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Summary. The signal content in the low-low SST observables of the gravity field
twin-satellite mission GRACE (Gravity Recovery And Climate Experiment) varies
in the space domain depending on the roughness of the gravity field features. On
the one hand, the maximum degree of the spherical harmonic expansion has to be
selected as high as possible to bring out the maximum of gravity field information
out of the data. On the other hand, an increasing maximal degree deteriorates the
stability of the normal equations to solve for the gravity field parameters. Therefore,
a trade-off is necessary between the selection of a maximal degree adequate for
representing the signal content in the observables, on the one hand, and a maximal
degree which can still be recovered without causing instabilities, on the other hand.
We propose to integrate the global gravity field recovery with regional gravity field
refinements tailored to the specific gravity field features in these regions: In a first
step, the gravity field only up to a moderate safely determinable degree is recovered;
the specific analysis features tailored to the individual gravity field characteristics in
areas of rough gravity field signal will be modelled subsequently by space localizing
base functions in a second step. In a final third step, a spherical harmonic expansion
up to an (in principle) arbitrary degree can be derived based on a numerical Gauss
— Legendre - quadrature procedure without any stability problems. The procedure
will be applied in a first example to observations of a GRACE simulation scenario to
test the potential capabilities of the approach. A second application demonstrates
the determination of a global gravity field model and regional refinements based
on low-low SST data of the GRACE twin satellite mission for the August 2003
observations.
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1 Introduction

As a result of the dedicated space-borne gravity field mission GRACE (Grav-
ity Recovery And Climate Experiment — Tapley et al. 2004), in orbit since
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2002, a breakthrough in accuracy and resolution of gravity field models has
been achieved. Subsequent solutions by using the observations collected over a
period of time of, e.g., one month, enables the derivation of time dependencies
of the gravity field parameters. The innovative character of this mission lies
in the continuous observation of the twin satellites by the Global Position-
ing System (GPS) and the highly precise line-of-sight range and range-rate
K-band measurements between the twin satellites. In addition, the surface
forces acting on these satellites are measured and can be considered properly
during the recovery procedure. As a result of this mission, the presently best
combination static model, EIGEN-CGO03C, has been derived from 376 days of
GRACE observations and three years of CHAMP (Forste et al., 2005) as well
as monthly snap-shots of the gravity field, showing clearly temporal variations
of the gravity field closely correlated to the hydrological water cycle. Another
GRACE gravity field model is GGMO02C, based on the analysis of 363 days
of GRACE in-flight data (Centre of Space Research, Austin, - UTEX CSR,
2004, http://www.csr.utexas.edu/grace/gravity). It is represented by a spher-
ical harmonic expansion up to degree 200 and constrained with terrestrial
gravity information.

These gravity field models are represented, as usual, in terms of spherical
harmonics. A disadvantage of this kind of gravity field modelling is the missing
flexibility. Because of the inhomogeneous structure of the gravity field in the
space domain the signal to noise ratio varies in the satellite-to-satellite track-
ing observables depending on the geographical region the satellite is actually
passing. The heterogeneity of the gravity field cannot be properly taken into
account in case of global solutions based on spherical harmonic expansions.
The reason is that the recovery of the gravity field by satellite techniques
is an improperly posed problem which requires a proper regularization that
influences especially the high frequent spectral part of the gravity field. In
most cases, a Tichonov-type regularization is applied which acts globally in
case of a gravity field representation by base functions of global support. The
regularization parameter can be derived by the L-curve procedure, by cross
validation or by a recently proposed method of variance component estima-
tion (Koch and Kusche, 2003; Mayer-Giirr et al., 2005). The establishment of
the regularization matrix usually is based on Kaula’s rule of thumb or derived
from the degree variances of an available gravity field model. The disadvan-
tage of this sort of uniform global regularization is that the regularization
factor is selected such that an overall filtering of the observations leads to
a mean damping of the global gravity field features. Depending on the pro-
cedure for selecting the regularization factor, the consequences are either an
over-damping of the rough gravity field features, while the smoother parts
would need a slightly stronger regularization to avoid a contamination of the
recovery results by observation noise, or vice-versa.

This disadvantageous property suggests a hybrid modelling of the gravity
field: the long wavelength features of the gravity field should be represented
by a series of spherical harmonics up to a properly selected degree and the
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gravity field details should be modelled by series of space localizing base func-
tions such as spherical wavelets or harmonic spline functions. The maximum
degree of the spherical harmonic representation has to be selected depending
on the measurement scenario; the space localizing gravity field parameters
have to be recovered by a regionally adapted recovery procedure and an in-
dividual regularization which is tailored to the roughness of the gravity field
in specific regions of the Earth. There are various possibilities to adapt the
space localizing base functions to the individual gravity field features such as
the customization of the resolution properties of the base function to enable
an optimal fit to the gravity field spectrum to be recovered and the definition
of the nodal point distribution necessary to model the individual gravity field
structures properly. It is also very easy to include additional conditions for
the regional gravity field solutions, such as inclinations of the geoid in special
parts, or more general, arbitrary functionals of the gravity field parameters.
Furthermore, several regional solutions with global coverage can be merged to
obtain a global solution. A spherical harmonic representation, in principle up
to an arbitrary maximum degree and only limited by the maximal signal con-
tent of the observations, can be obtained by means of numerical quadrature
methods now in a direct stable way avoiding the instable inverse procedure.
It should be pointed out that in the approach presented here, the above men-
tioned disadvantages of a global solution by spherical harmonics, derived by
an inversion procedure, are avoided, as demonstrated by Eicker et al. (2005).

The mathematical model of our recovery approach is sketched in Sect. 2.
Details to the method as far as the global recovery by spherical harmonics
are concerned are presented, e.g., in Mayer-Giirr et al. (2005). In Sect. 3 the
combination of normal matrices based on individual short arcs is explained as
well as the weighting of the normal matrices within a variance component esti-
mation procedure including the computation of the regularization parameter.
In Sect. 4, a simulation scenario is presented and the potential capabilities of
the method are demonstrated based on a global gravity field recovery from
SST range-rate observations. The solutions of a global gravity field recovery
from the GRACE low-low SST data of August 2003 with a global coverage
of regional refinement patches are presented in Sect. 5. The results are com-
pared to the gravity field models EIGEN-CG03C and GRACE-GGMO02C and
demonstrate the high quality in the spectral band above degree n=60 of a
spherical harmonic expansion. Sect. 6 contains a summary and an outlook for
future investigations.

2 Setup of the mathematical model

The gravity field recovery approach tailored to a twin satellite gravity mission
of the GRACE type as presented here, is based on Newton’s equation of mo-
tion, formulated as a boundary value problem in the form of a Fredholm type
integral equation. This idea has been proposed as a general method for orbit
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determination by Schneider in 1967 (Schneider, 1968), modified for gravity
field determination by Schneider and Reigber (1969), investigated in detail
by Reigber (1969) and successfully applied subsequently. In the following, the
idea has been applied to the satellite-to-satellite tracking (SST) problem by
Ik (1984) and later to the satellite gravity gradiometry (SGG) analysis. After
that, the method has been developed and tested based on various simulation
scenarios, e.g. see Ilk et al. (1995). As first real data applications, the gravity
field models ITG-CHAMPO1 and ITG-CHAMPO02 have been derived based on
this method, applied to the analysis of kinematical short arcs (Mayer-Giirr et
al., 2005). The basic characteristic of this method is the use of short arcs for
regional and global gravity field recovery applications. The complete recovery
procedure consists of three steps which can be applied independently as well:

e Global gravity field recovery based on a spherical harmonic expansion up
to a moderate degree to provide a first global reference model as a basis
for further refinements,

e Regional refinements of the gravity field by spherical splines as space lo-
calizing base functions, adapted to the specific gravity field features, if
possible covering the globe,

e Determination of a global gravity field model by merging the regional
refinement solutions and deriving potential coefficients by a numerical
quadrature technique.

i, =158,

Fig. 1. Low-low satellite-to-satellite tracking experiment
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2.1 The equation of relative motion for twin satellites

If precise intersatellite functionals as line-of-sight ranges or range-rate mea-
surements are available, as in case of the GRACE mission, the mathematical
model can be based on Newton’s equation of motion for the line-of-sight dis-
tance (Fig. 1),
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The coefficients r,, v = 1,2, ...,00, of (6) can be derived from the right hand
side of (1) (for details see Ilk et al., 1995). The specific force function,
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with the gravity field parameters x can be separated in a disturbance part
g4, which represents the non-conservative disturbing forces, in a reference
part VV{(12)g, modelled by the tidal potential of the Earth (E) acting on the
satellites 1 and 2,

VViaoye(T'ir12,11:%0) = V (V (r1 +1r12) — V (1r1)), 9)

representing the long-wavelength gravity field features and in an anomalous
part VIi1oyg,

VT(12)E(T/; rio,ry; AX) =V (T (1'1 + I'12) =T (I‘l)) , (10)

modeling the high frequent refinements and parameterized either by correc-
tions Ax to the global gravity field parameters xo or by parameters Ax of a
linear approximation with space localizing base functions.

The coefficients 712, ¥ = 1,2, ..., 00, of (6) can be derived by inter-satellite
measurements of different types, e.g., in case of relative accelerations,
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and/or in case of inter-satellite range observations,
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respectively.

There is a space domain model based on (2) with the force function ac-
cording to (8) or a spectral domain model based on (7) and the spectral
observations according to (11) to (13). An alternative to this approach starts
with Newton’s equation of relative motion as follows,

F12(t) = g(t;r12, 11, 1, T25 X). (14)
The formulation as a boundary value problem reads, analogously to (2)
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The relative velocity can be derived by differentiation with respect to the
time,

1
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The mathematical model for range observations can be derived by projecting
the relative vector to the line-of-sight connection in combination with (15),
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Analogously, the mathematical model for range-rate measurements in combi-
nation with (16) reads as follows,
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In both equations, e;s is the unit vector in the line-of-sight direction (Fig. 1).
This vector is known with high accuracy, assuming that the satellite positions
are measured with an accuracy of a few cm and taking into account the
distance of approximately 200km between the two satellites.

For all model alternatives the normal equations can be established and
solved by a regularized solver of Tichonov type, where the regularization pa-
rameter is preferably computed according to the variance component estima-
tion procedure of Koch and Kusche (2003).

2.2 Gravity field representation

The reference potential according to (9) can be formulated in the usual way
as follows,

Mmax N
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with the surface spherical harmonics,
Crm (9, ) = Py (cosd) cosmA,  Spm (9, ) = Pym(cosd)sinmA.  (20)

The anomalous potential T'(7’;r, Ax) according to (10) reads for a global
gravity field recovery,

r
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n=2 m=0

with the corrections Acpm, Asnm € Ax to the reference potential coefficients
Cnm, Snm € Xo. In case of a regional recovery the anomalous potential T'(r)
is modelled by parameters of space localizing base functions,
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with the unknown field parameters a; arranged in a column matrix Ax :=
(a;, i=1,...,1)T and the base functions,
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The coefficients k, are the difference degree variances of the gravity field
spectrum to be determined minus the reference gravity field (Acpm, ASpm
are the fully normalized potential coefficients),

kn =Y (A¢},, + A8,,,). (24)

m=0

REg is the mean equator radius of the Earth, r the distance of a field point from
the geo-centre and P, (r,rq,) are the Legendre polynomials depending on the
spherical distance between a field point P and the nodal points Q); of the set
of base functions. The maximum degree N,,q, in (23) should correspond to
the envisaged maximum resolution expected for the regional recovery; in the
following examples this maximum degree is selected as Ny, 4, = 120. With the
definition in (23) the base functions ¢(r,rg,) can be interpreted as isotropic
and homogeneous harmonic spline functions (Freeden et al., 1998). The nodal
points are defined on a grid generated by a uniform subdivision of an icosahe-
dron of twenty equal-area spherical triangles. In this way the global pattern
of spline nodal points @); shows approximately uniform nodal point distances.
Details can be found e.g. in Eicker et al. (2005).

3 Solution of the combined normal equations

For the analysis of GRACE observations not only the gravity field parameters
have to be estimated, but also arc-related parameters as for example the two
boundary position vectors of each arc. These parameters sum up to about
27000 additional unknowns for an analysis period of one month in case of
short arcs with a mean arc length of approximately 30 minutes. To reduce the
size of the normal equation matrices, the arc-related parameters are elimi-
nated before the arcs are merged to the complete system of normal equations.
Every short arc 4 builds a (reduced) partial system of normal equations N;.
To combine the normal equation matrices for the short arcs, separate variance
factors o; for each arc will be determined, to consider the variable precision of
the range and range-rate observations. Furthermore, because of the intrinsic
stability problems of the gravity field recovery process, an additional regular-
ization factor o, and a regularization matrix N, will be introduced into the
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Fig. 2. Merging of normal equations for the short arcs within the iterative variance-
covariance computation procedure including the determination of the regularization
parameter

gravity field recovery procedure. The variance factors are computed by means
of a variance component estimation procedure described by Koch and Kusche
(2003). The iterative combination scheme combined with a variance compo-
nent estimation and the computation of the regularization factor is shown in
Fig. 2; for details of the iterative procedure refer to Mayer-Giirr et al. (2005).

4 Gravity field recovery within a simulation scenario

4.1 Simulation scenario

The recovery procedure has been tested based on a simulation scenario. It
shall demonstrate the capability of the recovery approach using controlled er-
ror measures of the orbits and the inter-satellite observations. Nearly circular
orbits of the GRACE twin satellites with a mean altitude of 490km and a
mean distance between the two satellites of approximately 230km are gene-
rated. A pseudo real gravity field has been used for the orbit computations
represented by a spherical harmonic expansion up to degree n=180. The po-
tential coefficients have been taken over from the EGMO96 gravity field model
(Lemoine et al., 1998). The satellite positions are generated every 5 seconds
covering a 30 days mission period. Each position coordinate is corrupted by
white noise with an RMS of 3cm. Two different error scenarios for the ob-
servables have been investigated: For case 1, the range-rate measurements
between the twin satellites are corrupted by white noise with an RMS of
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0.2pm/s and the accelerations are considered to be measured with an accu-
racy of 107?m/s?. For case 2, only the range-rate observations have been
corrupted by white noise with an RMS of 1um/s, while the accelerations have
been considered as error-free. For this test only range-rates have been used as
observations, no ranges. The 30-days-orbit has been split into 1500 short arcs
of approximately 30 minutes arc length. The total number of unknown grav-
ity field parameters are the 19877 potential coefficients beginning from degree
n=2 complete up to degree n=140. The first four potential coefficients have
been fixed to one and zero, to force the centre of mass of the Earth onto the
origin of the Earth-fixed reference frame. The resulting sets of potential coef-
ficients have been truncated at degree n=110 for the subsequent comparisons
with the pseudo-real solution.

signal gravi
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Fig. 3. Degree amplitudes of the gravity field signal, of the errors of the model
GGMO02C and of the errors of case 1 and case 2 as well as the expected GRACE
baseline

4.2 Simulation results

The mathematical model (18) with (16) based on a spherical harmonic grav-
ity field representation according to (8) to (10) with (19) and (21) has been
applied for the gravity recovery. Fig. 3 shows the degree amplitudes of the
gravity field signal, of the errors of the model GGMO02C and of the errors of
case 1 and case 2 as well as the expected GRACE baseline. The error degree
variances of case 2 approximate the baseline quite well in the lower spec-
tral range while the error behaviour of case 1 comes closer to the baseline
in the higher frequencies. This means that the long wavelength features of
the recovery result are strongly affected by the accuracy of the acceleration
measurements while the effect in the higher frequencies are increasingly less
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influenced. A high range-rate accuracy can be exploited only if the acceler-
ations are known adequately. The range-rate accuracy of case 1 seems to be
realistic for the GRACE mission. Therefore, one can state that the baseline
has been achieved under simplified error model assumptions. It is interest-
ing to have a closer look at the geoid differences for both cases in the space
domain. Obviously, the stripe pattern of the differences to the pseudo-real
solution in Color Fig. XVII on p.297 is caused mainly by the noise of the ac-
celeration measurements, while Color Fig. XVIII on p. 297 shows the typical
instability effects of the downward continuation process caused by the noise in
the range-rate measurements. This holds even in case of a moderate maximum
spherical harmonic degree of n=110. Nevertheless, it becomes obvious that the
resolution of the recovered solution can be extended to a higher degree than
the selected one (degree n=110) as Fig. 3 shows. The maximum resolution
would be reached at the point where the error degree amplitude graph would
intersect the signal degree amplitude graph.

5 Gravity field recovery from GRACE range-rate
measurements of August 2003

5.1 Data set

The following recovery results refer to the K-band range-rate measurements
of the GRACE twin satellite mission for the month August 2003. The obser-
vations are corrected for the tides caused by Sun, the Moon and the planets.
The ephemerides are taken from the JPL405 data set. Effects originating from
the deformation of the Earth caused by these tides are modelled following the
TERS 2003 conventions. Ocean tides are computed from the FES2004 model.
Effects of high frequency atmosphere and ocean mass redistributions are re-
moved prior to the processing by the GFZ AOD dealiasing products. The
30-days-orbit has been split into 1500 short arcs of approximately 30 minutes
arc length. For each arc the coordinates of the boundary vectors have been
determined as well as an accelerometer bias.

5.2 Global solution

In the first step, a global spherical harmonic solution up to degree n=90 be-
ginning from degree n=3 has been determined for the month August 2003
from the GRACE range-rate measurements, in the following designated as
gravity field model “ITG-GRACE-2003-08”. The mathematical model (18)
with (16) based on a pure spherical harmonic gravity field representation
according to (8) and (9) with the spherical harmonic model (19) has been
applied. The arc-related parameters are eliminated before merging the nor-
mal equations for each short arc to the total system of normal equations
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as outlined in Sect. 3. The results are compared to the gravity field mod-
els EIGEN-CG03C (GeoForschungsZentrum Potsdam - Forste et al. 2005)
and GGMO02C (Centre of Space Research, Austin, - UTEX CSR, 2004,
http://www.csr.utexas.edu/grace/gravity).

The geoid height differences of our model ITG-GRACE-2003-08 and the
CSR model GGMO02C are shown in Color Fig. XIX on p. 298: RMS: 2.6cm, avg:
2.0cm, min/max: -12.7/14.7cm. The geoid height differences with the GFZ
combination model EIGEN-CGO03C show similar results: RMS: 2.7cm, avg:
2.1cm, min/max: -12.4/12.5cm while the GFZ and the CSR models coincide
slightly better: RMS: 2.0cm, avg: 1.6cm, min/max: -12.8/11.1cm. But one has
to keep in mind that the models EIGEN-CGO03C and GGMO02C contain much
more data covering a considerably longer mission period while our solution has
been derived from only one month range-rate observations. Furthermore, the
model EIGEN-CGO03C has been derived as a spherical harmonic expansion up
to degree n=360, including GRACE and CHAMP data as well as terrestrial
gravity and altimetry data. Similarly, the CSR model has been determined
as a spherical harmonic expansion up to degree n=200 from GRACE data
and constrained by terrestrial data. Despite the fact that the comparisons
between all these models have been performed only up to degree n=90, the
quality of our model is remarkably well. In some areas such as in the Central
Asian region, our solution coincides better with the model GGMO02C than the
model EIGEN-CGO03C.

5.3 Regional solutions

For the regional refinement solutions the same mathematical model as used
for the global solution and formulated in (18) with (16) has been applied
except for the gravity field representation. Based upon the global solution
the additional gravity field refinements are represented according to (8) with
(10) represented by spherical spline functions according to (22). To avoid geo-
graphical truncation effects at the region boundaries, gravity field parameters
defined in an additional strip around the specific regions have to be taken
into account; the width of the strip depends on the approximation of the real
field by the global reference field; in most cases a strip of 10 © is sufficient.
The nodal points are located at a regular grid with a mean distance between
the nodal points of approximately 160km. This grid is generated by a uni-
form subdivision of an icosahedron of twenty spherical equal-area triangles.
The regional refinement resolution corresponds approximately to the degree
n=120 of a spherical harmonic representation of the residual gravity field.
Fig. 4 shows the recovered gravity anomalies of the Himalayan region with its
extreme rough gravity field features. A comparison with the gravity anomalies
derived from the GFZ combination model EIGEN-CGO03C, evaluated at a uni-
form grid of 1° resolution, results in an RMS of 1.32mGal, an average value of
1.06mGal and minimum/maximum differences of -5.45/5.73mGal. The corre-
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sponding values with respect to the CSR model GGMO02C are slightly better
as follows: RMS 1.18mGal, avg 0.97mGal and min/max -3.62/4.00mGal.
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Fig. 5. Regional solution patches, gravity anomalies in mGal

5.4 Merged solutions

To combine the advantages of the satellite mission GRACE to cover almost
perfectly the complete Earth with the advantages of regional focussing tech-
niques - as pointed out earlier - the surface of the Earth has been divided into
patches defined by the latitudes 60 ° and -60 °, as well as by the meridians
0°,60°, 120°, 180°, 240° and 300 ° (Fig. 5). For the regional gravity field
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recovery only the satellite data over the respective regions have been used. To
avoid geographical truncation effects at the boundaries of the regions, an ad-
ditional strip of 10° has been taken into account. For each patch the residual
gravity field has been recovered individually applying a tailored regularization
where the regularization factor as well as the variance factors for the short
arcs crossing the regions are determined by a variance component estimation
procedure as outlined in Sect. 3.

To derive a global gravity field model represented by spherical harmonics
without losing the details of a regional zoom-in, the refined disturbing po-
tential values are calculated at points of a specific grid, the so-called Gauss—
Legendre—Grid. It has equi-angular spacing along circles of latitude; along the
meridian the nodes are located at the zeros of the Legendre polynomials of
degree N + 1. Then the potential coefficients of the spherical harmonic ex-
pansion are calculated by means of the Gauss-Legendre-Quadrature (see for
example Stroud and Secrest, 1966). This quadrature method has the advan-
tage of maintaining the orthogonality of the Legendre functions despite the
discretization procedure, which allows an exact calculation of the potential
coefficients,

c R S cos(mAg)
nm ( _ E k
{ Snm } = GMin kz_l T Pram(cos V) { sin(mAy) } Wky (25)
with the area weights
2
WwE = . (26)

(1—12) (Pl (cos 9x))?

The functionals T} are the disturbing gravitational potential values at the K
nodes of the quadrature, P, are the associated Legendre functions and Py, 41
the first derivatives of the Legendre polynomials of degree N + 1 with respect
to ¥. N is the maximum spherical harmonic degree to be determined.

The geoid height differences of our merged model ITG-GRACE-2003-08
and the CSR model GGMO02C are shown in Color Fig. XX on p. 298. The dif-
ferences show an RMS of 7.27cm, an average value of 5.61cm and minimum/-
maximum values of -28.7/30.6¢cm. The corresponding values with respect to
the GFZ combination model EIGEN-CG03C (Color Fig. XXI on p. 298) are
slightly worse with an RMS of 8.92cm, an average value of 6.88cm and min/-
max values of -44.2/42.7cm. The GFZ and the CSR model coincide slightly
better as Color Fig. XXII on p. 299 demonstrates. The RMS is 6.20cm, the av-
erage value 4.81cm and the minimum/maximum values are -35.9/36.1cm. But
again, the models EIGEN-CGO03C and GGMO02C are not directly comparable
to our one-month solution. Despite the fact that the comparisons between all
these models have been performed only up to degree n=110, the quality of
our model is remarkably well. In some areas is the coincidence of our solution
with GGMO2C better than the coincidence of GGM02C with EIGEN-CG03C,
e.g., in the Central Asian region and in the polar areas.
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Difference degree variances of different 2003-08-solutions with respect to
the CSR gravity field model GGMO02C are shown in Fig. 6 and with respect
to the GFZ model EIGEN-CGO03C in Fig. 7. These two gravity field mod-
els can be considered superior in quality with respect to the monthly 2003-
08-solutions ITG-GRACE-2003-08, CSR-GRACE-2003-08 and GFZ-GRACE-
2003-08. The difference degree variance graphs of our solution ITG-GRACE-
2003-08 with respect to GGM02C and EIGEN-CGO03C show slightly better
results in the spectrum from degree n=70 upwards than the CSR and GFZ
monthly solutions, more or less identical results in the spectral band from
n=>50 to 70 and still slightly worse results in the long and medium wavelength
features.
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Fig. 6. Difference degree variances of different 2003-08-solutions with respect to

GGMO02C

This result and also the stripe pattern of the differences in Color Fig. XX
and Color Fig. XXI on p. 298 could indicate some deficiencies in the bias pa-
rameter determination of the accelerometer measurements. This can be con-
cluded from the simulation examples. Another reasons are inaccurate dealias-
ing products used for this analysis. But there are still numerous further reasons
which have to be investigated in more details. The additional use of range mea-
surements and the analysis of the kinematic arcs of the GRACE twin satellites
may have the potential to improve the long and medium wavelength features
of our recovery results.

6 Conclusions and outlook

The use of short arcs for gravity field recovery, based on the solution of New-
ton’s equation of relative motion, formulated as a boundary value problem of
Fredholm type is an adequate recovery technique for the processing of SST ob-
servations of the low-low types range and range-rates. The results achieved in
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Fig. 7. Difference degree variances of different 2003-08-solutions with respect to
EIGEN-CG03C

this investigation but also the successful application for the processing of kine-
matical arcs as an alternative to the SST high-low gravity field determination
modus (cf. Mayer-Giirr et al. 2004) underline the usefulness of our gravity field
recovery approach. This approach is not only very flexible in terms of various
observation types of the new gravity satellite missions, moreover, it combines
the advantages of a global gravity field determination with a regional gravity
field zoom-in. The three computation steps a) global gravity field recovery
based on a spherical harmonic expansion up to a moderate degree to provide
a first global reference model as a basis for further refinements, b) regional
refinements of the gravity field by spherical splines as space localizing base
functions, adapted to the specific gravity field features, and c) determination
of a global gravity field model by merging the regional refinement solutions
and deriving potential coefficients by a numerical quadrature technique fulfil
all expectations for a flexible gravity field recovery technique. Furthermore,
the method is modest in terms of computation costs, as the complete global
recovery problem is split up into much smaller partial problems. The compu-
tation of global gravity field models up to an arbitrary degree (only limited by
the signal content of the observables) is possible on a single PC, because the
stability properties of the numerical quadrature procedure do not limit the
resolution to an upper degree. Together with the determination of a global so-
lution regional zoom-ins of the gravity field are computed during the recovery
procedure as well. This assures that all signal information of the observations
is extracted in a best possible way.

Further improvements are expected with respect to the following aspects:
a) joint use of ranges and range-rates combined with the analysis of the kine-
matical arcs of the GRACE twin satellites, b) refining the regularization strat-
egy to enable smoother transition zones between the zoom-in-regions, c) tai-
loring the zoom-in areas more accurately to the demand of the gravity field
features in the specific regions, d) more precise selection of the base functions
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and the nodal point distribution adapted to the roughness of the gravity field,
possibly combined with a multi-resolution strategy, e) careful investigation
of the aliasing effects originating from the patching of several regional solu-
tions, f) homogeneization of the regional solutions to avoid long wavelength
errors. Besides these topics, the transformation of the mathematical model
into spectral domain may enable further improvements.
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