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37.1
Introduction

The primary function of the skin is to provide a barrier
between the internal milieu and the external environ-
ment. The stratum corneum, where the skin perme-
ability barrier is localized, is composed of extracellular
lipids and corneocytes [1–4]. A defective permeability
barrier in atopic eczema (AE) is well known and corre-
lates with the clinical signs of xerosis, pruritus, scaling,
and roughness of the skin surface. The defective per-
meability barrier leads to an enhanced penetration of
environmental allergens into the skin and initiates
immunological reactions and inflammation. There-
fore, the barrier defect is crucially involved in the path-
ogenesis of AE. Common treatment strategies include
the application of lipid-based creams and ointments,
which aim toward the restoration of the defective per-
meability barrier. In the present review, the role of
lipids in AE will be discussed.

37.2
Physiological Role of Lipids in the Epidermis

Lipids are an indispensable part of the epidermis. They
are found in living cells, in particular as a structural
part of membranes (e.g., sphingomyelin) or other cell
compartments, or in the function of a second messen-
ger in signal transduction (e.g., cytosolic ceramide) [5,
6]. The epidermis is the site of active lipid synthesis,
regulated by alterations to barrier status [7–9]. Lipid
synthesis occurs largely independently from the influ-
ence of circulating lipids in the blood. Lipids are
important for the physical barrier of the stratum cor-
neum and enable its function as a border between the
dry environment and the water-enriched organism.

The stratum corneum is a heterogeneous, two-com-
partment tissue. Corneocytes are embedded in a con-
tinuous, lipid-enriched extracellular matrix organized
into characteristic, multilamellar membrane struc-
tures that mediate barrier function [1–4]. The lipid
composition of the stratum corneum consists of a mix-
ture of ceramides (45%–50%, by weight), cholesterol
(25%), and free fatty acids (10%–15%). Approximate-
ly 5% contain several other lipids, predominantly cho-
lesterol sulfate [10, 11]. The lipid membranes form a
continuous stacked and patterned lamellar sheet
around the corneocytes. The fluid content necessary
for enabling the tight lateral packing and the formation
of highly ordered gel phase membrane domains con-
sisting of ceramides and free fatty acids is provided by
built-in cholesterol deposits [12].

Epidermal lipids are synthesized within the kerati-
nocytes in all nucleated layers, from basal to granular,
and are stored in the lamellar bodies. Epidermal lamel-
lar bodies are cell organelles found in the upper spi-
nous and the granular cell layers. They have their ori-
gins in the Golgi apparatus and contain stacks of lipid
layers, mainly phospholipids, cholesterol, and gluco-
sylceramides [13]. In addition, hydrolytic enzymes
accompany the lipid-rich content. At the transition
from granular cell to corneocyte, the lamellar bodies
fuse to the cell membrane and discharge lipids and lip-
id hydrolytic enzymes into the intercellular space
[14–16]. The acid hydrolases, q -glucocerebrosidase,
acid sphingomyelinase, acid lipase, and secreted phos-
pholipase A2 convert phospholipids to free fatty acids
and sphingomyelin and glucosylceramides to cerami-
des [17–21]. The lamellar bodies also deliver prote-
ases, important for the regulation of desquamation
through desmosomal breakdown [22]. As involucrin,
loricrin, and transglutaminase-1 are shown to be mem-
brane-bound, the process of edge-to-edge fusion of
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Fig. 37.1. Formation of extracellular lipid bilayer structures
through exocytosis of lamellar bodies. Lamellar bodies con-
tain lipids and lipid degrading enzymes. Involucrin and other
cornified envelope proteins covalently bind long chain cerami-
des

lamellar bodies and the cell membrane allows the
anchor molecules to bind and the enzymes to catabo-
lize their substrate in the extracellular space [23, 24].
Figure 37.1 briefly illustrates exocytosis of lamellar
bodies and covalent binding of long chain ceramides to
cornified envelope proteins catalyzed by transgluta-
minase-1.

37.3
Abnormalities of Epidermal Lipids in Atopic
Eczema

A reduction of stratum corneum lipids in AE has been
reported for many years. The amount of surface lipids
measured in forearm skin is significantly and consis-
tently lower in AE patients than in normal control skin

or in patients with ichthyosis vulgaris, suggesting a
decrease in total stratum corneum lipids [25, 26]. Skin
surface lipids in AE have been shown to decrease, as
determined by the Sebumeter (Courage & Khazaka,
Cologne, Germany) [27]. Mustakallio et al. [28] charac-
terized and quantified epidermal lipids in AE with thin-
layer chromatography. Full-thickness epidermal sheets
were obtained by suction blistering during the winter
months from the volar aspect of nonlichenified forearm
skin of 12 patients with Besnier’s prurigo (chronic,
lichenified AE). As compared to samples from normal
controls of the same age, samples taken from symptom-
atic atopic epidermis displayed a decrease in total lipids,
phospholipids and sterol esters, as well as an increase in
free fatty acids and sterols. Recent studies suggest that
the decrease in phospholipids reflects a decrease in
sphingomyelinase activity in AE [29]. Schäfer and Krag-
balle [30] found increased activity of phospholipase A2

and an incomplete transformation of phospholipids
into other lipid classes in AE.

37.4
Impaired Ceramide Content and Metabolism
in Atopic Eczema

Ceramides are quantitatively and for structural rea-
sons most important for the permeability barrier of the
skin. Impaired ceramide content and metabolism in
AE have been reported in several publications. Howev-
er, the functions and requirements of specific ceramide
types are not yet fully understood. Nine ceramide sub-
fractions have been identified in human stratum cor-
neum [31–34]. Among the nine ceramide subfractions,
ceramide 1 was most significantly reduced in both lesi-
onal and nonlesional skin [35]. However, ceramides 2,
3, and 4 were also reduced in lesional stratum corneum
[36]. Reduced ceramide 1 in the stratum corneum of
clinically dry skin, without signs of eczema, was found
in AE by Yamamoto et al. [37]. Significantly lower levels
of ceramide 1 and 3 and higher levels of cholesterol
were found in AE versus control subjects. The decrease
in ceramide 3 significantly correlated with the degree
of barrier impairment [35, 38]. Bleck at al. [39] found a
double peak in nonlesional skin from AE patients using
high performance thin layer chromatography formed
by a homologous series of monohydroxylated and
monounsaturated ceramide subfractions of different
chain-lengths, containing either C16 and C18 or C22, C24,
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and C26 [ -hydroxy fatty acids, in contrast to the single
peak found in stratum corneum ceramides in samples
taken from normal skin, or from skin affected by senile
xerosis, psoriasis, and seborrheic eczema. It is worth
noting that the relative amount of all other stratum cor-
neum lipid classes in AE, including squalene, cholesterol
esters, triglycerides, free fatty acids, cholesterol, choles-
terol sulfate, and phospholipids did not differ signifi-
cantly from controls in this study. A reduced amount of
total ceramides and ceramide 1 was also found in the
stratum corneum of atopic dry skin [40]. Whereas the
content of ceramide 2, 3, 4 plus 5, and 6 was also reduced,
it was not of statistical significance. Substantial indirect
evidence points to the importance for permeability bar-
rier function of the most nonpolar species, ceramides 1
and 4, which contain linoleic acid K -esterified to an
unusually long-chain N-acyl fatty acid (C 30 acyl-cera-
mide) [21]. In essential fatty acid deficiency associated
with profound barrier abnormality, oleate substitutes
for linoleate as the predominant K -esterified species in
basal-ceramides 1 and 4 [11, 41–43]. Only when acylce-
ramides are added to model lipid mixtures of cholester-
ol, free fatty acids and non- K -esterified ceramides, do
membrane structures form which resemble those pre-
sent in stratum corneum extracellular domains [44]. K -
hydroxyceramides in the ceramide family are generated
by a cytochrome P450-dependent process [45].

Generation of ceramide results from synthetic path-
ways involving serine palmitoyl transferase and cera-
mide synthase, and from the hydrolysis of glucosylce-
ramides by q -glucosylcerebrosidase and sphingomye-
lin by acid sphingomyelinase [17, 19, 21, 46, 47]. Uchida
et al. [38] found that epidermal sphingomyelins of dif-
ferent structures are precursors for ceramides 2 and 5,
two of the seven stratum corneum ceramides. In the
same study it was shown that other ceramide types,
including the K -hydroxyceramide species, are not
derived from sphingomyelin. Rates of ceramide syn-
thesis and activity of rate-limiting enzyme serine pal-
mitoyl transferase in the epidermis of AE have not yet
been determined due to the invasive nature of such
studies and the sample size needed for such experi-
ments. It has proven easier to examine hydrolytic
enzymes, because their activity levels peak in the stra-
tum corneum, where the barrier function is localized.
Stratum corneum samples are easy to obtain without
the risk of scar formation. Jin et al. [48] examined q -
glucocerebrosidase and ceramidase activities in the
stratum corneum of AE and age-related dry skin. As

they did not find differences in either q -glucocerebro-
sidase or ceramidase activities in uninvolved stratum
corneum of AE, the decrease of ceramides in AE could
not be attributed to increased ceramide degradation.
Glucosylceramides appear to have no significant influ-
ence on epidermal barrier function. Likewise, Redou-
les et al. [49] confirmed the presence of unchanged
q -glucocerebrosidase in stratum corneum from nonec-

zematous dry skin of AE patients. Of five enzymes
examined by these authors, AE displayed significantly
reduced trypsin activity, increased acid phosphatase
activity, and no changes in either secreted phospholi-
pase A2 or chymotryptic protease activities.

The epidermis contains two sphingomyelinase iso-
enzymes: an acidic sphingomyelinase, localized in epi-
dermal lamellar bodies, generating ceramides for the
extracellular lipid bilayers of the stratum corneum; and
a neutral sphingomyelinase, important for cell signal-
ing during permeability barrier repair [6]. Kusuda et
al. [50] investigated the localization and amount of acid
sphingomyelinase protein in lesional skin of AE. The
authors generated a polyclonal antibody and found
immunostaining extending from the upper spinous cell
layers to the upper stratum corneum. Moreover, total
amounts of enzyme protein, measured by quantitative
immunoblot analysis, were slightly increased in lesio-
nal versus nonlesional stratum corneum from AE
patients. Although these results suggest that acidic
sphingomyelinase activity is normal in AE, direct assa-
ying of enzyme activities has only recently been per-
formed. We found reduced acid sphingomyelinase
activity and reduced neutral sphingomyelinase activity
already in nonlesional and more pronounced in lesio-
nal epidermis of AE [29]. The reduced sphingomyeli-
nase activities in AE result consecutively in decreased
levels of ceramides and provides a possible pathome-
chanism for the barrier abnormality in AE [28, 52–54].

Additional theories regarding the reduction of cera-
mides in AE have been presented. Murata et al. [55]
described that AE epidermis contains glucosylcerami-
de/sphingomyelin deacylase, an enzyme that cleaves
the N-acyl linkage of both sphingomyelin and glucosyl-
ceramide. Sphingomyelin deacylase reduces the quan-
tity of ceramides by releasing free fatty acids and
sphingosyl-phosphorylcholine. The enzyme was found
to be elevated in the stratum corneum of both nonlesi-
onal and lesional AE skin [52–54]. However, our
recent experiments have shown much lower activity of
sphingomyelin deacylase than acid sphingomyelinase
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in human epidermis (less than 6%), suggesting that
increased sphingomyelin deacylase is quantitatively
less important than the reduced acid sphingomyelinase
activity for the reduced ceramide content in AE [29].

The hydrolysis of ceramides is an even more com-
plex process. Prosaposin, a large, proteolytically
cleaved precursor protein, forms a group of sphingoli-
pid activator proteins, which stimulate enzymatic
hydrolysis of sphingolipids, including glucosylcerami-
des and sphingomyelin. Prosaposin has been found
essential for normal epidermal barrier formation and
function [56]. Decreased levels of prosaposin were
found in ELISA studies of atopic epidermis using a
polyclonal antibody to saposin D. The authors suggest-
ed that abnormal stratum corneum formation in atopic
skin might contribute to the suppression of prosaposin
synthesis through lower activation of q -glucosylcere-
brosidase or sphingomyelinase [57].

Fig. 37.2. Main avenues of
ceramide metabolism in the
epidermis. Ceramides are cru-
cially involved in forming the
permeability barrier of skin.
In addition, ceramides are
second messengers in cytosolic
cell compartments of the epi-
dermis (adapted from [119])

Fartasch et al. [58] described the disturbed extru-
sion of lamellar bodies in dry, noneczematous skin of
AE, and suggested that this mechanism may be respon-
sible for stratum corneum lipid abnormalities found in
AE. Ohnishi et al. [59] provided an additional theory
for the decreased ceramide content in AE by collecting
bacteria from the skin surface of eczematous and nor-
mal-appearing skin of AE, erythematous skin lesions
of psoriasis, and normal control skin for selective bac-
terial culture. It was found that more ceramidase was
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secreted from the bacterial flora of both lesional and
nonlesional skin of AE than from either lesional pso-
riasis or normal subjects. Sphingomyelinase secretion
levels, in contrast, were similar in bacteria obtained
from AE, psoriasis, or controls. The authors therefore
suggest that ceramidase-secreting bacteria, which
contribute to the stratum corneum ceramide deficien-
cy in AE, colonize the skin of AE patients. However,
our recent finding of reduced epidermal sphingomye-
linase activity [29] suggests that the sphingomyelina-
se from skin surface bacteria does not significantly
affect the pathogenesis of AE (unpublished data). The
pathways of ceramide metabolism are summarized in
Fig. 37.2.

37.5
Ceramides Bound to Cornified Envelope
Proteins in Atopic Eczema

Protein synthesis in the epidermis allows formation of
the cornified envelopes and degrades specific parts of
the lipid content. Epidermal differentiation and prolif-
eration are highly important for the formation of the
stratum corneum permeability barrier [24, 60]. Invo-
lucrin, loricrin, and other cornified envelope-associat-
ed proteins are synthesized by keratinocytes through
the process of differentiation [60, 61]. Formation of the
cornified envelope occurs through deposit and cross-
linking of involucrin and envoplakin on the intracellu-
lar surface of the plasma membrane in the upper spi-
nous and granular cell layers of the epidermis, which is
then followed by the subjacent addition of elafin, small
proline-rich proteins, and loricrin.

The phospholipid-enriched plasma membrane is
replaced by a ceramide-containing membrane bilayer
during the process of cornification. This bilayer then
attaches covalently to involucrin by K -hydroxyester
bonds [24]. Loricrin, envoplakin, and periplakin moie-
ties on the extracellular surface of the cornified enve-
lope provide a stabile structure for the anchoring pro-
teins [61, 62]. It remains unclear if proteins other than
involucrin are able to bind ceramides in the cornified
envelope. The amount of covalently bound ceramides
correlates with transepidermal water loss (as marker
for skin permeability barrier function) levels [63].

Macheleidt et al. [36] recently examined the amount
of covalently protein-bound K -hydroxyceramides in
AE. The amount of protein-bound K -hydroxycerami-

des, which are approximately 50% of the total protein-
bound lipids in healthy skin, decreased to about 25% in
nonlesional and to about 15% in lesional skin. They
additionally described that free extractable very long
chain fatty acids with more than 24 carbon atoms were
reduced in nonlesional and even more significantly
reduced in lesional skin. Metabolic labeling studies
with [14C]-labeled serine in cultured epidermis rein-
forced these results, finding decreased biosynthesis of
glucosylceramides and free ceramides in lesional skin
of atopic dermatitis compared to healthy controls. Syn-
thesis of ceramides containing very long chain N-acyl
K -hydroxy fatty acids esterified with linoleic acid and

6-hydroxysphingosine as sphingoid base (ceramide 1
and 4) was reduced, along with ceramides consisting of
a nonhydroxy N-acyl fatty acid and phytosphingosine
(ceramide 2 and 3). From this evidence, it was conclud-
ed that a defective corneocyte-bound lipid envelope
contributes to abnormalities in barrier function and
skin hydration. This conclusion was supported by our
very recent study on epidermal differentiation in AE
[29]. We found reduced involucrin protein content in
lesional skin and even more pronounced in nonlesio-
nal skin of AE. This indicates that reduced involucrin
content may also cause the reduction of the amount of
covalently bound K -hydroxyceramides in AE, as low-
ered involucrin levels fail to provide sufficient sub-
strate material for the attachment of ceramides.

37.6
Roles for Fatty Acids in Atopic Eczema

The importance of free fatty acids and cholesterol in
AE is less understood, although the role of essential fat-
ty acids in AE has been studied for many years.
Research from the 1930s to the 1950s established that a
deficit of n-6 essential fatty acids leads to an inflamma-
tory skin condition. An essential fatty acid-deficient
diet was later shown to induce extremely scaly, red skin
and an up to 10-fold increase in transepidermal water
loss rates in mice [41, 64]. This progressive increase in
levels of transepidermal water loss correlated with
alterations in the structural membrane [65], explaining
the replacement of linoleate with oleate in both epider-
mal ceramides and glucosylceramides [66]. Symptoms
of essential fatty acid deficiency in animals can be
reversed by systemic or topical administration of n-6
essential fatty acids such as linoleic acid, * -linolenic
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acid, or columbinic acid [64]. Although there is evidence
for low blood concentrations of essential fatty acids in
AE, no deficiency in linoleic acid has been identified.
Linoleic acid concentrations tend to be elevated in
blood, skin, and adipose tissue of patients with AE,
although levels of its downstream metabolites are sub-
stantially reduced [67]. These observations suggest that
the conversion of linoleic acid to * -linolenic acid might
be impaired in AE [68]. Results on the efficacy of sys-
temic or topical n-6 essential fatty acids in AE treatment
have not been conclusive. Most studies have shown that
administration of * -linolenic acid appears to reduce the
clinical severity of AE [69]. However, the largest pub-
lished placebo-controlled trials of either n-6 or n-3 fatty
acid supplementation in AE found no consistent benefit
[70]. In a recent study, the same authors again concluded
that * -linolenic acid is not beneficial in AE [71].

Henz et al. [72] examined the efficacy of borage oil
(> 23% * -linolenic acid) in a double-blind multicenter
study of 160 patients with AE. Although the overall
response was not statistically significant, a subgroup of
AE patients showed clinical symptoms significantly
improved with borage oil treatment in comparison to
placebo. It is not yet fully understood whether * -linole-
nic acid influences epidermal barrier function, modu-
lates eicosanoid metabolism, or modulates cell signal-
ing [73]. Although a reduction of linoleic acid in cera-
mide 1 has been reported in AE [37], it is not yet estab-
lished whether topical or systemic application of n-6
fatty acids normalizes linoleic or * -linolenic acid con-
tent in ceramide 1. Preliminary data from Michelsen
(personal communication) shows that oral treatment
with n-6 fatty acids had no significant impact on cera-
mide content or composition.

It is currently being examined whether linoleic acid
and other unsaturated free fatty acids are potent, natu-
rally occurring activators of peroxisome proliferator-
activated receptor- [ . Peroxisome proliferator-activat-
ed receptor- [ ligands have been shown to promote epi-
dermal differentiation in vivo, and topical application
of peroxisome proliferator-activated receptor- [ activa-
tors has been shown to restore tissue homeostasis in
hyperplastic models resembling AE [74, 75]. As essen-
tial fatty acids have also been shown to potentially acti-
vate peroxisome proliferator-activated receptor- [ , the
role of essential fatty acids in the treatment of AE
should be re-examined.

Abnormalities in skin barrier function stimulate a
cascade of cytokines and other mediators for repairing

the lipid bilayers and modulating innate and adaptive
immunity. In AE, these abnormalities result in reduced
antimicrobial resistance, explaining the characteristic
accompaniment of microbial infections to typical AE
symptoms [76, 77]. Consequently, microbial settlement
of the skin surface is dramatically altered in AE
patients. In addition to the physical functions of the
stratum corneum, antimicrobial agents synthesized in
different layers of the epidermis provide a biochemical
barrier now largely described as innate immunity.
Ongoing studies show that antimicrobial peptides,
defensins, RNase 7, and the cathelicidin-derived linear
peptide LL-37 provide significant protection against
microbial infections of the skin [78, 79]. A deficiency in
the expression of antimicrobial peptides may account
for the susceptibility of patients with atopic dermatitis
to skin infection with staphylococcus aureus [80].
Lipids, free fatty acids, sphingosine, glycosphingoli-
pids, and lipid-like leukocyte activators also exhibit
antimicrobial activity [81–85]. Decreased levels of
sphingosine may be associated with vulnerability of
the stratum corneum to staphylococcus aureus coloni-
zation in AE patients [85].

Content of surface lipids and the physical barrier are
affected by the environment, lifestyle, and working
conditions [86–89]. Improved levels of personal
hygiene and sanitation may lead to excessive soap and
detergent use, which can contribute to mechanical
removal of stratum corneum lipids and whose residues
can cause adverse skin reactions [90].

Psychological stress, an inevitable factor of AE,
results in further disturbance of the skin barrier [88,
91]. Even in uninvolved skin, AE patients display
abnormal skin barrier function, which can persist for
years after the disease has become dormant [29, 92, 93].
It is possible that subclinical disease persists in sites
with low-grade skin barrier abnormalities, mostly
accompanied by xerotic skin conditions. The extent of
the permeability barrier defect in AE largely correlates
with the severity of the disease [94, 95]. The extension
of barrier abnormality in AE patients shows direct cor-
relation with the disease phase of the dermatitis (i.e.,
acute, subacute, and chronic) as well as the degree of
inflammation in lesional skin [96–99]. In contrast,
transepidermal water loss levels and stratum corneum
water content become normal in patients free of AE
symptoms for more than 5 years [100]. These studies
both support the conclusion that active eczema pro-
vokes impaired barrier function in uninvolved skin, far
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from active lesions [98]. It can additionally be conclud-
ed that skin barrier function in AE appears to undergo
fluctuations according to the phase of the disease.

37.7
Disturbed Epidermal Barrier Function
and Enhanced Skin Allergen Penetration
in Atopic Eczema

The existence of a defect in skin permeability barrier
function in AE is well accepted. A two- to five-fold
increase in basal transepidermal water loss over clini-
cally involved skin has been identified in AE [101].
Also, nonlesional skin in atopic dermatitis patients
already exhibits a barrier defect [29, 95]. However, the
epidermal abnormality is viewed as a consequence of
immunological abnormalities and inflammation.
Alternatively, disturbed epidermal barrier function in
AE due to changes in epidermal differentiation and lip-
id content may lead to allergen penetration into the
skin, followed by immunological defense reactions and
inflammation. AE patients typically exhibit positive
patch test reactions to common aeroallergens and
household allergens. Barrier function defects enable
enhanced allergen penetration, perpetuating existing
eczematous lesions [102]. Interaction between immu-
nologically-induced inflammations and disrupted bar-
rier function are essential to the manifestation of atop-
ic conditions, as confirmed by the increased frequency
of positive patch test reactions for household antigens
due to enhanced percutaneous macromolecular
absorption in AE patients [103–107]. Mucosal barrier
dysfunction predisposes patients to the development
of bronchial asthma, rhinitis, and type-1 allergic
responses by enabling enhanced penetration of aller-
gens, haptens, and contact-sensitizing agents into the
affected sites [108]. AE patients show higher levels of
protein antigens than control subjects after consump-
tion of food containing eggs or dairy products—a
result attributable to barrier function deficiency in the
mucous membranes [109]. It has not yet been deter-
mined whether increased intestinal permeability and
maldigestion also contribute to the susceptibility for
allergic reaction development [110–113].

AE presents a broad and complex symptomatology,
supporting a variety of theories on its pathogenesis.
Allergies and immunological abnormalities only partly
explain the occurrence of AE, furthering support for

the involvement of barrier dysfunction in disease man-
ifestation [108]. It remains controversial whether bar-
rier dysfunction occurs as a result of underlying
inflammation, or as the primary initiator of atopic
symptom expression. We are unable to confirm a clear
initiator of atopic reaction, therefore we argue that
manifestation of AE is attributable to a complex inter-
action between allergies, defects in barrier function,
and immunological and biochemical abnormalities.

37.8
Lipids in the Treatment of Atopic Eczema

In the epidermis, the highest density of lipids is local-
ized in the horny layers. Treatment of severe AE typi-
cally targets immunogenic abnormalities and barrier
function. Cyclosporin, corticosteroid, tacrolimus, and
UV light treatments have all shown improved barrier
function and reduction of cell inflammation. However,
topical application of lipid-containing creams and oth-
er lipid-like substances, such as hydrocarbons, free fat-
ty acids, cholesterol esters, and triglycerides, is the cor-
nerstone in the treatment of mild to moderate disease,
in interval therapy, and in skin care in AE. As AE is
characterized by reduced lipid content, lipid-based cre-
ams and ointments artificially restore barrier function
and increase the hydration of the stratum corneum.
Petrolatum, the most commonly applied hydrocarbon,
has been shown to intercalate into the extracellular
lamellar membranes of the stratum corneum, thereby
promoting permeability barrier repair [102]. However,
through clinical experience it is known that water-in-
oil or oil-in-water emulsions, depending on the stage of
the disease, are much more suitable than petrolatum
for the treatment of AE. It remains a matter of discus-
sion, which lipids are most suitable for the treatment of
AE and if physiological lipids are superior compared to
the commonly used lipids or lipid-like compounds.

Rapid improvement of barrier function in atopic
skin has been shown with topical application of hydro-
cortisone ointments. Thereby it is not clear whether
these improvements are attributable to the hydrocorti-
sone itself or to the additional ingredients contained in
the carrier substance. A correlation between transepi-
dermal water loss and systemic absorption of topical
hydrocortisone has been confirmed [114]. Conversely,
treatment with moisturizers has been shown to
improve stratum corneum hydration without changing
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barrier function or the size of desquamating corneocy-
tes as a parameter of stratum corneum turnover rate
[115, 116].

Phase one application of a ceramide-dominant bar-
rier moisturizer significantly reduced AE severity scor-
ing in stubborn-to-recalcitrant childhood AE, where it
normalized transepidermal water loss and improved
stratum corneum integrity [117]. In measurements at 3
and 6 weeks, transepidermal water loss in lesional skin
was reduced. Nonlesional skin showed nearly basal val-
ue transepidermal water loss levels at 6 weeks.
Improvements in skin hydration occurred more slowly
during the treatment process. The degree of regenera-
tion and rehydration of lamellar membrane bilayers
due to treatment with ceramide-containing mixtures
can be measured by electron microscopy of tape-
stripped stratum corneum Berardesca et al. [118]
found improvement in erythema, pruritus, and fissur-
ing in AE skin after treatment with a ceramide 3 patent-
ed nanoparticle cream, although improvements in skin
dryness and desquamation were not seen. Further
research must examine the role for specific ceramides,
cholesterol, and free fatty acids in AE treatment.

In summary, changes in epidermal lipid metabolism
and differentiation cause reduced skin barrier function
in AE. The defective permeability barrier leading to the
penetration of environmental allergens into the skin
and initiating immunological reactions and inflamma-
tion is crucially involved in the pathogenesis of AE.
Several well-accepted treatment regimens, especially
topically applied lipid-based creams and ointments,
aim to restore skin barrier function and improve over-
all atopic skin condition.
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