
Chapter IV 

Ferromagnetic Models on Z 

IV. 1. Introduction 

Phase transitions are a famiUar aspect of nature. Water boils, becoming 
water vapor, or water vapor, under compression, hquefies. These are ex­
amples of a liquid-gas phase transition. The Hquid and the gas are said 
to be two phases of the same substance. One of the most interesting problems 
in equiUbrium statistical mechanics is to explain phase transitions in terms 
of the probabiHty distributions on configuration space which describe the 
microscopic behavior of physical systems. The simplest systems for which 
this is possible are ferromagnetic models on a lattice. The present chapter 
introduces these models. 

The phase transition for ferromagnetic systems has many similarities with 
the more common Hquid-gas transition, although each is described by 
different variables.^ Both phase transitions arise as a result of two competing 
microscopic effects. The first effect tends to order the system. It is caused 
by attractive forces of interaction and is measured by energy. The second 
effect tends to randomize the system. It is caused by thermal excitations 
and is measured by entropy. At sufficiently low temperatures, the energy 
effect predominates and a phase transition becomes possible. 

This chapter develops the statistical mechanics of ferromagnetic models 
on the one-dimensional integer lattice Z. Many of the results for models on 
Z generahze to ferromagnetic models on the Z)-dimensional integer lattice 
IP, Z )G{2 ,3 , . . . } . These models will be treated in Chapter V. The next 
section discusses qualitatively the main features of ferromagnetic models 
as established by the theorems of this chapter and the next. 

IV.2. An Overview of Ferromagnetic Models 

The ultimate source of ferromagnetism is the quantum mechanical spinning 
of electrons. Because a small magnetic dipole moment is associated with 
the spin, the electron acts like a magnet with one north pole and one south 
pole. Both the spin and the magnetic moment can be represented by an 
arrow which defines the direction of the electron's magnetic field. The spin 
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can point up (spin value 1) or down (spin value — 1), and it flips between 
the two orientations. Ferromagnetic models were invented in order to 
represent, in simplified form, the interaction of electron spins in real ferro-
magnets. In this section we discuss the most popular ferromagnetic model 
which is the Ising model. Its properties are quahtatively the same as those 
of more complicated models to be discussed later in the book.^ 

Let A be a symmetric hypercube of the D-dimensional integer lattice iP. 
To each site j of A there is assigned a variable cô  which takes the value 1 
(spin-up) or — 1 (spin-down). Fix a number ^ > 0. Associated with each 
configuration co = {coj;7e A} of spins is a Hamiltonian or interaction energy 

-^ ij e A ' j e A 

where / ( / —j) equals J^ if ||/ —j\\ = 1 and equals 0 if ||/ — /| | =/= 1. Thus the 
first sum extends over all nearest neighbor pairs of sites in A. The number ^ 
is the strength of the nearest neighbor coupling and /z is a real number which 
is the strength of an externally appUed magnetic field. The configuration 
space is the set Q^ of all sequences co = {ojj-JeA}; thus Q^ = {1, — 1}" .̂ 
Define ^ ( Q A ) to be the set of all subsets of Q^. Let p be the measure 
^81 + (̂5_i and n^Pp the product measure on ^ ( Q A ) with identical one-
dimensional marginals p. The Ising model is defined by the probabihty 
measure PA,A,/I on ^ ( Q A ) which assigns to each {co}, COGQA, the probability 

PA,p,h{^} = exp[-/?/fA,;i(^)]7CA^pM • ^ . 

The parameter p represents the inverse absolute temperature \/T and is 
positive. Z is the normalization jn^exp[ —jSjF/A,fi(< )̂]̂ A^p(̂ )̂- We call 
^A,p,h ^finite-volume Gibbs state or di finite-volume equilibrium state. Z is 
called di partition function. Suppose that the external field h is nonzero and 
consider the configuration co whose spins are all aligned in the same direction 
as h. Since / is positive, this configuration has the smallest interaction 
energy, hence the largest probability Pj^,p,h{^}^ ^f 1̂1 configurations in QA-
Hence the positivity of / induces an ahgnment effect in the finite-volume 
Gibbs state. The effect becomes weaker as jS is decreased. At j? = 0 it dis­
appears entirely as PA,/?,^ reduces to the product measure Tij^Pp which assigns 
equal probability to each configuration. 

We now proceed to explain, without technicalities, the main properties 
of the Ising model. These themes are developed in detail in subsequent 
sections. 

Magnetization. Let 5A(co) be the observable ZjeA^j which gives the 
total spin in A. We introduce two quantities 

M(AJ,h)= I Sj^(o))P^nh(dco) and m(P,h)= lim -^M(AJ,h). 
L A ' ' AU^l^l 

M(A, P, h) is the average value of the total spin in A and is called the mag­
netization ; m{P, h) is the magnetization per site in the limit where A expands 
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to fill Z^ and is called the specific magnetization. For /z > 0, M(A, jS, /?) is 
positive and because of the alignment effect built into the finite-volume 
Gibbs state, M(A, jS, h) is an increasing function of h. These properties 
persist for the specific magnetization after the limit A f Z^. However, the 
alignment effect becomes weaker as j? is decreased. This is reflected in 
dramatically different behavior of the limit lim;,^o+^(i^,/?) for different 
values of j?. 

Spontaneous magnetization. By symmetry, M(A, jS,0) equals 0, and so 
m(^, 0) = lim^i^D I A| ~^M(A, j8,0) equals 0. There exists a critical value of ^, 
called the critical inverse temperature and denoted by jŜ , which has the 
following properties. If 0 < j8 < jŜ , then m(P,h) converges to m(jS,0) = 0 
as // -^ 0^. If j5 > P^, then m(P,h) converges to a positive number m(P, + ) 
as h-^0^. Thus for jS > ft' the system remains permanently magnetized 
after the external field is removed; m(jS, + ) is known as the spontaneous 
magnetization. For h <0, m(P,h) behaves similarly: m(P,h) is negative and 
as /z-^O", m(PJt) converges to m(jS, 0) = 0 or to the negative number 
m(jS, —) = —m(j8, + ) according to whether 0 < ^ < ft or j? > ft. The value 
of the critical inverse temperature ft depends upon ^ and upon the dimension 
D of the lattice. If D = 1, then ft is infinite and spontaneous magnetization 
does not occur. By contrast, for any i) > 2, ft is finite. We have not discussed 
the value m(jS, + ) = lim;,̂ o+ ^(P^^) at jS = ft. For the Ising model on Z^, 
m(ft, + ) is 0. While m(ft, + ) is believed to be 0 for any Ising model on Z^, 
Z) > 3, this has not been proved. 

Curves showing m as a function of h for fixed P are depicted in Figure 
IV. 1 for the Ising model on Z^. These curves are called isotherms, and the 
point {P,h) = (ft,0) is called the critical point. Notice that m{P,h) is an 
increasing, concave function of/z > 0. The concavity represents a saturation 
effect. An increment Ah> 0 causes a change Am(ft/z) = m(P,h + Ah) — 
m(P, h) in m. The larger the value of/z, the smaller is Am(P, h). The quantity 
5m(j?, h)ldh, which gives the slope of the isotherms, is called the specific 
magnetic susceptibility and is denoted by xiP^ h). 

Infinite-volume Gibbs states. We now consider the limiting behavior of 
the finite-volume Gibbs states as A t IP. First, we modify these states by 
means of external conditions or boundary conditions. An external condition 
is defined by fixing the values of the spins c3j at each site j which is in 
A"" = Z^\A and has a nearest neighbor in A. The external condition co = [oSj] 
changes the Hamiltonian of a configuration co from H^j^{oS) to 

H^,hA^)= - 9 Z J(i-J)oJiCOj- Z ( ^ + Z J(i-j)ojj)oJi. 

The corresponding finite-volume Gibbs state is defined by the probabiHty 
measure P/^,p,h,w ^^ ^C^A) which assigns to each {co}, co e Q^, the probability 

PA,p,h,a>{^} = ^^Pl-P^A,Kco(0))]n^Pp{0)}-—, 

where Z is a normalization. If each cbj equals 1 (resp., — 1), then the external 
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Figure IV. 1. Isotherms for the Ising model on J?-. (Adapted from Figure 4.29 in L. E. Reichl, 
A Modern Course in Statistical Physics, University of Texas Press, Austin, 1980. Copyright © 

1980 by the University of Texas Press.) 

condition is called plus (resp., minus) and the measure is written as 
P\,p,h,+ (resp., PA,ii,h,-)' The external condition cb depends on A, and so 
we write cb = co(A). For fixed j8 > 0 and h real, let us consider the set of all 
weak hmits 

(4.1) P = w-\imP^, 
A'U 

A',li,h,a>(A')^ 

where {A'} is any increasing sequence of symmetric hypercubes whose union 
is Z^ and d>(A') is any external condition for A'. Each weak Umit P is a prob-
abiUty measure on the infinite-volume configuration space Q = {1, — 1}^ . 
We call a probabiHty measure P on Q an infinite-volume Gibbs state or an 
infinite-volume equilibrium state if P belongs to the closed convex hull of the set 
of weak limits of the form (4.1). 

Classification of infinite-volume Gibbs states. For the Ising model, various 
infinite-volume Gibbs states with different properties arise. They are Hsted 
in Table IV. 1. The set of infinite-volume Gibbs states is denoted by ^^ ,,. 
We now describe the structure of ^^^ for different values of j8 and h. Let 
P^ be the critical inverse temperature. For all jS > 0, /z =/= 0 and 0 < p < P^, 
h = 0, the finite-volume Gibbs states {PA,p,h,co{A)} have a unique weak Hmit 
for any choice of external conditions {d)(A)}. Thus ^^ ,, consists of a unique 
measure Pp^. The measure Pp^ is translation invariant (strictly stationary 
with respect to the shift mappings on Q) and ergodic. The ergodic phases 
are characterized among all translation invariant states by the property 
that macroscopic quantities are given definite values. For example, an 
experimenter might measure the spin per site S^(co)/\A\ = Y,jeA^jl\^\ ^^ 
a sample co drawn from the magnet. The ergodic theorem impHes that 
with respect to an ergodic phase such as Pp^, 5^(co)/| A| tends to a constant 
which is almost surely independent of the sample chosen. This justifies 
calling an ergodic phase pure. 
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Table lY. 1. States of the Ferromagnet 

Name Definition 

Infinite-volume Gibbs state A member of the closed convex hull of the set of 

weak limits of {P^'J^HMA') ; A'T ^^l-

Phase Translation invariant infinite-volume Gibbs 
state. 

Pure phase Ergodic, translation invariant infinite-volume 
Gibbs state. 

Mixed phase Nontrivial convex combination of pure phases. 

For P > Pc aiid h = 0, the situation is radically different, ^^Q contains tw ô 
distinct pure phases ^^,o,+ ^^^ ^p,o,-^ which arise from the finite-volume 
Gibbs states i\^^ o,+ ^^d PA,P,O,- with plus and minus external conditions, 
respectively. The average value of the spin at any site 7 with respect to each 
of these measures is given by 

cojPp^o^ + (dco) = m(j8, + ) > 0, 

(4.2) 

^ A o , - ( ^ ^ ) = - m ( i 8 , + ) < 0 , 
JQ 

where m(P, + ) is the spontaneous magnetization. P^,o,+ is called a pure 
plus phase and Pp,o,- a pure minus phase. In addition, ^^Q contains all 
convex combinations P̂ f̂  = ^^p,o,+ + (1 — ^)Pp,o,-^ 0 < /I < 1. These mea­
sures are translation invariant but not ergodic and are called mixed phases. 
Such a phase corresponds physically to the situation where an experimenter 
has an a priori choice of external condition. With probability X he prepares 
each finite-volume Gibbs state to have the plus external condition and with 
probabiHty 1 — A to have the minus external condition. The existence of more 
than one pure phase for ^ > Pc ^^^ h = 0 corresponds to a phase transition. 

The phase transition reflects a crucial instabihty in the model. Choosing 
the plus or minus external condition outside A induces a sUght preference 
for spin-up or spin-down at any fixed site inside A. For P > Pc ^^^ h = 0, 
even this sHght preference is strong enough, in the hmit A | Z^, to push the 
infinite-volume system into a phase with net positive or negative specific 
magnetization. The phase transition is related to the notion of symmetry 
breaking [see page 116]. 

More is known about the structure of ^po for P> Pc- For the Ising 
model on Z^, ^p 0 consists of a unique measure which is a pure phase. For 
P> Pc and /z = 0, ^^0 consists precisely of the measures P^ 0, + ? ^/?,o,-> ^iid 
convex combinations [Aizenman (1979, 1980), Higuchi (1982)]. Thus all 
measures in ̂ ^0 ^^c translation invariant. For the Ising model on Z^ with 
i) > 3, ̂ ^0 contains nontranslation invariant states for any sufficiently large 
P> p, [Dobrushin (1972), van Beijeren (1975)]. 

The pure phases of the Ising model on Z^ are shown in Figure IV.2. The 
interval h == 0, P > Pc is called the coexistence interval for the pure plus 
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^13,0, 

^^,0, 
- • i 3 

Pi3, h • unique pure phase (/3 > 0, h 9̂  0 and 0 < jS < jS ,̂ h 9̂  0) 

P̂ ^ 0, + • pure plus phase (jS > (S^) 

^(5,0, - • P^re minus phase (jS > jSc) 

Figure IV.2. The phase diagram of the Ising model on Z^. 

phase and pure minus phase. Crossing the interval at constant jS by de­
creasing h through 0 gives an abrupt transition between phases characterized 
by the discontinuity in the specific magnetization (m(j8,/z) jumps from 
m(jS,+) tom(i8 , - ) ) . 

Correlations.^ Correlations in the Ising model are related to the phase 
transition just discussed. We consider the model on Z^. For D >3 similar 
behavior is expected. The following discussion is heuristic; not all the state­
ments have been proved. Fix h = O.At infinite temperature (P = 0), the finite-
volume Gibbs state PA,P,O,(O reduces to the product measure Tî Pp. The corre­
sponding infinite-volume Gibbs state is the product measure P^ on Q, with 
respect to which the spins are independent and thus uncorrelated. At small 
but nonzero jS, there is a unique infinite-volume Gibbs state P^Q. Spins begin 
to be positively correlated with their nearest neighbors which in turn begin 
to be positively correlated with the second nearest neighbors, and so on. Since 
i^i)p,o = JQ ̂ iPp,o{d(D) equals 0 for each /, the convariance (or as we will call 
it, the pair correlation) equals <cô cô >̂  o = \a^i^jPp,o{do:i). The correlations 
decrease with distance, and in fact (^coico^)^^ Q has roughly an exponential decay 
when the Euclidean distance ||/ — 7|| is large. We write 

<^f^jVo ^ exp [ - | | / -7||/(^(iS,0)] as ||/ - 7 | | ^ oo. 

This relation defines the (exponential) correlation length i(p, 0). The number 
(̂ (jS, 0) is a rough measure of the distance over which correlations between 
spins are significant. As jS increases, (̂ (j?, 0) increases, and correlations begin 
to extend over larger and larger distances. These correlations take the form 
of spin fluctuations, which are islands of a few spins each that mostly point 
in the same direction. As jS approaches the critical inverse temperature jŜ , 
the correlation length grows rapidly, but the smaller fluctuations are not 
suppressed. They become contained in areas of larger fluctuations which 
themselves can be distinguished only because they have an overall excess 
of one spin orientation. When j8 equals jŜ , the correlation length is infinite. 
Spin fluctuations persist at all scales of length and are extremely sensitive to 
small perturbations in h. The infinite correlation length is reflected in the 
fact that <cOjCOy>̂^ 0 ̂ ^ longer decays exponentially but decays hke a power 
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of||/-yir^: 

<^f^j>^„o'^ \\i-j\\~" as ||/-7*11-^00, 

where z is some positive number (z = ^ for the Ising model on Z^). 
For p larger than P^^ we enter the region of positive spontaneous mag­

netization m()8, -f-). We consider the pair correlation with respect to the 
pure plus phase ^^ ,̂0, + . By (4.2), i(DSp,o,+ = <^j>^,o,+ =^(P, +)• As in 
the case jS < jŜ ? the pair correlation decays exponentially: 

= <a;,co,-Vo,+ - [rniP, +)Y ^ exp [ - | | / -j\\/^(PM as ||/ -j\\ ^ (X), 

where 0 < ^(P, 0) < oo. As jS increases, m(j8, + ) increases and the alignment 
effect becomes more rigid. Within a region of up-spins, islands of down-spins 
become, on the average, smaller and i(P,0) decreases. As jS -^ oo, m(jS, + ) 
converges to 1, ^(P,0) converges to 0, and Pp,o^+ converges weakly to the 
state where all spins are oriented up. A similar discussion holds for the 
pure minus phase Pp,o,--

The infinite correlation length at jS = jŜ  is related to the behavior of the 
specific magnetic susceptibility x(j8, h) = 5m(j8, h)/dh at /̂  = 0. In Chapter V, 
we will prove that for 0 < jS < jŜ  

«^o>^„o = <o^k>p„o = 0 for the model on Z^). For 0 < jS < jS„ <a;oCOfc>̂ ,o 
decays exponentially and x(j8,0) is finite. By contrast, at jS = jŜ , (COQCO )̂̂  Q 

decays Hke Ĥ H"̂ "̂̂  and x(Pc^^) is infinite. These conclusions are confirmed 
by Figure IV. 1, in which x(P, 0) is the slope at /z = 0 of the isotherm m(jS, h). 
The infinite slope at /? = 0 of the critical isotherm m{Pc,h) anticipates the 
onset of spontaneous magnetization for P > P^ (^(P, h) discontinuous at 
h = 0). By definition, a large value of liP.h) implies a dramatic response 
of the magnetization to a small change in external field. The divergence of 
the specific magnetic susceptibiHty at the critical point is one way in which 
the extreme sensitivity of the spin fluctuations to small perturbations in h 
shows up in the macroscopic behavior of the ferromagnet."^ 

This completes our qualitative discussion of the Ising model. The study 
of ferromagnetic models on Z begins in the next section. 

IV.3. Finite-Volume Gibbs States on Z 

The models will be defined on the symmetric intervals A = [jeT'. \j\ < N], 
where Nisdi non-negative integer. To each siteye A there is assigned a spin 
(Dj which takes the value 1 (spin-up) or — 1 (spin-down). The configuration 
space is the set Q^ of all sequences oj = {cOj'j'eA}; thus, Q^ = {1, — 1}"̂ . 
The coordinate functions on Q^, defined by Yj(co) = (Oj, are called the spin 
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random variables at the sites j . The presence of interactions distinguishes 
these models from the discrete ideal gas. The Hamiltonian or interaction 
energy of a spin configuration coe^^is defined as 

(4.3) //^ ,(«) = - 5 E J{i -j)o},<Oj - h ^ coj. 
^ iJeA jeA 

We assume that / is a non-negative function on Z which is symmetric; i.e., 
satisfies / ( / — j) = J(j — i) for each i andj. J is called ^ferromagnetic interac­
tion."^ The parameter /z is a real number which gives the strength of an external 
magnetic field acting at each site in A. The term —/(/ —j)coiCOj in the first 
sum in (4.2) gives the interaction energy between the spins at sites / andy. 
The interaction strength / ( / —j) is translation invariant; i.e., / (( / -\- k) — 
(j + k)) — Ji} —j) for each k. The factor | is included in (4.3) because each 
pair ij with / f̂ 7 appears twice with equal weight / ( / — j) = J(j — /). The 
term —hcoj in the second sum in (4.3) gives the interaction energy between 
the external field and the spin at site j . An interaction / is said to have 
finite-range if J(k) equals 0 for all sufficiently large k. The range is the smallest 
number L such that J(k) = 0 whenever \k\ > L. 

We denote by ^(O^) the set of all subsets of Q^. Let p be the measure 
\d^ + |^_i and define TI^P^ to be the product measure on ^ ( Q A ) with 
identical one-dimensional marginals p. For each COGQ^, 7i\Pp{(o} equals 
2"'^l, where |A| = 2Â  + 1 is the number of sites in A. Let jS = l / r > 0 be 
the inverse absolute temperature. The ferromagnetic model is defined by 
the probabiHty measure P^^p^h on ^ ( ^ A ) which assigns to each {co}, coeQ.^, 
the probabiUty 

(4.4) PA.,,„{CO} = exp[-i?//^,,(co)]7r^P,{co} • ^ ^ ^ ^ ^ . 

Z(A, jS,h) is a normalization which is picked so that Yu(oeQ.js,PA,p,h{^} — 1 • 

Z{K,^,h)=\ exp[-|Si4,,(co)]7i^P,(Jco) = ^ exp[-^/f^, ,(a))]-J^. 

(4.5) 

For A a subset of fi!/^) we have 

The measure PA,/?,^ is called definite-volume Gibbs state on A. Z(A,P,h) is 
called the partition function.^ Here are some examples of ferromagnetic 
models. 

Example IV.3.1. (a) The Ising model on Z. Fix a number / > 0. Define 
/ ( / —j) to be ^ if |/ — y| = 1 and to be 0 if |/ — y'l =/= 1. This interaction, 
which couples only nearest neighbors, has range 1. 

*More general interactions are discussed in Appendix C.3. 
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(b) The Curie- Weiss model. Fix a number / Q > -̂ Define 7(/ — j) to be 
/ Q / | A | if both / and 7 are in A and to be 0 if either / or j is not in A. This 
interaction, which depends on the set A, couples all pairs of spins in A with 
equal strength. The range tends to oo as |A| ^ oo. 

(c) Infinite-range models. Fix a number a > 1. Define /(O) = 0 and 
/ ( / — j) = \i — j\""" for all i^jmZ. Since a > 1, this interaction is summable: 
Zfcez^(^) < ^ [̂ ^̂  Section IV.5]. 

In order to exclude trivial cases, we assume that the interaction / ( / — j) 
in (4.3) is positive for at least one distinct pair i,j in A. The finite-volume 
Gibbs state P^^p^h has the same form as the reduced canonical ensemble 
for the discrete ideal gas, which is defined in (3.26). The difference is that 
the kinetic energy ^„(co) in (3.26) is replaced by the interaction energy 
^A,fi(<^)* While (3.26) can be written as a product measure (with identical 
one-dimensional marginals p^), PA,/?,/! cannot be written as a product mea­
sure because of the positivity assumption on / . 

Let us examine the form of P^^p^u for different values of jS and h. As 
)S^0 , /A,/?,ft converges weakly to the product measure Tî Pp which gives 
equal probability to each a>. Thus, at j8 = 0 (infinite temperature) the magnet 
is completely random. For jS > 0 an alignment effect comes into play. Since 
PA,ii,h{^] > PA,p,h{^} if and only if HJ^J^{(D} < Hj^f^{(D}, the smaller the 
energy of a configuration, the more probable it is. Thus the most likely 
configurations are those that minimize H/^^ over Q^. These minimizing 
configurations, called ground states, are not hard to identify. Let a)+ (resp., 
a)_) be the configuration with cd+j= 1 (resp., co j= —1) for each ye A. 
If ^ is a subset of Z, then the interaction / is said to be irreducible on A if 
for each pair of sites ij in A either / ( / — 7) > 0 or there exists a finite sequence 
h = U h^ ' • • -> h-i^ h =7 iî  ̂  such that /(/«+! — 4) > 0, a = 1, 2, . . . , r — 1. 
The next result is a consequence of the non-negativity assumption on / 
[Problem IV.9.1]. 

Proposition IV.3.2. (a) For h> 0, co+ is the unique ground state. 
(b) For h < 0, co^ is the unique ground state. 
(c) For h = 0, the ground states include a)+ and (b_. These are the unique 

ground states if and only if J is irreducible on A. 

For /z > 0, the measures {PA,p,h''>P > ^} converge weakly to the unit 
point measure d^^ as jS ^ 00 [Problem IV.9.2]. That is, for /? > 0 and 0 
temperature the totally aligned ground state co+ is the only possible con­
figuration. No randomness at all is left in the ferromagnet. A similar situation 
holds for h <0. 

The remarks in the previous paragraphs show that the finite-volume 
state PA,p,h defines a reasonable model for a ferromagnet. The form of 
PA,p,h can also be justified by means of an entropy principle. This principle 

* U„(co) = iXljf=i yf ^^^ ^^^ same form as H^o(co) but with J(i — 7) = 0 for all / ^j. 
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will be generalized later in the chapter. Given a probabihty measure P on 
J*(QJ, we define the energy in P to be U(\h;P) = ^^^H^j^(co)P(dco). 
Let (7niin and f/̂ ax denote the minimum and maximum, respectively, of 
Hj^jj((o) over Q^. Fix a number Ue(U^^^, ^max)- We prove that there exists 
a unique value jS such that the finite-volume Gibbs state PA,p,h is the most 
random probability measure P on ^ ( Q A ) which satisfies the energy con­
straint U(A, h; P) = U. The randomness in P, relative to the fixed measure 
Tĉ Pp, is measured by the negative of the relative entropy 

Theorem IV.3.3.^ Let h real and Ue{U^,^, U^^x) be given. Then the following 
conclusions hold. 

(a) There exists a unique value j8 such that U(A,h;Pjs^ pj) = U. 
(b) /̂ ^V (^) attains its infimum over the set {Pe ^ ( Q ^ ) : t/(A, h; PA,p,h) = 

U} at the unique measure P = P^^^^h-

Proof, (a) Define c(0 = log JQ^exp(r//A,ft(<^))^A^p(^<^) for t real.* We 
have 

^ ^ J'QA-^A,f»Mexp[//fA,/,(^)]7^A-Pp(^^) 
jn^ exp[r//A,;,M]7rAi^p(^co) 

c\-P) = [ H^AcD)P^^,^,(dco) = C/(PA,,,.). 

JQA 

If V denotes the TTAPp-distribution of H^j^, then c(t) = log^^e^^'vidx). This 
is the free energy function of v, which was introduced in Section II.4. The 
support of V is a finite set which equals the range of HAJ,(CO), COGQ^. By 
Theorem ITS.2(a), for UE(U^^^, t/^ax), there exists a unique value P such 
ih^tc\-p)=U(A,h;P^^p^,)=U. 

(b) /i^^p/PA,,,,) = j o J - i S i / A , . M - logZ]PA,,,.(^co) = - i S t / - logZ, 
where Z = Z(A, jS, /?). If P ^ PA ^ ^ is any other measure in . /#(QA) for which 
U(A,h;P^^pJ =U, then 

= f log-^(co)P(dco) + 
J Q A ^ ^ A ' ^ ' ^ 

'•c(/) = logZ(A,- / , / i ) . 
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Since P f P^,/?,/.. 4 ^ ^ ^^P) is positive [Proposition 1.4.1(b)], and so li^^p^iP) 
> —pU—logZ. We conclude that 

li'^P^iP) > -pU-\ogZ = n'X(P^,p,,) 

with equality if and only if P = i \ ^ ^ . n 

Let S^(CD) be the random sum YjjeA Yj{co), called the (total) spin in A. 
The magnetization is defined as the expectation 

M(AJ,h) = 

(4.7) 
1 

= Z I co,.exp[-i8//^,,(co)]2 -|AL 

The next theorem states properties of M(A, jS, h) which will be proved in 
Theorem V.4.2. 

Theorem IV.3.4. (a) For each jS > 0, M(A, j8,0) = 0; M(A, jS,/?) w a non-
negative concave function of h>0 and a nondecreasing function of h real. 
It satisfies M(A, p.-h)= - M ( A , 5̂, h) and |M(A, P,h)\< |A|. 

(b) For each h>0, M(A, jS, h) is a non-negative, nondecreasing function 
ofp > 0. 

By (4.7), M(A,P,h) is a continuous function of/z. Since M(A, ^, 0) = 0, 
M(A, j ^ , /z) converges to 0 as /z -> 0 for awj; value of ^ > 0. 

We will study the magnetization per site in the limit as the symmetric 
intervals A expand to fill Z. This limit is called the infinite-volume limit or 
the thermodynamic limit and is denoted by AfZ . We define the specific 
magnetization as 

(4.8) m(P, h) = lim A M ( A , JS, h). 
Atz|A| 

Since M(A, p, 0) equals 0, m(jS, 0) equals 0. We will see that if the interaction 
is summable, then m{P,h) exists, m(P,+) = \imf^^Q+m(P,h) exists, and 
m(P, H-) is non-negative. The model is said to exhibit spontaneous mag­
netization at inverse temperature P if m(jS, + ) > 0 = m(jS, 0). The quantities 
m(P,h) and m(jS, + ) are studied in the next two sections. 

IV.4. Spontaneous Magnetization for the Curie-Weiss 
Model 

In order to see how spontaneous magnetization can result from the micro­
scopic alignment effects built into PA,p,h^ we first consider the Curie-Weiss 
model. ̂  This model is ideal for doing exact calculations, and the analysis 
of it involves interesting appHcations of large deviation theory. The Curie-
Weiss model is defined in Example IV.3.1(b). To ease the notation, we 
replace A by the set {1,2, . . . , n}, where w is a positive integer. All quantities 
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are indexed by n instead of by A. Thus the finite-volume Gibbs state is 
given by the formula 

(4.9) n , , , , M = exp[-i9//„,,(ft))]7r„P,M • ^ ^ ^ ^ , 

where Q„ = {1 , -1}" , 
n n 

COGQ„, 

Z(nJ,h) = Qxpl- pH„^f,(a))]n„Pp(d(o). 

We write the Hamiltonian as a function of the sum Z"=i (Oj/n: 

1 
Hn,h(^)= -n 

IU^JX , j^=i^; 

This simple form makes the model easy to handle. 
By (4.7) and (4.8), m(/?,/z) equals lim„^^ <5»„,^, ;„ where {-X,p,h 

denotes expectation with respect to P„,/j,/j. We prove that m(jS, + ) = 
Hm̂ _̂ o+ f^iP^^) equals 0 for all 0 < jS < /^^ and is positive for al l^ > f^^. 
Thus spontaneous magnetization occurs at all P > f^^. The number /^^ 
is called the critical inverse temperature for the Curie-Weiss model and is 
denoted by jS cw 

We will determine the hmit of {f(SJn)y^pj^ as n -^ oo for any function 
/e^([R). By doing this we will not only prove spontaneous magnetization 
but also determine the distribution limit of SJn as n^co. Let Q[^\dz) 
denote the distribution of the sum Z"=i ^jl^ with respect to the product 
measure n„P^. Then 

(4.10) 
/ 

n^ p 

n = I f[^h^]exp[-pH„Jco)]n„P^idco) ^ 
n,p,h Z{nJ,h) 

/(2)exp[n(i/?/oZ^ + phz)^Qi'Kdz) 1 
Z{n,p,hY 

and the partition function Z(«, j3, h) can be written as 

(4.11) Z{nJ,h) = explni^p/oz'+ phz)-\Ql,'\dz). 

By Theorem II.4.1, the distributions {Ql,^^;n = 1,2, . . .} have a large devia­
tion property with a„ = n and entropy function Ip^\z) = sup,^^^{tz — c^it)} 
= sup,^H {tz — log cosh;}. A simple calculation shows that 

(4.12) /<i'(z) 
' ^ — ^ l o g ( l - z ) + ^ 4 - ^ l o g ( l + z ) f o r | 2 | < l , 

00 for Izl > 1. 
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We define /^,^(z) = -(^/oZ^ + ^hz) + /^^^(z). For large n (4.10) and 
(4.11) suggest the heuristic formula 

(4.13) (/f^-
n,li,h 

/(z)exp[-m^,^(z)](iz-
^^Qxp[-mp^h(z)]dz' 

According to this formula, the Hmit of if(SJn)}„p^f^ as « -^ oo should be 
determined by the points z at which the function /^,^(z) attains its infimum. 
In fact, this statement is true because of the large deviation result stated in 
Theorem II.7.2. We will locate the minimum points, then deduce the limit 
of < / ( 5 » >„,,,,. 

Minimum points of /̂ ^ (̂z) satisfy the equation 

(4.14) ^JiM^o or ^ / „ z + ^/, = (/U))'(z) = i l o g | ± i . 
dz 2 1 — z 

(I^^y(z) is an odd function of ze [— 1,1], is concave for z > 0, and has slope 
m^YiO) = 1 at z = 0. Also, |(/^^y(z)| -^ 00 as \z\ -^ 1. Since the slope of 
the affine function z -^ P/o^ + P^ is P^Q, the nature of the solutions of 
(4.14) depends on whether 0 < p/o ^ 1 or p/o > I. For 0 < p </Q^ and 
any real h, (4.14) has a unique solution z(P,h), and z(P,h) is the unique 
minimum point of /^,;,(z). As h-^0, z(P,h) -^z(jS,0) = 0 [Figure IV.3(a), 
(b)]. For p > / o " ^ Figures IV.3(c), (d) show the solutions of (4.14) for 
small h> 0 and for h = 0. For P > /Q^ and /? ^ 0, (4.14) has a unique 
solution z(P,h) that has the same sign as h, and z(P,h) is the unique mini­
mum point of ip^h(z). For P > f^^ and /̂  = 0, the minimum points are the 
nonzero solutions z(jS, + ) and z(jS, - ) = -z{p, + ) of (4.14). As /z ̂  O"*", 
z{p,h) -> z{p, + ) > 0 and as /z ̂  0", z{p,h) -^ z(p, - ) < 0. 

Part (a) of the next theorem gives the limit of {f(SJn)y„pf^ as n^ oo. 
Part (b) shows that spontaneous magnetization occurs at all p > p^"^ = 
fo^. Part (c) states that SJn converges exponentially to m(P,h) for P > 0, 
h ^ 0 and 0 < P < /o^, h = 0 but that exponential convergence to a constant 
fails for P > /^^ and h = 0, 

Theorem IV.4.1. (a) Let f be a bounded continuous function from R to R. 
Then 

\\mif{SJn)\p^h 

^ {f{z{^,h)) forP>0,hi^OandO<P</o\h = 0, 

lifi^iP, +)) + i/(z()?, -)) for p > /,-\ h = 0, 
(4.15) 

(b) Let m(P,h) be the specific magnetization for the Curie-Weiss model 
Then m(p, h) equals z(P, h) for p > 0, h i= 0 and 0 < p < /o\ h = 0, and 

for each choice of sign 

(4.16) mip, ± ) = hm mip,h) = i , . ^ , , „ . o ^ ^ - i 
/.-o* [ziP, ± ) =/= 0 far P> / o \ 
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(c) ^'-^in(p,h) forp>0,hi=0 
andO<P</o\h 

n 
9 1 kb^,p,^ldz) + i(5,(^,-)(^z) for p > /o\ h = 0.̂  

Proof, (a) Denote by Q„j^h the P„^ ^j-distribution of SJn, According to 
(4.10H4.11), if .4 is a Borel subset of R, then Q^^^j^{A] equals 

exp[^(ijS/oZ^+i8/^z)]el^V^) ^ 

By Theorem 11.7.2(a), {2«,/3,/i} has a large deviation property with a„ = n 
and entropy function 

h,h(^) = h,h(^) - inf ipA^) where /^,,(z) = /^i)(z) - (i^g/oZ^ + phz), 
zeU 

(4.17) 

For P > 0,h=/='0 and 0 < jS < / o ~ \ ^ = 0, let ^ be any closed set which does 
not contain the unique minimum point z(jS, h) of /^^. By Theorem n.7.2(b), 
there exists a number N = N(K) > 0 such that 

(4.18) Qn,p,h{^} ^ ^""^ for all sufficiently large n. 

This yields the first line of (4.15). For P > /^^ and h = 0,i{Kis the closed 
set 

{zeU:\z- z(P, + ) | > £ and |z - z(jS, - ) | > s} where 0 < s < z(P, +) , 

then for all sufficiently large n, Qn,p,o{^) ^ ^'"^ ^i" some N = N(K) > 0. 
This yields the second line of (4.15) since the measures {Qn,p,o} are symmetric. 

(b) The range of SJn is contained in the interval [—1,1]. If/is a function 
in ^([R) such that/(x) = x for — 1 < x < 1, then part (b) follows from part 
(a) and the behavior of z(jS, h) as h -^ 0^ and h^0~. 

(c) For jS > 0, /? :f 0 and 0 < iS < /o\ h = 0, m{P, h) equals z(jS, h). The 
bound (4.18) implies that SJn converges exponentially to m(P,h). The con­
vergence in distribution for P > f^^ and /? = 0 follows from the second hne 
of (4.15) since/is an arbitrary function in ^{U). u 

Remark IV.4.2. By (4.11) and Theorem n.7.3(a) 

(4.19) limilogZ(^,iS,/2) = sup{ii8/oZ^ + phz - I^^Kz)}. 

The function \jj{P,h) = — jS~Mim„_^«"MogZ(«, jS,/z) is called the specific 
Gibbsfree energy for the Curie-Weiss model. The hmit (4.19) can be derived 
without using large deviations [see Problem IV.9.4]. In ElHs and Newman 
(1978b), the Hmit (4.15) is derived without using large deviations. 

* The second line of part (c) means that SJn converges in distribution to a random variable 
distributed by i^^(/j. + ) + i^m(/j,-)-
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Let us consider the form of the entropy function /^,^(z) defined in (4.17). 
For P >0,hi=0 and 0 < ^ < /o"^ h = 0, Ip^hiz) is a convex function on IR with 
a unique minimum point at z(P,h) (Ipj^(z(P,h)) = 0). However, for P > /^^ 
and h = 0, I^^hiz) is not a convex function. It has minimum points at z(jS, -f) 
and z(j8, —) and is positive for all other values of z. Another example of a 
nonconvex entropy function was given in Example II.6.2. 

This completes our discussion of spontaneous magnetization for the 
Curie-Weiss model. Other aspects of the model will be studied in Section V.9. 

IV.5. Spontaneous Magnetization for General 
Ferromagnets on Z 

In the Curie-Weiss model the interaction J{i — j) equals / o / | ^ | for each 
/ and j in A. Thus the interaction depends on the set A. We now consider 
other finite-volume Gibbs states P^^^h on symmetric intervals A of Z. The 
interactions / are assumed to satisfy the following hypotheses*: / is inde­
pendent of A, / is nonnegative on Z {ferromagnetic) and is not identically 
zero, / is symmetric, and YjkeiJi^) < ^ - This summabiHty hypothesis 
restricts the interaction strength between distant spins. J is called a summable 
ferromagnetic interaction on Z and the corresponding spin models are called 
general ferromagnets on Z. These models cannot be treated by the large 
deviation technique which was used in the Curie-Weiss case. Less direct 
methods are required. In this section, we illustrate one of the most powerful 
of these methods, which is convexity. The main fact about general ferro­
magnets on Z is that unless the interaction has infinite range, there is no 
spontaneous magnetization. The behavior of models on Z contrasts sharply 
with the behavior of models on Z^, D >1. The latter exhibit spontaneous 
magnetization for all nontrivial interactions, regardless of whether they have 
finite range or infinite range [Theorem V.5.1]. 

A useful function for studying the magnetization is the Gibbs free energy. 
It is defined as 

(4.20) ^ ( A , p , h ) = - r ' logZ(A,^ ,h\ 

where Z(A,p,h) = ^ n t\p\^--I^H/^ i,(a))^nj^Pp(do}). ^(A,p,h) has a simple 
relation to the magnetization: 

d'i'iA, p, h) _ _ g-i 5Z(A, p,h) 1 
dh "^ dh Z(AJ,h) 

(4.21) 
= E Z co,.exp[-jgJf^.,(a;)]2-l^l / = M(\,li,h). 

Our proofs of the existence and properties of the specific magnetization 
m(P,h) = \imjs^>^^\A\~'^M(A,P,h) will be based on the function 

* More general interactions are discussed in Appendix C.3. 
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(4.22) il/ip,h) = \imj]-^'iA,p,h), 
Atz | A | 

called the specific Gibbs free energy. The existence of the limit (4.22) for a 
summable interaction / is proved in Appendix D.l. Another proof based on 
level-3 large deviations is given in Theorem IV.7.3 below. 

There is a degenerate case of the specific Gibbs free energy that is worth 
pointing out. If the interaction / is identically zero, then Z(A, j?, h) = 
jn^^W(PhY^jeACOj)7i^Pp(dco) and HP,h) = - r'^ogi^,^_,^eP'^p(dx) = 
— ̂ "Mogcosh^/z. Thus ^{P,h) equals —^ ^c^i^h), where Cp{t) is the free 
energy function of the measure p. Properties of the specific Gibbs free energy 
are proved next. 

Theorem IV.5.1. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For each i? > 0, the specific Gibbs free energy il/(p,h) is a concave, 
even function ofh real and is a continuously differentiable function ofh =/= 0. 

(b) For P > 0 and h real, the specific magnetization m{P,h) = lim >̂[̂ 2 
\A\-^M(AJ,h) exists. For p > 0 andh i= 0, m(P,h) = -8\l/(p,h)/dh. 

Proof, (a) Concavity is preserved under pointwise limits. Therefore the 
concavity of (/̂ (jS, h) will follow from the concavity of ^(A, p, h). The latter 
is equivalent to the inequaUty 

(4.23) Z{h,p,Xh,^{\-X)h2)<Z{Kp,h,Y'Z{Kp,h2y-' 

for any h^ and ^2 real and 0 < /I < 1. The left-hand side equals 

(4.24) 

exp ipXh^ X <̂ j )exp( j?(l - X)h2 Z ^JA 

and so (4.23) follows from Holder's inequahty* appHed to the functions 
Qxp(pXh^YjjeA^j) ^^^ exp(j?(l — X)h2YjjeA^j)' Thc cvcnness of il/(P,-) 
follows from the fact that i/^ _ (̂co) = H^j^( — oj). 

(b) The following proof is due to Preston (1974a). The Gibbs free energy 
is related to the magnetization by the formula 

(4.25) ^ ( ^ ( A , P, h) - ^(A, p, 0)) = 
A 

-^M(AJ,s)ds, 
o|A| 

which is equivalent to (4.21). We would like to prove the existence of the 
specific magnetization by passing to the limit A j Z in (4.25). The left-hand 
side becomes il/(P,h) — i/̂ (jS, 0), but care is needed in handling the integral 
on the right. Consider h>0(h<Ois handled similarly). Since 0 < M(A, P, h) 

* Corollary VI.4.2 with;? = l/A, q = 1/(1 - X). 
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< |A|, there exists an infinite subsequence {A'} of {A} such that m(P,h) = 
lim^.|2 \A'\~^M(A\l],h) exists for every rational number h>0. M(A', j8,0) 
equals 0 and thus m(jS, 0) equals 0. Since M(A\P,h) is a concave function 
of /z > 0, a standard convexity result implies that m(P,h) exists for all /z > 0 
[Theorem VL3.3(a)]. The limit m(jS,/z) is concave for A > 0 and hence 
is continuous for /z > 0 [Theorem VI.3.1]. By the Lebesgue dominated 
convergence theorem, m{P,h) satisfies 

(4.26) Hli,h)-Hm=-
h 

m(P,s)ds. 
0 

The preceding argument may be repeated for the functions {| A |" ̂  M(A, j?, /?)}, 
where {A} is an arbitrary infinite subsequence of {A}. This leads to a Umit 
function, say fn{P, h), which satisfies m(jS, 0) = 0 as well as equation (4.26). 
Therefore, m(P,h) equals m{P,h). We conclude that the limit lim^̂ ĵ ^ 
|A|~^M(A, jS,/z) exists along the entire sequence {A} and equals m(P,h). 
Finally, (4.26) impUes that il/(P,h) is a continuously differentiable function 
of h 4^0 and dil/(p,h)/dh = -m{p,h). u 

The specific Gibbs free energy (/̂ (jS, h) need not be differentiable at /? = 0. 
The relationship between spontaneous magnetization and the existence of 
dil/(P,0)/8h is made explicit in the following theorem. Recall that spon­
taneous magnetization is said to occur at inverse temperature jS if m(j?, + ) = 
lim;ĵ o+ f^(P^h) is positive. 

Theorem IV.5.2.* Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For li>0 and h =1= 0, m(p,h) = -dil/(p,h)/dh. 
(b) For each jS > 0, m(jS, 0) = 0; m{P,h) is a non-negative, concave func­

tion ofh>0 and a nondecreasing function ofh real. It satisfies m(jS, —h) — 
-m(p,h)and\m{p,h)\ < 1. 

(c) For each h>0, m(jS, h) is a non-negative, nondecreasing function of 
p>o. 

(d) For each jS > 0, the limits m(jS, + ) = lim;j_o+ m(P,h) and m(P, —) = 
lim^^o- ^(P->h) exist and m(jS, —) = —m(P, + ) ; m(P, + ) is a non-negative, 
nondecreasing function of P > 0. 

(e) For each P > 0, 

(4.27) miP, + ) = - ^ > m(P,0) = 0 > m(P, - ) = - ^ . 

Thus spontaneous magnetization occurs at P if and only if ^{P,h) is not 
differentiable at h = 0. 

These properties of m(P,h) may be read from Figure IV. 1. Part (a) of 

* Other properties of m{p,h) are derived in Problem V.13.1. 
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Theorem IV.5.2 was proved in Theorem IV.5.1. The properties listed in 
parts (b) and (c) were stated for M(A,j8,/z) in Theorem IV.3.4 and are pre­
served under passage to the limit AfZ . Since il/(P,h) is concave for h real 
and differentiable for h =/=0, d^jdh is nonincreasing for /i ^ 0. Hence m(jS, + ) 
= lim^^o+ f^(P^h) = — Hm _̂o+ dil/(p,h)/dh exists and equals the right-hand 
derivative of —ij/ at h = 0 ( —5i/^(j8,0)/5A^); similarly for m(li, —). Since 
for each /z > 0, m(P,h) is a non-negative, nondecreasing function of jS > 0, 
the same properties hold as for m(P, +). This proves part (d) as well as 
(4.27). Since HP.h) is differentiable at /z = 0 if and only if dil/(P,0)/dh-' = 
dil/(P, 0)/dh~, we obtain the last assertion in part (e). 

According to part (e), spontaneous magnetization corresponds to a dis­
continuity in the first-order derivative dil//dh. Hence it is known as a first-
order phase transition. 

Spontaneous magnetization indicates a strong cooperation among the 
individual spins, and it occurs only if the aHgnment effects built into the 
fmite-volume Gibbs states persist in the Hmit A f Z. Thus, one might expect 
spontaneous magnetization to occur only if distant spins have a suitably 
strong interaction and the temperature is sufficiently low. The next theorem 
justifies this intuition. 

Theorem IV.5.3. Let J be a summable ferromagnetic interaction on Z and define 
the positive number /Q = XfceZ'̂ C )̂- Define the critical inverse temperature 

l], = sup{P>0:m(p,+) = 0}. 

Then the following conclusions hold. 
(a) Pc is well-defined and J^Q^ < PC^ ^ > l^ particular Pc> 0. 
(b) P,= co ifikezWik) < 00. 
(c) ft < 00 ifJ{k) = k-^ (ki^O)orifJ>0 and J(k) - \k\-\ some 1 < 

a < 2 . * 
(d) For 0 < P < ft, il/ip,h) is differentiable at h = 0 and m(p, + ) = 0. 

For P > Pc, the differentiability fails and spontaneous magnetization occurs: 

Comments on proof (a) Since m(P, + ) is a non-negative, nondecreasing 
function of jS > 0, ft is well-defined. Let m^^{P,h) denote the specific 
magnetization for the Curie-Weiss model with interaction /QI\I\\, where 
/ o equals YuksnJ^^)' Pearce (1981) shows that for jS > 0 and /? > 0, m(j?, h) < 
m'^'^iP^h). Since m^^(ft-1-) = lim.^o-^^'^(ft/^) is positive for P > fo' 
[Theorem IV.4.1(b)], it follows that ft > / Q ^ Pearce's method is outlined 
in Problem IV.9.7.^ 

(b), (c) These parts are discussed below. 

*J(k) ~ \k\-' means lim|fc|_^ [log/(^)/log|/t|] = - a . 

file:///k/-/


IV.5. Spontaneous Magnetization for General Ferromagnets on Z 107 

(d) For 0 < P < P„ m(j?, + ) equals 0 and so \l/{P,h) is differentiable at 
h = 0.¥ox P> /?„ m{P, + ) is positive and (4.28) follows from (4.27).^ 

We show a special case of part (b) by proving that p^ equals oo for the 
Ising model. 

Example IV.5.4. For the Ising model, 

(4.29) Z{KP,h)= \ tx^U/Y Cojcoj^i+Ph f co^n^P^idoj). 
JQ^ V J=-N j=-N ) 

Z{K, jS, K) can be expressed in terms of a matrix product. For ai,a2G{l, —1}, 
define B{(i^,(i2) = i^wLP^/^i^i + Ph(ix^ + a2)/2] and let B = BpJ^ be the 
2 x 2 symmetric matrix 

^B(hl) B(l,-l) \ 

^B(-l,l) B(-h-l)J' 

B is called the transfer matrix of the model. A equals {jeZ: \j\ < N} and 

Z(AJ,h) = - X a(co_^)B(co ) ' " B(a)^_^,cOj^)a(cD^) 
^ {coj=±l;jeA} 

^1^ Z a{cD_^)B^^{(D_^,o:)j^)a{co^), 

(4.30) 

where a(x) = exp(|jS/zx). The larger eigenvalue of B^j^ is 

^(Bp,h) = le^^ [coshi8/z + (sinh^ jS/z + ^"^^Z)^/^]. 

By Lemma IX.4.1(d) (Perron-Frobenius) 

(4.31) -mP,h) = lim4rlogZ(A,iS,/?) = logA(5^,,). 
Atz|A| 

For each jS > 0, il/(P, h) is a real analytic function of real h. Hence 5i/̂ (jS, 0)1 dh 
exists for each ^ > 0 and jŜ  equals oo. This calculation can be generalized 
to any finite-range interaction, and as with the Ising model, one finds that 
Pc equals oo [Ruelle (1969, Section 5.6)]. See Appendix C.6 for details. 

According to part (b) of Theorem IY.5.3, jŜ  equals oo not just for interac­
tions of finite range but whenever Zkez |^|«^(^) is finite. A method of proof 
is outhned in Problem IV.9.8. This leaves the infinite-range case where 
Yuk€zJ(h)  is finite but Y,kez \^J{k) diverges. It follows from Dyson (1969a) 
that Pc is finite if / is positive and J{k) ^ \k\~'' for some 1 < a < 2. Frohlich 
and Spencer (1982a) proved that P^ is finite also in the borderUne case J{k) = 
k~^ (k =/= 0). These proofs of spontaneous magnetization are difficult and 
are omitted. ̂ ^ 

Finally, we study convergence properties of the random variables *S'̂ /|A|, 
which define the spin per site in A. By (4.7), the expectation of 5 A / | ^ | with 
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respect to the finite-volume Gibbs state PA,p,h gives the magnetization per 
site, M(A, j8, /?)/| A|. By analogy with the Curie-Weiss model, we expect that 
as A t Z, SJ\A\ converges exponentially to the specific magnetization m(P, h) 
for all j8 > 0, /? :f 0, and 0 < jS < jS,, /? = 0. 

Theorem IV.5.5. Let J be a summable ferromagnetic interaction on Z. Then 
there exists a constant m such that 

(4.32) 5A/| A | - ^ m with respect to {PA,^, J 

if and only if\jj{P,h) is differentiable with respect to h. In this case m equals 
m(P,h) = -dil/(li,h)/dh. Thus (4.32) holds for a// jS > 0, /? ^ 0 and for all 
0<P<P,, h = 0; (4.32) fails for P > ji, and h = 0 [Theorems IV.5.1 and 
IV.5.3]. 

Proof According to Section II.6, the exponential convergence can be proved 
by considering the free energy function Cpjj(t) of the sequence {S^}. For 
t real, c^^^it) = lim^|2CA,^,ft(0, where 

^A,p,h{t) = 777 log ^^PUSA(0j)'}PA,p,h(dcD) 
1^1 • ' " A 

\ l o g I txpl-pH^^.ioj) + tS^(oj)]n^P^(doj) ': ^ 
|A| Ja^ Av .J A pv . ZiAJ,hy 

For each coeQ^, 

-PH^CD) + tS^ica) = I ^ J{i -j)coiCOj + (ph + 0 Z <0j 
^ iJeA jsA 

Hence 

1 .ZjAJ^h + t/P) 

= -i8T|rWA,iS, /^ + t/p) - ^(A,i?,/z)] 
|A| 

and Cp^t,(t) = -j8[i/^(j?,/z + t/P) - il/(P,h)]. By Theorem II.6.3, there exists 
a constant m such that ^A/| A| - ^ m if and only if Cp^it) is differentiable at 
r = 0. In this case, m equals c^,/,(0). But Cp^iO) exists if and only ifdil/(P, h)/dh 
exists, and then c^^(O) = —dil/(P,h)/dh. This completes the proof. n 

Theorem IV.5.5 imphes that spontaneous magnetization occurs at P if 
and only if ^SA/IAI fails to converge exponentially to m(jS, 0) = 0. For this 
reason, we are justified in calling spontaneous magnetization a level-l phase 
transition. Let us interpret the level-1 phase transition in terms of entropy. 
According to the proof of Theorem IV.5.5, the free energy function of the 
sequence {S^} with respect to {^A,^,;,} is 
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(4.33) c^.,(0 = -li[_ikiP,h + tIP) - .A()S,/!)]. 

For 0 < P < P, and any h real, Cpj,{t) is differentiable for all / real. Hence 
by Theorem II.6.1, the /\_^ ,,-distributions of 5 /̂1 A| have a large deviation 
property with a^ = | A| = 2N + 1 and entropy function 

/^,,(z) = sup {tz - cp,,(0} = sup {tz + mP,h + t/P)} - il/ip,h) 

(4.34) 
= sup {Pxz + pil/ip,x)} - iphz + piJ/{P,h}'\. 

xeU 

Ip^hiz) is a convex function and it attains its infimum of 0 at the unique 
point c'pj^ifi) = m{P, h) [Theorem II.6.3]. The situation is different for P > Pc-
Let us focus on the case h = 0. The function c^,o(0 is not differentiable at 
t = 0, and Ip^o(z) does not attain its infimum at a unique point. The theory 
of Legendre-Fenchel transforms shows that /^,o(^) attains its infimum on 
the whole interval 

= [m()8,-) ,m(iS,+)], 

where m(jS, + ) is the spontaneous magnetization [Theorem VII.2.1(g)]. 
According to part (b) of Theorem II.6.1, 

limsup^—-\ogPj^pQ{SJ\A\eK} < —inf/^o(^) for each closed set Â  in (R. 

Thus, if ^ is disjoint from the interval [m(jS, —),m(P, + ) ] , then the prob­
abilities Pjs^p^Q{SJ\A\eK} decay exponentially as AfZ . However, since 
ĉ  o(0 fails to be differentiable at ? = 0, we are unable to apply part (c) of 
Theorem II.6.1 to conclude that the P^^ o'distributions of SJ\A\ have a 
large deviation property. If the large deviation property does hold with 
some entropy function /(z), then /^,o(^) equals the closed convex hull of/(z) 
[see Problem VII.8.2]. 

This completes our discussion of finite-volume Gibbs states. In the next 
section, we consider probabihty measures which describe the infinite-volume 
ferromagnet. 

IV.6. Infinite-Volume Gibbs States and Phase Transitions 

The finite-volume Gibbs states studied in the previous three sections are 
probability measures on the finite sets Q^ = {1, — 1}^. In this section we 
study states of general ferromagnets on Z. The states are probability measures 
on the infinite-volume configuration space Q = {1, — 1}^. These measures 
are obtained from the finite-volume Gibbs states by weak Umits (AfZ). 
Equivalent notions of infinite-volume measures are discussed in Appendix C. 

The set {1, — 1} is topologized by the discrete topology and the set Q by 
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the product topology. According to Tychonoff's theorem, Q is compact. 
The (7-field generated by the open sets of the product topology is called the 
Borel cr-field of Q and is denoted by ^(Q). ^(Q) coincides with the cr-field 
generated by the cylinder sets of Q [Propositions A.3.2 and A.3.5(b)]. Let 
Ji{Q) be the set of probability measures on ^(Q) and JiX^) the subset of 
Ji{QL) consisting of strictly stationary probability measures. Strict statio-
narity is a natural condition since most of the infinite-volume Gibbs states 
which we obtain are strictly stationary with respect to spatial translations, 
or (as it is usually said) are translation invariant. A translation invariant, 
infinite-volume Gibbs state is called a phase. 

Throughout this section, we fix a summable ferromagnetic interaction 
/ on Z. The finite-volume Gibbs state iA,^,^ defined in Section IV.3 will be 
modified by means of external conditions. The measure P^^^^h models a 
ferromagnet on the set A = {jeT\ \j\ < N), where Â  is a non-negative 
integer. External conditions correspond physically to the situation where 
an experimenter prepares the complement of A, A"" = Z\A, by fixing a 
configuration on that set. Let co be a point in the set Q ĉ = {1, —1}^'. 
The coordinates cbj.jeA', denote the values of the fixed external spins at 
the sites of A^ When we want to indicate the dependence of cb upon A, 
we will write co(A). We define the Hamiltonian of a configuration coeQ^ = 
{ 1 , - 1 } ^ to be* 

-^iJeA ieA\ :^^c J 
(4.35) 

Thus each a)j,jeA\ interacts with the spins in A through the given interac­
tion. Compare //A,;I,CO with the Hamiltonian H^j, in (4.3). The external 
condition cb changes i/^,;, by altering the external field acting at each site 
/G A from the value h to the value hi = h -\- Y^j^j^cJ{i —j)cby Since / is 
summable, hi is well-defined. The finite-volume Gibbs state on A with ex­
ternal condition c3 is defined to be the probability measure PA,p,h,(o ^^ ^ ( ^ A ) 
which assigns to each {co}, COGQ^, the probability 

(4.36) PA.,,,,5{CO} = e'^P[-)^^A.'..s(«)]^A^p{«>} - ^ ( X X ^ ' 
In this formula, j8 is positive and Z(A,P,h,d)) is the normalization 
JQ^exp[ —JS//A,/I,C5(<^)]^A^P(^^)- There are two important choices of c5. If 
each ojj = 1 (resp., —1), then the external condition is called plus (resp., 
minus) and the measure is written as PA,p,h,+ (resp., PA,p,h,-)' Expectation 
with respect to PA,p,h,(o will be denoted by <->A,^,;,,C5. 

We have defined external conditions by means of points co in Q^^ • ^^^ can 
allow other external conditions such Sisfree (each c5y = 0 in (4.35)) or periodic 

'*We omit from (4.35) the interaction between d>,- and cbj and between h and cD,-. These 
interactions are constants independent of co. If included in (4.35), they would cancel out in 
(4.36). 
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(one modifies the definition of / ( / —J)). These external conditions are useful 
in certain applications. However, restricting external conditions to be points 
in Q ĉ allows for a cleaner formulation of infinite-volume Gibbs states and 
facilitates the proof of the equivalence between these states and other notions 
of infinite-volume measures [Appendix C]. 

Let ^(Q) be the space of bounded, continuous, real-valued functions on 
Q with the supremum norm. We say that a sequence {P„;« = 1,2, . . . } in 
J^(Q) converges weakly to PeJ^(Q), and write P„ => P or P = w-lim^^^o ̂ «? 
if lafdPn^'^afdP for e v e r y / G ^ ( Q ) . If a weak limit P exists, then it is 
unique. With respect to weak convergence, Jf{Q) is a compact metric space 
[Theorem A. 11.2]. 

Let {P„; w = 1,2, . . . } be an arbitrary sequence in Ji{Q). We call a subset 
y of ^(Q) a convergence-determining class if the existence of the hmit 
Wm^^^l^fdP^ for e a c h / G ^ implies that {P„;« = 1,2, . . . } converges 
weakly to some probability measure P. Since Q is compact, ^(Q) itself is a 
convergence-determining class because of the Riesz representation theorem. 
Other well-known examples are the subset consisting of all product functions 
/ ( ^ ) = OieB^^i f̂ ^ P ̂  finite subset of Z (define /(co) = 1 if 5 is empty) 
and the subset consisting of all functions/(co) = %i(co) for Z a cyhnder set 
in Q. These examples are discussed in Theorem A. 11.3. Another useful 
convergence-determining class is given in the next lemma. 

Lemma IV.6.L For B a nonempty finite subset of Z, define fsioj) = 
YlieBLii^ + cOi)^. For B the empty set, define fg(co) = 1. Then the subset of 
^(Q) consisting of all functions f^ioj) is a convergence-determining class. 

Proof. The hmit hm^^^^ l^fudPn exists for any finite set B if and only if the 
limit lim„_oo ja/^^n exists for all functions/(a;) = OieB^^n where/(co) = 1 
if P is empty. Hence the lemma is a consequence of Theorem A. 11.3(a). n 

In order to define infinite-volume Gibbs states, we extend each finite-
volume Gibbs state P/^j^h^^ to a probabihty measure on ^(Q). Let J5^^ 
denote the set {coeQ:cOj = cbj for eachyeA''} and n^ the projection of Q 
onto Q^ defined by (nj^co)^ = cô -, ieA. We define the extension PA,p,h,co of 
the finite-volume Gibbs state by setting 

PA,p,h,co{^} = PA,li,hA^A(^ n P^,s)} = Z PA,p,h,co{^} 

(4.37) 

for A a Borel subset of Q. The right-hand side of (4.37) is given by (4.36). 
Since the support of P ^ ^ ^ ^ is the set B^^-, the extension is compatible with 
the external condition. We note a useful property of PA,p,h,cb- L e t / b e a 
function in ^(Q) such that the value /(co) depends on only finitely many 
coordinates of co; let these coordinates be cOj- , . . . , cOj . If A is any symmetric 
interval containing the sites i^, . . . , i^, then the restriction o f / t o the co­
ordinates {cOi'JeA} defines a function in ^ (OA)- We denote the restriction 
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by the same symbol / ; if co = n^cb, CDSQ.^ and coeQ, then /(co) =/(co). 
It is easy to check [Problem IV.9.9] that 

(4.38) 
"A 

An example of such a function / is the function fg in the previous lemma. 
From now on, we will denote the extension FAj,h,z by the same symbol 
P\,^,h,a> ^sed for the original measure. The extension will be called a finite-
volume Gibbs state. 

Since the space Ji{0) is compact, any sequence of finite-volume Gibbs 
states {P^ ^;, 53(̂ ); A t Z } with arbitrary external conditions {co(A)} has a 
convergent subsequence {iA',̂ ,;,,c5(A')}- Each of these weak limits is an infinite-
volume state for the given interaction. It is natural to investigate the depen­
dence of the limits upon the choice of external conditions. For different 
values of ^ and h several situations occur: there is a unique weak limit 
regardless of the choice of external conditions and the limit is translation 
invariant; the weak Umit depends upon the choice of external conditions and 
is either translation invariant or not. In the second situation, a phase transi­
tion is said to occur. We shall call this a level-3 phase transition in order to 
distinguish it from the level-1 phase transition which is spontaneous magnet­
ization. 

Consider the set of Umits 

(4.39) ^^%={PG^(Q):P=M;-limP^,^, , ,^(^,}, 
A't2 

where {A'} is any increasing sequence of symmetric intervals whose union 
is Z and co(A') is any external condition for A'. Define ^ ^ j , to be the closed 
convex hull of ̂ ^̂ ft. This is the intersection of all closed convex subsets of 
J^(Q) containing ^^;,. Equivalently, ^^^^ is the closure, with respect to weak 
convergence, of the set of convex combinations 

(4.40) \peJ^(Q):P= f ^jPp^j> 0,t ^j= ^^^J^^PA 

Each measure P 6 '^^;, is called an infinite-volume Gibbs state. A level-3 phase 
transition is said to occur if ^^,;, consists of more than one measure. 

The passage from ^p^^ to ̂ ^ ;, has an interesting physical interpretation. 
We denote the limit P in (4.39) by Pp,h,{(aiA')}' This measure corresponds 
physically to the situation where an experimenter is sure that the external 
condition for each A' is co(A'). The experimenter may also be uncertain 
about the external conditions. Such an uncertainty is represented by the 
convex combination P in (4.40), where Ai, /l2» . .., 1^ are the probabihties 
of r different choices. 

Before proving properties of infinite-volume Gibbs states, we extend 
the definition of Gibbs free energy to the state PA,p,h,a> with external con­
dition (b. Recall that for the finite-volume Gibbs state PA,^,;, without external 
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condition, we defined '¥(AJ,h) = -r'\ogZ(A,p,h), where Z(AJ,h) = 
^a^Qxp\_ — PHp f^((o)~\nj^Pp(dco), If Xfcez«^(^) < ^» then the specific Gibbs 
free energy il/(P,h) = lim^^^\A\~'^^^(A,p,h) exists [Appendix D. l ] . Given 
an external condition co = d>(A), we define the Gibbs free energy in the state 
^A,̂ ,/,,c5 by the formula 

'¥(AJ,h,a))= -li-HogZ(AJ,h,d)) 

= - r ' l o g I exp[-i57f^,,,s(co)]7r^P,(^co). 

The next lemma shows that for any sequence of external conditions {a3(A); 
A^Z} the limit lim^>^2|A|"^^(A, jS,/z,c5(A)) exists and is independent of 
the sequence chosen. 

Lemma IV.6.2. Let J be a summable ferromagnetic interaction on Z. Then for 
j8 > 0 andh real, Hm^>|̂ 21 |̂ ~^^(^? P^ ?̂ ^ (^ ) ) exists and is independent of the 
choice of{cb{A)]. The limit equals lim^^^ |^|~^^(^?i5?^) = ^iP^h). 

Proof We use the comparison lemma. Lemma IL7.4. For any probabiHty 
measure P on ^ ( ^ A ) ^^^ real-valued functions/and g on Q^ 

log IIZ-^lloo, e^dP - log \ e^dP\ 
JQA I 

where \~\^ denotes the maximum over Q^. It follows that 

(4.41) ^ |^(A,)^, /z ,d3) - ^{AJ,h)\ < J ^ | | 7 / A , . , C 5 - ^A,.||oo. 

Since \l/{P,h) = \im^^^\A\~^m{A,P,h) exists, it suffices to prove that 
|A|"^||//A,f,,c5 — ^A,;,||oo ~^^ ^s AfZ . For any 8 > 0, there exists a positive 
integer N^ so that Yj\k\>N^J(h) < £• For any coe^^ 

-^,\H^,HAO:>) - //A,,(CO)| < ^ I Z J{i -J) < -^Y^Jii -J) + ,̂ 
| A | \A\ieAjeA<^ |A | 

(4.42) 

where Z ' denotes the sum over all ieA andyeA^ such that \i — j \ < N^. 
Since Z ' / ( / — 7) < max^^^ (/(/:)) • 2N^, the proof is complete. n 

We recall from Theorems IV.5.1 and IV.5.3(d) that for all j8 > 0, /? ^ 0 
and 0 < ^ < jŜ , h = 0, dil/(l^,h)/dh exists and equals minus the specific 
magnetization m{P,h) = \im^f^\A\~^M(A,P,h). M(A,jS,/?) is the magneti­
zation in the finite-volume Gibbs state i\,^,;, without external condition. 
This relation will be extended to the states {PA,p,h,co} by means of the fol­
lowing useful convexity result. 
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Lemma IV.6.3. Let {f„;n = 1,2, ...} be a sequence of convex functions on 
an open interval A of U such that f{t) = lim„^^ f(t) exists for every teA. 
If each f and fare differ entiable at some point t^GA, then lim^^o^ fnih) exists 
and equals f'(to). 

Proof DermcgM = (/.(O -/„(^o))/(^ " ^o)and^(0 = (/(/) -fihMt - h) 
for teA, t ^ tQ. Then QniO^diO since by hypothesis/^ ^ / o n A. The 
convexity of f implies that g^(s) <fn(to) < QniO for s < tQ < t {s,teA)^ 
Taking « -^ oo, we see that 

(4.43) sup g(s) < liminff;{t^) < limsupf;,(to) < ^ inf g(t). 
{seA:s<tQ} n-^oo n-^co {teA:t>tQ} 

As the pointwise limit of convex functions, / is convex, and so /'(^o) = 
^^P{seA:s<t^}g(s) = ^^^{teA:t>t^}g(0' Inscrtiug thls iu (4.43) completes the 
proof. D 

Given an external condition w = d)(A), define M(A,P,h,a)) = Y,ieA 
^^i)\,(i,h,(b- This sum is the magnetization in the finite-volume Gibbs state 
P\,fi,h,cb- By the same calculation as in (4.21), d^^(A,P,h,d))/dh equals 
— M(A,P,h,d)), and as in the proof of Theorem IV.5.1, ^{A,p,h,(b) is a 
concave function of h real. Since \A\~^'^{A,P,h,(b{A))-^\l/{^,h) and 
dil/(P,h)/dh exists for jS > 0, /? =f 0 and 0 < jS < i?,, /z = 0, Lemma IV.6.3 
yields the following important fact. 

Lemma IV.6.4. Let J be be a summable ferromagnetic interaction on Z. Then 
for P > 0, h =f^ 0 and 0 < P < 1^,, h = 0, lim^^^ |Ar^M(A, j5,/2,co(A)) exists 
and is independent of the choice of {a){A)]. For these values ofP and h, 

(4.44) lim-^M(A,j5,/z,d)(A))- - ^ ^ ^ = m{P,h). 
ATZ|A| oh 

Let T denote the shift mapping on Q. A probability measure P on .^(Q) 
is said to be translation invariant if for each Borel set A P{T~^A} = P{A}. 
Let J^si^) denote the set of translation invariant probability measures on 
J*(Q). A measure PeJ^^Q) is called ergodic if P{^} equals 0 or 1 for any 
Borel set A which satisfies T~^A = A. We have denoted the set of infinite-
volume Gibbs states by ^pj^. A measure P in "^pj, is called a phase if P is 
translation invariant. Let m{P,h) be the specific magnetization and let 
m{P, + ) = lim^^o+ ^iP^h) and m{P, —) = lim^̂ ^Q- fn(P,h). According to 
Theorem IV.5.3 there exists a critical inverse temperature ^̂  e (0, oo] such that 
spontaneous magnetization occurs at all jS > jŜ  but not at any 0 < jS < j?̂ ; 
i.e., 

m(iS, + ) = 0 = m(P, - ) for 0 < )8 < P„ 

m{P, + ) > 0 > m{p, -) for jS > jS,. 

* See page 214. 



IV.6. Infinite-Volume Gibbs States and Phase Transitions 115 

The next theorem describes phases of the ferromagnet and relates the occur­
rence of a level-3 phase transition to that of spontaneous magnetization. 

Theorem IV.6.5. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For each j? > 0 and h real, the weak limits 

(4.45) P ,̂;,,+ = w-limP^,^,^, + , P^,;,,_ = w-lim^A,^,^,. 

exist and are translation invariant. Thus ^p^^, and^pj^ n ^s(Q) are nonempty. 
The measures î ,̂/j,+ and P^^ _ are ergodic. 

(b) Pp,h,+ equals Pp^h,- if cind only if dil/(l^,h)/dh exists. Thus, for j? > 0, 
h ^ 0 and for 0 < ^ < jŜ , /z = 0, Pp^h,+ equals Pp^h,-- ^or these values ofP 
andh, define P^ ,, = P̂ ^̂ +̂ = Pp,h,-' 

(c) If dil/(P,h)/dh exists, then Ppj, is the unique measure in ^^^ and thus 
in ^p^^r\JiXQ). No level-?) phase transition occurs. The mean ^Qa>QPpj^(dco) 
equals the specific magnetization m(P,h). 

(d) For P > jS,, P;,,o,+ + Pp,o,-'Infact, 

(4.46) a;oP^,o, + (^^) = ^ ( i S , + ) > 0 > cooPp,o,-(dco) = miP,-). 

Thus for P > Pc ^^d h = 0, a level-3 phase transition occurs. 
(e) For P > Pc^ ^p 0^ ^JS^ contains {at least) all the measures P^^^ = 

AP ,̂o,+ + ( l - ^ ) ^ / ^ , o ' , - , 0 < A < l . 

The proof of this theorem requires several new results which we will 
present as lemmas at the end of the section. First, we interpret the contents 
of the theorem. See Note 11 for further comments on the structure of ^p ^ 
a n d ^ ^ , , n ^ , ( Q ) . 

Part (a). Let S^{oj) = YjjeA^j be the spin in a symmetric interval A. The 
ergodic theorem [Theorem A. 11.5] impHes that if PG ^ S ( ^ ) is ergodic, then 

(4.47) l i m % ^ = I ojoPido)) P-a.s. 
Atz A 

Let P be the ergodic infinite-volume Gibbs state Pp^h,+ or Pp^n,-- Then 
lim >̂l̂ 2 5'̂ (cL))/|A|, which is the limiting spin per site in a sample co drawn 
from the magnet, is a constant independent of o P-a.s. The measures 
Pp^h,+ ^^^ Pp,h,- ^^^ called pure phases of the magnet. Stronger clustering 
properties of P^ ,, + and Pp,h,- are given in Corollary A. 11.12. 

Parts (b)-(c). According to Lemma IV.6.4, (or P > 0, h =f= 0 and 0 < P < p,, 
h = 0, the limiting magnetization per site, lim^>i-^\A\~'^M(A,P,h,cb{A)), 
exists and is independent of the choice of external conditions {d>(A)}. It 
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equals the specific magnetization m{P,h). For these values of j8 and A, the 
independence of external conditions extends to the infinite-volume Gibbs 
states; that is, P^ ;, = ^^,K+ = ^p,h,- is the unique measure in ^^^ as well as 
in ^^ ,, n ^ , (Q) . The ergodic Hm'it (4.47) and the fact that* 

(4.48) (DoPp,,(dco) = m(j?, h) > 0 for h> 0 

imply that with respect to P^ ,,, for h> 0 almost every cosQ has a majority 
of the spins + 1 . There is a similar statement for A < 0. This support property 
of Ppj^ is the infinite-volume analog of the alignment effect built into the 
finite-volume Gibbs states {PA,p,h}' 

Parts (d)-(e). For jS > jŜ , the distinct measures Pp,o,+ ^^^ Pp,o,- ^^^ t)Oth 
ergodic, and so there exist disjoint subsets ^^ + and 4̂̂  _ of Q such that 
P^ o,+ {̂ /?, + } = 1 ^iid PpQ_{Ap..} = 1 [Theorem A.11.7(b)]. The ergodic 
limit (4.47) and the fact that |n<^o^^,o, + (^^) = ^iP^ + ) > 0 imply that 
with respect to P^,o, + » almost every coeAp^^ has a majority of the spins 
+ 1. Similarly, with respect to P^,o,-» almost every CDGA^.. has a majority 
of the spins — 1. The measures P^,o,+ and P/j,o,- are called ?i pure plus phase 
and a pure minus phase, respectively. These measures are simply related by 
the formula P^o, + (<^(~^)) = ^/3,o,-(^^)5 which follows from the same 
relation for the finite-volume Gibbs states PAJ,O,+ and PAJ^Q,-. For 0 < 
A < 1, the nonergodic measure P^p% = ^Pp,o,+ + (1 — ^)Pp,o,- is called a 
mixed phase. With respect to this measure, the Hmiting spin per site, hm^ î̂ ^ 
5^(0;)/! A|, is not a constant but depends on the choice of co [see Theorem 
IV.6.6(c)]. 

Leve 1-3 phase transition. That ^^1 , consists of a unique measure for jS > 0, 
h =/=0 and 0 < jS < jŜ , /z = 0, contrasts with the nonuniqueness of measures 
in ^pQ for P > Pc' We have called this nonuniqueness a level-3 phase transi­
tion. Formula (4.46) shows that spontaneous magnetization is the con­
traction of the level-3 phase transition onto level-1. The level-3 phase 
transition can also be looked at as a symmetry-breaking transition.^'^ For 
h = 0, the microscopic interaction energy between each pair of spins cô -, 
(Dj equals —/(/ —j)cOi(Dj. For all / and 7, these energy terms are invariant 
with respect to sign changes (cOi,cOj) -^( —cô , —cOj) in the spins. However 
for P > Pc neither of the states Pp,o, + ^ ^p,o,- retains this invariance. 

The next result refines the ergodic theorem by giving additional con­
vergence properties of the microscopic sums {5^/1 A|} as A t Z. We see that 
exponential convergence to a constant distinguishes the values j8 > 0, /z =/= 0 
and 0 < i8 < ft, /z = 0 from the values j8 > ft. /? = 0. 

*The positivity of m(j5, A) for /i > 0 is proved in a footnote on page 165. Also see Problem 
V.13.1(b). 
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Theorem TV.6,6. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For p>0,h-^0 and for 0 < jS < jS„ /? = 0, 

SJ\A\^m(li,h) and SJ\A\^m(P,h) w.r.t. Pp^, as A'lZ''. 

(b) For p > p,, 

- % ^ m ( j 8 , - ) w.r.t, P. 0 - as A'fZ. 
\A\ ' 

In each case, exponential convergence fails. 
(c) For P > Pc ^^d ^^^h 0 < X < 1, there exists a random variable Y^^^ 

on Q with distribution /l(5^(^+) + (1 — A)^^( ,̂_) such that SJ\A\^Y^^^ 
w.r.t. Pl% = ^Pp,o,^ + (1 - 4Pp,o,- as A'lZ.^ 

With respect to the various measures in this theorem, large deviation 
bounds for SJ\A\ can be derived from Theorem II.6.1. We omit the formulas, 
which are easily worked out as in the discussion at the end of Section IV. 5 
(see Lemma IV.6.11 for the calculation of the free energy function). ̂ ^ 

We now turn to the proofs of Theorems IV.6.5 and IV.6.6. The first 
step is to prove that the weak limits Pp,h,+ = w-lim^ î̂ ^ P^^^ + and Pp^h,- = 
w-lim^>l<2 PA,(i,h, - exist. According to Lemma IV.6.1, it suffices to prove that 
for each finite set B the hmits Hm^ >|̂  ̂  j ^ A ^ ^ A , /5, /i, + ̂ ^^ lî ^A 12 !« fBdPA,p,h, -
exist, where/B(<^) = FlreBLiCl + < î)] foi" ^ nonempty. By the discussion 
after that lemma, each integral lafBdP\,p,h,+ or ^afBdPA,p,h,- equals 
ja^fBdPA,p,h,+ or JQ^fBdPA,p,h,-^ respectively, provided A contains B. The 
proof depends upon a powerful monotonicity result due to Fortuin, Kastelyn, 
and Ginibre (1971) and known as the FKG inequahty. 

The FKG inequality is vaUd for a more general measure than the finite-
volume Gibbs state PA,p,h,(a' Let A be an arbitrary nonempty finite subset 
of Z, {Jiji ij'eA} a set of non-negative real numbers, and {hi; ieA} a, set of 
real numbers. Let P be the probabiHty measure on J*(QA) which assigns to 
each {co}, COGQ^, the probability 

(4.49) P{(o} = expi-H(co)]n^P^{co] •^. 

In this formula, i/(co) equals —iX!i,j€A*^j^i<^j ~ ZieA^i^j ^^^ ^ equals 
^Q^expl — H(co)^nAPp(dco). Expectation with respect to P is denoted by 
<->A,{ft.} or by <->. The measure P reduces to PA,p,h,<a if A is a symmetric 
interval, Jij = pJ(i -J), and hi = h-\- X/SA^A^' - y ) ^ / -

Let CO and co be points in Q^- We write co < co if cô  < cô  for each ieA. 
A real-valued function/on Q^ is said to be nondecreasing if fico) </(co) 
whenever oj < co. For example, the function 7(co) = cô  for /G A is non-
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decreasing as is fsioS) for any subset B of A. However, /(co) = cOjCô  (/ ^j 
in A) is not nondecreasing. The FKG inequality is stated in part (a) of the 
next theorem. A useful consequence of the inequahty is stated in part (b). ̂ "̂  

Theorem IV.6.7. Let f and g be nondecreasing functions on Q^, Then the 
following conclusions hold. 

(a) For any values of{h^, the covariance of f and g is non-negative: 

<fd>A,{hi} - <fyA,{hi}<9yA,{hi} ^ 0-

(b) {hi} < m implies </>A,(.,) < </>A,(M-

Proof (a) The following proof is due to Battle and Rosen (1980). The 
argument is by induction on the number of sites | A| in A. We have 

<fgy-<f><gy 
(4.50) 

Ifico) - / ( d ) ) ] [g(oj) - g(cb)]P{do,)P(dco), 

If I A| = 1, then the integrand is non-negative since/and g are nondecreasing. 
Hence {fgy — {fyigy >0. Assume now that the inequality has been 
proved for |A| = 1, . . . , « — 1, some n >2, and consider the inequahty 
for IA| = A2. Fix any site a in A. We set co = (a)\ coj, where co' has the n — I 
components {coi; /G A\{a}}, and rewrite H(co) in the form 

H(C0\ COj= - - Y. Jij^i^j - Z ( ̂ i + ^^Jioi + •4i)^a ) OJi 
^iJeA\{a} i eA \{a} \ ^ / 

For fixed CO^G{1, — 1}, let v^ (doj') be the probability measure on ÂXa} 
defined by 

^coMoj') = Qxpl-H((o\o)J]n^\^^^PJdco') 
1 

where Z(ojJ equals ^^j^ expl-H(co\(oJ']nj^^^^}Pp(do)'). We now write 

<fgy f(w)g(co)Pidco) 

{1,-1} 

f(co\ coJg(aj\ (ojv^ida)') 
'A\{a} 

Z(a>Jp(dojJ • 

The inductive hypothesis clearly applies to the co'-integral. It follows that 

(4.51) <fgy> 
{1,-1} 

(l)(a)Jy(a)JZ(coJp(d(Dj • —, 
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where (/)(coJ = ^^^^^^^f(a)\(oJv^^(dco') and y(coJ = ^a^^^^^g{co\(oJv^^(dco'). 
We prove just below that </> and y are nondecreasing. The result for | A| = 1 
and (4.51) yield (4.50): 

<fgy> 
{1,-1} 

<f><g}-

(l)(coJZ(cDjp(dcoJ • — • y{coJZ((Djp{dcoJ • — 
^ J { i , - i } ^ 

We prove that (/>(—1)<</>(1). The same proof shows that y is non-
decreasing. In the definition of v^^(dco'), replace CO^G{1,—1} by a real 
parameter t. We prove that the function ^ ~^ in/^\,^,f(<^\ l)Vf(dco') is non-
decreasing. Since/is nondecreasing, it will then follow that 

<^(-i) = 

< 

/ (CO ' , - l ) v_ i ( J co ' )< 
'A \ (OC) • ' "A\{ot ) 

/(CO', l)vi(^ffl ') = </>(!). 

/(CO', l)v_,(d(0') 

We have 
d_ ' 
dt ,., f{oi', \)v,{dco') 

fico', 1) 
''Am 

8H{(o', tj 
dt 

Vtidco') 

dH(co', tj 
dt 

v,{dco'). f{co',l)v,idco')-
'^A\{<x) * ' " A \ { a ) ' 

The function -dH(co', t)/dt equals XieA\{«} 2(<̂ ia + /xi)«i + K^ and so it is 
a nondecreasing function on ̂ ^m- By the inductive hypothesis, we conclude 
that c?|n^y„)/(<^'. \)v,{dm')ldt > 0. The FKG inequality is proved. 

(b) Since dHjdhi = -co,- and 

we have 

d 

dz 
dh 

</> = 

1 
Z 

d 
dh 

co;exp[-//(co)]7i^/' (c?aj) 
1 

<co,>, 

/(co)exp[-//(co)];t^P,(6?co)-
" A 

(4.52) = f /(co)-co,.exp[-/f(co)]7t^/',(c/co)-^-</>Z,.--|r 

= < / • « ; > - < / > < c o , > . 

This is non-negative as / and coi are nondecreasing. Thus </>A,{f,} is a 
nondecreasing function of each h^. Part (b) is proved. n 
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Let / be a non-negative, summable, symmetric function on Z. Denote by 
<~)A P h + (resp., <->A p h -) expectation with respect to the measure P 
in (4.49) with J,j = m-j) and /?, = /? + Y.jeAcJ{i -j){+ 1) (resp., h, = 
h-\-Y^j.^cJ{i-j){-\)). 

Corollary IV.6.8. Let {A„;f2 = \,2, ...} be an increasing sequence of finite 
subsets of Z such that h^]T as n ^ co. For B a nonempty finite set in Z, 
pick an integer n(B) so that B is contained in t\.^for all n > n{B); f^{oS) = 
riieB [(1 + <^i)/2] is a nondecreasing function on Q^ whenever n > n(B). For 
)? > 0 and h real, the following conclusions hold. 

(a) For n>n(B), <yB>A ,̂/j,;,,+ is a nonincreasing sequence as n-^oo; 
<yg>^ pj^_ is a nondecr easing sequence as n^ co. 

(h)"The limits </B> ,̂ft,+ = hmA >̂̂ 2</B>A„,A,ft,+ ^nd ifB)p,h,- = Hm^̂ >̂ 2 

<fByAn,p,h,- both exist. 

Proof, (a) The external field h can be chosen to be site-dependent, say 
hi. If hi tends to oo, then hi tends to oo. Choose n > n> n(B), so that A„ c A;̂ . 
The FKG inequality implies that </B>A-^,,,,+ < </B>A„,^,;,,+ because the 
latter can be obtained ft-om the former by taking hi -^ oo for each ieA-^\A„. 
A similar proof shows that if ^ > « > n(B), then </B>A-^,, , ,- > ifB}A„,p,h,+ ' 

(b) This follows from part (a). n 

We now prove two lemmas from which Theorem IV.6.5 will follow. Let 
A be a symmetric interval of Z. For jS > 0 and h real, let PA,p,h,<o be the 
finite-volume Gibbs state on A with external condition cb corresponding to 
a summable ferromagnetic interaction / . We write <->A,f,,c5 for expectation 
with respect to PA,p,h,(a' 

Lemma IV.6.9. Letf^ico) = YlteB [ i( l + ^i)] fa^ ^ ^ nonempty finite subset 
ofZ. For P > 0 and h real, the following conclusions hold. 

(a) The limits ifB\+ = HmAtz</B>A,h,+«^'^</A,- =^'^'^K^z<fByA,h,-
existandforanykeZ </B+/C\,+ = < / B \ + andifs+k>h,- = ( / B X , - -

(b) For any real number /ZQ, hm;,_^^ ( / ^ X + = ( / ^ X ^ + and lim;,..^-
\JB/h,- — \JB/h^,-' 

(c) For any symmetric interval A containing B and any external condition 
^ . <fByA,h,- ^ ifByA,h,cb ^ ifB>A,h,+ ' 

(d) 0 < </^X,^ - < A \ . < 1̂ 1 «cOoX,+ - <cOo\-). 

Proof (a) By Corollary IV.6.8(b), the Hmits 
< / B X , + = ^}^ifB>A,h,+ and ifB^k>h,^ = lim</B+k>A,;«,+ 

AT2 AJI. 
both exist. The interaction strength / ( / —j) between each pair of sites ij is 
translation invariant. Hence if A contains B, then ifB+k)A+k,h,+ = ifByA,h,+ 
and 



IV.6. Infinite-Volume Gibbs States and Phase Transitions 121 

We can find a sequence {A„;« = 1,2, . . .} of symmetric intervals such that 
Ai c A^ + /c c A3 c A^ + ^ c . . . and |J^=i A„ = Z. By Corollajy IV.6.8(b), 
liniA^tz</5+fc>A„,/i,+ exists, where A„ = A„ for n odd, A„ = A„ + ^ for n 
even. The existence of this limit impHes that 

lim <fB+kyA,h,+ = lim </B+fc>A+fc,fa, + -
AtZ AtZ 

Combining this with the previous two displays, we conclude that ifB+k)h,+ 
equals </5>;,, + . That <^fB+k>h,- equals ( / B ) ^ , - is proved similarly. 

(b) Let A contain B, Since </B>ft,+ < </B>A,;,, + , 

(4.53) limsup</BX,+ < lim </B>A,^,+ = </B>A,V+-

Hence limsup;,̂ ^^^ < / A , + < limAtz</B>A,v+= </fi>V + - ^y ^^^ ^ ^ ^ 
inequality, if/? > /?o, then < / B \ , + < </B>;,, + , and so ifB}h^,+ ^ Hminf̂ ^̂ ^̂  
</5>^,+. It follows that lim^̂ ^̂ ^ </B>^,+ = </B>fto,+ • The second half of part 
(b) is proved similarly. 

(c) For any external condition c5, the field hi = h -\- YjjeA'^Ji^ ~J)^j met­
ing at site ieA lies between the field corresponding to the plus external 
condition and the field corresponding to the minus external condition. Hence 
the FKG inequality yields part (c). 

(d) The function/(co) = YjteB^i —fsi'^) is nondecreasing. Hence by the 
FKG inequality, if A contains B, then 

(4.54) 0 < <A>A,,,+ - ifB>A,K- ^ Z [< .̂->A,/,,+ - <OJ,yA-h,-\ 
ieB 

Take A t Z and use the fact that <cOf>;,,+ = <coo>;,,+ and <cOj->̂ ,- = <coo>^,-
to complete the proof of part (d). n 

Spontaneous magnetization occurs at P if and only if 

^ ^ ' ^ ^ dh^ l-^^ dh 

is positive. The next lemma relates m(jS,/z), m(jS, +) , and m(j8, —) to the 
quantities <COO))8,/J,+ ^^^ (^o)/?,^,-? defined as 

<^o>)8,/,,+ = lim oJoP^jj,+(dco), 

According to Corollary IV.6.8(b), the limits exist. Later, we will identify 
i^oyp,h,+ ^^^ <^o)i8,fi,- ^s the means of infinite-volume Gibbs states P ,̂ft,+ 
and Pp,h,-^ respectively. 
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Lemma IV.6.10. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For p>Oandhi=0, 

(b) For P>Oandh = 0, 

(4.55) 

<cOo> ,̂o,- = m{P, - ) = ^ ^ ^ ^• 

Thus spontaneous magnetization occurs at P if and only if <coo> ,̂o,+ = 
m(jS, + ) > 0. 

Proof (a) For any e > 0, let A^ be a symmetric interval such that 
<<^O)A ,/3,fi,+ ^ <<^o)/?,h,+ + -̂ Given another symmetric interval A which 
contains A ,̂ define ^^(A) = {/e A: A^ + / ^ A}. The sequence {(co^)^^ ;,+} 
is nonincreasing as A t Z [Corollary IV.6.8(a)], and so for any ieBX^) 

(4.56) 

Thus for all symmetric intervals A containing Â  

(4.57) <cOo>̂ ,ft,+ < . .. • Z < f̂>A,/?,ft,+ ^ <^o>p,h,+ + e. 

Recall the quantity M(A,j?,/z,+) = ^leA<<^i)A,/?,/!, + ? which is the mag­
netization in the state PAj,h,+ ' Since |A| • |5g(A)|~^ ^ 1 as A t Z , it follows 
from (4.57) that limAt2|A|"^M(A,j8,A, + ) = {(JOoyp,h,+ for any real h. But 
for /z ^ 0 this limit also equals m(P,h) [Lemma IV.6.4]. Thus for A =/= 0 
<coo>^ h + = ^iP^h) = —dil/(P,h)/dh. A similar proof shows that foTh=/=0 
<cOo>p,h,- = m(P,h) = -dHP.h)/dh. 

(b) In part (a) take h-^0^ and use Lemma IV.6.9(b) to obtain <coo> ,̂o,+ 
= m(p, + ) = -dil/(p,0)/dh^. This gives half of (4.55). The other half'is 
proved similarly. n 

Proof of Theorem IV.6.5. (a) The existence and translation invariance of 
the measures Pp^h.+ = w-limAtz^A,^,^,+ and Pp^^,- = ^-^^^Au^A,p,h,- fol­
low from Lemmas IV.6.1 and IV.6.9(a). Thus, Pp^h,+ and Pp^h,- belong to 
^p^^nJi^Q). Let ^ be a nonempty subset of Ji{Q). A measure PeS) is 
called an extremal point of ^ if P = XP^-\-{\ - X)P2 for 0 < A < 1 and 
P^Pi^^ impUes P^^P^^ P. The set of extremal points of ^^,^ n ^ , (Q) 
is the set of ergodic measures in ^pj^ [Theorem A.11.8(b)]. Hence in order to 
show that Pp,h,^ is ergodic, it suffices to prove that Pp^h^+ is extremal in 
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^py^csJiX^).^ We prove the stronger statement that Pp^h,+ is extremal in 
^p^^. Assume that Pp^h,+ = ^Pi + (1 - ^)^2 for 0 < /I < 1 and Pi, ^2^^^,^. 
Lemma IV.6.9(c) impHes that for any measure Pe^p^^ ^Q/B^P ^ 
lafBdPp,h,+ for all finite sets ^ in Z {/^{(o) =• 1). The integrals {[o^f^dP', B 
finite} determine P. Hence if either measure Pi in the decomposition of 
Pp^h,+ differs from Pp,h, + ^ then lafB^Pi < \afBdPp,h,+ for some finite set B, 
and so 

(4.58) fBdPn B^'^P,h,+ • f,dP^^,, ^ = A fsdP, + (1 - A) f,dP2 < 

This contradiction proves that Pp^h,+ is extremal in ^pj^ and thus is ergodic. 
A similar proof shows that Pp^h,- is extremal in ^^ j , and thus is ergodic. 

(b) If dil/{p,h)/dh exists, then by Lemma 'lV.6.10(b) <coo>^,;,,+= 
<<^o>/s,ft,-- Lemma IV.6.9(d) implies that for any finite subset B in Z, 
</B>^,f,,+= </B>^,h,-- Thus, Pp^h,+ =Pp,h,-' Conversely, suppose that 
p ^ ^ ^ =Pp^tt,-' If /^^O, then d\l/(P,h)/dh exists by Theorem IV.5.1(a). 
I f V - 0 , then 

0^oPA,p,0, + (do^) (OoPp,o, + idco) = o)QPp^o^_(d(D) 
Q Ja JQ 

^oPA,p,o,-(dco) = {cDoyp 0 , - ? 

n 

<^o>/3,o,+ = l i n i 
AjZ J 

= lim 
AjZ J 

and d\l/(P,0)/dh exists by Lemma IV.6.10(b). 
(c) Lemma IV.6.9(c) implies that if P ,̂ft,+ = Pp,h,- = Pp,h^ then ^^^^ and 

thus ^pj^nJi^Q) consist of the unique measure Ppj^. We have defined 
<^oVft,+ = limAtzI^<^o^A,^,^, + (̂ < )̂- But if d\j/{P,h)ldh exists, then 
PA,p,h,+ =>Pp,h^ and so <coo>^,ft,+= jaa;o^^,ft(^^)- The equality j^coo 
Ppj^(d(D) = m(P,h) follows from Lemma IV.6.10. 

(d) For p > jŜ , dil/(P, h)/dh does not exist at A = 0, and thus <coo> ,̂ft,+ =/= 
i^o)p,h,-' Therefore P^,o,+ 1̂  Pp,o,-- Formula (4.46) follows from Lemma 
IV.6.lb(b) and the fact that PA,/3,O,+ ^^P,O,+ andP^^^o,- =^Pp,o,--

(e) Since ^ ^ o ' ^ ^ s ( ^ ) is convex, it must contain all the measures 
{P^p%; 0 < A < 1}. This completes the proof of Theorem IV.6.5. n 

The key step in proving Theorem IV.6.6 is to calculate the free energy 
functions of the sequence {5^} with respect to the infinite-volume Gibbs 
state Pp,h,+ and Pp,h,-^ respectively. 

Lemma IV.6.11. Let J be a summable ferromagnetic interaction on Z. For 
P > 0, h real, and t real, define 

Cp,h, + (0 = lim—-log<exp(^5'J>^^^,+ , 
Atz |A| 

Cp,h,-(0 = lim—-log<exp(r5J>^^^,_. 
Atz|A| 

*The ergodicity of P^ ;, + and Pp^h,- ^Iso follows from Corollary A.11.12(a). 
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Then 

(4.59) c^,,, + (0 = c^,,,_(0 = -plHP.h^ tIP) - HP,h)l 

Proof. We first evaluate Cph+(t) for t > 0. Define 

CA(0 = 7—-log<exp(r5J>^,^,+. 

For A' a symmetric interval containing A, define ^A, A ' (0 = i^^Pi^'^A))A',^,/I, + • 
Since PA',^,;,,+ =^^^,/i,+ as A'T Z, |A|-i log^A,A'(0'^ CA(0 as A' T ^ for each 
/ > 0. We claim that 

(4.60) <exp(/5A)>A,/^,.,ai < ^A,A'(0 < <exp(/5'A)>A,/̂ ,̂ , + for t > 0, 

where cb is the external condition (bj = 1 for7G(A')^ cbj= — 1 forye A'\A. 
Indeed for / > 0, the function exp(/ Y^JSA^J) is nondecreasing on QA, and the 
right-hand (resp., left-hand) side of (4.60) can be obtained from the middle 
term by letting the external field hi -^ oo (resp., h^ -» — oo) for each ieA'\A. 
Hence (4.60) follows from the FKG inequality. Another application of FKG 
gives <exp(̂ »S'A)>A,/?,ft,- < <exp(/5'A)>A,^,i,,s- As in the proof of Theorem 
IV.5.5, 

-^log<exp(^5A)>A,,,.,- = -P-^U¥(AJ,h + t/P - ) - ^(AJ,h, - ) ] , 
|A| |A| 

-^log<exp(r5A)>A,/.,.,+ = -Pj^ [^(A,i8,^ + t/P, + ) - '¥(AJ,h, + ) ] . 
|A| iA| 

(4.61) 

Thus for / > 0 

-P-l-iyi^(AJ,h + t/p, - ) - '¥(AJ,h, - ) ] 

(4.62) 1̂ 1 

< CA(0 < -p^mAj^h^ tip, + ) - ^{KPA + ) ] . 

By Lemma IV.6.2 (independence of the specific Gibbs free energy of the 
choice of external conditions), we conclude that 

c^,,,^(0 = limcA(0 = -PlHP.h-^ t/P) - HP,h)l 
At2 

A similar proof yields (4.59) for c^^ _(0, t > 0. For t < 0, the function 
— Qxp(tY,jeA^j) is nondecreasing on Q^, and so (4.60) holds with the senses 
of the inequahties reversed. As above, we obtain (4.59) for Cp^f^+(t), t <0. A 
similar proof yields (4.59) for ĉ  ,, _(0, / < 0. 

Proof of Theorem IV.6.6. (a) For j? > 0, A ^ 0 and 0 < P < p,, h = 0, 
d\l/(P,h)/dh exists. Hence by the previous lemma and Theorem II.6.3, 
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SJ\A\-^ —dil/(P,h)/dh = m(P,h). The almost sure convergence follows 
from the ergodic theorem or Theorem n.6.4. 

(b) By the ergodic theorem, SJ\A\-^ <(COQ}PQ + = m(P,-\-) P^ Q+-a.s. 
and ^S /̂lAl -^ <coo>^ Q,- = ^(P^ —) Pp,o,--^'^' ^^ ^^^h case, the almost sure 
convergence cannot be strengthened to exponential convergence since by 
Theorem II.6.3 exponential convergence is equivalent to the existence of 
(cpQ+y(0) or (cp^o^-YiO), respectively. But d{l/(P,0)/dh does not exist for 
P > Pc^ and so by the previous lemma (c^ o,+)X0) ^^^ (< î?,o,-)XO) do not exist 
roTp> p,. 

(c) This follows from the ergodic theorem and Theorem A. 11.7(b). n 

We have now completed the proof of the existence of infinite-volume 
Gibbs states and studied convergence properties of the spin per site SJ\A\ 
with respect to these measures. In the next section, we show how to charac­
terize the set of translation invariant infinite-volume Gibbs states in terms 
of a variational principle. 

IV.7. The Gibbs Variational Formula and Principle 

Let / b e a summable ferromagnetic interaction on Z. The set ^pj^ of infinite-
volume Gibbs states was defined as the closed convex hull of the set of weak 
Hmits of finite-volume Gibbs states. The Gibbs variational principle is 
another approach to studying the infinite-volume ferromagnet. It charac­
terizes the set of translation invariant infinite-volume Gibbs states directly, 
eliminating the need to consider weak limits at all. The Gibbs variational 
principle expresses the specific Gibbs free energy il/(P, h) as the supremum of 
an energy functional minus an entropy functional over ^s(Q). The set of 
measures at which the supremum is attained is exactly the set ^^ j , n ^s(Q) 
[Theorem IV.7.3]. We recall that in the Gibbs variational principle for the 
discrete ideal gas [Theorem III.8.2], there was a unique solution for each 
value of j6. By contrast, for p > P^,h = 0, the Gibbs variational principle for 
ferromagnets has nonunique solutions since the set ^^ Q n ^ 5 ( Q ) contains 
the distinct measures Pp^o,+ ^ ^P,O,-^ ^^^ ^U convex combinations. 

Before stating the Gibbs variational principle, we consider an analog 
which characterizes the finite-volume Gibbs state PA,i3,ft,c5- Let A be a sym­
metric interval of Z and c5 an external condition. Given a probabihty measure 
P on ^ (QA)» we define the energy in P to be 

U(\h,d>;P)= H^^,^^(co)P(dcol 
J Q A 

where H^^^ is the Hamiltonian defined in (4.35). 4^^ (P) denotes the 
relative entropy of P with respect to n^^Pp, 
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[ '°g:y?l^("^)^(^^)= ^ log-^^-P{oj}. 

Z{A,P,h,cb) is the partition function Jfj^exp[—jS^^^;, s(a))];iAPp(Jct)). 

Proposition IV.7.1. For any jS > 0, h real, and external condition cb, 

logZ(A,p,h,&) = sup { -PU(A,h ,&;P) - li'\(P)}, 

and the supremum is attained at the unique measure P = PA,p,h,w-

Proof. For any probability measure P on Q^, 

j8(7(A, h,d>;P) + P/^p^iP) + log Z(A, p, h, cb) 

PM 
JSQA \ S ^nr^Vwi-pH^,H.^{(o)-] • n^P^{co}/Z(A, p,h,(b)) ' ^^"'^-

The sum equals the relative entropy of P with respect to PA,p,h,(o' Hence 

PU(A, h,aj;P) + li'^.^iP) + log Z(A, p, h,aj)>0 

and equality holds if and only if P = P\,p,h,cb [Proposition 1.4.1 (b)]. D 

We now introduce the functionals which appear in the Gibbs variational 
principle. Let P be a translation invariant probabiUty measure on ^(Q), A a 
symmetric interval, and n^ the projection of Q onto Q^ defined by (TÎ CO)̂  = 
(Di, IGA. Define a probabiHty measure TI^P on J*(QA) by requiring njs,P{F} = 
P{nX^F} for subsets Pof Q^ and consider the functional 

^A,/j,c5(A)(^)7C/i 
J Q A 

U(A, K cb{A); n^P) = HA,H,coiA)(^)^AP(do^), 
JQA 

where d)(A) is an external condition. /^^^ (^AP) denotes the relative entropy 
of Tĉ P with respect to Tĉ Pp. 

Lemma IV.7.2. Let J be a summable ferromagnetic interaction on Z. Then 
for jS > 0 andh real, the following conclusions hold. 

(a) lim^iz IAI "̂  log Z(A, p, h, co(A)) exists and is independent of the choice 
of{cb{A)}. The limit equals — jSi/̂ (jS, h), where i/̂ (jS, h) is the specific Gibbs free 
energy. 

(b) For any PeJtJ<S^, u{h,P) = \\vcLf^^^^\A\~^lJ{A,h,(b{A)\niJ') exists 
and is independent of the choice o/{d>(A)}. The limit is given by 

(4.63) u{h\P) = -\Y. ^(^) o)oWj,P(dco) -h\ o^^P{doS) 

and is a bounded, affine, continuous functional of PeJiJ^. The functional 
u{h\P) is called the specific energy in P. 
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(c) For any PsJi^^), lim^>^2|A|"^/i^V^(7r^P) exists and equals I^^P), 
the mean relative entropy of P with respect to Pp. Ip^\P) is an affine, lower 
semicontinuous function of Pe MJ^. 

Proof, (a) Lemma IV.6.2. 
(b) Since P is translation invariant, t/(A, h, c5(A); TT^P) equals 

cooCDkP(doj) - X Z J(l-J)o^j 
) ieAjeA^ 

(4.64) 

coQP(da)) 

-h\A\ a)QP(dco), 

where A (̂A, k) is the number of ordered pairs /, J in A for which i —j = k. 
As in the proof of Lemma IV.6.2, the c5-term is o(\A\) as A f Z [see (4.42)]. 
Since for each k N(A, k) < |A| and |A|-'A^(A, ĉ) ^ 1 as A t Z, (4.63) follows. 
The continuous functional u„(h,P)= —jYj\k\<nJ(^)in^o^k^(^^) - ^JQ 
coQP(da>) converge uniformly over ^^(Q) to u(h; P) as « ^ oo. Hence u(h; P) 
is continuous. The boundedness and affmeness ofu(h; P) are obvious. 

(c) This is proved in Section IX.2. n 

The next theorem is due to Ruelle (1967) and Lanford and Ruelle (1969). 
Part (a) is called the Gibbs variational formula. Part (b), which characterizes 
the translation invariant infinite-volume Gibbs states as solutions of this 
formula, is called the Gibbs variational principle. Heuristically, the theorem 
follows from Proposition IV.7.1 by dividing each term in the latter by |A| 
and taking A t Z. 

Theorem IV.7.3. Let J be a summable ferromagnetic interaction on Z. Then 
for P > 0 and h real, the following conclusions hold. 

(a) -mP.h) = sup,,j,^,^,{-pu(h;P) - 4'\P)}. 
(b) The set ofP e JiJS^ at which the supremum in part (a) is attained equals 

^fi,h ̂  ^s(^)? the set of translation invariant infinite-volume Gibbs states. 

First, we will check the consistency of the theorem with Theorem IV.6.5, 
which analyzed the structure of the set ^^j^ n Ji^i^). Then, we will prove the 
Gibbs variational formula using level-3 large deviations. In Appendix C.5 
we sketch a proof of the Gibbs variational formula and principle for a much 
larger class of models than we are now considering. The proof is due to 
Follmer (1973) and Preston (1976). In Appendix C.6 we solve the Gibbs 
variational formula for finite-range interactions, using techniques to be 
developed in Chapter IX. 

The Gibbs variational principle makes expUcit an energy-entropy com­
petition which underlies the ferromagnetic phase transition. First consider 
P = 0. Then in the Gibbs variational formula the energy term is absent, 
and supp^^,^(^){-/^^^(P)} = -infpe^^(Q)/p^X^) is attained at the unique 
measure Pp. This is consistent with Theorem IV.6.5 since for small P 
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^pj^nJiX^ consists of the unique measure P^j^ and Ppj^^=^P^ as ^^0^ 
[Problem V. 13.1(d)]. Now consider large jS. Then in the Gibbs variational 
formula the energy term dominates. For h> 0 

sup { — u(h;P)} = sup \ I J(k) (OQOJJ^CIP + h COQCIP 

is attained at the unique measure P^ , which is the infinite product measure 
with identical one-dimensional marginals d^. This is consistent with Theorem 
TV.6.5 since for all h>0 ^p^nJi^^) consists of the unique measure 
P^h and Ppj,=>P^^ as j8 -> 00 [Problem V. 13.1(d)]. P^^ is supported on the 
totally aligned plus-ground state cd+ (cd+j= 1 for allyeZ). On the other 
hand, if /z = 0, then supp^^ (Q) { —w(0;P)} is attained at all the measures 
p<̂ ) = AP̂  + (1 - A)p^ , 0 < / l < l . * This would be consistent with 
Theorem IV.6.5(d)-(e) if whenever P^ is finite, Pp,o,+ (resp., Pp,o,-) con­
verged weakly to P^^ (resp., P^^) as ^ -> oo. A proof of this statement for 
models on Z^, Z) > 2, is sketched in Problem V. 13.1(d). 

We now derive the Gibbs variational formula using level-3 large devia­
tions. The interval A consists of the 2N + 1 integers 7 with |7| < Â . In order 
to ease the notation, we consider h = 0 and write Z(A, jS, 0) as 

1 Z(nJ) = exp X J(i-J)cOiCOj 
'i,j=i 

Pp(dco), 

where n = IN + 1. A similar proof is vaUd for h^O. A relatively easy case 
is the Ising model on Z, for which 

Z(nJ) = exp PJdcol / > 0. 

This equals the quantity Zj^^ in Theorem IT?.3(c) with G((jOj,a)j+i) = 
P/cDjCOj+i. Hence by (2.42) 

- # ( i 6 , 0 ) = lim-logZ(«,iS) = sup ip/ I CO, co^P{dco) - mP) 

This gives the Gibbs variational formula since jnC0iC02^P = JQCOQ^I dP}^ 
We now prove the Gibbs variational formula for any finite-range interaction 
/ . We write 

1 
£ / ( / - j)(Di(D^ = ^/(O) + X ^( '̂ - J)^i^j 

'ij=l l<j<i<n 

n—1 n—k 

^ k=i j=i 

*The set of maximizing measures for suppg^ ^Q^{ — U(0;P)} may contain other measures 
besides {P^^\ 0 < 2 < 1} (depending on J). 
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Thus if / has range L and n> L then 

129 

Z{n,p) Qxp\^ 
L 

I 
fc = l 

J(0) + X J(k) X CDjOJ.^j 
j=l 

Ppidcoy 

Let R„((o, •) denote the empirical process «~^Xfc=ô Tfcy(«,a>)(*). where T is 
the shift mapping on Q. and Y(n, co) is the periodic point in Q obtained by 
repeating (Y^ico), ¥2(0)), . . . , Y„(co)) periodically (Yj(oj) = cOj). We have 

_ _ In-k J 
coiCOfc+iî „(co, dco) = - ^ ^j^k+j + - X ^ cyclic terms, 

where the /: cychc terms are cOjCOk+j.^J = n — k -\- I, ... ,n. Thus uniformly 
in CO 

L z 
fc=i 

= 0(L). 

By the comparison lemma, Lemma II.7.4, Z{n, fi) has the same leading order 
asymptotic behavior as 

Z(«,jS)= exp<^«^ 1 

k = l 

J(0) + I ; Jik) (diCO,^iR„{cO,dQ)) PJdw) 

exp[-npu(0;P)m'KdP), 

where Q^^^ is the distribution of /̂ „(co, •) on ^s(Q). By Theorem IX.1.1, 
{21^^} has a large deviation property with a„ = n and entropy function /^^\ 
Varadhan's theorem, Theorem ILT.l, yields the Gibbs variational formula: 

-I^HP,0) = lim-logZ(nJ)= sup {-Pu(0;P) - P/\P)}. 
«-̂ oo n PeJi^iO.) 

We finally prove the Gibbs variational formula for an infinite-range, 
summable interaction / . Take L > 0 and define Jj^ik) = J(k) {ov\k\ < L and 
Jj^(k) = 0 for 1̂ 1 > L. We use the result just proved for the finite-range 
interaction J^. By taking L sufficiently large, we can make the quantities 
-^xl/(P,0) and supp^^^(^){-jSw(0,P) - /^^^(P)} corresponding to J^ arbi­
trarily close to the respective quantities corresponding to / . This completes 
the proof of Theorem IV.7.3(a). 

For the general ferromagnet, the translation invariant infinite-volume 
Gibbs states are also characterized by an entropy principle which is equiva­
lent to the Gibbs variational principle. The entropy principle involves an 
energy constraint, expressed in terms of the specific energy u(h; P) in the 
state PeJiX^)' For each jS > 0 and h real, define the set 

Ap^y^ = {ueR\ w = w(/z;P) for some P 6 ^ ^ , ^ n ^ , ( Q ) } . 

For )8 > 0, /? =̂  0 and 0 < j8 < jS„ /z = 0, ^^^^ n Ji^i^) consists of the unique 
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measure P^ ;,, and so Apj^ is the single point {u{h;Ppj)}. The situation for 
P > P^,h = 0 can be different since it is possible for ^^ Q ^ -^si^) to contain 
two measures F^ and P2 for which w(0; F^) ^ w(0, F2). Since w(/z; P) is a con­
tinuous functional of F, A^Q is a compact interval of R. The next theorem 
generalizes the entropy principle in Theorem IV.3.3, which characterized the 
finite-volume Gibbs state Fj^pj^}^ 

Theorem IV.7.4. Let J be a summable ferromagnetic interaction on Z. For 
P > 0,hreal, andue Apj^ let J^pj^^^ denote the subset of {FE^s(Q):u(lk;F) = 
u] at which inf {I^^\F): F e Ji^^), u(h ;F) = u} is attained. Then the following 
conclusions hold. 

(a) [jueAp,,AH,u = ^p,hr^J^s(^y 
(b) For P > Pc^ h = 0, and u = u(0;FpQ+), the set J'p^o,u contains (at 

least) all the infinite-volume Gibbs states P̂ f̂  = AP̂  0,++ (1 ~'^)^^,o,-, 
0 < /I < 1. 77?w^inf{/^^^(P): P e ^ , ( Q ) , w(0;P) = w(0;P^ 0,+)} is not attained 
at a unique measure. 

Froof. (a) Given Fe^p ^r\MJ^, set u = u{h;F). Then by Theorem 

IY.7.3 

-pil/(li,h) = -fiu - I^^\F) < -Pu - mfm^\F): Feyg,(Q),u(h;F) = u} 

(4.65) < sup {-Puih;F)-fp^\F)}= -Pil/(P,h). 

This implies that FeJpj^^^. Now assume that PeJ^^ ;, „, some ueApj^^ does 
not belong to ^p,^ n ^^(Q). Then for any FQ e^p^^^n JiJ^ with u(h;Fo) = u 

-Pu- I^/\F) = -Mh;P) - I^'\P) 

< -mP.h) = -Pu(h;Fo) - I^\Fo) = -pu - F;\F,). 

Thus II^\FQ) < I^p^\F). This contradicts the hypothesis that P belongs to 
^p,h,u' Part (a) is proved. 

(b) By symmetry w(0;P^o,+) equals w(0;P^o,-)-Hence for alio </I < 1, 
u(0;F^p%) equals w(0;P^ o,+)- Since P̂ f̂  belongs to ^^ ; , n ^ , ( Q ) , the proof 
of part (a) shows that F^p% belongs to 'j^p,hMO;Pp^o,+)' ° 

The nonuniqueness property of I^^^ expressed in part (b) of Theorem 
IV.7.4 is a level-3 analog of a nonuniqueness property of the function 
Ip^oiz), P > Pc^ discussed at the end of Section IV.5. The set of means 
{ia<^oPp%(dco)l^ ^ A < 1} of the measures {F^p%;0 < A < 1} is exactly the 
interval [_m(p, —),m(p, + ) ] on which Ip^oi^) attains its infimum of 0. 

One of the main results in this chapter is that if ^̂  if finite, then for p > Pc 
and h = 0 there exist nonunique, translation invariant infinite-volume Gibbs 
states P^,o,+ and P^,o, + ' In the next chapter we will study ferromagnetic 
models on the lattices Z^, Z)G {2,3, . . . } . These models share many features 
with the models on Z. An important contrast is the fact that ft is finite for any 
nontrivial interaction. 
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IV.8. Notes 

Many of these notes apply with little or no change to ferromagnetic models 
on Z^, Z)e {1,2, . . . } . These models will be treated in the next chapter. The 
notes which do apply are so indicated. 

1 (page 88) (Z^, Z) > 1). The similarities between the phase transitions 
for liquid-gas systems and ferromagnetic systems are discussed by Stanley 
(1971, Chapters 1 and 2). A model that is based on analogies between the two 
kinds of systems is the lattice-gas model [Lee and Yang (1952), Stanley 
(1971, Appendix A)]. 

2 (page 89) (Z^, Z) > 1) (a) Introductions to ferromagnetic models and 
related lattice systems can be found in Griffiths (1971, 1972), Spitzer (1971), 
Georgii (1972), Thompson (1972), Kindermann and Snell (1980), and Gross 
(1982). Ruelle (1969, 1978), Lanford (1973), Preston (1974b, 1976), Israel 
(1979), and Simon (1985) are advanced references. Wightman (1979) is a 
beautiful overview of the thermodynamics of phase transitions (based on 
Gibbs's geometric approach through convexity) and the mathematics of 
lattice systems. Lebowitz (1975) is a useful review of properties of ferromag­
netic models. Also see Gallavotti (1972a). 

(b) A rough sketch of the Ising model first appeared in a 1920 paper of 
Lenz, but the model was named after his student, E. Ising. Ising (1925) con­
cluded that there is no phase transition forD=l but erroneously tried to 
generalize his argument to D = 2. Brush (1967) discusses the history of the 
model. 

3 (page 93) (Z^, JD > 1) The discussion of correlations in Section IV.2 is 
based upon unpubHshed lecture notes of A. Sokal and upon Wilson (1979). 

4 (page 94) (Z^,Z) > 1) The divergence of the specific magnetic suscep-
tibiUty x(P^^) = dm(P,0)/dh at jS = j^^ is related, in a liquid-gas system, to 
the phenomenon of critical opalescence, which is the strong scattering of 
light by the system at the critical point [Stanley (1^71, Chapter 1)]. The 
strong scattering is caused by abnormally large density fluctuations in the 
system. 

5 (page 95) (Z^, D > 1) (a) A useful generalization of the finite-volume 
Gibbs state PA,p,h ^^ (4.4) is to allow many-body interactions [see Appendix 
C.3]. A second generaUzation is to replace the measure p = 2^1 + i^_i by a 
nondegenerate symmetric probability measure p on [R for which JR^'""'^ 

p{dx) is finite for all a > 0. The measure p is called a single-site distribution. 
For example, see Lebowitz and Presutti (1976), Newman (1976a, 1976c), 
Ruelle (1976), Sylvester (1976b), Cassandro et al. (1978), and van Beijeren 
and Sylvester (1978). A third generalization is to allow vector-valued spins. 
For example, the J-vector spin model corresponds to spins taking values in 
the surface of the unit sphere in IR"̂ , (ie {2,3, . . . } ; the single-site distribution 
is p(dx) = ^i(ll-^ll), XG [R'̂ . The Heisenberg model is the case d = 3. 

(b) Ferromagnetic models have been applied in a number of different 
areas. A useful technique for studying quantum fields is first to study the 



132 IV. Ferromagnetic Models on Z 

fields on a lattice, then to let the lattice spacing shrink to zero. The lattice 
approximations are ferromagnetic models whose single-site distributions 
have the form const •exp( — jP(x))(ix, P(x) an even polynomial [Simon 
(1974), Guerra, Rosen, and Simon (1975), Rosen (1977), Glimm and Jaffe 
(1981)]. Stochastic models closely related to spin systems are studied in 
percolation theory [Kesten (1982), Aizenman and Newman (1984), Durrett 
(1984a, 1984b)] and in the theory of interacting particle systems [Spitzer 
(1970), HoUey and Stroock (1976a, 1976b, 1977), Liggett (1977, 1985), 
Griffeath (1978), Durrett (1981)]. 

6 (page 97) (Z^,D > 1) In order to avoid the nonphysical values ^ <0 
in Theorem IV.3.3, restrict Uio the interval (11^^, UQ), where UQ = Hm^̂ o+ 
t/(A,/^;P^,^,,) = ia^H^Ao^)n^Pp(dco) = - i / ( 0 ) | A | . 

7 (page 98) (Z^,D > 1) The Curie-Weiss model is discussed in Kac 
(1968) and in Thompson (1972). It is also known as the Husimi-Temperley 
model [Husimi (1953), Temperley (1954)]. 

8 (page 106) (Z^, D > \) The first Curie-Weiss bounds on p, and m(P, h) 
were found by Fisher (1967a), Griffiths (1967c), and Thompson (1971). For 
subsequent work on such bounds, see Cassandro et al. (1978), Simon (1980b), 
Pearce (1981), Sokal (1982a), Slawny (1983), and the references Usted in 
these papers. Newman (1981b) proves the bound m(P,h) < m^'^(P,h) for 
P > 0 and h>Ohy using a connection between the Curie-Weiss model and 
Burger's equation. 

9 (page 107) (l^,D> 1) Whether m(P,, + ) equals 0 or is positive 
depends on the model [Lebowitz and Martin-Lof (1972, page 282)]. The 
first holds for the Ising model on Z^ [see (5.18)] while the second is believed 
to hold for the model on Z with J(k) = k~^,k =f=0 [see Note 10c]. In general, 
the value of m(jS ,̂ + ) is not known. 

10 (page 107) (Z only) (a) Simon and Sokal (1981) have an entropy-
energy proof of the fact that Y^kezl^^i^) < ^ implies that j8̂  is infinite. 
Dobrushin (1968c), Ruelle (1968), and Bricmont, Lebowitz, and Pfister 
(1979) show by different methods that if X/cez|^k(^) is finite, then there 
exists a unique infinite-volume Gibbs state for all j5 > 0 and h real. This 
implies that jŜ  is infinite [Theorem IV. 6.5]. The latter three papers prove 
analogous results for interactions / of arbitrary sign. 

(b) We show that jŜ  is finite if / > 0 and J(k) ^ lA:!""", some 1 < a < 2 
[Theorem IV.5.3(c)]. There exist Z? > Oand 1 < y < 2 such that/(^) > blk]"^ 
for all ^ :f 0. By Theorem V.4.3(f), P^ corresponding to / i s less than or equal 
to j8̂  corresponding to the interaction J{k) = Z)|^|~^, k ^Q. For the latter 
interaction, Dyson (1969a) proves that 

liminf lim cOiCOjP^ ^ o(d(o) > 0 
\i-j\^co A t z j Q ^ 

for all sufficiently large P (long-range order). 

Proposition IV.8.1. If long-range order holds, then P^ is finite. 
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Proof. By the GKS-2 inequality [see Remark V.4.1(a)], jn^co^co^P^^ o((ico) 

< \a^o)iO)jPA,ii,o, + (^^)^ where PA,P,O,+ is the finite-volume Gibbs state with 
the plus external condition. By Theorem IV.6.5(a), Lemma IV.6.10(b), and 
Corollary A. 11.12(b), 

lim lim co.coP^,^ o, + (̂ < )̂ = [ ^ ( i ^ ,+ ) ]^ 

Thus 0 < liminf|f_j|^oo ^^^AtziaA^i^jPAj,o(d<^) ^ l^(P^ +)V for all suffi­
ciently large p. It follows that P^ is finite. n 

(c) The phase transition for the interaction J(k) = k~^ (^ ^ 0) [FrohHch 
and Spencer (1982a)] is beheved to be an unusual kind. Namely, m(jS, + ) is a 
discontinuous function of jS at jS = j?̂ : m(j?, + ) > const > 0 for jS > jŜ  and 
m(P, + ) = 0 for 0 < P < P^, This was first discussed by Thouless (1969) 
and proved in a related hierarchical model by Dyson (1971). Also see Simon 
and Sokal (1981) and Sokal (1982b). 

(d) There is a large literature concerning models on Z. For example, see 
Dyson (1969b, 1972), Dobrushin (1973), Kolomytsev and Rokhlenko (1978, 
1979), Cassandro and Olivieri (1981), Rogers and Thompson (1981), Simon 
(1981), and Imbrie (1982). 

11 (page 115) (a) (Z^,D > 1). The proof that the measures P ,̂ft,+ and 
^p,h,- ^^^ ergodic follows Slawny (1974, page 300). The latter paper uses 
the GKS-2 inequahty instead of the FKG inequality. The rest of Theorem 
IV.6.5 and Lemmas IV.6.9-IV.6.10 are due to Lebowitz and Martin-Lof 
(1972). 

(b) (Z only). Fannes, Vanheuverzwijn, and Verbeure (1982) prove that if 
J(k) is monotonically decreasing for k sufficiently large (e.g., J{k) = l/cl""", 
^ =/= 0, for 1 < a < 2), then every infinite-volume Gibbs state is translation 
invariant. The proof is based on energy-entropy estimates. 

(c) (Z^,D > 1). The fact that ^ ^ j , consists of a unique measure for all 
sufficiently small P [Theorem IV.6.5(c)] also follows from a general unique­
ness theorem of Dobrushin (1968a). See Lanford (1973, Section C2) and 
Simon (1979b). 

(d) (Z^,D> 1). Part (e) of Theorem IV.6.5 can be strengthened. The 
following theorem is due to Lebowitz (1977). 

Theorem IV.8.2. Let J be a summable ferromagnetic interaction which is 
irreducible on Z [see page 96]. Pick P > Pc ^^<^h that d(Pil/(P,0))/dp exists. 
Then ^^Q n ^^(Q) consists precisely of all the measures P^^l = AP ,̂o,+ + 
(1 - X)PpQ_, 0 < A < 1; d(Pil/{P, 0))/5jS exists for all but at most countably 
many values of P > P^. 

The quantity d(Pil/(P,0))/dp is called the specific energy [Problem 
IV.9.11]. 

12 (page 116) (Z^,Z) > 1) Symmetry breaking is discussed further in 
Glimm and Jaffe (1981, Section 5.3). 
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13 (page 117) Here is an interesting open problem. According to 
Theorem 11.6.1(b), for jS > jS, and any s > 0, "̂̂ ,0,+ {^A/|A| > m(j?, + ) + s} 
converges to 0 exponentially fast as AfZ . By Theorem IV.6.6(b), for 
jS > jS, and 0 < e < 2m(i?, +) , PP,O,+ {^AI\^\ ^ ^(P^ + ) - e} converges to 0 
but not exponentially fast. What is the decay rate of these probabiUties? 

14 (page 118) The FKG inequaHty originated in work on percolation 
models [Harris (I960)] and has been generaUzed and apphed in many ways. 
See Battle and Rosen (1980), Newman (1980, 1984), Eaton (1982), Graham 
(1983), and the references Usted in these papers. 

15 (page 128) Let T = {1, - 1 } and define ^ . (F^) to be the subset of 
J^(r^) consisting of probabiHty measures T with equal one-dimensional mar­
ginals. Clearly, if P belongs to ^^(Q), then T = 712^ belongs to ^^ ( r^ ) . For 
the Ising model on Z, we have 

-m^,0)= sup \p/ t cD.cD^Pidco) - Il'KP)} 

= sup <P/ (O^C02T(d(0) 

te^,(r2) I Jr2 

- inf{/^^)(P):PG^,(Q),7r2P = T } L 

By Theorem IX.3.3, inf{/^^^(P):PG^,(Q),7r2P = T} equals the function 
II^KT) defined in (9.6). Hence, 

(4.66) -mP.O)= sup j j S / f (D,co2T(dco)-Il%(T) 
Te.#s(r2) c Jr2 

The latter can be derived directly if one expresses the partition function 
in terms of the empirical pair measure and uses Theorem IX.4.3 for a = 2. 
Equation (4.31) in Section IV.5 gives another formula for — jSi/̂ (jS, 0) in terms 
of the larger eigenvalue of a 2 x 2 positive matrix. Theorem IX.4.4 shows 
the equaUty of the expressions for —^(/̂ (j8,0) given in (4.31) and (4.66). 
Any finite-range interaction on Z can be handled hke the Ising model on 
Z [Appendix C.6]. 

16 (page 130) (Z^, D > I) There is a contraction principle related to the 
entropy principle in Theorem IV.7.4. The function 

Ii'\h;u) = mf{I^'KP): PeJiMMh'.P) - u} 

is the entropy function of the Tr^P^-distributions of {//̂  J |A |} . The function 
— 7^^\h;u) is called the specific microcanonicalentropy. See Lanford (1973, 
Chapter B), Aizenman and Lieb (1981), and Simon (1985). 

IV.9. Problems 

Many of these problems extend with little or no change to ferromagnetic 
models on Z^, Z ) G { 1 , 2 , . . . } . These models will be treated in the next 
chapter. The problems which do extend are so indicated. 
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IV.9.1. (Z^,i) > 1). Prove Proposition IV.3.2. 

IV.9.2. (Z^,Z) > 1). Prove that if /z > 0, then as jS ^ oo the finite-volume 
Gibbs states {PA,P,O'^P > ^} converge weakly to the unit point measure 
3^^;C0+ is the configuration in Q^ defined by dj+j = 1 for eachye A. 

The next four problems concern the Curie-Weiss model [Section IV.4]. 

IV.9.3. Verify formula (4.12) and the table accompanying Figure IV.3. 

IV.9.4 [Kac (1968, page 247)]. This problem shows how to derive the limit 
(4.19) without using large deviations. 

(a) By substituting in (4.11) the identity 

(4.66) exp(i;;^) = - ^ | Qxp(ty - ^t^)dt, y = ^nPf^z, 

and carrying out the Q^^\dz) integration, prove that 

lim - log Z{n, jS, h) = sup < log cosh / — '̂ —Ĵ  ^ >. 

(b) Using Problem VL7.14, prove that 

sup {log cosh t - i(i8/o)-H^ - Phf] = sup {ii^/oz^ + Phz - /^^>(z)}. 
teU zeU 

IV.9.5. Equation (4.19) shows that for the Curie-Weiss model, the specific 
Gibbs free energy il/(IS,h) equals -jS"^ ^^Pzeu {iPfo^^ + fihz - I^^Xz)]. 

(a) For j8 > 0 and h-j-O, prove that d^C^, h)/dh exists and -d\l/(p, h)/dh 
= z(P, h), where z()S, h) is specified in the table accompanying Figure IV.3. 

(b) For jS > 0 and /z > 0, prove that (I^'Y(z(P,h)) > jS/o. 
(c) For /? > 0 and h > 0, prove that dz(p, h)/dh > 0, dz(P, h)/dp > 0, and 

d^z(P,h)/dh^ <0. 
(d) Verify the conclusions of Theorems IV.5.1 and IV.5.2 for i/̂ (jS, h) and 

for the Curie-Weiss specific magnetization. 

IV.9.6. [Ellis (1981)]. Let c^,,(0 = lim„^^«-Mogj^^exp[^^„(co)]P,,^,,(Ja;), 
where Pn,p,h is defined in (4.9). The function c^^ is the free energy function of 
the sequence {5„; ̂  = 1,2, . . . } for the Curie-Weiss model. 

(a) Prove that Cp^^i^) = sup,^^{tz - ip^hi^)} + inf,^^ipj^(z), where z ,̂;,(z) 
= I^'\z)-(i^/oz' + ^hz). 

(b) 4,,(0) exists for jS > 0, A :^ 0 and 0 < jS < /Q-^ h = 0, but ^,,(0) 
does not exist for p > ^o ^ h — 0. Prove this statement first by explicit cal­
culation and then by applying Theorems II.6.3 and IV.4.1. 

(c) Evaluate the Legendre-Fenchel transform of Cpj^. What is the rela­
tionship between the Legendre-Fenchel transform and the function Ipj^ in 
(4.17)? IHint: Theorem VI.5.8.] 
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The remaining problems concern general ferromagnets on Z. 

IV.9.7 (Z^,i) > 1) [Pearce (1981)]. Let / be a summable ferromagnetic 
interaction on / and set / Q = Zfcez « (̂̂ )- Let m(jS, /z) be the specific magneti­
zation corresponding to / and m^^(jS,/z) the specific magnetization for the 
Curie-Weiss model with interaction / o / | ^ | - F^r h = 0, m^^{P,h) equals 0 
and for /? > 0, m^^(jS,/z) equals the unique positive root z(P,h) of (4.14). 
The present problem shows that for j8 > 0 and h>0, m^^(j?,/z) > m(P,h) 
and thus that j8, > /o"^ [Theorem IV.5.3(a)]. 

Let A be a symmetric interval. For each i,jeA, define J^(z — y) = Xfcez 
/ ( / —j — k\A\). Fix P > 0 and h>0. Let PA,p,h be the finite-volume Gibbs 
state corresponding to / and PA,p,h,p the finite-volume Gibbs state corre­
sponding to /^ (p stands for the periodic boundary condition). For ieA, 
define 

J«A J "A 

Since h>0 and Jlf'^>J(i-JX Table V.l(c) implies <CO^>A,P ^ <Cf̂f>A 
[page 147]. 

(a) Show that the sum YjjeA^Ai^ ~j) is independent of / and A and 
equals/o = X/cez^(^)-

(b) Denote by <->o expectation with respect to exp(j8(/o^ + h) Y^jeA^j)' 
K^PpidoS)' ( I /ZQ) , where ZQ is a normalization. Prove that 

^ -<^f>A,p= U ^ - ( ^ t ) e x p j | X Jj^(i-j)(z-a)i)(z-coj)i) •—, 

where z = z(P,h) and Z = <Qxp{iYij^^J^(i -j)(z - co )̂(z - (Oj)}}o' 
(c) Prove that for each positive integer r and sitey e A 

(z - co/explpifoz + h)(Oj^p(dcDj) 
J{ i , - i } 

= i(z + l)''exp[)8(/oZ + h)] {a(p,h) + ( - l)'-^(i?, hy} 

is positive, where z = z(jS, /z) and a(jS, h) = exp[ —2jS(/o^ + ^)]- \_Hint: Use 
(4.14).] 

(d) By expanding the exponential in part (b) and using part (c), prove that 
z{p,h) > <a),>A,p > <co,>A. Deduce that 

m ^^i?, h) > m(p, h) = lim - | - X <CO,>A and p, > /^K 
AtZ | A | ieA 

IV.9.8 (Z only) [Sakai (1976), Bricmont, Lebowitz, and Pfister (1979)]. Let 
/ be a summable ferromagnetic interaction on Z for which Yjksz \^J(^) is 
finite. This problem shows that for all jS > 0 and h = 0 there exists a unique 
translation invariant infinite-volume Gibbs state P^Q. Theorem IV. 6.5 
implies that P^ equals oo, thus proving Theorem IV.5.3(b). 

file:///_Hint
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By Lemma IV.6.9(c), it suffices to prove that Pp o + equals Pp o - ^ r ^^ 
j8 > 0. 

(a) Let Z be any cylinder set in Q. Prove that for all sufficiently large 
symmetric intervals A 

P A . , , O , - { 2 } <exp[4^ X \k\Jm-PA.,>.o.A^}-
keZ 

\_Hmt: Firstprove the bound for cylinder sets of the form {COGQ: cô  = cô  
for each ZGA}, where A is a symmetric interval and a) is a configuration 

(b) By Theorem IV.6.5(a), Pj^^p^o,+^Pp,o,+ and PA,P,O,-=^Pp,o,- as 
A t Z. Deduce a contradiction to part (a) if P^ Q + ^ ^^ o - [_Hint: Theorem 
A.11.7(b)]. 

IV.9.9. (Z^,/) > 1) Prove (4.38). iHint: Suppose that/G^(Q) depends only 
on the coordinates cô ,̂ . . . , co; . If A contains the sites /^, . . . , /,., then/can be 
written in the form Yj=\ ̂ iZio where ^ is a positive integer, a^, . . . , â  are real 
numbers, and Z^, . . . , Z^ are cylinder sets such that 7r̂ (Zf n ^ A , ^ ) = ^A^J- ] 

IV.9.10. (Z only). Fill in the details in the proof of the Gibbs variational 
formula for an infinite-range, summable interaction on Z and for an arbi­
trary value of h. 

IV.9.11. (Z^,D > 1). Let / be a summable ferromagnetic interaction on Z. 
H^f, denotes the Hamiltonian defined in (4.3); PA,p,h the corresponding 
finite-volume Gibbs state defined in (4.4); Z(A, jS, h) the partition function 
ia^Qxp[-pH^f,(co)]n^Pp(d(o); 4'(A, j?,/z) the Gibbs free energy 
— P~^ log Z(A, jS, h), and (A(jS, A) the specific Gibbs free energy 

(a) Prove that fi^{h.,fi,h) is a concave function of jS > 0 and that 

S(mMM- r H (rn^P Urn) 

(b) Prove that i{d(Pil/(P,h))/dp exists, then 

hm—- H^_^{co)P^jJdco) -

The limit is called the specific energy. 

file:///_Hmt



