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1 Introduction

In the post-genomics era, the use of methodologies that enable transcriptomic,
proteomic and metabolomic data to be analysed in detail have revolutionized
biological investigations. One of the major advantages with metabolomics in-
vestigations compared to traditional target metabolite analysis is that metabol-
omics data can give an unbiased view of changes in metabolism during envi-
ronmental, genetic or developmental changes. Instead of tracking only a few
metabolites, changes in relative amounts in 300 to 1000 or even more metabo-
lites can be recorded and analysed, covering all major metabolic pathways. This
development has accentuated the need to apply and further develop multivari-
ate methodology. Chemometrics (see Eriksson et al. 2001) provides tools to
make good use of measured data, enabling practitioners to make sense of mea-
surements and to model quantitatively and produce visual representations of
information.Today, chemometricshasgrown intoawell establisheddataanaly-
sis tool in areas such as multivariate calibration, quantitative structure-activity
modeling, pattern recognition and multivariate statistical process monitoring
and control. Although seemingly diverse disciplines, the common denomina-
tors in these applications are that high complexity data tables are generated and
that thesedata tables canbeanalysedand interpretedbymeansof chemometric
methods.

In chemometrics, there are three basic categories of analysis (Fig. 1):

1. Exploratory analysis (Fig. 1A). This gives an overview of all the data in order
to detect trends, patterns or clusters.

2. Classification analysis and discriminant analysis (Fig. 1B), which classifies
samples into categories or classes, for example wild-type and mutant.

3. Regression analysis and prediction models (Fig. 1C) are used when a quanti-
tative relationship between two blocks of data is sought. For example, when
prediction of growth or fiber properties from mass spectrometry data.

However, in biology, chemometric methodology has still been largely over-
looked in favour of traditional statistics. It is not until recently that the
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Fig. 1. Overview of the basic categories of chemometrics analysis: A overview of data structure;
B classification and discriminant analysis; C regression analysis

overwhelming size and complexity of the ‘omics’ technologies has driven
biology towards the adoption of chemometric methods. Here we will give
an introduction to chemometrics and also give examples of why and when
chemometrical methodologies should be used.

2 Theory and Methods

2.1 Making Data Contain Information – Design of Experiments

In experimental biology, e. g. when investigating how a number of different
environmental factors (e. g. temperature, day length, nutrition) affect differ-
ent responses such as growth, transcript profiles and metabolite profiles in
plants, there is a need to carry out experiments in a systematic way. One way
to investigate how the factors affect the plant’s responses is to Change One
Factor at a Time, i. e. the COST approach. This approach has severe problems:
(1) finding optimal conditions for experiments (e. g. method development),
(2) unnecessarily many experiments are needed (inefficiency), (3) ignores in-
teraction among variables (lost information) and (4) provides no map over the
experimental space.

Design of Experiments (DOE) (Lundstedt et al. 1998) is the methodology of
how to conduct and plan experiments in order to extract the maximum amount
of information in the fewest number of runs. The basic idea is to devise a small
set of experiments, in which all pertinent factors are varied systematically. It is
a fundamental tool for planning experiments and making data informative by
simultaneously, albeit in a structured way, varying controllable factors (e. g. en-
vironmental conditions, instrument settings, experimental procedures) of the
studied system. Today they comprise a tool box for virtually any experimental
problem.

2.1.1 Stages in the DOE Process

Most of us can only grasp the effect of one factor at a time in our minds, and
that often leads us into the inefficient COST approach. We need the mathe-
matics (and the computer) to keep track of the factors and their combinations.
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In summary, (1) all factors are varied together over a set of experimental
runs, (2) noise is decreased by means of averaging, (3) the functional space is
efficiently mapped, interactions and synergisms are seen.

1. What do I want? – formulate question(s) stating the objectives and goals of
the investigation. For example identify factors (e. g. temperature, day length,
nutrition) and factor ranges (e. g. 15−25 ◦C, 6−12 h, 1−10 mmol N/L) that
affects flowering time.

2. Screening design – finding out a little about many factors. Which factors
are the dominating ones in controlling flowering time? Screening designs
provide simple models with information about dominating variables, and
information about ranges. Pareto’s principle states that 20% of the data
(factors) account for 80% of the information. Different types of screening
designs exist – which one to choose depends on the problem. The most com-
mon one is the fractional factorials design (Fig. 2). The full factorial design
is a set of experimental runs where every level of a factor is investigated at
both levels of all the other factors. It requires N = 2k number of runs for
k factors. Investigating more than five factors with the full factorial design
can in some cases become time consuming, i. e. 25 = 32, 26 = 64, 27 = 128
experiments, etc. Instead, performing a fractional factorial design reduces

Fig. 2. Example of a full factorial design of experiments (DOE) for investigating how three factors
(temperature, day length and nutrition) control flowering time. Varying the three factors at two
levels (coded as +/-) requires 23 = 8 experiments + center points. Each experiment according to
the design set of experiments is marked with a circle in the figure. Evaluating the results from
such an experimental design reveals the influence of each of the different factors separately and
also any interactions between them. DOE is the only feasible approach to separate cause and
effect from each other
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that number quickly without the loss of too much information regarding the
estimation of factors involved. Fractional factorial design takes advantage
of the fact that three-way and higher interactions are seldom significant. It
requires only N = 2k−p number of runs for k factors, where p is set manually.
For example five factors can be run in only 25−2 = 8 experiments instead
of 25 = 32 experiments compared to the full factorial design. Fractional
factorial design takes advantage of the fact that three-way and higher inter-
actions are seldom significant. The downside, of course, for not performing
all experiments, is that confounding patterns are present. In other words,
the estimated effects are not “pure” but instead mixed with higher degree
interaction effects. This loss of information is the prize we need to pay for
the reduction of the number of experiments. The degree of confounding is
determined by the choice of p.

3. Response surface modeling (RSM) and optimization (few factors) – after
screening the factors involved in, e. g. determination of flowering time or
derivatization of metabolites, the goal of the investigation is usually to
create a valid map of the experimental domain (local space) given by the
significant factors and their ranges. This is done with a quadratic polynomial
model. Thehigherordermodels have an increased complexity, and therefore
also require more experiments/factors than screening designs. Different
types of RSM designs include Central composite designs, Box Behnken
designs and D-optimal designs (see, e. g. Lundstedt et al. 1998 for more
information).

4. Robustness testing – in robustness testing of, for instance, an analytical
method, the aim is to explore how sensitive the responses are to small
changes in the factor settings, e. g. temperature. Ideally, a robustness test
should show that the responses are not sensitive to small fluctuations in
the factors, that is, the results are the same for all experiments. Robust-
ness testing is usually applied as the last test just before the release of
a product or a method. The fractional factorial design is usually applied
here.

Plant metabolomic studies typically constitute a set of samples from Ara-
bidopsis wild types and mutants. Assume that these have been subjected to
different external conditions such as variation in day length and temperature.
Design of Experiments can then be used to select representative samples, re-
lated to the biological question we are investigating (how flowering time is
affected by temperature, day length, nutrition). An experimental design in
three factors can be setup, with factor 1 (temperature), factor 2 (day length),
and factor 3 (nutrition). In total, only eight different experiments equal 2k

where k = 3 factors are required to explore the experimental space. In addi-
tion, a number of replicates, typically three experiments, are added to estimate
the noise level. By adding extra experiments, one can investigate more thor-
oughly the day length and temperature dependence (increase the number of
different day lengths and temperatures).
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2.2 The Data Table, X-matrix

In plant metabolomics studies, typically a set of samples are characterised us-
ing modern instrumentation such as GC/MS, LC/MS or H1-NMR spectroscopy.
The choice of instrument (see Sumner et al. 2003; Dunn et al. 2005) and exper-
imental procedure (Gullberg et al. 2004) are important and largely determined
by the biological system and the scientific question. Design of Experiments
can here be used to optimize the experimental protocol.

In contrast to a 1H-NMR spectrum, GC/MS and LC/MS data must be pro-
cessed before multivariate analysis. The reason is the two-dimensional nature
(chromatogram/mass spectra) of the data for each sample. For GC/MS data,
curve resolution or deconvolution methods are mainly applied for data pro-
cessing (see, e. g. Halket et al. 1999; Jonsson et al. 2005a). This gives a resolved
spectral and chromatographic profile for each detected compound. The 1D
multivariate profile used to characterize each sample is made up of the inte-
grated areas of all detected chromatographic peaks. The corresponding mass
spectrum and retention index are used for identification purposes (Schauer
et al. 2005). For LC/MS data, curve resolution can be applied (e. g. Idborg-
Björkman et al. 2003) or a peak detection algorithm that identifies all chro-
matographic peaks and uses their integrated areas as the multivariate profile
characterizing that sample (e. g. Andreev et al. 2003). Another alternative is
to sum the chromatographic direction to create a 1D multivariate profile pro-
duced by the total intensity over all mass spectral channels (e. g. Allen et al.
2004). Recently, partly alternative methodologies have been applied to GC/MS
data (Jonsson et al. 2004, 2005a) and LC/MS data (Jonsson et al. 2005b) where
all samples are processed simultaneously and a common set of descriptor
variables are extracted.

After, e. g. theGC/MSanalysis,wenowhaveamultivariateprofile (300–1000s
of variables) for each sample that is a fingerprint of the inherent properties
(e. g. phenotype) for each sample. For multiple samples we can therefore con-
struct a two-dimensional data table, an X matrix, by stacking each sample
on top of each other. The question is then, how do we go about analysing
this multivariate, highly collinear and complex data set? The univariate ap-
proach (e. g. student’s t-test [Jackson 1991]) is not recommended. It assumes
independent variables in X (i. e. more samples than variables) and this creates
problems with interpretation, spurious correlations (so called Type I, II errors)
and the evident risk of missing information in combinations of variables. Tra-
ditional statistical methods (e. g. multiple linear regression, MLR) are also not
recommended. They also assume independent variables and have difficulties
with noisy data (Eriksson et al. 2001). Instead, multivariate analyses based on
projection methods represent a number of efficient and useful methods for
the analysis and modeling of these complex data. Projection methods convert
the multi-dimensional data table into a low-dimensional model plane, usu-
ally consisting of two to five dimensions. Principal component analysis (PCA)
(Jackson 1991) and partial least squares (PLS) (Wold et al. 1984) methods are
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two widely used methods that can handle incomplete, noisy and collinear data
structures.

2.3 Geometrical Interpretation of a Data Table

An easy way to understand and appreciate projection based methods is to
translate the data table into a swarm of points in a multi-dimensional space.
For a data table or matrix X, with N rows (biological samples) and K columns
(e. g. relative amounts of different metabolites), each row (individual sample)
can be represented as a point in a K-dimensional space. Its position in this
space is given by its coordinates, i. e. its values in each of the K columns. Re-
peating this for all N rows in a matrix, we have produced a swarm of points
in K-dimensional space. Points (samples) that lie close to each other in this
multi-dimensional spacearemorebiologically similar toeachother thanpoints
that lie far apart (dissimilar). Projection methods find a model hyperplanes
of much lower dimensionality that closely approximates X, i. e. the swarm of
points. Figure 3 gives an overview of how multivariate projection methods
work.

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is the workhorse in chemometrics. It is
amultivariateprojectionmethoddesigned toextract anddisplay the systematic
variation in a data matrix X. The first two principal components define a plane,
a window into the K-dimensional space. By projecting each of the sample
points (in K-dimensional space) onto this two-dimensional sub-space, it is
possible to visualize all the samples. The coordinates of each of these samples
projected onto this plane are called scores T, and they are weighted averages
of all X-variables (e. g. metabolites). Hence the visualization of these scores T
is called a score plot. The score plot is very informative because it gives an
overview of all samples in X and how they relate to each other. It may reveal
groupings of samples (clusters), trends and outliers (deviating samples). e. g.
two genotypes (wild type and mutant) would show up as two distinct clusters of
samples, representing wild type and mutant samples respectively. In addition,
an experiment that suffered from a broken GC-vial would translate into an
unique point in the score plot, i. e. an outlier (Fig. 3).

The score plot allows us to investigate the relation among the samples, but
once interesting patterns are found (groupings, outliers etc.), it is possible
to understand the reason for this, i. e. what variables (e. g. metabolites) are
responsible for this pattern found in the score plot. Hence, there also exists
a corresponding plot related to the measured variables (metabolites), i. e. the
columns in the X matrix. This plot is known as the loading plot P and describes
the influence (weight) of the X-variables (metabolites) in the model. An impor-
tant feature is that directions in the score plot correspond to directions in the
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Fig. 3. (1) Each row (representing one biological sample) in a data table with K = 3 variables
can be represented as one point in a K = 3 dimensional space. The position of that point is
given by the coordinates given by the values in each of the K = 3 variables. (2) Repeating this
for all rows (samples) in a data table produces a swarm of points in K = 3 dimensional space.
Points (samples) that are close to each other have more similar biological properties than points
that are far apart. (3) Projection methods such as PCA, finds a representative low-dimensional
plane (here two-dimensional) that is a good summary of the variation in the X data table (swarm
of points). (4) This model plane can then be visualised in scatter plots (A) and provides an
overview, e. g. if there are any groupings, trends or outliers in the data. For example in the figure
(A) there is a clear separation between the Arabidopsis wild type and mutant. It is also possible
to understand the reason for this separation by looking at the direction of the model plane
with respect to the original axes (original variables). These are summarized in the PCA model
loadings, P (B)

loading plot (Fig. 3). This is a powerful tool for understanding the underlying
patterns in the data.

The PCA model can be expressed as

Model of X: X = TPT + E

where T are the scores, P defines the loadings, and E represent the residual
matrix. The residual matrix E contains the residuals for each sample between
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Fig. 4. PCA summarise all variation in X into a few new variables called scores T. These new
variables are linearly weighted combinations of the original X-variables. The loadings P contain
the weights used for each X-variable and thus reveal the influence of individual X-variables

its point in K-dimensional space and its point on the model plane. The residuals
are important for detection of outliers and for defining the model boundaries
(see Fig. 4).

2.5 Partial Least Squares Projections to Latent Structures (PLS)

The PLS method is used instead of the PCAmethod when additional knowledge
about each sample exists, the Y matrix, e. g. genotype of each sample (wild
type/mutant). The sample information according to the design matrix from
the Design of Experiments (see Sect. 2.1) is often used as a Y matrix. Hence,
PLS represents the regression analogy of PCA working with two matrices,
X and Y (Wold et al. 1984). It is one of the most common methods when
a quantitative relationship between a descriptor matrix X and a response
matrix Y is sought. The Y matrix can contain both quantitative (e. g. glucose
concentration) and qualitative (genotype) information. This additional sample
information in Y is used by the PLS method to focus the model plane to capture
the Y-related variation in X, e. g. separation between genotypes, rather than
providing an overall view of all variation in the data as done by the PCA
model. In addition, the PLS method can also be used to predict the properties
(Y-values) of new unknown samples, e. g. predict the glucose concentration or
genotype.

The Y matrix consists of the same number of rows as the X matrix. Each
column in Y indicate a certain property, e. g. glucose concentration or genotype
for each sample.WhenYcontainsqualitative information suchas genotype, the
number of columns in Y equals the number of classes. Each row in Y describes
the group membership for that sample where “1” indicates class belonging for
that sample and “0” does not. When Y is qualitative, the PLS method is called
PLS Discriminant Analysis (PLS-DA), to distinguish it from the situation when
Y is quantitative.
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3 Example: Metabolomics Study on Arabidopsis Mutants

We will work through a metabolomics example using GC/MS data from the
analysis of Arabidopsis extracts. Shoots of higher plants are characterized by
axillary branching, where the shoot branches develop from shoot meristems
located between a leaf and the shoot stem. The control of axillary shoot growth
(branching) is not well understood, but it is known that several internal fac-
tors such as the plant hormones IAA and cytokinins are involved (McSteen
and Leyser 2005). Mutations screens in Arabidopsis have identified four loci
involved in the repression of axillary bud growth, MAX1–4. Based on the mu-
tants, it is now suggested that an unknown transmittable substance might be
involved in controlling branching (see McSteen and Leyser 2005). The biosyn-
thesis of this compound in Arabidopsis is catalyzed by a number of MAX
(more-axillary growth) proteins.

Wehaveusedametabolomicsapproach toclassify and identify themetabolic
differencesbetween theMAX-mutants.Root samples fromWT,max3andmax4
mutants were analysed by GC/TOFMS as described by Gullberg et al. (2004).
The GC/MS data was processed by hierarchical multivariate curve resolution
(Jonsson et al. 2005a), and the obtained X-matrix was thereafter subjected to
PCA and PLS-DA analysis. The GC/MS processing resulted in 514 resolved peak
areas. Log transformation, column centering and scaling to unit variance was
done on the resolved peak areas (X-matrix) prior to modeling and two dummy
Y-variables were constructed based on the class belonging of each sample to the

Fig. 5. A PLS-DA score-plot from the analysis of metabolite profiles in roots of Arabidopsis WT,
max3 and max4. The PLS-DA model is based on WT and max3. The X-matrix was centered and
scaled to unit variance. The explained variation in the X-matrix (R2X) is 0.74, the explained
variation in the Y matrix (R2Y) is 0.99 and the predictive ability according to sevenfold cross-
validation (Q2) is 0.84. R2X is the cumulative modelled variation in X, R2Y is the cumulative
modelled variation in Y and Q2Y is the cumulative predicted variation in Y, according to cross-
validation. The range of these parameters is 0–1, where 1 indicates a perfect fit. B Based on the
model max4 samples were predicted into the model showing that max3 and max4 are very similar
regarding metabolic content (compare position score plot in A)
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genotypes, WT and max3. The PLS-DA model score plot is shown in Fig. 5A.
The score plot reveals the relationship among the samples. It is clear from the
figure that the model plane displays a clear separation of the two genotypes.

To validate the model results, predictions were made for the genotype max4,
using the calculated PLS-DA model based on the other sample-set (WT and
max3). The results, shown in the obtained PLS-DA score plot (Fig. 5B) pre-
dicted that the max4 is closer to max3 than WT. This is consistent with the facts
that max3 is very similar to the max4 genotype, where the MAX3 and MAX4
proteins use the same substrate (Schwarz et al. 2005). Interpretation of the first
weight vector (w1) from the PLS-DA model, as described by Trygg and Wold
(2002), togetherwith the99%confidence intervals calculatedusing jack-knifing
(Martens and Martens 2000), highlighted 64 significant variables (metabolites)
differing between WT and max4. The importance of these metabolites is a part
of biological validation of the data set. The statistical validation was done
by prediction of the max3 mutants into the WT/max4 model. Both type of
validation is of importance for validating the multivariate data set.

4 Summary and Future Prospectives

Multivariate projection methods, e. g. PCA and PLS, represent a useful and ver-
satile technology to modelling, monitoring and prediction of complex prob-
lems and data structures encountered within metabolomics and other ‘omics’
disciplines. The common denominator is that high complexity data tables are
generated and that these data tables can be analysed and interpreted by means
of chemometric methods. The principal component analysis (PCA) method
summarizes the variation in a data table X into a model plane (the scores T).
A scatter plot of these scores gives an overview of the samples (observations)
and how they relate to each other, e. g. if there are groupings or trends or
deviating samples and so on. In order to interpret the patterns found in a score
plot one examines the corresponding loading plot (P). The loadings P reveal
how each variable contributes to the separation among samples in the model
plane and also gives insights into the relative importance of each variable.

However, one fundamental property is that the data does contain relevant
information regarding our biological question. In other words, how to max-
imise the information content in the data? The traditional way to Change One
Factor at a Time, i. e. the COST approach, is not recommended. Design of Ex-
periments (DOE) is the methodology of how to conduct and plan experiments
in order to maximize information in the data in the fewest number of runs.
A proper experimental design will reveal the influence of each of the different
factors separately and also any interactions between them. DOE is the only
feasible approach to separate cause and effect from each other. Therefore is
DOE in combination with chemometrical analysis a powerful way of planning,
conducting and evaluating metabolomics experiments.
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One common discussion point in the analysis of “omics” data is how to
correlate several types of data, usually with different data structures. Systems
biology seeks to integrate information from multiple parts of a biological
system in a holistic attempt to understand the whole system. There are still
many obstacles and hurdles to overcome in order to succeed. One of these
relates to how the actual integration of the different types of data will be done.
Hence, the advancement of systems biology depends heavily on the ability
to integrate multiple profiling techniques (e. g. transcriptomics, proteomics,
GC/MS, LC-NMR). The current multivariate statistical methods (e. g. the PLS
method) lacks the proper model structure to describe these types of data
structures, because they focus only on the correlation pattern among multiple
data tables (e. g. X = microarrays vs Y = metabolomics data) and not on the
non-correlated variation among these data tables which, in a biological sense,
can be of equal interest. It has also been demonstrated that, because of this,
the interpretation of these models are negatively affected (Trygg and Wold
2002), e. g. positive correlation patterns are interpreted as negligible or even
flipped and become negative. This is a fundamental problem as we certainly
cannot expect that all variation in transcript and metabolite levels co-vary.
Fortunately, recent advances in chemometrics provide the ability to compare
multiple data sets with each other. Novel extensions of the PLS method, called
O-PLS (Trygg and Wold 2002) and O2-PLS (Trygg 2002) contain the model
structure to support both these features. In addition, the O2-PLS method is bi-
directional which means that the flow of information can go in both ways, from
X (e. g. microarray) to Y (e. g. metabolomics) and vice versa. Hence, the O2-
PLS methodology will be important in selecting what genes or metabolites are
important to do further experimentation upon, e. g. understanding biomarker
patterns and selecting genes for knockout studies. The O2-PLS methodology
can also be extended to more than two data tables, hence it nicely fits into the
framework of a combined profiling approach.
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