


Biotechnology in Agriculture and Forestry

Edited by
T. Nagata (Managing Editor)
H. Lörz
J. M. Widholm



Biotechnology in Agriculture and Forestry

Volumes already published and in preparation are listed at the end of this book.



Biotechnology in
Agriculture and Forestry 57

Plant Metabolomics

Edited by
K. Saito, R.A. Dixon, and L. Willmitzer

With 96 Figures, 29 in Color, and 10 Tables

123



Series Editors

Professor Dr. Toshiyuki Nagata
University of Tokyo
Graduate School of Science
Department of Biological Sciences
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-0033, Japan

Professor Dr. Horst Lörz
Universität Hamburg
Biozentrum Klein Flottbek
Zentrum für Angewandte Molekularbiologie
der Pflanzen (AMP II)
Ohnhorststraße 18
22609 Hamburg, Germany

Professor Dr. Jack M. Widholm
University of Illinois
285A E.R. Madigan Laboratory
Department of Crop Sciences
1201 W. Gregory
Urbana, IL 61801, USA

Volume Editors

Professor Dr. Kazuki Saito
Chiba University
Graduate School of Pharmaceutical Sciences
Yayoi-cho 1-33, Inage-ku
Chiba 263-8522, Japan;
RIKEN Plant Science Center
Yokohama 230-0045, Japan

Professor Dr. Richard A. Dixon
Plant Biology Division
Samuel Roberts Noble Foundation
2510 Sam Noble Parkway
Ardmore, OK 73401, USA

Professor Dr. Lothar Willmitzer
Max Planck Institute
of Molecular Plant Physiology
Am Mühlenberg 1
14476 Golm, Germany

Library of Congress Control Number: 2005936763

ISSN 0934-943X
ISBN-10 3-540-29781-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29781-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof
is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer. Violations are liable for prosecution
under the German Copyright Law.

Springer is a part of Springer Science + Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Editor: Dr. Dieter Czeschlik, Heidelberg, Germany
Desk Editor: Dr. Andrea Schlitzberger, Heidelberg, Germany
Cover design: design&production GmbH, Heidelberg, Germany
Typesetting and production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany
Printed on acid-free paper 31/3152 5 4 3 2 1 0



Preface

Metabolomics is a rapidly-emerging sector of post-genome research. The
metabolome (a set of all metabolites of an organism) represents not only
the ultimate phenotype of cells by the perturbation of gene expression and the
modulation of protein functions caused by the environment or mutations, but
the metabolome can also feed back on gene expression and protein function.
Therefore, metabolomics plays a key role for understanding cellular systems.
Metabolomics is applied to a variety of biological fields from medical science
to agriculture. Nevertheless, metabolomics research is particularly important
in the plant field because plants collectively produce a huge variety of chemical
compounds, far more than animals and even microorganisms. The number
of all metabolites in the plant kingdom is estimated at 200,000 or more. In
addition, most of the human-beneficial properties of plants, be they foods,
medicinal resources, or industrial raw materials, are ascribed to plant metabo-
lites.

This book aims to review the current status of plant metabolomics research.
Since metabolomics itself is a new field, no such comprehensive book has yet
been published. The chapters are divided into three sections: analytical tech-
nology, bioinformatics, andapplications.These represent threemajor elements
of metabolomics research. Each chapter provides cutting-edge information
contributed by leading researchers from throughout the world.

We hope that this book will be a landmark for plant metabolomics research
into the future and will give beneficial guidance to graduate students and
researchers inacademia, industry, and technology transferorganizations. Since
metabolomics is still a growing discipline, further technology development in
chemical analysis and bioinformatics will be required. We look forward to
breakthrough technology innovations in metabolomics, and yet unforeseen
findings and applications in plant science.

Finally, we would like to acknowledge our contributors who have enthusias-
tically put their efforts to ensure the high scientific quality of this volume. We
also would like to thank our colleagues at Springer.

January 2006 Kazuki Saito,
Richard A. Dixon,

and Lothar Willmitzer
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Section I Analytical Technology



I.1 Gas Chromatography Mass Spectrometry

J. Kopka1

1 Introduction

GC-MS technology has been used for decades in studies which aim at the
exact quantification of metabolite pool size and metabolite flux. Exact quan-
tification has traditionally been focused on a single or small set of predefined
target metabolites. Today GC-MS is one of the most widely applied technology
platforms in modern metabolomic studies. Since early applications in unrav-
elling the mode of action of herbicides (Sauter et al. 1988) it has experienced
a renaissance (Fig. 1) in post-genomic, high-throughput fingerprinting and
metabolite profiling of genetically modified (e. g. Roessner et al. 2001a,b, 2002;
Fernie et al. 2004) or experimentally challenged plant samples (e. g. Cook et
al. 2004; Kaplan et al. 2004; Urbanczyk-Wochniak and Fernie 2005). Metabolic
phenotyping and analysis of respective phenocopies by metabolite profiling
has become an integral part of plant functional genomics (Fiehn et al. 2000b;
Roessner et al. 2002; Fernie et al. 2004). The essence of metabolite profiling,
namely the non-biased screening of biological samples for changes of metabo-
lite levels relative to control samples, has been thoroughly discussed earlier
and is clearly distinguished from fingerprinting approaches and the concept
of exact quantification (Fiehn et al. 2000b; Sumner et al. 2003; Birkemeyer et
al. 2005).

GC-MS-based metabolome profiling analysis is on the verge of becoming
a routine technology. This fact substantially contributes to the development
of metabolomics as a fourth integral part of the Rosetta stone for functional
genomics and molecular physiology (Trethewey et al. 1999; Fiehn et al. 2000b;
Trethewey 2004). Nevertheless, GC-MS technology is already challenged again
by new bottlenecks and demands for improved data sets which are optimised
for the mathematical modelling tools currently developed in the fields of bioin-
formatics and biological systems analysis.

The challenges of modern, multi-parallel, GC-MS based metabolite anal-
ysis are manifold: (i) automation of sample preparation, wet chemistry and
data processing after acquisition for increased throughput and reproducibil-
ity, (ii) extension of the analytical scope of metabolomics studies, for example
by combined analysis of single samples using multiple analytical technol-
ogy platforms, and combined analysis with the proteome and transcriptome

1 Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm,
Germany, e-mail: Kopka@mpimp-golm.mpg.de

Biotechnology in Agriculture and Forestry, Vol. 57
Plant Metabolomics (ed. by K. Saito, R.A. Dixon, and L. Willmitzer)
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Literature survey of publications which associate the concepts, “metabolite”, “profiling”,
and “gas chromatography” performed on 1/2005. A total of ∼500 citations without conference
proceedings, abstracts and book chapters were found. The frequency of publications in all bio-
logical sciences (open circles) is compared to the contribution by plant metabolomics community
(closed circle)

(Weckwerth et al. 2004b), (iii) profiling of trace compounds, or signalling
molecules in the presence of bulk metabolites (Mueller et al. 2002; Birkemeyer
et al. 2003; Schmelz et al. 2003, 2004), (iv) increasing accuracy in multi-parallel
metabolite quantification (Birkemeyer et al. 2005), (v) combining profiling and
flux analyses (Roessner-Tunali et al. 2004), (vi) establishment of quantitative
repeatability, unambiguous nomenclature and comparability between analy-
ses performed in different laboratories or using different analytical technology
platforms (Schauer et al. 2005), and (vii) finally – perhaps the most important
challenge of all metabolomic investigations – the identification of the unidenti-
fied majority of metabolic components from metabolite profiling experiments
(Fiehn et al. 2000a; Schauer et al. 2005).

In agreement with the focus of this chapter the above challenges have pre-
dominantly analytic or technical motivation. The breakthrough of metabolo-
mic investigations, however, will depend on the access to hitherto unavail-
able fundamental insights into metabolic and systems interactions. Increas-
ingly integrative studies which consider the metabolome, proteome, tran-
scriptome, and genome evolution of an organism have been initiated and
are to be expected. Promising steps have been made – using GC-MS tech-
nology – towards network analysis (Fiehn 2003; Weckwerth et al. 2004a)
and correlation studies between or within metabolome and transcriptome
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constituents (Urbanczyk-Wochniak et al. 2003; Steinhauser et al. 2004; Kopka
et al. 2005). A detailed discussion of these general aspects including GC-
MS studies and beyond can be found in the applications section of this
book.

2 GC-MS Profiling Technology in a Nutshell

Metabolite profiling with GC-MS involves six general steps:

1. Extraction of metabolites from the biological sample, which should be as
comprehensive as possible, and at the same time avoid degradation or mod-
ification of metabolites (e. g. Kopka et al. 2004).

2. Derivatisation of metabolites making them amenable to gas chromatogra-
phy. Metabolites which are not volatile per se require chemical modification
prior to GC analysis.

3. Separation by GC. High resolution GC can also be highly reproducible as
it involves automated sample injection robotics, highly standardised con-
ditions of gas-flow, temperature programming, and standardised capillary
column material.

4. Ionisation of compounds as they are eluted from the GC. Electron impact
(EI) ionisation is most widely used, as it is the technology which is least
susceptible to suppression effects and produces reproducible fragmentation
patterns.

5. Time resolved detection of molecular and fragment ions. Mass separation
and detection can be achieved with different mass-detection devices, in-
cluding sector field detectors, quadrupole detectors (QUAD), ion trap tech-
nology, and time-of-flight detectors (TOF). The choice of detectors depends
on the targeted analytical niche. GC-MS systems with QUAD detection are
most widely spread for routine analysis. Ion trap technology allows MS×MS
(two-dimensionalMS)analysis for structural elucidationand targetedquan-
tification of trace compounds (e. g. Mueller et al. 2002). TOF detection can
either be tuned to fast scanning rates (van Deursen et al. 2000) or to high
mass precision comparable to sector field systems. Fast scanning GC-TOF-
MSenables the, today,most advanced technology in theGC-MSfield, namely
two dimensional GC×GC-TOF-MS (two-dimensional GC-TOF-MS) (Ryan et
al. 2004; Sinha et al. 2004a–c).

6. Acquisition and evaluation of GC-MS data files. All GC-MS system manu-
facturers provide software which is tuned for targeted, quantitative metabo-
lite analysis. The targeted approach involves unequivocal identification of
predefined metabolites by expected chromatographic retention times and
mass-spectral fragmentation patterns and quantitative calibration by au-
thentic standard concentrations. Recent software developments support the
non-targeted analysis of GC-MS patterns, and the full evaluation of all re-
solved compounds. This feature of GC-MS allows discovery of novel hitherto
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unknown metabolites. As we are far from knowing all possible metabolites
of a given organism, non-biased, truly comprehensive data evaluation is the
most essential requirement of metabolite profiling.

2.1 Chemical Derivatisation and Chromatography

The principles of fast metabolic sample inactivation and nondestructive ex-
traction are common to all metabolome analyses. In contrast to all other
technologies GC-MS is inherently restricted to volatile and temperature-stable
compounds. The scope of GC-MS for metabolite analysis is limited by the
typical temperature range of commercial capillary columns, for example up
to 320–350 ◦C. The lower temperature range is determined by ambient tem-
perature, but cold trapping devices and isothermal GC allow analysis of low
molecular weight gases and highly volatile metabolites. GC received a consid-
erable extension of applications through the development of a highly versatile
tool box of derivatisation reagents, which chemically transform non-volatile
metabolites into volatile analytes for GC-MS analysis (e. g. Knapp 1979; Blau
and Halket 1993; Toyo’oka 1999). To date, GC-MS profiling of metabolites in
plants has largely been confined to compounds, recovered in the methanol-
water phase after methanol-water/chloroform extraction of tissues (Fiehn et
al. 2000a; Roessner et al. 2000; Duran et al. 2003; Barsch et al. 2004; Gullberg
et al. 2004; Strelkov et al. 2004; Broeckling et al. 2005). Although not all hy-
drophilic compounds can be volatilised by derivatisation, the following classes
of compounds are detected routinely: amino-, organic-, and aromatic-acids,
amines, sugars up to trisaccharides, alcohols and polyols, and some mono-
phosphorylated metabolites.

The current limitations of metabolite preparation and derivatisation strat-
egy, namely methoxyamination with subsequent direct trimethylsilylation of
predominantly polar metabolites, call for extension. Application of other tech-
nology platforms is an obvious route and will be discussed in the following
chapters. Here a short appraisal of the potential of chemical derivatisation is
attempted. Four main types of reaction schemes will be discussed.

1. Alkoxyamination by reagents, such as methoxyamine CH3−O−NH2, sta-
bilises carbonyl moieties in native metabolite structures, but forms E-
and Z-isomers of the −N=C< double-bond substituents. Keto-enol tau-
tomerism is suppressed, as is the decarboxylation of unstable β-carbonyl-
carboxylic acids. In addition, the formation of acetal- or ketal-structures in
aqueous solution is inhibited. These equilibrium reactions generate mul-
tiple intramolecular and water adducts, for example the typical α- and
β-conformers of reducing sugars. Ether- and ester-conjugates are mostly
stable when exposed to methoxyamine reagent and maintain conformation.
So far other alkoxy-reagents – for example hydroxylamine, ethyloxyamine,
or benzyloxyamine – have not been exploited for systematic discovery of
metabolites with carbonyl moieties:
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2. Silylation reagents classify into those which introduce either a trimethyl-
silyl (TMS)moiety,−Si(CH3)3, or adimethyl-(tert-butyl)-silyl (TBS)moiety,
−Si(CH3)2−C(CH3)3. TMS reagents have been well investigated and are
known to have the widest derivatisation spectrum (Little 1999; Halket et al.
2005). TMS has the potential to substitute all exchangeable, “acidic” protons
of a metabolite. Steric hindrance of TMS substitution is rare but common
with the bulkier TBS reagent. The benefit of the TBS reagent is higher
tolerance for the presence of water and clear mass spectral fragmentation.
However, vicinal diols, which typically occur in sugars, are only partially
derivatised.

3. Alkylation reactions, mostly methylation, are widely used to derivatise car-
boxylic acids and alcohols. The enormous reactivity of available reagents –
some allow for flash derivatisation during hot GC injection – leads to
transalkylation of ester-bonds und consequently breaks down complex
metabolites, such as glycero- and phospholipids. Alkylation of sugars leads
to derivatives which are more volatile than the TMS derivatives and therefore
allow analysis of higher sugar oligomers.

4. Acylation reactions, mostly acetylation or trifluoro-acetylation, are less re-
active than transalkylation. Reagents usually form stable ester and amide
bonds and break down only activated metabolic intermediates, e. g. thio-
esters.

In conclusion further developments of alternate GC-MS profiling techniques
need to employ more selective combinations of metabolite fractionation and
derivatisation schemes. Solid phase extraction can be explored to partition
and concentrate metabolites amenable to alternate subsequent derivatisation.
On the other hand, vapour phase extraction (VPE) for the separation and
concentration of volatile derivatisation products prior to GC injection may
prove promising (Schmelz et al. 2003, 2004). VPE has the potential to be
a robust technique and was shown to operate with a range of commonly used
reagents.

2.2 Mass Detection and Quantitative Calibration Techniques

One of the major criticisms and pitfalls of metabolome analyses is best ex-
plained by so-called matrix effects. This well-known effect describes unex-
pected losses or increased recovery of metabolites in complex extracts com-
pared to pure authentic preparations. Matrix effects on one hand are caused
by the presence of compounds which either specifically inhibit extraction or
chemical analysis of metabolites. Positive matrix effects can stabilise other-
wise labile compounds in the presence of suitable chemicals. Typical exam-
ples are suppression effects of soft ionization techniques, for example electro-
spray ionization (ESI) or matrix assisted laser desorption ionization (MALDI).
Electron-impact ionization (EI) typically used in GC-MS profiling is not sus-
ceptible to suppression. Instead GC injection is the crucial step which may
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cause discriminations, especially in view of the complex and rather crude
extracts which are typically injected.

So far, only exemplary – albeit time demanding – thorough tests for un-
expected matrix effects have been performed with selections of chemically

Fig. 2. Mass spectra of deuterated and 13C labeled MSTs help structural elucidation and recov-
ery analysis of metabolites. Labeled and non-labeled MSTs of Glycine N, N-di(trimethylsilyl)-,
trimethylsilyl ester are shown. Oryza sativa L. cv. Nipponbare was labelled in vivo using deuter-
ated water or 13CO2. MSTs representing the fully labeled mass isotopomers demonstrate presence
of two carbon atoms (left panel) and two non-exchangeable hydrogen atoms (right panel). Mass
fragments which exhibited a mass shift of 1 amu (red) or 2 amu (blue) are indicated

Fig. 3a–c. Mass spectral deconvolution of deuterated mass isotopomers. Succinic acid
di(trimethylsilyl) ester was partially labelled in vivo by exposing Oryza sativa L. cv. Nippon-
bare to deuterated water. Metabolite profiles were performed on a Pegasus II GC-TOF-MS system
(LECO, St. Joseph, MI, USA) with 20 scans s−1. Mass spectra were deconvoluted using Chro-
maTOF software version 1.00, with baseline offset just above noise, smoothing and peak width
set to 10 and 2 scans, respectively: a selected ion traces of non-deuterated (D0, m/z = 247) and
deuterated (D1−4, m/z = 248−251) M+ − 15 mass fragments. Mass fragments at 252 and 253 amu
are carbon mass isotopomers of D4; b peak area compared to deconvoluted peak height. Peak
area integration does not allow differentiation of contributions by carbon mass isotopomers;
c deconvoluted mass spectra of D0−4. Inset shows partial deconvolution of D0−4 carbon mass
isotopomers and missing carbon mass isotopomers of D1−3
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diverse, representative metabolites (e. g. Roessner-Tunali et al. 2003; Gullberg
et al. 2004). Therefore technologies are required to improve quantitative stan-
dardisation for the comparison of increasingly diverse biological samples and
experimental conditions.
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For this purpose, full saturating 13C in vivo labelling was developed using
yeast which is one of the most important organisms in systems biology (e. g.
Stephanopoulos et al. 2004). Metabolites of yeast were demonstrated to be fully
labelled when provided with an exclusive carbon source, such as U-13C-glucose
(Mashego et al. 2004; Birkemeyer et al. 2005). Refer to Birkemeyer et al. (2005)
for detailed discussion of potential applications for 13C-labelled metabolomes.
Similar approaches are possible in plants (Figs. 2 and 3).

In short, standardised in vivo labelled extracts of yeast or other microor-
ganisms can substitute the rather small number of chemically synthesised
mass isotopomers used in earlier studies (Fiehn et al. 2000a; Gullberg et al.
2004). Typically a standardised labelled reference sample is combined in equal
amounts with non-labelled experimentally challenged samples. The advan-
tages of this approach are (i) the presence of a mass isotopomer for all iden-
tified but also all hitherto non-identified metabolites, (ii) the concentration
of each mass isotopomer is inherently adjusted to the endogenous metabolite
concentration, (iii) metabolic components can easily be distinguished from
laboratory contaminations, and (iv) recovery of all metabolic components can
be determined with the appropriate mass isotopomer.

Thus metabolite profiling will achieve the same level of transcriptome and
proteome experiments, which utilize differential fluorescent probes or differ-
ential isotope coded tagging, respectively. In conclusion, comprehensive in
vivo isotope labelling will help to establish quantitative between laboratory
comparability of GC-MS based metabolome experiments. More importantly,
we expect metabolome experiments with full mass isotopomer standardisa-
tion to be also independent of the mass spectrometric platform, e. g. CE-MS,
LC-MS, or possibly even MALDI-TOF-MS.

3 Short Excursion into Nomenclature and Definitions

Concise and unambiguous description of GC-MS metabolite profiling results
requires clear definitions. The definitions suggested within this section are
biased towards the specifics of GC-MS technology but may also be applied to
other technology platforms. This section is intended as a contribution to the
ongoing process of unifying data formats and concepts within the field of plant
metabolomics (e. g. Fiehn 2002; Bino et al. 2004; Jenkins et al. 2004).

3.1 Metabolite and Analyte

Routine GC-MS profiling analysis (Fiehn et al. 2000b; Roessner et al. 2000)
has an upper size exclusion limit which is roughly equivalent to a persily-
lated trisaccharide derivative (MW:1296), hexatriacontane (MW:506), or hen-
triacontanoic acid trimethylsilylester (MW:523). Even though it may appear
tempting, metabolite and analyte are best not defined by molecular weight.
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A metabolite may be described as a compound which is internalised, chem-
ically converted or secreted by an organism, but is not synthesised by DNA
replication, transcription, or translation. Post-processing events of DNA, RNA
and proteins, such as DNA methylation, RNA splicing, sequence specific
protease cleavage or post-translational modification are not attributed to the
metabolome. The origin of a metabolite is not exclusively dependent on the
biosynthetic capacity of an organism or delimited by the genomic inventory.
Metabolites may readily be exchanged between organisms, for example in
plant microbe interactions, and – like drugs or pesticides – can today be of
anthropogenic/xenobiotic origin.

In contrast to LC- or CE-MS, GC-MS analysis requires clear distinction
between metabolite and analyte, because – depending on choice of chemical
derivatisation – metabolites may be chemically transformed before quantifi-
cation. The term analyte may be used to address the chemical structure and
compound which is submitted to GC-MS and finally detected and quantified.
An analyte can be identical with the metabolite, if the metabolite is not chem-
ically derivatised. Single metabolites may have more than one analyte, if the
chosen derivatisation reaction generates more than one derivative, for example
methoxyamination (see above). In these cases preferred and alternate analytes
exist for quantification. Analytes of one metabolite may differ in abundance,
i. e. a major and one, even multiple, minor analytes may exist. Standardisation
by stable mass isotopomers corrects the quantification errors which may arise
from unforeseen matrix effects on analyte ratios during chemical derivatisa-
tion of GC injection.

Different metabolites may be chemically transformed into the same ana-
lyte structure. In addition a single analyte may arise from inadequate chro-
matographic separation of isomers. For example, the biochemically distinct
stereoisomeric structures of dl-amino acids are only separated by specialised
chiroselective chromatography. These analytes have composite properties in
contrast to absolutely specific analytes.

These concepts are not unique to GC-MS technology. Analyte sensitivity,
accuracy, and potentially composite analyte properties need to be thoroughly
considered in MS-MS applications, non-chiroselective capillary electrophore-
sis or liquid chromatography, and in cases of adduct-formation or multiply
charged ions.

3.2 Mass Spectral Tag (MST) and Mass Fragment

GC-MS metabolite profiles resolve hundreds of analytes, which represent
metabolites, but also internal standard substances and laboratory contam-
inations. Typical GC-MS profiles may contain approximately 100 identified
analytes of metabolites. The chemical structure of the majority of GC-MS an-
alytes, however, is still unknown. Each new biological object or experimental
condition still gives rise to new, hitherto unidentified, chemical components.
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Because in non-biased analysis of GC-MS profiles identified and unidenti-
fied components are equally important, we created the term mass spectral tag
(MST), i. e. a mass spectrum which is characterised by a specific chromato-
graphic retention and by repeated occurrence in a single or multiple types of
biological samples (Colebatch et al. 2004; Desbrosses et al. 2005). MSTs repre-
sent analytes. MSTs can be identified, in other words, unequivocally linked to
a chemical structure. The use of MSTs allows uncoupling of metabolite profil-
ing experiments from the time consuming process of chemical identification.
MSTs can be used to track analytes in different experiments or laboratories
(Schauer et al. 2005). Thus MST identification can be performed even years
after the first discovery.

MSTs of GC-EI-MS profiles are composed of multiple characteristic mass
fragments in constant relative abundances. In most cases residual, non-frag-
mented molecular ions are rare or even absent. In consequence GC-MS allows
selection of multiple mass fragments which all represent the same MST and ex-
hibit the same quantitative changes. Typically one quantifying mass fragment
(QM) and a set of specific, supporting qualifying mass fragments are selected
in GC-MS analysis (Halket et al. 2005). The criteria for the proper choice of QMs
are equal to the choice of a preferred analyte. QMs need to be selective, i. e. not
composite, in the context of the complexity of co-eluting MSTs. Therefore, the
best QM is the most abundant among the available selective mass fragments.

3.3 Response and Relative Quantification of Metabolite Pools

GC-MS metabolite profiling studies monitor relative changes in metabolite
pool sizes and but also allow insight into flux, i. e. the dynamic turnover of
metabolite pools or metabolite substructures (e. g. Fischer and Sauer 2003;
Sauer 2004; Roessner-Tunali et al. 2004). Flux experiments are easily distin-
guished from above mentioned saturating in vivo labelling experiments. Flux
experiments monitor the initial kinetics of labelling and thus stable isotopes
are only partially incorporated into metabolite pools. In contrast, saturating
in vivo labelling reaches the endpoint of a completely stable isotope labelled
metabolome.

MSTs are quantified by ion currents of QMs which are recorded after an-
alyte ionization, fragmentation and mass separation. Ion currents in GC-MS
are monitored either by peak area or peak height. Both measurements need
to be baseline corrected for electronic and chemical noise. The resulting cor-
rected values are defined to be what we call responses, i. e. XQM of fragment
QM (Colebatch et al. 2004; Desbrosses et al. 2005). The fragment response is
routinely normalised to the amount of the sample, for example fresh or dry
weight. In addition each response is corrected for recovery effects, which may
occur at any step of the analytical process between metabolic inactivation of
the sample and final recording of ion currents. Different levels of recovery
correction exist: (i) correction by extract and sample volume, (ii) correction
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by addition of a constant amount of a representative internal standard com-
pound (IS), and (iii) normalization by chemically identical, but stable-isotope
labelled mass isotopomers of each metabolite. The normalised response (NQM)
is, consequently, NQM = XQM × X−1

IS × sample weight−1, where XIS ideally rep-
resents a mass isotopomer response of QM. In a further step, the normalised
response of a fragment, NQM, is divided by the average relative response of
QM as determined in a set of reference samples, avgNQM(ref). The resulting
quotient, Ri = NQM × avgN−1

QM(ref), is called response ratio Ri. Ri describes
the x-fold changes in metabolite pools sizes relative to the reference samples.
Typical reference samples are taken at the start of a time series experiment or
are mock-treated biological controls.

In GC-MS profiling analyses the standard deviation of normalised responses
is dependent on the chemical nature of metabolite and analyte. Average relative
standard deviations (RSD) of 10% (Weckwerth et al. 2004b) or 13.8% (5.5–
33.4%; Gullberg et al. 2004) were reported for replicate GC-MS analyses. These
analyses includedextractionaswell asderivatisationandwereperformedusing
representative analytes. Use of isotope labelled standardisation was reported to
reduce RSD further to approximately 6.9–9.7% residual experimental variance
(Gullberg et al. 2004).

4 Present Challenges of GC-MS Profiling

4.1 Standardisation of GC-MS Systems

GC-MS profiles, with the exception of GC×GC-TOF-MS data, are in essence
three-dimensional and comprise a chromatographic time-resolved axis, a sec-
ond coordinate axis which represents the mass to charge ratio (m/z, z = 1
in GC-MS with only rare exceptions), and an intensity axis which monitors
the ion current (IC) and thus the abundance of molecules or mass frag-
ments. A substantial breakthrough for GC-MS analyses was the early establish-
ment of generally accepted calibration substances and procedures, so-called
tuning routines, which allowed comparison of mass spectra from GC-MS
systems of virtually all manufacturers and from different hyphenated mass
detection technologies. In addition the widely used electron-impact ionisa-
tion technique (EI) ensured stable fragmentation ratios, which are in first
approximation independent of analyte concentration. However, comparability
was only achieved by restriction to 1 amu precision.

The chromatography axis is less standardised, not least because of multi-
ple types of available capillary GC-columns which have different chromato-
graphic properties and thus serve different separation problems. In addition
slight changes in temperature program, pressure and flow settings of both
carrier gas and injection technique, as well as slight production differences
of column manufacturers cause minor but perceptible changes in retention
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time. Retention time indices (RI), based on homologous series of internal ref-
erence substances, such as n-alkanes, have been introduced early to aid GC
analyses (Kovàts 1958). Use of an n-alkane RI system in GC-MS metabolite pro-
filing substantially improves the reproducibility of the chromatography axis.
The currently achievable accuracy of RI prediction was recently investigated
in three different profiling laboratories which use the same type of capillary
column but different GC-MS systems (Schauer et al. 2005). In this investiga-
tion the possibility of predicting RIs of more than 100 identified analytes was
tested. Mathematical regression resulted in an average accuracy of ±5.4 RI
units.

The IC intensity axis in GC-MS is standardised for high vs low mass discrim-
ination. The GC-MS tuning includes processes which ensure constant ratios
of high vs low mass intensities. However, mass spectra which are recorded by
either QUAD-MS or fast scanning GC-TOF-MS detection may differ in this
respect. Fast scanning GC-TOF-MS systems (e. g. Pegasus II MS system, LECO,
St. Joseph, MI, USA) have increased sensitivity of small mass fragments and
reduced sensitivity in the high mass range.

4.2 Deconvolution and Alignment of Mass Spectral Tags

The principal challenge in GC-MS profiling analysis is the automated unrav-
elling of the multiple partially co-eluting MSTs which comprises a GC-MS
chromatogram. One of the fundamental advances in GC-MS technology has
been the development of algorithms and software for the so-called deconvo-
lution of mass spectra from GC-MS chromatograms (Halket et al. 1999; Stein
1999; Shao et al. 2004; AnalyzerPro, http://www.spectralworks.com), specific
software for the deconvolution of fast scanning GC-TOF-MS data files, e. g.
ChromaTOF software used by Vreuls et al. (1999), Veriotti and Sacks (2001) or
Jonsson et al. (2005), and ongoing developments for automated processing of
GC×GC-TOF-MS chromatograms (Ryan et al. 2004; Sinha et al. 2004a,b). The
inherent steps of deconvolution are (i) mass resolved baseline subtraction of
electronic and chemical noise, (ii) assignment of retention time and/or reten-
tion time indices (RI) to chromatographic peak apices and respective MSTs,
and (iii) accurate separation of MSTs from closely co-eluting analytes, the most
challenging and advanced but still error-prone part (Fig. 3).

Even though automated mass spectral deconvolution has fundamentally
facilitated GC-MS analyses of complex mixtures, accuracy and limitations of
respective software have so far not been systematically compared and assessed.
Typical errors of mass spectral deconvolution are (i) accidental generation of
MSTs due to noise fluctuations, (ii) deconvolution of multiple MSTs from
a single component, (iii) incomplete MSTs which lack one or multiple mass
fragments (Fig. 3c), and (iv) chimeric MSTs, i. e. composite mass spectra of
co-eluting compounds. The co-elution problem of complex mixtures has been
fundamentally improved by introduction of fast scanning GC-TOF-MS and is
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today technically best solved by GC×GC-TOF-MS, using a set of two capillary
GC columns with alternate phase-polarity (Sinha et al. 2004c).

Reliable alignment of identical MSTs in sets of consecutive GC-MS chro-
matograms is required for rapid, repeatable and automated comparative high-
throughput analysis of large samples sets. So far, software solutions and
novel algorithm developments for the alignment of complex mixtures depend
on close to constant chromatographic retention within series of consecutive
GC-MS chromatograms (Duran et al. 2003; Jonsson et al. 2004; metAlign,
http://www.metalign.nl). Indeed, consistent run-to-run retention times are
considered to be crucial to the application of chemometrics on complex mix-
tures, especially in the field of two-dimensional separations (Sinha et al. 2004c).

In conclusion, automated mass spectral deconvolution of GC-MS profiles
appears tobe inprincipal solvedbybothGC×GCtechnologyanddeconvolution
algorithm, but the optimum solution still has to be found (Halket et al. 2005).
In contrast prediction of chromatographic shifts in complex mixtures with
highly dynamic range of concentrations has not been satisfyingly solved. As
there is currently no solution – other than recalibration with pure standard
substances – addressing the problem of RI shifts will be crucial for future
GC-MS based metabolite profiling and identification of MSTs.

4.3 Identification of Mass Spectral Tags

Identification of MSTs requires chromatographic separation as well as mass
spectrometric information (Wagner et al. 2003), mainly because plants like
microorganisms contain a multitude of isomeric metabolites (e. g. Barsch et al.
2004; Stephanopoulos et al. 2004; Strelkov et al. 2004). These isomers give rise
to MSTs, which can be chromatographically resolved but have almost identi-
cal mass spectra. Today, GC-MS appears to have found a generally accepted
standard for mass spectral comparison. The NIST mass spectral search and
comparison software (Ausloos et al. 1999; Stein 1999) has been integrated into
the customised operating software of most GC-MS manufacturers. The GC-MS
technology is in this respect more advanced than LC-MS (Halket et al. 2005).
However, mass spectral search and comparison software, which harbours in-
formation on chromatographic retention in what we suggested to call MSRI
libraries (Wagner et al. 2003; Kopka et al. 2005) and the automated utilization
of this information for probability based matching, would be highly desirable.
The new version NIST05 (National Institute of Standards and Technology,
Gaithersburg, MD, USA) of a mass spectral search and comparison software
now makes RI information available but currently does not utilize RI for auto-
mated matching. The result of a hitherto manual inventory of Oryza sativa L.
cv. Nipponbare leave profiles is shown in Fig. 4.

Two different approaches exist for the identification of unknown MSTs from
GC-MS profiles: (i) the “bottom up” approach in which metabolites of interest
to a particular researcher are analysed by the purchase of authentic standard
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Fig. 4. Synthetic and representative GC-MS profiles of Oryza sativa L. cv. Nipponbare leaves:
A – 132 identified MSTs representing 109 known metabolites; B – 12 added internal stan-
dard substances; C – 148 unidentified MSTs which match previous MSRI library entries;
D – all previously observed MSTs present in the MSRI library at GMD (http://csbdb.mpimp-
golm.mpg.de/gmd.html)

substances, which are subsequently mapped by standard addition experiments
onto established standardised GC-MS systems, and (ii) the “top down” ap-
proach whereby structural elucidation is performed on a hitherto unknown,
but important target MST. The work of “top down” structural identification
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is highly time-demanding and involves preparative enrichment, purification,
spectroscopic, mass spectral and NMR analyses of the preparation and finally
chemical synthesis of the predicted structure. As a consequence the “bottom
up” approach prevails in most laboratories and “top down” identification is
currently restricted to potentially novel signalling compounds or marker sub-
stances of specific biological samples and experimental conditions.

In order to avoid unnecessary “top down” investigations reliable identi-
fication by prior standard addition experiments is essential. MSRI library
collections of mass spectra (Kopka et al. 2005), which comprise frequently
observed identified and non-identified MSTs, appear to represent the most
effective means to pool the identification efforts currently performed in many
laboratories around the world (Schauer et al. 2005). Identified and yet uniden-
tified, MSTs can efficiently be shared by public resources such as GMD@CSBDB
(http://csbdb.mpimp-golm.mpg.de/gmd.html). Inadditionmass spectral iden-
tifications and chromatographic sequence of analyte elution can be transferred
between laboratories. “Bottom up” identifications performed in parallel may
be used for inter-laboratory confirmation of identifications and reduce the risk
of unnecessary structural elucidation projects.

Currently the MSRI libraries available from GMD@CSBDB include in total
more than 2000 evaluated mass spectral data sets obtained using GC-QUAD-
and GC-TOF-MS technology platforms with 1089 non-redundant and 360 iden-
tified MSTs. Future efforts at GMD aim to refine mass spectral quality and
annotation, and will add stable isotope labelled variants of MSTs (e. g. Fig. 2)
for improved mass spectral interpretation of unidentified MSTs. The num-
ber of identified analytes and metabolites will continuously be extended and
annotations updated.
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I.2 Current Status and Forward Looking Thoughts
on LC/MS Metabolomics

L.W. Sumner1

1 Introduction

The metabolome can be viewed as the consequential end products of gene
expression and the goal of metabolomics includes the comprehensive evalu-
ation of the metabolome (Trethewey et al. 1999; Fiehn et al. 2000; Trethewey
2001; Oliver et al. 2002; Sumner et al. 2003). Quantitative and qualitative mea-
surements of large numbers of cellular metabolites provide a high-resolution
biochemical phenotype of an organism which can be used to monitor and
assess gene function (Fiehn et al. 2000) or a system’s response (Weckwerth
2003). Although mRNA/transcripts represent a mechanism for information
transmission from the genome to the cellular machinery for protein synthesis,
mRNA levels do not always correlate well with protein levels (Gygi et al. 1999).
Furthermore, once translated a protein may or may not be enzymatically
active as post translational modifications, protein sorting, protein–protein
interactions, and controlled proteolysis all contribute to the regulation of ac-
tive enzyme levels. Due to these factors, changes in the transcriptome or the
proteome may not always lead to alterations in the metabolic phenotype. In
addition, the majority of transcript and protein annotations are currently
inferred based on sequence or structural similarity. It is estimated that less
than 10% of annotated genes have experimental evidence supporting assigned
function and thus, the accuracy of these annotations are of some uncertainty
(Somerville and Somerville 1999; Somerville and Dangl 2000). In the absence
of functionally annotated database information, transcript or protein profiling
often yields limited information. For example, transcriptomics or proteomics
often reveal the differential accumulation of a hypothetical or unannotated
protein; however, without annotation it is very difficult to infer biological con-
text. Microarray or proteomics experiments may also yield putative or generic
protein identifications such as a putative peroxidase or peroxidase-like pro-
tein. These generic annotations have limited information as many of these
enzymes are promiscuous and/or involved in a large number of different re-
actions. However, metabolomics has the ability to reveal that the accumulated
peroxidase/enzyme is more specifically related to lignification or to another
specific biochemistry. Thus, profiling the metabolome may actually provide
the most direct and “functional” information of the “omics” technologies.

1 The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA,
e-mail: lwsumner@noble.org
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The plant metabolome is quite complex with current estimates on the order
of 15,000 metabolites within a given species and over 200,000 different metabo-
lites within the plant kingdom (Dixon 2001; Hartman et al. 2005). Due to the
chemical complexity of the plant metabolome, it is generally accepted that
a single analytical technique will not provide comprehensive visualization of
the metabolome, and therefore, multiple technologies are generally employed.
The selection of the most suitable technology is generally a compromise be-
tween speed, chemical selectivity and instrumental sensitivity. Tools such as
nuclear magnetic resonance spectroscopy (NMR) are rapid, highly selective,
and non-destructive, but have relatively lower sensitivity. Other methods such
as capillary electrophoresis (CE) coupled to laser induced fluorescence (LIF)
detection are highly sensitive, but have limited chemical selectivity. Chromato-
graphically coupled mass spectrometry methods such as gas chromatography
(GC)/mass spectrometry (MS) and liquid chromatography (LC)/MS offer the
best combination of sensitivity and selectivity, and therefore are central to
most metabolomics approaches. Mass selective detection provides highly spe-
cific chemical information including molecular mass and/or characteristic
fragment ion(s) information that are directly related to chemical structure.
This information can be utilized for compound identification through spectral
matching with data compiled in libraries for authentic compounds or used for
de novo structural elucidation. Further, chemically selective MS information
can be obtained from extremely small metabolite quantities with limits of de-
tection in the pmole and fmole level for many primary and secondary plant
metabolites.

GC/MS has proven capability for profiling large numbers of metabolites
with reports covering several hundred to slightly more than a thousand var-
ious components (Fiehn et al. 2000; Roessner et al. 2000, 2001; Birkemeyer
et al. 2003; Wagner et al. 2003; Broeckling et al. 2005; Schauer et al. 2005;
Welthagen et al. 2005). The term component is used because a large num-
ber of metabolites often yield more than one derivatized component which
are observed in the GC/MS analysis. The achievable range and number of
metabolites profiled by GC/MS can be attributed to the high separation effi-
ciencies of long (30−60 m) capillary GC columns (i. e. N ≥ 250,000 for 60 m).
These high efficiencies enable the separation of very complex mixtures, and
with mass selective detection, qualitative identification of a significant pro-
portion of these compounds is achievable. This makes GC/MS a very effi-
cient and cost effective metabolomics tool. A major prerequisite for GC/MS
is sample volatility which is necessary to enable separation in the gas phase.
Analytes may be innately volatile or chemically derivatized to yield volatile
compounds. Unfortunately, there exist a large number of metabolites which
are not amenable to GC/MS even following derivatization. These include com-
pounds such as phenylpropanoid and other natural product glycosides whose
labile glycosidic bonds degrade during heating and vaporization. Thus, alter-
native techniques are necessary and especially so for the study of secondary
metabolism.
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Liquid introduction techniques for mass spectrometry such as electrospray
ionization, atmospheric chemical ionization, and photo ionization remove the
necessity for chemical derivatization. Thus, aqueous samples can be analyzed
with minimal sample processing or even directly from the tissue source (Takats
et al. 2004). Further, these techniques allow for the analyses of more labile
and larger metabolites, and for the coupling of liquid separation technologies
to mass spectrometry. Therefore high performance liquid chromatography
(HPLC) and CE are readily coupled to mass spectrometry to yield powerful
tools for targeted metabolic profiling and non-targeted metabolomics.

The utility of LC/MS emanates from the coupling of a ‘universal’ separa-
tion technology to a selective and sensitive mass analyzer detector. HPLC is
commonly considered a universal separation technique because of its appli-
cability to a broad range of chemical classes with a diversity of physical and
chemical properties. For example, HPLC has been utilized for the analysis
of ionic compounds, inorganics, volatile organics, polar organics, non-polar
organics, lipids, amino acids, carbohydrates, nucleotides, carotenoids, phenyl-
propanoids, hormones, peptides, proteins, and the list goeson.Themajorpoint
is that HPLC can be used for many of those compounds commonly analyzed by
GC and many more. LC/MS also removes the need for derivatization and thus,
complex samples can be analyzed directly or with minimal sample processing.
As a result of these favorable properties, it is not surprising that LC/MS and
LC coupled to tandem mass spectrometry (LC/MS/MS) have become popular
tools for metabolism investigations.

HPLC is performed on various scales utilizing different column sizes. Gen-
eral values are provided in Table 1 for preparative, analytical, micro, capillary
and nano-scale modes of HPLC. Generally, preparative scale HPLC is used
for compound(s) purification and analytical scale is traditionally used for
the quantitative analyses of plant extracts. However, smaller scale technolo-
gies (micro, capillary, nano) are now commercially available for quantitative
analyses. These smaller scale separations offer significant sensitivity enhance-
ments, and thus reduce the amount of material necessary for analysis. Further,
capillary and nano HPLC often offer increased chromatographic resolution.
Unfortunately as the separation scale gets smaller it becomes more difficult to
reproducibly generate mobile phase gradients and the retention time variance
increases. However, this problem is continually decreasing as novel instrumen-
tation and approaches become available.

Table 1. General liquid chromatographic scales

Scale Column internal diameter Flow rate

Preparative 2.1–>200 mm 10 mL/min,
Analytical (conventional) 2.1−4.6 mm 1.0 mL/min
Micro 1.0 mm 200 μL/min
Capillary 300 μm–1 mm id 4 μL/min
Nano 25−300 μm id 200 nL/min
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2 Chromatography Theory

Currently, the chromatographic performance of HPLC, relative to GC and CE,
is lower, and there is a significant need for improvement. However, to dis-
cuss this issue and possible improvements in detail, several terms must be
defined. A number of quantifiers are used to assess chromatographic perfor-
mance. These include resolution (Rs), selectivity (α), efficiency (N), and peak
capacity (n) which are defined below:

1. Resolution (Rs) is a quantifier of the degree of separation between mixture
components, i. e. two peaks ta and tb with peak widths at the base wa
and wb. A resolution of 1 indicates that two adjacent peaks are baseline
resolved. Resolution can also be expressed as a function of the theoretical
plate number (N) and selectivity (α) as defined below in Eq. (1):

Rs =
2(tb − ta)
wa + wb

=
2ΔtR

wa + wb
Rs =

√
N

4

(
α − 1

α

)(
k2

1 + k2

)
(1)

2. Selectivity (α), which is also referred to as the separation factor, is a ratio of
the retention or capacity factor (k′) of two peaks. The capacity factor is a rel-
ative retention parameter that has been normalized using the void elution
time (tv) or volume (Vv) and is therefore independent of column geometry –
see Eq. (2). The void value is the volume or time of an unretained component.
The selectivity parameter provides a quantifier of the relative separation of
two components. Selectivity can be altered based on the chemical composi-
tion of the stationary phase, stationary phase manufacturer, mobile phase,
and pH:

α =
k′

2

k′
1

k′
1 =

t1 − tv
tv

=
V1 − V2

Vv
(2)

3. Column efficiency is usually quantified based upon a column’s theoretical
plate number (N) which is unitless and a measure of band broadening per
unit time – see Eq. (3). This can be practically quantified using retention
time (tR) and peak width. Peak width can be defined at the base (Wb) or at
half height (w1/2) as they are directly related if one assumes a Gaussian peak
shape, i. e. Wb = 1.698 w1/2 = 4σ where σ equals the standard deviation of
the peak. Alternatively, plate number can be calculated using the column
resolution (R) and selectivity (α).

4. Separation efficiency is also quantified using a normalized theoretical plate
number based on column length, i. e. (N/L) with units of plates/m. The
theoretical plate number can be dramatically increased by decreasing the
peak width. Plate number and efficiency are also related to particle size (dp)
and column length (L) as described below:

N =
(

t′R
σ

)2

= 16
(

t′R
Wb

)2

= 5.54
(

t′R
w1/2

)
=

16R2

(1 − α)2 =
L
dp

(3)



Current Status and Forward Looking Thoughts on LC/MS Metabolomics 25

5. Peak capacity (n) is a measure of the maximum number of theoretical peaks
resolvable by the chromatographic system based on optimum performance
and equal variation in the partitioning of all components in the mixture –
see Eq. (4). The peak capacity is a good parameter for estimating the maxi-
mum number of compounds resolvable by a given chromatographic system.
Ideally this value should approach or exceed the number of compounds that
need to be separated, i. e. the number of metabolites:

n =

√
N

4R
ln

(
t2
t1

)
+ 1 (4)

3 Limitations of Current Metabolic Profiling Approaches
and Proposed Solutions to Advance Metabolomics

Currently, the major limitation of metabolomics is its inability to comprehen-
sively profile all of the metabolome. This inability is directly related to the
chemical complexity of the metabolome, the biological variance inherent in
most living organisms, and the dynamic range limitations of most instrumen-
tal approaches (Sumner et al. 2003). Many biological responses to altered gene
expression or to environmental stimuli result in both quantitative and qual-
itative changes in metabolite pools. Understanding these responses is most
dependent upon the qualitative identification of the altered metabolite. Quan-
titative measurements are also important, as both temporal and spatial changes
in metabolite concentrations are expected; however this information is of little
use if it cannot be assigned to a specific metabolite or biological process. Thus,
comprehensive qualitative and quantitative analysis of all metabolites within
a cell, tissue or organ is the ultimate goal of metabolomics; however, this is still
a very ambitious goal and far from a reality for any system. Bino and colleagues
(Bino et al. 2004) proposed two major objectives to increase the comprehensive
nature of metabolomics. They were:

1. Increase the current capacity for metabolite separation and differentiation
(i. e. the number of resolvable components within the complex metabolome
mixture) using multi-dimensional separations.

2. Increase the number of identifiable metabolites through the generation of
spectral libraries, high resolution accurate mass measurements, and tandem
mass spectrometry.

Unfortunately, the separation of complex metabolome mixtures is still quite
challenging. Currently, analytical scale HPLC (4.6 × 250 mm) is most com-
monly used for natural product analyses; however, the upper peak capacities
(i. e. theoretical number of maximum peaks resolvable based on optimum per-
formance) of these systems is approximately 300 (Tanaka et al. 2004). Based
on this estimate, a maximum of 300 components could be resolved in a best
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case scenario; however in practice this value is seldom achieved and more
realistic peak capacities are between 100 and 200. Thus, current HPLC tech-
nologies are limiting the comprehensive scope of metabolomics. Separation
efficiencies can be improved by altering selectivity, increasing column lengths,
reducing particle sizes, increasing temperature, and/or alternative column
materials. Alternatively, the utilization of multidimensional chromatography
offers increased HPLC peak capacities of greater than 1000 to provide more
comprehensive coverage of plant natural products (Tanaka et al. 2004). Each
of methods to increase HPLC efficiency is discussed below.

Typically, improving selectivity is the best approach to improving chro-
matographic resolution. Selectivity is based upon the chemical or physical
interaction properties that are fundamental to the separation process. More
precisely, the separation selectivity of specific components can be optimized
by the appropriate choice of column materials, mobile phases, and/or man-
ufacturer. Various generic and proprietary materials are available for vari-
ous chromatographic modes for HPLC. Example modes include ion-exchange,
normal-phase, reverse-phase, hydrophilic interaction, and size exclusion chro-
matography. All HPLC columns are not equal, and different particles, particle
sizes, surface modification chemistries, surface coverage, and packing pro-
cesses vary significantly from manufacturer to manufacturer. These parame-
ters dramatically influence chromatographic performance.

Often selectivity is optimized for a targeted set of analytes as a means of
increasing resolution. However, in more complex mixtures associated with
global metabolomics-based approaches, improved selectivity for one class of
compounds often results in decreased selectivity for others. Thus, techniques
(e. g. reverse-phase chromatography) with a broad range of selectivity are most
likely to be the best choices for metabolomics.

One of the simplest means of increasing resolution is to increase the number
of theoretical plates. Since the plate number is directly proportional to the
column length (Eq. (3)), one needs only to increase the column length to
increase resolution. However, Eq. (1) tells us that R is proportional to the
square root of N. Thus, to achieve a 2× increase in resolution, we would
have to square the column length. For example a 250 mm long column would
need to be extended to 625 cm (i. e. 25 × 25 cm) for a twofold increase in
resolution. Unfortunately, this is not a practical solution as the operating
pressure is directly proportional to the column length. Equation (5) defines
the relationship between pressure (ΔP), column length (L), analyte diffusion
coefficient (Dm), particle size (dp), mobile-phase viscosity (η), and column
permeability (Ko):

ΔP =
(

LvDm

dp

)
η

Ko (5)

If a typical column of 25 cm has an operational pressure of 3000 pounds per
square inch (p.s.i.), then a twofold resolution increase obtained by squaring the



Current Status and Forward Looking Thoughts on LC/MS Metabolomics 27

column length (25 cm)2 would require an operational pressure of 75,000 p.s.i.
(i. e. 3,000 p.s.i. × 25). Although this illustrates the advantage of very high
pressure liquid chromatography which has been achieved by select groups
using custom apparatuses (MacNair et al. 1997, 1999; Tolley et al. 2001; Patel et
al. 2004; Shen et al. 2005), commercial pumps do not operate at these pressures
(most commercial HPLC pumps have a 5,000-p.s.i. limit). Therefore, significant
resolution enhancements achieved through longer columns is limited for most
researchers. With that said, several companies (i. e. Waters and JASCO) have
recently introduced 15,000-p.s.i. HPLC pumps.

Equation (5) reveals that the pressure differential is proportional to the
mobile phase viscosity (η). Thus, lowering of the mobile phase viscosity (η)
by increasing the temperature can lower the operational pressure and allow
the use of longer columns for resolution enhancement (Djordjevic et al. 1998,
1999, 2000). Selectivity is also affected by temperature and additional efficiency
can be achieved by heating alone. However, one must ensure analyte thermal
stability if elevated temperature separations are to be employed.

Equation (5) also shows that the pressure is a function of the column per-
meability (Ko). New monolithic columns offer greater permeability and lower
pressures, thus allowing for the use of longer columns. The continuous bed
stationary phases of these columns consist of porous polymeric materials gen-
erated from silica or organic materials such as acrylamide, styrene, acrylate,
or methacrylate monomers which result in lower back-pressure than packed
particles. The lower back-pressure allows for the use of longer columns and
hence greater efficiencies. Several groups have reported on the use of up to
1 m capillary columns (Que and Novotny 2002; Legido-Quigley et al. 2003;
Tolstikov et al. 2003; Tanaka et al. 2004) and this technology looks promis-
ing.

Plate number and efficiency are also related to particle size (dp) and column
length (L) as shown in Eq. (3). This equation shows that decreasing the particle
size increases the theoretical plate number/efficiency (MacNair et al. 1997,
1999; Tolley et al. 2001; Shen et al. 2005). However, Eq. (5) shows again that
pressure increases with smaller particle size. Fortunately, new commercial
ultra-high pressure liquid chromatography pumps (UPLC) are now available
from multiple manufacturers that allow the use of smaller particles in the range
of 1−2 μm. These instruments offer substantial resolution enhancements with
plate numbers on the order of several hundred thousand and peak capacities in
excessof 400 (Wilsonet al. 2005). Inaddition to increased resolution,UPLCalso
offers higher speed separations as the optimum flow velocity has a significantly
broader range which allows for increased flow rates without significant loss of
resolution (Wilson et al. 2005). Estimates of up to ninefold increases in flow
rates without significant loss of resolution have been suggested (Wilson et al.
2005). It is important to note that ultra-high pressure separations result in
increased frictional heating; however this can be reduced by down-scaling the
chromatography dimensions with the heating being negligible in columns of
less than 1 mm (MacNair et al. 1997).
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4 Future Directions and Forward-Looking Thoughts

Although several of the above principles can be used to achieve enhanced
chromatographic resolution, the resolution enhancements are still far from
that which is needed for very complex metabolomics mixtures. To separate
these mixtures, peak capacities of thousands to tens of thousands are neces-
sary. Currently, only multidimensional chromatographic methods offer peak
capacities of this magnitude (Mondello et al. 2002; Evans and Jorgenson 2004).
Multidimensional chromatography utilizes combinations of two or more sep-
aration mechanisms with different selectivity, e. g. ion-exchange and reverse-
phase or capillary electrophoresis and reverse-phase LC. These systems offer
enhanced resolution due to the utilization of multiple columns with inde-
pendent chemistries which expands the selectivity of the method. Recall that
selectivity improvements can dramatically improve resolution. The maximum
peak capacity of a multidimensional system is the product of the two or more
individual separation dimensions. For example, a realistic system that has
a peak capacity in the first dimension (ny) of 150 and the peak capacity in
the second dimension (nz) of 50, then the total maximum peak capacity of the
multidimensional system is ny × nz = 150 × 50 = 7500. If one considers that
an individual metabolome consists of 15,000 metabolites, then one recognizes
that this is a considerable increase in comprehensive coverage.

Multidimensional LC-LC separations have been capitalized upon in the area
of proteomics and are often referred to as multidimensional protein identifi-
cation technology (i. e. MUDPIT; Washburn et al. 2001; Wolters et al. 2001);
however multidimensional separations have only recently been pursued for
metabolomics using GC×GC/time-of-flight (TOF)-MS (Welthagen et al. 2005).
Unfortunately, these complex separations will come with increased analysis
times, but I believe they will be worth the additional temporal costs.

The above discussion focuses on homogenous multidimensional separa-
tions (i. e. LC×LC/MS or GC×GC/MS, but multidimensional LC×GC separa-
tions are possible. In fact, the combination of these technologies is commonly
referred to as unified chromatography (Chester and Parcher 2001; Chester and
Pinkston 2002; Wells et al. 2002, 2003; Luo et al. 2003) and often associated
with supercritical fluid chromatography (Chester and Parcher 2001; Chester
and Pinkston 2002; Mondello et al. 2002; Wells et al. 2002, 2003; Luo et al.
2003). Although this technology is conceptually exciting, it is still somewhat
empirically limited. Another possible LC×GC approach would be to couple
HPLC with ion mobility mass (IMS) TOF-MS spectrometry (Verbeck et al.
2002; Guevremont 2004; Liu et al. 2004; Shvartsburg et al. 2005). In this config-
uration, analytes are ionized as they elute from the HPLC and an electrostatic
field propels the analyte ions through a gas field maintained at elevated, atmo-
spheric, or subambientpressures. Ionsofdifferent sizeandgeometric structure
traverse the gas field at different rates dependent upon their charge and col-
lisional cross section therefore allowing separation. The LC-IMS method has
been demonstrated for proteomics (Lee et al. 2002; Matz et al. 2002; Liu et al.
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2004) and more recently applied to metabolite analyses (Kapron et al. 2005).
Extension of this concept to metabolomics will surely occur.

The above text discusses multidimensional chromatographic approaches in
an on-line context. However, multidimensional approaches can also be pur-
sued in an off-line, multiplexed, or parallel approach. For example, fractions
can be collected off-line using a separate HPLC. The fractions can then be con-
centrated and reinjected onto an on-line LC/MS system. Alternately, fractions
of the same samples could be injected onto a series of parallel systems using
different methods (i. e. GC/MS, LC/MS, or various selective modes of each
performed with different column selectivities). This is our current approach.
For example, samples are fractionated and/or enriched and then the polar and
lipophilic fractions are analyzed by GC/MS. In addition methanolic extracts
are analyzed for phenolic/saponin content. An interesting concept would be to
design a multiplexed system, with multiple chromatographic-mass spectrom-
etry systems operating in an integrated manner. For example, a multiplexed
chip system with each chip having a slightly different selectivity and indepen-
dent mass analyzer could be designed to increase the comprehensive coverage.
Such a system with on-line enrichment could also be used to address dynamic
range limitations that currently exist for specific compound classes such as
phytohormones.

If higher resolution chromatography is obtained, mass analyzers must also
be employed with compatible scans speeds to record data for compounds
eluting in very short temporal periods. It is expected that LC peak widths of
1−5 s will be routine in the very near future. For accurate quantification, it is
commonly accepted that the sampling rate should be sufficient to capture 10
data points across the eluting peak with higher sampling rates being beneficial.
Thus, sampling rates should be less than 0.1 s or greater than 10 Hz. This
is achievable with current TOF-MS analyzers. It is worth mentioning that
quadrupole based mass analyzers, including traps, can approach these speeds;
however, TOF mass spectrometers equipped with delayed extraction and ion-
reflectrons also offer improved mass accuracy over quadrupoles.

Improvements in the accuracy of the mass analyzer can further enhance
metabolite differentiation, elemental composition determination, identifica-
tion, and allow for the profiling of greater numbers of metabolites. Mass
accuracy is directly related to the mass resolution or the ability of the mass
analyzer to resolve compounds of different m/z values. Mass resolution is de-
fined in Eq. (6) and is a function of mass (M) divided by the peak width (ΔM)
which is most commonly defined at half-height:

Rm =
M

ΔM
(6)

Often, LC/MS is performed with ion-traps or quadrupole mass analyzers that
yield mass accuracies in the range of 1.0−0.1 Da. Unfortunately, many metabo-
lites have similar nominal masses which can not be differentiated at this level
of mass accuracy. For example, the important natural products genistein and
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medicarpin have similar nominal masses of 270, but have different accurate
masses of 270.2390 (C15H10O5) and 270.2830 (C16H14O4) respectively due to
different chemical compositions. If one could measure their mass with suf-
ficient accuracy, then one could differentiate these compounds in the mass
domain even if they could not be physically separated in the chromatographic
domain.Thismassdifferentiationcanbeachievedat amass resolution (M/ΔM)
greater than 6136. Compounds with closer accurate masses such as rutin
(C27H30O16 = 610.5180) and hesperidin (C28H34O15 = 610.5620) would re-
quire a higher mass resolution of 13,864 for their differentiation. Mass resolu-
tions on the order of 10,000 can be achieved with modern TOF-MS analyzers,
and resolutions in excess of 100,000 with sub-part-per-million mass accuracies
(i. e. less than 0.001 at m/z of 1,000 Da) are achievable with Fourier transform
ion cyclotron mass spectrometry (FTMS). Newer technologies, such as Thermo
Electron Corporation’s Orbitraps are currently surfacing that also offer high-
resolution solutions. Although high resolution accurate mass measurements
have great advantages, this technology is still rather costly.

Interestingly, a significant argument can be made that accurate mass mea-
surements significantly reduce the need for ultra-high resolution separations
due to the enhanced separation in the mass domain. However if the chro-
matography step is omitted or compressed significantly, then ion suppression,
competitive ionization, and other matrix affects become increasingly more
problematic. I personally believe that both improved chromatographic reso-
lution and accurate mass measurements offer the best solution and that the
combination of these techniques will provide greater comprehension and con-
fidence in our ability to profile the metabolome. Further, I also believe that the
needed magnitude of enhancements in chromatographic resolution can only
be achieved with multidimensional approaches.
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I.3 Plant Metabolomics Strategies Based upon
Quadrupole Time of Flight Mass Spectrometry
(QTOF-MS)

H.A. Verhoeven1,2, C.H. Ric de Vos1,2, R.J. Bino1,2, and R.D. Hall1,2

1 Introduction

The growing interest in the use of metabolomics technologies in plant research
has come about both due to the broad value of such approaches in almost every
field of plant science and also through the improvements in instrumentation
and bioinformatics tools which has been realised in recent years. A compre-
hensive overview of all the various technologies available is beyond the scope
of this chapter but the reader is referred to other chapters in this volume or to
a number of recent reviews for information on the different approaches (Fiehn
2001, 2002; Sumner et al. 2003; Goodacre et al. 2004). However, MS-based
strategies, and in particular in combination with GC or LC separation technol-
ogy, are proving most popular as these combine very high analytical precision
with an equally high detection sensitivity. This enables reliable measurements
to be made down to the femtomolar range (Fernie 2003). Furthermore, recent
advances in electronics and computing have given rise to the development
of yet a new generation of mass spectrometers to supplement the traditional
magnetic sector and scanning quadrupole instruments that have been around
for several decades now. In this new generation, instruments based on ion
traps and time-of-flight (generally referred as TOF) are the most prominent.
In particular, the TOF instruments have become popular due to their rela-
tively simple construction and their capacity to be combined with a number
of other technologies to enable multi-dimensional analysis. This has resulted
in an unprecedented expansion of our metabolomic capabilities. For exam-
ple, the fast spectral acquisition capacity of TOF instruments has resulted in
approximately 1000 components being detected in leaf extracts and an analyt-
ical capacity of 1000 samples per month has been achieved (Weckwerth et al.
2001). Such sample numbers and breadth of metabolite detection represent the
arrival of true metabolomics research in the true sense of the word. Since that
time, our capacity for metabolomic analyses has continued to improve. The
high mass accuracy, high resolution, good dynamic range and the large diver-
sity of detectible masses possible with TOF instruments, in association with
their intrinsic high sensitivity, are therefore the main reasons behind the many
applications, first in the field of proteomics, and now also in metabolomics.
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2 The Technology

Time of flight was already introduced in the early 1960s but was quickly re-
placed by other approaches. This was due to the lack of sufficiently fast elec-
tronics needed to process data on a nanosecond scale. Thirty years later in
the early 1990s, the development of high megahertz and even gigahertz digital
circuits led to the dramatic increase in the application of TOF technology. This,
combined with new developments in the area of sample introduction and ion-
isation of (macro)molecules, has subsequently led to many new applications
of (TOF-based) mass spectrometry in the fields of biology and pharmacy.

A TOF instrument serves as the main mass analyser, and its principle is
based on ions with different mass/charge ratios having different flight times in
a field-free drift zone once they have been accelerated by a very short electric
pulse from the electrodes of an accelerator: lighter ions travel faster through
the measurement chamber than the heavier ones. A thorough discussion on
the physical principles can be found in, for example, Guilhaus (1995). In most
TOF instrument designs, ions are detected using Micro Channel Plates (MCP),
which, on capturing the ions, generate a cascade of electrons to amplify the
signal so that it can be detected by the associated electronics (see Fig. 1 for
a schematic representation of the various parts). Several ion recorders have
been used with the various designs of hybrid TOF mass spectrometer. The two
most widely used are the time-to-digital converter (TDC) and the transient
recorder or analogue to digital converter (ADC) (Chernushevich et al. 2001).
The type of detector affects both the dynamic range of the signals that can be
measured and also the mass accuracy. In a TDC, every individual ion generates
a pulse. This pulse is shaped into a digital signal, of which the rising flank is
used for timing. The time passed since the start of the ion accelerating pulse
and its arrival at the MCP is stored in the memory. This system is very accurate
over the entire mass range and is optimally suited for the accurate timing of
low ion counts. It is, however, less suitable or even unsuitable for the detection
of ions arriving simultaneously at the MCP since these will be recorded as
being single events and this will thus lead to an underestimation of the signal.
TDCs also suffer from an additional limitation concerning the detection of
ions. During the time required to process one pulse, the detector is ‘blind’ to
new incoming pulses. This so-called dead time, not only leads to a further
underestimation of the signal, but also it causes a shift in the observed m/z
value towards lower values. This can lead to serious deviations from the true
accurate mass at high to very high signal intensities. These problems occur to
a lesser extent in instruments equipped with an ADC, since these machines can
sample the analog output of the MCP at very high frequencies, thus providing
multiple data points per observed m/z value. In this way, multiple ions arriving
at the same timewill lead to a linear increase inpeakarea. In somedesigns,TDC
and ADC are both used to combine the high mass accuracy of the TDC at low
ion rates, with the high dynamic range and accurate m/z value measurements
of an ADC at high ion rates.
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Fig. 1. Schematic diagram showing the main components of a typical quadrupole/time of flight
configuration. Ions enter the instrument on the left, and pass through the first quadrupole.
This can be operated either in ion transfer mode, which allows all ions to pass, or in selective
mode, which is used for precursor scanning and alignment of the different quadrupoles. The
ion transfer is a special quadrupole, intended to separate the operating pressures in the different
compartments of the quadruple section. In the collision cell, a collision gas can be present in
order to induce fragmentation of the incoming ions. When no gas is present molecular ions will
be detected. Subsequently, molecular ions and/or charged fragments enter the TOF tube, where
they are collected and pushed into the drift zone. During this transition, ions are accelerated in
an electric field in the accelerator assembly, consisting of several ion lenses, which determines
their kinetic energy. The ions now all follow a trajectory towards the reflectron, consisting of
a pile of cylindrical ion lenses at different potentials, which causes them to be repelled towards
the detector, the multi channel plate. Here the ions strike the surface of the detector, which finally
converts the arrival of every single ion into a measurable electric current. Additional electronics
is required to process the electrical signals and the timing between pushing the ions into the drift
zone and their arrival at the detector

Regardless of the high mass accuracy, resolution and sensitivity, the applica-
tion of TOF instruments in structure elucidation is quite limited due to the ab-
sence of filtering and scanning capabilities. Consequently, hybrid instruments
have since been designed to cope with these shortcomings. These machines
include the addition of ion trap(s), quadrupoles or combinations thereof, to
the basic TOF analyser. One key example is the now increasingly well-known
and widely used QTOF system. These instruments rely on the combination
of two or more quadrupoles with a TOF analyser. The first quadrupole (Q1)
serves as a mass filter or ion tunnel, depending on the operational mode, with
the second quadrupole (Q2) serving as the collision cell for the fragmentation
of the ions which have passed through Q1. This fragmentation is achieved
using an electric field to accelerate the ions, in combination with a collision
gas such as nitrogen or argon. Fragmentation can be controlled by varying the
(very low) pressure of the collision gas and/or by varying the collision energy
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through altering the acceleration voltage of the cell. Collisions with the gas
molecules also result in a cooling of the ions, which incurs that their kinetic
energy is transferred. This results in a more homogeneous energy distribution
of the individual ions, which in turn improves the mass accuracy capacity of
the instrument. The ions and/or ion fragments are subsequently collected in
the accelerator part of the TOF instrument where a very short pulse is applied
to the electrodes of the chamber to eject the ions. In the case of orthogonal
ejection, the differences in kinetic energy in the z-axis will be less than in case
of forward ejection. The differences in kinetic energy are also further reduced
in the reflectron lens, which repels the ions towards the detector. Here, ions
with higher energy will travel further than lower energy ions, thus reducing
the difference. A number of variations on this basic design have been created.
These include, for example, the modification of the second quadrupole into
a linear ion trap with axial ejection through the addition of a number of ex-
tra ion lenses (Hager 2002). As a result, new possibilities are created, such as
the ability to store specific ions, which can be selectively ejected for complex
MS/MS or MSn analyses (Hager 2002). The high mass accuracy can be further
improved by using an internal (reference) standard that is sampled at regular
intervals throughout the entire analysis period. This reference is then used
to correct the instrument calibration on-the-fly (lock mass correction). Such
a capacity for continuous (re)calibration is particularly useful, if not essential,
in the case of long series of chromatographic runs where excellent, long-term
stability of the mass accuracy can be continuously achieved down to ±5 ppm.
This is significant as mass accuracy at or below this level allows us to predict
the chemical composition of a given ion by using the small known differences
in atomic masses of the various atomic elements. In this way, a first predic-
tion can be made about the nature and identity of the molecular component.
Combined with other data (retention time, N rule, stable isotope distribution
of 13C etc.) this can then enable the list of possible molecular identities to
be reduced even further and thus come closer to translating MS output into
named metabolites.

Combining the results obtained from several biological samples into a sin-
gle comparative analysis is an arduous task that requires the precise align-
ment and matching of peaks representing the same compound over all chro-
matograms. Due to its relatively robust chromatography and compound sepa-
ration efficiency, GC-(TOF)-MS of derivatized extracts is at present generally
preferred over LC-MS in metabolomic studies (Fiehn et al. 2000; Roessner et al.
2001a,b; Fernie et al. 2004). Nevertheless, GC-MS is less suitable for semi-polar
compounds among which are key classes of plant (secondary) metabolites
including flavonoids, (glyco-)alkaloids, glucosinolates and saponins. Recent
advances in techniques for improving resolution in LC by using capillary elec-
trophoresis (Soga et al. 2002), hydrophilic interaction columns (Tolstikov and
Fiehn 2002) and monolithic columns (Tolstikov et al. 2003) demonstrate the
high potential which TOF technology has for LC-MS to complement GC-MS in
unravelling metabolic profiles.
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3 Data Analysis

Data analysis is perhaps the most crucial step in any metabolomics strategy
and the importance of bioinformatics tools should not be underestimated. In
a standard (ideal) approach, a whole range of standards would be used to assist
in identifying through simple linkage, which peaks in an MS output represent
which metabolites. However, as the vast majority of metabolites present in
complex plant extracts are as yet unknown and are not commercially available,
as is especially true for the secondary plant metabolites, this approach is
unfeasible at present for a true untargeted metabolomics approach. Another
strategy is therefore required which enables the automated and essentially
blind direct comparison of large numbers of spectra. Since most datasets are
very complicated, dedicated metabolomics software is needed for this purpose.
Some of this software is already available but more still needs to be developed
and this represents a major task for the next five years.

Data manipulation is essential for reliable metabolomics analyses and spe-
cial attention has to be paid to aspects such as baseline correction and noise
elimination. In addition, in the case of LC-MS, particular attention also needs
to be given to reliable correction of local drifts in retention time and accurate
mass. Different compositions of eluant can cause significant variation in base-
line especially when using steep LC gradients. For the successful correction of
such baseline fluctuations, the chromatogram has to contain a region without
strong peaks. Digital filtering will enable the elimination of excess noise which
would otherwise lead to the generation of erroneous (false) peaks. Some re-
cent software packages are able to deal with a number of these problems in
TOF data analysis. Another key element is the need to correct for retention
time fluctuations. Unlike capillary gas chromatography which is generally very
stable, liquid chromatography often suffers from relatively large, non-linear
(localised) fluctuations in retention time. This can be due to small differences
in pH, temperature, or the co-elution of components which interact differently
with the stationary phase. Consequently, this problem prevents a simple direct
comparison of different samples. A number of algorithms have been designed
to correct for this phenomenon. One such approach, based on photodiode
array type data, uses correlation optimised warping of the chromatograms to
achieve alignment of shifted peaks in the chromatograms (Nielsen et al. 1998).
For MS data, MetAlign™ software, in contrast, uses specific mass peaks with
strong local maxima throughout the chromatogram as ‘landmark peaks’ with
which to correct for chromatographic shifts over the entire series of analyses
(Vorst et al. 2005). After correction, unbiased, direct spectral comparisons,
based on mass peak intensities are possible and contrasting mass signals can
be reliably identified and extracted. Differential chromatograms are produced
from which all unchanging peaks have been removed to reveal the true extent
of the differences between two (groups of) samples in one or both directions.
This dedicated software can automatically handle hundreds of full scan MS
datasets obtained by either LC or GC, and is independent of type of mass
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spectrometer. Another package, Markerlynx™, which is dedicated to Waters
instruments, exploits the high mass accuracy and resolution of the (Q)TOF
technology. Here, the distribution of specific ions in a predefined mass win-
dow, usually in a 20−50 ppm range, over the chromatogram is analysed and
retention shifts are corrected within a predetermined retention time window.
In this way, metabolites can be compared over many samples using high mass
resolution. Both approaches have their own advantages and limitations. In our
lab we more or less routinely use metAlign™ to process LC-QTOF and GC-TOF
data. However, in cases where there are insufficient landmark peaks, metAl-
ign™ is unable to perform a thorough alignment. When spectra are noisy or
highly complex, the Markerlynx™ approach will likely give misalignments.

How to proceed further with the processing of corrected chromatograms is
dependent upon the type of metabolomics analysis required. Within
metAlign™ there is a tool to extract user-defined significant differences be-
tween two groups of samples based on the Student t-test. In many cases,
where large sample numbers are being compared, multivariate analysis will
be desirable. For this purpose, software originally developed for the analy-
sis of microarray datasets can be advantageously applied, since metabolomic
data share a number of problems similar to those which were encountered
with microarray data. We use, for example, the GeneMaths software package
(Vorst et al. 2005), which enables rapid statistical data analysis and provides
clear graphic outputs of the results in the form of histograms and principle
components plots. Other software packages should be equally valuable.

4 Application of QTOF MS-based Plant Metabolomics Analyses

4.1 Rapid Sample Profiling by Direct Flow Injection Analysis (DFI)

In plant metabolomics there is often an initial desire for a rapid pre-screening
of the samples. This is especially the case when dealing with large sample
numbers where only a limited number of individuals might be expected to
be different. One can think here for example, of natural populations, potential
mutants or the progeny from a breeding cross (Bino et al. 2005; Hall et al. 2005).
Direct Flow Injection can effectively be used to get a rapid, overall impression
of the composition of a biological extract. It is an unbiased analysis, and seeks
to cover as many metabolites as possible in a single short run. The only se-
lective property is the type of ionisation used, i. e. positive vs negative, ESI
(ElectroSpray ionisation) vs APCI (Atmospheric Pressure Chemical Ionisa-
tion). The advantage of this approach is time-saving. When using chromato-
graphic separation to prevent excessive component interaction, run times of
30−90 min are usually required (but see as an exception; Jander et al. 2004). In
the case of DFI, run times of only 30 s to a few minutes (Goodacre et al. 2003)
may be required. For DFI, a few microlitres of extract is introduced by the
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autosampler directly into the ion source and all ions with the corresponding
charge are then analysed by the MS. In this case, TOF instruments have a clear
advantage over scanning quadrupole instruments because their significantly
higher resolution allows for the simultaneous detection of many ion species
and, because no scanning is required, every individual ion can theoretically
be captured. This inevitably results in a very rich mass spectrum which is
further complicated by the many interactions which can occur between the
different components of the sample during ionization. Furthermore, unstable
ions can cause additional extensive ion vapour phase interactions. For these
reasons, there was initially considerable scepticism of the potential value of
DFI approaches for reliable metabolic analysis and these phenomena are ex-
tensively discussed elsewhere (Kebarle 2000; King et al. 2000). However, recent
publications have shown that the mass spectrum data obtained in this way is
actually highly reproducible and can effectively be used for a fast screening of
complex extracts (Aharoni et al. 2002; Goodacre et al. 2002, 2003; Castrillo et
al. 2003; Verhoeven et al., in preparation).

Data processing is in many cases the bottleneck for the successful deploy-
ment of this technology, and many applications rely on a dedicated approach to
data processing. This was clearly demonstrated for example, by the MS analysis
of unfractionated plant extracts of Pharbitis leaf sap (Goodacre et al. 2003).
Correct data processing of the complex mass spectra was found crucial for
reliable discrimination between the different physiological treatments used.
Experiments performed in our laboratory resulted in similar conclusions. Five
commercially available extracts from Salix were analysed using DFI in a QTOF
MS in positive mode. A single total ion count (TIC) injection peak was ob-
served, and all the masses obtained were combined into a single mass spectrum
per sample. The aligned spectra were processed for noise elimination, baseline
correction and then centroided to obtain the accurate masses of each m/z peak.
These were then aligned in the m/z dimension using exact masses of known
metabolites to correct for small fluctuations in exact mass due unavoidable
minor (thermal) drift in the TOF tube. Intensities of the m/z peaks were log
transformed, and exported to GeneMaths™ for multivariate analysis. Principle
Components Analysis (PCA) revealed first (Fig. 2a) that the sample replicates
(Samples 1 and 2) cluster close together reflecting the high reproducibility of
the extraction and mass profiling techniques. Sample 3 is also clearly simi-
lar in overall composition to Sample 5, whereas Sample 4 is clearly distinct
from all others. Sample 4 was found to have come from a different supplier.
Differences in sample composition were readily detected by selecting the m/z
values which were responsible for the separation of the samples in the PCA
(Fig. 2b). This example indicates the usefulness of rapid screening for quality
control of complex extracts without the need for more dedicated but time-
consuming LC separation. In a similar manner Goodacre also used a rapid DFI
approach to compare olive oil samples and to test for adulteration (Goodacre
et al. 2002).
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Fig. 2. a PCA plot of the entire set of detected mass peaks of 5 Salix samples. Samples 1 and 2
were experimental replicates taken from plant extracts of the same origin, but with different
batch numbers. Samples 3, 4 and 5 were samples of unknown, but different origin. This figure
shows that experimental variation (Samples 1 and 2) is low, Samples 3 and 5 are highly similar
with respect to their overall composition while Sample 4 is distinctly different from the rest being
placed on the other side of the PCA plot. b Detailed PCA of all mass peaks in the Samples 1 to 5.
The area responsible for the grouping and positioning of Samples 3 and 5 in the bottom right
quadrant is highlighted, and the corresponding mass peaks are shown as their logarithmic ratio
on the right together with the m/z values of each. Light grey: low abundant mass peaks, dark grey:
highly abundant mass peaks

4.2 QTOF MS Coupled to HPLC

As outlined above, direct infusion methods for a (Q)TOF-MS approach are
relatively fast and simple approaches for obtaining metabolic composition
fingerprints of multiple samples which can be used to get a preliminary esti-
mation of the extent of similarities and differences between complex extracts.
However, ion suppression phenomena may result in decreased detection sen-
sitivity of some compounds, especially of those which ionize relatively poorly
(discussed in Kebarle 2000). Moreover, the unavoidable consequences of direct
infusion such as matrix-dependent ion suppression, adduct formation and un-
intended in-source fragmentation, may severely hamper the further detailed
interpretation of the origins of the differential mass signals detected. This will
thus limit possibilities for the subsequent metabolite identification involved. In
addition, with DFI analyses it is, per definition, impossible to discriminate be-
tween molecular isomers or between a quasi-molecular ion and an ion having
identical mass but which resulted from unintended in-source fragmentation.
When such problems arise, or when a more detailed analysis of interesting
samples (preselected, e. g. using a DFI approach) is required, LC separation
can be used to reduce or solve some of these problems.

Separation of metabolites in complex extracts by liquid chromatography,
prior to MS analysis, takes more time but nevertheless has a number of clear
advantages. Sensitivity of detection for most compounds will be increased, the
formation of adducts at the ionization source will be reduced and the detection
of isomeric compounds will be improved. Isomer discrimination is especially
important in plant metabolomics as plants are well-known to contain many
(secondary) metabolites that may have identical accurate mass but different
molecular structures. This is especially true for the large group of flavonoids,
within which many compounds have the same elemental composition (and
consequently the same accurate mass) whereas the chemical structures are
quite distinct, e. g. kaempferol and scutellarein both of which have a neutral
accurate mass of 286.04721. Furthermore, when using chromatographic sepa-
ration, it is also possible to collect additional valuable structural information
by applying, e. g. on-line tandem MS and/or by making use of other molecu-
lar characteristics such as UV-Vis absorbance and fluorescence which can be
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detected on-line prior to the molecules entering the MS. It is this combination
of technologies which has made QTOF-based MS analysis a popular choice.

4.2.1 HPLC-PDA-ESI-QTOF-MS

The key to successful, full scale metabolomics analysis is the establishment
of a technology platform which generates the maximum amount of reliable
information in a single analytical run. For example, the LC-TOF MS based
metabolomics system used in our laboratory incorporates a Waters Alliance
2795 HT autoinjector and HPLC pump system fitted with a column oven,
a Waters 2996 photodiode array detector (PDA to give absorbance spectra in
the190−700 nmrange)andaQTOFUltimaAPImass spectrometerwithMS/MS
capability. In this system, four sets of data are therefore obtained simultane-
ously:UV/vis spectra, retention time, accuratemass and,whenapplied,MS/MS
fragment information. A lock mass™ spray module is routinely connected to
the ESI source in order to correct, on-the-fly, for any small measurement de-
viations from the exact mass (e. g. Wolff et al. 2001). We routinely use the syn-
thetic peptide leucine enkephalin, which is continuously supplied by a separate
low-flow HPLC pump as a reference lock mass in both positive and negative
ESI measurement modes. By making combined use of accurate mass, MS/MS
fragmentation information and absorbance characteristics, the number of pos-
sible elemental compositions and isomers can be narrowed down and essential
structural information about a specific metabolite can be derived. For instance,
most plant extracts contain multiple (poly)phenolic compounds, among which
many isomers exist. Upon MS/MS fragmentation, many isomeric forms can
already be distinguished, e. g. quercetin-rhamnoside (m/z 449.1079 in ESI
positive mode) provides a fragment of 303.0505 while kaempferol-glucoside
(also m/z 449.1079) provides a positively-charged fragment of 287.0556. How-
ever, with a QTOF, fragmentation experiments are not always conclusive. For
instance, the glycosylated flavonoids kaempferol-3-O-glucoside and cyanidin-
3-O-glucoside have identical mass and elemental composition of C21H20O11,
and show more or less similar MS/MS fragmentation patterns in ESI-positive
mode with the loss of the glucosidic group leaving C15H10O6 as the major
fragment. However, in contrast, their UV-Vis absorbance characteristics are
markedly different, with only the red-coloured cyanidin-glycoside having sig-
nificant absorbance at wavelengths between 500 and 520 nm. This additional
PDA information is therefore key to rapid isomer discrimination in this case.

A typical chromatogram obtained by reversed phase HPLC separation of
a crude plant extract and subsequent on-line detection of eluting compounds
bybothPDAandQTOFMSis shown inFig. 3.Theobservedmassof themetabo-
lite eluting at retention time 23.48 min was 611.1596. Taking into account the
uneven mass (indicating an even number of nitrogen atoms) and the isotopic
distribution (indicating the absence of sulphur atoms), about 36 different el-
emental compositions are possible at 5 ppm accuracy (9 at 1 ppm accuracy)
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Fig. 3. Typical LC-PDA-QTOF MS chromatograms (base peak intensities) obtained by injection
of 5 μl of an aqueous-methanol extract of tomato peel: a photodiode array signal (240−600 nm)
b QTOF-ESI+-MS signal (m/z 100–1500). Indicated are retention times of the most intense peaks

Fig. 4. a Absorbance spectrum of chromatographic peak at retention time 23.48 min. b QTOF-
ESI-MS/MS spectrum of chromatographic peak at retention time 23.48 min. Observed accurate
mass of parent ion [M+H] + = 611.1596 corresponds to an elemental composition of C27H31O21
(−2.6 ppm) and its fragments obtained correspond to C21H21O16 (+1.9 ppm) and C15H11O7
(−3.9 ppm)
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with parameter settings of C ≤ 75, H ≤ 100, O ≤ 75, N ≤ 10 and P ≤ 4.
Subsequent on-line LC-MS/MS fragmentation experiments (Fig. 4b) showed
neutral losses of 146 and 162, and accurate mass fragments ([M+H] +) of
465.1042 and 303.0493. The accurate mass and MS/MS fragmentation pattern
correspond to a metabolite having an elemental composition of C27H30O21,
e. g. a diglycosylated anthraquinone, an (iso)flavonoid or a benzoyl-benzoic
acid. The PDA spectrum of the same chromatographic peak (Fig. 4a) showed
two absorbance maxima at around 255 and 360 nm, indicative of a flavonol-
type flavonoid with at least two hydroxyl groups on the B ring (Markham
1989). The combination of accurate mass, MS/MS fragments and UV/vis ab-
sorbance spectrum indicates that the most likely candidate is quercetin-3-O-
rutinoside. This is also supported by the knowledge that this flavonoid has
been reported to be the major flavonol in tomato fruits (Muir et al. 2001;
Le Gall et al. 2003). Subsequent comparison with an authentic standard in-
deed revealed identical chromatography, accurate mass, MS/MS fragmen-
tation pattern as well as absorbance spectrum thus confirming peak iden-
tity.

4.2.2 Metabolomics to Characterize Tomato Mutants

The LC-PDA-QTOF-MS-based platform approach has been shown to be an
effective, reproducible and sensitive method for non-targeted metabolomic
profiling. Sample preparation, chromatographic system and accurate mass
measurements have been optimized in order to screen hundreds of extracts
in an unsupervised stable manner. After unbiased alignment of the chro-
matograms, the data are imported into multivariate analyses software to eluci-
date the biological variables underlying the data structure (Vorst et al. 2005).
As an example of the power of non-targeted metabolomics approaches using
LC-QTOF MS, we recently reported on the effect of a single mutation on the
metabolic profile of ripe fruits of tomato (Bino et al. 2005). In tomato, several
natural photomorphogenic mutants are known and these have been the sub-
ject of detailed physiological investigations. One mutant, carrying one of the
high pigment (hp-1, hp-1w, hp-2, hp-2j, and hp-2dg) mutations, is characterized
by its exaggerated light responsiveness. Generally, these mutants have higher
pigmentation levels in their hypocotyls, leaves and fruit in comparison to their
semi-isogenic, wild-type counterparts (Levin et al. 2003; van Tuinen et al.
2005). The more intense colour of the fruits is a clear indication that these mu-
tants accumulate more all-trans lycopene in their ripe fruits. However, by using
a metabolomics approach it became clear that the metabolic perturbations in
these fruit were much more extensive than just involving lycopene (Bino et
al. 2005). The hp-2dg mutant and wild-type tomato plants (cv. Manapal) were
grown simultaneously under controlled environmental conditions and fruit
samples were pooled per plant. Different, complementary metabolic profiling
techniques, including GC-MS and LC-MS, were applied to measure as many
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compounds as possible in ripe fruits. For non targeted profiling of non-volatile
(semi-polar) compounds, aqueous methanol extracts were prepared and sub-
jected to reversed phase HPLC using both PDA (240−600 nm) and QTOF-MS
(m/z 100–1500; ESI positive and negative modes). A lock mass spray (sampled
every 10 s) was used to enable accurate mass measurements. Raw data were
processed by the metAlign™-software and mass traces were extracted (6168
in negative mode and 5401 in positive mode with a ratio of > 3) and aligned
across all samples. Pair-wise comparisons (Student t-test) could then be used
to determine statistically significant differences between hp-2dg and wild-type
fruit extracts. Differential chromatograms were produced from the original
LC-MS software, and from these (Fig. 5) it was evident that the hp-2dg muta-
tion resulted in a significant increase in many compounds (246 mass signals in
negative mode and 137 in positive mode were > twofold higher) and a decrease
in only a small number of other compounds (57 mass signals being a factor 2
or more lower in negative mode and 5 mass signals twofold lower in positive
mode). The metabolites corresponding to the differential masses were identi-
fied using accurate mass, MS/MS fragmentation experiments and absorbance
spectra (PDA) information. In this way, it was possible to identify a number
of phenolic compounds, flavonoids and alkaloids that were significantly in-
creased in the hp-2dg mutant (Bino et al. 2005) pointing clearly to a pleiotropic

Fig. 5a,b. Metalign™-processed LC-QTOF MS chromatograms (recorded in ESI-negative mode)
showing metabolites that are significantly different (Student t-test, p < 0.01; n = 5) between hp-
2dg and wild-type tomato fruits: a metabolites at least twofold higher in hp-2dg than in wild-type;
b metabolites at least twofold higher in wild-type than in hp-2dg . Retention times and nominal
masses of metabolites are indicated. 100% scale of y-axis (TIC) is 25,000 in a and 500 in b
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effect of photomorphogenic mutations on tomato fruit metabolism which was
much greater than was initially visible.

5 Conclusions and Future Prospects

The examples presented in this chapter clearly underline the versatility of
hybrid TOF mass spectrometers, and their capabilities with regard to metabolic
profiling, structure elucidation and compound identification, using accurate
mass determinations and MS/MS fragmentation. The high sensitivity and mass
resolution allows the rapid screening of complex plant extracts by DFI, suitable
for semi quantitative high throughput (pre)screening. More detailed analysis
is possible when MS detection is preceded by applying separation technologies
such as LC. Data processing and efficient data handling are becoming more and
more the bottleneck in the process, especially when high throughput screening
is required and the currently available bioinformatics tools are inadequate.
Anotherbottleneck is the lownumberofavailable referencecompoundsneeded
for definitive identification of differentially accumulating components. Key
developments for the near future will therefore have to be made in these areas if
true plant metabolomics strategies are to become routine. With better software
and more easily mined databases we will be best equipped for the identification
of the large numbers of the highly chemically diverse components typically
present in complex plant extracts.
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I.4 Capillary HPLC

T. Ikegami1, E. Fukusaki2, and N. Tanaka1

1 Introduction

Among many techniques employed for the separation and identification of
metabolites,HPLC(highperformance liquidchromatography)-MS(mass spec-
trometry) is most widely applicable to metabolomics, although the chromato-
graphic efficiency is generally lower than that of the other separation tech-
niques, GC (gas chromatography)-MS or CE (capillary electrophoresis)-MS.
Recently, significant improvement was made to increase the separation capa-
bility of HPLC, which will help the analysis of complex metabolite samples.
In the field of metabolomics, because of the importance of separation and
detection of thousands of small molecules, micro HPLC techniques will be-
come a common method of separation in the near future (Tomita and Nishioka
2003). In this article, the use of long capillary columns that give high separa-
tion efficiencies in micro HPLC system, and multidimensional HPLC that can
provide even higher peak capacity will be described. Special attention will be
paid to the examples of high efficiency HPLC separations made possible by
monolithic silica columns composed of network type silica skeletons.

2 Monolithic Silica Columns for Micro HPLC

Micro HPLC systems with a monolithic silica capillary column possess the
following advantages:

1. Small consumption of stationary and mobile phases
2. High detection sensitivity for a certain amount of samples
3. High speed separation with low pressure drop
4. The possible use of a long column with 1 ∼ 2 m that can provide around

100,000∼200,000 theoretical plates

along with some disadvantages:

1 Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki,
Sakyo-ku, Kyoto, 606–8585, Japan, e-mail: ikegami@kit.ac.jp, nobuo@kit.ac.jp

2 Department of Biotechnology, Graduate School of Engineering, Osaka Univ, 2–1 Yamadaoka,
Suita, 565–0871, Japan, e-mail: fukusaki@bio.eng.osaka-u.ac.jp

Biotechnology in Agriculture and Forestry, Vol. 57
Plant Metabolomics (ed. by K. Saito, R.A. Dixon, and L. Willmitzer)
© Springer-Verlag Berlin Heidelberg 2006



50 T. Ikegami, E. Fukusaki, and N. Tanaka

Table 1. Column sizes, flow rates, linear velocities, and degrees of sample dilution

Column type Inner Column Flow ta
0

Solvent Relative
diameter volumea rate linear velocity degree

[mm (μm)] [μl] [μl/min] [s/10 cm] [mm/s] of dilutionb

Conventional 4.6 1660 1000 70 1.4 2100

Semi-micro 2.0 314 200 66 1.5 400

Micro 1.0 78 50 66 1.5 100
0.5 (500) 20 12.5 66 1.5 25

Micro-capillary 0.3 (300) 7.1 5 59 1.7 9
0.2 (200) 3.1 2 66 1.5 4
0.1 (100) 0.78 0.5 66 1.5 1
0.05 (50) 0.20 0.12 69 1.5 0.25
0.025 (25) 0.05 0.03 69 1.5 0.06

a Column lengths were 10 cm, total porosity was estimated as 0.70
b Column of id 100 μm is taken as a standard

1. Smaller sample capacitiesof amonolithic silica columnthanparticle-packed
columns

2. Necessity of skill and knowledge to operate a capillary HPLC system to
obtain high separation efficiency, and insufficient supply of good columns
and instruments for capillary HPLC

Particle-packed capillary columns have been employed for separations of an-
alytes with or without the assistance of electroosmotic flow. It is possible to
pack silica particles into a fused silica capillary equipped with a frit, but it is
difficult to produce high efficiency and long-lasting columns using 1 ∼ 2 μm
particles (Novotony 1988; Knox and Grant 1991; Schmeer et al. 1995).

Recently, monolithic silica capillary columns have been reported to show
higher separation efficiencies than particle packed columns (Ishizuka et al.
2000; Tanaka et al. 2000). They consist of network silica skeletons that can
be prepared in capillaries by a sol-gel method. Monolithic silica columns
of 4.6 mm ID (inner diameter), 0.2 mm ID, 0.1 mm ID and 0.05 mm ID are
commercially available at present. Column sizes and flow rates to be employed
are listed in Table 1.

2.1 Characteristics of Monolithic Silica Columns

Here, the features of monolithic silica capillary columns and the optimization
of separationconditionswill bedescribed.Theuseofmonolithic silica columns
consisting of network silica skeletons and through-pores for micro HPLC was
reported recently (Minakuchi et al. 1996; Tanaka et al. 2001). Monolithic silica
capillary columns were reported to provide better separation efficiencies than
particle-packed columns, and the use of these columns for proteomics and
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Fig. 1. Scanning electron microscope images of monolithic silica prepared from sol-gel methods:
a monolithic silica prepared in a test tube; b,c monolithic silica prepared in 50 μm ID fused silica
capillary; d monolithic silica prepared in 100 μm ID fused silica capillary; e monolithic silica
prepared in 200 μm ID fused silica capillary tube

metabolomics seems to be attractive (Cabrera 2004). Monolithic silica columns
are prepared by acid-catalyzed hydrolytic polymerization of alkoxysilanes in
the presence of water-soluble polymers such as poly(ethylene glycol) (Tanaka
et al. 2001; Cabrera 2004). Figure 1a shows a scanning electron microscope
(SEM) image of monolithic silica prepared in a test tube, while Fig. 1b–e shows
SEM images of monolithic silica columns prepared in fused silica capillaries
with 50∼200 μm internal diameter (Motokawa et al. 2002).

Currently available monolithic capillary columns include organic polymer
columns (Svec 2004) and chemically modified silica columns, and they have
the following features. Monolithic polymer columns generally show higher
permeability than particle-packed columns, and high efficiency for the sep-
aration of macromolecules (Svec et al. 2000). In the case of monolithic silica
capillary columns, silica skeletons are covalently bonded to capillary walls.
Thus, frits are not necessary to hold the skeletons in a column, and column
length can be varied in the range of 5 ∼ 200 cm after preparation. Generally,
the silica skeleton sizes are in the range of 1 ∼ 2 μm. As shown in Fig. 1a,
monolithic columns have 3∼10 times bigger (through-pore size/skeleton size)
ratio, 1 ∼ 3, than particle-packed columns with (through-pore size/particle
size) ratio, 0.25∼0.4. Monolithic silica columns produce similar separation ef-
ficiencies to particle-packed columns at much lower pressure drop. At the same
pressure drop, monolithic columns can provide higher separation efficiencies
than particle-packed columns. Moreover, due to the small silica skeleton sizes,
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relatively high separation efficiencies can be expected at higher linear veloc-
ities (Minakuchi et al. 1997, 1998). In terms of separation impedance, total
performance of columns (E), monolithic silica capillary columns can produce
higher separation efficiencies, nearly 10 times greater than that of a particle-
packed column (Motokawa et al. 2002). Separation impedance is given by
Eq. (1) where N, ΔP, t0 and η stand for number of theoretical plates, column
back pressure, the elution time of an unretained solute, and viscosity of mobile
phase, respectively (Bristow and Knox 1977):

E = t0ΔP/N2η = (ΔP/N)(t0/N)(1/η) (1)

Figure 2 shows chromatograms produced by monolithic silica capillary
columns of 25∼130 cm lengths modified with C18 stationary phase (Ishizuka
et al. 2002).

The dilution factors for analytes are proportional to the internal diameters of
columns squared assuming that band broadening (peak width) and resolutions
are similar for various HPLC systems. Sample concentrations after the separa-
tionarehigher inmicrocolumnswith smallerdiameters, and thehigher sample
concentrations can lead to higher detection sensitivity (Table 1). Because lower
flow rates can lead to higher ionization efficiencies and higher detection sen-
sitivity in LC-ESI (electrospray ionization) MS system, development of high

Fig. 2. Chromatograms obtained for alkylbenzenes (C6H5(CH2)nH, n = 0−6) by: a–d C18 mono-
lithic silica capillary columns; e particle packed column (5 mm silica-C18 particles, Mightysil
RP18)
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efficiency micro HPLC system is an important issue for metabolomics studies
(Schmidt et al. 2003).

2.2 Column Efficiencies and the Optimization
of Separation Conditions

The number of theoretical plate N is a measure of the quality of a column and
elution conditions, and is given by Eq. (2) from the retention time of a peak (tR)
and peak width at half height (tw1/2 = 2.35σ, σ being the standard deviation of
a Gaussian peak). Resolution Rs is given by Eq. (4), that includes N, α (Eq. (5),
selectivity, the ratio of retention factors of two adjacent peaks), and k (Eq. (3),
a retention factor, distribution coefficient of a solute between stationary and
mobile phases, i. e. the ratio of times (tR–t0) to t0, the former stands for time
the solute exists in mobile phase, and the latter stands for time the solute exists
in stationary phase). For convenient separation and detection, the k values
should be in a range of 2∼5:

N = (tR/σ)2 = 5.54(tR/tw1/2)2 = 16(tR/tw)2 (2)

k = (tR − t0)/t0 (3)

Rs = (N1/2/4)[(α − 1)/α][k/(1 + k)] (4)

α = k2/k1 (5)

ΔP = φηuL/d2
p(u = L/t0) (6)

ΔP is proportional to η, u (linear velocity of the mobile phase), and L (column
length) while it is inversely proportional to d2

p, where dp stands for diameter of
particle. Thus, a column packed with particles of small diameter leads to high
separation efficiency, (greater N) at the expense of high column backpressure.
Due to the drawback, an approach to get high efficiencies by reducing diameter
of particles has a limit: since the pressure limit of a pump system is around
300 ∼ 400 bar with a normal operational pressure 100 ∼ 200 bar, the limit in
particle sizes is in a range of 1 ∼ 3 μm. The flow resistance parameter φ in
Eq. (6), is usually ca. 2000 for particle-packed columns, while φ values reach
to 200∼ 400 in the case of monolithic silica columns (Giddings 1965; Bristow
and Knox 1977).

A solute band is broadened when it travels outside a column due to parabolic
flowprofile ina tubeaswell asdue toslowdiffusion in the stagnantmobilephase
existing in an injector, a detector, or connection tubing. Especially, for solutes
of small retention factors which elutes in early part of a chromatogram, sample
injection into a capillary column of 1 ∼ 5% of column volume has significant
influence on band spreading, mainly caused by sample diffusion at orifice in
an injector or by dead volume in all connection parts (Ikegami at al. 2004).
The split-flow injection technique is practical and useful for micro HPLC with
monolithic silica capillary columns in order to avoid the peak spreading during
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injection (Taniguchi and Murata 2002). Moreover, the use of weak eluents for
sample injection is also effective to increase the separation efficiency: in the
case of reversed-phase HPLC, sample solution can be prepared with water-rich
solvent (Ikegami at al. 2004).

3 Applications of Monolithic Silica Columns to Metabolomics

Figure 3 shows chromatograms of leaf extracts of Arabidopsis thaliana by LC-
ESI-MS using 30 ∼ 90 cm monolithic silica capillary columns modified with
C18 stationary phase under gradient conditions, from aqueous ammonium
acetate buffer (pH 5.5) to acetonitrile, MeCN (Tolstikov et al. 2003). A shallow
gradient (large tG, gradient time) with a long column has lead to better sepa-
ration. The results indicate that improvement of separation by the use of the
longer columns caused the reduction of ion suppression effect by introducing
the solute bands separately into ES ionization interface. In the case of Fig. 3, the
peak capacity provided by the long monolithic silica column is still not enough
for complete separation, but it shows a feasible approach of using longer mono-
lithic silica capillary columns to achieve higher separation efficiency avoiding
ion suppression effect in the LC-ESI-MS system. This approach will result in
longer separation time, but the amount and quality of information after the
analysis of metabolites would be better than conventional LC-MS systems us-
ing particle packed columns. Connected monolithic columns (conventional
size) in series showed good separation of polyprenol homologues (Bamba et
al. 2004).

Mass spectrometry would often be used in metabolomics research due to
its superiority in both quantification and qualification. However, mass spec-
trometry has a serious drawback named ‘ionization suppression’. Ionization
suppression is a phenomenon that presence of impurity at ionization might
cause a serious impairment in qualitative accuracy (King et al. 2000; Müller
et al. 2002). Coelution in chromatography might cause ionization suppres-
sion. Even the technology of capillary monolithic chromatography might not
provide a perfect time separation that is one of the ideal solutions against
ionization suppression. Recently, stable isotope dilution technology tends to
be used as a practical tool to reduce an ionization suppression negative ef-
fect. A stable isotope dilution method employs isotopologues as an internal
standard that would be separated not by chromatography but by mass spec-
trometry to provide an accurate comparative quantification. This principle is
used in the proteomics research tool ‘isotope coded affinity tags (ICAT)’ (Han
et al. 2001). A metabolic profiling of sulfur metabolite using 34S was reported
(Mougous et al. 2002). 13C and 15N stable isotope labeling techniques could be
available in some case. In addition, post sampling stable isotope labeling would
be also applicable, although D-labeling may face some difficulties (Zhang et
al. 2001; Fukusaki et al. 2005). In future a combination of monolithic capillary
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chromatography and stable isotope diluted comparative quantification would
be one of the de facto standard methods in metabolomics.

4 Two-Dimensional HPLC

Peak capacity (PC) given by Eq. (7) indicates the separation ability regarding
how many solutes can be potentially separated by a chromatographic system.
Retention times of the first solute and the last solute are given as t1 and tR
respectively in Eq. (7). Separation methods such as ultrahigh-pressure liquid
chromatography (UHPLC) and supercritical fluid chromatography (SFC) can
produce a PC of ca. 300/h (Shen and Lee 1998; MacNair et al. 1999), while
a conventional HPLC system gives a PC of 100 ∼ 200/h. In order to achieve
far larger PC using conventional HPLC systems, multidimensional separation
systems were shown to be effective. When two chromatographic systems with
PCx and PCy are combined to form a two-dimensional (2D) chromatography
system, PC for the total system can be theoretically estimated as a product of
two PC values as Eq. (8) (Giddings 1991):

PC = 1 + (N1/2/4)ln(tR/t1) (7)

PC2D = PCx × PCy (8)

In comprehensive 2D-HPLC separations every fraction obtained from 1st-D
separation is to be separated in 2nd-D HPLC, while the next fraction is eluted
from 1st-D. Therefore the 2nd-D column should ideally be eluted at very high
speed to meet the rate of fractionation at the 1st-D separation. The 2nd-D col-
umn should possess low-pressure drop and reasonable efficiency at high flow
rate. In addition to high efficiency and high permeability, the 1st-D and 2nd-D
columns must possess adequate difference in selectivity to effect 2D separa-
tions. Ideally the 1st-D and 2nd-D should have orthogonal selectivity or differ-
ent separation mechanisms (Bushey and Jorgenson 1990; Köhne and Welsch
1999; Wagner et al. 2002; Venkataramani and Zelechonok 2003). Ion-exchange
mode and reversed-phase mode, or size-exclusion mode and reversed-phase
mode have often been combined to effect 2D separations for peptide mixtures
in proteomics. Because a particle-packed column cannot be operated at ad-
equately high flow rate, various approaches were taken in the past: (i) small
columns were employed at 1st-D compared to 2nd-D, (ii) the first column was
eluted slowly or intermittently, or (iii) two or more sets of chromatographs were
used at the 2nd-D. Even with these methods, however, truly “two-dimensional”
HPLC is hard to achieve due to the mixing of separation modes.

Figure 4 shows a scheme of 2D-HPLC and its working principle, in which
the outlet tubing of the 1st-D column was connected to a loop of the 2nd-D
injector to couple particle the packed 1st-D column and 2nd-D monolithic
silica column run at higher linear velocity (Tanaka et al. 2004). In this case, the
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Fig. 4. a Tubing connection at 2nd-D injector of simple 2D-HPLC. b Tubing connection of two
six-port valves used as 2nd-D injector

fraction from the 1st-D column is loaded and temporarily kept in a loop of the
2nd-D injector that results in mixing of separated peaks, but the flow rates of
two HPLC systems can be controlled independently. The 2nd-D separation can
be carried out at very high flow rate (for example, 10 ml/min for a 4.6 mm ID
column) throughout the separation. The simplest 2D-HPLC in Fig. 4a produced
PC = 1000 in reversed phase mode. When two six-port valves or a ten-port
valve is used at the 2nd-D HPLC in Fig. 4b, all fractions can be subjected to the
separation at the 2nd-D column to provide a comprehensive 2D-HPLC system
resulting in so-called group separation, solutes of similar structural features
appear as a group. Because of fast flow rate in the 2nd-D separation using
a 4.6 mm ID column, the 2D-HPLC system consumed a lot of mobile phase sol-
vent. In order to reduce the consumption of mobile phases, the sufficiently fast,
simple 2D-HPLC using capillary columns has been examined (Kimura et al.
2004). The use of capillary column at 2nd-D leads to less solvent consumption
and better MS detectability compared to a larger-sized column. Figure 5a shows
a 2D chromatogram for the tryptic digest of BSA (Bovine serum albumin) ob-
tained from total ion monitoring by ESI-TOF (Time of flight)-MS. From the
1st-D (2.1 mm ID, 5.0 cm long), 18 fractions were injected at 2-min intervals
into the 2nd-D reversed-phase system (4.6 mm ID, 2.5 cm long), generating
18 chromatograms that were used to produce a 2D chromatogram. Figure 5b
shows a 2D chromatogram obtained for the separation of tryptic digest of BSA
using a capillary column (100 μm ID, 10 cm long) in the 2nd D separation. The
number of spots distinguishable in vertical direction in Fig. 5b was greater than
that in Fig. 5a. This is due to the higher column efficiency and longer gradient
time in 2nd-D, along with greater MS detection sensitivity based on nearly
optimum flow rate (3 μL/min) on the capillary column, the greater amount of
sample introduced to the 2nd-D column because of the longer fractionation
interval, and the smaller extent of dilution due to the use of small diameter
column (Kimura et al. 2004).
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Fig. 5. Two-dimensional separation of tryptic digest of BSA in simple 2D-HPLC, 1st-D; MCI
CQK-31S column (2.1 mm ID, 50 mm long), flow rate; 50 μl/min: a 2nd-D; monolithic silica-C18
column (4.6 mm ID, 25 mm long), flow rate; 5.0 ml/min; b 2nd D; C18 monolithic column (0.1 mm
ID, 100 mm long), flow rate in a capillary column; 3.0 μl/min with a split flow/injection; linear
velocity in the column; 7.7 mm/s. ESI-TOF-MS detection, total ion chromatogram for a mass
range 400–2000

5 Combination of Reversed-Phase HPLC
and Other Separation Modes

Since many compounds of similar properties are to be separated in proteomics,
2D-HPLC hyphenated to an MS system has been employed combining ion ex-
change mode and reversed phase mode, or size-exclusion mode and reversed-
phase mode. In the case of metabolomics, combination of several different sep-
aration modes is preferable to separate a variety of substances. Reversed-phase
mode is most often employed in HPLC, where chemically bonded stationary
phases (C8, C18, and C30, etc.) have advantages in rapid equilibration with
mobile phase, high separation efficiency, and high reproducibility in gradi-
ent.

Recently, hydrophilic LC (HILIC LC) (Alpert et al. 1994; Yoshida 1997)
was shown to be effective for the separation of metabolomes utilizing the
interaction between solutes and hydrophilic functional groups on the sta-
tionary phases. The selectivities of HILIC columns are similar to those of
a conventional silica column, but HILIC columns have advantages over silica
columns in the recovery of samples, and compatibility with mobile phases
used in reversed-phase mode. Figure 6 shows a comparison of elution pat-
terns of HILIC mode and reversed-phase mode in the separation of an ex-
tract from Arabidopsis thaliana (Tolstikov and Fiehn 2002). Since the solvent
type for HILIC and reversed-phase mode are common, it is possible to com-
bine the two separation modes to form multidimensional HPLC, although



60 T. Ikegami, E. Fukusaki, and N. Tanaka

Fi
g.

6.
C

om
pa

ri
so

n
of

ch
ro

m
at

og
ra

m
s

of
an

A
ra

bi
do

ps
is

th
al

ia
na

le
af

m
et

ha
no

le
xt

ra
ct

,o
bt

ai
ne

d
by

H
IL

IC
-L

C
m

od
e

(t
op

pa
ne

l)
an

d
re

ve
rs

ed
-p

ha
se

m
od

e
(b

ot
to

m
pa

ne
l)

:C
on

di
ti

on
s

(t
op

pa
ne

l)
T

SK
G

el
A

m
id

e
80

,4
.6

m
m

ID
,1

50
m

m
lo

ng
,g

ra
di

en
te

lu
ti

on
fr

om
M

eC
N

to
am

m
on

iu
m

ac
et

at
e

bu
ff

er
(6

.5
m

m
ol

/l
,

pH
5.

5)
,M

eC
N

co
nt

en
t(

%
)

(t
im

e,
m

in
)

10
0

→
10

0(
5)

→
90

(8
)
→

60
(7

5)
→

0(
80

),
(b

ot
to

m
pa

ne
l)

C
18

co
lu

m
n,

4.
6

m
m

ID
,1

50
m

m
lo

ng
,g

ra
di

en
te

lu
ti

on
fr

om
am

m
on

iu
m

ac
et

at
e

bu
ff

er
(6

.5
m

m
ol

/l
,p

H
5.

5)
to

M
eC

N
,M

eC
N

co
nt

en
t(

%
)

(t
im

e,
m

in
)

0→
0(

15
)
→

95
(4

0)
→

10
0(

60
)
→

10
0(

80
)



Capillary HPLC 61

the compositions of mobile phases that controls the retention order are total
opposites to each other. Capillary columns for HILIC LC are under develop-
ment.

6 Outlook

Routine use of micro HPLC will need development of several important con-
stituents; the reproducible preparation of high performance columns, small-
volume pumps and gradient systems, and improvement of an injection system.
Subjects to be studied are the development of high performance monolithic
silica columns for variety of separation modes, multidimensional microLC
systems, and optimization of an interface between LC and MS instruments.
Large peak capacities realized by highly efficient microHPLC systems or mul-
tidimensional HPLC will greatly contribute to metabolomics studies when
coupled with MS instruments and stable isotope dilution methodology.
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I.5 Capillary HPLC Coupled to Electrospray Ionization
Quadrupole Time-of-flight Mass Spectrometry

S. Clemens, C. Böttcher, M. Franz, E. Willscher,
E. v. Roepenack-Lahaye, and D. Scheel1

1 Introduction

Metabolite profiling in the pre-metabolomics era of the early 1970s to the late
1990s as well as the pioneering metabolomics projects since the late 1990s
have been predominantly GC-MS based. GC-MS techniques are robust and
well-established. Many primary metabolites (e. g. organic acids, sugars, amino
acids, sugar alcohols) can easily be derivatized and are therefore amenable to
GC-MS analysis. Also, spectral databases and deconvolution algorithms are
available, which help extracting meaningful information. Early on, however, it
was obvious that no single analytical technique would be sufficient to achieve
comprehensive coverage of the metabolome (Sumner et al. 2003). As stated
from the beginning and reiterated since, the chemical diversity of metabolites
makes it virtually impossible to detect all compound classes in one “catch”
(Goodacre et al. 2004; Dunn et al. 2005). That is why already the first reports
describing GC-MS-based metabolomics platforms emphasized the need to
develop complementing LC-MS platforms (Roessner et al. 2000). LC-MS covers
in principle a much wider mass range and should allow one to target many
compound classes not detectable by GC-MS. Furthermore, there is usually
no need for derivatization and LC-MS offers superior options to elucidate
unknown metabolites structurally. Particular fractions can easily be collected
for NMR analysis and metabolites/molecular ions can be further analyzed by
tandem-MS or even MSn. Hampering the adoption of LC-MS approaches for
metabolomics, however, was the fact that LC-MS has only rather recently (i. e.
in the 1990s) developed into a routine technology (Niessen 1999a).

One might argue that the need for LC-MS-based profiling is even more
pressing in plant science. A highly rich and diverse secondary metabolism is
a hallmark of plant biology. Lacking the ability to avoid or to retreat from
unfavorable conditions or potential foes, plants have evolved an enormous
metabolic plasticity, which allows them to respond dynamically to environ-
mental changes through the synthesis and/or degradation of particular com-
pounds. This is complemented by the accumulation of various pre-formed
defenses against microbial attack and other threats (Dixon 2001). Further-
more, many so-called secondary metabolites also apparently play major roles
in primary developmental processes and as signaling molecules. Flavonoids

1 Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle/Saale, Germany, e-mail:
sclemens@ipb-halle.de

Biotechnology in Agriculture and Forestry, Vol. 57
Plant Metabolomics (ed. by K. Saito, R.A. Dixon, and L. Willmitzer)
© Springer-Verlag Berlin Heidelberg 2006
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and their biosynthesis, for instance, have long been investigated because of
their role in flower pigmentation, UV protection, or pathogen defense (Winkel-
Shirley 2001). More recent work demonstrated that flavonoids negatively reg-
ulate auxin transport and are required for pollen germination (Taylor and
Grotewold 2005).

A large fraction of plant secondary metabolites has been classically analyzed
by LC techniques, predominantly through separation on reversed phase mate-
rial. Thus, it is a straightforward concept to combine this with state-of-the-art
mass spectrometry in order to develop powerful metabolomics platforms that
cover important compound classes such as phenylpropanoids or alkaloids.
A look at Arabidopsis thaliana, the most important plant model species, can
illustrate the need for and the potential of LC-MS profiling. Because A. thaliana
has no history of use as a medicinal plant, it initially did not attract the atten-
tion of too many natural product chemists. As a consequence, few secondary
metabolites were identified 10 years ago. In the course of the genome sequenc-
ing, however, it became increasingly clear, that A. thaliana should produce
thousands of different compounds. The Arabidopsis genome encodes a myriad
of proteins likely to be involved in secondary metabolism (d’Auria and Ger-
shenzon 2005). There are more than 270 cytochrome P450 genes, more than
100 glycosyl transferase genes, about 50 glutathione S-transferase genes, to
name a few. For most of the encoded enzymes we do not know substrates or
products.

The first major challenge for metabolomics is the huge chemical diversity
of the metabolome. The second lies in the fact that – as indicated above for
Arabidopsis thaliana – most of the metabolites in any given higher eukaryote
are unknown. Current estimates are in the range of 4000–20,000 metabolites
for a given species (Fernie et al. 2004). Unlike for proteins, genome sequences
do not allow one to deduce the structure of the metabolites. Instead, the
structure has to be elucidated because for only a very minor portion of the
metabolites are standards available. Thus, the future success of metabolomics
will also be determined by the ability to identify reliably metabolites and
to establish the metabolomes of the important model species. Again, this is
a particularly daunting task for plants and filamentous fungi, organisms that
synthesize huge numbers of secondary metabolites, many of which might only
be synthesized in certain cell types or at particular developmental stages. LC-
MS, especially in the combination of quadrupole and time-of-flight analysis in
modern hybrid instruments, holds the promise to meet this challenge as well.
Structural information can in principal be obtained in three different ways:
(i) by determining the elemental composition through the accurate mass, (ii)
by exploiting the information provided by in-source fragmentation, and (iii)
by performing targeted CID-MS (collision-induced dissociation). In contrast,
GC-MS-based profiling faces severe limitations when it comes to de novo
identification of unknown compounds (Fiehn 2002). Molecular ions are rarely
detected because most analytes are derivatized and molecules are fragmented
by the electron impact ionization.
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We will in the following discuss the principles of capillary LC-MS-based pro-
filing, describe the current state and present new data from our own laboratory
on the optimization and the potential of capillary LC coupled to electrospray
ionization quadrupole time-of-flight mass spectrometry (CapLC-ESI-QTOF-
MS) (von Roepenack-Lahaye et al. 2004).

2 Extraction, Chromatography and Mass Spectrometry

When optimizing extraction and chromatographic separation of low molecu-
lar weight compounds, there are various considerations which are common-
place in analytical chemistry (Niessen 1999b) and which will therefore only be
touched upon very briefly. The extraction of biological material with aqueous
methanol has so far been the most widely used option for GC-MS as well as
LC-MS metabolite profiling schemes (Roessner et al. 2000; Fiehn et al. 2000;
Tolstikov et al. 2003). For the sake of stability of compounds and reproducibility
of the analysis, cold extraction is preferred in most cases. Obviously, the choice
of solvent greatly influences scope and range of the profiling. We tested, for
instance, acetonitrile-water and methanol-water mixtures for the extraction
of Arabidopsis thaliana seeds and counted simply the number of mass signals
with a signal to noise ratio > 5 by analyzing subsets of the resulting LC-MS
chromatograms with MetAlign (www.metalign.nl) (see below). We detected
1680 mass peaks in an 80% methanolic seed extract and 1771 signals in a 50%
methanolic seed extract. Of these signals, 973 were found in both extracts.
Utilization of acetonitrile-water gave comparable results: upon extraction with
80% and 50% acetonitrile, 2070 and 1771 mass peaks, respectively, were de-
tectedand1029were found inboth extracts. Only 532 masspeaksweredetected
in all extracts.

There are several classical analytical options to enrich selectively certain
compound classes by modifying the extraction. Solid-phase extraction can be
used to remove problematic compounds such as lipids or to concentrate others
that are of interest but give low signal intensity. These different options and
their effect on the metabolome coverage of LC-MS approaches have not been
systematically evaluated yet. A way of selectively targeting specific classes
of molecules is derivatization. This can permit analysis of compounds with
inadequate stability and results in better chromatographic behaviour as well
as enhanced signal intensity. Also, derivatization has been proposed as a means
to make the ionization of diverse analytes more uniform by adding a particular
chemical group (Halket et al. 2005).

A major obstacle in the development of LC-MS was the general incompat-
ibility of flow rates between LC and MS, i. e. the need to introduce a column
effluent of about 1 mL/min into a high vacuum (Niessen 1999a). One solution
to this problem was to reduce the flow rate by miniaturization of the LC col-
umn, a second to split the column effluent so that only a fraction reaches the
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mass spectrometer. Often these two options are combined. In capillary liquid
chromatography the flow rate is reduced to meet the optimum flow rate range
characteristic for many ESI interfaces. Splitting occurs – if at all – prior to
chromatography between the pump and the column. Chromatography is per-
formed at low flow rates of 2−20 μL/min (Abian et al. 1999). Column diameters
are typically between 80 and 800 μm. In principle, MS is a mass flow sensi-
tive detection because the response is proportional to the actual number of
molecules reaching the detector. However, at a constant flow rate under atmo-
spheric pressure ionization conditions, MS acts as a concentration sensitive
detector, i. e. the signal is proportional to the analyte concentration in the elu-
ent (Niessen 1999a). The smaller diameter of a capillary column as compared
to a regular 4.6-mm analytical column combined with a lower flow rate allows
the use of much smaller sample volumes and lower sample concentrations.
Furthermore, depending on the design of the ESI interface a reduced flow-rate
can result in higher sensitivity due to the enhanced ionization yield of the
smaller primary droplet formation (Wilm and Mann 1994). Thus, since the
mid 1990s there has been a trend towards miniaturization of the LC (Abian et
al. 1999), although the better sensitivity – i. e. lower concentration detection
limits – is partly offset by the need to reduce the injection volume and by the
lower capacity of the column.

It is advisable to inject as small a volume as possible (and reproducible)
in a solvent of low eluotropic strength. Otherwise, retention on the station-
ary phase is incomplete and many compounds will elute partly in the flow-
through. Furthermore, separation could be seriously disturbed, which results
in unsymmetrical peak shapes and altered retention times. Figure 1 shows
the extracted ion chromatograms, which correspond to the molecular ion
of 4-glucopyranosyloxybenzoyl choline, a secondary metabolite identified in
methanolic seed extracts, injected in either 2 μL 80% methanol (a) or 2 μL 10%

Fig. 1. Influence of solvent on the retention and separation. Extracted ion chromatograms (XIC
412.0–412.5) showing the altered retention behaviour of 4-glucopyranosyloxybenzoyl choline
from a seed extract upon injection in different injection solvent mixtures: a 80% methanol –
a fraction of the metabolite elutes in the flow-through (tR = 6.60 min); b 10% methanol –
diastereomers are retained on the column and baseline-separated (tR = 16.80, tR = 20.73 min)
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methanol (b) following separation on C18 phase with hydrophilic end-capping.
In case of an injection in 80% methanol most of the compound is eluted with-
out any retention, whereas upon injection in 10% methanol the compound is
retained on the stationary phase and both diastereomeres (probably cis/trans-
isomers) are baseline separated.

A second major problem for the coupling of LC to MS was initially the incom-
patibility of commonly used mobile phases with MS. Therefore, non-volatiles
such as phosphate ions or the frequently used ion-pairing agent trifluoroacetic
acid (TFA), which causes ion suppression due to the extreme ionization capac-
ity of the mother ion, had to be replaced with formate or acetate buffers. The
organic component of the mobile phases is most frequently acetonitrile, some-
times methanol. Using classical reversed phase material (RP-18, 3 or 4 μm) as
stationary phase, acceptable peak shapes for most of the compounds in leaf and
root extracts could be achieved. In general peak widths of about 0.20−0.35 min
for a 15-cm column with 3 μm particle size were observed. Application of a C18
phase with hydrophilic end-capping provides better separation for early elut-
ing analytes. In particular, aromatic amino acids and biogenic amines show
a considerably improved retention behaviour.

Concerns about the feasibility and reliability of LC-MS-based metabolite
profiling have been raised repeatedly (Fiehn 2002; Fernie et al. 2004; Kell 2004).
These concerns are mostly referring to the fact that electrospray ionization
is prone to matrix effects. This term summarizes two phenomena potentially
compromising quantification: (i) reduction or enhancement of ion signals
caused by the sample matrix, and (ii) interferences from co-eluting molecules
(Matuszewski et al. 2003). Matrix components that are non-volatile can have
dramatic effects on the ion signal of an analyte. Mechanistically this effect is
not fully understood. It is likely caused by competition between an analyte
and non-volatile matrix components for access to the droplet surface in the
spray and for reaction with ions formed during the ionization process (Niessen
1999a; Matuszewski et al. 2003; Manini et al. 2004). Thus, reproducibility of
a quantification can be compromised, a potential problem that is further aggra-
vated when diverse samples ( = matrices) are analyzed. It is important to note,
however, that matrix effects have predominantly been observed in cases where
there was little chromatographic separation. Run times and column lengths
were reduced because the coupling to MS/MS supposedly guaranteed highly
selective detection (Matuszewski et al. 2003). It is obvious, however, that good
separation prior to ionization is essential to reduce the impact of matrix effects
and to minimize ion suppression – especially when highly complex metabolite
mixtures are analyzed. The fewer analytes elute from the column simulta-
neously, the better the chances are of efficient and reproducible electrospray
ionization and detection of a particular analyte. Thus, optimal separation is
of paramount importance and, consequently, the use of very long monolithic
columns for the liquid chromatography has been proposed (Tolstikov et al.
2003). In capillary LC, particle size and column diameter severely restrict the
length of the column because of the backpressure build-up. At the same time,
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a certain minimum flow rate has to be maintained in order to obtain a stable
electrospray. In our experience, therefore, it is not feasible to use columns much
longer than 20 cm unless larger particles are used. We found, however, that the
3 μm–15 cm design is sufficient to achieve very good separation. Figure 1b
shows as a selected example for the CapLC resolution the base-line separation
of the two diastereoisomers of 4-glucopyranosyloxybenzoyl choline (below we
will present and discuss an assessment of matrix effects in our metabolite
profiling scheme).

A great advantage of ESI is its ability to provide soft ionization. Nevertheless,
fragmentation can easily be induced in one of the higher-pressure regions of
the ion passageway from the source into the mass analyzer (Fig. 2a). Three po-
tentials which determine the opposite processes of declustering and focusing
vs collision induced dissociation (Fig. 2b) can be varied on a QSTAR Pulsar
and have to be optimized for the profiling in terms of mass signal yield and
appropriate distribution. First we analyzed two model compounds, namely
hirsutin (Fig. 2c) and rutin (Fig. 2d), which are prone to give in-source frag-
ments and tried to optimize the intensities of the quasi-molecular ions by
systematically ramping both declustering potentials and the focusing poten-
tial. For both hirsutin and rutin the quasi-molecular ions [M+H]+ reached
their maximum between 40 and 50 V for DP1 and 10 and 15 V for DP2. The
effects of the focusing potential on the maxima of the breakdown curves were
of minor importance. However, optimization was necessary (FP = 220 V, data
not shown). It should be clearly stated that, in principle, for every analyte, such
an optimization has to be done to get the full sensitivity, but since a highly
complex mixture of mostly unknown compounds is analyzed, compromises
have to be made. To get the optimal value of DP1 for a profiling experiment,
we measured the same methanolic leaf extract (n = 4) with different DP1
values between 15 and 60 V and analyzed the mass signals with regard to its
mass-to-charge ratio and signal-to-noise ratio distribution (Fig. 3, left panel
and right panel, respectively). We found that in such a simplified analysis the
density functions between 30 and 60 V show only minor differences and, thus,
a value of about DP1 = 45 V appears to yield the best results concerning high
signal-to-noise ratios as well as high mass-to-charge ratios.

Inourmetabolite profilingplatform(vonRoepenack-Lahaye et al. 2004) ions
are injected into a QTOF system, a hybrid mass spectrometer. Practically, the
third quadrupole in a triple quad instrument is replaced in these instruments
with a time-of-flight mass analyzer (Chernushevich et al. 2001). Other mass
analysis options for coupling to LC are discussed in detail in another chapter
(Sumner et al.; this book, Chap. I.2). Likewise, the QTOF system is dealt with
by Bino et al. (this book, Chap. I.3). Thus, we will only briefly summarize
our experience with QTOF-MS. We routinely use an acquisition period (“scan
time”) of 2 s. For the deconvolution of data, which is even more vital for LC
due to the lower resolution as compared to GC, there are currently two options
available to us. The software MetaboliteID (Applied Biosystems) allows one to
extract the mass spectra and to generate an output that lists mass peaks with
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Fig. 2. Effects of ion source potentials on sensitivity and degree of in-source fragmentation:
a schematic overview of the differentially pumped (evacuated) interface between ion source and
mass spectrometer of an API QSTAR Pulsar Hybrid LC/MS system: curtain plate (CP), curtain
gas (CGs), orifice (OR), ring (RNG), skimmer (SK); b definition of electrical potentials applied in
the interfacial region: declustering potential (DP), focusing potential (FP); c,d breakdown curves
for hirsutin (c) and rutin (d) obtained in DP1 and DP2 ramping experiments

retention times, accuratemass and intensity. Self-mademacros are thenneeded
to normalize, to align peak list and to compare intensities (von Roepenack-
Lahaye et al. 2004). These latter steps are covered by the software MetAlign,
developed by Arjen Lommen (www.metalign.nl; Tolstikov et al. 2003), which
aligns and compares sets of chromatograms to identify differentially abundant
mass signals. Reproducibility of the retention times of capillary LC is, in our
experience, high enough to allow accurate alignment of chromatograms.
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Fig. 3. Effect of declustering potential modulation (DP1 variable, DP2 = 15 V, FP = 220 V) on
mass-to-charge ratio (left panel) andsignal-to-noise ratio (right panel) distribution.Amethanolic
leaf extract was analyzed by CapLC-ESI(+)-QTOF-MS with varying declustering potential 1
settings between 15 and 60 V. Frequencies for different mass-to-charge ratio (m/z) and signal-
to-noise ratio (S/N) classes were plotted against DP1 values (n = 4)

3 Potential and Limitations

3.1 Scope of the Analysis

Given the idealistic goal of metabolomics to achieve comprehensive coverage
of the metabolome (Oliver et al. 1998), the number of detectable metabolites is
an important feature of a metabolite profiling platform. CapLC-ESI-QTOF-MS
has great potential because of its sensitivity (Chernushevich et al. 2001). In
a single CapLC-MS run analyzed with the deconvolution software Metabo-
liteID we routinely detect about 1000–2000 mass signals, depending on the
extracted material. Running the data through the MetAlign software and apply-
ing a signal-to-noise ratio cutoff of 5 gives comparable figures. Similar, albeit
somewhat lower numbers (around 700) have been obtained for methanolic
Arabidopsis thaliana leaf extracts in pilot experiments with monolithic sil-
ica columns, coupling of the LC to ion trap MS and deconvolution through
MetAlign (Tolstikov et al. 2003).

A mass signal or m/z, however, does not necessarily represent a metabolite
in all cases. Though isotope peaks should be eliminated through the decon-
volution, many of the signals are likely to be fragments or adducts so that
any given metabolite can in theory give rise to several mass signals. Thus,
the number of detectable metabolites is certainly smaller than the number of
mass signals and cannot reliably be estimated at this point in time. It is safe
to state, however, that several hundred metabolites are routinely detectable in
a methanolic extract using the combination of capillary LC and QTOF mass
spectrometry. Formation of sodium or potassium adducts, for instance, is not
too frequent because of the use of formic acid in the mobile phase.

How large a fraction of the Arabidopsis metabolome is covered using this
technique? The range of secondary metabolite compound classes detectable
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by CapLC-ESI-QTOF-MS in its current state can be assessed by searching in
the profiles for members of the various groups of metabolites known to occur
in Arabidopsis thaliana. A recent compilation listed six biosynthetic classes
(d’Auria and Gershenzon 2005): nitrogen-containing compounds, phenyl-
propanoids, benzenoids, polyketides such as flavonoids, terpenes and fatty
acid derivatives. Metabolites of five of these classes can clearly be detected

Fig. 4. Most of the known biosynthetic classes of A. thaliana secondary metabolites are de-
tectable by CapLC-ESI-QTOF-MS. CapLC-ESI(+/-)-CID-MS spectra of representative metabolites
detected in methanolic extracts of different A. thaliana tissues such as leaves, seeds and roots
(for details on the biosynthetic classes and representative metabolites see text)



74 S. Clemens et al.

by CapLC-ESI-QTOF-MS. Figure 4 displays CID-MS spectra of representa-
tives that we identified in Arabidopsis thaliana extracts. Intact glucosino-
lates can easily be detected by ESI in negative ion mode in nearly all tis-
sues of Arabidopsis thaliana. Typical hydrolysis products of glucosinolates
like isothiocyanates and nitriles can be detected by ESI(+). Examples are 8-
methylsulfinyloctylisothiocyanate (hirsutin) and 8-methylthiononanitrile as
well as several homologs. Furthermore, biosynthetic precursors of glucosino-
lates, like desulfoglucosinolates and thiohydroxamic acids, have been identi-
fied in certain cases. Indole-derived secondary metabolites such as the phy-
toalexin camalexin represent further nitrogen containing compounds that can
be detected. Notably, methanolic root extracts contain a huge variety of in-
dole derivatives. Furthermore, ascorbigens and glutathione-indole conjugates,
which result from trapping reactions of the hydrolysis products of indole glu-
cosinolates with several nucleophiles, could also be detected. As representa-
tives of the phenylpropanoids, typical esters such as sinapoyl malate in leaves
and sinapoyl choline in seeds could be specified. In particular, methanolic
seed extracts show a wealth of different choline esters (unpublished obser-
vations). Besides the corresponding substituted cinnamoyl cholines various
hydroxylated/methoxylated benzoyl cholines could be detected. Other choline
containing compounds like differentially substituted phosphatidyl cholines
have been identified in seed extracts, too. From the class of flavonoids the ma-
jor flavonols kaempferol and quercetin and their glycosides could be detected
either in positive or negative ion mode. Saccharide composition and aglycon
structure can be determined by means of MS2 and pseudo-MS3 (product ion
spectra derived from in-source CID fragments) experiments.

In conclusion, of the biosynthetic classes known to occur in Arabidopsis
thaliana, all but one (terpenes) can be detected. Judging from this comparison,
CapLC-ESI-QTOF-MS achieves a very good coverage of secondary metabolism.
In addition, many primary metabolites such as amino a cids and oligopeptides
can be analyzed. This assessment is based on data obtained in positive-ion
mode. There is a potential to improve further the reach by also measuring
in the negative-ion mode. We found that it is also possible to acquire reliable
data in the negative mode without changing the mobile phase, albeit with
a significantly reduced mass signal yield.

3.2 Quantification

Proper quantification of an analyte requires optimization of extraction, sam-
ple preparation, chromatography and detection, as well as the availability of
a pure standard – which would ideally be isotopically labeled – that can be used
to calibrate the signal. A standard also allows one to determine the dynamic
range of a metabolite in question and to search for possible matrix effects
by performing recovery experiments (Birkemeyer et al. 2005). Obviously it is
extremely difficult for an unbiased profiling of mostly unknown compounds
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to meet the criteria for accurate and reproducible quantification. Standards
are available for only a subset of the detected metabolites and this subset is
particularly small for capillary LC-MS which targets hundreds of low abun-
dance and species-specific metabolites. At the same time, it is inconceivable
that all the required standards can be synthesized. Thus, any metabolomics
approach comes at a cost of reduced precision (Trethewey et al. 1999) and has
to be assessed critically and improved continuously with respect to accuracy
of quantification.

For electrospray ionization there is inherently no correlation between signal
strength and abundance when comparing different analytes because ioniza-
tion efficiency is molecule-dependent. Decisive for quantitative profiling is,
however, whether such a correlation exists for any given analyte and what
the boundary minimum and maximum detector signals are, i. e. how wide
the dynamic range is. In the absence of appropriate standards, serial dilution
experiments are a way to assess linearity at least for the mass signals that are
sufficiently strong. Our initial results demonstrated for a subset analyzed in
detail that there is indeed a good correlation over the almost two orders of
magnitude that were tested (von Roepenack-Lahaye et al. 2004). Still, because
of the analyte dependency, there is a need to gather information continuously
for more and more metabolites and to use these data for the quantification.
As a first approximation an extensive set of reference compounds for different
compound classes – if at all available – should be used. Eventually, the fasci-
nating concept of mass isotopomer ratio analysis through in vivo labeling with
13C (Birkemeyer et al. 2005) might at some point in the future allow internal
standardization of profiling even with multicellular organisms.

The above-mentioned potential of LC-MS for severe matrix effects makes
rigorous validation a necessity (Fernie et al. 2004). Matrix effects are again

dependent on the analyte and the extract or the nature and origin of the
biological sample. Ways to assess these indirectly for an analyte in question are
spiking experiments with different matrices (Matuszewski et al. 2003). In order
to obtain an estimate of matrix effects at the profiling scale, we performed, for
instance, a series of mixing experiments. From previous data we know that
leaf and root extracts are fundamentally different in their composition (von
Roepenack-Lahaye et al. 2004). Leaf/root extracts were either diluted with 80%
methanol or with equal amounts of root/leaf extracts and analyzed (n = 4).
We focused attention on ions with a strong signal so that they would also
be reliably detectable in dilutions. Also, we made sure that signal intensities
were in the dynamic range; 45 m/z values eluting between 15 and 45 min were
selected. Figure 5 shows the ratios of “signal after dilution with methanol” to
“signal after dilution with root/leaf extract”. A ratio above 1 is indicative of
signal enhancement through the other extract, a ratio below 1 shows signal
suppression. One can see in Fig. 5 that ion suppression occurs more frequently
than enhancement. Of the 90 m/z measured in different dilutions, 76 showed
ratios of 1 ± 0.4 (equals about two times the technical variation) and are
therefore considered to be reliably quantifiable. In most experimental set-ups
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Fig. 5. Evaluation of matrix effects through mixing of extracts of different origin. Signal ratios for
mass signals in crosswise matrix-diluted and solvent-diluted leaf and root extracts obtained by
CapLC-ESI(+)-TOF-MS measurements. A total of 45 mass signals were analyzed in two different
mixtures each. A ratio of “signal after dilution with methanol” to “signal after dilution with
root/leaf extract” above 1 is indicative of signal enhancement through the other extract, a ratio
below 1 of signal suppression. Most of the mass signals showed a ratio of 1 ± 0.4 (equals about
two times the technical variation). This threshold of ±40% is indicated by vertical lines

matrix effects will probably be smaller than in this pilot experiment because
matrices will be less diverse than a root and leaf extract. Information obtained
by analyses such as these can be used to weigh the data obtained in a profiling
experiment and to add “confidence tags” to each metabolite. Factored into
such “confidence tags” should also be the results on the dynamic range and
the degree of variability observed over many experiments. We conclude that
the sensitivity and range of CapLC-ESI-QTOF-MS clearly make it a powerful
approach for the identification of qualitative differences between samples but
that – as predicted by Chernushevich et al. (2001) – quantitative analysis is also
feasible provided analyte-dependent effects can be detected and corrected for.
All available data suggest that overall the analytical variation is smaller than
the biological variation – as is the case for the more established metabolomics
approaches (Dunn et al. 2005).

3.3 Identification of Unknown Metabolites

As stated in the introduction, a major potential advantage of LC-MS-based pro-
filing is the multitude of options to obtain structural information on unknown
compounds. This is of paramount importance given, for instance, the conser-
vatively estimated 5000 metabolites in Arabidopsis thaliana of which maybe
500 are annotated today (Bino et al. 2004). The first piece of information on
unknowns is the accurate mass that can be obtained by TOF-MS with a devi-
ation of only 5−10 ppm even in complex matrices (von Roepenack-Lahaye et
al. 2004; Ibanez et al. 2005). Based on this, potential elemental compositions
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can be calculated. As recently proposed by Ibanez et al. (2005), the usually
large number of possibilities can be reduced by calculating theoretical iso-
topic percentages for all possible elemental compositions and by comparing
these to the experimental data. A further significant reduction of formulae can
then be achieved through the second and third layer of structural information,
in-source fragments and CID-MS spectra (see Fig. 4). The very high mass
accuracy of QTOF instruments also applies to product ion scans (Chernushe-
vich et al. 2001). With the information on accurate masses of precursor and
product ions, databases can be searched. Obviously, the success rate of this
approach is determined not only by the performance of the analysis but also
by the availability of databases. In this respect the current situation is far from
being satisfactory and future joint efforts will hopefully result in a significant
improvement (Bino et al. 2004). One should add, however, that in the end iden-
tification will in most cases be tentative and further validation will be required
(Bino et al. 2004). Also, discrimination between isomers is not possible without
standards.

4 Conclusions and Outlook

Our experience with respect to the potential of this technique for metabolomics
can in part be validated by taking a look at recent applications of LC-MS in
general and of CapLC-ESI-QTOF-MS in particular. In occupational toxicology
the superiority of LC-MS-MS with respect to sensitivity is now being exploited
for the determination of trace and ultra-trace amounts of biomarkers of expo-
sure (Manini et al. 2004). Quantification of low-abundance molecules in highly
variable complex matrices is considered feasible, provided that precautions
such as those outlined above are taken. Also, many novel metabolites have
been identified and minor metabolic routes for well-known occupational haz-
ards have been uncovered (Manini et al. 2004). Similarly, the mass accuracy
and sensitivity of QTOF-MS coupled to liquid chromatography is now being
applied to the elucidation of unknown environmental micro-contaminants in,
for instance, water samples (Ibanez et al. 2005). Studies of this kind face chal-
lenges similar to those of metabolomics experiments. The emerging picture is
that CapLC-ESI-QTOF-MS can be routinely applied (von Roepenack-Lahaye
et al. 2004; Bino et al. 2005) and has high potential not only for the iden-
tification of selected molecules but for a highly sensitive, robust metabolite
profiling that achieves very good coverage of the metabolome. Obviously this
technology will be undergoing continuous validation and improvement. De-
veloping the profiling is an iterative process. Any progress made with respect
to the availability of standards or reference compounds, the identification of
metabolites, the linear range or the possible matrix effects for a particular mass
signal has to be used to increase further the accuracy of quantification. Also,
protocols for extraction, selective enrichment of metabolites and chromato-
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graphic separation have to be tailored for specific questions so that a toolbox
of different profiling schemes becomes available to fully exploit the power of
CapLC-ESI-QTOF-MS.

Despite the current limitations – comparatively high cost and the lack of
LC-MS spectral databases – this profiling approach most likely will contribute
substantially to cataloguing the metabolome of Arabidopsis thaliana and other
systems that are under investigation as models or economically important
species. Also, it will help to elucidate biological functions of metabolites and
will greatly facilitate the identification of enzyme substrates and products
through the systematic analysis of mutants and the correlation with tran-
script and protein data (Hirai et al. 2005). Extensive data matrices will allow
one to unravel metabolic and regulatory networks, especially in secondary
metabolism.

References

Abian J, Oosterkamp AJ, Gelpi E (1999) Comparison of conventional, narrow-bore and capillary
liquid chromatography mass spectrometry for electrospray ionization mass spectrometry:
Practical considerations. J Mass Spectrometry 34:244–254

Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-
Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential
of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

Bino RJ, Ric de Vos CH, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A,
Moco S, Levin I (2005) The light hyperresponsive high pigment-2dg mutation of tomato:
alterations in the fruit metabolome. New Phytol 166:427–438

Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the
potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol
23:28–33

Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight
mass spectrometry. J Mass Spectrom 36:849–865

D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing
like a weed. Curr Opin Plant Biol 8:308–316

Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847
Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical tech-

nologies. Analyst 130:606–625
Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics

to systems biology. Nat Rev Mol Cell Biol 5:763–769
Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol

48:155–171
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling

for plant functional genomics. Nature Biotechnol 18:1157–1161
Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers:

acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252
Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM (2005) Chemical

derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS.
J Exp Bot 56:219–243

Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y,
Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Pa-
penbrock J, Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in



Capillary LC-ESI-QTOF-MS-based profiling 79

Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem (epub ahead
of print)

Ibanez M, Sancho JV, Pozo OJ, Niessen W, Hernandez F (2005) Use of quadrupole time-of-flight
mass spectrometry in the elucidation of unknown compounds present in environmental
water. Rapid Commun Mass Spectrom 19:169–178

Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol
7:296–307

Manini P, Andreoli R, Niessen WM (2004) Liquid chromatography-mass spectrometry in occupa-
tional toxicology: a novel approach to the study of biotransformation of industrial chemicals.
J Chromatogr A 1058:21–37

Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix
effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–
3030

NiessenWM(1999a)State-of-the-art in liquidchromatography-mass spectrometry. JChromatogr
A 856:179–197

Niessen WM (1999b) Liquid chromatography-mass spectrometry, 2nd edn. Dekker, New York
Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast

genome. Trends Biotechnol 16:373–378
Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simul-

taneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry.
Plant J 23:131–142

Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the
functional genomics era. Phytochemistry 62:817–836

Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol
8:317–323

Tolstikov VV, Lommen A, Nakanishi K, Tanaka N, Fiehn O (2003) Monolithic silica-based
capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant
metabolomics. Anal Chem 75:6737–6740

Trethewey RN, Krotzky AJ, Willmitzer L (1999) Metabolic profiling: a Rosetta Stone for genomics?
Curr Opin Plant Biol 2:83–85

Von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J,
Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary
liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass
spectrometry. Plant Physiol 134:548–559

Wilm MS, Mann M (1994) Electrospray and taylor-cone theory, Dole’s beam of macro-molecules
at last? Int J Mass Spectrom Ion Processes 136:167–180

Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell
biology, and biotechnology. Plant Physiol 126:485–493



I.6 NMR Spectroscopy in Plant Metabolomics

J.L. Ward and M.H. Beale1

1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the most power-
ful and widely used structural analysis techniques available to the analytical
phytochemist and continues to be the technique of choice for unknown struc-
ture determination. As a technique for plant metabolomics it benefits from
the fact that it is non-compound class selective and non-sample destructive.
NMR spectra contain a wealth of accurate qualitative and quantitative infor-
mation regarding the components of a sample. Whilst measurements of the
1Hs are the most commonly used for metabolomic studies, analysis of the 13Cs
has also been employed. However, the low sensitivity of 13C-NMR (due to its
lower natural abundance and magnetogyric ratio) prevents its routine use for
large numbers of complex extracts. General disadvantages of the sensitivity of
NMR (relative to mass spectroscopy) and overlapping signals can be largely
overcome, for single compounds and partially fractionated mixtures, by use
of instruments with higher field strength magnets (600 MHz or greater) or
by the use of modern cryoprobes. In very complex mixtures, such as crude
plant extracts, that contain compounds at widely differing concentrations,
sensitivity and overlapping signals are problematic for traditional 1D-NMR
spectral interpretation. Techniques to deal with overlapping signals, such as
2D-J-resolved spectroscopy, canprovide reconstructed 1Dspectra that are sim-
plified by the absence of proton–proton coupling (Viant 2003). However, in this
review we concentrate on high-throughput 1D 1H-NMR and demonstrate how
the technique in combination with chemometrics has become well-established
as a plant metabolomic screen. We also discuss how application of 2D- and hy-
phenated NMR techniques can provide further solutions to the sensitivity and
deconvolution problems associated with analysis of complex natural product
mixtures. For more general reviews in the use of NMR in plant sciences the
reader is directed to Roberts (2000), Ratcliffe et al. (2001) and Ratcliffe and
Shachar-Hill (2001, 2005).

1 The National Centre for Plant and Microbial Metabolomics, Rothamsted Research, West Com-
mon, Harpenden, Herts. AL5 2JQ, UK, e-mail: Jane.ward@bbsrc.ac.uk, mike.beale@bbsrc.ac.uk
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2 High-throughput Screening by 1D 1H-NMR

A key advantage in the use of 1H-NMR spectroscopy in metabolomic screens is
the robustness of the technique such that any compound that is soluble in the
solvent of choice will be detected, providing that it contains hydrogen atoms.
Furthermore, integration of signals from different compounds is absolutely
quantitative and is truly representative of the relative concentrations of those
compounds. The fact that NMR reliably detects most compounds present gives
the technique a clear advantage in screening and fingerprinting applications
over mass spectroscopic techniques, which are beset by problems caused by
variable ionisation of different types of compounds.

Methodologies for metabolomic screening of plant extracts by NMR spec-
troscopy are based on the large body of work carried out in the biomedical
area, particularly on plasma and urine in relation to disease biomarkers and
drug metabolism. Much of this work was done by the prolific research group
of Nicholson, Lindon and Holmes at Imperial College, London (Nicholson et
al. 1999; Lindon et al. 2000, 2001, 2004; Bollard et al. 2005).

In plant metabolomics, solvent extraction of metabolites from tissue is nec-
essary. Apart from the experimental design aspects where decisions on the
plant numbers, growth, and tissue type have to be made, key choices influenc-
ing the range of metabolites detected must be made. These are (i) whether to
use fresh or freeze-dried tissue and (ii) the polarity of the solvent to be used.
On the whole, better quality NMR spectra are obtained by directly extract-
ing freeze-dried tissue with deuterated NMR solvents. Most published work
utilises polar solvents (aqueous buffers, perchloric acid, or methanol-water
mixtures), although chloroform has also been utilised (Choi et al 2004a). Fig-
ure 1a depicts the 1H-NMR spectrum of a deuterated water-methanol extract
of Arabidopsis thaliana. The spectrum is typical for most green tissue polar
extracts (Charlton et al. 2003; Ward et al. 2003; Choi et al. 2004b,c), and is
dominated by signals arising from carbohydrates, amino-acids and organic
acids. Polar extracts of other plant tissues such as potato tubers (Defernez et
al. 2004), wheat flour (Lewis et al. 2003) and tomato fruits (Le Gall et al. 2003)
have similar NMR spectra but contain other features reflecting the concentra-
tion of certain metabolites associated with these storage tissues. Exudates from
plant roots also contain distinctive metabolites (Fan et al. 1997) and represent
an area that has been neglected in the recent upsurge in metabolomic studies.

Classic interpretation of complex NMR spectra such as Fig. 1a is difficult
although some 30 or 40 metabolites can be definitively identified by virtue of
signals that appear in non-overlapped regions of the spectrum and quantified
by integration against the internal reference standard (usually trimethylsilyl-
d4-propionate). Use of libraries of standard spectra run in the same solvent on
the same instrument (or at least on an instrument of the same field strength) is
an aid to this interpretation, as is ‘spiking’ of extracts with pure compounds. In
the example shown in Fig. 1b, clear differences in the anomeric proton region
in the spectrum of wild-type Arabidopsis thaliana and that of two different
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Fig. 1. a 600 MHz 1H NMR spectrum of 4:1 (D2O:CD3OD) extract of freeze-dried Arabidopsis
thaliana Col-0 tissue. b Expanded portion of the spectrum featuring the carbohydrate anomeric
proton region highlighting differences in carbohydrate concentrations between Col-0 and the
starch biosynthesis mutants pgm-1 and adg-1. Labelled peaks: 1-sucrose, 2-maltose, 3-glucose.
c PCA scores plot illustrating differences observed between Col-0 and the adg-1/pgm-1 mutants
(filled squares – Col-0, open triangles – pgm-1, filled circles – adg-1). d Loadings plot of PC1
depicting the ‘spectra’ of compounds responsible for differences between Col-0 and the mutants.
e Loadings plot of PC2 depicting the differences between adg-1 and pgm-1

mutants in the starch biosynthesis pathway (pgm-1 and adg-1) can be seen.
These differences can be interpreted in relation to the known function of
the enzymes missing in the mutants. However, in most plant metabolomic
applications many hundreds of similar spectra are collected. Simultaneous
classical interpretation of these numbers of individual spectra is not possible,
but the use of chemometrics (see next section) allows the spectroscopist to
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focus on compounds that are responsible for differences between individual
plants, or populations of plants, and target more detailed analysis to particular
compounds or biochemical pathways.

3 Data Analysis

NMR-based metabolomic datasets are very large, both in terms of the number
ofdatapointsper sample (typically 32 kor64 k), andalso thenumberof samples
and resulting spectra acquired (from dozens to thousands, often including
replicates). In order to draw conclusions and make comparisons between large
numbers of spectra, automated strategies must be employed for the analysis
and interpretation of such data once they have been acquired. The literature
on data analysis is extensive and will only be briefly discussed here. Interested
readers are directed to the review on pattern recognition methods (Lindon et
al. 2001) for further coverage of some of the issues.

Data manipulation typically starts with some form of ‘bucketing’ or ‘bin-
ning’ whereby the spectrum is split into discrete regions (typically between
0.01 and 0.04 ppm in width), which are then integrated to return a list of inte-
gral values for each spectrum. Whilst this reduces the resolution of the data, it
has the advantage of removing small chemical shift changes due to slight pH
variation between samples. Increasingly, work is being carried out using all of
the datapoints in the spectrum by employing an algorithm to align the peaks,
eliminating any unwanted variation (Stoyanova et al. 2004). NMR data is usu-
ally analysed initially using multivariate statistical methods such as Principal
Component Analysis (PCA). PCA is a data visualisation method, useful for ob-
serving groupings within large datasets. There are a number of commercially
available software products that carry out PCA and other related multivariate
analyses. One that has been widely used for NMR data is SIMCA-P (Umetrics,
Sweden). A PCA model can be displayed in a graphical fashion as a “scores”
plot as shown in Fig. 1c. This example compares 1H-spectra collected from
polar extracts of wild-type Arabidopsis thaliana Col-0 with those from the two
mutants in starch biosynthesis (pgm-1 and adg-1). This plot is useful for ob-
serving any groupings in the data set and in addition will highlight outliers that
may be due to errors in sample preparation or instrumentation parameters etc.
Coefficients by which the original variables must be multiplied to obtain the
score are called “loadings”. Thus, “loading plots” [e. g. Fig. 1d,e] can be used to
detect and display the spectral areas responsible for the separation in the data,
and can be interpreted as positive and negative NMR spectra of the compounds
responsible for the differences between the clusters. The numerical value of the
loading of a given variable on a PC indicates how much the variable has in com-
mon with that component (Massart et al. 1988). In Fig. 1d, PC1 represents the
NMR spectra of compounds differing between wild-types and both mutants,
whilst PC2, Fig. 1e, represents the (smaller) difference between the mutants.
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When carrying out PCA it is necessary to apply scaling methods to the
bucketed data matrices. In NMR spectroscopic data, although the integral
values across a spectrum are proportional to concentration and the number
of resonances present, the largest resonances would, without scaling, have
a dominant effect in multivariate analysis. Before PCA the data can be scaled
in different ways. In the covariance matrix method the data are just mean-
centred. In the correlation matrix method the data are mean-centred and
then the columns (variables) of the data matrix are scaled to unit variance.
Covariance matrices are most widely used for NMR data because they have
the advantage that the loadings plots retain the scale of the original data
and can be compared back to libraries of spectra for assignment. Variable
stability scaling (VAST) has recently been described and offers advantages over
previously employed scaling methods in terms of the downstream multivariate
modelling (Keun et al. 2003). This method weights each variable according
to a metric of its stability and can unearth subtle differences between lines
against backgrounds of biological variation. However, in the plant research
arena, where growth of many identical clones under controlled environment is
easily achieved, biological variation can be minimised, for example by pooling
many individuals, and thus presents less of a problem.

An alternative method of highlighting differences between sample sets
against backgrounds of biological or experimental variation is Orthogonal
Signal Correction (OSC) (Gavaghan et al. 2002). This data filtering method
can be applied to the scaled data matrix before multivariate analysis, and can,
if used carefully, yield insights that are not evident from PCA. Such deeper
mining of large data sets for differences against a background of noise can also
be obtained by supervised modelling methods such as Partial Least Squares-
Discriminant Analysis (Lindon et al. 2001). The use of neural networks to
classify spectra has been applied to the study of the herbicide mode of action
on maize seedlings (Aranìbar et al. 2001).

4 Two-dimensional NMR

Two-dimensional (2D) NMR experiments, which make use of interactions be-
tween NMR-detectable nuclei within a molecule, can be used to increase the
spectral resolution and highlight which peaks belong to the same molecule.
These experiments generally have much longer acquisition times, posing prob-
lems to those researchers wanting to carry out high throughput data collection.
Nevertheless, these experiments can be run in automation and generate data
useful to the metabolomics researcher and are particularly useful in the as-
signment of identities to unknown peaks.

The 2D experiments can be split into homonuclear and heteronuclear exper-
iments. Homonuclear experiments examine the correlations between nuclei of
the same type (commonly 1H). The TOCSY experiment (Total Correlation
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Spectroscopy) describes all interactions in a spin system and therefore is one
of the most informative experiments available. The experiment has been used
to examine complex matrices such as root exudates and cell extracts (Fan et
al. 1997). Heteronuclear correlation experiments – as the name suggests – ex-
amine the correlation between two different types of nuclei within a molecule.
Indirect experiments such as HMQC (heteronuclear multiple quantum coher-
ence) and HSQC (heteronuclear single quantum coherence) spectroscopy are
particularly useful in structure assignment as is HMBC (heteronuclear multi-
ple bond coherence) which can examine long range correlations. A relatively
new technique DOSY (diffusion ordered spectroscopy), that is not dependent
on analysis of spin–spin coupling, has been applied to analysis of complex
mixtures such as liquid foods (Gil et al. 2004). Here resonances are separated
in the second dimension by virtue of their diffusion coefficient. This coefficient
is governed by molecular size and thus DOSY represents a novel tool to decon-
volute overlapping signals and may be particularly useful in plant spectra to
assign carbohydrate signals to mono-, di- or higher saccharides.

5 Stable Isotope Labelling

NMR spectroscopy is not restricted to the analysis of 1H signals. 2H, 13C
and 15N isotopes, however, have a very low natural abundance, making the
detection of these signals difficult. Stable isotope labelling leads to the selective
enhancement of some of these signals, providing a powerful method for the
scrutiny of metabolic pathways in many organisms including plants (Roberts
2000; Roscher et al. 2000). Stable isotope labelling in plants has been extensively
reviewed in recent years (Ratcliffe et al. 2001; Ratcliffe and Shachar-Hill 2001,
2005). 13C is the most useful isotope and there are many suitable precursors
includingacetate, aminoacids, carbohydratesandcarbondioxide. 15N labelling
can be achieved using labelled nitrate or ammonium ions whilst D2O can be
used tosupplyplant tissuewith 2H. In themajorityof cases, 13C labelling studies
involve the use of singularly labelled precursors although multiply labelled
precursors can also be used. One of the first applications of this technique
in plant metabolism concerned the measurement of 13C–15N bonds using
a solid state cross polarisation technique (Schaefer et al. 1981). An important
example that demonstrates the use of isotope labelling in plant metabolonics
has been published by Kikuchi et al. (2004). Using wild type and ethanol-
insensitive mutants of Arabidopsis thaliana, labelled with 13C, they were able,
using subtractive 2D-HSQC, to isolate and assign only those metabolites that
were affected by ethanol treatment.

Isotopic labelling techniques are often used for measuring the fluxes of
metabolites through metabolic pathways. The information can be used to
establish the identity of the biochemical pathways involved. This type of study
has been carried out to investigate metabolic pathways in plants using 2H,
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13C and 15N-labelling (Fox et al. 1995; Prabhu et al. 1996; Schleucher et al.
1998). The analysis of stable isotope labelling in pulse-chase and time-course
experiments can also provide quantitative information on metabolic fluxes
although this is restricted to simple linear pathways that are reasonably close
to the entry point of the label into metabolism. For complicated pathways it
may be useful to examine the distribution of the label once the system has
reached a steady state.

6 Hyphenated NMR

Liquid chromatography-NMR-mass spectrometry (LC-NMR-MS) is arguably
the most powerful of the hyphenated techniques available to the phytochemical
researcher (Hostettmann and Wolfender 2001; Wolfender et al. 2001). Metabo-
lite profiling using such hyphenated techniques can help to provide clean spec-
tral information on components of a mixture of unknown metabolites in an
extract or fraction, leading to a partial or a complete structure determination
in a single online experiment. One of the disadvantages of LC-NMR is its lack
of sensitivity, which hampers the on-flow measurement of minor metabolites.
Another problem is the need to suppress solvent signals from the mobile phase
which if left unsuppressed would dominate the spectrum. Signals residing near
these solvent peaks may be suppressed together with the solvent signal. This
can be a major drawback when dealing with unknown constituents. In these
cases the use of sequential analysis using different solvent systems for the LC
is necessary.

LC-NMR hyphenation has been a reality for over 20 years (Buddrus and Her-
zog 1980). However it is only since the improvements in solvent suppression,
NMR sensitivity and the use of shielded magnets that the technique has re-
ceived more widespread recognition. The technique has been successful when
applied to plant extracts rich in natural products of relatively low molecular
mass. Recent studies have emphasised the value of LC-NMR as a technique for
obtaining detailed chemical profiles of species for taxonomic work. For exam-
ple, using LC-NMR in both on-flow and stop-flow modes, flavones, xanthones
and secoiridoids of several Gentianaceae taxa have been identified (Wolfender
et al. 1997). Vogler et al. (1998) also used LC-NMR in the on-flow mode to
identify nine anti-bacterial sesquiterpene lactones from a partially purified
extract of Vernonia fastigiata (Asteraceae) without the need for isolation of
the individual compounds.

LC-SPE-NMR is a relatively new concept with incorporation of an online SPE
(solid phase extraction) cartridge to trap an analyte peak prior to introduction
into the NMR flow probe. This can be done in automation without interruption
of the column flow. An additional advantage of this system is that after drying
the cartridge, analytes can be eluted in fully deuterated solvents, reducing
the need for solvent suppression. Furthermore multiple trapping on the same
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cartridge concentrates the analytes. There are still relatively few publications
using this technologyalthough, anapplicationofLC-SPE-NMRto thedetection
of compounds from oregano was recently reported (Exarchou et al. 2003). Very
recently the technology was used for the rapid identification of antioxidants in
complex commercial rosemary extracts (Pukalskas et al. 2005). In this work,
all major compounds present in the extract were collected on SPE cartridges
after their separation and analysed by both NMR and ESI-MS. LC-SPE-NMR
using post column solid-phase extraction was also applied to the direct analysis
of phenolic compounds in the polar fraction of olive oil (Christophoridou et
al. 2005). As well as the identification of simple phenolic acids, lignans and
flavonoids the technique enabled the identification of several new phenolic
compounds not previously reported as constituents of olive oil.

7 Discussion: Applying NMR to Plant Metabolomics

NMR has proven to be an exceptionally useful tool in animal metabolomics.
In plant metabolomics 1D-NMR coupled with multivariate pattern matching
serves as an excellent screen to cluster plant lines/treatments by global analysis
of the total extractable metabolome. This type of analysis serves as a first pass
screen that also gives quantitative data on important abundant metabolites.
The clustering information and preliminary metabolite data can then be used
to guide more detailed analysis by other techniques. These more targeted tech-
niques include the GC-, LC- and CE-mass spectroscopic techniques discussed
elsewhere in this volume, but also include the 2D-NMR, hyphenated-NMR and
isotope-labelling techniques described above.

Examples of 1D-NMR-PCA application can be found in several areas, for
example, in functional genomics (Cornah et al. 2004; Le Gall et al. 2005), in
analysis of ecotypic and cultivar variation (Ward et al. 2003; Frederich et al.
2004), in safety evaluation of GM crops (Noteborn et al. 2000; Charlton et al.
2003; Le Gall et al. 2003; Lewis et al. 2003; Defernez et al. 2004; Manetti et al.
2004), in analysis of the affects of infection (Choi et al. 2004b,c), in classifying
mode of action of chemicals (Aranibar et al. 2001) and of course in quality
control of food and herbal products (Vogels et al. 1996; Charlton et al. 2002).
The scale of this type of screening will increase and new challenges facing
researchers in this area concern the construction of databases of fingerprints
from mutants and the interfacing of these with similar databases of spectra of
pure standards, such that automated interpretation of complex spectra can be
performed. Generic plant metabolomic problems such as temporal batch to
batch variation caused by machine or chromatographic drift are not generally
seen for NMR as instrument drift is minimal. Furthermore, for Arabidopsis
thaliana at least, biological batch to batch variation in NMR spectra has been
eliminated by careful control of growth and experimental procedures (Lewis
et al. 2003). Thus the functional genomic goal of a database of electronically
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comparable profiles of large collections of gene knockout mutants and other
genetic resources may now be achievable.

The potential of 2D- and hyphenated NMR to increase the number of
metabolites that can be observed and quantified is yet to be realised. Although
throughput will be decreased, technology platforms where selected samples
from first pass 1D-NMR-MS-PCA screens are selected for further fractionation
by SPE-NMR-MS and LC-SPE-NMR-MS are being put in place. Success with
these will inevitably broaden the metabolome coverage, especially when used
in parallel with GC-, CE- and LC-MSn methods.
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I.7 Hetero-nuclear NMR-based Metabolomics

J. Kikuchi1,2,3 and T. Hirayama2,3,4,5

1 Introduction

Novel methods for measurement of living systems are making new break-
throughs in life science. In the era of the metabolome (analysis of all mea-
surable metabolites), a mass spectrometry (MS)-based approach is considered
to be the major technology (Aharoni et al. 2002; Fiehn 2002; Sumner et al.
2003), whereas a nuclear magnetic resonance (NMR )-based method is fre-
quently regarded as a minor technology due to its low sensitivity. However,
we intend to strengthen the NMR-based approach, using advantages of NMR
measurement, such as high quantification, non-invasive measurements, local-
ized in vivo spectroscopy, selectivity of nuclear environments, and validity of
structure analysis of diverse biomolecules including stereo-isomers. Attrac-
tive NMR-based metabolic analyses can be achieved by uniform stable isotope
labeling of organisms allowing the application of multi-dimensional NMR ex-
periments that have been used in protein structure determination (Kikuchi et
al. 2004; Kikuchi and Hirayama 2005). Using these novel methods, the dynamic
molecular networks inside cells and tissues will be dissected.

2 Historical Aspects of NMR Studies of Plant Metabolism

The history of NMR has been sharpened by a succession of major technological
and methodological advances, including greatly enhanced sensitivity due to
improvements in electronic devices, probe design, high-field superconducting
magnets, the field/frequency stability to allow multi-scan averaging, and also
the development of pulse Fourier-transform methods, significant progress
in data handling facilities, and the development of multi-dimensional NMR
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(Ernst 1992; Claridge 1999). NMR spectroscopy provides many new insights
into thephysiologyofhigherplants.Theevolutionof thisparticular application
of NMR can be traced back to the ground-breaking 13CNMR studies using
magic-angle spinning methods (Schaefer and Stejskal 1976). The subsequent
developments of the technique and its applications have been charted at regular
intervals in the review literature, and although not as widely exploited as its
proponents might wish, NMR is now becoming an established technique in the
armory of plant biochemists.

3 1H-NMR-based Metabolomics

NMR signals are highly reproducible, and quantitative assessment of each
metabolite in a sample is therefore guaranteed. In contrast, MS-signals are
sometimes less quantitative due to problems of matrix effects (“ion suppres-
sion” or “ion enhancement”) (Mei et al. 2003; Mallet et al. 2004). Because
NMR is a nondestructive technique, it is easy to combine NMR analysis with
a complementary technique such as gas chromatography/MS or liquid chro-
matography/MS (Corcoran and Spraul 2003; Ott et al. 2003). In contrast to
these applications in which numerous specific metabolites can be identified in
complex mixtures, other investigators have addressed the question of whether
computer-aided comparisons of the 1H NMR spectra of partially fractionated
extracts can yield statistically meaningful metabolic fingerprints of the ex-
tracted tissue. Using this approach, it was possible to show that there were min-
imal compositional differences between certain transgenic and non-transgenic
tobacco varieties, but only after accounting for the substantial effects of exter-
nal factors (Choi et al. 2004).

4 Use of Stable Isotope Labeling Technique to Enable
Monitoring of the Dynamic Movement of Metabolites

NMR signals can be detected from the nuclei of many isotopes; 1H, 13C, 15N and
31P are the most widely used for biological NMR spectroscopy (Ratcliffe et al.
2001). For carbon the relevant magnetic isotope is 13C. Its natural abundance is
only 1.11%, contributing to the considerably lower sensitivity for 13CNMRthan
for 1H NMR. Accordingly, the application of 13C NMR in unlabeled systems is
largely confined to the detection of the most abundant metabolites, such as the
organic solutes that accumulate in response to salt stress or certain secondary
metabolites (Ratcliffe and Sachar-Hill 2001). Indirect detection techniques
such as 13C-hetero-nuclear single quantum coherence (HSQC) pulse sequence
increases the sensitivity of the experiments (Vuister and Bax 1992). An example
of this approach can be found in an analysis of alkaloid biosynthesis in vivo
(Hinse et al. 2003).
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The nitrogen atom has two magnetic isotopes, 14N and 15N, and both can be
useful for thedetectionofmetabolites invivoand inextracts.Thepracticalityof
detecting the naturally abundant (99.63%) 14N isotope was first demonstrated
in root tissues and subsequently in vivo 14N NMR has mainly been used for the
analysis of ammonium and nitrate. The extremely low natural abundance of
the 15N isotope (0.037%) rules out the detection of unlabeled metabolites, but
after labeling with [15N]ammonium or [15N]nitrate it is possible to use in vivo
15N NMR to detect amino acids, as well as certain secondary products. NMR
methods are relatively insensitive, so only signals from compounds present at
relatively high levels (concentrations of at least 10 μmol/L) can be detected in
spectra (Krishnan et al. 2005). Since metabolic engineering often results in the
accumulation of relatively high concentrations of metabolites, this insensitivity
is often not as restrictive for compound detection and identification as it is in
other areas of biochemistry.

5 Approach for Hetero-nuclear NMR-based Metabolomics

In recent years, hetero-nuclear NMR methods and their spectral editing tech-
nologies have developed rapidly. For example, careful selection of window
functions and base-line corrections of two dimensional (2D)-spectra yielded
improved signal dispersion and line shapes of cross peaks permitting clear
subtraction 2D-spectra, a technically difficult and time-consuming procedure
using conventional 1D-NMRtechnology (DeferenzandColquhoun2003).With
the methodology used in recent protein NMR studies, differences in the molec-
ular composition between wild type and mutant strains can be easily quan-
tified. Therefore, we think advanced technologies in NMR analysis combined
with stable isotope labeling are useful tool for metabolomic analysis. We report
here stable isotope labeling experiments in Arabidopsis using carbon or nitro-
gen, two of the largest components of all organic compounds (Kikuchi et al.
2004; Kikuchi and Hirayama 2005). Figure 1 shows the basic concept of NMR-
based plant metabolomics proposed in this study. The NMR-based approach
has an advantage when comparing different samples. Spectral subtraction be-
tween different mutants or stimuli enables metabolite levels between different
samples to be quantified.

5.1 Example of Hetero-nuclear NMR Experiments In Vitro

To demonstrate the usefulness of the NMR method (metabolomics), the meta-
bolite profile of an ethanol-hypersensitive mutant of Arabidopsis, gek1 (Hi-
rayama et al. 2004), was analyzed (Fig. 2a). Arabidopsis seedlings were grown
for two weeks on agar plates (see above) and treated with 0.5% ethanol or
water for 10 h. Figure 2b shows the 1H–13C HSQC spectra of ethanol or water-
treated wild type Arabidopsis extracts. The subtraction spectra were obtained
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Fig. 1. Comparison of ordinal metabolomics approach (left: PCA-based) and our hetero-nuclear
NMR metabolomics approach (right: multi-dimensional NMR-based)

by subtracting the spectrum of an ethanol-treated sample from that of a water-
treated sample. Figure 2c shows the subtraction spectra from the wild-type
(WT) (left) or the gek1 (right) samples. The subtraction of measured spectra
generates virtual NMR spectra that highlight compounds that are different
between samples. In the present case, the subtraction spectra clearly show that
upon ethanol treatment, glutamic acid is synthesized de novo in both the WT
and the mutant, consistent with the previous observation that ethanol is con-
verted into amino acids and lipids rapidly in plant tissues (Mellema et al. 2002;
Rawyler et al. 2002). In addition, the ethanol-hypersensitive gek1 mutant syn-
thesized proline and γ-amino butylic acid (GABA) de novo, two compounds
that have been reported to accumulate in cells under abiotic stresses such
as drought and salinity (for reviews, Hare et al. 1998; Shelp et al. 1999). The
assignments of these compounds were possible by comparing both 1H and
13C chemical shifts independently obtained with corresponding commercial
reagents. Since 13C-NMR chemical shifts are sensitive to differences in chem-
ical structure but insensitive to the surrounding environment such as solvent
effects (Kikuchi and Asakura 1999), the 2D-HSQC type spectra offer exception-
ally useful information for assignment of individual chemical groups. From
this point of view, construction of a database of 2D-HSQC spectra of main
metabolites will enhance the NMR metabolomics.



Hetero-nuclear NMR-based Metabolomics 97

Fig. 2. a Example of how spectral subtraction can be used to differentiate environmental stress
responses between WT and gek1 (Hirayama et al. 2004) mutant. b For NMR spectroscopy,
5 mg of freshly frozen samples were heated with 0.5 mL H2O and centrifuged at 15,000 g for
5 min to remove insoluble fractions. After adding 50 μL of 2H2O for NMR lock, supernatants
were transferred into 5-mm NMR tubes. The spectra were measured on a Bruker DRX-500
spectrometer equipped with a 1H inverse probe with triple axis gradient. A total of 200 complex
f1 (13C) and 1024 complex f2 (1H) points were recorded with 64 scans per f1 increment. The
spectral widths were 12,000 Hz and 8400 Hz for f1 and f2, respectively. c To quantify the signal
intensities, aLorentzian-to-GaussianwindowwithaLorentzian linewidthof 10HzandaGaussian
line width of 15 Hz was applied in both dimensions, prior to Fourier transformation. A fifth order
polynomial baseline correction was subsequently applied in the f1 dimension (Kikuchi et al.
2002). The indirect dimension was zero-filled to 2048 points in the final data matrix. NMR
spectra were processed using NMRPipe software (Delaglio et al. 1995). Quantitative 2D-spectral
subtraction was accomplished by editing a macro program of the NMRPipe software. Signal
assignments are highlighted next to the corresponding cross peaks

5.2 Example of Hetero-nuclear NMR Experiments In Vivo

15N uniformly labeled Arabidopsis seeds can be obtained from plants fed
with a nutrient solution containing 15NO3 as the sole nitrogen source. Using
such seeds, the first 1H–15N HSQC-type NMR (Bodenhausen and Ruben 1980;
Grzesiek and Bax 1993) in vivo experiments in plants were performed (Kikuchi
et al. 2004). Figure 3 shows the development of the 1H–15N HSQC spectrum
measured in living 15N-labeled seeds that was induced by soaking the dry
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Fig. 3. Development of the 1H–15N HSQC spectrum measured in living 15N-labeled seeds that
was induced by soaking the dry seeds in water (pictures shown at the bottom). A total of 128
complex f1 (15N) and 1024 complex f2 (1H) points were recorded with 96 scans per f1 increment.
The spectral widths were 4500 Hz and 8400 Hz for f1 and f2, respectively. Two spectra: a dark
at 0 h; b light at 78 h are shown for comparison. Signal assignments are highlighted next to the
corresponding cross peaks

seeds in water. Using in vivo measurement, dynamic movement of metabolites
can be observed. In this case, at the initial stage just after water absorption
into dried 15N seeds, all cross peaks (especially those corresponding to peptide
backbones) were very broad due to slow molecular motion in the dried seeds
(Fig. 3a). After 12 h of imbibition, the line shapes of cross peaks, especially
those corresponding to the glycine backbone and the side-chains of glutamic
acid and asparatic acid, started to sharpen due to the enhanced molecular
motion caused by the increasing water content. The temperature shift from 4
to 22 ◦C at 72 h of imbibition, and light illumination which started at 78 h of
imbibition, both of which accelerate germination, further sharpened all cross
peaks and enhanced the peptide backbone signal dramatically (Fig. 3b).

6 Prospects for the Future

As described above, NMR techniques possess an advantage over common
analytical methods because they simultaneously provide information on the
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concentrations of numerous compounds as well as their spatial distribution.
Therefore, NMR offers useful methodology for metabolomics. At this moment,
however, there are several issues to be resolved before we can utilize the full
power of NMR measurement in metabolomics. First, the sensitivity of NMR is
rather lower. This disadvantage is being overcome with the progress in NMR
technology. The sensitivity of a spectrometer scales as the 7/4th power of the
static magnetic-field, and our group has developed the highest magnetic field
(21.2 Tesla) used in biomolecular studies (Kiyoshi et al. 2004). In addition,
NMR signal-to-noise (S/N) ratios can be substantially improved by cooling the
NMR radio frequency detector and preamplifier . We are currently develop-
ing a 4.5-K cryogenetically cooled probe for the 920-MHz NMR spectrometer
(Yokota et al. 2004). The increase of S/N gain is expected to be 8-fold, cor-
responding to a 64-fold reduction of the NMR acquisition time. The 1H-13C
HSQC spectrum (shown in Fig. 1) recorded by the 500-MHz spectrometer
exhibited 477 cross peaks identified by the NMRPipe software (Delaglio et
al. 1995), corresponding to 100–200 metabolites at concentrations over 10−6

mol/L.However, theoretically the920-MHzspectrometerequippedwitha4.5-K
cryogenically cooled probe will be able to detect metabolites at concentrations
as low as 10−8 to 10−9 mol/L. Furthermore, S/N gain by the cryogenetically
cooled probe is significantly enhanced in low dielectric solvents (Horiuchi
et al. 2005). In other words, the 1H–13C HSQC spectra recorded by 64 scans
with the 500-MHz spectrometer (shown in Fig. 2) will be taken by only one
scan with equivalent S/N ratio for the same sample but with higher resolu-
tion due to the higher magnetic field. Second, to facilitate the identification of
metabolites in samples, a database of 2D HSQC spectra of known metabolites
is required. We have just started to construct such a database. Once devel-
oped, metabolite analyses will be conducted with simultaneous quantification
and metabolite identification. Furthermore, recent solid-state NMR methods
will facilitate the study of insoluble metabolites such as starch, cell-wall com-
ponents, and biomembranes (Kikuchi et al. 2000). Thus, the use of isotope
labeling together with newly developed NMR technologies open a new avenue
for plant metabolomics.
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Section II Bioinformatics



II.1 Bioinformatics Approaches to Integrate
Metabolomics and Other Systems Biology Data

B. Mehrotra and P. Mendes1

1 Introduction

Tounderstand the functioningof cells fully it is important tounravel the rolesof
genes and their products. The study of gene transcripts (transcriptomics) and
proteins (proteomics) is progressing rapidly through the use of microarrays
and mass spectrometry. Additionally, cells contain numerous other organic
molecules not directly encoded in the DNA, the metabolites, which are critical
for cell function. Knowledge about metabolites is crucial for an understanding
of most cellular phenomena (Weckwerth 2003; Fernie et al. 2004; Kell 2004).
Metabolomics is an emerging field consisting of the study of metabolites at
a systems scale. It is similar in objectives to transcriptomics and proteomics;
twomajorgoals ofmetabolomics are the identificationof allmetabolites in each
organism (their metabolomes) and measurements of their dynamics under
many different challenges. Integrated approaches combining metabolomics
with transcriptomics and proteomics are now underway (e. g. Verhoeckx et al.
2004; Broeckling et al. 2005) and are expected to result in much deeper insights
than any of these techniques alone.

Metabolomics shares several characteristics with proteomics and transcrip-
tomics. Like these, it is a technique where large numbers of molecules are
profiled simultaneously (though current methods identify only hundreds of
metabolites, vs thousands of proteins, and tens of thousands of transcripts).
Metabolite profiles are, like transcript and protein profiles, snapshots of the
state of a biological sample. Experimental data of all three types are usually
dominated by a number of variables (molecules) much larger than samples,
posing a hard challenge for data analysis and interpretation. Like proteomics,
mostmetabolomicsmethods relyonspectroscopies to identifymolecules;how-
ever, this is done through comparison against standards, rather than by mass
fingerprints or sequence. The lack of a concept of “sequence” for metabolites
is a major difference between metabolomics and the other two methodologies.
Sequence is the key for identification of proteins and nucleic acids in large-
scale profiles, but alternative methods must be used for metabolite profiles.
De novo identification of metabolites can be done with 2D NMR, but requires
considerable amounts of highly purified material, a major obstacle. Tandem
mass spectrometry requires smaller amounts of material, but alone is often
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insufficient to identify completely unknown metabolites. The alternative to
de novo metabolite identification is to construct a library of standard profiles,
created with purified metabolites (e. g. Wagner et al. 2003). While large spectral
libraries for NMR, IR and mass spectrometry have existed for decades, these
are very incomplete compared to the nearly 200,000 known natural products
(Buckingham 1994). Additionally, these published spectral libraries are often
not accurate enough for clear identifications. In the case of chromatography-
mass spectrometry techniques, much better results are obtained if one has
constructed a library with one’s own equipment, which requires a large invest-
ment of time and finance. Thus, metabolite identification is one of the fun-
damental differences between metabolomics and proteomics/transcriptomics,
and it is common to find two thirds or more unidentified metabolites in non-
targeted profiles. The second major difference between these techniques is that
metabolites have widely different chemical properties, such as polarity, volatil-
ity, molecular mass, and chemical reactivity. Comparatively, nucleic acids are
very uniform in their properties; proteins, while more diverse than the former,
are still approachable by their common properties (such as the amide bonds
that can be used to sequence them). Because metabolites vary in their com-
position and structure, they require many different methods for extraction
and separation, and no single existing technique is able to profile all metabo-
lites in a biological sample (Sumner et al. 2003). Comprehensive coverage of
the metabolome requires parallel analyses carried out with several different
techniques.

Since the turn of the century, systems approaches have regained popularity
with biologists. Perhaps this is because the analysis of purified molecules is
rapidly approaching its limit, or simply because global experimental analyses
have become possible. Either way, it is now recognized that systems biology
studies of complex cellular phenomena are sorely needed (Kitano 2002). An
increasingly appealing approach consists of experiments that simultaneously
monitor the levels of transcripts, proteins, and metabolites, and combine their
data to make inferences about the structure and dynamics of the underlying
biochemical networks (Mendes 2001; Mendes et al. 2002; Oliver et al. 2002).
In order to integrate the diverse and large amount of data generated by such
experiments, several statistical and computational methods are required. In
particular, it is important that all data be managed in a single database which
also keeps track of the intricate details about how the experiments have been
designed and the data generated. Ultimately, the data must be traceable back-
wards to samples and experiments, allowing not only for their interpretation
but also for enabling others to replicate the experiments. These data about data
are usually known as metadata and there have been several attempts at stan-
dardizing them. The MIAME standard was proposed for transcriptomics data
(Brazma et al. 2001) and received widespread support, including support by
prominent journals requiring data to conform to that standard. Similar propos-
als for proteomics data have been put forward, e. g. PEDRo (Taylor et al. 2003)
and MIAPI (Orchard et al. 2004), but these are still under developmentand have
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not yet received the crucial support from the publishing world. Metabolomics
is no different, and recently two proposals have been published to define stan-
dards for plant metabolomic data and metadata, ArMet (Jenkins et al. 2004)
and MIAMET (Bino et al. 2004). Invariably, these attempts build upon the
MIAME standard and hopefully will soon allow unequivocal specification of
systems biology data. (The existing Systems Biology Markup Language, SBML
(Hucka et al. 2003), is a standard for specifying systems biology models, rather
than data.)

In the remainder of this chapter we will delineate ongoing efforts in our lab-
oratory pertaining to integrating metabolomics and other functional genomics
data. These efforts have arisen from our participation in plant systems biology
studies of Medicago truncatula and Vitis vinifera, and also of the yeast Saccha-
romyces cerevisiae. All of these are large team efforts and we acknowledge all
our collaborators for their vital role in these projects (see below).

2 Databases

We are developing a database system, DOME (database for OMEs), which
stores functional genomics data originated from microarray measurements of
transcripts, 2D-PAGE-QTOFMS protein assays, and GC-MS, LC-MS, CE-MS,
and CE-LIF assays of metabolites. Early on it became evident that, in order to
analyze all these data sets in an integrated way, they should be stored in a single
database. This avoids, by design, the infamous data integration problem of
bioinformatics (Davidson et al. 1995), as all data reside in the same schema,
and queries can be made across all of them irrespective of their nature. This
integration on a single schema was only possible by assuring that all necessary
metadata was included and structured in an appropriate way. Figure 1 depicts
a high-level overview of the DOME schema.

The main skeleton of the metadata schema consists of a hierarchy of ex-
periment sets, experiments, sampling points, samples, and extracts, following
exactly the way in which the biological material is manipulated in the experi-
ments. This metadata schema also allows for easy export of transcript data in
a format compatible with MIAME, and hopefully with the future proteomics
and metabolomics standards as they stabilize (it is already compatible with PE-
DRo and ArMet). Linking through metadata is one of the main ways in which
one can put together data from metabolomics with microarray and proteomics.
For example, one single sampling point (a sample collection time) is attached
to a set of perturbed and control replicate transcript levels, protein levels, and
metabolite levels, as well as to their respective average values, comparisons
and statistical significance. Thus one can relate the metabolite levels at one
time in the experiment with the transcript and protein levels and, because
the sampling points reflect experiment time, also to the molecular levels of
previous or subsequent sampling points.
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Fig. 1. High level schema of the integrative functional genomics database DOME. Metadata
tables are used to provide context to the actual experimental data. Raw data from microarray,
2D-PAGE-MS, and various metabolomics technologies are stored in separate tables. These data
are transformed by their appropriate normalization methods, keeping intermediate values, and
finally arriving at numerical summaries of each sample (such as means and standard deviations),
which are then comparable across all technologies and stored in the sp summary table. It is the
data in sp summary that is then processed with higher-level statistical analyses or visualizations.
It is also at this level that background information about the known molecular biology of the
system (B-Net) can be integrated

Another feature that makes the comparison of metabolite with transcript
and protein data possible is that each of these data types is first processed in
appropriate ways, resulting in data of a similar type. Presently these data are
reduced to ratios of levels (usually the level of a molecule in the perturbed
state over its level in the control). Before data are available in this state they
need to be processed through methods that are different for each technique.
For example, the microarray data goes through a series of standardization
and normalization procedures that take into account the technical details of
microarray technology (Quackenbush 2001). The metabolite GC-MS data are
first corrected for sample size, then deconvoluted into a series of peaks, which
are identified by the software AMDIS (Davies 1998) relative to an internal
standard that was included in the samples. An important issue is that the data
should all be represented either in linear or in logarithmic space, not a mixture
of the two. It is also important to preserve raw data, because there is always the
possibility that in the future better methods to process it will appear; however,
because the rawdata arenot commonlyused in the analysis, it is enough to store
these offline as long as the database keeps appropriate track of their location.

A third way to relate metabolite data with transcript and protein data is
through the use of existing biochemical knowledge. This is, of course, the
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traditional way to analyze such comparisons; however, it is usually done by
experts in an ad-hoc way. In order for this to be automated into computational
procedures, it is necessary to represent this domain knowledge in appropriate
schemas. Several biochemical databases exist that partially fulfill our needs
(Kanehisa et al. 2004; Krieger et al. 2004), though they fall short in a number
of ways (Wittig and de Beuckelaer 2001; Xing Li et al. 2002). In particular, they
are rather poor in terms of their coverage of plant secondary metabolism, even
AraCyc (Mueller et al. 2003), which is specific for Arabidopsis. Thus we created
a sub-schema in our database to represent the existing knowledge about the
biochemistry of the species in question. Because this can be useful on its own
(i. e. independent of the experimental data), it was designed in a manner that
allows it to be an autonomous database, and has been named B-Net. B-Net has
been populated with gene/transcript information from TIGR’s gene indices
(Lee et al. 2005) and SGD (Dwight et al. 2004), with protein information from
UniProt (Bairoch et al. 2005), metabolite information from LIGAND (Kanehisa
et al. 2004) and AraCyc (Mueller et al. 2003), and supplemented with data
collected directly from the literature by a team of curators in our laboratory.
All of the facts in B-Net are documented for the type of evidence that supports
them, using a method generalized from the Gene Ontology’s evidence codes
(Ashburner et al. 2000). Note that the information imported from external
databases is filtered to remove entries that do not represent specific molecular
entities. This was particularly important in the case of LIGAND, where groups
of molecules are represented alongside individual molecules (e. g. “amino-
acids”, instead of the specific ones); however only the latter were imported to
B-Net. B-Net also classifies entries with gene ontology terms wherever possible.

It is relevant here to highlight two problems that pervade metabolomics
databases. The first is the issue of metabolites that are detected but not clearly
identified, already mentioned above. These metabolites are sometimes referred
to as “unknowns”. Despite their identity not being known, a database must
distinguish between them, and so these are usually named by the analytical
chemists through some ad-hoc scheme. Such names are often attributed in
ways that prevent comparison of data between different labs, for example
by choosing identifiers that are used in different contexts meaning different
things. A negative consequence would be that in two separate experiments
two unknown metabolites might receive a common name, even though no one
had intended to mean that they were the same molecular entity. In order to
overcome this problem, and because our database contains data originated
from several laboratories, we have developed a naming scheme that assures
that unknown metabolites from different experiments and laboratories are not
accidentallynamed the same thing.Thisnamingconventionhasbeenproposed
to the community in a recent Opinion article (Bino et al. 2004) and we hope
that it becomes adopted by many laboratories, as this is the only way in which
it would become useful. Essentially, the name for each unknown metabolite is
composed of an identifier for the laboratory, one for the extraction method,
another one for the type of analysis carried out, and at least two coordinates
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fromtheanalysis.These coordinates are context specific, andcouldbe retention
time of a separation, mass-to-charge ratio, chemical shift, wavenumber, etc.
Another objective with this naming convention is to allow for future analyses
that attempt to establish identity between these unknown metabolites. It is
expected that many of these are observed in different studies in separate
laboratories, and through the inclusion of the analysis coordinates in their
names it becomes easier to recognize that two unknowns may actually be the
same molecule. For example, if several studies consistently identified a peak
in GC-MS (using the same extraction and analysis parameters) with the same
retention time and main ion mass, then it may be that the two are the same
metabolite. By assigning names derived from this scheme, it then also becomes
possible to create lists of molecular entities that have been observed and not
yet identified (a kind of “orphan” list for metabolomics).

Another unresolved issue that is being encountered in our projects is that
the same metabolites in a sample might have been observed by more than one
technique. The problem that is posed then is which quantification should one
chose if they do not agree. This is complicated by the fact that when metabolites
appear in an analysis, they may not have been present in the original sample,
but instead result from an artifact of the extraction method. Another reason
could be that the same metabolite might be present in different locations in
the cell, leading to the metabolite being isolated in two separate pools. In the
latter case the two pools should both be represented in the database, while
in the case of artifacts, one should use only the more accurate quantification.
This issue results in a need for careful annotation of metabolomics results,
but also requires special structures in the database schema that are capable of
representing several pools of a single metabolite.

3 Data Visualization

Scientific data visualization is the activity of displaying properties of a data set
that help the human scientist to identify quickly its most important charac-
teristics. This is not a simple problem because it is very hard to identify what
would be important for each scientist, and it is as much an issue of the scientific
domain as it is of psychology. Nevertheless, there are data properties that are
generally sought by a large class of researchers, and visualization software is
focused on them. For metabolomics, a frequent way in which biochemists like
to visualize data is through the use of maps that depict portions of the bio-
chemical network. Several packages exist that allow for this map-based data
visualization (Luyf et al. 2002; Shannon et al. 2003; Thimm et al. 2004; Lange
and Ghassemian 2005), and we have also developed one (BROME, BRowser
for OMEs) that is coupled to our database system DOME for visualization of
metabolomics data with transcriptomics and/or proteomics data. This allows
our database to select only a small set of metabolites, enzymes and genes that
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are present in a certain map, such that the researcher can then quickly ob-
serve their levels organized according to how we believe the biochemistry is
organized. This could help in understanding how changes in mRNA or protein
levels affect the level of metabolites in a certain pathway or network. However
this is not as straightforward as it may seem: the changes in level of mRNA are
likely very different from changes in protein levels or changes in metabolite
levels. Cells cannot tolerate large changes of many metabolites, while mRNA
levels can change widely without much toxicity. Thus, in order to visualize
the expression of metabolites, mRNA, and proteins in the same biochemical
map, they need to be expressed on different scales, or otherwise normalized to
some comparable scale. A problem with thinking about data as part of some
biochemical map (“pathway”) is that it is likely that molecules in the map are
also involved in other interactions not depicted there. Therefore, looking at
a particular slice of a network could be highly misleading. It has been shown
that the concentrations of metabolites next to each other in a metabolic map do
not necessarily have high correlation (Steuer et al. 2003; Camacho et al. 2005),
strengthening this point. In order to understand a change in the level of a par-
ticular metabolite, it may be more useful to view the expression changes of all
enzymes (i. e. their protein and mRNA levels) linked with that metabolite. For
this we have developed the concept of metabolite neighborhood maps (Xing Li
et al. 2002), which are local views of the biochemical network and consist of all
the reactions that affect the metabolite of interest, including all the metabolites
and enzymes that take part in those reactions. BROME has a large number of
maps available, from these neighborhood maps to the nice pathway maps of
the KEGG system (Kanehisa et al. 2004).

4 Data Analysis

Analysis of metabolomic data can use the same multivariate statistical meth-
ods that are widely used in microarray data analysis. These methods can be
either supervised, where each sample or variable (molecule) is associated to
an already known class, or unsupervised, where there is no pre-classification
of the data (Mendes 2002; Sumner et al. 2003; Goodacre et al. 2004). Unsuper-
vised methods are widely popular, and the most used are principal component
analysis (PCA), hierarchical clustering (HCA), k-means clustering, and self-
organizing maps (SOM). Unsupervised analyses are mostly guided by the vari-
ance and covariance (or correlation) in the data sets, so they are good at finding
patterns therein; however nothing guarantees, other than a careful experimen-
tal design, that the largest variance is indeed a result of the perturbation rather
than other unwanted effects. On the other hand, supervised analyses are guided
by the pre-existing knowledge provided by the researcher and so are usually
based on discrimination, a property that is more related to the consistency
of the members in a class, and the differences between classes. Supervised
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methods already demonstrated for metabolomics data are linear discriminant
analysis (Raamsdonk et al. 2001; Bundy et al. 2005), discriminant partial least
squares (PLS-DA) (Gavaghan et al. 2002; Jonsson et al. 2004), genetic algo-
rithms (Johnson et al. 2003; Goodacre 2005), genetic programming (Allen et
al. 2003; Goodacre 2005) and other methods (Goodacre et al. 2000; Shi et al.
2004).

Obviously, much more information could be extracted from systems biology
experiments if metabolomics data were analyzed coupled with transcriptomics
and proteomics data, but this requires much attention to ensure that the data
be comparable, as has been discussed in the previous section (see also Purohit
et al. 2004). For example, multidimensional scaling should be preferred to
principal component analysis since the former takes into account the different
scales of each variable, but the latter does not (at least in its original incarnation
that is based on covariance).

We have recently tried to understand how to interpret correlation between
metabolites in metabolomics data sets (Camacho et al. 2005) following results
from an analysis by Steuer et al. (2003). Briefly, we have found that strong
correlation arises when two or more metabolites are in chemical equilibrium,
when they conserve a common chemical moiety, when their concentrations are
mostly controlled by a single enzyme, or when one of the enzymes that affects
their concentration changes with greater magnitude than the other enzymes
that also affect them (Camacho et al. 2005). We confirmed that two metabolites
next to each other in a biochemical network (e. g. substrate and product of
a single enzyme) are not expected to be strongly correlated, in general. These
conclusions put the results that have been obtained demonstrating high cor-
relations between metabolite pairs into a systems biology context; often such
correlations are only explained at a global level, and through the action of
proteins.

Since metabolomics data are best understood when accompanied by other
systems biology data, there seems to be a great need for methods that specif-
ically address data integration. As demonstrated by the study of metabolite
correlations, methods that take into consideration pre-existing biochemical
knowledge are likely to be more effective. Since many metabolomics experi-
ments are carried out through time intervals, methods that consider the time
dimension explicitly are likely to be more productive than those that do not.

5 Conclusion

In this chapter we have addressed some of the bioinformatic issues related
to metabolomics and its integration within the systems biology framework.
We believe that metabolite, transcript, and protein analyses are much more
powerful combined than individually. In order to extract maximal benefit from
suchcombined studies, specificbioinformatics support is necessary in the form
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of databases, visualization, and data analysis. Ultimately, a full understanding
of the underlying phenomena will require an additional layer of computational
and theoretical tools, supporting the formulation and evaluation of dynamic
models that attempt to represent the biological system. Such models will need
to be predictive, but we believe that, much more than that, they need to be
explanatory. Within our laboratory we are pursuing several projects in this
direction and have a strong interest in combining that approach with the data
and informatics systems described here, as have others. This will be a topic of
much discussion in the near future and we await it with excitement.
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II.2 Chemometrics in Metabolomics – An Introduction

J. Trygg1, J. Gullberg2, A.I. Johansson2, P. Jonsson1, and T. Moritz2

1 Introduction

In the post-genomics era, the use of methodologies that enable transcriptomic,
proteomic and metabolomic data to be analysed in detail have revolutionized
biological investigations. One of the major advantages with metabolomics in-
vestigations compared to traditional target metabolite analysis is that metabol-
omics data can give an unbiased view of changes in metabolism during envi-
ronmental, genetic or developmental changes. Instead of tracking only a few
metabolites, changes in relative amounts in 300 to 1000 or even more metabo-
lites can be recorded and analysed, covering all major metabolic pathways. This
development has accentuated the need to apply and further develop multivari-
ate methodology. Chemometrics (see Eriksson et al. 2001) provides tools to
make good use of measured data, enabling practitioners to make sense of mea-
surements and to model quantitatively and produce visual representations of
information.Today, chemometricshasgrown intoawell establisheddataanaly-
sis tool in areas such as multivariate calibration, quantitative structure-activity
modeling, pattern recognition and multivariate statistical process monitoring
and control. Although seemingly diverse disciplines, the common denomina-
tors in these applications are that high complexity data tables are generated and
that thesedata tables canbeanalysedand interpretedbymeansof chemometric
methods.

In chemometrics, there are three basic categories of analysis (Fig. 1):

1. Exploratory analysis (Fig. 1A). This gives an overview of all the data in order
to detect trends, patterns or clusters.

2. Classification analysis and discriminant analysis (Fig. 1B), which classifies
samples into categories or classes, for example wild-type and mutant.

3. Regression analysis and prediction models (Fig. 1C) are used when a quanti-
tative relationship between two blocks of data is sought. For example, when
prediction of growth or fiber properties from mass spectrometry data.

However, in biology, chemometric methodology has still been largely over-
looked in favour of traditional statistics. It is not until recently that the
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Fig. 1. Overview of the basic categories of chemometrics analysis: A overview of data structure;
B classification and discriminant analysis; C regression analysis

overwhelming size and complexity of the ‘omics’ technologies has driven
biology towards the adoption of chemometric methods. Here we will give
an introduction to chemometrics and also give examples of why and when
chemometrical methodologies should be used.

2 Theory and Methods

2.1 Making Data Contain Information – Design of Experiments

In experimental biology, e. g. when investigating how a number of different
environmental factors (e. g. temperature, day length, nutrition) affect differ-
ent responses such as growth, transcript profiles and metabolite profiles in
plants, there is a need to carry out experiments in a systematic way. One way
to investigate how the factors affect the plant’s responses is to Change One
Factor at a Time, i. e. the COST approach. This approach has severe problems:
(1) finding optimal conditions for experiments (e. g. method development),
(2) unnecessarily many experiments are needed (inefficiency), (3) ignores in-
teraction among variables (lost information) and (4) provides no map over the
experimental space.

Design of Experiments (DOE) (Lundstedt et al. 1998) is the methodology of
how to conduct and plan experiments in order to extract the maximum amount
of information in the fewest number of runs. The basic idea is to devise a small
set of experiments, in which all pertinent factors are varied systematically. It is
a fundamental tool for planning experiments and making data informative by
simultaneously, albeit in a structured way, varying controllable factors (e. g. en-
vironmental conditions, instrument settings, experimental procedures) of the
studied system. Today they comprise a tool box for virtually any experimental
problem.

2.1.1 Stages in the DOE Process

Most of us can only grasp the effect of one factor at a time in our minds, and
that often leads us into the inefficient COST approach. We need the mathe-
matics (and the computer) to keep track of the factors and their combinations.
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In summary, (1) all factors are varied together over a set of experimental
runs, (2) noise is decreased by means of averaging, (3) the functional space is
efficiently mapped, interactions and synergisms are seen.

1. What do I want? – formulate question(s) stating the objectives and goals of
the investigation. For example identify factors (e. g. temperature, day length,
nutrition) and factor ranges (e. g. 15−25 ◦C, 6−12 h, 1−10 mmol N/L) that
affects flowering time.

2. Screening design – finding out a little about many factors. Which factors
are the dominating ones in controlling flowering time? Screening designs
provide simple models with information about dominating variables, and
information about ranges. Pareto’s principle states that 20% of the data
(factors) account for 80% of the information. Different types of screening
designs exist – which one to choose depends on the problem. The most com-
mon one is the fractional factorials design (Fig. 2). The full factorial design
is a set of experimental runs where every level of a factor is investigated at
both levels of all the other factors. It requires N = 2k number of runs for
k factors. Investigating more than five factors with the full factorial design
can in some cases become time consuming, i. e. 25 = 32, 26 = 64, 27 = 128
experiments, etc. Instead, performing a fractional factorial design reduces

Fig. 2. Example of a full factorial design of experiments (DOE) for investigating how three factors
(temperature, day length and nutrition) control flowering time. Varying the three factors at two
levels (coded as +/-) requires 23 = 8 experiments + center points. Each experiment according to
the design set of experiments is marked with a circle in the figure. Evaluating the results from
such an experimental design reveals the influence of each of the different factors separately and
also any interactions between them. DOE is the only feasible approach to separate cause and
effect from each other
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that number quickly without the loss of too much information regarding the
estimation of factors involved. Fractional factorial design takes advantage
of the fact that three-way and higher interactions are seldom significant. It
requires only N = 2k−p number of runs for k factors, where p is set manually.
For example five factors can be run in only 25−2 = 8 experiments instead
of 25 = 32 experiments compared to the full factorial design. Fractional
factorial design takes advantage of the fact that three-way and higher inter-
actions are seldom significant. The downside, of course, for not performing
all experiments, is that confounding patterns are present. In other words,
the estimated effects are not “pure” but instead mixed with higher degree
interaction effects. This loss of information is the prize we need to pay for
the reduction of the number of experiments. The degree of confounding is
determined by the choice of p.

3. Response surface modeling (RSM) and optimization (few factors) – after
screening the factors involved in, e. g. determination of flowering time or
derivatization of metabolites, the goal of the investigation is usually to
create a valid map of the experimental domain (local space) given by the
significant factors and their ranges. This is done with a quadratic polynomial
model. Thehigherordermodels have an increased complexity, and therefore
also require more experiments/factors than screening designs. Different
types of RSM designs include Central composite designs, Box Behnken
designs and D-optimal designs (see, e. g. Lundstedt et al. 1998 for more
information).

4. Robustness testing – in robustness testing of, for instance, an analytical
method, the aim is to explore how sensitive the responses are to small
changes in the factor settings, e. g. temperature. Ideally, a robustness test
should show that the responses are not sensitive to small fluctuations in
the factors, that is, the results are the same for all experiments. Robust-
ness testing is usually applied as the last test just before the release of
a product or a method. The fractional factorial design is usually applied
here.

Plant metabolomic studies typically constitute a set of samples from Ara-
bidopsis wild types and mutants. Assume that these have been subjected to
different external conditions such as variation in day length and temperature.
Design of Experiments can then be used to select representative samples, re-
lated to the biological question we are investigating (how flowering time is
affected by temperature, day length, nutrition). An experimental design in
three factors can be setup, with factor 1 (temperature), factor 2 (day length),
and factor 3 (nutrition). In total, only eight different experiments equal 2k

where k = 3 factors are required to explore the experimental space. In addi-
tion, a number of replicates, typically three experiments, are added to estimate
the noise level. By adding extra experiments, one can investigate more thor-
oughly the day length and temperature dependence (increase the number of
different day lengths and temperatures).
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2.2 The Data Table, X-matrix

In plant metabolomics studies, typically a set of samples are characterised us-
ing modern instrumentation such as GC/MS, LC/MS or H1-NMR spectroscopy.
The choice of instrument (see Sumner et al. 2003; Dunn et al. 2005) and exper-
imental procedure (Gullberg et al. 2004) are important and largely determined
by the biological system and the scientific question. Design of Experiments
can here be used to optimize the experimental protocol.

In contrast to a 1H-NMR spectrum, GC/MS and LC/MS data must be pro-
cessed before multivariate analysis. The reason is the two-dimensional nature
(chromatogram/mass spectra) of the data for each sample. For GC/MS data,
curve resolution or deconvolution methods are mainly applied for data pro-
cessing (see, e. g. Halket et al. 1999; Jonsson et al. 2005a). This gives a resolved
spectral and chromatographic profile for each detected compound. The 1D
multivariate profile used to characterize each sample is made up of the inte-
grated areas of all detected chromatographic peaks. The corresponding mass
spectrum and retention index are used for identification purposes (Schauer
et al. 2005). For LC/MS data, curve resolution can be applied (e. g. Idborg-
Björkman et al. 2003) or a peak detection algorithm that identifies all chro-
matographic peaks and uses their integrated areas as the multivariate profile
characterizing that sample (e. g. Andreev et al. 2003). Another alternative is
to sum the chromatographic direction to create a 1D multivariate profile pro-
duced by the total intensity over all mass spectral channels (e. g. Allen et al.
2004). Recently, partly alternative methodologies have been applied to GC/MS
data (Jonsson et al. 2004, 2005a) and LC/MS data (Jonsson et al. 2005b) where
all samples are processed simultaneously and a common set of descriptor
variables are extracted.

After, e. g. theGC/MSanalysis,wenowhaveamultivariateprofile (300–1000s
of variables) for each sample that is a fingerprint of the inherent properties
(e. g. phenotype) for each sample. For multiple samples we can therefore con-
struct a two-dimensional data table, an X matrix, by stacking each sample
on top of each other. The question is then, how do we go about analysing
this multivariate, highly collinear and complex data set? The univariate ap-
proach (e. g. student’s t-test [Jackson 1991]) is not recommended. It assumes
independent variables in X (i. e. more samples than variables) and this creates
problems with interpretation, spurious correlations (so called Type I, II errors)
and the evident risk of missing information in combinations of variables. Tra-
ditional statistical methods (e. g. multiple linear regression, MLR) are also not
recommended. They also assume independent variables and have difficulties
with noisy data (Eriksson et al. 2001). Instead, multivariate analyses based on
projection methods represent a number of efficient and useful methods for
the analysis and modeling of these complex data. Projection methods convert
the multi-dimensional data table into a low-dimensional model plane, usu-
ally consisting of two to five dimensions. Principal component analysis (PCA)
(Jackson 1991) and partial least squares (PLS) (Wold et al. 1984) methods are
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two widely used methods that can handle incomplete, noisy and collinear data
structures.

2.3 Geometrical Interpretation of a Data Table

An easy way to understand and appreciate projection based methods is to
translate the data table into a swarm of points in a multi-dimensional space.
For a data table or matrix X, with N rows (biological samples) and K columns
(e. g. relative amounts of different metabolites), each row (individual sample)
can be represented as a point in a K-dimensional space. Its position in this
space is given by its coordinates, i. e. its values in each of the K columns. Re-
peating this for all N rows in a matrix, we have produced a swarm of points
in K-dimensional space. Points (samples) that lie close to each other in this
multi-dimensional spacearemorebiologically similar toeachother thanpoints
that lie far apart (dissimilar). Projection methods find a model hyperplanes
of much lower dimensionality that closely approximates X, i. e. the swarm of
points. Figure 3 gives an overview of how multivariate projection methods
work.

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is the workhorse in chemometrics. It is
amultivariateprojectionmethoddesigned toextract anddisplay the systematic
variation in a data matrix X. The first two principal components define a plane,
a window into the K-dimensional space. By projecting each of the sample
points (in K-dimensional space) onto this two-dimensional sub-space, it is
possible to visualize all the samples. The coordinates of each of these samples
projected onto this plane are called scores T, and they are weighted averages
of all X-variables (e. g. metabolites). Hence the visualization of these scores T
is called a score plot. The score plot is very informative because it gives an
overview of all samples in X and how they relate to each other. It may reveal
groupings of samples (clusters), trends and outliers (deviating samples). e. g.
two genotypes (wild type and mutant) would show up as two distinct clusters of
samples, representing wild type and mutant samples respectively. In addition,
an experiment that suffered from a broken GC-vial would translate into an
unique point in the score plot, i. e. an outlier (Fig. 3).

The score plot allows us to investigate the relation among the samples, but
once interesting patterns are found (groupings, outliers etc.), it is possible
to understand the reason for this, i. e. what variables (e. g. metabolites) are
responsible for this pattern found in the score plot. Hence, there also exists
a corresponding plot related to the measured variables (metabolites), i. e. the
columns in the X matrix. This plot is known as the loading plot P and describes
the influence (weight) of the X-variables (metabolites) in the model. An impor-
tant feature is that directions in the score plot correspond to directions in the
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Fig. 3. (1) Each row (representing one biological sample) in a data table with K = 3 variables
can be represented as one point in a K = 3 dimensional space. The position of that point is
given by the coordinates given by the values in each of the K = 3 variables. (2) Repeating this
for all rows (samples) in a data table produces a swarm of points in K = 3 dimensional space.
Points (samples) that are close to each other have more similar biological properties than points
that are far apart. (3) Projection methods such as PCA, finds a representative low-dimensional
plane (here two-dimensional) that is a good summary of the variation in the X data table (swarm
of points). (4) This model plane can then be visualised in scatter plots (A) and provides an
overview, e. g. if there are any groupings, trends or outliers in the data. For example in the figure
(A) there is a clear separation between the Arabidopsis wild type and mutant. It is also possible
to understand the reason for this separation by looking at the direction of the model plane
with respect to the original axes (original variables). These are summarized in the PCA model
loadings, P (B)

loading plot (Fig. 3). This is a powerful tool for understanding the underlying
patterns in the data.

The PCA model can be expressed as

Model of X: X = TPT + E

where T are the scores, P defines the loadings, and E represent the residual
matrix. The residual matrix E contains the residuals for each sample between
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Fig. 4. PCA summarise all variation in X into a few new variables called scores T. These new
variables are linearly weighted combinations of the original X-variables. The loadings P contain
the weights used for each X-variable and thus reveal the influence of individual X-variables

its point in K-dimensional space and its point on the model plane. The residuals
are important for detection of outliers and for defining the model boundaries
(see Fig. 4).

2.5 Partial Least Squares Projections to Latent Structures (PLS)

The PLS method is used instead of the PCAmethod when additional knowledge
about each sample exists, the Y matrix, e. g. genotype of each sample (wild
type/mutant). The sample information according to the design matrix from
the Design of Experiments (see Sect. 2.1) is often used as a Y matrix. Hence,
PLS represents the regression analogy of PCA working with two matrices,
X and Y (Wold et al. 1984). It is one of the most common methods when
a quantitative relationship between a descriptor matrix X and a response
matrix Y is sought. The Y matrix can contain both quantitative (e. g. glucose
concentration) and qualitative (genotype) information. This additional sample
information in Y is used by the PLS method to focus the model plane to capture
the Y-related variation in X, e. g. separation between genotypes, rather than
providing an overall view of all variation in the data as done by the PCA
model. In addition, the PLS method can also be used to predict the properties
(Y-values) of new unknown samples, e. g. predict the glucose concentration or
genotype.

The Y matrix consists of the same number of rows as the X matrix. Each
column in Y indicate a certain property, e. g. glucose concentration or genotype
for each sample.WhenYcontainsqualitative information suchas genotype, the
number of columns in Y equals the number of classes. Each row in Y describes
the group membership for that sample where “1” indicates class belonging for
that sample and “0” does not. When Y is qualitative, the PLS method is called
PLS Discriminant Analysis (PLS-DA), to distinguish it from the situation when
Y is quantitative.
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3 Example: Metabolomics Study on Arabidopsis Mutants

We will work through a metabolomics example using GC/MS data from the
analysis of Arabidopsis extracts. Shoots of higher plants are characterized by
axillary branching, where the shoot branches develop from shoot meristems
located between a leaf and the shoot stem. The control of axillary shoot growth
(branching) is not well understood, but it is known that several internal fac-
tors such as the plant hormones IAA and cytokinins are involved (McSteen
and Leyser 2005). Mutations screens in Arabidopsis have identified four loci
involved in the repression of axillary bud growth, MAX1–4. Based on the mu-
tants, it is now suggested that an unknown transmittable substance might be
involved in controlling branching (see McSteen and Leyser 2005). The biosyn-
thesis of this compound in Arabidopsis is catalyzed by a number of MAX
(more-axillary growth) proteins.

Wehaveusedametabolomicsapproach toclassify and identify themetabolic
differencesbetween theMAX-mutants.Root samples fromWT,max3andmax4
mutants were analysed by GC/TOFMS as described by Gullberg et al. (2004).
The GC/MS data was processed by hierarchical multivariate curve resolution
(Jonsson et al. 2005a), and the obtained X-matrix was thereafter subjected to
PCA and PLS-DA analysis. The GC/MS processing resulted in 514 resolved peak
areas. Log transformation, column centering and scaling to unit variance was
done on the resolved peak areas (X-matrix) prior to modeling and two dummy
Y-variables were constructed based on the class belonging of each sample to the

Fig. 5. A PLS-DA score-plot from the analysis of metabolite profiles in roots of Arabidopsis WT,
max3 and max4. The PLS-DA model is based on WT and max3. The X-matrix was centered and
scaled to unit variance. The explained variation in the X-matrix (R2X) is 0.74, the explained
variation in the Y matrix (R2Y) is 0.99 and the predictive ability according to sevenfold cross-
validation (Q2) is 0.84. R2X is the cumulative modelled variation in X, R2Y is the cumulative
modelled variation in Y and Q2Y is the cumulative predicted variation in Y, according to cross-
validation. The range of these parameters is 0–1, where 1 indicates a perfect fit. B Based on the
model max4 samples were predicted into the model showing that max3 and max4 are very similar
regarding metabolic content (compare position score plot in A)
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genotypes, WT and max3. The PLS-DA model score plot is shown in Fig. 5A.
The score plot reveals the relationship among the samples. It is clear from the
figure that the model plane displays a clear separation of the two genotypes.

To validate the model results, predictions were made for the genotype max4,
using the calculated PLS-DA model based on the other sample-set (WT and
max3). The results, shown in the obtained PLS-DA score plot (Fig. 5B) pre-
dicted that the max4 is closer to max3 than WT. This is consistent with the facts
that max3 is very similar to the max4 genotype, where the MAX3 and MAX4
proteins use the same substrate (Schwarz et al. 2005). Interpretation of the first
weight vector (w1) from the PLS-DA model, as described by Trygg and Wold
(2002), togetherwith the99%confidence intervals calculatedusing jack-knifing
(Martens and Martens 2000), highlighted 64 significant variables (metabolites)
differing between WT and max4. The importance of these metabolites is a part
of biological validation of the data set. The statistical validation was done
by prediction of the max3 mutants into the WT/max4 model. Both type of
validation is of importance for validating the multivariate data set.

4 Summary and Future Prospectives

Multivariate projection methods, e. g. PCA and PLS, represent a useful and ver-
satile technology to modelling, monitoring and prediction of complex prob-
lems and data structures encountered within metabolomics and other ‘omics’
disciplines. The common denominator is that high complexity data tables are
generated and that these data tables can be analysed and interpreted by means
of chemometric methods. The principal component analysis (PCA) method
summarizes the variation in a data table X into a model plane (the scores T).
A scatter plot of these scores gives an overview of the samples (observations)
and how they relate to each other, e. g. if there are groupings or trends or
deviating samples and so on. In order to interpret the patterns found in a score
plot one examines the corresponding loading plot (P). The loadings P reveal
how each variable contributes to the separation among samples in the model
plane and also gives insights into the relative importance of each variable.

However, one fundamental property is that the data does contain relevant
information regarding our biological question. In other words, how to max-
imise the information content in the data? The traditional way to Change One
Factor at a Time, i. e. the COST approach, is not recommended. Design of Ex-
periments (DOE) is the methodology of how to conduct and plan experiments
in order to maximize information in the data in the fewest number of runs.
A proper experimental design will reveal the influence of each of the different
factors separately and also any interactions between them. DOE is the only
feasible approach to separate cause and effect from each other. Therefore is
DOE in combination with chemometrical analysis a powerful way of planning,
conducting and evaluating metabolomics experiments.
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One common discussion point in the analysis of “omics” data is how to
correlate several types of data, usually with different data structures. Systems
biology seeks to integrate information from multiple parts of a biological
system in a holistic attempt to understand the whole system. There are still
many obstacles and hurdles to overcome in order to succeed. One of these
relates to how the actual integration of the different types of data will be done.
Hence, the advancement of systems biology depends heavily on the ability
to integrate multiple profiling techniques (e. g. transcriptomics, proteomics,
GC/MS, LC-NMR). The current multivariate statistical methods (e. g. the PLS
method) lacks the proper model structure to describe these types of data
structures, because they focus only on the correlation pattern among multiple
data tables (e. g. X = microarrays vs Y = metabolomics data) and not on the
non-correlated variation among these data tables which, in a biological sense,
can be of equal interest. It has also been demonstrated that, because of this,
the interpretation of these models are negatively affected (Trygg and Wold
2002), e. g. positive correlation patterns are interpreted as negligible or even
flipped and become negative. This is a fundamental problem as we certainly
cannot expect that all variation in transcript and metabolite levels co-vary.
Fortunately, recent advances in chemometrics provide the ability to compare
multiple data sets with each other. Novel extensions of the PLS method, called
O-PLS (Trygg and Wold 2002) and O2-PLS (Trygg 2002) contain the model
structure to support both these features. In addition, the O2-PLS method is bi-
directional which means that the flow of information can go in both ways, from
X (e. g. microarray) to Y (e. g. metabolomics) and vice versa. Hence, the O2-
PLS methodology will be important in selecting what genes or metabolites are
important to do further experimentation upon, e. g. understanding biomarker
patterns and selecting genes for knockout studies. The O2-PLS methodology
can also be extended to more than two data tables, hence it nicely fits into the
framework of a combined profiling approach.

Acknowledgements. The Swedish Research Council, Wallenberg Consortium North (WCN), the
Kempe foundation, EU strategic funding, Knut and Alice Wallenberg Foundation (JT) and Strate-
gic Research Funding (SSF) are acknowledged for financial support. Professor Ottoline Leyser,
York, UK, for allowing us to show data from the max-mutant project, and Dr. Miyako Kusano,
RIKEN Plant Science Centre, Yokohama, Japan for the initial analysis of metabolites in the
max-mutants.

References

Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-
throughput classification of yeast mutants for functional genomics using metabolic foot-
printing. Nature Biotechnol 21:692–696

Andreev VP, Rejtar T, Chen HS, Moskovets EV, Ivanov AR, Karger BL (2003) A universal denoising
and peak picking algorithm for LC-MS based on matched filtration in the chromatographic
time domain. Anal Chem 75:6314–6326



128 J. Trygg et al.

Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical tech-
nologies. Analyst 130:606–625

Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi and megavariate data analysis.
Umetrics (www.umetrics.com), ISBN 91–973730-1-X

Gullberg J, Jonsson P, Nordström A, Sjöström, M, Moritz T (2004) Optimisation of preparation
of plant samples for metabolic profiling by GC-MS. Anal Biochem 331:283–295

Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution
gas chromatography mass spectrometry of urinary organic acids - potential for pattern recog-
nition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom
13:279–284

Idborg-Björkman H, Edlund, PO, Kvalheim OM, Schuppe-Koistinen I, Jacobsson SP (2003)
Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way
data analysis. Anal Chem 75:4784–4792

Jackson JE (1991) A users guide to principal components. Wiley, New York
Jonsson P, Gullberg J, Nordström A, Kowalczyk M, Sjöström M, Moritz T (2004) A strategy for

extracting information from large series of non-processed complex GC/MS data. Anal Chem
76:1738–1745

Jonsson P, Johansson AI, Gullberg J, Trygg J, A J, Grung B, Marklund S, Sjöström M, Antti H,
Moritz T (2005a) Highthroughput data analysis for detecting and identifying differences
between samples in GC/MS-based metabolomic analyses. Anal Chem 77:5635–5642

Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjostrom M, Plumb R, Granger J, Maibaum E, Nicholson JK,
Holmes E, Antti H (2005b) Extraction, interpretation and validation of information for
comparing samples in metabolic LC/MS data sets. Analyst 130:701–707

Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström A, Pettersen J, Bergman R (1998) Experi-
mental design and optimization. Chem Intel Lab Systems 42:3–40

Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in bilinear
modelling by partial least squares regression (PLSR). Food Qual Pref 11:5–16

McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374
Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-

Tunali U, Forbes MG, Willmitzer L et al (2005) GC-MS libraries for the rapid identification
of metabolites in complex biological samples. FEBS Lett 579:1332–1337

Schwartz S, Qin XQ, Loewen MC (2005) The biochemical characterization of two Carotenoid
cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits
lateral branching. J Biol Chem 279:46940–46945

Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the
functional genomics era. Phytochemistry 62:817–836

Trygg J (2002) O2-PLS for qualitative and quantitative analysis in multivariate calibration.
J Chemometr 16:283–293

Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemometrics
16:119–128

Wold S, Ruhe A, Wold H, Dunn WJ III (1984) The collinearity problem in linear regression.
The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Statist Comput
5:735–743



II.3 Map Editor for the Atomic Reconstruction
of Metabolism (ARM)

M. Arita1,2, Y. Fujiwara1, and Y. Nakanishi3

1 Introduction

In the systems study of biological networks, computational analysis is expected
to contribute in three phases by (1) model selection, the formal definition of
each pathway’s role in the manifestation of the biological aspect under analysis,
(2) model refinement, the estimation of model parameters to refine constructed
mathematical models, and (3) simulation and feedback, the computer simula-
tion for the feedback of the predicted results for a better understanding of the
target mechanism(s) (Hood 2003; Arita et al. 2005). Of these, the first phase is
of prime importance because it determines the target of the analysis and its
abstraction level. In other words, in the model selection phase, an appropriate
model is searched and selected among all hypothetical candidates. The process
of model selection is often performed intuitively by researchers. For example,
glycolysis, the best-known pathway module in energy metabolism, contains
a sequence of ten biochemical reactions from glucose to pyruvate (Berg et al.
2002). Since the pathway is linear, it can be summarized as if it were a single
reaction:

Glucose + 2NAD+ + 2ADP + 2Pi → 2Pyruvate + 2ATP + 2NADH + 2H+

The behavior of the pathway may be mathematically described either as
a set of ten reactions, or as a single, abstract reaction. The abstract model is
preferred in explaining net ATP generation, whereas the ten-reaction model
is used for metabolic simulations. In choosing a model, we must be aware of
the trade-off between model accuracy and its description length. In general,
any model inevitably loses its fit to its corresponding natural mechanism as its
description becomes simpler. In glycolysis, the nine intermediate molecules
in the pathway can be eliminated to obtain the net ATP model in return for
sacrificing biochemical details (i. e., the intermediates) of the pathway.

However, when glycolysis is placed in a global metabolic network, the de-
scription of the intermediate molecules is no less important than that of the
gateway molecules such as glucose and pyruvate. The question arises as to
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which criteria should be evaluated and chosen for an appropriate abstraction
of the given network. In biology, the focus has been directed at modularity in
terms of function and structure.

The introduction of modularity, i. e. the encapsulation of network details
by specifying the input/output, yields many advantages. First, it simplifies the
description of the given network and facilitates its understanding. In metabolic
networks, biologists have used intuitive, functional concepts such as ‘amino-
acid biosynthesis’ or ‘nitrogenassimilation’ without formal, logical definitions.
Second, the introduction of modularity simplifies the static verification of the
network, a required step that precedes quantitative analyses such as simulation.
The stoichiometric balance is one such property that can be verified statically.

In glycolysis, the structural and functional modularity is clear, mainly be-
cause the pathway is not branched; the pathway structure is linear and all
carbon atoms in glucose are mapped to pyruvate and the function is the de-
composition (lysis) of glucose. In general, modularity is less straightforward
in branching metabolic pathways. Since molecular moieties are split into or
merged with multiple molecules, it is not easy to trace carbon and other
atomic elements, let alone delineate modularity. In fact, the determination
of molecules to be regarded as intermediates is context-dependent: focusing
on different atoms changes the pathways to be traced and therefore the re-
sulting modular decomposition. For multiply branching pathways there is no
universally effective, definitive decomposition.

Can the modularity of metabolic networks be detected computationally?
Many automated methods exploit the stoichiometry of biochemical reactions
(Mavrovouniotis 1992); this is one solution for the formal decomposition into
metabolic modules. Currently, however, the most widely accepted method for
finding modularity is through network topology; verification is by visualiza-
tion with functional annotations (Ravasz et al. 2002; Ma et al. 2004). This is
why pathway modules remain intuitive. Although electronic circuits can be
verified using Boolean logic, no such formal system has been developed for bi-
ological systems. Indeed, many software programs for genomic and proteomic
networks address only visualization, and their formal analysis remains to be
solved.

The basic concept of our metabolic map editor, introduced in this chapter,
combines a formal description of metabolism (structural conversions and
their stoichiometric conditions) with intuitive network visualization. Many
visualization tools and databases provide a static view of a given metabolic
network (Mendes 2002; Kanehisa et al. 2004; Keseler et al. 2005). Because
a metabolic network is well investigated and has a traditionally accepted layout
for metabolites and enzymatic reactions, fully automated layout algorithms
that ignore such standard layouts do little to further our understanding of
its properties. Rather, an interactive drawing tool that can edit and modify
standard metabolic networks is needed. Only with interactive software can
biologists derive species-specific pathway images and visualize their intuitive
ideas.
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2 Definition of Metabolic Information

In this section, we introduce the concept of handling metabolic information at
the atomic scale, and show how atomic representation can advance the formal
understanding of metabolism.

2.1 Definition of Metabolic Pathways

Functions that should be computationally supported by a metabolic map editor
include (1) searching and adding alternative or new metabolic pathways, (2)
superimposing genomic, proteomic, and metabolomic data onto the network,
and (3) rearranging the network topology to accommodate the metabolism
of a particular species of interest. To fulfill these criteria, a formal definition
of metabolic pathways is required. Previous computational studies tended to
present a metabolic network as a graph where nodes and edges correspond to
metabolites and their biochemical reactions, and the pathway as a sequence of
graph edges (Ravasz et al. 2002; Ma et al. 2004). However, from a biochemical
perspective, edge sequences (or graph paths) defined in this manner do not
necessarily correspond to metabolic pathways. Since molecular structures are
transformed in the course of each reaction, adjacent graph edges may not share
the common structural moiety that corresponds to the metabolic (or atomic)
flux (Fig. 1).

To resolve the conflict between graph paths and biochemical pathways,
an additional constraint must be introduced (Arita 2003). In this chapter,
a metabolic pathway (pathway for short) from metabolite X to metabolite Y is
defined as a sequence of reactions through which at least one atom (carbon,
nitrogen, or sulfur) in X reaches Y. A metabolite Y is called reachable from X
if there is a pathway from X to Y. This is a rather strict constraint because the

Fig. 1. Example of a biochemically inappropriate pathway from citrate to malonate. Analysis
of molecular structures is required to enable the computer to detect that the citrate moiety is
transferred to citryl CoA, rather than to acetate
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conserved moiety throughout a pathway may not consist of carbon, nitrogen,
or sulfur atoms; it may consist of oxygen or hydrogen atoms or even electrons.
The map editor deals with only three types of elements because they can be
computationally traced without ambiguity. The tracing of oxygen or hydrogen
atoms is virtually impossible because the water molecule is involved in many
reactions. The same is true for phosphates and metal ions that exist as free
inorganics in a cell.

2.2 Representation of Pathways and Networks

In the atomic representation of a metabolism, each reaction is decomposed into
a set of sub-structural correspondences called atomic mappings (Arita 2003).
Each atomic mapping represents the transfer of a certain structural moiety
in the course of biochemical reactions, and may be shared among multiple
reactions. For example, atomic mapping between ATP and ADP, and between
glutamate and α-keto-glutarate is prevalent in phosphate- and amino-transfer
reactions, respectively (Fig. 2).

Conventionally, a metabolic pathway is thought of as a sequence of catalytic
reactions classified by EC numbers. However, in the metabolic reconstruc-
tion from a whole genome sequence, a metabolic pathway is better viewed

Fig. 2. Three atomic mappings in the reaction glucose + ATP = glucose 6-phospahte + ADP. The
mapping between ATP and ADP (shown in solid lines) is common to all phosphorylation reactions
with ATP and ADP
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as a sequence of atomic mappings rather than as EC reactions. There are
at least two reasons for this. First, the proposed atomic view can provide
more candidate pathways in the reconstruction. Reconstruction based only
on EC numbers often results in a set of incomplete pathways with multi-
ple gaps. Such superficial gaps, however, may be filled with other reactions
that share atomic mapping corresponding to the gap. Second, the proposed
atomic view provides flexibility in choosing coenzymes. In theoretical analy-
ses, the stoichiometric balance of reactions has been discussed as if coenzymes
were fixed for all reactions (as in the traditional metabolic map) (Papin et al.
2004). In practice, however, their balance should be determined considering
the net reaction balance in the network. For example, some NAD-dependent
enzymes can also catalyze reactions using NADP, and the overall balance of
their use depends on the total networking condition, not on individual reac-
tions.

Thus, at least for the computational reconstruction of pathways, a metabolic
network is better viewed as a set of atomic mappings rather than a set of
EC-numbered reactions. In the biosynthesis of isoleucine and valine, for ex-
ample, the same set of enzymes catalyzes 2-oxobutanoate and pyruvate to
form isoleucine and valine, respectively. The only difference between the two
pathways is a single alkyl group independent of the catalytic sequences in the
biosynthesis. The decomposition into atomic mappings can explicitly describe
such structural sharing between pathways.

3 Metabolic Map Editor

3.1 Overview

The design principle of the map editor is that users can flexibly integrate a se-
quence of atomic mappings (not reactions) into existing metabolic pathways
to form metabolic maps (Fig. 3). First, users are expected to search metabolic
pathways using the associated database that stores enzymatic reactions, their
atomic mappings and molecular structures. The searched pathways (sequences
of atomic mappings) are transferred to the main window where their layout
can be freely edited as in a conventional graphical drawing editor. The advan-
tage of our editor over conventional editors such as Microsoft PowerPoint is
that users can import metabolic objects (e. g. compound structures and re-
actions) from the background database: although on-screen it appears as if
only graphical objects for compound structures and reactions are imported,
more information is processed in the background. For example, importing
one enzymatic reaction on the screen implicitly invokes the integration of its
associated atomic mappings into the already drawn metabolic map so that the
route of any atom in the new reaction can be traced seamlessly on the resulting
metabolic map.
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Fig. 3. Screen-shot of the Map Editor. Pathways are searched by typing molecular names in the
input fields (Number 1). The search results are listed (Number 2). Users can drag pathways into
the main canvas

3.2 Metabolic Database

Thebackgrounddatabase for atomic informationstores three typesofmetabol-
ic data: molecular structures, reaction formulas, and their atomic mappings.
All data are freely available in text format from the website http://www.
metabolome.jp/download.html.

Molecular structures are registered in the MOL-file format (MDL Informa-
tionSystems; its description isdownloadable fromhttp://www.mdli.com/).The
MOL-file format is the de facto standard to describe molecular structures; an
example is shown in Fig. 4. Each MOL-file describes one molecular structure
as a list of atoms with their XYZ coordinates and their chemical bondings. The
chirality of carbon is specified using one integer value for each corresponding
carbon atom. Information on the display of chirality (in thick and shaded lines)
is specified using other integer values. The metabolic editor does not use the
XYZ coordinates written in the format; rather, it applies the original drawing
algorithm to assign XYZ positions (Arita 2005).

As in other metabolic databases, enzymatic reactions are described using
compound names. Reaction formulas were obtained from the Enzyme Nomen-
clature of the International Union of Biochemistry and Molecular Biology
(http://www.chem.qmw.ac.uk/iubmb/enzyme/). In each reaction, the order of
molecules on the left- and right-hand side was manually rearranged so that
the atomic mappings can be computationally detected by comparing molecu-
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Fig. 4. MOL-file format for l-alanine. In the ARM database, carbon atoms in the atom-block
are ordered according to the IUPAC positions for molecular structures. Only carbon atoms are
correctly ordered

Fig. 5. Schematic view of reaction EC 6.3.5.2. The reaction formula is written as “ATP + XMP + l-
glutamine + H2O =>AMP + GMP + l-glutamic acid + pyrophosphate” in the database so that the
molecular structures roughly correspond one-to-one (top to bottom)

lar structures sequentially from left to right (Fig. 5). For details on structure
comparison to compute atomic mappings refer to Arita (2003).

Using molecular structures, atomic mappings were pre-computed for all
registered reactions and, after manual verification, correct mapping results
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were stored in the database. Details, including the accuracy of the mapping
computation, were described previously (Arita 2003). Although the mapping
was computed for all atomic elements except hydrogen, the results were reg-
istered only for carbon, nitrogen, and sulfur atoms due to ambiguities in the
mapping of the rest of the elements.

3.3 Drawing Maps from Pathways

The map editor is equipped with a search engine for metabolic pathways.
Given a source and target metabolites, the engine computes logically possible
pathways between these metabolites from the shortest- to pathways of any
length. Although pathway length is measured by the number of reaction steps,
an arbitrary value can be assigned in the algorithm used. In other words, the
engine can compute any pathway throughout which at least one carbon (or
nitrogen, sulfur) atom is conserved. An arbitrary combination of pathways can
be visualized by dragging a searched pathway into the main canvas window
(Fig. 3).Whenapathway isdragged into thecanvas, it ismergedwith thealready
drawn network (Fig. 6). Although its initial layout is automatically assigned,
a user can freely rearrange the orientation or location of any metabolic object
by using the mouse.

Fig. 6. The network generated by merging two pathways from xylulose 5-phosphate (X5P) to
erythrose 4-phosphate. Every time a pathway is dropped, only the difference from the existing
network is drawn. Carbon 3 in X5P is traced in this example (shown with blank arrows)
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The unique function of the map editor is its ability to trace a particular
atom on the map. Since each metabolic object on the map is linked with its
atomic information in the database, the logical tracing of each atomic position
is possible by transitive calculation of the atomic mappings in the network.
A user needs only to mouse-click a particular atom on the network to see its
traces (Fig. 6).

4 Applications

4.1 Carbon Flow in Cyclic Pathways

Metabolicpathways contain two typesof cycles in termsof tracingatoms: cycles
where carbon atoms are exchanged in each round (e. g. the tricarboxylic acid
(TCA) cycle), and cycles where all carbon atoms are conserved (e. g. the urea
cycle). If reversible, a single reaction catalyzing two identical molecules (e. g.
2 pyruvate = 2-acetolactate +CO2) can form the former type of cycle by itself.
Likewise, the latter typeof cycle canbe formedbyany reversible reaction.Cyclic
pathways may be biochemically meaningful, but in practice, their existence is
problematic in searching metabolic pathways. Since pathways are searched
and output according to the number of reaction steps in our system, short
cycles drastically increase the number of spurious pathways with local loops.
To eliminate such futile pathways, our pathway-search algorithm eliminates all
pathways that visit the same molecule multiple times. However, this constraint
is too strict for searching all possibly existing pathways. For example, users
studying the TCA cycle may want to analyze carbon traces that go round the
cycle multiple times.

To support the atomic analysis of cyclic pathways, a metabolic map editor
is indispensable. First, users search the pathways of interest and paste them
into the main window using the edit function (i. e., model selection). Then,
aparticular atomcanbe interactively tracedwithin the selected set of reactions.
Since the target model is highly constrained, it is feasible to compute pathways
visiting the same compound multiple times.

4.2 Carbon Flow in Energy Metabolism

Because of the shared metabolites between the glycolytic and pentose phos-
phate pathways, the atomic traces of a particular carbon atom often become
hard to follow. This is the case for the correspondence between the C-1 of
glucose and the C-1 of pentose 5-phosphate. By clicking the corresponding
atomic position in the map editor, the atomic trace can be grasped at a glance.
Although the entry point of the pentose phosphate pathway decarboxylates
the C-1 position of glucose, this position is identical to the C-1 of fructose 6-
phosphate through glycolysis. Thus, in the pentose phosphate pathway, the C-1
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of fructose 6-phosphate corresponds to the C-1 of sedoheptulose 7-phosphate,
of xylulose 5-phosphate, and of ribose- and ribulose 5-phosphate. In fact, the
C-1 of glucose corresponds to both the C-1 and C-6 positions of fructose 6-
phosphate, and therefore to all C-1 and C-5 positions of pentose 5-phosphate.
Thesepositionsare invariable throughout theglycolytic andpentosephosphate
pathways.

4.3 Visualization of Lipid Metabolism

Recently, metabolome analysis has been facilitated due to the rapid techni-
cal progress made in mass spectrometry (MS). To detect lipid molecules, for
example, an effective strategy is to couple MS with liquid chromatography-
electrospray ionization (Houjou et al. 2004). More than 1000 glycerophospho-
lipid species can be quantitated in a single assay in less than 2 h (R. Taguchi,
personal communication). However, the efficient analysis of such large-scale
data sets poses a vexing problem. Network visualization remains the first step
for gaining an overview of the data; however, the traditional metabolic map
is not suitable for visualization because it contains abstract notations. For
example, the ‘phosphatidyl group’ contains two fatty acids of variable lengths
(usually 12∼24 carbonatoms) anddegreesofunsaturation (usually 0∼6double
bonds, depending on the length). Since experimentally confirmed fatty acids
in a phosphatidyl group are comprised of more than 30 species, the number
of actual phosphatidyl species may be as many as its square, i. e., ≈ 1000. To
visualize the distribution of the spectrum of molecular species, our map editor
supports an interactive instantiation of abstract moieties. For each abstract
notation using ‘R-group’, a user can assign a list of molecules as its possi-
ble instantiation. The map editor can also display an integer value for each
molecule (such as the concentration, mass, logP, etc.). Given the list of possible
instantiations for each R-group and their corresponding concentrations (i. e.,
metabolomic data), the editor can display the percentage fraction of candidate
molecules. When multiple R-groups exist, the amount to be displayed will be
the integration of all possible assignments. In a phosphatidyl group, various
fatty acids can be linked at R1 and R2 positions of glycerol phosphate. With
a mouse click, the candidate list for the R1 (or R2) position is displayed together
with the relevant percentage fractions. The percentage for a docosahexanoic
acid (DHA) in the R1 group, for example, is calculated as the sum of all phos-
phatidyl molecules that have DHA at R1. When DHA is chosen for R1, the
percentage list for R2 consists of fully instantiated molecular species that have
DHA at R1 and another fatty acid at R2.

Due to the abstract notations for molecules, lipid metabolism is a particu-
larly unspecific part in the traditional metabolic map. The computer-assisted
metabolic map is indispensable to visualize the metabolomic data of such
pathways.
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5 Conclusions

The map editor is not only a tool for visualizing metabolic pathways, but
is a necessary component for the systematic and modular understanding of
species- and context-dependent metabolic networks. Since the software system
is linked with atomic-level information in the background database, users can
trace any atomic position on any metabolic network they draw. It is a desir-
able realization of a pathway database. Most web-based pathway databases do
not support the users’ own arrangement of networks, although in computer
science, the definition of a database system is ‘ a collection of information or-
ganized in such a way that a computer program can quickly select desired data
in a desired arrangement’. Our map editor compensates for this drawback, and
represents a step forward to a more flexible analysis of large-scale biological
information.
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II.4 AraCyc: Overview of an Arabidopsis Metabolism
Database and its Applications for Plant Research

S.Y. Rhee, P. Zhang, H. Foerster1, and C. Tissier

1 Introduction

Metabolism is one of the most fundamental processes of life. Each organ-
ism possesses an intricate network of metabolic pathways, whose elaborate
regulatory circuitry may be developmentally programmed and hard-wired to
respond to changes in the environment. With the release of the fully sequenced
plant genomes of Arabidopsis and rice (AGI 2000; Goff et al. 2002; Yu et al.
2002), and the initiation of many sequencing projects of other plant species,
there is a growing desire to place the sequenced and annotated genomes in
a metabolic context. AraCyc (http://arabidopsis.org/tools/aracyc/) was the first
plant organism-specific metabolism database to be computationally predicted
by the PathoLogic component of the Pathway Tools software using MetaCyc as
the reference database (Mueller et al. 2003). With continued manual curation,
the goal of AraCyc is to describe the complete set of metabolic pathways for
Arabidopsis thaliana whilst placing genes and enzymes within their metabolic
context. Though many enzymes in AraCyc have yet to be manually curated,
most of the pathways have been manually validated and it is so far the only
genome-wide, comprehensive metabolic database for a single plant species
(Zhang et al. 2005).

The benefits of a species-specific metabolic pathway database are substan-
tial: (1) it depicts the biochemical components of an organism; (2) it aids in
comparative studies of pathways across species to facilitate metabolic engi-
neering to improve crop metabolic traits; (3) it can be used as a platform to in-
tegrate and analyze data from large-scale experiments such as gene expression,
protein expression, or metabolite profiling; finally (4) by presenting pathway
steps lacking assigned genes, or having genes assigned but solely based on
computational prediction, it allows the identification of the biochemical steps
that remain to be identified and experimentally characterized. The manual, de
novocreationofapathwaydatabase canbe labor intensiveand timeconsuming.
SoyBase (http://www.soybase.org/) is the only other plant pathway database,
specific to soybean, which was manually created and made publicly available.
Alternatively, there are metabolic pathway databases that cover a wide range of
organisms.Examplesof comprehensivepathwaydatabases includeKyotoEncy-
clopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/) (Ogata
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e-mail: rhee@acoma.stanford.edu
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et al. 1999; Kanehisa 2002; Kanehisa et al. 2004), Enzymes and Metabolic Path-
ways (EMP, http://www.empproject.com/) (Selkov et al. 1996), and MetaCyc
(www.metacyc.org) (Krieger et al. 2004). Each has its strengths and weak-
nesses, some of which have been reviewed (Maranas and Burgard 2001; Kane-
hisa 2002).

In this review,wedescribe the content and functionalitiesofAraCycdatabase
as well as examples of applications that use the information contained in the
database, in conjunction with functional genomics data to address systems-
wide questions about metabolism. In addition, we discuss the current limita-
tions and future directions of the database.

2 Database Content

AraCyc (version 2.5) currently features 197 pathways, comprising 979 unique
reactions and 1071 compounds. Over 63% of the reactions have Arabidopsis
genes/enzymes assigned and 1759 unique genes are assigned to the path-
ways. A metabolic pathway is a set of one or more enzymatic transforma-
tions, involved in processes such as biosynthesis, degradation, conversion,

Fig. 1. An example of an AraCyc pathway: a pathway evidence, which could be either compu-
tational (indicated by a computer icon) or experimental (indicated by a flask icon), provides
assertion of the existence of the pathway in Arabidopsis; b (see next page) similarly, evidence
attached to an enzyme provides assertion of its catalytic activity involved in a specific reaction.
Each piece of evidence is associated with a citation where the source of the evidence can be found
(inset). Pathway can be zoomed to show various levels of details. Compounds, reactions, enzymes
and genes on a pathway detail page are clickable to retrieve more information. (Reprinted with
permission from Plant Physiology)
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or utilization, as it occurs in a particular organism (Krieger et al. 2004).
In addition to the 197 individual pathways, AraCyc has 15 super-pathways.
A super-pathway is an aggregation of two or more individual pathways that
are related in some way (Krieger et al. 2004). The reactions in AraCyc have
EC numbers (Enzyme Commission Nomenclature, http://www.chem.qmul.
ac.uk/iubmb/enzyme/) assigned, when available (Fig. 1a). Chemical struc-
tures are annotated to the compounds. The assignments of the enzymes to
the reactions are based on the characterization of the enzymes or the func-
tional annotations of the genes, which could be either experimentally deter-
mined or computationally derived. For example, cellulose synthases CesA1
and At3g02230 are both assigned to EC 2.4.1.12 on the cellulose biosynthesis
pathway. However, the cellulose synthase activity is supported by functional
studies of the enzyme only for CesA1, and the annotation of ‘cellulose syn-
thase’ for At3g02230 comes from computational prediction based on sequence
similarity. To distinguish the different levels of annotation qualities, an evi-
dence code is provided along with the assignment of an enzyme to a reaction.
These evidences can be easily recognized through the use of intuitive evidence
icons (computer screen for computational, flask for experimental), which la-
bel each enzyme detail page (Fig. 1b). Citations are provided along with the
evidence so that users can obtain more details about the source of the annota-
tion.

The 197 pathways are classified into three main categories: “Biosynthe-
sis”, “Degradation/Utilization/Assimilation”, and “Generation of Precursor
Metabolites and Energy” (Table 1). Biosynthesis of all 20 protein amino acids,
all DNA/RNA purine and pyrimidine nucleosides and nucleotides, commonly
occurring sugars and polysaccharides, major fatty acid and lipid classes
(including triacylglycerol, phospho- and glyco-lipids), cofactors, prosthetic
groups and electron carriers, and six known major plant hormone classes are
represented. In addition, biosynthesis of the major molecules found in plant
primary and secondary cell wall and epidermal structures, including cellulose,
homogalacturonan (a component of pectin), lignin, suberin, wax and cutin
are included. Pathways for central energy metabolism are well represented.
It is not easy to assess the comprehensiveness of pathways under “Degrada-
tion/Utilization/Assimilation” as there is much less information available for
catabolism than for biosynthesis in plants. Secondary metabolism is not yet
covered comprehensively but this situation will change in the near future (see
Sect. 6).

Data objects in AraCyc, such as pathways, reactions and compounds, as well
as subcellular compartments (for annotating enzyme locations), and evidence
typesare structured inhierarchicalontologies (Gruber1993;Karp2000;Karpet
al. 2004). Each ontology describes concepts (terms) and relationships between
them. Terms are organized into classes according to the primary ‘is-a’ rela-
tionship. The ‘is-a’ relationship classifies what type of a concept a term is. The
broader concepts, or parent terms, appear on higher levels of the hierarchy tree.
The more specific concepts, or children terms are grouped under the broader
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Table 1. Summary of AraCyc database content

Total pathways excluding super-pathways 210 (197)a

Biosynthesis 137 (127)a

Amino acids 36
Cell structure 8
Cofactors, prosthetic groups, electron donors 24
Fatty acids and lipids 15
Plant hormones 14
Nucleosides and nucleotides 4
Secondary metabolism 17
Sugars and polysaccharides 9
Others 10

Degradation 58 (57)b

Amino acids 21
Fatty acids and lipids 7
Inorganic nutrients 5
Sugar derivatives 2
Sugars and polysaccharides 11
Others 12

Generation of precursor metabolites and energy 15b

Total unique reactions of pathways 979

Total unique compounds of pathways 1071

Total unique genes of pathways 1759

a Some pathways are classified to more than one pathway class.
The numbers in parenthesis are unique number counts

b Two pathways are classified under both ‘Degradation’ and ‘Gen-
eration of precursor metabolites and energy’

concepts. For example, within the pathway ontology, alanine biosynthesis is
classified to Pathways→Biosynthesis→Amino acids→Individual amino acids
(http://www.arabidopsis.org:1555/ARA/NEW-IMAGE?type=PATHWAY{\&}
object=ALANINE-SYN2-PWY). Unlike terms in a simple list, the organiza-
tion of terms into a hierarchical ontology allows more robust queries and
makes retrieval of related information easier.

3 Search, Browse, and Analyze Functionalities

AraCyc can be freely accessed through the web (http://arabidopsis.org/tools/
aracyc) using a common web browser, or downloaded as text files. The database
is available to download with an ‘open source’ license (http://arabidopsis.
org/aracyc/form.html). Installing AraCyc database and desktop version of
the software on a local computer has a few advantages such as allowing
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Fig. 2. Accessing the metabolic data: a,b from the AraCyc main page, data can be queried by
names and browsed from alphabetic lists or hierarchy ontologies; c query results are displayed
grouped by data types–different data types such as compounds, reactions, pathways, enzymes
and genes are interlinked from individual data detail pages; d an example of a compound detail
page; e the Metabolic Map depicts all of the pathways in one diagram. Clicking on a pathway
glyph will open up the pathway detail page. Experimental data such as those resulting from gene
expression and metabolic profiling experiments can be painted onto the Metabolic Map using
the Omics Viewer tool

the user to update the database with proprietary data and to perform more
advanced queries. Using either the web or the desktop version, a user can
browse, query, and visualize the data (Fig. 2a). One can navigate through
all of the pathways, for example, from an alphabetic list or from the hierar-
chy ontology browser (http://www.arabidopsis.org:1555/ARA/class-instances?
object=Pathways). Substrings, or partial words, for example, ‘gibber’ in ‘gib-
berellin’, can be queried against names of a specific data type such as com-
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Fig. 2. (continued)

pounds only, or all of the data types (Fig. 2b). In the latter case, results are
grouped according to the different data types (Fig. 2c). Each result is linked
to its corresponding detail page. In the example shown in Fig. 2, clicking on
the compound ‘salicylate’ from the query result page opens up the compound
detail page for salicylate (Fig. 2d). Many data are interconnected by hyper-
links. Pathways and reactions shown on the compound salicylate detail page
are linked to the corresponding pathway detail pages and reaction detail pages,
and vice versa. The ‘Metabolic Map’ tool shows a bird’s eye view of all of the
pathways grouped by the pathway classes (Fig. 2e). In addition to the searching
and browsing options using a web browser or the desktop application, datasets
are also provided as downloadable text files, (ftp://ftp.arabidopsis.org/home/
tair/Pathways/), such as a pathway dump file that lists all of the pathways and
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the genes and enzymes assigned to each pathway. A user who has a list of genes
of interest can use this file to quickly sort out what pathways the genes are
involved in. The files are updated with each AraCyc release.

An important component of the Pathway Tools software package (Karp et al.
2002) is the Omics Viewer (http://aracyc.stanford.edu:1555/expression.html).
It allows the analysis of changes in the levels of transcripts, proteins, and

Fig. 3.Proteomicsdata fromWeckwerth et al. (2004)overlaidonAraCycOmicsViewer.Eachglyph
represents a pathway in which reactions are represented by lines and metabolites are represented
by triangles (amino acids), squares (carbohydrates), or other metabolites (circles). Individual re-
actions that are not placed within a metabolic pathway are listed on the right side of the diagram.
The 281 proteins that were detected in the leaves of Columbia and C24 accessions were overlaid
onto the metabolic map. 104 proteins were found to carry out reactions in 28 pathways on the
map, which are highlighted. Red lines, proteins assigned to reactions, which were detected only
in Columbia; blue lines, proteins that were detected in both ecotypes, and yellow lines, proteins
that were detected only in C24. Labeled pathways are: 1, lignin biosynthesis; 2, gluconeogenesis;
3, sucrose biosynthesis; 4, brassinosteroid biosynthesis; 5, ethylene biosynthesis; 6, jasmonic acid
biosynthesis; 7, chlorophyll biosynthesis; 8, formylTHF biosynthesis; 9, glutamine biosynthesis I;
10, serine biosynthesis; 11, glycolysis IV; 12, glyceraldehyde 3-phosphate catabolism; 13, glycol-
ysis; 14, glycolysis; 15, phosphorespiration; 16, Calvin cycle; 17, starch degradation; 18, sucrose
degradation; 19, glycogen catabolism; 20, methionine degradation I; 21, lipoxygenase pathway;
22, nitrate assimilation; 23, ammonium assimilation; 24, cyanate catabolism; 25, aerobic glycerol
catabolism; 26, serine isocitrate lyase pathway; 27, xylulose monophosphate cycle; 28, removal of
superoxide radicals
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metabolites by overlaying results of genome-wide gene expression, proteomics,
or metabolite profiling data onto the metabolism overview diagram (Fig. 3).
Each reaction (represented as a line connecting the compounds) can be color-
coded according to the expression level of the gene or protein that catalyzes
the reaction. Metabolite levels can be depicted by color-coding the symbols
for compounds (represented as squares or triangles connected by the reaction
lines). Note that only those genes and compounds that are included in AraCyc
can be displayed on the metabolic map. However, it is possible to extrapolate
from the Omics Viewer to identify additional components of a pathway. For
example, if a set of genes from an expression array appeared to be all involved in
the same pathway and showed similar changes in expression values, one could
cluster the original dataset to identify other genes having a similar expression
profile. These genes, in turn, may represent components of the pathway that
are missing from AraCyc. Specific usage examples of this tool are described in
the next section.

4 Applications of AraCyc

4.1 Putting Functional Genomics Data
into a Metabolic Network Framework

The Omics Viewer is a convenient way of quickly assessing the metabolic
changes from a large-scale experiment such as gene expression profiling or
metabolite profiling under different environmental or genotypic conditions,
either to test a specific hypothesis or explore the trends in a large-scale data
set. Alternatively the viewer can be used to annotate a set of genes grouped
by certain criteria such as gene families or co-expressed genes. For example,
Arabidopsis accessions Columbia (Col-0) and C24 are known to have a number
of polymorphisms that lead to differences in a variety of phenotypic traits
(Rohde et al. 2004). For example, Columbia can acclimate to cold and tolerate
freezing much better than C24. However, the exact molecular, biochemical, and
physiological differences that result in this phenotypic trait are not known. One
hypothesis is that their metabolic state is different. Weckwerth and colleagues
compared the protein and metabolite content of Columbia and C24 leaves
(Weckwerth et al. 2004). They detected 297 proteins, of which 153 were detected
in both accessions and 144 were detected in only one of the ecotypes. An
equivalent number of proteins was found in each accession (30% specific in
Columbia, 30% in C24, and 40% detected in both). Overlaying 281 of the
differentially expressed proteins on the AraCyc Omics viewer shows that about
37% of the proteins (104/281) were placed within the metabolic framework,
specifically onto 28 pathways (Fig. 3). The mapping shows that Columbia is
much more active metabolically than C24, with 19 out of 28 pathways that were
mapped with proteins specific to Columbia. It is possible that Columbia’s more
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active metabolic state may be relevant for its ability to acclimate to cold better
than C24. Pathways that were more prominent in C24 than in Columbia include
lignin biosynthesis, sucrose biosynthesis, and sucrose degradation. While it is
premature to derive definitive conclusions from this exercise, it demonstrates
the ability of this tool to explore large-scale datasets quickly and efficiently.

Similarly, the Omics Viewer can be used to address hypotheses using
large-scale data such as gene expression microarrays. For example, it is well-
established that CBF (CRT/DREB Binding Factor) transcription factors play
an important role in cold acclimation (Thomashow 1999; Cook et al. 2004;
Gilmour et al. 2004). Also, increases in sugars such as sucrose, glucose, fruc-
tose, and raffinose, and in the amino acid proline, are correlated with the ability
to tolerate freezing, perhaps because these compounds act as osmoprotectants
(compatible solutes) (Strand et al. 1999; Taji et al. 2002; Shinozaki et al. 2003;
Uemura et al. 2003; Zuther et al. 2004). It is, however, not known whether the
cold acclimation process via the CBF pathway directly affects the increase in
the production of these metabolites (Stitt and Hurry 2002). Recently Vogel
and colleagues asked which genes are regulated by the CBF pathway in the
cold acclimation process by examining the global gene expression profiles of
cold-treated wild type plants and lines overexpressing the CBF2 gene (Vogel
et al. 2005). They found that 93 genes were affected in both of these lines as
compared to wild type and considered these genes to be involved in the CBF
cold-response pathway. By overlaying the expression profiles of these genes on
the Omics Viewer, we can quickly assess which metabolic pathways are affected
via the CBF cold-response pathway (Fig. 4). The results show that 31 out of
93 genes were placed within the metabolic context. Six pathways are induced
by CBF overexpression and cold treatment and one pathway, glucosinolate
biosynthesis, is reduced by CBF overexpression and cold treatment. Pathways
in which genes encoding enzymes carrying out reactions are induced include
sucrose biosynthesis, flavonoid biosynthesis, flavonol biosynthesis, anaerobic
glycolysis, homogalacturonan degradation, and sucrose degradation. This re-
sult suggests that sucrose biosynthesis may be directly affected by the CBF
pathway.

4.2 Application of AraCyc Data to Other Software Environments

In addition to addressing specific questions using the data and tools in AraCyc
as exemplified above, AraCyc data can be used in other software environ-
ments to explore metabolism data in conjunction with other data such as
gene expression profiling, metabolite profiling, and proteomics data. Exam-
ples of third-party software that have used data from AraCyc include MapMan
(Thimm et al. 2004), MetNetDB (Wurtele et al. 2003), FCModeler (Wurtele et
al. 2003), and 3D virtual reality visualization environment (Dickerson et al.
2003). MapMan is a user-driven software environment that allows the display
and analysis of large-scale datasets in the context of functional categories in-
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Fig. 4. Genes that belong to the CBF regulon in Arabidopsis from Vogel et al. (2005) overlaid
on AraCyc Omics Viewer. Ninety three genes were used as input and 31 genes were placed
on the metabolic framework into seven pathways. Red (induced) and yellow (reduced) lines
indicate reactions that are performed by the proteins encoded by genes whose transcripts are
induced or reduced by the CBF transcription factor overexpression as well as treatment with
cold, respectively. Six pathways are induced by CBF overexpression and cold treatment and
one pathway, glucosinolate biosynthesis, is reduced by CBF overexpression and cold treatment.
Labeled pathways are: 1, sucrose biosynthesis; 2, flavonoid biosynthesis; 3, flavonol biosynthesis;
4, anaerobicglycolysis;5, homogalacturonandegradation;6, sucrosedegradation;7, glucosinolate
biosynthesis

cluding metabolic pathways. It is composed of two modules, SCAVENGER and
IMAGEANNOTATOR. SCAVENGER designates measured values of an experi-
ment onto a set of metabolic pathways and other processes that are organized
into bins and IMAGEANNOTATOR allows users to generate a custom view of
the annotated bins and the measured parameters according to their specifi-
cations and needs. MetNetDB is an Arabidopsis interactions database that is
used as a basis for FCModeler software. FCModeler software uses fuzzy cogni-
tive maps to allow biologists to generate models of regulatory and metabolic
pathways from data in MetNetDB and large-scale datasets such as those result-
ing from genome-wide gene expression profiling experiments. The 3D virtual
reality environment uses the data in MetNetDB and allows visualization of the
network data in 3D in a virtual reality cave such that users can ‘get inside’
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the pathways and explore the data from particular areas within the network.
All of the applications mentioned here have imported the AraCyc data to be
visualized and analyzed in a number of flexible and creative ways.

5 Current Issues and Future Directions

About 86% (170 pathways) of the pathways have been manually validated,
meaning that the pathway diagrams have been validated and corrected ac-
cording to the latest literature information. The remaining 27 pathways were
predicted to exist in Arabidopsis but no experimental support was found in
the literature irrevocably confirming their existence in plants. Pathways of
secondary metabolism are under-represented in AraCyc. Curation of new sec-
ondary metabolic pathways is an ongoing task. In addition, we plan to curate
and integrate transporters into their relevant pathways. Users are encouraged
to contact us (curator@arabidopsis.org) for data submissions, including up-
dating or correcting an existing pathway, or submitting a new pathway.

Starting in 2005, updates to AraCyc are released on a quarterly basis. Each
release includes manual updates, corrections of the existing pathway data, and
manual curation of new pathway data. A major release at the end of each year is
planned to take advantage of the progress in the functional annotations of the
Arabidopsis genome (Berardini et al. 2004; Zhang et al. 2005). A gene whose
function was previously unknown may now have an annotated function and
thus may be assigned to a corresponding AraCyc pathway.

Many enhancements to the data visualization capabilities provided by the
Pathway Tools software are planned, such as the ability to display pathways in
the context of subcellular location information.

6 Conclusions

Currently we are experiencing a rapidly increasing rate of production of large-
scale data such as genome sequences, genome-wide gene expression profiles,
proteomics and metabolomics data. The necessity to organize all of these data
into a biological framework has been, in part, the motivation for the work
described in this review. While we have created a comprehensive database
that describes the metabolic network of a model plant species, Arabidopsis
thaliana, the database is far from being either complete or error-free. Many of
the pathways are in need of manual curation using the current literature and
many more pathways, particularly those for secondary metabolism and those
that include transport reactions, need to be brought into the database. As with
any other database project, the content of the AraCyc database is dynamic and
will continue to undergo enhancement, additions, and modifications to make
it more useful.
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II.5 KaPPA-View: A Tool for Integrating
Transcriptomic and Metabolomic Data
on Plant Metabolic Pathway Maps

T. Tokimatsu1,2, N. Sakurai1, H. Suzuki1, and D. Shibata1

1 Introduction

Recent advances in DNA array technology (Aharoni and Vorst 2002; Donson et
al. 2002) and compound separation techniques coupled to mass spectrometry
(MS), such as gas chromatography (GC)-MS, liquid chromatography (LC)-MS
and capillary electrophoresis (CE)-MS of metabolites (Sumner et al. 2003; Sato
et al. 2004) have produced large amounts of transcriptomic and metabolomic
(‘omic’) quantitative data. The interpretation of omic data is one of the ma-
jor challenges for researchers identifying gene functions. Multigene families
are considerably more prevalent among plant genomes than among animal
genomes (Arabidopsis Genome Initiative 2000). Consequently, a relatively
common characteristic of plants is that several homologous gene products
are often assigned to a single enzymatic reaction, which complicates an under-
standing of the individual contributions of gene functions in plant metabolism.
Metabolic pathway databases and tools are therefore crucial to the interpre-
tation of behaviors of individual genes from omic data and to understanding
their functions.

An analytical tool called KaPPA-View was developed to facilitate the dis-
play user transcript and/or metabolite data on a set of comprehensive plant
metabolic pathway maps (Tokimatsu et al. 2005). Using an Internet browser,
users can access the tool at http://kpv.kazusa.or.jp/kappa-view/. Here, we pres-
entaconcise introduction to the functionsof the toolanddiscuss the limitations
of the present version and possible improvements that could be made thereto.

2 General Features of the KaPPA-View Tool

The architecture of the web-based visualization tool is shown in Fig. 1. The
application engine of the system processes a user’s comma separated value
(CSV)-formatted dataset of transcripts and/or metabolites over the Internet
and returns the Scalable Vector Graphics (SVG)-formatted files to the user’s
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Fig. 1. System architecture of the KaPPA-View tool.

Fig. 2. Diagrammatic representation of metabolic pathway maps. Circles depict substrates and
reaction products, arrows represent reactions and squares depict the various transcripts involved
in, or putatively assigned to, the reaction being examined

personal computer (PC) through the Adobe SVG Viewer installed on the PC.
Users can also access the transcript and metabolite data library on the KaPPA-
View server.

The metabolic pathway maps of KaPPA-View were designed so that users
would be able to picture the quantitative changes associated with individual
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Fig. 3. Representation of an SVG-formatted metabolic pathway map for cinnamate-monolignol
pathway/sinapoyl ester biosynthesis with quantitative transcript data
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transcripts and metabolites involved in enzymatic reactions displayed on
metabolicpathwaymaps.Themetabolites, enzymatic reactions and transcripts
involved in, or putatively assigned to a given reaction are represented as circles,
arrows and squares, respectively (Fig. 2). Quantitative values for transcripts
and/or metabolites submitted by the user as CSV-formatted text over the In-
ternet are represented using symbols of different colors, as exemplified in
the cinnamate-monolignol pathway/sinapoyl ester biosynthesis map shown in
Fig. 3.

All of the information for an individual metabolite and reactions on a map
being displayed on a user’s browser can be retrieved from the screen. Com-
pound and enzyme names are given along with their symbols on the metabolic
pathway maps. Information on the metabolites, enzymes and transcripts as-
sociated with individual pathways can be found in the reference pages, which
can be retrieved for each map using popup windows activated by clicking on
symbols (Microsoft Windows users) or from the elements list for each map
(all users). Gene and compound identifiers in the list are linked to the rel-
evant gene and compound pages of The Arabidopsis Information Resource
(TAIR) database (http://www.arabidopsis.org/) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG/PATHWAY) database (http://www.genome.ad.jp/
kegg/pathway.html) (Goto et al. 2002), respectively. Furthermore, the names
of pathways immediately up- or downstream are indicated on each map, and
related pathway maps can be displayed in popup windows at the user’s re-
quest.

To facilitate ease of use, SVG format was employed to generate maps and
achieve a dynamic graphical representation of the quantitative changes in tran-
scripts and/or metabolites on a user’s browser. The maps and the associated
quantitative data on the browser can be downloaded to the user’s PC and mod-
ified for presentation. Given the variety of chemical and genetic nomenclature
currently in use, in the likely event that users wish to alter information such
as the names of metabolites and genes on the maps for presentation purposes,
they can edit the SVG source text files using a text editor. The commercial
editor, Adobe Illustrator is well suited for this as it can edit the SVG files.

Given that KaPPA-View is a web-based application, it is platform indepen-
dent and can be used on a variety of popular operating systems that have the
SVG Viewer plug-in supplied by Adobe. However, users are recommended to
use Windows 2000/XP and Internet Explorer 6.0 or higher, which permit users
to access the full range of KaPPA-View functions.

3 Plant Metabolic Pathway Maps

The initial version of the application contained a set of comprehensive meta-
bolic pathway maps for the model plant, Arabidopsis thaliana, for which anno-
tated genome information is available for identifying, or putatively identifying,
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metabolism-related genes. The metabolic pathways are classified as being one
of 25 subclasses that are further subdivided into seven metabolic categories.
In the current version, these categories contained 1263 enzymatic reactions
(release 1.0). The metabolic pathways that are classified as belonging to func-
tional categories, such as “plant hormones” and “secondary metabolism” in
KEGG/PATHWAY (Kanehisa et al. 2002; Goto et al. 2002) and AraCyc (Mueller
et al. 2003; Rhee et al. 2006; Zhang et al. 2005), are positioned at the branches
of the reactions representing metabolic flows. However, in addition to the
standard classification of such reactions, several genes are also classified as
being involved in cofactor metabolism, vitamin metabolism or plant hormone
metabolism and are therefore positioned in the “Functional categories” for the
user’s convenience.

As a tool for representing the full extent of the quantitative changes associ-
ated with transcripts and metabolites, the dimensions of the metabolic pathway
maps generated were considered to be suitable for display on monitors rou-
tinely used by desktop users. This meant that related metabolic reactions were
integrated into single maps, but care was taken to avoid too much integration.

4 Integration of Transcriptomic and Metabolomic Data
on Pathway Maps

Transcriptomic and metabolomic data were used to complement each other
and facilitate the identification of gene function in metabolism. While in excess
of 5000 metabolites are thought to exist in a single plant species, only a limited
number have been identified using compound separation techniques coupled
to mass spectrometry (Aharoni et al. 2002). In general, given that metabolic
intermediates exist at very low levels in plant tissue, their detection, even with
state-of-the-art mass spectrometry, is considerably difficult and metabolomic
analyses tend to rely on pooled metabolites and final products. Recent versions
of Arabidopsis DNA arrays cover all of the genes annotated in the genome. Most
of the transcripts listed on the metabolic pathway maps in KaPPA-View are de-
tected, as can be seen when users analyze the transcriptomic data for leaves and
suspension-cultured cells provided with the tool. Consequently, the detection
of transcripts involved in reactions involving intermediate metabolites works
well for generating hypotheses of gene function in the metabolic pathway being
examined.

5 Comparison with Other Databases and Tools

Given that KaPPA-View displays quantitative data for various individual tran-
scripts in different reactions and for metabolites in the various metabolic
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pathway maps, it is complementary in function to other omic-data tools.
The well-cited pathway database of KEGG/PATHWAY (http://www.genome.ad.
jp/kegg/pathway.html) has metabolic pathways for 218 organisms, including
Arabidopsis and rice, linked to metadata (Goto et al. 2002). The Arabidop-
sis pathway database, AraCyc, (http://www.arabidopsis.org/tools/aracyc/) is
a comprehensive metabolic database for Arabidopsis (Rhee et al. 2006). They
also provide tool function for attaching transcript data onto the metabolic
overview diagram. However, individual transcript data are not shown on indi-
vidual metabolic pathway maps. The user-driven tool MAPMAN is designed
to present the quantitative data obtained for all known Arabidopsis transcripts
that have been categorized on the basis of the functionality of their products
using diagrams of various biological processes (Thimm et al. 2004). Although
users may include own diagrams, a limited numbers of metabolic pathway
diagrams are provided in the present versions of MAPMAN. A new tool for
integrating Arabidopsis transcriptomic and metabolomic data, BioPathAt, was
released recently (Lange and Ghassemian 2005). However, it only operates as
a visual interface for an expensive commercial software package, GeneSpring.
The KaPPA-View tool differs conceptually from other omic-data tools, includ-
ing MetNet (Wurtele et al. 2003), PathMAPA (Pan et al. 2003), Pathway Proces-
sor (Grosu et al. 2002) and GiGA (Breitling et al. 2004), all of which are well
suited for representing statistical data of metabolism or generating metabolic
networks but not for representing specific transcript data on metabolic path-
way maps.

6 Limitations and Future Improvements

Information of the cellular location of metabolites is not explicitly given on
the metabolic pathway maps of the KaPPA-View tool. In cases where the same
metabolites are localized in distinct subcellular compartments, such as lipid
metabolism in the cytoplasm and plastids, both pathways were shown us-
ing distinct metabolic pathway maps. Information on the destination of gene
products (proteins), which can be estimated using the neural network-based
TargetP (Emanuelsson et al. 2000), will be incorporated into each map in fu-
ture versions. This might be achieved by simply inserting single letters (C for
cytosol, P for plastid and M for mitochondrion) in squares that symbolize
individual transcripts. Such a medication would improve our understanding
of the metabolism within organelles.

Fig. 4. Manual-drawn gene expression network for starch and maltose degradation: a genes
involved in the starch and maltose degradation pathway and that have correlation coefficients
exceeding 0.6 are used to construct a gene expression network, calculated using the Arabidopsis
thaliana trans-factor andcis-elementpredictiondatabase (ATTED-II, http://www.atted.bio.titech.
ac.jp/); b the network shown in a is then overlaid on the KaPPA-View map and appear as red
lines. Note that alpha-amylase genes occur twice in the degradation pathway
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The present version of KaPPA-View only provides the user with a way to
compare the transcripts/metabolites of two data sets and does not permit the
presentation of multiple data sets such as those derived from time course
experiments. As an alternative, multiple SVG-formatted metabolic maps with
data values can be pasted into applications such as Microsoft Power Point for
a slide show presentation or used for making animated gif files. An example
of a gif animation for representing time course changes for transcripts in
nine metabolic maps can be viewed at http://kpv.kazusa.or.jp/kappa/images/
KPV-animation0.2sec.gif.

The present version of the visualization tool has no option for generating
images of networks of gene co-expression. Figure 4a depicts a co-expression
network of genes involved in starch and maltose degradation generated us-
ing correlation coefficient values calculated from the Arabidopsis transcrip-
tomic data derived from various sources (http://www.atted.bio.titech.ac.jp/).
The network is overlaid on the degradation pathway in KaPPA-View (Fig 4b).
The overlaid diagram can be used to infer how the individual genes in starch
and maltose degradation are regulated. Automation of such drawing tasks will
decrease the time it takes for the user to gain an appreciation of the various
transcripts and expression networks represented in the KaPPA-View metabolic
pathway maps.

The present version using SVG-formatted maps is currently only available
for Arabidopsis. Consequently, if users wish to use the maps for other plant
species, they need to prepare a correspondence table between the AGI numbers
for the Arabidopsis genes and gene identification numbers for the plant species
of interest based on sequence homology. However, as the number of genes
assigned to a reaction is greater than that assigned to the reaction on the
Arabidopsis map, the number of genes selected by a user must correspond
to the number assigned to Arabidopsis genes. If square symbols are used to
represent flexible individual transcripts and ordered according to the numbers
assigned to the reaction, such an improvement would increase the applicability
of the tool to other plant species. Several maps of species-specific metabolic
pathways such as those of isoflavonoids and alkaloids that are not found in
Arabidopsis also are needed when applied to other plant species.

7 Conclusions

Simultaneous presentation of transcripts and metabolites on metabolic path-
waymapsallowsusers toquickly isolatedifferences in samplesbeingexamined.
The KaPPA-View tool is user friendly and intuitive and simplifies the poten-
tially tedious task of reviewing and comparing the complicated data associ-
ations typically associated with metabolic analyses. The visualization tool is
useful for generating hypotheses rather than for making definitive conclusions
regarding the roles of specific genes.
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II.6 KNApSAcK: A Comprehensive Species-Metabolite
Relationship Database

Y. Shinbo1, Y. Nakamura2,3, M. Altaf-Ul-Amin2, H. Asahi2,
K. Kurokawa2, M. Arita4, K. Saito5, D. Ohta6,
D. Shibata7, and S. Kanaya2

1 Introduction

Determination of gene functions on a large scale is one of the major challenges
in biology today (Boyes et al. 2001). Given the completion of genome sequenc-
ing of Arabidopsis thaliana (Arabidopsis Genome Initiative 2000) and rice
(Feng et al. 2002; Goff et al. 2002; Sasaki et al. 2002; Yu et al. 2002), transcrip-
tomic approaches have attracted much attention for identifying gene functions
as post-genomics research. Metabolomics, by which the whole sets of metabo-
lites of organisms are studied holistically in conjunction with other ‘omics’
approaches, is also an emerging area in plant sciences. As large numbers of
plant metabolites have been used as food, medicines and industrial materi-
als, metabolomics could have a strong impact on applied technology as well
as basic sciences for understanding biological systems. Analytical technolo-
gies for plant metabolites have been well reviewed in recent articles (Oliver et
al. 1998; Tweeddale et al. 1998; Bailey et al. 2000; Fraser et al. 2000; Roberts
2000; Arlt et al. 2001; Bligny and Douce 2001; Ratcliffe and Shachar-Hill 2001;
Huhman and Sumner 2002; Soga et al. 2002). Fourier transform ion cyclotron
mass spectrometry (FT/ICR-MS) is a powerful technology for comprehensive
analysis of metabolites because it measures masses of >2000 compounds with
such high accuracy that only one or very few molecular formulae are associ-
ated to a single mass in the spectra (Aharoni et al. 2002; Barrow et al. 2004).
Information on numerous metabolites originated from various organisms has
been collected in several databases, most of which place emphasis on biological
pathways (Bairoch 2000; Goto et al. 2002; Kanehisa et al. 2002). However, the
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relationships between metabolites and their biological origins have not been
addressed systematically in the previous databases.

We collected information on 18,210 metabolite-species pairs encompassing
7462 metabolites and 6324 species, and designed a database, called KNApSAcK,
whichallowsusers to searchvariousaspectsofmetabolite-species relationships
and to retrieve some detailed information about the metabolites. As easy access
to metabolite information obtained from analytical techniques and stored in
the database is supportive for interpretation of mass spectral data, we pro-
vide a tool for retrieving a list of candidate metabolites that correspond to
a particular molecular weight on a mass spectrum and from which informa-
tion on individual metabolites can be obtained. By thorough investigation of
the metabolite-species relationships in the database, we observed power-law
distribution for frequencies of the number of metabolites in taxonomic units
such as species and genera. Also we classified organisms based on metabolite-
organism relationship using a graph clustering algorithm.

2 Search Options of the KNApSAcK Database

Information on metabolites in the database can be searched for by names of
metabolite ororganism,molecularweight andmolecular formula (Fig. 1).A list
of metabolites that belong to a taxonomic class can be obtained by search with
the taxonomic name (Fig. 2), from which information of individual metabolites
can be retrieved.

2.1 Search by Metabolite or Organism Name

A list of metabolites or organisms that hit to the query word is displayed by
the search function. For example, Fig. 2a,b shows the results of metabolite
search with the query “chrysosplenol” and organism search with the query
“Citrus”, respectively. From a list that is generated by a search, users may
select a metabolite or species for detailed information on the metabolite, the
molecular weight, formula, structure and biological functions. The display of
the molecular structure can be enlarged with the zooming function.

2.2 Search by Molecular Weight

Molecular weight search allows users to enter desired molecular weight and
a margin value (Fig. 2c). As approximate masses of compounds are obtained
from most MS analyses, the search with a margin value is useful to find candi-
date metabolites in the database.
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Fig. 1.Search window and major panels of the proposed database system. Information on metabo-
lites can be searched by names of metabolites or organism, molecular weight with ± margin,
molecular formula, taxonomic hierarchy, taxonomic tree, and multiple mass spectra which are
shown from (a) to (f), respectively. The search results are displayed in (g). To conduct search by
taxonomic hierarchy, taxonomic tree, or multiple mass spectra, one can use three corresponding
panels (d–f). One can switch to any of these three panels by using the mode selection region (h)
of the search window

2.3 Search by Molecular Formula

Metabolite names and origins of the metabolites are listed by molecular for-
mula search (Fig. 2d). The molecular structures of all the metabolites listed are
shown in a separate window (Fig. 2e).
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Fig. 2. Search methods by entering search items: a search by metabolite name; b search by
organism name; c search by molecular weight of metabolite; d search by molecular formula;
e molecular structures of entered molecular formulae. First, the radiobutton with name-tag
“Metabolite” or “Organism” (a and b) is selected in searching by metabolite name or organism
name, respectively, and then some metabolite or organism name is entered. To search the database
with some accurate molecular weight, one enters it and a margin value (for example, 480.3 and 0.1)
and clicks “List” button. Then species-metabolite information is listed (c). To search the database
with some molecular formula, one enters it and clicks the “List” button, then the result is listed
in a similar way (d). By clicking the “Molecular structure” button, the molecular structures of all
the corresponding metabolites can be displayed in a separate window (e)

2.4 Search by Taxonomic Tree and Hierarchy

The molecular formula, molecular weight and origin of the metabolites that
belong to a taxonomic class are listed by search with a taxonomic name of
family, suborder, order, infraclass, subclass, class, division or kingdom (Fig. 3)
and by browsing up to the species level using the taxonomic tree (Fig. 1e).

2.5 Search of Compounds in Mass Spectra

The KNApSAcK package installed in the user’s computer provides tools for
analyzing his/her own datasets of mass spectra in the files that are prepared
according to the instruction of the program. A file may contain a number
of mass spectral data. Out of these, up to three spectra can be displayed
and analyzed simultaneously by the proposed system. By selecting a data file
(Fig. 4a), the spectra selected are overlaid with different colors and shown
in the middle panel (Fig. 4c). Any spectrum can be brought to the front by
spectrum selection (Fig. 4b). The spectrum data for display are selectable
(Fig. 4b). Any region of the spectra can be enlarged by stretching the cursor
horizontally as shown in the lower panel (Fig. 4c). All masses in the files are
displayed on the left side of the panel (Fig. 4d). By selecting a mass from
the list, the black vertical line pointer moves to the position of the peak of
the mass on the spectra (Fig. 4c,h), and simultaneously possible metabolites
with the molecular mass or close masses in the database are shown in the
upper panel (Fig. 4e). The margins of mass values are changeable. As it is
helpful to show the mass value with the value of an additive ion such as H+

and K+ depending on the solvent used for sample preparation, the species
of additive ions are selectable (Fig. 4f,g). This tool is applicable to any data
that contain masses and the corresponding intensities, and is especially useful
for analyzing the datasets of Fourier transform ion cyclotron resonance mass
spectrometry (FT/ICR-MS), as the mass spectrometry determines more than
2000 compounds simultaneously with such high accuracy that an accurate
mass corresponds to only one or very few molecular formula.
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Fig. 3. Search methods by taxonomic hierarchy. When one selects some particular name asso-
ciated to some hierarchy, say “Brassicaceae” associated to “family”, and clicks the “Search by
family” button (a), taxonomical names associated with “Brassicaceae” for levels higher than fam-
ily are automatically determined and displayed (b). The genera included in the selected item (here
“Brassicaceae”) are listed on the right side of the window (c). By selecting any genus, say “Ara-
bidopsis”, the information about related metabolites can be displayed (d), and the hierarchical
tree path of the selected genus is displayed (e)
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Fig. 4. Search method by molecular weight of mass spectra
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3 Statistics of the Database

The latest release of the database (July 7th, 2005) contains 18,210 species-
metabolite pairs involving 7462 metabolites and 6324 species. The total number
of secondary metabolites for which molecular structures have been elucidated
is estimated as 50,000 (De Luca and St Pierre 2000). So, around 15% of the
metabolites have been compiled in the present database. The summary of the
data contained in the database is shown in Table 1. Presently, the species of
Fabaceae, Asteraceae, Brassicaceae, and Rutaceae provide the highest num-
ber of metabolites. Species belonging to these families have highly diverse
metabolic pathways and they also play important roles as food, medicines and
industrial materials.

We observed power-law distribution for the number of species and the asso-
ciated number of metabolites (Fig. 5a). Such distribution was also observed at
genus level (Fig. 5b). The correlations decrease gradually to higher taxonomical
levels (Fig. 5c,d). At class level, the power-law is almost not preserved indicat-
ing that some random process is involved (Fig. 5e). Although power-law study
was initiated in the word usages of text documents (Zipf 1949), more recently
power-law has been found in various biological networks or systems; protein-
protein interaction networks (Park et al. 2001), the usage of short nucleotide
sequences (Mantegna et al. 1994), periodic arrangements of nucleotides in
genomes (Fukushima et al. 2002), populations of gene families in genomes
(Gerstein 1997; Huynen and van Nimwegen 1998), protein superfamilies and
folds in genomes (Qian et al. 2001), and metabolic networks (Jeong et al. 2000).
Furthermore, power-law distribution is not a special characteristic of natural
scale based on the relationship between power-law distribution and lognormal
distribution (Arita 2005).

Though the number of identified metabolites in plants is 50,000 (de Luca
and St Pierre 2000), the number of species-metabolite relations collected in
the present study (18,210 pairs involving 7462 metabolites) is good enough
for statistical analysis to estimate the property of the relation. Therefore, the
observed power-law distribution is a significant character of the dataset and is
roughly explained by a stationary property of multiplicative process (Gabaix
1999). Power law observed in the degree distribution of a simple network is
explained as follows: the network expands continuously by the addition of new
vertices and new vertices attach preferentially to sites that are already well
connected (Barabási and Albert 1999). The species metabolite relationship
database can be represented as a bipartite network where one of the set of ver-
tices are the species and the other set of vertices are the metabolites. Thorough
research has been conducted on a few species resulting in discovery of many of
their metabolites and hence these well studied species are connected to a good
number of metabolites. On the other hand, many other novel species have
been checked only to find rare plant metabolites and the therefore majority of
the species are connected to one or a few metabolites. In species metabolite
database, information on species-metabolite pairs is continuously accumu-
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Table 1. Summary of database (July 7th, 2005)

Order Family NGa NMa

Anthocerotales **** 3 1

Apiales

Apiaceae 46 153
Araliaceae 7 26
Garryaceae 1 5
Nyssaceae 1 2

Arales
Araceae 10 23
Lemnaceae 2 12

Araucariales **** 2 31

Arecales Arecaceae 7 32

Aristolochiales Aristolo-
chiaceae

4 23

Asterales Asteraceae 112 832

Bromeliales Bromeliaceae 2 13

Callitrichales Hippuridaceae 1 1

Campanulales
Campanulaceae 6 18
Goodeniaceae 1 1

Capparales

Brassicaceae 23 595
Capparaceae 3 15
Resedaceae 1 5
Tovariaceae 1 4

Caryophyllales

Aizoaceae 6 8
Amaranthaceae 5 17
Cactaceae 13 30
Caryophyllaceae 7 66
Chenopodiaceae 9 98
Didiereaceae 1 1
Molluginaceae 2 13
Nyctaginaceae 3 10
Phytolaccanceae 1 15
Portulacaceae 1 10

Casuarinales Casuarinaceae 1 7

Catales Cataceae 1 4

Celastrales
Aquifoliaceae 1 6
Celastraceae 9 26
Icacinaceae 3 4

Commelinales
Commelinaceae 3 6
Xyridaceae 1 1

Cornales
Alangiaceae 1 17
Cornaceae 2 15

Cycadales **** 5 15

Cyperales
Cyperaceae 3 14
Poaceae 31 224

Dicranales **** 2 5

Dilleniales Ancistroclada-
ceae

1 1

Order Family NGa NMa

Dilleniales Dilleniaceae 1 6
Paeoniaceae 1 11

Dipsacales
Caprifoliaceae 4 28
Dipsacaceae 2 5
Valerianaceae 1 14

Ebenales

Ebenaceae 3 20
Sapotaceae 4 4
Styracaceae 1 3
Symplocaceae 1 9

Ephedrales **** 1 11

Equisetum **** 1 43

Ericales

Empetraceae 1 9
Ericaceae 10 85
Monotropaceae 1 1
Myrsinaceae 3 3
Pyrolaceae 2 7

Eriocaulales Eriocaulaceae 1 2

Eubryales **** 4 28

Eucommiales Eucommiaceae 1 14

Euphorbiales

Buxaceae 2 9
Dichapetalaceae 1 1
Euphorbiaceae 25 132
Pandaceae 1 1

Fabales
Caesalpiniaceae 5 79
Fabaceae 133 943

Fabales Mimosaceae 4 73

Fagales

Betulaceae 4 56
Fagaceae 5 46
Juglandaceae 3 12
Nothofagaceae 1 4

Filicales

Adiantaceae 2 36
Aspleniaceae 3 37
Athyriaceae 1 3
Blechnaceae 3 12
Cyatheaceae 1 15
Davalliaceae 1 1
Dennstaedtilaceae 1 6
Dicksoniaceae 2 14
Dryopteridaceae 5 11
Hymenophyllaceae 1 3
Loxsomaceae 1 2
Osmundaceae 1 1
Parkeriaceae 3 84
Polypodiaceae 3 8
Pteridaceae 1 9
Schizaeaceae 2 8
Woodsiaceae 4 10
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Table 1. (continued)

Order Family NGa NMa

Funariales **** 1 1

Gentianales

Apocynaceae 41 152
Asclepiadaceae 7 25
Gentianaceae 5 73
Loganiaceae 3 33

Geraniales

Erythroxylaceae 1 19
Geraniaceae 3 27
Limnanthaceae 1 13
Oxalidaceae 1 4
Tropaeolaceae 1 7

Ginkgoales **** 1 22

Gnetales **** 1 7

Grimmiales **** 1 2

Haloragales Haloragaceae 1 1

Hamamelidales

Cercidiphyllacea 1 3
Davidsoniaceae 1 5
Hamamelid-
aceae

4 14

Platanaceae 1 17

Hydrocharitales Hydrocharitaceae 1 3

Hyponobryales **** 2 8

Illiciales
Illiciaceae 1 8
Schisandraceae 2 18
Schizandraceae 1 1

Isobryales **** 1 6

Isoetales **** 1 1

Juncales Juncaceae 2 4

Jungermanniales **** 9 32

Laminales

Boraginaceae 23 44
Lamiaceae 29 322
Phrymaceae 1 3
Verbenaceae 7 67

Laurales

Calycanthaceae 2 4
Hernandiaceae 3 9
Lauraceae 17 115
Monimiaceae 7 12

Lecythidales Lecythidaceae 2 4

Liliales

Agavaceae 1 4
Aloeaceae 2 8
Dioscoreaceae 2 25
Haemodoraceae 1 2
Iridaceae 10 49
Liliaceae 49 205
Philydraceae 1 5
Pontederiaceae 1 2

Order Family NGa NMa

Liliales

Smilacaceae 2 18
Stemonaceae 1 1
Taccaceae 1 2
Velloziaceae 1 27
Xanthorrhoeaceae 1 5

Linales Linaceae 1 33

Lycopodiales **** 1 37

Magnoliales

Annonaceae 12 41
Austrobaileyaceae 1 1
Eupomatiaceae 1 1
Himantandraceae 1 3
Magnoliaceae 3 60
Myristicaceae 5 34
Trimeniaceae 1 1
Winteraceae 3 3

Malvales

Bombacaceae 2 2
Elaeocarpaceae 3 10
Gyrostemonaceae 1 1
Malvaceae 7 100
Sterculiaceae 6 22
Tiliaceae 2 8

Marattiales **** 1 2

Marchantiales **** 4 23

Metzgeriales **** 3 14

Myricales Myricaceae 1 12

Myrtales

Combretaceae 5 21
Lythraceae 6 9
Melastomataceae 3 4
Myrtaceae 11 87
Onagraceae 3 21
Punicaceae 1 7
Sonneratiaceae 1 2
Thymelaeaceae 4 43
Trapaceae 1 1

Najadales
Juncaginaceae 1 1
Potamogeton-
aceae

2 3

Najadales Zosteraceae 2 5

Nepenthales
Droseraceae 2 4
Nepenthaceae 1 1
Sarraceniaceae 1 2

Nymphaeales
Nelumbonaceae 1 3
Nymphaeaceae 3 10

Orchidales Orchidaceae 27 41

Pandanales Pandanaceae 1 1

Papaverales Capparidaceae 1 4
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Table 1. (continued)

Order Family NGa NMa

Papaverales Papaveraceae 14 77

Piperales
Chloranthaceae 1 1
Piperaceae 2 49
Saururaceae 2 4

Plantaginales Plantaginaceae 1 13

Plumbaginales Plumbaginaceae 4 35

Polygalales
Malpighiaceae 2 4
Polygalaceae 2 23

Polygonales Polygonaceae 6 94

Polytrichales **** 1 1

Primulales Myrisinaceae 2 14

Primulales Primulaceae 5 70

Proteales
Elaeagnaceae 1 9
Proteaceae 10 16

Psilotales **** 1 6

Rafflesiales Rafflesiaceae 1 1

Ranunculales

Berberidaceae 7 73
Coriariaceae 1 6
Lardizabalacea 1 2
Menispermaceae 16 25
Podophyllaceae 1 15
Ranunculaceae 18 134
Sabiaceae 1 1

Restionales Restionaceae 1 1

Rhamnales Rhamnaceae 10 62
Rhamnales Vitaceae 3 53

Rhizophorales Rhizophoraceae 4 9

Ricciales **** 2 3

Rosales

Chrysobalanaceae 2 1
Connaraceae 1 1
Crassulaceae 5 91
Grossulariaceae 3 17
Hydrangeaceae 2 7
Pittosporaceae 2 2
Rosaceae 24 213
Saxifragaceae 7 62

Rubiales Rubiaceae 35 110

Salicales Salicacea 2 64

Salviniales Azollaceae 1 1

Santalales
Balanophoraceae 1 3
Loranthaceae 2 12
Santalaceae 1 4

Sapindales
Aceraceae 1 13
Anacardiaceae 9 66

Order Family NGa NMa

Sapindales

Balsaminaceae 1 8
Zygophyllaceae 6 51
Burseraceae 2 8
Hippocastanaceae 2 18
Meliaceae 6 23
Rutaceae 68 410
Sapindaceae 5 18
Simaroubaceae 4 16

Scrophulariales

Acanthaceae 7 39
Bignoniaceae 14 42
Buddlejaceae 1 6
Gesneriaceae 3 8
Globulariaceae 2 10
Lentibulariaceae 1 1
Myoporaceae 2 9
Oleaceae 8 52
Orobanchaceae 1 2
Pedaliaceae 2 13
Scrophulariaceae 17 102

Selaginellales **** 1 15

Solanales

Convolvulaceae 9 67
Cuscutaceae 1 5
Hydrophyllaceae 3 17
Polemoniaceae 3 9
Solanaceae 22 246

Sphagnales **** 1 1

Takakiales **** 1 7

Taxales **** 3 35

Taxodiales

Cupressaceae 7 79
Pinaceae 9 152
Podocarpaceae 3 80
Taxodiaceae 6 47

Theales

Actinidiaceae 1 19
Clusiaceae 14 73
Dipterocarpa-
ceae

5 7

Ochnaceae 1 11
Theaceae 4 51

Trochodendrales
Tetracentraceae 1 1
Trochodendra-
ceae

1 2

Typhales
Sparganiaceae 1 2
Typhaceae 1 10

Urticales
Cannabaceae 2 43
Moraceae 9 113

Urticales
Ulmaceae 4 14
Urticaceae 4 13
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Table 1. (continued)

Order Family NGa NMa

Violales

Begoniaceae 1 16
Bixaceae 1 1
Caricaceae 2 10
Cistaceae 2 41
Cucurbitaceae 9 72
Flacourtiaceae 7 7
Passifloraceae 5 41
Stachyuraceae 1 4
Tamaricaceae 1 19
Violaceae 1 7

Zingiberales

Cannaceae 1 1
Marantaceae 1 2
Musaceae 1 12
Zingiberaceae 7 41

a NG and NM represent number of genera
and metabolites, respectively.

**** family names are unknown.

Fig. 5. Power-law distribution in the metabolite-taxonomic category relationships. The number
of taxonomic units: a species; b genera; c families; d orders; e classes is plotted against the number
of associated metabolites

lated. Therefore when a novel metabolite is added it might be connected to
a novel species. However, it is likely that some of the novel metabolites might
alsobeconnected tooneormorewell studiedspecies that arealreadyconnected
to a number of metabolites. As a consequence, a power-law is revealed when the
frequencies of species are plotted against the number of associated metabolites.
Interestingly, power-law is also seen at the genus or higher level (Fig. 6). This
is also likely due to the fact that research activity seeks novel metabolites in
novel plant categories. Such hierarchical power-law structure is the charac-
teristic of the bipartite network that represents the database. It is noteworthy
that the metabolic pathways of individual organisms also follow power law,
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Fig. 6. The concept of graph clustering algorithm

i. e., the probability P(k) that a metabolite interacts with k other metabo-
lites in the metabolic pathway decays as a power-law, following P(k) ∼ k−r,
where r is a constant (Ravasz et al. 2002). The power-law distribution ob-
tained in the present study can be interpreted as human research activity for
searching small k vertices (rare metabolites) of the metabolic pathway net-
works.

4 Classification Based on Common Metabolites

We represented the genera included in the database as a network based on the
frequency of occurrences of common metabolites between pairs of genera and
classified them into clusters using a graph clustering algorithm (Table 2; Amin
and Kanaya 2004). Figure 6 illustrates the basic concept of the graph clustering
algorithm. For the purpose of classifying the genera, we first represent them
as a simple, undirected graph G = (N, E). In this graph, the set of nodes N
represents plant genera and E represents the set of edges. We consider an edge
between any two genera if there are at least four common metabolites between
them. A typical such graph consisting of 12 genera is shown in this figure. By
intuition, we can identify three cohesive groups ({A, B, C}, {E, F, G, H}, {I, J,
K, L}), on the basis of the fact that the densities of these groups are 1.00, 0.83
and 1.00, respectively, which are much higher than that of the whole graph
(0.26). Here, the density d of a graph/subgraph is the ratio of the number of
edges present [n(E)] and the maximum possible number of edges [n(E)max].
Mathematicallyd = n(E)/n(E)max = 2∗n(E)/{n(N)∗(n(N)−1)}wheren(N) and
n(E) are the numbers of nodes and edges, respectively, in the graph/subgraph.
The density of a graph/subgraph is a real number ranging from 0 to 1. The
classification of the nodes in this figure is possible by visualization because
it is very small in size. In the present analysis, we handled a graph of 2092
genera and it is too big to classify its nodes by visualization. The threshold for
determining clusters is set to d = 0.70.
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Table 2. Classification of genera based on common metabolites

Kingdom Number of Cluster ID
Order Family Genus Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pl
an

ta
e

Apiales Apiaceae 46 110 8 6 3

Sapindales Anacardiaceae 11 23 2
Meliaceae 6 14 1 1
Rutaceae 84 230 4 8 7 2 2
Sapindaceae 5 7 1
Simaroubaceae 4 12 1

Fabales Fabaceae 146 398 7 7 6 5 1

Rosales Rosaceae 25 68 1

Geraniales Erythroxylaceae 1 3 1

Urticales Moraceae 9 39 1

Fagales Betulaceae 4 17 2

Salicales Salicaceae 3 19 1

Theales Clusiaceae 14 51 1

Caryophyllales Chenopodiaceae 8 20 1
Phytolaccanceae 1 6 1
Portulacaceae 1 2 1
Aizoaceae 6 10 3

Ranunculales Berberidaceae 8 21 3
Menispermaceae 18 28 1
Ranunculaceae 19 93 2

Papaverales Papaveraceae 15 68 3 6

Laurales Lauraceae 18 51 4
Monimiaceae 7 18 1

Magnoliales Magnoliaceae 3 21 1
Myristicaceae 1 2 1

Illiciales Illiciaceae 1 3 1

Piperales Piperaceae 1 16 1

Asterales Asteraceae 123 550 2 9 9 5 5 5

Rubiales Rubiaceae 39 77 7

Gentianales Apocynaceae 44 132 7 5 1

Laminales Lamiaceae 32 136 1 7 5
Verbenaceae 6 17 1

Solanales Hydrophyllaceae 3 8 1
Solanaceae 23 107 1 6

Scrophulariales Myoporaceae 2 7 1

Liliales Iridaceae 10 20 1
Liliaceae 48 121 9

Orchidales Orchidaceae 28 51 6

Taxodiales Cupressaceae 7 34 1
Pinaceae 9 48 1

Fu
ng

i

Lecanorales Cladoniaceae 2 3 1
Lecanoraceae 1 2 1
Parmeliaceae 3 3 3
Ramalinaceae 1 1 1

Numbers of genera are written in boldface type when total number of genera of identical order in a cluster is 5 or more.
Numbers of genera and species represent those in the database.
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We dealt with 2092 genera and found 108 clusters each containing 5 or more
genera. We extracted 27 out of 108 clusters such that each of them has at
least 5 or more genera belonging to an identical order (Table 2). Out of the 27
clusters, 16 clusters (Cluster 2, 3, 4, 5, 7, 9, 10, 12, 15, 17, 18, 20, 21, 25, 26 and
27) consist of genera of the same orders, suggesting that the graph clustering
tends to put together the genera that are related taxonomically. Members of
Clusters 3 and 5 belong to different groups of the Sapindales order, consistent
with the previously-determined taxonomic relationship on the basis of rbcL
and atpB sequence variations, in which Meliaceae, Rutaceae, Sapindaceae and
Simaroubaceae are related as sister groups (Chase et al. 1999). The genera
of Cluster 10 belong to only the Caryophyllales order, which is consistent
with the finding that Phytolaccaceae (one genus), Portulaceae (one genus) and
Aizoaceae (three genera) are closely related on the basis of the existence of
a common intron sequence in the chloroplast gene rpoC1 (Wallace and Cota
1996).

As individual species in the plant kingdom synthesize both common and
intrinsic metabolites (Wink 1988, 2003), integration of species-metabolite rela-
tionships with the aid of graph clustering might help taxonomic classification
on the basis of common metabolites as suggested in this study. Further ac-
cumulation of information on species-metabolite relations will facilitate our
understanding of metabolite diversity in species and classification of organ-
isms in a global context.

5 Conclusion and Remarks

Wepreparedadatabase,KNApSAcKforaccumulationandsearchofmetabolite-
species relationships. The power-law distribution observed in the present study
is likely to be associated with research activity for finding novel metabolites
from nature. In addition, it seems to be derived from searching rare metabolites
from the organisms originally exhibiting power-law in the degree distribution
of their metabolic networks. This suggests that the database contains chemical
diversity of metabolites which occurred through evolution of species. Graph
clustering is shown to be useful to extract taxonomic relationships on the basis
of common metabolites. As we are continuously accumulating metabolite-
species pairs in the database, we continue to advance our understanding of
species-metabolite relations in taxonomic hierarchy. Furthermore, we plan to
add an option for searching metabolite structures by entering partial struc-
tures, which will be helpful for metabolite research.

6 Access to KNApSAcK

KNApSAcK web version is available at http://kanaya.naist.jp/KNApSAcK/
KNApSAcK.php. If and when a user wants to customize KNApSAcK for some
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purpose, Java j2sdk-1.4.2 is required to be installed in the user’s computer. First,
the compressedfileKNApSAcK database forWIN.ziporKNApSAcK database
forMAC.zip must be downloaded from http://kanaya.naist.jp/KNApSAcK/. By
uncompressing the file, users can find the instruction file ReadMe (KNAp-
SAcK) in the KNApSAcK database forWIN or KNApSAcK database forMAC
folder to find how to use the database.
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III.1 Systems Biology: A Renaissance of the Top-down
Approach for Plant Analysis

F. Carrari1,2, N. Schauer1, L. Willmitzer1, and A.R. Fernie1

“Everything touches everything”

Jorge Luis Borges – La Biblioteca de Babel

1 Introduction

The previous chapters have essentially been concerned with technical issues
and biological applications of metabolite profiling in isolation. The concept of
metabolite profiling has been around for decades because of the fundamental
importance of metabolites as constituents of metabolic pathways, the impor-
tance of certain metabolites in the human diet and their use as diagnostic
markers for a wide range of biological conditions and response to chemical
treatment (Brindle et al. 2002; Fernie et al. 2004; Oksman-Caldentey and Saito
2005). Following the trend set by other post-genomic approaches, recent years
have seen an explosion both in the interest afforded to metabolite profiling
and in the range of metabolites that can be measured using these techniques
(Fiehn et al. 2000; Sumner et al. 2003). We can, however, currently only mea-
sure a fraction of the metabolic diversity inherent in plants, which has been
estimated to be in excess of 200,000 compounds (de Luca and St Pierre 2000).
That said, metabolite profiling has found great utility as a technology platform
for diagnostics (Fernie et al. 2004), and is beginning to be used in combination
with other technologies for gene functional analysis and systems biology.

This chapter will concentrate on the growing role of metabolite profiling
in plant systems biology. It will begin with a historical evaluation of holistic
approaches to biochemistry. Thereafter its major focus will be on the integra-
tion of broad range metabolite profiling into genomics approaches (Sweetlove
et al. 2003; Fernie and Sweetlove 2004). Furthermore, we argue the case for
the inclusion of both steady-state and dynamic metabolite profiling in such
strategies and present examples of the value of them both, in the evaluation
of the regulation of metabolic networks. We will also briefly touch on the use
of metabolic profiling in gene functional identity elucidation; however, this
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is detailed comprehensively in later chapters of this book (see Chaps. III.2
and III.5). Finally, we give a perspective for the future development of such
combinatorial approaches.

2 Re-emergence of Top-down Thinking

To grasp fully the shift in perspective that has recently been afforded biologists
by recent technological advances (which allow the acquisition of large and
diverse data sets) it is important to understand the historical context in which
this has occurred. For most of the last century, biochemistry was tackled in
a reductionist manner whereby we reduce a cell to its component parts and
examine these in isolation. The assumption inherent is that the parts will func-
tion in isolation as they do in the cell. Although a large amount of biological
knowledge was accrued via such approaches, there are several problems with
the reductionist philosophy. The most apparent of these are metabolic com-
plexity and the fact that biological processes are rarely controlled by a single
molecular entity and that control is generally shared across the different enti-
ties rather than being exerted at a single point (ter Kuile and Westerhoff 2001).
The analysis of metabolic control in the early 1970s formalised a mathematical
description of system properties of enzymes and metabolites (Heinrich and
Rapoport 1973; Kacser and Burns 1974). Their method – metabolic control
analysis – allows the effect of small changes in enzymes or metabolites on the
whole system to be quantified. These studies were a radical departure from
the prevailing ideas of the time and laid the foundation for network analysis
of metabolism. Unfortunately, though the experimental determination of the
parameters needed to calculate metabolic control has been quite laborious and
although our understanding of the regulation of some pathways in plants has
been greatly enhanced (Geigenberger et al. 2004), it probably never fulfilled its
true potential (Fernie and Sweetlove 2004). The emergence of high-throughput
genomic tools that allow the cataloguing of changes in metabolites, transcripts
and proteins in parallel with significant advances in our ability to quantify
metabolic flux (Mack 2004; Stephanopoulos et al. 2004; Westerhoff and Pals-
son 2004; Fernie et al. 2005; Ratcliffe and Shacher-Hill 2005) offer fresh hope
for successful application of the holistic approach.

3 Systems Biology in Non-plant Systems

Despite the fact that the plant metabolomics community was highly prominent
in the development of this research field (Fiehn et al. 2000; Roessner et al. 2001;
Sumner et al. 2003), the microbial and mammalian research fields lead the way
in terms of integrative genomics analysis (Yang et al. 2002; Even et al. 2003;
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Sauer 2004). For that reason in this section we outline important studies that
have been carried out in these fields. Before we begin though it is important
that we define what we mean by systems biology. Although historically the term
systems biology was applied exclusively to mathematical-modelling strategies
(see for example Edwards and Cobb 1999), it is now more widely applied partic-
ularly in genomics. For the purposes of this article we will stick to the definition
of experimental systems biology given by Sweetlove et al. (2003) – the compre-
hensive multidimensional representation of all the major biosynthetic reac-
tions of the cell. Given that there are already many excellent reviews covering
mathematical and conceptual aspects of systems biology (Ideker et al. 2001a;
Oltvai and Barabasi 2002; Kitano 2004; Somerville et al. 2004), we will concen-
trate here on the integrative experimental approaches taken to date. Perhaps
the most significant early experiments in this vein were the combined studies
of the transcriptome and a subset of the proteome that were carried out in yeast
(Futcher 2000; Gygi et al. 2000; Ideker et al. 2001b). These studies all revealed
that the relationship between the levels of transcripts and the proteins that they
encode is generally relatively low and as such were in keeping with the control
analysis study of ter Kuile and Westerhoff (2001). Despite the suggestion of low
connectivity between transcription and metabolic regulation, Askenazi et al.
(2003) were able to utilize transcript profiling in combination with a limited
metabolite profiling to aid in the metabolic engineering of medicinally impor-
tant polyketides in Aspergillus terreus. Another study that merits discussion is
the observation that analysis of the intracellular concentrations of metabolites
in wild type and mutant yeast strains revealed phenotypes for proteins active in
metabolic regulation (Raamsdoonk et al. 2001). In this study the quantification
of the change of several metabolite concentrations relative to the concentration
change of a selected metabolite was demonstrated to reveal the site of action,
in the metabolic network, of silent genes, demonstrating the utility of metabo-
lite profiling in gene functional analysis. Whilst the above-mentioned studies
allowed the identification of highly correlated systems elements they did not
in their own right address where systemic control generally resided within
the systems under study. For this purpose a higher order integration of data
of multiple molecular entities will likely be required. It has been postulated
that genomic correlations of transcripts, proteins and metabolites in mam-
malian disease models versus controls could be used as early biomarkers of
disease (Mack 2004); however, it is worth noting that the levels of metabolites
alone have been demonstrated utility for medical diagnostics (Brindle et al.
2002). A second interesting recent example of systems biology was carried out
using the cytoscape software platform which allows the integration of tran-
scriptional data through global biomolecular interaction databases to identify
active biomolecular interactions (Shannon et al. 2003). Ideker et al. (2001a) uti-
lized this platform to demonstrate that differential transcript data placed into
the context of biomolecular networks can yield valuable insight into pathways.
To illustrate this they showed – using galactose-pathway gene perturbations in
yeast – that putatively interacting genes were more likely to be synchronously
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differential active. Figure 1 illustrates a specific example in which differen-
tial transcription data reveal the pathways activated and deactivated upon the
removal of the GAL80 repressor protein. It is notable that, although the pri-
mary active pathway includes GAL80 and the surrounding genes, not all active
pathways are directly connected to GAL80. This example thus highlights the
somewhat noisy and incomplete nature of biomolecular networks. However,
this fact aside, it illustrates the possibility of identifying relationships that
become active after intervention rational gene targets for disruption become
apparent (Stephanopoulos et al. 2004). It is furthermore likely that the incor-
poration of data describing further molecular entities and associations will
improve both the coverage and fidelity of such biomolecular networks.

4 Systems Biology in Plant Systems

In plants the development of systems biology has followed a similar trajec-
tory and, like in non-plant systems, is dominated by gene expression studies
(Harmer et al. 2000; Espinosa-Soto et al. 2004; Thimm et al. 2004). That said,
several interesting observations have been made on the correlative behaviour
of metabolites, both in isolation and in combination with information concern-
ing other molecular entities. The measurement of many metabolites in parallel
gives insights into the complex regulatory circuits that underpin metabolism.
Initial systems-based approaches that used data from metabolite profiling in-
volved comprehensive correlation analyses between all metabolites profiled
in potato tubers. These studies showed that most metabolites had little cor-
relation, although some were tightly regulated and others were non-linearly
regulated (Roessner et al. 2001). We initially believed that the identification of
non-linearly regulated metabolite pairs was highly exciting since two of those
identified in our initial studies had previously been described to be linked
by enzymes that were subject to feedforward and feedback mechanisms of
regulation (Roessner et al. 2001). However, the low number of metabolites
displaying this behaviour in subsequent studies in our laboratories (A.R. Fer-
nie and L. Willmitzer, unpublished results), has somewhat tempered our early
optimism that this would provide a rapid way to elucidate novel mechanism of
allosteric regulation within metabolite pathways. Since this initial study, more
sophisticated metabolic-network analysis have been undertaken by plotting
networks in which the metabolites are represented by nodes that are intercon-
nected by lines representing the correlative behaviour that intertwines them
(Weckwerth et al. 2004). Such studies allow the actions of a small theoretical
network on the strength of correlations between the metabolites that constitute
these networks. However, published data is only available for a severely limited
number of conditions and caution must be exercised here since the field is
still in its infancy, especially given that what is known of network structure in
plants falls someway short of that for microbial systems.
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Fig. 1. Determining active pathways after removing a transcription factor repressor. Identifica-
tion of active pathways helps define gene targets. In this experiment the GAL4 repressor gene
GAL80 was deleted. Using microarray data superimposed on a predetermined set of protein:
protein and protein: DNA interactions for yeast, the differential gene expression after gene dele-
tion reveals the corresponding activated subnetwork illustrated above. Even without galactose
present, removal of the GAL80 triggers cellular galactose-processing pathways by eliminating
the repression of the GAL4 transcription factor. Node colour indicates differential expression
statistical significance for the particular gene, whereas node outline colour and interaction edges
between nodes indicates activated subnetworks. Significance of differential expression does not
distinguish between upregulation and downregulation states; thus both GAL80 (eliminated) and
GAL1 (highly upregulated) will possess high z scores indicating high differential activity. As is
evident from this figure, a single modification of a gene can have a cascade effect throughout the
biomolecular interaction network. Reprinted with permission from Stephanopoulos et al. (2004)
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Perhaps a more comprehensive approach is that provided by integration
of the data provided by measuring metabolites, proteins and/or mRNA from
the same sample and to assess the connectivity across the different molecular
entities. In this vein metabolite-transcript correlations from large data sets
collected throughout development in wild type lines and transgenic tubers
engineered to have enhanced sucrose metabolism allows the identification of
candidate genes for biotechnology (Urbanczyk-Wochniak et al. 2003). In this
study the transcript levels of approximately 280 transcripts that showed repro-
ducible changes with respect to control samples were compared to changes in
metabolite levels in paired samples. A total of 517 out of the 26,616 possible
pairs showed significant correlation (at the P < 0.01 level). Although some of
these correlations were already known, most were new and contained sev-
eral strong correlations between transcript levels and nutritionally important
metabolites. The use of metabolomics to assign gene function has also been
carried in several other studies with profiling being used in conjunction with
knock-out mutagenesis to identify the specific function of PAL1 and PAL2
genes of phenylpropanoid metabolism (Rohde et al. 2004), the Myb-like tran-
scription factor PAP1 (Tohge et al. 2005); however these examples are discussed
in detail in Chap. III.5. Targeted metabolite analysis of volatiles in combina-
tion with broad transcript analysis has allowed the elucidation of several genes
involved in volatile synthesis (Fridman et al. 2005), and secondary metabolites
in general (Goosens et al. 2003).

Gain of function analysis is emerging as a particularly powerful approach
for functional genomics. For example, the analysis of a gene of known func-
tion, a member of the threonine aldolase family, that was introduced into
A. thaliana, both confirmed the expected function and revealed new effects
on the metabolic network, including the upregulation of the methionine path-
way and the downregulation of the isoleucine pathway (Fernie et al. 2004). In
many cases, the effects of overexpression or mutation of a gene can be quite
pleiotropic: for example, in the case of the dgd1 mutant there were significant
changes in half of the metabolites analysed (Fiehn et al. 2000). Such complex
responses involve interactions among metabolic components and interactions
between the metabolic network and the mechanisms of gene and protein ex-
pression. However, it is important that these network behaviours are well
understood if functional genomics is to maximise its potential for metabolite
engineering.

Of all genomics tools, metabolite profiling offers arguably the best combina-
tions of practical performance and cost per sample. The expression of almost
every gene from the yeast and E. coli genomes in A. thaliana and subsequent
metabolite profiling with GC-MS and LC-MS/MS has recently been achieved
(Fernie et al. 2004; Fig. 2). This approach was deliberately non-biased with
respect to both the choice of gene and metabolites measured, because of twin
objectives – to explore gene function at the level of protein activity and to
explore the consequences of introducing new proteins into the metabolic net-
work of Arabidopsis. The approach of focussing on individual genes can be
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Fig. 2. Overexpression and metabolic profiling at the transgenomic level. An example of a heat
map of the metabolite profiles of the leaves of around 19,000 mature plants including plant lines
that each overexpress essentially every gene of the yeast genome (R.N.T and A.J.K., unpublished
results). Most of this map is white, which reflects the fact that overexpression does not result in
a change in metabolite content compared with control plants in most cases. Regions of red and
blue indicate that the metabolite content is either increased or decreased, respectively, following
overexpression. The colour scale is nonlinear and the maximum increases and decreases detected
are around 100-fold. A total of 158 metabolites that have been derived from GC-MS and LC-MS
analyses are shown; the chemical identity is known for around 60% of them. The chemical classes
covered include amino acids, organic acids, sugars, sugar alcohols, vitamins and pigments.
Although the individual metabolite columns can be visually distinguished, the pixel resolution
of the image is not sufficient to distinguish the rows (which represent the plants and plant
lines). The software that is used to generate the images uses smoothening software algorithms to
circumvent this limitation. Such datasets provide a rich resource for the identification of novel
gene-function relationships and provide a foundation for systems-biology approaches. Reprinted
with permission from Fernie et al. (2004)

easily extended to exploring the phenotypic relevance of genome regions. Re-
cently, GC-MS profiling of breeding populations of tomato, wherein genomic
segments of the wild species tomato Solanum lycopersicum have been intro-
gressed into the elite cultivated species Solanum pennellii, has been initiated.
As a first step in this project we profiled the metabolite contents of leaf and ma-
ture fruit samples from five wild species tomato that can be readily bred with
S. lycopersicum (Schauer et al. 2005). Changes in metabolite content were iden-
tified in these species that are potential important with respect both to stress
response and nutritional importance (Fig. 3), suggesting the incorporation of
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Fig. 3. Survey of metabolite levels in leaves and mature fruits of the Solanum lycopersicum
complex. Data of tomato fruit and leaf tissue of five wild species tomato (S. pennellii (PEN),
S. habrochaites (HAB), S. neorickii (NEO), S. pimpinellifolium (PIM), S. chmielewskii (CHM))
is represented as a heat map of relative changes with respect to S. lycopersicum cv. M82. The
data has been normalised. The colour scale is nonlinear with maximum increases (red) and
decreases (blue) being around 100-fold. White areas reflect no changes in metabolite content
with respect to S. lycopersicum cv. M82 or not being detected. A total of 58 metabolites of different
compound classes have been measured in a GC-MS based survey. The identified metabolic
changes are of potential importance for breeding stress tolerant and nutritional beneficial traits
into elite cultivars.Thus showing theuseofnatural diversity for cropameliorationbyconventional
breeding techniques. Experimental data taken from Schauer et al. (2005)

genetic material from wild species could represent an attractive alternative to
transgenic approaches for crop improvement. Stress responses in plants are
in their own right also starting to be evaluated by multiple genomics tools
with recent studies revealing important information on responses to sulphur
starvation (Hirai et al. 2004; Nikiforova et al. 2004), and nitrogen (Scheible et
al. 2004) and low temperature stresses (Cook et al. 2004; Kaplan et al. 2004). To
recapitulate the integration of metabolite profiling with other genomics tools is
starting to prove very effective in gene functional annotation and the emerging
field of systems biology, despite the large challenges presented in attempting
such ambitious projects in multi-cellular organisms. A further example of the
complexity of plants lies in their cellular spatial complexity that is brought
about by extensive compartmentation and even microcompartmentation of
metabolism (Jorgensen et al. 2005). It is unlikely that steady-state metabolite
profiling will offer much insight into these processes; however, as is argued in
the next section, dynamic metabolite profiling may provide insight into these
phenomena.

5 Dynamic Profiling in Plant Cells

The measurement of steady-state metabolite levels provides clues about the
metabolic activity of a tissue and about the metabolic response of an organism
to an environmental or genetic perturbation (Fernie et al. 2005). The major-
ity of metabolites determined by current metabolite profiling techniques are,
however, not end-products but intermediates of metabolic pathways; these
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Fig. 4. Pathway based representation of changes in steady-state metabolite levels and determined
intermolecular fluxes following incubation of potato tuber slices in 13C labelled glucose. Two
well-characterised transgenic situations are represented here – tubers expressing either: a yeast
invertase (Sonnewald et al. 1997) or; b (on next page) bacterial sucrose phosphorylase (Trethewey
et al. 1999). Metabolites that are set in red type are significantly increased in the transgenics with
respect to wild type whilst those set in blue type are significantly decreased in the transgenics
with respect to the wild type (those set in pale grey type were not detected using the experimental
platform used). Similarly, significant changes in the net relative flux are denoted by the colour
of the reaction arrow (red indicating increased fluxes, in this example no fluxes were decreased).
Experimental data taken from Roessner et al. (2001) and Roessner-Tunali et al. (2002)

techniques are generally incapable of resolving issues of molecular dynamics
(Fernie et al. 2005). This is illustrated in Fig. 4, wherein data from steady-
state and dynamic metabolite profiling are overlaid on one another. In this
example, although in the case of the invertase expressing potato lines the dy-
namic and steady-state measurements are in keeping with one another, several
discrepancies exist between the two types of measurement for the sucrose
phosphorylase expressing lines. Thus, this example highlights that in certain
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Fig. 4. (continued)

situations the dynamic alterations in a system may be under represented or
even misinterpreted on the basis of steady-state measurements alone. Whilst
flux measurements are admittedly technically difficult (Fernie et al. 2005),
recent technological advances have allowed a broadening of the basis of the
information accessible via high throughput flux analysis (Roessner-Tunali et
al. 2004; Sauer 2004; Sriram et al. 2004). As mentioned above, flux measure-
ments have been used in systems biology in the framework of metabolic control
analysis for many years. Furthermore, by analogy to experimentation in the
microbial field (Hellerstein and Nesse 1999), network analysis has also been
carried out in this context in plant systems. Historically, isotope labelling stud-
ies have played a cardinal role in the definition of metabolic pathways, perhaps
the most important recent example of this being the demonstrated of the role of
ribulose 1,5-bisphosphate carboxlase/oxygenase (Rubisco) in a previously un-
defined metabolic context (Schwender et al. 2004). Similar experiments on the
central metabolic pathways of tomato fruit metabolism (Rontein et al. 2002),
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and on the compartmentation of carbohydrate oxidation within B. napus em-
bryos (Schwender et al. 2003), have also highlighted the utility of this approach
in functional genomics. Even greater spatial resolution was attained by a com-
bination of proteomics, cell biology, traditional enzymology and stable isotope
feeding experiments which cumulatively demonstrated the functional associ-
ation of glycolysis with the mitochondria in Arabidopsis (Giege et al. 2003).
Given the prominence of molecular associations between enzymes (Jorgensen
et al. 2005), it is anticipated that the use of dynamic profiling is likely to identify
further microcompartmented pathways.

6 Conclusions and Future Perspectives

The past years have revealed a great application for metabolite profiling as
a diagnostic tool, and its growing importance in gene functional analysis is
currently apparent. In contrast, attempts to use metabolite profiling as a tool
in systems biology are in their infancy. It is likely that the development of
systems biology depends to a large extent on technological improvements to
improveourcoverageof themetabolome.The integrativegenomics approaches
taken to date have given rich descriptive data networks. Whilst the challenge
remains to elucidate the mechanisms underlying behaviour in these networks,
the fact that the phenotype of any biological system is largely determined by
its metabolite composition provides ample reason to develop further on the
foundation studies described in this chapter.
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III.2 Systems-based Analysis of Plant Metabolism
by Integration of Metabolomics
with Transcriptomics

M.Y. Hirai1, T. Tohge1, and K. Saito1,2,3

1 Introduction

Plants produce a wide diversity of compounds used for foods, medicines,
flavors and industrial materials. To improve the productivity of plants by mod-
ifying the genes involved in the synthesis of useful compounds or by strictly
controlling plant growth, it is essential to understand the plant’s metabolic
processes and their regulatory mechanisms as a whole.

Plants cannot move away from the place in which they live, even if the
environmental conditions get worse; hence, plants have evolved a metabolic
system which is robust against changes in environmental conditions. Respond-
ing to the changes of the external circumstances, metabolite levels are adjusted
by modulating gene expression, protein modification and enzymatic activity,
leading to a new state of metabolic equilibrium. Such manifold regulations
make it hard to understand plant metabolism as a whole solely by ‘traditional’
biology such as molecular biology, biochemistry, and forward and reverse ge-
netics. In recent years, however, novel technologies for comprehensive analysis
of the transcripts, proteins and metabolites open the door for elucidation of
metabolic systems as a whole.

2 Understanding Whole Plant Metabolism –
Our Aims and Strategy

Our final goal is to elucidate overall plant metabolism as an integrated system.
For this purpose, first of all, all genes and metabolites in plant cells should
be identified as the components of the system. In the model plant Arabidopsis
thaliana, approximately 26,000 genes were predicted based on nucleotide se-
quence information; however, for only half of these genes has a function been
annotated based on sequence similarity to known genes, and the functions of
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only about 11% have been confirmed experimentally. In the case of metabo-
lites, no catalogue of metabolites in the cell is available at this moment. Hence,
one of our immediate aims is to identify the functions of unknown genes and
to identify the metabolites in the cell. At the same time, we intend to clarify
the networks constructed from genes and metabolites, and to obtain an image
of overall metabolism with the help of bioinformatics.

With this aim, we have adopted a strategy of integration of metabolomics
and transcriptomics. By comprehensive analysis of metabolome and transcrip-
tome, and following multivariate analyses, the networks between pathways,
genes and metabolites can be speculated on. Such network analysis enables
us to identify the functions of unknown genes. By this strategy, we have suc-
cessfully identified the functions of the genes involved in sulfur metabolism
and in flavonoid accumulation (Hirai et al. 2005; Tohge et al. 2005). In this
chapter we introduce these studies and present a novel strategy for functional
genomics.

3 Metabolome and Transcriptome Analyses

Metabolome analysis was carried out by combining non-targeted and tar-
geted analyses. Non-targeted metabolome analysis was conducted by Fourier-
transform ion cyclotron resonance mass spectrometry (FT-MS) according to
Tohge et al. (2005). In brief, extraction of polar and non-polar metabolites
was conducted in triplicate from each sample. Extracts were analyzed by two
ionization methods, electrospray ionization (ESI) and atmospheric pressure
chemical ionization (APCI), in positive and negative ion modes. The mass
spectra from each analysis were integrated after calibration, creating a peak
list that contained the accurate mass and absolute intensity of each peak.
In order to compare and summarize data across different ionization modes
and polarities, all detected mass peaks were converted to their corresponding
neutral masses assuming hydrogen adduct formation. Approximately 2000–
3000 mass peaks were observed in a single sample. For targeted metabolite
analyses, anions, organic acids and sugars were measured by capillary elec-
trophoresis, and amino acids by high-performance liquid chromatography
(HPLC) (Hirai et al. 2003). Flavonoids were analyzed by HPLC/photodiode
array/detection/electrospray ionization mass-spectrometry (HPLC/PDA/ESI-
MS; Tohge et al. 2005).

Transcriptome analyses were conducted by using cDNA macroarray, which
carried 13,000 non-redundant ESTs corresponding to ca. 9000 Arabidopsis
genes (Hirai et al. 2003), or DNA microarray which carried ca. 22,000 Arabidop-
sis genes (Agilent Arabidopsis 2 oligoarray or Affymetrix Genechip ATH1).
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4 Studies on Sulfur Metabolism

4.1 Roles of Sulfur in Plant Cells and the Experimental
Design for Understanding the Adaptation Mechanism
to Sulfur Deficiency

Sulfur is an essential macronutrient required for plant growth. It is found in
amino acids, oligopeptides such as glutathione (GSH) and phytochelatins, vi-
tamins and cofactors, sulfolipids and a variety of secondary products (Saito
2004). Sulfur enters a plant primarily through the roots as inorganic sulfate.
After activation to adenosine 5′-phosphosulfate (APS), sulfate is mainly as-
similated into sulfide, and then coupled with O-acetylserine (OAS) yielding
cysteine (Fig. 1). The thiol group of cysteine in proteins plays a role in main-
taining protein structure by forming disulfide bonds. GSH plays a role in the
various redox reactions in the cell and in detoxification of xenobiotics medi-
ated by GSH S-transferase (GST). Besides the major pathway to form cysteine,
APS is converted into 3′-phosphoadenosine 5′-phosphosulfate (PAPS), which
is used for sulfation of organic compounds such as glucosinolates (GLSs) and
flavonoids (Fig. 1). Sulfur-containing secondary metabolites such as GLSs in
Cruciferae are defense compounds against herbivores and pathogens. Because
of such important roles of sulfur in plant cells, sulfur deficiency (-S) causes
stunted growth and chlorosis of plants, and plants finally die of sulfur starva-
tion. However, if the degree of sulfur deficiency is not too severe, plants can
grow apparently normally. This means that the plant has a robust metabolic
system against -S and manages on limited sulfur supply.

To elucidate how plants can manage on limited sulfur supply and grow nor-
mally, we conducted metabolomics and transcriptomics. For elucidation of
long-term responses to -S, plants were grown under moderate sulfur-deficient
condition in hydroponic culture (Fig. 2a, Experiment 1 condition 2). Sulfur

Fig. 1. Sulfur assimilation pathway and glucosinolate metabolism. APS, adenosine-5′-
phosphosulfate; PAPS, 3′-phosphoadenosine-5′-phosphosulfate; MAM, methylthioalkylmalate
synthase; CYP, cytochrome P450; S-GT, S-glucosyltransferase; ST, sulfotransferase
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Fig. 2. Plant growth conditions and PCA for elucidation of the changes in metabolome and
transcriptome caused by culture conditions: a plant growth conditions are described in the text;
b to classify the samples according to the global change in metabolome, log ratio value of the
accumulation level of each metabolite to that in the appropriate control sample was calculated
and analyzed by PCA. Each small globe represents the sample. Proportions of the first, second and
third components are 27.6%, 18.8% and 15.8%, respectively; c to classify the samples according
to the global change in transcriptome, log ratio value of the expression level of each gene to that
in the appropriate control sample was calculated and analyzed by PCA. Proportions of the first,
second and third components are 35.8%, 14.6% and 13.3%, respectively

Fig. 3. BL-SOM analyses on time-course metabolome and transcriptome data. Metabolome data
obtained by FT-MS, HPLC and CE and transcriptome data were merged. The metabolites and
genes which did not show apparent change in accumulation and expression level were eliminated.
Approximately 1000 metabolites and 10,000 genes left after elimination were classified by BL-SOM
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deficiency is considered as a shortage of sulfur relative to nitrogen nutrition
because several responses under -S diminish when nitrogen supply is simulta-
neously limited. Hence, we also grew Arabidopsis in hydroponic culture under
reduced nitrate concentration (Fig. 2a, condition 3). Nitrogen-starved plants
were expected to exhibit the reverse response to that of sulfur-starved plants.
Arabidopsis was also grown under sulfur and nitrogen deficient condition,
which were expected to cause milder sulfur deficiency (Fig. 2a, condition 4).
All these plants were well adapted to the given conditions and grew apparently
normally without showing chlorosis throughout their life. Rosette leaves and
roots were harvested at ∼three weeks after imbibition (shown as orange star
in Fig. 2a).

To elucidate short-term response to -S, plants were grown on S-sufficient
agar-solidified control medium for three weeks, transferred to sulfur-deprived
or control media and harvested at various time points shown in Fig. 2a as blue
and green stars (Experiments 2 and 3, conditions 5 and 6). Plants did not show
apparent morphological changes until at least one week after transfer. OAS
is considered as one of the positive regulators of -S-responsive genes (Saito
2004) and exogenous application of OAS mimics sulfur deficiency. To elucidate
the effects of OAS application on the global metabolome and transcriptome,
plants grown on control medium for three weeks were transferred to OAS-
supplemented medium (Experiment 2, condition 7) and harvested at 48 h after
transfer (shownasgreen star inFig. 2a).Rosette leaves and rootswere subjected
to metabolome and transcriptome analyses.

4.2 Multivariate Analyses – Principal Component Analysis
and Batch Learning-Self Organizing Mapping

After appropriate normalization of metabolome and transcriptome data, the
log ratio of metabolite (mass peak) level and transcript level in the treated sam-

according to time-dependent pattern of change in accumulation and expression: a self-organizing
map based on the data of the leaf samples. Six maps (corresponding to six time points) are the
same except for coloring of the cells. Each cell was colored according to the relative log ratio values
of the metabolites and genes therein: when all of the relative log ratio values of the metabolites
and genes in the cell were greater or smaller than the average, the cell was colored in pink or
pale blue, respectively. Red and blue indicated that at least one of the relative log ratio values
was greater than the average plus standard deviation or smaller than the average minus standard
deviation, respectively; b unified map showing clustering pattern of GLSs, ITCs and GLS biosyn-
thesis genes; c the change in the content of GLSs (green lines) and ITCs (blue lines) in leaves.
Ordinate scale indicates the relative log ratio value; d the change in expression of GLS biosynthe-
sis genes. SUR1, a gene encoding C-S lyase; DIOX1, a gene involved in side chain modification
of GLSs. Ordinate scale indicates the relative log ratio value. The following abbreviations indi-
cate the side chain groups of glucosinolates and isothiocyanates: 3-msp, 3-methylsulfinylpropyl;
4-mtb, 4-methylthiolbutyl; 7-msh, 7-methylsulfinylheptyl; 8-mso, 8-methylsulfinyloctyl; i-3ym,
indol-3-ylmethyl; 4mi-3ym, 4-methoxyindol-3-ylmethyl; 4-msb, 4-methylsulfinylbutyl; 5-msp,
5-(methysulfinyl)pentyl
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ple compared to the appropriate control sample was calculated, and subjected
to principal component analysis (PCA) and Batch Learning-Self Organizing
Mapping (BL-SOM) (Kanaya et al. 2001; Abe et al. 2003). BL-SOM is an im-
proved method of the original SOM (Kohonen 1990; Kohonen et al. 1996) with
regard to the fact that the initial weight vectors are set by PCA and the learning
process is designed to be independent of the order of input of vectors, and
hence the result is reproducible.

4.3 Global Change in Metabolome and Transcriptome
in Response to Sulfur Deficiency

4.3.1 Changes Caused by Culture Conditions

To clarify the global change of the metabolome, the data obtained in Ex-
periments 1 and 2 (Fig. 2a, orange and green stars) were subjected to PCA
(Fig. 2b). The samples were clustered according to the type of organ (leaves
or roots), the method of plant culture (hydroponic or agar-solidified plate)
and the period of stress (three weeks or 48 h), indicating several features of
global regulation. First, long-term -S, -N and -SN had similar effects on the
metabolome. Second, metabolite profiles were quite different between long-
term -S and short-term -S. Third, OAS had similar effects as short-term -S,
suggesting that OAS is a regulator of global metabolite profiles under short-
term -S. A similar clustering pattern was observed in case of the transcriptome
(Fig. 2c), indicating that the global transcript profile and metabolite profile
were strongly related to each other. As mentioned above, -S is supposed to be
caused by shortage of S nutrition relative to N nutrition. From this point of
view, it was expected that changes in metabolome and transcriptome under -N
might be in the opposite direction to those under -S. However, similar changes
occurred under -S and -N, suggesting kinds of general responses to nutritional
deficiency in regulation of global metabolome and transcriptome.

The general response to both S and N deficiency and the specific response
to either S or N deficiency were observed, for example, in glucosinolate
metabolism. GLSs are synthesized from several amino acids such as chain-
elongated Met and Trp thorough a number of reactions, and are degraded by
a thioglucosidase, myrosinase (Fig. 1). The GLS contents and the expression
level of genes encoding GLS biosynthetic and degrading enzymes changed in
a treatment-specific manner (Hirai et al. 2004). In the case of roots, for exam-
ple, the GLS biosynthesis genes were up-regulated both by -S and -N (general
response). However, the myrosinase gene was up-regulated by -S and down-
regulated by -N, which caused glucosinolate accumulation only in N-starved
roots (specific response). One GLS molecule contains two or three S atoms and
one N atom; hence GLSs can play a role as S storage source. Both roles of GLSs
as defense compounds and as S storage source might determine the metabolic
balance of GLSs under S and/or N deficiency.
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4.3.2 Classification of Metabolites and Genes
According to Time-dependent Changing Pattern

To clarify gene-to-gene and metabolite-to-gene networks, metabolome data
and transcriptome data of ca. 22,000 genes obtained in Experiment 3 (Fig. 2a,
blue stars) were integrated into a single matrix and analyzed by BL-SOM. To
classify the metabolites and genes based on the time-dependent changing pat-
tern in response to -S, the metabolites and genes which exhibited an apparent
change in accumulation level over 168 h after transfer to -S were selected. For
each of ca. 1000 metabolites and ca. 10,000 genes selected, the sum of the
square of the six log ratio values at six time points was set equal to one to give
relative log ratio values. Ca. 1000 metabolites (or mass peaks) and ca. 10,000
genes were classified by BL-SOM into 40 × 29 (leaves; Fig. 3a,b) and 40 × 24
(roots; data not shown) cells on the map based on the time-dependent pattern
of the change in response to -S. A group of metabolites and genes exhibiting
similar accumulation pattern were clustered in the same or neighboring cells.
In leaves, six GLS molecular species were clustered (Fig. 3b). Interestingly, their
degradation products isothiocyanates (ITCs) were also detected by FT-MS and
clustered on BL-SOM (Fig. 3b). Accumulation pattern of ITCs was a mirror
image of that of GLSs (Fig. 3c). These results suggested that GLS metabolism is
coordinately regulated in leaves. In Arabidopsis, most of the GLS biosynthesis
genes (Fig. 1) were identified. These genes involved in GLS biosynthesis were
clustered into the same region on the map (Fig. 3b), supporting the idea of
coordinated regulation of GLS metabolism.

4.4 Functional Identification of Novel Glucosinolate
Biosynthesis Genes

In GLS biosynthesis desulfoGLSs were known to be subjected to sulfation,
but no gene responsible for the sulfation had been identified. On the SOM,
3 out of 18 putative sulfotransferase genes of Arabidopsis (AtSOT16, 17 and
18) were clustered with known GLS biosynthesis genes, strongly suggesting
their involvement in GLS biosynthesis (Fig. 3b,d). In vitro enzymatic assay
using respective gene products proved that these three genes actually encode
PAPS:desulfoGLS sulfotransferases (Hirai et al. 2005). In the same way, we
could putatively identify the genes encoding C-S lyases, S-glucosyltransferase,
and GST involved in GLS biosynthesis, some of which were identified late by
other groups.
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5 Studies on Anthocyanin Metabolism

5.1 Roles of Anthocyanins and the Experimental Design
for Elucidation of the Anthocyanin-specific Pathway

Flavonoids, including red-purple anthocyanin pigments, are secondary meta-
bolites which play a role in anti-oxidation protection against strong light, and
so on. They are also important for humans owing to their usage as antioxidants
and anticancer drugs. However, the chemical structures of flavonoids and their
biosynthetic genes in Arabidopsis have not yet been completely elucidated. In
particular, no genes encoding glycosyltransferases and acyltransferases for
the modification of anthocyanin aglycones have been identified yet. For elu-
cidation of anthocyanin structures and their modification enzyme genes in
Arabidopsis, we focused on Arabidopsis lines ectopically expressing the PAP1
gene which encodes a MYB transcription factor. In a T-DNA activation-tagged
line pap1-D, the expression of the PAP1 gene was enhanced by the action
of an enhancer sequence in the inserted T-DNA and some phenylpropanoid
derivatives such as anthocyanins were over-accumulated (Borevitz et al. 2000).
It was shown that several genes involved in anthocyanin biosynthesis were
expressed constitutively in the pap1-D mutant (Borevitz et al. 2000). However,
the transcriptome and metabolome have not been extensively characterized in
this mutant. The PAP1-overexpressing plants are an ideal model system to elu-
cidate the whole cellular mechanisms at both transcriptome and metabolome
levels under the expression of a single transcription factor.

5.2 Metabolome of PAP1-overexpressing Arabidopsis

Flavonoid accumulation profiles were analyzed by HPLC/PDA/ESI-MS. The
metabolites were identified by their UV-visible absorption spectra and mass
fragmentation pattern by tandem MS spectroscopy in comparison with the au-
thentic compounds in our laboratory stock, and reported data (Graham 1998;
Veit and Pauli 1999; Bloor and Abrahams 2002). In the PAP1-overexpressing
lines (pap1-D mutant and a PAP1 cDNA-overexpressing transgenic plant),
11 anthocyanin pigments and 3 quercetin glycosides over-accumulated in
leaves. Among the 11 anthocyanins, 8 were novel cyanidin derivatives that
had never been reported in Arabidopsis.

Non-targeted FT-MS metabolome analysis was also conducted on the leaf
and root samples of the wild-type plant, pap1-D mutant and a PAP1 cDNA-
overexpressing transgenic plant grown on either agar-solidified medium or
vermiculite. To elucidate the key determinant factors for the metabolome, PCA
was conducted with ca. 1800 peaks detected in non-targeted FT-MS analysis.
The results suggested that the major determinant factors for the metabolome
were the type of organ (leaves or roots) and the method of plant culture (agar-
solidified medium or vermiculite), which was consistent with the result of
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the sulfur study. This implied that the global metabolome profiles of PAP1-
overexpressing lines were similar to those of wild-type plants despite the
marked difference in total anthocyanin observed. These results suggested that
the PAP1 gene regulates anthocyanin accumulation in a specific manner, caus-
ing only a small change in the metabolome.

5.3 Transcriptome of PAP1-overexpressing Arabidopsis

The transcript levels of ca. 23,000 genes were determined using DNA micro-
array, and the genes exhibiting reproducible up-regulation in PAP1-overex-
pressing lines were identified. Eight among the 39 up-regulated genes in leaves
were annotated as encoding well-known anthocyanin biosynthetic enzymes
(TT3, TT4, TT5, TT7 and TT19) or regulatory proteins (PAP1, TTG2 and TT8)
characterized previously. Combined with the results of metabolite profiling,
this result suggested that PAP1 transcription factor induced specific expression
of the genes involved in anthocyanin production.

5.4 Functional Identification of Novel Anthocyanin Biosynthesis
Genes by Integration of Metabolomics and Transcriptomics

We could assume that the rest of the 39 genes up-regulated in PAP1-overex-
pressing lines may also be involved in anthocyanin biosynthesis and accumula-
tion. Based on functional annotation and sequence similarity to the previously
identified genes, the functions of several genes could be predicted. Among 107
putative UDP-sugar-dependent glycosyltransferase genes in the Arabidopsis
genome, three genes, At5g54060, At4g14090 and At5g17050, were up-regulated
in PAP1-overexpressing plants in both leaves and roots, suggesting the in-
volvement of these three gene products in transfer of sugar moieties to an-
thocyanins. Another putative UDP-sugar-dependent glycosyltransferase gene,
At3g21560, was up-regulated only in the leaves of PAP1-overexpressing lines.
The molecular phylogenetic tree of these genes together with the identified
flavonoid glycosyltransferases genes in other plant species (Fig. 4b) showed
that At5g17050 and At4g14090 belong to the subfamily of anthocyanin 3-O-
glucosyltransferase (A3GT) and that of anthocyanin 5-O-glucosyltransferase
(A5GT), respectively, and that At5g54060 has the highest similarity to Petu-
nia anthocyanin 3-O-glucoside-6′′-O-rhamnosyltransferase (A3G-6′′ RT). By
flavonoid profiling of PAP1-overexpressing lines, it was shown that the most
abundant and most extensively modified anthocyanin molecule was cyani-
din 3-O-[2′′ -O-(6′′′ -O-(sinapoyl) xylosyl) 6′′ -O-(p-O-(glucosyl)-p-coumaroyl)
glucoside] 5-O-(6′′′′ -O-malonyl) glucoside, whose structure is shown in Fig. 4a.
This molecule had four sugar residues; in addition to 3-O-glucose and 5-O-
glucose, a xylose residue attached to the C2-position of the 3-O-glucose and
a glucose residue attached to the p-position of the coumaroyl moiety. Con-
sidering the results of up-regulated genes and flavonoid profiles in the roots
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Fig. 4. a A major anthocyanin in PAP1-overexpressing Arabidopsis leaves. b Molecular phy-
logenetic tree of the amino acid sequences of the flavonoid glycosyltransferases. The amino
acid sequences were aligned using the multiple sequence alignment CLUSTALW (http://clustalw.
genome.ad.jp/). The GenBank accession numbers for the sequences are as follows; eggplant A3GT
(X77369); petunia A3GT (AB027454); gentiana A3GT (D85186); grape A3GT (AF000371); barley
A3GT (X15694); maize A3GT (X13501); petunia A5GT (AB027455); torenia A5GT (AB076698);
verbena A5GT (BAA36423); perilla A5GT (AB013596); petunia A3G 6′′RT (Z25802); Dorothean-
thus B5GT (CAB56231); Scutellaria F7GT (BAA83484)

of PAP1-overexpressing lines, four candidate glucosyltransferase genes could
be assigned to specific functions. Reverse genetics approach and in vitro en-
zymatic assay using recombinant gene products have proved the predicted
functions of At5g17050 and At4g14090 as flavonoid 3-O-glucosyltransferase
and anthocyanin 5-O-glucosyltransferase, respectively (Tohge et al. 2005).

6 Conclusions

In the present studies on sulfur metabolism and anthocyanin production,
we could integrate metabolomics and transcriptomics and predict compre-
hensively gene function especially in secondary metabolism. Concerning the
production of secondary metabolites, the regulation at the transcriptional level
may be dominant over other regulation at translational and enzymatic activity
levels, and hence the transcript profile may determine directly the metabolite
profile. We believe that almost all genes involved in the secondary metabolism
of interest can be identified by the approach presented in this article. This
type of functional genomics can be applied to novel biosynthetic pathway in
non-model plants, crops and medicinal plants by using transcriptome analysis
such as cDNA-AFLP and cDNA subtraction as substitutions for DNA array.
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III.3 Targeted Profiling of Fatty Acids
and Related Metabolites

T.R. Larson and I.A. Graham1

1 Introduction

1.1 Plant Lipids and Society

Plant oils make up as much as 25% of the calorific intake in the human diet
(Broun et al. 1999), and the balance of saturated and unsaturated fatty acids
has profound effects on human health, particularly in the amelioration of the
metabolic syndrome (Hulbert et al. 2005). In addition, novel oils containing
unusual fatty acids or fatty acids of a specified composition in high yield are
valuable as industrial feedstocks (Carole et al. 2004). To address these inter-
ests, the factors that control triacylglycerol (TAG) yield (oil quantity per seed
or hectare) and quality (fatty acids present, oil-soluble impurities) in oilseed
crops have been studied for many years by plant breeders, and more recently
by biotechnologists and molecular geneticists (Thelen and Ohlrogge 2002).
Metabolic engineering approaches presume an understanding of how fatty
acid metabolism is regulated, particularly with respect to fatty acid metabolism
during seed development. Unfortunately this understanding is far from com-
plete, although in excess of 600 genes involved in plant lipid metabolism have
been identified by expressed sequence tag (EST) analysis (Beisson et al. 2003).
These interests have provided a significant driving force behind technologies
developed to profile lipids and their metabolites from plant tissues.

1.2 Biochemistry of Plant Fatty Acid Metabolism

There are in excess of 200 different fatty acid species present in plants (van
de Loo et al. 1993). Fatty acids have multiple roles in plant metabolism; they
are the building blocks for structural membrane lipids (phospho-, galacto-,
sphingo-, sulfolipids), are stored for energy as TAG, and are the precursors for
signalling molecules in wounding and pathogenic response pathways (Li et al.
2005; Schneider et al. 2005). This diversity is the result of acyl chain elongation,
desaturation and other modifications that occur during lipid synthesis, which
is compartmentalized between the cytosol and the plastid in both leaf and
seed tissues (Ohlrogge et al. 1991; for an excellent recent review, see Wallis
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e-mail: trl1@york.ac.uk
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and Browse 2002). The mechanisms that control the partitioning of fatty acids
between structural and storage lipid synthesis and catabolism remain unclear,
and much biochemical and molecular genetic investigation over the last two
decades has not given any appreciable insight into this question. This is in part
due to the redundancy of biochemical routes involved in lipid synthesis and
the differential expression of these routes at different developmental stages and
in different tissues. These complex interactions have increased the importance
of comprehensive analytical techniques for profiling plant lipids and their
metabolites in studies that seek to understand the regulatory mechanisms of
lipid synthesis in oilseeds (Abbadi et al. 2004).

Within the plastid (Fig. 1, step 1), fatty acids are synthesized de novo from
acetyl-CoA in a series of condensation and elongation reactions to form a pool
of mostly 16:0- and 18:0-acyl carrier proteins (ACPs), of which a portion are
desaturated to monounsaturated acyl-ACPs. These acyl-ACPs are cleaved by
specific thioesterases to free fatty acids and then converted to acyl-CoAs by
acyl-CoA synthetases at or near the outer plastid envelope so as to be available
for passage to the cytosol (Pollard and Ohlrogge 1999). Export to the cytosol
or entry to the “eukaryotic” pathway diverts acyl chains away from membrane
lipid synthesis in the plastid (the “prokaryotic” pathway; Fig. 1, step 8), and
makes them available for incorporation into TAGs (Fig. 1, steps 4, 5, 6). Acyl-
chainfluxback into theplastid (probably as free fatty acids) and theprokaryotic
pathway also occurs from the cytosolic acyl-CoA pool (Fig. 1, steps 6, 7). This
flux is probably in the form of free fatty acids. Within the cytosol further
modification of the acyl chains occurs through the complex interaction of
desaturation, elongation, and phospholipid/acyl-CoA exchange mechanisms
(Fig. 1, steps 4, 5, 6). A portion of the acyl-CoA pool may be catabolised
through β-oxidation, which is the normal route for storage-oil derived fatty

Fig. 1.Thecentral roleof theacyl-CoApool inplant lipidmetabolism.Arrows representdirectional
fluxes of cytosolic acyl-CoAs in a general model representing all plant tissues. Numbers refer to
biochemical routes and genes referenced in the text
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acid breakdown during seed germination (Fig. 1, step 2). The extra carbon
required for acyl chain elongation commonly observed in the brassicaceae
originates from a distinct cytosolic acetyl-CoA pool, probably derived from
mitochondrial citrate metabolism (Fatland et al. 2005). The interplay of these
mechanisms ultimately controls the final fatty acid composition, and together
with consideration of the rate of de novo fatty acid synthesis, yield of the
TAGs formed from the condensation of diacylglycerol and acyl-CoA pools in
the final step of the Kennedy pathway. In fact, the acyl-CoA pool is central to
lipid metabolism and is potentially a sensitive indicator of perturbations in the
acyl-chain flux through any of the pathways indicated in Fig. 1.

The complexity of fatty acid synthesis and catabolism in plants, and the wide
range of lipid-related intermediates involved in these processes, emphasise the
need for a wide range of metabolite profiling techniques. The development and
use of these techniques is discussed in the following sections.

2 Metabolite Profiling Techniques
Used to Study Plant Lipid Metabolism

2.1 Fatty Acid Methyl Esters

Seed oil profiling, specifically the measurement of fatty acids derived from
TAGs as their methyl esters (FAMEs), is one of the oldest metabolite profiling
techniques used in plant functional genomics studies. This technique has also
been used to examine the acyl chain composition of many other common plant
glycerolipids in addition toTAGs, suchas thegalactolipids thatmakeupchloro-
plast membranes. Lipids, being extremely hydrophobic, can rapidly and easily
be partitioned away from other cell components during sample work-up. The
extracted lipids can then be quantitatively converted to FAMEs using a range
of transesterification reagents. FAMEs can even be routinely prepared by the
direct transmethylation of plant material with no preparative lipid extraction
(Browse et al. 1986). This simple preparation assists in large-scale screening
projects for alterations in fatty acid quality or content in plant lipids. The
equipment used for separating and detecting plant-derived FAMEs is the gas
chromatograph (GC) with flame-ionization detection (FID). A large range of
commercial GC columns are available for FAME analysis, and commercial ref-
erence standards are also available for their identification and quantification.
FAME profiling has the potential to become extremely rapid with the recent
introduction of fast GC technology, which allows analysis times of a few min-
utes per sample (Mondello et al. 2003). FID detectors have a response directly
proportional to the carbon mass eluted from the column, and they benefit from
having a linear quantification range greater than most other types of detec-
tor, including mass spectrometers. This enables the absolute quantification of
novel orunknownFAMEs forwhichnostandards are available. Someof thefirst
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arabidopsis mutants in fatty acid synthesis were discovered using genetic for-
ward screening techniques on mutagenised populations, where leaf and seed
material was analysed by FAME profiling. Using this technology, leaf lipids
from an arabidopsis population of only 2000 M2 mutagenised lines uncovered
seven mutants and five loci encoding desaturases (Browse et al. 1985). FAME
profiling was subsequently used for the first example of map-based cloning in
plants, used to isolate the arabidopsis plastidic desaturase, FAD3 (Arondel et
al. 1992), and has subsequently been used to isolate several desaturase mutants
(for review, see Wallis and Browse 2002).

Theexamplesmentionedaboveusedqualitativedifferences inFAMEprofiles
to identify lesions in fatty acid biosynthesis. However, GC profiling can also be
used to obtain quantitative oil yield data, by summing the total amounts of fatty
acids present per unit weight or per seed. Quantitative data is also required
to calculate changes in the overall flux of carbon into storage lipids, which
may occur as a result of upregulated biosynthesis, and/or reduced fatty acid
catabolism during seed filling. For model plants such as arabidopsis, eicosenoic
acid (20:1n9) is a useful marker for TAG when yield information is required,
as this fatty acid is only present in storage oil and is absent from leaf lipids.
However, alternative technologies such as NMR (Rutar 1989) are perhaps more
suited to rapid screening of total seed yields, when compositional information
is not as important. Despite the analytical options available for measuring lipid
concentrations, the study of oil yields is fraught with difficulties, as estimation
of such a useful agronomic trait is also dependent on the number of seeds
produced per plant and other growth parameters, which makes it difficult to
pinpoint discrete genetic factors responsible for increasing the amount of oil
produced per hectare of a planted crop.

For the identification of new or novel fatty acids in plants, secondary deriva-
tization techniques are available to assist in the calculation of carbon number
and double bond position in FAMEs using GC coupled to mass spectrom-
etry (GCMS) (for an excellent summary of these techniques, see Christie’s
comprehensive website at http://www.lipidlibrary.co.uk). These techniques are
especially useful for the identification of novel fatty acids produced by the het-
erologous expression of candidate biosynthetic genes in model systems. For
example, a putative Δ11 desaturase isolated from a marine alga and expressed
inyeast resulted in the synthesis of anew fatty acid, forwhichno standardswere
available. This fatty acid was subsequently identified as 16:1Δ11 by examination
of the dimethyldisulphide adduct by GCMS (Tonon et al. 2004).

2.2 Intact Glycerolipids

Triacylglycerols, free fatty acids, phospholipids and galactolipids are all con-
verted to FAMEs using acidic transmethylation techniques. However, the major
disadvantage of these techniques is that the derivatized FAMEs originate from
several different lipids. Alkaline transmethylation techniques are slightly more
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specific in that free fatty acids are not transmethylated (Christie 1982), but
the problem remains that FAME measurements can not distinguish between
storage and membrane lipids. In addition, some important regulatory lipids,
notably sphingolipids, cannot be detected by transmethylation/GC methods,
and require more specialised extraction and analysis techniques (Sperling et al.
1998). The fatty acid composition of storage and membrane lipid species in the
model plant arabidopsis is similar, with the exception that 16:3n3 is found only
in galactolipids and 20:1n9 in TAGs. In this case, these two FAMEs can be used
asmarkers for changes inmembraneandTAGlipidpools, respectively, but their
levels can not be used to infer the compartmentalised regulation of other fatty
acids present in both pools, such as 18:3n3. This problem can be somewhat
circumvented by careful choice of the tissues analysed; i. e. leaves will con-
tain mostly galactolipids and seeds TAGs. These limitations can be overcome
by preparative techniques that separate lipid classes before derivatization to
FAMEs; for example by the use of thin-layer or column chromatography (TLC).

Preparative scale techniques have been refined for high-throughput screen-
ing of changes in glycerolipid species. For example, Benning has developed
a robotic system to spot leaf lipid extracts onto TLC plates to screen for mu-
tants in galactolipid biosynthesis (Benning 2004). Polar lipid extracts from
the green alga Chlamydomonas reinhardtii were used to develop the sys-
tem before the technique was used for arabidopsis lipid analysis. Cells or
leaf material in 96-well plates are robotically harvested and extracted with
chloroform/methanol, and an aliquot spotted by the robot onto TLC plates.
After further robotic addition of developing solvents, lipid bands develop as
small concentric rings around the spotted sample, which can then be visu-
alised with various headgroup-specific reagents. This approach was success-
fully used to screen 25,000 M2 arabidopsis lines in a forward screen, which
subsequently isolated 25 dgd1 suppressor mutants that accumulated di-, tri-,
or tetra-galactosyldiacylglycerols (Benning 2004).

However, the most comprehensive techniques for lipid class profiling involve
infusing plant extracts into a mass spectrometer. Infusion has the advantage
of being rapid without relying on a lengthy chromatographic separation step.
Lipid classes are identified by tandem MS fragmentation patterns specific for
different headgroups, with quantification achieved by the infusion of relevant
standards. This is referred to as “two-dimensional” fingerprinting, and has
found use in animal (Han et al. 2004) and plant systems (Welti and Wang 2004).
In arabidopsis, over 120 polar lipids (galacto- and phospholipids) can be rou-
tinely profiled using simple sample preparation, electrospray ionisation, and
detection by precursor ion/neutral loss scanning (Welti and Wang 2004). This
approach was used to determine that phosphatidylcholine, rather than other
phospholipid species, is the major substrate for the most abundant phospholi-
pase D activated during cold treatment in arabidopsis (Welti et al. 2002). A fur-
ther refinement of rapid fingerprinting techniques is the use of matrix assisted
laser desorption ionization (MALDI) coupled with high-resolution mass spec-
trometry. MALDI has been used to fingerprint phospholipids compositions in
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whole cells, such as in bacterial or yeast suspensions (Jones et al. 2004). A vari-
ation of this technique, laser desorption/ionization mass spectrometry (i. e.
without added matrix) has been used to obtain qualitative TAG fingerprints
from commercial olive oil samples (Calvano et al. 2005).

Lipids and their derivatives are popular candidate molecules in studies of
plant disease resistance responses. In arabidopsis, some genes associated with
the inductionof systemicacquiredresistance (SAR)andsalicylicacidsignalling
are involved in lipid metabolism. A suppressor of the positive regulator gene
NPR1 in the salicylic acid signalling pathway, designated ssi2 (suppressor of
salicylate insensitivity), was found to induce pathogenesis-related (PR) genes
though a salicylic acid dependent but NPR1-independent pathway (Shah et
al. 2001). SSI2 was subsequently cloned and, with expression analysis in E.
coli, shown to encode a stearoyl-ACP desaturase (Kachroo et al. 2001). In ssi2
plants, GCMS analysis of leaf FAMEs indicated substantially increased levels of
18:0 compared to 18:1, with minor reductions in 16:3, 18:2 and 18:3. How this
alteration in leaf fatty acid composition might specifically regulate or interact
with plant defence response pathways is unclear, although the authors did pro-
pose that an increased 18:0/18:1 ratio might activate lipid signalling events that
would induce the pathogenesis response pathway, or that the ratio of saturated
and unsaturated fatty acids might alter protein phosphatase activities. More
recent work showed that increasing plastidic 18:1 levels (probably 18:1-ACP)
by decreasing acylation into lipids via decreased glycerol-3-phosphate acyl-
transferase activity modified the defence signalling pathway (Kachroo et al.
2003, 2004). A second gene related to plant defence and involved in glycerolipid
metabolism, denoted SFD1 (suppressor of fatty acid desaturase deficiency1)
was described by Nandi et al. (2004). SFD1 was shown to encode a putative di-
hydroxyacetone phosphate (DHAP) reductase, essential for the production of
plastidic glycerolipids. LCMS direct-infusion lipid profiling was used to deter-
mine that sfd1 plants had lower levels of 16:3 in monogalactosyldiacylglycerol
(MGDG), but increased levels of 18:3 in both MGDG and digalactosyldiacyl-
glycerol (DGDG). In contrast, the non-plastidic phospholipid pools did not
change. Although sfd1 plants are compromised in the activation of SAR, the
signalling link between an altered plastidic glycerolipid profile and the SAR
response is unknown.

Infusion-MS technology allows polar lipid classes to be identified and the
acyl chains to be measured in terms of the total number of carbons and double
bonds. However, the structure (number of carbons, number and position of
double bonds) of the individual fatty acyl chains in these lipids cannot be
readily determined using this technique; neither can the regiospecificity of
acyl chain attachment be determined. Additional structural information is
potentially very useful because it reflects the pathway of lipid assembly via
different possible desaturase, elongase, and acyltransferase mechanisms in
plants. This may be important when selecting or considering particular plant
linesor species for theproductionofbeneficial fatty acids inTAGs.For example,
heterologous expression of a Pythium irregulare Δ6 desaturase in Brassica



Targeted Profiling of Fatty Acids and Related Metabolites 217

juncea led to a preferential accumulation of gamma linolenic acid (18:3n6) in
the sn-2 position of TAGs compared to endogenous fatty acids, as determined
by pancreatic lipase treatment (Hong et al. 2002). TAG positional information
is especially relevant for studies on human nutrition, where studies suggest
that fatty acids on the sn-2 position may be more bioavailable (Jensen et al.
1994; Christensen et al. 1995).

TAGs cannot be easily profiled by infusion-MS techniques, because there
is no unique headgroup present to use as an identity marker in neutral loss
scans, and regioisomers cannot be distinguished by parent ion mass. In fact,
the infusion and MALDI techniques have been developed with phospho- and
other lipids with polar headgroups in mind, which are relatively easy to char-
acterize using tandem MS techniques. In addition, the loss of signal from
trace-level components in background noise and ion suppression through ma-
trix effects makes quantitative lipid profiling in the absence of a full set of
standards problematic. Therefore, while the infusion technique is useful for
profiling glycerolipids involved in leaf metabolism, different techniques are
needed to determine identity and positional location of individual fatty acids
on these lipids and on TAGs. Some of the problems associated with infusion
can be overcome by using chromatographic techniques, such as liquid chro-
matography (LC) coupled to MS (for review, see Buchgraber et al. 2004). GCMS
can be used for TAG separation and detection, but the high boiling point of
TAGs and the relatively poor selectivity of high-temperature GC columns for
lipid isomers has excluded the widespread adoption of this technique. The LC
separation step can use normal or reversed-phase columns, or even a combi-
nation of the two to achieve maximum molecular species separation (Houjou
et al. 2005). This technology could be used to characterize the multitude of
TAG species present in model species such as arabidopsis, and thus provide
a tool for examining subtle changes in lipid remodelling and acyltransferase
specificities that are not possible with simple FAME or infusion-MS of intact
lipid profiling.

For example, LCMS analysis of seed lipid extracts from a range of putative
arabidopsis lipase mutants revealed an increase in TAGs containing 18:1 in one
line, suggesting that an alteration in lipid composition took place during seed
maturation (Fig. 2). There is circumstantial evidence that TAG remodelling
occurs during seed development. It has been reported that arabidopsis TAG
levels decrease by as much as 28% in the final stages of seed maturation (Baud
et al. 2002), and by approximately 10% in Brassica napus (Chia et al. 2005). This
decrease in TAGs is probably not due to a specific activation of lipid catabolism,
as β-oxidation genes and enzymes are known to be expressed throughout seed
development (Eastmond and Graham 2001). This suggests that acyltransferase
and/or lipase activities may change in the final stages of seed development
to either prepare the mature seed for dormancy or prime it for germination
and reserve mobilization. The development of better tools to examine closely
changes in TAG composition during seed development will undoubtedly help
our understanding of how these processes are regulated.
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Fig. 2. TAG profiling in dry arabidopsis seeds: a TAGs were extracted in hexane:isopropanol
from 10 mg of both Ler seeds and a putative TAG lipase knockout mutant in the same background;
b TAGs were resolved by HPLC and quantified by MS. More than 70 TAG species can be routinely
resolved and identified using MS/MS with this method; results from the putative lipase mutant
(b) suggest that oleic acid is preferentially incorporated into TAG during seed development in
this line

Despite the rich positional information that can be obtained using lipid
class profiling techniques, a major hurdle that needs addressing is obtaining
quantitative information. This is especially important when concentrations
must be calculated to determine regulatory points in biochemical pathways.
FAME analysis using GC-FID is ideal for this purpose, because detector re-
sponse is directly proportional to mass and is also linear over several orders of
magnitude. Unfortunately, the same cannot be said of intact lipid profiling by
infusion into a mass spectrometer, or by HPLC followed by MS or evaporative-
light scattering detection (ELSD). Although both MS and ELSD detectors are
now routinely used for detecting lipid species, response factors can vary ten-
fold, being sensitive to changes in head groups, chain length, and degree of
unsaturation (Christie 1985; Holcapek et al. 2003; Schaefer et al. 2003). Thus,
it is vital to have access to representative standards for quantitative purposes,
and this may not be possible for plant extracts that have complex lipid profiles.

A second analytical constraint that needs addressing is that complete posi-
tional analysis of acyl chains on glycerolipids is currently tedious and low-
throughput. Established techniques require lipid isolation by TLC, partial
hydrolysis with Grignard reagents (and/or lipases), derivatization to chiral
urethanes and separation by HPLC, further derivatization to FAMEs and anal-
ysis by GC-FID, and finally back-calculation to determine which fatty acid
species were present at each position on the glycerol backbone (Christie et
al. 1991). These procedures, although tedious, have been necessarily used in
studies of lipid synthesis, especially in inferring the mechanisms responsible
for determining the positional specificity of fatty acids in TAGs. However, such
techniques are not appropriate for functional genomics studies or forward-
screen designs, where analytical automation and high-throughput are prereq-
uisites. Thus new techniques are required for the analysis of lipid regioisomers.
One technique that shows promise is the partial or complete separation of tri-
acylglycerol regioisomers by HPLC, with subsequent determination of acyl
chain attachment specificity by tandem MS (Kusaka et al. 1996; Fauconnot et
al. 2004). Tandem MS has also been demonstrated as a useful technique to
determine both acyl chain double bond position and regioisomer structure in
wheat flour galactolipids (Kim et al. 2001). For TAGs, these methods make use
of characteristic diacylglycerol fragment intensity patterns to determine sn-2
and sn-1,3 attachment points. It is already possible to separate seed oil TAGs
with different acyl chain components using this technique (Fig. 2), and also
to identify some regioisomers. Chromatographic resolution may be further
improved by the use of recently introduced stable silver ion HPLC columns,
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where Ag complexation with unsaturated double bonds increases selectivity
in TAG isomer separation (Adlof and List 2004). However, tandem MS cannot
yet differentiate between sn-1 and sn-3 acyl chains; this requires the classical
Grignard/lipase positional analysis technique.

2.3 Intermediates and Trace-level Components in Lipid Metabolism

Most functional genomics studies on plant lipids have used measurements
of storage or structural lipids to indirectly infer upstream modifications in
metabolism. Ideally, the immediate substrates or products of the metabolic
step under investigation should be measured, as this gives more direct evi-
dence of the specific gene product involved in pathway modification. Control
points in lipid synthesis can be elucidated by metabolic profiling, when com-
bined with other biochemical or molecular data. For example, Perry et al.
(1999) demonstrated that diacylglycerol accumulated relative to other inter-
mediates in the Kennedy pathway during TAG biosynthesis in rape seed, and
diacylglycerol acyltransferase (DGAT) activity remained low, suggesting that
this acyltransferase may control flux into storage oils. Further work with ara-
bidopsis identified the TAG1 locus, encoding for a DGAT. Two allelic knockout
mutants in this locus, designated as11 and abx45, displayed the phenotype of
reduced amounts of fatty acids associated with TAGs during seed maturation
(Routaboul et al. 1999).

The list of metabolic intermediates involved in lipid metabolism is exten-
sive, and includes: acyl-ACPs in the plastid; free fatty acids; acyl-CoAs in
the cytosol, mitochondrion, and peroxisome; partially acylated glycerolipid
intermediates in the cytosol (diacylglycerol, phospholipids); and fatty acids
attached to intra- and intercellular binding or transfer proteins. These com-
pounds are more difficult to extract or measure compared to structural or
storage lipids because they are, by their nature as metabolic intermediates,
present at relatively low concentrations. This excludes techniques that rely on
FAME measurements unless rigorous extraction and preparative procedures
canseparate themfrompotentially contaminatingstructural andstorage lipids.
Specific metabolic derivatives of lipids, such as hydroxylated free fatty acids
produced by lipoxygenase activity, have unique chemical properties and can
therefore be successfully separated and measured by reverse or chiral-phase
HPLC (Feussner et al. 1995).

One approach to locate the activity of an enzyme or gene product involved
in lipid metabolism is to feed radio- or isotopically-labelled substrates in vivo
or in vitro. Such studies are very useful for estimating carbon fluxes in lipid
metabolism (Schwender et al. 2004), but are not an ideal way to screen for
mutants.

Several techniques have been developed to determine directly the concen-
tration of metabolic intermediates involved in lipid metabolism. Acyl-ACPs
have been quantified using western blotting techniques to determine the
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regulatory role of acetyl-CoA carboxylase in spinach and pea chloroplasts
(Post-Beittenmiller et al. 1992). Similarly, there have been attempts to monitor
key proteins, such as plant acyl-CoA binding protein (ACBP) (Brown et al.
1998; Engeseth et al. 1998) and lipid transfer protein (LTP) (Sohal et al. 1999).
These techniques belong to the field of proteomics rather than metabolomics,
and will not be dealt with in detail here. Nevertheless, it would be useful to have
some way to measure the pool sizes for binding proteins, as the acyl-protein
complexes will have a direct impact on the metabolically active pool of acyl
chains. There is evidence to suggest that most of the intracellular long-chain
acyl-CoA pool in plants is not free, but bound to ACBP (Brown et al. 1998;
Engeseth et al. 1998).

Binding proteins themselves are useful tools for determining concentrations
of free (i. e. not bound to endogenous proteins) acyl-CoAs and non-esterified
(free) fatty acids. One method has been developed using a recombinant bovine
ACBP linked to a fluorescent reporter (Wadum et al. 2002). This method is
useful in determining the amount of free vs ACBP-bound long-chain acyl CoAs
in biological samples. Such a method would be particularly useful if it could be
adapted to determine the intracellular location of different acyl-CoA pools, as
there is circumstantial evidence that alterations in the cytosolic vs peroxisomal
pool sizes have different effects on peroxisome size and biogenesis. In the
peroxisomal ABC transporter mutant, cts, acyl-CoAs accumulate during lipid
catabolism in germinating seeds, presumably in the cytosol (Footit et al. 2002),
whereas in several β-oxidation mutants, such as the thiolase mutant, kat2, acyl-
CoAs also accumulate, but presumably in the peroxisome (Germain et al. 2001).
In the case of cts, peroxisomes have a normal morphology, whereas in kat2
they are enlarged. The location of the accumulated pools could be identified
by careful subcellular fractionation, but with the many caveats associated with
these isolation techniques. A far better solution would be to label and visualise
the acyl-CoA pools in vivo. An immunological method has been developed
where long-chain acyl CoAs associated with membranes can be detected using
ELISA techniques (Maneta-Peyret et al. 1998), and more recently, a related
immunogold localization method has also been published (Diakou et al. 2002).

In isolated spinach and pea chloroplasts incubated in the light, Post-Beitten-
miller et al. (1992) demonstrated that the short-chain acyl-CoA pool consisted
almost entirely of acetyl-CoA with much lower amounts of free CoA and
malonyl-CoA, suggesting that acetyl-CoA carboxylase is an important regula-
tory step in fatty acid synthesis. However, measurement of plant acyl-CoA pool
components is a decidedly difficult task in plants, made difficult by their low
micromolar concentrations and the presence of interfering compounds that
interfere with UV detection of the CoA moiety at 260 nm. One method has
been developed to measure the components of the acyl-CoA pool, specifically
in plant extracts (Larson and Graham 2001; Larson et al. 2002). This technique
uses fluorescent derivatization and HPLC separation to identify and quantify
individual acyl-CoA species. The technique measures individual components
of the entire acyl-CoA pool, releasing any protein-bound acyl-CoA during the
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extraction procedure. Using this method, acyl-CoA profiling has been exten-
sively used to characterize lesions in lipid catabolism, where TAG mobilisation
may be stopped or slowed during seed germination, and acyl-CoAs retained.
In this case, acyl-CoA profiles do more than mirror fatty acid profiles; they also
provide information on where exactly the lesion in lipid catabolism is occur-
ring. For example, analysis of acyl-CoA profiles in germinating seeds of several
arabidopsis acyl-CoA oxidase (ACOX) deletion mutants showed that lines lack-
ing short- andmedium-chainACOXactivitieshaddistinctive acyl-CoAprofiles
compared to wild-type lines (Rylott et al. 2003). The short- and medium-chain
ACOX deletion lines accumulated short- and medium-chain acyl-CoAs, which
they could not efficiently metabolize in peroxisomal β-oxidation.

During lipid synthesis, acyl-CoA accumulation can also be used to evaluate
the efficiency of the acyltransferase enzymes, such as DGAT, that use acyl-
CoAs as substrates for TAG synthesis. An accumulation of a specific acyl-CoA
may indicate poor incorporation into TAG. In B. napus transformed with
a California Bay medium chain thioesterase, developing seed acyl-CoA profiles
were used as evidence to conclude that poor accumulation of medium chain
fatty acids in the transgenic seedoils indicatedapooracyltransferase specificity
rather than insufficient medium chain fatty acid synthesis (Larson et al. 2002).
Similarly, acyl-CoA analysis of plants metabolically engineered to produce
polyunsaturated fatty acids in their TAGs has been used to determine if the
required acyl-CoA intermediates were available for PUFA synthesis (Abbadi et
al. 2004).

In summary, gene over-expression and reverse genetics approaches in ara-
bidopsis have revealed that the acyl-CoA pool composition and size is altered
by manipulating gene expression at steps 1 and 2 in Fig. 1. Acyl-CoAs are sub-
ject to catabolism by β-oxidation, primarily in the peroxisome in addition to
feeding the synthesis of neutral storage lipid as well as glycerolipids. Thus, acyl-
CoAs act as a pivotal point in both anabolic and catabolic lipid metabolism.
There is good evidence for metabolic “bottlenecks” and branch points im-
pacting on the biosynthesis of TAG (Abbadi et al. 2004; Napier et al. 2004). For
example, the substrate dichotomy of microsomal glycerolipid desaturation and
cytosolic acyl-CoA elongation represents a bottleneck in heterologous long-
chain polyunsaturated fatty acid (LC-PUFA) biosynthesis, requiring enhanced
acyl-exchange (Fig. 1, steps 4, 5, 6) to increase the flux between the two com-
partments (microsome, cytosol). In particular, the composition and quantity
of the acyl-CoA pool may play an important role in the homeostatic regulation
of lipid metabolism. This is based on the knowledge that acyl-CoAs not only
are incorporated into phosphatidylcholine and TAG via the Kennedy pathway,
but are also the primary inputs into ceramide and sphingolipid biosynthesis
(Fig. 1, step 3). It is well known that acyl-CoAs have profound regulatory roles
in mammalian lipid metabolism (Faergeman and Knudsen 1997), and these
roles are only just starting to be investigated in plants.

Finally, it should be stressed that understanding how plant lipid synthe-
sis is regulated will require a wider metabolite profiling effort that is not
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limited to measuring the biosynthetic intermediates between acetyl-CoA and
acylglycerols. The source and flux of carbon to acetyl-CoA requires further
investigation, and efforts using stable isotope analysis of sugars, amino acids,
and lipid-derived fatty acids with GCMS analysis of isotopomers in oilseed
feeding studies have begun to address this issue. For example, Schwender
and Ohlrogge (2002) demonstrated that over 90% of the carbon for fatty acid
synthesis originates from plastidic glycolysis, but carbon derived from amino
acids is used to provide the cytosolic acetyl-CoA pool necessary from acyl-
CoA elongation and the production of fatty acids with greater than 18 carbons.
Understanding how these processes are regulated will assist in metabolic engi-
neering attempts to increase the yield of very long-chain fatty acids in oilseeds.
In addition, regulatory genes have been identified that alter seed oil yields, such
as WRINKLED1 (Focks and Benning 1998) and APETALA2 (Jofuku et al. 2005;
Ohto et al. 2005), both of which appear to control carbohydrate partitioning in
developing seeds. How this control is exerted is uncertain; however, it is clear
that broad or global-scale metabolite profiling will be necessary to understand
more fully which biochemical pathways are being affected.

3 Future Developments

Data collection from multiple lipid profiling techniques will eventually be
stored as lipidomic datasets, where information on thousands of lipids and
their intermediates will be deposited. The large number of data-points gener-
ated will require annotation into lipid classes, identification of the acyl chains,
and accurate quantification. Automation of data analysis using specifically
designed computer algorithms is under development for lipidomic datasets
(Hermansson et al. 2005), and will be necessary for application in functional
genomic studies.

One emerging need for the utilisation of metabolomic datasets is their inte-
gration with other ’omic data, particularly mRNA transcript data (transcrip-
tomics). For model plants such as arabidopsis, rice, and tomato, there is already
a wealth of transcriptomic data available that can be analysed and modelled to
identify genes that may be involved in particular areas of metabolism, by evi-
dence of correlative expression with genes of known function. There have been
efforts to catalogue genes involved in lipid metabolism (Beisson et al. 2003),
and several attempts to model general transcriptomic data. It is a logical step
to make the same correlations within metabolomic data sets, and also between
metabolomic and transcriptomic datasets. This would be especially valuable,
given that 40% of predicted proteins in transcriptomic analysis have an un-
known function (Benning 2004), and of the 600 identified lipid related genes,
two-thirds have not been functionally characterized (Beisson et al. 2003).

One potential use of lipidomic datasets will be in the discovery of new
regulatory pathways involved in plant glycerolipid metabolism. This could
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be achieved by the integration of rapidly expanding transcriptomic datasets
with new metabolomic data. In particular, new insights could be gained using
‘omic data obtained from different developmental time-points or tissues that
reflect specific biosynthetic or catabolic stages in lipid metabolism. For exam-
ple, major changes in transcriptional activity accompany the progression of
seed development from embryogenesis to maturation and the onset of storage
reserve accumulation. A preliminary study of the Arabidopsis developmental
atlas using data derived from the Affymetrix GeneChip ATH1 Genome Array
has recently revealed that two main opposing expression trends operate during
the progression into seed maturation (Schmid et al. 2005). Approximately 800
transcripts are induced and 1500 transcripts are repressed during this period.
These cover a broad range of cellular processes. In a more focussed transcript
profiling study Ruuska et al. (2002) generated data on 3500 genes previously
identified from a developing seed EST collection. Among a number of inter-
esting observations they found that genes related to biosynthesis of storage
compounds showed several distinct temporal expression patterns and some of
these were similar to the patterns of putative regulatory genes. This work also
included transcript profiling of seed tissue from the wrinkled 1 (wri1) mutant
which is disrupted in a putative AP2/EREBP transcription factor which results
in severe reduction of seed oil accumulation (Cernac and Benning 2004).

Marker-assisted plant breeding programs will also be assisted by new ana-
lytical technologies that enable rapid metabolite profiling of plant lipids. This
approach, together with forward genetic screening methodologies, requires
the rapid analysis of many thousands of individual samples in order to map
to genes or loci of interest. In arabidopsis, variations in seed lipid composi-
tion have been identified by FAME profiling of hundreds of different ecotypes
(O’Neill et al. 2003), and production of recombinant inbred lines have been
used to identifyquantitative trait loci (QTL)associatedwith increasedoil yields
(Hobbs et al. 2004). If intact glycerolipids and their intermediates could addi-
tionally be rapidly profiled during seed development, many more loci involved
in TAG synthesis could be identified using QTL techniques and plant breeding
could also be more finely tailored to achieve optimum seed compositions in
oilseed crops.
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III.4 Metabolic Profiling and Quantification
of Carotenoids and Related Isoprenoids
in Crop Plants

P.D. Fraser and P.M. Bramley1

1 Introduction

Metabolomics has been defined as “a comprehensive analysis in which all the
metabolites of an organism are defined and quantified” (Fiehn 2002). It is
estimated that within the plant kingdom 200,000 different metabolites exist
(Pickersky and Gang 2000), while in Arabidopsis leaf tissue alone, 5000 differ-
ent metabolites are estimated of which about 10% have been annotated using
current technologies. Numerous analytical techniques have now been applied
to metabolomic analysis including NMR, MS and hyphenated-MS, such as
LC-MS/MS, GC-MS and CE-MS (reviewed by Halket et al. 2005). Although
chemical derivatisation can be exploited to alter ionization and chromato-
graphic properties of compounds it is typically the chemical nature of the
metabolites that determines extraction, separation, and detection method-
ologies. Carotenoids are important metabolites involved in many biological
processes, are essential components of human diet (Fraser and Bramley 2004),
and are present in most fruits and vegetables (O’Neill et al. 2001). Over 600
have been identified (Britton et al. 2004). In this chapter we will describe tar-
geted metabolite profiling of carotenoids and related isoprenoids, as well as
application of the technology and its integration within metabolomic stud-
ies.

1.1 Abundance and Biological Functions of Carotenoids

Carotenoids represent one of the largest groups of natural pigments found
in nature and their presence is widespread throughout the plant kingdom
(Harborne 1991). All photosynthetic tissues must contain carotenoids in or-
der to function and most of the yellow, orange and red colours of fruits and
flowers are due to the presence of carotenoids. Functionally, carotenoids per-
form a variety of roles and are involved in numerous biological processes. For
example, they are essential for photosynthesis as they act as ancillary light
harvesting pigments. They are also potent antioxidants acting as protectants
against environmental and metabolically generated free radicals (Miller et al.
1996). Carotenoids also provide membrane stability and act as precursors
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for phytohormones such as abscisic acid, as well as recently elucidated apoc-
arotenoid signalling molecules (Booker et al. 2004).

1.2 Health Aspects of Carotenoids

Carotenoids are essential dietary components for humans. β-Carotene is the
most potent precursor of vitamin A, while other carotenoids alleviate age-
related diseases such as macular degeneration (zeaxanthin and lutein; Sed-
don et al. 1994) and prostate cancer (lycopene; Giovannucci 1999). Although
carotenoids have been shown to have positive effects on human health, rel-
atively large amounts need to be consumed in order to gain noticeable ben-
efits. Typically, nutritional advice is to eat large quantities of fruits and veg-
etables (‘five-a-day’) that contain health-promoting phytochemicals such as
carotenoids. The perceived health benefits of carotenoids have been reviewed
by Fraser and Bramley (2004).

1.3 Biotechnological Importance of Carotenoids

One strategy that has been employed to increase levels of health promoting
carotenoids in fruits and vegetables for human and animal consumption is
genetic modification. Perhaps the best-publicised example is that of Golden
rice, which contains β-carotene (provitamin A) as a result of transformation
with carotenoid biosynthetic genes (Ye et al. 2000). Other workers have pro-
duced tomato fruit with elevated levels of lycopene and β-carotene (Römer
et al. 2000; Rosati et al. 2000; Fraser et al. 2002). However, these varieties
have yet to be commercialised, largely due to the resistance of consumers
and public bodies to the introduction of GM crops into Europe. One con-
cern of consumers and certain public bodies is that the metabolic changes to
such crops are not only unpredictable and unknown, but cannot be detected
by the use of the substantial equivalence approach, used by regulatory bod-
ies, prior to commercialisation. The desire of the consumer for health-based
traits in crop plants, but not via a GM approach, has led to a resurgence of
conventional breeding programs to screen for high carotenoid phenotypes.
Consequently, germplasm resources such as the Lycopersicon pennellii intro-
gression lines (see Sect. 3.2) and ecotype collections have been generated (Gur
et al. 2004).

Besides their health benefits, carotenoids are commercially important nat-
ural products used in the food, feed, pharmaceutical and cosmetic industries.
The world market for carotenoids in 1999 was about US$ 800 million and pro-
jections estimate this will increase to US$ 1 billion in 2005. Although chemical
synthesis is the most often used method to produce carotenoids industri-
ally, production from plants can offer a more cost effective option (Ausich
1997).
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1.4 Chemical Properties of Carotenoids

Carotenoids are predominately C40 hydrocarbon molecules possessing a poly-
ene chain. A series of conjugated double bonds of varying length is a fun-
damental feature of the carotenoid molecule (Fig. 1). Cyclisation of acyclic
carotenes results in the introduction of β-ionone and/or ε-ionone rings at
the ends of the carotenoid molecule. Introduction of hydroxyl and/or oxy-
gen moieties into ring structures results in xanthophylls. It is these structural
features that have a direct bearing on the metabolite profiling methodologies
employed. For example, the C40 hydrocarbon polyene chain results in an ex-
tremely hydrophobic molecule that is not soluble in aqueous or polar solvents.
The series of conjugated double bonds give rise to a chromophore and the
spectral properties of the molecule. The fine spectra can be modified by the
presence of ring structures and oxygen moieties. Collectively, these structural
properties result in characteristic UV and visible spectra for each carotenoid
molecule. In addition, the number of conjugated double bonds, end groups
and oxygen moieties affect polarity and thus chromatographic properties. Fi-
nally carotenoids are sensitive to light, oxygen, acid and in some cases alkali;
thus, careful consideration must be made when designing and implementing
metabolomic approaches to carotenoids. A comprehensive list of carotenoids
and their structures can be found in Britton et al. (2004).

Fig. 1. Structures of typical carotenoids
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1.5 Biosynthesis of Carotenoids and Related Isoprenoids

Carotenoids are isoprenoids and therefore biosynthetically related to other
classes of isoprenoid compounds via the common C5 precursor isopentenyl
diphosphate (IPP). A schematic overview of the biosynthetic pathway (Fig. 2)
reveals the large number of common intermediates, the varied nature of the end
products and also the highly branched nature of the pathway itself. In addition,
the branches of the pathway are located in different subcellular compartments.
All the carotenogenic reactions occur within the plastid, in common with
those forming plastoquinone, tocopherols and gibberellins, but the formation
of sterols occurs in the cytoplasm. One should note, however, that these path-
ways are not completely separate from each other, as transport of at least IPP
occurs across the plastid envelope (Bick and Lange 2003). Taken together, these
complexities of metabolism and subcellular location suggest a sophisticated se-
ries of regulatory interactions with the coordinated fluxof isoprenoid units into
each branch of the pathway. Thus, the likelihood of metabolic cross talk is high,
and perturbations of the flux by genetic modification, mutations or seasonal ef-
fectsmay result inunintendedeffects on individual isoprenoids. Furtherdetails

Fig. 2. Overview of isoprenoid biosynthesis
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of the biosynthetic pathways can be found in several reviews (Hirschberg 2001;
Rodriguez-Concepcion and Boronat 2002; Fraser and Bramley 2004), whilst
aspects of the regulation of isoprenoid biosynthesis are described elsewhere
(Bramley 2002).

2 Analytical Methodologies Employed in the Analysis
of Carotenoids

2.1 Harvesting and Sample Preparation

It is essential to standardise the analytical system adopted, so that pheno-
typic variation between samples can be determined accurately. This necessi-
tates minimising variations in environmental factors by standardising growth
regimes. In the case of crop plants, metabolite changes due to seasonal varia-
tion must be considered. Growth plots should be randomised and the adequate
number of the correct controls interspersed in order to minimise intra and
inter-plant variability. If genetically modified lines are grown, the appropriate
controls (e. g. an azygous or empty vector line) must be included.

Another factor that must be considered is the developmental stage at which
the tissue is harvested. For example, in the case of tomato fruit, seven days
post breaker is commonly used for carotenoid analysis and can be reproducibly
definedby“tagging”at thebreaker stage, i. e. the timeatwhichgreen fruit begin
to change colour. The paradigm growth stages are also an ideal standardization
when using Arabidopsis tissues (Boyes et al. 2001).

Once the plant tissue has been harvested (ideally at the same daily time
point) the optimal storage and preparation conditions need to be determined.
Typically with plant tissue destined for carotenoid analysis, freezing in liquid
nitrogen or at −70 ◦C is adequate and prolonged frozen storage (several years)
does not affect the carotenoids present. Repeated freeze thawing, however, does
reduce the levels of carotenoids and should be avoided. Lyophilisation is an
effective method of preparation that facilitates ease of storage and extraction. It
is essential that lyophilisation is complete, as incomplete freeze-drying results
in loss of carotenoids.

As plant material typically comprises several tissue types of differing tex-
tures it is essential to employ homogenisation procedures that yield homo-
geneous material and eliminate intra-sample variation. In the case of tomato,
where the skin tissue is not amenable to many homogenisation procedures,
we recommend the use of a freezer mill, which provides vigorous homogeni-
sation at low temperatures and can be standardised in terms of power and
time.
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2.2 Extraction Procedures

As carotenoids and most isoprenoids are non-polar molecules they require
organic solvents for extraction. The literature describes numerous carotenoid
extraction procedures with a variety of organic solvents. However, no one
solvent is optimal for all carotenoids and differential extraction can occur re-
sulting in misleading determinations. It is therefore important to know which
carotenoids are present and optimise the extraction accordingly. Figure 3 illus-
trates the variability that can arise from using different extraction solvents. It
can be seen that, with tomato fruit, methanol is very poor at extracting the very
hydrophobic carotenoids such as lycopene, whilst hexane and chloroform show
differential extraction of β-carotene and lycopene. Typically a greater recovery
of carotenoids is achieved with freeze-dried material rather than fresh tissue,
and freeze-dried material is also easier to handle practically. Recoveries must
be assessed and optimised, and re-extraction carried out to ensure complete
recovery of the metabolites, especially if the compounds are at high concentra-
tions that may saturate the solvent during the first extraction procedure. Un-
fortunately, a wide range authentic carotenoids are not available commercially
for use as internal standards for monitoring extraction efficiency. Therefore,
carotenoids that are exclusive to some microorganisms such as canthaxanthin,
astaxanthin and echinenone have been used to monitor extraction efficiency
of higher plant tissues.

Fig. 3. HPLC chromatograms of freeze dried tomato fruit extracted with hexane, methanol or
chloroform showing differential extraction of individual carotenoids
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2.3 Separation Procedures

Modern liquid chromatographic methods are highly sophisticated, allowing
precise maintenance of low flow rates, automation and data handling. More
traditional approaches, however, are often useful in preliminary separations
of carotenoids. For example, thin layer chromatography (TLC) is useful for the
initial profiling of carotenoids in crude extracts. The hydrophobic nature of
carotenoids means they are suited to most silica or alumina-based stationary
phases, and mobile phases comprised of hexane or light petroleum (Davies
1976; Britton 1991). Numerous samples can be loaded onto the thin layers
and run simultaneously, thus providing a high throughput screening protocol
(e. g., Ralley et al. 2004). Since most carotenoids are coloured, visual detection
is straightforward. For colourless carotenoids such as phytoene, staining the
chromatogram with iodine can be used (Davies 1976).

Carotenoids are not compatible with separation by gas chromatography
unless they have been hydrogenated (Taylor and Ikawa 1971). Thus, HPLC
has become the method of choice for separation, identification and quan-
tification. Reverse-phase C18 columns are the most popular matrix for sepa-
rating carotenoids. Typically, a methanol or acetonitrile based mobile phase
will be used with modifiers such as water or ethyl acetate (reviewed Bramley
1992; Craft 1992). Normal phase silica columns are another alternative. Mobile
phases compatible with normal phase separation are usually hexane based,
with ethyl acetate used as the modifier (reviewed Bramley 1992). Traditionally,
reverse or normal phase separation systems have been used to analyse a spe-
cific carotenoid or class of carotenoids. For example, normal phase columns
have been used principally applied for the separation of xanthophylls, while
reverse phase columns have been used extensively in the analysis of acyclic and
cyclic carotenes. More recently, C30 reverse-phase columns have been utilised
to profile a range of carotenoids with diverse polarities (Fraser et al. 2000)
as well as numerous other isoprenoids such as tocopherols, ubiquinones and
plastoquinone. The C30 reverse-phase matrix is also ideal for the separation of
geometric isomers (Breitenbach et al. 2001).

2.4 Identification and Quantification

The number of conjugated double bonds, the nature of the cyclic end groups
and oxygen moieties present in the carotenoid molecule (Fig. 1) give rise to
characteristic UV/VIS spectra. The ability of in-line photodiode array de-
tectors (PDA) to record spectra simultaneously across the whole spectrum
makes them ideal for carotenoid identification. Co-chromatography and com-
parison of spectral characteristics with authentic standards enable conclusive
identification (Fig. 4). Carotenoid standards can be either purchased com-
mercially or purified from known biological sources, and compared to their
properties documented in the literature (e. g. Britton 1995). The weak and
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Fig. 4. Typical HPLC separations of isoprenoids, with corresponding spectra captured in line with
a photodiode array detector

differentialtion of carotenoids makes detection by mass spectrometry (MS)
poor. However, where the spectra of two or more carotenoids are very simi-
lar (e. g. keto group-containing carotenoids) MS can be useful to distinguish
functional groups. In these cases MS detection by APCI-MS (van Breemen
1997) or MALDI-Tof/MS (Fraser and Bramley, unpublished) has been used
effectively.

Quantitation of carotenoids separated by HPLC can be achieved by the con-
struction of dose-response curves prepared from authentic standards. For ac-
curate determination, it is advantageous to prepare a curve for each carotenoid
and record the chromatographic area at the λmax for each carotenoid. If an au-
thentic standard is unavailable, a carotenoid with similar chromatographic
properties and λmax can be used (e. g. β-carotene for α- or δ-carotene).
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3 Examples of Carotenoid/isoprenoid Profiling

In this section we describe the methodologies used to separate, identify and
evaluate the transgenic lines synthesizing novel carotenoids as an example of
metabolite profiling for novel metabolites, as well as the analysis of introgres-
sion lines of tomato.

3.1 Determination of High-value Carotenoids in Transgenic Plants

Astaxanthin, canthaxanthin and zeaxanthin are high-value carotenoids used
industrially as colourants and feed supplements. Higher plants (with the ex-
ception of Adonis flowers) do not produce astaxanthin or canthaxanthin but
possess the precursors zeaxanthin and β-carotene. In order to generate a read-
ily available source of ketocarotenoids the biosynthetic genes responsible for
ketocarotenoid formation in the bacterium Paracoccus (Misawa et al. 1995)
have been expressed simultaneously in Nicotiana tabacum and Lycopersicon
esculentum (Ralley et al. 2004). This gives raise to the potential production of
at least seven unique carotenoids not endogenously present in the plant.

Novisibledifferenceswere apparentbetweencontrol and transgenic tobacco
plants containing the ketocarotenoid biosynthetic genes. In order to rapidly
screen the transgenic population for novel carotenoids a TLC system was de-
vised. Crude chloroform extracts were prepared from freeze-dried material.
The sensitivity of ketocarotenoids to alkali prevents removal of chlorophylls
by saponification. In order to make accurate comparison between lines, the
amount of tissue, extraction volumes and loading onto the TLC plates were
standardised. The most effective TLC system comprised a silica stationary
phase and mobile phase of ethyl acetate/hexane (40:60 v/v). Control extracts
were run concurrently with transgenic samples. Visual comparisons between
control and transgenic lines identified several unique bands with Rf values
similar to those of known products of the astaxanthin biosynthetic pathway.
This TLC approach enabled the rapid detection of novel carotenoids in crude
extracts containing abundant endogenous pigments. In order to identify these
products conclusively, co-chromatography was performed with authentic sam-
ples by HPLC-PDA (Ralley et al. 2004).

The nectary flower tissue of these transgenic lines exhibited a more intense
and reddish colour in comparison to controls. Crude extracts were prepared
and analysed on a C30 reverse-phase column using an unbiased system with
a broad carotenoid polarity range. The chromatogram from the transgenic
line extract contained 30 peaks with carotenoid spectra (Fig. 5). Six of the
peaks showed quantitative increases compared to the control while four peaks
represented novel components. The spectra of these novel peaks identified
them as astaxanthin, 4-ketozeaxanthin, 3′-OH-echinenone and canthaxanthin
and allowed quantification (Fig. 5).
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Fig. 5. Analysis of carotenoids in transgenic tobacco expressing the Paracoccus genes crtZ and
crtW: a control nectary tissue; b transgenic tissue showing additional carotenoids (shown with
an arrow); c levels of carotenoids in nectary tissue. Taken in part from Ralley et al. (2004)

Fig. 6. Separation and identification of carotenoids from two introgression lines of tomato
(4–3–2 and 6–2). Each chromatogram was monitored in line at three wavelengths: 286, 350 and
450 nm. Peaks: 1 – violaxanthin, 2 – lutein, 3 – zeaxanthin, 4 – α-carotene, 5 – β-carotene, 6 –
cis-β-carotene, 7 – cis lycopene, 8 – δ-carotene, 9 – cis-lycopene, 10 – cis-lycopene, 11 – cis-
lycopene, 12 – all trans-lycopene, 13 – cis-lycopene, 14 – cis-phytofluene, 15 – cis-phytofluene,
16 – cis-ζ-carotene, 17 – cis-ζ-carotene, 18 – γ-tocopherol, 19 – α-tocpherol, 20 – cis-phytoene,
21 – all trans-phytoene, 22 – cis-phytoene and 23– ubquinone. The spectra of lycopene (peak 12),
β-carotene (peak 5) and lutein (peak 2) are shown



Metabolic profiling of carotenoids 239



240 P.D. Fraser and P.M. Bramley

3.2 Identification of Carotenoids in Fruit of Tomato Introgression Lines

It has been shown that the carotenoid content of tomato can be altered and
increased by the application of a GM approach (e. g., Römer et al. 2000). How-
ever, many consumers are not willing to accept GM foods. The production
of recombinant inbred lines (introgression lines) with genetically defined re-
gions that represent inherent genetic variation offer an approach for breeding
tomato varieties with improved quality traits (Gur et al. 2004). In order to de-
fine the regions of the genome that confer colour or health traits due to altered
carotenoid content, metabolite profiling is required. In Fig. 6 the application of
metabolite profiling to the elucidation of ILs with altered carotenoid content is
illustrated. The respective profiles show that IL 3–2–4 contains a greater pro-
portion of β-carotene (provitamin A) and many of the pathway intermediates
have been altered.

4 Conclusions

The value of carotenoids to health and biotechnology make them an important
class of metabolites that require qualitative and quantitative profiling. Their
chemical properties are not amenable to GC-MS profiling or NMR fingerprint-
ing. Therefore, targeted pathway profiling using HPLC and spectral data is the
best alternative approach. As the need for the profiling of different plant species
and tissues increases, standardisation of the nomenclature used to document
the components will be required. The approach described in Bino et al. (2004)
could be utilised as a foundation and incorporation into databases.
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III.5 Metabolomics and Gene Identification
in Plant Natural Product Pathways

R.A. Dixon, L. Achnine, B.E. Deavours, and M. Naoumkina1

1 Introduction

Collectively, plants produce more than 100,000 natural products (also known
as secondary metabolites). The underlying genetic basis of their chemical elab-
oration appears at first to be dauntingly complex. However, the rich diversity
of many chemical structures found in the plant kingdom arises from a num-
ber of chemical scaffolds (of many types in terpene biosynthesis, of a much
more limited number in flavonoid biosynthesis) modified by a limited num-
ber of chemical substitution types (hydroxylation, glycosylation, acylation,
prenylation, O-methylation, etc.) (Fig. 1). Much of the chemical diversity is
brought about by the substrate- and/or regio-specificities of the substitution
enzymes. Functional genomics of plant natural product pathways therefore
centers in large part on identifying genes encoding the substitution enzymes
that determine the chemical complexity of a given plant species.

This chapter highlights the problems of how to assign metabolic function
to gene sequences that appear to encode enzymes of secondary metabolism.
We argue that metabolomic analysis is an essential complement to “genomic”
approaches for functional annotationofgenes involved inplantnaturalproduct
biosynthesis (see Fig. 2 for a summary of the concept and potential strategies).
However, developments in this field have lagged far behind those for gene
discovery per se.

2 Gene Discovery – Past and Present Strategies

The classical biochemical approach for characterization of metabolic pathway
genes relied on assay-directed purification of the protein followed by protein
sequence determination, synthesis of gene-specific oligonucleotides based on
the protein sequence, and screening of cDNA or genomic libraries (or use
of polymerase chain-reaction (PCR) approaches) to clone the corresponding
gene. This approach has been very successful in the past (see Kutchan 2002
for an excellent summary in relation to alkaloid biosynthesis), but is some-
what laborious and “low throughput”. Manipulation of proteins is often more

1 Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore,
OK 73401, USA, e-mail: radixon@noble.org
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Fig. 1. Simplified outline of plant natural product biosynthesis, showing the interface between
primary and secondary metabolism and the intermediacy of common scaffolds. In flavonoid
biosynthesis, the great diversity of chemical structures depends largely on the modification and
substitution of the scaffold, often catalyzed by the products of members of large gene families (an
example is given on the right). Note that in terpenoid biosynthesis, much of the diversity arises
from the formation of different scaffolds arising from differential cyclization products formed
by different but closely related terpene cyclase enzymes, and further changes most often involve
oxidation and reduction reactions
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Fig. 2. Strategies for the application of metabolomics to assign gene function in plant natural
product biosynthesis

difficult, and less intuitive, than that of DNA, and low abundance membrane
proteins with poor stability, such as some cytochrome P450s (Kochs and Grise-
bach 1986), pose particular problems. The advantage of the approach is that it
leads directly and unequivocally to a gene encoding a protein of known cat-
alytic activity. However, that catalytic activity has already been defined by the
experimenter, and may not always reflect the in vivo activity of the enzyme.
Furthermore, it is still necessary to confirm function of the gene by expression
in E. coli or an alternative heterologous system such as yeast or insect cells.

The availability of large collections of cDNAs (e. g., expressed sequence tag
[EST] libraries), which can be prepared in “Gateway” vectors for direct trans-
fer, via site-specific recombination, into a variety of “destination vectors” for
heterologous expression (Karimi et al. 2002), efficiently by-passes the need for
initial protein purification if methods are available for selecting candidates
for a particular catalytic activity. DNA sequence-based comparison and an-
notation of EST clones can give an overall list of genes potentially encoding
enzymes of a specific class, although, as the annotation in the databases is
based purely on sequence comparisons, it may sometimes be incorrect. For
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example, some genes annotated as serine proteases are now known to be acyl-
transferases involved in plant secondary metabolism (Li and Steffens 2000;
Shirley et al. 2001), and genes annotated as encoding chalcone synthase (CHS,
the polyketide synthase (Fig. 1) at the entry point of the flavonoid pathway)
may encode related polyketide synthases (Tropf et al. 1994; Schröder 1997;
Schröder et al. 1998).

Generally speaking, sequence-based functional predictions have to be tested
by heterologous expression followed by enzyme assay. This becomes problem-
atic when the gene is a member of a large gene family, such as a cytochrome
P450 or glycosyltransferase (GT), and the experimenter still has to make the
decision as to which substrates will be tested, a decision influenced by the often
limited availability of potential substrates, or their instability in vitro. Further-
more, the substrate specificity of the recombinant enzyme may differ from that
of the enzyme purified from the plant as a result of in planta post-translational
modifications (Vogt 2004).

The most rigorous, unbiased approach to gene function is the analysis
of knock-out lines in the gene of interest, possible for Arabidopsis where
comprehensivecollectionsof such linesexist coveringalmost theentiregenome
(Alonso et al. 2003), but this is not possible for most other species. In some
cases, knock-outs or knock-downs in secondary metabolic pathways have clear
biochemical andvisibledevelopmentalphenotypes (Chapple et al. 1992;Franke
et al. 2002). In other cases there may be a strong developmental phenotype
but the biochemical basis for this may be unclear (Woo et al. 1999). Even
in Arabidopsis with its small genome, genetic redundancy is a problem for
functional identification. For example, knock-outs in several Arabidopsis GTs
with ascribed in vitro activities fail to yield a clear phenotype (D.J. Bowles,
personal communication). Lack of a discovered phenotype in knock-out lines
may also reflect subtle biochemical changes in the mutant that escape targeted
metabolite profiling.

3 Enzyme Promiscuity in Natural Product Pathways

In vitro biochemical analyses provide information on substrate preference
and catalytic properties determined for the substrates selected by the experi-
menter. An enzyme with a relatively high Km or low Kcat/Km value may have
more favorable kinetic constants for other substrates unknown at the time.
Furthermore, the exact in vitro conditions chosen may, in some cases, have
profound effects on relative substrate specificity (Lukacin et al. 2004). In cases
where enzymes are promiscuous, a range of alternative in vivo substrates may
exist. For example, developing strawberry fruits contain lignified achenes and
vascular bundles, and an O-methyltransferase was cloned from the fruit with
substrate specificity for ortho-diphenols including caffeic acid and caffeoyl
CoA (Wein et al. 2002). It was thought likely that this enzyme is involved in
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lignification in the fruit. However, the enzyme was also active with the vanillin
precursor protocatechuic aldehyde, and could also methylate 2,5-dimethyl-4-
hydroxy-3(2H)-furanone (DMHF). The latter two compounds are involved in
flavor production in strawberry. In spite of the relatively low Kcat/Km value for
DMHF, it was concluded, from temporal and spatial examination of expression
patterns, that the promiscuous OMT may play an important role in flavor pro-
duction (Wein et al. 2002). Clearly, for any cell type within the fruit, knowing
the presence, absence or relative levels of the potential OMT substrates would
be instructive for assigning a biochemical function.

A recent example from mammalian cells nicely illustrates the problems of
enzyme promiscuity, and how these may be addressed by a metabolomics
approach. Untargeted LC/MS was used to analyze lipophilic compounds ex-
tracted from the brains and spinal cords of wild-type and transgenic mice in
which the enzyme fatty acid amide hydrolase (FAAH) had been knocked-out
(Saghatelian et al. 2004). Peaks seen in the knock-out but not in the wild type
samples were in fact FAAH substrates. Surprisingly, the relative hydrolytic
activity of FAAH shown for lipid metabolites in vitro was not necessarily in-
dicative of the specific contribution of this enzyme in vivo (Saghatelian et al.
2004).

4 Examples of the Use of Metabolomics in the Elucidation
of Gene Function

It will be clear from the above sections that ascribing gene function in sec-
ondary metabolism is not straightforward because activity in vitro may not
always reflect activity in vivo. Particularly for promiscuous enzymes, knowl-
edge of the cellular levels of all potential substrates may be critical for assigning
in vivo function. Unfortunately, the depth of transcriptomic analyses (which
can be close to genome wide for model species such as Arabidopsis, rice, Med-
icago and poplar) far exceeds that of metabolomic analyses at the present time.
This is particularly true in natural product biosynthesis, where compounds
tend to be identified on an “at need basis”, rather than globally.

4.1 The Isoflavonoid Pathway in Medicago

Isoflavonoids comprise a class of plant natural products with important biolog-
ical activities including health promotion in humans and antimicrobial activity
against plant pathogens (Dixon 1999, 2004; Dixon and Ferreira 2002). They are
found primarily in leguminous plants, where they function as pre-formed or
inducible antimicrobial or anti-insect compounds, as inducers of the nodula-
tion genes of symbiotic Rhizobium bacteria, or as allelopathic agents (Dixon
1999). Isoflavonoids originate from a flavanone intermediate (either liquiriti-
genin or naringenin, Fig. 3a) that is ubiquitously present in plants. For entry



248 R.A. Dixon, L. Achnine, B.E. Deavours, and M. Naoumkina

into the isoflavonoid pathway, flavanone undergoes migration of the B-ring to
the 3-position followed by hydroxylation at the 2-position, catalyzed by the
cytochrome P450 enzyme CYP93C1 (2-hydroxyisoflavanone synthase, com-
monly termed isoflavone synthase [IFS]). The resulting 2-hydroxyisoflavanone
is dehydrated to the corresponding isoflavone (Kochs and Grisebach 1986)
(Fig. 3a), which is then modified by substitution, reduction, ring cyclization
andglycosylation toyield the rangeof isoflavone, isoflavanoneandpterocarpan
compounds illustrated in Fig. 3a.

Most, but not all, enzymes in the pathway to medicarpin are known (Dixon
1999). Several of these characterized enzymes are encoded by large multigene
families; these include P450s such as IFS, OMTs and isoflavone reductases
(Dixon et al. 2002). These genes were first discovered using classical biochem-
ical approaches, such that only one member of the family was initially isolated
and functionally characterized. Questions exist as to whether the other fam-
ily members provide redundancy, tissue-specificity, or even encode enzymes
with different catalytic properties. One way to address these questions is to
linkgene-specific transcript analysiswithmetabolicprofiling that targetsprod-
ucts and intermediates of the pathway in different tissues and/or in tissues in
which the pathway is induced in response to biotic or abiotic stimuli. This
approach has recently proved instructive for addressing gene function in sul-
fur metabolism (including glucosinolate biosynthesis) in Arabidopsis (Hirai
et al. 2004) and in pyridine alkaloid biosynthesis in tobacco (Goossens et al.
2003).

Fig. 3. Integration of transcriptomics and metabolomics for gene identification in the
isoflavonoid pathway: a scheme for isoflavonoid biosynthesis in Medicago sativa (alfalfa) and M.
truncatula. Enzymes are: PAL, l-phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase;
4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; CHR, “chalcone
reductase”; IFS, “isoflavone synthase”; HI4’OMT, 2-hydroxyisoflavanone 4′-O-methyltransferase;
DH, dehydratase; I2’H, isoflavone 2′-hydroxylase; IFR, isoflavone reductase; VR, vestitone re-
ductase; GT, glycosyltransferase; MT, malonyltransferase; P450, cytochrome P450; OMT, O-
methyltransferase.Boxed structures showcompounds forwhichenzymes remainuncharacterized
in Medicago. MG, medicarpin glucoside; FGM, formononetin glucoside malonate. Compounds
marked with a * have been observed in metabolomic analysis; b color-coded panels show DNA
microarray analysis of transcripts encoding functionally assigned genes of the isoflavonoid path-
way (only one gene family member is shown for each enzyme apart from CHS) and candidates
for genes encoding predicted O-methyltransferase, cytochrome P450 and GT genes involved
in isoflavone modification, based on co-induction with identified metabolites. Color coding re-
flects relative expression level at the times shown (hours) after exposure to elicitor or water
(control). Normalization was preformed using GeneTraffic software. Signal intensities between
two fluorescent images (Cy3 reference, Cy5 experimental) were normalized using LOWESS sub-
grid normalization. The color scale indicates normalized signal intensities (log 2 ratio of fold
change between experimental and reference samples); c,d HPLC-UV profiling of (iso)flavonoids
in alfalfa cell suspension cultures 48 h after exposure to water (control, C) or yeast elicitor (D);
e a hydrolyzed extract from cells that had been fed with labeled liquiritigenin (L), with label in-
corporation in formononetin (F), 2′hydroxyformononetin (2’HF) and medicarpin (M) indicating
de novo synthesis in response to elicitation. IL, isoliquiritigenin
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Targeted metabolite profiling in alfalfa (Medicago sativa) (Fig. 3c–e) and
Medicago truncatula cell suspension cultures reveals induction of the same
major isoflavonoid metabolites following exposure of the cultures to an elicitor
from yeast cell walls (Liu and Dixon 2001; Suzuki et al. 2005; M. Farag and
L.W. Sumner, unpublished results). The profiling methods developed in the
past for flavonoids/isoflavonoids, and shown in Fig. 3b–d, rely primarily on
HPLC with UV/visible detection (Graham 1991). This is a simple and reliable
method for cases where metabolites have already been characterized and their
properties (HPLC retention times and UV spectra) are known and authentic
standards are available, e. g., for fingerprinting specific metabolites. However,
mass spectrometry offers many advantages as a detection system for a more
unbiased metabolomic approach, including greatly improved sensitivity and
better structural resolution, particularly when employing tandem MS (Fiehn
et al. 2000a,b; Sumner et al. 2003). Thus, LC/MS/MS analysis of elicited M.
truncatula cell suspension cultures resulted in identification not only of the
group of isoflavones, pterocarpans and their glycosides revealed by UV/visible
analysis (Fig. 3a,c–e), but also of a number of additional isoflavones with
unexpected A-ring methylation and methelenedioxy substitution, as well as
isoflavene and aurone metabolites (M. Farag and L.W. Sumner, unpublished
results).

DNA microarray analysis of M. truncatula cell cultures harvested at a range
of times post-elicitation revealed induction of several members of the multi-
gene families encoding early phenylpropanoid pathway, flavonoid branch
and isoflavonoid-specific branch pathway enzymes (Fig. 3b). Integration of
metabolite and transcript data from such experiments in an interrogable
database allows in silico comparison of transcript induction kinetics with
appearance of specific metabolites. For example, yeast elicitor induced accu-
mulation of a range of methylated isoflavones, suggesting the need for multiple
isoflavone OMTS, and potential candidate genes can be identified from the mi-
croarray dataset (Fig. 3a). Likewise, it is possible to identify a number of
candidate cytochrome P450 and GT genes potentially involved in the forma-
tion of the various glycosylated, oxidized isoflavone derivatives accumulating
in response to elicitation (Fig. 3b).

4.2 Deciphering the Triterpene Pathway in Medicago

Triterpene saponins are a class of plant natural products with a wide range
of bioactivities, from allelopathic and anti-microbial to anticancer and antic-
holesterolemic (Waller et al. 1993; Behboudi et al. 1999; Haridas et al. 2001; Os-
bourn 2003), and are important components of a number of herbal medicines
(Xu 2001; Chan et al. 2002). Most of the genes involved in the biosynthesis of
these complex molecules remain uncharacterized.

The saponins of M. truncatula and alfalfa exist as glycosides of at least
five different triterpene aglycones; medicagenic acid, hederagenin, soyasa-
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pogenol B, soyasapogenol E and bayogenin (Huhman and Sumner 2002). These
compounds are derived from β-amyrin, the cyclization product of 2,3-oxido-
squalene (Kushiro et al. 1998; Suzuki et al. 2002). The downstream reactions in
the biosynthesis of M. truncatula saponins include a number of cytochrome
P450 dependent hydroxylations/oxidations and several glycosyl transfer reac-
tions catalyzed by uridine diphosphate-dependent GTs. Based on current EST
and partial genome sequence information, M. truncatula contains P450 and
GT supergene families each with approximately 300 members. It is more than
likely that most of the genes involved in triterpene biosynthesis in Medicago
are already physically present in EST and genomic library collections, and ap-
proaching the identification from these resources, rather than taking a protein
purification approach, is attractive in view of the relative instability of P450s
and GTs, and the insoluble nature of the former. However, the numbers of
potential candidate genes is problematic. An integrated approach involving
comparison of transcript and metabolite behavior in response to a metabolic
perturbation represents one way to address this problem.

Exposure of M. truncatula cell suspension cultures to methyl jasmonate
(MeJA) induces triterpene saponin accumulation preceded by induction of
the triterpene cyclase β-amyrin synthase (β-AS) (Suzuki et al. 2002, 2005). By
coupling DNA array approaches to profile transcripts corresponding to all 100-
plus GTs in MeJA-induced and control cell cultures with metabolite (saponin)
profiling and in silico expressed sequence tag (EST) data mining, two GTs,
designated UGT71G1 and UGT73K1, were selected and subsequently found to
be active with Medicago triterpene aglycones (Achnine et al. 2005). The basis
of the selection was to compare tissue-specificity (in nearly 40 cDNA libraries
used for EST sequencing) and induction kinetics (assuming co-induction) of
candidate GTs compared to the triterpene cyclase β-AS. A genomics approach
has also recently been used to identify diterpene GTs from Stevia rebaudiana
(Richman et al. 2005).

Of more than 40 potential triterpene and phenolic acceptor molecules tested
in in vitro assays, UGT73K1 only showed activity against three triterpenes
(soyasapogenol E, soyasapogenol B, and hederagenin), consistent with the
appearance of glucosides of these compounds in the MeJA-treated cell cul-
tures (Achnine et al. 2005). However, on the basis of in vitro kinetic measure-
ments, UGT71G1 appeared to have a clear preference for flavonoid compounds
(quercetin and 5-hydroxyisoflavones) as compared to triterpenes (Fig. 4a). The
Kcat/Km ratio of UGT71G1 was more than 30-fold higher for quercetin than
for hederagenin. This raised the question of whether the identification of
UGT71G1 as a triterpene GT was erroneous, and simply a reflection of in vitro
enzyme promiscuity. However, comparisons of the levels of UGT71G1 tran-
scripts, triterpenes, and isoflavones in M. truncatula cell cultures responding
to MeJA or yeast elicitor (a strong inducer of isoflavones) suggested a lack of
association of UGT71G1 with isoflavone glycoside formation, and quercetin
glycosides were not detected in the cultures (Achnine et al. 2005) (Fig. 4b).
Thus, metabolomic analysis resolved the issue of in vivo substrate specificity
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Fig. 4. Metabolomics for gene identification in the triterpene pathway: a substrates and products
of UGT71G1 in vitro; b summary of transcript and metabolite analyses in vivo. Yeast elicitor
induces the formation of genistein glucoside, but not UGT71G1 transcripts, whereas methyl
jasmonate induces hederagenin glucosides and UGT71G1. Other GTs are likely involved in the
formation of isoflavone glucosides in yeast-elicited cells

in this cell culture. Even so, a full understanding of the specificity of UGT71G1
invivomust awaitmetabolomic analysis of plants inwhich its gene is selectively
down-regulated.
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5 Single Cell or Isolated Tissue Metabolomics

The above examples make a strong case for the argument that knowledge of
which compounds are, and which are not, present in a particular plant tissue
may be essential for ascribing function to a cloned gene. This statement also
implies that it is necessary to be able to correlate presence of an enzyme or its
transcripts with those metabolites made in the same cells or cell types.

Many of the plant EST projects currently accessible through publicly avail-
able web sites, such as the TIGR Plant Gene Indices (http:www.tigr.org/tdb/tgi/
plant.shtml), provide expression data as EST counts in a wide range of cDNA
libraries prepared from different tissue, developmental stages, and responses
to various biotic and abiotic stresses and stimuli. A list of currently available
M. truncatula EST libraries is given in Table 1. It is informative to contrast
this list with the paucity of information, and almost non-existent tissue reso-
lution, on the M. truncatula metabolome. A survey of the literature, including
a comprehensive phytochemical dictionary (ILDIS 1994), can provide a list
of secondary metabolites found in different legume species, but the condi-
tions of the tissues from which the metabolites were identified is generally
poorly defined, and, without exception, the studies reported were targeted and
non-comprehensive. A similar situation holds for those other species, such as
Arabidopsis, rice, corn, soybean and poplar, for which extensive genomic and
EST sequence information is available.

Furthermore, the degree of tissue and treatment resolution currently found
in EST databases such as indicated in Table 1 is of itself insufficient to provide
the kind of integration necessary to allow for meaningful correlations between
transcriptome and metabolome. For example, proanthocyanidins are found
in alfalfa in specific regions of the seed coat (Debeaujon et al. 2003) and in
the heads of glandular trichomes (Aziz et al. 2005), but have not been shown
to be present in other parts of the plant. As described above, several studies
have utilized cell suspension cultures to obtain a more homogeneous cellular
background for integrated transcript and metabolome profiling (Goossens et
al. 2003; Achnine et al. 2005; Suzuki et al. 2005). However, although the kinet-
ics of changes in many metabolites can be shown to cluster with changes in
transcript levels, most of the metabolites remain unknown. Spatially resolved
metabolomic and transcriptomic analysis is technically challenging but is an
essential approach forunderstanding the relationshipbetweengene expression
and metabolism in whole plants. Laser capture microdissection (LCM) tech-
niques can now provide tissue samples for such analyses (Kerek et al. 2003), and
techniques are available for the construction of cDNA libraries from minute
tissue samples (Belyavsky et al. 1989).

Trichomes provide an excellent system with which to develop technolo-
gies for integrated transcriptomics/metabolomics on a tissue or even single
cell level. Trichomes are epidermal appendages found on the aerial organs of
many plants. Glandular trichomes have a high capacity to synthesize, store
and secrete secondary metabolites that help protect the plant against insect
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Table 1. M. truncatula EST libraries as of May 1st, 2003 (TIGR Release 7.0), with a total of 189,714
EST sequences (http://www.tigr.org/tigr-scripts/tgi/T index.cgi?species=medicago)

Tissue EST library EST #

1. Leaf
Non-challenged Developing leaf a 9415
Biotic challenged Insect herbivore attacked leaf 10,309

Colletotrichum trifolii infected leaf 6003
Phoma medicaginis infected leaf 3281

Abiotic challenged Phosphate starved leaf 10,188

2. Root
Non-challenged Developing root, no symbiosisa 3054

KV0, non-nodulated root 2752
MtRHE, root hair-enriched 899

Biotic challenged
KV1, root – four day post-nodulation 2840
KV2, root – two days post-nodulation 3330
KV3, root – three days post-nodulation 4315
MtBB, root – four days post-nodulation 7807
GVN, one-month-old root nodules 6468
GVSN, senescent nodules 2788
R108, young root nodules 438
Nodulated root, mixed 3299
MHAM, Glomus versiforme infected root 7368
MtBC, mycorrhizal root 8601
DSIR, fungus-elicited root 2463
BNIR, nematode-infected root 3154

Abiotic challenged MtBA, nitrogen starved root 7939
Rootphos(−), phosphate starved root 1967
MHRP-, phosphate starved root 2658
MGHG, β-glucan-elicited root 2687
HOGA, oligogalacturonide-elicited root 2861

3. Stem
Non-challenged Developing stema 10,783

4. Seed
Non-challenged GESD, developing seeda 2672

GLSD, developing seed 2944
Germinating seed 6619

5. Flower
Non-challenged Developing flowera 6724

6. Cell culture
Biotic challenged Yeast elicited cell culturea 9859
Abiotic challenged Methyl jasmonate-induced cell culturea 6900

7. Pods
Non-challenged Developing poda 1915
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Table 1. (continued)

Tissue EST library EST #

8. Mixed tissues
Non-challenged Cotyledon and leaf 2143
Abiotic challenged Drought stressed seedlings 9520

UV Irradiated seedling 6748

a These tissue types are the only ones to date for which metabolomic analysis has
been initiated. Preliminary results have led to identification of approximately
200 primary metabolites, and a significantly smaller number of secondary
metabolites from each tissue source (ILDIS 1994; Huhman and Sumner 2002;
Achnine et al. 2005; Broeckling et al. 2005; Suzuki et al. 2005; L.W. Sumner, C.
Broeckling, D.V. Huhman and M. Farag, unpublished results)
For EST libraries descriptions, refer to CEDA (Comparative EST Data Analysis
in M. truncatula) at http://bionfo.noble.org/CEDA.htm

predation and other biotic challenges (Wagner 1991; Ranger and Hower 2001;
Wagner et al. 2004). For example, the peltate glandular trichomes of mint
produce a suite of defensive monoterpenes that are the major components
of, and give the characteristic smell and flavor to, mint oil (McCaskill et al.
1992; Voirin and Bayet 1996); trichomes from tomato species collectively pro-
duce a number of insecticidal sesquiterpenes, acyl sugars and methyl ketones
(Li et al. 1999; Antonious 2001; Maluf et al. 2001); and tobacco trichomes
produce diterpenes and acyl sugars (Kandra et al. 1990; Guo and Wagner
1995).

cDNA libraries have been constructed from trichomes of mint (Lange et
al. 2000), sweet basil (Gang et al. 2001), and wild and cultivated tomatoes
(http:www.tigr.org/tigr-scripts/tgi/T{\ }index.cgi?species=tomato). The mint
and tomato trichomes show a strong preponderance of transcripts (repre-
sented by ESTs) encoding enzymes of terpene metabolism. Because of the
highly specialized biosynthetic functions of the trichomes from these two
species, considerable biosynthetic information was obtained by sequencing
only a relatively small number of ESTs (1000–2500). This is likely to be the case
for other species that produce biochemically-specialized trichomes or other
secretory cell types, such as hops (Hirosawa et al. 1995) and vanilla orchid
(Joel et al. 2003). Combining in-depth EST sequencing and metabolite profil-
ing will provide a powerful approach for gene discovery that, because of the
specialized nature of the trichome, will directly address bioactive secondary
metabolites.
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6 Concluding Remarks

We argue for the wider use of metabolomics in the context of natural product
pathway gene discovery. In depth profiling of plant tissues for natural prod-
ucts, coupled to parallel analysis of gene transcript levels using EST count,
microarray, cDNA-AFLP or SAGE analysis, is a powerful tool when applied
to a biological system in which “differential display” of metabolites and gene
transcripts can be visualized and compared. Such systems include knock-out
mutants, plants or cell lines over-expressing biosynthetic enzymes or tran-
scription factors, and plants, tissues or cell lines exposed to biotic or abi-
otic perturbations. Comparisons of tissues at different developmental stages
should also be addressed. In this context, it would be very valuable to ob-
tain in depth metabolite profiles for all tissue and treatment types that have
been sampled in EST sequencing projects, thereby providing a resource for
initial in silico analysis pairing enzymes with potential substrates and prod-
ucts as a tool to assist functional annotation. The major problem is that many
metabolites are unknown and, where they can be predicted (e. g., as inter-
mediates in a complex pathway, Fig. 4a), standard compounds are generally
unavailable.
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III.6 Metabolomic Analysis of Catharanthus roseus
Using NMR and Principal Component Analysis

H.K. Kim, Y.H. Choi, and R. Verpoorte1

1 Introduction

The ultimate goal of plant metabolomics is to map all metabolites in a plant
both qualitatively and quantitatively. Detection of all plant metabolites seems
impossible due to the large number, the chemical complexity of the metabo-
lites and their different characteristics such as solubility and polarity. A proper
analytical method should be selected in order to be able to detect as many
compounds as possible in a plant. A number of analytical methods have been
proposed and applied to profile the plant metabolome (Sumner et al. 2003).
Basically, two types of methods can be distinguished – methods based on
a chromatographic separation, e. g. HPLC, GC and TLC, and methods based
on a physical characteristic of the metabolites, e. g. MS (molecular weight)
and NMR (resonance of magnetic nuclei, e. g. 1H or 13C in a strong magnetic
field). To obtain maximum selectivity, both methods can also be combined.
Chromatographic methods are based on the relative behavior of the individual
metabolites in a system with a mobile phase (gas or liquid) and a station-
ary phase. This allows a selective separation; however, reproducibility is very
much dependant on the quality of both phases. For the mobile phase this is
reasonable; however, for the stationary phase this is different. Many different
stationary phases exist for GC and HPLC, and “improved” stationary phase are
regularly introduced. Long term reproducibility is thus difficult. With respect
to the requirements of speed and reproducibility, nuclear magnetic resonance
(NMR) and mass spectrometry (MS) based approaches score very well if com-
pared to chromatography. The MS based metabolomic analysis shows high
separation efficiency and sensitivity, and easy coupling with chromatographic
methods. These characteristics of MS analysis in the plant metabolomics allow
the detection of a larger number of metabolites if compared to NMR (e. g.
3000 metabolites) (Aharoni et al. 2002; Fiehn 2002). However, there are some
inevitable limitations in the MS based methods. These are mainly in terms of
quantitation. Each compound will show different sensitivity which may also be
different by the matrix in which it is analyzed. For absolute quantitation cali-
bration curves are needed for each single compound. For relative occurrence of
a certain compound in different materials this is of no importance. The range
of metabolites covered by gas chromatography (GC)-MS is restricted more or
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less to small and volatile metabolites having a molecular weight less than 400
(e. g. mono or disaccharides, amino acids, or organic acids). Consequently, this
excludes the detection of unstable and non-volatile plant secondary metabo-
lites such as glycosides. MS can be coupled with high performance liquid
chromatography (HPLC) using soft ionization methods such as electrospray
ionization (ESI) or matrix assisted laser desorption ionization (MALDI) (Huh-
man and Sumner 2002; Tolstilkov and Fiehn 2002). It is suited for all kinds of
metabolites and can also detect polar or high molecular weight metabolites;
however, lack of fragmentation makes it difficult to identify the metabolites –
an MS/MS system is required to obtain structural information.

Despite its low sensitivity, the recent advances in NMR methods offer some
advantages compared to chromatography and MS methods. The range of com-
pounds is not limited by their volatility, presence of chromophores or polarity.
The broad range of metabolites detected by NMR makes it the optimum choice
for macroscopic metabolomics, a total representative view of all metabolites
present. Moreover, NMR has the great advantage that the spectra are highly
reproducible as it concerns a physical characteristic of a compound. In other
words, the NMR data obtained at different places or time can be compared with
each other. It is also possible to elucidate the structure of unknown metabolites,
particularly secondary metabolites. Another advantage is that the signals of
NMR spectra are based on molar concentration and can directly be compared
while the intensity of metabolites in MS is highly affected by the ionization
level.

Despite theadvantagesofNMRinplantmetabolomics, the spectral complex-
ity, lower sensitivity and costly combination with chromatography have made
researchers hesitant to apply it as a tool of metabolomics. Most applications of
NMR to plant metabolomics are in food quality control, e. g. identification of
origin of wine (Brescia et al. 2002), coffee (Charlton et al. 2002), juice (Vogels
et al. 1996) and beer (Duarte et al. 2002).

Here we will discuss several factors which should be considered for plant
metabolomics using NMR. For plant materials in biological experiments, as-
pects such as harvesting, extraction and choice of NMR solvent are important
factors to be considered in metabolomic studies. We will also show some ap-
plications of various NMR methods using several plants, and in particular
Catharanthus roseus, as a model.

2 Experimental Consideration for Metabolomics Using NMR

2.1 Harvesting Plant Material

When plants are harvested, a plant might recognize itself as being damaged
and immediate wound reactions will occur. In the short term (starting im-
mediately after wounding) this self-defense mechanism of plants results in
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oxidation or hydrolysis of metabolites. These reactions will continue and in
the longer term (e. g. 12−72 h) even phytoalexin biosynthesis will produce
novel compounds if the material is stored at room temperature for a certain
time. To avoid these reactions, all biochemical reactions in the plant material
should be stopped immediately at harvesting, for example, by freezing in liq-
uid nitrogen followed by storage at −80 ◦C. Stopping biochemical reactions can
also be done by heating, or by adding organic solvents or strong acid. Heating
will stop enzyme activities involved in the defense reaction, but might cause
decomposition of metabolites. Microwave treatment might be helpful as all
material is heated to 100 ◦C in very short time, where conventional heating will
result in a temperature gradient, in which defense reactions still may happen.
To extract secologanin from Symphoricarpos albus, a few minutes of microwave
treatment in water solution inhibited enzymatic degradation by β-glucosidase
and resulted in a higher yield of secologanin (Kim et al. 2004).

The next factor to consider is the drying of the plant material. Fresh plants
contain approximately 70–80% of water. As this variable water content will
mix with extraction solvent, it causes inaccuracy in the ratio of the extraction
solvents which results in a lower reproducibility of the metabolomic profile.
Moreover, in an aqueous environment the various enzymes involved in defense
will be active,whereas inadrymaterial thesemetabolites arenot likely tooccur.
For example, the extraction efficiency of sinigrin, a well known glucosinolate
of Brassica nigra leaves, is drastically reduced in fresh material compared to
that of dried ones (unpublished results). It might be due to the fact that sinigrin
is degraded by myrosinase in fresh material. For this reason, freeze dried plant
material would be preferable due to higher extraction reproducibility and less
degradation of metabolites.

2.2 Extraction

A number of solvents can be considered for extraction from non-polar to
highly polar. In fact, there are various metabolites in plants with diverse polar-
ity such as alkaloids, amino acids, carbohydrates, fatty acids, lipids, steroids
and terpenoids. It is impossible to extract all these metabolites using one single
solvent. Thus, the choice of an optimum solvent is one of the most important
factors in plant metabolomics. Figure 1 shows 1H NMR spectra of Catha-
ranthus roseus leaves extracted with different polar solvents: methanol, 0.1%
trifluoroacetic acid (TFA)andmethanol-KH2PO4 buffer (pH6.0). Thephenolic
region in the 1H NMR spectra shows different profiles of metabolites. In partic-
ular, the signals from alkaloids (catharanthine and vindoline) are changeable
depending on the extraction solvents. In another experiment, various sol-
vents were tested for Arabidopsis thaliana and Brassica rapa (unpublished
data). More than 90% of metabolites extracted by chloroform and n-hexane
were fatty acids or lipids. Adenosine, cytosine, phenylpropanoids, flavonoids
and terpenoids were abundant metabolites extracted by methanol, acetone or
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Fig. 1. 1H NMR spectra (δ 9.0–6.0) of Catharanthus roseus leave extracted by different solvents:
a 0.1% TFA; b MeOH; c MeOH+TFA; d MeOH:KH2PO4 buffer (1:1) pH 6.0. Leaves were extracted
directly with corresponding NMR solvents (unpublished data)

acetonitrile. Amino acids and carbohydrates are well extracted by water. The
extraction with the mixture of methanol-water (1:1) showed a broader range of
extracted metabolites if compared to other solvents. A mixture of chloroform-
methanol-water (2:1:1) was employed for several plants including Nicotiana
tabacum (Choi et al. 2004a), Cannabis sativa (Choi et al. 2004b), Catharanthus
roseus (Choi et al. 2004c), and Ilex species (Choi et al. 2005). In this mixture,
the chloroform fraction contained a high level of fatty components, steroids,
terpenoids and alkaloids (caffeine, theobromine, theophylline) while carbohy-
drates, phenylpropanoid glycosides and saponins were major metabolites in
the water fraction. This two-phase extraction method provided a wide range
of metabolites compared to a single solvent extraction. However, even with
this two-phase extraction method, the extraction efficiency of medium polar
metabolites such as indole alkaloids (catharanthine and ajmalicine in Catha-
ranthus roseus leaves and roots) and aglycones of flavonoids was relatively
low. For extraction of alkaloids it is necessary to adjust the pH of extraction
solvent.
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To handle hundreds of samples at one time, direct extraction with NMR
solvents will be very helpful to reduce elaborate extraction procedures. It
also minimizes the degradation or loss of metabolites, which occurs during
elaborate extraction procedures.

For all these reasons, direct extraction using MeOD:KH2PO4 buffer (pH 6.0)
is now routinely used for our work.

2.3 Solvent for NMR

Although NMR provides reproducible signals based on physical properties of
molecules compared to other analytical methods, the signals in NMR (chem-
ical shifts) are quite dependent on NMR solvents. Several factors should be
considered to choose the solvents of NMR in plant metabolomics. The pH
of the solution and concentration may influence the reproducibility of NMR
spectra. Since the pH is known to affect shifts in ionizable compounds such
as alkaloids (Schripsema et al. 1987), a controlled pH is thus required for
metabolomic analysis. The pH control can be done using a buffer or sim-
ply adding acid. Commonly used buffers are acetate (pH range 3.7–5.6) and
phosphate (pH range 5.0–7.4), in the concentration of 10−50 mmol/L. As an
example, Fig. 2 shows the effect of pH on the chemical shifts of malic acid in
a plant extract (Senecio aquaticus). The chemical shift of malic acid is highly
affected not only by the pH of the NMR solvent but also by the sort of buffer. It
indicates clearly the importance of pH in order to obtain reproducible chemical
shifts.

For alkaloids the addition of acid can control the pH of extracts. Trifluo-
roacetic acid (TFA) has been used as a pH modifier to adjust pH of the NMR
solvent. Several indole alkaloids including icajine, brucine, strychnine and
vomicine from Strychnos species were analyzed by 1H NMR using 1% TFA in
methanol-d4 (Frédérich et al. 2004).

Even under controlled pH, 1H NMR signals of some metabolites are largely
affected by their concentration in the solution. Recently, we encountered this
problem with ungeremine (Rhee et al. 2004). Lower concentration of un-
geremine in the solution resulted in the downfield shift of each proton by
0.1−0.01 ppm. Other examples are organic acids such as citric acid and malic
acid. These acids can be found in the plant as major products of the TCA
cycle. They show characteristic signals in the range of δ 2.5–δ 3.0. As shown in
Fig. 3, the chemical shifts of the organic acids are also largely changed by their
concentration.
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Fig. 2. 1H NMR spectra of aqueous extract of Senecio measured in different solvents: a pH 6.0 in
acetate buffer; b pH 6.0 in phosphate buffer; c pH 7.0 in phosphate buffer; d pH 8.0 in phosphate
buffer. Note that the resolution of malic acid is affected by different solvent and pH (unpublished
data)

3 Application of NMR for Plant Metabolome

3.1 1H NMR

Because of its relatively high sensitivity and the universal occurrence of pro-
tons in organic metabolites, 1H NMR is a good starting tool for a metabolomic
study. 1H NMR spectroscopy has been shown to provide a wealth of informa-
tion about the main metabolites in plants. From 10 to 50 mg of dried plant
material, a 1H NMR spectrum can be generated within 10 min. The spectrum
covers approximately 50–100 metabolites, of which 10–20 compounds are eas-
ily identified.Basically the identificationof themetabolites is possible bymeans
of chemical shifts and coupling constants.

By visual inspection of the 1H NMR spectrum, one has a first view of the
whole metabolome of the plant material. Figures 4 and 5 show the 1H NMR
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Fig. 3. 1H NMR spectra of: a malic acid; b citric acid in different concentrations – top: 10 mg/mL,
middle: 5 mg/mL, bottom: 1 mg/mL in MeOD-KH2PO4 buffer (pH 6.0). Note that the signals of
these organic acids were upfield shift in the lower concentration. Protons of citric acid appear at
δ 2.7–3.0 (d, J = 17.6 Hz) and δ 2.6–2.8 (d, J = 17.6 Hz), malic acid at δ 2.8–2.6 (dd, J = 16.6 Hz,
4.7 Hz) and δ 2.7–2.3 (dd, J = 16.6 Hz, 6.6 Hz) (unpublished data)

spectra of a healthy plant and phytoplasma-infected C. roseus plant. In the
chloroform fraction (Fig. 4), most of the signals come from the aliphatic chains
of fatty acids and methyl and methylene groups of triterpenoids or steroids.
The expanded aromatic region shows the characteristic signal of vindoline:
H-9 at δ 6.89 (d, J = 8.2 Hz), H-10 at δ 6.29 (dd, J = 8.5 Hz, 2.3 Hz), H-12 at δ
6.07 (d, J = 2.2 Hz), H-14 at δ 5.85 (ddd, J = 10.2 Hz, 4.9 Hz, 1.7 Hz). Together
with these signals, other signals of vindoline such as OCH3 of C-11 at δ 3.79
(s), OCH3 of C-22 at δ 3.78 (s), H-18 at δ 0.49 (t, J = 7.4 Hz) could also be
observed. The intensities of H-9 signal at 6.89 indicate that in infected plants
vindoline content is two times higher than in healthy plants. Figure 5 shows the
1H NMR spectra of the aqueous fraction of the C. roseus. Most of the signals in
the crowded region at δ 3.0–5.0 come from the carbohydrates present in high
amounts in the plant. Besides the signals of carbohydrates and amino acids,
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Fig. 4. 1H-NMR spectra of CHCl3 extract of: a healthy C. roseus leaves; b phytoplasma (BIL)
infected C. roseus leaves; c the expansion of δ 5.5–7.5. 1; olefinic signals of fatty components or
terpenoids, 2; OCH3 of C-11 of vindoline, 3; OCH3 of C-22 of vindoline, 4; long chain CH2 of fatty
material, 5; steroidal or triterpenoidal CH3, 6; H-18 of vindoline, 7; H-9 of vindoline, 8; H-10 of
vindoline, 9; H-12 of vindoline, 10; H-14 of vindoline, S; residual chloroform signal, IS; internal
standard (HMDSO). (With kind permission of American Society of Plant Biologists, reproduced
from Choi et al. 2004c)

characteristic signals from secologanin and loganic acid, important precursors
of the indole alkaloids, can be found, e. g. for the H-3 of secologanin is at δ
7.57 and δ 7.49 and of loganic acid at δ 7.57 and δ 7.49. Other signals from
secondary metabolites such as phenolic acids and chlorogenic acid also could
be detected in the aqueous extracts. The compounds found in the C. roseus
plant by 1H NMR are listed in Table 1. In the infected leaves, the contents of
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Fig. 5a,b. 1H-NMR spectra of methanol-water fraction of phytoplasma (UDINESE) infected C.
roseus leaves in the rage of δ 6.0–8.0. 1; H-7′ of chlorogenic acid, 2 and 3; H-3 of secologanin, 4;
H-2′ of chlorogenic acid, 5; H-6′ of chlorogenic acid, 6; H-3 of loganic acid, 7; H-5′ of chlorogenic
acid and aromatic signals of polyphenols, 8; fumaric acid, 9; H-8′ of chlorogenic acid, *; possible
signals of chlorogenic acid derivatives. (With kind permission of American Society of Plant
Biologists, reproduced from Choi et al. 2004c)

secologanin, loganic acid, chlorogenic acid and sugar are higher than in the
healthy plants.

3.2 J-resolved NMR

NMR-based metabolomic studies typically employ one-dimensional NMR
methods to minimize sample acquisition times and therefore maximize
throughput. However, the spectral complexity and overlapping signals of one
dimensional 1H NMR limits the number of metabolites that can be identified
and quantified. Moreover, few databases for 1H NMR spectra of plant metabo-
lites are available if compared to MS spectra. There are some databases related
to 13C NMR spectra (e. g. NMRshiftDB). However, 13C NMR spectrometry has
limitations in the field of plant metabolomics in the aspect of acquisition time
and quantitation. It takes more than 14 h to obtain informative 13C NMR spec-
tra from the same concentration of samples from which 1H NMR spectra
are obtained within 10 min. In addition, broad band decoupling adopted
to increase the sensitivity of 13C NMR signals cause non reproducible sig-
nal increase (up to 200%) by the nuclear Overhauser effect. Therefore other
two-dimensional NMR methods should be considered for application to plant
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Table 1. 1H Chemical shifts of metabolites of Catharanthus roseus leaves detected from NMR

Number Chemical shifts (ppm) Metabolites
and coupling constants (Hz)

1 1.00 (d, J = 7.0) H-10 of loganic acid
2 1.33 (d, J = 6.7) H-4 of threonine
3 1.48 (d, J = 7.4) H-3 of alanine
4 2.49 (s) Succinic acid
5 3.56 (s) Glycine
6 4.22 (d, J = 8.8) Anomeric proton of fructose (sucrose)
7 4.64 (d, J = 9.5) Anomeric proton of β-glucose
8 5.24 (d, J = 3.7) Anomeric proton of α-glucose
9 5.42 (d, J = 3.8) Anomeric proton of glucose (sucrose)
10 6.39 (d, J = 15.9) H-8′ of phenylpropanoid
11 6.54 (s) Fumaric acid
12 6.93 (d, J = 8.5) H-5′ of chlorogenic acid
13 7.09 (d, J = 1.1) H-3 of loganic acid
14 7.11 (d, J = 8.5) H-6′ of chlorogenic acid
15 7.18 (s) H-2′ of chlorogenic acid
16 7.57 (s) H-3 of secologanin
17 7.64 (d, J = 15.9) H-7′ of phenylpropanoid
18 9.65 (s) Aldehyde proton of secologanin

extracts. Among the 2D NMR methods, the J-resolved technique is an inter-
esting option. It greatly improves the resolution of the 1H NMR spectra within
comparably shorter time (25 min) than other 2D NMR techniques and it is easy
to build up a database since a projection of the 2D spectrum on the chemical
shift axis results in a spectrum in which most of protons are observed as singlet
(Viant 2003).

One of the advantages of J-resolved spectra is that it provides spin multi-
plicities which are sometimes difficult to determine in the 1D 1H NMR due
to overlapping of signals. J-resolved spectra separate the chemical shift and
spin–spin coupling data onto different axes, F1 for spin–spin coupling and F2
for chemical shifts. Complex aromatic signals in the 1H NMR spectrum of C.
roseus leaves appeared as less congested signals in the 2D J-resolved spectra
(Fig. 6). It was quite difficult to identify indole alkaloids such as catharan-
thine and vindoline in the plants due to overlapping with other signals in
the 1H NMR (e. g. phenolics). However, the resolution of these signals in the
J-resolved spectra is dramatically increased. The signals of vindoline H-9 at δ
7.0 (d, J = 2.2 Hz) are clearly separated from other signals. Also the signals
from catharanthine H-9 at δ 7.6 (d, J = 7.8 Hz), H-12 at δ 7.2 (d, J = 8.0 Hz),
H-10 at δ 7.2 (t, J = 8.0 Hz), H-11 at δ 7.1 (t, J = 8.0 Hz) and H-9 at δ 6.3 (d,
J = 2.6 Hz) can be clearly identified.

The enhanced resolution obtained from J-resolved NMR spectra can be
applied to monitor minor metabolic change in the plants which might be
difficult to detect by 1D 1H NMR spectra (Choi et al., unpublished data).
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Fig. 6. a J-resolved NMR spectra of MeOD-KH2PO4 buffer (pH 6.0) extraction of C. roseus leaves.
b Projection of J-resolved spectra. Vindoline signals (v) of H-9 and H-10, catharanthine signals
(c) of H-9, 10, 11, 12 were indicated (unpublished data)

3.3 2D NMR for Structural Confirmation

Although 1H NMR provides a wealth of structural information, extensive over-
lapping in 1H NMR spectrum often makes it difficult to identify metabolites in
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plants. Therefore, 2D NMR methods are essential to identify the metabolites.
There are a number of 2D NMR methods which can be applied. Homonuclear
correlated spectroscopy (COSY)and total correlated spectroscopy (TOCSY)are
helpful to obtain information of connectivity and correlation between protons
(Braunschweiler and Ernst 1983; Bax and Davis 1985). The most crowded re-
gion in the 1H NMR spectra of plant extracts is in the range of δ 3.0 to δ 5.0

Fig. 7. HMBC spectrum of water fraction of phytoplasma (UDINESE) infected C. roseus leaves in
the rage of δ 5.5–7.5. 1; correlation of H-3 and C-5 of secologanin, 2; correlation of H-3 and C-1
of secologanin, 3; correlation of H-3 and C-4 of secologanin, 4; correlation of H-3 and carbonyl
group of secologanin, 5; correlation of H-7′ and C-2′ of chlorogenic acid, 6; correlation of H-7′
and C-6′ of chlorogenic acid, 7; correlation of H-7′ and carbonyl group of chlorogenic acid, 8;
correlation of H-3 and C-5 of loganic acid, 9; correlation of H-3 and C-1 of loganic acid, 10;
correlation of H-3 and C-4 of loganic acid, 11; correlation of correlation of H-3 and carbonyl
group of loganic acid, 12; correlation of H-2′ and C-1′ of chlorogenic acid, 13; correlation of H-2′
and C-3′, 14; correlation of H-2 and C-1 of gallic acid derivatives, 15; correlation of H-2 and C-3 of
gallic acid derivatives, 16; correlation of H-2 and carbonyl group of fumaric acid, 17; correlation
of H-8′ and C-1′ of chlorogenic acid, 18; correlation of H-8′ and carbonyl group of chlorogenic
acid. (With kind permission of American Society of Plant Biologists, reproduced from Choi et al.
2004c)
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where various amino acids and carbohydrates have their signals. The complex
signals in this region can be assigned by COSY and TOCSY.

Furthermore, there are several kinds of C-H correlation spectra. Heteronu-
clear multiple quantum coherence (HMQC) and heteronuclear single quantum
coherence (HSQC) spectra give information of direct C-H correlations (J1).
These two-dimensional NMR spectra are very useful for identifying anomeric
carbons of carbohydrates (δ 90–δ 110), C-6 and C-8 of flavonoids (δ 95–δ 110)
and methyl protons of terpenoids (δ 10–δ 25). For long range correlations (J2
and J3) in molecules, heteronuclear multiple bond correlation (HMBC) is ap-
plied to confirm structures of plant metabolites. Figure 7 shows an example of
the HMBC spectrum to identify the metabolites in the aqueous fraction of C.
roseus leaves. In case of amino acids, H-2 or H-3 is correlated with the carbonyl
group of the amino acid. The proton of alanine at δ 1.48 (H-3d, J, = 4.8 Hz)
correlates with the carbon at δ 178.6, glutamic acid at δ 2.14 (m) and δ 2.38
(m) correlates with δ 179.2, and glycine at δ 3.56 (s) correlates with δ 174.7.
For iridoids such as loganic acid and secologanin, several correlations between
protons and carbons (see figure) confirm the identity of these compounds.

4 Principal Component Analysis

The goal of metabolomic studies is either to characterize an organism or to de-
termine the effect of certain conditions on the organism. It thus requires one to
determine first the biological variability of the system followed by determining
any significant change. This requires the comparison of a large number of spec-
tra. Thus unbiased or non-targeted analysis is required for these huge data sets.
For this purpose multivariate analysis and in particular principal component
analysis (PCA) are suited. PCA is an unsupervised clustering method requir-
ing no knowledge of the data set. It reduces the dimensionality of multivariate
data while preserving most of the variance within it (Goodacre et al. 2000). All
samples are plotted on the coordinates consisting of raw variables (chemical
shifts in the case of NMR applications) and a line is constructed based on
the best approximation of the data in the least squares sense. Each sample is
projected onto this line. The co-ordinate value along the line is a PC1 score.
Other PCs can be calculated by the line orthogonal to former PCs (Eriksson
et al. 2001). Generally, the separation takes place in the first two components
(PC1 and PC2). For the PCA, care must first be taken to choose an appropriate
scaling method. The unit variance scaling method uses a reciprocal of standard
deviation. It results in normalizing the effect of big and small signals. However,
noise in the spectra might have a bigger effect on the result than expected. No
scaling is used in PCA combined with NMR spectra because it could preserve
the original effect of each variable but the effect of minor metabolites (in par-
ticular plant secondary metabolites) is probably neglected. The Pareto scaling
method is preferred for application to the analysis of NMR spectra. It gives each
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variable a variance numerically equal to its initial standard deviation instead
of unit variance. Therefore, the Pareto scaling is an intermediate between no
scaling and unit variance scaling. The principal components can be displayed
graphically as a scores plot. This plot is useful for observing any grouping in
the data set. Coefficients by which the original variables must be multiplied to
obtain the PC are called loadings. The numerical value of a loading of a given
variable on a PC shows how much the variable has in common with that com-
ponent. Thus, for NMR data, loading plots can be used to detect the metabolites
responsible for the separation in the data.

Figure 8 shows an example of PCA of healthy and phytoplasma-infected
C. roseus. PCA score plots of healthy and infected plants by ten different
phytoplasmas show that healthy C. roseus leaves are clearly separated from the
phytoplasma infected leaves in both chloroform fraction (Fig. 8a) and water
fraction (Fig. 8b). Loading plots explain that, in the chloroform fraction, the

Fig. 8. Score plot of principal component analysis of: a CHCl3 extracts; b water extracts of healthy
and phytoplasma infected C. roseus leaves. 1–10: Infected plants by 10 different phytoplasmas, H;
healthy plant. The ellipse represents the Hotelling T2 with 95% confidence in score plots. (With
kind permission of American Society of Plant Biologists, reproduced from Choi et al. 2004c)
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responsible components for separation are: fatty component – the signals at
1.2–1.4 (CH2), 5.0–5.5 (olefinic CH2), and indole alkaloids such as vindoline –
the signals at 3.79 (OCH3 of C-11), 3.78 (OCH3 of C-22), 0.49 (H-18). It indicates
that C. roseus leaves infected by phytoplasma contain less fatty components
and higher vindoline compared to healthy leaves. When the intensity of each
signal was compared, it is clear that infected leaves have two to four times
increased level of vindoline relative to healthy plants. For the water extract, the
score plot shows that healthy leaves are well separated from infected plants by
both PC1 and PC2 (Fig. 8b). The healthy leaves have lower PC1 and higher PC2
relative to infected ones. The loading plot of PC1 and PC2 explained that most
of infected C. roseus leaves have higher amounts of sucrose, chlorogenic acid,
loganic acid, secologanin, and polyphenols compared to healthy plants.

By using 1H NMR in combination with PCA, it is clearly shown that
the metabolites related to the biosynthesis of terpenoid indole alkaloid (lo-
ganin acid, secologanin, vindoline) and phenylpropanoids (chlorogenic acid,
polyphenol) are present in higher amounts in the phytoplasma-infected leaves.

5 Concluding Remarks

Several analytical methods may be used for metabolomic profiling of plants;
however, 1H NMR spectra offers a wealth of information of metabolites com-
pared to other methods. Decoupled NMR spectra (J-resolved) provide even
more information since metabolites can be accurately integrated and it can
exclude broad resonances from macromolecules and spin–spin coupling data.
In addition, combinations of two dimensional NMR methods are quite helpful
to identify the metabolites in plant extract.

To be able to compare all the data generated from NMR from different
experiments and different laboratories, a large database is required. However,
that requires a high degree of reproducibility, which can be achieved by using
a standardized method for sample preparation and data acquisition.

So far, NMR has been successfully used for the metabolomic fingerprinting
and profiling of plants and is successfully applied in quality control of among
others, food and botanicals. The use of NMR metabolomics in functional
genomics will be the challenge for the coming year.
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III.7 Metabolomics of Plant Secondary Compounds:
Profiling of Catharanthus Cell Cultures

M. Orešic̀, H. Rischer, and K.-M. Oksman-Caldentey1

1 Introduction

Plants have supplied mankind with potent medication since ancient times
and still provide a largely untapped resource for the discovery of novel phar-
maceuticals (Verpoorte 1998). Currently only about 10% of higher plants are
chemically characterized to some extent. Low molecular weight compounds,
usually referred to as ‘secondary metabolites’, exhibit many biological func-
tions such as stress response (Hirai et al. 2004) but for many the exact function
remains unknown. Because of their extremely diverse chemical structures
and hence their pharmacophoric properties, these natural products constitute
an important addition to compound libraries forming the basis for all drug
discovery and development efforts (Hostettman and Terreaux 2000).

Alkaloids are one of the most studied groups of plant secondary metabo-
lites. Currently about 15,000–16,000 different alkaloids are known (Verpoorte
2000) and they can be further classified into several subclasses according to
their chemical structures. In contrast to, e. g. phenolic compounds, which are
abundant throughout the whole plant kingdom, alkaloids are often restricted
to certain plant families or even certain plant species. The reason why alkaloids
have been of such wide interest can be explained by their strong physiological
properties leading to their use as, e. g. pharmaceuticals or pesticides. Fur-
thermore, the isolation of alkaloids from plant matrices is relatively simple
compared to many other plant compounds. This has allowed scientists to
measure and isolate very small amounts of various alkaloids using different
chromatographical systems (GC, LC) combined later with spectrometry (e. g.
MS, NMR) for their structure elucidations.

The importance of plants as a source of new drug molecules can be nicely
illustrated by the following figures. During the past 20 years, 28% of new drug
entities were either natural products or derived from them as semi-synthetic
derivatives and, in addition to that, 24% of the drugs were synthesized after
the molecule was first discovered from natural resources (Newman et al. 2003).
Modern high throughput screenings (HTS) allow enormous numbers of sam-
ples to be tested automatically for biological effects using molecular targets
(Cordell 2000). There are three strategies usually applied for the discovery
of bioactive compounds from plants and all of them have provided promis-
ing substances for further testing. The simplest case is the indiscriminate
1 VTT Biotechnology, P.O. Box 1500, 02044 VTT, Finland, e-mail: Kirsi-Marja.Oksman@vtt.fi
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extraction of as many species as possible. Another possibility is the exploita-
tion of ethnobotanical knowledge gathered from indigenous communities,
and finally the targeted search for useful compounds within related groups of
plants which have already been shown to contain potent metabolite classes.
However, no matter how a new lead compound had been discovered, plant
derived substances share the same problem: their chemical synthesis is of-
ten economically unfeasible. The development of urgently needed alternative
production systems such as genetically engineered plant cell cultures are ham-
pered by the incomplete knowledge of biosynthetic pathways leading to the
target compounds (Oksman-Caldentey and Inzé 2004).

2 Metabolomics as a Platform
to Study Plant Secondary Metabolites

The ‘omics’ revolution has empowered us with the ability to measure large
numbers of biomolecular components in parallel, therefore enabling the sys-
tems approach. Metabolites are known to be involved as key regulators of
systems homeostasis. As such, level changes of specific groups of metabolites
may be descriptive of systems responses to environmental or genetic interven-
tions, and their study may therefore be a powerful tool for characterization of
complex phenotypes (Orešic̀ et al. 2004). Among the emerging omics technolo-
gies, metabolomics has gained the prominence most recently, yet it may also
be considered as the oldest of the omics approaches. The pioneering research
on use of metabolic fingerprinting as a phenotyping tool dates back to the
1970s and 1980s (Jellum 1977; van der Greef et al. 1983; Windig and Meuzelaar
1984). On entering a post-genomic era and with new advances in analytical
and informatics technologies, the metabolomics approach is becoming more
feasible, making it one of the core components of systems biology research.

The general problem encountered when characterizing the plant metabol-
ome is the highly complex nature and the enormous chemical diversity of
the compounds. Additionally, under physiological conditions the metabolites
exist across a very broad concentration range, possibly 10 orders of magni-
tude. Plants produce approximately 200,000 metabolites (Fiehn 2002), many of
which play specific roles in allowing adaptation to specific ecological niches.
The range of chemical properties sets a challenge to the analytical tools both
for profiling multiple metabolites in parallel, and for quantitatively analyzing
the selected ones. This has especially become obvious in secondary metabo-
lite analysis, which is far more complex than metabolite profiling of primary
metabolites. Metabolites have very different chemical natures, which influence
their extractability in various solvents, pH requirements and sensitivity for
extraction conditions (e. g. temperature, pressure, time). As a consequence, if
applying one general extraction system, it is very likely that many metabo-
lites remain in the plant matrix and cannot be profiled. This holds also if the
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Fig. 1. Schematic representation of an integrated metabolomics platform for studying plant
metabolites

specific extractions system is developed for compounds of particular chemical
properties; further extracts have to be analysed (Oksman-Caldentey and Saito
2005).

One of the key technological challenges of metabolite profiling is therefore
finding the optimal balance between the accuracy and coverage of metabo-
lite measurements. This can be achieved by first dividing the metabolomics
platform into multiple methods of varying coverage and specificity (Fig. 1).
Advances in instrumentation for metabolite analyses are empowering us with
the ability to increase the coverage of metabolites within a single analysis.
Most commonly, gas chromatography-mass spectrometry (GC/MS) and liquid
chromatography-mass spectrometry (LC/MS) based approaches have been
applied in plant metabolomics applications (Fiehn 2002). For example, it is
estimated that a single plant can contain 10,000 metabolites and currently
by using GC/ToF-MS technology it is possible to detect around 1000 of them
from a single sample (Weckwerth et al. 2004). Following analytical measure-
ments, the role of data processing algorithms is to detect the peaks in spectral
data (peak detection), match the corresponding peaks across multiple samples
(alignment), and correct the peak intensities due to instrumental variability
(normalization). These methods enable us to track differentially the metabo-
lite levels in multiple environmental conditions or time points, even if some of
the compound identities are not known.
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However, when studying plant secondary metabolites and their role in phys-
iological responses to various environmental stress conditions, we are also
interested in finding and identifying compounds that are either unknown or
not previously analyzed, so there is insufficient data available from profiling
experiments alone for accurate identification. The data processing methods
outlined above may play an essential role in elucidating the biological role of
such compounds, and multivariate approaches combining the profiles of un-
known compounds with known metabolites, transcriptional, proteomic and
phenotype information may help us direct the process of identifying the most
relevant compounds based on their correlations with known compounds and
specific biological processes (Fig. 1). This is particularly important since the
process of identification can be very difficult and time consuming, and it is
unlikely that all peaks found in spectral data can be identified with sufficient
confidence.

3 Case Study: Metabolic Profiling of Catharanthus roseus Cells

In this section we focus on the question whether a metabolomics approach
using LC/MS is feasible for the exploration of secondary metabolites in cell
cultures of the medicinal plant Catharanthus roseus L. G. Don (Apocynaceae).
The intention was strictly to find out how many peaks could be detected unam-
biguously in only one sample fraction known to contain the most important
secondary metabolites from the pathways leading to terpenoid indole alkaloids
(TIAs), and to apply the data processing tools which proved useful in other
projects.

C. roseus represents an extensively studied object because of the presence
of TIAs, several of which are in high demand for pharmaceutical use. No-
table is that closely related alkaloids derived from the same pathway may
possess completely different pharmacological properties. The clinically used
anticancer substances vincristine and vinblastine are still derived from field
grown plants and therefore yield high market prices. So far all attempts to pro-
duce these phytopharmaceuticals by means of plant cells in bioreactors have
economically failed (Moreno et al. 1995). Compared to other compound classes
there is a relatively clear picture of the biosynthetic pathway leading to TIAs
(Fig. 2). The central metabolite strictosidine is derived from moieties delivered
by the shikimate and by the plastidic non-mevalonate (MEP) pathway. From
here multiple routes lead to a great diversity of alkaloids of which vindoline
and catharanthine constitute the building blocks for the formation of the previ-
ously mentioned bisindole alkaloids. In cell cultures low levels of vindoline are
generally the limiting factor for bisindole alkaloid accumulation. This has been
attributed to transcriptional blockage (Vazquez-Flota et al. 2002) and multi-
cellular compartmentation of the vindoline biosynthesis (St-Pierre et al. 1999).
Recently good progress has been made in elucidating partly the transcriptional
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Fig. 2. Scheme of TIA biosynthesis. The up-/downregulation of several identified compounds is
indicated at p < 10−4

regulation after elicitation (Pauw et al. 2004). Nevertheless, at the metabolite
level, the picture is generally very incomplete because, even if a universal ex-
traction method is used, analytics comprise rarely more than 10 metabolites
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at once (Tikhomiroff and Jolicoeur 2002). This is a clear motivation for the
attempt to use more comprehensive metabolomic approaches for the profiling
of secondary metabolites in the Catharanthus system as described here.

3.1 Results

The principal of elicitation was used to induce a differential response on the
secondary metabolite level as a stress response (Reymond and Farmer 1998).
We applied jasmonates since they act as signalling molecules by activating gene
expression of biosynthesis genes in a coordinated way (Memelink et al. 2001).

We profiled 20 samples in total, 10 control strains and 10 elicited strains.
The replicates are the same strain in parallel cultures corresponding to the
same time point. They can thus be considered as biological replicates. Total
ion chromatograms already reveal clear differences at the retention time of
approximately 21 min, as can be seen from Fig. 3 comparing two represen-
tative samples. However, from chromatography alone we cannot determine
differences at the level of individual compound peaks, which can be found
after processing LC/MS profile data.

Following data processing as explained in Sect. 4.3, we found 4190 peaks,
and analyzed the data using Principal Components Analysis (Jackson 1991)

Fig. 3. Total ion chromatograms of two representative LC/MS Catharanthus roseus profiles. Elt4 =
elicited cells, Ctl4 = control cells
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using mean centering transformation of data. PCA is a linear dimensionality
reduction method which finds the orthogonal axes of maximum variance in
data, e. g. the principal components. Figure 4a shows that excellent separation
between the control and elicited groups can be found already with the first
principal component, which accounts for 83% of total variance. In order to
identify the variables contributing most to the differences between the two
groups of samples, we investigated the loadings for the first principal compo-
nent. The loading plot in Fig. 4b shows that there are three major compounds
descriptive of the elicited cultures: ajmalicine, tabersonine, and a compound
we were unable to identify from the internal reference database containing
spectral compound information.

Extracting and interpreting the results for these compounds from the peak
list serves as a nice control whether the data make biological sense. Figure 2
showsa fewexamplesof relevance to theknownpathways.Asexpected, vinblas-
tine was not detected in the samples, which is also explainable by the observed
significant downregulation of vindoline, only present in trace amounts, by
a factor of 1.5. Upstream tabersonine on the other hand differentially accu-
mulated threefold. It has been known for several years that the late stages in
the vindoline pathway are strictly regulated in a development-specific, tissue-
specific and light-dependant manner (St-Pierre and de Luca 1995) and are
therefore partly not functional in undifferentiated cells. Catharanthine levels
were unaltered at the observed time point 24 h after elicitation, whereas the
ajmalicine concentration increased threefold and serpentine 1.5-fold. These re-
sults are again very much in line with reports in the literature using a targeted
approach (Lee-Parsons et al. 2004).

We have also found several differentially regulated compounds which are not
part of the shikimate or MEP pathways. Based on results of PCA and univariate
statistical analyses, we are currently pursuing targeted MS/MS analyses on
selected peaks that we were unable to identify from the internal reference
database.

Overall, we can conclude that the chosen differentially responding sys-
tem, i. e. elicited vs non-elicited Catharanthus cell cultures, is very suitable
for a metabolomic approach. Even using only one extracted fraction and one
chromatographic condition, more than 4000 peaks were unambiguously de-
tected. The PCA employed proved sufficient for reducing the complexity of the
data and afforded the selection of potential compounds exhibiting the great-
est modulation. Peak identification was possible for a number of compounds
involved in the TIA pathway by comparison of spectral characteristics and
retention times of references in a database and their behaviour is sound in the
biological sense.
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Fig. 4.A Principal Components Analysis (PCA) shows differences between the elicited and control
samples. B The factor analysis reveals three compounds as major contributors to the clustering
of elicited samples
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4 Protocol

4.1 Plant Material and Sample Preparation

Catharanthus roseus cell suspensions were grown in liquid Gamborg B5 me-
dium (Gamborg et al. 1968) containing 20 g/L sucrose and 1.86 mg/L NAA in
an incubator shaker at 26 ◦C, continuous light and 130 rpm. Elicitations were
started at day six after inoculating 2 g fresh weight of cells in 25 mL medium
contained in 100-mL Erlenmeyer flasks by addition of methyl jasmonate dis-
solved in DMSO at a final concentration of 50 μmol/L or DMSO alone as a con-
trol. Cells were harvested by vacuum filtration after 24 h. Extraction followed
the modified protocol of Whitmer et al. (2002). Prior to extraction, 50 mg of
lyophilized cells were spiked with vincamine as internal standard and extracted
with 15 mL ethanol in an ultrasonic bath for 10 min. Following centrifugation
at 5000 rpm for 10 min, the solvent was decanted and evaporated to dryness.
Dry samples were stored at −20 ◦C until analysis. Then the samples were redis-
solved in a 1:1 mixture of acetonitrile and 10 mmol/L ammonium acetate pH 10
and 25 μL of the solution were injected into the HPLC after centrifugation.

4.2 HPLC/ESI/MS

HPLC separation was performed using a Waters HT-Alliance 2795 system and
was monitored with a Micromass Quattro Micro triple quadrupole mass spec-
trometer equipped with an electrospray source. The ion source was operated
at capillary voltage 3.20 kV and cone voltage 45 V. Source and desolvation
temperatures were 130 ◦C and 290 ◦C, respectively. Desolvation gas flow was
900 L/h and cone gas flow 30 L/h. The scan mode function was applied to record
the protonated molecular ions. An aliquot of 25 μL of sample were loaded onto
a reverse-phase C18 column (Xterra MS C18, 4.6 × 150 mm, 5 μm, Waters)
at 35 ◦C. The sample was eluted within 30 min using isocratic conditions of
10 mmol/L ammonium acetate at pH 10 and acetonitrile (55:45) applying a flow
of 1 mL/min and a split of 0.2 mL/min reaching the mass spectrometer.

4.3 Processing of LC/MS Data

Raw data from the MS instrument were converted to NetCDF format using
the DataBridge application from MassLynx software. We used our MZmine
software package to process the data (Katajamaa and Orešic̀ 2005). While
the software, which contains several options at each stage of LC/MS data
processing, will be discussed in detail elsewhere, we summarize below the
methods and their parameters used for this chapter.

Each scan was filtered using the mean window filter with a 0.3 mass unit
window, followed by peak detection in the m/z dimension using the recur-
sive threshold method. The m/z peaks were then compared across different
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retention time scans. A peak was connected with another peak in the neigh-
bouring scan if the m/z difference was below a threshold, set to 0.1 mass units.
Only peaks connected by more than 8 scans and less than 100 were retained
in our analysis. For each peak we recorded the m/z and retention time at the
position of the maximum height across connected m/z peaks, as well as peak
height in this position as the measure of intensity. We then performed align-
ment across different samples by creating a master list of all peaks and finding
the best matched peaks from each sample. The peaks were matched across
different samples if they met specific similarity criteria, in our case 0.15 mass
units in m/z and 15 scans in retention time. Following this process, we created
a data matrix of intensities, where as row indices each peak was described by
m/z and retention time value, and as column indices were the samples.

The normalization method is based on multiplicative error model nor-
malization first applied to gene expression data (Hartemink et al. 2001). The
method has since been applied to LC/MS data as well (Orešic̀ et al. 2004). Log-
values of intensities (with index i for peaks, and j for samples) were modelled
by a linear model:

yij = μi + sj + εij (1)

where the peak effects are described by μi, the sample-specific effect by sj,
and the error by εij. We assume the error is normally distributed with zero
mean and the variance σi, i. e. we do permit the variance to be different for
each peak. The optimal parameters of the model were calculated using the
maximum likelihood method, with the difference that the model is applied to
the whole dataset, not only to the internal standards. Each sample was then
scaled by the factor exp(−sj).

5 Perspectives

The recent advances in functional genomics offer unprecedented opportuni-
ties to use the biochemical capacity of plants to produce and to design novel
compounds. At the same time the integrations of metabolomics into other
‘omics’ (transcriptomics and proteomics) have brought us closer to under-
standing different levels towards systems biology. However, before we can
metabolically engineer, e. g. medicinal plants or their cell cultures to produce
secondary metabolites of high-value, we need to profile the changes in the
whole metabolome. This cannot be done only with the current tools of tar-
geted metabolite analysis which gives us very limited information how the
whole metabolic machinery works. Therefore sophisticated tools are needed
in metabolite profiling to connect the functions of individual genes or in com-
bination in a system.

The method utilized for metabolite profile analysis in this chapter, i. e.
PCA, is a common dimensionality reduction method which has been applied
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to analyses of metabolite fingerprint data since the 1970s. PCA effectively
enables study of the objects (i. e. biological samples) with a reduced number
of variables. PCA is a powerful first-pass method for analysis of profile data,
which can detect major patterns or trends in data. Several related methods
such as Sammon’s mapping (Sammon 1969), self organizing maps (Kohonen
2001), or independent component analysis (Hyvärinen and Oja 2000) may
also be applied for the same purpose. However, when the changes between
phenotypes of interest are minor, i. e. not contributing significantly to overall
variation in data, and are possibly limited to specific sub-groups of compounds,
PCA and similar methods may fail detecting such changes.

An intuitive method to study subtle patterns of changes at the level of
individual compound peaks is correlation networks. With this method we esti-
mate the level of co-regulation between the pairs of compounds by calculating
the correlation coefficients across their profiles. This can be based on linear
methods such as Pearson correlation (Kose et al. 2001) or other estimates of
similarity. In the domain of plant secondary metabolites where the pathways
are largely unknown, it is also important to understand the co-regulation be-
tween the metabolite and other levels, such as transcript, protein, and genome.
The correlation network analysis can be extended to such integrated data, with
additional precautions in regards to normalization and similarity measures
(Griffin et al. 2004; Orešic̀ et al. 2004). With appropriate experiment design,
such approaches may also facilitate discovery of novel pathways. In this respect
peak identification plays a crucial role, too, as only this piece of information
allows for matching new data with already known reactions in biochemical
pathways.
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III.8 The Taxus Metabolome and the Elucidation
of the Taxol®* Biosynthetic Pathway
in Cell Suspension Cultures

R.E.B. Ketchum and R.B. Croteau1

1 Introduction

Plants of the genus Taxus (yews) produce a class of natural products known
as taxane diterpenoids or taxoids characterized by the unusual taxane (pen-
tamethyl [9.3.1.0]3,8 tricyclopentadecane) skeleton. To date, nearly 400 taxoids
have been isolated and characterized (Baloglu and Kingston 1999; Itokawa
2003). The most economically and pharmaceutically important of these com-
pounds is the anticancer drug paclitaxel, known commercially as Taxol® (1;
Fig. 1). All taxoids are derived from the same parent diterpene olefin, taxa-4,11-
diene (2; Fig.1) or products of its rearrangement. The biochemical pathway that
originates with taxa-4,11-diene and culminates in the production of taxol likely
branches from the central pathway leading to the formation of the more abun-
dant taxines present in Taxus tissue (Ketchum et al. 2003). Departures from this
pathway, the result of variations in the pattern of cytochrome P450 oxygena-
tions and subsequent acylations, lead to the formation of a diverse assortment
of taxoids, of which taxol is most often a minor component (Fig. 2).

It is estimated that the biosynthesis of taxol from the universal diterpenoid
precursor geranylgeranyl diphosphate involves 19 distinct enzymatic steps,
with a similar number of relevant intermediates out of the approximately 400
taxoid metabolites characterized to date (Hezari and Croteau 1997; Croteau
et al. 2005). An understanding of the enzymatic reactions that lead to taxol
requires definition of the comparatively few intermediates that are directly
involved in taxol biosynthesis.

A detailed metabolic profiling of taxoids produced by Taxus cell suspen-
sion cultures, via both constitutive and induced pathways, is essential for the
identification of intermediates directly involved in taxol biosynthesis. Equally
important is the identification of metabolites that are intermediates of parallel
or divergent taxoid pathways. Guided manipulation of the genes that encode
these pathway steps, either by up- or down-regulation, also requires quantifi-
cation of the equilibrium levels of these taxol intermediates, as well as of those

1 Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA, e-mail:
rketchum@wsu.edu

∗Taxol® is a registered trademark of the Bristol-Meyers-Squibb company. The approved generic
term for the drug is paclitaxel. Due to historic precedent and the abundance of taxoids with
names derived from “taxol,” we will use the more familiar term “taxol” when referring to this
compound.
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Fig. 1. Taxol (paclitaxel; 1) is the final product of an 18-step biosynthetic pathway that begins
with the parent diterpene olefin taxa-4,11-diene (2)

taxoids not involved in taxol formation, and of the flux through the various
pathway branches during the normal growth cycle and following elicitation.
By metabolic engineering of taxoid metabolism in cell culture, it should be
possible to increase the production yields of taxol well over the 0.01 to 0.08%
dry weight concentration range now reported (Ketchum et al. 1999c).

Plant cell suspension cultures of Taxus, that are inducible by methyl jas-
monate and are capable of producing significant amounts of taxol, are an
essential tool for investigating taxol biosynthesis (Mirjalili and Linden 1996;
Yukimune et al. 1996; Ketchum et al. 1999a, 2003). Such cultures provide
metabolic intermediates, enzymes, and genes that allow biochemical and
molecular elucidation of the taxol pathway. In previous reports we have utilized
methyl jasmonate as an inducer of taxol biosynthesis, and have presented com-
parative information on the distribution of taxoids produced both with and
without methyl jasmonate elicitation (Ketchum et al. 2003). Whereas methyl
jasmonate is an excellent elicitor of taxol production, it is also well known as
an inducer of other defense-related genes (Creelman and Mullett 1997; Miller
et al. 2005). Methyl jasmonate can increase the in vitro production of taxol by
over 20-fold relative to uninduced cultures (Ketchum et al. 1999a); however, it
also increases the production of taxoids that are not involved in taxol forma-
tion, such as the 14β-hydroxy taxoids (Ketchum et al. 2003). To simplify the
profiling of the taxoids produced by cell suspension cultures, and to prevent
the induction of genes and enzymes not directly involved in taxol biosyn-
thesis, only constitutive (uninduced) taxoid metabolism is described in this
report.

Fig. 2. Biosynthesis of taxol from primary metabolism illustrating proposed intermediates and
“off-pathway” metabolites. Abbreviations: MEP – methylerythritol phosphate; IPP – isopentenyl
diphosphate; DMAPP – dimethylallyl diphosphate; IPPI – isopentenyl diphosphate isomerase;
GGPPS – geranylgeranyldiphosphate synthase; TS – taxadiene synthase. aThis compound has
not been confirmed to be an intermediate in taxol biosynthesis. bThis hypothetical epoxide
intermediate has not been found
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2 Results and Discussion

The diterpene olefin taxa-4,11-diene is the first committed intermediate of
taxoid biosynthesis (Koepp et al. 1995), and is formed via the cyclization of
geranylgeranyl diphosphate by taxadiene synthase (Hezari et al. 1995). To elu-
cidate the sequence of subsequent enzymatic steps, and to determine which
steps are potential targets for genetic manipulation, it is necessary to charac-
terize all of the taxoids produced from this early intermediate by Taxus cell
cultures.

2.1 Mass Spectral Fragmentation

Coupling mass spectroscopy to existing HPLC-UV methods of analysis of
taxoids produced by Taxus cell suspension cultures has added the additional
information of mass and fragmentation pattern of unknown compounds to UV
absorbance and retention time measurements. Atmospheric pressure chem-
ical ionization (APCI) as the source of ionization, rather than electrospray
(ES), was employed because of the greater sensitivity of APCI, the diagnostic
fragmentations obtained, and the ability to use existing LC methods without
modification (Ketchum et al. 2003).

Using APCI under typical LC conditions, NH+
4 adducts ([M+18]) to the par-

ent ion are often observed. These ions are readily differentiated from fragment
ions that result from loss of H2O [M-18], as these are typically accompanied by
an ion at [M-17] due to the [M + H+] species. For example, the spectrum of bac-
catin III (MW = 586; Fig. 3a) exhibits the protonated parent ion [M + H+] = 587
and also the parent ion as the ammonium adduct [M+NH+

4 ] = 604, the dif-
ference between the two ions being the apparent [M-17] fragmentation. In
addition to the ammonium adducts, the loss of hydroxyls and side-chain sub-
stituents from the taxoid core is common and diagnostic. Typical fragment
ions observed are the result of loss of hydroxyl groups as water [M-18], acetate
groups as acetic acid [M-60], or stepwise as ketene [M-42] and water, and
benzoyloxy groups as benzoic acid [M-122].

In addition to the typical loss of the groups mentioned above, the oxetane
function contributes to the formation of a stable and diagnostic fragment ion.
Thus, the loss of an acetoxy group from baccatin III yields a characteristically
abundant ion at [m/z] = 527 (Fig. 3a); this and all other taxoids examined with
an oxetane ring and a ketone function at C-9 have this characteristic ion. In
addition to the ion at [m/z] = 527, an ion at [m/z] = 509, corresponding to
the additional loss of water [M-18], is generally observed with many oxetane-
containing taxoids, and the [m/z] = 509 ion is often more abundant than the
[m/z] = 527 ion. The presence of these two ions, at the same retention time
in the extracted ion chromatogram, has indicated the presence of an oxetane-
bearing taxoid in every case examined to date. A similar fragmentation pattern
is observed for 9α-dihydrobaccatin-type taxoids, containing a hydroxyl group



Taxoid metabolites in Taxus 295

instead of the ketone function at C-9 (Ketchum et al. 1999b). For these taxoid
types there is usually a major ion at [m/z] = 511, resulting from the presence
of the two additional hydrogens, as well as a detectable ion at [m/z] = 529.
The presence of these two ions at the same retention time is most often an
indication of the presence of a 9α-dihydrobaccatin-type taxoid structure.

The molecular ion is usually significantly reduced or absent in the spectrum
of taxadiene polyols and often in the spectrum of taxadiene polyacetates (see
Fig. 3b–d). The loss of a hydroxyl or acetoxy group often results in the same
fragmentation pattern in a molecule that contains the same number of these
substitutions. This phenomenon is observed, for example, in comparing the
fragmentation pattern of the taxadiene tetraacetate taxuyunnanine c (Fig. 3c)
to that of the taxadiene tetraol derived from taxusin (Fig. 3d). Both compounds
fragment to a core structure with [m/z] of 265.

The diagnostic losses from the taxadiene core of substituent esters allows
for the identification of taxoid classes based on the fragmentation observed.
Using this characteristic feature of fragment loss of ester side chains from the
taxadiene core, it is possible to diagnose fragment ions of unknown oxygenated
taxoids (Table 1). By scanning a mass spectrum for such predicted fragments, it
is possible to target unknown taxoids for isolation and more detailed structure
elucidation.

Table 1. Predicted ions from APCI fragmentation of hydroxylated taxadienes

Ion resulting from loss of H2O

Number Mass [M+H+] [M + H+ [–H2O] [–H2O] [–H2O] [–H2O] [–H2O] [–H2O]
of hydroxy –H2O]
groups
0 272a 273
1 288 289 271
2 304 305 287 269
3 320 321 303 285 267
4 336 337 319 301 283 265
5 352 353 335 317 299 281 263
6 368 369 351 333 315 297 279 261
7 384 385 367 349 331 313 295 277 259

a Calculated mass of taxa-4,11-diene

The spectra of taxadiene polyols are generally easier to interpret than those
of the corresponding polyacetates. One interesting and complicating feature
of the fragmentation of such compounds is that the same ions at [m/z] 265,
283, and 301 are observed in the spectra of both tetraacetoxy and tetrahydroxy
taxoids, presumably resulting from loss of ketene (O=C=CH2, [m/z] = 42)
from the acetoxy groups, followed by loss of water ([m/z] = 18). This can make
interpretation of the complex fragmentation patterns more difficult but, for
practical purposes the combined loss of both groups can be viewed as resulting
in elimination of the complete acetoxy group as acetic acid ([m/z] = 60; Fig. 3c).
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Fig. 3. Spectra of representative taxoids: a baccatin III; b 2α, 5α-dihydroxytaxa-4(20),11-
diene; c taxuyunnanine C (2α, 5α, 10β, 14β-tetraacetoxytaxa-4(20),11-diene); d 5α, 9α, 10β, 13α-
tetrahydroxytaxa-4(20),11-diene
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Fig. 3. (continued)
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2.2 Taxoids from Plant Cell Culture

In previous work, the identifications of 25 taxoids produced by Taxus cuspidata
and Taxus x media suspension cultures were described (Ketchum et al. 2003).
To this original list of cell culture metabolites, 13 additional taxoids have been
newly identified (Table 2).

Table 2 lists the most abundant taxoids identified in the present cell sus-
pension cultures. Of these taxoids, taxa-4,11-diene, 5α-hydroxytaxa-4(20),11-
diene, taxol, 10-deacetylbaccatin III, baccatin III, andpossibly 5α, 9α, 10β, 13α-
tetraahydroxytaxa-4(20),11-diene are the only metabolites that we have iden-
tified in plant cell cultures that could be intermediates in the biosynthesis of
taxol.

Although it is conceivable that intermediates of taxoid biosynthesis undergo
reversible acylations and deacylation (perhaps for the purpose of targeting,
trafficking, or flux control), such processes seem unlikely. Thus, “inappro-
priate” acylations, for example at C-9 of baccatin VI or at C-13 of baccatin I
derivatives (Fig. 2 and Table 2), would appear to block pathway progression to
taxol. Consequently, most of the identified taxoids that accumulate to signifi-
cant levels in cell cultures are not likely to be intermediates in the biosynthesis
of taxol because these intermediates are acylated at incorrect positions on the
taxane core.

2.2.1 Taxoids in a Typical Methanol Extract of Fresh Cells

The amount of taxol in the cells used for methanol extraction was 42.6 μg/g
fresh weight; thus, the entire 1-L culture (cells and medium) contained 11.9 mg
of taxol, with the cells contributing about 39% of the total. This distribution
is typical of cell suspension cultures that have not been elicited with methyl
jasmonate and are harvested two weeks after subculture, i. e., about 30–35% of
the taxol is contained in the cells while about 65–70% of the taxol is released
into the medium.

The total ion mass chromatogram of the “taxoid region” (15−50 min) of the
methanol extract is illustrated in Fig. 4, with the inset showing the entire chro-
matogram over the period data were collected (5−55 min). The 31 compounds
identified as taxoids are listed in Table 3. There are seven compounds whose
fragmentation patterns indicate that they are oxetane-containing or polyoxy-
genated taxoids, but the spectra of which were too ambiguous to permit iden-
tification; these compounds will require isolation and structure elucidation by
NMR spectroscopy.

Taxol is the second most abundant taxoid identified, next to taxol D. How-
ever, taxol represents only 6.8% of the total taxoids based on the integrated
chromatogram. If the three components, 10-deacetylbaccatin III, baccatin III,
and 5α, 9α, 10β, 13α-tetrahydroxytaxa-4(20),11-diene are considered to be in-
termediates on the pathway to taxol, then the remaining 27 taxoids (comprising
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Table 2. Taxane diterpenoids (taxoids) isolated from suspension cell cultures of Taxus

Taxoids with an oxetane ring and C-13 phenylisoserine side chain

Taxoida MW R1 R2 R3

10β-Deacetyltaxuyunnanine Ab 805 a H OH

10β-Deacetyltaxol 811 Ph H OH

Taxol D 819 c H OAc

Cephalomannine (Taxol B) 831 b H OAc

N-Debenzoyl-N-(2-methylbutyryl)taxolb 833 d H OAc

Taxol C 847 a H OAc

Taxol (paclitaxel) 853 Ph H OAc

N-Methyltaxol Cb 861 a CH3 OAc

Taxoids with an oxetane ring

Taxoid MW R1 R2 R3 R4 R5 R6

10β-Deacetylbaccatin III 544 OH OBz OH =O OH OH

Baccatin III 586 OH OBz OH =O OAc OH

9α-Dihydrobaccatin III 588 OH OBz OH OH OAc OH

9α-Dihydro-13α-acetylbaccatin III 630 OH OBz OH OH OAc OAc

Baccatin IV 652 OH OAc OAc OAc OAc OAc

1β-Dehydroxybaccatin VI 698 H OBz OAc OAc OAc OAc

Baccatin VI 714 OH OBz OAc OAc OAc OAc



300 R.E.B. Ketchum and R.B. Croteau

Table 2. continued

Taxoids with a C-4(20) epoxide

Taxoid MW R1 R2 R3 R4

1β-Hydroxy-7β,9α-deacetylbaccatin I 586 OH OAc OH OH

1β-Hydroxy-5α-deacetylbaccatin I 610 OH OH OAc OAc

Baccatin I 636 H OAc OAc OAc

1β-Hydroxybaccatin I 652 OH OAc OAc OAc

Taxoids with a C-4(20) double bond

Taxoid MW R1 R2 R3 R4 R5 R6 R7 R8

Taxa-4,11-dienec 272 H H H H H H H H

5α-Hydroxytaxa-4(20),11-diened 288 H H OH H H H H H

5α,10β, 14β-Trihydroxytaxa-4(20),11-diene 320 H H OH H H OH H OH

5α-Acetoxytaxa-4(20),11-diened 330 H H OAc H H H H H

5α, 9α, 10β, 13α-Tetrahydroxytaxa-4(20),
11-diene

336 H H OH H OH OH OH H

2α,5α,10β-Triacetoxytaxa-4(20),11-dienee 446 H OAc OAc H H OAc H H

2α,10β, 14β-Triacetoxy-5α-hydroxytaxa-
4(20),11-diene

462 H OAc OH H H OAc H OAc
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Table 2. continued

Taxoid MW R1 R2 R3 R4 R5 R6 R7 R8

2α,5α,10β, 14β-Tetraacetoxytaxa-4(20),
11-diene; Taxuyunnanine C

504 H OAc OAc H H OAc H OAc

5α, 9α, 10β, 13α-Tetraacetoxytaxa-4(20),
11-diene; Taxusin

504 H H OAc H OAc OAc OAc H

2α,5α,10β-Triacetoxy-14β-
propionyloxytaxa-4(20),11-diene

518 H OAc OAc H H OAc H a

2α,5α,10β-Triacetoxy-14β-
isobutyryloxytaxa-4(20),11-diene

532 H OAc OAc H H OAc H b

2α,5α,10β-Triacetoxy-14β-(2-
methyl)butyryloxytaxa-4(20),11-diene

546 H OAc OAc H H OAc H c

2α,5α,9α,10β,14β-Pentaacetoxytaxa-
4(20),11-diene

562 H OAc OAc H OAc OAc H OAc

5α,7β,9α,10β,13α-Pentaacetoxytaxa-
4(20),11-diene

562 H H OAc OAc OAc OAc OAc H

2α,5α,10β-Triacetoxy-14β-(3-hydroxy-
2-methyl)butyryloxytaxa-4(20),11-diene

562 H OAc OAc H H OAc H d

5α-Hydroxy-2α,7β,9α,10β,13α-
pentaacetoxytax-4(20),11-diene

578 H OAc OH OAc OAc OAc OAc H

2α,5α,7β,9α,10β,13α-Hexaacetoxytaxa-
4(20),11-dienef

620 H OAc OAc OAc OAc OAc OAc H

5α,7β,9α,10β,13α-Pentaacetoxy-2α-
benzoyloxytaxa-4(20),11-dienee

682 H OBz OAc OAc OAc OAc OAc H

11(15→1)-abeo-Taxoids with an oxetane ring

Taxoid MW R1 R2 R3 R4 R5 R6

4α,7β-Diacetoxy-2α,9α-dibenzoyloxy-
5β,20-epoxy-10β,13α,15-trihydroxy-
11(15→1)-abeo-taxeneb

692 OBz OAc OAc OBz OH OH

a The organization of this table and all compounds are described and cited in Baloglu and
Kingston (1999) unless otherwise noted

b Identified by mass spectroscopy based on molecular ion and fragmentation pattern, but not
yet confirmed by NMR

c Koepp et al. (1995)
d Hefner et al. (1996)
e Ketchum et al. (2003)
f Kingston et al. (1993)
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Fig. 4. Total ion chromatogram of the methanol extract of Taxus x media cv. Hicksii cells. The
taxoid region (from 15 to 50 min) is shown. Inset shows the total ion chromatogram over the
entire sampling period (5 to 55 min); note the large amount of polar material eluting before
15 min. Peak identities are listed by retention time in Table 3

about84%of the integratedpeakarea)maybeconsideredas side-routeordead-
endproducts.Thus,onlyabout6%of the taxa-4,11-dieneproduced is converted
to taxol. We previously reported that taxadiene synthase, the committed en-
zyme responsible for the cyclization of geranylgeranyl diphosphate to tax-4,11-
diene (Fig. 2), is a slow step in the biosynthesis of taxol (Hezari et al. 1997).
This enzyme is, nevertheless, sufficiently active to promote the formation of
high levels of other taxoids (85% of the mix) in cell culture. Genetic redirection
of the pathway toward taxol, and away from these alternate routes to other
taxoids, may be the most efficient way of increasing taxol production yields.

2.2.2 Early Taxol Biosynthetic Intermediates

Low taxol-producing, 14-day old Taxus x media cv. Hicksii cell cultures were
used for pentane extraction and the search for early taxol biosynthetic interme-
diates, based on the assumption that such cultures may be blocked in late steps
and so accumulate early precursors. At harvest, these cells produced 5.1 μg/g
fresh weight of taxol, a contribution of 0.55 mg taxol to the entire culture. Thus,
the entire 1-L culture contained 1.80 mg taxol with the cells contributing ∼31%
to the total.
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Table 3. Identification of components at the indicated retention time in Fig. 4. The percentage of
total taxoids is the proportion of peak area relative to that of the total area of confirmed taxoids

Rt (min) Taxoid % of total taxoids

18.3 Unknown oxetane taxoid 3.19
18.6 Unknown oxetane taxoid 2.19
19.3 Unknown hexaoxy taxoid 2.80
19.9 Unknown hexaoxy taxoid 3.34
20.0 10β-Deacetylbaccatin III 5.12
20.6 5α,9α,10β,13α-Tetrahydroxy-taxa-4(20),11-diene 1.37
21.0 1β-Hydroxy-7β,9α-deacetylbaccatin I 5.09
21.4 Unknown taxoid 2.71
22.3 9α-Dihydrobaccatin III 4.26
23.3 Unknown taxoid 2.45
23.6 1β-Hydroxy-5α-deacetylbaccatin I 6.51
24.5 Baccatin III 3.16
26.2 9α-Dihydro-13α-acetylbaccatin III 4.73
27.2 Baccatin IV 4.74
27.9 5α-Hydroxy-2α,7β,9α,10β,13α-pentaacetoxy-4(20),11-diene 1.96
28.3 10β-Deacetyltaxol 2.77
28.8 1β-Hydroxybaccatin I 2.53
29.2 Taxol D 7.49
30.0 4α,7β-Diacetoxy-2α,9α-dibenzoyl-5α,20-epoxy-10β,13α,15-

trihydroxy-11(15>1)-abeo-taxene
0.92

30.3 Cephalomannine 2.87
30.6 N-Debenzoyl-N-(2-methylbutyryl)taxol 1.34

31.1 Taxol 6.80
32.0 Taxol C 6.47
32.4 Baccatin I 5.30
33.4 2α,5α,10β-Triacetoxy-14β-(3-hydroxy-2-methyl)butyryloxy-taxa-

4,11-diene
4.10

34.0 5α,7β,9α,10β,13α-Pentaacetoxy-taxa-4,11-diene 0.79
35.4 2α,5α,10β,14β-Tetraacetoxy-taxa-4,11-diene 1.36
36.9 2α,5α,10β-Triacetoxy-14β-propionyloxy-taxa-4,11-diene 0.49
38.3 2α,5α,10β-Triacetoxy-14β-isobutyryloxy-taxa-4,11-diene 0.41
38.7 Unknown taxoid (MW = 590) 1.10
39.2 2α,5α,10β-Triacetoxy-14β-(2-methyl)butyryloxy-taxa-4,11-diene 1.63
39.6 Unknown phytosterol
40.0 Unknown non-taxoid
40.8 Unknown non-taxoid
41.3 Unknown
41.9 Unknown non-taxoid
43.1 Unknown non-taxoid
46.3 Campesterol
47.0 β−Sitosterol
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The total ion chromatogram of the concentrated pentane fraction that eluted
from a silica column, following drying, powdering, and pentane extraction of
these cells, is shown in Fig. 5a. From 1.51 g of cells, 7.2 μg of taxa-4,11-diene
and 0.5 μg of taxa-4(20),11-diene were obtained, equivalent to a concentra-
tion of 4.8 μg/g dry weight of taxa-4,11-diene and 0.33 μg/g dry weight of
taxa-4(20),11-diene (Fig. 5a,c). The taxa-4(20),11-diene isomer is present in
the extract at 6.9% of the amount of the taxa-4,11-diene isomer, consistent
with previous reports obtained with the product distribution of taxadiene
synthase (Williams et al. 2000). The concentration of taxa-4,11-diene in dried
cells from these actively growing cultures is 3700 times the concentration pre-
viously reported in T. brevifolia bark, 1 mg/750 kg (Koepp et al. 1995)! It is
worth noting that both taxadiene isomers are converted to 5α-hydroxytaxa-
4(20),11-diene at comparable rates in the subsequent hydroxylation step (Jen-
newein et al. 2004), which likely accounts for the 93:7 proportion of residual
olefins observed. Given that taxadiene accounts for only 0.3% of the total
taxoids produced, it is not surprising that this important intermediate has
been difficult to detect in the milieu of taxoids found in extracts of Taxus
cells.

As indicated above, taxa-4,11-diene is the first committed intermediate
in taxol biosynthesis and is converted to 5α-hydroxytaxa-4(20),11-diene in
a subsequent cytochrome P450-mediated hydroxylation reaction (Hefner et
al. 1996). Recent work has demonstrated incorporation of radiolabeled 5α-
hydroxytaxa-4(20),11-diene into taxol and other highly functionalized taxoids,
supporting cyclization and 5α-hydroxylation as the first two steps of the taxol
biosynthetic pathway (unpublished data). Analysis of the hexane:ethyl ether
(9:1) wash of the silica column yielded an estimated concentration of 1.47 μg/g
dry weight of 5α-hydroxytaxa-4(20),11-diene, only about 20% of the amount
of taxa-4,11-diene and just over 1% of the concentration of taxol found in the
cells (Fig. 5b,d). Similar to the concentration of taxa-4,11-diene, the concen-
tration of 5α-hydroxytaxa-4(20),11-diene in dried cells from actively growing
cultures is nearly 1000 times the concentration previously reported in T. bre-
vifolia bark, 5−10 μg/kg (Hefner et al. 1996). That both taxa-4,11-diene and
5α-hydroxytaxa-4(20),11-diene occur at such low levels suggests that both of
these intermediates are rapidly turned over in subsequent pathway steps. Due
to the difficulty in identifying these two early intermediates in cell cultures,
and because of their extremely low abundance, these are the only two pathway
intermediates that have been confirmed by incorporation into taxol in Taxus
cell feeding studies (unpublished data).

Attempts to incorporate other radiolabeled putative intermediates into taxol
in Taxus cell feeding studies have been unsuccessful, thus far, possibly due to
uptake limitations. However, the success of the focused searches for taxa-
4,11-diene and 5α-hydroxytaxa-4(20),11-diene in cell extracts, coupled to the
metabolic implication for rapid turnover of these very low abundance taxol
precursors, has encouraged similar directed approaches to identify other pre-
dicted early pathway intermediates. These efforts, now focused on low abun-
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Fig. 5a–d. Identification of early intermediates of the taxol biosynthetic pathway by GC/MS anal-
ysis of a pentane extract from Taxus x media cv. Hicksii cells: a total ion chromatogram (TIC)
of pentane wash of silica column showing taxa-4(20),11-diene (10.9 min) and taxa-4,11-diene
(11.2 min);bTICofpentane:ethyl ether (9:1)wash fromsamesilica columnshows solvent contam-
inant (8.2 min), solvent contaminant (10.7 min), phytol (11.3 min), and5α-hydroxytaxa-4(20),11-
diene (11.9 min); c mass spectrum of taxa-4,11-diene; d mass spectrum of 5α-hydroxytaxa-
4(20),11-diene

dance taxoids of moderate to high polarity, are certain to add to the list of Taxus
cell culture metabolites and to contribute to a more detailed understanding of
taxol biosynthesis.
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3 Protocol

3.1 Plant Cell Cultures

Cell suspension cultures of Taxus x media cv. Hicksii were established from
callus cultures initiated from embryos excised from freshly collected seeds in
September, 2000. Plant cell cultures were initiated, maintained, and screened
for taxolproductionaspreviouslydescribed(KetchumandGibson1996;Hezari
et al. 1997; Ketchum et al. 1999b, 2003).

3.2 Cell Extraction

Two different methods were used for the extraction of taxoids. For extraction
of taxoids from fresh tissue, cells were grown for two weeks in liquid TM19
medium (Ketchum et al. 2003). The cells were from a 1-L culture of a Taxus
x media cv. Hicksii cell line that was producing a moderate level of taxol
(7.3 mg/L). The cultures were harvested by removing the medium, rinsing
the cells in deionized water, and briefly drying on a 60-μm nylon filter in
a Büchner funnel with vacuum. The air dried cells (0.52 g) were placed in
a Spin-X (Corning) 0.45-μm nylon centrifuge filter. Excess water (0.19 mL) was
removed by centrifuging the cells for 5 min at 16,000 g. Cells were extracted
on the filter with 300 μL methanol, then centrifuged at 16,000 g for 5 min;
methanol extraction was repeated twice more. The 900 μl combined methanol
extract was dried in a centrifugal vacuum evaporator. The dried residue was
suspended in 50 μL methanol, filtered through a 0.2 μm nylon filter, and a 10-μL
aliquot was analyzed by HPLC.

For extraction of the less polar taxoids, cells from 11 separate cultures
were combined, briefly air-dried, frozen in liquid nitrogen, lyophilized, and
ground to a fine powder in a coffee grinder. At harvest, these cultures pro-
duced 1.25±0.2 (S.E., n = 11) mg/L taxol in the cell-free medium and contained
108±6.5 (S.E., n = 11) g/L fresh weight cells. Dried cells (1.51 g) were extracted
with 7 ml pentane in a sealed glass test tube in an ultrasonic bath for 30 min.
The extraction was repeated three more times with 5-mL aliquots of pentane,
and the combined extracts were dried over anhydrous MgSO4, filtered and
evaporated under a stream of air. The dried residue (16 mg) was dissolved in
500 μL of pentane and loaded onto a pentane-rinsed silica gel column fash-
ioned from a Pasteur pipette containing approximately 400 mg Silica Gel 60
(Baker), 200−400 mesh, and approximately 100 mg anhydrous MgSO4. The
column was rinsed with pentane until just prior to the elution of the first pig-
mented compounds, approximately 5 ml. This pentane extract was evaporated
to yield 1.4 mg of residue. The column was then rinsed with 5 ml pentane:ethyl
ether (9:1). This extract was evaporated to yield 3.2 mg of residue. Each dried
extract was dissolved in 100 μL pentane. Extracts were centrifuged at 16,000 g
for 1 min to pellet insoluble material, and the upper 90 μL was transferred to
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a clean glass insert. A 1-μL aliquot from each extract was analyzed by GC-
MS.

3.3 HPLC Analyses

HPLC/MSD instrumentation consisted of an Agilent Series 1100 HPLC with
diode array and G1946A mass detector, with Chemstation Software Rev. 8.03.
Extracts were eluted from a Discovery HS-F5 250 × 4.6 mm column (Supelco),
5 μm particle size, with guard column, 5–100% CH3CN over 50 min, 100%
CH3CN for 5 min, and re-equilibration at 100% CH3CN for 10 min.

Mass detection of taxoids was by atmospheric pressure chemical ionization
(APCI) in the positive ion mode. Drying gas was N2 at 60 psi, 5 L/min, 350 ◦C.
The vaporizer was set to 400 ◦C, fragmentor to 60 V, capillary to 3000 V, and
corona current to 8 μA (Ketchum et al. 2003).

3.4 GC-MS Analyses

GC-MS analyses were conducted on an Agilent Series 6890 GC system with
Series 6890 mass selective detector. A 1-μL aliquot of each pentane extract was
analyzed by cool on column injection on a Restek RTX-5MS column, 30 m,
0.25 mm ID, 0.25 μm film thickness. Chromatography was accomplished using
He at 0.7 mL/min (30 cm/s) as the carrier gas. Initial temperature was 40 ◦C,
followed by programmed gradient to 300 ◦C at 20 ◦C/min, with a hold for
10 min at 300 ◦C.

Identification and quantitation of taxoids was accomplished by comparison
to authentic standards of the retention time, peak area, mass fragmentation
pattern, and UV absorbance.

4 Conclusion

The metabolome of an organism strictly refers to all metabolites produced
during its life. The Taxus metabolome, as briefly described in this chapter,
relates to that part of Taxus secondary metabolism that begins with the forma-
tion of taxa-4,11-diene and ends with the production of a taxane diterpenoid,
such as the pharmaceutically important drug taxol. The metabolic pathways
that originate from taxa-4,11-diene and result in the formation of the over 400
taxoids so far described form a complex network through which taxol biosyn-
thesis is woven. While less than 40 of these taxoids (comprising about 85 mass
%) have been characterized in our plant cell cultures, most are not involved
in taxol biosynthesis. Identification of the taxoids that are produced in our
Taxus plant cell culture system and understanding their relationship to other
intermediates in the taxol biosynthetic pathway provide clues to the order of
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the synthesis of intermediates and branch points in this complex metabolic
grid. This knowledge is critical for the intelligent targeting of genes for future
metabolic engineering of plant cell cultures for increased taxol production.
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III.9 The Use of Non-targeted Metabolomics
in Plant Science

T. Daskalchuk, P. Ahiahonu, D. Heath, and Y. Yamazaki1

1 Introduction

The emergence of the “omic” technologies has greatly expedited the amount
of information available to biologists (Edwards and Batley 2004). The infor-
mation wave launched with genomics has been followed by transcriptomics,
proteomics and metabolomics, all in an attempt to assign functionality to genes
and genomes (Oliver et al. 1998). One advantage of the “omics” technologies
is their ability to view global changes in a system as a result of some pertur-
bation. Metabolomics, the comprehensive analysis of the whole metabolome
under a particular experimental condition, ultimately defines a chemical phe-
notype of an organism at some point in time (Goodacre et al. 2004). This
chemical phenotype, the metabolome, is the global pool of all metabolites,
and is the functional result of a genome in a particular environment (Tweed-
dale et al. 1998). Thus, changes in either the genome or environment will be
ultimately manifested in the metabolome as the end result of both gene and
protein expression.

A number of analytical techniques are currently available for studying
the metabolome of living tissues and organs. The ultimate goal of plant
metabolomics, the ability to detect and quantify every metabolite in a plant
extract reliably is unlikely to be attained by any single analytical method avail-
able at present. Due to the large diversity of chemical and physical properties of
plant metabolites, different analytical methods must be combined to achieve
this since each of these tools available to the researcher today has its unique ad-
vantages as well as limitations. Targeted as well as non-targeted approaches to
metabolic profiling are possible depending on the objectives of any particular
study with each approach demanding a certain amount of sample prepara-
tion. Currently, the most universal, sensitive and versatile detection method
applicable to metabolite detection is mass spectrometry (Tolstikov and Fiehn
2002), though the use of nuclear magnetic resonance (NMR) techniques is
rapidly gaining ground in the field. The platforms currently available for plant
metabolomics research include:

1. Gas Chromatography-Mass spectrometry (GC/MS)
2. Liquid Chromatography-Mass spectrometry (LC/MS)

1 Phenomenome Discoveries Inc., 204–407 Downey Road, Saskatoon, Saskatchewan, Canada S7N
4L8, e-mail: info@phenomenome.com

Biotechnology in Agriculture and Forestry, Vol. 57
Plant Metabolomics (ed. by K. Saito, R.A. Dixon, and L. Willmitzer)
© Springer-Verlag Berlin Heidelberg 2006



312 T. Daskalchuk, P. Ahiahonu, D. Heath, and Y. Yamazaki

3. Liquid Chromatography-Ultra violet photodiode array (HPLC/UV)
4. Capillary Electrophoresis-Mass spectrometry (CE/MS)
5. Fourier Transform Ion Cyclotron Resonance-Mass spectrometry (FTICR-

MS)
6. Nuclear Magnetic Resonance Spectroscopy (NMR)

Gas chromatography coupled to mass spectrometry (GC/MS) has been used ex-
tensively for over half a century to analyze successfully small volatile non-polar
organic molecules including de novo identification of small plant metabolites.
Derivatization of polar non-volatile metabolites with amino, carboxylic acid,
alcohol and phenolic functionalities followed by GC/MS enables the detection
of these types of metabolites. However, large and thermally labile compounds
such as sugar nucleosides, large oligosaccharides and peptides cannot be de-
tected by GC/MS due to their limited volatility. Liquid chromatography-mass
spectrometry (LC/MS) and liquid chromatography-ultra violet photodiode ar-
ray (HPLC/UV) were developed to complement GC/MS in the analyses of these
compounds. The front end chromatographic separation offered by GC/MS and
LC/MS allows the mass analyzer to hold and detect ions of different metabo-
lites separately. For both techniques, as column diameter decreases, column
resolving power increases, thus improving their capabilities. Also, as the sepa-
ration technique is downscaled, the amount of material necessary for analysis
is reduced. GC/MS and LC/MS provide unique retention time data as well
as mass spectral data with suggested molecular formulae depending on the
resolution and sensitivity of the mass analyzer. Identification of metabolites
is possible by matching data collected with commercially available libraries
of standards. For targeted metabolic profiling, GC/MS, HPLC/UV photodiode
array and LC/MS remain the methods of choice for quantitative and qualita-
tive analyses (Hall et al. 2002). Capillary electrophoresis (CE) coupled to mass
spectrometry (CE/MS) has been used in proteomics research for separation
and identification of proteins and peptides but is now being introduced gradu-
ally to metabolomics, especially in the sequencing and identification of amino
acids. However, GC/MS, HPLC photodiode array, LC/MS and CE/MS technolo-
gies cannot be relied on for the identification of novel biomarkers in biological
samples.

Fourier Transform Ion Cyclotron Resonance mass spectrometry (FT-ICR-
MS) is rapidly becoming the mass analyzer of choice when it comes to non-
targeted metabolic profiling of complex mixtures of biological origin. In an
FT-ICR (Fourier Transform Ion Cyclotron Resonance) mass spectrometer, ions
are held in the analyzer cell by a combination of a static magnetic field and
a coincident electrical field generated by potentials applied to the walls of the
metal cell (Busch 2002). Ions attain a coherent cyclotron orbit with frequency
proportional to mass and are detected by monitoring the alternating elec-
trical current generated in detector plates by their regular orbits. A Fourier
transformation converts the monitored frequency to ion mass. The high mass
resolving power, sensitivity, and mass accuracy (≤ 1 ppm) that FT-ICR mass



The Use of Non-targeted Metabolomics in Plant Science 313

spectrometry provides make it ideal for the study of complex mixtures without
front end chromatographic separation and purification since the components
are simultaneously resolved and identified as to elemental composition. The
potential limitation this technology has is differentiation between identical
molecular mass isomers and low reproducibility due to ion-suppression effect.
These then would not enhance the complete structure elucidation of novel
biomarkers discovered in samples.

Nuclear magnetic resonance spectroscopy (NMR) is a powerful and theoret-
ically complex analytical technique used in the determination of the structure
of unknown organic compounds and more recently biomacromolecules. It
also provides comparative analysis of numerous samples. Therefore, NMR is
quickly becoming a key technology in plant metabolomics with the useof stable
isotope labeling and advanced hetero-nuclear NMR methodologies. Since the
NMR-based approach has an advantage in comparison with different samples,
spectral subtraction between different mutants or stimuli enable quantification
of increased or decreased metabolites among those samples. The limitation of
NMR technology is the lack of front end chromatographic separation and
purification of the components of the complex mixture to enable complete
structure elucidation of novel biomarkers. This is resolved by coupling the
LC system to NMR (LC/NMR) though this provides lower sensitivity. With
improvements in sensitivity, the use of LC/NMR is likely to grow.

In the lightof these advantages and limitationsof thevariousplatformsavail-
able to the plant metabolomics researcher, FT-ICR mass spectrometry would
be the preferred initial analytical technique for discovery of novel biomarkers
and metabolites in complex mixtures of biological origin. Their isolation and
structure determination would then be achieved with LC-NMR technology.

A number of examples in the literature show how FT-ICR MS has been
applied in the plant metabolomics field. These include studies on metabolic
changes in strawberry fruit development (Aharoni et al. 2002), exploration of
whole cellular processes at levels of transcriptome and metabolome under sul-
fur deficiency related stresses in Arabidopsis (Hirai et al. 2004), and metabolic
analysis of medicinal diversity in Scutellaria baicalensis (Georgi) genotypes
(Murch et al. 2004). Current research in plant metabolomics conducted at
Phenomenome Discoveries Inc., are discussed below.

2 Fundamental Investigations into Plant Metabolomics

2.1 Metabolomic Analysis of Cold Acclimation in Arabidopsis

The model plant Arabidopsis is able to acclimate in non-freezing temperatures
(4−10 ◦C) by modifying its gene expression and biochemistry (Thomashow
1999; Stitt and Hurry 2002). For example, soluble sugars, proline, and other os-
moprotectants are known to be increased in order to confer freezing tolerance
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(Stitt and Hurry 2002). A non-targeted metabolomic method, FT-ICR MS,
was utilized to study changes in the Arabidopsis leaf metabolome after treat-
ing plants with cold acclimating conditions. Arabidopsis plants were grown at
a non-acclimating temperature of 23 ◦C for 27 days, and then were transferred
to cold acclimation conditions of 4 ◦C for a further 49 days. Existing leaves were
sampled at 0 days immediately before shifting the plants to lower temperature,
and afterwards, shifted leaves were sampled at days 1, 7, 28, 49 (Gray and Heath
2005). New leaf formation occurs slowly at 4 ◦C, so samples of new leaves that
developed de novo at cold temperature were taken at days 28 and 49 only.

Inner rosette leaves, referred to as ‘developed’ leaves, that originally devel-
oped entirely in 4 ◦C conditions were compared to the outer rosette leaves,
referred to as ‘shifted’ leaves, which originally formed at 23 ◦C and were later
shifted to 4 ◦C. The leaves that develop only at 4 ◦C have the highest freezing
tolerance, while leaves that are shifted to 4 ◦C after a growth phase at 23 ◦C
show variable freezing tolerance (Strand et al. 1997).

By comparing the intensity of each common detected metabolite mass tag
from shifted leaves (days 0, 1, 7, 28, 49 after shifting to 4 ◦C) to the average from
developed leaves (days 28, 49 of development at 4 ◦C), two distinct metabolic
profile changes were observed that describe the requirement for leaves to
develop at 4 ◦C in order to achieve increased freezing tolerance (Fig. 1). The
first profile consists of metabolites that were found in developed leaves at either
high or low levels, and over the 49 day acclimation time course, shifted leaves
were able to adjust the concentration of the metabolite to the same level,
within a twofold cutoff. Thus, these are “temperature modulated” metabolites
because all leaves, given enough time, were able to adjust specific metabolites
to the same relative concentrations. The second profile consisted of metabolites
that were found in developed leaves at either high or low intensity, and over
the entire 49 day cold temperature time course, shifted leaves were unable to
adjust the metabolite concentrations to the same levels as in developed leaves.
These are “developmentally modulated” metabolites, because their levels in
freezing-tolerant leaves can only be attained when a leaf has developed solely
at cold acclimating temperatures.

Looking at a set of known metabolites would likely have missed these results
that a global non-targeted metabolomic approach found. There is a set of
metabolites that a plant leaf can adjust in relation to cold temperature stress
independent of leaf development, and a separate set that can only be modulated
when a leaf has undergone some degree of development entirely in acclimating
temperatures.

2.2 Compositional Analysis of Flax Seeds (Linum usitatissimum L)

The oil from linseed flax is predominantly used in industrial applications such
as paints, oils and varnishes due to the high levels of linolenic (C18:3) and
linoleic (C18:2) acids. Because of the high levels of these unsaturated fatty
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Fig. 1a. Developmental vs temperature-only modulation of the Arabidopsis metabolome during
cold acclimation. The number of metabolites following four trends is shown over the 49 day
time course at 4 ◦C where the intensities of individual metabolites are the same in developed and
shifted leaves within a twofold cutoff, or have a difference greater than twofold. Here, ‘Developed’
refers to the average intensity of metabolites from developed leaves harvested 28 days and 49
days after the temperature change from 23 ◦C to 4 ◦C. ‘Shifted’ leaves refer to pre-existing leaves
harvested immediately before this temperature shift (0 days), or 49 days after

acids, linseed oil is easily oxidized, and unstable at high temperatures, making
it unsuitable as a cooking oil. To be more competitive with the vegetable oil
market, much work has been done to alter the oil composition of linseed flax,
the outcome being the development of solin varieties. As a result, linolenic
acid levels have been reduced from over 50% to less than 5%, and linoleic acid
levels have been increased from 20% to 70% (Rowland 1991).

Seeds from ten different flax lines (Linum usitatissimum L) were analyzed by
FT-ICR MS to evaluate differences in seed composition (Fig. 2). An advantage
of FT-ICR MS to analyze seed composition is the ability to evaluate a wide
range of both known and unknown or unexpected metabolites simultaneously
in all samples analyzed. In this particular study, most methods currently uti-
lized in plant research for genetic alterations or manipulations were included,
and consisted of somaclonal variation, chemical mutagenesis (ethyl methane-
sulphonate), plant breeding, and genetic engineering vis-à-vis Agrobacterium
mediated transformations. A total of 2606 spectral peaks, each represent-
ing a unique m/z (mass-to-charge) were identified among the ten different
flax lines, with approximately 1100–1200 independent m/z detected in each
flax sample analyzed. Global analysis of all ten cultivars with both principal
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Fig. 2. Schematic diagram of the ten flax varieties analyzed by FT-ICR MS, and how they relate
to each other. The registered conventional varieties are boxed in black. CDC Normandy is a so-
maclonal variant of McGregor. The introduction of transgenes is indicated with green arrows,
and the resultant transgenic line is indicated in green. EMS mutagenesis is indicated in orange,
while advanced breeding lines are indicated in blue. All flax varieties are unregistered except the
conventional varieties McGregor, CDC Normandy, and Norlin, which are registered and com-
mercially grown, and contain high levels of linolenic acid. E67, an EMS McGregor mutant, was
selected for its increased linoleic and decreased linolenic acid content. E67 was also found to
contain elevated palmitic acid levels. E477, another EMS McGregor mutant, was selected for its
altered mucilage (fibre) content. S95407, a solin variety with decreased linolenic acid content,
was developed from another EMS McGregor mutant (E17847). HPED6 was derived from an orig-
inal cross of E67 and E1747, and contained increased palmitic and linoleic acid and decreased
linolenic acid content. The transgenic variety CDC Triffid was created as a herbicide resistant
“Norlin” variety (McHughen et al. 1997) by the introduction of the Arabidopsis thaliana CSR-1
gene (Haughn et al. 1988) encoding a sulfonylurea resistant acetolactate synthase (ALS) under
control of the 35S CaMV promoter. The transgenic line PCAT NR12 was created to increase the
oleic acid and decrease the linolenic acid content in the seed oil through the introduction of the
soybean phosphatidyl choline acyl transferase gene AAPT1 (Dewey et al. 1994) under the control
of the Arabidopsis thaliana oleosin promoter. The transgenic line CFAT was created to increase
the short and medium chain fatty acid levels in the seed by the introduction of the Cuphea wrightii
Cw FATB1 (Lenoard et al. 1997) gene under control of the 35S CaMV promoter into HPED6. All
transgenic lines were generated by Agrobacterium tumefaciens mediated transformations

component analysis (PCA) and hierarchical clustering (HCA) were able to sep-
arate the linseed-like from the solin-like varieties base on the 2606 independent
m/z detected (Fig. 3). These results suggested differences in the metabolomes
all of the flax lines analyzed, with the greatest metabolome changes occurring
between the linseed and solin-like varieties which separated out along the first
principal component.

Relative changes in the fatty acid content of each flax variety were deter-
mined by FT-ICR (Fig. 4a). As expected, linolenic acid levels were lower, while
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Fig. 3. Principal component analysis of the seed metabolomes from ten flax varieties analyzed
by FT-ICR MS. The linseed-like varieties separate from the solin-like varieties along principal
component 1

linoleic acid levels were higher in the solin varieties. Furthermore, levels of
stearic acid (C18:0) which were not selectively altered remained fairly con-
stant between the linseed and solin varieties. An increase in palmitic acid
(C16:0) was observed in the CFAT line, which was genetically engineered to
increase the short chain fatty acid content. In conjunction to being able to
monitor fatty acid levels, the levels of mono-, di- and triacylglycerides con-
taining linolenic acid could be monitored simultaneously between the dif-
ferent flax varieties. For example, as the levels of linolenic acid decreased
and linoleic acid increased in the solin flax, so did putative triacylglycerides
which contained either fatty acid (Fig. 4b). Furthermore, relative levels of
other known compounds such as the beneficial secoisolariciresinol digluco-
side (SDG), and the detrimental cyanogenic glucosides linustatin, neolinus-
tatin and linamarin could be analyzed simultaneously between the flax vari-
eties.

Although many of the above analyses can be done by targeted methods,
which could also quantitate the observed differences in both fatty acids and
triacylglycerides, FT-ICR MS allows for the global non-biased observation of
many classes of metabolites (polar, non-polar etc.) at once. Thus, the researcher
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Fig. 4. a Relative abundance of fatty acids in the ten flax lines. Overall, linolenic acid (C18:3)
decreased while linoleic acid (C18:2) increased in the solin-like varieties relative to the linseed-
like varieties.bRelative abundanceof twoputative triacylglycerides in the ten flax lines. Aputative
triacylglyceride containing only linolenic acid (R3-R3-R3) was observed to decrease in the solin-
likevarieties,mirroring theobserveddecrease in theC18:3 fatty acid.Theputative triacylglyceride
(R1-R1-R2) containing both oleic acid (R1) and linoleic acid (R2) was observed to increase in the
solin-like varieties mirroring the increase in C18:2 fatty acid in solin-like varieties
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can note relevant changes with FT-ICR MS, and then validate the changes with
known and appropriate targeted methods.

2.3 Flavonoid Identification in Wheat (Triticum aestivum L.)

Metabolomics can be useful in identifying novel metabolites and candidate
genes. The identification of a metabolite or groups of metabolites associated
with a particular trait or phenotype can be used to deduce possible genes
and/or metabolic pathways involved.

Kernel color due to pigmentation has become an important discriminator
among hard-white wheats (Triticum aestivum L.) in Canada. White-seeded
hard-white wheat differs from red-seeded hard-white wheat predominantly
in the color of the bran, with no red-pigmentation being present in the bran
of the white-seeded varieties. Although the red-pigment associated with the
red-seeded varieties has been shown to be a highly heritable trait (Cooper
and Sorrells 1984), no specific genes have been identified to be responsible
for the red-pigmentation. Work by several different groups suggested that the
red-pigmentation was most likely a flavonoid-related compound(s) (Lamkin
and Miller 1980; Matus-Cadíz, personal communication).

Flavonoids are major compounds in plants, found in the seeds, fruits, leaves,
stems and flowers (Iwashina 2000; Winkel-Shirley 2001; Hodek et al. 2002).
However, the various combinations of hydroxyl and methoxyl groups on the
basic flavonoid structure (C6-C3-C6) yield many different possible flavonoid
configurations (Hodek et al. 2002), with several thousand flavonoids identified
to date in plants (Iwashina 2000; Pietta 2000). Furthermore, many flavonoids
exist as glycosides (Hodek et al. 2002; Iwashina 2000), further adding to the
structural complexity. Simply deducing that the pigment in the red-seeded
wheat varieties was likely a flavonoid still posed a daunting task in identifying
which flavonoid(s) out of the possible thousands was responsible for the pig-
mentation in the red-seeded hard white wheat varieties. The use of FT-ICR MS
was an ideal platform to attempt to initially identify pigmentation molecules.

FT-ICR MS analysis of the whole grain from 18 independent wheat varieties
consisting of red-pigmented and non-pigmented samples showed composi-
tional differences, but no flavonoid-like compounds were observed. However,
FT-ICR MS analysis of the bran from one of the red-seeded and two of white-
seeded wheat varieties indicated possible differences in flavonoid-like com-
pounds (Fig. 5). The accurate masses generated by FT-ICR MS suggested these
flavonoid compounds were not previously characterized in wheat. Three of the
putativeflavonoidsmost likely tobe responsible for thepigmentation, appeared
to be chemically related to each other as the flavonoid itself, its glycosylated
form, and an acetylated form of the glycoside. Interestingly, one metabolite,
thought to be an acetylated-glycosylated flavonoid-like molecule, increased in
the non-pigmented bran sample. Examination of the KEGG flavonoid biosyn-
thesis pathway suggested that this metabolite could be the result of a block
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Fig. 5. Actual spectral data of a metabolite thought to be a flavonoid involved in the pigmentation
of thewheatbran in red-seededvarieties.Themetabolitewas found tobepresent in the red-seeded
variety, but was absent in the white-seeded variety

in the wheat pigmentation pathway, and was likely a build-up product in the
non-pigmented varieties. Thus, knowing both where the block in the pathway
is located, and where the pigmentation molecules are located along the biosyn-
thetic pathway, researchers can speculate which set of genes may be responsible
for either pigmentation or lack of pigmentation.

Although not conclusive proof that the pigment molecules have been iden-
tified, the use of FT-ICR MS has narrowed the focus, and allowed a starting
point to formulate hypotheses around the pigmentation in wheat bran. Further
experiments are required either to validate or to reject these hypotheses.

2.4 Effect of Glutamate Dehydrogenase on the Metabolic Profiling
of Transgenic Nicotiana tabacum

Glutamate dehydrogenase (GDH) is a broadly distributed enzyme that atalyzes
a reversibleoxidativedeaminationof glutamate toα-ketoglutamate andammo-
nia in the presence of the coenzyme (NADH or NADPH). Roots and leaves from
both wild-type and gdhA transgenic tobacco encoding a NADPH-dependent
GDH were analyzed using FT-ICR MS in a non-targeted manner. Approxi-
mately 2000 peaks were detected within a single sample. The fold change value
of each mass peak observed was calculated as the ratio of signal intensity in
normal tobacco to that in transgenic tobacco. Figure 6a shows the number of
metabolites which are significantly (Student’s t-test; p < 0.01) increased or
decreased in gdhA tobacco compared to control tobacco. In the root samples,
a total of 210 metabolites are elevated and 86 metabolites are decreased in
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gdhA tobacco. In contrast, the leaves exhibit a total of 179 metabolites that are
increased and 197 metabolites that are decreased in gdhA tobacco. The ratios
of metabolites altered in abundant GDH activity are almost the same in root
(18%) and leaf (20%) samples.

Successive additions of sugar moieties to metabolites were observed in
the gdhA tobacco. For example, quercetin (theoretical mass of 302.0427 Da)
(Da = Dalton), a plant pigment, is a unique flavonoid that was highly in-
creased in the leaves of gdhA tobacco. Also, a related metabolite, quercetin
3-O-glucoside (theoretical mass of 464.0955 Da), a glycoside of quercetin, was
increased. As shown in Fig 6b, a total of 72 increased metabolites in roots were
glucuronidated (p < 0.05; in gdhA tobacco compared with control tobacco).
In contrast, only 21 glucuronidated metabolites in leaves were increased in
gdhA transgenic tobacco. Glucose and sucrose levels were significantly ele-
vated both in roots (1.6-, 3.5-fold, respectively) and in leaves (1.6-, 2.3-fold,
respectively).

Figure 7A shows principal component analysis (PCA) of gdhA tobacco
and control tobacco metabolome data. Regardless of genotype, FT-ICR MS
metabolic fingerprints of leaves and roots differed significantly (in Fig. 7A
the proportion of principal component (PC) 1 is 83%). Figure 7B shows the
Phenomenome Profiler™ screen shot which lists the top 20 metabolites (ten
most positive and ten most negative loadings) for PC1. Each row represents
the signal to noise ratio of each metabolite and each column represents the
metabolite profile of each sample (replicate analysis, n = 5). Metabolites hav-
ing a high positive loading score were mainly derived from the root extract,
and metabolites having a high negative loading score were primarily derived
from the leaf extract. Qualitative differences (metabolites only detected in one
organ) approached 40% (819 metabolites) of the total number of metabolites
observed.

This study used FT-ICR MS metabolic profiling to associate phenotypes with
biochemical changes resulting from endogenous effects of glutamate synthesis
in transgenicplants.TheGDHplantswere a suitable test forFT-ICRMSbecause
they exhibit cell composition alterations that result from a specific biochemical
change in a well-characterized pathway targeting the cellular glutamate pools.
From a plant metabolic engineering perspective, GDH could be useful for
inducing increases or decreases in the yield of a large number of chemical
compounds. In particular this attribute may be useful as the pharmaceutical
industry discovers new plant-derived compounds of therapeutic value.

The work presented here demonstrates that metabolite analysis by FT-ICR
MS provides a useful tool for the analysis of cryptic phenotypes in transgenic
plants. The acquisition of data from extracts that have not undergone deriva-
tization enables the analysis of the relationships between various metabolites
and the determination of equivalence, or lack thereof, between samples. The
sensitivity and resolution of FT-ICR MS provides a useful method for catalogu-
ing chemical diversity; within existing technological limits differences may be
measured between samples whose mass is as low as 50 mg for fresh tissue and
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Fig. 6. a Number of metabolites detected in this experiment and indicated as fold changes
in gdhA tobacco compared with control tobacco. b Number of metabolites related via a glu-
curonidated reaction and indicated as fold changes in gdhA tobacco compared with control
tobacco

Fig. 7. A Metabolomic PCA analysis of the samples. Each spheroid represents a single sample.
Spheroid clusters 1 to 4 are control leaf, gdhA leaf, control root, and gdhA root respectively.
Proportions of thefirst, second, and third components are 83%, 5%, and4%. BThePhenomenome
Profiler™ screenshot of the top 20 metabolites for principal component 1
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even lower for dried tissue. Therefore, the occurrence of novel compounds in
individuals, populations, species and genera may be catalogued with relative
ease.

3 Conclusion

FT-ICR MS has many applications within plant sciences. The major advantage
for utilizing FT-ICR MS technology is the ability to monitor global system
changes in a non-targeted manner. It is the non-targeted approach that al-
lows the visualization of changes of both known and unknown or unexpected
metabolites, allowing the researcher to then focus or target their research to
a specific metabolite or group of metabolites. The examples highlighted in this
chapter have shown, with the use of FT-ICR MS in a non-targeted approach,
discoveries that may not have been possible or as easy to make with other
metabolomic platforms.
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III.10 Plant Metabolite Profiling
for Industrial Applications

R.N. Trethewey1

1 Introduction

The industrial application of plant metabolite profiling is less than a decade
old. However, the growth of interest and application of this technology has
been rapid due to a range of new commercial opportunities from functional
genomics to the development of improved crop varieties through conventional
breeding or genetic modification. In particular the expectation that future
generations of plant biotechnology products will be based upon metabolic
characteristics (for example improved yield or enhanced compositions of nu-
tritionally important compounds) has provided a huge impetus to this field.
Indeed plant scientists have been the pioneers of many of the contemporary
technologies of metabolite profiling. In this chapter I will review the require-
ments for the technologyofmetaboliteprofiling inan industrial setting, discuss
the challenges of achieving a high throughput, and illustrate applications in
crop protection, plant biotechnology and nutrition.

2 The Metabolome

Before diving into the technology of metabolite profiling, it is worth pausing
to consider what it is that is to be measured. Based on the nomenclature of
genomics, the term “metabolome” has recently emerged to represent the total
metabolite complement of a cell, tissue or organism. No one really knows what
the extent of the metabolome is (Bino et al. 2004), nor where to draw the line
between a metabolite and a small molecule or a slightly larger molecule! Some
scientists include DNA, RNA and protein in the definition of the metabolome,
others prefer to limit it to compounds with a molecular mass of less than an
arbitrary number such as 1000. In addition, metabolites of similar or different
chemical nature can occur in vivo as conjugates which adds to the confusion.
Natural product chemistry is a field with a long and extensive tradition and
there have been estimates that more than 100,000 secondary metabolites have
been identified and that this represents less than 10% of the total amount
present in the plant kingdom (Wink 1988). Some scientists who take on an

1 metanomics GmbH and metanomics Health GmbH, Tegeler Weg 33, 10589 Berlin, Germany,
e-mail: richard.trethewey@metanomics.de
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advocate role for the field of plant metabolomics often emphasize very large
numbers in order to draw attention to the challenge (and themselves). Defini-
tions of the global metabolome are of limited value, as ultimately it is necessary
to understand the metabolome in the species being studied. Estimates for an
individual plant species, or humans, vary in the 3–25,000 range and a likely
figure for an Arabidopsis leaf is 5000.

In the case of industrial applications, it is important to precisely define
which metabolites need to be measured and adapt methods to give an optimal
quantification of these key compounds. For commercial projects, it is often the
case that key compounds are available and can be purchased as standards to
allow calibration and optimization of methods. In the case of plant biotechnol-
ogy products, primary metabolism is at the forefront of interest, for example,
amino acids, fatty acids, organic acids, sugars and vitamins. In some cases,
specific secondary metabolites such as constituents of wine, or known growth
regulators also play a role. It is therefore sufficient for most commercial appli-
cations to generate profiles covering hundreds of metabolites, a fraction of the
overall metabolome.

One of the characteristics of contemporary plant metabolomics is that the
majority of metabolites that are determined in a typical profile are unknown
(Bino et al. 2004; Kopka et al. 2005). Often the unknown analytes deliver
reliable measurements, perhaps having a characteristic mass spectrum signal
and retention time behavior in a chromatographic system. Such unknowns
have the potential to be biomarkers, or can contribute to precise classification
of metabolite profiles. Thus many companies assign a significant value to the
“known unknowns” and these are often determined in parallel with the key
known metabolites.

3 Profiling Technologies

There are currently no methods that are even close to delivering a complete
quantification of the metabolome. NMR based spectroscopy has historically
been used for plant metabolite profiling (Ratcliffe and Shachar-Hill 2005) and
some industrial applications have been reported (see Sect. 5.1). However, this
technology is limited by sensitivity and the range of metabolites covered is low.
Thus mass spectrometry (MS) techniques have emerged in the last few years as
the method of choice for metabolite profiling. There are however a bewildering
range of different MS technologies each with a different list of advantages and
disadvantages. These have been expertly reviewed by Sumner et al. (2003) and
I will not go into this diversity in more depth in this chapter.

For industrial applications, there are three key requirements which sig-
nificantly influence the choice of system: robust quantification, economic
reliability, and high throughput operation. The first requirement excludes
direct-injection MS approaches, where the quantification can be subject to
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ion-suppression effects due to unpredictable variability of matrix derived com-
pounds (Annesley 2003; Matuszewski et al. 2003). Many biologists have been
seduced by the apparent speed and ease of direct injection, but there is little ac-
ceptance for metabolite profiling without chromatography amongst analytical
chemists. To date, the remaining two requirements have been unequivocally
met only by MS coupled to gas chromatography (GC) or liquid chromatography
(LC). However, newer technologies such as capillary electrophoresis coupled
to MS will no doubt reach a similar maturity in the near future (Sato et al.
2004).

3.1 GC-MS Based Metabolite Profiling

GC-MS based profiling has a long and extensive history. The origins can be
found in clinical research in the 1960s. Indeed one of the first definitions in
the field was GC specific: “Metabolic profiles are multi-component GC anal-
yses that define or describe metabolic patterns for a group of metabolically
or analytically related metabolites” (Horning and Horning 1971). This early
paper described the analysis of around 20 analytes (steroids, acids and drug
metabolites) in human and rat urine samples. Clinical applications were pur-
sued consistently by a small number of groups through the 1970s and 1980s
(Niwa 1986). However, the field was limited by the separation capabilities of GC
columns, the expense of MS couplings and computational limitations. These
barriers slowly crumbled in the 1990s as improvements in both the engineer-
ing of GC-MS systems and in the affordability of computing power led to the
development of robust bench-top systems.

The pioneer of GC and GC-MS based metabolite profiling in plants was the
group of Sauter working at the German chemical company, BASF AG (Sauter
et al. 1991) (Sect. 5.1). The authors were able to resolve around 200 peaks with
a high degree of reproducibility and could determine the structure of around
70 compounds. The method that they developed involved the silylation of plant
extracts before GC analysis. However, this has the disadvantage that a large
number of the peaks are multiple isomers of sugars, which are abundant
metabolites in plants. Thus in the late 1990s the Max Planck Institute for
Molecular Plant Physiology adapted the method in two ways. First, the extracts
were separated into polar and non-polar components and, second, a second
derivatisation step was introduced to reduce isomer complexity in the polar
fraction. Roessner et al. (2000) published this new method and showed that in
potato tubers it allowed the quantitative determination of more than 150 tuber
metabolites including sugars, sugar alcohols, dimeric and trimeric saccharides,
amines, amino acids and organic acids.

In the meantime, bench top GC-MS systems have evolved to be highly
robust and very precise. At metanomics we are able to operate over 40 systems
in routine practice with an “up-time” availability for each system of over 95%
(Fig. 1). The costs of GC-MS have also fallen significantly over the years and
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Fig. 1. a High Throughput GC-MS at metanomics. More than 40 systems are in operation. b A typ-
ical GC-MS chromatogram of polar compounds in Arabidopsis leaves generated in the laboratory
shown in a. The figure illustrates the large number of analytes which can be found in a single
analysis of a plant extract

this represents an ideal technology for a research group to enter into the field
of metabolite profiling. Indeed it remains mysterious why this technology is
not even more widespread than it currently is.

Despite the maturity of GC-MS technology it is reassuring that innovation
continues (Santos and Galceran 2003). A coupling between GC and a time-of-
flight (TOF) mass spectrometer was commercially introduced in the late 1990s
and is now available from several instrument providers. TOF has the decisive
advantage that is scans faster than conventional quadrupole technology allow-
ing either improved deconvolution of peaks in complex mixtures, or shorter
run times. In addition TOF provides a higher accuracy than quadrupole tech-
nology in the determination of mass-to-charge ratios. There are currently no
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publications on the application of this technology to industrial questions, and
only a few reports from the academic community (e. g. Taylor et al. 2002; Fiehn
2003). However, it is to be anticipated that GC-TOF will ultimately replace
quadrupoles as the workhorse of industrial metabolite profiling. Even more
innovative has been the recent development of two-dimensional GC-MS (Dal-
lüge et al. 2003). This technology offers the possibility to perform a second
dimension of GC separation enabling isomers to be separated which otherwise
would be submerged into a single peak.

3.2 LC-MS Based Metabolite Profiling

Whilst GC-MS fulfills many of the technical requirements of a system suited
for industrial metabolite profiling, it has one key limitation – the range of
metabolites that can be analyzed. Obviously, only compounds that can enter
the gas phase can be studied and the use of chemical derivatisation protocols
to widen the range of volatile compounds has the drawback of introducing
more processing steps and sources of error. Thus the potential for LC-MS as
a profiling technology has attracted much attention (Wilson et al. 2005a). It
took both innovation in the development of LC-MS couplings and successive
iterative improvement in LC separation technologies to bring us to the point
where LC-MS metabolite profiling is now feasible (Niessen 2003). Indeed, the
ionization techniques available for LC-MS such as atmospheric pressure ion-
ization (API), atmospheric pressure chemical ionization (APCI), atmospheric
pressure photoionization (APPI) and electrospray (ESI), have been demon-
strated to be capable of generating ions from labile analytes (Hayen and Karst
2003).

LC-MS application development has been driven by the pharmaceutical
industry, attracted by the sensitivity and precision of the technology for study-
ing drugs or xenobiotics and their metabolic products. The latter application
is often termed metabolite profiling which can cause some confusion. Most
publications on LC-MS metabolite profiling in plants have targeted specific
substance classes (e. g. Lange et al. 2001; Huhman and Sumner 2003) and it is
only recently that there have been reports of wider plant metabolite profiling
with LC-MS (Tolstikov et al. 2003). Of particular note was a recent paper that
reported that 2000 different signals could be profiled in Arabidopsis leaves and
roots when using capillary LC coupled to TOF-MS (van Roepenack-Lahaye et
al. 2004). Some of these signals could be assigned to particular metabolites or
classes.

The experience of metanomics has shown that LC-MS methods for wide
metabolite profiling can be developed and implemented in high throughput. In
addition, a rangeofother industryplayersofferLC-MSprofiling technologiesas
part of their company sales material. Thus it seems that LC-MS is establishing
itself as a core profiling technology in plant industrial profiling and in due
time may come to supercede GC-MS. Considerable further development in
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technologies can be expected in the future. In particular, the combination of LC
with cutting-edge mass spectrometric techniques such as Fourier-transform
ion cyclotron resonance mass spectrometry (FT-ICR-MS, also FTMS) (Zhang
et al. 2005) or linear ion traps (Schwartz et al. 2002) may offer the potential to
widen the scopeofmetabolitesbeingprofiledwhilst simultaneously supporting
the process of structural elucidation of unknown metabolites in the profile. In
addition, improvements in liquid chromatography, so called ultra performance
LC (UPLC), offer the possibility of enhanced separation in complex mixtures
(Wilson et al. 2005b).

4 High Throughput Metabolite Profiling

Many applications in the industrial sphere require high throughput metabolite
profiling. For example, in the case of genomics projects large sample numbers
have to be processed in order to provide genome scale coverage whilst in the
area of breeding it is often the case that samples have to be analyzed in short
time periods in order for selection decisions to be taken from one season to
the next. Further, high throughput capabilities allow the parallel operation of
a range of different analytical methods in order to maximize the width of the
profiling information that is generated.

In this section, some of the challenges and requirements of high throughput
industrial operation will be introduced based upon the experience of meta-
nomics with GC-MS and LC-MS systems. An overview of the technical and
information workflow in high throughput operation at metanomics is pro-
vided in Fig. 2. Given that there are currently no “off-the-shelf” solutions for
high throughput operation, each step of the analytical process has to be thor-
oughly optimized for ease of operation and potential automization. Further,
upscaling to high throughput operation should only be considered for meth-
ods where a full validation process has been successfully concluded. There
are currently no commonly agreed standards for the validation of metabo-
lite profiling methods (although there are various initiatives crystallizing to
tackle this question, e. g. www.smrsgroup.org; www.metabolomicssociety.org)
and extreme care needs to be taken in defining what is sufficient degree of
validation.

The analytical process starts with the experimental design, generation of
material and sampling. In the case of the experimental design the importance
of control material cannot be underestimated in high throughput operation.
At metanomics around 30% of the analyses that are performed are on con-
trol material and this enables the quality of the process to be monitored and
maintained across different systems and over long time periods. Further, great
care has to be taken to ensure that sufficient control material is generated to
enable the metabolite profiles to be adequately interpreted and ensure that the
experimentation leads to a decisive outcome. In order to design the experi-
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ments competently, it is necessary to have some idea of the variability that is
to be expected, for the metabolites of critical importance, so that statistical
power can be estimated and optimized. This may necessitate conducting fea-
sibility and pilot experimentation before upscaling to the final experimental
design.

The production of the plant material and the sampling process are key steps
that influence the overall variability of the process. In some cases, for example
in functional genomics projects, it is desirable to minimize the variability in
the process so that the effects of a particular gene can be seen as clearly as
possible. This can involve a significant investment in infrastructure for the
precise controlled growth of plants and the development of standard operating
procedures (SOPs) for the rapid harvesting and snap-freezing of plant tissues.
In other cases, for example in breeding work with field grown plants, it may be
important to understand the variability associated with particular metabolites
and here steps should be undertaken to ensure that a wide diversity of material
is sampled.

Fig. 2. Schematic representation of sample and data workflow for high throughput metabolite
profiling at metanomics
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There are a range of extraction methods available in the literature for
metabolite profiling. However, in the case of high throughput operation it
is of crucial importance to minimize the complexity of the extraction and en-
sure that manual operations occur as efficiently as possible. Suitable extraction
techniques include ball mills, ultrasound-assisted extraction, or extraction sys-
tems which use pressurized solvents. All extraction procedures in metabolite
profiling represent a compromise between the quality and the width of analysis
and the choice of which method is utilized is ultimately dependent on the key
metabolites that need to be included in the profiles.

The advantages of GC-MS and LC-MS have already been introduced. For
an industrial application, great care needs to be taken in the actual choice
of machines and instrument provider. A high degree of reliability coupled
with the availability of good maintenance and trouble shooting support is
mandatory. Further, if the projects being undertaken are long term and there
is a need for data to be compared over months or years then temporal stability
becomes a further requirement. In daily operation it is crucial to follow SOPs
that monitor the “health” of each system and enable maintenance activities to
be triggered once a system starts to drift outside of key performance indicators.

In the caseofmetanomics, the throughput thathasbeen implementedmeans
that around 400,000 peaks have to be identified, integrated and validated in the
chromatogramsperday.This is obviously a taskwhich canonlybe realizedwith
a substantial degree of automation. There is currently no software available on
the market place that covers all the necessary steps. Therefore, any company
seeking to run high throughput operations must be prepared to undertake
a considerable degree of software development. At metanomics software has
been developed and implemented which automatically checks all peaks for
compliance with up to 50 pre-defined rules. Further it supports the technical
personnel to perform a manual appraisal of peaks which do not pass the
validation.

The files generated by GC-MS and LC-MS are large and metanomics has had
to implement computing systems capable of dealing with around 10 TB per
year distributed across 20 million files. This experimental data needs to be fully
integrated with sample tracking data, and for this a Laboratory Information
Management System (LIMS) is absolutely required. It is normally a multi-year
process to successfully implement a LIMS for a process as complex as metabolic
profiling.

The challenges of high throughput operation are considerable, but they can
be overcome. Metabolite profiling is actually more suited to high throughput
than proteomics or transcriptomics. Interestingly, despite this fact, there has
been more sustained investment and effort in proteomics/transcriptomics
worldwide than in metabolomics. It is therefore to be expected that the high
throughput potential of metabolite profiling will lead to it playing an ever
increasing role in the upcoming era of system biology.
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5 Industrial Applications

The industrial applications of plant metabolite profiling can be divided into
four broad areas: agrochemical development, functional genomics, crop im-
provement and nutrition.

5.1 Agrochemical Development

As discussed in Sect. 3.1, the pioneer of plant metabolite profiling was Sauter,
working at BASF AG. His group published a landmark paper in the American
Chemical Society Symposium Series (Sauter et al. 1991), describing metabolic
profiling of plants as a new diagnostic technique for mode of action studies in
herbicide research. This paper describes the analytical procedures and illus-
trates their application in an experiment where the response profiles of barley
plants treated with four chemically unrelated herbicides were determined.
Around 200 peaks of known and unknown substances could be followed and
response profiles were generated through the comparison between treated and
untreated material. The authors found that all four herbicides generated dif-
ferent characteristic responses for known and unknown peaks. Further, by
interpreting the known components of the profiles the authors were able to
show that if they had just discovered the chemistries they would very rapidly be
able to gain an insight into their modes of action. They concluded that the tech-
nique was well suited for fingerprinting and classifying compounds according
to mode of action. They predicted that classification would become more pow-
erful as more and more different response patterns were registered in the form
of a “library”. Indeed, this approach became a routine tool in the herbicide
research at BASF over the last 20 years (Sauter, personal communication).

Researchers at the company American Cyanamid were able to achieve simi-
lar results using a completely different technological approach (Ott et al. 2003).
Using H-1 NMR and artificial neural networks this group was able to classify
herbicides and bioactive compounds rapidly according to the signals generated
from crude plant extracts. The authors tested 19 of the most relevant mode of
actions in corn plants and were able to build an expert system that was able
to recognize whether a new compound could be classified to a known mode
of action. Whilst a powerful approach, this methodology suffers from the gen-
eral drawback of NMR based studies that the information at the metabolite or
pathway level is low, thus restricting the ability to interpret the modes of action.

5.2 Plant Functional Genomics

The industrial application of metabolite profiling to functional genomics has
beenpioneeredbymetanomics.Underlying theapproach takenbymetanomics
are metabolite profiling methods for Arabidopsis which were first published
by Fiehn et al. (2000) working at the Max-Planck-Institute for Molecular Plant
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Physiology. In this groundbreaking study, the authors used GC-MS to analyse
some326different compounds inArabidopsis leaves, ofwhich roughlyhalfwere
known metabolites. Profiles were generated for two ecotypes (Columbia and
C24) along with a biochemical and a morphological mutant. The authors used
principle component analysis to explore the overall metabolic phenotypes and
concluded that the ecotypes were more divergent than the mutants. In addition
there were more extensive changes observed in the biochemical mutant than
in the morphological mutant. Overall the work showed for the first time that
metabolite profiling could be a very valuable tool for the analysis of genotypes
and the association of genes with metabolic functions.

The approach taken by metanomics to functional genomics is therefore to
create a large genetic diversity in Arabidopsis at a genome scale and subject this
to broad based, high throughput metabolic profiling. Plant lines are identified
where the levels of key metabolites have changed and the respective gene whose
activity was altered is pinpointed. Thus a functional link between gene and
metabolite is generated and this information can be used in the development of
cropswith improved traits. Indeed, the secondand thirdgenerationproductsof
plant biotechnology are expected to be crops where there is a direct benefit for
the consumer such as promoting health or enhancing nutrition. Such beneficial
effects will often be due to altered metabolite compositions.

Key to the conduct of efficient genomic disovery projects are the availability
of good plant populations with precise genetic modifications. Both a gain-of-
function and a loss-of-function strategy have been followed by metanomics.
In the loss-of-function, or knockout, approach, a large Arabidopsis T-DNA
population (Azprioz-Leehan et al. 1997) has been established where insertional
mutagenesis has been used to disrupt the endogenous genes. For the gain-of-
function approach, a facility has been implemented which is able to clone genes
into plant expression vectors at the rate of 200 per week. The overexpression
Arabidopsis populations generated to date include those where each one of the
yeast and E.coli genes have been individually overexpressed.

The results from these programs show that they are effective and efficient
at linking genes to particular metabolic functions (Fernie et al. 2004). At
a statistical level, metanomics has observed that a significant alteration in
any one metabolite can be induced by altering the activity of 0.1–1.0% of the
genes in a genome. Only a minority of the genes identified at metanomics have
previously been associated with the observed alterations in metabolism. Thus
plant functional genomics is a field currently wide open for new discoveries of
a profound nature.

5.3 Crop Improvement

There are two principle ways in which improved crops will be developed in
the future: via targeted breeding or through genetic engineering (Carrari et al.
2003). Metabolite profiling can contribute to the success of both strategies.
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As the genetic engineering of crop plants is a lengthy and expensive proce-
dure it is as important to be as precise as possible in selection and hypothesis
validation, and as early as possible in the trait development process. In the
case of traits developed through metabolic engineering, there are now many
examples from academic research that illustrate how metabolite profiling can
play a role in the characterisation of transgenic plants (Trethewey 2004). It
is therefore likely that the large plant biotechnology companies will rapidly
adopt this technology.

Examples of the application of metabolite profiling to breeding are at an
earlier stage. The priniciple is very simple in that advancement decisions in
the breeding process could be driven through metabolite profiling data in
addition to the data that is normally generated, e. g. phenotype and yield. Such
approaches would become very powerful if coupled to genetic marker analysis.
An early study that illustrates this potential has recently been published on wild
tomato (Schauer et al. 2005).

Applications could also extend well beyond crop breeding. Schaneberg et
al. (2003) have published a study of one of the oldest medicinal herbs of
Traditional Chinese Medicine: Ephedra sinica, commonly known as Ma Huang.
Using a simple HPLC metabolite profiling characterisation this group was
able to distinguish between Ephedra species originating from Eurasia, North
America or South America. This illustrates the potential of metabolite profiling
to contribute to herb selection procedures. Further profiling could support
routine quality assurance procedures within the dietary supplement industry.

5.4 Nutrition

As the nutritional and medical sciences are impacted by genomics, there is
an intensifying discussion that metabolite profiling may be an important ap-
proach to drive a deeper understanding of the relationship between genotype,
nutrition and health (German et al. 2004). A new term has emerged for this
combination of disciplines: nutrigenomics. That dietary habits can influence
the progression of degenerative diseases such as cancer, cardiovascular disease
and diabetes is now well established (Davis and Milner 2004). However, the
question of which dietary components are important remains largely unre-
solved, and this is exactly where wide metabolite profiling might play a key
role in the future. Careful application of such methodologies to particular
cohorts of patients, perhaps in conjunction with dietary interventions, will
lead to an increased understanding of the metabolic basis of such diseases and
can lead to the development of new strategies for the preservation of health.
Interestingly, metabolite profiling can be applied directly to both plant and
animal food components and also to body fluids (e. g. urine and blood) from
human participants in the studies. Direct links between metabolites that are
ingested and their occurrence, distribution and effects on human subjects
might be identified.
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6 Outlook

Industrial applications of plant metabolite profiling are in their infancy. It
seems likely that, in the long term, a wide range of applications that support
human health and wellness will emerge. There will certainly be many applica-
tions where the selection and development of herb and crop plants is promoted.
However, the true power of metabolite profiling may be found when plant pro-
filing is combined with approaches to understand and enhance human health
and nutrition.
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