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Summary. This article describes an approach for global mapping of the Earth’s
gravitational field developed, tested and successfully implemented at the Geode-
tic Institute of the Stuttgart University. The method is based on the Newtonian
equation of motion that relates satellite-to-satellite tracking (SST) data observed
by the two satellites of the Gravity Recovery And Climate Experiment (GRACE)
directly to unknown spherical harmonic coefficients of the Earth’s gravitational po-
tential (geopotential). Observed values include SST data observed both in the low-
low (inter-satellite range, velocity and acceleration) and the high-low (satellites’
positions) mode. The low-low SST data specific for the time being to the GRACE
mission are available through a very sensitive K-band ranging system. The high-low
SST data are then provided by on-board Global Positioning System (GPS) receivers.
The article describes how the mathematical model can be modified. The geopotential
is approximated by a truncated series of spherical harmonic functions. An alterna-
tive approach based on integral inversion of the GRACE data into the geopotential
is also formulated and discussed. The article also presents sample numerical results
obtained by testing the model using both simulated and observed data. Simulation
studies suggest that the model has a potential for recovery of the Stokes coefficients
up to degree and order 120. Intermediate results from the analysis of actual data
have a lower resolution.

Key words: GRACE mission, geopotential, satellite-to-satellite tracking, Stokes’s
coefficients, Green’s integrals

1 Introduction

Current satellite missions dedicated to the global mapping of the Earth’s
gravitational field provide data that can be inverted into global models of
the gravitational potential (geopotential). The US-German satellite mission
Gravity Recovery And Climate Experiment (GRACE) launched on March 17,
2002 is based on two spacecraft following each other along almost circular (ap-
proximate eccentricity of 0.001), low (decaying altitude during the lifetime of
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the mission from 500 to 300 km) and polar orbits (approximate inclination of
89◦). The satellites fly approximately 220±50 km apart. During the expected
five-year lifetime of the mission, the relative motion of the two satellites is
measured using a very sensitive K-band ranging system that senses changes
in separation between the two satellites. Moreover, the GRACE satellites are
equipped with geodetic-quality Global Positioning System (GPS) receivers al-
lowing for accurate orbit determination as well as accelerometers measuring
non-gravitational forces affecting the satellites. The mission is thus based on
satellite-to-satellite tracking (SST) in both the low-low (LL) and high-low
(HL) mode. More information on the mission can be found for example in
(Tapley and Reigber, 1998).

This article discusses the inversion of the GRACE SST data into the
geopotential and its parameters. The method is based on their direct rela-
tionship through the Newtonian equation of motion (Reubelt et al., 2003).
Three modifications of this equation are proposed: (i) balancing the vector
of the inter-satellite acceleration differences with corresponding differences of
the geopotential gradients, both projected into the inter-satellite direction,
and representing the geopotential in a form of a finite spherical harmonics
series expansion (e.g. Rummel et al. , 1978; Austen and Grafarend, 2005);
(ii) Approach (i) modified by expanding the gradient of the geopotential at
the barycentre of the two GRACE satellites, i.e., dealing with the GRACE
satellites as a large one-directional gradiometer (Keller and Hess, 1998); (iii)
replacing the gradient difference of the geopotential by a boundary integral of
the Abel-Poisson type and solving the geopotential at a reference surface of
known geometry. While the first two approaches aim at recovery of spectral
description of the geopotential (Stokes’s coefficients), the last approach al-
lows for description of the geopotential on a known boundary surface outside
Earth’s masses.

2 SST data of type GRACE

In this section, the GRACE observables are shortly reviewed. Starting with
the HL-SST, positions of the GRACE satellites in the terrestrial (Earth-fixed)
geocentric coordinate system can be derived from GPS code and carrier beat
phase observations. Corresponding position vectors are defined in terms of the
geocentric terrestrial Cartesian coordinates (vectors and matrices are bold)

x = [ x y z ]T . (1)

Note that the argument of time related to all values in (1) was omitted. The
space segment of the GRACE mission consists of the two satellites following
each other along a similar orbit. Let us assign the leading satellite with the
index 1 and the trailing satellite with the index 2. Positions of the satellites and
their derivatives will be then labeled with corresponding indices. Besides the
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position of the satellites, also their velocity vector as well as the acceleration
vector

ẋ = [ ẋ ẏ ż ]T , ẍ = [ ẍ ÿ z̈ ]T , (2)

are being used in the following derivations. An operator δ for differences be-
tween parameters corresponding to the positions of the two satellites is used
throughout the article. Vector differences in position, velocity and acceleration
are then given as follows:

δx = x2 − x1 , δẋ = ẋ2 − ẋ1 , δẍ = ẍ2 − ẍ1 . (3)

The LL-SST provides the inter-satellite range, e.g. (Blaha, 1992),

� =
√

< δx | δx > = | δx | . (4)

Considering the unit vector of the inter-satellite direction

e = [ ex ey ez ]T =
δx
�

, (5)

the LL-SST data can be used for derivation of the first-order time derivative
of the range called herein inter-satellite velocity e.g. (Blaha, 1992)

�̇ = < δẋ | e > + < δx | ė > = < δẋ | e > , (6)

since

< δx | ė > = 0 . (7)

Finally, the LL-SST also provides the second-order time derivative of the range
called inter-satellite acceleration, e.g. (Rummel, 1980),

�̈ = < δẍ | e > + < δẋ | ė > = < δẍ | e > +
| δẋ |2 − �̇2

�
. (8)

The second term on the right-hand side of (8) is sometimes referred to as
a velocity correction. The velocity correction accounts for the fact that the
GRACE assembly with its inter-satellite direction e forms a moving observa-
tional system in inertial space.

3 Mathematical model

In the inertial reference frame, acceleration of a unit-mass satellite can be
expressed according to Newton’s law of motion as follows

Ẍ = − ∇V (X) + A , (9)
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where the standard sign convention is used. The vector A stands for the non-
gravitational acceleration vector and completes formally the model. No other
gravitating masses are considered in (9) but the Earth’s system. No tidal ef-
fects were considered during simulations but they completed the model in
case of the real data analysis. Vectors in the inertial frame, that is usually
approximated by the celestial frame, are denoted by capital letters. The trans-
formation between the two coordinate systems can be done by the well known
rotation matrix operator for transformation between the terrestrial and celes-
tial frames (McCarthy and Petit, 2004). The matrix rotating the celestial to
terrestrial coordinate system is denoted as M. At the epoch t of the observa-
tion

x(t) = M(t) X(t) . (10)

It is assumed that the geopotential V in (9) represents the gravitational po-
tential of the rotating Earth, i.e., various direct and indirect tidal effects as
well as loading effects can successfully be modelled. This concerns namely the
real data analysis. We can write the inter-satellite acceleration vector of the
GRACE satellites in the inertial (celestial) reference system as follows:

δẌ = − δ∇V (X) + δA , (11)

with the inter-satellite non-gravitational acceleration vector δA.
Combining (8) and (9), the observation equation for the first approach of

type acceleration differences can be written in the form

| δẋ |2 − �̇2

�
− �̈ = < δ∇V (x) | e > , (12)

where the geopotential gradient vectors correspond to the terrestrial geocen-
tric Cartesian coordinate system. The velocity difference | δẋ |, which has to
be derived by numerically differentiation from kinematic HL-SST positions, is
the critical quantity for the quality of the geopotential solution in any of the
proposed models. For its evaluation, see e.g. (Austen and Grafarend, 2005).
Note that the non-gravitational acceleration vector difference δA is omitted
starting with (12). This component was included neither in the simulated nor
real data analysis.

Expanding the gradient of the geopotential at the barycenter of the two
GRACE satellites leads to the second approach. Since the GRACE satellites
are at any time of a similar mass, the position vector of their barycentre B
can approximately be estimated as follows:

xB
.=

x1 + x2

2
. (13)

The geopotential gradient at the position of the first satellite can be related
to the barycentre
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∇1V (x) .= ∇BV (x) + ∇B ⊗∇BV (x) (x1 − xB) . (14)

The linear term of the expansion was only considered in (14). Similarly

∇2V (x) .= ∇BV (x) + ∇B ⊗∇BV (x) (x2 − xB) . (15)

Keeping the linear approximation in mind, subtracting (14) from (15) yields

δ∇V (x) .= ∇B ⊗∇BV (x) δx . (16)

Substituting (16) into (12) results in the linear gradiometry equation

| δẋ |2 − �̇2

�2
− �̈

�

.= < ∇B ⊗∇BV (x) e | e > . (17)

The linearization error represents the greatest problem for its applicability
(Keller and Sharifi, 2005). On the other hand, the contribution of low-degree
harmonics is the most dominant one. Therefore, the smaller the low-degree
coefficients, the more accurate the linear model approximates.

In this regards, we consider one of the available geopotential models and
utilize the low-degree coefficients of the model as a priori information. The
right-hand side of (17), for instance, can be written as

< ∇B ⊗∇BV (x) e | e >

= < ∇B ⊗∇BVl(x) e | e > + < ∇B ⊗∇BV l(x) e | e > , (18)

where Vl and V l stand for the spheroidal reference field and the corresponding
incremental one, respectively. Accordingly, the first term on the right-hand
side of (18) is split into the approximate term and the respective correction

< ∇B ⊗∇BVl(x) e | e >

= < ∇B ⊗∇BV0l(x) e | e >︸ ︷︷ ︸
approximate value

+ < ∇B ⊗∇B∆Vl(x) e | e >︸ ︷︷ ︸
correction

. (19)

In order to reduce the linearization error, we retain the correction term and
replace the approximate one with an equation similar to (12). Consequently,
(17) can be recast into

| δẋ |2 − �̇2

�2
− �̈

�
− 1

�
< δ∇V0l(x) | e >

.= < ∇B ⊗∇B

[
∆Vl(x) + V l(x)

]
e | e > . (20)
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Fig. 1. Linearization error for the reference field of degree 10, 20 and 30

Equation (20) is known as the sequential gradiometric observation equation.
It reduces the linearization error, differences between the left- and the right-
hand sides of (20), dramatically. Figure 1 shows the linearization error for the
reference field of degree 10, 20 and 30. The linearization error corresponding
to the reference field of degree 30 is less than the observation random error
(Keller and Sharifi, 2005). Note that the magnitude of the linearization errors
for the full field may reach values at the level of 0.5 E.

Being one-point function and having a direct relation with the field geom-
etry (curvature of the field at the point) are two noteworthy achievements of
the alternative formulation. Besides, using an observation quantity, which is
related to the second instead of the first order derivatives of the geopoten-
tial amplifies the high-frequency part of the signal. Since the transition from
the first to the second order derivatives includes the application of a timely
finite-differences scheme, the high-frequency part of the noise amplifies as well.
Nevertheless, due to the different spectral behavior of signal and noise, in the
end the second order approach leads to an improved resolution.

3.1 Spectral description of the geopotential

The geopotential satisfies everywhere outside the gravitating masses the
Laplace differential equation

∇2V (x) = 0 , (21)

where ∇2 stands for the Laplacian. Thus the geopotential can be solved for in a
form of a harmonic series. Not all coordinate systems are suitable for deriving
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this solution, but knowing that the Earth and its equipotential surfaces are
geometrically close to the sphere, geocentric spherical coordinates can be used

[ r θ λ ]T =

[√
x2 + y2 + z2 arctan

√
x2 + y2

z
arctan

y

x

]T

, (22)

with the geocentric radius r (0 ≤ r < ∞), reduced co-latitude θ (0 ≤ θ ≤ π)
and longitude λ (0 ≤ λ < 2π), respectively. The solution of (21) can be then
written for r ≥ R

V (r, θ, λ) =
∑
n,m

(
R

r

)n+1

Yn,m(θ, λ) Vn,m , (23)

with radius of the reference sphere R. The spherical harmonics Yn,m and
the Stokes coefficients Vn,m are both degree (n) and order (m) dependent
(Abramowitz and Stegun, 1972). Substituting (23) (12), (17) and (20), respec-
tively, results in systems of linear equations with vector-valued and tensor-
valued spherical harmonics, respectively. In both cases, however, their pro-
jection to the inter-satellite direction e is considered. Unknown values then
represent the Stokes coefficients.

3.2 Boundary-value description of the geopotential

According to (21), the geopotential is a harmonic function everywhere outside
the Earth’s system. This property is due to the Poisson differential equation
that relates the gravitational potential and the mass density distribution of
the gravitating masses. The geopotential is also regular at infinity, namely

V (x) = O ( |x|−1
)

, (24)

with the Landau symbol O describing in this particular case the attenu-
ation of the geopotential with an increasing distance from the gravitating
masses. Using an apparatus of Green’s integrals, the solution of the Dirichlet
boundary-value problem for the Laplace equation represents the well-known
Abel-Poisson integral. It allows for evaluation of the geopotential at a gen-
eral point P described by the geocentric radius vector xP that is external
to a boundary (simple smooth closed surface) on which the geopotential is
known. The boundary must completely contain the gravitating masses. For
the boundary S described by the geocentric radius vectors y, this solution
takes the form of the surface integral (Kellogg, 1929)

V (xP ) =
1
S

∫
S

V (y) K(xP ,y) dS(y) . (25)

In geodesy, one particular geocentric geometry is being used: the reference
ellipsoid. Due to its symmetricity, the integral function K can be constructed.



156 Novák et al.

Note that not all gravitating masses are imbedded inside the surface S. The
gravitational potential of all external topographic and atmospheric masses is
then either neglected or corrected for by an appropriate reduction. However,
this is considered to be out of the scope of this article. Applying in (25) the
gradient operator in the point P yields, cf. (Ardalan and Grafarend, 2004),

∇P V (x) =
1
S

∫
S

V (y) ∇P K(x,y) dS(y) , (26)

with vector-valued kernel function ∇K. Applying the matrix direct product
on the gradient operator in the point P yields (van Gelderen and Rummel,
2001) and (Martinec, 2003),

∇P ⊗∇P V (x) =
1
S

∫
S

V (y) ∇P ⊗∇P K(x,y) dS(y) , (27)

with the tensor-valued kernel function ∇⊗∇K.
Combining Eqs.(12) and (25) then results in the observation equation

| δẋ |2 − �̇2

�
− �̈ =

1
S

∫
S

V (y) H(x1,x2,y) dS(y) , (28)

with the scalar three-point kernel function

H(x1,x2,y) = < δ∇K(x,y) | e > . (29)

For a single epoch, the integral kernel H relates the scalar geopotential at the
reference ellipsoid to the functional on the left-hand side of (28) derived from
the GRACE SST data that is a function of positions of the GRACE satellites.
This makes the kernel function H different from typical integral kernels used
in geodesy that usually relate two points only such as the Stokes, Hotine or
Vening-Meinesz functions. Combining Eqs.(17) and (27) then results yet in
another observation equation

| δẋ |2 − �̇2

�2
− �̈

�
=

1
S

∫
S

V (y) G(xB ,y) dS(y) , (30)

with the scalar-valued integral kernel

G(xB ,y) = < ∇B ⊗∇B K(x,y) e | e > . (31)

In this case, only the barycentre of the GRACE satellites and the computation
point are related.

4 Numerical analysis

The models for recovery of the Stokes coefficients were extensively tested using
both simulated and actual GRACE SST data. In this section, numerical tests
of the model in (12) are described including the input data. The solution in
a form of the boundary integrals is still to be investigated in details, namely
its application for global gravity field studies.
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4.1 Description of the synthetic GRACE data

The parameters on the left-hand side of Eqs.(12) and (17) are derived by
combining the GRACE SST data. To verify the applicability of the model
and to test the propagation of various observation errors, a series of numerical
tests was performed. In-house generated synthetic data based on the EGM96
of degree and order 120, 160 and 200 were analyzed. The IAG Section II,
SC7 one-month sample data based on the EGM96 of degree and order 300
and compiled by the Universities Bonn and Delft (IAG SC7, 2001) were also
used. These test datasets provide noise-free inertial position, velocity and
acceleration vectors of the GRACE satellites with a 5 second sampling interval.
Noise-free simulated LL-SST observations were derived from these quantities.
Finally, these noise-free SST data were also contaminated with correlated
errors to study an effect of various errors on the accuracy of the solution.

Unfortunately, an actual level of correlation between HL-SST data of the
two low-orbiting GRACE satellites is unknown. The same applies to two
adjacent positions of a single satellite. Error simulation functions for GPS
data, that correlate adjacent measurements through a Gauss-Markov process,
were used in our study. This approach successfully applied by (Grafarend and
Vańıček, 1980) for the weight estimation in levelling is based on recursive
formulas that allow for simulation of the correlated observation noise. The
level of correlation is controlled by a unitless correlation factor 0 ≤ β ≤ 1,
see (Austen and Grafarend, 2005) for details. Generally, β = 0 corresponds
to uncorrelated errors and β = 1 to fully-correlated errors. In order to de-
termine the accuracy of satellites’ velocity vectors computed from noisy GPS
positions by numerical differentiation, various empirical tests were performed.
Noise-free simulated position data contaminated with errors of a varying mag-
nitude and correlation behaviour were numerically differentiated to obtain the
velocity vectors. They were afterwards compared to the noise-free simulated
velocity vectors. Based on results of these tests, we concluded that the veloc-
ity of the GRACE satellites can be determined from their GPS positions with
the accuracy better than 0.3 mm s−1. Correlations between kinematic orbits
of the two GRACE satellites were simulated by applying the same method
with an offset to the GPS positions of the satellites. Such a coloured noise
was added to noise-free simulated GPS positions in order to investigate the
influence of the correlated GPS data on the geopotential solution.

4.2 Propagation of observation noise

In order to assess the ability of the proposed methods for the geopotential
recovery, the influence of observation noise on the coefficients’ estimation pro-
cess was investigated. In this contribution, namely results based on the model
in (12) are presented. Figure 2 illustrates how errors in the satellites’ posi-
tions determined by GPS (here a 1 cm average error was assumed for each
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coordinate) affect the geopotential solution. One can conclude that the over-
all quality of the solution strongly depends on the correlation of the position
errors of both satellites. However, the analysis of synthetic data, described in
this section, suggests that the Stokes coefficients up to degree and order 100
could be considered recoverable. Note that we define the maximum resolution
of the model by the intersection of the signal and noise curves.
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Fig. 2. Propagation of position errors (σxi = 1 cm)

Figure 3 shows how the simulated noise in the velocity vectors of the two
GRACE satellites influences the resolution of the computed model. The noise
level of 0.1 mm/s is assumed for each component of the velocity vector. This
noise arises from the fact that the velocity information has to be numerically
derived from the noisy position vectors. As already mentioned before, noisy
velocity information is the limiting factor of the overall solution quality. In
absence of correlations between the two satellites’ velocity vectors, i.e., for
white noise, the geopotential recovery is limited to degree and order 70 given
a noise level of 0.1 mm/s. To obtain the geopotential solution up to degree and
order 100, the velocity errors of the GRACE satellites have to be correlated.

The impact of K-band measurement errors is displayed in Fig. 4. It can
be concluded that relatively to other errors the inter-satellite position (1 cm)
and inter-satellite velocity (1 µm/s) errors, that were used in our simulations,
have no significant impact on the solution. Thus the GPS-based range can be
used instead of the biased range from the K-band ranging system. In contrary,
the effect of the inter-satellite acceleration errors is quite important. Figure
4 suggests that the accuracy of the inter-satellite acceleration at the level of
10−8 m/s2 (1 µGal) is required to get the solution up to degree and order 100.
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Fig. 3. Propagation of velocity errors (σẋi = 0.1 mm/s)
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Fig. 4. Propagation of K-band measurement errors

Finally, the combined effect of all error influences (HL-SST: GPS and LL-
SST: K-band) is presented in Fig. 5 for a pessimistic and optimistic mission
scenario. Based on these results, the resolution of the recovered geopotential
using the GRACE data and following the proposed method is expected to be
in the range of degree and order 100 to 120.
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Fig. 5. Propagation of the combined measurement error influence

4.3 Processing actual GRACE data

The real data analysis was performed using approximately 88,000 observation
values. The HL-SST data were kindly provided by Mr. Dražen Švehla of the
Technical University Munich. Corresponding LL-SST data were then down-
loaded from the GRACE Data Center at the GeoForschungsZentrum (GFZ)
Potsdam, Germany. Results presented in this article were extracted from 31
days of observations (03.230-03.260). Due to different sampling intervals of
the data, the 30-second data were used.

Both the HL- and LL-SST data were routinely checked for outliers first.
The HL-SST data were then rotated to the celestial frame and inter-satellite
velocity differences were derived using numerical differentiation (Savitzky-
Golay formula using the Fourier transform). This step is crucial for the ap-
proach and much attention was focused on its proper evaluation. To document
the applicability of numerical differentiation schemes, Figure 6 shows an ex-
ample of a comparison of intersatellite acceleration obtained by the numerical
algorithm (� → �̈) and those �̈ provided by the GFZ Potsdam. Next, the
observation vector is derived as a time series by the combination of HL- and
LL-SST data according to the left-hand side of (12), see Fig. 7.

Further, the model was completed for tide-generated acceleration and re-
duced for a normal gravity field model. Finally, the Stokes coefficients up to
degree and order 70 were recovered. The least-squares adjustment includes
the computation of a full variance-covariance matrix, residuals as well as es-
timated a posteriori variance factor. Figure 8 shows the root mean square
power spectrum of the recovered field as well as of its differences from the
EIGEN-GRACE2S model of the GFZ Potsdam. Color Fig. XXIII on p. 299
then represents the synthesized differences between the recovered model and



Mapping Earth’s Gravitation Using GRACE Data 161

1.1444 1.1444 1.1444 1.1444 1.1445 1.1445 1.1445

x 10
8

8

6

4

2

0

2

4

6

8
x 10

3

time since January 1, 2000 (sec)

in
te

r
sa

te
lli

te
 a

cc
el

er
at

io
n 

(m
/s

/s
)

derived acceleration  0.005
GFZ acceleration + 0.005
differences * 10,000

Fig. 6. Verifying the differentiation procedure using GRACE LL-SST data

the EIGEN-GRACE2S model. The maximum difference is 4.94 m and the
global root mean square fit is 27 cm.

1.145 1.15 1.155 1.16 1.165 1.17

x 10
8

0.278

0.276

0.274

0.272

0.27

0.268

0.266

0.264

0.262

time since January 1, 2000 (sec)

ob
se

rv
at

io
n 

ve
ct

or
 (m

/s
/s

)

Fig. 7. Left-hand side of (12) based on actual GRACE HL- and LL-SST data



162 Novák et al.

10 20 30 40 50 60 70
10

12

10
11

10
10

10
9

10
8

10
7

10
6

10
5

10
4

10
3

degree of the harmonic expansion

si
gn

al
 a

nd
 it

s 
di

ffe
re

nc
es

 fr
om

 th
e 

re
fe

re
nc

e 
m

od
el

signal
differences

Fig. 8. Recovered coefficients and their difference to the EIGEN-GRACE02S model

5 Conclusions

Global mapping of the Earth’s gravity field through the Newtonian equation of
motion, see (9), combined with spectral representation, see (23), and integral
representation, see (25), respectively, of the geopotential was discussed in this
article. This approach represents one option for processing of the SST data
of type GRACE as well as those of other satellite missions. In view of other
known methods used currently in processing the SST data for geopotential
recovery, the proposed approach has some significant advantages, namely sim-
ple interpretation of the relationship between observations and the unknown
Stokes coefficients of the geopotential without any orbit geometry assump-
tions, a priori information or boundary surface, see also (Reubelt et al., 2003)
and (Austen and Grafarend, 2005) for further details. On the other hand, one
has to solve potentially weak points of the approach among which the most
important one is handling the observation noise in the HL-SST data used
for computation of the inter-satellite velocity. Due to correlated noise in the
HL-SST data, the differentiation of the satellites’ positions does not seem to
represent any real problem to the approach.

Extensive numerical testing of the approach revealed some of its main
characteristics, namely stability and sensitivity to various observation errors
expected to be a part of real data. Although simulating actual errors in all their
complexity is very difficult, some realistic scenarios suggest that the approach
could be used for recovery of the geopotential coefficients up to degree and
order of 120. Note that the time-varying component of the gravitational field
was targeted with expected 30-day batches of data to be processed. From this
point of view, the performance of the approach and its computer realization
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seems to be quite satisfactory fulfilling initial requirements of the project.
Even the modified approach using the gradiometric observation equation is
applicable with additional advantages of this method, see Keller and Sharifi
(2005) for details.

Finally, the initial processing of the actual GRACE data provided some
reasonable results proving the applicability of the proposed method for the
analysis of real data. The mean difference between recovered solution and the
EIGEN-GRACE2S model of the GFZ Potsdam reached the global value of
27 cm. It should be stressed that these intermediate results were obtained for
a relatively small sample of data (30-day data sampled at 30 seconds), very
small number of outliers removed and not all the effects included in the model.
Taking into the account a large difference in the amount of input data and
methodology used in their processing, this result seems to be quite promising
for future investigations in this field at the Geodetic Institute of the Stuttgart
University.
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