
Π , e−h ∈ Lp/4 ,

where ψ is an odd increasing function. We apply the Uly’anov theorem to

h̃ = δ1 := ψ + δ .

By (24) we have
QAδ1 = QAh̃ = −Ph+ const ,

so
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eQAδ1 = const |F | , F := e−Sh ∈ Hp/4

and it remains to show that

Lδ(y) ≤ QAδ1(iy) .

Since tδ1(t) ≥ tδ(t) for all t ∈ R, and since the kernel of L is positive for
y > 1, we have

πQAδ1(iy) = lim
A→∞

∫
{|δ1|<A}

[
1

1 + t2
− 1

y2 + t2

]
tδ1(t) dt

≥ lim
A→∞

∫
{|δ1|<A}

[
1

1 + t2
− 1

y2 + t2

]
tδ(t) dt

=

∫
R

[
1

1 + t2
− 1

y2 + t2

]
tδ(t) dt = πLδ(y) .

� 

Remark 3.25. The proof works for any γ such that

γ = −φ+ h̃ , h ∈ L1
Π , e−h ∈ Lp/2 .

We don’t need to assume γ ∈ Cω as long as we have such a representation.

3.11 Levinson–Type Conditions

We can use standard growth estimates of Hardy space functions to derive
more familiar looking conditions.

Condition (a).

Np[eiγ ] 	= 0 ⇒ eLδ(y) = o
(
y−4/p

)
, y → +∞ ,

In other words,

lim sup
y→∞

[
Lδ(y) +

4

p
log y

]
> −∞ ⇒ Np[u] = 0 . (26)

Example 3.26. A simple computation shows

[L sign](y) =
2

π
log y .

It follows that N [eiγ ] = 0 if γ(x) ≥ γ(−x) − π for x ≥ x0. Indeed, we have
δ ≥ −π for large x, and therefore

Lδ(y) ≥ −π[L sign](y) +O(1) = −2 log y +O(1) .
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Condition (b).

Np[eiγ ] 	= 0 ⇒
∫ ∞

epLδ(y)/4dy <∞ .

For example,

Lδ(y) ≥ −4

p
log y − log log y ⇒ Np[eiγ ] = 0 .

A more general statement is

Np[eiγ ] 	= 0 ⇒
∫ ∞

0

epLδ(y)/4dν(y) <∞ ,

for any Carleson measure ν in C+.

Condition (c). For each y > 1, the quantity

Lδ(y)

[L sign](y)
=
π

2

Lδ(y)

log y

is some sort of “averaging” of δ near +∞. The meaning of (26) is that the
“mean” value of δ in infinity has to be “less” than −2π/p for the Toeplitz
kernel Np[eiγ ] to be non-trivial. Here is a different way to express the same
idea.

Corollary 3.27. Suppose δ(x) satisfies the integrability conditions (25). Then
Np[eiγ ] = 0 if ∫ x

0

δ(t)

t
dt ≥ −2π

p
log x+O(1) , x→ +∞ .

Proof. Integration by parts shows: if∫ x

0

a(t)

t
dt ≤ log x+O(1) , x→∞ ,

then ∫ ∞

0

y2

y2 + t2
a(t)dt

t
≤ log y +O(1) , y →∞ .

(If the latter integral is not converging, then we understand it as lim sup
∫ x

0 .)
� 

4 Some Applications

Completeness and Minimality Problem

4.1 Restatement in Terms of Uniqueness Sets and Toeplitz Kernels

We will study the following situation. Consider the Schrödinger equation (2)
on an interval (a, b) with potential q and some fixed selfadjoint boundary
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condition β at b. We assume that the endpoint a is regular. For each λ ∈ C
we choose a non-trivial solution uλ satisfying the boundary condition; this
solution is unique up to a constant. If Λ ⊂ C, we say that the family {uλ}λ∈Λ

is complete if
span{uλ : λ ∈ Λ} = L2(a, b) ,

and is minimal if

∀λ0 ∈ Λ, uλ0 	∈ span{uλ : λ ∈ Λ \ λ0} .

We will use the notation of Sects. 2.4 and 2.6: Θ = Θa
b,β is the Weyl inner

function, and E is a de Branges function of Θ. For λ ∈ C+ ∪ R we have
reproducing kernels kλ and dual reproducing kernels k∗λ of KΘ, see (13). For
λ ∈ C, let KE

λ denote the reproducing kernel in B(E). Finally, we represent

Λ = Λ+ ∪ Λ− , Λ+ := Λ ∩ (C+ ∪ R), Λ− := Λ ∩ C− .

Lemma 4.1. The following assertions are equivalent:

(i) the family {uλ}λ∈Λ is complete (minimal) in L2(a, b);
(ii) the family {KE

λ̄
}λ∈Λ is complete (minimal) in B(E);

(iii) the family {kλ̄}λ∈Λ− ∪ {k∗λ}λ∈Λ+ is complete (minimal) in KΘ.

Proof. This follows from Theorem 2.3 and Corollary 2.9. � 

We say that Λ ⊂ C is a uniqueness set of B(E) if there is no non-trivial
function F ∈ B(E) such that F = 0 on Λ. The equivalence (i) ⇔ (ii) in the
above lemma means that {uλ}λ∈Λ is complete if and only if Λ is a uniqueness
set of B(E), and that {uλ}λ∈Λ is minimal if and only if Λ \ λ0 is not a
uniqueness set for any λ0 ∈ Λ.

We define uniqueness sets Λ ofKΘ in a similar way; in this case Λ ⊂ C+∪R.
The definition obviously extends to divisors, i.e. sets of points with assigned
multiplicities.

Lemma 4.2. Let Λ ⊂ C+ ∪ R and let M ⊂ C+. Then the family

{kλ}λ∈Λ ∪ {k∗µ}µ∈M

is complete in KΘ if and only if Λ ∪M is a uniqueness divisor.

Proof. Suppose the family is not complete, so there is a non-trivial F ∈ KΘ

orthogonal to all kλ and k∗µ. Let H ∈ KΘ be defined by the relation

Θ̄F = H̄ on R .

Then we have F = 0 on Λ and H = 0 on M . (Recall that Θ̄kµ = k∗µ.) From
the latter fact we have a representation

H = BMG , G ∈ H2 ,
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where BM is the Blaschke product, and therefore

Θ̄(BMF ) = Ḡ .

The function BMF is in KΘ and is zero on Λ ∪M . The opposite direction is
similar. � 

The equivalence (i) ⇔ (iii) in the first lemma now means that {uλ}λ∈Λ is
complete in L2(a, b) if and only if Λ+ ∪ Λ− is a uniqueness divisor of B(E).
The characterization of minimality is similar.

It is very easy to characterize uniqueness sets (or divisors) Λ of KΘ in the
terms of Toeplitz kernels in the case Λ ⊂ C+. (The case Λ ⊂ R is discussed
in the next subsection.) A necessary and sufficient condition for uniqueness is
the following:

N [Θ̄BΛ] = 0 .

Indeed, f ∈ KΘ is zero on Λ if and only if g = B̄Λf ∈ N [Θ̄BΛ].
Let us summarize the above discussion.

Theorem 4.3. Let Λ = Λ+ ∪ Λ−, Λ± ⊂ C±, and let B denote the Blaschke
product corresponding to the divisor Λ+∪Λ−. The family {uλ}λ∈Λ is complete
in L2(a, b) iff N [Θ̄B] = 0 and is minimal iff N [b̄Θ̄B] 	= 0. The family is
complete and minimal if and only if

dim [b̄Θ̄B] = 1 .

The “dimension” of the kernel, which may be negative, see Sect. 3.1, can
be interpreted as the excess/deficiency of the family.

4.2 Uniqueness Sets of K
p
Θ

We will consider the case of an arbitrary p > 0. As we explained, if Λ ⊂ C+,
then

Λ is a uniqueness set of Kp
Θ ⇔ Np[Θ̄B] = 0 . (27)

Now we concentrate on the case Λ ⊂ R.

Proposition 4.4. Let Θ be a meromorphic inner function and Λ ⊂ R. Then
Λ is a uniqueness set of Kp

Θ if and only if Np[Θ̄J ] = 0 for every meromorphic
inner function J such that {J = 1} = Λ.

Proof. Suppose we have a non-trivial function F ∈ Kp
Θ which is zero on Λ.

By Lemma 3.15, we can find an inner function J with {J = 1} = Λ such that

G =
F

1− J ∈ Hp .

Then G ∈ Kp
Θ, and we have



216 N. Makarov and A. Poltoratski

Θ̄JG = Θ̄(G− F ) = Θ̄F
J

1− J = − Θ̄F

1− J̄ ∈ H̄p ,

so the Toeplitz kernel is non-trivial.
Conversely, if G is a non-trivial element of Np[Θ̄J ], then F = (1− J)G ∈

Kp
Θ, and so Λ is not a uniqueness set. Indeed, since G ∈ Np[Θ̄J ], we have

JG ∈ Kp
Θ, and therefore G ∈ Kp

Θ and G− JG ∈ Kp
Θ. � 

Compared to the case Λ ⊂ C+, the condition in the last lemma seems to
be less useful since it involves an infinite set of inner functions J . Nevertheless,
we can overcome this difficulty and restate the criterion in both cases Λ ⊂ C+

and Λ ⊂ R in a unified way.
If Λ ⊂ C+, then combining (27) and (20) we see that Λ is not a uniqueness

set of Kp
Θ iff the function

γ = argBΛ − argΘ (28)

has a representation

γ = −φ+ h̃ , h ∈ L1
Π , e−h ∈ Lp/2 ,

where φ is the argument of a meromorphic inner function.
In the case Λ ⊂ R, we will use the counting function nΛ of Λ instead of

the argument function of BΛ in (28). By definition,

nΛ =
∑

nλ , nλ =

{
χ(λ,+∞) λ > 0 ,

−χ(−∞, λ) λ < 0 .
(29)

Theorem 4.5. Let Θ be a meromorphic inner function and Λ ⊂ R. Then Λ
is not a uniqueness set of Kp

Θ if and only if the function

γ = 2πnΛ − argΘ

has a representation

γ = −φ+ h̃ , h ∈ L1
Π , e−h ∈ Lp/2 , (30)

where φ is the argument of a meromorphic inner function.

Proof. If Λ is not a uniqueness set, then by the last proposition there is a
meromorphic inner function J such that {J = 1} = Λ and such that the
kernel Np[Θ̄J ] contains an outer function G which has no zeros on R. We
have

Θ̄J = −Φ̄ Ḡ
G

for some inner function Φ, and if we denote F = (1− J)G, then

Θ = Φ
F

F̄
= Φ exp(2i(log |F |)∼) = Φ exp(i[2(log |F |)∼ + 2πnΛ]) .
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The key observation is that the function in the square brackets is continuous
– this follows from the fact that F is an outer function with zero set Λ, and
from the identity (log |x|)∼ = πχR− . We conclude that

γ = −φ+ h̃ , h := −2 log |F | ,

which proves one half of the statement. Reversing the argument we get the
second half. � 

Example 4.6. Λ is a uniqueness set of Kp[Sa] if γ(t) = 2πnΛ(t) − at has a
representation (30). As in Sect. 3.10 consider the function

δ(t) = γ(t)− γ(−t) = 2πN(t)− 2at , N(t) = #[Λ ∩ (−t, t)] .

Applying Corollary 3.27 (and also Remark 3.25) we get a sufficient condition∫ x

1

N(t)

t
dt ≥ a

π
x− 1

p
log x+O(1) , (x→ +∞) .

In fact, Theorem 3.24 implies the latter condition in the lim sup sense, as well
as some other sufficient conditions. Similar results can be stated for various
families of special functions.

Zero Sets of Entire Functions

4.3 Exact Zero Sets of B+(E)–Functions

We will be considering general Cartwright–de Branges spaces, see Sect. 2.7.
A set Λ ⊂ C is said to be an exact zero set of B+(E) if there exists an
entire function F ∈ B+(E) such that F = 0 exactly on Λ. We’ll restrict the
discussion to the case Λ ⊂ R.

Recall that B+(E) = EK+(Θ) where Θ = ΘE = E#/E, so Λ ⊂ R is also
an exact zero set of K+(Θ). The following description is essentially our basic
criterion in Proposition 3.13. In the next subsection we will see that in the
special case E = S−a, this description contains main results of the theory of
Cartwright’s functions. As usual, S denotes the singular inner function eiz.

Theorem 4.7. Λ ⊂ R is an exact zero set of B+(E) if and only if

2πnΛ − arg ΘE = −bx+ h̃ , h ∈ L1
Π , b ≥ 0 .

Proof. We need to show that a function F ∈ B+(E) with zero set Λ exists if
and only

Θ = JSbH

H̄
, (31)

for some inner function J with {J = 1} = Λ, some b ≥ 0, and some outer
function H ∈ Cω(R) which has no zeros on R.
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⇐: The function

F (z) =

{
(1 − J(z)) H(z)E(z)Sb(z) z ∈ C+ ,

(J#(z)− 1) H#(z)E#(z) z ∈ C− ,

is in B+(E) and vanishes exactly on Λ.
⇒: Suppose F ∈ B+(E) vanishes exactly on Λ. Since B+(E) = EK+

Θ ,
there is G ∈ K+

Θ such that F = EG in C+. Clearly, we can assume that G is
an outer function. Define G− ∈ N+(C+) by the equation

Θ̄G = Ḡ− on R .

Since
F (z) = E#(z)G−(z̄) , z ∈ C− ,

G− has no zeros in C+, and therefore its inner-outer factorization has the
form

G− = SbG , b ≥ 0 . (32)

We now take any meromorphic inner function J with {J = 1} = Λ and define

H =
G

1− J .

This is an outer function with the stated properties. We have

G = H(1− J) , G− = H(1− J)Sb ,

and from (32) we get the representation (31). � 

Example 4.8. Λ ⊂ R is an exact zero set of a Cartwright function if and only
if

nΛ(x) = cx+ h̃ , c ≥ 0 , h ∈ L1
Π . (33)

4.4 Zeros of Cartwright’s Functions

We need the following elementary lemma.

Lemma 4.9. Suppose g ∈ Lo(1,∞)
Π and g′ ≥ −const. Then

g(x) = o(x) , x→ ±∞ .

Proof. If g(x∗) ≥ cx∗, x∗ � 1, then for x > x∗ we have (assuming g′ ≥ −1)

g(x) ≥ g(x∗)− (x− x∗) ≥ (1 + c)x∗ − x ,

and so g(x) � x∗ on an interval [x∗, (1 + δ)x∗]. The Poisson measure of this
interval is ' 1/x∗, which contradicts the weak L1-condition. � 
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Corollary 4.10. Let Λ ⊂ R be the exact zero set of some Cartwright function.
Then

∃c ≥ 0 , lim
x→−∞

nΛ(x)

x
= lim

x→+∞
nΛ(x)

x
= c.

Proof. From (33) we conclude that g(x) = nΛ(x)− cx satisfied the conditions
of the lemma. � 

Corollary 4.11. If Λ ⊂ R is the exact zero set of a Cartwright function, then
there exists a limit

v.p.
∑
λ∈Λ

1

λ
.

Proof. For every B > 0 we define the function

ηB(t) =

⎧⎪⎨⎪⎩
B t > B ,

t t ∈ [−B,B] ,

−B t < −B .

Using the notation (29), we have∑
|λ|≤B

nλ = nΛ ◦ ηB .

We also introduce an elementary function

g(λ) =

∫
nλdΠ =

π

2
sign(λ) − arctanλ =

1

λ
+O

(
1

λ2

)
, λ→ ±∞ .

By the previous corollary we have

∃ v.p.
∑ 1

λ
⇔ ∃ v.p.

∑
g(λ) .

By (33), nΛ = cx+ f , where we write f for h̃, and therefore∑
|λ|≤B

g(λ) =

∫
nΛ ◦ ηB dΠ =

∫
f ◦ ηB dΠ + const .

The only properties of f that we use in the rest of the proof are: f(x) = o(x)
as x→∞, and Titchmarsh’s theorem (23),

lim
A→∞

∫
fAdΠ = 0 , fA = f · (χ[−A,A] ◦ f) .

Since f(x) = o(x), we have

sup
[−B,B]

|f | = o(B) , B →∞ .
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It follows that there is a function A = A(B) such that A = o(B), A(∞) = ∞,
and

f = fA(B) on [−B,B] .

Then we also have

|f ◦ ηB|, |fA(B)| ≤ A(B) on R ,

and therefore∫ ∣∣∣f ◦ ηB − fA(B)
∣∣∣ dΠ ≤ A(B)

∫
R\[−B,B]

dΠ → 0 , B →∞ .

� 

We leave it to the reader to state relevant results concerning zeros of func-
tions from more general Cartwright–de Branges spaces B+(E). For example,
the key property h̃ = o(t) is valid if

lim
δ→0

lim sup
x→∞

θ(x+ δx) − θ(x)
x

= 0 ,

where θ is the argument of ΘE .

Spectral Problems with Mixed Data

4.5 Abstract Hochstadt–Liberman Problem

We will be considering the following problem concerning general meromorphic
inner functions. In the next section we will explain its relation to Hochstadt–
Liberman’s theorem [21].

Let Φ and Ψ be meromorphic inner function and Θ = ΨΦ. As usual, σ(Θ)
denotes the (point) spectrum of Θ, see Sect. 2.2; recall that σ(Θ) may include
∞. We say that the data [Ψ, σ(Θ)] determine Θ if for any inner function Φ̃,

Θ̃ = ΨΦ̃, σ(Θ̃) = σ(Θ) ⇒ Θ = Θ̃ .

Alternatively, we can say that Ψ and σ(ΦΨ) determine Φ. Given Φ and Ψ , the
problem is to decide if this is the case.

The set of Herglotz measures of inner functions Θ̃ satisfying Ψ |Θ̃ and
σ(Θ̃) = σ(Θ) is convex, see Sect. 2.2. We will refer to the dimension of this
set as the dimension of the set of solutions.

Example 4.12. Suppose Θ is a finite Blaschke product. Then

[Ψ, σ(Θ)] determine Θ ⇔ 2 degΨ > degΘ .

The proof is elementary; it also follows from the results below. As an illus-
tration consider the simplest case Θ = b2, Ψ = b. Then σ(Θ) = {0,∞},
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and the data [Ψ, σ(Θ)] does not determine Θ. In fact, the set of solutions is
one-dimensional; the solutions are given by the formula

Φ̃(z) =
z − ia

z + ia
, (a > 0) .

We will state some conditions in terms of the Toeplitz kernels with symbol
U = Φ̄Ψ . The rough meaning of these conditions is the following: for the data
[Ψ, σ(Θ)] to determine Θ, the known factor Ψ of the inner function has to be
“bigger” than the unknown factor Φ.

Proposition 4.13. If N∞[Φ̄Ψ ] 	= {0}, then the data [Ψ, σ(Θ)] does not deter-
mine Θ.

Proof. Take

a ∈ N∞[Θ̄Ψ2] , ‖a‖∞ <
1

2
.

Then
Θ̄Ψ2a = b̄ ,

and
Θ̄Ψ2(a+ b) = ā+ b̄ .

Denote
g = a+ b , f = Ψg ,

so that
Θ̄f = f̄ , Ψ |f , ‖f‖∞ < 1 .

Then the function

Θ̃ =
f +Θ

f + 1
(34)

is inner:

|Θ̃|2 =
(f +Θ)(f̄ + Θ̄)

(f + 1)(f̄ + 1)
=

(f +Θ)(Θ̄f + Θ̄)

(f + 1)(Θ̄f + 1)
= 1 ,

and Ψ |Θ̃. Let us check that σ(Θ) = σ(Θ̃). This is clear for finite eigenvalues,
and we also note that ∞ ∈ σ(Θ) iff ∞ ∈ σ(Θ̃) because Θ − 1 ∈ H2 iff

Θ̃ − 1 =
Θ − 1

f + 1
∈ H2 .

� 

Here is a partial converse. We write Np
Π [U ] for N+[U ] ∩ Lp

Π .

Proposition 4.14. If Np
Π [Φ̄Ψ ] = {0} for some p < 1, then [Ψ, σ(Θ)] deter-

mine Θ.
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Proof. Suppose σ(Θ1) = σ(Θ) and Ψ |Θ1. Then the function

f =
Θ1 −Θ
1−Θ1

is in Hp
Π ∩ Cω(R) for all p < 1 because (1 − Θ1)

−1 has positive real part in
C+ and Θ1 = Θ on {Θ1 = 1}. Observe that

Θ̄f = Θ̄
Θ1 −Θ
1 −Θ1

=
Θ1Θ̄ − 1

1−Θ1
=
Θ̄ − Θ̄1

Θ̄1 − 1
= f̄ .

Since Ψ |f, we can define

g = Ψ̄f ∈ Hp
Π ∩ Cω(R) .

We have
Φ̄Ψg = Θ̄Ψ2g = ΨΘ̄f = Ψf̄ = ḡ ,

and so g ∈ Np
Π [Φ̄Ψ ] = {0} and Θ1 = Θ. � 

How big is the gap between the conditions in the above statements? As
we will see in Sect. 5.1, the gap is just finite dimensional if the inner function
Φ is not very “wild”. Namely, if the argument of Φ has a polynomial growth
at infinity, then Np

Π [Φ̄Ψ ] = {0} implies N∞[bnΦ̄Ψ ] = {0} for some n <∞.
We now demonstrate a different way to state a partial converse of the first

statement. We get precisely the converse statement up to a factor which is
the ratio of two twin inner functions, see Sect. 3.8.

Proposition 4.15. If the data [Ψ, σ(Θ)] don’t determine Θ, then there are
inner functions Θ1 and J such that {Θ1 = 1} = {J = 1} and

N∞[(Θ̄1J)Φ̄Ψ ] 	= 0 .

Proof. Suppose we have σ(Θ1) = σ(Θ), Θ1 = Φ1Ψ . Then the function Φ−Φ1

is in K∞[ΦΦ1] and is zero on {Θ1 = 1}. By Proposition 4.4, there is an inner
function J such that J = 1 exactly on {Θ1 = 1} and N∞[Φ̄1Φ̄J)] 	= 0. Finally,
we note

Φ̄Φ̄1J = Φ̄Ψ(Θ̄1J) .

� 

We can apply our results on Toeplitz kernels (Sects. 3 and 5) to obtain
various necessary or sufficient conditions in the Hochstadt–Liberman prob-
lem. Here is a simple example that extends the original Hochstadt–Liberman
theorem, which we will recall in the next subsection.

Corollary 4.16. Suppose Θ = Ψ2 and ∞ 	∈ σ(Θ). Then the set of solutions
is exactly one-dimensional: Θ̃ satisfies Ψ |Θ̃, σ(Θ̃) = σ(Θ) iff

∃r ∈ (−1, 1) , Θ̃ = Ψ
r + Ψ

1 + rΨ
. (35)
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Proof. We have Φ = Ψ , so N∞[Φ̄Ψ ] 	= 0 and by the first proposition the
dimension is at least 1. On the other hand, the dimension can not be ≥ 2, for
otherwise by the last proposition we would have N∞[bΘ̄1J ] 	= 0 and therefore
N [Θ̄1J ] 	= 0 for some inner functions Θ1 and J such that {J = 1} = {Θ1 = 1}
and σ(Θ1) = σ(Θ). By assumption, ∞ 	∈ σ(Θ1), so and we get a contradiction
with the twin function theorem in Sect. 3.8. The formula (35) now follows
from the construction (34) in the proof of the first proposition. � 
Remark 4.17. One can show that the statement is true even without assump-
tion ∞ 	∈ σ(Θ). Also, one can state the following “one-sided” version (see
Remark 3.21 in Sect. 3.8):

Corollary 4.18. Let Θ = Ψ2. Then Θ̃ satisfies Ψ |Θ̃, σ(Θ̃) ⊂ σ(Θ) iff

∃r ∈ [−1, 1] , Θ̃ = Ψ
r + Ψ

1 + rΨ
.

In other words, the (convex) set of all such Θ̃’s is the segment [−Ψ, Ψ ]. Once
we know that the dimension is one, the formula follows from the obvious fact
that ±Ψ are extreme points of this set.

4.6 Spectral Theory Interpretation: Hochstadt–Liberman and
Khodakovski Theorems

Consider a Schrödinger operator L = (q, α, β) on (a, b), where q ∈ L1
loc(a, b)

and α, β are selfadjoint boundary conditions at a and b respectively; the
endpoints can be infinite and/or singular. We assume that L has compact
resolvent. As usual, σ(L) denotes the spectrum of L.

Suppose a < c < b. We will write q− for the restriction of q to (a, c) and q+
for the restriction of q to (c, b). We say that the data (q−, α, σ(L)) determines
L if for any other Schrödinger operator L̃ = (q̃, α̃, β̃),

q− = q, α = α̃, σ(L̃) = σ(L) ⇒ q̃+ = q+, β̃ = β .

Let Θ− denote the Weyl inner function of (q−, α) computed at c and Θ+

the Weyl inner function of (q+, β) computed at c.

Lemma 4.19. σ(L) = σ(Θ−Θ+).

Proof. The equation Θ−(λ)Θ+(λ) = 1 is equivalent to the statement

m+(λ) +m−(λ) = 0 or m−(λ) = m+(λ) = ∞ ,

for the corresponding m-functions. The latter means that we have the match-
ing

u̇−(c, λ)

u−(c, λ)
=
u̇+(c, λ)

u+(c, λ)
,

for any two non-trivial solutions u−(·, λ) and u+(·, λ) of the Schrödinger equa-
tion with boundary conditions α and β respectively, which is possible if and
only if λ is an eigenvalue of L. � 
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Corollary 4.20. (q−, α, σ(L)) determine L if the data (Θ−, σ(Θ−Θ+)) deter-
mine Θ+.

Here we of course rely on the fundamental uniqueness theorem of Borg and
Marchenko [7], [31]: the m–function (and therefore the Weyl inner function)
determines both the potential and the boundary condition.

Remark 4.21. We would have an “iff” statement if we considered the problem
in some class of canonical systems with a one-to-one correspondence between
the systems and inner functions such as the class of Krein’s “strings”, see [12],
[14]. The effective characterization of inner functions of Schrödinger operators
is an open problem, so we will use our general results to state only sufficient
conditions for Schrödinger operators. To obtain necessary condition one has
to use more specific techniques of the Schrödinger operator theory, see [7],
[22].

Let us apply the above corollary to the situation described at the end of
the last subsection.

Example 4.22. Let L be a Schrödinger operator on R with compact resolvent
and limit point boundary conditions at ±∞. Suppose the potential q(x) is an
even function:

q(−x) = q(x) , (x > 0) .

Then q|R− and σ(L) determine L.

Proof. By Everitt’s theorem [15] (we recall it in the next subsection), all the
inner functions (r + Ψ)/(1 + r + Ψ) in (35) with r 	= 0 are not Weyl inner
functions corresponding to a Schrödinger operator. � 

This result is a special case of Khodakovski’s theorem [24], where only the
equality q(−x) ≤ q(x) for x > 0 is assumed. The full version of Khodakovski’s
theorem requires a slightly different approach which we describe in the next
subsection. Similarly, from the remark at the end of Sect. 3.5 we derive the
following statement.

Let L be as above, and let L̃ be another Schrödinger operator on (−∞, b),
b ≥ 0. If

q = q̃ on R− and σ(L̃) ⊂ σ(L) ,

then either L̃ = L or b = 0 and L̃ is the operator with potential q− and
Dirichlet or Neumann condition at 0.

Example 4.23. Let L be a regular selfadjoint Schrödinger operator on [a, b]
with non-Dirichlet boundary conditions α and β at a and b respectively. If
c = (a+ b)/2, then (q−, α, σ(L)) determine L.

The statement is also true if one or both boundary conditions are Dirichlet,
see next subsection. This is a stronger version of the Hochstadt–Liberman
theorem [21], see also [17] which states that if both L and L̃ are regular, and
q̃− = q−, α̃ = α, σ(L̃) = σ(L), then L̃ = L. We do not require L̃ to be regular.
Also, we can replace σ(L̃) = σ(L) with σ(L̃) ⊂ σ(L).
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4.7 Everitt’s Class of Inner Functions

We need the following well-known fact, see [15]:

Fact 4.24. If m(z) is an m-function of a Schrödinger operator, then

m(z) = i
√
z + o(1) , (z →∞, z ∈ iR+) .

It follows that if Ψ(z) is a Weyl inner function of a Schrödinger operator,
then

Ψ(z) = 1− 2√
z

+
2

z
+ o

(
1

z

)
, (z →∞, z ∈ iR+) . (36)

This motivates the following definitions. We say that a meromorphic inner
function Ψ belongs to the class (Ev) if it satisfies the asymptotic relation (36).
(Note though that (36) is by no means a full characterization of Weyl inner
functions of Schrödinger operators.)

Definition 4.25. Let Ψ, Φ ∈ (Ev). We say that [Ψ, σ(ΨΦ)] determine Φ in the
class (Ev) if

Φ̃ ∈ (Ev), σ(ΨΦ) = σ(ΨΦ̃) ⇒ Φ̃ = Φ .

Proposition 4.26. Let Ψ, Φ ∈ (Ev). Suppose

∃p < 1, dim Np[Φ̄Ψ ] <∞ .

Furthermore, suppose we have a representation Φ̄Ψ = H̄/H, where H is an
outer function such that H±1 ∈ Cω(R), and

H 	= o
(

1√
|z|

)
, (z →∞, z ∈ iR+) .

Then (Ψ, σ(ΨΦ)) determine Φ in the class (Ev).

Proof. We first argue as in the proof of the second proposition in Sect. 4.5.
The function

G =
Φ̃− Φ
1− Φ̃Ψ

∈ Hp
Π ∩Cω(R)

satisfies
Φ̄ΨG = Ḡ . (37)

We also derive from (36) that

G(z) = o

(
1√
z

)
, (z →∞, z ∈ iR+) .

Since the dimension of the Toeplitz kernel is finite, G has at most finitely
many zeros on R and its inner factor is a finite Blaschke product (if any).
Thus we can assume that G is an outer function zero free on R satisfying
(37). But in this case H = G, and we have a contradiction. � 
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Remark 4.27. One can show that the statement is true for all p ≤ 2.

Example 4.28. If Φ = Ψ ∈ (Ev), then (Ψ, σ(ΨΦ)) determine Φ in the class
(Ev).

Proof. H = 1 	= o(|z|−1/2). � 

Example 4.29. If Ψ = ΘD and Φ = ΘN , see (10), then Ψ and σ(ΨΦ) determine
Φ in (Ev), and if Ψ = ΘN and Φ = ΘD, then Ψ and the spectrum σ(ΨΦ)
minus any one point determine (in an obvious sense) Φ in the class (Ev).
In particular, we have the Hochstadt–Liberman type result for all regular
operators with arbitrary boundary conditions.

Proof. Reasoning as in Example 3.19, in the first case we have H = ED/EN

and so |H | ∼ |z|−1/2. In the second case, |H | = |EN/ED| ∼ |z|1/2. � 

Example 4.30 (Bessel inner functions). This is an extension of the previous
example. We want to show that the Hochstadt–Liberman phenomenon occurs
not only for regular potentials.

We consider the Bessel inner functions Θν , ν ≥ −1/2, see (11). Recall that

Eν(λ) = (1 + i/2 + iν)Gν (
√
λ) + iFν(

√
λ)

is a de Branges function of Θν , where Gν(z) = z−νJν(z) and Fν(z) = zG′
ν(z),

see Sect. 2.6. If Ψ = Θν1 and Φ = Θν2 , then we have a representation

Φ̄Ψ =
H̄

H
, H =

Eν1

Eν2

.

Lemma 4.31. ∣∣∣∣Eν1 (λ)

Eν2 (λ)

∣∣∣∣ ∼ |λ|
ν2−ν1

2 , λ ∈ iR+, λ→∞ .

Proof. It is known that |Jν(z)| ∼ |J0(z)| as z → ∞ in any Stolz angle in C+.
Therefore,

|Gν(z)| ∼ |z−νJ0(z)|,
and we also have

|Fν(z)| ∼ |Gν−1(z)| ∼ |z1−νJ0(z)| .

(The first relation follows from the identity zJ ′
ν(z) = zJν−1(z)−νJν(z), which

implies Fν = Gν−1 − 2νGν). � 

We can now apply Proposition 4.26. In particular, we get the following
result.

Theorem 4.32. Let L be the Schrödinger operator with potential q(t) = 2t−2

on [0, 2] and with Dirichlet boundary condition at t = 2. Then q|(0,1) and the
spectrum σ(L) determine L in the class of Schrödinger operators.
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Proof. In our usual notation we have

Ψ = Θ3/2 , Φ̄Θ1/2 =
F̄

F
, F±1 ∈ H∞ ,

see Sect. 3.4. Therefore,

Φ̄Ψ = (Φ̄Θ1/2)Θ̄1/2Θ3/2 =
F̄

F

E1/2

Ē1/2

Ē3/2

E3/2
=
H̄

H
,

where

H =
FE3/2

E1/2

is an outer function such that H±1 ∈ Cω(R) and H(iy) 	= o(1/
√
y) as y →

+∞. We can apply the proposition because the argument of the unimodular
function Φ̄Ψ is bounded, which is a consequence of the well-known asymptotic
for the zeros of Bessel’s functions. � 

Defining Sets

4.8 Defining Sets of Inner Functions

Let Φ = eiφ be a meromorphic inner function, and let Λ ⊂ R. We say that Λ
is a defining set for Φ if

Φ̃ = eiφ̃, φ̃ = φ on Λ ⇒ Φ ≡ Φ̃ .

In this definition we tacitly assume φ(±∞) = ±∞. In the “one-sided” case,
say if φ(−∞) > −∞ and φ(+∞) = +∞, one should modify the definition in
an obvious way.

One can extend this definition to divisors. For instance, if all points in
Λ ⊂ σ(Φ) are double, then the equality Φ̃ = Φ on Λ means that the spectral
measures the inner functions coincide on Λ.

Let us mention several special cases.

Case 4.33 (Two spectra problem). This corresponds to the case

Λ = {Φ = 1} ∪ {Φ = −1} .

The meaning of the following statement is that Λ is defining for Φ with de-
ficiency one (in the case φ(±∞) = ±∞, to be accurate). Various related
statements are of course well-known, see e.g. [7].

Let Φ be a meromorphic inner function. Then a meromorphic inner func-
tion Φ̃ satisfies {Φ̃ = 1} = {Φ = 1} and {Φ̃ = −1} = {Φ = −1} iff

Φ̃ =
Φ− c
1− cΦ , c ∈ (−1, 1) . (38)
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The easiest way to see this is use Krein’s shift construction: since

$
[

1

πi
log

Φ̃+ 1

Φ̃− 1

]
= χe on R ,

where e = {&Φ > 0}, we have

1

πi
log

Φ̃+ 1

Φ̃− 1
= Sχe + const .

This argument also shows that given any two intertwining discrete sets Λ±
of real numbers there is a meromorphic inner function Φ such that

{Φ = ±1} = Λ± .

Let us also mention that the statement (38) can be derived from the twin
inner function theorem, see Sect. 3.8. For instance, suppose I := Φ̃Φ has no
point mass at infinity. We want to show that Φ̃−Φ = c(1− I). It is enough to
check that the dimension of the set of functions F ∈ K∞

I vanishing on {I = 1}
is at most one. (Obviously, both Φ̃ − Φ and 1 − I belong to this set.) If not,
we would have dim N∞[ĪJ ] ≥ 2 for some J vanishing on {I = 1}. But then
N∞[bĪJ ] 	= 0, and N [ĪJ ] 	= 0, which is impossible by the twin inner function
theorem.

Case 4.34 (General mixed data spectral problem). The Hochstadt–Liberman
problem for inner functions that we discussed above can be viewed as a spe-
cial case of the defining sets problem. It is easy to see that if (assuming
argΘ(±∞) = ±∞) Θ = ΨΦ and Λ = σ(Θ), then

(Ψ, σ(Θ)) determine Θ ⇔ Λ is defining for Φ .

This can be generalized in the following way. Let Θ = ΨΦ be a given mero-
morphic inner function and let {λn} be the set of its eigenvalues numbered in
the increasing order. Given M ⊂ Z we denote

σM (Θ) = {λn : n ∈M} .

The question is whether the factor Ψ and the partial spectrum σM (Θ) deter-
mine Θ, i.e. whether

Θ̃ = ΨΦ̃, λ̃n = λn (n ∈M) ⇒ Θ̃ ≡ Θ .

Once again, this is equivalent (assuming φ(±∞) = ±∞) to saying that Λ =
σM (Θ) is a defining set for Φ. The spectral theory meaning was explained
in Sect. 4.6 (but now we consider eigenvalues from different spectra), and
the partial spectral problem for Schrödinger operators and Jacobi matrices
appeared in several publications, e.g. [17], [18].
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Case 4.35 (A version for spectral measures). Given a meromorphic inner func-
tion Θ and a factor Ψ |Θ, and also given a part of the spectrum Λ = σM (Θ),
the question is whether there is another inner function Θ̃ 	= Θ such that Ψ |Θ̃
and the spectral measures µ = µΘ and µ̃ = µΘ̃ coincide on Λ:

λ̃n = λn, µ̃{λn} = µ̃{λn}, (n ∈M) .

Claim. If Θ = ΨΦ, then Ψ and the spectral measure on Λ = σM (Θ) determine
Θ iff the divisor 2χΛ is defining for Φ.

Indeed, if Θ̃ = ΨΦ̃, and

arg Θ̃(λn) = arg Θ̃(λn) = 2πn , (n ∈M) ,

then
arg Φ̃ = argΦ on Λ .

The relation
µ{λ} = µ̃{λ} , λ ∈ Λ

then implies, see (7), Θ̃′(λ) = Θ′(λ), so

Ψ ′(λ)Φ̃(λ) + Ψ(λ)Φ̃′(λ) = Ψ ′(λ)Φ(λ) + Ψ(λ)Φ′(λ) , (λ ∈ Λ) ,

and
(arg Φ̃)′ = (argΦ)′ on Λ .

Again, the spectral theory interpretation is the same as above: we know
some part of a differential operator and some part of its spectral measure and
we want to know if this information determines the operator uniquely.

As usual we can consider the problem in a restricted class of inner func-
tions. Here is the simplest example.

Example 4.36. Let Θ = ΨΦ be a finite Blaschke product. Then Ψ and Λ ⊂
σ(Θ) determine Θ iff #Λ > 2 deg Φ in the class of Blaschke products of
a fixed degree. Similarly, Ψ and the spectral measure on Λ determine Θ iff
#Λ > deg Φ. This extends in an obvious way to the cases where only Φ or Ψ
has a finite degree. These facts follow for instance from the statements in the
next section, also cf. [18].

4.9 Relation to Uniqueness Sets

Proposition 4.37. Λ is not defining for Φ if there is a non-constant function
G ∈ K∞

Φ such that
G = Ḡ on Λ . (39)
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Proof. We can assume ‖G‖∞ < 1. Define F ∈ H∞ by the equation Φ̄G = F̄
on R, and consider

Φ̃ =
Φ+ F

1 +G
.

Then Φ̃ is an inner function because it is in N+ and

|Φ+ F | = |Φ+ ΦḠ| = |1 +G| on R .

Also, Φ̃ 	= Φ because otherwise we would have F = GΦ, which together with
F = ΦḠ implies G = Ḡ, so G = const. Finally, we have

Φ̃ = Φ
1 + Φ̄F

1 +G
= Φ

1 + Ḡ

1 +G
= Φ on Λ ,

and since
‖ arg Φ̃− arg Φ‖L∞(R) < 2π

by construction, we get arg Φ̃ = arg Φ on Λ. � 

Remark 4.38. The condition (39) is very close to the condition that Λ is a not
a uniqueness set for K∞[Φ2]. The precise relation between the two statements
is an interesting question, which we will not discuss here. We only mention
that if p ∈ (1,∞), then

∃G ∈ Kp[Φ] , G 	≡ const , G = Ḡ on Λ ,

iff
∃F ∈ Kp[Φ2] , F 	≡ 0 , F = 0 on Λ .

The above proposition gives a necessary condition for a set Λ to be defining
for Φ. To get sufficient conditions one can use the following obvious observa-
tion.

Lemma 4.39. If Φ̃ = Φ on Λ and F = Φ̃− Φ, then

F ∈ K∞[Φ̃Φ] , F = 0 on Λ .

If we also have arg Φ̃ = arg Φ on Λ (as in the definition of defining sets),
then we can estimate the argument of Φ̃Φ in terms of the data (Φ,Λ), so we
can apply our results concerning uniqueness sets.

4.10 Defining Sets of Regular Operators. Horváth Theorem.

We now consider the defining sets problem in some restricted classes of inner
functions. We will use the spectral theory language. For r ≥ 1 let Schr(Lr, D)
denote the class of selfadjoint Schrödinger operators on [0, 1] with an Lr po-
tential and Dirichlet boundary condition at 0.
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We say that Λ ⊂ R is a defining set for the class Schr(Lr, D) if for any
two operators in Schr(Lr, D) with potentials q and q̃, the equality Θ̃ = Θ on
Λ implies q̃ ≡ q, where Θ̃ and Θ are the corresponding Weyl inner functions.

We have a similar definition for the classes Schr(Lr, N) of Schrödinger
operators with Neumann boundary condition at 0.

Let ΘD denote the standard inner function (10), i.e. the Weyl inner func-
tion in the case q ≡ 0. From Lemma 4.39 we immediately conclude that Λ is
defining in the class Schr(L1, D) if Λ is a uniqueness set of K∞[Θ2

D].
This sufficient condition is not optimal because for regular operators, the

function Φ̃−Φ (see the statement of Lemma 4.39) has some extra smoothness
at infinity as follows from the standard asymptotic formulae (see the end of
the section), which are getting more precise if we require more regularity of
the potential, in particular if we consider the case q ∈ Lr with r > 1.

In an interesting paper [22], Horváth gives a complete description of defin-
ing sets in terms of uniqueness sets of certain model spaces (or, equivalently,
in terms of the completeness problem for exponential functions). The descrip-
tion involves the spaces FLr ≡ FLr(−2, 2), where F stands for the classical
Fourier transform (1). Recall that

PW2 = FL2 ⊂ FL1 ⊂ Cart2 ∩ L∞(R) .

Here is a selection of Horváth’s results. We use the following notation:
√
Λ =

{z : z2 ∈ Λ}, and
√
Λ ∪ {∗, ∗} means

√
Λ plus any two points.

(i) Λ is defining in the class Schr(Lr, D) iff
√
Λ ∪ {∗, ∗} is a uniqueness set

of FLr;
(ii) Λ is defining in Schr(Lr, N) if

√
Λ is not a zero set of FLr.

(In the second case, the ”only if” part of Horváth’s theorem comes with some
additional condition.)

Let us explain how to prove the “if” parts of these statements using the
methods of this paper. We prove for example (ii).

Proposition 4.40. Λ is defining in the class Schr(L2, D) if
√
Λ ∪ {∗, ∗} is a

uniqueness set of PW2.

Proof. Let q, q̃ ∈ L2(0, 1). Without loss of generality we will assume that the
corresponding Schrödinger operators with boundary conditions (D) at 0 and
(N) at 1 are positive. Otherwise, we simply add a large positive constant a to
both potentials, and using the transformation

F (z) �→ F (
√
z2 + a2)

for even entire functions we observe that
√
Λ is a uniqueness set iff

√
Λ+ a is.

Let Θ∗ and Θ̃∗(z) be the square root transforms of Θ and Θ̃, the Weyl
functions taken with sign minus, see Sect. 2.8. From the standard asymptotic
formula for solutions of a regular Schrödinger equation we obtain
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Θ∗

S2
=
H̄

H
on R , H±1 ∈ H∞ , (40)

and
x[Θ∗(x)− Θ̃∗(x)] ∈ L2(R) . (41)

(For convenience we reproduce the standard argument at the end of the
proof.)

If Θ̃ = Θ on Λ, then since Θ̃∗(0) = Θ∗(0), we have

Θ∗ = Θ̃∗ on {0} ∪
√
Λ ,

where we regard Θ∗ and Θ̃∗ as meromorphic functions in the whole plane. By
(41),

(z − 1)(Θ∗ − Θ̃∗) ∈ K[Θ∗Θ̃∗] ,

so
√
Λ ∪ {0, 1} is a zero set of some K[Θ∗Θ̃∗] function, and therefore by (40)

a zero set of some function in K[S4] or PW2. (For zeros in C− we can use the
argument with dual reproducing kernels as in Sect. 4.1.) � 

Proof (of (40)–(41)). If s > 0, then the solution us(t) of the IVP

−ü+ qu = s2u , u(0) = 0 , u̇(0) = 1 ,

satisfies the integral equation

us(x) = sin sx+
1

s

∫ x

0

cos s(x− t) q(t) us(t) dt .

Iterating, we have

us(1) = sin s+
F (s)

s
+
R(s)

s2
,

where

F (s) =

∫ 1

0

cos s(1− t) sin st q(t) dt ,

and

R(s) =

∫ 1

0

cos s(1− x) q(x) dx

∫ x

0

cos s(x− t) q(t) us(t) dt .

We have an elementary a priori bound

|us(t)| ≤ C , (s > 0, t ∈ [0, 1]) ,

so
∀s, |R(s)| ≤ const .

On the other hand, F is basically the Fourier transform of a function on
(−1, 1), and

q ∈ L2 ⇒ F ∈ L2(R) .

We also get the corresponding estimates of u̇s(1). The resulting estimates of
Θ imply both statements. � 
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5 Beurling–Malliavin Theory

Multiplier Theorems

5.1 Tempered Inner Functions

A meromorphic inner function Θ = eiΘ is called tempered if Θ′ has at most
polynomial growth at ±∞:

∃N, Θ′(x) = O
(
|x|N
)
, x→∞ .

Theorem 5.1. Suppose Θ is a tempered inner function. Then for any mero-
morphic inner function J and any p > 0,

Np[Θ̄J ] 	= 0 ⇒ ∃n, N∞[b̄nΘ̄J ] 	= 0 .

Note that the opposite is trivial: if q > p then N q[Θ̄J ] 	= 0 implies
Np[b̄nΘ̄J ] 	= 0 with n = n(p, q). Questions of this type were studied by
Dyakonov [13] who was the first to observe the analogy with the Beurling–
Malliavin multiplier theorem.

The proof for p = 2 is elementary: if F ∈ N [Θ̄J ], then JF ∈ KΘ and by
(9) and (7), ∑

λ∈σ(Θ)

|F (λ)|2
|Θ′(λ)| ' ‖F‖2 .

Thus |F (λ)| � |Θ′(λ)|, and this is true for all λ ∈ R because we can replace
Θ with e−iαΘ. It follows that (z + i)−nF (z) ∈ N∞[b̄nΘ̄J ].

We will derive the theorem from the following special case of Carleson’s
type embedding theorem of Treil and Volberg [40]. For a given meromorphic
inner function Θ denote

d(x) = dist{x, {|Θ| = 0.5}) , (x ∈ R) .

Claim. The measure νx = d(x)δx is a Carleson measure for Kp
Θ, i.e.

Kp
Θ ⊂ Lp(ν) ,

where the norm of the embedding depends only on p.

In other words, if F ∈ Kp
Θ, then

d(x) |F (x)|p ≤ const , (x ∈ R) . (42)

Lemma 5.2. If Θ is tempered, then there is an N such that

dist(x, {|Φ| = 0.5} � (1 + |x|)−N .
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Proof. We can only consider the case of Blaschke products. If

Θ = BΛ =
∏
ελ
z − λ
z − λ̄

,

then we have

Θ′(x) =
∑ 2&λ

|x− λ|2 (43)

and

− log |Θ(z)| '
∑ &λ×&z

|z − λ̄|2
. (44)

Indeed,

− log |Θ(z)|2 =
∑

log

∣∣∣∣z − λ̄z − λ

∣∣∣∣2
'
∑[

1− |z − λ|2
|z − λ̄|2

]
(see below)

=
∑ (z − z̄)(λ− λ̄)

|z − λ̄|2

We want to show that if z = x+iy and y � |x|−N , then (44)< const. For each
x consider the Stolz sector of some fixed angle at x of height x−N and observe
that this sector does not contain any λ, for otherwise, the corresponding term
in (43) would be of the order 1/&λ ≥ xN . This justifies the “see below” item,
and makes the estimate of (44) in terms of (43) obvious. � 

Proof (Theorem 5.1). Suppose Np[Θ̄J ] 	= 0, so

Θ̄JF = Ḡ , F,G ∈ Hp ∩ Cω(R) .

We have
JF ∈ Kp

Θ ,

so by the lemma and by (42) we have

|F (x)| � 1 + |x|N ,

for all x ∈ R and some N . It follows that (z + i)−NF (z) ∈ N∞[b̄N Θ̄J ]. � 

Corollary 5.3. Let U = Θ̄J = eiγ and let Θ be tempered. If γ is the sum of
a bounded and a decreasing functions, then N∞[b̄nU ] 	= 0 for some n.

Note that in the case of a general bounded γ, we can not multiply down
to H∞ elements of N [U ] even by using factors like S̄.

Also note that in the statement of the theorem one can give explicit bounds
on n in terms of the growth of |Θ′(x)|. For example, if U = Θ̄J and Θ′ ≤ 1,
then N [U ] ⊂ N∞[U ].
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5.2 Beurling–Malliavin Multiplier Theorem

Theorem 5.4. Suppose Θ is a meromorphic inner function satisfying |Θ′| ≤
const. Then for any meromorphic inner function J , we have

N+[Θ̄J ] 	= 0 ⇒ ∀ε, N∞[S̄εΘ̄J ] 	= 0 .

This theorem follows from the Beurling–Malliavin multiplier theorem [4]:
if W is an outer function, then

z−1 logW (z) ∈ D(C+) ⇒ W ∈ (BM) . (45)

Here D(C+) is the notation for the usual Dirichlet space in the halfplane,
and by definition, W is a Beurling–Malliavin multiplier, or W ∈ (BM), if

∀ε > 0, ∃G ∈ K[Sε], WG ∈ L2(R) .

Note that if |W | ≤ |W1| and W1 ∈ (BM), then W ∈ (BM).

Lemma 5.5. If W ∈ Cω(R), |W | ≥ 1, and (argW )′ ≤ const on R, then
W ∈ (BM).

Proof. We will use some ideas from the proof of Theorem 64 in [12]. We can
assume |W (0)| = 1. Otherwise, multiply W by (z + i) to get W (∞) = ∞. In
this case there’s a global minimum, which we can take for 0.

Denote
z−1 logW (z) = u(z) + iv(z) ,

where u and v are real-valued functions. Then we have

x−1u(x) ∈ L1(R) , x−1u(x) ≥ 0 on R . (46)

Since argW ∈ L̃1
Π and (argW )′ ≤ const on R, by Lemma 4.9 we have

argW (x) = o(|x|) , x ∈ R , x→∞ , (47)

and it follows that v is a bounded function in C+. For r > 0 let D(r) denote
the semidisc {|z| < r} ∩ C+. We have

‖u+ iv‖2
D = lim

r→∞

∫
∂D(r)

udv ,

and∫
∂D(r)

udv =

∫ r

−r

uv′dx− uv
∣∣∣r
−r

+ rI ′(r) , I(r) :=
1

2

∫ π

0

v2
(
reiθ
)
dθ .

By (46) and (47), the integrals
∫
uv′dx are uniformly bounded from above:
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−r

uv′dx =

∫ r

−r

u(x)

x
(argW )′(x)dx −

∫ r

−r

u(x)

x

argW (x)

x
dx < const .

It remains to show that

lim inf
r→∞

A(r) <∞ , A(r) := rI ′(r)− uv
∣∣∣r
−r
.

Suppose A(r) ≥ 1 for all r� 1. Then since v is bounded, we have

I ′(r) ≥ 1

r
− const

u(r) + u(−r)
r

.

By (46), this contradicts the uniform boundedness of I(r). � 
Corollary 5.6. If W ∈ K+

Θ and (argΘ)′ ≤ const, then W ∈ (BM).

Proof. We have WΘ̄ = H̄ for some H ∈ N+. Define

W1 = WH +Θ .

Clearly, W1 ∈ N+, and since

Θ̄2W1 = Θ̄WΘ̄H + Θ̄ = H̄W̄ + Θ̄ = W̄1 ,

we have W1 ∈ K+[Θ2]. Notice that

|W1| = |WW̄Θ +Θ| = 1 + |W |2 ≥ 1 .

Also, |W | ≤ |W1|. Since (argΘ)′ ≤ const, from the equation Θ̄2W1 = W̄1Φ̄,
where Φ is an inner function, we obtain (argW1)

′ ≤ const. By the previous
lemma, W1 ∈ (BM), and therefore W ∈ (BM). � 
Proof (Theorem 5.4). Take an outer function W ∈ N+[Θ̄J ]. Then W ∈ K+

Θ

and by the last corollary, W ∈ (BM), and therefore WG ∈ H2 for some
G ∈ N+[S̄ε]. It then follows that

WG ∈ N+[S̄εΘ̄J ] ∩H2 = N [S̄εΘ̄J ] .

It remains to multiply down to H∞, which is possible by Theorem 5.1. � 

N+–Part of the Beurling–Malliavin Theory

In this part of the section we will assume

γ′ ≥ −const . (48)

We’ll give a metric criterion for (non-)triviality of the Toeplitz kernel N+[eiγ ]
up to a gap S±ε. Recall the basic criterion: N+[eiγ ] 	= 0 iff

γ = −α+ h̃ , (49)

for some increasing function α ∈ Cω(R) and some h ∈ L1
Π . As usual we denote

U = eiγ .
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Lemma 5.7. Suppose γ′ ≥ −const. Then ∀ε > 0, N+[USε] = 0 unless
γ(∓∞) = ±∞.

Proof. If N+[USε] 	= 0, then by (49) γ + εx + α = h̃, so (h̃)′ ≥ −const and

of course h̃ ∈ L
o(1,∞)
Π . By Lemma 4.9 it then follows that h̃(x) = o(x) as

x→ ±∞, so γ + εx+ α = o(x), which is possible only if γ(∓∞) = ±∞. � 

5.3 Beurling–Malliavin Intervals

Suppose a continuous function γ : R → R satisfies

γ(−∞) = +∞ , γ(+∞) = −∞ . (50)

The family BM(γ) is defined as the collection of the components of the open
set {γ
 	= γ}, where

γ
(x) = max
[x,+∞]

γ .

For an interval l = [a, b] ⊂ R+ or ⊂ R− we write |l| for the Euclidean length,
and δ(l) for the distance from the origin. A family of finite disjoint intervals
{l} is called long if ∑

δ(l)≥1

|l|2
δ(l)2

= ∞ .

Otherwise, we call the family short.

Theorem 5.8. Suppose γ′ > −const.

(i) If γ 	∈ (50), or if γ ∈ (50) but the family BM(γ) is long, then

∀ε > 0, N+[SεU ] = 0 .

(ii) If γ ∈ (50) and BM(γ) is short, then

∀ε > 0, N+[S̄εU ] 	= 0 .

The first statement corresponds to the “second Beurling–Malliavin theorem”
[5], and statement (ii) to the so called “little multiplier theorem”, see [25],
[19].

5.4 Second Beurling–Malliavin Theorem

The first part of Theorem 5.8 follows from a more general fact; we don’t need
to assume (48). For an interval l ⊂ R we denote

∆∗
l [γ] = inf

l′′
γ − sup

l′
γ ,

where l′ and l′′ are the left and the right adjacent intervals of length |l|.
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Theorem 5.9. If ∃c > 0 and a long family of intervals {l} such that

∆∗
l [γ] ≥ c|l| , (51)

then N+[U ] = 0.

A simple standard argument shows that we can assume without loss of
generality that all intervals satisfy the inequality 10|l| < δ(l), and that the
multiplicity of the covering {10l} is finite. (The interval 10l is concentric with
l and has length 10|l|.)

The idea of the proof is quite simple. According to the basic criterion (49)
we have to exclude the possibility

γ + α = h̃ , α ↑, h ∈ L1
Π .

Since α is increasing we have

∆∗
l [h̃] � |l| .

Suppose we can localize this estimate to each function h̃l, where hl is the
restriction of h to the interval 10l. Choosing A ' |l| and applying the weak
type inequality, we have

|l|
δ(l)2

� Π{|h̃l| > A} �
‖hl‖Π

A
, (52)

so
|l|2
δ(l)2

� ‖hl‖Π . (53)

Summing up over l’s we arrive at a contradiction:

∞ =
∑ |l|2

δ(l)2
�
∑

‖hl‖Π � ‖h‖Π <∞ .

Proof (Theorem 5.9). For an interval l we denote by Ql its Carleson square:

Ql = {z : x ∈ l, |l| < y < 2|l|} .

Also, denote

H(z) =

∫
R

h−(t)dt

(t− z)2 , (z ∈ C+) ,

where as usual h− = max{0,−h}. We claim that if the estimate (53) does not
hold for some interval l in our family, then

|H | � 1 on Ql . (54)

To see this we observe that the argument (52) is valid unless there is an
interval l1, l ⊂ l1 ⊂ l ∪ l′ ∪ l′′, such that
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∆l1 f̃ ≥ (c/2)|l| , f := h− hl .

Let’s assume (for simplicity of notation) l1 = l, so ∆f̃ ≡ ∆lf̃ � l. Represent
f = f+ − f−, f± ≥ 0. The functions f̃± are decreasing on l:

f̃ ′±(x) = − 1

π

∫
R\(10l)

f±(t)dt

(t− x)2 > 0 , (x ∈ l) .

It follows that −∆f̃− � |l|, and so there is a point x∗ ∈ l such that

1

π

∫
f−(t)dt

(t− x∗)2
= −f̃ ′−(x∗) = −∆f̃−

|l| � 1 .

If z ∈ Ql, then∣∣∣∣∫ f−(t)dt

(t − z)2

∣∣∣∣ ≥ ∫ $
[

1

(t− z)2

]
f−(t)dt '

∫
f−(t)dt

(t− x∗)2
� 1 .

On the other hand, if z ∈ Ql and if (53) is not true, then∣∣∣∣∫ h−l (t)dt

(t− z)2

∣∣∣∣ �
1

|l|2
∫

(10l)

|h| ' δ(l)2

|l|2
∫

(10l)

|h|dΠ � δ(l)2

|l|2
|l|2
δ(l)2

= 1 ,

and we get

|H(z)| =
∣∣∣∣∫ f−(t) + h−l (t)

(t− z)2 dt

∣∣∣∣ ≥ ∣∣∣∣∫ f−(t)dt

(t− z)2

∣∣∣∣− ∣∣∣∣∫ h−l (t)dt

(t− z)2

∣∣∣∣ � 1 .

To finish the proof of the theorem it remains to show that∑
l∈(∗)

|l|2
δ(l)2

<∞ ,

where we write l ∈ (∗) if (54) holds for l. Denote ψ =
∑

l∈(∗) |l|χl, so

∑
l∈(∗)

|l|2
δ(l)2

'
∫
ψ(t)dt

1 + t2
.

Then we have ∫
ψ(t)

1 + t2
dt �

∫ ∞

1

dA

A3

∫ A

−A

ψ(t)dt .

Fix C � 1 such that ∫
|t|≥C

h−(t)dt

1 + t2
� 1 .

We claim that



240 N. Makarov and A. Poltoratski∫ A

−A

ψ(t)dt �

∫ CA

−CA

h−(t)dt ,

so we have ∫
ψ(t)

1 + t2
dt �

∫ ∞

1

dA

A3

∫ CA

−CA

h−(t)dt � ‖h‖Π

(and we are done). To prove the claim, fix A and consider the 2D Hilbert
transform

HA(z) =

∫ CA

−CA

h−(t)dt

(t− z)2 .

If l ⊂ (−A,A) and l ∈ (∗), then

|HA(z)| ' |H(z)| � 1 , z ∈ Ql ,

by the choice of C. Applying the weak–L1 estimate for the Hilbert transform,
we get ∫ A

−A

ψ(t)dt � Area(|HA| � 1) �

∫ CA

−CA

h−(t)dt .

� 

5.5 Little Multiplier Theorem

We now turn to the proof of the second part of Theorem 5.8. We assume (48)
and γ(∓∞) = ±∞. The function γ
 and the family BM(γ) were defined in
Sect. 5.3. Note that γ
 is decreasing and γ
 − γ ≥ 0.

Lemma 5.10. If the family BM(γ) is short, then γ
 − γ ∈ L1
Π .

Proof. ∫
l

γ
 − γ
1 + x2

dx �
1

δ(l)2

∫ |l|

0

tdt ' |l|2
δ(l)2

.

� 

The proof of the little multiplier is extremely simple if we settle for a
slightly weaker statement:∑

BM(γ)

|l|2 log+ |l|
δ(l)2

<∞ ⇒ N+[U ] 	= 0 .

Indeed, the last computation shows that in this case we have∫
(γ
 − γ) log+(γ
 − γ) dΠ <∞ ,

which is a (necessary and) sufficient condition for (γ
 − γ )̃ ∈ L1
Π , see [42].

We have a representation
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γ = γ
 + (γ − γ
) ,

where the first term is decreasing and the second one is in L̃1
Π , so N+[U ] 	= 0

by the basic criterion.

Lemma 5.11 (Main Lemma). If the family BM(γ) is short, then for any
given ε > 0 there is a function β such that β′ ≤ ε near ±∞ and

γ
 − γ + β ∈ L̃1
Π .

The little multiplier theorem now follows immediately:

γ(x)− εx = (γ − γ
 − β) + (β − εx) + γ
 .

The first term is in L̃1
Π , and the last two terms are decreasing at infinities.

Proof (Main Lemma). Denote f = γ
 − γ, so f is a non-negative function in
L1

Π , f ′ ≤ const, and the family L = BM(γ) of the components of {f 	= 0}
satisfies ∑

l∈L

|l|2
δ(l)2

<∞ .

These are the only properties of f that will be used. We will also need the
following notation: for an interval l = [a, b] we define its “tent” function

Tl(x) =

⎧⎪⎨⎪⎩
x− a a ≤ x ≤ (a+ b)/2 ,

b− x (a+ b)/2 ≤ x ≤ b ,
0 x ∈ R \ l .

Note that

‖Tl‖Π �
|l|2

(δ(l) + |l|)2 . (55)

We will construct disjoint intervals ln such that {f 	= 0} ⊂
⋃
ln,

∑
n

|ln|2
δ(ln)2

<∞ , (56)

and

∀n ∃εn ∈ [0, ε] ,

∫
ln

(f − εnTln) dΠ = 0 . (57)

Let us show that the existence of such intervals ln implies the main lemma.
We will use the easier part of the atomic decomposition technique of Hardy
spaces, see [11].

We define
β = −

∑
n

εnTln , g = f + β ,
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so β is in Lip(ε), and all we need to check is that g̃ ∈ L1
Π or, in other words,

that g belongs to the real Hardy space H1
Π(R). We can represent g as follows:

g =
∑

χng =
∑

λn
χng

λn
:=
∑

λnAn ,

where χn is the characteristic function of ln, and we choose

λn = Π(ln) ‖χng‖∞ .

It is clear that the functions An = λ−1
n (χng) are “atoms”:∫

AndΠ =
1

λn

∫
ln

gdΠ = 0 ,

by (57) and

‖An‖∞ =
‖χng‖∞
λn

=
1

Π(ln)
.

By (56) we also have∑
λn �

∑
Π(ln)|ln| '

∑ |ln|2
δ(ln)2

<∞ .

It follows that
∑
λnAn ∈ H1

Π(R), see [11].
To finish the proof it remains to describe the construction of the intervals

l̃n and the slopes εn. We consider the case where all intervals l ∈ L are in
(1,+∞). The construction for intervals in [−∞,−1) is similar.

Suppose the left endpoint an = a of ln has been constructed, and a is also
the left endpoint of some interval l = (a, b(l)) ∈ L. (To start the induction we
take the leftmost endpoint for a1.) Consider the function

F (b) ≡ Fε(b) =

∫ b

a

[
f − εT(a,b)

]
dΠ ,

and define
bn = min{b ≥ b(l) : f(b) = 0, F (b) ≤ 0} .

For example, if we already have F (b(l)) ≤ 0, then bn = b(l). Since f ∈ L1
Π ,

we have F (+∞) = −∞ and so bn <∞. We also define εn from the equation∫ bn

an

[
f − εnT(an,bn)

]
dΠ = 0 .

Finally, we define an+1 as the leftmost endpoint of all intervals l ∈ L to the
right of ln.

It is clear from the construction that the intervals ln cover {f 	= 0}, that
all εn’s are ≤ ε, and that we have (57). Let us check (56). We consider three
types of intervals ln:
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(a) F (bn) < 0 but ∃l ∈ L such that l ⊂ ln and |l|/δ(l) ' |ln|/δ(ln),
(b) F (bn) = 0,
(c) other intervals.

Property (56) is obvious for the group (a). For the group (b), we use (55):∑
(b)

|ln|2
(δ(ln) + |ln|)2

�
1

ε

∫
∪(a)ln

fdΠ <∞ .

The argument for the group (c) is similar as long as we can show that the
slopes are > ε/2, i.e. Fε/2(bn) > 0. Since F (bn) < 0, bn is by construction the
right endpoint of some interval l ∈ L, and since ln 	∈ (a) we have |l| � |ln|.
Let c be the left endpoint of the above l; by construction, F (c) > 0. We have

Fε/2(bn) =

(∫ c

an

+

∫ bn

c

)[
f − ε

2
T(a,b)

]
dΠ >

∫ c

an

[
f − εT(a,c)

]
dΠ

= F (c) > 0 .

� 

Beurling–Malliavin Density

5.6 Radius of Completeness

Let Λ ⊂ R and let EΛ denote the family of exponential functions {eiλt : λ ∈
Λ}. By definition, the radius of completeness of the family EΛ is the number

R(Λ) = sup
{
a : EΛ is complete in L2(0, a)

}
.

In terms of Toeplitz kernels, by Proposition 4.4 we have

R(Λ) = sup
{
a : N [S̄aJΛ] = 0

}
,

where JΛ denotes some/any meromorphic inner function J such that {J =
1} = Λ. By the Beurling–Malliavin multiplier theorem we also have

R(Λ) = sup
{
a : N+[S̄aJΛ] = 0

}
.

The combination of the second Beurling–Malliavin and the little multiplier
theorems, see Theorem 5.8, then gives the following metric characterization
of R(Λ). By definition, the Beurling–Malliavin density of Λ is the number

dBM(Λ) = inf{a : γa(±∞) = ∓∞ and BM [γa] is short} ,

where γa := 2πnΛ − at.

Corollary 5.12. R(Λ) = dBM(Λ).
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5.7 General Transition Parameter Problems

Let M be a unimodular function with non-decreasing continuous argument;
we call it a gap function. For a given unimodular function U = eiγ we want
to compute the critical exponent

sup
{
a : N [M̄aU ] = 0

}
.

This number of course can be ±∞. The Beurling–Malliavin density theorem
corresponds to the case M = S and U = J (or S̄cJ). More generally, The-
orems 5.4 and 5.8 allow us to compute the transition parameter in the case
M = S and U = Θ̄J where |Θ′| ≤ const.

Of course, one can state similar problems concerning families of Toeplitz
kernels in other functional spaces. Theorem 5.1 states that the critical expo-
nent is the same in all Hp–spaces if both M and Θ are tempered and the
“gap” is wide enough: N∞[bNM̄ ε] 	= 0 for all ε > 0 and ∀N .

One could try to generalize the Beurling–Malliavin theory (M = S) to
arbitrary gap functions. As a first step it is natural to consider the “standard”

gap functions S(α) and S
(α)
+ , α > 0, defined as follows:

S(α)(x) =

{
S(xα) x > 0 ,

S(−|x|α) x < 0 ,
S

(α)
+ (x) =

{
S(xα) x > 0 ,

S(0) x < 0 .

Note that these functions satisfy identities like

S(α)(kx) =
[
S(α)(x)

]kα

, (k > 0) .

For each standard gap function, one would expect to have some kind of
a Beurling–Malliavin theory, i.e. a combination of theorems that allow to
express the transition parameter in terms of the Beurling–Malliavin intervals
under an appropriate growth restriction on γ.

Here is a typical example of a transition parameter problem with a stan-
dard gap function.

Example 5.13. Let Ai(x) denote the usual Airy function: it is a solution of the
equation y′′ = xy, which is L2 at +∞. It is well-known that the Airy function
is entire and also

Ai(x) =
√
xF

(
2

3
ix3/2

)
,

for some solution F of the Bessel equation of order 1/3. If x = −λ and λ > 0,
then we have

Ai(−λ) = i
√
λF

(
2

3
λ3/2

)
∼ λ−1/4 cos

(
2

3
λ3/2 + const

)
, λ→ +∞ .

(58)
Given Λ ⊂ R we ask if the family of shifts
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EΛ = {Ai(t− λ) : λ ∈ Λ}

is complete in L2(R+). Note that uλ(t) = Ai(t − λ) is an L2–solution of the
Schrödinger equation

−ü+ tu = λu , t ∈ R+ ,

so we can apply our general approach, see Sect. 4.1.

Claim. Up to a finite dimensional gap, the family EΛ is complete in L2(R+)
iff

N [M̄JΛ] = 0 , M =
[
S

(3/2)
+

]2/3

.

Proof. According to Sect. 4.1 and Theorem 5.1, the criterion for completeness
(up to a finite dimensional gap) is N [Θ̄JΛ] = 0, where Θ is the Weyl inner
function. We can replace Θ by M because of the asymptotic formula (58) for
uλ(0) = Ai(−λ) and a similar formula for u̇λ(0). � 

Remark 5.14. This completeness problem, which involves shifts of a given
function in L2(R+)) is different from the well-known Wiener problem con-
cerning shifts in L2(R). The latter is essentially the problem concerning ex-
ponential families in weighted L2–spaces; it can also be restated in terms of
Toeplitz kernels.

Let us now state the transition parameter problem. Given Λ, denote by

E(a)
Λ the family {uλ : λ ∈ Λ} of L2–solutions of the Schrödinger equation with

potential q(t) = t/a, (a > 0). We want to compute the “radius of complete-

ness” R(Λ), i.e. the critical value of a such that E(a)
Λ is complete in L2(R+).

In terms of Toeplitz kernels we have

R(Λ) = sup
{
a : N [M̄aJΛ] = 0

}
, M =

[
S

(3/2)
+

]2/3

.

This is similar to the Beurling–Malliavin situation, which can be reformulated
as the completeness problem for the solutions of the Schrödinger equation with
q ≡ 0 on [0, a]:

R(Λ) = sup
{
a : N [M̄aJΛ] = 0

}
, M = S

(1/2)
+ .

In the Airy situation, the parameter a characterizes the “size” of the singu-
larity, which plays the same role as the length of the interval in the regular
case.

Transition parameter problems arise also in connection with the spectral
theory problems that we discussed in Sect. 4.

Example 5.15. Let L be a regular Schrödinger operator on [0, 1] and let Λ ⊂
σ(L). We want to characterize the numbers c such that
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(i) the potential on [0, c] and the partial spectrum Λ determine L,
(ii) the potential on [0, c] and the spectral measure on Λ determine L,

see Sect. 4.8. According to the results of Sect. 4.9 (and Theorem 5.1),
these questions are equivalent to the transition parameter problems with

M = S
(1/2)
+ – to find the values of

inf
{
c : N

[
M̄2(1−c)JΛ

]
= 0
}
, inf

{
c : N

[
M̄2(1−c)J2

Λ

]
= 0
}
,

in the cases (i) and (ii) respectively.
Indeed, in the case (i), Λ has to be defining for Φ, the Weyl function

corresponding to the restriction of the potential to [c, 1], which means that
N [Φ̄2JΛ] = 0 within the admissible gap. Also, we can replace Φ by M (1−c). In
the case (ii), we use the same argument for the divisor 2χΛ.

5.8 Square Root Transformation

The following construction and its corollaries in this and the next subsec-
tions are meant to give some idea of what the Beurling–Malliavin theories of
standard gap functions may look like.

Let U = eiγ be a unimodular function such that γ = 0 on R−, and let
U∗ = eiγ∗ be a unimodular function with an odd argument related to γ by the
equation

γ∗(t) = γ(t2) , (t ≥ 0) .

Proposition 5.16. N∞[U ] 	= 0 ⇔ N∞[U∗] 	= 0.

Proof. ⇐ Suppose we have U∗H = Ḡ on R for some H,G ∈ H∞. Then we
also have U∗H� = Ḡ�, where we use the notation

H�(z) = H(−z̄) .

(Note U∗ = U �
∗.) Thus we have

U∗F = F̄ � , F := H +G� .

Consider now the functions f, g ∈ H∞(C+),

f(z) = F (
√
z) , g(z) = F̄ (

√
z̄) ,

where the square root denotes the conformal map C\R+ → C+. Let us check
that Uf = ḡ on R. If t > 0, then f(−t2) = F (it) and g(−t2) = F̄ (it), so

ḡ(−t2)
f(−t2) = 1 = U(−t2) .

On the other hand, f(t2) = F (t) and g(t2) = F̄ (−t) = F �(t), and therefore
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ḡ(t2)

f(t2)
=
F̄ �(t)

F (t)
= U∗(t) = U(t2) .

⇒ Suppose Uf = ḡ on R for some f, g ∈ H∞. Since U ≡ 1 on R−,
the analytic functions f ∈ H∞(C+) and g# ∈ H∞(C−) match on R+ and
therefore define a function in C\R+. Applying the square root transformation,
we get F ∈ H∞(C+),

F (z) =

{
f(z2) $ z > 0 ,

g#(z2) $ z < 0 .

Let us check that U∗F = F̄ � on R. If x > 0, then F (x) = f(x2), F̄ �(x) =
F (−x) = ḡ(x2) and

F̄ �(x)

F (x)
=
ḡ(x2)

f(x2)
= U(x2) = U∗(x) .

On the other hand, if x < 0, then F (x) = ḡ(x2), F̄ �(x) = F (−x) = f(x2) and

F̄ �(x)

F (x)
=
f(x2)

ḡ(x2)
=

1

U(x2)
= U∗(x) .

� 

The square root transformation makes it possible to derive the Beurling–

Malliavin theory of the gap function M = S
(1/2)
+ from Theorems 5.4 and 5.8

(we also use Theorem 5.1).

Corollary 5.17. Let U = eiγ = Θ̄J and suppose that both Θ and J have
bounded arguments at −∞. Suppose in addition

(argΘ)′(t) ≤ const√
t
, t→ +∞ .

(i) If γ(t) 	→ −∞ as t → +∞, or if γ(+∞) = −∞ but the family BM(γ) is
long, then

∀ε > 0 , N
[(
S

(1/2)
+

)ε

U
]

= 0 .

(ii) If γ(+∞) = −∞ and the family BM(γ) is short, then

∀ε > 0 , N
[(
S̄

(1/2)
+

)ε

U
]
	= 0 .

Here we consider only the Beurling–Malliavin intervals in R+, and the
meaning of the terms “long” and “short” is the same as in Sect. 5.3.
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Example 5.18. Let L be the Schrödinger operator on R with potential q(t) =
t2/4 (“quantum harmonic oscillator”) and let Λ ⊂ σ(L) = N− 1

2 . We want to
find the critical value c∗ of real numbers c such that q on (−∞,−c) and the
spectral measure on Λ (including the numbering of eigenvalues) determine L,
see Sect. 4.8. We can explicitly compute c∗ in terms of Beurling–Malliavin
intervals if the set Λ satisfies the inequality

#(Λ ∩ l) ≥ |l|
2
− const , (59)

for all intervals l = [a, b] ⊂ R+ such that b ≤ a+
√
a.

Claim.
c∗ = inf{c : γc(+∞) = −∞ and BM [γc] is short} ,

where γc := 2nΛ(t)− t− 2c
√
t .

Sketch of Proof: Let Θ be the Weyl inner function corresponding to the
restriction of the potential to R+, so Θ2 is essentially the same (i.e. up to a
finite dimensional gap) as S+. Then the Weyl inner function corresponding

to (−c,∞) is essentially the same as Φ = ΘM c, where M = S
(1/2)
+ . The data

determine L if the divisor 2χΛ is defining for K[Φ2], i.e. (again up to a finite
dimensional gap)

N [M̄2cU ] = 0 , U = S̄+J
2
Λ .

Note that

γ(t) ≡ argU(t) = 2nΛ(t)− t+O(1) , (t > 0) .

To apply the corollary, we need to make sure that γ(t) does not drop by more
than a constant on each interval l described in the statement. This is exactly
our condition (59).

Let us state another corollary, which gives a necessary condition for the
non-triviality of a Toeplitz kernel in the “one-sided” situation.

Corollary 5.19. Let U = eiγ and γ = 0 on R−. If N∞[U ] 	= 0, then∫
{γ>A}

dt

t
√
t

=
o(1)

A
, A→ +∞ , (60)

in particular

γ+ ∈ Lp

(
dt

1 + t
√
t

)
, (0 < p < 1) .

Proof. Consider the square root transform U∗. By the basic criterion, N+[U∗]
	= 0 implies

Π{γ∗ > A} =
o(1)

A
, A→ +∞ .

� 
One can state similar results for tempered γ’s satisfying γ = O(1) at −∞:

if Np[U ] 	= 0, then we have (60) at +∞.
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5.9 Final Thoughts

Except for the “two-sided” case M = S and the “one-sided” case M = S
(1/2)
+ ,

the complete Beurling–Malliavin theory of the standard gap functions is not
known. Here we mention some preliminary considerations.

Two facts seem to be certain. First, the theories should be different in the
subexponential case (α < 1 for two-sided gap functions and α < 1/2 for one-
sided functions) and superexponential case (α > 1 and α > 1/2 respectively).
Second, the role of the Smirnov class N+ in the case S(α), α 	= 1, is not
the same as in the classical case M = S. One should probably introduce
appropriate “Smirnov classes” for all α < 1, e.g. the preimage of N+ under
the square root transformation in the case α = 1/2, cf. the last corollary.

Case 5.20 (Subexponential case). We have the following partial results. From
the last corollary we immediately derive

Corollary 5.21. Let M = S(1/2) and U = eiγ. Suppose

γ′(x) ≥ − C√
|x|
, x→ ±∞ .

If γ(∓∞) = ±∞ and the family BM(γ) is short, then

∀ε > 0 , N∞ [M̄ εU
]
	= 0 .

Applying the square root transformation one more time we get

Corollary 5.22. Let M = S(1/4) and U = eiγ. Suppose

γ′(x) ≥ −C|x|−3/4 , x→ ±∞ .

If γ(∓∞) = ±∞ and the family BM(γ) is short, then

∀ε > 0 , N∞ [M̄ εU
]
	= 0 .

These facts should extend to all S(α) with α < 1. The “converse” state-
ments (if true) should follow from Theorem 5.9 in appropriate “Smirnov
classes”.

Case 5.23 (Superexponential case). We only discuss the gap function S+,
which corresponds to the two-sided case M = S(2). The proof of Thorem 5.8
applies verbatim to give the following criterion in the class N+.

Proposition 5.24. Let U = eiγ. Suppose γ is bounded on R− and γ′ ≥
−const on R+.

(i) If γ 	→ −∞ at +∞, or if γ(+∞) = −∞ but BM(γ) is long, then

∀ε > 0 , N+
[
Sε

+U
]

= 0 .
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(ii) If γ(+∞) = −∞ and BM(γ) is short, then

∀ε > 0 , N+
[
S̄ε

+U
]
	= 0 .

On the other hand, it is false that we have N∞ [S̄ε
+U
]
	= 0 in the case (ii).

(Of course, we still have N∞ [uS̄ε
]
	= 0.) The criterion in H∞ should involve

a different definition of long families, probably the following:∑
l∈BM(γ)

|l|2
δ(l)3/2

= ∞ . (61)

Let us state a partial result in the language of S(2). Note that under the
square root transformation, the condition (61) becomes∑

l∈BM(γ)

|l|2
δ(l)

= ∞ .

We get the exactly this condition if we apply the non-rigorous argument pre-
ceding the proof of Theorem 5.9.

Proposition 5.25. Let M = S(2) and U = eiγ. Suppose

γ′(x) ≥ −C|x| , x→ ±∞ .

(i) If γ(x) 	→ ±∞ as x→ ∓∞, or if γ(∓∞) = ±∞ but∑
l∈BM(γ)

|l|2

δ(l)(1 + log+ |l|)
= ∞ ,

then
∀ε > 0 , N+ [M εU ] = 0 .

(ii) If γ(+∞) = −∞ and ∑
BM(γ)

|l|2 log+ |l|
δ(l)

<∞ ,

then
∀ε > 0 , N+

[
M̄ εU

]
	= 0 .

Example 5.26. Let L be the harmonic oscillator considered in Example 5.18,
and let Λ ⊂ σ(L). The first part of the last proposition provides a sufficient
condition for the fact that q on R− and the spectral measure on Λ determine
L. This condition is less precise than the one stated in Example 5.18 because
we have a larger gap, which characterizes the singularity at infinity rather
than the extra length of the known part of the spectrum. On the other hand,
the condition in the above proposition does not require any extra assumptions
on Λ, cf. (59).

In conclusion, we mention that the study of gap functions which are less
regular than the standard ones (or even arbitrary) is an interesting and prob-
ably difficult problem.
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Heat Measures and Unitarizing Measures for
Berezinian Representations on the Space of

Univalent Functions in the Unit Disk

Paul Malliavin

10 rue Saint Louis en l’Isle, 75004 Paris, France sli@ccr.jussieu.fr

1 Introduction

From the sixties Lennart Carleson is for me the undisputed leader of Analy-
sis of my generation; he helped me personally in many occasions; I feel very
honored to have been called to participate to his seventy fifth Birthday Con-
ference which, by the quality of the talks, have been for me a memorable
event; I express all these personal feelings by dedicating this paper to Lennart
together with the article [3].

The Lebesgue measure on Rd can be characterized by its invariance under
translation; from this invariance is built the algebraic properties of the Fourier
transform and subsequently the whole theory of Euclidean Harmonic Analysis.

Harmonic Analysis of finite dimensional Lie group is based on the existence
of a left invariant measure: the Haar measure. It has been proved by André
Weil [16] that any measurable group having a σ–additive left invariant measure
is, as measurable space, isomorphic to a locally compact group equipped with
its classical Haar measure.

Our purpose is to investigate quasi-invariance in the context of a given
representation as a substitute to the concept of invariance in order to try to
construct an integration theory fitting infinite dimensional Lie algebras com-
ing from mathematical physics. The paper concludes with a section called
“Perspectives” in the spirit of this Conference where Lennart invited every-
body of us to look towards new adventures.

2 Gaussian Representation of Heisenberg Commutation
Relations

We present in this first section some well known facts. As a commutation
relation we will use the Heisenberg relation [p, q] = h, where h denotes the
Planck constant. To this commutation relation is associated the 3–dimensional
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Lie algebra generated by the three elements, p, q, c with the commutation
relations

[p, q] = ch , [p, c] = 0 , [q, c] = 0 ,

the corresponding group being the 3–dimensional Heisenberg group, group
which we will not write down in this paper essentially concerned with Lie
algebra.

By a rescaling of the variables (p, q), we can reduce ourself to the case
h = 1: the remaining of this section will be written taking h = 1.

We consider on R the algebra ofD the C∞ functions with compact support.
We define a representation ρ of the Heisenberg algebra on D by defining

ρ(p)(φ)(x) := φ′(x) , ρ(q)(φ)(x) := xφ(x) − φ′(x) , ρ(c)φ = φ .

Then ρ is a Lie algebra homomorphism

ρ(p)ρ(q)− ρ(q)ρ(p) = ρ(c) .

A unitarizing measure of the representation ρ is defined as the data of a
probability measure µ on R such that, denoting the adjoint of the operator a
on L2

µ by a∗ we have
(ρ(p))∗ = ρ(q) .

Proposition 2.1. The unitarizing measure of ρ exists, is unique and is equal
to the Gaussian measure

γ(dx) =
1√
2π

exp
(
−x2/2

)
dx .

Proof. By integration by parts we obtain

(φ′ |ψ) =

∫
R

φ′ψγ(dx) =

∫
R

[−φψ′ + xφψ]γ(dx) .

This identity shows that the Gaussian measure is unitarizing.
Uniqueness. Consider the elliptic operator

L := −ρ(q)ρ(p) .

Then
(Lφ)(x) = φ′′(x)− xφ′(x) ,

and L satisfies the basic intertwining relation

d ◦ L = −d + L ◦ d .

Exponentiating this relation by the heat semi-group exp(tL), we find that for
any φ ∈ D

d (exp(tL)φ) = exp(−t)× exp(tL)φ′ .
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Therefore denoting by πt(x0, dx) the fundamental solution of the heat opera-
tor we get that

lim
t→+∞

∫
πt(x0, dx)φ(x)

exists and is independent of x0.
For any unitarizing measure µ we must have

lim
t→+∞

∫
πt(x0, dx)φ(x) =

∫
φ(x)µ(dx) ,

a relation which proves the uniqueness.
It is clear that the uniqueness proof given above furnishes also existence.

� 

The (2d+1)–dimensional Lie algebra having as basis c the central element
and pk, qk, k ∈ [1, d], satisfying [pk, qs] = δskc, where δsk denotes the Kronecker
symbol has a unitary representation on L2

γd
(Rd) where γd = γ⊗· · ·⊗γ is the d–

dimensional Gaussian measure. This representation is obtained by making the
product of the previously obtained representation of the Heisenberg algebra.

2.1 Infinite Dimensional Heisenberg Commutation Relations

Consider the ∞–dimensional Lie algebra having as basis c the central ele-
ment and pk, qk, k = 1, . . ., satisfying [pk, qs] = δskc, where δsk denotes the
Kronecker symbol. Consider the infinite dimensional Gaussian measure γ∞,
i.e. the probability on the probability space X generated by an infinite se-
quence of independent scalar Gaussian variables.

Let us associate to a constant vector field z the translation by τε : x �→
x + εz. The vector z is said to be admissible if the measure γ∞ is z quasi-
invariant, which means that (τε)∗γ∞ is absolutely continuous relatively to γ∞
for all ε. Denote

l2 = {z; ‖z‖l2 =
∑

[zk]2 <∞} .

Theorem 2.2 (Cameron–Martin). The set of admissible vectors is equal
to l2. For z ∈ l2 the series (z |x) =

∑
k zkxk converges γ∞ almost everywhere

and
(τε)∗γ∞ = [1 + ε(z |x) + o(ε)]γ∞ , as ε→ 0 .

Remark 2.3. A fundamental difference with the finite dimensional case is that
the vector space l2 of γ∞–admissible vector fields satisfies γ∞(l2) = 0.

Theorem 2.4 (Integration by Parts). For every smooth function φ∫
X

(Dzφ)(x)γ(dx) =

∫
X

φ(x)(z |x)γ(dx) .
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Remark 2.5. As in the 1–dimensional case, it is possible to construct an elliptic
operator in infinite dimension which is symmetric in L2

ν for each measure
satisfying the formula of integration by parts∫

X

(Dzφ)(x)ν(dx) =

∫
X

φ(x)(z |x)ν(dx) .

Then it is possible to deduce that the set of such measures ν contains only
one element: the Gaussian measure γ∞.

Theorem 2.6. The Gaussian measure in infinite dimension can be charac-
terized by the associated formula of integration by parts.

Remark 2.7. This statement is parallel to the characterization of the Haar
measure by its invariance by translation.

Mathematical Physics provides a beautiful algebraic structure: the Vira-
soro algebra, together with natural holomorphic representations; these alge-
braic structure can be considered as the “skeleton”. The challenge is to realize
some “flesh around a skeleton” that is to construct a measured space on which
the algebraic action can naturally be realized. Our point of view will be to
solve the following

Inverse Problem. Construct (and characterize) a probability measure µ through
the a priori data δµ(Z).

Here Z ∈ Z is a sufficiently large family of a priori given vector fields and
δµ(Z) is the divergence of Z relatively to µ, which is defined by the following
formula of integration by parts∫

〈Z,dφ〉dµ =

∫
δµ(Z)φdµ .

In the case of an a priori given representation, Z will be the Lie algebra of
the infinitesimal action and δµ(Z) the automorphy factor of the action.

3 Quantization Above Symplectic Groups

3.1 The Lowest Dimensional Case: The Poincaré Disk

Consider the unit disk of the complex plane D. The Poincaré metric together
with its complex structure generates the canonical symplectic form

ω = (1− |z|2)−2dz ∧ dz̄ ,

for which D has a structure of a Kähler manifold. The Kähler potential is

K(z) = − log(1− |z|2) ,
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which satisfies ∂∂̄K = ω.
Denote by SU(1, 1) the group of complex matrices(

a b
b̄ ā

)
,

such that |a|2 − |b|2 = 1. This group acts on D by

z �→ az + b

b̄z + ā
.

The symplectic form ω is invariant under this group action. The isotropy
group of the point 0 ∈ D is the rotation group; the symplectic form ω is
invariant under rotations; therefore identifying the tangent space at 0 to D
with the quotient of su(1, 1) the Lie algebra of SU(1, 1), by the rotation group,
we can lift ω to a canonic bilinear form ω̃ defined on su(1, 1).

Denote by dv = (1−|z|2)−2dz∧dz̄ the Riemannian volume of the Poincaré
disk and consider the one parameter family of volume measures

dρh = exp(−hK)dv ,

where h will be called the Planck constant. Then ρh(1) < ∞ for h > 1
and then, by rescaling, it can be looked upon as a probability measure. The
measure ρh is not invariant under the infinitesimal action of su(1, 1). Under
this action appears the modulus of quasi-invariance given by h times the
derivative of K.

Denote HL2
ρh

the space of holomorphic functions on D which are square
integrable for the measure ρh. The holomorphic connection ∇ is defined by

∇h =
∂

∂z
− h∂̄K .

The Lie algebra su(1, 1) acts unitarily on HL2(L; ρh) through ∇h. This action
provides a representation of the Lie algebra s̃u(1, 1), the central extension of
su(1, 1), which is the Lie algebra of dimension 4 obtained by adding to su(1, 1)
a central element c and where the bracket is defined by

[η1, η2]
∗ = [η1, η2] + c× hω̃(η1, η2) .

Within this paradigm the Heisenberg algebra appears as the central extension
of the abelian two dimensional Lie algebra.

This paradigm has been developed by Berezin [5] in the context of Siegel
theory of automorphic functions; this finite dimensional theory is the stepping
stone for the infinite dimensional theory sketched in the next section.

3.2 Sato Infinite Dimensional Symplectic Geometry

Let V denote the vector space of real valued C1–functions defined on the circle
S1 with zero mean value. Define
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ω(u, v) =
1

π

∫ 2π

0

uv′dθ , u, v ∈ V .

On V the Hilbert transform J : sin(kθ) �→ cos(kθ), cos(kθ) �→ − sin(kθ),
defines a complex structure and an Hilbertian metric

‖u‖2 := −ω(u,Ju) .

Then ∥∥∥∥∥∑
k

ak cos(kθ) + bk sin(kθ)

∥∥∥∥∥
2

=
∑

k

k(a2
k + b2k) .

Let H = V ⊗ C and let H+ be the eigenspace of the orthogonal transforma-
tion J associated to the eigenvalue

√
−1. Then H+ , functions having an

holomorphic extension inside the unit disk. The bilinear form ω extends to ω̃
defined on H ; it defines a symmetric C–bilinear form on H ×H by

〈h1, h2〉 = (h1 | h̄2) , then (h1 |h2) = 〈h1, h̄2〉 ,

ω̃(h1, h2) = 〈h+
1 , h

−
2 〉 − 〈h−1 , h+

2 〉 .

3.3 The Group Sp(∞)

Any automorphism U of V extends to an endomorphism Ũ of H . Denoting
π+, π− the projection of H on H+, H− let us introduce

a := π+Ũgπ
+ , b := π+Ũgπ

− .

Note that Ũ commutes with the conjugation

Ũ =

(
a b
b̄ ā

)
.

The conservation of the symplectic form ω̃ is equivalent to the relations

aT ā− b†b = π+ , aT b̄− b†a = 0 ,

a†, aT denoting respectively the adjoint and the transpose of a.
We call the collection of bounded operators a ∈ End(H+), b ∈ L2(H

−;H+)
satisfying these relations the symplectic group of infinite order and denote it
by Sp(∞).

3.4 Infinite Dimensional Siegel Disk

Let
D∞ := {Z ∈ L((H−, H+); ZT = Z, 1− Z̄Z > 0} ,

with the condition trace(Z̄Z) < ∞ and define a mapping D(∞) �→ End(H)
by

Z �→
(

0 Z
0 0

)
.
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Theorem 3.1. Sp(∞) operates on D∞ by

Z �→ Y = (aZ + b)(b̄Z + ā)−1 .

The orbit through Sp(∞) of the matrix Z0 = 0 is the space of matrices of
the form

{b(ā−1)} = D(∞) .

3.5 Kähler Potentials

The Kähler potential on D∞ is

K(Z) := − log det(1− Z̄Z) = − trace log(1− Z̄Z) .

The Kähler potential K is lifted to Sp(∞) by

K̃

[(
a b
b̄ ā

)]
= trace log(1 + (b)†b) .

The complex Hessian ∂∂̄K is invariant under the Sp(∞) action. At the
origin of D(∞) this complex Hessian coincides with the symplectic form ω̃.
Denote the Lie algebra of Sp(∞) by sp(∞).

The Berezinian representation of sp(∞), is defined as the infinitesimal ac-
tion on holomorphic functions on D(∞) through the holomorphic connection
∇h = ∂ − h× ∂̄K.

The problem of unitarizing measure is to find a probability µ for which
this Berezinian representation is unitary in HL2

µ.

The complex Hessian ∂∂̄K defines an invariant Riemann–Kähler metric
on D(∞). For this Riemannian metric the Ricci tensor is identically equal to
−∞, a fact which implies the non existence of a Brownian motion on D(∞)[∗],
and which consequently rules out the possibility of constructing unitarizing
measure for the Berezinian representations.

We shall resume in the next section the quest for unitarizing measure by
restricting Berezinian representations to some subgroup of Sp(∞).

4 Symplectic Geometry on the Group of
Diffeomorphisms of the Circle

Denote the unit circle by S1 and consider the infinite dimensional group

Diff(S1) := {orientation preserving diffeomorphisms of S1} .

The diffeomorphism group has an action on V the space of functions with
vanishing mean value on S1 defined by

Ug−1(u) = g∗u− 1

2π

∫ 2π

0

(g∗u)dθ ,

where (g∗u)(θ) := u(g(θ)).
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Theorem 4.1 ([12]). The map g �→ Ug defines a homomorphism of Diff(S1)
into Sp(∞).

Proof. This follows from the elementary identity ω(Ug(u), Ug(v)) = ω(u, v).
� 

Let us define the Kähler potential

K̂(g) := K̃(Ug) = log det(1 + b†gbg) ,

where bg is the operator associated to the infinite matrix

cj,k(g) =
1

2π

∫
0

2π exp
(
−
√
−1(jθ + kg−1(θ))

)
dθ , j, k > 0 .

4.1 Lie Algebra diff(S1) of Diff(S1)

We observe that the vector fields φ(θ) d
dθ satisfy the identities

[φ1, φ2] = φ1φ̇2 − φ2φ̇1 ,

[einθ, eimθ] = i(m− n)ei(n+m)θ .

Theorem 4.2. The function K̂ defines a semi-definite left invariant metric
on Diff(S1), essentially equivalent to the H3/2 Sobolev-norm.

Proof. (∂vcj,k)(e) = 0 if v is a vector of type (0, 1); then

〈(∂∂̄K)(e), einθ ∧ e−inθ〉 =
∑
k,l

l

k
k2 �

(k+l=n)

=
∑

k+l=n

kl =
1

6
(n3 − n) .

� 

5 Canonical Brownian Motion on the Diffeomorphism
Group of the Circle

Let us define a sequence of maps en : R2 → diff(S1)

en(ξ) =

√
6

n3 − n (ξ1 cosnθ + ξ2 sinnθ) , n > 1 .

Let Xk be independent copies of Wiener space of the R2–valued Brownian
motion; define X =

⊗
Xk and consider the Stratanovitch SDE

dgx(t) =

(∑
k

ekdxk(t)

)
◦ gx(t) , gx(0) = I .
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5.1 Abel Regularization

The Able Regularization of the SDE is

dgr
x(t) =

(∑
k

rkek(dxk(t))

)
◦ gr

x(t) , gr
x(0) = I .

From Kunita theory it is clear that gr
x(t) ∈ Diff(S1), ∀r < 1.

Theorem 5.1 (Existence of the Brownian Motion). Denoting H(S1) the
group of homeomorphisms of S1, then

lim
r→1

gr
x(t) := γx,t ∈ H(S1) ,

γx,t(θ) − γx,t(θ
′) = O(|θ − θ′|exp(−t)) ,

and the laws ρt of γx(t) satisfy ρt ∗ ρt′ = ρt+t′ .

Proof. See [13], [4] and [8]. � 
The Beurling–Ahlfors [6] quasi-symmetry condition

sup
t,t′

∣∣∣∣Ψ(t+ t′)− Ψ(t)

Ψ(t)− Ψ(t− t′)

∣∣∣∣ <∞ ,

is ruled out by the following Theorem.

Theorem 5.2. Almost surely

lim sup
h→0

1√
log− |h|

(
sup

t∈[0,1], θ∈S1

log

∣∣∣∣γx,t(θ + h)− γx,t(θ)

γx,t(θ)− γx,t(θ − h)

∣∣∣∣
)

= log 2 .

The expression of K̂ is not very convenient for the explicit computation of
the holomorphic connection ∂̄K̂; it is therefore difficult to explicitly compute
the restriction of the Berezinian connection ∇h to Diff(S1). This difficulty will
be overcome in the next paragraph in the context of the univalent function
model.

6 The Manifold of Univalent Functions

We denote by F the vector space of functions f which are holomorphic in the
unit disk D := {z; |z| < 1} and C∞ on its closure D̄ and such that f(0) = 0;
we denote by F0 the subspace of functions of f satisfying f ′(0) = 0. We denote

U := {f ∈ F ; f ′(0) = 1 and f injective on D̄} .

The representation

f(z) = z

(
1 +

+∞∑
n=1

cnz
n

)
introduces the affine coordinates f �→ {c∗}.
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Theorem 6.1. There exists an identification of U with Diff(S1)/S1.

Proof (by C∞–conformal sewing). Given f ∈ U , we denote Γ = f(∂D). Then
Γ is a smooth Jordan curve which splits the complex plane into two con-
nected open sets: Γ+ which contains 0 and Γ− which contains the point at
infinity. By the Riemann mapping theorem there exists an holomorphic map
φf : Dc → Γ̄− such that φf (∞) = ∞, φ being holomorphic nearby ∞.

A diffeomorphism gf ∈ Diff(S1) is defined by

gf(θ) := (f−1 ◦ φf )(eiθ) .

� 

Theorem 6.2 (Kirillov [11]). The Lie algebra diff(S1) acts on U by

Kv(f)(z) :=
f2(z)

2π

∫
∂D

[
tf ′(t)
f(t)

]2
v(t)

f(t)− f(z)
dt

t
.

Denote by ∂k the holomorphic partial derivative relative to the the affine co-
ordinate ck. Then, for k > 0,

Kexp(ikθ) := Lk = ∂k + ∂̄k +

+∞∑
n=1

(n+ 1)(cn∂k+n + c̄n∂̄k+n) .

6.1 A Differential Form on Diff(S1)

Associate to v ∈ diff(S1) the right invariant tangent vector field to Diff(S1),
(vl)g := exp(εv)g; define the 1–differential form

〈vl, Ω〉g =
1

π

∫
∂D

Sf (t)v(log t)t2
dt

t
,

where Sf is the Schwarzian derivative:

Sf :=
f

′′′

f ′
− 3

2

(
f ′′

f ′

)2

=:
∑
n≥0

znPn+2(c1, . . . , cn+2) ,

where the P∗ are polynomials, which satisfy the Neretin [14] recursion formula

LkPn = (n+ k)Pn−k +
k3 − k

12
δnk , P0 = P1 = 0 .

Theorem 6.3 ([2]).

Ωg = ∂̄
(
log det(I + b†(g−1)b(g−1))

)
= ∂̄K̂ .
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Theorem 6.4 ([14]). Denote by ρh the Berezinian representation associated
to the value h of the Planck constant; then ρh can be realized as the projective
representation of diff(S1) on the vector space H(U) of holomorphic functionals
on U defined by

ρh

(
eikθ
)
Φ =

√
−1LkΦ ,

ρh

(
e−ikθ

)
=
√
−1(L−k + hPk)Φ ,

for all k > 0.

Theorem 6.5 ([2]). A probability measure µ is unitarizing for ρh if and only
if the corresponding divergences are given by

δµ(Kcos kθ)(f) = h&Pk , δµ(Ksin kθ) = h$Pk .

6.2 A Process for which the Unitarizing Measure will be Invariant

Define y =
∑

k>1 εkxk, where

ε2k =
1√
k3 − k

cos kθ , ε2k+1 =
1√
k3 − k

sin(kθ) ,

and where xk is an infinite sequence of independent scalar valued Brownian
motions.

The unitarizing SDE will be defined as the SDE

dgy(t) = (◦ dy − hZdt)gρ
y(t) ,

Z =
1

2

∑
k>1

〈εk, Ω〉∂l
εk
.

Theorem 6.6. The vector Z satisfies supθ |Z(θ)| ≤ 24 and there exists a
constant C such that

|Z(θ)− Z(θ + η)| < Cη log
1

η
.

Remark 6.7. These bounds are obtained using standard techniques of the the-
ory of univalent functions; on the other hand it seems very hard to obtain
them by differentiating determinants.

These bounds on Z do not give information how Z depends upon gy and
therefore not sufficient for proving the existence of solutions to the unitarizing
SDE.
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6.3 When Heat Measure Converges Towards Invariant Measure

Theorem 6.8 ([7]). Let M be a finite dimensional Riemannian Manifold, ∆
its Laplacian, Z a vector field and

Lf =
1

2
(∆f − (Z | df)) .

Assume that there exists an ε > 0 such that

RicciM +∇Z + (∇Z)∗ > ε× Identity .

When t → ∞ the heat measure πt(m0, dm) converges towards an invariant
measure µ satisfying

∫
Lfdµ = 0. Assume that Z is a gradient vector field.

Then ∫
M

DY fdµ =

∫
M

f((Z |Y )−∇∗Y ∗)dµ .

Theorem 6.9 (Bowick–Rajeev). Ricci of Diff(S1) exists and is equal to
the negative identity.

The real Hessian of the Kähler potential K̂ has three components (2, 0),
(1, 1), (0, 2) the third being the conjugate of the first. The fact that K̂ is the
Kähler potential means that the Hessian of type (1, 1) is equal to the identity.
Therefore from the Theorem of Bowick–Rajeev we get positivity for the (1, 1)
component when the value of the Planck constant is greater than 1. Unfor-
tunately it is not possible to complete this argument because it does not care
about the (2, 0) component of the Hessian. Conceptually, an existence theorem
for invariant measures where the hypothesis of real convexity is replaced by a
hypothesis of holomorphic convexity is presently lacking.

7 Canonical Brownian Motion on the Manifold of
Univalent Functions

We have shown that the canonical Brownian motion “on” Diff(S1), γx,t, takes
its values in the group of homeomorphisms of S1; therefore we cannot apply
the theory of C∞ conformal sewing. More generally conformal sewing is pos-
sible when the quasi-symmetry condition of Beurling–Ahlfors is satisfied; but
almost surely γx,t never satisfy this condition. The main objective of this sec-
tion is to realize a conformal sewing for γx,t. We shall adapt the strategy
used for C∞–sewing to the stochastic case, taking advantage of the fact that
the time appearing in the stochastic flows furnishes a natural deformation
parameter, in the spirit of the Loewner equation. This deformation will lin-
earize infinitesimally the underlying the Beltrami equations and this linearized
equation will be solved by the Cauchy integral formula.
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7.1 Beurling–Ahlfors Extension of a Vector Field on the Circle to
the Disk

Consider the kernel B defined on R by the formula B(2s) = sin2 s/s2 and
denote by B′ its derivative. Consider the complex valued Brownian motion

Xn(t) :=

{
1
2 (x2n(t)− ix2n+1(t)) , n > 0 ,

X̄n(t) , n < 0 .

Consider the random vector field define on the unit disk D by the formula

Zx,t(z) = iz
∑

|n|�=0,1

1√
|n|(n2 − 1)

[
B(n log

1

|z|) + 6B′(n log
1

|z|)
]

einθXn(t) ,

where θ = & log z.

Theorem 7.1 ([3]). The restriction of Zx,t to |z| = 1 coincides with the
random vector field defining the canonical Brownian motion “on” Diff(S1).
The random vector field Zx,t generates a stochastic flow of homeomorphisms
of D, denoted by Ψx,t which preserves the circle where it coincides with γx,t.

There exist numerical strictly positive constants c1, c2 such that

E
[
dt(∂̄Zx,t)(z) ∗ dt(∂̄Zx,t)(z

′)
]
≤ c1 exp(−c2d(z, z′)) ,

where d(z, z′) is the Poincaré hyperbolic distance on D.

7.2 Stochastic Beltrami Equation

Recall that the factor of pseudo conformality of a diffeomorphism u is defined
as Θu := ∂̄u

∂u .

Theorem 7.2 ([3]). There exists a diffeomorphism Fx,t of C such that

ΘFx,t(z) =

{
ΘΨx,t(z) , z ∈ D ,
0 , z /∈ D .

Proof (Outline). By composition formula for quasi-conformal modulus we
have fx,t := Fx,t ◦ Ψ−1

x,t is holomorphic in D

∂̄[Fx,t ◦ Ψ−1
x,t ] = 0 .

We use the time as a deformation parameter, denoting by δt the Strato-
novitch differentials. Following Lowner introduce Ut = δt(Fx,t) ◦ F−1

x,t . As the
left multiplicative differential of the flow Ψx,t is Zx,t we get

∂̄Ut = α∂̄Zx,t ◦ f−1
x,t =: Ax,t , |α| = 1 .
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As the support of Ut is compact, we get the following expression for Ut

Ut(ζ) =
1

2iπ

∫
Fx,t(D)

1

ζ − ζ′Ax,t(ζ
′)dζ′ ∧ dζ̄′ .

The conservation of the hyperbolic distance by a conformal map leads to

|E(Ax,t(ζ1)Ax,t(ζ2))| ≤ c1 exp(−c2d(ζ1, ζ2)) ,

an estimate which makes possible to integrate the non Markovian stochastic
flow generated by Ut and gives the existence of Fx,t and of fx,t := Fx,t ◦ Ψx,t.

Conclusion. The map t �→ fx,t defines a stochastic process with values in
U : the canonical Brownian motion on the space of univalent functions. � 

8 Perspectives

We shall present in this section prospects of future developments.

8.1 Stochastic Differential Equations with Low Regularity

The classical framework for local existence and uniqueness of an SDE is done
under the assumption of a local Lipschitz condition. The construction of the
Brownian motion “on” the diffeomorphism group of the circle has stimulated
a new theory, [9], [15], valid for SDE on Rd

dξkx(t) = σk
i (ξx(t))dxi(t) + ck(ξx(t))dt ,

where the coefficients satisfy the following regularity conditions

‖σ(ξ) − σ(η)‖ ≤ c‖ξ − η‖ ×
√
| log ‖ξ − η‖| ,

‖c(ξ)− c(η)‖ ≤ c‖ξ − η‖ × | log ‖ξ − η‖| .

8.2 The Generalized Bieberbach Problem

Let U denote the set of normalized univalent functions. We define a map
ψn : U → Cn by associating to f ∈ U its n first nontrivial Taylor coefficients.
Denote An the range of ψn. We want to characterize effectively An. For
the first values of n this problem has been solved by Schiffer–Spencer. By
De Branges Theorem An is bounded. The space U is connected: if f ∈ U then
fa(z) = f(az) belongs to U for all a < 1.

The elliptic operator driving the Brownian motion on U has as second
order symbol

∆ :=
∑
k>1

1

k3 − k L−kLk .
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Denote πt the law at time t of the Brownian motion on U starting from the
identity at time 0 and denote (ψn)∗πt = πn

t . The support of πn
t is contained in

Ān and it seems likely that this inclusion is an equality. H. Airault has shown
that πn

t is the fundamental solution of a non autonomous heat operator asso-
ciated to the non autonomous elliptic operator whose symbol ∆n

t is obtained
by taking the conditional expectation for the measure πn

t of ∆. As the sup-
port of µn is compact the symbol ∆n

t must degenerate at the boundary of this
support. Therefore it seems likely that the boundary of An is contained in the
set where the real dimension of the space generated $Lc

k, &Lc
k, k ∈ [1, n] is

smaller that 2n. As generating functions for the Lk have been constructed, this
procedure could give computable expressions in finite terms of the boundary
of An for all n.

8.3 Universal Teichmüller Space

Let γ be the subalgebra of diff(S1) generated by cos θ, sin θ. Then the corre-
sponding group is the group Γ , SU(1, 1) of Möbius transformations.

The universal Teichmüller space is defined [10], [1] as

T = Γ \Diff(S1)/S1 .

Theorem 8.1. T is isomorphic to the space of Jordan curves having a con-
formal radius relatively to the origin equal to 1. Furthermore there exists on
T a canonical Riemannian metric.

The existence of heat measure on T makes possible to define corresponding
Sobolev spaces and in some sense a canonical differential calculus on T .

On the other hand is it possible from the Brownian motion on U to produce
a Brownian motion on T ?

8.4 Infinite Dimensional Harmonic Analysis

On the Poincaré disk Berezinian representations are linked to automorphic
functions; more generally in any finite dimension, Berezinian representations
are linked to the Siegel automorphic functions. What could be the infinite
dimensional counterpart on T ?
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1 Introduction

Three-dimensional Navier–Stokes system (NSS) on R3 without external forc-
ing is written for the velocity vector u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) sat-
isfying the incompressibility condition divu = 0 and for the pressure p(x, t)
and has the form

Du

dt
= ν∆u −∇p , x ∈ R3, t � 0 . (1)

Here (
Du

dt

)
i

=
∂ui

∂t
+

3∑
k=1

∂ui

∂xk
uk

and ν > 0 is the viscosity. In this paper we take ν = 1.
After Fourier transform

v(k, t) =

∫
R3

e−i〈k,x〉u(x, t)dx ,

u(x, t) =
1

(2π)3

∫
R3

v(k, t)ei〈k,x〉dk ,

v(k, t) ⊥ k for any k ∈ R3 in view of incompressibility and NSS takes the form

∂v(k, t)

∂t
= −|k|2v(k, t) + i

∫
R3

〈k, v(k − k′, t)〉Pkv(k
′, t)dk′ , (2)

where Pk is the orthogonal projection to the subspace orthogonal to k. Clearly,
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〈k, v(k − k′, t)〉 = 〈k′, v(k − k′, t)〉 .

We can reduce the system (2) to the system of non-linear integral equations

v(k, t) = exp(−|k|2t)v0(k) + i

∫ t

0

exp(−|k|2(t− τ))dτ

×
∫
R3

〈k, v(k − k′, τ)〉Pkv(k
′, τ)dk′ ,

(3)

where v0(k) is the initial condition.
Many problems of hydrodynamics assume the power-like behavior of func-

tions v near k = 0 and infinity. In this connection it is natural to introduce
the spaces Φ(α, ω) where v(k) ∈ Φ(α, ω) if

1. v(k) =
c(k)

|k|α for |k| � 1, c(k) ⊥ k
and c(k) is bounded and continuous outside k = 0; put c = sup

|k|�1

|c(k)|;

2. v(k) =
d(k)

|k|ω for |k| � 1

and d(k) is bounded and continuous, d = sup
k�1

|d(k)|.

Certainly 1 plays no essential role in this definition and can be replaced
by any other fixed number. We shall use the metric ‖v‖ = c+ d.

In some cases v can have infinite energy or enstrophy. Therefore classical
existence or uniqueness results like the theorem by T. Kato (see [3]) cannot
be applied to the spaces Φ(α, ω).

In this paper we consider 0 � α < 3, ω � 2 and in Sect. 2 we prove the
following theorems.

Theorem 1.1. Let ω > 2. Then for any v ∈ Φ(α, ω) there exists t0 = t0(α, ω)
such that the system (3) has a unique solution on the interval 0 � t � t0 with
the initial condition v.

Theorem 1.2. Let ω > 2 and t0 > 0 be given. There exists h > 0 such that
for any ‖v‖ < h there exists a unique solution of (2) on the interval 0 � t � t0
which has v as the initial condition.

Our methods do not allow to prove the global existence results in the
spaces Φ(α, ω) if ‖v‖ is sufficiently small. There are some reasons to believe
that the corresponding statement is even wrong (see Sect. 4). Some results in
this direction were obtained recently by E.I. Dinaburg and Yu. Bakhtin.

In Sect. 3 we consider the case α = ω = 2. A stronger statement is valid.

Theorem 1.3. If ‖v‖ is sufficiently small then there exists the unique solution
of (3) with this initial condition for all t � 0.
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Theorem 1.3 was proven earlier by Le Jan and Sznitman [4] and Cannone
and Planchon [2] (see also the review by M. Canone [1]). Our methods do not
allow to prove for α = ω = 2 the existence of local solutions if ‖v‖ is large.
Probably, this statement is also wrong.

In Sect. 4 we consider v(k) = c(k)/|k|α for 2 < α < 3, ω = α and discuss
some possibilities for blow-ups in these cases.

During the proofs there appear various constants whose exact values
play no role in the arguments. We denote them by capital A with various
subindexes.

2 Local Existence and Uniqueness Theorems

We shall prove theorems 1.1 and 1.2 simultaneously pointing out the differ-
ences in the arguments at the end of this section. We shall construct solu-
tions of (3) by the method of successive approximations. Put v(0)(k, t) =
exp(−|k|2t)v0(k) and define for n > 0

v(n)(k, t) = v(0)(k, t) + i

∫ t

0

exp(−|k|2(t− τ))dτ

×
∫
R3

(
k, v(n−1)(k − k′, τ)

)
Pkv

(n−1)(k′, τ)dk′ .
(4)

Clearly, v(n)(k, t) ⊥ k. It follows from (3) that

v(n+1)(k, t)− v(n)(k, t) = i

∫ t

0

exp(−|k|2(t− τ))dτ

×
∫
R3

[(
k, v(n)(k − k′, t)− v(n−1)(k − k′, t)

)
Pkv

(n)(k′, τ)

+
(
k, v(n−1)(k − k′, τ)

)
Pk

(
v(n)(k′, τ)− v(n−1)(k′, τ)

)]
dk′ . (5)

From (4)∣∣∣v(n)(k, t)
∣∣∣ � ∣∣∣v(0)(k, t)∣∣∣+ ∫ t

0

exp(−|k|2(t− τ))dτ

× |k|
∫
R3

∣∣∣v(n−1)(k − k′, τ)
∣∣∣ ∣∣∣v(n−1)(k′, τ)

∣∣∣ dk′

=
∣∣∣v(0)(k, t)∣∣∣+ 1

|k|

t|k|2∫
0

e−τdτ

×
∫
R3

∣∣∣∣v(n−1)

(
k − k′, t− τ

|k|2

)∣∣∣∣ ∣∣∣∣v(n−1)

(
k′, t− τ

|k|2

)∣∣∣∣dk′ .

(6)
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We shall prove that if v(n−1)(k, τ) ∈ Φ(α, ω) and
∥∥v(n−1)(k, τ)

∥∥ � h for

all 0 � τ � t then v(n)(k, τ) ∈ Φ(α, ω) and we shall derive the estimate for∥∥v(n)(k, τ)
∥∥ provided that t is small enough.

We shall write v
(n−1)
0 (k, τ) if |k| � 1 or v

(n−1)
1 (k, τ) if |k| > 1 instead of

v(n−1)(k, τ) and assume that v
(n−1)
0 (k, τ) = 0 if |k| > 1, v

(n−1)
1 (k, τ) = 0 if

|k| � 1. Consider two cases.
Case 1. |k| � 1. We have from (6)

∣∣∣v(n)(k, t)
∣∣∣ |k|α � ‖v0‖+ |k|α−1

t|k|2∫
0

e−τdτ

×

⎡⎣∫
R3

∣∣∣∣v(n−1)
0

(
k − k′, t− τ

|k|2

)∣∣∣∣ ∣∣∣∣v(n−1)
0

(
k′, t− τ

|k|2

)∣∣∣∣ dk′
+ 2

∫
R3

∣∣∣∣v(n−1)
0

(
k − k′, t− τ

|k|2

)∣∣∣∣ ∣∣∣∣v(n−1)
1

(
k′, t− τ

|k|2

)∣∣∣∣ dk′
+

∫
R3

∣∣∣∣v(n−1)
1

(
k − k′, t− τ

|k|2

)∣∣∣∣ ∣∣∣∣v(n−1)
1

(
k′, t− τ

|k|2

)∣∣∣∣ dk′
⎤⎦

� ‖v0‖+ |k|α−1
(
1− exp(−t|k|2)

)
h2 ×

⎡⎢⎢⎢⎢⎣
∫

|k′|�1
|k−k′|�1

dk′

|k − k′|α|k′|α

+2

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k′|ω +

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|ω

⎤⎥⎥⎥⎥⎦ . (7)

Each of these integrals will be estimated separately.
The first integral of (7).∫

|k′|�1
|k−k′|�1

dk′

|k − k′|α|k′|α = |k|3−2α

∫
|k′|�1/|k|

|k/|k|−k′|�1/|k|

dk′∣∣∣ k
|k| − k′

∣∣∣α |k′|α .
Concerning the last integral we can write

∫
|k′|�1/|k|

|k/|k|−k′|�1/|k|

dk′∣∣∣ k
|k| − k′

∣∣∣α |k′|α �

⎧⎪⎨⎪⎩
A1(α) , if α > 3

2 ,

A1(α) ln 1
|k| , if α = 3

2 ,

A1(α)|k|−3+2α , if α < 3
2 .
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From these inequalities it follows that for |k| � 1, t � t0

|k|α−1
(
1− exp(−t|k|2)

) ∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k′|α

� |k|2−α
(
1− exp(−t|k|2)

) ∫
|k′|�1/|k|

dk′∣∣∣ k
|k| − k′

∣∣∣α |k′|α � t0A2(α) . (8)

The second integral of (7).∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k′|ω = |k|3−α−ω

∫
|k′|�1/|k|

|k/|k|−k′|�1/|k|

dk′

|k′|ω
∣∣∣ k
|k| − k′

∣∣∣α .

It is clear that |k/|k| − k′| � |k′| − 1. Therefore in the domain of integration
|k′| � 1 + 1/|k| and∫

dk′

|k′|ω
∣∣∣ k
|k| − k′

∣∣∣α �

∫
1/|k|�|k′|�1+1/|k|

dk′

|k′|ω
∣∣∣ k
|k| − k′

∣∣∣α � |k|ωA3(α, ω) .

Returning back to (7) we can write

|k|α−1
(
1− exp(−t|k|2)

) ∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k|ω � t0A4(α, ω) .

The third integral of (7). The estimate of this integral is even simpler:∫
|k′|>1

|k−k′|>1

dk′

|k′|ω|k − k′|ω � A5(ω) ,

since ω > 2. Therefore

|k|α−1
(
1− exp(−t|k|2)

) ∫
|k′|�1

|k−k′|�1

dk′

|k|ω|k − k′|ω � tA6(α, ω) .

Finally for |k| � 1 we get∣∣∣v(n)(k, t)
∣∣∣ |k|α � ‖v0‖+ t0h

2A7(α, ω) . (9)

Case 2. 1 � |k| � 1/
√
t0. From (6)
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∣∣∣ |k|ω � ‖v0‖+ h2|k|ω−1

(
1− exp(−t|k|2)

)

×

⎡⎢⎢⎢⎢⎣
∫

|k′|�1
|k−k′|�1

dk′

|k − k′|α|k′|α

+

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k′|ω +

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|ω

⎤⎥⎥⎥⎥⎦ .
(10)

The first term in (10) can be non-zero for 1 � |k| � 2 and in this case it is
not more than ∫

|k′|�1

dk′

|k′|α|k − k′|α � A8(α, ω) .

Therefore in view of 1 � |k| � 2

|k|ω−1
(
1− exp(−t|k|2)

) ∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k′|α � t0A9(α, ω) . (11)

For the second term in (10) we can write∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k′|ω �
1

|k|ωA10(α, ω)

and this gives

|k′|ω−1
(
1− exp(−t|k|2)

) ∫
|k′|�1

|k−k′|�1

dk′

|k − k′|α|k′|ω

� |k|ω+1 × t0 ×
1

|k|ωA11(α, ω) = |k| × t0A11(α, ω) �
√
t0A11(α, ω) . (12)

Consider the last term in (10):∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|ω � |k|3−2ω

∫
|k′|�1/|k|

k/|k|−k′|�1/|k|

dk′∣∣∣ k
|k| − k′

∣∣∣ω |k′|ω . (13)

Again this integral is bounded if ω < 3, diverges as ln |k| if ω = 3 and behaves
as |k|ω−3 if ω > 3. Therefore for ω < 3



On Solutions of the 3D Navier–Stokes System 275

|k|ω−1
(
1− exp(−t0|k|2)

) ∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|ω

� const× |k|ω+1 × t0 × |k|3−2ω = const× |k|4−ω × t0
� const× t1−(4−ω)/2

0 = const× t(ω−2)/2
0 .

(14)

For ω = 3 the last expression is not more than

const× t0 × |k|4 × |k|−3 ln |k| = const× t0 × |k| × ln |k| � const× t1/3
0 .

In this inequality we could take any power of t0 less than 1/2 instead of 1/3.
The value of const depends on this number. Collecting all estimates we can
write ∣∣∣v(n)(k, t)

∣∣∣ |k|ω � ‖v0‖+ ‖h‖2tδ0A12(α, ω) , (15)

for some positive δ > 0. Remark that here we used the fact that ω > 2.
Case 3. |k| � 1/

√
t0. Again from (6)

∣∣∣v(n)(k, t)
∣∣∣ |k|ω � ‖v0‖+ h2|k|ω−1

⎡⎢⎢⎢⎢⎣
∫

|k′|�1
|k−k′|�1

dk′

|k − k′|α|k′|α +

+2

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|α +

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|ω

⎤⎥⎥⎥⎥⎦ .
The first integral can be non-zero only if t0 > 1. Therefore it is zero if we
discuss theorem 1.1 and consider sufficiently small t0. If t0 is not small then
h will be small (see below). If t0 > 1 this integral was estimated before (see
integral 1 in case 1) and it can be non-zero if |k| � 2. In this case it is bounded
and

|k|ω−1

⎡⎢⎢⎢⎢⎣
∫

|k′|�1
|k−k′|�1

dk′

|k − k′|α|k′|α

⎤⎥⎥⎥⎥⎦ � A13(α, ω) .

For the second integral we use the estimate∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|α �
1

|k|ωA14(α, ω)
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and therefore

2|k|ω−1

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|α �
1

|k|A15(α, ω) �
√
t0A15(α, ω) .

For the third integral we can write:

∫
|k′|�1

|k−k′|�1

dk′

|k − k′|ω|k′|ω �

⎧⎪⎨⎪⎩
const× |k|3−2ω , if ω < 3 ,

const× |k|−3 ln |k| , if ω = 3 ,

const× |k|−ω , if ω > 3 .

For the first case we also have |k|ω−1 × |k|3−2ω = |k|2−ω � t
(ω−2)/2
0 . In all

cases

|k|ω−1

∫
dk′

|k − k′|ω|k|ω �
ln |k|
|k| A16(α, ω) � t

1/3
0 A17(α, ω) .

From all presented estimates it follows that

‖v(n)‖ � ‖v(0)‖+ ‖v(n−1)‖2t
1/3
0 A17(α, ω) , (16)

where
v(m) = max

0�t�t0
‖v(m)(k, t)‖ .

Take any λ > 1, for example, λ = 2. If ‖v(n−1)‖ � 2‖v(0)0 ‖ then

‖v(n)‖ � ‖v(0)‖+ 4‖v(0)‖2t
1/3
0 A17(α, ω) = ‖v(0)‖

(
1 + 4‖v(0)‖t1/3

0 A17(α, ω)
)

If t0 is so small that 4‖v(0)‖t1/3
0 A17(α, ω) < 1 then ‖v(n)‖ � 2‖v(0)0 ‖. On the

other hand, if t0 is given and ‖v(0)‖ is so small that ‖v(0)‖t1/3
0 A17(α, ω) � 1

then ‖v(n)‖ � 2‖v(0)0 ‖. In other words, under conditions of theorems 1.1 and 1.2
all v(n)(k, t) ∈ Φ(α, ω) for all 0 � t � t0 and ‖v(n)‖ � 2‖v(0)‖.

Now we shall prove the convergence of all iterations v(n) to a limit as
n→∞ in the sense of our metric.

Consider |k| � 1. We have from (5)∣∣∣v(n+1)(k, t)− v(n)(k, t)
∣∣∣ |k|α

� |k|α+1

∫ t

0

exp(−|k|2(t− τ))dτ
∫
R3

[ ∣∣∣v(n)(k − k′, τ)− v(n−1)(k − k′, τ)
∣∣∣

×
(∣∣∣v(n)(k′, τ)

∣∣∣+ ∣∣∣v(n−1)(k − k′, τ)
∣∣∣) ∣∣∣v(n)(k′, τ)− v(n−1)(k′, τ)

∣∣∣ ] dk′

= |k|α+1

∫ t

0

exp(−|k|2(t− τ))dτ
∫
R3

(
|v(n)(k′, τ)| + |v(n−1)(k′, τ)|

)
×
∣∣∣v(n)(k − k′, τ)− v(n−1)(k − k′, τ)

∣∣∣ dk′ .
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We use the estimates of |v(n)(k′, τ)|, |v(n−1)(k′, τ)| since v(n−1)(k′, τ),
v(n)(k′, t) belong to the space Φ(α, ω) and ‖v(n)(k′, τ)‖, ‖v(n−1)(k′, τ)‖ �

2‖v(0)‖. Denote

h(n) = max
0�t�t0

∥∥∥v(n)(k, t)− v(n−1)(k, τ)
∥∥∥ .

The same arguments as above show that h(n+1) � εh(n−1) for some 0 <
ε < 1. Other cases are considered in a similar way. We omit the details. The
last inequality gives the convergence of v(n) to the limit. Theorems 1.1 and 1.2
are proven.

3 The Case α = ω = 2

This case is special in several respects. It was considered before by Le Jan and
Sznitman [4] and by Cannone and Planchon [2]. The authors proved that if
the norm ‖v(0)‖ is sufficiently small then there exists the unique solution of
(2) for all t � 0 having this initial condition.

We shall show how this result can be obtained with the help of tech-
nique of Sect. 2. Thus we assume that v(0)(k) = c(k)/|k|2 and denote
c = supk∈R3 |c(k)|. We shall show that if c � c0 then the solution of (2)
exists for all t � 0, v(k, t) ∈ Φ(2, 2) and ‖v(k, t)‖ � c1 for another constant
c1.

We use the same iteration scheme (4). Take any t0. Assuming that
v(n−1)(k, t) ∈ Φ(2, 2) for all 0 � t � t0 we have v(n−1)(k, t) = c(n−1)(k, t)/|k|2,
and

v(n−1) = max
0�t�t

‖c(n−1)(k, t)‖ .

We can write

|k|2|v(n)(k, t)|

� ‖v(0)‖+ ‖v(n−1)‖2|k|3
∫ t

0

exp(−|k|2(t− τ))dτ
∫
R3

dk′

|k − k′|2|k′|2 . (17)

It is easy to see that the last integral of (17) is bounded by A18/|k| and
substituting this back into the equation we get

‖v(n)(k, t)‖ � ‖v(0)‖+A18‖v(n−1)‖2|k|2
∫ t

0

exp(−|k|2(t− τ))dτ

= ‖v(0)‖+A18‖v(n−1)‖2
(
1− exp(−|k|2t)

)
.

If for some λ > 1 we have the inequality ‖v(n−1)‖ � λ‖v(0)‖ then

‖v(n)(k, t)‖ � ‖v(0)‖+ λ2A18‖v(0)‖2 = ‖v(0)‖
(
1 + λ2A18‖v(0)‖

)
.
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Choose λ so that(
λ− 1

2A18‖v(0)‖

)2

�
1

(2A18‖v(0)‖)2
− 1 ,

or

λ �
1

1−A18‖v(0)‖
.

Then ‖v(n)‖ � λ‖v(0)‖. In other words, for any such λ all iterations v(n)(k, t)
are defined, v(n)(k, t) ∈ Φ(2, 2) and ‖v(n)(k, t)‖ � λ‖v(0)‖.

Now we have to prove the convergence of v(n) to a limit as n→∞. Put

h(n) = sup
0�t�t0

sup
k∈R3

∣∣∣v(n)(k, t)− v(n−1)(k, t)
∣∣∣ |k|2 .

We use (5):∣∣∣v(n+1)(k, t)− v(n)(k, t)
∣∣∣ |k|2 � 2λ‖v(0)‖‖v(n) − v(n−1)‖|k|3

×
∫ t

0

exp(−|k|2(t− τ))dτ
∫
R3

dk′

|k − k′||k′|2

� 2λA18‖v(0)‖h(n)

Thus if 2λA18‖v(0)‖ < 1 then h(n+1) � λA18‖v(0)‖h(n) and h(n) tend to zero
exponentially fast. This gives the convergence of v(n) to a limit. Remark that
we have no restrictions on t0, i.e. our arguments imply the existence of solu-
tions on any interval of time. C. Fefferman explained to me 1 how in this case
the existence of global solutions follows from the existence of local solutions
with the help of scaling arguments. It is interesting that presumably for large
|v(0)| the local existence theorem may not be valid. Dinaburg and Bakhtin
(yet unpublished) showed that if ‖v(0)‖ is sufficiently small then v(k, t) → 0
as t→∞ and fixed k.

4 Some Possibilities for Blow-ups in Finite Time
in the Spaces Φ(α, α)

We shall consider v(0)(k) = c(0)(k)/|k|α, k ∈ R3. It follows from Theorem 1.1
that for sufficiently small t0 there exists the unique solution of (2) on the
interval [0, t0]. Since it is only a local statement there are all reasons to believe
that for α close to 3 there can be blow-ups of solutions in finite time. In this
section we discuss related possibilities. Take a sequence

{
∆(n)
}
, ∆(n) → 0 as

n → ∞ so that
∑

n∆
(n) < ∞. We shall consider (3) and neglect for small

1 C. Fefferman, private communication.
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values of t by the dependence of v(k, τ) on τ . In this way we get the sequence
of recurrent relations:

v(n+1)(k) = exp(−|k|2∆(n))v(n)(k) + i

∆(n)∫
0

exp(−|k|2(t− τ))dτ

×
∫
R3

〈k, v(n)(k − k′)〉Pkv
(n)(k′)dk′ ,

or

c(n+1)(k) = exp(−|k|2∆(n))c(n)(k) + i|k|α−2
[
1− exp(−|k|2∆(n))

]
×
∫ 〈k, c(n)(k − k′)〉Pkc

(n)(k′)
|k − k′|α|k′|α dk′ . (18)

The sequence (18) is the main approximation for NSS. We make the following
scaling assumptions:

c(n)(k) = V (n)f (n)
(
k
√
∆(n)

)
,

where f (n)(κ) converge to a limit as n→∞ and the factor V (n) is chosen so
that

sup
k∈R3

∣∣∣f (n)
(
k
√
∆(n)
)∣∣∣ = 1 .

Then from (18)

V (n+1)f (n+1)
(
k
√
∆(n+1)

)
= exp(−|k|2∆(n))V (n)f (n)

(
k
√
∆(n)
)

+ i
(
V (n)
)2

|k|α−2
[
1− exp(−|k|2∆(n))

]
×
∫
R3

〈k, f (n)
(
(k − k′)

√
∆(n)

)
〉Pkf

(n)
(
k′
√
∆(n)
)

|k − k′|α|k′|α dk′ .

(19)

Put β(n+1) = V (n+1)/V (n) and κ = k
√
∆(n). From (19)

β(n+1)f (n+1)

(
κ

√
∆(n+1)

∆(n)

)
= exp(−κ2)f (n)(κ) + iV (n)

(
∆(n)
)(α−2)/2

×
(
1− exp(−κ2)

)
|κα−2|

∫
R3

〈κ, f (n)(κ − κ′)〉Pκf
(n)(κ′)

|κ − κ′|α|κ′|α dκ′ .
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Choose ∆(n) so that V (n)
(
∆(n)
)(α−2)/2

= a where a is an arbitrary constant,

for example, a = 1. This gives the expression of ∆(n) through V (n). From the
definitions

β(n+1) = max
κ∈R3

∣∣∣∣∣ exp(−κ2)f (n)(κ) + i
(
1− exp(−κ2)

)
|κ|α−2

×
∫
R3

〈κ, f (n)(κ − κ′)〉Pκf
(n)(κ′)

|κ − κ′|α|κ′|α dκ′
∣∣∣∣∣ .

If in the limit n→∞ the functions f (n) converge in the uniform metric to a
limit then the limiting function f satisfies the following equation:

βf(κh) = exp(−κ2)f(κ) + i
(
1− exp(−κ2)

)
|κ|α−2

×
∫
R3

〈κ, f(κ − κ′)〉Pκf(κ
′)

|κ − κ′|α|κ′|α dκ′ , (20)

where

β = max
κ∈R3

∣∣∣∣∣ exp(−κ2)f(κ) + i
(
1− exp(−κ2)

)
|κ|α−2

×
∫ 〈κ, f(κ − κ′)〉Pκf(κ

′)
|κ − κ′|α|κ′|α dκ′

∣∣∣∣∣ .
The value of h is found from the relation:

h = lim
n→∞

√
∆(n+1)

∆(n)
= lim

n→∞

(
V (n)

V (n+1)

)1/(α−2)

= lim
n→∞

β−1/(α−2)
n

= β−1/(α−2) .

The equation (20) can be considered as the equation for the fixed point of a
renormalization group. We are interested only in solutions for which β > 1.
Also the space of odd functions is invariant under the non-linear transforma-
tion in the rhs of (20). Therefore the simplest fixed point can be from this
subspace. For bounded f the integral∫ 〈κ, f(κ − κ′)〉Pκf(κ

′)
|κ − κ′|α|κ′|α dκ′

behaves as an homogenous function of degree 4−2α. Therefore for κ → 0 the
non-linear term in (20) decays as |κ|4−α. For κ →∞ it decays as |κ|2−α and
it is natural to consider (20) in the space of functions with this type of decay.
This scenario of blow-up assumes strong connection between the behavior
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of initial conditions near κ = 0 and κ = ∞. We hope to discuss the main
equation, its solution, the role of parameter a and the relation t o blow-ups
in another paper.

I thank E.I. Dinaburg for useful remarks and criticism. The financial sup-
port from NSF (grant DMS–9706794) and RFFI (grant 02–01–00158) are
highly acknowledged.
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1 Introduction

In this paper I want to present some typical recent results in the subject to the
general public. A serious effort has been made to make this paper accessible
to the nonexpert. The only prerequisite is the definition of a Lie group and
its Haar measure, and of the convolution product. Even the definition of the
Lie algebra will not be essential and it will be given in Sect. 3 below. Some
specialized notions, such as the semigroup Tt = e−t∆ generated by the closure
of a subelliptic operator ∆ = −

∑
X2

j , whereXj are left-invariant vector fields
on the real connected Lie group G (the letter G will be reserved throughout
to denote such a group), will crop up. The nonspecialist can ignore these, or
any other unknown word for that matter, and simply read on, this paper is
so structured that this is possible.

The heart of the matter lies in Sect. 2.2 below, Sect. 4 makes comments
on the previous sections and Sect. 5 gives some further results. There were
several possibilities for the further results presented in Sect. 5. My choice
was dictated by the following two considerations. On one hand I wanted to
present some natural problems in the subject that sooner or later will have
to be addressed and which I am sure, have a satisfactory answer. On the
other hand I wanted to highlight some much more speculative prospects that
emerge from the results presented here. These “speculations” have to do with
combinatorial group theory.

Convention

I use throughout the convention that, in a formula, the letters C or c, possibly
with suffixes, indicate, possibly different, positive constants that are indepen-
dent of the important parameters of the formula.
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2 The Analysis and the Geometry

2.1 Riemannian Structures on a Lie Group G

For every prescribed inner product 〈 · , · 〉 on the tangent space Te(G), where
e ∈ G is the neutral element of G, we can define a left invariant Riemannian
structure on G, simply by left translating (Lg : x �−→ gx) 〈 · , · 〉 to an inner
product on Tg(G) (g ∈ G). A different inner product 〈 · , · 〉new gives rise to
a new Riemannian structure that is quasi-isometric to the initial one in the
sense that:

C−1|x|old ≤ |x|new ≤ C|x|old , ∀x ∈ G ,
where |x| = d(x, e) denotes the Riemannian distance to the origin.

2.2 Convolution Powers

Let µ ∈ P(G) be some probability measure on G, with continuous and com-
pactly supported density ϕ ∈ C0(G) with respect to the right Haar measure
drx on G: dµ(x) = ϕ(x)drx. We introduce the following notation, for any
integer n ≥ 1:

µ∗n = µ ∗ · · · ∗ µ (n times) , dµ∗n(x) = ϕn(x)drx ,

and Φ(n) = Φ(n;G,µ) = ϕn(e) .

To avoid the obvious pathology (e.g. G = R, suppµ ⊂ positive axis with
Φ(n) ≡ 0 ∀n ≥ 0), we shall suppose that µ is symmetric i.e. dµ(x−1) = dµ(x).

2.3 Spectral Gap and Amenability

I shall denote ‖µ‖op (µ ∈ P(G)) the L2 → L2 operator norm of f �−→ f ∗µ on
L2(G, drx) and define λ = λ(G,µ) by e−λ = ‖µ‖op. It is important to recall
that, for G fixed, either λ(G,µ) = 0 for all µ ∈ P(G) as above, and then we
say that G is amenable, or λ(G,µ) > 0 for all µ ∈ P(G) as above, and then
we say that G is not amenable (cf. [11]).

2.4 Basic Analytic Definitions [16]

We shall say that G is a B–group if, for all µ ∈ P(G) and λ = λ(G,µ) as in
Sect. 2.2 and Sect. 2.3, there exist C1, C2, c1, c2 > 0 such that:

C2 exp(−λn− c2n1/3) ≤ Φ(n) ≤ C1 exp(−λn− c1n1/3) .

We shall say that G is an NB–group if, for all µ ∈ P(G) and λ = λ(G,µ)
as above, there exist ν = ν(G,µ) ≥ 0 and C > 0 such that:

C−1n−νe−λn ≤ Φ(n) ≤ Cn−νe−λn .
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2.5 The Basic Geometric Definition ([4], [18])

We shall say that G (here G is equipped with a Riemannian structure as
in Sect. 2.1) admits the polynomial homotopy property (PHP in short) if the

following holds: Let 2 ≤ n ≤ dimG, let α : ėn = Sn−1 −→ G be some C∞

mapping of the unit Euclidean sphere into G (ėn stands for the boundary of
the unit Euclidean n – cell en) and let us assume that α(ėn) is homotopic to
zero in G i.e. that α extends to a continuous mapping α̂ : en −→ G (which
simply means that [α] is zero in the (n− 1)th homotopy group πn−1(G) of G
[6]). Then the extension α̂ : en−→ G can be chosen in order that

Voln
[
α̂(en)

]
≤ C
(
1 + Voln−1

[
α(ėn)

])c
,

for some positive constants C and c depending only on G.
Volr(·) denotes here the r–dimensional Hausdorff measure with respect to

the Riemannian structure (counted with multiplicity, cf. [10]). Observe that
the above conditions are vacuous if dimG = 1 and that then G admits the
PHP.

2.6 The Classification: Analytic–Geometric

Theorem A–G. A group G as above is a B–group, resp. an NB–group if and
only G does not, resp. does admit the PHP.

The above definitions and results extend to measures µ ∈ P(G) that are
symmetric but not necessarily compactly supported, provided that they sat-
isfy Gaussian estimates at infinity, which amount grosso modo to imposing
µ{x ∈ G | |x| ≥ R} = O

(
e−cR2)

(cf. [16], [19] for the exact definition). The
importance of these Gaussian measures lies in the fact that the heat diffusion
kernel of the semigroup Tt = e−t∆ (cf. Sect. 1) is Gaussian (cf. [16], [22]).

3 The Algebra

3.1 Review of Lie Algebra and Definitions ([9], [12])

Let g = Te(G) be the (real) Lie algebra of G. Recall that every vector ξ ∈
Te(G) extends by left translations (cf. Sect. 2.1) to a (left invariant) vector
field X on G:

X(x) = (deLx)(ξ) ,

and that the Lie bracket on g is induced by the bracket of vector fields, viewed
as first order differential operators:

[ξ1, ξ2] = [X1, X2](e) = (X1 ◦X2 −X2 ◦X1)
∣∣
x=e

.

Recall furthermore that gC = g⊗C denotes the complexified Lie algebra and
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ad : g(C) −→ L(g(C))

the (complexified) adjoint representation, defined by (ad ξ)(ζ) = [ξ, ζ]. The
Lie algebra g is solvable if the complexified adjoint representation can be
simultaneously triangularized :

ad ξ =

⎛⎜⎝λ1(ξ) #
. . .

0 λn(ξ)

⎞⎟⎠ .

Let us decompose λj = Reλj + i Imλj ∈ g∗
C

= g∗ + ig∗ and let us consider
the (possibly empty) subset Λ = {L1, . . . , Lk} of g∗, consisting of all distinct
Reλj 	= 0.

3.2 The Algebraic Definition (Solvable Case) ([13], [18])

Let q be some solvable real Lie algebra and let Λ = {L1, . . . , Lk} ⊂ q∗ be as
above. We then say that q is a C–algebra (C originally stands for Condition)
if Λ is not empty and if its convex hull contains 0. We say that q is NC
(Non–C) otherwise.

3.3 Review of the Structure of Lie Groups ([7], [12])

It is the fundamental theorem in Lie theory that every real Lie algebra g is the
Lie algebra of a unique (up to isomorphism) simply connected real Lie group
G. Furthermore every Lie group whose Lie algebra is isomorphic to g is locally
isomorphic to G. One basic but standard fact in that direction is that if g is
solvable then the corresponding simply connected group G is diffeomorphic
to Rd.

What is also standard is the following structure theorem: Let G be some
simply connected real Lie group. Then

G = QK , (1)

where Q and K are simply connected closed subgroups of G such that

(i) Q ∩K = {e},
(ii) Q is solvable,
(iii) K contains a cocompact discrete closed subgroup Z which is central in

G (cocompact meaning that K/Z is compact).

Remark 3.1. If G is amenable, Q is the radical and (1) is the Levi decom-
position. If G is semisimple, then Q = NA in the Iwasawa decomposition
G = NAK. Unless G is amenable, Q cannot be normal and in general (1) is
related to the Borel decomposition for algebraic groups [8].
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3.4 The Algebraic Definition (General Case) [16]

Let g be some real Lie algebra, let G0 be the corresponding simply connected
Lie group and let G0 = QK as in (1) We say that g is a B–algebra if Q is
a C–group. The fact that this definition does not depend on the particular
decomposition (1) needs proving. If Q is NC, we say that g is NB (B is the
letter preceding C in the Latin alphabet and NB stands for Non–B, and not
for the initials in the Greek alphabet of N.Bαρoπoυλos!). For any connected
Lie group we say that G is algebraically B (resp. NB) if its Lie algebra is a B
(resp. NB) algebra.

Example 3.2. All semisimple Lie groups, compact or not, are NB.

3.5 The Classification: Analytic–Algebraic

Theorem A–A. G is a B–group, resp. an NB–group if and only if it is
algebraically–B, resp. algebraically–NB.

4 Comments

4.1 Unimodular Groups

When G is unimodular i.e. when the Haar measure on G is both left and right
invariant, a different classification on the basis of Φ(n) was carried out in the
80’s (cf. [22]). What is involved there are not homotopy considerations but
the volume growth of G:

γ(n) = Haar measure of a ball of radius n ≥ 1 in G .

What we can say then is that when γ(n) ≈ nD (D = 0, 1, . . . ) we have Φ(n) ≈
n−D/2 and when γ(n) � na (for all a ≥ 0) we have Φ(n) ≤ exp(−cn1/3).

This is a much coarser classification than the one we have here but it
has the advantage that it generalizes to all the compactly generated locally
compact groups, connected or not.

In terms of our classification given here, the unimodular NB–groups have
the additional property that ν = ν(G) ∈ 1

2Z i.e. ν = ν(G) is a half integer
which depends only on G and not on µ (cf. [14], [17] for a formula that gives ν;
cf. [3], [22] for proofs of this when G is respectively semisimple or amenable).

4.2 The State of the Art on Theorem A–A

A complete proof of Theorem A–A when G is amenable can be found in [13].
In [16] one finds a proof for general groups of a slightly weaker result where the
NB–condition in Sect. 2.2 is replaced by C−1e−λnn−ν1 ≤ Φ(n) ≤ Ce−λnn−ν2 .
To prove that ν1 = ν2 and to compute this index is a truly formidable task,
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and it takes from end to end several hundred pages to carry out. The reason
is that, among other things, the solution of that problem relies on difficult es-
timates in potential theory (cf. [21]). It is a fortunate fact that these potential
theoretic estimates have, very recently, come on their own and have given rise
to interesting new results in classical probability (and potential) theory. Let
me explain.

Let µ ∈ P(Rd) be some centered probability distribution with a high
enough moment, and let D = {x = (x1, x

′) ∈ Rd = R×Rd−1 | x1 > ϕ(x′)} be
some Lipschitz domain in Rd, where |ϕ(x′)−ϕ(y′)| ≤ A|x′−y′| (x′, y′ ∈ Rd−1).
Let

P (n, x) = Px[Zj ∈ D; j = 1, 2, . . . , n]

be the probability of life (or the gambler’s ruin estimate, depending on the
point of view) of the random walk Z1, Z2, · · · ∈ Rd controlled by µ, i.e.:

P[Zn+1 ∈ dy//Zn = x] = dµ(x − y) , x, y ∈ Rd, n = 0, 1, 2, . . . .

Very precise estimates of P (n, x) can be obtained in the above generality
(cf. [21]). These estimates are essential for Theorem A–A, where D is then
an appropriate conical domain in g (= Rd as a linear space) defined by the
positivity of the relevant roots (i.e. D is a generalized Weyl chamber [5], [13]).

Be that as it may, the complete proof of Theorem A–A will appear in a
forthcoming paper [20].

4.3 The State of the Art on Theorem A–G

In [18] one finds a proof, among other things, of Theorem A–G when G is
solvable and simply connected. What allows one to pass to a general con-
nected Lie group G is that, if T ⊂ G denotes the maximal normal torus of G,
then G/T , Q ×K is quasi-isometrically diffeomorphic (but not necessarily
homeomorphic) to the product of a simply connected solvable group Q and of
a compact groupK (cf. [18]; the proof of this is not difficult and it will appear
in [20]). This allows us to reduce the problem to compact groups and what
has to be proved is that every connected compact group admits the PHP.

I claim to have a proof of this fact on compact groups (which is quite
involved). This is in the spirit of differential topology and Morse theory. The
details of this have not yet been written out in full and, since in addition I
am not an expert in differential topology, I feel that I have to warn the reader
that unpleasant surprises in that direction are not to be excluded altogether
(in plain terms my proof might collapse). Even without the above result for
compact groups however, the results of [18] give a, perhaps less elegant to
describe, but equally pertinent, B–NB geometric classification of Lie groups.

What emerges also from the results of [18] is a cohomological classification
of Lie groups. (These results have been stated precisely in [18] but the proofs
remain to be written out. These proofs are however easy to extract from [18].)
Grosso modo, let us say that G, equipped with a Riemannian structure as
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in Sect. 2.1, has the cohomological polynomial property if, for every smooth
differential form ω ∈ ∧(G) that grows polynomially at infinity (cf. [18] for
precise statements), that is closed (i.e. dω = 0), and that represents the zero
cohomology class of G, we can find θ ∈ ∧(G), also with polynomial growth at
infinity, such that dθ = ω. The cohomological classification of Lie groups states
then that G is an NB–group if and only if it has the polynomial cohomology
property.

5 Further Results and Prospects

5.1 A Direct Proof of Theorem A–G

The most significant progress in the direction that I described in the previous
sections would be to give a “direct” proof of Theorem A–G. By this I mean a
proof that does not use the Algebraic classification of Sect. 3.2. This should
be done in the spirit of [22] where in fact the above task is carried out for
unimodular amenable G.

The reason why such a project is significant is that there would then be
hope to extend the result to discrete groups. I shall discuss the problem of
discrete groups in Sect. 5.2 below. But before I do that I wish to put the above
project in perspective by considering another closely related, better posed, but
also less interesting problem.

Let Q be some simply connected soluble Lie Group and let use assume
that it is possible to assign such a group with a left invariant Riemannian
structure with non positive curvature (necessary and sufficient conditions on
the Lie Algebra for this to be possible exist [1]). We can then use the Geodesic
Flow to show that then Q admits the PHP and even obtain optimal estimates
in the definition e.g. for n = 2 in Sect. 2.5 we have

Vol2[α̂(e2)] ≤ C(1 + Vol1[α(ė2)])2

and analogous results for every homotopy group πn.
It is very likely and probably not even very hard to adapt [18] and go again

via the Lie Algebra to show that the above optimal estimates on the volumes
of the πn’s can be used to characterize the negatively curved groups Q.

Question 5.1. First of all is the above correct?

Question 5.2. If so, can one give a direct proof without going through [1]?

The interest of the above is that it would perhaps give some clue of how
to go about a direct proof of the Theorem A–G.
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5.2 Combinatorial Group Theory [2]

Let G be a finitely presented discrete group. We can glue to the Cayley graph
of G associated to the generators, the 2–cells that correspond to the relations,
and obtain thus a 2–dimensional G invariant CW–complex. 1–dim and 2–dim
Hausdorff measures that are G invariant can clearly be assigned and the PHP
for dimension n = 2 of Sect. 2.5 can clearly be defined. Analogous definitions
for n ≥ 2 can also be given, and all in all, the statement of Theorem A–G
“makes sense”.

Question 5.3. The issue is to decide if such a theorem in some appropriate
form is provable?

The importance of the above PHP adapted to discrete groups has been
recently stressed by several authors (e.g.[4]), and of course it can be restated
and it gives an equivalent description of the word problem.

Example 5.4. Let G = π1(K) where K is a negatively curved compact mani-
fold be a hyperbolic group. We can use then the geodesic flow on the universal
cover K̃ to generate the homotopy and obtain the so called Dehn algorithm
for the word problem.

5.3 More Concrete Problems

The project that I described in Sects. 5.1 and 5.2 may well be “daydreaming”.
There certainly does not seem to be much lead of how to start.

A much more realistic project, but also much more esoteric, is to examine
in more detail the “polynomial property” of the various dimensions n = 2, · · · ,
for the homotopies of Sect. 2.5 or the cohomologies of Sect. 4.3. Some dimen-
sions may have the polynomial property and others not. Many examples can
be given of all short of situations [4] [18]. A complete classification in terms
of the GLk–geometry (cf. Sect. 3.2) of the roots (like the C–condition but
more refined) is no doubt within reach. Let us assume that we can write down
such a classification. The question then arises whether we can read off these
properties in terms of “Analytic” or rather Potential theoretic conditions as
in Sect. 2.4? In other words:

Question 5.5. Can we refine Theorem A–G in terms of the polynomial behav-
iour of the “various homotopy groups πn(G)”?

This also would be a first step towards the speculations of Sect. 5.1. But
even here it is hard to make the right conjectures.

Observe that in Sect. 5.2 it is not the discreetness of the groups G that
is the problem it is the lack of the Lie algebra. So we could simplify G and
assume that it is, say, a cocompact lattice in some (non compact) semi-simple
Lie group. What can we say about Φ(n, µ) of Sects. 2.2 and 2.3 then. For
instance:
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Question 5.6. Can we assert, that Φ(n) ∼ n−αeλn (cf. Sect. 4.1) where λ > 0
will have to depend on µ but α = α(G) is a genuine group invariant?

This is what happens for the semi-simple Lie group itself [3]. The above is a
concrete problem and it is probably within reach (there was a point that I
even thought I could prove this. I have since drifted away from the subject
and now I do not know any more). Problems like this may have an arithmetic
significance. I am however very ignorant on arithmetic questions and any
comment from me in that direction would be inappropriate.

5.4 Hardy–Littlewood Results ([14], [15])

An interesting direction where the final results remain to be worked out are
the Lp→ Lq mapping properties of

∆−α/2 =
1

Γ (α/2)

∫ ∞

0

tα/2−1Ttdt , (2)

where α > 0 and 1 ≤ p < q < +∞. Here I use the semigroup Laplace
transform definition of the fractional powers of the Laplacian, and the notation
of Sect. 1. Fairly satisfactory general results in that direction only exist in the
unimodular case (cf. [14], [22]). What renders the above problem difficult is
that the range of parameters (α, p, q), for which ∆−α/2 : Lp−→ Lq, depends
in general (if G is not unimodular) on the particular Laplacian ∆ and does
not only depend on G (just as the ν(G,µ) in Sect. 3 depends in general on
µ).

A moment’s reflexion shows that, for amenable groups, what is relevant
for (2) are the following parameters:

d�x = left Haar measure , m(x) =
drx

d�x
,

T̃t = m1/2 ◦ Tt ◦m−1/2 , �(q) = lim
t→∞

1

t
log ‖T̃t‖1→q ,

L = inf{q ≥ 1 | �(q) = 0} ,

where we take here the L1 → Lq operator norm w.r.t. d�x, and where we
have to consider here T̃t, because the original semigroup Tt (cf. Sect. 1) is not
symmetric. L is the cut point between the exponential and the subexponential
growth of ‖T̃t‖1→q and it is easy to see that 1 ≤ L ≤ 2. The following result
is sharp, but unfortunately, very limited in scope and not easy to prove:

Fact 5.7. L = L(G) only depends on G and is independent of the particular
laplacian ∆. Furthermore L = 1 if and only if G is unimodular and L = 2 if
and only if G is WNC.

WNC (Weak–NC ) is a variant of the NB and NC definitions given in
Sect. 3 (cf. [15]). The above can be reformulated by saying that, if the operator
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(2) with Tt replaced by T̃t, is bounded for some α > 0 and 1 ≤ p < q < 2,
then G is a WNB–group. This is very much in the spirit of the results that we
expect to hold. Unfortunately what the correct conjectures are, is not clear.

Working out in full generality the above Hardy–Littlewood theory is chal-
lenging and, I feel, is within reach. The only problem is that it cannot be
done by easy and superficial contributions. It would take a competent man
(or woman. Why not !) several years to complete this project. I am probably
too old to attempt this, but others should try. Just to qualify this last state-
ment, I could also say that convincing applications, outside the subject itself
(e.g. arithmetic results on lattices), would have to exist, before a competent
man decides to spend several years on such a problem.
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Preface

In our time Science gets its prestige from many successful applications and
now cohabits peacefully with religion and philosophy, with political power,
with the general public and with the media. In this situation Science appears
as a respectable whole and a certain decorum is required to alleviate the fact
that science may be very difficult to understand, that scientific work can be
dull and insignificant and that many branches of science have very different
goals, methods of research and criteria for acceptability.

In the dialogues of Encounters with Science this decorum is broken in
all the cases of cohabitation above. The only aim of the author has been to
encourage reflection and sometimes to amuse.

The text has five parts. The first is called Mathematics, Life and Death and
is a miniature play in two acts about the mathematician John von Neumann’s
adventures in heaven and hell. In the second part, called Ghosts, Charles Dar-
win and Henri Poincaré reappear to discuss science after their time. The third
part, called the Soul of Science, features Lady Scientia, the guardian spirit of
Science, talking to Common Sense represented by Simplicio, a character from
Galileo’s dialogues. In a rambling encounter they discuss the conflict between
common sense and certain parts of physics, applied versus pure science and
the recent industrialization of science which puts a great burden on Lady
Scientia. In the next dialogue Lady Scientia is free to express her views to
the press in an impromptu interview. The definition of the word science is
settled in a discussion between two contemporary young students aspiring to
their Ph.D’s. In a fourth part, entitled The Prince, political power appears
in person as the ruler of Syracuse talking to Archimedes and in a dream a

� Lars G̊arding was expected to speak at the conference, but unforeseen circum-
stances arose at the last minute and he was unable to attend. We are pleased
to present his contribution, which consists of several dialogues on science and
mathematics as well as their interaction with philosophy, religion, and society.
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present representative talks to the press about science. The fifth part, Com-
munication, features a duel between science and the humanities, a section on
metaphors and a piece on how to appear in the media.

Lund, Sweden, Lars G̊arding
June 2003
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MATHEMATICS, LIFE AND DEATH I

1 Von Neumann and God

A simple space with a background through which the actors can disappear. A
table and two chairs. Characters: von Neumann (N.), a world famous math-
ematician, God (G.). A conversation in heaven. No music. God is sitting at
the table. Von Neumann enters through the curtain.

G. Welcome John von Neumann. Please sit down.

N. Thank you.

G. How are you?

N. Better than when I was in the hospital. And yourself?

G. I am well, thank you. I have decided to be well. I am almighty, you know.

N. Who are you?

G. God.

N. That sounds strange. Tell me more. Might you be the God that is men-
tioned in the Holy Scriptures?

G. The same. In human form.

N. Then perhaps you know all future mathematics?

G. Yes, but I let mathematics evolve by itself. It is more entertaining that
way.

N. What is my work in logic worth? No one quotes me any more.

G. As I said, I let man deal with appreciation and disdain. Here, among us, a
higher logic prevails, a logic not accessible to man. I advise you in your new,
more tranquil circumstances, to take your time and see what happens among
men. If they discover inconsistencies in mathematics, that is their business.
One can do no more than regret not being present at such interesting events.

N. My first ambition in life was to make my mark, and then it was a matter of
being of use and taking thinking as a diversion. I was never calm and happy.

G. That was never my intention with mankind.

N. I wrote down the axioms for Hilbert space and afterwards I felt them as
a constraint. My rings of operators became nothing more than a catalogue of
possibilities. I wanted to do something new but I was only partly successful. I
intended to create logical system that would cover the activities of the brain,
but I did not have time to develop it properly. I was interrupted by my illness.
My life ended prematurely If you are who you say you are, then all this is
your fault. Why did you not let me live?

G. My omnipotence is often delegated to chance. Otherwise there would be
much too much to do. It was chance that you were born and chance that gave
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you cancer. I watched and did nothing. You understand that I have more to
keep an eye on than your affairs.

N. What for instance?

G. Everything that happens, will happen and has happened. The well-being
of mankind, the smallest insect and so on.

N. Yet you seem to take things easy.

G. I am dealing with you just now. What are your views on the deepest
questions of mathematics?

N. Unlike Wittgenstein for example I have never had a desire to let fundamen-
tal questions disturb my peace of mind. In mathematics I am an opportunist.
So many wonderful things have been done, and so much has been understood.
An occasional philosopher sometimes protests about our way of understand-
ing, but since philosophers question everything one does not have to take much
notice of what they say. They never have a proper set of axioms.If mathemat-
ics should contain a contradiction it would only be in the outer areas of the
subject and could be corrected by small changes. That is my point of view. I
am an opportunist. (pause)

There is, by the way, something strange about the attraction the so-called
ultimate questions hold for people. They know nothing about mathematics,
yet they are concerned about the subject’s validity. This sometimes takes
grotesque forms. My colleague Gödel spent days answering letters about his
incompleteness theorem. He had to explain that it did not address eternal
truth or the existence of God (you’ll excuse me I hope) but a certain way of
numbering the propositions in a logical system.

Those who got in touch with him had a fundamental religious longing for
a life that was a blessed, eternal holiday. Do you have a comment? You may
not be entirely omnipotent, but you seem to think and have opinions. What
do you think about mathematics for example.

G. I am omnipotent, but as I have already told you I can delegate my om-
nipotence. One reason for doing so is that I don’t want to get into logical
difficulties. Total omnipotence means that I should have almighty power over
myself, and then I would be both almighty and not almighty. That is a logical
paradox that would have incalculable consequences. On this point you as a
mathematicians would understand me far better than many others. I must
say it feels good to have such a competent partner in conversation. And now,
if you will allow me, I shall answer your questions in detail. They relate to
matters of great concern to me.

My omnipotence would be heavy burden unless I did not wholly or partly
leave it to chance, to the forces of nature, to certain people, writers, artists,
scientists and so on. Sometimes even the devil has a part in my omnipotence
but, it goes without saying, within certain limits. In other words, sometimes
I use my omnipotence, sometimes not. But of course I, myself, decide where
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and when to use it. Anything else would be unthinkable. I enjoy my freedom,
I must say. (pause)

You asked about my opinions. Yes, I have opinions or, more precisely,
opinions have always been attributed to me. What they are now is in some
doubt. It used to be easy: in my opinion man should be honest and upright,
attend the services and have an unshakable faith in me and in Holy Scriptures.
Now the only people I can really trust in this respect are the Muslims. I see
religious life becoming degraded, although the opinion that I exist seems to
be fairly solid. But none of this concerns me. People need me, not I them.

Then there is the matter of mathematics. (solemnly) He who guides the
fate of the world cannot be an opportunist. I believe in a mathematics that
is uniform and free of contradiction. But I can tolerate doubt in some people,
particularly those you speak disparagingly about. I have sympathy for the
uncompromising doubters. I may have them held up and admired for their
spiritual attitude to the mysteries of science, life and death. For ever and
ever. Amen.

N. Spare me your religious tone. Your way of combining faith and doubt
reminds me of the late Wittgenstein. Were you influenced by him?

G. I am not influenced by mortals. On the contrary, they are influenced by
me.

N. Let me return to mathematics. Is Riemann’s hypothesis true?

G. Yes!

N. Then give me the proof.

G. I see the proof at a glance. It would take too long to translate it into
English or Hungarian. You will have to accept that Riemann’s hypothesis is
true.

N. You must be joking. Give me the proof!

G. I am not joking. If you continue to make trouble I have angels that can
carry you to Hell. Do you long to be there?

N. (agitated) Give me the proof!

G. You can kick up as much fuss as you please. It doesn’t worry me.

N. I must know if you are bluffing or not. Do you understand why quantum
mechanics contains so many troublesome infinities?

G. Understand! Of course I understand. When I created quantum mechanics
I was not in best form, but it hangs together.

N. Your answer is ridiculous. I find it more and more difficult to believe that
you are God.

G. We will not come further with your questions. How do you want your life
to be here in My House. Do you want something to do? The position as a
heavenly meteorologist perhaps?

N. I should want a closer description, please.
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G. Our meteorologists take care of the weather on earth. I employ an angel to
pour water on the earth, another one takes care of snow and, sometimes, hail.
I have also an enormous angel who blows and cares about the wind. But all
these tasks are taken care of. Weather here in heaven is completely predictable
and everyone knows how it will be. You could perhaps make it more equal
weather on earth. But within limits of course. I offer you this position.

N. I do not want it. Can’t I be a mathematician? I am a mathematician.

G. That is impossible. All mathematics here is within me and I never put
anything in writing. I have even banned all writing. Everything has to be
communicated orally and in small amounts. Heaven could not survive the
restless systems that prevail on earth. We must lead ecological lives in the
heavenly sense.

N. You are not God. I have heard too many contradictions already. You pre-
tend to understand everything and know everything, yet you have a ridiculous
and contradictory system for weather on earth. It is impossible for rain, snow
and hail to be arranged as you say. Either you are an impostor, a vulgar
impostor, or you are just making fun of me.

G. I am not making fun of you. I am God. Not an impostor. And to show
you, I will have it thunder. Go, thunder! (A terrible noise is heard) Be careful!

N. You do not scare me. I am leaving. (Walks away, but bumps into an invis-
ible wall. Tries in vain to find a way out.)

G. You shall not go away. I will stop you. (N. Makes further, more half-hearted
efforts to leave. Finally he sits down.)

N. (somewhat out of breath.) I still think that you are a fake. Where are your
hosts of angels, where is paradise, where are the archangels, where is Gabriel?
Where is Jesus? Isn’t he supposed to sit at your right hand?

G. Those you seek exist in my head. I myself can see them and hence have
them exist whenever I want. People who think of heaven as a copy of earth
have no imagination.

N. You make me more and more confused. Where are we?

G. Here, here!

N. Where is here?

G. That is unspecified. Since we are talking so much it is impossible to de-
termine at the same time where we are.

N. Do you refer to the indeterminacy of quantum mechanics?

G. Not exactly, something similar. (Both are silent for a long time) Perhaps
we should make peace with each other. You like to think. Let us think together.

N. I do not mind. (Both adopt a thinking pause. There is a long silence.)

N. What did you think about?

G. Everything, an endless amount.
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N. Can’t you take something out?

G. I don’t want to. It would destroy unity. For me everything hangs together,
my thinking is holistic. What have you been thinking about?

N. About primes. Without the prime number structure of the integers Gödel
could not have done his numbering.

G. I’m sorry?

N. The integers are 1,2,3,4,5 etc. According to a famous mathematician,
Leopold Kronecker, you created them. Is this true?

G. Of course! Please continue!

N. Certain numbers are products of other numbers except the number 1, some
do not have this property and they are called primes. For instance: the number
twenty which equals five times four is not a prime, neither is four but five is
a prime as are two and three. The first primes are 2, 3, 5, 7, 11, 13, 17, 19,
23, . . .

G. (interrupts) Yes, yes, I see then all: 29, 31, 37, 41, 43, 47, 51 (a discrete
cough from von Neumann), no that is three times seventeen, 53, 57, no, that
is three times nineteen, 61, 67, 71, . . . (This sequence is pronounced more and
slowly).

N. (interrupts) Stop! Stop! Your counting will never end. There are infinitely
many primes.

G. I know that very well. I see all of them at a glance.

N. This I cannot do. But I can prove that there are infinitely many primes.
The method runs as follows. Take any primes, multiply them together and add
the number 1. The number that get in this way is either a prime or a product
of primes neither of which is a member of the first ones chosen. However many
primes that are listed, there is always at least one more.

G. Do not ever lecture me! Use figures!

N. Two times seven is fourteen and fourteen plus one is fifteen. Fifteen is
five times three. Simsalabim! Out of the primes two and three the method
produced the primes three and five!

G. Very clever. And new to me.

N. The proof is two thousand four hundred years old.

G. But when, like me, one understands and sees everything, proofs are be-
coming things of secondary interest. Other things take up my time. There are
so many services and prayers to hear. I listen a little absent-mindedly but
I cannot disregard sometimes fervent prayers. Although I am omnipotent I
have to take in consideration people’s conceptions of me. I cannot appear to
be too stern and forbidding.

N. Your existence and conditions on earth means a contradiction which is
usually called the problem of evil. Your are all-wise, all-mighty and all-good.
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How does that square with illness, suffering, sin and evil, sudden death on
earth?

G. It pleases you to make fun of me. You have seen for yourself that I have
threatened you and restricted you against your will. I am not good all through.
The one who created the universe and life and death on earth is not good
and cannot be good. —– With your mathematical jargon I could say that
the problem of evil is wrongly put. Talking of such things I was once much
amused by Leibniz’s solution of the problem of evil, that man lives in the best
of all conceivable worlds. There is only one catch with that. Who is doing the
conceiving, he or I?

N. I admire Leibniz as a mathematician, but he was above all a philosopher.
What are your thoughts about philosophy?

G. I have nothing against philosophy except that it is sometimes very tir-
ing. But not dull! I must say that philosophers with a strong faith who have
not questioned my wisdom or omnipotence have often performed interesting
pirouettes in their thinking. But in the end they had to allow unproven ideas
to avoid conflict with the human reason. Divine reason sees no such limita-
tions. For me it is the question of seeing the whole picture and not getting
caught up in details. By creating reality I gave the philosophical concept of
reality a meaningful content. And if one keeps to existence all logical problems
disappear.

N. Your own existence is a logical problem. If you are part of reality you
exist and if you are not part of reality you do not exist. Since you created
reality and existence you cannot yourself exist provided you have some kind
of identity. It is not true that all problems disappear if one keeps to existence.

G. I exist, that is obvious. And I have not created myself. I’ll have no hair-
splitting here, please!

N. The inescapable conclusion of you having created existence is that you do
not exist. And if you exist you have not created existence.

G. But I am sitting here and you see that I exist. And I created everything!

N. You do not want to understand. But I still keep my human reason. Is that
some oversight on your part?

G. Not at all. In fact, man’s struggle with logic amuses me.

N. But it does not amuse me to play a kind of clown for you. I have thoughts
of my own that you cannot see through.

G. God forbid! But I am a little uncertain.

N. Let us abandon philosophy and pass to mechanics? Are you conscious of
the sun, the planets and the comets?

G. This is the second time that you are trying to make fun of me. There is
only one answer to your impertinent question: of course!

N. Do you remember how it was like to create the solar system?
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G. Remember! For me time and space are no boundaries. At the creation I
said ‘Let there be light’ and then on the third day or perhaps the second
the solar system came into being when I created the large heavenly lights. I
said ‘Let there be the sun and moon and stars’. Genesis does not say much
more but I have always thought that this book is too short to do me justice. I
remember for sure that I also created the lesser but moveable heavenly lights.
I said ‘Let there be planets’. Then I could see everything from my elevated
vantage point. How the earth and the planets move among themselves, around
the sun and around me. It was a grand spectacle. I changed nothing because
I thought the result good.

N. How about gravitation?

G. What do you mean? You speak in riddles.

N. The rotation of planets around the sun follows from the principle of gravi-
tation. In the mathematical model for the planetary system it is assumed that
two point masses are attracted to each other by a force that is proportional
to the product of their masses and inversely proportional to the square of the
distance between them. This law and the principle of acceleration determine
the future movements of any number of such masses when their positions and
velocities are given at some point in time.

G. This sounds good, but what is mass and so on.

N. That can be explained but the point is that the movements of a planetary
system can be summarized and explained by a simple mathematical model.
You said ‘Let there be so and so’ and the result is governed by a simple
principle.

G. I could understand what you just said if I wanted. I am not stupid, you
know. But I am more surprised than interested. Did you find all this out?

N. No, the culprit is Isaac Newton three hundred years ago.

G. Well, well,. . . Now I remember. The philosophers made me a clock maker
who created a mechanical universe that goes by itself. That was an insult!

N. Gravitation made it possible to understand the movements of the plan-
etary system. And this was tremendous success for theoretical physics. And
Einstein’s relativity theory made it even better. It cannot be formulated as
cause and effect, only as a variational principle. I, and many with me, consider
variational principles to be the innermost foundation of the universe. What is
your opinion? Do you have one?

G. Maybe, but please realize that I understand everything and need not reveal
anything. Too much science disturbs the harmony of the universe.

N. You say that you understand, but what is meant by understanding?

G. To see without details is the Almighty’s way of understanding.

N. (ironically) Brilliant? Perhaps you can teach me to understand in this
excellent way?
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G. I warn you. Irony has no place in heaven.

N. (still ironic) Why did you not make the creation more systematic and
scientific. You could have started with the chemical elements. You could have
said ‘Let there be Helium, let there be Lithium, let there be Beryllium, let
there be Boron, let there be Carbon’ and so on. Or in order not to be long-
winded you could have said simply ‘Let there be a Bang’.

G. I’m sorry?

N. According to one theory the universe was created in 3 seconds from con-
centrated energy by an explosive expansion, jokingly referred to as the Big
Bang. The chemical elements were formed as well as nebulae, milky ways and
so on. Universe as we see it now.

G. You are beginning to go too far. Finding fault with me about the creation!
If things were as you say, I was the Big Bang. But creation has to be under-
stood by people without education. So I chose to begin by floating above the
waters and speaking in pictures to man in man’s way.

N. (seriously) You are wrong to place rhetoric over science. Mathematical
models are the best way to understand nature. Such models are especially
sharp and completely successful in many important cases. But that doesn’t
mean that they cannot fail or be applied badly. All of them were created by
man.

G. Ahh, now you are not so sure!

N. (enthusiastically) Our knowledge is temporary but sure in important areas.
Relativity theory, quantum mechanics, light and electricity have been com-
bined into a wonderful unit whose predictions have been verified a thousand
times by experiment. We are on our way towards understanding the structure
of matter. What is still missing is a theory that includes gravitation also.
(ironically) But you who are omnipotent and knows everything, you could
perhaps help us?

G. I will not hear your prayers. The answer is no.

N. Why?

G. It is very rarely that I motivate my nos. But now I will make an exception.
I created man and I am loyal to him. What you speak about is understood
by a very small minority. I must be understood by many and look after so
many details, both small and large, precise and random, that I have no time
for mathematical models. At best as a pastime. Philosophy as a hobby. The
welfare of man is my major task. My view is holistic.

N. (furiously). You say that you understand but now it is I who really un-
derstand what is happening. In our conversation you have tried to adjust to
me. You have pretended to understand and always replied to me in everyday
language.

At the same time you have no idea of the laws of nature that govern
both you and all others. And you also pretend that man’s welfare is your
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main task. Incredible. Everyone suffers and dies under your welfare and, like
me, most people die too soon and in terrible fear. Your omnipotence is an
illusion without substance. Your Heaven is a quiet Hell, a reflection of a more
interesting hell on earth.

But you have no intellect. You simply mirror the person who is talking to
you. You believe that you are God, but you are an apathetic witness to the
miracles of nature and life. Man created you. It is men’s desires and fears that
are portrayed in you. The result is difficult to tell apart from another figure.
I mean the Devil.

G. (calmly) You blaspheme and that is no good to either one of us. Our
conversation has not been uninteresting but now it is finished. (G. disappears
into the background by a light effect. N. Is left alone and waits for a long
time, mumbling and gesturing in a way that first expresses fury and triumph
and then doubt. Finally a voice is heard: ‘John von Neumann is granted an
audience with the Devil.’

Curtain

\/\/\/
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MATHEMATICS, LIFE AND DEATH II

2 With the Devil

Same scenery as in Act 1 with a table and two chairs but no curtain of light. A
dark backdrop from which the actors come and go. The actor who played God
can play the Devil. Characters: von Neumann (N), the Devil (D), Immanuel
Kant (K), David Hume (H), Aurelius Augustinus (St. Augustin) (A).2 D sits
alone by the table, N enters.

D. Please be seated.

N. Thank you (sits down).

D. How are you?

N. I was very excited but now I have calmed down. Who are you?

D. I am the Devil himself.

N. How am I to know that?

D. You have to believe me. (Thunder is heard). Up there HE is trying to
prove his identity. I can’t use the same means. Only a round trip in Hell could
convince you, but we have a lot to talk about before it is time for that. Of
course I know that HE sent you here.

N. Not directly. God disappeared and then someone called out that I had to
go to the Devil.

D. Everything happens by HIS will. Most people come here directly. A detour
via Heaven is actually very rare. I am supposed to have been there before the
Fall but total oblivion was part of my punishment. So I have no memories of
the place. I hope you excuse me if I now ask you some questions. What is it
like in Heaven?.

N. I do not know. I had a conversation with someone who said he was God.
This might even have been the case but not in the way that he thought.

D. But how was it? How did it all look? Was it hot or cold, were the streets
paved with gold and did you hear singing and dancing day and night?

N. I sat at a table, about the same as this one. I was prevented from going
away. When I asked him about Jesus and the angels he said he had them in
his head.

D. It is clear that you have seen very little.

N. God lives in an illusion of omnipotence. He says that he extends it over
you.

D. Unfortunately.

2 A.’s polemics against the Pelagians is used in the conversation between A and N
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N. When I accused God of being a phantom created by human yearning and
fright he disappeared and I woke up here. Are you also going to leave me?

D. No, never. I have to arrange things for you. Do you have any wishes?

N. I would prefer a quiet existence where I can think about mathematics.

D. Existence!? For you existence is finished.

N. I do not believe you. In your house small devils torment small sinners with
tongs and the greater ones are burning for ever.

D. There may be some truth in that but here with us there is no time and
without time there is no existence. Everything here goes back and forth in
time. Everything happens both simultaneously and not simultaneously. It is
this that makes Hell what it is.

N. If you can make time go backwards, you can perhaps arrange for me to be
born again. On earth of course.

D. This is impossible. Such power is out of the question for me. Time order
cannot be controlled.

N. If time order is indeterminate, what about logic and mathematics? Are
they possible in hell?

D. Not entirely, it is only the law of cause and effect that ceases to have a
meaning. . .

N. But we are engaged in a normal conversation taking turns to speak?

D. This can only happen in Hell’s ante-chamber where we are now.

N. Let me never leave this place.

D. This is impossible. I must lead you further on into Hell.

N. What are my prospects? If prospects exist here of course.

D. So far you have one thing to do. To talk to interesting persons. You are
even sought after. HE has spoken to you and therefore many people want
to air their thoughts with you. Rumours of your conversation with HIM are
widespread. And we have many interesting characters in Hell’s antechamber.
Some are here for ever, others who have tired of the other place are here for
shorter or longer periods. A kind of vacation you might say. Whom do you
want to see? Here in Hell we use telepathy to make people meet and exchange
views. I hear that Immanuel Kant wants to talk with you. Heaven disapproved
of the tone of his philosophy and that is why he is a permanent guest here
in the antechamber of Hell. He did not go further since his life was without
reproach. Ah, here he comes. (N. rises)

K. A good day to you, Professor von Neumann, it pleases me to be able to
talk to such a prominent mathematician. May I first ask you not to bring
up the phrase ‘Das Ding an sich’ in our conversation. I write in my book
that this notion is meaningless but this has not prevented philosophers from
forever asking what I mean by it. Unfortunately I cannot prevent them (makes
gesture).
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The foundation of my philosophy is that all search for truth must depart
from some basic assumptions, or, to use your language, axioms. Otherwise
one is lost in a mire of senselessness.

N. I agree with you completely.

K. Could you please be kind enough to explain to me Gödel’s theory of un-
decidable propositions. Here I only hear unreliable rumors and, so far, I have
not had the pleasure of meeting Professor Gödel personally.

N. In your own treatise Kritik der reinen Vernunft there are four antinomies. . .

K. (intercedes, speaks slowly in a professorial manner) Of course, in the first
one, two opposite theses are proved, namely that the universe has a beginning
and is finite in extent and, the opposite one, that universe has always existed
and extends indefinitely. In the second antinomy I proved that everything
is composed of simple parts and also that everything is not composed of
simple parts. In the third antinomy it is proved and disproved that everything
happens according to the laws of nature and, finally, the fourth antinomy
proves and disproves that there is a being which is the cause of everything
that exists or happens. All this of course with the greatest brevity. As I say in
the book, all proofs are conducted with the utmost care and in the greatest
possible respect for the truth.

N. This I do not doubt. In our time your proofs would have been more formal
but with no essential changes. The answer to your question is now simple:
Gödel’s theorem says that every complete logical system must contain at least
one antinomy.

K. And what is a complete formal logical system?

N. Like geometry. One proceeds with axioms and logic and leaves nothing
out.

K. That was an excellent answer. I am very grateful.

N. I believe that our ways of thinking agree in other ways. Do you not agree
that one has to distinguish between reality and thoughts about reality?

K. (Enthusiastically) This is my great discovery and my consolation now that
I am condemned to the antechamber of Hell.

N. I believe that God is created by the thoughts of humans, by their fright
and yearning.

K. I could not go that far. I lived in another time. But let me embrace you.
(K. and N. embrace, exit K.)

D. A pity that you two finished. Your conversation started off well and lasted
long. But look, here is David Hume.

H. I can only regret that Herr Kant was after my time. If we only had been
contemporaries, I could have disproved his Prussian phantasies and rejected
them with great force. (Turns to N.) Who are you?

N. John von Neumann, 1903–57, mathematician.
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H. Since I reject the existence of the outer world you simply cannot exist as
a philosophical subject.

N. Very interesting. When I proved to God that he does not exist he answered
me very simply. He said: But I am sitting here. I can answer you in the same
way: I am standing here.

H. This is because I am looking at you. If I turn another way, your existence
ceases.

N. But there are so many viewers. Hence everything oscillates between ex-
istence and non-existence in an uncontrollable way. Things are and they are
not.

H. This is an inescapable consequence of my theory. It could be possible that
God sees everything and this gives existence a certain permanence. But this
argument belongs to the advanced parts of my philosophy. Anyway, you bother
me. What are your credentials?

N. My mathematical theorems are well known and they are used every day.

H. But I do not see them and hence they do not exist.

N. But, Mr. Hume, mathematical theorems do not form a part of reality.
They belong to thought and those who use them give them life by thinking.

H. Things are real only through a viewer. That is final.

N. But mathematics is more real than reality. Ideas are more real than reality.
As you know very well this was the view of the famous philosopher Plato and
it is in fact the cornerstone of his theory.

H. You forget that my philosophy is later than Plato’s and hence more true.

N. Maybe you also deny Descartes’ famous dictum: I think and hence I exist.
In my philosophy I changed this to: I think about something, hence it exists.
Besides, I cannot agree with your idea that one philosophy falsifies all earlier
ones. If you really accept this as true, all philosophy from the twentieth century
is superior to all earlier philosophy including your own.

H. Your philosophy!! Nobody heard of it.

N. This may be true but since I think about my philosophy, it exists. (A
pause) It would be interesting to hear your views on the law of cause and
effect. About this I had a most interesting discussion with Herr Kant.

H. Then you only heard some Prussian nonsense. I see no causes, only ex-
trapolations of observed phenomena. Everything is basically uncertain. The
so-called laws of nature are only worthless guesses.

N. You do not seem to understand that there are degrees of uncertainty. That
stones would not fall to the earth when you let go of them is extremely unlikely.
I mean to say unlikely for the inhabitants of the earth. And this is what we
are taking about I suppose. Or did you perhaps develop a special philosophy
valid here in Hell or in Heaven?
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H. Since I was considered free of sin, my rightful place is in Heaven but
there all philosophy is forbidden. My short vacations in Hell offer me the only
opportunity to develop a philosophy but time has been too short. It would
also be a difficult task since everything here occurs simultaneously and not
simultaneously. Our conversation must be about conditions on earth. For me
it is very possible that stones do not fall, for instance when you do not see
them.

N. Our views are too different for a fruitful conversation. You have driven
scepticism to absurdity.

H. This is possible. I am not insistent. But I cannot change my convictions.
It is too late for that. I want to take leave of you in a proper fashion and
without ill will. My vacation is finished. (H. bows and disappears into the
dark backdrop.)

D. (sitting) You two are too different for a really interesting conversation.
But here comes St. Augustine. I have never seen him here before and he is
such a holy person that I cannot stand his company. (D disappears. In the
conversation between N and A there is a slowly increasing irritation between
the two partners.)

N. Welcome Aurelius Augustinus. I look forward to discussing God’s grace
with you.

A. How do you know my name? I have come here to talk with a famous
mathematician John von Neumann.

N. I am the one you are looking for.

A. I am here for the same reason as you. I have quarreled with God. For
a long time I have suspected that he does not draw a clear line against the
Pelagians, those godless scheming vipers that were banned by the church.
When I uttered my misgivings I was banished from Heaven and arrived here.
For the first time. You know of course the Pelagian doctrine that man can
find grace and eternal life through his own deeds.

N. I went to a good, old-fashioned school and therefore I know the Pelagian
theories very well. Pelagius was a British monk. During his life on earth he
acquired many followers. The Semipelagians had a theory that lies between
Pelagius and what you consider is the correct doctrine.

A. Are there Pelagians left on earth?

N. I fear they are many but the word Pelagian is no longer in use.

A. Ah, that breed of vipers! I fought them with the sharpest tools of logic
and quotations from the Holy Writ and I won brilliant victories. I did not live
in vain!

N. Maybe. Would it be impolite to remind you of the victories of the Pelagian
doctrine on earth? Pope Urban II promised forgiveness of all sins for those
who joined a crusade to liberate Jerusalem. Later forgiveness of sins could be
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bought for money. The riches of the church come from those who gave large
sums for forgiveness of sins and a place in Heaven.

A. I know but still I did not live in vain.

N. Of course I am not a Christian but when I start thinking about the whole
question I am inclined to believe that the most logical position is that of a
Pelagian.

A. Your position hurts me but since you are well versed in logic it is easy for
me to convince you that I am right. God rules over the fate of man before and
after death. Who is going to Heaven or Hell is decided by HIM.

N. (Starts getting more and more impatient and impolite to A.) Perhaps.
But you cannot convince me if we do not start by accepting some axioms.
Without axioms every logical chain is just senseless gibberish. This is also
what Wittgenstein thinks.

A. I hear that you are made of the right stuff. I suggest just one axiom: God
is perfect and rules Heaven and Earth.

N. I accept that. God himself told me that.

A. Let me first make the revolting assumption that Pelagius is right that man
can gain eternal life by his own doings. But God rules over the thoughts and
ideas of man. If he left part of these activities to man, he would not be perfect.
As Paulus says: for by obeying the law no man is righteous before God. What
comes from the law is the knowledge of sin.

N. You cannot bring in the word of Paulus. You must keep to the axiom.

A. Sorry, that was an old habit. I start again. We must make our axiom more
precise at one point: only God is perfect. Then it follows that man is not
perfect and that nothing that he does is perfect. Hence he cannot gain eternal
life by his own force.

N. I object to your logic. Man can do things that are perfect.

A. Not in my logic! Nothing is partly perfect.

N. Yes, but I cannot accept that you change our axiom. You added the word
‘only’. Please do not do that again. (pause) Let me change the subject a bit.
How did sin come into the world? Do we not need an axiom about the law,
hereditary sin and salvation?

A. No, and that is the advantage of my theory. God led man to his fall and
the result was original sin. But God is perfect and hence he can do nothing
without meaning. Of course I am referring to meaning in the sense of God, not
that of man. His deeds are unfathomable but also perfect since God is perfect.
God gives eternal life and a place in Heaven to some, but not to others. His
name be honoured.

N. The honour was not part of the axiom.

A. But if we did not honour God he would not be perfect. Hence we must
honour him.
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N. We have not yet come to Jesus, the son of God.

A. Since God is perfect he has a son. Without a son he could not be perfect.

N. Should he not have a daughter, too?

A. (angrily) This I did not hear!

N. But death on the cross?

A. Through his son’s sacrificial death on the cross God gave mankind the
possibility of eternal life, a life that would have been Adam’s without the fall.

N. Could not God have achieved this without sacrificing his son?

A. You talk like a miserable heretic. The ways of God cannot be fathomed.

N. Since God is perfect he must have created the Devil and all evil. Do you
agree?

A. You talk as a heretic. I turn away from you with disgust.

N. But listen! The word perfect also means complete. God created everything
did he not?

A. There is an abyss between God and evil. But I admit that what you say
follows from our axiom. But remember that we are dealing with pure theory.

N. Do unborn children carry original sin? Must they be baptized in the womb
or at conception to have the grace of God? Why should not conception itself
be baptism? It is the work of God or is it not!?

A. Now you are getting insolent. You are worse than Pelagius himself. The
church teaches that a child should be baptized within eight days. Otherwise
it is eternally damned.

N. But how can you, a man, predict the ways of God? Eternity is God’s realm.

A. That is no contradiction. God speaks through me.

N. Another axiom?

A. Do not be insolent.

N. Does man have a free will?

A. Of course. He can choose evil.

N. Does God want him the choose evil?

A. Of course not.

N. But there are men who have chosen evil. And this cannot happen without
the will of God. Since God is omnipotent, nothing can happen outside his
will.

A. God’s omnipotence is fathomless.

N. It seems to me that you have constructed a God with exactly the same
properties as Chance. Chance is unfathomable. Chance gives to one health
and sickness to another. It gives happy lives to some and unhappy lives to
others. Disasters happen by chance and also lightning from Heaven.
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A. You speak as your reason permits you to. Chance is not holy and not
perfect. Besides, your argument is old. Certain Pelagians wanted to replace
God by Fate.

N. Chance is perfect. No one rules over chance. God could throw dice about
admission to Heaven and no one would notice.

A. (Ironically) Perhaps you remember that our axiom says that only God is
perfect. Hence Chance is not perfect.

N. You yourself added the word ‘only’ to our axiom. I never accepted that.

A. You may have a sharp mind but you are not a believer. I insist on the
word ‘only’ in our axiom.

N. I am a believer in my own way. I believe, for instance, that you have
chosen your axiom in order to counter other believers who think that God has
properties that say something non-trivial about him. You say nothing that
can be verified. In this way you are invulnerable but also empty. Your theory
cannot be falsified. Hence it is empty.

A. You use words that I do not know. I understand the word falsify abstractly
but how is it used?

N. To falsify means to prove that a statement is false.

A. What you say fits my experience. No one has proved me false.

N. That is because you have deprived your theory of God, grace, belief and
doubt, every ounce of content. It can be accepted only by those who doubt
their own intellectual capacities.

A. I am very learned and I have had a good standing through fifteen centuries.
No one doubts my intellectual capacity.

N. I do, although my standing has lasted for just half a century.

A. This ought to make you cautious.

N. On the contrary. I am a seeker of truth. My human good sense says that
the deeds of God cannot be separated from those of chance. Perhaps I should
found a church for the adoration of Chance. This would be more honest than
your pirouettes with the holy scriptures.

A. Blasphemer! Son of a viper!

N. God may send you to Hell for good. But one never knows. Maybe your
stay in Heaven happened by chance. Or the opposite. No one knows.

A. I know one who never will leave Hell. You blasphemed and defiled God.
But I did not.

N. (Teasing) You have told God that he is a Pelagian! God is a Pelagian!

A. Liar!

N. God is a Pelagian and you are an idiot!

A. (Raging) The only idiot around here is you, you son of bitch, God-defier,
miserable heretic! (A and N look threateningly to each other and start pushing
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each other and seem to start a fight. This takes a while but is disrupted by
D. who runs onto the stage with a trident glowing at the ends.).

D. (Out of breath). HE has seen and heard everything. He wants to strike
you with thunder. You are going to court immediately. (N and A are forced
offstage by D with the trident).

D. (Deposes the trident that sputters in a can of water. Sits down, calms down
and starts a thoughtful monologue.) To-day has been a troubled day in Hell.
It is very rare that HE acts so directly here. Most people are more cautious
than this Neumann. His logic did not help him. On the contrary. (Pause). But
what did he say? Didn’t he say that HE is created by man, by the fright and
yearning of humans? Just think of it! HE should be a phantom created by the
imaginations of humans? How crazy can you get? This is absolutely ridiculous!
. . . But let me see now. What does it mean? That I would be created in the
same way as HE. But of course not by yearning, only by the fright of humans.
Their terror of torture and the ordeals of fire. This is a rather disagreeable
thought. Something I do not really deserve. . . But there are consequences. If
one wants to be logical. If HE and I and all the rest were phantoms created
by human fear and yearning we can also be destroyed by humans. Suppose
that the humans changed their minds or ceased to exist. That is a horrible
thought. What then of us? No more eternal life, total destruction! No more
Hell! Terrible! I must get rid of this thought! I shake it off! (A short pause)
But it comes back. It is terrible. HE, I and everything here just phantoms that
can go away any minute that the humans decide! No eternal life! No life at
all! Total destruction! No,no this is just a nightmare! . . . (Rises) It may only
be a nightmare but I am starting to feel terrible. Terrible!. What if it is true?
(Leaves the stage, starting to cry and calling for help from God) Help, help!
HE must help me, HE must help me. Help, help. . .

Curtain

\/\/\/
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GHOSTS I

3 Darwin Speaks Again

Late at night a modern biologist (B.) is sitting at his desk busy with his
computer. Darwin (D.) enters suddenly, dressed in the manner of the eighteen-
sixties, and a rambling conversation starts.

D. Please pardon my intruding. The reason for my somewhat abrupt appear-
ance is that there are certain urgent questions that I should like to discuss
with you.

B. (surprised) Yes, yes, very well, but who are you?

D. I’m Charles Darwin, the one who wrote The Origin of Species. I hope I
am not forgotten?

B. No, no, not at all. But you cannot be Darwin. He is dead.

D. In my experience death is a relative notion when it comes to science. How
I came here I do not know but now that I am here I have an opportunity to
satisfy my main curiosity. I am curious to hear how the theory of evolution
developed after my time. And I should like to talk with you about the princi-
ples of evolution. I hope that your are willing to do that and that you are able
to disregard the somewhat odd circumstances that surround our meeting.

B. I will do my best. For a start, please take a seat. And may I offer you a
glass of sherry?

D. No thank you, I am neither thirsty nor hungry.

B. Please don’t think that the great Darwin is forgotten. The Origin of Species
sells rather well after 150 years. It is a classic and readable, too.

D. Thanks for the compliment. It surprises me.

B. There is even an edition with all your changes and amendments done after
the first edition. All ordered chronologically.

D. I worked a lot on my amendments but I do not think they are worth
this kind of treatment. I understand from you that my work is the subject
of exegesis like a fundamental religious document. I regret that because I did
not found a religion. On the contrary, I only gave strong arguments that past
life on earth developed by natural evolution which is still active.

B. I read recently that you borrowed some of these arguments from a certain
Mr Wallace.

D. As soon as I got to know Wallace’s work I arranged that his work and
mine were printed in the same issue of the Proceedings of the Royal Society.
I did it at once!

B. But they say there was a delay of several weeks!
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D. For the printing yes. But not otherwise. I am a gentleman.
But let me come to my question. When I wrote the book I used the term

Natural Selection. I argued that it exists as a mechanism but it does not
predict the course of selection. Later I adopted Herbert Spencer’s catchword
‘The Survival of the Fittest’. I thought then that it was a good summing up.
But I do not any longer think that. Which species survive? The fittest ones of
course. But how does one distinguish the fittest species from the others before
they survive or die out? Also fitness is never constant. It is always fitness with
respect to environment and the fitness of others and these conditions change
all the time. If you try to predict a bit of the future from some observed fitness
of a species you must take so many things in consideration that prediction
becomes hopeless. If you try to think over what it means, Spencer’s catch-
word disappears into thin air. It is an empty tautology! Likewise if applied to
individuals! It pains me that my fame may be based on a tautology. What is
your reaction?

B. I agree that fitness depends on too many things. Some sixty million years
ago a small asteroid hit the earth and destroyed with one stroke the fitness of
big reptiles and created or improved the fitness of small mammals.

D. This is news to me but it illustrates the difficulties I just mentioned.

B. The survival of the fittest is now not taken seriously by scientists. But
I must say that your book has certain other weaknesses. It happens many
times that the author takes Nature’s wonderful ways, for instance all exquisite
adaptations, as an argument for Natural Selection.

D. I am conscious of that! But when I wrote the book I often took a fresh
breath in order to resist this temptation. I regret that I did not succeed
completely. But remember that the Stability of Nature— I mean the existence
and stability of species— is actually questioned by the theory of evolution.
The stability is a only a delusion caused by the short span of human life.

B. I agree completely with this view, but may I remind you what is said
in the first edition about the appearance of workers in societies of bees and
ants. You claim that Natural Selection makes fertile parents regularly produce
both sexless and fertile offspring. This kind of reasoning is, if you please, just
another reference to Nature’s intrinsic ability to produce useful things.

D. I have a faint memory of this passage but I wrote it long ago and may per-
haps be excused for small lapses in my big project. There are more important
things to talk about.

B. I see your book as a plea that life on earth could not have developed by
means other than Natural Variation and Natural Selection. What you say here
could perhaps have been more easily accepted if the Bible had had a slightly
different account of Creation. The phrase and God saw all that he made and
it was good could have been but God saw that not all living creatures that he
had made were good and he struck the bad ones with lightning and concealed
them in the earth. And he made new creatures until he found everything good.
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D. But then it would be said that my theory is not new and I would have
found it very difficult to get people interested in it. Fortunately the Bible says
what it says.

B. In order to avoid every form of creation you assume that life has an intrinsic
tendency to change. When this tendency has been active during a very long
time, it has caused the appearance of new species from old ones. Evolution is
like a tree with an insignificant beginning. Branch after branch appears, some
die out, others develop new shoots.

D. That is not what I say. You are just replacing my long chain of arguments
by a picture. But I admit that your picture is not entirely wrong. Note that
I say nothing about the origin of life.

B. Well, let me have another go at your theory. Even though it can be criti-
cized in detail no one else has a found a vision of life’s development on earth
that has the same convincing power.

D. I am pleased with that, but I think that my book is more than a vision.
There are arguments. Please do not forget the chapter where I discuss and
counter objections to my theory.

B. Of course I do not forget that. But please note my strong choice of words:
convincing power.

D. I noted that. But please tell me about progress after my time.

B. Sure. In your time it was clear that acquired characteristics are not inher-
ited but it was not clear how inherent characteristics are inherited.

D. Well, I knew something from my experiments with pigeons and there is
an extensive experience of inheritance among men and from the breeding of
animals.

B. Yes, but now we have new information. It comes from the interior of the
living cell. There we find the inner inheritance mechanism of all life in the
form of molecules that form chains and big complexes. Some hundred years
ago such complexes were found and called chromosomes. We men have a
certain number of them, women one more. When an egg is fertilized it gets
half its chromosomes from the male and the other half from the female and
then when the fetus grows, the chromosomes go into every cell of body. It is
believed that they carry various genetic traits which control the formation of
proteins in the growing body.

D. Only believed? Where are the details.

B. Much is known about the chromosomes of the much studied fruit fly, but
for man, for instance, one does not know any details. But now, let me continue.
After the chromosomes one has found similar and simpler molecules, called
DNA for short. DNA is a long molecule which has the form a double helix
which becomes a ladder with steps when unraveled. Each step consists of two
molecules called a base pair. There are only four kinds of base pairs (two if
you disregard the order between the molecules). If you represent each of them
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by a letter you can visualize DNA as a very long word consisting of only four
letters. This word is unchanged when the cell divides into two because then
the ladder is cut lengthwise into two parts, each having the ability to create
or assemble a copy of the missing half. My description is a bit unorthodox but
I hope it is clear.

D. I can understand the helix, the ladder, the splitting and the copying that
gives new DNA for new cells but my understanding ends there.

B. But there is more to come. It is considered that DNA carries the blueprint
for the growth and death of an individual. Your DNA reassembles mine as
two individuals of the same species do but they are not identical. Your DNA
suffices to identify you. And this is used by the police

D. By the police, indeed! There must be better reasons. How was all this
discovered?

B. By a new microscope leading to a new form of biology, microbiology. There
is also molecular biology. The various chemical substances and proteins can be
seen if a mixture is soaked up in porous material. Then they produce different
patterns. There are also other methods. I cannot give any details here.

D. All right, but what do these discoveries mean?

B. DNA is a very long molecule with thousands of base pairs but they can
be grouped into something called genes. The sequence of all genes is called a
genome. Every species on earth has its genome and is characterized by it. But
the details vary between individuals.

D. You seem to give me only formalities. Every species on earth is character-
ized by many things, not only its genome. And there are always differences to
be seen between individuals.

B. Sorry. The genome is a blueprint for the life of an individual from birth to
death.

D. Like a seed of a plant, maybe?

B. I do not know whether you are ironical or not. The cells of your seed
contain the DNA of the plant. DNA exists in every cell. The novelty of the
genome is that we may manipulate it. Inject new genes and so on. There are
many details here. But there are high hopes that serious illnesses are caused
by defective genes and may be cured by selective killing.

D. Interesting. But I am a biologist, not a medical man.

B. But I am glad you are interested. There is more to be said about the genes.
We say that they carry information for the life of an individual in the sense,
for instance, that the initial growth, the successive formation of specialized
protein, is regulated by the genes.

D. Any proof of that?
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B. Sure, it is possible to replace the genes of a fertilized egg by the genes of
another individual. This has been done with sheep and the result has been
two genetically identical sheep.

D. That seems convincing. But how many sicknesses have so far been cured
by this genetical engineering?

B. You found the same word that we used. Genetical engineering. But its
results so far are meager. Perhaps there is such a cure in one or two cases.
But there are high hopes and much ado about it in the press.

D. Let me go back to the genes. I ask myself if they carry inheritable traits.
It was a lot of talk about such properties in my time. For instance for horses.
How to see if a young horse is going to be good at the race track.

B. The grouping of the genome into genes has to be done by chemistry and
trial and error. They carry inheritable traits but in a complicated way. The
traits that we can see of observe through action correspond to only a fraction
of the genes found in DNA.

Let me also say something that I perhaps should have said at the be-
ginning. DNA explains Darwinism. Chance variations of DNA differentiates
between individuals and makes for different capabilities of survival and regen-
eration.

D. But this is Darwinism! What you say is that each animal and plant carries
its own intrinsic quality, visible in all parts and characteristic of its species, but
with individual differences. Darwinism began with this elementary observation
and concluded from the existence of fossils that nature has evolved by Natural
Selection.

B. You seem to have difficulties with the genes. Due to the discovery of genes,
your intuition is now replaced by the chemistry of proteins.

D. Thank you, with your permission I still keep some intuition. But let me
accept your genes for the moment.

B. Do you also accept that DNA and the genes constitute a more concrete
foundation of Darwinism than what was known before? I mean that DNA
is a source of variation which together with other variations, like chance of
survival and chance to have offspring, explains Natural Selection.

D. I accept this as an alternative but you must understand that I can only
see this as a confirmation of my own way of thinking.

B. I repeat that we only need to remember that the genes are in all cells and
are copied to new ones, . . .

D. (interrupting) We have been through all that!

B. Sorry.

D. Let us talk about evolution itself. Anything new there?
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B. Well, the imperfections of the information process in the cells is the origin
of the constant modification of living matter. When new forms appear, some
have a better chance of survival than others and in this way. . .

D. This is just the survival of the fittest and not an explanation of the evo-
lution.

B. But admit that what I say has the ring of truth.

D. Unfortunately. But how does one verify whether someone or something is
fit for life? Except for very clear cases and short range predictions I think the
answer must be a verification posteriori after many generations. If ever.

B. Please excuse me if I say that you knew nothing about the mechanism
of inheritance and wrote very vaguely about variation. But we know this
mechanism and see how its variation makes evolution possible. That DNA
exists in all living matter supports the theory of evolution. It is true for all
forms of life and explains why evolution proceeds very slowly and by degrees
and through intermediate forms.

D. But that is what I said. Without your DNA. But does it explain the
direction and adaptations of evolution?

B. DNA variation makes certain individuals better adapted to life than others.

D. There you go again. I have told you that the word ‘adaptation’ here means
nothing. It just has a seductive ring to it. The same for the phrase ‘fit for life’.
What I mean is that when one writes and thinks about evolution it is too
easy to burden the terms used, even the term Natural Selection, with some
purpose. For instance that the object of evolution is to make better adapted
and more beautiful living things. This may be a natural inclination of the
human mind but that is all there is to it.

B. I will provide you with an example. DNA gave to the swift its fast wings
and broad beak to make it fit for life at high altitudes where it can chase insects
undisturbed by other kinds of swallows. This would have been impossible for
the swift without its specialized equipment. I mean that I can use the phrase
‘best fitted’ in an extremely convincing metaphorical sense.

D. If you change DNA to God in your example, you get an old-fashioned,
edifying example of the Wisdom of the Creator. Natural theologians used the
same kind of stories when they described how everything in nature is well
adapted to its purpose.

B. I do not want to abstain from my inclination to a bit of loose thinking.
But I admit that you may be right from a strict philosophical point of view.
But biology is not only philosophy.

I want to say one thing more about DNA. It does not change abruptly. Its
complicated construction makes large modifications extremely unlikely.

D. But this is also my argument. Natura non facit saltum.

B. This is only a simple quotation. The Latin does not make it better.
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D. But the argument is very explicit in my book. Evolution has progressed
through intermediary forms. I quote: ‘Natural Selection can act only by taking
advantage of slight successive variations; she can never take a leap, but must
advance by the shortest and slowest steps’.

B. You just guessed. DNA is an experimental fact.

D. I did not guess. Please do not be rude.

B. Sorry. But I insist that DNA is a program of the development of its bearer
through life to death.

D. Everybody knows that inherited abilities are very important. More than
that, maybe. But environment is also relevant. Now you are sitting over there
overrating the importance of your DNA. An entire life program. No one with
any experience of life can believe you. Someone falls off a horse and the life
program is finished.

B. Sorry if I was not clear enough. I mean a life program which is not influ-
enced by exterior circumstances. In certain cases one can see in DNA that a
person carries the germ of an incurable disease which makes itself felt later in
life.

D. And how is this possible?

B. As I said before it is possible to identify all kinds of protein, including the
dangerous ones. May I remind you of the successful experiments that resulted
in an exact copy of a sheep.

D. Doing that on a large scale one could make copies of human beings. To
what purpose? What happens in the ensuing generations? We have always
known the dangers of inbreeding.

B. Science must always advance.

D. But here backwards.

B. You ridicule respected, hardworking geneticists.

D. Sorry, geneticists?

B. After the laws of inheritance became known we got a science called ge-
netics. Its practitioners worked to improve plants by crossing. Now they work
with DNA in laboratories.

D. Crossing plants and animals is very old occupation. I have some experience
myself. With pigeons. Moreover, I was a biologist working in the field. You
talk about laboratories.

B. That is the direction the development has taken. Technical apparatus,
powerful microscopes, electrical gadgets, still more powerful microscopes. And
typewriters like mine here. It remembers and stores what I write and prints
it on demand.

D. I can imagine all this but I do not like it. Are there no people who just
think and write?
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B. There are many, many of them and they work under orderly procedures.
When I think that I have done something worth publishing, I prepare a man-
uscript and send it to a journal. There are hundreds to choose from. But only
theoretically because every journal has anonymous reviewers who may accept
or reject what I have done. Different journals have different standards and if I
doubt the worth of my work I choose a journal where I am reasonably sure of
acceptance. Since there are thousands of people like me who want to publish
what they write, this means that people write too many scientific articles.
Most of them are soon forgotten because what is written in them represents
only a minute progress of science. No one is able to read everything and most
of it leads to nothing. But, as you might have wished with your question,
there are people think and write.

D. In my time science was an affair for a small number of gentlemen and I
think that was much better. But let us leave all trivialities. I want to go back
to my question about why the best adapted ones should survive. How is this
in the light of your DNA. If there is some light.

B. No irony, please. I only tell you what I know.

D. Sorry.

B. Since the structure of DNA is known but not the exact way the genes
rule the production of proteins it is perhaps best to take your slogan as a
tautology. We can’t foresee the effect of a small change of DNA. And if we
could do that, we could not foresee a future environment. But in isolated
cases like the following ones we could perhaps say something. A male pied
flycatcher is attractive to females if its white forefront is clearly visible. You
may imagine that there is a piece of DNA that is responsible for this white
spot. If it changes to be more effective, all male pied fly catchers will in the
end have bigger white spots on their foreheads.

D. Until they are white all over like pigeons.

B. I do not mean that. Some other development would take over.

D. Your example is the same as the one with swifts, only less poetical and
less striking. But my conclusion is the same as yours. The effect of adaptation
cannot be foreseen.

B. I admit that, but I am not ready to say farewell to my seductive explana-
tions. By the way, they are very popular in biology nowadays. A biologist has
written a book called the Selfish Gene. There he says that the gene has only
one desire, to live on in as many generations as possible at the cost of others.

D. But the little molecule cannot possibly have desire in the ordinary meaning
of this word.

B. You are too literally-minded. By gene the author means both the individual
and the genetic information it carries.

D. I do not believe that this is true. A deer buck wants to breed only during
a certain time of the year. The rest of the time it strives to stay alive. Every
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living being strives to live on. That is the dominating instinct. Breeding comes
second and only during certain periods. I do not like this author. Not scientific.
I suspect that we have here another attempt to explain evolution as a result
of Nature’s inborn Wisdom.

B. Perhaps but in this it has to be taken as rather advanced. The author is
well known and his thesis has invaded the popular biological literature. But
I think he wrote the book to tell what biologists think about evolution. For
instance that it admits altruism. Relatives do not kill each other because they
share the same genes.

D. But it may as well be the environment. Relatives know each other and
often live together.

B. I am not responsible for every opinion that I am telling you about. In any
case there is always a tendency to ascribe a kind of wisdom to evolution. I
once wrote a popular article about the altruism of birds. But I understand
that it would not be of interest my guest. When all is said it perhaps best not
to attribute any intention or superstructure to evolution.

D. Chance rules. This is also my view in the book. Don’t you agree?

B. That Chance is supreme is perhaps not putting it exactly right. Chance is
limited by everything that it has previously achieved. If it has succeeded in
forming a stable species, there is not much room for Chance. I believe that it
then can only do a little mischief in the DNA.

D. This is what I always thought, though I never mentioned the word DNA
of course. There is something repugnant about the thought that our finely
tuned Nature is the work of Chance. But nevertheless this thought must be
faced and evaluated. This is what I did in my book.

B. To return to the beginning of our talk I want to say that our descent from
the apes and the catchword ‘the survival of the fittest’ both have disappeared
from scene. They are not taken very seriously and do not arouse any hard
feelings any more. You need not have a bad conscience.

D. Thank you, I am not troubled by this any longer. But I am still not satisfied
by my analysis. It should be more complete but I do not know how.

B. There is perhaps some consolation in the fact that you have analysed
history, the history of the development of life on earth. Historians have the
same trouble as we have. Few things are absolutely certain, evidence is almost
always missing, experiment is out of the question and so on. The solution for
them has been to write books where some coherent philosophy is applied
to the history of some period. There are some master pieces of this kind
of writing. And this is for historians an accepted way of doing things. So,
if you excuse me, I think that it may be said that you have written what
amounts to a great historical treatise of evolution on earth. If you consider
yourself as historian you may perhaps be more satisfied and free of your (and
mine) unfulfilled desires of more satisfying explanations of evolution in all its
enormous complexity.
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D. I did not think of it this way. Biology is not only history. It is a natural
science where logic and strict reasoning is required and some prediction, too.
When I think back on my writing I think it had a meaning. I was dissatisfied
with what had been written about evolution and I wanted the truth. The truth
is that life in all its forms has come about during a very long time without any
plan or any general principles that we can see. This conclusion may impress
one as trivial and insignificant compared to the theories of creation. But it is
true.

B. But think of all sharp observations and arguments behind this truth.

D. Yes, but the result. . .

B. The task was too big, too many unknown entities were involved. The only
possibility is a vision. The biologist cannot experiment over long intervals. . .

D. I wrote a chapter about instinct. It began without any definition of this
notion. But in spite of that I managed to say a lot about instinct. It was a
bit vague but not meaningless I thought. I believe now that man has an urge
or instinct to explain everything. It is indispensable in daily life. You have
to explain a lot of things, why it is deadly to fall from a large height, why a
bull may be dangerous, why one should not be in the way of a four-in-hand
in a sharp trot and so on. There are innumerable indirect proofs that this
instinct exists. It commands its owner to find connections and leave nothing
unexplained.

B. I think that your vision of life on earth is a beautiful result of this instinct.
Nothing to be ashamed of. You satisfied your urge and many have admired
the result.

D. So far we must be satisfied with that. But now I feel that I am no longer
able to keep my earthly shape together. Goodbye.

D’s body pales away. B. leans forward over his desk, putting his head into
his hands.

\/\/\/
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GHOSTS II

4 Hypotheses. A Discussion with Henri Poincaré3

A room with a desk and a computer. M., who is a medical doctor and a bit of a
philosopher sits at the computer writing a letter. Suddenly the screen changes
and is lit up by a message in capital letters: PREPARE YOURSELF FOR AN
IMPORTANT ENCOUNTER. M. hesitates for a moment not knowing what
to do. Then there is a new message: TURN AROUND! M. turns around and
sees a small man in a black suit twinkling under his pince-nez. A conversation
starts.

M. Who are you ?

P. Henri Poincaré. I died in 1912, for the moment I’m back from the other
side. I have an important question for you.

M. Thanks very much. But which Poincaré? There were two of them, as far
as I remember.

P. The other one, my cousin Raymond, was a politician, I am Henri, a French
mathematician known for important papers in mathematics and physics. My
three books about science made me known also outside the scientific world.
I died after laying the foundations of a new branch of mathematics called
topology.

M. I remember having heard about you. But mathematics is far from me. I
am a medical man.

P. I come to hear about the fate of the hypothesis in the natural sciences. In
my book on science and hypothesis I stressed the importance of hypotheses
in these fields. Science is not all discovery. Hypotheses are guides for research
and thinking in general. Fruitful hypotheses are sometimes as important as
definite results. After a long time of reflection I now think that hypotheses
are somehow universally useful. I should like to discuss this with you.

M. There are hypotheses in medicine but we prefer facts. With hypotheses
we would come close to alternative medicine.

P. Your are talking about things I do not know. Please explain yourself.

M. Scientific medicine stands in opposition to charlatans that are often pop-
ular with the press. They have named their own activity alternative medicine
while we are said to practice school medicine.

3 In his booklet Science and hypothesis, (1912) the great nineteenth century
mathematician and physicist Henri Poincaré reviews the great advances made in
the natural sciences in his century which saw the birth of the theories of energy,
electricity, light and radiation. All of them were first born as hypotheses. He
concludes that the popular view of science as a series of uncomplicated discoveries
is wrong. Instead it is the well formulated hypothesis that drives science forward.
The wake of science is strewn with discarded hypotheses.
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P. In my time quacks were also popular with the press. This seems to be for
ever unavoidable.

M. Sure.

P. But what do you have against hypotheses?

M. They do not belong in medicine. There are plenty of hypotheses that would
kill patients if taken seriously.

P. I wrote about hypotheses in the natural sciences. If you do not accept
hypotheses our encounter is finished.

M. Even if I hesitate to use hypotheses in medicine, I am interested. I am a
bit of a philosopher, too. We could talk in general terms. Please take a seat
and let us just talk quietly together.

P. and have some hypotheses. By the way, it seems that you share the common
misconception that a picture says everything.

M. I don’t. I just described our various pictures, not the difficulties about
them.

P. Sorry. Are you finished?

M. Not yet. We have also new drugs. The antibiotics can put an end to very
many infections. In your time many died by pulmonary and other infections.
Not so now. People die later in life by heart attacks and the like. Or cancer. We
now know a lot about cancer and we can cure some but not all by radiation.
Our diagnoses are now much better than before. We just send a sample of a
patient’s blood or urine and even a bit of tissue to a laboratory that makes
an analysis and finds out very precisely what the illness is. The doctor reads
the laboratory report, writes his prescriptions and passes to the next patient.

P. From what you say the work of a doctor could be done by an automaton.
Anybody can be a medical doctor it seems.

M. No irony please. When I mentioned the word ‘fact’ in the beginning of our
conversation I thought of all the tools from the natural sciences that help us
to make a diagnosis. I went through the most important of them. They really
are facts.

P. I can agree with you but with some hesitation. It seems to me that your
pictures and analysis are facts only in relation to the rest of medicine which,
I believe, must be a bit of what it once was, full of hesitation and guesswork.

M. Of course these features remain. We have many patients with diffuse symp-
toms or symptoms which we do not understand.

P. But then you cannot do without hypotheses. Without them you would be
helpless and unable to decide a course of action.

M. This happens sometimes. There are of course cases where we can do noth-
ing. But I should like to paraphrase what Molière’s wood-cutter says about
fagots. I mean that there are hypotheses and hypotheses.

P. Yes, if you like. But you must mean something more specific.
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M. I mean that the hypotheses in your book are too special since they are only
taken from mathematics and physics and the book was written at a period
when these sciences were very successful. For me the word hypothesis is too
big. In ordinary medicine we just suppose and guess and muddle around. If
one drug does not help, try another one and so on. I remember that you said in
the beginning that the word hypothesis is used about causes and connections.
I have very little of that, just standard rules.

P. I think you have explained yourself clearly. I may have been too insistent
with my hypotheses. Perhaps I have been too optimistic when it comes to
medicine. I agree with you that there are hypotheses and hypotheses. But
let us continue anyway. You have told me many interesting things and our
conversation amuses me.

M. As I told you we can now see that something physical happens in the
brain of a patient when he is asked to think about something specific.

P. That is good enough but you have told the patient to think. Your experi-
ment only says that thinking occurs in the brain.

M. You are right. Nevertheless we were happy about seeing what we may call
a thought. We also saw another phenomenon, namely that thought precedes
action. A simple example: when a patient bends a finger this action is seen
first in the brain.

P. I had the same – of course entirely unscientific – experience many times.
Before I write something on paper it has to be in my brain first. And before
rising from my desk I had the impulse to do it. Unless I was very concentrated
on something else. Then this movement was more automatic, if I remember
right. Before making this kind of experiment I think one should try introspec-
tion first.

M. You are making fun of me. Nothing seems to impress you. But I try again.
That actions start in the brain, can we not see this as an hypothesis?

P. I think not. It is somehow too obvious.

M. But let me take something from ordinary life: A man is going to cross a
brook on a narrow footbridge. He hesitates a bit but then he thinks that this
looks rather easy. This is his hypothesis. Then he falls into the brook and his
hypothesis is contradicted. How about that?

P. I do not want to use the word hypothesis here. The situation is too trivial.

M. I read about you that you once had thought a lot about a mathematical
problem. And then, as you left the bus in Caen, the solution passed through
your head.

P. No explicit hypothesis was involved. Only a long period of preparatory
work. That such things happen is not uncommon. A hypothesis must be the
result of some serious thinking.

M. Our problem is that the word hypothesis is difficult to use in communi-
cation with patients. It is too vague and can be misinterpreted. Doctors, by
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the nature of their work, become bureaucrats in a way. And a bureaucracy
cannot live with hypotheses.

P. May be I overrated the general usefulness of hypotheses. You are right that
there are fagots and fagots. But in all kinds of serious research hypotheses are
necessary. This is my last word.

M. But I still hope to satisfy you. Medicine is on the threshold of period of a
very interesting research.

P. And what is that?

M. Fifty years ago it was discovered by X-ray spectroscopy that all living ma-
terial contains long molecules having the form of double helices. They contain
the secret of life.

P. What double helix? Explain yourself, please.

M. I do not know exactly how to describe it. The helix consists of two coupled
spirals. If unwound the double helix takes the form of a ladder with steps. Each
step has two parts with names that I have forgotten but the entire molecule
is called DNA after chemical names that I have also forgotten. Each step has
been given a name with two letters out of four fixed ones.

P. Hence there are sixteen ways of naming a step.

M. I believe you. You are a mathematician. But only four of them are used by
nature and, if we disregard order, just two. If we give each step a letter DNA
can be thought of as a very long word consisting of just four letters. These
words differ systematically between species and a little between individuals of
the same species.

P. I am amazed. Nature has a mathematical code.

M. Now comes the important part. Living matter consists of cells. When cells
split into two, the DNA of the original cell halves itself into two simple spirals
each of which is able to reconstruct the missing half from material available
to it. Don’t ask me how. The result is that DNA passes unchanged to new
cells.

P. When Laplace worked with planetary movements he concluded that God
is a mathematician. It seems that his hypothesis has now received an inde-
pendent confirmation.

M. I am pleased to hear that you can joke a bit. By the way, does God exist
on the other side?

P. May be. At least there are rumours. But let us return to your subject. A
code is all right, but what is it supposed to be good for?

M. DNA is supposed to regulate the growth, life and death of protein in living
matter.

P. So, DNA is the blueprint of life and death of all that lives. Is this the great
hypothesis of biology and with it medicine?
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M. Yes, or rather, was. Quite recently one has been able to read the DNA of
man and divide it into tens of thousands of groups called genes which can be
tied to well defined kinds of proteins.

P. How can you say that a catalogue verifies the great hypothesis? This is
an illusion. One must also know the details of the action of DNA, not only a
catalogue.

M. But there are genes tied to definite illnesses. It may be possible to cure
them by some kind of genetic engineering.

P. My question remains. DNA is a wonderful code but you have to know in
what sense it guides the birth, life and death of an individual. A multitude
of questions come to mind. I believe that organic material can interact in
enormously different ways.

M. There is hope of a solution, and a lot of money goes into molecular biology.

P. Only a very limited number of hypotheses seem to be essential to physics.
But so far molecular biology seems to me not to be in the same situation. But
my belief is that a limited number of well chosen hypotheses are always able
to put some order into at least some parts of a recalcitrant material.

M. Maybe it is this belief that makes molecular biologists hopeful even when
they have little to say.

P. Perhaps. But please remember that it is not possible to have too many
hypotheses at the same time. That is too much for the human brain. We can
drown in hypotheses.

M. You should perhaps address yourself to molecular biologists. Since my
daily work does not stand hypotheses I have nothing to add. But what you
say seems all right. We shall see.

P. Yes, I now have a got a lot to think about. It will be interesting to follow
what happens even in the somewhat reduced way available to me over on
the other side. I have now material for a second edition of my book, but
unfortunately I cannot write it. I envy you your living conditions. Thanks
and goodbye.

(P. Becomes silent for a while. Then his shape dissolves and M. is left alone
with his computer.)

\/\/\/
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THE SOUL OF SCIENCE I

5 Science and Common Sense

The characters of this dialogue are Simplicio4 (C.), representing common
sense, and Lady Scientia, the guardian spirit of science. Their conversation
takes place in a somewhere, entirely free of earthly appointments.

C. I do not know how I came here or what I am supposed to do. You, dear
Madam, may perhaps know something.

S. I do indeed. For a start we might perhaps introduce ourselves. My name
is Scientia and I love, protect and represent science.

C. I am Simplicio. My friends think that I am the embodiment of Common
Sense. I can say without bragging that I solved many a dispute with my
common sense.

S. Do you happen to be the Simplicio who appears in Galilei’s famous dia-
logues?

C. Yes, that’s me.

S. I believe that I remember that Galilei, masked as Mr. Salvati, had great
trouble convincing you that Aristotle’s thesis that heavy bodies fall faster
than light ones leads to contradictions. But is that right? Don’t stones fall
faster than leaves?

C. Do not test me, please. The reason for the different velocities is that stones
and leaves have different air resistances. Galilei himself reduced the problem
to heavy bodies of the same density and form.

S. Sorry, but how were you convinced? It is a long time since I read Galilei’s
book and my memory of it is a bit vague.

C. I was convinced in several steps. How it happened is a very interesting
story.

S. Tell it to me, please!

C. Salvati convinced me by two thought experiments. First he assumed with
Aristotle that the velocity of a falling body increases with the weight. Then
he considered a small stone on top of a bigger one. At rest the small stone
presses against the big stone. But this does not happen when they fall: if it

4 Galileo Galilei was the first to formulate the law of free fall: air resistance being
disregarded, all heavy bodies fall to the ground with constant acceleration. To
explain this law, essentially the first example of so-called hard science, he wrote a
collection of dialogues Discourses and Demonstrations about Two New Sciences
(1638). The text argues against Aristotelian physics and the readers have to follow
close reasoning and accept thought experiments. The task of one of the characters,
Simplicio, is to put questions and receive answers which in the end convince him
that Galilei is right.
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did the smaller stone would increase the velocity of the bigger one and this
does not happen. Hence a small stone does not fall faster than a big one. So
far Aristotle may still be right.

S. And then?

C. Salvati suggested to put the big stone above the small one. If Aristotle
were right, the small stone with its small velocity would then prevent the big
stone from falling with its proper velocity. But together they are heavier than
the heavy stone and hence, according to Aristotle, would fall faster than the
big stone alone. It became clear to me that the view of Aristotle leads to
contradictions. I gave up my trust in Aristotle but I also felt a bit sorry that
he was not right. Later, when Galilei dropped a small and a large ball from
the leaning tower and both hit the ground simultaneously, I was not surprised.
I already knew that Aristotle was wrong.

S. Aristotelian thought was once considered to be common sense. You should
not feel sorry that he was wrong. Common sense is a gift to man from birth
and something to be proud of.

C. Of course I am proud of it. But Galilei made me change my view of com-
mon sense. It is open to improvement by thought and especially by thought
experiments through which one discovers paradoxes that have to be elimi-
nated. The result for me is that I now represent a modernized and developed
Common Sense that does not dismiss thought and thought experiments. On
the contrary. After my time with Galilei I did not find it difficult to accept
Newton’s rules of motion such as the inertia of matter: every body remains in
its state of rest or uniform movement. If it is not subject to exterior forces of
course.

S. What you say contradicts common sense. Uniform movement has only been
observed during very short time intervals.

C. But this does not contradict common sense. I know as well as you, Madam,
that most motions are not uniform when exterior forces are involved.

S. I was only trying to joke, I believe as you do that science has to work with
simplified assumptions and thought experiments.

C. Otherwise there is no order. So says my common sense.

S. We could perhaps start discussing some interesting problems, now that we
have so much in common. But first let us be precise and state the conditions
of our discussion. Science always advances and therefore its position changes
with time. I decide to adhere to the present position of science. And you, Mr.
Simplicio?

C. Common sense is of course more constant than science, yet it, too, varies.
Let me say that I stay by the present position of common sense.

S. But science and common sense have differed many times also since the time
that the Catholic Church was its representative on earth. How did you, Mr.
Simplicio, react to the rods of relativity theory which get shorter when they
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move fast and to the observation that time slows down in the same situation?
It being understood that the rods could measure time.

C. I had of course great difficulty, but Galilei had prepared me. He taught
me that there are many ways to understand reality and that numerical ar-
guments have a purifying effect on all ideas that come from immediate ob-
servation. Therefore I came to see the theory of relativity (the special one to
start with) as a model which put order into all the effects and properties that
follow from the fact that the velocity of light in vacuum is independent of the
velocity of the source. Let me also add that all these effects are too small to
be immediately accessible to common sense.

S. You speak in a proper scientific manner, Mr. Simplicio. Bur how do you
separate common sense and science?

C. I make a clear difference. Common sense does not create science. Its pur-
pose is to observe science from the outside and at the same time understand
it. Perhaps not all but the most essential and important parts.

S. But this means that I would be subordinate to your judgment, Mr. Sim-
plicio. I must say that you have come a long way from the minor part you
played in Galilei’s dialogues.

C. Please do not do not excite yourself, dear Madam. Common sense is more
or less shared by everybody. Just as you, dear Madam, is responsible for
science, I am responsible for the right use of common sense in all weather. I
believe that we could agree on the proper use and range of common sense.
Without enmity and prestige and in all harmony.

S. I think that the picture that you paint is too idealistic, but I agree that
we ought to be able to meet in civilized fashion as becomes decent people.
But now, common sense has met worse ordeals than special relativity. I am
thinking of general relativity and quantum mechanics. How did you fare with
them?

C. The theory of general relativity raises more questions than it answers. For
me it is a clever construction that can explain many phenomena that would
be unexplained otherwise. If you excuse me I have found that this theory is
not a fruitful ground for common sense. To me it is a beautiful mathematical
construction whose value lies in the predictions that it makes.

S. It was nice to hear that at least some part of science remains free from
the judgments of common sense. To me general relativity is the foundation of
cosmology. Without it we can not say anything sensible about the universe.

C. You forget, dear Madam, that quantum mechanics is an indispensable part
of cosmology.

S. Sorry about that, I went too fast. But before we continue it would be
interesting to know how common sense reacted to quantum mechanics.

C. As I told you earlier, I learned from Galilei not to be afraid of abstract
thinking. I accepted the foundations of quantum mechanics but I hesitated
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in the face of the difficulties that arise from the quantization of classical me-
chanics. But I think that a new generation of physicists have grown up with
quantum mechanics are no longer worried by these problems. Certain parts
of reality are now seen directly as quantum mechanical phenomena without
a passage from classical mechanics. Permit me to say that this does not con-
tradict common sense.

S. Look here, Simplicio, you talk like one who really knows what you are
talking about. What you do not say is that your acquaintance with quantum
theory is very superficial. You did not understand the mathematics of quantum
mechanics and you did not yourself write a single article in the field. In spite
of that you sound like a real expert. You got your views from reading popular
reports. Such reports are only rarely written by people who understand what
they are saying.

C. Madam! You are absolutely right of course! But please realize that if you
force me to talk about science I must use the same phrases as the experts when
they try to express things in a common sense language. But if you excuse me,
my experience with Galilei has given me a general idea of what science is and
I have found that this general idea is useful when trying to get some notion
of more modern parts of science.

S. Please excuse my little explosion. It is clear that we sometimes use the
same expressions from science and this obscures the fact that I have a deeper
understanding of science than you ever can achieve. So when I say that the
combination of quantum mechanics and general relativity has made possible
a deeper understanding of the universe, in particular the theory of the Big
Bang, I speak with some authority.

C. I agree that the Big Bang is a striking and audacious theory. But why
the word Bang? No one heard this Bang and it is questionable that air was
present to make it possible to hear.

S. Dear Simplicio, you must understand that the word Big Bang is a joke
and that this joke has given the theory its name, not its content. Otherwise I
agree with you that Big Bang is just a theory.

C. We should perhaps not bypass the new biology. I mean the discovery of
the genetic code.

S. I find it amusing that Mendel’s simple combinatorics should be followed
by another one albeit not so simple. But I doubt the expectations that the
genetic code alone is going to create order among all proteins and the way
they are created and live in the human body.

C. Here you agree with common sense. We agree entirely.

S. This is not the first time that the range of a scientific discovery has been
overestimated. I am thinking of what once was written about Newton’s Prin-
cipia.
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C. Yes, I remember that. Many of these comments challenged common sense
although Principia in itself was sufficiently sensational.

S. I want also to say something about the appearance of computers in sci-
ence. The discovery and theory of semi-conductors was a very nice thing. The
applications have meant a revolution in many fields, for instance all kinds of
bookkeeping and numerical meteorology and other areas where theory can be
subject to numerical computation. But those who talk about computers as a
scientific progress do not realize what science is. It is really an activity. . .

C. (breaks in) You need not lecture me. Common sense can itself distinguish
between science and what looks like science.

S. Excuse me, but this you cannot do without the assistance of science and,
in many cases, time itself.

C. I am sorry that I overstepped my bounds. I hope you forgive me.

S. My dear Simplicio, I want to point out a serious, recent turn in the devel-
opment of science which concerns both of us.

C. I am sorry that I do not know what you are referring to.

S. It is a phenomenon that I want to call the industrialization of science.

C. Please explain it to me.

S. In the last forty or even fifty years science in the sense of natural science
has received more and more support from industry and the state. Both these
donors, since they control the money, give rise to a new kind of scientist
driven by a wish to be useful to state and industry and by the desire for
money. Much of this is of course inevitable when the many applications of
science are carried out. Perhaps science has been too successful for its own
good. An outward sign is the fact that the number of scientists and scientific
journals seem to have grown exponentially for some time. The journals that
carry short accounts of scientific results and were once read for pleasure have
grown out of proportion as have their prices. All this growth can be studied
in the long catalogues free from quality control which are available to us by
present information technology. All this makes my situation very difficult. An
unlimited growth is not something that I or anybody else want to attend to.
What once was called science has become a large market with all the signs of a
market: a fight for money and the attention of the public. And attention itself
attracts attention. There are trend analysts for science and the popularization
of science. Earlier a scientific article used to have one author, now as a rule
there are several of them. Scientific merit stands the risk of being collective.

C. I think it is only natural that science is industrialized because the world
has been industrialized. Everything is now performed on a bigger scale than
before. You used to admire scientists performing great feats of thinking in a
simple world. This is a thing of the past.

S. My dear Simplicio now you are doing some phenomenological thinking.
What you say is that things are as they are because of the way they are. But
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you are right that I do perhaps idealize the past. Please realize that quality
in science is to me something that is almost independent of time. And I am a
specialist in distinguishing quality. It is true that indifferent science has always
been produced, at least after the eighteenth century. But now it is produced
at fast rate.

C. Please give me some examples.

S. Earlier, biologists were peacefully studying animals and plants. Now after
the first ecological scare they become ecologists and get new money for some-
thing they did not quite knew how to handle. But they write. And the scare
that all oceans will rise to dangerous levels now keeps hordes of meteorologists
busy.

C. Now that you have mentioned it, I realize I have noticed the same tendency.
After reading the first page and the summary of a scientific paper, I often think
that it is time to stop.

S. My dear Simplicio, you are now again masquerading as a scientist. Just
reading is not enough to evaluate a paper. As an amateur you do not have
the necessary insight to do it. I have said this before.

C. I admit my faults but Galilei and present company inspires me to express
myself in kind.

S. Anyway, when I read scientific material, it takes a long time before I give
up. My responsibility as a guardian spirit is clear. You used the word scientific
not long ago. As a lover and guardian of science I must control everything that
goes under that name. Recently this task has become heavier and heavier
to me and also given me some unpleasant feelings. Simplicio! Science has
definitely a soul visible to me in some of the best work done, and I believe
that you can at least feel something of it. But now I can sometimes read entire
volumes of scientific journals where nothing of interest seems to come out and
the soul of science feels very, very distant. I have seen that the scientific method
so beautifully applied by Galilei, is being applied nowadays to material that
yields very little. And that some themes are being overplayed in the sense that
only very small progress is achieved in every paper dealing with the theme. I
do not quite know what to do, Simplicio!

C. Then, how should I know? The word science is perhaps not well defined.
The definition lies in the user’s mouth. The general public. . .

S. Let us leave the general public to itself. Otherwise we will never be able to
end our exchange of views.

C. Long ago the situation was very simple. Science was an activity exclusive
to academies and universities. But then there were no applications to speak
of. Now applied science floods the market. This branch has a tendency to
correct itself since its failures are costly or soon forgotten. One could say that
it purifies itself. If you want some relief in your work you could perhaps leave
applied science to me. I want to become the guardian spirit of applied science.
It will be a suitable occupation for common sense.
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S. A suitable occupation! You forget your historical mission! Common sense
is free and independent from all and everything. As a guardian of applied
science you tarnish your historical mission! What the world needs is common
sense, not applied science. If you do not understand this, woe is to mankind.

C. I am sorry, you are right. I really regret my heretical ideas.

S. Now, when you said ‘purifies itself’ it made me think that science like all
intellectual activity is subject to the same process. The next generation is
always ready to criticise. Almost every established theory or belief is modified
with time and some have a short life span. Science that is not fit for life dies on
the shelves of libraries or in old hard disks. I feel I am getting some strength
from this thought. I am now resolved to continue my work with everything
called science, although part of my role is no longer that of a sweet guardian
angel. I mean that I will read and evaluate everything as before but I will
not always feel protective and nice. I will permit myself to hope that some
things that I read will be forgotten as soon as possible. This feeling will make
my life easier. It makes me optimistic for the future. And with better search
machines for the net I could still fulfill my historical mission. I have made my
decision and I feel relieved. My work is waiting. I thank you, dear Simplicio,
for a fruitful conversation. Farewell.

C. It is risky to say farewell to common sense!

S. No cheap jokes please! Think of your reputation. Farewell!

\/\/\/
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THE SOUL OF SCIENCE II

6 An Interview with Lady Scientia

An interview at the premises of the Royal Society, London, gives Lady Scientia
(S.), the guardian spirit of science, an opportunity to state her views on science
and what she sees as its soul. The reporter, Kay Cary (C.), is specialized in
biology and medicine

C. When did you arrive in London?

S. I think we should switch to some important subject. Science for instance.

C. What is your opinion of British science?

S. We had better start with a definition of what science is.

C. Yes, please give me a definition.

S. Science is its own purpose and the purest expression of man’s theoretical
drive. Science means correct reasoning and methods and results not imme-
diately accessible to common sense. My definition is not too precise but it
serves to separate science from phenomenological knowledge. On the other
hand it has to be specified to identify scientific elements of human activities
like industry and agriculture and so on. But I believe that my definition can
serve us for the moment.

C. What do you mean by ‘the theoretical drive of man’? I never heard the
expression before.

S. The drive to understand the world we live in by means of theoretical con-
structions.

C. Some words about phenomenological knowledge? Please!

S. Research that stays on the surface and avoids theory. Common sense is an
example of phenomenological knowledge.

C. Thank you. Maybe I could represent common sense.

S. I have as much common sense as you. We have to share.

C. But common sense finds it often very difficult to understand science in all
detail. That is a often experienced by a journalist.

S. You are right. I believe we shall understand each other. Let me first say
that what we call science can exist only under certain conditions. Writing
is a prerequisite and the scientist must have an independent position. These
two conditions were first satisfied at the major royal courts of antiquity, for
instance those in Babylonia and Assyria some three thousand years ago. The
princes were of course more interested in their power and horoscopes than
in science. But life close to the courts gave the scientists both leisure and
independence.

C. When were you first interested in science?
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S. Just about then. Three thousand years ago.

C. That is not possible.

S. But that is what it is. Possible. You must realize that I come from the other
side. Now and then I assume a human shape and visit the world of humans.
Nowadays I restrict myself mostly to academies. This interview, by the way, is
a mistake by the administration. Normally I never meet the press. I am here
to investigate the minds of certain interesting scientists but I have also other
methods of finding out the truth. But now when things are as they are, let us
continue.

C. (Shows signs of uneasiness and panic but calms down after a while. Lady
Scientia does not seem dangerous.) Yes, well, let us do that.

S. First you must understand that, coming from the other side, I have no
difficulty in reading scientific material. I make some excursions into the reality
where you live in order to complete my impressions. Let me tell you a bit of
my life as a guardian. My present life began when those in command gave me
the task to guard science and investigate its conditions. That was about three
thousand five hundred years ago. That my name is the Latin Scientia is no
contradiction. It is simply a suitable name taken when Latin began to appear
as a language of science.

C. Who gave you the task?

S. You ask too much.

C. Please excuse me. But I think that three thousand years cannot be enough.
Were not the Egyptian kingdoms older than that and the Egyptian mysteries
still more enigmatic than the Babylonian and Assyrian ones?

S. You have misunderstood me. I repeat that science means correct method
and results not seen immediately by common sense. You must not, as does
the public, confound religion and mysteries with science. These activities can
sometimes use a kind of prescience but they have nothing to do with science.
Perhaps one can say at most that Egyptian archaeology is a kind of science.

C. But the pyramids! Were they not built by science?

S. No, to draw a square in the sand and compute a slope is not science.
Perhaps applied science and this is not my field.

C. Well, what shall we then speak about?

S. Continue the interview!

C. Give me an example of scientific achievement.

S. A Greek astronomer’s giddying thought that the earth could be a ball that
gets its light from another ball of fire, the sun.

C. Who was he?

S. The thought originated with an unknown astronomer and met with resis-
tance but the arguments in favor became more and more convincing. This
development fills me with delight.
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C. Describe your delight to me, please!

S. Like everybody’s delight. My feeling is personal. I want to keep it to myself.

C. Give me another example of science, please.

S. Euclidean geometry.

C. Why is this science? It is awfully old and taught in the schools to bored
children.

S. Because the method of starting from axioms is spotless, because the results
are interesting, because together they form a harmonious unity.

C. You forgot the bit about common sense.

S. Many geometrical results are intuitively true and therefore acceptable to
common sense, but common sense uses only conviction, not arguments and
proofs. Many results leave common sense cold, for instance that the axiom of
parallels means that the sum of the angles of a triangle is half a turn.

C. This sounds terribly complicated. Do all scientific results have to be in-
comprehensible?

S. Much of it is now common knowledge, for instance that the earth is a ball.
But the insight and the proof of this fact was science.

C. But all the philosophers, Plato, Socrates and all the others. Did they not
write science?

S. They wrote philosophy. Philosophy requires neither strict logic nor results
accessible to common sense. Philosophy for philosophers is one thing, philos-
ophy for the general public has to be entertaining and offer some surprises.

C. Let me go back a bit to the royal courts. What about them?

S. I should perhaps make an exception for the ancient Greek republic. But
Archimedes, for instance, lived close to the tyrant of Syracuse. The scientists
of the old world had free contact with the political power; without this they
could not have devoted themselves to free science.

C. I remember this Archimedes. Wasn’t there something with a fixed point?

S. Yes, in a mythical statement. Archimedes wrote about astronomy, mechan-
ics and large numbers. He proved that the area of the sphere is four times that
of any of its great circles and other similar results.

C. Unknown to me. Can’t we leave antiquity?

S. Not quite. The road-building and military art of the Romans was bril-
liant but not science. But when I think of the seventeenth century it is with
considerable delight.

C. Why?

S. That was the heroic century of science. Galilei, Kepler, Newton, Leibniz.

C. Does their work really satisfy your criteria for science?

S. Almost all of it. Galilei’s laws for falling bodies are logically perfect, not
immediately accessible to common sense and verified by experiment. And then
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the great breakthrough: gravitation and mathematical analysis. You know of
course that I am thinking of Newton and Leibniz.

C. Why do you always insist on the part about common sense?

S. Because I want to separate science from common sense.

C. And intimidate me and the greater part of humanity!

S. Try to understand some serious science and you will realize that common
sense is not always a sufficient tool.

C. Maybe, I did not try much. In the seventeenth century you forgot Descartes
and Pascal!

S. They would fit if we could disregard Descartes’s philosophy and Pascal’s
religion.

C. You are too strict. Must your science always be perfect?

S. The word perfect does not exist in my vocabulary. All science is provisional
and temporal.

C. And the scientists?

S. They are human and in general far from perfect. Newton made a serious
study of the topography of Hell.

C. But relativity theory! Newton was wrong if I remember right.

S. I just said that science is provisional and temporal.

C. Excuse me! Could we not leave science for a while? Please describe again
what you feel when you are delighted about something scientific.

S. You mean my feelings of delight in the seventeenth century.

C. Precisely!

S. I was of course not delighted throughout the entire century, only when I
thought about the many important results brought about by the new possi-
bilities opened up by the scientific method.

C. But isn’t it an oxymoron that something as dry and involved as Newton’s
theory of motion and gravitation could cause delight?

S. You forget whom you are interviewing. My name is Scientia, I am the
guardian angel of science, to use religious terminology.

C. I beg your pardon. But if we leave the seventeenth century, I come to think
of Darwin and The Origin of Species. Any feelings about him?

S. Of course I know about him. My problem is to decide if what he did was
science. There are many useful and necessary activities that are not science.

C. Yes, but really, Madam, I just happen to know that Darwin is our greatest
scientist here in England.

S. I understand that I go against common usage of the word when I say
that Darwin was not a scientist. He was first to arrive at the first sensible
conclusion from the fact that there are remnants of many species on earth
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which are now extinct. From my point of view he represents am elevated form
of common sense, since he arrived at an inescapable conclusion. I admit that
my definition of science is not perfect. But that is what I go by. In my mind
a large number of giants of erudition , for instance Linnaeus and all great
historians share Darwin’s position. It cannot be helped.

C. But dear Madam Scientia! I am shocked. All I learned comes to nothing.

S. Not to nothing, I stick to my definition of science and I ask you to respect it
for the moment. By the way, now that we are in the eighteenth century, I must
remark that the royal courts have been replaced by academies and universities
as places for scientists. And in a new development the big foundations and
the state have replaced the prince.

C. How?

S. They pay without interfering.

C. Oh yes!

S. In your ‘Oh yes’ I heard both irony and rudeness. Such things are not in
order when you speak to me.

C. Sorry, I beg your pardon.

S. I cannot pass over my favorite century, the nineteenth century. Small uni-
versities, little money and good science that laid the foundations for all future
progress.

C. Please give me an example!

S. For instance chemistry. I am thinking of the discovery of new elements
and the construction of a list of all elements, valid in the entire universe and
explained by the theory of atoms. It was the basis of the present chemical
age with new materials everywhere. And physics: the discovery of electricity
and the theory of electricity and magnetism which foresaw the existence of
electromagnetic waves used in all global information systems.

C. Do you mean radio or television?

S. Both. It is the same theory. I do not have time to explain. For me it is some-
thing tremendous that humans by experiment and thinking have understood
processes which are valid in the entire universe.

C. I have made a note of that.

S. We must try to have a friendly, respectful encounter. The present situation
makes it impossible for me to explain complicated things in a few sentences.

C. I am sorry. Can’t we leave the nineteenth century?

S. Very well. The first part of the twentieth century was just as good. From
my point of view of course.

C. Why?

S. For instance Einstein’s relativity theory and quantum mechanics.

C. Merciful God.
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S. What do you mean?

C. It was a personal lament. You mentioned two things that are notoriously
difficult to understand and explain and that go against common sense.

S. If you excuse me, they are no problem for me.

C. Please speak about everything that happened after the war with television
and the atom bomb and so on.

S. What you speak about has its origin in the science of the preceding century
and a bit into this one but is not in itself science.

C. It seems that nothing that I know or understand is science.

S. That’s about right. And it isn’t your fault.

C. Did science end after the war?

S. No, but the funny thing is that I don’t have more to worry about now than
earlier in spite of what is said to be accelerated progress.

C. How is this possible?

S. I do not know but it is so.

C. But when I think about the situation in the West, in the USA and England,
where there are many new universities, discoveries arrive almost daily and
there is an extensive press coverage of science. I think that this means more
science.

S. I keep track of all important progress in science and the field has not
increased qualitatively.

C. Can this be really true?

S. This depends on two things. Science is becoming indispensable in warfare
and the results of science can be used to earn money.

C. Now you seem to have turned to a different subject, contemporary history.
Not such a scientific a field, I assume.

S. You are right but as a historian I limit myself to science. I do not despise
phenomenology and what is generally called science. As I said before both are
indispensable in human culture but they are not science as I see it.

C. Cheers!

S. That was not entirely complimentary, I understand. To explain to you my
present situation and that of science I must go back about fifty years.

C. I am waiting.

S. The prince has changed his relation to science. Everything depends on that.

C. But there are no princes in science any more.

S. I know well that the role of the prince as a prerequisite for science has been
taken over by the national state, but remember that I have a long perspective.
My prince is a metaphor for something whose existence is necessary for science.
Everything becomes clearer if I call the national state a prince.
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C. I see.

S. So, fifty years ago, just after the war, the prince realized that science had
been very useful and even essential for a victory.

C. An example, please.

S. Electromagnetic theory made possible the radar equipment that conducted
the bomber planes over enemy territory. Radar gave the one who first used it
an advantage. Relativity and quantum mechanics showed that a large energy
quantity was available in an isotope of uranium. This became the atom bomb.

C. Was there anything wrong with that?

S. The prince started organizing science to further his own purposes. In this
way an ulterior motive foreign to it was imposed on science. In this way it
lost its soul and was no longer science.

C. Not science! I recite your own definition: Science means correct methods
and reasoning and results not immediately accessible to common sense.

S. Your forgot the first part: Science is its own purpose and the purest ex-
pression for man’s theoretical drive. In the new situation science is a tool for
the prince’s lust for power.

C. But nuclear power?

S. An application of quantum mechanics and chemistry.

C. Well, yes.

S. The prince can act fast and sometimes in a wholesale fashion. When the
Soviet Union shot a satellite from Siberia into space around the earth the
prince of USA showered money over science and even the linguistics of Siberian
languages got part of it.

C. Interesting. More examples?

S. The prince in one Scandinavian country has repeatedly reorganized existing
universities and created new ones to further his dream: science for everybody.

C. And then science is not longer worthy of its name. I suppose.

S. Quite right. In other countries the prince has tried to make an industry out
of science and in this he was helped by his country’s strong industrial tradition.
Perhaps I should not blame the prince for all this but he certainly is involved,
whether by choice or necessity I am not able to say. This new development has
meant a flood of material labeled scientific. My unlimited capacity to read,
understand and evaluate a scientific text is not impaired by an increasing
load, but I am more than sorry to see so many articles that represent smaller
and smaller progress compared to articles published before. Besides you see
an increasing number of names in the list of authors. This is happening at
an increased rate in biology, for instance in your country’s most prestigious
journal. I am sure you know which one I mean. The same phenomenon can
be seen in physics and even in mathematics. Science is becoming diluted and
man’s theoretical drive is being industrialized.



344 Lars G̊arding

C. And your feeling of delight is also diluted I suppose. As a science reporter
I have some insight in what you are talking about. If the prince wants to
industrialize science he has willing helpers. To be a researcher is not a bad
profession. Lots of free time, good working conditions and an interesting job.

S. You are right. But not all forces that make humans work give good results.
A progressive devaluation of science is the last thing that I want.

C. Maybe you should call a press conference and make your thoughts public.

S. You forget that I am from the other side and that my press conference will
end in absolute bedlam when the press realizes where I come from.

C. Sorry, I did not think of that. But how will the public know about your
ideas about the industrialization of science? I think they are very interesting.

S. I always keep myself in the background. And I have time. Truth will always
come to light.

C. I want to write an article from my notes and I expect this to be a rewarding
and interesting job. It is very unusual material coming from the premises of
the Royal Society.

S. Yes, yes, well, then we are done. Good bye. Please do not shake my hand,
it will give you a spooky feeling. Good bye.

When she arrived at her newspaper, C. found all her notes reduced to
blank paper. And from the recorder one could only hear a quiet rustle.

\/\/\/
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THE SOUL OF SCIENCE III

7 Scientific

Two young people, Elisabeth (E.) and Peter (P.), students of medicine and
sociology respectively, meet in a café and discuss the significance of their Ph.D.
theses. E. has a romantic view of science and P. is more matter-of-fact. In the
end P. introduces a broad definition of science: everything that employs the
scientific method. But E. is not entirely convinced.

E. Hi, it has been some time. How are you these days?

P. Not so bad. I started writing a thesis.

E. About what?

P. Broadband in the Scottish Highlands.

E. But they do not have it yet.

P. My supervisor has got money to survey the need and use of the new infor-
mation technology in sparsely populated areas. Half the money comes from a
Scottish source, the other half from the European Union. This permits him
to support two graduate students. I’m one of them.

E. But what are you going to do?

P. For a start I am sending questionnaires to all women in the highlands.
The other graduate student is almost ready with his study of men’s opinion
of broadband technology. I shall investigate what women think of all the new
services. — But look here, you were also going to write a thesis.

E. I’m doing it now. It is about a gene that could have something to do with
the Alzheimer illness

P. It sounds exciting.

E. I am lying a bit. It is my supervisor who wants to find the gene although
we do not know if it exists. But we have started with a genome analysis of a
lot of cases. After that we shall work with rats. I have to become a specialist
on a group of proteins which may be involved. The advisor tells me what to
do.

P. Mine does not do that. I work by myself. First I shall describe a theoretical
background. After that I deal with the answers to my questionnaire and make
a comparison with the work of the other guy. I guess that I shall find that
women are less interested in broadband technology than men, and I shall
suggest remedies.

E. Do you have everything worked out already?

P. No, but I guess the result. Can you guess yours?

E. That we find a unique gene, which can be neutralized by simple medication.
Then Alzheimer disappears from the world.
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P. That sounds too god. Stop joking. Do you have something that can be
called a vision?

E. My vision is that we shall perhaps succeed with the rats. After that my
supervisor calls a press conference and says that we have made good progress.

P. How do you know that rats have the Alzheimer sickness?

E. When they can no longer find their way in a simple labyrinth.

P. But this can be due to other causes. In my field we specialize in finding
causes.

E. We take the thing with the labyrinth as a definition. You have to start
somewhere.

P. That does not sound so good.

E. But your thesis! It is just showing the obvious.

P. It is not at all obvious. We have an extensive theory.

E. Yes, I know, Durkheim and the other guys. Derrida also, I believe.

P. You do not understand the first thing about sociology.

E. Maybe. But let us not quarrel about our theses. Sometimes I ask myself
if I am working in science or some industry. I could just be a small cog in a
large machine.

P. Maybe you but not me. What people think about this and that is an eternal
question. There are forever new circumstances. I am rather satisfied.

E. Satisfied with what?

P. I got a job that leads to a thesis and perhaps a future job.

E. Me too, but why not try some thinking of your own?

P. That is what I do all the time.

E. Do you think of yourself as a scientist? Somebody who has a big problem
which is important for humanity and occupies his mind all the time?

P. I do not. But I am thinking of the problems that have to do with my thesis.

E. But do you think that it is important?

P. It is important to know how women see the new information technology.
At least as important as preventing ten Alzheimers for a few months.

E. Now we are there again. Let us talk more generally. I believe that science
these days is an industry and I feel that I am working in an industry. Please
say something about this.

P. I’ll be trying. My problem comes from some thinking committee in the
European Union, not from me. But I am not part of an industry. Perhaps
some service organization.

E. But that is a kind of industry. From where did the Union committee get
its problem?
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P. I suppose that somebody with a sense of the winds of politics found out
that the Union must do something for sparsely populated areas. And the new
information technology looked like a natural helper. And after that there was
a policy meeting with few people and later a meeting with more people that
made the decision. Many states have interests in broadband technology.

E. Very good. A perfect sociological analysis. And you are the obedient ser-
vant of the Union, on hand for every wish.

P. That has only a grain of truth in it. Whose obedient servant are you?

E. That is not so simple. Of course I am the servant of my supervisor. He
leads our project and cannot work without servants as you say. But there
is no one above him. He has chosen our problem, and put it on the Science
Foundation market. There is no one above him I think. Perhaps he is the real
scientist.

P. No, he is not independent. He is a prisoner of the gene racket. If he cannot
find anything better there is always an illness and a gene. He is entirely in
step with the times. Of course I can only guess. I know nothing about the
field but I read the papers.

E. I think you are essentially right. The industry where I work is the gene
racket. You gave it a name. On the other hand we are driven by noble motives:
to cure and mitigate human suffering. But that is something one hardly ever
thinks about in everyday life.

P. Do not take the word ‘industry’ too seriously. The discovery of DNA had
to lead to an industry. Inevitably. The possibilities it opened up can only be
realized on an industrial scale. Nothing remarkable about that. Sociologically
speaking. And in an industry one is always like a cog. You must not have a
romantic view of science.

E. Maybe I am a romantic. And this means that I think it is sad to be a cog.
One does as one is told and this is the end of it. I mean a thesis.

P. But you are not only a cog. Think of ourself as a member of something
bigger, a team. All the time you get to know what the others do and how
everything hangs together.

E. I am still a revolutionary. I think that what I do is shabby. And you ought
to think the same.

P. What I do is not shabby. It is important to know what women in sparsely
populated areas think about broadband and the new information technology
and how the could use it. It is important for the future of these areas.

E. Important for anything else?

P. For the Union and for everybody who sells the new technology.

E. Yes, maybe. But I’m not letting up. What we do, is it science?

P. Yes, because we use a scientific method. So it is science.
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E. That makes science very comprehensive. So broad that it accepts any
amount of indifferent material.

P. The word indifferent is personal. What is indifferent to one is important
to another. Try to define science yourself if you can.

E. Your definition presupposes that we know what a scientific method is.
You shift your definition of the concept of science to the concept of scientific
method. How does one know that a method is scientific?

P. In what you said before you accepted my definition. You knew implicitly
what scientific method is.

E. I admit that. But what I knew I knew from examples. Scientific method
in a field is what is admitted by established people in the field. There is
something of an official stamp on the word scientific.

P. I can’t define the word better than you just did.

E. Good, now that we know what we are talking about we can continue.

P. How?

E. We could evaluate where we stand scientifically. You and I. I am sure that
we are working on the lowest level of science. We are insignificant workers
with very little knowledge of what happens higher up.

P. Speak for yourself. It may fit you but not me. I have my questionnaire and
I am going to do some in-depth interviews myself. No one is over me.

E. There is someone. Your supervisor, Without him there is no Ph.D. He has
to say that you are good enough.

P. I know he will.

E. No doubt. . . But you cannot say that what you do is great science. It
started with somebody in the Union waking up the needs of sparsely populated
areas. And he or she thought about the broadband racket and saw that it fitted
into the political ambitions of his employer. And then he or somebody else
was convinced that the matter was worth giving money to. What you do is
science because you apply the scientific method to something that somebody
else wants you to do. I do not claim to be better, although ‘protein’ perhaps
sounds better to the public than ‘sparsely populated areas’. Do you agree?

P. I agree with you but unlike you I like my work and think that it is impor-
tant.

E. Please: I do not dislike my work. We are both in the beginning of something
that could end as science. How many people do you think will read and quote
your thesis?

P. I have not thought of that. Two, perhaps three, remarks in the proceedings
of the Union and perhaps a line in a newspaper.

E. I think that is a realistic estimate. Science advances fast and everything
done is soon obsolete. That a thesis is never quoted and lives only in lists of
theses is a sign that it has contributed nothing except to the welfare of its
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author. I believe both of us have great expectations to end in this class. Like
over seventy percent of those who write their theses with the aid of some grant
and a supervisor. The sacrifice system of science. Our theses will end in the
ashes of the sacrificial fire. I think that is a realistic prognostication.

P. You exaggerate. Your big mouth has taken command over you. Please do
not mind that I say so. We have hardly started working and I do not yet feel
the heat of the sacrificial fire. Anyway, they give us money. Shouldn’t we pay
and leave?

\/\/\/
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THE PRINCE I

8 Archimedes5 at the Palace

In his lifetime Archimedes was a friend of two rulers of Syracuse, Hieron and
his son Gelon. In this dialogue Gelon (G.) has called Archimedes (A.) to
the palace. Their conversation is an early example of the somewhat uneasy
coexistence of science and political power that subsists to this day.

G. Welcome Archimedes. You were a dear friend of my father’s. Now that he
is dead, I invite you to form a friendship with me, his son.

A. I am much honored. But I am your friend already. We met many times
when you were a youngster.

G. Please excuse my formality but as a new prince I feel that it is necessary.

A. Did you read my Sand Reckoner? I sent it to you last summer.

G. I tried but I lost interest rather early. Numbers were given to us by our
fathers and I find no purpose in inventing new ones.

A. But my purpose was to show among other things that man can invent
new numbers and compute with them. This is what our fathers did. And
without large numbers and people who know how to use them for counting
one cannot estimate the amount of food necessary to feed a large army. Of
course Syracuse has no large army but for instance Xerxes had one. Without
some counting and reckoning with large numbers, he could not have moved
his enormous army from Persia to Greece.

G. As you said we do not need much of this here in Syracuse. Let me change
the subject a little. During my journey to Athens I spent some time talking
with philosophers on the Agora. It seems that you have a high reputation
there. So now when somebody refers to Syracuse as a small place in Sicily I
say that my palace needs a guard of five hundred men and that the fertile

5 Archimedes (290 B.C. – 212 B.C.) lived the greater part of his life in the
Greek settlement Syracuse in Sicily and is believed to have been killed when
the Romans took the city. He is universally known for some long-lived myths: his
mechanical feats in the defense of Syracuse and his proverbial Eureka, Eureka!
when during a bath he realized that a body immersed in water loses the weight
of the water displaced by the body. Actually Archimedes was the most innovative
mathematician and mathematical physicist of antiquity. His many works written
in Greek survived and have been printed. They served as a stepping stone for the
seventeenth century inventors of mechanics and infinitesimal calculus. His only
popular work is The Sand Reckoner where he estimates of the number of grains
of sand necessary to to fill a ball centered at the earth and reaching to the sun.
This was possible only by giving names to a body of sufficiently large numbers.
In his preface he says that he is going to disprove the metaphor ‘innumerable as
the sands of the sea’.
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soil of Syracuse has brought forth a mathematician and philosopher known
all over the Greek world. But I wonder: how did you achieve such a wide
reputation? Not from The Sand Reckoner I suppose.

A. I was always interested in astronomy and geometry and I learned from the
philosophers in Alexandria. But I soon found out that I could do better than
they. I constructed a machine imitating the movements of the earth around
the sun and the moon around the earth. I found out that, contrary to common
opinion, it is possible to measure the area of curved surfaces. For instance that
the area of a ball is the same as the area of the rounded part of a circumscribed
cylinder.

G. Surprising, but to what good?

A. No good at all except for the curious mind who wants to unveil the secrets
of nature.

G. In the Athens Agora they told me that you have said: Give me a fixed
point and I will move the earth. They accuse you of belittling Hercules and
even Zeus.

A. I may have said something like that in some unguarded moment. I was
thinking of the lever principle in theory, not in practice.

G. Please do not explain it to me. It must be for specialists.

A. The lever principle is applied a thousand times every day at the shipyard
by uneducated people. Farmers use it to break new ground.

G. Yes, but without any terrible explanation.

A. You are right that most people do not think about the lever principle.
Nevertheless I want to explain it to you. Take a long stick, support it at a
fixed point close to one end. When you move the larger end it is easy to move
a heavy object with the smaller end. Without the lever you might not be able
to move the heavy object.

G. I understand roughly but without a practical demonstration I am lost.

A. Think of a farmer with a spit prying a stone from the earth.

G. I have seen that many times but I never thought of it as the lever principle.

A. I tried to describe the lever principle to you but you can only remember
what you see and cannot turn my words into an abstract principle which is
a thousand many times superior to an example because it embodies in itself
myriads of examples.

G. Please do not try your moral principles on me. I am not a philosopher,
only a tyrant. But let me now change the subject. You have revealed and
want to reveal the secrets of nature. Can you also reveal the secrets of human
nature?

A. What I discovered was only a small part of nature’s principles. A multitude
of secrets remain. Human nature is in a way known to everybody who lives
a normal life of childhood, adolescence, adult life and old age. This means
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to have experienced maternal and paternal love, envy, human love, lust for
power, feelings of humiliation and so on. Your expression ‘secrets of human
nature’ is a misuse of the word ‘secrets’. I guess it comes from some soothsayer.

G. I believe some of the things they say. They reveal human nature to me.

A. With disastrous results, no doubt.

G. Please do not be rude. It does not become you,

A. And please do not treat me as a child.

G. I think that we do not quite understand each other because we lead differ-
ent lives. What do you make of your life now that you have attained a mature
age?

A. I think, I draw figures in the sand and, when this tires me, I walk around
Syracuse and meditate on the lives of others.

G. Your life seems to me a very easy one with no duties except to yourself.
My day is full of duties that you know very well. All the offerings to the gods,
the trials, the executions, the festivals, the receptions, the palace guard and so
on. And I must keep order in the palace, receive visitors and give and receive
counsel. There is no end to my duties.

A. As you say I know some of them. But there is a difference between you
and me. You can only partly enjoy my privilege: To decide for myself what to
do.

G. I can if I want to. I am the boss of Syracuse.

A. If you say so, your highness.

G. I hear from your exaggerated politeness that you do not believe me. I
am beginning to suspect that in your philosophical outlook on life only a
philosopher’s life is worth living, not that of a prince.

A. I do not pass judgment about life’s worth. In our time princes seem to be
absolutely necessary for other people to live normal lives. I mean that princes
keep order in the society, chase criminals, deter people from crime by severe
punishment and so on. Princes are beneficial to their subjects. At least this
is a general rule with many exceptions. May I say that princes seem to be
necessary to philosophers. Where there are philosophers there are also princes
and cities. But the opposite is not true.

G. Ahh, my dear Archimedes. To follow your thoughts sometimes requires
hard thinking. I realize that what you say about princes does not necessarily
apply to me. Nevertheless I am pleased to play such important part in the
society of men.

A. My measured general statement about princes does not contradict what
you just said.

G. I am pleased to hear that. I may seem happy and powerful but do you
realize that my life is in danger more than yours?
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A. Of course. You have power and power is always under attack. There are
personal enemies, palace intrigues and then the Romans.

G. The Romans are out to conquer the world. In their world there is no place
for me. I do not see myself as a Roman satrap.

A. I can understand you. Have you made any preparations for a defense?

G. Yes but my soothsayers tell me that I will lead a happy life. Military things
do not interest me much.

A. If the Romans attack will they come by land or sea?

G. I do not know. My advisers have no opinion in that matter. Except one.
He says the Romans are building a fleet.

A. I find this interesting. I often go down to the shipyard to see the workings
of the cranes and other machines used to move heavy things.

G. Can you help to build stronger fortifications? We shall perhaps need them.
I can give you command over a thousand soldiers.

A. Maybe we need stronger fortifications. But I think I may also improve the
old catapult at the shipyard. It is very primitive and has not been used for
years.

G. Very well, I give you the task.

A. But if I do not accept it?

G. I am the prince. Nobody in Syracuse contradicts me.

A. Yes, your highness. I will do as you want but you must understand that I
do not have the military skill to command a thousand men.

G. I believe your other skills are sufficient. You have a commanding presence.

A. But I am afraid that it is not good enough for a thousand soldiers. Soldiers
are useless for what I am to do . I shall need carpenters, smiths and rope-
makers.

G. I will give you what you want.

A. The Romans are not known for clemency. What do you think they will do
if they take the city?

G. I am not a sufficient prize to be paraded on the Forum Romanum. I believe
they will kill me and some uncouth Roman satrap will live in my beautiful
palace. Since the Romans have no use for mathematics and philosophy they
will kill you, too.

A. I fear you are right. We will both die. But in the meantime let me think
about the catapult and other things in the harbor.

G. Very well. The audience is at an end because my duties await me. I wish
both of us good luck. We shall need it.

\/\/\/
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THE PRINCE II

9 A Dream

The relation of science to political power is further illustrated in a dream that
the science reporter Kay Cary had after her meeting with Lady Scientia. It is
recorded in the following dialogue between Ms. Cary (C.) and the prince (P.)
who appears to her vaguely dressed in regalia.

P. I am the prince. Who are you?

C. I am Kay Cary and I am a journalist.

P. Then you are the one who talked to Lady Scientia! We two have common
interests or rather some points of contention. To avoid an unnecessary discus-
sion I inform you now that I am also from the other side and that I represent
the experiences of political power through the ages. I am the essence of po-
litical power, if you please. You have to be courteous and respect me as a
prince.

C. Of course.

P. I am sure that Scientia gave you a lesson about her favorite subject, the
origin of science. According to her, the practitioners of science are always
looking for a safe haven and free maintenance. They share these traits with
other fortune hunters, soothsayers, artists, astrologers, inventors and histori-
ans, just to give you a few examples. What they all want they generally find
close to the prince. This circumstance can be summed up very briefly: the
attraction of power.

C. That is about what she said. I thought it very interesting to hear her
description of the growth of science. Now I am interested to hear your opinion.
I was amazed when she said the culture of Old Egypt did not have much
science. What is your opinion?

P. It was not a sinecure to be Pharaoh. Too much to do with religion and
one’s own passing away and funeral and so on. For me it is not easy to say
what is science and what is not. I talked to Scientia about the subject but
unlike her I can only see the subject from the outside. I had a lot of builders
and sculptors and hordes of priests. Some of them wrote history. So what do
I know? My consuming interests were to conduct war and improve weapons.

C. Horrid!

F. And extend the might of my people!

C. Yes, Your Highness. But the Babylonians had science, didn’t they.

F. The old kingdom or the new kingdom?

C. The new.
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P. Not uninteresting. I visited some astronomers and saw their long calcula-
tions. But I was more amused by bards and soothsayers. My big interest was
better arrows to be used against lions.

C. Lady Scientia admired Archimedes.

P. Yes, I hired him for some time. Mostly he went around thinking but he did
not forget his meals. He was a bit of a bore but there was something about
him. As a prince one must be able to judge people.

C. Did he not help in the defense of Syracuse?

P. Not much that I saw. I believe that most of it is mythical.

C. Am I really talking to Pharaoh and Babylonian kings? I am beginning to
feel dizzy.

P. May I remind you what Scientia meant when talking about me. You must
realize that you are speaking to an abstract concept, the notion of political
power personified in me, the prince. Abstract concepts are very important in
every discussion. To have concepts and use them separates man from animals.

C. (confused) Sure, it separates man from animals.

P. (soothing) That I am a concept need not concern us much now. Let us just
continue. After all, you are a journalist.

C. (recovers herself) Yes, I am a journalist. Sorry about the interruption.

P. So, I continue. Warring is not all I do. As a prince I am responsible for the
welfare of my people.

C. I have heard that before. In politics. . .

P. No irony, please! Remember, not once more!

C. I promise. In antiquity didn’t the philosophers criticize the power of
princes?

P. You are wrong. The philosophers depended on me and did not dare to
criticize me very openly. They devoted themselves mostly to the human con-
dition from an abstract and religious standpoint. That is why they can be
understood long after they are dead.

C. How can you know this when war was such an absorbing occupation of
yours?

P. I was not at war all the time. As young man I took part in some academies.
Plato’s for instance,

C. What did you learn?

P. I only got a general impression. No details. That is the way it is when a
prince studies.

C. It must have been interesting for you to read Machiavelli’s book The
Prince.

P. I leafed through it but nothing was new to me. Others may find this book
interesting but to us professionals it contained nothing new.
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C. Listen to that!

P. Remember that I always mean what I say!

C. According to Mrs. Scentia real science started with Galilei.

P. I know her views. They are not mine. This Galilei had dealings with the
Pope, not me. My scientific favorite from that time was Leonardo da Vinci.
What drawings! I was very surprised to see how many things a corpse can
contain. Once I wanted him to paint my entire court. But I hesitated. Scientists
are risky company and I did not want to risk trouble with portraits that did
not suit some of my beauties.

C. His picture The Last Supper became very famous.

P. Only afterwards. As I recall, the Pope was not pleased.

C. But now the seventeenth century. This Descartes.

P. A fine courtier and entertaining, too.

C. Isaac Newton.

P. There was much talk about him but I never understood why. That things
fall I consider evident. Anyway, I had to care for him when he was famous. A
simple pension was out of the question so I made him director of the Mint.

C. The great writers. Shakespeare.

P. Not at my court. I heard that these writers were discussed in my absence.
But we must go on. Ask me something about the eighteenth century.

C. At about that time universities became important.

P. Maybe, but a very small post in my budget.

C. The French Encyclopedia became very important for science.

P. That book was a catastrophe for me. It incited the French revolution.

C. Do you still remember how it was to put your head under the guillotine?

P. Of course I do, but as an abstract concept one does not die so easily.
Political power changes owners. For a time.

C. And how did that feel?

P. Natural. I remember that the conduct of wars changed. The Prussians
started using breech-loaders. It led to a lot of shooting. Deafening.

C. War is not everything! What about the new way to travel?

P. I inaugurated many railways. The trains were shaky but they meant
progress.

C. How about the rising tide of industrialism?

P. Surely I noticed. And the terrible anarchists.

C. But did you notice any science? I am trying to keep to our subject.

P. Science nested at the universities without troubling the prince. Except
that I was given many honorary degrees. My religious duties were no longer
so numerous and I could devote myself to my power and the welfare of my
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people. As Bismarck did at that time. — But look here, Ms. Cary, to get me
to notice science, we have to pass to the Second World War.

C. Let us do that. What did you do?

P. I assumed so many different incarnations that it will take years to answer
this question. Instead, let me be brief. Helped by this incomprehensible Ein-
stein, another physicist discovered that some kind of uranium could split into
two parts plus a lot of energy. This meant a super-weapon, born in a simple
laboratory through quiet experimenting. Suddenly I had to revise my view of
science. In all my incarnations. In one incarnation I got the weapon formula
and wanted to keep it secret, as another one I wanted the formula and got
it in spite of my adversary. The bomb became highest priority and scientists
took part on all levels straight up in my own office. After the bomb was used
twice, it became a scare that meant a lot of money spent for defense and new
rockets. Perhaps I shall not burden you with all the details. As one incarna-
tion I sent up a rocket circling around the earth and as another incarnation I
answered by putting a man on the moon. In his place I now think that that
was a costly mistake. I got nothing out of it expect paying through the nose
to go to other places in the universe.

C. You sound rather cynical.

P. I am the prince.

C. Your life with science after the war. How was that?

P. Manifold. Several things became clear to me through my initiatives.

C. What initiatives?

P. I tried to have conferences for politicians and scientists. A complete failure.
The two groups did not understand each other at all. I also realized that the
scientists fight each other. But I had to pay more and more and create a foun-
dation for science supposed to revise science periodically and to give grants.
It is now so big and influential that the chairman is one of my incarnations.
A prince of science.

C. How did you react to the two gifts of science, television and computers?

P. I took them as they came. Politics remains the same in our now democratic
world. It meant that political power was divided and as a consequence there
are new incarnations for me. Some interesting ones also.

C. A many-headed prince.

P. That is right.

C. Did you have some political advantage from science?

P. It adds to the prestige of the state and gives me something to praise and
take credit for and brag about abroad. Indispensable for political power these
days.

C. What is your most recent interest in science?



358 Lars G̊arding

P. To fight it off. Scientists are very inventive, they always created new spe-
cialities and they always ask for more money. And they are masters of getting
public opinion on their side.

C. Did you notice what Scientia calls the industrialization of science?

P. No. What is that?

C. The industrialization is the proliferation of scientific articles with a dimin-
ished scientific value. She suspects that too much material is written with the
sole purpose of promotion. The fact that more and more names appear under
the headings of scientific articles points in the same direction. As you know
there is no promotion in science without publication.

P. That is not what my scientific adviser says to me. But it somehow fits with
my impression although I did not put it in words. Ms. Cary! You just put an
idea into my head. Industrialization and rationalization go together. I have a
new weapon. A healthy reorganization is in order! Science has grown like an
amoeba with no purpose! I will get my staff to invent and polish phrases like
that and I will be able to reduce the scientific budget to a reasonable size!
Public opinion and parliament will be with me! Ms Cary! Please excuse me, I
have to leave you. Important work lies ahead. Farewell.

The prince fades away, ms. Cary wakes up and does not quite remember
where she is.

\/\/\/
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COMMUNICATION I

10 The Two Cultures

The fields of mathematics, physics and technology are considered useful to so-
ciety but few students are attracted to them. The educator Frederick Forsyte
with a formative background in political science and literature has seen the
cause of this situation: the teaching of science does not employ the best meth-
ods available. His public campaign with this theme has attracted a lot of
publicity but also some angry rejoinders.

In the dialogue below Frederick Forsyte (F.) confronts the teaching he
criticizes. His science teacher for the occasion is Nomen Nescio (N.)

F. Welcome Mr. Nescio, I really want to know more about science, in partic-
ular what is called hard science, that attracts so few young students. I have
a background in political science and a bit in literature and this may explain
my curiosity. Let us start by using first names. I am Frederick.

N. I am Nomen. I feel a bit weighed down by my task but I will do my best.
What shall we start with? Do you have a favourite theme?

F. Not really, only white spots. Maybe you could explain relativity theory to
me.

N. Let me first explain the classical addition of velocities. Consider a person
walking in the corridor of a fast train and assume that he is walking in the
direction of the train. Suppose that his velocity is five kilometers an hour and
that the train has the velocity of 140 kilometers an hour. In this situation
an observer on the ground will observe that the person in the train moves
with the velocity 145 kilometers an hour in the direction of the train. On the
contrary, if the person was walking in the opposite. . .

F. But how can the observer on the ground really see the person in the corridor
and much less observe his speed? Everything goes so fast that he has no time
to think and no time at all to measure the velocity.

N. You are right, it was a stupid thought experiment. Maybe we could instead
think of a person walking on a moving band in an airport. Then the observed
velocity is his own velocity added to or subtracted from that of the band.

F. Added. You must mean increases and decreases.

N. Added means that if one of the velocities is a meters per second and the
other b, also meters per second, then the total velocity relative to the ground
is a+ b meters per second.

F. Formulas do not go with me. Please take figures instead!

N. If the band moves with 2 meters per second and the walker moves with
the same velocity with the band, the velocity of the walker, viewed from the
ground, or the floor in this case, is 4 meters per second. But if he walks against
the band he does not seem to move at all.
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F. Thanks. That is pretty clear. And now to relativity theory.

N. We have a long way to go.

F. But I have patience. What is the next step?

N. One hundred and fifty years ago, the physicist Fizeau found a method of
measuring the velocity of light in air and water and other material. In vacuum,
that is when air has been pumped away, he found the enormous velocity of
300 000 kilometers per second. The velocity is less in air and still less in water
and more opaque materials. By the way, these facts explain the everyday
noticeable refraction of light. But when Fizeau measured the velocity of light
in running water he found the same velocity with or against the flow of water.
Others after him made the same and better experiments and the result can
be summed up very simply: the velocity of light is independent of that of the
source.

F. How?

N. If you walk around with a flashlight in outer space and you light up an
observer who can measure the velocity of your light when it arrives to him, he
will always get the same figure whether you walk towards him or away from
him.

F. I do not see the point of this. I never walk in outer space with a flashlight.

N. You must accept thought experiments. Without them one can’t under-
stand physics. Without thought experiments science runs dry.

F. Not my science. In my world only facts can be accepted. And I understand
that also physics deals with facts in the form of real world experiments.

N. If I started telling you the details of the experiments whose conclusion
is illustrated by the flashlight in outer space you would immediately start
protesting. Too many facts and details.

F. I believe you.

N. I try again, also in outer space. Imagine that you are shooting pebbles
from a slingshot towards an observer and that the observer can measure the
velocity of the arriving pebbles. Then he would be able to notice if you moved
towards him or away from him when shooting. If, for instance, you shoot
standing on a rocket which moves towards the observer with a velocity of a
thousand kilometers and hour, he should take care. And if the rocket went
away from him, he would never see the pebbles.

F. Yes, clearly. But I find your thought experiment a bit drastic.

N. I have in mind a comparison of the pebbles and the slingshot with light
and the flashlight. The results of the two experiments are entirely different.
The observer finds that light always arrives with the same velocity while the
pebble sometimes arrives with a large velocity and some times not at all. You
must understand that the experiment with the flashlight made an entire world
collapse.
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F. What world? How could a thought experiment have this effect?

N. The world of commonplace observations and scientific thought about mov-
ing bodies. In our conversation the thought experiment must serve as a real
one. We must be able to make hypotheses and pretend. To use make believe.
Otherwise we shall get nowhere in physics.

F. Funny. In sociology make-believe is not permitted. One must have facts
and theory. It is best to have both.

N. Theory is a form of make-believe, also in humanities and the social sciences.

F. That is not what we think. Theory is something that keeps together a large
collection of facts.

N. But more often than not in a comprehensive and diffuse way, if you do not
mind. In your fields of science, theory is mostly about interpretation. And do
you not agree that theories in the humanities and the social sciences are often
personal and rather imprecise? Like it is for philosophy, but good enough in
spite of that.

F. Now you are talking like a wise, old humanist. But what you say is true
only of certain theories. Others are very exact.

N. In physics and chemistry theory is something that has to make good nu-
merical predictions. Within measuring error, of course. But theory is more
than that. Theory is a tool for evaluating old and new observations and for
thinking about coming ones. Theory is more than a summary of facts. A good
theory of a phenomenon gives one a deeper insight into its nature, not only a
description.

F. You are very eloquent. I can agree.

N. We could perhaps go back to relativity theory. It says that no velocity is
greater than that of light in vacuum. As I said the theory started with the
observation that the velocity of light is independent of the velocity of the light
source. It shook am entire world.

F. What world? I asked that before but got only a vague answer.

N. Classical Newtonian mechanics. It is based on the addition of velocities.

F. Suppose, for completeness, that you give me a picture of Newtonian me-
chanics.

N. A picture cannot do justice to this theory. I have to start from the begin-
ning.

F. Is that really necessary?

N. I will try to make it as simple as possible. Newton stated three laws of
motion. The first one is that a body in motion, which is not subject to outer
forces, moves in a straight line and with constant velocity.

F. An example, please.

N. You throw a stone.



362 Lars G̊arding

F. It falls to the ground.

N. That depends on gravity, an outer force coming from the earth that acts
on the stone. Gravity exists as a force between all matter. The more matter
there is and the nearer one is, the greater force from gravity. On the surface
of the sun you would not be able to stand and also burn but that is another
story.

F. Your thought experiments are getting worse and worse.

N. I go back to the stone on earth. If you had thrown it in outer space at a
place where the attraction from the heavenly bodies is very small you would
have seen the stone move along a straight line with constant velocity.

F. But I have had enough of your thought experiments in outer space. Please
stay here on earth.

N. OK. For a short time after the stone left your hand, it moved very closely
to a straight line and with almost constant velocity. The effect of gravity can
not be observed by the naked eye. But if you shoot against a goal with a gun
you have to believe Newton. Otherwise you could not aim and hit.

F. To me Newton’s law is wrong. It is true only approximatively and then
only for a second. What kind of law of nature is that?

N. But you must understand that Newton’s laws of motion express the inner
core of his theory. All outer circumstances are peeled away.

F. But these are very important and cannot be avoided.

N. Newton’s laws constitute the philosophical foundation of a theory of mo-
tion and they are verified by their predictions of planetary motion, weight-
lessness in satellites and millions of successful constructions of moving parts
in machines.

F. That is all very good but I want you to explain Newton’s theory to me.

N. Newton’s second law says that the rate of change of momentum with
time is proportional to the acting force. The third law, finally, says that to
every force there is a counterforce, equal in magnitude and with an opposite
direction.

F. This is impossible to understand. I hardly heard the word momentum
before.

N. The momentum of a stone is the product of its mass and velocity, direction
included.

F. How could you use the word without explaining it first? You do not follow
current pedagogical principles. Can’t you explain so that I understand?

N. To understand one must first have an example. I give you another one and
regret that it takes place in outer space. Imagine a rocket with a weak but
long-lived driving engine. By Newton’s second law of motion it will with time
increase its velocity to many times the velocity of light. But this contradicts
the law that no velocity is larger than that of light in a vacuum.
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F. But light and the rocket are entirely different.

N. Both are influenced by gravity. One of the first verifications of Einstein’s
theory was that light rays are bent by gravity when passing a big chunk of
matter. The planet Venus, I believe.

F. Could we not leave light aside and occupy ourselves with Newton’s theory.

N. To be able to really understand it you must first understand quite a bit of
infinitesimal calculus and then yourself predict by computation a number of
typical cases about things thrown and trains and cars colliding. After a while
you would be able to deduce planetary motion as an exercise. How the planets
move in elliptical orbits around the sun.

F. But I told you that I and mathematics do not go together. There must be
a simpler way.

N. An encyclopedia addresses the public. There you can read among other
things the following text about Newton’s law of gravitation: ‘. . . a statement
that any particle of matter in the universe attracts any other with a force
varying directly as the product of the masses and inversely as the square
of the distance between them. In symbols, the magnitude of the attractive
force F is equal to G, the gravitational constant, a number, the size of which
depends on the system of units. . . ’

F. You told me this already in a simpler way and without formulas. I want
better explanations that I can understand.

N. I did my best. I sketched a course of study. The only thing missing is a
list of books you have to read.

F. But I told you that I cannot stand mathematics. And I share this predilec-
tion with 99 percent of the educated public.

N. This means that your wish cannot be fulfilled.

F. Maybe, but I am still convinced that I am right about simpler explanations.
Moreover, if I remember right you said that there is something with light that
says that Newton is wrong. And then I do not have to understand Newton.
Besides, since his theory is wrong, it may be impossible to understand. Why
is it not scrapped? I read that the ideas of Aristotle are all in the dust bin.

N. The velocity of light is immense, a hundred thousand times the respectable
velocity of 300 kilometers an hour. Newton’s theory is very good and for
practical purposes exact for velocities that are much smaller than that of light.
It is also interesting in itself and has any number of practical applications.
There is no reason for you not to understand it.

F. I give up. Can’t we start with relativity again?

N. It will be worse for you than Newton’s theory. Classical mechanics fits very
well with man’s experiences with lifting and throwing. But relativity theory
has no such basis in everyday life. We have no experience of extreme velocities.
Finally, the mathematics that you shall need is much more advanced than for
Newton’s theory.
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F. If what you say is true, I do not stand a chance of understanding relativity
theory.

N. Now I will try a more phenomenological road. The theory says that time
slows down as the velocity increases. For instance, if you embarked on a train
that went around in a loop with almost the velocity of light and then came
back, and we met again, I would be very old, maybe even dead, and you would
look the way you are now. More: if you had been able to measure the length
of a wagon on the train at the same time that I did it from the ground, your
length would be much shorter.

F. You are giving me fairy-tales! Your thought experiments are getting out
of hand.

N. Sorry.

F. What is it in science that makes it so hard to understand?

N. I believe that the difficulties are mostly in the exact sciences and mathe-
matics. They are there because everyday experiences of man do not suffice as
a background or paradigm for the mind. Perhaps the necessary paradigm has
to be hammered in first. After that it is possible to understand.

F. I detest the word hammered in. You seem to prefer old-time teaching. As
you know it is fought by the entire school leadership.

N. I mean that the study of the subjects in question requires both time and
a kind of inner absorption. When the school also has to produce results with
less willing pupils only a bit of rough teaching will do. That most of the stuff
disappears from their heads after some time when not used is only natural.

F. I think you are wrong. There must be a way. Everybody has the same kind
of brain.

N. That is true. But I repeat: everyday experience is not enough. It suffices
for many things like political science and general statements about animals
and vegetation but not for the exact sciences physics and chemistry. And not
at all for mathematics.

F. You are wrong. Political science and sociology have many theories and
most of them are difficult to understand.

N. You can say that with a certain authority. But I think that the source
of the difficulties lies only in an extended terminology. The basic facts are
generally accessible to the educated public. It shares its basic experiences of
society and daily life with the originators of all these theories.

F. You are wrong. There are theories of state and democracy that are very
difficult to understand even for me. There is a great gap between the naive
reader and advanced political science.

N. Let me take Derrida or some other willful sociologist as an example. It may
be difficult to understand what he means but what he says is more often than
not personal interpretations based in some abstruse intellectual tradition. In
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science we have constructions and notions that are supposed to be understood
by anybody independently of cultural background.

F. Not everybody. You have to make an exception for me.

N. I meant everybody with enough time, interest and motivation to under-
stand.

F. Thanks for the compliment.

N. Let us continue without personal remarks.

F. I agree.

N. If you excuse me, I have a theory about why you wish that scientists should
explain their theories better to students and the public. You are led by your
own experience that the social sciences and literature can be explained to the
public even when originally presented with an overdose of terminology.

F. That is not my opinion.

N. Let me take the press as an example. When the press wants to explain
cultural matters to its readers, the material comes from the social sciences
and the humanities. My explanation is that this material can be explained to
educated readers and also has an element of entertainment in it. Otherwise it
could not motivate its existence in the press.

F. But the sciences, too, are written about in the press.

N. But only when the material satisfies my criterion of being understandable
by educated readers. The nuclear bomb provides the background to physics,
new materials to chemistry. Theory has no place.

F. But it is not right to take the press as an example. It has been watered
down more and more to satisfy a decreasing ability by the readers to accept
serious material.

N. The watering down has had an effect on the frequency of cultural material,
not on its quality.

F. Yes, I believe you are right. I believe also that my lesson should end here
with a confession. In order to survive in my bureaucratic profession I must
now and then take some initiative especially when journalists are present.
Therefore I once said that scientists ought to explain their results better to
the public and in the schools. I think the same now but I have no illusions of
being taken seriously. Most people who heard or read my message probably
saw it as a pious hope if they even noticed it. That you took it seriously can
perhaps be seen as professional mishap. Yours and mine.

N. After this ambiguous statement I give up my pedagogical efforts. But I
hope that our conversation has disturbed a certain smugness. Whose it is I
do not say. Goodbye.

F. Goodbye.

\/\/\/
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COMMUNICATION II

11 Metaphors6

Below, a somewhat aggressive journalist (J.) is interviewing Boriander (B.),
professor of physics, in his office.

J. You have just published a book about the inner secrets of atoms. Is it
possible to explain what this book says?

B. No one knows the inner secrets of atoms. My book is only a review of the
difficulties one encounters when trying to combine gravity with electromag-
netism and nuclear forces. Whether these difficulties can be explained or not
depends on the reader or listener.

J. But the book has received a big prize!

B. Naturally, I am happy about that!

J. The public always wants to hear more about science. Couldn’t you try?

B. I don’t think it is a good idea to shower the public with technical language.

J. As a member of the general public, I agree completely with you. But I
think that I and my readers could need a short introduction to your kind of
physics.

B. Sure. Every chemical element consists of only one kind of atom.

J. Element?

B. For instance boron and cadmium.

J. They are unknown to the public. Are there not simpler examples?

B. We can take oxygen and hydrogen. We breathe oxygen and there is hydro-
gen in water. Water is a chemical compound of oxygen and hydrogen.

J. Couldn’t we simplify a bit and take water instead of hydrogen. Everyone
knows what water is.

B. But water is not an element. As I told you it is a chemical compound of
oxygen and hydrogen.

J. Sorry.

B. I repeat: every element consists of only one kind of atom. Every atom
consists of a nucleus and a shell of electrons.

J. How shall I think about the nucleus? As a stone in a plum?

B. It is too concrete. Just think of it as something heavy in the center of the
atom.

6 X-rays, a Nobel prize, relativity theory and the nuclear bomb made physics a
subject for the media. To convey a sense of the theoretical side of physics to the
public, metaphors are a necessity.
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J. Such as a stone in a plum!

B. This metaphor is too concrete!

J. All right, but this shell of electrons?

B. An electron is a very, very small particle carrying a negative electric charge.

J. But shell?

B. The word particle cannot be taken at face value. We could say that every
electron turns around in an orbit around the nucleus. It is this orbit that
constitutes a shell. Many electrons give many orbits that together constitute
a many-layered shell.

J. Can I say that the electron turns around so fast that it can’t be seen?

B. Unfortunately this is a meaningless statement. We cannot see a single
electron, only its action as an electric charge. That it turns around the kernel
is just a picture.

J. Shall we not go directly to the nucleus?

B. But perhaps first to the periodic table.

J. And what is that?

B. The elements can be ordered according to what is called their numbers.
The number of an atom is the number of electrons it contains in electric
equilibrium. The numbers of the elements go from 1 for hydrogen to around
200 for and lead and uranium.

J. This tells me nothing. Why the word periodic?

B. One can order the elements in periods with similar chemical properties.

J. What you say is getting meaningless to me.

B. It was perhaps not so smart to start with the periodic table. It is all im-
portant in chemistry but maybe not just now. So I start again. Every nucleus
is built in a complicated way by gluons and quarks. The Greek word gloios
means a sticky fluid.

J. How does it all look together? Like plums in a sauce? I am sure that you
realize what dessert I am talking about.

B. Maybe you are thinking of the quarks and the gluons. This picture is
too sharp. The quarks and gluons can’t be seen. There are also larger units,
positrons and neutrons. Your metaphor is both useless and wrong.

J. I beg your pardon.

B. You must think in a more abstract way. Metaphors do not help.

J. But metaphors help my readers. The people that I write for. What I write
does not make sense without metaphors.

B. Your metaphors are harmful. The right thing to do is to imagine the nu-
cleus as something very small that consists in a vague way of quarks and
gluons.
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J. I love metaphors. Couldn’t I say that the nucleus is like a piece of raisin
cake? I mean with the quarks and gluons.

B. No. Your desserts do not give a good idea of the nucleus and its complicated
structure. Just think of the nucleus as very small and do not forget the electron
shell.

J. That’ll be very difficult. Perhaps a bundle of threads with the ends sticking
out?

B. It is better but not needed. The atom is like a small peppercorn swarmed
by very small flies.

J. Excellent! Thank you!

B. I did not mean that. I take it back. The atom is something very small
consisting of quarks and gluons. That is all.

J. You forgot the shell!

B. Sorry.

J. But I try again. The atom is like a ball of white almond icing stuffed with
small chocolate pieces and surrounded by curling silk paper. I think that is
fine.

B. No, no please, no. If you write that you will scandalize me.

J. But without metaphors my evil chief editor will sack me.

B. That cannot be helped.

J. You are extremely heartless.

B. I understand your position but you must also understand mine. One cannot
see an atom. It is only through theoretical physics and mathematics that we
can say anything about them.

J. But that is not true. We can think that we see them. Atoms are small,
small particles. All matter consists of atoms. The word ‘small particle’ is also
a metaphor.

B. You are right. But if ‘small particle’ is all we knew about atoms and
molecules we would not know more about matter than the old Greeks.

J. But they knew a lot, I think. Didn’t they have atoms?

B. Perhaps. But they did not have the periodic table system, for instance.

J. And what is that?

B. I tried to start an explanation a moment ago.

J. Sorry, but I am trying to make an interview.

B. It is perhaps best that we start again with my book. It shows that the com-
prehensive theory, called ‘theory of everything’, which is is supposed to unite
electromagnetism, the nuclear forces and gravitation, is logically impossible.

J. Gravitation?

B. That means attraction by masses.
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J. Thank-you. What you say sounds very interesting. Theory of everything.
But there is already a theory for everything. For all people and everything
that happens. We have had Darwin and Einstein and Freud and people with
literary theory and all the others. Frankly speaking, I believe that you are
wrong. There is a theory of everything.

B. ‘Theory of everything’ is a facetious metaphor for a theory that combines
all four known forces of nature, the electromagnetic one, the two subatomic
forces called the strong and the weak force, and gravitation.

J. I can’t help thinking that some people are like a force of nature.

B. That is outside our subject.

J. Sorry. But I must say that the names that you give to your forces are very
bad to say the least. You have absolutely no imagination.

B. Names are inessential. The essential thing is that physicists know what
they mean. Two of my forces could said to be nuclear after the nucleus. The
weak and the strong nuclear force.

J. It is a little better but the public must have more than neutral names to
attach their thoughts to.

B. One could say that the weak force keeps the nucleus together. The strong
force protects the nucleus against strong radiation but not against very strong.
Then the interior of the nucleus changes, the protons and neutrons flow to-
gether to a soup of quarks and gluons.

J. Excellent! Soup!

B. This means that very many quarks and gluons lie in disorder and tight
together. As the molecules in water. We observe radiation from something
that earlier was protons and now has changed to something else and must
have a name. The word quark means a theoretical particle that can only be
observed together with other quarks.

J. Fascinating. But can it be used for something?

B. No. We have to do with a state that can only last for a fraction of a second
under the influence of extreme forces brought about by a collision.

J. So that were the two forces. And after that?

B. Electromagnetism and the nuclear forces are subject to a mathematical
theory called the standard model.

J. Another neutral name saying nothing.

B. Once many physicists were responsible for the mathematical and physical
parts of this model. So many that it was inconvenient to quote them all. Then
the name became what it is.

J. I see. I feel uncomfortable that you mention the word mathematics. I was
terrible in that subject at school.
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B. It is not the first time that I hear this confession. With time one becomes
insensitive to it. The task of mathematics is to give a strict frame that does
not allow loose conjectures which destroy physics.

J. I am sorry about that. But what does your book say?

B. That if the standard model is extended to include also gravitation, only
serious contradictions can result.

J. Why that?

B. It is explained in the book.

J. I can’t take that as an answer. Say more.

B. I could say that the standard model cannot be combined with gravitation
without exploding.

J. I hope it did not.

B. But it did. Under my eyes. But it was a logical explosion on paper and in
my brain.

J. That cannot be understood.

B. Not verbally perhaps, but with a little imagination. It was only a personal
experience.

J. And what are the consequences for the British people and for humanity?

B. None.

J. Do you think anyone would be interested?

B. No, the only thing of importance is the book where I have proved that the
standard model and gravitation are incompatible.

J. Is anyone interested in that?

B. Everyone who tries to make a theory for everything.

J. You may be wrong.

B. This is an eventuality for every researcher.

J. But if what you did may be wrong, why should it be in the paper?

B. You came here. The editor who sent you tries to cover the frontier of
research. Besides, if you do not write anything, nothing will appear in the
paper.

J. Sorry, I take it back. I was stupid. But you must understand that you are
not a very responsive person when it comes to interviews.

B. I am sorry. You could perhaps write about my hobby?

J. With pleasure. What is your hobby?

B. I share it with many. Bird-watching.

J. Yes, well I think we are ready now and I thank you very much.

The following account of this conversation appeared in the press the day
after.
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A discovery in physics

The walls of Professor Boriander’s office are lined with books. His desk
is clean except for a computer. The professor himself, in blue jeans and a
green sweater, makes a youthful impression although retirement is approach-
ing. We are going to talk about modern physics where Boriander recently
made a breakthrough. He has proved that the much wanted theory of every-
thing leads to contradictions. The professor himself, on the contrary, is not
contradictory. His clear intellect illuminates our conversation when he gives
me a lively description of the smaller parts of atoms, among others the enig-
matic quarks, and explains that the name ‘theory of everything’ is a technical
term which is used because so many were involved in the work that it was too
much trouble to mention all of them. Therefore no one is mentioned. And it
is perhaps best so now when the theory has been proved to be contradictory.
Boriander describes his discovery as an explosion on paper and in the brain.
But he is careful to point out that he, as all researchers, may be wrong. But
we hope that time will prove him right.

J.
\/\/\/
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COMMUNICATION III

12 Art and Science

Louise Larfeldt (L.), art professor and Patric Predient (P.), professor of chem-
istry, have both been engaged to appear in a popular radio program on Chan-
nel Four called Art and Science. Below they rehearse their future appearance.

L. I suggest that we start our rehearsal straight away. Call me Louise.

P. Thanks, I am simply Patric. Why did you accept to take part in the Art
and Science series. It seems to me to be pure entertainment.

L. To me it is not only entertainment. Art and Science are indispensable to
everybody. Without them we would not be human. Why did you accept?

P. By vanity. To be asked is a sign of appreciation which is difficult not to
enjoy.

L. The same feeling bit me, too. Like you I’m only human. But in my work
publicity does not hurt. When I think about our future performance I do not
quite know how to start. Art and Science, painting for me and chemistry for
you, seem to have nothing in common except the paint.

P. I am sure that we will have a moderator giving some kind of introduction
where he says, roughly, that art and science are sisters in human culture.
I have my own theory about that. I believe that the pair ‘art and science’
comes from the princely courts a long time ago. There art and science were
both activities that were useful to the prince. Something like tokens of his
princely might. For instance impressive works of art to show his good taste
and science or something similar to show his spiritual powers. That is why art
and science came together at a princely court. And now it is the state that
adorns itself in the same way.

L. I do not believe you. Now that we live in a democracy, the prince is old
hat.

P. If you excuse me, I want to insist. The state has taken over after the prince
with about the same motives. The prestige that we, I mean art and science,
once acquired as the finer parts of a princely culture still sticks to us. As just
any chemist I would not have been invited to our program. But now I am a
state official and a known scientist and also known to write in the press.

L. Your credentials are not too bad for what we are going to do.

P. Not bad at all. I admit that. They fit precisely.

L. But let us be a bit serious. In what way does the stuff we do have anything
in common and in what way are we useful to each other?

P. We have not started yet. My speciality is nucleic acid. I am an organic
chemist. This means that I have a vague connection with DNA, the new
genetics, but only in a distant way. That is me.
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L. And I am as established painter of the postmodern variety. To go with the
times I began to do installations and succeeded well. Now, for a period, I am
professor at distinguished art school. My students and I investigate reality
and imagination in many seminar groups. My students also paint.

P. For the moment I agree with you that the paint is the only link between
us. But this fact can only pass as a facetious remark in a conversation about
art and science. We must in some way or other find a subject for discussion
tying art and science together.

L. We could discuss conditions for research.

P. Not a stupid suggestion. Then we will be almost liberated from the attrac-
tions that made us eligible in the minds of those who run Art and Science.
And we have to conceal our professional identities under a mask of experience
and reason.

L. Please do not be so cynical. We do research all the time and gather a lot
of experience.

P. Give me two examples.

L. We have seminars on subjects like this: ‘When does a painting become a
painting?’ and ‘When does reality ceases to be reality?’

P. But your questions do not have answers.

L. On the contrary. We ask them in connection with examples taken from
our own experiences and our painting. You would be surprised to hear all the
interesting arguments in such debates. Don’t you have something similar?

P. No, I don’t think so. Our problems are different. We must have large com-
puter programs to master all the nucleic acids and their chemical composi-
tions. It is for instance extremely difficult to get pure specimens. Our research
deals partly with getting pure specimens, partly we worry about the interpre-
tations of computer pictures. We do not worry about existence except for
certain chemicals. I would be laughed down if I suggested a discussion with
the theme When does an experiment cease to be an experiment?

L. But research is not only systematic work. It means more, for instance
anxiety, thwarted hopes and sometimes success.

P. This is true, but where I am such things are kept strictly personal and
have no chemical or human interest.

L. I think that you are wrong. Personal and individual reactions are ex-
tremely important in art. And why not in science? Personal experiences are
all-important and even decisive for everybody.

P. If you do not mind I think that we have gotten nowhere with our compar-
isons. I mean that what we have to do during this session on Channel Four is
to try to say something interesting. To make personal confessions about this
and that is too common. It is better to say something about our subjects.

L. I tried but I did not hear much from you except protests.
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P. Maybe, but I cannot go against the convictions that I got when working
nucleic acids. But, I have an idea!

L. I can’t wait.

P. We could try to discuss the part that our subjects play here in daily life
in the beginning of the third millennium.

L. Agreed! I think that art is indispensable for modern man.

P. And I believe that the results of chemistry in the form of all new materials
is equally indispensable. Our daily life is dominated by polymers.

L. What do you mean by that?

P. For a long time chemists have worked with long chains of molecules called
polymers and this has given us plastic. The majority of things that we carry
are made of plastic. Earlier the same things were made of burnt clay or iron.
We live in the age of plastic. Five hundred years after us, archaeologists will
baptize our time the older plastic age because pieces of plastic is all they find
in their excavations. Organic material has disappeared and iron has turned to
rust.

L. But plastic is neither science nor art.

P. It is not art and not science but plastic is a creation of science.

L. But I want that we shall talk about the spiritual and human side of science.
And the social side, too.

P. I think that plastic has a lot to do with the social side. For instance in
the third world where light plastic vessels have made life much brighter at
the water wells. But I am afraid that the spiritual element that once was
present in chemistry has disappeared. I mean when chemists thought about
their subject in small laboratories or were happy at some discovery. All this
has disappeared into the impenetrable prose cover of scientific journals.

L. That’s a pity. We have tried to find something common to us both but we
have not achieved much. We seem still to be where we were with the paint.
Perhaps we shall need help.

P. Perhaps the moderator could do something. Let me imagine what he could
say. So, when I speak now, I am the moderator and you have to answer and
play your part.

L. That sounds good. Please start.

M. Tonight two distinguished scientists have agreed to come to talk about art
and science, a subject of growing importance in our time where globalization
and a dominating market threaten the soul of both art and science. My two
guests are Louise Larfeldt, a famous painter and a professor at the Academy
of the Free Arts, and Patric Predient, a world famous chemist and well known
science popularizer. We welcome both of them. Perhaps I should start with
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a question. How did you first get an idea of your future careers? Let me ask
Louise first.

L. Already as a young girl I felt an attraction to art and music and at first
did not know what I should choose. My many visits to the great European
museums finally led me to painting. This became for me the only way.

M. Thank you. And Patric, if I put the same question to you?

P. Curiously enough I also imagined a future as a musician, in my case the
clarinet. But then I went to the university and chemistry took over.

M. Well, you are both musicians. Did you feel anything musical in the careers
that you have chosen?

P. Chemistry reminds me in a way about the music of Bach. The two have
something in common, namely a careful no-nonsense texture that is sometimes
broken by strokes of genius.

M. And Louise, do you feel something like that?

L. For me a good painting is a piece of frozen music. I have felt that many
times wen I have done something that I really liked.

M. Isn’t it a wonderful thing that you both are musicians, heart and soul!
How do combine this with your daily work?

L. Not difficult. Sometimes I play ABBA when my own inspiration fails.

P. And I use to hum Rule Britannia when my work seems to go astray. It
cheers me up.

M. You are both scientists in your own way. How is it to do science these days.
Does your research not suffer from the new restlessness and the globalization?

L. You are absolutely right that the aesthetical sciences are strongly depen-
dent on research. Without it we would now paint like Delacroix. I can’t say
that the new restlessness has entered my creative work. I try by all means to
keep it away.

P. I like to go to conferences and therefore I like the new restlessness. So far.

L. You were not so bad as a moderator. Let me also try.

P. OK.

S. You represent very different branches of science. Let me ask if you are
aware of each other’s work?

P. I do not know about painting in a precise way, but I have eyes to see and
I am not insensible. The paintings of Velasquez in El Prado once made a very
strong impression on me.

L. I also use my eyes. And when I see so many things in everyday life that
are made of plastic, I think that the origin of all this is modern chemistry.
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M. You really seem to know about each other. Let me ask whether your
professions can give you fully emotional experiences?

P. In any case some kind of emotion. I am thinking of my feelings brought
about by disappointment and success. They can sometimes fill my entire per-
sonality for days.

M. I did not mean that exactly. I meant feelings brought about by a sense of
the unity of art and science in our culture.

L. It is precisely such feelings that overwhelm me almost every day. Art is an
infinite source of elevated feelings. Not only the unity of thought and space.
And the feeling of belonging to the universe.

P. You were not bad at all as moderator, Louise, although I think you were
a bit too far out in the universe. Perhaps we could finish now. I thought that
our problems were more or less solved by themselves now when have had a
moderator and answered some questions. I am no longer nervous about our
future performance.

L. Neither am I. But I do not think that we are done. Wasn’t it so that we
just unawares slipped into the question of how art and science hang together
and how the two fertilize each other? We assumed that this was our subject.
Without thinking as one does when writing a composition at school on a
prescribed subject. The name of the our theme is Art and Science. Why not
see it as Art and Science and make something out of the and.

P. I am thinking and I am ready to draw some conclusions that you may
have already made. In order to appear, we do not have to construct connec-
tions between art and science except for the paint. We just talk about various
things as they come along. And this is what we have done. We do not even
need a moderator oozing kindness and good will. Each one speaks for him-
self. Simple comparisons appear by themselves in such conversations. And we
understand each other without any forced comparisons. We have so much in
common. Everything that made us to what we are. The same language, the
same upbringing and the same country. We really understand each other.

L. You speak like a patriotic sociologist but I agree with what you say. If our
conversation had come straight out live on the radio we may even had been a
success. By the way, what did you think of me as a moderator?

P. I thought you were excellent.

L. And I that you were brilliant. Congratulations.

P. Thanks! See you later!

\/\/\/
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