
8 Bacterial Community Composition
and Activity in Rhizosphere
of Roots Colonized by Arbuscular
Mycorrhizal Fungi
Petra Marschner, Sari Timonen

8.1
Introduction

Rhizosphere microbial communities can be regarded as a subset of the soil
microbial community. As the root tip grows through the soil, microorgan-
isms in its pathway will be the first colonisers. During rapid root growth,
the zone of elongation immediately behind the root tips is only sparsely
colonised by soil microorganisms. Thereafter, microbial population densi-
ties increase rapidly in the zone behind the root tips, where high concen-
trations of soluble, insoluble and volatile root exudates can be utilised for
microbial growth and metabolism. In contrast, along the older root parts,
the compounds present in the rhizosphere are dominated by cellulose and
other recalcitrant cell wall materials from sloughed root cortex tissues.
Here the population density is often lower than in the younger root regions
closer to the rot tip. The species composition of microbial communities in
rhizosphere differs from that in the bulk soil (Foster 1986; Marilley and
Aragno 1999). This is a clear indication that plants have a strong influence
on the microbial populations on their roots. Indeed, in many cases the
rhizosphere communities of different plant species growing in the same
soil are distinct (Ibekwe and Kennedy 1998) and plants may even have very
similar microbial community composition in different soils (Grayston et
al. 1998; Miethling et al. 2000).

Plant roots release 1–25% of the net photosynthesis as soluble and in-
soluble compounds into the rhizosphere (Merbach et al. 1999). Among
rhizosphere microbial ecologists there is currently a consensus that dif-
ferences in exudate amount and composition are likely to affect microbial
community composition because microbial species differ in their ability
to metabolise and compete for different carbon sources. Therefore, differ-
ences in exudate amount and composition will affect the competitiveness
and hence the survival of microbial species. A wide range of factors have
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been shown to affect root exudation, including plant genotype (Rovira
1959; Rengel 1997; Grayston et al. 1998), plant age (Martin 1971; van Veen
et al. 1991; Marschner et al. 2001), nutritional status (Hoffland et al. 1989;
Liljeroth et al. 1990; Marschner and Crowley 1998; Fan et al. 2001) and
colonization by mycorrhizal fungi (Po and Cumming 1997; Marschner et
al. 1997). In addition to being easily available substrates for soil microor-
ganisms, certain components of root exudates can also have a selective
influence on rhizosphere microorganisms by repelling some species and
increasing the competitive ability of others (Geurts and Franssen 1996).

Mycorrhizal plants transfer more assimilates to the roots than non-
mycorrhizal plants (Wang et al. 1989; Eissenstat et al. 1993), which may
be explained by the carbon demand of the fungus for growth and respi-
ration (Fitter 1991; Kucey and Paul 1982). Arbuscular mycorrhizal (AM)
colonization has been shown to decrease root exudation (Dixon et al. 1989;
Graham et al. 1981; Marschner et al. 1997) although no effect on exudation
has also been reported (Azaizeh et al. 1995). Mycorrhizal colonization may
also affect root exudate composition (Marschner et al. 1997; Po and Cum-
ming 1997) and the carbohydrate metabolism of the roots (Buwalda and
Goh 1982; Shachar-Hill et al. 1995). These changes could be related to the
carbon uptake by the fungus and/or the effect of mycorrhizal colonization
on host plant physiology. And mycorrhizal fungi themselves may release
exudates that selectively influence the microorganisms in the rhizosphere.
Exudates from mycorrhizal fungi have not yet been investigated in detail;
however there are reports of compounds such as glomalin, which may in-
crease soil aggregation (Rillig et al. 2002). As microorganisms are mainly
found in soil aggregates, glomalin can have positive effects on microbial
population density (Andrade et al. 1998b).

Mycorrhizal colonization could also indirectly affect the microbial com-
munity in the rhizosphere by its effects on root morphology (Berta et
al. 1990, 1993; Hetrick 1991), rhizosphere pH (Bago and Azcón-Aguillar
1997), nutrient content (Li et al. 1991) and enzyme activity (Tarafdar and
Marschner 1994) as well as on soil structure (Neergaard-Bearden and Pe-
tersen 2000; Rillig et al. 2002; Tisdall 1991). As discussed in Chap. 9, the
hyphae of AM fungi create an additional habitat for soil microorganisms
which is distinct from that of the rhizosphere of non-mycorrhizal roots and
will exert its own influence on the microbial communities.

Creating a mycorrhizosphere habitat may be beneficial for mycorrhizal
fungi because some microorganisms specific for the rhizosphere of mycor-
rhizal roots can stimulate mycorrhizal formation and change mycorrhizal
gene expression (Becker et al. 1999; Poole et al. 2001). If plant growth is
increased by certain rhizosphere microorganisms this would also benefit
the AM fungus because the larger plants could supply the fungus with more
carbohydrates.
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In this chapter, we will outline the effect of AM colonization on bacte-
rial rhizosphere colonization, community structure and activity and the
possible causes of these effects.

8.2
Rhizosphere Colonization by Bacteria

8.2.1
Soil Bacteria

AM colonization affects the colonization pattern of roots by bacteria, re-
sulting in a greater spatial variability of bacterial distribution on AM roots
(Christensen and Jacobsen 1993). It can increase the population density of
bacteria in the rhizosphere (Abdel-Fatah and Mohamedin 2000; Andrade et
al. 1998a; Bagyaraj and Menge 1978; Medina et al. 2003; van Aarle et al. 2003),
have no effect on bacterial density (Andrade et al. 1997; Mansfeld-Giese et
al. 2002; Meyer and Lindermann 1986; Olsson et al. 1998), or decrease it
(Ames et al. 1984; Christensen and Jakobsen 1993). These apparently con-
tradictory findings may be due to AM fungal species-specific interactions,
because, as shown in a number of studies (Krishnaraj and Sreenivasa 1992;
Marschner et al. 2001; Marschner and Baumann 2003; Secilia and Bagyaraj
1987), AM fungal species differ in their effect on the microorganisms in
the rhizosphere. There are also indications that the interactions between
AM and rhizosphere bacteria are plant species-specific (Marschner and
Timonen 2004; Medina et al. 2003; Vancura et al. 1989) (Fig. 8.1). AM

Fig. 8.1. Interactions between plant species, AM colonization and bacteria in the rhizosphere
(see text for details)
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colonization may also indirectly affect bacteria via changes in population
density of bacterial predators such as protozoa (Wamberg et al. 2003).

Compared to non-mycorrhizal roots, roots colonized by AM fungi offer
soil microorganisms an additional habitat: the extraradical fungal struc-
tures (see Chap. 9). Bianciotto et al. (1996) showed that bacteria form
biofilms on spores and hyphae, indicating that these fungal structures can
be important habitats for soil bacteria. Our own results (Marschner and
Timonen 2004) suggest that the bacterial community colonizing the exter-
nal mycelium of the outer mycorrhizosphere may be different from that
colonizing the inner mycorrhizosphere of AM plants.

8.2.2
Pseudomonads

Of the many soil bacterial genera, the interactions between AM colonization
and pseudomonads has received the most interest. The reasons for this
are that pseudomonads are considered to be typical rhizosphere bacteria,
easily cultured in laboratory media and many are known to be pathogens,
biocontrol agents or plant growth-promoting bacteria.

AM colonization often decreases the rhizosphere colonization by Pseu-
domonas sp. (Marschner and Crowley 1996; Marschner et al. 1997; Meyer
and Linderman 1986; Paulitz and Linderman 1989). In the study by Raven-
skov et al. (1999), the population density of a fluorescent pseudomonad
was not affected by AM colonization but its culturability was decreased;
suggesting that the cells are more starved in the rhizosphere of AM roots
(Ramos et al. 2000). This confirmed the studies by Marschner and Crowley
(1996) and Marschner et al. (1997) who reported that AM colonization can
reduce the physiological activity of a fluorescent pseudomonad in the rhizo-
sphere. Ravnskov et al. (1999) found that their isolate did not attach to AM
hyphae. AM fungal species differ in their suppressive effect towards Pseu-
domonas sp. (Marschner and Crowley 1996; Marschner et al. 1997; Paulitz
and Linderman 1989). However, Paulitz and Linderman (1989) argued that
this apparent AM fungal species effect may be related to differences in the
extent of root colonization by the different AM fungal species. Hence, AM
species with a greater percentage root length colonized would be expected
to have a stronger suppressive effect.

8.2.3
N2 Fixing Bacteria and P Solubilizers

Only very few studies have examined the effect of AM colonization on as-
sociative N2 fixing bacteria. Klyuchnikov and Kozhevin (1990) found that
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AM colonization increased the rhizosphere population density of Azospiril-
lum brasiliense. Far more studies investigated the interactions between AM
colonization and the agronomically very important symbiotic N2 fixers.

In legumes colonized by AM fungi and Rhizobium both symbionts rep-
resent a significant carbon sink (Kucey and Paul 1982) and competition for
host carbohydrates may explain negative interactions between AM fungi
and Rhizobium. For example, Reinhard et al. (1992) found that the pres-
ence of Rhizobium decreased AM colonization. The competition between
the two symbionts may be particularly expressed under low light condi-
tions when less carbohydrates are translocated to the roots (Bethlenfalvay
et al. 1982).

On the other hand, positive interactions between AM and Rhizobium
have also been frequently reported. AM colonization can increase nodula-
tion (Abbott and Robson 1977) and enhance plant yield and N uptake (Barea
et al. 1987; Xavier and Germida 2003). AM colonization can also stimulate
colonization of alder by Frankia, the N2 fixing actinomycete (Fraga-Beddiar
and Le Tacon 1990).

The apparent contrasting results, negative interactions on the one hand
and positive interactions on the other, could be due to compatibility be-
tween the two symbionts as well as between the microbial partners and
the host plant. Evidence for the former was given by Xavier and Germida
(2003), who showed recently that some combinations of AM fungal species
and Rhizobium species had a negative effect on yield and N uptake while
others have a positive effect. The importance of the combination of AM
species and N2 species was also evident in a study by Subba Rao et al.
(1985) where the extent of synergism between A. brasiliense and AM col-
onization in terms of plant growth strongly depended on the AM fungal
species. The contrasting results may also be due to the benefit gained by
AM colonization for P uptake. Under conditions of low P supply, AM col-
onization can increase P supply to plants and nodules and thus positively
affect nodulation and N2 fixation. If P is not limiting growth of plants and
Rhizobium, AM fungi will represent a carbon drain with little or no benefit.
Then, negative interactions between Rhizobium and AM colonization may
be expected. It should, however, be noted that AM fungi not only increase
uptake of P, but also of other poorly mobile nutrients such as Zn (George
et al. 1994; Ryan 2003) and can improve soil structural stability (Andrade
et al. 1998b; Neergaard-Bearden and Petersen 2000), thus improving plant
growth and thereby also carbohydrate supply to Rhizobium. Additionally,
AM colonization can suppress soil-borne plant pathogens (see Chap. 9),
which would also result in improved plant growth. Positive effects of AM
on Rhizobium could be related to the suppression of microorganisms that
inhibit root colonization by Rhizobium, while negative interactions may be
expected if such microorganisms are stimulated by the presence of AM.
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Many soil microorganisms can increase the solubility of sparingly soluble
P minerals. If AM fungi have a stimulating effect on such microorganisms,
plant P uptake could potentially be increased. Indeed, AM colonization
can increase the population density of P solubilizers in the rhizosphere
and co-inoculation of plants with AM fungi and P solubilizers can increase
plant P uptake compared to inoculation with AM fungi alone (Sreenivasa
and Krishnaraj 1992) or P solubilizers alone (Azcón et al. 1976).

8.2.4
Biological Control Organisms

Biocontrol agents such as pseudomonads, which produce antibiotics or lyse
fungal cell walls could potentially have a negative impact on mycorrhizal
colonization. There are reports that biocontrol agents such as Azospirillum,
Pseudomonas or Trichoderma have no negative effect on AM colonization
(Barea et al. 1998; Vazquez et al. 2000). On the other hand, Wyss et al. (1992)
showed that two biological control organisms, Trichoderma harzianum and
Streptomyces griseoviridis, decreased colonization by Glomus mosseae. This
was also the case for Glomus intraradices (Green et al. 1999). With respect to
the effect of AM colonization on biocontrol organisms, Green et al. (1999)
showed that G. intraradices decreased the population density and activity
of Trichoderma harzianum. From the data presented so far in this chapter,
it seems very likely that the interaction between biocontrol agents with
AM fungi would by highly specific for a given biocontrol agent/AM fungus
combination which may be further affected by the plant species.

8.3
Bacterial Community Composition

The studies with single isolates suggest that the density of some bacterial
species is lower in AM roots than in non-mycorrhizal roots. However, these
studies are highly artificial because only one bacterial species is used. This
is in contrast to the soil environment, where the microbial community
is highly complex and consists of species with different growth rates and
substrate preferences. Nevertheless, experiments conducted with complex
microbial communities show that AM colonization can change the bacterial
community composition in the rhizosphere by stimulating the population
density of certain bacterial species or functional groups, while depressing
others (Amoralazcano et al. 1998; Andrade et al. 1997; Marschner et al. 2001;
Marschner and Baumann 2003; Meyer and Linderman 1986; Posta et al.
1994; Secilia and Bagyaraj 1987; Wamberg et al. 2003) (Table 8.1). In many
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Table 8.1. Interactions between plant species, AM colonization and bacteria in the rhizo-
sphere (see text for details)

Microorganism AM fungus
Effect

Referenceof AM

Indigenous bacteria Indigenous fungi Increase van Aarle et al. (2003)

Gram-positive Bacillus sp Glomus sp. Decrease Secilia and Bagyaraj (1987)

Glomus intraradices Decrease Posta et al. (1994)

Gram-negative Glomus sp. Increase Secilia and Bagyaraj (1987)

Glomus mosseae Increase Posta et al. (1994)

Fluorescent pseudomonads Glomus desterticola Decrease Marschner et al. (1997);
Vázquez et al. (2000)

Glomus fasciculatus Decrease Meyer and
Linderman (1986)

Glomus mosseae Decrease Waschkies et al. (1994);
Posta et al. (1994);
Vázquez et al. (2000);
Marschner et al. (1997)

Azotobacter Glomus fasciculatus Increase Bagyaraj and Menge (1978)

Azospirillum brasiliense Glomus mosseae Increase Klyuchnikov and
Kozhevin (1990)

Actinomycetes Glomus fasciculatus Increase Bagyaraj and Menge (1978)

Glomus intraradices Increase Abdel-Fatah and
Mohamedin (2000)

Glomus mosseae Increase Posta et al. (1994)

Glomus sp. Increase Secilia and Bagyaraj (1987)

Streptomyces sp Glomus deserticola No effect Vázquez et al. (2000)

Glomus fasciculatus Decrease Meyer and
Linderman (1986)

Glomus mosseae No effect Vázquez et al. (2000)

Ammonia oxidizers Glomus mosseae Increase Amoralazcano et al. (1998)

Glomus fasciculatus Increase Amoralazcano et al. (1998)

Ammonifiers Glomus fasciculatus Decrease Amoralazcano et al. (1998)

Glomus mosseae Decrease Amoralazcano et al. (1998)

Chitinase producers Glomus fasciculatus Decrease Meyer and
Linderman (1986)

Mn reducers Glomus mosseae Increase Posta et al. (1994);
Kothari et al. (1991)

N2 fixers Glomus sp. Increase Secilia and Bagyaraj (1987)

Nitrifiers Glomus fasciculatus Decrease Amoralazcano et al. (1998)

Glomus mosseae Decrease Amoralazcano et al. (1998)
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studies it has been shown that the population density of Gram-negative
bacteria (Secilia and Bagyaraj 1987; Posta et al. 1994) and actinomycetes
(Bagyaraj and Menge 1978; Abdel-Fatah and Mohamedin 2000) is increased
in the rhizosphere of AM roots. Kothari et al. (1991) and Posta et al. (1994)
found that AM colonization increased the population density of Mn reduc-
ers in the rhizosphere, thus increasing Mn availability to the plants and
plant Mn uptake. In agreement with the studies with single isolates men-
tioned above, fluorescent pseudomonads, are generally inhibited by AM
colonization (Meyer and Linderman 1986; Posta et al. 1994; Waschkies et
al. 1994). In the study by Waschkies et al. (1994) inoculation with AM fungi
was associated with an alleviation of grape vine replant disease and the
authors argued that this was due to the decreased population density of
fluorescent pseudomonads which appear to be one of the causative agents
of the disease.

AM colonization can also affect microorganisms involved in N mineral-
isation in soil. The population density of ammonia oxidizers was higher,
while those of ammonifiers and nitrifiers was lower in pot cultures of Glo-
mus mosseae and G. fasciculatum than in non-mycorrhizal pot cultures
(Amoralazcano et al. 1998).

It should be noted that most studies investigating the effect of AM col-
onization on bacteria in the rhizosphere have relied on culture-dependent
methods such as dilution plating. However, less than 5% of soil microor-
ganisms are assessed with culture-dependent methods (Bakken 1985). The
main reasons for this low recovery are that (i) many microbial species do
not grow or grow very slowly on conventional culture media (Janssen et al.
2002) and (ii) a large fraction of cells are in a viable but non-culturable state
(Oliver 1993) or in a state of starvation (Ramos et al. 2000) and therefore
do not form visible colonies on standard laboratory media.

Bacterial community composition as affected by AM colonization has
also been studied using culture-independent methods such as those based
on differences in gene sequence or fatty acid profiles. In maize, Marschner
et al. (2001) showed that the bacterial community composition in the rhi-
zosphere (assessed by denaturing gradient gel electrophoresis) of plants
inoculated with Glomus mosseae or G. intraradices differed from that of
non-mycorrhizal plants. The two fungal species differed in their effect on
bacterial community composition and this was not related to the P status of
the plant. In this study, the effect of AM colonization was more pronounced
after six weeks than after three weeks and during this time the percentage
root length colonized by the fungi increased more than twofold. This sug-
gests that the extent of AM effect maybe related to the percent root length
colonized (Paulitz and Linderman 1989). However, we found recently that
AM colonization had a strong effect on bacterial community composition
in canola (Brassica napus) with less than 10% of root length colonized while
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it had no effect in clover (Trifolium subterraneum) where more than 50%
root length were colonized (Marschner and Timonen 2004). Hence, the
bacterial community composition can even be affected when only a small
fraction of the root system is colonized by AM fungi.

The results of a study with split-root maize plants (Marschner and
Baumann 2003) indicate that the AM effect is, at least in part, plant-
mediated because AM colonization changed the bacterial community com-
position in the rhizosphere on both the root half colonized by AM and the
non-mycorrhizal half. In agreement with the earlier study (Marschner et
al. 2001), the rhizosphere bacterial community composition was fungal
species-specific.

On the other hand, there are reports that AM colonization has no effect
on bacterial community composition (Mansfeld-Giese et al. 2002; Olsson
et al. 1996; Søderberg et al. 2002). As mentioned above, these contrasting
results indicate that the effect may be fungal species-specific (Marschner
and Baumann 2003; Marschner et al. 2001; Secilia and Bagyaraj 1987) or
plant species-specific (Vancura et al. 1989). This is supported by our own
results (Marschner and Timonen 2004), which showed complex interactions
of plant and AM fungal species on the bacterial community composition
in the rhizosphere.

8.4
Bacterial Activity

As mentioned above, AM colonization can either increase N2 fixation (Az-
con et al. 1991; Barea et al. 1987) or decrease it (Reinhard et al. 1992).
Bethlenfalvay et al. (1982) showed that although nodule dry weight may be
decreased by AM colonization under low light conditions, specific activity
of nodules (N2 fixation per dry weight of nodule) is increased. Thus, the
development of nodules was inhibited by the presence of AM fungi, but
once the nodules had reached maturity they were capable of competing
effectively with the AM fungus for host assimilates and may have benefited
from the improved P nutrition of AM plants. This suggests that the inter-
actions between AM fungi and Rhizobium are complex and may change
during the development of the nodules.

Besides the well-studied effects on N2 fixation there are only a limited
number of studies that have examined the effect of AM colonization on
other microbial activities in the rhizosphere. AM colonization increased
chitinase activity in the rhizosphere (Abdel-Fatah and Mohamedin 2000),
suggesting that the presence of AM hyphae stimulates the capacity of the
rhizosphere microflora to decompose fungal cell walls. Christensen and
Jacobsen (1993) found that AM colonization decreased the growth rate of
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bacteria in the rhizosphere. In agreement, the studies by Marschner and
Crowley (1996) and Marschner et al. (1997) indicate that AM colonization
induces a state of starvation in a genetically modified bioluminescent pseu-
domonad and the degree of inhibition was fungal species-specific. Søder-
berg et al. (2002) showed that this decrease may be also be plant-species
specific.

The increased P uptake by plants inoculated by both P solubilizers and
AM fungi compared to inoculation with each microorganism separately
(Azcon-Aguilar et al. 1986b; Sreenivasa and Krishnaraj 1992) suggests that
presence of AM fungi may stimulate the activity of P solubilizers.

8.5
Effects of Bacteria on AM Fungi

The effects of bacteria on AM fungi will only be briefly outlined here. For
a more detailed discussion the reader is referred to Duponnois (Chap. 15)
on mycorrhizal helper bacteria.

Certain bacterial species may stimulate AM spore germination (Azcon-
Aguilar et al. 1986a, Hildebrand et al. 2002), AM colonization (Fester et al.
1999; Vivas et al. 2003) or the proliferation of the extraradical mycelium
(Gryndler et al. 2002). It appears, however, that this effect is bacterial and
fungal species-specific (Gryndler et al. 2002; Medina et al. 2003). Bacte-
ria isolated from spores can also inhibit spore germination (Xavier and
Germida 2003).

8.6
Bacteria in AM Fungi

Evidence is now emerging that bacteria can also live within AM fungi.
Bacteria-like objects (BLOs) in AM fungi were first reported by Mosse
(1970) and MacDonald et al. (1983). More recently it was confirmed that
these BLOs are indeed bacteria (Scannerini and Bonfante 1991). Xavier and
Germida (2003) found Gram-negative and Gram-positive bacteria on the
surface of AM spores, but only Gram-positive bacteria within the spores.
Bacteria appear to colonize fungal spores intracellularly (Bianciotto et al.
2000), where they are associated with protein and lipid bodies (Minerdi et
al. 2002). AM hyphae also contain bacteria intracellularly (Bianciotto et al.
1996).

Some bacterial species found in spores seem to be ubiquitous; they are
found in the spores of the same fungal species isolated from different areas
(Minerdi et al. 2002) and even in spores of different AM fungal species
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(Bianciotto et al. 2000). Minerdi et al. (2002) argued that this suggests co-
evolution of the intracellular bacteria and AM fungi. These bacteria may
be transferred from one generation of AM fungi to the next via asexual AM
spores. Interestingly, the spores of some AM species do not seem to contain
bacteria (Bianciotto et al. 2000).

The information on the bacterial species found in AM fungi is just
emerging. Burkholderia sp. appear to be one of the major groups of bacteria
found inside AM spores (Minerdi et al. 2002). Xavier and Germida identified
one spore isolate as Bacillus patsuli. Burkholderia sp. carry nif genes, could
therefore potentially fix N2 and thus contribute to the N nutrition of the
fungus (Minerdi et al. 2001). However it remains to be shown that the
bacteria in spores actually fix nitrogen. The chitinolytic bacteria isolated
from spores (Filippi et al. 1998) could have a role in spore germination.
Clearly more information about bacterial species from within spores and
their role and significance for spore survival and germination is needed
(Filippi et al. 1998; Bianciotto et al. 2000).

8.7
Conclusions

Root colonization by AM fungi can affect the bacterial community com-
position in the rhizosphere by stimulating some species while suppressing
others. These effects may be due directly to the fungus or could be plant
and/or soil-mediated. They appear to be the result of complex fungus-
plant-environment interactions which we are just beginning to understand
(Fig. 8.1).
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