
Chapter IX 

Level-3 Large Deviations for I.LD. 
Random Vectors 

IX. 1. Statement of Results 

Theorem II.4.4 stated the level-3 large deviation property for i.i.d. random 
vectors taking values in W^. In this chapter, we prove Theorem II.4.4 in the 
special case of i.i.d. random variables with a finite state space. This version of 
the theorem covers the appHcations of level-3 large deviations which were 
made in Chapters III, IV, and V to the Gibbs variational principle. Theorem 
II.4.4 can also be proved via the methods of Donsker and Varadhan (1983a). 
The main result in that paper is a level-3 theorem for continuous parameter 
Markov processes taking values in a complete separable metric space. ̂  

Let p be a Borel probabihty measure on U whose support is a finite set F. 
We topologize T by the discrete topology and F^ by the product topology. 
With respect to the probabihty space (F^, ^(F^), P^), the coordinate represen
tation process l}(co) = cOj is a sequence of i.i.d. random variables distributed 
by p. JiJ<y^) denotes the set of strictly stationary probabihty measures on 
^(F^) with the topology of weak convergence. The empirical process is 
defined as 

K^^^ •) = - Z Vx(n,co)('), n= 1,2, . . . , COGF^, 

where T is the shift mapping on F^ and X(n, oS) is the periodic point in F^ 
obtained by repeating (Zi(a;),X2(co), . . . ,Z„(co)) periodically. For each 
Borel subset B of F^, JR„(CO, B) is the relative frequency with which X(n, co), 
TX(n, oj), .. ., r"~^Z(«, (D) is in B. Thus 7̂ „(co, •) is for each CD an element of 
Ji^{r^). For PGe/#s(F^), P^ denotes a regular conditional distribution, with 
respect to P, of X^ given the cr-field ^{XfJ < 0}. The level-3 entropy func
tion is defined as 

(9.1) i';\p)= p,'\pjp(dcox 

where Ip^\Pco) is the relative entropy of P^ with respect to p. 
The following theorem is Theorem II.4.4 for the case of a finite state space. 

Theorem IX. 1.1. Let p be a Borel probability measure on U whose support is a 
finite set F. Then the following conclusions hold. 
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(a) [Q^n^], the Pp-distributions on Ji^iX'^) of the empirical processes {i^„}, 
have a large deviation property with a„ = n and entropy function I^^\ 

(b) Ip^\P) is an affine function of P. Ip^\P) measures the discrepancy be
tween P and the infinite product measure Pp in the sense that Ip^\P) > 0 with 
equality if and only if P = Pp. 

If .4 is a nonempty subset of Ji^iX^), then Ip^\A) denotes the infimum of 
/̂ ^̂  over A. I^^\^) equals GO. In order to prove part (a) of the theorem, we 
must verify the following hypotheses. 

(i) Ip^\P) is lower semicontinuous. 
(ii) Ip^\P) has compact level sets. 
(iii) limsup„^^n-HogQi^^{K} < -I^^KK) for each closed set K in 

(iv) \\mmi^^^n-HogQ^^\G}> -ll^\G) for each open set G in 

Hypotheses (i) and (ii) and part (b) of the theorem will be proved in Section 
IX.2. We prove hypotheses (iii) and (iv) by first showing the large deviation 
bounds for finite-dimensional sets in Ji^iT'^). The proof of the bounds for 
such sets depends on the following facts. 

(v) For each a > 1 the distributions of the a-dimensional marginals of 
[R^] have a large deviation property with entropy function denoted 

(vi) /^fj is related to /̂ >̂ by the contraction principle 

inf{/f '(P): PeJ^X^^n^P = t} = /<fj(T), 

where T = n^P is the fixed a-dimensional marginal of P. 

Item (vi) is proved in Section IX.3; (v), (iii), and (iv) are proved in Section 
IX.4. 

IX.2. Properties of the Level-3 Entropy Function 

Let p be a Borel probability measure on IR whose support is a finite set T = 
(xi, ^2, . . . , x j with Xi < X2 < " ' < x^. Set pi = p{xi} > 0. Let a be a 
positive integer and n^ the projection of T^ onto r"" defined by n^co = (co^, 
. . . , CO J. If P is a strictly stationary probability measure on ^(F^), then define 
a probability measure n^P on ^{V) by requiring 

n^P{F} = P{n;'F} = P{coer^: (co,, .. .,coJeF} 

for subsets F of V^. The measure n^P is called the a-dimensional marginal of 
P. We consider the quantity 

n.Plco} 
nX(n.P)= I TT.PHlog 

coer« " ^a^pi^}' 
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which is the relative entropy of n^P with respect to Tî Pp. In Chapter I, the 
level-3 entropy function Il^^{P) was defined as Xim^^^oT^I^^p (n^P) [see 
(1.37)]. We will show in Theorem IX.2.3 that this Hmit exists and coincides 
with the quantity I^p^\P) defined in (9.1). 

Given elements X; , . . . , x.- in F, set 

p(Xi^,.. .,Xi) = p { Z i = Xi^,..., A ; = Xij 

and provided P{X^ = x^^, • • • ,^a-i = ^ i^ .J > 0, let pixt^x^^, . . . ,X/^_i) 
denote the conditional probability P{X^ = XiJX^ = x^^, ... ,X^_i = ^to^-i}-
We define 

H,AP) = 
Z P(^i) ^OE[p(^i)/PiJ for a = 1, 

[l^Pi^i,^ ' ' '^^i)^oglp(XiJxi^, . . . ,•^^•^_l)/AJ for a > 2. 

For a > 2 the sum defining Hp^(P) runs over all / i , . . . , 4-1^4 for which 
/7(x^ ,̂ . . . , Xj-̂ _̂ ) > 0. Since 01ogO = 0, the sum may be restricted to all 
/i , . . . , i^ for which p(xi^, . . . , x̂ -̂ ) > 0. The quantity — Z/^(-^ii ^ • • • ^ -^iJ * 
\ogp(xi \xi^, . . . ,Xj- ) is known as the conditional entropy of X^ given 
Xi, . . . , ^ a - i -

Lemma IX.2.1 (a) Let p^, ... ,p^ and ^ i , . . . ,^iv ^^ non-negative real 
numbers such that Yj=iPi — 1? YJ=I ^i— ^^ andp^ = 0 whenever q^ = 0. Then 

N N 

Y.Pi\ogPi> Y^Pi^^^^i 

with equality if and only ifpi = qtfor all i. 
(b) n^in^P) = H^,^iP) + H^AP) + • • • + H^.a~AP) + H,JP). 
(c) 0 < //,.!(/>) < H^^P) < < / / , . , - , (P) < H^,,{P). 
(d) Hp 2{P) = Hp^{P) if and only if X^ and X2 are independent. 
(e) For a > 3, Hp^{P) = Hp^_^(P) if and only if X^ and X^ are condi

tionally independent given X2, . .., X^_^; that is, if and only if 

P(X: \Xi ,X.- , . . . ,X; J = P(Xi \Xi , . . . ,X.- J 

whenever/?(x.- ,x, , . . . ,X; J > 0.* 

Proof (a) We have 
iV N 

X A l o g A - Z A l 0 g ^ r = Z/^f lOg^. 
i = l 1 = 1 q p O ^ ' 

The latter is non-negative and equals 0 if and only if pi = q^ whenever q^ > 0 
[Proposition 1.4.1(b)]. Since by hypothesis Pi = qi whenever qi = 0, the 
proof of part (a) is done. 

*See page 301. 
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(b) If a > 2 andp(Xi^, . . . ,XiJ > 0, then 
a 

p(Xi^, ...,XiJ=p(Xi)' Y[p(:^i.\xi^, -".Xi ) . 

log '--\- X log ^— ^-^ 
Pi, ^ = 2 Pio 

Hence for a > 2 

= t H,,,{py 

(c)-(e) Hp^{P) equals the relative entropy of TI^P with respect to p and 
so is non-negative. Since P is strictly stationary, 

H,AP)= t p{Xi^.x,)\og^-^. 
i„i^=i Pi^ 

The sum may be restricted to i^J2 for which/?(Xi^) > 0. For \ip{Xi^ = 0, 
then/?(x^ , Xj) = 0 for all /2? and there is no contribution to the sum. Thus 

H,,2(P)-H^,i(P)= Z p(x0\J:p(x,^\x,)\ogp(x,^\x,) 

- E p(^i,\^i)^o§>p(^0>' 

By part (a), Hp^2iP) ^ H^^iiP) with equality if and only ifp(Xi^\xi) = pix^) 
whenever/>(Xj) > 0. The latter condition is equivalent to the independence 
of Zi and X2. Similarly, for a > 3, 

^ p , a ( ^ ) - ^ p , a - l ( i ^ ) 

= Z/̂ (X,̂ , . . . ,X,^_P] i ; ;^K|^/,, . . . ,X,̂ _^)l0g/7(x,Jx,̂ , . . . ,X,̂ _ )̂ 

- t /^Kl^^. ' • •. ,x,^_i)log;?(x,Jx,^, ... ,x,^_^)[, 

where the outer sum runs over all / i , . . . , 4-i for which/7(Xj^, •. •, Xi^_^ > 0. 
By part (a), Hp^{P) > Hp^_^(P) with equality if and only if 

p(Xi IX: , . . . ,Xi J =p(Xi \Xi , . . . ,Xj J 

whenever/?(Xj^, . . . ,Xi^_^) > 0. D 

We also need the following lemma, which arises in the proof of the 
Shannon-McMillan-Breiman theorem in information theory [BilUngsley 
(1965, page 131)]. 
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Lemma IX.2.2. For each /̂  e {1, . . . , r}, 
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0 < 
{^i = H^' 

SUp[-l0gP{A^l = X,]X_,, . . .,Xo]{(D)']P{dco) < <X). 

Proof. For n a non-negative integer, / G { 1 , . . . , r} , and coeT^, define 

f/\co) = -logP{X, = x,\X_„,... ,Zo}(fl>), 

r 

i = l 

Since 0 < P{X^ = ^i\^-n^ • • •, ^o}(^) ^ 1 P-a.s., it suffices to prove that 

(9.2) sup g„(cD)P(d(jo) < oo. 

l{A„ = {CDGT^: maXo< .̂<„̂ (̂co) < A < ^„(a))}, A > 0, then 

^{^.} = I ^{{^1 = ^J n ^ J = t P{{X, = X,} n £<;>}, 
i = l i = l 

where 5<„''= {w6r^:maxo<j<„y;<'\ft>) < A </„<''(«>)}• ^„''' is in the a-field 
generated by X^„, ..., X^, and so 

P j {A-i = X,.} n 5W} = ^{1-1 = x,\X.„, ...,Xo} (w)P(dw) 

= [ exp(-/„<'>(a>))i'(Jco)<e-V{5<'>}. 

Since the sets {B^^^; ^ = 0,1, . . . } are disjoint, 
00 r 00 

re 
/i = 0 1 = 1 / j = 0 

Hence P{co e T^: sup„>o ^„(co) > X] < re~^, and (9.2) follows. n 

Theorem IX.2.3. For PeJ^,{T^), define P/\P) by (9.1). Then 
Um^_^ a"^4^],^(7r^P) ^x/^/^, lim^^^ //p.a(^) exists, and 

lim ^/if^ (TT.P) = lim H^^^iP) = Il'\P) < ^ . * 
a->oo OL ^ P oc-^oo ^ ^ 

Proof By Lemma IX.2.1(b), it suffices to prove that \im^^^ Hp^(P) exists 
and equals Il,^\P). Since P is strictly stationary, we have for n>^ 

H,,„^2(P) = t log[P{Xi = xJX_„, . . . , Xo}/Pt;]dP. 

•There is an elementary proof of the existence of lim^^^ cc ^/^^j, (ng,P) which does not 
identify the form of the limit. See Note 2. 
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As « ^ 00, P{X^ = Xi^\X^„, . . . , XQ} converges to P{X^ = Xi^\{Xj;j < 0}} 
almost surely [Theorem A.6.2(a)]. By the Lebesgue dominated convergence 
theorem and Lemma IX.2.2, we conclude that lim„_̂ oo Hp^(P) exists and* 

i,=lJlX,=Xi^} 

= I \oglP{X,=x,y,Xj-J<0}}/p,J 

-P{X,=x,yXj'J<0}}dP 

{ \og^^P^(dx)P(dco) 

il'\pjp{dco) = p;\p)<(x^, D 

In order to prove properties of/^^^(P), we need a standard lemma. 

Lemma IX.2.4. Let b^, b2, . . . be a super additive sequence of real numbers; 
i.e., b^+n> b^-\- b„ for all positive integers m and n. Then lim,,^^ bjn — 
sup„>i bJn. 

Proof. Define s = sup^^^ bJn and suppose that s is not oo. Given £ > 0 
choose a positive integer k such that bjk > s — s. Any positive integer n 
has the form n = mk + /, where m > 0 and 0 < / < / : . By hypothesis 

bn = Kk+i^f^bk^lb^. 

Hence s > Hminf„_>^ bJn > Hminf̂ ^^o ^nbjn = bJk > s — s. Since £ > 0 is 
arbitrary, it follows that lim^^^o ̂ J^ = ^ if 5" is finite. The proof is similar if 
5-is 00. D 

Ip^\P) is lower semicontinuous. We first prove that for PeJi^iT^) the 
sequence of relative entropies 4 = 7̂ ]̂, {n^P) is super additive. Let a and p be 
arbitrary positive integers and introduce the notation 

coocb = (coi, CO2, . . . , co^, a)i, 0)2, . . . , 0)^)6^^^ for coeV, coeT^. 

Since n^+pPp{coocb} = n^Pp{co}-n^Ppico}, 

Since P is strictly stationary, Xcoer«^a+iS^{<^*^^} = ^/s^l^}? and so 

*The second equality in the display uses (A.3) [page 300]. 
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By Lemma IX.2.1(a) 4+^ - 4 - /^ > 0. It follows from Lemma IX.2.4 that 

P;\P) = ]imhmn^P) = sup^^m (n^P). 
a->oo (X '^ P a > i (X °^ P 

Since the mapping P -^ n^P is continuous, each function I^H, (n^P) is a con
tinuous function of JP e ^^ ( r^ ) . As the supremum of a sequence of continuous 
functions, Ip^\P) is a lower semicontinuous function of PsJi^iY^). 

Ip^\P) has compact level sets. JiJ<y^) is a compact metric space 
[Theorem A.9.2(c)]. Since Ip'^\P) is lower semicontinuous, its level sets 
are closed subsets of ^^ ( r^ ) and thus are compact subsets of ^^^^(r^). 

Ip^\P) is affine. We show that if P and Q are measures in Ji^{r^), then 
for every 0 < A < 1 

(9.3) I'p\kP + (1 - X)Q) = All\P) + (1 - / ) / f >(0. 

Write/?(cL)) for n^P{(D}ln^Pp{aj>} and ^{co} for n^Q{(D}ln^Pp{co],(DeV. Since 
X log X, X > 0, is convex and log x, x > 0, is nondecreasing, 

A / i ^ l , ^ ( P ) + (1 - ^)Pn'}^{Q) = Z ^a i^p{c^} [A;7(C0)log/7(C0) 
COG p a 

+ (1-A)^(co)log^(co)] 

> X 7r,P,{co} IXpico) + (1 - i)^(ct))] 
coer^ 

• \0g\_Ap((D) + (1 - A)^(CO)] 

> Z n^Pp{(^}l^pi(^)\og(Ap(co)) 
coeF^ 

+ (1 - A)^(co)log((l - X)q(oj))] 

= ^̂  Z 7raPp{a;}-j!7(co)log;?(co) 
coeF^ 

+ ( 1 - / ) ^ TT^P^jo;}-^(co)log ^(co) 
coeF" 

+ / log2 + (l -A)log(l -X) 

>;4fl,^(p) + (i-2)/i^},^(0-iog2. 

The sum on the third and fourth lines is /^^], (IP + (1 — A)0 . Dividing each 
term in the display by a and letting a tend to oo, we obtain (9.3). 

Pp^KP) > 0 with equality if and only if P = P^. Given P e ^ , ( r ^ ) , let v 
equal TL^P. If V = p, then by Theorem IX.3.1 below 

Pp^\P) > Pp^Kp) = 0 with equality if and only if P = Pp. 
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If V ^ p, then by Theorems IX.3.1 and VIII.2.1(b) 

This completes the proofs of properties of/^^^ 

IX.3. Contraction Principles 

The first theorem is a contraction principle relating levels-2 and 3. 

Theorem IX.3.1. Let v be a probability measure on ^ (F) and P^ the infinite 
product measure on ^(F^) with n^P = v. Then Ip^\P) attains its infimum over 
the set {PeJfs(r^)'-n^P = v} at the unique measure P^ and 

M{Il\Py.PeJiXT\ n,P - v} = / f ^(P,) = lf\v). 

Proof. Let j / be the set {PsJ(Sy^)\n^P — v} and P any measure in s4. 
Hp^,{P) equals Xl=i v,log(v,/p,) = / f >(v) (v, = v{x,}). By Lemma IX.2.1(c) 
and Theorem IX.2.3, for any k>2 

(9.4) 0 < Hp^,{P) = I^^v) < < H^^,(P) < Hp,u^,(P)U'An 

lfP = P,, then for any ^ > 1 H^^kiPv) = ^p^Kv) = /p'X^v)- We see that f/\P) 
attains its infimum over ^ at the measure P = Py, and that the infimum 
equals I^^\v), The proof is done once we show that P = P^ is the unique 
measure in j ^ for which I^^\P) equals Ip^\v). 

Suppose that Ip^\P) equals Ip^\v) for some P in J^. We prove by induction 
that for all ^ > 1 

(9.5) /?(x,.^,...,x,^) = v^^...v^^. 

This will imply that P equals P^. Formula (9.5) holds for ^ = 1 since n^P 
equals v. Since / f >(P) = / f ^(v), (9.4) shows that H^kiP) equals Hp,i(P) for 
all k >2. With respect to P, X^ and X2 are independent [Lemma IX.2.1 (d)], 
and so (9.5) holds for k = 2. Assume that (9:5) has been shown for k = 1, 
2, . . . , c — 1, some c > 3. With respect to P, X^ and X^ are conditionally 
independent given X2, . . . ,^c-i [Lemma IX.2.1(e)].If;?(Xi-^, . . . ,-^i^_j) > 0, 
then by the induction hypothesis and strict stationarity 

piXi^, . . . , Xi) =p(Xi^, . . . , Xi^_^)p(Xi^\xi^, . . . , Xi^_^) = Vf̂  . . . Vi^_^Vi^, 

If p{Xi^, . . . , Xi^_^) = 0, then p(Xi^, . . . , Xi) = 0 = v̂^ • • • v̂ .̂ Thus (9.5) 

holds for k = c. The proof of the theorem is complete. n 

We now generalize the contraction principle just proved by calculating 
the infimum of Ij,^XP) over all measures PeJ^X^^) with fixed marginal 
T = n^P, aG {2, 3, . . . } . Denote by ^^(F'') the set of probabihty measures T 
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on ^(T") which have the form T = n^P for some P€^,(r^).  For T e MJ^"), 
set T;_...î  = T{X;_, . . . ,X;J aDcl (v,);,...i^_j = Z?^=i T,.̂ ...,.̂  and define 

(9.6) 0 ^ ) - I x , . . , „ log '•••"- , 

where the sum runs over all Ẑ , . . . , 4_i, /„ for which {y^i^...i^_^ > 0. /pfi(T) 
is well defined (0 log 0 = 0) and equals the relative entropy of i with respect 
to {(v^)i^...i^_^PiJ- We have encountered the function /̂ f̂  as the entropy 
function in Theorem 1.5.1, which was a large deviation result for the quan
tities {M„(co, •)} (empirical pair measures). The latter measures are related to 
the empirical processes by the formula M„(co, •) = 7r2^„(co, •) [see (1.35)]. 

In the next section, the distributions of {n^R„((D, •)} on ^ ^ ( n ) will be 
shown to have a large deviation property with entropy function /j^j. Hence 
/^^j is called the level-3,(x entropy function. We now prove that for fixed 
T G ^ , ( n ) /̂ f«̂ (T) equals the infimum o{I^^\P) over the set < = {P G ^ . ( F ^ ) : 
n^P = T}. We also show that Ip^\P) attains its infimum over j / ^ at an 
(a — l)-dependent Markov chain. The latter measures are defined for a = 2 
in Example A.7.3(b) and for a > 3 in Appendix A. 10. 

Lemma IX.3.2. Let a>2be an integer. 
(a) A probability measure T on ^(V) belongs to JiSy^^) if and only if 

r r 

(9-'7) S \---i^_yj= Z '^^.-••ia-i for each/i, . . . , i^_^. 

(b) Let X be a measure in JiJ^V"^). Define Jt^ to be the subset of JiJ<T^) 
consisting of {a — \)-dependent Markov chains which satisfy n^P = i. Then 
Ji^ is nonempty. If(v^)i^...i^_^ > Ofor each / i , . . . , /^-i? ^hen M^ consists of a 
unique measure. 

Proof, (a) If T belongs to Ji^{y), then T equals n^P for some PeJi^iY'^), 
and for each / i , . . . , /«_!, 

r 

j = l 

Z P{a>er^:(Do = x,,,(o^ = x^^, . . . ,co^-i =-^i^.J. 

The last sum equals Zfc=i'^feii-ia-i' ^^^ ^^ (̂ •'7) holds. Now suppose that 
(9.7) holds. We write v for v̂ . For each / i , . . . , ^ - i ^ {1? • • • ? ^}, define 

Ti 
y- • =-^—-^ i =\ r ifv- • >0 

If ^ii--ia-i — ^' ^^^^ define {yt^.-.i^'Joc = 1, . . . ,r} to be any non-negative 
real numbers which sum to 1. We have V; . . . , > 0 , y - ... ,• ,-iV,- ...,• , = 1 , 
and by (9.7) 
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r r r r 

j=l j,l = l j,k = l k = l 

Also 7;. . . ; > 0, y j _i7.-...j = l , v . - . . . j - .Vi ...i =T^i-.-i and by (9.7), 

r r 

Hence assumptions (A.5) and (A.6) in Appendix A. 10 are satisfied. By 
Theorem A.10.1, there exists a unique (a — l)-dependent Markov chain P 
in ^ s ( r^ ) with transition array 7 = {TJ .../ } and invariant measure v = 
Z',,...,^,_i=i \"io,-i ^{^i,,-,xf,_i}- The marginal n^P equals T since 

7r,P{x,^, . . . , x , J = P{X, = x,^, . . . , A ; = x,J 

(b) Part (a) shows that J^^ is nonempty. Suppose that '^i^---i^_^ is positive 
for each / i , . . . , 4-i- If ^ is an (a — l)-dependent Markov chain in ^ s ( r^ ) 
satisfying n^P = T, then P must have invariant measure v and transition array 
^^h---U^h---iot~i^' ^^ conclude that P is unique. n 

Theorem IX.3.3. Let xbea measure in Ji^iT^), a e {2,3, . . . }. Define Ji^ to be 
the subset of JiJ^^~) consisting of (a — \)-dependent Markov chains which 
satisfy n^P = z. Then Ip^\P) attains its infimum over the set {PeJi^{T^)\ 
n^P = x] at all PeJi^ and only at such P. For any PsJi^ 

mi{f;\Py.PeJi,{T%n,P = t} = r;\P) = Il%x). 

Proof. Let s^^ be the set {PsJi^{r^): n^P = x} and P any measure in ^^. If 
(Vt)i...•i,_i =P{Xi^, ... ,Xi^_j) > 0, then /'(x,Jx,-^,... ,Xi^_^) equals ti^...J 
(Vx)i,-.i,_i-Hence 

HUP)=Ex.-...,log /''••'- = n^iix). 
By Lemma IX.2.1(c) and Theorem IX.2.3, for any ^ > a + 1 

(9.8) 0 < //,,,(P) = Il%T) < < Hp^,{P) < Hp,,^,(P) t I^^KPl 

If P is an (a — l)-dependent Markov chain in Jf^, then for any k> oc 
Hp^(P) = Il%x) = I^p^KP), We see that /^^^(P) attains its infimum over ^^ 
at PeJi^ and that the infimum equals /pfa(T). The proof is done once we 
show that the measures P in M^ are the unique measures in s^^ for which 
If\P) equals /^fi(T). 

Suppose that Ip^\P) equals /pfJ(T) for some P in j / ^ . We prove by induc
tion that for all /: > a 

(9.9) p(x,^, . . . ,x,^) = (v^i^...i^_Ji^...i^ . . . 71,.,^,..-i,. 



IX.4. Proof of the Level-3 Large Deviation Bounds 279 

where the transition array y is constructed as in Lemma IX.3.2(a). This will 
imply that P is in Ji^. Formula (9.9) holds for /c = a since %^P equals T. 
Since ^^^P) = P^^^ix), (9.8) shows that H^^ki^) equals H^^^iP) for all 
k > oc -\- I. Assume that (9.9) has been shown for /: = a, a + 1, . . . , c — 1, 
some c > oc -\- 1. With respect to P, X^ and X^ are conditionally independent 
given X2, .. . ,-^c-i [Lemma IX.2.1(e)]. If/?(Xi , . . . ,Xi^_^) > 0, then by the 
induction hypothesis and strict stationarity, 

lfp(Xi^, ...,x,.^_^) = 0, then 

p(x,^,.. .,x,) = 0 = (vdi^...i^_jt^...i^... V a + i - V 

Thus (9.9) holds for k = c. The proof of the theorem is complete. n 

The contraction principles just proved will now be used in order to deduce 
the level-3 large deviation bounds. 

IX.4. Proof of the Level-3 Large Deviation Bounds 

In this section we prove that 

limsup-log Ql^^{K} < -f/KK) for each closed set i^in ^ . ( T ^ , 

(9.10) 

l iminf-logel^' lG} > - / f >(G) for each open set G in ^ . (F^) , 
B-co n 

(9.11) 

where Qi^^ is the P^-distribution of i^„(a;, •) on ^ ^ ( r ^ ) . With these bounds, 
we will complete the proof of the level-3 large deviation property since /̂ ^̂  
has already been shown to be lower semicontinuous and to have compact 
level sets. Our strategy is first to show that for each a > 2 the Pp-distributions 
of the a-dimensional marginals {n^R„(co, •)} have a large deviation property 
with entropy function /^fj defined in (9.6). The bounds (9.10) and (9.11) will 
follow by an approximation argument. We prove the large deviation property 
for {n^R„(co, •)} by applying the large deviation theorem for random 
vectors, Theorem n.6.1. In order to calculate the corresponding free energy 
functions, we need some facts about non-negative matrices. 

Let B = {Bij} be a real, square matrix. We say that B is non-negative, and 
write P > 0, if each Bij is non-negative. We say that B is positive, and write 
B > 0, if each Bij is positive. If P is non-negative, then B is said to hQprimitive 
if there exists a positive integer k such that B^ is positive. Clearly, a positive 
matrix is primitive. If B is non-negative, then B is said to be stochastic if 
Yjj^ij = 1 for each /. The next lemma is due to Perron and Frobenius. 
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Lemma IX.4.1. Let B = {Bij} be a non-negative primitive matrix. Then there 
exists an eigenvalue X{B) of B with the following properties. 

(a) X{S) is real and positive and X{B) exceeds in absolute value any other 
eigenvalue of B. 

(b) X{E) is a simple root of the characteristic equation of B. 
(c) With X(B) may be associated a positive left eigenvector u and a positive 

right eigenvector w. These eigenvectors are unique up to constant multiples. 
(d) lim„_oo ̂ ~^ ^^Z^ij = \og k{B) for each i andj."^ 
(e) IfB is stochastic, then X{B) equals 1. 
(f) If the entries of B are ^^ functions of a parameter / e IR"̂ , then k{B) is a 

^^ function ofteW^\ in particular, X{E) is a differentiable function ofteU^. 

Proof (a)-(c) See, e.g., Seneta (1981, Theorem 1.1). 
(d) Let u and w be positive left and right eigenvectors associated with 

k{B) and normalized so that <w, w> = 1 [part (c)]. Define y^^ = BijWj/(A(B)wi). 
The matrix y = {yij} is a stochastic matrix which is primitive since B is 
primitive. Since the vector v̂  = ŵWf satisfies ^^ v^ = 1 and Y^i "^lytj = ^j for each 
7, it follows that ŷ " -^ Vj = UjWj for each / andy [Lemma A.9.5]. This limit and 
the fact that 

y^j = BfjWj/WBrw,l ^ = 1 , 2 , . . . , 
imply that n~^ log^-) -^ log A(^) as « ^ oo. 

(e) Since Y^jBijl = 1, 1(B) cannot be less than 1. if w is a positive right 
eigenvector corresponding to 1(B), then pick an index / such that Wi = 
m^XjWj. We have 

A(B) = Y^BijW^IWi < ^^fjmaxvvy/maxvvy = 1. 
j j J J 

(f) The eigenvalue /I = 2.(B) is a simple root of the characteristic equation 
dQt(?iSij - Bij(t)) = 0, in which the entries Bij(t) are ^^ functions ofteW^. The 
implicit function theorem completes the proof. n 

If a > 2 is an integer, then ^si^"") denotes the set of probabiHty measures 
T on ^(F^) which are of the form T = n^P for some P in ^^( r^ ) . ^^CF") with 
the topology of weak convergence is homeomorphic to a compact convex 
subset ^ 5 ^ of [R'"'̂ . ^ 5 a consists of all vectors! = {T̂  ...̂  ; / i , . . . , 4 = 1, . . . , 
r} which satisfy î .̂..,-̂  > 0 for each i^, ... ,/^, Yj,---,ioc=^^h---ia ^ ^' ^^^ 

(9.12) X \---ioc-iJ = S '̂ feh -ia-i ^^^ ^^^^ iw". h-
j=i k=i 

a-l-

For T = {T̂  ...^ } a point in W , we define the function 

-..w X f^fiW f o r x G ^ . ^ , 

where I^^^ is defined in (9.6). I^^^ is continuous relative to , 

*B-j denotes the //-entry of the product B". 

file:///---ioc-iJ
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Large deviation property of {n^R^ioj, •)}. Denote by /^f] the relative 
entropy function ll^\ The one-dimensional marginal n^Rn(oj, •) equals the 
empirical measure L„(co, •)• The following theorem was proved in Section 
VIII.2. 

TheoremIX.4.2. ThePp-distributionsof {n^R„(a>, •);« = 1,2, . . . , } o n ^ ( r ) 
have a large deviation property with a„ = n and entropy function I^^l = I^^\ 

This was proved by showing a large deviation property for the random 
vectors L„(co) = (L„(co, {x^}), . . . ,L„((D, { X J ) . We now prove a generaliza
tion for the a-dimensional marginals {n^R„(oj, •)}, a > 2; n^R^((jo, •) takes 
values in the space J^X^"")-

Theorem IX.4.3. For a > 2, the Pp-distributions of{n^R„(co, •);/2 = 1,2, . . . } 
on JISX'"') have a large deviation property with an = n and entropy function 

Let M„ 3j(co) denote the vector in W'^ with 

(M„,̂ (co)X.̂ ...,.̂  = 7r^i^„(co,{xi ,̂ . . . , x j ) , / i , . . . , 4 = 1, . . . , r . 

Mi,a(<^) takes values in the compact convex subset Ji^^^ of W"". Exactly as in 
Section VIIL2, it suffices to prove that the distributions of {M„^} on W"" 
have a large deviation property with entropy function ^̂ ,̂ a(T). We apply 
Theorem II.6.1. It is convenient to divide the proof into three steps. 

Step 1: Evaluation of the free energy function. Let us first consider a = 2. 
We write 

1 " 

where Y^"\a)) equals the ordered pair (Xp(oj), Xp+^(co)) for j8e {1, . . . , w - 1} 
and equals the cyclic pair (X„(co), X^ (co)) for p = nA{t = {tij \ij =\, ... ,r] 
is a point in IR'*̂  then define the functionyj(Xf,Xj) = t^^ for Xi.x^eT, Thus 
f{Y^'\oj)) = t,j if 7/">(co) = (x,,xj) and 

In the notation of Theorem II.6.1, W^ equals «M„ 2 and a^ equals n. The free 
energy function C2(t) of the sequence {«M„ 2(<^);« = 1,2, . . .} equals 
hm„^^ c„,2(0. where c„,2(0 is given by 

ilogE,{exp(«</,M„,2»} = - log^pjexp tftiY^ 
n n I p=^ 

= -log t exp(r,^,^ + . . . + ,̂„_ ,̂̂  
'^ i . . • / = 1 
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Define 82(0 to be the positive matrix {e^^Jpj;ij' = I, ... ,r}. Then 

« i, = i 

By Lemma IX.4.1(d), C2(t) = lim„^^c„,2(0 = log2(^2(0)-
In order to evaluate the free energy function c^(t) of the sequence {nM„^^} 

for a > 3, we need some notation. If n > a and if/ i , (2, . . . , ^„e{l, • • • , ^} , 
then define the multi-index 

f(z}+i, /}+2, . . . , /}+«) for 0 <7 < « - a, 

[Oj+i, . . . , i„ ,Zi , ...,?^+^_„) f o r « - a + 1 < 7 < « - 1. 

Given / = { î,...î ; / i , • • . , 4 = 1, . . . , r} a point in [R'̂  let J5«(0 be the r°̂ "̂  x 
xix 

(9.14) exp(r,^,^...,^_^,-^_>,-^_, for 1 < /i,Z2 =7i , /3 =7*2, • • •, 

0 Otherwise. 

Then c^(r) equals lim^^o^ <̂ n,a(0? where for « > a c„^(0 is given by 

1 1 '' /"-I \ 
-log^^{exp(«<r,M„,,»} = - log ^ ^^p ^ ^̂ («,«,7) Pf, • • • Pi, 

(9.15) 
- - log Z 5«(0?....._„,.....,-

^ = B^{t) is primitive since 

By Lemma IX.4.1(d), cM = lim„_oo ^n,a(0 = logX(BM)' 
Step 2: Lar^e deviation property. The free energy function of the sequence 

{«M„ Q̂; n = 1, 2, . . . } equals log/l(5oj(0). Since the entries of B^(t) are ^^ 
functions of relR'*'̂ , X(B^{t)) is a differentiable function of êlR'*" [Lemma 
IX.4.1(f)]; \ogX(BM) has the same property. By Theorem n.6.1, the P^-
distributions of {M„ «} on W'^ have a large deviation property with entropy 
function 

(9.16) I,,M = sup {<r,T> - logA(^,(0)}, TeW\ 

If Qn^ denotes the P^-distribution of M„,(, then 

(9.17) limsup-log Q„ JK} < -L ^{K) for each closed set Kin W\ 
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(9.18) liminfilog Q„AG}>-L ,(G) for each open set G in W". 
n-*oo n ' ^ ' 

Step 3: Evaluation of the entropy function. We show that for a > 2 and 
T GIR'''', /p,a(T) defined in (9.16) equals /^^^(T) defined in (9.13). In other words, 
we prove that 

(9.19) 7;,'A^) = sup {<^T> - logA(^,(0)} for TGR'"^ 

If G is any open subset of IR'*'' which is disjoint from J^s,(x^ then 2n,a{^} 
equals 0, and by the lower bound (9.18) Ip ^(G) equals oo. Thus for T ^ ^ ^ ,̂ 
/p,«(x) = ^ = / ; ' A T ) . 

Since /p,a(T) is defined as a Legendre-Fenchel transform, /p,a(T) is a closed 
convex function on IR''''. Suppose we show that /^^^(T) equals /^^^(T) for all T 

in the relative interior of ^s,a-* Since 7̂ 5̂ ^ is continuous relative to J^s^a^ 
the continuity property in Theorem VI.3.2 will imply that /p,a(x) equals 
Ip^X^) for all T in J^s,a- This will complete the proof of the large deviation 
property of {n^R^ioj, •)} with entropy function I^^^. 

In order to treat all values of a by a single proof, it is useful to introduce 
multi-indices / = (Z ,̂ . . . , i^_^) and j = (j\,... j \ _ ^ ) , where / i , . . . , 4_i, 

j \ , .. . , 7 ^ _ I G { 1 , . . . , r}. For a > 2, we write / ^ y if all the equalities 2̂ =7 i , 
3̂ =72? • • •' ^a-i —Ja-2 hold. Othcrwisc we write z 9^7. For a = 2, we write 

/ ^ 7 for any / a n d / For x e ^ ^ ^ , define T̂ J to be Tj^i^_^j^_j if/ ^ 7 and to be 
0 if / ^j. Set (vjj = XijTij. Po^ teW'^, define tij like T̂ .̂ In this notation 

The sum defining ifXi'^) ^^^^ ^^^i* ^̂ ^ ^ and 7 for which (vĵ - > 0 and / '^7. 
Now let T̂  be any point in the relative interior of ^ 5 ^ . Then x̂ -̂ is positive 
whenever / ^ 7 , and so each (v̂ o)j is positive. If we define 

/̂ . = log--^^^ for a l l / ^ 7 , 

then B^{t\ = T^J/(V% if / - 7 and B^(t%j = 0 if / ^ 7 . B^(t^) is a stochastic 
matrix. Hence logA(^^(^^)) equals 0 [Lemma IX.4.1(e)] and 

In order to prove that 7;,̂ i(T )̂ > /p,,(T^) = sup,,B,.«{<r,T^> - logA(^,(0)}, 
it suffices to prove that log k{B^{i)) > {t, T^> - I^^iT^^) for all t e W\ We will 
in fact show that for all t e W"" 

(9.20) l o g i ( 5 , ( 0 ) = sup {<r,T>-7;,3At)}. 

*The relative interior of ^^.a consists of all positive vectors T in J^s,oc (each 1;̂ ...,- > 0) 
[Rockafellar (1970, page 48)]. 
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If we insert the definition of ^^;^J(T), then the right-hand side of (9.20) becomes 

sup L^ij^o^—— • 

The matrix B^(t) is primitive and B^(t)ij > 0 if and only if / ̂ j. For any T 
belonging to the relative interior of J^s,a^ we have T̂ -̂ > 0, T̂ J > 0 if and only 
if B^(t)ij > 0, Y^ijT:ij = 1, and Yjj'^tj "^ Zfc'̂ fci ^^^ ^^^^ -̂ Hence (9.20) is a 
consequence of the next theorem. 

Theorem IX.4.4. Let B = {Bij} be a non-negative, primitive, m x m matrix 
(some m > 2). Let Ji^ he the set of all T = {ij^; / j ' = 1, . . . , m} which satisfy 
Xij > 0, T̂,- > 0 if and only ifBij > 0, YT,J=I ^tj = 1' ^^^ X7=i ^ij = Y.k=i ^ufor 
each i. Define (vj^ = Yj=i '^tj- Then 

(9.21) \ogX{B) = sup l,r,j\og^^i^, 

where YJB denotes the sum over all i and j for which Bij > 0. 

Proof Let u and w be positive left and right eigenvectors associated with 
X(B) and normalized so that <w, w> = 1. Define T̂ -̂ = UiBijWj/^(B) and vf = 
Yj=i^ii' ^^ = i'^ij} belongs to ̂ B- We prove that the supremum in (9.21) 
is attained at the unique point x^. Since v̂^ equals UiW^, 

(9.22) Z . 4 l o g ^ = Is^fjlog"^^^^ = logXiBl 
Tij Wj 

Let T ^ T̂  be any other point in J^^- Each (vj^ is positive. Indeed, if (vj^ = 0, 
then Xij = 0 = Xki for each j and k, and so Bij = 0 = Bj^i for each J and k. 
The latter cannot hold since B is primitive. Set v = v̂ , ŷ^ = Xi/Vi, and y^j = 
T^./vf.Wehave 

Z . x , l o g ^ = I . T , l o g ^ _ Z . x , l o g ( ^ | ) . 

By the same calculation as in (9.22), the first sum equals logA(^). Since 
xlogx > X — 1 with equality iffx = 1, 

(9.23) 

and equahty holds iff ŷ j = y^j for each / and / Since {y^j] and {y^} are primitive 
stochastic matrices, {yij] = {y-]} impHes that v and v̂  are equal [Lemma 
A.9.5]. Hence equality holds in (9.23) iff T = T^. We conclude that for xe 
MB, J^B^iA^^iBijVi/Xij) < log^(B) with equality iffx = T^. D 

With the last theorem, we have completed the proof of Theorem IX.4.3 
(large deviation property of {n^R„(co, •)}, a > 2). We are ready to prove the 



IX.4. Proof of the Level-3 Large Deviation Bounds 285 

large deviation bounds (9.10) and (9.11) for the P^-distributions of {Rn(co, •)} 
on J^s(r^). These bounds will be derived by means of an approximation 
argument based on our previous work in this chapter. 

If A is any subset of ^^ ( r^ ) , then obviously PeA implies n^Pen^A for 
any a > 1. We say that A is finite dimensional if for all sufficiently large 
a, n^Pen^A implies PeA. 

Example IX.4.5. Let Z^, . . . , Ẑ  be cylinder sets, P an element of ^^ ( r^ ) , 
and e > 0. Consider the open set 

Go = {PG^ , ( r ^ ) : |P{EJ - P{XJ| < £ , / = ! , . . . , / } . 

Since we are dealing with strictly stationary measures, we may assume 
without loss of generahty that each Ẑ  has the form 

where â  is a positive integer and Fi is a subset of T^K If a > max^^i ,.. ;aj, 
then 7r~ (̂7r̂ Zj) = Zj- and so 

Go = { P e ^ . C n : |7r,P{7r,IJ - P{I ,} | < £ , / = ! , . . . , / } . 

This shows that Go is finite dimensional. 

For such open sets Go, we can derive the lower large deviation bound (9.11) 
using the large deviation property of {n^Rn((D, •)} with entropy function /̂ f̂  
[Theorems IX.4.2 and IX.4.3] and the contraction principle relating /^f] 
and /̂ ^̂  [Theorems IX.3.1 and IX.3.3]. Given such a set Go, pick a such that 
TL^PETZ^GQ implies PEGQ. Then 

liminf-logQi^^Go} 

= l iminf-logP {TTaT̂ ĜTraGo} (Go finite dimensional) 

> —/pfa(7CaGo) (̂ â̂ o opcu; large deviation 

property of n^R„) 

= - i n f { / f ^(P): P 6 ^ , ( r ^ ) , Ti^Pen^Go} (contraction principle) 

= —I^^XGQ) (GO finite dimensional). 
This is (9.11). A similar proof yields the upper bound (9.10) for closed sets of 
the form Ko = {Pe^.(F^): |P{Z,} - P{Z,} | < e, / = 1, . . . , / } . 

We now prove the lower large deviation bound (9.11) for any nonempty 
open set G in ^^(F^). For the empty set, (9.11) holds trivially. An open 
base for the topology on Jf^T^) is the class of sets of the form 

(9.24) ^ P G ^ , ( F ^ ) : fidP- fidP < s, / = 1, . . . , /c 
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where PeJ(J<y^), / i , . . . ,/feG^(r^), and e > 0. Let j / denote the subset 
of ^( r^) consisting of all finite, real, hnear combinations ^a{i^., where 
{Zj} are cyhnder sets. By the Stone-Weierstrass theorem [Theorem A.l 1.1], 
j / is dense in ^(F^). Hence each set (9.24) contains a set of the form 

(9.25) Go = {Pe Jt^^^y. |P{Z,} - P{ZJ | < 8, / = 1, . . . , / } , 

where Zj , . . . , Zj are cylinder sets. Since each set (9.25) is also a set of the 
form (9.24) (with k = I andy; = Xi-), it follows that the class of sets (9.25) 
is an open base for the topology on ^ ^ ( r ^ ) . Each set GQ in (9.25) is open and 
finite dimensional. If G in J^X^^) is nonempty and open and G = U G Q , 
then for each set GQ contained in G 

liminf-logei^H^} ^liminf-logeL^>{Go} > - /^ 'H^o}-

This follows from the lower large deviation bound for the open, finite-
dimensional set GQ. In the last display, we may replace —I^^\GQ) by 
sup Go c G {~"̂ p"̂ (̂̂ o)}? ^^^ we conclude that 

liminfilogeJ,^>{G} > sup {-II'\GQ)] = - inf I^^GQ) 

= -/f>(uGo) 

This is (9.11). 
We end by proving the upper large deviation bound (9.10) for any non

empty closed set K in ^^ ( r ^ ) . For the empty set, (9.10) holds trivially. Let 
(5 > 0 be given. We have just seen that any nonempty open set in ^^(F^) 
contains a finite dimensional set of the form (9.25). Since /̂ ^̂  is lower semi-
continuous, it follows that for each PeiC there exist cyhnder sets Ej , . . . , 
1^1 (depending on P) and a positive real number Sp such that if P is contained 
in the set 

Kp = {PeJtX^^y, |P{E,} - PJEJI < 8p, / = 1, . . . , / } , 

then If\P) > f/KP) - (5.* We have K<=: IJpeK^p, and since ^ , (F^) is 
compact, K is compact [Lemma A.9.2(c)]. Hence there exist finitely many 
elements P^, ...,P^of Ksuch that K£ \JUiKp., Each set Kp is closed and 
finite dimensional. By the upper large deviation bound for Kp , 

l imsup-log G<^>{î } < l imsup-logf J G<3){i^J 

= max limsup-log2j,^^{A^p} 

^I],^\P) < 00 for PeJ^X^^) [Theorem IX.2.3]. 
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< max {-I^'XKp)} 
I = 1 , . . . , S 

< max {-I^^KPi) + S} 
i = l , . . . , s 

< _ / ( 3 ) ( ^ ) + ^. 

We obtain (9.10) upon letting d tend to 0. This completes the proof of the 
level-3 large deviation property. 

I X . 5 . N o t e s 

1 (page 269). The methods of this chapter can be used to prove large deviation 
properties for Markov chains with a finite state space. The level-1 property 
is given as Problem IX.6.6, the level-2 property as Problem IX.6.7, and the 
level-3 property as Problems IX.6.10-IX.6.15. Donsker and Varadhan (1985) 
prove a level-3 large deviation property for Gaussian processes. Orey (1985) 
studies level-3 large deviation problems related to dynamical systems. 

2 (page 273) Theorem IX.2.3 showed that lim^^o^ ̂ ~^In^p{'^aP) exists and 
equals the quantity Ip^\P) defined in (9.1). Here is an elementary proof of 
just the existence of lim^^oo '^'^^n^p (^a^)- Using the notation on page 271, 
we define 

H^P) = 
- Z P(^i)^OEP(Xi) for a = 1, 

For a > 2, the sum defining H^{P) runs over all z'l, . . . , i^-iJoc for which 
p(xi . . . ,Xi^_-^) > 0. H^(P) is non-negative since 0 <p{Xi^) < 1 and 0 < 
p(XiJxi^, . . . ,Xi^_^) < 1. H^(P) is known as the conditional entropy of X^ 
given Z j , . . . , A^ -̂i- ^ s in Lemma IX.2.1(b), 

nXin^P) = -H,{P) - H,iP) H^iP) - a t PiXi)\ogp,^ 

and Hi(P) > H2(P) > • • • > H^{P)> Since H^(P) is non-negative, the non-
increasing sequence H^(P), H2(P), . . . has a Hmit which we denote by h(P) 
(the mean entropy of P). It follows that Hm„^^ ^^'^^n^p i^aP) exists and 

limi/if> (TT.P) = -h{P) - t Pi^O^ogp,^ < ^ . 

The existence of lim^^^a"^/^^], (n^P) is also a consequence of the super-

additivity of the sequence {/̂ ]̂, (n^P); a = 1, 2, . . . } [page 274] and the 

bounds 

0 < liXin.P) < a t l o g - ' a = 1, 2, . . . . 
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IX.6. Problems 

IX.6.1. Consider the function Ip^lii), a > 2, defined in (9.6). Using Theorem 
IX.3.3 (contraction principle) and the fact that Ip^\P) is lower semicontin-
uous and affine [Section IX.2], prove that /pfi(T) is a closed convex function 
on ̂ s(n-
IX.6.2. Here is another proof of the convexity of/^fj(T), T G ^ , ( n ) . ^ ^ ( n ) 
is homeomorphic to the compact convex subset ^s,a ^f ^'''^ defined after the 
proof of Lemma IX.4.1. By (9.13) and (9.19), 

&^) = 7^'X^) = sup {</,!> - \0gX(B,(t))} for T G ^ , , , . 

For TG [R''^^,,«, I^^^(T) is defined to be oo. 
(a) Using the last display, prove that I^^^ is a closed convex function on 

W"". It follows that /^fj is a closed convex function on ^ ^ ( P ) . 
(b) Prove that I^^^ is essentially strictly convex. \_Hint: Theorem VI.5.6.] 

IX.6.3. (a) Prove that for any T G ^ ^ ( n ) , a > 2, /pfi(T) is non-negative and 
Ip^^ix) equals 0 if and only if x = n^Pp (finite product measure). 

(b) Let V be a probability measure on ^(T). Prove that /pfj(T) attains its 
infimum over the set {\eJi^{y)\n^x = v] at the unique measure n^P^ and 

inf{/^,^)(T):TG^,(n,7riT = v} = /^fj(7r,P.) = /<^>(v). 

IX.6.4. Let B = {Bij] be a positive m x m matrix (some m > 2). Let u and 
w be positive left and right eigenvectors associated with X(B) and normalized 
so that <w, w> = 1. Denote by ^ ^ 2 the set of all x = {itfJJ = 1, . . . ,m} 
which satisfy x^^ > 0 for each i andy, ^^^=1 x^^ = 1, and X;̂ =i '^ij = YJ=i ^u for 
each /. Let (vj^ = Yj=i ^ty ^^^^^ that 

\ogX{B)= sup X T , , l o g ^ ? ^ 

and that the supremum is attained at the unique point T̂^ = u^B^jW^XiB), 
The sum in the last display runs over all / and j for which (vj^ > 0. 
\_Hmt: T̂  is the unique point in r i ^ ^ 2 ̂ t which/(T) = Xu=i '̂ y l^S [^yWi/ 
Tfj] attains its supremum [Theorem IX.4.4]. If p ^ , . . . , p^ are positive numbers 
which sum to 1, then 

m 

/ ( T ) = X x,log(5,/p,)-/^f)(x). 

Complete the proof using Problem IX.6.1.] 

The remaining problems concern finite-state Markov chains. We use the 
following notation. 

F a finite set {x^,X2, . . . , x j with x^ < X2 < • • • < x^. 
y = {ytj} ^ positive r X r stochastic matrix. 

file:///_Hint
file:///_Hmt
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V = {v^;/= 1, . . . ,r} the unique positive solution of the equations 
I}=i^iyij = ^pT!i=i^i = 1-

Py the Markov chain in J^X^^) with transition matrix y and invariant 
measure v. 

{Xj'j'eZ} the coordinate representation process on F^. 
X(B) the largest positive eigenvalue of a primitive matrix B [Lemma 

IX.4.1]. 
^ the set {aeW:ai> 0, Yj=i^i = 1}. ^ is homeomorphic to the set 

J^(r) of probability measures on ^ ( F ) \ a ^ J i corresponds to the measure 
on ^ (F) with (J{xJ = o,. 

IX.6.5. [Renyi (1970a), Spitzer (1971)]. The purpose of this problem is to 
prove the Umit lim^^^o Ti" = ĵ using relative entropy [see Lemma A.9.5.] 

(a) Using Lemma IX.4.1, prove that the equations X^=i Vf̂ ĵ-= Vy, 
Y^i^^ Vi — 1 have a unique positive solution v = (v̂ -; / = 1, . . . , r}. 

(b) Given aeJi, define af^Ji by (^f),-= B= i ^^^S- Set /„((J) = 
^•=1 Vjlog(Vi/(o-y")j). Prove that for eachye{1, . . . , r } , 

with equaHty iff {pf)^ = v̂ . Deduce that /„+i(o-) < J„(CF) with equahty iff 
cry" = V. 

(c) Let {n'} be a subsequence such that v = lim„'̂ oo ^7" exists. Prove that 
lim„._oo-^„'+„(v) = Jn(v) for all « G { 1 , 2 , . . . } . Deduce that cry" ^ v for any 
cr G ^ . It follows that lim^^^o yj) = Vj for each / andy. 

IX.6.6 [EUis (1981)]. Part (a) proves the level-1 large deviation property. 
(a) Let B(t) be the r x r matrix {e^'^'yij'JJ = \, ... ,r], teU. Prove that 

the Py-distributions of SJn = ^"=i XJn have a large deviation property with 
a„ = n and entropy function 

I^^\z) = sup {tz - logX(B{t))} for zeU. 

(b) Prove that Iy^\z) > 0 with equahty if and only if z equals ZQ = 

(c) Prove that SJn—>• YA=I ^t^i-

IX.6.7. This problem proves the level-2 large deviation property. 
(a) Let L„(co, •) = «~^ X/=i^x(co)(*)» « = 1,2, . . . (empirical measure). 

Prove that L„(co, •) ^ v P^-a.s. 
(b) [Ellis (1984)]. Let B{t) be the r x r matrix {e%j;ij= 1, . . . , r} , 

teW. Prove that the Py-distributions of {L„; n = 1,2, . . . } on ^ ( F ) have a 
large deviation property with an = n and entropy function 

I(2\a) = sup{<^,(j> - logA(5(0)} for (7 6 ^ ( F ) . 
feIR'' 
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(c) Let Jf^ denote the set of vectors teW oi the form t^ = log[wf/(yw)j] 
for some u> 0 in W ((yu)i = Yj=i yij^j)- Prove that ^(B(t)) = 1 if and only 
if ^ G J^"- and that for any / e W 

h{t) = t - [logA(^(0)]l belongs to J/^^ (1 = (1, . . . , 1)). 

(d) [Donsker and Varadhan (1975a)]. Prove that for aeJi{Y), f/\(j) = 

-inf„>oZ!*=i f̂ log[(yw)iM]-
(e) Prove that Iy^\(T) > 0 with equahty if and only if a = v. 

IX.6.8. Let ^ be a positive r x r matrix. The purpose of this problem is to 
prove that 

(9.26) X(B) = sup inf Y a , ^ ^ . 
asJ^ u>0 f^^ Ui 

For generalizations, see Donsker and Varadhan (1975e), Friedland and 
Karlin (1975), and Friedland (1981). 

(a) Let^(0 = K % ; / J = 1, • . . ,r},rG[R^where7 = {ytjUJ = 1, • • • ,^} 
is a positive stochastic matrix. Prove that 

logX(B(t)) = sup Ut, ^> + inf Y a^log^1 for te W. 
asJt { ">0 -tl U, J 

(b) Prove that log;i(^) = sup^e^inf„>oXl=i ^tlog[(^w)fM] by suitable 
choice of / and y in part (a). Derive (9.26). 

IX.6.9 [Kac (1980)]. Let J5 be a positive r x r matrix which is also symmetric 
{B^j = Bji). Show that (9.26) reduces to the Rayleigh-Ritz formula 

X(B) = sup i Y. ^ijm • ^i ^eal' Y.^f = ^\ ' 

[^Hint: If aeJ^ is positive, then with ŵ  = uj^'o] {u > 0) 

The next six problems show how to prove the level-3 large deviation 
property. 

IX.6.10. For P e ^ , ( r ^ ) , set /i,']>/7r,P) = Xo.er-^a^{co}log[7r,P{a;}/ 
Ti^Pylco}]. Prove that I^^\P) = lim^^^a~^II,^l(n^P) exists and express 
/ f )(P)asin(9.1) . " ' 

IX.6.11. (a) Prove that ll^\P) is lower semicontinuous, has compact level 
sets, and is affme. 

(b) Prove that / f ^(P) > 0 and that equaUty holds if and only if P = P^. 
[Hint: Problems IX.6.7(e) and IX.6.13.] 
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IX.6.12. F o r T 6 ^ , ( r " ) , a > 2 , set T;,...,-^ = T{xi,, . . . , x,J and {v,\,...,i^^^ 

Wii - - - i a_ iy i< a-VoL 

where the sum runs over all /'i, . . . , z^_i, i^ for which (vjj^...; > 0. Prove 
that 

(9.27) 'mf{I\\PYPeJi,(T%n,P = x} = I\%x) 

and determine the measure(s) P at which the infimum is attained. Formula 
(9.27) is a contraction principle relating /̂ ^̂ ^ and l!^^^. 

IX.6.13. The level-2 entropy function is given by II^\G) = — inf„>oX?=i ^t 
log[(yw)i/Wj], (7G^(r ) [Problem IX.6.7]. The contraction principle relating 
/ f ^ and II^^ states that 

(9.28) in{{Ii^\P): PeJ^X^^l^iP = (^} = ^^\(^) for aeJ^(T). 

According to (9.27), (9.28) can be proved by showing that 

(9.29) Mm^l(T):TeJ^,(r^),KiT = (7}=f/\(T) forae^iT). 

Note that (n^T)i = (vj^ = Yj=i \i' ^^OVQ (9.29) and determine the measure(s) 
P at which the infimum in (9.28) is attained. 
YHint: For a > 0 and w > 0, let f^{u) = Y}=i ^^^^1(7^)J^t]- Show that if 
(̂  > 0 is a minimum point of^, then /^fj W attains its infimum over the set 
{leJfXr^): v^ = a} at the unique measure TJJ = (7iyij^j/(y^)i.'] 

IX.6.14. Let R„(co, •) = f^~^Y!k^o^Tkxin,co)(')^ « = 1, 2, . . . (empirical pro
cess). For a > 2, prove that the P^-distributions of the a-dimensional mar
ginals {K^R„(aj, ');n = 1,2, ...} on JiJ^"") have a large deviation property 
with an = n and entropy function I^^^. 

IX.6,15. (a) Provethati^„(co, •)=>Py P^-a.s. 
(b) Prove that the P^-distributions of {P„(co, •)} on Ji^iX^) have a large 

deviation property with a„ = n and entropy function P/\ 




