Chapter IX

Level-3 Large Deviations for 1.1.D.
Random Vectors

IX.1. Statement of Results

Theorem 11.4.4 stated the level-3 large deviation property for i.i.d. random
vectors taking values in R?. In this chapter, we prove Theorem 11.4.4 in the
special case of i.i.d. random variables with a finite state space. This version of
the theorem covers the applications of level-3 large deviations which were
made in Chapters III, IV, and V to the Gibbs variational principle. Theorem
I1.4.4 can also be proved via the methods of Donsker and Varadhan (1983a).
The main result in that paper is a level-3 theorem for continuous parameter
Markov processes taking values in a complete separable metric space.’

Let p be a Borel probability measure on R whose support is a finite set I,
We topologize I" by the discrete topology and I'? by the product topology.
With respect to the probability space (I'Z, (I'?), P,), the coordinate represen-
tation process X;(w) = w; is a sequence of i.i.d. random variables distributed
by p. #(T%) denotes the set of strictly stationary probability measures on
#(T'%) with the topology of weak convergence. The empirical process is
defined as

n—1
Rn(wv')zizéﬂ‘x(u,m)(')ﬂ n=1527'-~9 COEFZ,
k=0

where T is the shift mapping on I'Z and X(n, ) is the periodic point in I'%
obtained by repeating (X;(w), X5(w), ..., X,(w)) periodically. For each
Borel subset B of I'Z, R,(w, B) is the relative frequency with which X(n, ),
TX(n,w), ..., T" ' X(n,w)isin B. Thus R,(w, -) is for each w an element of
M (T?). For Pe.#(T'?), P, denotes a regular conditional distribution, with
respect to P, of X, given the o-field # {X;;j < 0}. The level-3 entropy func-
tion is defined as

9.1 1P = f I(P,)P(dw),

4
where I!¥(P,) is the relative entropy of P, with respect to p.
The following theorem is Theorem I1.4.4 for the case of a finite state space.

Theorem IX.1.1. Let p be a Borel probability measure on R whose support is a
finite set T. Then the following conclusions hold.
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(a) {Q}, the P,-distributions on M%) of the empirical processes {R,},

. . . - . 3
have a large deviation property with a, = n and entropy function I .

(b) I$P(P) is an affine function of P. I\>)(P) measures the discrepancy be-
tween P and the infinite product measure P, in the sense that I{®)(P) > 0 with
equality if and only if P = P,.

If 4 is a nonempty subset of .#,(I"?), then I{>(4) denotes the infimum of
I¥ over A. I¥(¢) equals co. In order to prove part (a) of the theorem, we
must verify the following hypotheses.

(i) IP(P) is lower semicontinuous.

(i) I{¥(P) has compact level sets.

(i) limsup,.,n 'log OP{K} < —IP(K) for each closed set K in
(T,

(iv) liminf,,, n"'1og QP{G} = —I{P(G) for each open set G in
M (T,

Hypotheses (i) and (ii) and part (b} of the theorem will be proved in Section
IX.2. We prove hypotheses (iii) and (iv) by first showing the large deviation
bounds for finite-dimensional sets in .#,(I"%). The proof of the bounds for
such sets depends on the following facts.

(v) Foreach a > 1 the distributions of the a-dimensional marginals of
{R,} have a large deviation property with entropy function denoted
by 1,3
(vi) I{3) 1s related to I{* by the contraction principle
inf{I{>*(P): Pe M(T*),n,P =1} = I))N7),
where T = 7, P is the fixed a-dimensional marginal of P.

Item (vi) is proved in Section IX.3; (v), (iii), and (iv) are proved in Section
1X.4.

IX.2. Properties of the Level-3 Entropy Function

Let p be a Borel probability measure on R whose support is a finite set T' =
(X4, X2, oo, x,p with x; <Xy <+ < x,. Set p;=p{x;} >0. Let o be a
positive integer and 7, the projection of I'? onto I'* defined by m,0 = (w,,
..., ). If Pisa strictly stationary probability measure on % (I"'), then define
a probability measure 7, P on #(I'*) by requiring

n,P{F}=P{n;'F} = Plwel?: (v, ...,0)eF}

for sutsets F of I'*. The measure =, P is called the a-dimensional marginal of
P. We consider the quantity

Plo;
12} (n,P) = i
naPp(T[a ) w;a TEaP{CU} log napp{CU} >
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which is the relative entropy of 7, P with respect to n,P,. In Chapter I, the
level-3 entropy function I\*(P) was defined as limwm ) b, (. P) [see
(1.37)]. We will show in Theorem IX.2.3 that this limit exists and coincides
with the quantity 7{¥(P) defined in (9.1).

Given elements x; , ..., x; in I, set

P, nx)=PX =x, ., X, =X )
and provided P{X;=1x;,...,%,

a—1 =

X} >0, let plx; [x;,...,x )

denote the conditional probability P{X, = x; [X; =x;, ..., X, =x;, _}.
We define

pr(P) _ ilgllp(xil) log[P(Xil)/Pil] for o = 1’

Yp(xi, o x ) loglpCe |xi s oo xi o] for o > 2.

For o > 2 the sum defining H, ,(P) runs over all i,,...,i, ,,i, for which
p(x;,s ..., x;,_) > 0. Since OlogO 0, the sum may be restricted to all
i, ..., I, for which p(x;,...,x;)>0. The quantity —) p(x;,....x;)
logp(x; |x;,-..,x; _,) 1s known as the conditional entropy of X, given
X, .. X

a—1-

Lemma IX.2.1 (a) Let p;,...,py and q,,...,qy be non-negative real
numbers such that Y -y p; =1, q; = 1, and p; = 0 whenever q; = 0. Then

N N
Y pilogp; = > pilogg;
i=1 i=1

with equality if and only if p; = g, for all i.
(b) L (m,P) = H, \(P) + H, 5(P) + - -+ + H, ,-(P) + H, ,(P).
() 0< Hp,1(P) <H, ,(P)<---<H,, ,(P)<H,P).
(d) H,,(P)= p (P) ifand only if X; and X, are independent.
(¢) For « >3, H, (P)=H, ,_ 1(P) if and only if X, and X, are condi-

tionally independent gzwn X,, ..., X, 1 that is, if and only if
PO X XX ) = p(xilfxiz, ce X )
whenever p(x; , X, ..., x;,_ ) > 0.*

Proof. (a) We have
N N
Y pilogp; — Y pilogg,= Y piloght 7
i=1 i=1 4;>0 i

The latter is non-negative and equals 0 if and only if p; = ¢; whenever ¢, > 0
[Proposition 1.4.1(b)]. Since by hypothesis p; = q; whenever ¢; = 0, the
proof of part (a) is done.

*See page 301,



272 IX. Level-3 Large Deviations for I.I.D. Random Vectors
(b) If e > 2and p(x; , ..., x;) >0, then
a
p(xils ces >Xia) =p(x,-1)' Hp(xiﬁ’xila e ,xiﬁﬂ)-
=2

Hence fora > 2

L2 (m,P) =3 p(xi oy x) l:logp( ") Z p(xiﬂlxil’ e ’xiﬂ—l):l
Pi =2 5

i

= Z Hﬂ»ﬁ(P)'
f=1

(c)-(e) H, (P)equals the relative entropy of m; P with respect to p and
so is non-negative. Since P is strictly stationary,

H, (P)= Z p(x;,x; ) log—= plxiy) )

i,iy=1 i,

The sum may be restricted to i, 7, for which p(x; ) > 0. For if p(x; ) =
then p(x; ,x; ) = 0 for all 5, and there is no contrlbutlon to the sum. Thus

H,o(P)~ Hyy(P)= X p(xig{g Pl ) ogp(x, ;)

plx; )>0

— 3 pl ) 1ogp(x,.2>}.
i,=1
By part (a), H, ,(P) 2 H, ;(P) with equality if and only ifp(xiz|xil) = p(x;)
whenever p(x; ) > 0. The latter condition is equivalent to the independence
of X, and X,. Similarly, for o > 3,

pa(P) pa I(P)

= Zp(xila e la 1 {Z p(xla|xz LI 9xia_1)logp(xia’xila e 9xiak1)

_ z PO xi s x )ogp(x |x;, .. ,xia‘l)},
iy=1

where the outer sum runs over alliy, ..., 4, forwhichp(x; , ..., x; _ ) > 0.
By part (a), H, ,(P) = H, ,_,(P) with equality if and only 1f

PO XX ) =pO X, X, )

whenever p(x; , ... ) > 0. O

Figey

We also need the following lemma, which arises in the proof of the
Shannon—-McMillan—Breiman theorem in information theory [Billingsley
(1965, page 131)].
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Lemma IX.2.2. For eachi;e{l, ..., r},
n=0

OSJ sup [ —log P{X; = x; [X_,, ..., Xo} (@)]P(dw) < 0.
{Xl_xl}

Proof. For n a non-negative integer, ie {1, ...,r}, and weI'%, define

[ w) = —log P{X, = x; X} (o),

(@) = ¥ S(0) Zx,ng (@).

i=1

Since 0 < P{X, = x;|X_,, ..., Xo}(w) < 1 P-as., it suffices to prove that

9.2) J sup gn(w) P(dw) < o0.
r

7 n>0
If 4, = {wel”: maxy ., 9;(w) <A < g,(w)}, A >0, then
P{4,} = Y P{{X,=xnd,} =) P{{X, = x;} nB}},
i=1 i=1

where B = {wel”:max,. <, /(@) < 2 < f(w)}. B is in the o-field
generated by X_,, ..., X, and so

P{{X, =x}nBY} = j P{X, = x| X_,, ..., Xo}(w)P(dw)

B
= j(.)exp(_fn(i)(w))]?(dw) < e*AP{By(,i)}-
i
Since the sets {BY;n=0,1, ...} are disjoint,
Pidyf <™ Z Z P{B{"} < re .

Hence P{weT?:sup,. g, (@) > A} <re™* and (9.2) follows. m|

n

1o

Theorem 1X.2.3. For Pe ./ ('), define I{Y(P) by (9.1). Then
lim,_, _11‘2}, (m,P) exists, lim,._.,, H, ,(P) exists, and

llmil,ﬁj,’,p(naP) = lim H, ,(P) = [)(P) < oo.*

Proof. By Lemma IX.2.1(b), it suffices to prove that lim,_, H, ,(P) exists
and equals I$¥(P). Since P is strictly stationary, we have for n > 0

n+2(P) - Z log[P{Xl = xillX—m cet XO}/pzlde

=1 (X1=xi1}

*There is an elementary proof of the existence of lim,_ a"‘l,ﬁf},p(n,,P) which does not
identify the form of the limit. See Note 2.
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As n— o, P{X, =x; |X_,, ..., Xy} converges to P{X; = x; |{X;:j < 0}}
almost surely [ Theorem A.6.2(a)]. By the Lebesgue dominated convergence
theorem and Lemma IX.2.2, we conclude that lim,_. , H, ,(P) exists and*

lim H, ,(P)= ) log[P{X, = x; |{X;;j < 0}}/p; JdP
*me H=LJIX, = )

- j Tog[PLX, =3, |{X:7 < 01, ]
)

=1

“PLX, = x, |{X;;j < 0}}dP

S
J f log = w{{xg B (dx) P(dov)
rZJr Paxy

f IP(P,)P(dw)y = I(P) < 0. O
rz

In order to prove properties of 7(*(P), we need a standard lemma.
Lemma I1X.2.4. Let by, b,, ... be a superadditive sequence of real numbers;

i.e., by, = b, + b, for all positive integers m and n. Then lim,_, b,/n =
Supnzlbn/n'

H= 00

Proof. Define s = sup,., b,/n and suppose that s is not oo. Given &> 0
choose a positive integer k& such that b,/k > s — &. Any positive integer n
has the form n = mk + [, where m > 0 and 0 < / < k. By hypothesis

b, = byyr) = mb, + 1by.

Hence s > liminf, . b,/n = liminf,_  mb/n = b /k > s — ¢. Since ¢ > 0 is
arbitrary, it follows that lim,_,,, b,/n = s if s is finite. The proof is similar if
s is 0. O

IP(P) is lower semicontinuous. We first prove that for Pe . #(I'") the
sequence of relative entropies I, = I,ij},p(naP) is superadditive. Let & and § be

arbitrary positive integers and introduce the notation
WOD = (Wy, Wy, ..., W, D, By, ..., 0Ogel*F forwel™, wel™.

Since 7., P,{wow} = n,P,{w} n,P,{®},

_ T, P{wo @}
L.,= T, g P{wo®d}log —.
R N AT

Since P is strictly stationary, Y . ra7,.,P{wo@} = n,P{®}, and so

*The second equality in the display uses (A.3) [page 300].
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Lis—L—1L= % Y m.zPlwod}logn,.,Plwod}

wel?* [g‘el"ﬂ

— Y Y napP{wonllog[n,P{w} n,P{®}].

wel*gerh

By Lemma IX.2.1(a) 7, — I, — I; > 0. It follows from Lemma IX.2.4 that
1 1
I3(P) = ;Lrg&l,gjz,p(naP) = ilill)aléj}p(naP).

Since the mapping P — n, P is continuous, each function I(ZP (n,P)is a con-
tinuous function of Pe.# (I'?). As the supremum of a sequence of continuous
functions, I{¥(P) is a lower semicontinuous function of Pe.# (I'?).

I'P(P) has compact level sets. M#(I'*) is a compact metric space
[Theorem A.9.2(c)]. Since I{*(P) is lower semicontinuous, its level sets
are closed subsets of .#(I'?) and thus are compact subsets of .# (I'%).

I'P(P) is affine. We show that if P and Q are measures in .#,(I'?), then
forevery 0 < A < 1

(9.3) IOGP + (1 = 2)Q) = AIV(P) + (I — HIQ).

Write p(w) for n, P{w}/n,P,{w} and g{w} for n,0{w}/n,P,{w}, weT™ Since
xlogx, x > 0, 1s convex and log x, x > 0, is nondecreasing,

ALZE (P) + (1 = W17 (Q) = ), mP, o} [Ap(w)logp(w)

wel®

+ (I = Hg(w)logg(w)]
> Y mP{wfp) + (1 - DHg(w)]

“log[Ap(w) + (1 — Hg(w)]
> ) mP{o}[ip(w)log(ip(w))
wel®

+ (1 = Dg(@)log((l — Hq(e))]
=/ ¥ mP,{o}-p@)ogp(w)

wel%

+(1 =2 Y mP o} q@)logg(w)

wel*
+ 2logd + (1 — A)log(l — A)
> A2 ,P) + (1 — /L)I},:}, (Q) — log2.

The sum on the third and fourth lines is /, (Z)D(AP + (1 — 2)Q). Dividing each
term in the display by « and letting o tend to oo, we obtain (9.3).

I$Y(P) > 0 with equality if and only if P=P,. Given Pe.#T?), let v
equal n, P. If v = p, then by Theorem IX.3.1 below

IP(P)=IP(p)=0  with equality if and only if P = P,.
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If v # p, then by Theorems 1X.3.1 and VIIL.2.1(b)
IP(P) = IP(v) > I(p) = 0.

This completes the proofs of properties of 7.

IX.3. Contraction Principles

The first theorem is a contraction principle relating levels-2 and 3.

Theorem IX.3.1. Let v be a probability measure on #(I') and P, the infinite
product measure on B(T'Y) withn, P = v. Then I>(P) attains its infimum over
the set {Pe M(T?): 7, P = v} at the unique measure P, and

inf{I(P): Pe #(T?), n, P =v} = IP(P,) = I2(v).

Proof. Let o be the set {Pe #([%).n,P=v} and P any measure in .&/.
H, (P) equals )., v,log(vi/p) = I¥(v) (v = v{x;}). By Lemma IX.2.1(c)
and Theorem 1X.2.3, for any k£ > 2

04 O0<H,,(P)=IPM<-<H, (P)<H,,  (P)TI(P).

If P= P, thenforanyk > 1 H, ,(P,) = I}*(v) = I{*)(P,). We sce that I{*(P)
attains its infimum over ./ at the measure P = P, and that the infimum
equals I{*(v). The proof is done once we show that P = P, is the unique
measure in .« for which I(P) equals I{2(v).

Suppose that I{>(P) equals I{*(v) for some Pin .o/. We prove by induction
that for all k£ > 1

1

9.5 Py X)) =V vy

This will imply that P equals P,. Formula (9.5) holds for k = 1 since n, P
equals v. Since I{¥(P) = I{?(v), (9.4) shows that H, ,(P) equals H, ,(P) for
all k > 2. With respect to P, X, and X, are independent [ Lemma IX.2.1(d)],
and so (9.5) holds for £ = 2. Assume that (9.5) has been shown for k£ = 1,
2, ..., c—1, some ¢ > 3. With respect to P, X; and X, are conditionally
independent given X, ..., X._; [LemmaIX.2.1(e)]. If p(x; , . .., x; ) >0,
then by the induction hypothesis and strict stationarity

p(xila cees xic) =p(xila ] xit_l)p(xiclxizs e xic—l) = vil e vic_lvic'

If p(x;, ..., x;,_,)=0, then p(x;, ..., x)=0=v - v,. Thus (9.5)
holds for £ = c. The proof of the theorem is complete. O

We now generalize the contraction principle‘j}u»st proved by calculating
the infimum of I{*)(P) over all measures Pe.#(I'%) with fixed marginal
1 =m,P,ae{2,3, ...}. Denote by .#(I'*) the set of probability measures 1
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on %(I'*) which have the form t© = =, P for some Pe .#(T'%). For te.#,(I'),

set T .. =T{x;,...,x fand (v); .., = )i %, . and define
3 Tyl
9.6) IG)(t) = Zfiwia log—2"—%
(VJif~4aﬁlpg
where the sum runs over all i,, ..., i,_, i, for which (Vr)il'“ia—1 > 0. 1,‘,?;(1')

is well defined (0 log 0 = 0) and equals the relative entropy of t with respect
to {(v);,...;,_,Pi,}- We have encountered the function 7’} as the entropy
function in Theorem 1.5.1, which was a large deviation result for the quan-
tities { M, (w, )} (empirical pair measures). The latter measures are related to
the empirical processes by the formula M, (w, -) = 7, R, (w, -) [see (1.35)].
In the next section, the distributions of {n,R,(w, ')} on .#(I'*) will be
shown to have a large deviation property with entropy function I{3). Hence
1) is called the level-3,0 entropy function. We now prove that for fixed
teM(I™) I$3)(7) equals the infimum of I{(P) over the set 7, = {Pe . #(T?):
n, P =1}. We also show that I{(P) attains its infimum over <7, at an
(ot — 1)-dependent Markov chain. The latter measures are defined for « = 2

in Example A.7.3(b) and for « > 3 in Appendix A.10.

Lemma IX.3.2. Let o > 2 be an integer.
(a) A probability measure © on B(I'*) belongs to M (I'*) if and only if

¥ ¥
9.7) Y Tiig g = O Wiy, foreachip, ..., i,,.
j=1 k=1

(b) Let t be a measure in M(TY). Define M, to be the subset of M,(T'?)
consisting of (a — 1)-dependent Markov chains which satisfy n,P = t. Then
M is nonempty. If (vJ); ... _, > 0 foreach iy, ... i, ,, then M. consists of a
unique measure.

Proof. (a) If 7 belongs to ('), then 1 equals =, P for some Pe . #,(T%),

and for each iy, ...,i,_q,
r

a

— Z. — —
Ti1"'iaz—1j - P{(,{)Gr ‘0 = xix’ s Weo1 = xia—l}
i=1
c Z
= Z P{CL)GF T = X, Wy = Xy e, Wyg = xia-l}'
k=1

The last sum equals ) _, Tui,--i,_,» and so (9.7) holds. Now suppose that
(9.7) holds. We write v for v,. Foreach iy, ...,i,_;€{l,...,r}, define

> 0.

Vigooriy = s i,=1,...,r, if v

Lyrtlg—1

If v;,...i,_, = 0, then define {yil,_,ia;ia =1,...,r} to be any non-negative
realnumbers whichsumto 1. Wehavev;, .., >0,%% ., _jv ., =1
1 a—1 17 lg— Ppttig—1 ’

and by (9.7)
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r

r
Z g 2! Z Tll ig—pdl =

r
j=1 J.1=1 Jrk=1

Also y; iy 20,37 sy = 1 Vi iy Vit = T, o, 20d bY (9.7),

a 31
r
Z vil'"la 1 Z .ia.

Hence assumptions (A.5) and (A.6) in Appendix A.10 are satisfied. By
Theorem A.10.1, there exists a unique (¢ — 1)-dependent Markov chain P
in (') with transition array y = {y; ...; } and invariant measure v =
=t Visei_, O ‘ 1}.The marginal =, P equals 7 since

Pgyensigmy =1 i ecig—y TG 5o iy

Tl clg—2J T Z vkl1 g2

T P{X; s Xy =PX =X, .., X, =X, )

Vigoovigoq Dty = Tipeeeiy

(b) Part (a) shows that ./, is nonempty. Suppose that v; ..., _ is positive
for each i;,...,i,_,. If Pis an (« — 1)-dependent Markov chain in %, (T
satisfying n, P = 7, then P must have invariant measure v and transition array
{ti,-..i,/Vi,--i,_}- We conclude that P is unique. ]

Theorem IX.3.3. Lez t be a measure in M (I'"), a€{2,3, ... }. Define M, to be
the subset of M(T'?) consisting of (o — 1)-dependent Markov chains which
satisfy n,P = 1. Then I’ (P) attains its infimum over the set {Pe . (T'"):
n,P =t} at all Pe M, and only at such P. For any Pe M,

inf{I{*(P): Pe MT?),n, P =1} = IP(P) = I[2)(v).

Proof. Let o7, be the set {Peﬂ (I'"y: 7, P =t} and P any measure in .o/, If
iy =Py X, ) >0, then p(x [x;,...,x;, ) equals 7.,/
("r)ii"'ia—l' Hence

T,
H,,(P)=7)1 .., Iog—— = I)(7).

‘t)ll l’d_]. ld
By Lemma IX.2.1(c) and Theorem IX.2.3, for any k > o« + 1
9.8) 0<H, ,(P=IN1)< -+ <H,(P)<H, . (P)TIPP).

If P is an (x — 1)-dependent Markov chain in .#,, then for any k > o
H, (P) = I3)(t) = I’ (P). We see that I{>(P) attains its infimum over <,
at Pe 4, and that the infimum equals I*)(t). The proof is done once we
show that the measures P in .#, are the unique measures in 7, for which
I$Y(P) equals I)(2).

Suppose that I{*’(P) equals 1{)(t) for some P in «,. We prove by induc-
tion that for all k > «
9.9) p(xils ce sxik) = (Vr)ilmia_l?ilu-i

o ))ik~a+1"'ik’
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where the transition array 7 is constructed as in Lemma 1X.3.2(a). This will
imply that P is in .#,. Formula (9.9) holds for &£ = « since n,P equals 7.
Since I/P(P) = I{’)(t), (9.8) shows that H,,(P) equals H,,(P) for all
k > o + 1. Assume that (9.9) has been shown fork =o, ax+ 1, ..., c— 1,
some ¢ > o + 1. With respect to P, X, and X, are conditionally independent
given X,, ..., X._, [Lemma IX.2.1(e)]. If p(x; , ..., x; _,) > O, then by the
induction hypothesis and strict stationarity,

PO X)) = PO, X PG |X e, X )
= (vf)il"'ia—lyix"'ia T yic*a"'ic*lin*aﬁ'l“'ic'
Ifp(x; ..., x; ) =0, then
P(xgr~--,X%)::0::(VJ5-~M‘1%3~4a---YQ_u+1~45

Thus (9.9) holds for & = c. The proof of the theorem is complete. O

The contraction principles just proved will now be used in order to deduce
the level-3 large deviation bounds.

IX.4. Proof of the Level-3 Large Deviation Bounds

In this section we prove that
lim sup%log OV{K} < —I*(K)  for each closed set K in .Z(T'%),

n—ow

(9.10)

lim inf%log OV{G} = —I’(G)  for each open set G in ,(I'%),
9.11)

where Q4 is the P,-distribution of R,(w, -) on .#(T'%). With these bounds,
we will complete the proof of the level-3 large deviation property since {*
has already been shown to be lower semicontinuous and to have compact
level sets. Our strategy is first to show that for each o > 2 the P,-distributions
of the a-dimensional marginals {7, R,(w, -)} have a large deviation property
with entropy function {3) defined in (9.6). The bounds (9.10) and (9.11) will
follow by an approximation argument. We prove the large deviation property
for {n,R,(w, )} by applying the large deviation theorem for random
vectors, Theorem I1.6.1. In order to calculate the corresponding frec energy
functions, we need some facts about non-negative matrices.

Let B = {By;} be a real, square matrix. We say that B is non-negative, and
write B > 0, if each Bj; is non-negative. We say that B is positive, and write
B > 0, if each B;;is positive. If Bis non-negative, then Bis said to be primitive
if there exists a positive integer k such that B* is positive. Clearly, a positive
matrix is primitive. If B is non-negative, then B is said to be stochastic if
Y B,; =1 for each i. The next lemma is due to Perron and Frobenius.
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Lemma IX.4.1. Let B = {B;} be a non-negative primitive matrix. Then there
exists an eigenvalue A(B) of B with the following properties.

(a) A(B) is real and positive and A(B) exceeds in absolute value any other
eigenvalue of B.

(b) A(B) is a simple root of the characteristic equation of B.

(c) With A(B) may be associated a positive left eigenvector u and a positive
right eigenvector w. These eigenvectors are unique up to constant multiples.

(d) lim,_, n~"log Bf} = log A(B) for each i and j.*

(e) If B is stochastic, then A(B) equals 1.

(f) If the entries of B are €' functions of a parameter te RY, then J(B) is a
& function of te R%; in particular, A(B) is a differentiable function of te R®.

Proof. (a)—(c) See, e.g., Seneta (1981, Theorem 1.1).

(d) Let u and w be positive left and right eigenvectors associated with
A(B) and normalized so that {u, w) = 1 [part(c)]. Define y; = Blj J/(/L(B)w)
The matrix y = {y;} is a stochastic matrix which is primitive since B is
primitive. Since the vector v, = u,w; satisfies ) ; v, = 1and ) ; v;y; = v; for each
J, it follows that y}; —» v; = u;w, for each i and j [Lemma A.9.5]. This limit and
the fact that

yl’; = BZWJ/(}‘(B)nWI)s n= 19 23 cees
imply that n~ " log B}, —» log A(B) as n — c0.
(e) Since Y ;B;1 =1, A(B) cannot be less than 1. If w is a positive right

eigenvector corresponding to A(B), then pick an index 7 such that w;, =
max;w;. We have

A(B) = ZBU wilw; < ZBUmaxw/maxw =1.

(f) The elgenvalue /1 A(B)isa 51mple root of the characteristic equation
det(10; — By(1)) = 0, in which the entries B;;(7) are " functions of re R?. The
implicit functlon theorem completes the proof O

If o > 2 is an integer, then .#(I'*) denotes the set of probability measures
7 on #(I'*) which are of the form © = =, P for some P in M (T%). 4,(T*) with
the topology of weak convergence is homeomorphic to a compact convex

subset 4, , of R™. My, consists of all vectors t = {t; ..; 3y, ..., =1,...,
ry which satisfy 7; ..., > 0 for each iy, ..., la,Z:l ig= 1rl,.,,»&=1,3111d
9.12) YTy = Z‘tkll gt foreachi,,...,i,,.

j=1

Fort = {7 .. ;}apointin R™, we define the function

- I3 (1) forte.,,,
M OE { ’

9.13
©-13) fort¢ A,,,

where I{3) is defined in (9.6). I'3) is continuous relative to ./, ,.

* Bff denotes the jj-entry of the product B”".
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Large deviation property of {m,R,(®, )}. Denote by I’} the relative
entropy function I{*. The one-dimensional marginal 7, R,(w, -) equals the
empirical measure L, (w, -). The following theorem was proved in Section
VIIL.2.

Theorem I1X.4.2. The P,-distributions of {n, R,(w, -);n=1,2, ...} on ()
have a large deviation property with a, = n and entropy function I{?) = I{?.

This was proved by showing a large deviation property for the random
vectors L,(w) = (Ly(w, {x,}), ..., Lo, {x,}). We now prove a generaliza-
tion for the a-dimensional marginals {n,R,(w, ')}, & > 2; n,R, (o, -) takes
values in the space .#,(I'*).

Theorem IX.4.3. For a > 2, the P,-distributions of {n,R,(w, );n =1,2, ...}
on M (1) have a large deviation property with a, = n and entropy function
L3

Let M, ,(w) denote the vector in R™ with
(M, (©));, ..., = T Rp(@, {x; 5 .., x; 1), Iy eeonly=1,...,r.

M, () takes values in the compact convex subset .# , of R™. Exactly as in
Section VII1.2, it suffices to prove that the distributions of {M, ,} on R™
have a large deviation property with entropy function 7‘,(’3,,’(7:). We apply
Theorem I1.6.1. It is convenient to divide the proof into three steps.

Step 1. Evaluation of the free energy function. Letusfirstconsider o = 2.
We write

1 n
(Mn,Z(w))ij = 2132;1 5Y(ﬁ")(w){xi5 xj}a

where Y;"(w) equals the ordered pair (X;(w), X;.1(w)) for Be{l,...,n— 1}
and equals the cyclic pair (X,(w), X;(w)) for f=n.Ift = {t;;;0,j=1,...,r}
is a point in R”’, then define the function Je(xi, xp) = ¢ for x;, x;€I. Thus
LY (@) = t;if Y"(0) = (x;, x;) and

r

n 1 n
IS 5Y}}"<w){xiaxj} == LY (w)).
B=1 ng=y

1
<t9 Mn,Z(w)> =
nyi=1

In the notation of Theorem I1.6.1, W, equals nM,_ , and g, equals n. The free
energy function ¢,(r) of the sequence {nM, ,(w);n=1,2,...} equals
lim,_, ¢, »(f), where ¢, ,(¢) is given by

o2 £, {exp(11,4,.3)) = o £, fexo $ ﬁ(Yé"))}

1 r
= ;logi Z exp(liliz + e + lin—lin

1t ip=1

+ 1) Py e Piy

Inty
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Define B,(?) to be the positive matrix {e'¥p;;i,j=1,...,r}. Then

Cn,2(?) ——log Z B, ()i,
i, =1
By Lemma IX.4.1(d), ¢,(¢) = lim,, ¢, .(t) = log A(B,(?)).
In order to evaluate the free energy function c,(¢) of the sequence {nM, ,}
for o > 3, we need some notation. If n > a and if iy, i, ..., i,e{l,....r},
then define the multi-index

, s s ling for0<j<n-—aq,
i(n dj):{( i+1 J+2 ,+) 7]

(TSNP S P I | forn—a+1<j<n-—1.

Given t = {til...ia;ils ... iy=1,...,r}apointin R let B,(f) be the r*~! x
a—1

r*7 ! matrix
B,(Di,. gy i s
(9.14) exp(liliz...ia_lja_l)pja_l for1 <iyiy=jyis=Jjy ..,
= izz—l =ja—27ja—1 < r,
0 otherwise.

Then c,(¢) equals lim,_, , ¢, ,(£), where for n = « ¢, ,(¢) is given by

r

1 1 el
EIOgEP{eXp(nO, Mn,a>)} = ; log Z exp( Z Zi(n,zzz,j)) pi1 v pin

. / =0
(9.15)

r

1
=;10g Z B (l)tl g1 oiyeedgq®

iginigq =1
B = B,(¢) is primitive since

Bal

odg—1sd1Ja—1

=B, i i B i e B e e >0,

Byl —1olpeeelg—1J1 Tty —1J sy lg—1J1J2 ta—1J1-Ja—22J1-Ja—2Ja—1
By Lemma IX.4.1(d), ¢,(¢) = lim,,, ¢, .(f) = log A(B,(1).

Step 2: Large deviation property. The free energy function of the sequence
{nM, ,; n=1,2, ...} equals log A(B,(f)). Since the entries of B,() are €*
functions of reR™, A(B,(¢)) is a differentiable function of 7€ R"™ [Lemma
IX.4.1(f)]; log A(B,(?)) has the same property. By Theorem IL.6.1, the P,-
distributions of {M, ,} on R™ have a large deviation property with entropy
function
(9.16) L,(1) = sup {<t,7) — log AMB(0)}, teR”

teR®

If Q, , denotes the P,-distribution of M, ,, then

9.17) liﬂ?p%bg 0,.{K} < —1,,(K) foreach closed set K in R”,
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(9.18) li@inf%log 0,.{G} = —1, (G) for each open set G in R".

Step 3: Evaluation of the entropy function. We show that for « > 2 and

t1eR"™, I, (1) defined in (9.16) equals 7{*)(t) defined in (9.13). In other words,
we prove that
(9.19) I3)(r) = sup {{t, 1) — log A(B,(1))} for te R™.

teRr*

If G is any open subset of R™ which is disjoint from .#,,, then Q, ,{G}
equals 0, and by the lower bound (9.18) 7, ,(G) equals co. Thus forté¢ .4, ,,
I,(0) = 0 = 13(3).

Since [, a(r) is defined as a Legendre—Fenchel transform, 7, ,(7) is a closed
convex functlon on R"™. Suppose we show that 1, ,(t) equals 73)(z) for all ¢
in the relative interior of ., ,.* Since 1, is contmuous relative to .4 ,,
the continuity property in Theorem VI 3 2 will imply that 7, (1) equals
I3)(x) for all t in 4, ,. This will complete the proof of the large deviation
property of {n,R,(w, )} with entropy function I{3).

In order to treat all values of « by a single proof, it is useful to introduce
multi-indices i = (iy,...,i,_;) and j=(j(,....J,_1), Where i;,...,i,_;,
Jis--esds1€{1, ..., r}. For o > 2, we write { ~ j if all the equalities i, = j;,
iy =Jpy..-siy_qy =Jj,—, hold. Otherwise we write i + j. For « = 2, we write
i ~jforanyiand. For te.#, ,, define t; to be T, i~ jand to be

s, a0 Byeedy— g Jg—

0if i 4. Set (v,); = Z}’C For teR"™, deﬁne t;; like 7;;. In this notation

etip; ifi~j,

0 if i 4.
The sum defining 7$3)(z) runs over all i and j for which (v,); > 0 and i ~ .
Now let t° be any point in the relative interior of .#; ,. Then Tj) is positive
whenever i ~ j, and so each (v,); is positive. If we define

0
fij

It = Zrulog( ) and  B,(1); :{

’Jal

1= log( for alli ~ j,

to)ipja_l
then B,(1%); = t3/(v0); if i ~ j and B,(1°); = 0 if i 4 j. B,(t°) is a stochastic
matrix. Hence log A(B,(°)) equals 0 [ Lemma IX.4.1(e)] and

0

1,,(1%) = (%1% — log i(B,(t°)) = } tflog = I3(x°).

by’ (v 0)1 Piu_y
In order to prove that I'3(1°) > I, ,(°) = sup, g {{1,7°) — log A(B,(1))},
it suffices to prove that log A(B,(1)) > <t,7°) — I3)(z°) for all te R™, We will
in fact show that for all re R”™
(9.20) log A(B,()) = sup {{t,T) — I{Y()}.

TETiMg o

*The relative interior of .#, consists of all positive vectors 7 in ., , (each T,
[Rockafellar (1970, page 48)].

> 0)

(RRRE
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If we insert the definition of I{3)(t), then the right-hand side of (9.20) becomes

B (1);:(v);
Sup Z Tij IOg a( )y( I)l .
TEriM gy i) Tij
The matrix B,() is primitive and B,(#);; > 0 if and only if i ~ j. For any ©
belonging to the relative interior of .#, ,, we have 7; > 0, 7; > 0 if and only

if B,(1); >0, Y;;1;=1, and Y ;7; =, 7, for each i. Hence (9.20) is a
consequence of the next theorem.

Theorem IX.4.4. Let B = {By;} be a non-negative, primitive, m x m matrix
(some m > 2). Let My be the set of all T = {v;;i,j =1, ..., m} which satisfy
1;20,1;>0ifand only if B; >0, Y7 1= 1, and Y 7=y v = Y7y T for

each i. Defzne (v); = Yy vy Then

(9.21) log A(B) = sup ¥yt log— By(v)i.
tefp 4E;j

where Y 5 denotes the sum over all i and j for which B;>0.

Proof. Let u and w be positive left and right eigenvectors associated with
A(B) and normalized so that {u, w) = 1. Define 1, = ;B;;w;/A(B) and v} =

ZJ (1. 10 = {zf} belongs to //B We prove that the supremum in (9. 21)
is attamed at the unique pomt 1°. Since v{ equals u;w;,

l l ( ) a
(9.22) Y ptolog—4t =Y 1o g = log A(B).

1] J

Let © # 1° be any other point in .#5. Each (v,), is positive. Indeed, if (v,); = 0,

then t; = 0 = 1; for each j and k, and so B;; =0 = B,; for each j and k.

The latter cannot hold since B is primitive. Set V=, ¥ = Ty/v;, and y,J
/v We have

B;v! v
ZBtulog =) pT;log ’ ZBtUlog< J )

u u Vi ij

By the same calculation as in (9.22), the first sum equals log A(B). Since
xlogx = x — 1 with equality iff x = 1,

Vi T T; V v; Ty
ij Vi ij x ij Vi
_ZBTI log( ) ZB g< > < ZB <T!} > =0
d Vi TU Vi Tu vlrlj i

(9.23)

and equality holdsiff y;; = 7]} for each i and ;. Since {y;;} and {77} are primitive
stochastic matrices, {y;} = {y,,} implies that v and v® are equal [Lemma
A.9.5]. Hence equality holds in (9.23) iff T = °. We conclude that for 7€
My, Y 5Ti;10g(Byv,/1y) < log A(B) with equality iff T = °. o

With the last theorem, we have completed the proof of Theorem 1X.4.3
(large deviation property of {n,R,(w, -)}, & = 2). We are ready to prove the
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large deviation bounds (9.10) and (9.11) for the P,-distributions of {R,(w, ")}
on .#(I'%). These bounds will be derived by means of an approximation
argument based on our previous work in this chapter.

If 4 is any subset of .# (I'%), then obviously Pe 4 implies n,Pen, A4 for
any o > 1. We say that A is finite dimensional if for all sufficiently large
o, n,Pemn,A implies Pe A.

Example IX.4.5. Let X, ..., X, be cylinder sets, P an element of .Z (I'%),
and & > 0. Consider the open set
Gy = {Pell(T%:|P{L} — P{Z}|<ei=1,...,1.

Since we are dealing with strictly stationary measures, we may assume
without loss of generality that each X; has the form

Y ={wel”:(n,,...,0,)eF],

where o; is a positive integer and F; is a subset of I'*. If o > max;_,
then 7, '(n,X;) = ¥; and so

Go = {Pe M(T?): |n,P{rn, X} — P{Z}| <ei=1,...,I}

1%

.....

This shows that G, is finite dimensional.

For such open sets G, we can derive the lower large deviation bound (9.11)
using the large deviation property of {r, R,(w, -)} with entropy function I{?)
[Theorems IX.4.2 and IX.4.3] and the contraction principle relating I{3)
and I [Theorems IX.3.1 and IX.3.3]. Given such a set G,, pick « such that
n, Pen,G, implies Pe G,. Then

lim inf1 log O{G,}
n— w0 n

= liminf llog P{n,R,em, Gy} (G, finite dimensional)
o p
> —I3)(n,Gy) (n,G, open; large deviation
property of m,R,)
= —inf{I{¥(P): Pe . #(I""), n,Pem,G,} (contraction principle)
= —IP(G,) (G, finite dimensional).

This is (9.11). A similar proof yields the upper bound (9.10) for closed sets of
the form Ky = {Pe M (T%): |P{L} — P{Z}| <ei=1,...,1}

We now prove the lower large deviation bound (9.11) for any nonempty
open set G in .#,(I'%). For the empty set, (9.11) holds trivially. An open
base for the topology on .#,(I'%) is the class of sets of the form

(9.24) {PGJ%S(FZ):J fid}-’—j f:dP

<s,i=1,...,k},
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where Pe M [(TD), f,, ..., £,€€(?, and ¢ > 0. Let o denote the subset
of #(I'?) consisting of all finite, real, linear combinations )’ a;x,, where
{X,} are cylinder sets. By the Stone—Weierstrass theorem [ Theorem A.11.1],
o is dense in ¥(I'?). Hence each set (9.24) contains a set of the form

(9.25) Go = {PeM(T"):|P{}~ P{Z} <ei=1,...,1},

where Z,, ..., X, are cylinder sets. Since each set (9.25) is also a set of the
form (9.24) (with k =/ and f; = x), it follows that the class of sets (9.25)
is an open base for the topology on .#,(I'%). Each set G, in (9.25) is open and
finite dimensional. If G in .Z,(T'%) is nonempty and open and G = U G,
then for each set G, contained in G

lim inf%log 0P(G) > lim inf%log PGy} = —ID(G,).

This follows from the lower large deviation bound for the open, finite-
dimensional set G,. In the last display, we may replace —I{(G,) by
supg, < ¢{ —1;Y(G,)}, and we conclude that

liminfLlog 0®(G} > sup {—~IP(Gy)} = — inf I(Gy)
n>o 7l GocG

Gy G
= —I(U Gy)
= —I9G).

This is (9.11).

We end by proving the upper large deviation bound (9.10) for any non-
empty closed set K in .#,(I'?). For the empty set, (9.10) holds trivially. Let
& > 0 be given. We have just seen that any nonempty open set in .#(I'?)
contains a finite dimensional set of the form (9.25). Since I{¥ is lower semi-
continuous, it follows that for each Pe K there exist cylinder sets X, ...,
=, (depending on P) and a positive real number &, such that if P is contained
in the set

Kp = {Pedl(T%):|P{Z} — PZ}| <epi=1,...,1},

then I¥(P) > I¥(P) — 6.* We have K = | Jp.xKp, and since #,(T?) is
compact, K is compact [Lemma A.9.2(c)]. Hence there exist finitely many
elements P,, ..., P, of K such that K < | Ji_, Kp,. Each set Kp, is closed and
finite dimensional. By the upper large deviation bound for Kp,,

lir'gsal)lpilog 0K} < lirg?p % 10g< 4

J

s Q;3){Kpi}>
=1

i=1,..., s n7o

= max 11msup%10gQ§,3’{Kpi}

*I(P) < o for Pe #(I'?) [Theorem IX.2.3].
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< max { —I(Kp)}

< —1,53>(K) + 4.

We obtain (9.10) upon letting 6 tend to 0. This completes the proof of the
level-3 large deviation property.

IX.5. Notes

1 (page 269). The methods of this chapter can be used to prove large deviation
properties for Markov chains with a finite state space. The level-1 property
is given as Problem IX.6.6, the level-2 property as Problem I1X.6.7, and the
level-3 property as Problems IX.6.10-I1X.6.15. Donsker and Varadhan (1985)
prove a level-3 large deviation property for Gaussian processes. Orey (1985)
studies level-3 large deviation problems related to dynamical systems.

2 (page 273) Theorem IX.2.3 showed that lim,, &~ ' {?}(%, P) exists and
equals the quantity 7{*(P) defined in (9.1). Here is an elementary proof of

just the existence of lim,_, o™ ' [} »,(7, P). Using the notation on page 271,
we define

— 2, plx; )Nogp(x;) foroo=1,
H/(P)= i,z=:1 ' '
=2 P05 x ) logplx X e X, ) for o > 2.
For o > 2, the sum defining H,(P) runs over all i;,...,i,_,,i, for which
G TR 1) > 0. H,(P) is non-negative since 0 <p(x; ) <1 and 0 <

plx; |x; s - - _) < L. H,(P) 1s known as the conditional entropy of X,
given X4, . .. ,Xa_l. As in Lemma IX.2.1(b),

L2 (m,P) = —Hy(P) — Hy(P) — -+ — H(P)— o } p(x;)logp;
ij=1
and H,(P) = H,(P) = --- > H,P). Since H,(P) is non-negative, the non-
increasing sequence H,(P), H,(P), ... has a limit which we denote by /i(P)
(the mean entropy of P). It follows that lim,_, a ™' [} (1, P) exists and

1 u
lim 213, (e, P) = ~hP) = 3 plx)log, < co.
ll_
The existence of lim,_, oc’ll (2) (n P) is also a consequence of the super-
additivity of the sequence {1‘2}, (n,P); o =1, 2, ...} [page 274] and the
bounds
0< Igf}p(naP) <a)y logl, a=1,2, ..

i=1 i
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IX.6. Problems

IX.6.1. Consider the function I{3)(1), « > 2, defined in (9.6). Using Theorem
IX.3.3 (contraction principle) and the fact that I{*(P) is lower semicontin-
uous and affine [Section IX.2], prove that I{})(z) is a closed convex function
on A (I').

IX.6.2. Here is another proof of the convexity of I{3)(1), te M (I'). 4 (%)

is homeomorphic to the compact convex subset .#, , of R™ defined after the
proof of Lemma IX.4.1. By (9.13) and (9.19),

I3)(t) = I13(1) = sup {<t,7) — log A(B,(0)} for te M,
te R"a
For 1e R\, ,, I3)(x) is defined to be 0.
(a) Using the last display, prove that I\ is a closed convex function on

*. It follows that I:) is a closed convex functlon on 4 (T).
(b) Prove that [ (3’ is essentially strictly convex. [ Hint: Theorem V1.5.6.]

1X.6.3. (a) Prove that for any 1€ ./ (I'™), o > 2, I{°)(1) is non-negative and
I{3)(x) equals 0 if and only if © = 7, P, (finite product measure).

(b) Let v be a probability measure on %(T'). Prove that I{°)(7) attains its
infimum over the set {te .#(I"*): ;v = v} at the unique measure =, P, and

inf{lf;(r):‘te.ﬂs(r“), TT=v}= 1(3)(71: P)= I(z)(v)

IX.6.4. Let B = {B,;} be a positive m x m matrix (some m > 2). Let « and
w be positive left and right eigenvectors associated with A(B) and normalized
so that {u, w) = 1. Denote by .#, , the set of all 1= {1;;i,j=1,...,m}
which satisfy 7; > 0 for each i and}, Yty =1land Y7 7, = Zk | Ty for
cach i. Let (v,); = ) ™, 7;;. Prove that

log A(B) = sup Y 1;log——== By(vo:

J

and that the supremum is attained at the unique point 7 = u,B;w;/A(B).
The sum in the last display runs over all i and j for Wthh (v); > 0.
[Hint : ° is the unique point in ri.#, , at which () = } 7';_, 7;log [ B, (v);/
7;] attains its supremum [Theorem IX.4.4]. If p, , . . ., p,, are positive numbers
which sum to 1, then

m

flo) = Z Tij lOg(Bij/pj) - (3) 5 (7).

i,j=1

Complete the proof using Problem IX.6.1.]

The remaining problems concern finite-state Markov chains. We use the
following notation.

I" a finite set {x;,x,,...,X,} Withx; <x, < --- <x

y = {y;} a positive r x r stochastic matrix.

re
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v={v;i=1,...,r} the unique positive solution of the equations
Z¥=1 ViV =V Z¥=1 v = 1. '

P, the Markov chain in . (I'?) with transition matrix y and invariant
measure v.

{X;;jeZ} the coordinate representation process on I'Z.

A(B) the largest positive eigenvalue of a primitive matrix B [Lemma
1X.4.1].

M the set {ceR":6,>0, Y., 06, = 1}. A is homeomorphic to the set
A (T') of probability measures on #(I'); o € .# corresponds to the measure
on #(T) with 6{x;} = 0,.

1X.6.5. [Renyi (1970a), Spitzer (1971)]. The purpose of this problem is to
prove the limit lim,_, ., y}; = v; using relative entropy [see Lemma A.9.5.]
(a) Using Lemma IX.4.1, prove that the equations Y., vy; =V,
Y%_,v; = 1 have a unique positive solution v = {v;;i=1,...,r}.
(b) Given ce.#, define oy"e M by (6y");= hy o;v5. Set J,(0) =
Y1 v;log (v/(ay™)y). Prove that for each je {1, ...,r},

v o Vi V;
log—21— < ) vi—Llog—
(a7 +1)j i; V; (6y");
with equality iff (¢y"); = v;. Deduce that J,,,(0) < J,(¢) with equality iff
oy’ =v.
(c) Let {n’} be a subsequence such that v = lim,,,, 67" exists. Prove that
lim,, o Jy 1 n(v) = J,(9) for all ne{l,2,...}. Deduce that gy" — v for any
oe /. 1t follows that lim,_, ,, yj; = v; for each i and ;.

IX.6.6 [Ellis (1981)]. Part (a) proves the level-1 large deviation property.

(a) Let B(r) be the r x r matrix {e"iy;;i,j=1,...,r}, teR. Prove that
the P,-distributions of S,/n = )}, X;/n have a large deviation property with
a, = n and entropy function

IV (z2) = sup {1z — log A(B(1)) } for zeR.
teR

(b) Prove that I¥(z) > 0 with equality if and only if z equals z, =

er'=1 XiV;-

(c) Prove that S,/n—> Y7_, x;v;.

IX.6.7. This problem proves the level-2 large deviation property.

(@) Let L,(w, )=n"" 2_7=1 5xj(m)(-), n=1,2,... (empirical measure).
Prove that L, (w, -)=Vv P,-as.

(b) [Ellis (1984)]. Let B(r) be the r x r matrix {e'iy;;i,j=1,...,r},
teR". Prove that the P,-distributions of {L,;n=1,2,...} on #(I') have a
large deviation property with a, = » and entropy function

I#(o) = sup {{t,0) — log A(B(1))} for ce.# ().

teRF
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(c) Let A" denote the set of vectors 1€ R” of the form ¢; = log[u,/(yu),]
for some u > 0 in R" ((yu); = Y j-; ;1)) Prove that A(B(¢)) = 1 if and only
if te /" and that for any e R"

h(t) = t — [log A(B(1))]1 belongs to A (1 =(1,...,1)).

(d) [Donsker and Varadhan (1975a)]. Prove that for o € .#(I), I{* (o) =

—inf,. o) iy o log[ (yu);/u;].
(¢) Prove that I{*(¢) > 0 with equality if and only if ¢ = v.

IX.6.8. Let B be a positive r x r matrix. The purpose of this problem is to
prove that

(Bu);

i

(9.26) MB) = sup 1nf Z fo R mbacs

For generalizations, see Donsker and Varadhan (1975e), Friedland and
Karlin (1975), and Friedland (1981).

(@) Let B(r) = {e'iy;;ij=1,...,r},teR wherey = {y;;i,j=1,...,r}
is a positive stochastic matrix. Prove that

log A(B(?)) = sup {(l oy + 1nf Z a;log (yu)} for teR".

ce M i

(b) Prove that log A(B) = sup,. ,inf,., Y I-; 6;log[(Bu),/u;] by suitable
choice of ¢ and y in part (a). Derive (9.26).

IX.6.9 [Kac (1980)]. Let B be a positive r x r matrix which is also symmetric
(B;; = Bj;;). Show that (9.26) reduces to the Rayleigh-Ritz formula

MB) = sup{ Y. Byvuyreal, Y vl = 1} i

i,j=1 i=1

[Hint: 1f 6 € M is positive, then with w; = u;/\/o; (u > 0)

4801 S 512

i=1 i lj 1
The next six problems show how to prove the level-3 large deviation
property.

I1X.6.10. For Pe.#(T?), set I% (m, P) Y weram Pi{w}log[n, P{w}/
n,P,{w}]. Prove that 1'1/‘3’(P)=11mw00 IASy },(m,P) exists and express
IP(P) asin (9.1).

IX.6.11. (a) Prove that I{¥(P) is lower semicontinuous, has compact level
sets, and is affine.

(b) Prove that I{*(P) > 0 and that equality holds if and only if P = P,.
[Hint : Problems IX.6.7(e) and I1X.6.13.]



IX.6. Problems 291

IX.6.12. For e #,(I*), « > 2, set T,...i, = T{xi,s s Xy} and (0, i,
= >t ~1T,...;, and define

g

T; .
I3 =Y 7 .. log .
OViyoiyey Vigm1iy

s

where the sum runs over all i, .. .,i, .1, for which (v,); .. ;
that

9.27) inf{I{*(P): Pe M (T7), 1P =1} = I)(7)

_, > 0. Prove

e

and determine the measure(s) P at which the infimum is attained. Formula
(9.27) is a contraction principle relating 1> and L{3).

I1X.6.13. The level-2 entropy function is given by I'?(0) = —inf,., > -  5;
log[ (yu);/u;], o € .4(T) [Problem IX.6.7]. The contraction principle relating
I!¥ and I}? states that

(9.28) inf{I{*(P): Pe M(T%),n, P =0} = I*(0) for e #(I).
According to (9.27), (9.28) can be proved by showing that

(9.29) inf{I)():te M (T?),nt =0} = I{P(0) for o e #(T).
Note that (,1); = (v,); = ) -1 T;. Prove (9.29) and determine the measure(s)
P at which the infimum in (9.28) is attained.

[Hint: For 6 >0 and u > 0, let f,(u) = Y., 6;log[ (yu);/u;]. Show that if

¢ > 0 is a minimum point of f,, then I{*)(t) attains its infimum over the set
{te./ (T*):v, = g} at the unique measure T; = 6;7,;¢,/(7¢);.]

IX.6.14. Let R (w, -) = n"" Y 228 dpkxn.en()s =1, 2, ... (empirical pro-
cess). For o« > 2, prove that the P -distributions of the a-dimensional mar-
ginals {n,R,(w, -);n=1,2, ...} on .#,(T*) have a large deviation property
with @, = n and entropy function (3.

1X.6.15. (a) Prove that R (w, -)= P, P-as.
(b) Prove that the P -distributions of {R,(w, )} on .#(T'*) have a large
deviation property with a, = n and entropy function {*.





