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Summary. The modelling of the Earth’s gravity field by means of a high-resolving
spherical harmonic analysis is a numerically demanding task, especially when realis-
tic (non gridded) data sets are analysed. The free kite numbering scheme, presented
in the current article, allows a flexible combination of models. It is focussed, in
particular, on the combination of a model containing rotation-symmetrical, high-
resolving data with a second model comprising fully correlated data, which allows
the determination of the lower degrees. This kite scheme may, depending on the
degree of conformance with rotation symmetry, be used both with a direct solver
and to improve the convergence rate of an iterative solver.
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1 Introduction

GOCE gravity field determination constitutes a great challenge to stochas-
tic and deterministic modelling. Obtaining optimal results from GOCE data
has been the focus of research collaborations on both national and interna-
tional levels. In addition to the challenge of mathematic modelling, the nu-
merical implementation of the resulting large equation systems in particular,
requires enormous efforts. As a joint venture between the Technical University
of Graz, the Technical University of Munich, and the University of Bonn, a
data processing chain was developed. This chain consists of three components:
the Quick-Look Tool, which is based on the highly efficient semi-analytic ap-
proach, the Tuning Machine (a tailored iterative solver), and the Final Solver,
which solves the normal equations directly. The development of this variety
of methods is motivated by the complementary use of these three strategies,
which all have distinct advantages as well as drawbacks.

The application of tailored numerical algorithms enabled the design of an
efficient and flexible tool capable of processing the huge amount of data (ap-
proximately 58,000 parameters of a highly resolving model will be estimated
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from some 50 million correlated observations per measurement period of 6
month). This solution technique is based on the method of preconditioned
conjugate gradients and allows a strict one-step adjustment of heterogeneous
data types both in terms of observation equations and normal equations. Al-
though this method was developed especially for GOCE data processing, it
may be applied within the general context of spherical harmonic analysis. The
efficiency of this iterative method, named pcgma (Preconditioned Conjugate
Gradient Multiple Adjustment), is underlined by its ability to solve high-
order spherical harmonic models (degree and order 360 and more) within a
reasonable processing time. pcgma consists of the following main components:

• Decorrelation of the data by discrete filtering in the time domain;
• Preconditioning by means of data-adaptive sparse matrices (Kite Scheme);
• Parallelization for use on massive parallel computer.

The current article focusses on the second component and outlines the results
of the latest research regarding the generation, administration, and implemen-
tation of a data-adaptive preconditioner. The proposed preconditioner consti-
tutes an extension of the traditional kite numbering scheme (Schuh, 1996b)
for equal efficiency with greater flexibility. Therefore, this free kite numbering
scheme may be adjusted to various problems. Possible fields of application will
be demonstrated, using as examples typical problems from satellite geodesy.

2 Spherical Harmonic Analysis

Many physical processes of our ”System Earth” may be represented mathe-
matically by using the solid spherical harmonics

r−(
+1) P
m (sin ϕ) cosmλ and r−(
+1) P
m (sin ϕ) sin mλ

as base functions, where r, ϕ, λ denote the polar coordinates of a point and
P
m (sin ϕ) the Legendre functions of degree � and order m (with � ≤ 0 and
m≤�). As solution of Laplace’s equation outside the sphere, these base func-
tions possess a global support. On the other hand, they build up an orthog-
onal system when the data coverage is global and continuous (Heiskanen and
Moritz, 2000, S.29). Furthermore, these base functions constitute a complete
basis, i.e. any piecewise continuous function f (ϕ, λ) defined on the unit sphere
(r = 1) may be represented by a linear combination of spherical harmonics as
the infinite series

f (ϕ, λ) =
∞∑


=0


∑
m=0

C
m P
m(sin ϕ) cosmλ + S
m P
m(sin ϕ) sinmλ

with S
0 =0. The coefficients C
m and S
m may be determined independently
by integration over the unit sphere, yielding
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C
m =
1∫∫

σ

(P
m (sin ϕ) cosmλ)2 dσ

∫∫
σ

f(ϕ, λ) P
m(sin ϕ) cosmλ dσ

and

S
m =
1∫∫

σ

(P
m (sin ϕ) sin mλ)2 dσ

∫∫
σ

f(ϕ, λ) P
m(sinϕ) sinmλ dσ,

respectively, where dσ =cosϕ dϕdλ. As the representation of a band-limited
function requires only a finite number of coefficients, the infinite sum above
may be terminated at a finite degree �max. For a graphical representation, the
coefficients C
m and S
m are usually arranged as a triangle in the following
manner (Fig. 1): The ordinate is defined by the degree �, which increases from
top to bottom, the abscissa by the order m with the cosine coefficients C
m

on the left and the sine coefficients S
m on the right hand side.
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Fig. 1. Representation of the coefficients C�m, S�m and of their correlations

Figure 1b depicts the correlations between all of the spherical harmonic co-
efficients. Each non-vanishing correlation is represented by a black dot in
the normal equation matrix. The fact that only the diagonal contains en-
tries implies that all coefficients are estimable independently. Consequently,
the computation of the coefficients, denoted as spherical harmonic analysis,
constitutes, in the given case, an inverse problem which is easy to solve.

Unfortunately, the normal equation matrix will not, in general, be diago-
nal when discrete observations are used, because the orthogonality relations of
the spherical harmonics hold only for very special discrete data distributions.
In other words, the coefficients cannot, due to their correlations, be estimated
independently. However, under certain assumptions regarding the local data
distribution, some of the orthogonalities still hold. Especially the orthogonal-
ity relations for trigonometric functions may be exploited. As an illustration,
if one full period of length 2π is sampled at 2L equidistant nodes, then
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2L−1∑
i=0

cosmλi cos kλi = (1 + δm0 + δmL) L δmk

2L−1∑
i=0

sin mλi sin kλi = (1 − δm0 − δmL) L δmk

2L−1∑
i=0

cosmλi sin kλi = 0.

where λi = i 2π
2L and δmk denotes the Kronecker symbol. As a consequence,

all coefficients of different orders will be independent. Furthermore, the sym-
metries and asymmetries of Legendre’s functions with respect to the equator,
i.e.

P
m(− sinϕ) = (−1)(
−m)P
m(sin ϕ) ,

may be used to separate the even from the odd coefficients of a fixed order.
The standard numbering scheme, e.g. EGM96, is degree-by-degree (Rapp,

1994). Usually, the cosine coefficients C
m are enumerated first, and subse-
quently the sine coefficients S
m within a slightly modified loop (the coef-
ficients m = 0 are omitted). The order of the coefficients arising from this
numbering scheme can be demonstrated by the following loops:

Algorithm 1. Numbering scheme: degree-by-degree

for 	 = 0 : 	max

for m = 0 : 	
C�m % odd and even coefficients

end
end
for 	 = 1 : 	max

for m = 1 : 	
S�m % odd and even coefficients

end
end

As can be seen in Fig. 2a, this numbering scheme is in accordance with moving
through the coefficient triangle along a primary horizontal track. The corre-
sponding normal equation matrix is characterized by diagonal stripes parallel
to the main diagonal (Fig. 2b), which would necessitate an elaborate mecha-
nism for its storing.

This procedure becomes extremely simplified by an order-wise enumer-
ation, corresponding to a vertical movement inside the coefficient triangle
(Fig. 3a). This scheme, which in the following will be referred to as block num-
bering scheme, produces a block-diagonal normal equation matrix (Fig. 3b),
which is now much easier to store, and for which it is easy to see that the
Cholesky reduction does not produce any additional fill-in elements. The same
holds also for the standard numbering but with regard to the compact storage
scheme the block numbering is clearly superior.
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Fig. 2. Standard numbering scheme
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Fig. 3. Block numbering scheme

The order of coefficients resulting from application of the block numbering
scheme with additional consideration of equatorial symmetries is demon-
strated in Algorithm 2. Thus, for each fixed order, coefficients of even and
odd degrees are separated.

Algorithm 2. Block numbering scheme

for m = 0 : mmax

for 	 = m : 2 : 	max

C�m % even/odd coefficients
end
for 	 = m + 1 : 2 : 	max

C�m % odd/even coefficients
end

end
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for m = 1 : mmax

for 	 = m : 2 : 	max

S�m % odd/even coefficients
end
for 	 = m + 1 : 2 : 	max

S�m % even/odd coefficients
end

end

Note that block-diagonality of the normal equation matrix holds only in the
case that the nodes are, firstly, distributed rotation-symmetrically with re-
spect to the North-South axis, secondly, aligned equidistantly along the par-
allels, and thirdly, located symmetrically regarding the equator. The density
of the data coverage per parallel may be controlled via the grid width. Further-
more, it must be ensured that the data is of homogeneous accuracy. Although
polar gaps downgrade the condition of the normal equation system, they do
not destroy block-diagonality.

The orderwise independence of the coefficients consequently allows to pro-
cess the data order by order. By this efficient mechanism for spherical har-
monic analysis even very high-resolving models may be estimated (Colombo,
1981; Rummel et al., 1993). For this reason, this block-based method is often
denoted as fast spherical harmonic analysis.

3 Kite Numbering Scheme

Ever since satellite data became available for global gravity field determi-
nation, the idea of combining these, usually irregularly distributed measure-
ments, with regularly distributed (gridded) data, such as gravity anomalies,
has been nourished. While satellite data allows a precise determination of
coefficients of lower degrees, gridded data is very suitable for estimating coef-
ficients of higher degrees.

A simple modelling approach consists in a ”Patchwork” technique, which,
in the past, lead to a stepwise computation scheme and model refinements
(confer e.g. OSU 91 (Rapp et al., 1991), EGM 96 (Lemoine et al., 1996)).
With more complex models the correlations within the orders were strictly
taken into account (Balmino, 1993). In the given context, the order-by-order-
wise numbering scheme could be applied, producing the structures within the
normal equation matrix as shown in Fig. 4a.

As can be seen in Fig. 4b, the Cholesky-reduced normal equation matrix
contains numerous fill-in elements. The number of fill-ins increases quadrati-
cally with the maximal degree of the model. In order to simplify the structure
of the reduced normal equation matrix, Bosch (1993) proposed a number-
ing scheme based on division of the coefficients into three zones (three zone
numbering scheme). The first zone is built up by the fully correlated coeffi-
cients of lower degrees, the second zone by coefficients of higher degrees and
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Fig. 4. Combined models

lower orders, and the third zone by coefficients of higher degrees and higher
orders. Each zone is itself enumerated order-by-order. On the one hand, this
scheme leads to a more compact occupation with non-zero elements within
the normal equation matrix. On the other hand, Fig. 4d demonstrates that
the Cholesky-reduction produces the same number of fill-in elements as for
numbering order-by-order.

In the course of the GOCE studies a new numbering scheme was proposed
by Schuh (1996a), that circumvents this fill-in effect. Reversing the order of
the zones yields a scheme for which Cholesky reduction does not produce
any fill-in elements. Since the structure of the normal equation matrix re-
sembles a kite, this modified numbering scheme was termed kite numbering
scheme. Thus, a strict combination of high-resolving, rotation-symmetrical
data with arbitrarily distributed, fully correlated data is, for lower degrees,
possible without fill-in elements. Therefore, this combination may be com-
puted on a standard PC even for very high resolving models up to degree
and order 720. Beside solving the equation system, partial inverses (i.e. strict
inverse for selected elements) may be computed efficiently by means of this
approach (Auzinger and Schuh, 1998).

For a more detailed analysis of the properties of the kite structure, the
relations between single parameters and zones need to be specified more thor-
oughly. For this purpose, the low-resolving, fully correlated data is denoted
as DNS (dense), while the high-resolving, block-wise correlated data will be
referred to as BLK (block). The correlations between the zones may be spec-
ified as follows:

• zone:FULL
All parameters are fully correlated.

• zone:SEMI
The BLK parameters are correlated only within the same order, parity
(odd or even), and trigonometric function (sine or cosine). Similarly, cor-
relations between type-DNS and type-BLK data exist only within the same
order, parity, and trigonometric function.

• zone:INDEPENDENT
Contains all BLK parameters for whose within the same order there are
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no DNS parameters. The correlations within BLK data are according to
the SEMI zone. However, there are no correlations between data of types
DNS and BLK.

Figure 5a illustrates the three zones arising from an exemplary combination
of type-DNS observations (degree/order 2-�DNS) with type-BLK data (de-
gree/order 2-�BLK). The ”FULL” zone comprises all the parameters of degrees
and orders 2 up to �DNS. As all these coefficients are fully correlated, the cor-
responding part within the normal equation matrix is fully occupied. For the
”SEMI” zone, correlations between observations of types DNS and BLK exist
only within the same orders and between degrees of identical parity. There
are no correlations between type-DNS and type-BLK observation inside the
INDEPENDENT zone.

Recall that each parameter generates one row and one column within
the normal equation matrix. The kite numbering scheme produces an order-
by-order sorting within each zone, which leads to their typical arrange-
ment (kite structure) (Schuh, 1996b). Figure. 5b depicts the normal equa-
tion matrix for the current example. For the upper-left blocks (INDEPEN-
DENT,INDEPENDENT) it becomes evident that Cholesky reduction does
not create any additional fill-ins. The same holds also for block (SEMI,SEMI)
in the middle part. At first glance, fill-ins seem to occur for (SEMI,FULL) be-
low its wings (better: below the off-diagonal blocks). However, it can be seen
that each diagonal block of (SEMI,SEMI) corresponds to exactly one block of
(SEMI,FULL). As there exists only one off-diagonal block per (block-) row,
the scalar products of distinct (block-) columns vanish. Consequently, no addi-
tional fill-in elements are generated within the reduction step (e.g. Cholesky).

Fig. 5. Combined models, kite numbering scheme

The kite numbering scheme may now be used for an efficient, yet strict
solution of combined models with gridded, high-resolving data. In addition,
it produces an excellent approximate solution in case the data is of almost
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regular spatial distribution, i.e. not necessarily rotation-symmetrical. Here,
the kite structure may be used as preconditioner for a strict and efficient
iterative solver. The pcgma algorithm (Schuh, 1996b), which was developed
especially for the analysis of GOCE data, makes use of the kite scheme for
the combination of SST and SGG data.

Despite the benefits described above, the latest simulations reveal some de-
ficiencies of the kite numbering scheme. The fully correlated coefficients were,
for each order m, parameterized with degrees between �min = max(2, m) and
some fixed �DNSmax = const. The degree of the high-resolving model also has
a prescribed limit �BLKmax = const. for all orders. However, for many recent
Earth gravity field models(e. g. EIGEN-1S (Reigber et al., 2002), EIGEN-2
(Reigber et al., 2003), EIGEN-3p (Reigber et al., 2004)), the limits are kept
variable, for instance to take resonance frequencies into account.

In the following section a method will be presented, that allows variable
limits within the kite numbering scheme. The free kite numbering scheme
consists essentially of the numbering scheme and a newly developed storage
scheme with respect to the normal equations. As a first step we will generalize
the block numbering scheme to introduce flexible borders and than we will
apply this concept to the free kite numbering scheme.

4 Free Block Numbering Scheme

To improve the flexibility of Earth gravity field modelling, it is necessary
to use numbering schemes that allow selection/deletion of certain coefficients.
Fixed maximal degrees throughout all orders turn out to be too inflexible as to
take into account particular strengths (resonance frequencies) and weaknesses
(polar gap) of a model. To circumvent this problem, the minimal degree �min

and the maximal degree �max is fixed for each order m. These limits are stored
in three vectors m, �min und �max, which define the set of parameterized
coefficients uniquely. These vectors are of equal lengths, each with as many
elements as the number o of parameterized orders (Cosine and Sine coefficients
are treated symmetrically) i.e.

m =
(
m1, m2, . . . , mo

) ∈ o×1

�min =
(
�min1, �min2, . . . , �mino

) ∈ o×1

�max =
(
�max1, �max2 , . . . , �maxo

) ∈ o×1

As an example, let

m =
`
0, 1, 2, 3, 4, 5, 6, 7

´
�min =

`
2, 2, 2, 3, 5, 5, 6, 7

´
�max =

`
4, 6, 7, 7, 7, 6, 7, 7

´
.

The resulting set of parameters is illustrated in Fig. 6. The order of the in-
volved coefficents is generated by the loops in Algorithm 3:
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Algorithm 3. Free block numbering scheme

for m = 0 : o
for 	 = �min(m) : 2 : �max(m)

C�m % even/odd coefficients
end
for 	 = �min(m) + 1 : 2 : �max(m)

C�m % odd/even coefficients
end

end
for m = 1 : o

for 	 = �min(m) : 2 : �max(m)
S�m % even/odd coefficients

end
for 	 = �min(m) + 1 : 2 : �max(m)

S�m % odd/even coefficients
end

end

This principle of variable block sizes will now be applied to data combination.

5 Free Kite Numbering Scheme

The newly developed free kite numbering scheme (FKN) allows combining two
models, both having order-dependent, flexible (”free”) limits, as introduced
in Sect. 4 for the free block numbering scheme. Note that it must be made
sure that the normal equation matrix still is a kite matrix in order to avoid
additional fill-in elements. For instance, the configuration depicted in Fig. 5
with fixed limits 2, �DNS and �BLK for free block numbering, is given by the
following vectors:
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mDNS =
(
0, 1, 2, 3, 4, . . . , 19, 20

)
mBLK =

(
0, 1, 2, 3, 4, . . . , 49, 50

)
�min =

(
2, 2, 2, 3, 4, . . . , 19, 20

)
�min =

(
2, 2, 2, 3, 4, . . . , 49, 50

)
�max =

(
20, 20, . . . , 20

)
�max =

(
50, 50, . . . , 50

)
.

From these vectors the symbolic parameter order and the positions of non-
zero elements of the normal equation matrix can be computed. While the old
algorithm for kite numbering scheme is based on rather complex programs
with inflexible calculation rules, that do not allow any further flexibilization,
the FKN scheme is built up on clearly structured, rule-based logic.

Rule-based processing

The algorithm for assembling the parameter order using the FKN scheme
consists of two loops and one rule-based decision tree within the inner loop.
In analogy to Algorithm 3 the outer loop is iterated over all orders and the
inner loop from the minimal until the maximal degree corresponding to the
current order. In contrast to the conditions of Algorithm 3, however, vectors
containing the minimal and maximal degrees for both DNS and BLK data are
at hand. The FKN algorithm uses, for its inner loop, order-wise the minimum
of both minimal degrees and the maximum of both maximal degrees. Inside the
loops three stacks are built up. Now each parameter runs through the decision
tree and is, thereafter, either assigned to one of the stacks, or discarded. The
resulting stacks contain, upon termination of the loop, the parameters of the
zones FULL, SEMI, and INDEPENDENT. The decision tree is based on the
following rules:

Algorithm 4.

Parameter {CS}lm is analysed:

a) If there are no observations of type DNS for order m, then
the parameter is assigned to the INDEPEDENT zone, otherwise
to either the SEMI or the FULL zone.

b) If the degree 	 of the current parameter lies within the
type−DNS observations for this order, then the parameter is
assigned to the FULL zone, otherwise to the SEMI zone.

The assembling of the parameter order according to this rule goes as follows:
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Algorithm 5.

Loop over all orders m
Loop over all degrees 	 of the current order

Even cosine coefficients
Assign to FULL,SEMI or INDEPENDENT zone

Odd cosine coefficients
Assign to FULL,SEMI or INDEPENDENT zone

Even sine coefficients
Assign to FULL,SEMI or INDEPENDENT zone

Odd sine coefficients
Assign to FULL,SEMI or INDEPENDENT zone

end
end
String together zones

The vector of symbolic parameters is now saved as an ASCII file and may
be used for data re-sorting. The elements are efficiently accessed by indirect
adressing through index vectors.

The traditional graphical representing of the parameters based on the FKN
scheme might generate unexpected structures if one actually exploits the full
range of flexibility. Figure 7 give some unusual examples, which are, however,
computable without any problems.

Rule-based computation of the correlations

Due to the definitions of the zones and their assumptions, some of the param-
eters are correlated, and others are not. The prescribed symbolic parameter
order lead to the re-sorting of the normal equation matrix in such a way that
certain operations from the domain of linear algebra are applicable to a kite
matrix K without generating fill-ins. Examples are:

• Cholesky reduction;
• Partial inversion yielding K−1

part. (strict inverse for selected elements
cf. (Auzinger and Schuh, 1998));

• Solution of the equation system KX = B by means of Cholesky reduction
K = RT R (B contains multiple right hand sides).

In order to assemble a kite matrix, not only the symbolic parameter vector
is required, but also the positions of its non-zero elements, which, in turn,
represent the correlations between two particular parameters. The correlations
are derived from the stored information regarding cosine/sine function, order,
parity of degrees, and the vectors containing the minimal and maximal degrees
(Algorithm 6).

Now let a kite matrix and a symbolic parameter vector in the FKN scheme
be given. The symbolic structure of the kite matrix K ∈ n×n is stored in a
symbolic parameter vector p ∈ n×1. p contains three entries, the degree �,
the order m, and the membership to one of the trigonometric functions CS
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Fig. 7. Three possible correlation zones between BLK and DNS blocks

(’C’ for cosine and ’S’ for sine). The entries of this object are accessed via the
”dot” and an index variable. For instance, to test whether the fifth parameter
of p has the cosine function, one would enter the statement p(5).CS ==′C′.
Furthermore, the kite matrix will have a non-zero element at position kij if
the parameters p(i) and p(j) are correlated.

To determine the positions of the non-zero elements using the FKN scheme
is computationally the most expensive step, because each of the n2 possible
positions must be evaluated. Due to the symmetry of the normal equation
matrix, this number reduces to n(n + 1)/2 positions. As can be seen from
Algorithm 6, two nested loops are necessary to do the job. The outer loop is
iterated over all parameters in p, the inner loop over all parameters from the
current position on.
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Algorithm 6.

for i = 1 : n
for j = i : n

if correlated ( p(i), p(j) )
save indices (i, j)

end
end

end

The function correlated in line 3 of Algorithm 6 checks by means of Algo-
rithm 7, if the two symbolic parameters currently under investigation are
correlated.

Algorithm 7.

function correlated
if p(i) ∈ FULL and p(j) ∈ FULL

return true % p(i), p(j) correlated
if p(i).m == p(j).m % same order

and
p(i).	 mod 2 == p(j).	 mod 2 % same parity in degree
and
p(i).CS == p(j).CS % same trig. function
return true % p(i), p(j) correlated

return false
end

Algorithm 6 outputs the coordinates of the non-zero elements of the given
kite matrix. These coordinates are saved internally by the software. Since
the non-zero elements are always clustered in blocks, this process may be
considerably simplified. For each such block, the row and column index of its
first element and its total number of rows and columns is stored. Figure 8a
illustrates the block structure of the kite matrix. Figure 8b shows an example
for block-oriented storing of the shape of the kite matrix in an ASCII file.
With the information contained in this file, the kite matrix can be assembled
from the design matrix using level-3 BLAS routines.

6 Conclusion and Outlook

The innovative free kite numbering scheme renders the way to new options
both for model parameterization and preconditioning. It is now possible to
adapt the parameters to the information content of the data. For instance, it
might be advisable to exclude certain poorly determinable zonal coefficients
from the model. In addition, any coefficients of lower degrees could be elimi-
nated in case the data turns out to be hardly sensitive to the corresponding
parameters.
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n3

n4

n5
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K33

K22 K24

K35

K last

nlast

nlast

(a) Kite matrix

# created May 26 2005 6:37
# by class navigation (Compiled: May 20 2005,16:47:51)

# block row col nrows ncols filename
block 0 0 100 100 block0000.dat
block 100 100 99 99 block0001.dat
block 199 199 99 99 block0002.dat
block 298 298 99 99 block0003.dat
block 397 397 99 99 block0004.dat
block 496 496 99 99 block0005.dat
block 595 595 100 100 block0006.dat
block 695 695 99 99 block0007.dat

(b) ASCII file

Fig. 8. Storing the Kite-Matrix with block coordinates

Manifold are also the possibilities for the kite scheme to be used as a
preconditioner. In that regard, one can focus on particularly correlated groups
of parameters, which become included into the fully correlated part in order
to improve the condition number and, therefore, the convergence rate of the
iterative solver.

Consequently, kite numbering proves to be a very flexible and efficient
method for a realistic modelling of the Earth’s gravity field.
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