
Chapter I 

Introduction to Large Deviations 

I.l. Overview 

One of the common themes of probabihty theory and statistical mechanics is 
the discovery of regularity in the midst of chaos. The laws of probabihty 
theory, which include laws of large numbers and central limit theorems, 
summarize the behavior of a stochastic system in terms of a few parameters 
(e.g., mean and variance). In statistical mechanics, one derives macroscopic 
properties of a substance from a probabihty distribution that describes the 
complicated interactions among the individual constitueht particles. A cen­
tral concept Hnking the two fields is entropy. ̂  The term was introduced into 
thermodynamics by Clausius in 1865 after many years of intensive work by 
him and others on the second law of thermodynamics. An early important 
step in its development and enrichment was the discovery by Boltzmann of 
a statistical interpretaton of entropy. Boltzmann's discovery, which was pub­
lished in 1877, has three parts. We have augmented part (c) to include the 
possibility of phase transitions. 

(a) Entropy is a measure of randomness or disorder in a statistical 
mechanical system. 

(b) If S is the entropy for a system in a given state and Wis the "thermo-
dynamical probabihty" of that state,* then S = klog W, where ^ is a 
positive physical constant. 

(c) The equilibrium states, which are the states of the system observed in 
nature, are those states with the largest thermodynamical probability 
and thus the largest entropy. By (a), they are the "most random" states 
of the system consistent with any constraints which the system must 
satisfy (e.g., conservation of energy). The existence of more than one 
equilibrium state corresponds to a phase transition. 

All the notions of entropy discussed in this book are variations on the 
Boltzmann theme. In analyzing stochastic or statistical mechanical systems, 

*The thermodynamical probability is defined to be the number of microstates compatible 
with the given state (see Wehrl (1978, page 223)). 
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one must extrapolate from a microscopic level, on which the system is 
defined, to a macroscopic level, on which the laws describing the behavior of 
the system are formulated. Boltzmann shows that entropy is the bridge 
between these two levels. We will illustrate these ideas and outline the main 
themes of this book in terms of a basic stochastic model. This discussion is 
intended for the reader who has a knowledge of probability theory consistent 
with Appendix A. Other readers may still perceive the global picture without 
turning to Appendix A at this time. That task may be postponed until the end 
of the first chapter. 

Each of our systems is modeled microscopically by a collection of random 
variables {X^; ae j ^ } which are defined on a probability space (Q, J^, P) and 
which take values in a space F. Q is a nonempty set, J*̂  is a cr-field of subsets 
of Q, and P is a probability measure on (Q, <^). T is called the state spcice or 
the outcome space; in all of our applications, Y is IR"̂ , (ie {1,2, . . . } , or a sub­
set of U^. j / is a suitable index set. Our results depend only on the distribu­
tion of the random variables {Z^;aGj/}. Hence we may take Q to be the 
product space P-^ and the collection {X^ \0Les^] to be the coordinate repre­
sentation process. That is, given a point co = {oj^\OLe^] in P-^, we define 
XJ{(D) = 0)^, the ath coordinate of co. Each COGF-^ represents a possible con­
figuration or microstate of the system, and the entire space F-^ is the set of all 
the configurations. The definition of the model is completed by specifying a 
probability measure P on configuration space. Here are some examples. 

Example I . l . l . (a) Let ^ be the set of integers Z = {. . . ,—1,0, 1, . . . } 
and F a finite set of distinct real numbers {x^, X2, . . . , x^}. Define P to be an 
infinite product measure on F^ with identical one-dimensional marginals, 
which we denote by p. Thus p is a probability measure on F, and it has the 
form YJ=I Pi^x-^ where Pi > 0, Y}=i Pt — ^' ^^^ 5^. is the unit point measure 
at Xi. The variables {XJ'J'GZ} are independent and identically distributed 
(i.i.d.) and each has distribution p. We write P^ for P. 

(b) A simple case of (a) is F = {0,1}. The {Xj'j'eZ} are then BernoulU 
trials and p = PQSQ -i- PiS^. The {XJ'JEZ} may, for example, represent the 
successive outcomes of the toss of a coin in an infinite sequence of tosses 
separated by a constant time interval. Each outcome is recorded as 0 for a 
tail and 1 for a head. A fair coin corresponds to p = ^SQ 4- ^S^. 

(c) In (a), the set F = {xi,X2, . . . , x j may represent a set of possible 
velocities of the molecules of an ideal gas which are constrained to move in 
an interval and which undergo elastic collisions at the endpoints. Then 1} 
denotes the velocity of the molecule labeled / A configuration co G F^ is a 
specification of the velocities for each molecule. Independence means that 
the molecules do not interact. This model is treated in Chapter III. 

(d) A ferromagnet is modeled by random configurations of spins (mi­
croscopic magnets) at sites in the Z)-dimensional integer lattice Z^, Ds 
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{1,2, . . . } . We set ja/ - Z^ and F = {1, - 1 } . The values 1 and - 1 repre­
sent "spin-up" and "spin-down," respectively. Configuration space Q is 
{1, —1}^ and Xj(co) is the spin at siteyeZ^ for the configuration co. A 
product measure on Q is not appropriate for this model since the spins at 
different sites interact. The ferromagnet is modeled by a probability measure 
P on Q which is translation invariant; i.e., invariant with respect to spatial 
translations in Z^. Ferromagnetic models are the subject of Chapters IV 
andV. 

As these examples show, a probability measure on a configuration space 
provides a microscopic definition of a stochastic or physical system. How­
ever, the laws describing the behavior of such a system are macroscopic 
descriptions which in contrast to the number of all configurations, involve 
many fewer variables. For each description, the range of possible values of 
these variables defines the set of macrostates. Each macrostate is compatible 
with, and hence is a summary of, many microstates. The entropy of a macro-
state is a measure of this multiplicity. Those macrostates compatible with the 
most microstates—i.e., those with the largest entropy—are the ones observed 
in nature. Generally, a system will have several possible macroscopic descrip­
tions, each differing in complexity and in choice of macrostate. For each 
description, there is a different entropy concept. 

We return to the coin tossing model in order to explain these ideas. This 
model is represented by the infinite product measure P^ on the configuration 
space Q = {0,1}^ (p = PQSQ + Pi^i). Macroscopically, the behavior of the 
coin can be expressed by a single number, its mean value. The possible mean 
values are all numbers z e (0,1), and there is no harm including the endpoints. 
We call the set of z6[0,1] macrostates. The weak law of large numbers 
(WLLN) enables one to estimate the macrostate in terms of microstates. 
Define S^{CJO) = Yj=i ^j(^) for « = 1,2, . . . and coeCl. Sn(co)/n is the average 
value of the tosses co ,̂ 0^2, . . . , co„. The sum S„((D)/n is called a microscopic 
sum or n-sum. Let m^ be the mean value of the measure p (m^ = 0-p^ + 
I' Pi = Pi) and Q„ the distribution of SJn. The WLLN says that for any 
£ > 0 , 

Qn{(^p - £,^p + e)} = Pp{coea:S„(cD)/ne(mp - e,m^ + £)}->! 

3,3 n-^ CO. 

In other words, ifn is large, then with respect to P^ essentially all microscopic 
«-sums are close to the macrostate m^. The latter is called the equilibrium 
state. 

Here is how entropy arises. Assume for simplicity that the coin is fair 
(mp = j). For any zeU and £ > 0, let A^^^ be the interval (z — 8,z + e). By 
the WLLN, g„{^^ ,e} '^ ^ as « -> 00 while if z =/= m^ and 0 < e < |z — m^l, 

"p 

then Qn{Az^s} -^ 0. In the latter case, it is not hard to refine the WLLN and to 
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Figure I.l. The entropy function /(z) for the coin tossing model. 

prove that Qn{^z,e} decays to 0 exponentially fast. The exponential rate of 
decay is defined by F(z,s) = -\im„^^n~^\ogQ„{A^^}^ By a simple 
combinatoric argument (as in the proof of Theorem 1.3.1), one shows that 
F(z, £) equals the infimum over A^^^ of the function 

(1.1) /(z) = 
zlog(2z) + ( l - z ) l o g ( 2 ( l 

00 

z)) for ZG [0,1], 

for z^ [0,1], 

where OlogO = 0. The graph of the non-negative convex function /(z) is 
shown in Figure I . l ; clearly, F(z,£) > 0. /(z) is called the entropy function 
for the coin tossing model. We now interpret it in view of our earUer remarks 
on entropy. 

For any zeU and large n, QniA^^e} is approximately exp( —«J^(z,e)). 
Since F(z, s) -^ I(z) as e -> 0, we may heuristically write 

(1.2) e .Mz,a}^exp( -« / (z ) ) 

for n large and e small. If z =/= m^, then /(z) is positive and exp( —^2/(z)) -^ 0 
as n-^ CO. This is consistent with the exponential decay of Qn{A^^^} for 
0 < 8 < \z — mp\. The heuristic formula (1.2) shows that to a small value of 
/(z) there corresponds a large probability Qni^z^e) c>r, in other words, a high 
multiplicity of microstates. In this sense, /(z) is a measure of the multiplicity 
of microstates compatible with the macrostate z. For another interpretation, 
given points z^ and Z2 in [0,1], it is reasonable to call z^ more random than 
Z2 if/(^i) < /(^2)j that is, if there are more microstates compatible with ẑ  
than with Z2- Thus /(z) also measures the randomness of the macrostate z. 
The equiUbrium state m^ = ^ is that macrostate which is compatible with the 
most microstates. In fact, 

I(m^) = 0 = min{/(z):zeU} and /(z) > 0 for z ^ m^. 

Thus the equilibrium state, being the unique minimum point of/, is the most 
random macrostate. Points z outside of [0,1] are forbidden values for SJn: 

'l^Qn{A,,e} = 0, then set \ogQ„{A.,e} = 
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if ^ n [0,1] is empty, then Q^{A} = 0 and /(z) = oo for each zeA. For 
z ^ nip and 0 < e < |z — m^|, Qn{^z,e} is called a /ar^^ deviation probability 
since the event {COGQ: »S„(CO)/WG^^ J corresponds to a fluctuation or devia­
tion of SJn of order |z — m l̂ away from the Hmiting mean. It is a very rare 
event since Qn{A^^^} -» 0 exponentially. 

An equivalent statement of the WLLN is that the distributions {Q„; 
« = 1,2, . . . } converge weakly to the unit point measure at m^ (written 
Qn =^^m )• ^^ this book, we will study much more general but analogous 
situations. A sequence of probability measures {Q„',n = 1,2, . . . } on a 
complete separable metric space ^ will converge weakly to the unit point 
measure at some XQE^. {Q„} will have a large deviation property in the 
sense that Qn{K} will decay exponentially for all closed sets Â  in ^ which 
do not contain XQ. The decay rate will be given by —mt^^j^I(x), where I(x) 
is some non-negative function on ^ with a unique minimum point at XQ 
(I(Xf)) = 0). I(x) is called the entropy function of the measures {Qn}. 

In a series of important papers beginning in 1975, Donsker and Yaradhan 
have identified three levels of large deviations which fit into the general 
framework just described. These levels will be treated in detail in this book. 
Let {1} ;7 G Z } be a sequence of i.i.d. random vectors taking values in IR"̂ . Let 
p be the distribution of X^ and Pp the corresponding infinite product measure 
on Q = {U'f. 

Level-1. Define ĝ ^̂  to be the distribudon of 5„(a;)/« = Yj=i ^j(^)/^ on IR̂  
and assume that JiRrf||x||p(Jx) is finite. Then by the WLLN the sequence 
iQjji); n = 1,2,...} converges weakly to 3^ , where m^ is the mean ^^dxp(dx) 
of p. If, furthermore, the moment generating function ^^dQxp<[t,x}p(dx) is 
finite for all teW^, then Ql^^{K} decays exponentially for all closed subsets 
K of IR"̂  which do not contain m^ [Theorem II.4.1]. The decay rate is given 
in terms of a level-1 entropy function /^^ which is a non-negative convex 
function on R^ and which has a unique minimum point at m^ (/^^^(m^ = 0). 
The sums {Sn{o))/n} are called level-l microscopic n-sums and points zeU^ 
are called level-l macrostates. The mean m^ is the unique level-1 equiUbrium 
state. 

Level-2. For co GQ, define the empirical measure L„(CD, •) = n~^ Y^j=i ^xi(o){') 
(for ^ ^ [R̂  a Borel set, L„(co,A) = n~^ Yj-i ^xiol^})- L„(a)) takes values 
in the space ^(W^) of probabihty measures on W^. Ji{W^) is a topological 
space with respect to the topology of weak convergence, and it is metrizable 
as a complete separable metric space. Let 2«^^ denote the distribution of 
Ln{a>, •) on Ji{U^). By the ergodic theorem, the sequence {L„(co, ')',n = 
1,2,. . .} converges weakly to p (almost surely), and this implies that 
[Q^n^'^n = 1,2, . . . } converges weakly to dp. In addition, Q^^\K] decays 
exponentially for all closed subsets K of Ji{W^) which do not contain p 
[Theorem II.4.3]. The decay rate is given in terms of a level-2 entropy func-
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tion /̂ ^̂  which is a non-negative convex function on JiiW^) and which has a 
unique minimum point at p (I^^Kp) = 0). For ve^(U^), I^^\v) equals the 
relative entropy of v with respect to p. The empirical measures {L„(co, •)} 
are called level-2 microscopic nsums and measures veJiiU^) are called 
level-2 macrostates. The distribution p is the unique level-2 equihbrium state. 

Level-3. Let Ji^i^ denote the set of strictly stationary probabihty measures 
on Q. J^si^) is a topological space with respect to the topology of weak 
convergence, and it is metrizable as a complete separable metric space. For 
CO e Q, one defines the so-called empirical process î „(co, •) which takes values 
in Jisi^) [see page 22]. Let Q^^^ denote the distribution of Rn(o), •) on 
J^si^)' By the ergodic theorem, the sequence [Rnioj, •)\n= \,2, ...] con­
verges weakly to Pp (almost surely). Hence [Q^n'^'^n = 1,2, . . . } converges 
weakly to dp . In addition, Q^^'^{K] decays exponentially for all closed subsets 
KoiJi^Q) which do not contain Pp [Theorem n.4.4]. The decay rate is given 
in terms of a level-3 entropy function /̂ ^̂  which is a non-negative affine func­
tion on ^s(Q) and which has a unique minimum point at Pp {f^^{Pp) = 0). 
The empirical processes {î „(co, •)} ^^^ called level-3 microscopic n-sums and 
measures PeJi^i^) are called level-3 macrostates. The measure Pp is the 
unique level-3 equihbrium state. 

For each of the three levels, we may heuristically express the asymptotic 
behavior of the distributions Qll;\dx) by the formula Qxp( — nl^'\x))dx. 
Qn\dx) is a measure on the complete separable metric space ^ = U^, 
J^{U^), or Ji^iU^) for / = 1, 2, or 3, respectively. By analogy with coin toss­
ing, we may interpret each entropy function Ip\x) as a measure of the multi­
plicity of microstates compatible with the macrostate X G ^ . In that sense, 
Ip\x) is also a measure of the randomness of x. 

Varadhan (1966) gave a useful application of the large deviation property 
to calculate the asymptotics of certain integrals. The heuristic formula 
Q^^\dx) '^ Qx^{ — nl^p\x))dx suggests that if i^ is a bounded continuous 
function on ^ , then 

l im-log ^x^{nF{x))Q^\dx) = \xm\\og expln(F(x) - Il'\x))]dx 

= sup{F(x)-Il;\x)}. 

This limit is vahd under suitable hypotheses [Theorem II.7.1] and will be 
applied a number of times in the book. 

So far we have discussed large deviations for i.i.d. random vectors. 
Statistical mechanical systems have a similar three-level structure with one 
additional feature: there need not be a unique equilibrium state for a given 
level. This lack of a unique equihbrium state corresponds physically to a 
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phase transition and probabilistically to a breakdown in the law of large 
numbers (or ergodic theorem) for the corresponding microscopic «-sums. 
But in general, whether or not there is a phase transition, we may consider 
the Legendre-Fenchel transform of the corresponding entropy function. 
This transform defines a convex function which in statistical mechanics is 
called the free energy. Free energy functions will play a central role in 
analyzing statistical mechanical systems in Chapters III-V. 

In the remainder of this chapter we will introduce level-1, 2, and 3 large 
deviations by considering i.i.d. random variables with a finite state space. 
The corresponding entropy functions will be calculated by means of elemen­
tary combinatorics. In Chapter II, the three levels of large deviations will be 
generalized to i.i.d. random vectors taking values in U^. Section II.6 presents 
additional large deviation results, which are particularly suited for applica­
tions to statistical mechanics. The proofs of the theorems in Chapter II are 
detailed and will be postponed until Chapters VI-IX. In Chapters III-V the 
large deviation results will be appHed to an ideal gas model and to ferromag­
netic spin models in statistical mechanics. 

1.2. Large Deviations for I.I.D. Random Variables with a 
Finite State Space 

In its simplest form the theory of large deviations refines the classical law of 
large numbers. Let S„ be the nth partial sum of independent, identically 
distributed random variables Z^, Z2, . . . . The strong law of large numbers 
states that if the expectation £'{|Xi|} is finite, then SJn converges to E{Xi} 
almost surely. This was proved by Kolmogorov (1930). It impHes the weak 
law, which states that SJn converges to E{X^} in probabihty. The first large 
deviation results were those of Cramer (1938) and Chernoff (1952). They 
showed that if Zj has a finite moment generating function in a neighborhood 
of 0, then the probability that SJn deviates from E{X^} by a small amount 
£ > 0 is exponentially small as n^ 00. After Chernoff, these results were 
applied and extended in statistics and probability by many people, and they 
have played a key role in information theory. In a series of papers starting in 
1975, Donsker and Varadhan have generalized these results to Markov 
processes with general state spaces and have found many interesting new 
applications. 

The Donsker-Varadhan theory identifies three levels of large deviations, 
which were mentioned in the previous section. An elementary way of intro­
ducing the three levels is by means of well-known but instructive examples 
involving i.i.d. random variables with a finite state space. The rest of this 
chapter focuses upon these examples. Later chapters will generalize the large 
deviation results beyond this elementary setting. 
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Let r > 2 be an integer and consider a finite sQt T = {x^,X2, ... , x j , 
where x^ < ^2 < • • • < x̂  are real numbers. Let ^ ( F ) denote the set of all 
subsets of r . We fix a probabiHty measure p on J*(r) for which pi = p {x J > 0 
for each X^GF. Thus p has the form YJ=I Pt^x- Fc)r A a subset of F p{A} 
equals X^=i A-̂ xj{^}» where d^.{A] equals 1 if x^e^ and equals 0 if x^^y4. 
Denote by co the doubly infinite sequence (. . . ,co_2,co_i,cOo,coi,co2, . . . ) 
with each CDJ G F . Configuration space Q is the set of all such sequences; 
thus Q = F^. Let Pp be the infinite product measure on Q. with identical 
one-dimensional marginals p. To a cylinder set of the form 

(1.3) Z = {COGQ: (D^+i G^i, •. •, co^+fcGi^}, F^, . . . , i^ subsets of F, 

Pp assigns the probability Pp{L] = 115=1 Pi^j)- ^P ^^ uniquely determined by 
these probabilities.* For each integery define the coordinate function A} on 
Q by A}(co) = coj. The functions {XyJeZ] form a sequence of i.i.d. random 
variables with finite state space F and distribution p. 

Until Section L5, we will work with level-1 and level-2. These are defined 
by two random quantities, called level-1 and level-2 (microscopic) «-sums. 
The level-1 «-sum is the average value Sn(co)/n = Yj=i ^ji^)l^-> ^ = 1 , 2 , . . . . 
The level-2 n-sum is defined in terms of the empirical frequency L„i(co) with 
which Xj appears in the sequence X^io)), . . . , X^ico): 

1 " 
(1.4) L„i(co) = - X ^x:(co){^i}. « = 1, 2, . . . , / = 1, . . . , r. 

For each CO, the numbers {L„ j(co); / = 1, . . . , r} define a probability measure 
L„(co, •) on the set of all subsets of F. For A a subset of F, 

(1.5) L„(coM) = I L„j(co) = ^ t ^XM{^}.' 

where <5;f.(ca){̂ } equals 1 if Xj(cD)e A and equals 0 if Xj(oji)^A. The measure 
L„((o, •) is the level-2 n-sum. It is called the empirical measure corresponding 
to Xi(co), . . . ,X„(co). The average value S„(co)/n can be calculated by multi­
plying each Xi by the empirical frequency L„i(oj) and summing over F ; i.e., 

r 

(1.6) S„(co)/n = X XiLn,i{(o). 
i = l 

The right-hand side is the mean of the empirical measure. 
With respect to the measure Pp, the asymptotic behavior of S„((o)/n and 

of L„((jo, •) follows from the law of large numbers. Indeed the summands in 
Sn(co)/n are i.i.d. with mean 

Xj((o)Pp(d(D) = X ^iPh 

" Appendix A summarizes all the properties of probability measures that are needed in the 

Q 

text. 
^The sum over an empty set is defined to be 0. 
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while the summands in L„ i(co) are i.i.d. with mean 

Hence for any e > 0 

Urn P {CDEQ: \S„(co)/n - m \ > e} = 0, 
(1.7) 

lim P { C O G Q : max |L„ (̂co) — pJ > e} = 0. 
n-^oo i = l , . . . , r ' 

The vector (pi,p2? • • • ?Pr) is the hmiting mean of the random vector 
(L„ j(co), . . . ,L„ X^)). The probabilities in (1.7) represent large deviations 
since they involve fluctuations of order s of the respective /2-sums away from 
the limiting means, and s is fixed. Below we show by elementary combina­
torial arguments that each of these probabilities decays exponentially. 

1.3. Levels-1 and 2 for Coin Tossing 

Coin tossing is defined by the state space T = (0,1} and the measure p = 
1^0 + i^i- The value 0 represents a tail and 1 a head. The proof for this 
simple case will set a pattern of proof for the more general large deviation 
results which follow. We have p^ = p2= ^, m^ = i , L„ (̂co) = 1 — 5„(co)/«, 
and L„ 2(< )̂ = »̂ «(<̂ )/̂ - Hence for each co 

\Ln,i(co) - pi\ = \L^,2(^) - P2I = \Sn(co)/n - rripl 

and so the level-1 and 2 probabihties coincide: 

(1.8) Pp{\SJn - m j > e} = P,{max|L„,, - p,| > s}. 

Let Q[^^ be the P^-distribution of SJn on U and define the closed set 

A = {zeU: \z — m l̂ > e}, where 0 < e < ^. 

The set yl n [0,1] is nonempty and Ql^^^{A} = Pp{\SJn — m l̂ > e} is positive 
for all sufficiently large n. Since A does not contain m^, Ql^^^{A} -^ 0. Accord­
ing to the next theorem, Q[^^{A} decays exponentially, and the decay rate is 
given in terms of the entropy function 

(1 9) I^'\z) = ^'^""^^^'^ + ^̂  ~ ^)^^g(2(l - z)) for Z G [ 0 , 1], 
00 for z^ [0,1], 

where 01ogO = 0. Ip^\z) is convex, is symmetric about z = w^ = ^, and 
attains its minimum value of 0 at the unique point z = mp. /j^Ms depicted in 
Figure LI. 
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Theorem 1.3.1. 

limUogQi'^A} = ]imhogP^{\SJn - m j > s} = -mml^'Xz). 
n-^oofl n-^ooH ^ '^ zeA 

Since the set A is closed and does not contain m^^min^^^ I^p^\z) > I^J^Xm^ = 0. 
Hence Q\I~\A] converges to zero exponentially fast as n-^ oo. 

Proof. Let Q„ be the finite configuration space consisting of all sequences 
CO = (a>i,CO2, ...,co„), with each COJEF = {0,1}; thus Q„ = F". If n^P^ is the 
finite product measure on Q„ with identical one-dimensional marginals p, 
then Q^„^^{A} = n„P^{coeQ„: S„{co)/neA}, For fixed n and coeQ„, S„(co) 
may take any value ke{0,\, ... ,n}. Sn(co)/n is in A if and only if k is in 
the set A^ = {^6{0,1, ... ,n}: \k/n — i | > e}. For keA^, define C(n,k) = 
n\/(k\(n — k)\). There are C(n,k) points co in Q„ for which S^(oji) = k, and 
n„Pp{a>} = 2~" for each coeQ^. Hence 

(1.10) ei,^'{^}= I 7r„P,{coeQ„:5„(co)/« = A:/«}= ^ C(«,A:)^. 
keA„ keAfj ^ 

Since there are no more than n + 1 terms in the sum, 

maxC(^, / : )^ < Q'^^^A) < (« + l)maxC(«,/:)4^, 

and since log is an increasing function 

(1.11) max 
keA„ 

i l o g ( c ( „ , ; t ) l ) ] < i l o g e a , { ^ } < M ! L ± 1 ) + 

max 
keA„ 

-log(C(«,A:)^ 

Thus the asymptotic behavior of Ql,^^{A} is governed by the asymptotic 
behavior of the largest summand in (1.10). Entropy arises by the following 
lemma. 

Lemma 1.3.2. Uniformly in ke [0,1, ..., n], 

UogC(n,k) = - ^ l o g ^ - f l - ^ V o g f 1 - - V o(^-^] as « - 00. 
n n n \ n j \ n j \ n j 

Proof. Since C(n, 0) = C(n, n) = 1 and C{n, 1) = C(«, n — I) = n, the lemma 
holds for all 2̂ > 1 and k = 0, \, n — I, n. A weak form of Stirling's ap­
proximation states that for all n>2, log(n\) = nlogn — n + P„, where 
\P„\ = 0(logn) [Problem L8.1]. Hence for 2 < /c < « - 2, 

-logC(n,k) = log« - '^logk - "^^login - k) + kpn -Pk- Pn-u)-
n n n n 
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Write 
. k, I n — k, I 
iogn = — l o g log-

n n n n 
and combine these terms with the other log terms to give 

ilogC(«,.)=-^log^-(l4)log(l-^) + l(^„-^,-^„.,). 

For 2 < / : < « — 2, the last term can be bounded by 0{n~^ log/t) uniformly 
in k. This completes the proof. n 

The lemma shows that 

1,0. (C(,a)l) = ,«4 - ^.0,^ - (, - ^),og(l - ^) . oi^^) 

The first three terms are exactly —I^^\k/n), where Ip^Hs defined in (1.9). Thus 

Since n~^ Iogn and n~^ \og(n + 1) both tend to zero, we have by (1.11) 

(1.13) l im-loge| , '>U} = I immaxf - /S^M-I l = - l i m min/i^M - I 

For each «the set {z G [0, l ] : z = Z:/̂  for some A: G ^ „ } is a subset of 4̂ n [0,1]. 
Since Ip^\z) = oo for z$[0,1], we conclude using Problem 1.8.2 that 

lim-logel^U^}= -min h'\z)=-minh'\z). n 
n-*aon zeAn[0,l] ^ zsA ^ 

1.4. Levels-1 and 2 for I.I.D. Random Variables ŵ ith a 
Finite State Space 

In general, the state space F equals {x^, ̂ 2, . . . , x j , where x^ < X2< • • • < 
x^ are real numbers. The exponential decay rates of the two probabilities in 
(1.7) are expressed in terms of a function called the relative entropy. Let ^ ( F ) 
denote the set of all subsets of F and Ji{T) the set of probabihty measures 
on ^ (F ) . Each veJiiT) has the form v^^-^^Vj-^ where v̂ -> 0 and 
Yli=\ î = 1- - ^ ( r ) may be identified with the compact convex subset of W 
consisting of all vectors v = (v^, . . . , v̂ ) which satisfy v̂- > 0 and Y!i=i "^t— •̂ 
The relative entropy^ of v with respect to the measure p = Y!i=i Pi^x- (Pt > ^) 
is defined by 

I(^^\v) = ^ V, log-^ where 0 log 0 = 0. 
i = l Pi 

We have the following properties. 
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Proposition 1.4.1. (a) Ip^\v) is a convex function ofveJiiY). 
(b) Ip^\v) measures the discrepancy between v and p in the sense that 

Ip^Kv) > 0 with equality if and only if v = p. Thus Ip^\v) attains its infimum 
over Ji{T) at the unique measure v = p. 

Proof (a) I^^\v) equals YJi^'^^^^tlPi^Ph where h{x) is the convex function 
xlogx, X > 0. Let pi and v be probability measures on ^ (F ) . Then for 
0 < ^ < 1 

I^'\X^ + (1 - ^)v) = t h{liiilPi + (1 - A)v,/A)p, 
i = l 

< X X /j(Mi/ft)A+(1 - A) i : /i(v,/p,)ft 

= klf\ii) + (1 - A)/f >(v). 

(b) For any x > 0, x\o%x > x — 1 with equality iffx = 1. Hence 

V- V- V-

(1.14) A i o g A > A _ 1 
Pi Pi Pi 

with equality iff v̂  = A- Multiplying this inequality by pi and summing over 
/ yields 

/i»=Zv;log^>0. 
i = l Pi 

lf\v) equals 0 iff equaUty holds in (1.14) for each /; Vj- equals p,- for each / iff 
V equals p. u 

We single out an important special case of relative entropy. 

Example 1.4.2. If p is the uniform measure on F = (x^, ^2, . . . , x j {p^ = l/r 
for each /), then I^^\v) = logr + ^-=1 v l̂ogv .̂ The quantity H(v) = —Y^Ui 
Vj- log Vj- is called the Shannon entropy of v.̂  Since — v̂  log Vj- > 0, H(v) is non-
negative. We show that H(v) is a measure of the randomness in v. By Proposi­
tion L4.1, H(v) = \ogr- I^p^\v) < logr; H(v) = logr iff / f (̂v) = 0 and this 
holds iff each v̂  = pi = l/r. Hence H(v) attains its maximum value of logr 
iff V equals the uniform measure p. The measure p is in a sense the most 
random probabihty measure on ^ (F) . At the other extreme, H(v) equals 0 
iff one of the v/s, say v̂ -., is 1 and the other v/s, i ^ i\ are 0. The corresponding 
measures d^., are the least random probability measures on J*(F). 

We now turn to the large deviation results. For each coeQ, the empirical 
measure L„(co, •) = n~^Y!j=i^xi<o)(') is a probability measure on ^ (F ) . 
Hence L„(co, •) takes values in J^(r). Let Ql^^ be the P^-distribution of L„ 
on J^iT) and define the closed set 
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(1.15) A2 = {veJ^(r): max I v , . - p J > e } 
i = l , . . . ,r 

where 0 < £ < min {pi, 1 — p j . 
i = l , 

The set A2 is nonempty and 2«^H^2} = ^p{inax^=i,...,r|^n,i — A | ^ s} is 
positive for all sufficiently large n. Since A2 does not contain p, gl^^j^a} -^ 0-
According to Theorem 1.4.3, Ql^^{A2} decays exponentially and the decay 
rate is given in terms of the relative entropy Ip^Xv). For this reason /̂ ^ (̂v) is 
called the level-2 entropy function. For level-1, let 2^̂ ^ be the Pp-distribution 
of SJn on IR and define the closed set* 

(1.16) Ai = {ZEU:\Z — Mpl > s} where 0 < £ < min{mp — x^,x^ — nip}. 

The set A^ n [ x i , x j is nonempty and Q[^^{Ai} = Pp{\SJn — m^] > s} is 
positive for all sufficiently large n. Since A^ does not contain m^, 2i^H^i} "^ 
0. According to Theorem 1.4.3, gj,^^{^i} decays exponentially and the decay 
rate is given in terms of a function I^^^ calculated from Ip^\v) by a variational 
formula 

min{/^^^(v): V 6 ^ ( r ) , Y xv; = z] for ze[xi,xS\, 

00 f o r z ^ [ x i , x J . 

/̂ ^̂  is called the level-X entropy function. It is well-defined, and it measures 
the discrepancy between z and nip in the sense that Ip^\z) > 0 with equality 
if and only if z = m^. Thus, the point m^ is the unique minimum point of 
Ip^\z). In addition Ip^\z) is a continuous convex function of Z G [ X I , X J . 

These properties are proved in Sections VII.5 and VIII.3. In Section II.4 we 
give another formula for /̂ ^̂  in terms of a Legendre-Fenchel transform 
[see (2.14)]. 

For coin tossing (F = {0,1}, p = ^d^ + \d^), formula (1.17) for /̂ ^̂  re­
duces to (1.9). Indeed the only measure v G ^ ( F ) which satisfies the constraint 
^2^^ x,v, = ZG[0,1] is V = (1 - z)3o -h zd,. Hence by (1.17) 

I^'\z) = / f >((1 - z)So + zd,) = (1 - z)log(2(l - z)) + zlog(2z) 

for ZG [ 0 , 1 ] . 

Formula (1.17), which relates the level-1 and level-2 entropy functions, is 
called a contraction principle. It will be seen to follow directly from (1.6), 
which expresses SJn as the mean of the empirical measure L„. Here is the 
large deviation theorem for levels-1 and 2. 

Theorem 1.4.3. 

(1.18) \im-\ogQi'^{A,} = l i m - l o g P , { | 5 > - m,| > £} = - m i n /^^^(z), 

*The point m̂  = ^[=1 Xipi is in the open interval (xi,x^) since p^ > 0, Y}=i A = 1-
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Mm-log Ql^^{A^} = lim-logPp{ max \L„ .-p,\>E}= - m i n Ij,^\v). 

(1.19) 

Since the set AI is closed and does not contain mp.mm^^^ J^p^\z) > I^p^\m^ = 
0. Similarly the minimum oflf"* over A2 is positive. Hence both 2!,^^{^i} and 
Q^n^i^i] converge to zero exponentially fast. 

It is instructive to interpret Theorem 1.4.3 with reference to the discussion 
in Section I.l. Think of {X^'JeZ} as giving the successive outcomes of a 
gambling game in an infinite number of plays of the game separated by a 
constant time interval. For level-1 the macrostates are all real numbers 
Z 6 [ x i , x j . These correspond to a macroscopic description of the game in 
terms of the expected value of the outcome of a single play. The microscopic 
/?-sums are {*S„(CO)/A2}. The P^-probability that SJn is close to z behaves for 
large n like exp( —^/^X^)) [see (1.12)]. /̂ ^̂  is the entropy function and the 
mean m^ = YJi=i ^tPt ^^ ^^^ equilibrium state. For level-2 the macrostates are 
all probability measures veJiiT). Each v is a candidate for the distribution 
of the r outcomes x^, . .., x/m. each play of the game. The microscopic 
^-sums are {L^ico, •)}• The P^-probabiUty that L„ is close to v behaves for 
large n like exp( —«/̂ ^^(v)) [see (1.21)]. /̂ ^̂  is the entropy function and the 
measure p is the equiUbrium state. 

Proof of Theorem L4.3. First consider level-2. For fixed n and co and ie 
{1, . . . , r}, let /TJ- be the number of times Xj appears in the sequence X^ (co), . . . , 
X^{oj). Then L„ i(co) = kjn, and L„(co, •) is in A2 if and only ifk = (k^,..., 
k^ is in the set 

A2 n = \^ = (ki, . . . ,k^):kie{0,1, . . . ,n}, Y ki = n, max —̂  — pA > e}. 
I i=i i=i,...,r\n I J 

For fixed k6^2,/i? define 

There are C(n,k) points co = (co^,oj2, - - • ,cOn) ^^ the finite configuration 
space Q„ = F" for which L„i(a)) = kJn for each /. Let n^Pp be the finite 
product measure on Q„ with identical one-dimensional marginals p. We have 

Q?^{^2}= I 7r„P,{a;GQ„:L,,,(co) = /:,//2 for each/}= ^ C(n,k)pK 

(1.20) 

The next lemma is proved like Lemma L3.2 [Problem L8.1(b)]. 

Lemma L4.4. Uniformly ink = (k^, ... ,kr), 

-logC(/7,k)= - y ^ l o g ^ + of^^S^^ asn-^00. 
n {^i n n \ n J 
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The lemma implies that for each k, 

Uog(C(n,k)p')) = i^flogp, - l o g ^ ) + o f ^ . 
n i=in\ nj \ n J 

Define the measure v̂ /̂  = ^-=1 (ki/n)S^.eJ^(r). The sum in the last display 
is exactly —/p̂ (̂Vk/„), where Ip^\\ir^ is the relative entropy of v̂ /„ with respect 
to p. Since L„i((o) = kjn for each / if and only if L„(co, •) = v,,/„, we see that 

(1.21) ^ioge<^>K/„} = - / ; ' * ( v + ^ ( ^ ) -

In the sum (1.20) for Qi^^{A2} there are no more than (n + ly terms. As in 
the proof for coin tossing, we conclude that 

logei^>{^.} = max {-/f>(v,„)} + o ( l ^ ) + o f ^ ^ i i ^ ) . 

For each n the set { v e ^ ( r ) : v = v̂ /„ for some ke^^j „} is a subset of A2. 
Problem 1.8.2 yields (1.19): 

limlloge<^'{^2} = - l i m min /;2»(VK,„) = -min/^^»(v). 

The level-1 Hmit is proved by expressing it in terms of a level-2 hmit. Since 
SJn equals Yj=i ^i^n,h ^J^ is in the set A^ if and only if L„ is in the set 
of measures B2 = {veM(r):\Y}=iXiVi - rrip] > s}. Hence Qi^^iA^} equals 
Glî ^ {^2} • The level-2 argument just given for the set A2 can be easily modified 
for the set B2, and we find 

\imhogQ['^{A,} = l imi logei 'H^2} = -min/,^^>(v). 

We evaluate this minimum in two steps: 

mm /(2)(v) = min min Ih^Kv): ve ^ ( F ) , ^̂  x,v̂  = z i 

= min h^\z). 

Since / ^ (̂z) = 00 for z ̂  [x^, x^], it follows that 

l i m ^ l o g a M i } = - m i n / ^ ^ > ( z ) . n 

1.5. Level-3: Empirical Pair Measure 

Level-2 focuses on the empirical measure L„((D, -), which is defined in terms 
of the empirical frequencies {L„j(co)}. We can generalize level-2 by con­
sidering the empirical frequencies of pairs of outcomes. Fix coeQ and 
AZG {2,3, . . . } and define Y^"\oji) to be the ordered pair (Xp(cjo),Xp+i(co)) if 
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^ G { 1 , 2 , . . . , « — 1} and to be the cyclic ordered pair {X^(co), X^ (co)) if P = n. 
For each subset {x̂ ,Xy} of F^, let M„JJ((JO) be \/n times the number of pairs 
{Y^p''\co)} for which ^ "̂̂ (co) = (x^,x,)'; thus 

1 " 

For each oj, the numbers {M„^ j(co)} define a probabiHty measure M„(co, •) 
on the set of all subsets of F^. For A a subset of F^, 

(1.22) M^(co,A) = X M, , /co) = ^ ^ V;)(c.){^}. 

The measure M„((D, •) is called the empirical pair measure corresponding to 
X^{CD), . . . ,X^{oj). This measure is consistent with the empirical measure 
L„(co, •) in the sense that both of the one-dimensional marginals of M„(co, •) 
equal L„(co, •)• 

r r 

(1.23) L^,i{cD) = Y, M„jj((o) = X M„^k,i(^) for each / = 1, . . . , r. 

In fact, since M„(co, •) considers the cyclic pair 7j"Xco), the number of times 
Xi appears in the sequence XI((D), . . . , X„(CJO) equals the number of times Xi 
appears as a left-hand member of a pair Y^'^Xco). This gives the first equahty 
in (1.23), and the second is proved similarly. 

With respect to P^ the asymptotic behavior of M„^/co) is determined by 
the ergodic theorem [Theorem A.9.3]. Since 

1 "~̂  1 
(1.24) M„jj((0) = - X Sxpico)l^i] • ̂ Xp^,ico){^j] + -^X„ico){^i} • ̂ X,(c.) W , 

Hm„̂ oo Mf^ij{(jo) equals the limit of the sum. Since F^ is ergodic, 

(1.25) "^°° Ja 

= Pp{co€Q:X^(co)  = Xi,X2(co) = Xj} = p^pj P^-a.s. 

We now formulate a large deviation problem connected with the limit 
(1.25). Let ^(F^) denote the set of all subsets of F^ and ^^i^^) the set of 
probability measures on J*(F^) with equal one-dimensional marginals. As 
we have seen, M^ico, •) takes values ^s(F^) for each co. Any TG.y#s(F^) 
has the form T = X L = I '^iAxi,xj}. where Tij > 0, X L = I ^tj = U and X?=i ŷ = 
YJ=I '^ki for each /. ^s(F^) may be identified with the compact convex subset 
of IR**̂  consisting of all vectors T = {T̂ .̂ ; ZJ* = 1, . . . , r} which satisfy TIJ > 0, 
XL-=I îj = 1, and Xj=i 0̂- = Zfc=i f̂ci for each /. 

Let gj,^^ be the Pp-distribution of M„ on ^s(F^) and define the closed 
set 

^3 = { T G ^ , ( F 2 ) : max lî .̂ - p^pj] > e}, 
(1.26) iJ-l,-,r 

where 0 < s < min {p̂ py, 1 - PiPj}. 
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The set A^ is nonempty and Ql,^}{A^} = P^{max ,̂̂ -=i .̂..,,|M„,,.,̂ . - PiPj\ > e} 
is positive for all sufficiently large n. Let 7i2Pp be the product measure in 
^ , ( r ^ ) with one-dimensional marginals p {7t2Pp{xi,Xj} = PtPj). Since A^ 
does not contain n2Pp, the ergodic hmit (1.25) impHes that QlifH^a} ^ 0. A 
level-3 large deviation problem is to determine the decay rate of this proba-
bihty. In the next section, we will consider other level-3 problems which 
involve the empirical frequencies of strings {xi^,Xi^, . . . ,Xĵ } of arbitrary 
length A: = 3,4, . . . . 

The probabilities Q[^\ {A^} decay exponentially and the decay rate is given 
in terms of a function I^^l which is a natural extension of the level-2 function 
I^^\ The latter determines the decay rate of level-2 probabiHties. For xe 
^ , ( r ^ ) , set (V,), = Y.U ^ij and define 
(1.27) , ; . ( , ) ^ ^ , ^ ^ l , g _ | _ ^ 

where the sum runs over all / and7 for which (vjj- > 0. Ip^^ix) is well-defined 
(OlogO = 0) and equals the relative entropy of T with respect to {(vj^py}. 
We have the following properties [Problems IX.6.1-IX.6.3]. I^^li^) is a 
convex function of T. I^^li^) measures the discrepancy between TeJ^^ir^) 
and 712Pp in the sense that Ip^li^) > 0 with equahty if and only if T = 712Pp. 
Thus the measure 712Pp is the unique minimum point of I^^l on ^^ ( r^ ) . 

Here is a level-3 large deviation theorem for the empirical pair measure. 
We sketch the proof in the case where F consists of two points (r = 2). 

Theorem 1.5.1. 

\im-logQi^}{A^} = lim-logPp{ max \M^jj - p^pjl > s} 
yv.ns) 

= -min/^f](x). 

Since the set A-^ is closed and does not contain 7i2Pp, min^^^ ^p^ii'^) > 
^p^ii^i^p) = ^' Hence 21,̂ 2 {^3} converges to zero exponentially fast. 

Proof for r = 2. For fixed n and co, define Nij = nM^ijia)). M„(co, •) is in A^ if 
and only if N = {A/̂ ;̂ ij' = 1,2} is in the set 

A,,„ = \N= {N,-JJ= 1,2}: N,e{0, I..., n}, t ^u = ^^ 

2 2 

Z ^ j = Z ^ki for each /, max {N^n - p^Pjl > s 

Now fix NeA^^„. Let ki = Yj=i Â / and define y(n,N) to be the number of 
points CO in the finite configuration space Q„ = F" for which M„jj(a)) = 
Nij/n for each / a n d / Then 

2 5 1 ^ 3 } = Z 7r„Pp{coGQ„: M„,f^/a;) = N^j/n for each / and;} 
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where p^ = p\^p^2' The asymptotics of y{n,N) are given by the next lemma. 
Define D„ = {N\ y(n, N)>0}. 

Lemma 1.5.2. IfN^2>^^ then NED^. Uniformly in NeD^, 

(1.29) Uogy{n,N)=Y^\og^- Y%og^ + o(^^^ asn^oo. 
^ n ^'^ ^ i'tin ° n ^ j ^ ^ n ^ n \ ^ J 

Define the measure T^/„ = YJj=i (^»^{xf,x,.}e^,(r^). Since M„jj(co) = 
Nij/n for each / and7 if and only if M„(a), •) = T^/„, the lemma implies that for 
NED„ 

^logei?U%/J = llog(y(n,N)p^) = -/^fJC^/J + o(^-^ 

As in the proof of Theorem 1.4.3, we have 

Um^loge<^>{^3} = - l i m min /<^1(T^/„). 

For each n the set {TEJ^S(^^)'- '^ = '^Nin for some NEA^^n ^ ^n} is a subset of 
^ 3 . Problem 1.8.2 yields (1.28): 

\\mhogQ['}{A,} = -min/;f](T). D 

Formula (1.31) below is due to J. K. Percus (private communication). 

Proof of Lemma 1.5.2. Suppose that F = {x^,X2]. For fixed COGQ^, let Â j = 
nM„ij(co) for i,j = 1 , 2 . The point co has the form (x̂ -̂ , x.-̂ , . . . , x^), where 
each /; = 1 or 2. We introduce the product B(CD) = B: : B: :.. .B: . B, ,• , 

J f \ / iii2 I2I3 ^n-l^n ^M^i' 

where B^^, B^2^ ^21? ^22 ^^^ f̂^̂* positive real variables. In the product 
defining B{co), each B^j appears exactly Nij times, so that B(co) = 
B^{'B^i^B2i'B2i^. The sum of all B{o:i) for coeQ„ can be written in terms of 
the 2 X 2 matrix B = {B^f, ij = 1 , 2 } . In fact,* 

Tr ^ " = I \i2\i, • • • \-l in^ini. 
(1.30) ^1,. .,^„=i 

coeQ„ 

where the last sum runs over all A^= {Nij;iJ= 1,2} such that NijE{0, 
! , . . . , « } , UJ=I Ntj = n, and Y^U^u = lli^kt for each /. If 0 < ^^^ + 
^12 + ^21 + ^22 < 1. then the sum X^=o^" converges and equals the 
inverse matrix (I — B)~^. We find 

00 00 

£ T r 5 " = Tr £ B" = 71(1 - B)'^ 
n=0 n=0 

1 ~ (^11 + ^22 + ^12^21 ~ ^11^22) 

*Tr denotes trace. 

file:///i2/i
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The last term can be expanded in a power series in B^^, B^2^ ^21? ^22-
Comparing this series with (1.30), one calculates [Problem 1.8.5(a)] 

^11 Wi2!A^2JA^22J^1^2 
(1.31) 

Formula (1.29) follows from Stirling's approximation. n 

1.6. Level-3: Empirical Process 

The previous sections have considered three levels of large deviations. 
Level-1 studies SJn, level-2 the empirical measure L„, and level-3 the em­
pirical pair measure M„. For each level there is an entropy function Il^\ 
I^^\ and I^fl, respectively. In this section we formulate another level-3 
problem which includes as special cases all the results in the previous sec­
tions. Associated with this problem is another level-3 entropy function I^^\ 
The three entropy functions encountered already can be obtained from /̂ ^̂  
by contraction principles. 

A subset Z of Q is said to be a cylinder set if it has the form 

(1.32) Z = {coGQ:(a;^+i, .,. ,co^+j,)eF}, 

where m and k are integers with k > 1 and jpis a subset of F''. For now, we 
consider cyHnder sets of the form 

where x^ ,̂ x^ ,̂ . . . , x̂ -̂  are elements of F (not necessarily distinct). We will 
define a random quantity î „(co, •) which for each co is a strictly stationary 
probability measure on Q. R„(co, S) gives the empirical frequency of the string 
{Xi^,Xi^, . . . ,XiJ in the sequence X^(co),X2(co), . . . ,X„(co). If /: = 1, then 
i^„(co,Z) reduces to the empirical frequency L„ j (co) while if/: = 2, then it 
reduces to the empirical pair frequency M„. ; (co). In general, with respect 
to the measure Pp, i^„(co,Z) converges almost surely to the value Pp{^} = 
Pi^Pi^ . . . Pf̂  as « -» 00. A level-3 large deviation problem is to determine the 
decay rate of the P^-probability that R„(co, S) differs from Pp{L} for finitely 
many cyHnder sets Z. This level-3 problem extends the level-2 problem, 
which studies fluctuations of L„(co, •) away from the measure p, as well as 
the level-3 pair problem, which studies fluctuations of M„(a), •) away from 
the product measure n2Pp. We will see that level-3 large deviation proba­
bilities decay exponentially and that the decay rate is determined by a func­
tion /̂ ^̂  which is a natural extension of/̂ ^^ and /^f]. 

We first define strict stationarity. The set F is topologized by the discrete 
topology and the set Q = F^ by the product topology. The cr-field generated 
by the open sets of the product topology is called the Borel o-field of Q 
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and is denoted by ^(Q). ^(Q) coincides with the a-field generated by the 
cyUnder sets T in (1.32) [Propositions A.3.2 and A.3.5(b)]. Let T be the 
mapping from Q onto Q defined by 

(T(D)J = O)J+^ foryeZ. 

r i s called the shift mapping on Q, For each Be^(Q), T~^B is also in ^(Q) 
so that T is measurable. A probabiUty measure P on ^(Q) is said to be 
strictly stationary, or translation invariant, if the shift T preserves P: P{B} = 
P{T-^B] for all Be^{Q) or equivalently P{I} = P { r - ^ I } for all cylinder 
sets Z. We denote by Ji^i^) the set of strictly stationary probability measures 
on J'(Q). 

Example 1.6.1. (a) [See Example A.7.3(a)] Infinite product measure. Let v 
be a probability measure on the set F = {xi,X2, . . . , x j . A cylinder set of 
the form Z = {coeQ:co^+i G F J , . . . ^co^^^eFj^, F^, - •, ^k subsets of F, is 
called a product cylinder set. The class of product cylinder sets generates 
^(Q). For such a set, we define P{I} = Uj=iV{Fj}. Clearly P{T-'^T} = 
P{E}. P can be extended uniquely to a strictly stationary probability measure 
on ^(Q). The extension is the infinite product measure with identical one-
dimensional marginals v and is written P^. 

(b) [See Example A.7.3(b)] Markov chain. Let v be a probabihty measure 
on the set F = {xi,X2, . . . , x j and let {yij} be a non-negative r x r matrix 
with row sums 1. Assume that YJ=I î̂ ij — ^j f̂ ^ each/ Let Z be the cylinder 
set {COGQ:(co^+i,... ,a;^+fc)Gi^}, where i^is a subset of F'̂ . We define P{S} = 
v{F} for ^ = 1 and 

Clearly P{r~^L} = P{^}. P can be extended uniquely to a strictly stationary 
probabiUty measure on J*(Q). The extension is a Markov chain with transi­
tion matrix {y^̂ }; v is an invariant measure for the chain. 

We now state a level-3 large deviation problem. Given a positive integer 
n, repeat the sequence (Zi(co),Z2(co), . . . ,X„(co)) periodically into a doubly 
infinite sequence, obtaining a point 

X(n,co) = (... X,(ojlX,iojlX,(col.. .,X,(col 

X,(cDlX,(col...,X„{colX,(cDl...) 

in Q; (X(n,co))^ = X^(co), (X(n,cjo))2 = ^li^)^ ^tc. For each COGQ, define a 
probability measure on ^(Q) by 

(1-33) ^>,-) = ^"f Vm«)(-), 

where T^ is the identity mapping and T^ = T(T^~^) for /c = 2 , . . . , « - 1. For 
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each Borel subset B of Q, R„(a),B) is the relative frequency with which 
X(n,(jo), TX{n,co), . . . , r""^X(w, co) is in B. Since Xin.oS) is periodic of 
period n, R(n, •) is for each co a strictly stationary probabiHty measure. It is 
called the empirical process corresponding to A î(co), . . . , X„(a>). 

Let /r be a positive integer less than n. In order to interpret formula (1.33), 
define r̂ ">(co) to be the ^-tuple (Z^(co), A>+i(co), . . . ,Z^+;,_i(a;)) if JSG 
{1,2,.. . ,« — / : + 1} and to be the cyclic ^-tuple (Xp{co),..., Xn{co), X^ (co),..., 
Xp+j^_i_^(cQ)) if j5e{« —/c + 2, . . . , « } . If Z is the cylinder set [coeQ: 

^ 1 = Xi,.(^2 = -^i^' • • • '^fc = - ^ i j . * then 

1 " 
i^„(a;,X) = - X ^y<")(co){ î,.-̂ r,. • • • .^^•J• 

This is the empirical frequency of the string {x^̂ , x^ ,̂ . . . , Xĵ } in the sequence 
Zi(co), . . . , X„(co) (with cyclic counting). The contribution of the cyclic 
terms F "̂̂ (co), J5G{« — A: + 2 , . . . , « } , to jR„(co,E) is o(n) as « -^ oo. 

î „(ft), •) is a natural generalization of the empirical measure L„{co, •) and 
of the empirical pair measure M„(af, •). If Z is the one-dimensional cylinder 
set {coeQ:coi = x j , then 

(1.34) R„(CD, I ) = L„(CD, {x,}) = L„,,(a;). 

Thus L„(a>, •) is the one-dimensional marginal of î „(co, •)• If 2̂  is the two-
dimensional cylinder set {coeQ:co^ = x ,̂ 0)2 = •X:J}, then 

(1.35) i^„(co,E) = M„(co, {x„x,.}) = M„jj(co). 

Thus M„(co, ') is the two-dimensional marginal of î „(co, •). 
If Z is any cylinder set, then the ergodic theorem implies that 

limi^„(co,Z) = P,{Z} P,-a.s. 

[Theorems A.9.2(c) and Corollary A.9.8]. Let Z^, . . . ,Z^ be cylinder sets 
such that 0 < Pp{^k} < I, k = I, ..., N, and define the closed set^ 

(1.36) ^3 = {PeJ^M'^rnaxJP{^,} - />,{ZJ| > e}, 

Let Qi^^ be the P^-distribution of î „ on ^^(Q). For all sufficiently small e > 0 
the set B2 is nonempty, and for all sufficiently large n 

Ql,'^{B,} = P,{a;eQ:^jnax^|i^„(co,Z,) - P,{Z,}| > e} > 0. 

Since B^ does not contain P^, the ergodic theorem impUes that Ql^^{B^} -^ 0. 
In fact, the probabilities decay exponentially, and the decay rate is given in 
terms of a function I^^\ which we now define. 

Let a be a positive integer and n^ the projection of F^ onto F"̂  defined by 

*We use CO since co labels the empirical process. 
^The topology on A/s(Q) is the topology of weak convergence [Sections A.8-A.9]. 
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n^co = (coi, . . . ,o)J. If P is a measure in Jl^i^, then define a probability 
measure n^P on ^(F' ') by requiring 

n,P{F) = P{n;'F} = P{(D:(CO,, . . . , C O J G F } 

for subsets F of F^. The measure n^P is called the a-dimensional marginal of 
P. We consider the quantity 

which is the relative entropy of n^P with respect to n^Pp. In Chapter IX, we 
prove that the limit 

(1.37) /<^>(i') = limi/<f'(7r,i ') 

exists, that /^^ (P) is an affme function of PeJi.iQ), and that I^'^\P) > 0 
with equahty if and only if P = Pp. Thus Ip^\P) measures the discrepancy 
between P and Pp. It is called the mean relative entropy of P with respect to 
Pp. Here are some examples of mean relative entropy. 

Example 1.6.2. Let p be the uniform measure on F = {x ,̂X2» • • • ?-̂ r} iPi = 
l/r for each /)• For PeJ^X^) 

li'Jpin.P) = alogr ^ Z n,P{(o}'logn,P{co} 

since n^Pp{co} = r~* for each co e F"̂ . According to Note 2 of Chapter IX, the 
Umit 

A ( P ) = - l i m - Z 7r,P{co}log7r,P{co} 

exists; /z(P) is called the mean entropy"^ of P. It follows that the Umit Il^\P) 
in (1.37) exists and I^^\P) = log r - h(P). By properties of /^^^(P) men­
tioned above, h(P) < logr and h(P) = logr if and only if P = P^. Mean 
entropy h(P) generalizes Shannon entropy, which was discussed in Example 
1.4.2. Accordingly, h(P) can be interpreted as a measure of the randomness 
in P per unit time. 

(a) For the infinite product measure P^ [Example 1.6.1(a)], /̂ ^ (̂Pv) = 
logr — /?(Pv), where h(P^) = —Yj=r'^il^§>^i' The latter is the Shannon en­
tropy of V, H(v). 

(b) Let P be a Markov chain with transition matrix {ŷ }̂ and invariant 
measure v [Example 1.6.1 (b)]. Then Ip^\P) = logr — h(P), where h(P) = 

-ZL-=i^t7tjlogyo--

For any measure p in Jf(r) with each Pi> 0 and for any PeJ^^(Q), 
one can express Ip^KP) as an expectation involving relative entropy [see 
(2.20)]. Here is the level-3 large deviation theorem. It will be proved in 
Chapter IX. 
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Theorem 1.6.3. For all sufficiently small £ > 0 

\im-\ogQ^^\B,] = lim^logP^lcoeQ: max |i?„(co,2^) - P ,{EJ | > ^} 
n-^cofl n-^con '^ k=l,...,N ^ 

(1.38) = - m i n / ^ 3 ' ( P ) . 
P G B^ 

Since the set B^ is closed and does not contain P^, miiipg^ ^p^\P) > I^^KP^ = 
0. Hence Q^n^^z] converges to zero exponentially fast. 

The theorem can be interpreted as follows. For level-3, the macrostates 
are all strictly stationary probability measures PeJ^^QL). Each P is a 
candidate for describing the probabilistic structure of a gambling game 
on Q [see page 16]. The microscopic «-sums are the empirical processes 
[Rnioj, •)}• The P^-probability that R^ioj, •) is close to PeMJS^ behaves 
for large n like exp( —«/^^^(P)). /̂ ^̂  is the entropy function and the measure 
Pp is the equiUbrium state. 

We end this chapter by discussing the relationship between Theorem 
1.6.3 and the previous large deviation theorems. Theorem 1.5.1 treated the 
empirical pair measure M„(<JO, ').lf P is SL measure in ^s(Q), then the two-
dimensional marginal 712̂ ^ is a probability measure on F^, and since P is 
strictly stationary, 712^ has equal one-dimensional marginals. Hence 712^ 
belongs to ^ , (F^ ) . In the set B^ in (1.36), let { I J run through all two-
dimensional cylinder sets {cdeQ:cd^ = Xi,cd2 = Xj}, i,j = I, . . . , r. Then 

n^B^ = {xeJiJ<y\.x = n2P for some PeB^} 

= {xeJi.iy^Y max |T .̂ - p^p^ > s}. 
ij=l,-,r 

The latter is the set A^ in (1.26). Since n2Rn(o), •) = M„(co, •) for each co, it 
follows that 

P,{coGQ:M„(a>, ')eA^} = Pp{cDeQ:R„{cD, ')eB,}, 

By Theorem L5.1 the decay rate of the first probability is — min^g^^/^f^(T). 
This must equal the decay rate o{Pp{co e Q: Rn(oj, •) ̂  ̂ 3}? which by Theorem 
L6.3 equals — min {IJ^^\P):PGB^}. The latter can be rewritten as 

-minmin{/^^^(P):PG^,(Q),7C2P = T}. 
T 6 B^ 

Thus, one expects that for x e ^ s ( r ^ ) 

(1.39) /<fi(T) = l^x^jlog-^ = mm{i;,'\Py. PeJ^M, ^ 2 ^ = t} , 

where (vj^ = Yj=i ^o- ^ ^ ^̂ ^̂ ^ prove (1.39) in Chapter IX. It is the contrac­
tion principle relating /^fj and I^^\ 

The connection with Theorem 1.4.3 is similar. If P is a measure in ./^^(Q), 
then the one-dimensional marginal TT^P is an element of ^ ( F ) . In the set B^ 
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in (1.36), let {L^} ^^^ through all one-dimensional cylinder sets {COGQ: 

co^ = Xj}, / = 1, . . . , r. Then 

711̂ 3 = {vG^( r ) : v = 7iiPforsomePG^3} 

= {veJ^(r): max \vi-pi\>s}. 
i = l , . . . , r 

The latter is the set A2 in (1.15). Since n^R^ico, •) = L^ico, •) for each co, it 
follows that 

P,{COGQ:L„(CO, Oe^a} = P,{coGQ:i^„(co, ')eB^]. 

Again, comparing decay rates, we have 

min /̂ ^>(v) = min I^^KP) = min mm{I^^\P):PEJ^,(Q\n^P = v}. 
VSA2 P^^3 ^ ^ ^ 2 

In Chapter IX, we prove for veJ^iT) the following contraction principle 
which is consistent with the last display: 

(1.40) I^'Kv) = t n-log-^ = min{I^'\P): PeJiM.n.P = v}. 
i = l Pi 

Finally, for level-1, recall the contraction principle (1.17) relating /̂ ^̂  and 
/^^^:forzG[xi,xJ 

/̂ ^>(z) = min|/;^)(v): veJi{T\ ^ x,v, = z\. 

Comparing this with (1.40), we conclude that for zG [x^, x j , 

(1.41) /<^>(z) = min|/;^>(i>): PeJiM. f x,{7i,P\ = z | . 

This completes our discussion of large deviations for i.i.d. random vari­
ables with a finite outcome space. An interesting feature of this chapter was 
the use of combinatorics to calculate explicit formulas for the entropy func­
tions /̂ ^ ,̂ /^^\ and /jf]. In the next chapter, the three levels of large devia­
tions will be generalized to random vectors taking values in R"̂ . The theory 
will be applied to statistical mechanics in later parts of the book. 

1.7. Notes 

1 (page 3). Wehrl (1978) discusses the historical and physical backgrounds 
of entropy together with modern developments. He Hsts many references. 

2 (page 13). Relative entropy I^^Kv), introduced by KuUback and Leibler 
in 1951, is also known as the KuUback-Leibler information number. It plays 
an important role in statistics, especially in large sample theories of estima­
tion and testing [Kullback (1959), Bahadur (1967, 1971)]. / f (̂v) measures 
the statistical distance between v and p. The smaller this distance, the harder 
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it is to discriminate between v and p. Applications of large deviations to 
statistics are discussed by Bahadur (1971), Chernoff (1972), and individual 
articles in "Grandes deviations et applications statistiques," Asterisque 68, 
Societe Mathematique de France, Paris, 1979. 

3 (page 14). Shannon entropy H(v) was first defined by Shannon (1948) 
and independently by Wiener (1948). The form of H(v) can be derived from 
a set of axioms which a reasonable measure of randomness should satisfy; 
see, e.g., Khinchin (1957, pages 9-13). 

4 (page 24). In information theory, the mean entropy h(P), PeJiX^)^ 
measures the amount of information per symbol in a message which is 
generated according to P [Khinchin (1957), MeEliece (1977)]. Large devia­
tion bounds, known as Chernoff bounds [see Problem VII.8.9], are widely 
used [Wozencraft and Jacobs (1965), Gallager (1968)]. In ergodic theory, 
h{P) is the Kolmogorov-Sinai invariant of the dynamical system (Q, =^, P, T) 
[Martin and England (1981)]. 

1.8. Problems 

1.8.1. (a) Given «e{2,3, . . . , } , prove that nXogn — n-\- \ < \og{n!) < 
{n + 1) \og{n + 1) — (« + 1) + 1 by considering the area under the graph 
oflogx, X > 1. Deduce the weak form of Stirling's approximation:log(«!) = 
nXogn — n -{- 0{\ogn), n>2. 

(b) Prove Lemma 1.4.4. 

1.8.2. This problem shows how to complete the proofs of Theorems 1.3.1, 
1.4.3. and 1.5.1. Let ^ be a compact subset of W^ a n d / a real-valued function 
on A which is continuous relative to A. Let {A„;« = 1,2,...} be closed subsets 
of A such that for any aeA there exists a sequence a„eAn with a„-^ a SLS 
n^co. Prove that lim„_^ mm^^^^f(x) = min^^^f(x). 

1.8.3. Let p = {pij; /,7 = 1, . . . , r} be a set of positive numbers such that 
I}j=iPij = 1- Define v̂  = Yj=iPij ^^d fij = Y}=iPij' Let p = { A ; / = 1, . . . , 
r} be a sequence of positive numbers such that ^ -=1A = 1. Prove that 

i,j=l PiPj 

i = l Pi 7 = 1 Pj 

with equality if and only ifpij = Vifij for each / a n d / 
If each Pi = 1/r, then we conclude that the randomness in/7 (as measured 

by Shannon entropy) is no greater than the sum of the randomness in v and 
the randomness in p, and that equality holds if and only if p is product 
measure. 
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1.8.4. (a) Prove Jensen's inequality: if vvi, ̂ 2, . . . , ŵ  and > î, Ĵ 2? • • • > Ĵ r ^re 
nonnegative numbers such that Yj=i ^j— 1' ^^^^ 

( Z ^jyjjlog(Z y^jyA < Z ^jyj^^^yy 

IHint: Let h(x) = xlogx. If a = Yj=i ^jyj > 0, then h(yj) > h(a) + h\a) • 
(yj-a).-] 

(b) [Renyi (1970b, page 556)]. Let v = {Vjij = 1, . . . ,r} be a sequence 
of non-negative numbers such that Yj=i ^j~ ^- ^^^ y ~ {̂ /fc} be an r x r 
doubly stochastic matrix (ŷ ^ > 0,Yj=i Iju = 1 for each k, Y!k=i Jju = 1 for 
eachy) and define fi^ = Yj=i ĵ)!/fc- ^^^ Pi — V^ for / = 1, . . . , r. Prove that 

Z f^k^ogfi, < t ^Aogvj and fJ'Kfi) < / f >(v). 
k=l j=l 

See Voight (1981) for generalizations. 

1.8.5 [J. K. Percus (private communication)], (a) Derive formula (1.31). 
iHint: Expand 

_Bjj^-_R 22 

(1 - c)(l - B,,B,Jil - c)) 

= (1 - 5 i i + 1 - 5^2) X (B,2B2xm - c)-"-', 
n>0 

where 1 - c = 1 - (B^^ + B^^ - ^ n ^ ^ j ) = (1 - B,,){\ - B^jll 
(b) For r>2, let fc; = X5=i -^r Show that 

forallA;j> 1, 

where [di^ — Nij/kj']^^ is the aa-cofactor of the r x r matrix {3^ — Nu/kj}. 
\_Hint: U B = {Bij} is an r x r positive matrix with 0 < Zl/=i ^u ^ 1' ^^^^ 
Tr(/ - B)-^ = Xa=i U - B\JdQt(I - B\ where [/ - B\^ is the aa-cofactor 
of I — B. Use the formula (which holds in the sense of distribution theory) 

1 
d e t ( / - ^ ) 

exp[/«x,j;> - <x,Byy)^dxdy'-—-.'] 
(2ny 

L8.6. Let B = {Bij} be a positive 2 x 2 matrix and X(B) the largest eigenvalue 
of B in absolute value. By Lemma IX.4.1, 2.(B) is positive and logX(B) = 
lim„^oo n~^ logTr ^". As in the proof of Lemma L5.2, 

(1.42) T r 5 " = l.y(n,N) H Bl'jiJ. 
ij=l 

file:///_Hint
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where the sum runs over all Â  = {Niy, ij =1 ,2} such that A^^G {0, 1, . . . , n), 
Yj,j=i ^ij = ^' ^^^ Tj=i ^ij ~ Zfc=i ^ki for each /. Using Lemma 1.5.2, prove 
that 

(1.43) logA(^) = m a x | x T , ^ l o g ^ ? ^ : T 6 ^ , , J , 

where (vj^ = Yjj=i '^tj ̂ ^^ ^s, i is the set of T = {T̂ ;̂ iJ =1 ,2} satisfying T̂^ > 0, 
Yj,j=i '^ij = 1»^^^ Z?=i '̂ y ^ Zfe=i '̂ fei fo^ ̂ ^^^ ^' ^^^ s^^ i^ (1-43) runs over all / 
and j for which (vj,- > 0. Theorem IX.4.4 and Problem IX.6.4 are 
generalizations. 

1.8.7. Verify the calculations in Examples 1.6.2(a), (b). 




