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Summary. The GOCE mission, planned to be launched in autumn 2006, will allow
to determine the static Earth gravity field down to features of 100 km–70 km (half
wavelength) in terms of spatial resolution. Since satellite gradiometry is restricted to
the medium- to short-wavelength part of the gravitational spectrum, only its com-
bination with satellite-to-satellite measurements in the high-low mode will meet the
mission requirements as demanded by the ESA, namely a high-accurate GOCE-only
terrestrial gravity field modeling. Here we apply the acceleration approach which is
predominantly characterized by numerical differentiation of the kinematic GOCE
orbit. Gradiometry is treated by analysis of the fundamental invariants of the grav-
itational tensor. These quantities neither depend on reference frame rotations nor
on the orientation of the gradiometer frame in space. Linearization, computational
effort and amalgamation of tensor elements provided with different levels of accu-
racy make this approach hard to handle. The use of high performance computing
facilities, parallel programming standards and optimized numerical libraries are the
key to accomplish efficient gravity field recovery.
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1 Introduction

Within ESA’s (European Space Agency) “Living Planet” program the Earth
explorer core mission GOCE (Gravity field and steady-state Ocean Circulation
Explorer) planned to be launched in autumn 2006 will be the first satellite
mission applying three-dimensional gradiometry in space (ESA, 1999, 2000).
The observation data collected by the on-board sensors during the operational
mode covering two six-month periods, interrupted by a hibernation phase of
the satellite, is expected to allow for the recovery of the static terrestrial
gravity field down to features of 100km–70km in terms of spatial resolution
(half wavelength). However, satellite gravity gradiometry (SGG) is not able to
recover the long-wavelength part of the Earth gravity field due to the limited
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measurement band width (MBW) of the gradiometer instrument ranging from
5mHz to 0.1Hz. Thus, a GOCE-only gravity field solution as demanded as
the mission outcome by the ESA can’t be provided by gradiometry alone.

Actually, the CHAMP (CHAllenging Minisatellite Payload) satellite mis-
sion established the opportunity to develop adequate algorithms for satellite-
to-satellite tracking analysis in the high-low mode (hl-SST) between the high
orbiting Global Positioning System (GPS) satellites and the low Earth orbiter
(LEO) CHAMP (Reigber et al., 2005). Different approaches showed compa-
rable results for the modeling of the long-wavelength part of the terrestrial
gravity field such as the energy balance method (Földvary et al., 2005), short-
arc analysis (Mayer-Gürr et al., 2005) and the acceleration approach (Reubelt
et al., 2005). Within the scope of this contribution we focus on the acceleration
approach. It is predominantly characterized by 2nd order numerical differenti-
ation of the kinematic satellite orbit. The GPS track of the GOCE spacecraft
is used to complement gradiometer observations in the dedicated frequency
domain. The combined analysis of both SGG and hl-SST measurements is
able to provide a GOCE-only estimate of the Earth’s gravity field covering
the whole gravitational spectrum.

Commonly, SGG analysis is performed on the level of gravitational gradi-
ents (GGs), namely the main diagonal elements of the gravitational tensor,
being provided with highest accuracy with respect to the gradiometer frame
of reference. A completely different approach is based on the rotational invari-
ants of the observation tensor (Rummel et al., 1986). Beyond a pure method-
ological interest and the challenges of an efficient implementation, the main
motivation for this approach is twofold. Firstly, the invariance under rotations
actually means that knowledge about the gradiometer frame orientation is not
required, neither with respect to the orbit frame nor to inertial space. Sec-
ondly, since this method has not been implemented before, it is independent
of more conventional time-wise and space-wise approaches.

With the design and realization of the GOCE mission computational tasks
gain evident importance in Satellite Geodesy, namely the access to and use
of high performance computing (HPC) facilities. Due to the hardware limita-
tions of ordinary personal computers (PCs) concerning both performance and
main memory availability, only multiprocessor systems provide high-resolution
gravity field estimates within a reasonable time frame.

The paper is organized as follows. The next Section deals with kinematic
orbit analysis, predominantly with regard to numerical differentiation tech-
niques to derive satellite accelerations from position information. Section 3
addresses to SGG data analysis based on the rotational invariants of the grav-
itational tensor. Parallel implementation of the algorithm using HPC facilities
is treated in Sect. 4. Finally, the conclusions of this contribution are summa-
rized in Sect. 5.
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2 Kinematic Orbit Analysis

This Section is dedicated to the hl-SST part of the GOCE mission. First, the
functional model for kinematic orbit analysis is derived followed by studies
concerning numerical differentiation techniques. Finally GOCE hl-SST gravity
field solutions based on the acceleration approach are presented.

2.1 Methodology

Conventionally, the parameterization of the terrestrial gravitational potential
is expressed in spherical coordinates (λ, ϕ, r) with the unknown potential co-
efficients ulm, cf. (1). Series truncation at a certain maximal degree L = lmax

provides an approximation to reality. Both the geocentric constant GM and
the mean Earth radius R are fixed. The normalized Legendre functions of
the first kind P̄lm(sin ϕ) are part of the orthonormal base functions elm(λ, ϕ),
dentoted as surface spherical harmonics (2).
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According to (3) the acceleration ẍ(t) = ẍ(λ(t), ϕ(t), r(t)) of the satellite
(reduced by all disturbing effects such as tidal forces) is equal to the ter-
restrial attraction, namely the gradient of the Earth’s gravitational potential
UE(λ, ϕ, r). Equation (3) is referred to as the acceleration approach and has
been proven to perform well for CHAMP gravity field recovery (Reubelt et
al., 2005). Kinematic orbit analysis is restricted to the determination of the
long-wavelength part of the terrestrial gravity field only due to the satellite’s
positioning accuracy limited to some centimeters.
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2.2 Numerical Differentiation

The crucial point in (3) is the determination of accelerations eiẍi(t) that
serve as pseudo-observations for kinematic orbit analysis. Since hl-SST pro-
vides orbit information on the level of position coordinates, numerical dif-
ferentiation techniques have to be applied. GPS positions are highly corre-
lated, predominantly due to systematic atmospheric effects. With regard to
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numerical differentiation these errors can be reduced dramatically when using
coordinate differences ∆x(ti) = x(ti) − x(ti−1) instead of the absolute orbit
information (Reubelt et al., 2003). Assuming the remaining systematic errors
to be negligible the uncertainties of hl-SST phase measurements itself dom-
inate the overall error budget. These random errors have to be assumed as
non-correlated. However, dependent on the procedure for GOCE orbit deter-
mination based on GPS phase measurements the positions of the spacecraft
will be more or less correlated. Normal distributed position errors, denoted as
white noise, can be considered as the worst case. Thus, that scenario is defined
as lower bound for what can be expected at least from GOCE hl-SST analysis
by means of the acceleration approach. The standard deviation of random
position errors is about σxi =1-2 cm for each coordinate xi (ESA, 1999). In
most methods for numerical differentiation an interpolative polynomial is fit-
ted through the time-series of position coordinates. A moderate number of
sampling points is used to estimate the polynomial coefficients. Due to the
oscillation of the polynomial at its edges, the interpolation point is specified
to be in the middle of the interpolation mask which is shifted for successive
satellite positions. Evaluation of polynomial derivatives finally leads to the
desired pseudo-observations.

Besides the number of sampling points, the degree of the polynomial re-
spectively, the methods for numerical differentiation predominantly differ in
the kind of the interpolation polynomial, namely its smoothing behavior.
Four methods have been explored in detail: (i) Gregory-Newton interpola-
tion, (ii) spline interpolation, (iii) polynomial regression and (iv) smoothing
spline interpolation. The non-smoothing methods (i) and (ii) achieve sim-
ilar results as well as the smoothing methods (iii) and (iv). Thus, in the
following solely Gregory-Newton (GN) interpolation (Maeß, 1988) and poly-
nomial regression (PR) will be addressed. Actually, GN is a special case of
PR, namely the least squares adjustment to estimate the polynomial coeffi-
cients is reduced to a unique estimate. For each coordinate xi, i = 1, 2, 3 Ta-

Table 1. RMS values of acceleration residuals ∆ẍi (mm), ∆t = 5 s

σxi = 1 cm σxi = 2 cm
∆ẍ1 ∆ẍ2 ∆ẍ3 ∆ẍ1 ∆ẍ2 ∆ẍ3

GN 1.45 1.46 1.46 2.91 2.92 2.91
PR 0.16 0.16 0.16 0.32 0.32 0.32

ble 1 contains root-mean-square (RMS) values of 500 000 acceleration resid-
uals ∆ẍ = ẍtrue − ẍest between true accelerations ẍtrue known from orbit
simulation and estimated accelerations ẍest applying GN, respectively PR
(interpolation interval ∆t = 5 s). Obviously, smoothing methods seem to be
by far better suited for numerical differentiation than non-smoothing ones.
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The difference in RMS values between them are almost one order of magni-
tude. But this is not the whole truth. Figures 1 and 2 illustrate the amplitude
spectra of the residuals in column 4 of Table 1. The spectra are identic in the
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Fig. 1. Amplitude spectrum of acceler-
ation residuals applying GN
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Fig. 2. Amplitude spectrum of acceler-
ation residuals applying PR

long-wavelength part, namely up to approx. 30mHz. The smoothing behavior
dominates primarily at higher frequencies causing the differences of the RMS
values in the time domain. In terms of terrestrial gravity field recovery 30mHz
corresponds to a resolution up to L ≈ 90. This is in the range of what can be
expected at most by kinematic orbit analysis, respectively what is reasonable
to recover based on hl-SST observations since gradiometry covers the medium-
to short-wavelength part of the gravitational spectrum. Thus, the method for
numerical differentiation applying the acceleration approach is not restricted.

2.3 GOCE hl-SST Gravity Field Solutions

Numerical studies are based on a simulated GOCE data set covering one
month of observation data with a sampling rate of ∆t = 5 s, provided by
the IAG Section II Special Commission VII (SC7). The EGM96 up to degree
and order L = 300 is used to calculate synthetic orbit information as well
as GGs with respect to the local orbit reference frame (LORF). Kinematic
orbit analysis is applied to recover the terrestrial gravitational field up to
degree and order L = 100 without any regularization. The results in terms of
empirical degree error RMS are presented in Figs. 3 and 4. Due to the polar
gap problem the orders m < 5 are not considered. Assuming non-correlated
noise of 2 cm for each position coordinate a resolution up to degree l = 70
can be achieved whereas even l = 80 − 85 is reached for the more optimistic
noise level of σxi = 1cm. Concerning the numerical differentiation method,
the estimates vary for the low degrees up to approx. l = 30. Table 2 proves
the statement that the method for numerical differentiation doesn’t influence
the gravity field recovery procedure significantly. The latitude weighted geoid
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Fig. 3. Degree error RMS of hl-SST
analysis with position error σxi = 1 cm
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Fig. 4. Degree error RMS of hl-SST
analysis with position error σxi = 2 cm

errors (weighted with cosϕ) between the estimate and the a priori parameter
set for data simulation yield almost the same results for both GN and PR.

Table 2. Latitude weighted RMS values of geoid errors (mm)

resolution L maximal latitude ± 83◦ maximal latitude ± 90◦

σxi = 1 cm σxi = 2 cm σxi = 1 cm σxi = 2 cm
GN PR GN PR GN PR GN PR

70 0.89 0.88 1.78 1.77 0.85 0.85 1.70 1.69
80 1.61 1.60 – – 1.55 1.54 – –

3 SGG Analysis Based on Tensor Invariants

Differential mode measurements of the GOCE gradiometer lead to the gravi-
tational tensor UE = (ei ⊗ ej)UE ; i, j = 1, 2, 3. The GGs Uij = Uji are linear
functionals of the Earth gravity field, namely the second derivatives of the
terrestrial gravitational potential, compare (4). Assembling the accelerome-
ters according to the diamant configuration (ESA, 1999), the main diagonal
elements as well as the component U13 can be determined with an accuracy
of about 6 mEHz−1/2. The remaining GGs are provided three orders of mag-
nitude worse.

(ei ⊗ ej)UE = grad⊗ gradUE(λ, ϕ, r) (4)

Different methods use the observation model (4) for gravity field recovery.
Dependent on the kind of data processing they are split in two groups, the
space-wise and time-wise approach. For the first one, the analysis procedure is
formulated in terms of a fixed boundary value problem (BVP). The time-wise
approach treats the measurements in space as a time series. Solving the full
normal equation system by brute-force inversion leads directly to an estimate
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for the unknown parameter vector. Compared to that the parameterization
of (4) with inclination functions (Kaula, 1966) leads to the representation of
the functional model in lumped coefficients, denoted as the time-wise approach
in the frequency-domain. This method requires simplified assumptions to the
orbit geometry combined with an iterative analysis process, referred to as the
semi-analytical approach. The different techniques are described in Rummel
et al. (1993). Further details can be found in e.g. Colombo (1981), Schuh
(1996), Klees et al. (2000), Sneeuw (2000) and Pail and Plank (2002).

The accuracy of the GGs is dependent on the underlying frame of reference.
This is due to the influence of the poorly known tensor elements U12 and
U23. Tensor transformation leads the transformed quantities to be a linear
combination of the original components of different accuracy levels and should
therefore be avoided. Actually, due to the elimination of the field emission
electric propulsion (FEEP) thrusters (Saccoccia et al., 2000) from the GOCE
configuration the satellite is assumed to oscillate periodically about its yaw-
axis. Altogether, the orientation of the satellite in space is a delicate topic.
Gravity gradient tensor invariants are free of these demands.

3.1 Methodology

The invariant properties of the gravitational tensor UE = (ei ⊗ ej)UE come
along with the solution of the eigenvalue problem (5) of the coefficient ma-
trix UE. The cubic characteristic equation (6) is composed of the eigenvalues
λi, i = 1, 2, 3 and the polynomial coefficients I1, I2 and I3. They are invariant
with respect to the underlying reference frame, respectively reference frame
rotations, and therefore denoted as tensor invariants. For the symmetric grav-
itational tensor they look like shown in (7) to (9).

det(Uij − λδij) = 0 (5)
λ3 − I1λ

2 + I2λ − I3 = 0 (6)

I1 = trUE (7)

I2 =
1
2
[
trU2

E − (trUE)2
]

(8)

I3 = det UE (9)

Inserting the harmonic series expansion of the GGs in the formulae above
finally leads to the functional model for invariant analysis as presented in
(10) to (12).
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The coefficient functions S1
ij(ϕ), K1,2

ijkl(ϕ) and D1,2
ijklmn(ϕ) contain the Legen-

dre functions as well as their first and second derivatives. Analysis of the first
invariant leads to the trivial solution 0 since trUE ≡ 0 holds for the gravita-
tional tensor. Thus, I1 can’t be used for potential field recovery. Non-linearity
of the functional models for I2 and I3 makes invariant analysis to become an
iterative process. Linearization of (11) and (12) with respect to the unknown
coefficients cpq, respectively spq, is performed by summation of the partial
derivatives for each combination of p = const and q = const, as outlined in
(13) and (14).

∂I2

∂c, sp,q=const
=

∂I2

∂c, si=p,j=q
+

∂I2

∂c, sk=p,l=q
(13)

∂I3

∂c, sp,q=const
=

∂I3

∂c, si=p,j=q
+

∂I3

∂c, sk=p,l=q
+

∂I3

∂c, sm=p,n=q
(14)

For the first iteration an approximate solution for linearization has to be
introduced. Within this contribution the OSU86F model is used. Note that
data simulation is based on the EGM96. Actually, the iterative procedure con-
verges very fast. For studies using noise-free simulated data, the final solution
is reached after the second or even first iteration, i.e. the linearization error
is small.

3.2 Series Truncation

Unfortunately the coefficient functions K2
ijkl(ϕ) and D1,2

ijklmn(ϕ) are not sym-
metric with respect to index permutation, i.e. K2

pqkl(ϕ) �= K2
ijpq(ϕ) etc. holds.
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Thus, for the setup of the linearized models (13) and (14) four fold, respec-
tively six fold, nested sums have to be evaluated. Combined with an iterative
procedure, especially for a high-resolution gravity field estimate, the strict
method is not applicable from the computational point of view. However, the
full computation can be avoided by early truncation of the inner loops (15),
which virtually leads to the same results.

imax = L, kmax, mmax � L (15)

For noise-free SC7 data, Fig. 5 presents degree error RMS differences between
SGG analysis based on the radial component U33 and solutions after the first
iteration performing analysis of the second invariant with series truncation for
the inner loops at degree 3, respectively degree 0. Due to the polar gap problem
the plots don’t contain low orders up to m = 6. Apart from the low degrees,
the sum of both linearization error and truncation error is below the empirical
error curve of the non-iterative estimate. Thus, early series truncation is an
adequate tool to decrease runtime for invariant analysis dramatically.
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3.3 Re-calculation of Tensor Elements

Besides the computational effort for invariant analysis a further aspect has to
be considered, namely the amalgamation of GGs, compare (8) and (9). The
second and the third invariant are composed of products between both the
tensor elements of high and reduced accuracy. Thus, the overall accuracy of
invariants would be decreased as well. This problem can be circumvented by
re-calculation of the elements U12 and U23 from iteration to iteration. The
course of action is outlined in Fig. 7. Starting from the linearized observation
equation, for the first iteration an a priori gravity field parameter set is used
to calculate synthetic values for the “unknown” tensor elements U12 and U23,
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Fig. 7. Re-calculation of GGs

respectively the pseudo-observations of type invariants. For successive itera-
tions the actual estimate is used to update the tensor component calculation.
In Fig. 6 additionally to series truncation of the inner loops at degree 3, the
simulated GGs U12 and U23 have been replaced by synthetic values based on
the OSU86F model only considering degree 0 for evaluation. The replaced ten-
sor elements don’t influence the result significantly even when truncating their
calculation at L = 0. That means, the analysis procedure is insensitive to the
deviation of the real values from the synthetic ones. Thus, re-calculation of
GGs is an adequate tool to overcome the difficulties of allocating the pseudo-
observations for invariant analysis.

4 High Performance Computing in Gravity Field
Research

From the computational point of view the problem dimension for GOCE data
analysis has to be treated according to both memory requirement and run-
time. Parallelization of the least squares adjustment procedure using multi-
processor architectures is indispensable for solving for the unknown gravity
field parameters. During the operational mode of the GOCE mission observa-
tions amount to several millions of gradiometer measurements as well as po-
sition coordinates of the spacecraft. Whereas the setup of the design matrix,
respectively the normal matrix, can be done blockwise, for direct inversion of
the normal equation system (NES), referred to as the brute-force approach,
at least one triangle of the symmetric normal matrix has to be kept in the
memory. For a resolution of the terrestrial gravity field up to degree and or-
der L = 300 this equals a memory availability of 33GB. Ordinary PCs don’t
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come along with these requirements. Remedy can be found by using iterative
solvers such as conjugate gradient (CG) methods (Hestenes and Stiefel, 1952)
or the LSQR algorithm (Paige and Saunders, 1982a,b) which have been ap-
plied successfully for potential field recovery (Ditmar and Klees, 2002; Baur
and Austen, 2005). Due to their design, matrix-matrix operations are replaced
by repeated vector-vector operations. Thus, memory requirements are small.
Despite of that, for both the brute-force approach and iterative solvers runtime
of the analysis process makes parallelization of the implementation necessary.

4.1 Parallelization

With regard to the brute-force approach the setup of the design matrix A and
computation of the normal matrix N is done blockwise according to (18).

Ax = y (16)
AT Ax̂ = AT y ↔ Nx̂ = b (17)

N = AT
1 A1 + ... + AT

j Aj =
j∑

i=1

AT
i Ai =

j∑
i=1

Ni (18)

This approach is indispensable, given that for a large amount of observations
and many unknowns the design matrix can not be kept in the main memory.
Indeed, a blockwise procedure even allows for the use of parallel matrix-matrix
and matrix-vector routines provided by the numerical libraries such as e.g.
Lapack and Blas (Anderson et al., 1999) to repeatedly compute Ni = AT

i Ai.
Further parallelization is achieved for the setup of each design matrix block Ai

by distributing the observations contributing to each block to several central
processing units (CPUs).

Due to the character of iterative methods, matrix-matrix and matrix-
vector multiplications are avoided by means of repeated vector-vector opera-
tions. Since neither the design matrix nor the normal matrix must be kept in
the main memory, storage requirements are by far smaller as compared to di-
rect solvers at the expense of an increased amount of operations. Fortunately,
these multiplications can be done separately for each observation. Addition-
ally, the major computational costs occur within the calculation of the design
matrix. It is therefore reasonable to distribute the amount of observations on
several CPUs of a multiprocessor computation platform to build up the de-
sign matrix line by line, each line referring to a separate observation. Within
the scope of this contribution it is exclusively concentrated on the brute-force
approach.

4.2 High Performance Computing

Different platform architectures for parallel implementation with OpenMP
and MPI have been considered to investigate their benefit for the setup and
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solution of the NES by means of the brute-force approach. All the systems
are supported by the High Performance Computing Center Stuttgart (HLRS),
namely (i) NEC TX-7 (ii) NEC SX-6 (iii) Cray Strider. The architecture of
platform (i) is ccNUMA, i.e. similar to shared-memory systems. Platform
(ii) is, considering only one node, a shared-memory array processor system.
Platform (iii) is in principle (disregarding that each single node is in fact a
SMP node of 2 CPUs) a distributed-memory cluster. Table 3 lists some spe-

Table 3. Specific values of computation platforms (PP–peak performance)

platform architecture number main theoretical test
of CPUs memory (GB) PP (GFlops) PP (GFlops)

NEC TX-7 ccNUMA 16 240 16 · 6 8 · 6 = 48
NEC SX-6 cluster 6 · 8 6 · 64 6 · 8 · 9 5 · 9 = 45
Cray Strider cluster 125 · 2 125 · 4 125 · 2 · 4 12 · 4 = 48

cific values of the super computers. To evaluate the performance of the least
squares procedure regarding the different platforms a comparable test peak
performance according to the last column of Table 3 has been chosen. Table 4
summarizes the performance, efficiency respectively, of a test scenario with
maximal resolution L = 50 and half a million of observations of type hl-SST.
The SX-6 is more than three minutes slower than the TX-7 and only achieves

Table 4. Achieved performance for hl-SST analysis

platform wall time user time performance (GFlops) efficiency (%)

NEC TX-7 6m 58 s 54m 7 s 25.4 53
NEC SX-6 10 m 22 s 38 m 32 s 16.6 37

Cray Strider 9m 16 s 111 m 12 s 18.6 39

an efficiency of 37% as compared to 53% for the ccNUMA architecture. This
is surprising since vectorization of the algorithm should increase the perfor-
mance significantly. Actually, the efficiency of the platform is decreased by
comparatively time-consuming data reading. The time for real computations
is about seven minutes which corresponds to a performance of 24.6GFlops,
respectively an efficiency of 55%. This is still disappointing but due to the
moderate problem dimension. To proof that, an additional calculation has
been performed on the SX-6 with a resolution up to L = 100 for the terres-
trial gravitational potential. The impact of vectorization is obvious since the
efficiency amounts to 88% which is near to the theoretical peak performance.
Thus, the array processor system SX-6 is suited very well for the brute-force
approach. The result for the Opteron cluster Cray Strider turns out to be
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worse. This has been expected in advance since compared to the TX-7 the
cache of the Opteron CPUs is considerably smaller. Additionally, runtime
costs for the communication between the cluster nodes by using MPI has to
be accepted.

The impact of HPC for GOCE gravity field recovery is summarized in
Tables 5 and 6. The calculations are performed on the TX-7 dependent on
the number of observations and the number of threads used. The runtimes in

Table 5. Impact of HPC for hl-SST analysis (L = 100)

number of number of time setup time setup time NES
observations (mill.) CPUs A (min) N,b (min) inversion (min)

1.5 1 8 560 4
1.5 4 4 140 1
1.5 8 2 70 0.5

Table 6 correspond to SGG analysis on the level of gravity gradients, respec-
tively second invariant analysis with truncation of the inner loops at degree
0. Decorrelation is not applied regarding the time to set up the design ma-
trix A. For both hl-SST and SGG analysis optimal scaling is achieved with
respect to the number of observations as well as the number of CPUs. The
main computational effort is within the calculation of the NES, namely the
algebraic operations N = AT A and b = AT y. The time for NES inversion is
comparatively short.

Table 6. Impact of HPC for SGG analysis (L = 200)

number of number of time setup time setup time NES
observations (mill.) CPUs A (min) N,b (min) inversion (min)

0.5 1 320 2700 160
0.5 4 80 680 40
0.5 8 40 340 20
1.5 8 120 1050 20

5 Conclusions

For purposes of estimating a GOCE-only gravity field we have analyzed hl-
SST data using the acceleration approach. Based on one month of kinematic
orbit data, dependent on the error budget at least a resolution up to degree
L = 70 in terms of spherical harmonics in the long-wavelength part can be
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achieved. The method for numerical differentiation of the spacecraft’s position
information is not restricted.

Invariant analysis has been proven to be applicable in three-dimensional
gradiometry. It is associated, though, with a more complicated processing
strategy as compared to conventional approaches, in which the main diago-
nal tensor elements are analyzed directly. Both the enormous numerical effort
and the mixture of high and low accuracy tensor components can be cir-
cumvented by early series truncation, respectively re-calculation of the poorly
known gravitational gradients from iteration to iteration based on the previ-
ous estimate of the unknown parameter vector. Stochastic properties of the
invariant approach have not been treated yet.

Parallel implementation of the least squares adjustment procedure on diffe-
rent HPC platforms has been achieved successfully. Linear scaling in runtime
with respect to both the number of observations and the number of CPUs
together with the use of optimized numerical libraries ensure highly efficient
data processing.
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In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds.) Earth Observation with
CHAMP - Results from Three Years in Orbit, 25–30, Springer, Berlin

Reubelt T, Austen G, Grafarend EW (2003) Harmonic analysis of the Earth’s grav-
itational field by means of semi-continuous ephemerides of a low Earth orbiting
GPS-tracked satellite. Case study: CHAMP. JoG, 77, 257–278
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