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Preface 

This book has two main topics: large deviations and equiHbrium statistical 
mechanics. I hope to convince the reader that these topics have many points 
of contact and that in being treated together, they enrich each other. Entropy, 
in its various guises, is their common core. 

The large deviation theory which is developed in this book focuses upon 
convergence properties of certain stochastic systems. An elementary example 
is the weak law of large numbers. For each positive a, P{|S„/n| > e} con
verges to zero as n -^ oo, where S„ is the nth partial sum of indepen
dent identically distributed random variables with zero mean. Large deviation 
theory shows that if the random variables are exponentially bounded, then 
the probabihties converge to zero exponentially fast as n ^ oo. The exponen
tial decay allows one to prove the stronger property of almost sure conver
gence {S„/n -^ 0 a.s.). This example will be generalized extensively in the book. 
We will treat a large class of stochastic systems which involve both indepen
dent and dependent random variables and which have the following features: 
probabilities converge to zero exponentially fast as the size of the system 
increases; the exponential decay leads to strong convergence properties of the 
system. The most fascinating aspect of the theory is that the exponential decay 
rates are computable in terms of entropy functions. This identification between 
entropy and decay rates of large deviation probabihties enhances the theory 
significantly. 

Entropy functions have their roots in statistical mechanics. They originated 
in the work of L. Boltzmann, who in the 1870's studied the relation between 
entropy and probability in physical systems. Thus statistical mechanics has a 
strong historical connection with large deviation theory. It also provides a 
natural context in which the theory can be appHed. Applications of large 
deviations to models in equilibrium statistical mechanics are presented in 
Chapters III-V. These appUcations illustrate convincingly the power of the 
theory. 

Equilibrium statistical mechanics is an exciting area of mathematical 
physics but one which remains inaccessible to many mathematicians. Some 
texts on the subject provide an introduction to the physics but do not develop 
the mathematics in much detail or with great rigor. Other texts treat mathe
matical problems in statistical mechanics with complete rigor but assume an 
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extensive background in the physics. The uninitiated reader has difficulty 
understanding how concepts hke ensemble, free energy, or entropy connect 
up with more familiar concepts in mathematics. My approach in this book is 
to emphasize strongly the connections between statistical mechanics on the 
one hand and probability and large deviations on the other. I hope that in so 
doing, I have succeeded in providing a readable treatment of statistical 
mechanics which is accessible to a general mathematical audience. My large 
deviation approach to statistical mechanics was inspired in part by the article 
ofO. E. Lanford(1973). 

In recent years, the scope of large deviations has been greatly expanded 
by M. D. Donsker and S. R. S. Varadhan. This book contains an introduction 
to their theory. I illustrate the main features in the context of independent 
identically distributed random vectors taking values in U^. I also present my 
own large deviation results, which are particularly suited for applications to 
statistical mechanics. Since readability rather than completeness has been my 
goal, the large deviation theorems are not stated in the greatest generality. 

There are two parts to the book. Part I consisting of Chapters I-V. Chapter I 
introduces large deviations by means of elementary examples involving com
binatorics and Stirling's formula. Chapter II presents the Donsker-Varadhan 
theory as well as my own large deviation results. The proofs of the theorems 
in this chapter are detailed and are postponed until Part II. Postponing proofs 
allows the reader to reach, as soon as possible, interesting apphcations of large 
deviations to statistical mechanics in Chapters III-V. Chapter III gives a large 
deviation analysis of a discrete gas model. Chapters IV-V discuss the Ising 
model of ferromagnetism and related spin systems. The emphasis in these two 
chapters is upon properties of Gibbs states. While large deviation theory 
provides a terminology and a set of results that are useful for treating Gibbs 
states, the book also develops other tools that are needed. These include 
convexity and moment inequalities. 

Part II consists of Chapters VI-IX. Chapter VI is a summary of the theory 
of convex functions on IR̂ . Chapters VII-IX prove the large deviation results 
stated in Chapter II without proof. The prerequisite for these chapters is a 
good working knowledge of probability and measure theory. The essential 
definitions and theorems in probability are listed in Appendix A. The appen
dix is intended to be a review or an outline for study rather than a detailed 
exposition. 

This book can be used as a text. It contains over 100 problems, many of 
which have hints. Chapters I and II and VI-IX are a self-contained treatment 
of large deviations and convex functions. Readers primarily interested in spin 
systems can concentrate upon Chapters IV and V and refer to the statements 
and proofs of large deviation results as needed. Those portions of Chapters IV 
and V which do not rely on large deviations are self-contained. Chapters IV 
and V can be completely understood without reading Chapter III. 

This book contains new results and new proofs of known theorems. These 
include the following: exponential convergence properties of Gibbs states 
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[Theorems IV.5.5, IV.6.6, and V.6.1]; a large deviation proof of the Gibbs 
variational formula [Theorem IV.7.3(a)]; a proof of the central limit theorem 
for spin systems [Theorem V.7.2(a)]; a level-3 large deviation theorem for 
i.i.d. random variables with a finite state space [Theorem IX.1.1]; a level-3 
large deviation theorem for Markov chains with a finite state space [Problems 
IX.6.10-IX.6.15]; the solution of the Gibbs variational formula for finite-
range interactions on Z via large deviations [Appendix C.6]. Many of the 
large deviation results and appHcations in the book depend upon my large 
deviation theorem, Theorem II.6.1. The proof of the level-3 theorem in 
Chapter IX was inspired by statistical mechanics [see Appendix C.6] and 
information theory. 

I have had the good fortune of interacting with a number of special people. 
Todd Baker edited the manuscript with creativity and care. The book benefited 
greatly from his involvement. Peg Bombardier was my superb typist. She 
was always cheerful and patient, despite the numerous revisions, and was a 
pleasure to work with. Alan Sokal read portions of the manuscript and was a 
big help with the statistical mechanics. I owe a special debt of gratitude to 
Srinivasa Varadhan. He answered my many questions about large deviations 
patiently and with insight and showed a strong interest in the book. The 
encouragement of my family and friends was greatly appreciated. Above all, I 
thank my wife Alison. Her love is a blessing. 

I am grateful to Alejandro de Acosta, Hans-Otto Georgii, Joseph Horowitz, 
Jonathan Machta, Charles Newman, and R. Tyrrell Rockafellar for reading 
portions of the manuscript and suggesting improvements. I am also indebted 
to the many other people, too numerous to mention by name, with whom I 
have consulted. While writing the book, I received support from the Univer
sity of Massachusetts, the National Science Foundation, and the Lady Davis 
Fellowship Trust. Their support is gratefully acknowledged. 

Richard S. ElUs 



Comments on the Use of This Book 

At the end of each chapter, there is a Notes section, followed by a Prob
lems section. References to the Notes are indicated by superscripted integers; 
e.g., entropy"̂  refers to Note 4. Near the end of the book, there is a Hst of 
frequently used symbols. 

The main large deviation theorems are stated in Chapter II and are proved 
in Chapters VI-IX. Readers interested primarily in large deviations may read 
Chapters I, II, VI-IX while those interested primarily in statistical mechanics 
may read Chapters I-V, 
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Chapter I 

Introduction to Large Deviations 

I.l. Overview 

One of the common themes of probabihty theory and statistical mechanics is 
the discovery of regularity in the midst of chaos. The laws of probabihty 
theory, which include laws of large numbers and central limit theorems, 
summarize the behavior of a stochastic system in terms of a few parameters 
(e.g., mean and variance). In statistical mechanics, one derives macroscopic 
properties of a substance from a probabihty distribution that describes the 
complicated interactions among the individual constitueht particles. A cen
tral concept Hnking the two fields is entropy. ̂  The term was introduced into 
thermodynamics by Clausius in 1865 after many years of intensive work by 
him and others on the second law of thermodynamics. An early important 
step in its development and enrichment was the discovery by Boltzmann of 
a statistical interpretaton of entropy. Boltzmann's discovery, which was pub
lished in 1877, has three parts. We have augmented part (c) to include the 
possibility of phase transitions. 

(a) Entropy is a measure of randomness or disorder in a statistical 
mechanical system. 

(b) If S is the entropy for a system in a given state and Wis the "thermo-
dynamical probabihty" of that state,* then S = klog W, where ^ is a 
positive physical constant. 

(c) The equilibrium states, which are the states of the system observed in 
nature, are those states with the largest thermodynamical probability 
and thus the largest entropy. By (a), they are the "most random" states 
of the system consistent with any constraints which the system must 
satisfy (e.g., conservation of energy). The existence of more than one 
equilibrium state corresponds to a phase transition. 

All the notions of entropy discussed in this book are variations on the 
Boltzmann theme. In analyzing stochastic or statistical mechanical systems, 

*The thermodynamical probability is defined to be the number of microstates compatible 
with the given state (see Wehrl (1978, page 223)). 
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one must extrapolate from a microscopic level, on which the system is 
defined, to a macroscopic level, on which the laws describing the behavior of 
the system are formulated. Boltzmann shows that entropy is the bridge 
between these two levels. We will illustrate these ideas and outline the main 
themes of this book in terms of a basic stochastic model. This discussion is 
intended for the reader who has a knowledge of probability theory consistent 
with Appendix A. Other readers may still perceive the global picture without 
turning to Appendix A at this time. That task may be postponed until the end 
of the first chapter. 

Each of our systems is modeled microscopically by a collection of random 
variables {X^; ae j ^ } which are defined on a probability space (Q, J^, P) and 
which take values in a space F. Q is a nonempty set, J*̂  is a cr-field of subsets 
of Q, and P is a probability measure on (Q, <^). T is called the state spcice or 
the outcome space; in all of our applications, Y is IR"̂ , (ie {1,2, . . . } , or a sub
set of U^. j / is a suitable index set. Our results depend only on the distribu
tion of the random variables {Z^;aGj/}. Hence we may take Q to be the 
product space P-^ and the collection {X^ \0Les^] to be the coordinate repre
sentation process. That is, given a point co = {oj^\OLe^] in P-^, we define 
XJ{(D) = 0)^, the ath coordinate of co. Each COGF-^ represents a possible con
figuration or microstate of the system, and the entire space F-^ is the set of all 
the configurations. The definition of the model is completed by specifying a 
probability measure P on configuration space. Here are some examples. 

Example I . l . l . (a) Let ^ be the set of integers Z = {. . . ,—1,0, 1, . . . } 
and F a finite set of distinct real numbers {x^, X2, . . . , x^}. Define P to be an 
infinite product measure on F^ with identical one-dimensional marginals, 
which we denote by p. Thus p is a probability measure on F, and it has the 
form YJ=I Pi^x-^ where Pi > 0, Y}=i Pt — ^' ^^^ 5^. is the unit point measure 
at Xi. The variables {XJ'J'GZ} are independent and identically distributed 
(i.i.d.) and each has distribution p. We write P^ for P. 

(b) A simple case of (a) is F = {0,1}. The {Xj'j'eZ} are then BernoulU 
trials and p = PQSQ -i- PiS^. The {XJ'JEZ} may, for example, represent the 
successive outcomes of the toss of a coin in an infinite sequence of tosses 
separated by a constant time interval. Each outcome is recorded as 0 for a 
tail and 1 for a head. A fair coin corresponds to p = ^SQ 4- ^S^. 

(c) In (a), the set F = {xi,X2, . . . , x j may represent a set of possible 
velocities of the molecules of an ideal gas which are constrained to move in 
an interval and which undergo elastic collisions at the endpoints. Then 1} 
denotes the velocity of the molecule labeled / A configuration co G F^ is a 
specification of the velocities for each molecule. Independence means that 
the molecules do not interact. This model is treated in Chapter III. 

(d) A ferromagnet is modeled by random configurations of spins (mi
croscopic magnets) at sites in the Z)-dimensional integer lattice Z^, Ds 
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{1,2, . . . } . We set ja/ - Z^ and F = {1, - 1 } . The values 1 and - 1 repre
sent "spin-up" and "spin-down," respectively. Configuration space Q is 
{1, —1}^ and Xj(co) is the spin at siteyeZ^ for the configuration co. A 
product measure on Q is not appropriate for this model since the spins at 
different sites interact. The ferromagnet is modeled by a probability measure 
P on Q which is translation invariant; i.e., invariant with respect to spatial 
translations in Z^. Ferromagnetic models are the subject of Chapters IV 
andV. 

As these examples show, a probability measure on a configuration space 
provides a microscopic definition of a stochastic or physical system. How
ever, the laws describing the behavior of such a system are macroscopic 
descriptions which in contrast to the number of all configurations, involve 
many fewer variables. For each description, the range of possible values of 
these variables defines the set of macrostates. Each macrostate is compatible 
with, and hence is a summary of, many microstates. The entropy of a macro-
state is a measure of this multiplicity. Those macrostates compatible with the 
most microstates—i.e., those with the largest entropy—are the ones observed 
in nature. Generally, a system will have several possible macroscopic descrip
tions, each differing in complexity and in choice of macrostate. For each 
description, there is a different entropy concept. 

We return to the coin tossing model in order to explain these ideas. This 
model is represented by the infinite product measure P^ on the configuration 
space Q = {0,1}^ (p = PQSQ + Pi^i). Macroscopically, the behavior of the 
coin can be expressed by a single number, its mean value. The possible mean 
values are all numbers z e (0,1), and there is no harm including the endpoints. 
We call the set of z6[0,1] macrostates. The weak law of large numbers 
(WLLN) enables one to estimate the macrostate in terms of microstates. 
Define S^{CJO) = Yj=i ^j(^) for « = 1,2, . . . and coeCl. Sn(co)/n is the average 
value of the tosses co ,̂ 0^2, . . . , co„. The sum S„((D)/n is called a microscopic 
sum or n-sum. Let m^ be the mean value of the measure p (m^ = 0-p^ + 
I' Pi = Pi) and Q„ the distribution of SJn. The WLLN says that for any 
£ > 0 , 

Qn{(^p - £,^p + e)} = Pp{coea:S„(cD)/ne(mp - e,m^ + £)}->! 

3,3 n-^ CO. 

In other words, ifn is large, then with respect to P^ essentially all microscopic 
«-sums are close to the macrostate m^. The latter is called the equilibrium 
state. 

Here is how entropy arises. Assume for simplicity that the coin is fair 
(mp = j). For any zeU and £ > 0, let A^^^ be the interval (z — 8,z + e). By 
the WLLN, g„{^^ ,e} '^ ^ as « -> 00 while if z =/= m^ and 0 < e < |z — m^l, 

"p 

then Qn{Az^s} -^ 0. In the latter case, it is not hard to refine the WLLN and to 
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Figure I.l. The entropy function /(z) for the coin tossing model. 

prove that Qn{^z,e} decays to 0 exponentially fast. The exponential rate of 
decay is defined by F(z,s) = -\im„^^n~^\ogQ„{A^^}^ By a simple 
combinatoric argument (as in the proof of Theorem 1.3.1), one shows that 
F(z, £) equals the infimum over A^^^ of the function 

(1.1) /(z) = 
zlog(2z) + ( l - z ) l o g ( 2 ( l 

00 

z)) for ZG [0,1], 

for z^ [0,1], 

where OlogO = 0. The graph of the non-negative convex function /(z) is 
shown in Figure I . l ; clearly, F(z,£) > 0. /(z) is called the entropy function 
for the coin tossing model. We now interpret it in view of our earUer remarks 
on entropy. 

For any zeU and large n, QniA^^e} is approximately exp( —«J^(z,e)). 
Since F(z, s) -^ I(z) as e -> 0, we may heuristically write 

(1.2) e .Mz,a}^exp( -« / (z ) ) 

for n large and e small. If z =/= m^, then /(z) is positive and exp( —^2/(z)) -^ 0 
as n-^ CO. This is consistent with the exponential decay of Qn{A^^^} for 
0 < 8 < \z — mp\. The heuristic formula (1.2) shows that to a small value of 
/(z) there corresponds a large probability Qni^z^e) c>r, in other words, a high 
multiplicity of microstates. In this sense, /(z) is a measure of the multiplicity 
of microstates compatible with the macrostate z. For another interpretation, 
given points z^ and Z2 in [0,1], it is reasonable to call z^ more random than 
Z2 if/(^i) < /(^2)j that is, if there are more microstates compatible with ẑ  
than with Z2- Thus /(z) also measures the randomness of the macrostate z. 
The equiUbrium state m^ = ^ is that macrostate which is compatible with the 
most microstates. In fact, 

I(m^) = 0 = min{/(z):zeU} and /(z) > 0 for z ^ m^. 

Thus the equilibrium state, being the unique minimum point of/, is the most 
random macrostate. Points z outside of [0,1] are forbidden values for SJn: 

'l^Qn{A,,e} = 0, then set \ogQ„{A.,e} = 
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if ^ n [0,1] is empty, then Q^{A} = 0 and /(z) = oo for each zeA. For 
z ^ nip and 0 < e < |z — m^|, Qn{^z,e} is called a /ar^^ deviation probability 
since the event {COGQ: »S„(CO)/WG^^ J corresponds to a fluctuation or devia
tion of SJn of order |z — m l̂ away from the Hmiting mean. It is a very rare 
event since Qn{A^^^} -» 0 exponentially. 

An equivalent statement of the WLLN is that the distributions {Q„; 
« = 1,2, . . . } converge weakly to the unit point measure at m^ (written 
Qn =^^m )• ^^ this book, we will study much more general but analogous 
situations. A sequence of probability measures {Q„',n = 1,2, . . . } on a 
complete separable metric space ^ will converge weakly to the unit point 
measure at some XQE^. {Q„} will have a large deviation property in the 
sense that Qn{K} will decay exponentially for all closed sets Â  in ^ which 
do not contain XQ. The decay rate will be given by —mt^^j^I(x), where I(x) 
is some non-negative function on ^ with a unique minimum point at XQ 
(I(Xf)) = 0). I(x) is called the entropy function of the measures {Qn}. 

In a series of important papers beginning in 1975, Donsker and Yaradhan 
have identified three levels of large deviations which fit into the general 
framework just described. These levels will be treated in detail in this book. 
Let {1} ;7 G Z } be a sequence of i.i.d. random vectors taking values in IR"̂ . Let 
p be the distribution of X^ and Pp the corresponding infinite product measure 
on Q = {U'f. 

Level-1. Define ĝ ^̂  to be the distribudon of 5„(a;)/« = Yj=i ^j(^)/^ on IR̂  
and assume that JiRrf||x||p(Jx) is finite. Then by the WLLN the sequence 
iQjji); n = 1,2,...} converges weakly to 3^ , where m^ is the mean ^^dxp(dx) 
of p. If, furthermore, the moment generating function ^^dQxp<[t,x}p(dx) is 
finite for all teW^, then Ql^^{K} decays exponentially for all closed subsets 
K of IR"̂  which do not contain m^ [Theorem II.4.1]. The decay rate is given 
in terms of a level-1 entropy function /^^ which is a non-negative convex 
function on R^ and which has a unique minimum point at m^ (/^^^(m^ = 0). 
The sums {Sn{o))/n} are called level-l microscopic n-sums and points zeU^ 
are called level-l macrostates. The mean m^ is the unique level-1 equiUbrium 
state. 

Level-2. For co GQ, define the empirical measure L„(CD, •) = n~^ Y^j=i ^xi(o){') 
(for ^ ^ [R̂  a Borel set, L„(co,A) = n~^ Yj-i ^xiol^})- L„(a)) takes values 
in the space ^(W^) of probabihty measures on W^. Ji{W^) is a topological 
space with respect to the topology of weak convergence, and it is metrizable 
as a complete separable metric space. Let 2«^^ denote the distribution of 
Ln{a>, •) on Ji{U^). By the ergodic theorem, the sequence {L„(co, ')',n = 
1,2,. . .} converges weakly to p (almost surely), and this implies that 
[Q^n^'^n = 1,2, . . . } converges weakly to dp. In addition, Q^^\K] decays 
exponentially for all closed subsets K of Ji{W^) which do not contain p 
[Theorem II.4.3]. The decay rate is given in terms of a level-2 entropy func-
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tion /̂ ^̂  which is a non-negative convex function on JiiW^) and which has a 
unique minimum point at p (I^^Kp) = 0). For ve^(U^), I^^\v) equals the 
relative entropy of v with respect to p. The empirical measures {L„(co, •)} 
are called level-2 microscopic nsums and measures veJiiU^) are called 
level-2 macrostates. The distribution p is the unique level-2 equihbrium state. 

Level-3. Let Ji^i^ denote the set of strictly stationary probabihty measures 
on Q. J^si^) is a topological space with respect to the topology of weak 
convergence, and it is metrizable as a complete separable metric space. For 
CO e Q, one defines the so-called empirical process î „(co, •) which takes values 
in Jisi^) [see page 22]. Let Q^^^ denote the distribution of Rn(o), •) on 
J^si^)' By the ergodic theorem, the sequence [Rnioj, •)\n= \,2, ...] con
verges weakly to Pp (almost surely). Hence [Q^n'^'^n = 1,2, . . . } converges 
weakly to dp . In addition, Q^^'^{K] decays exponentially for all closed subsets 
KoiJi^Q) which do not contain Pp [Theorem n.4.4]. The decay rate is given 
in terms of a level-3 entropy function /̂ ^̂  which is a non-negative affine func
tion on ^s(Q) and which has a unique minimum point at Pp {f^^{Pp) = 0). 
The empirical processes {î „(co, •)} ^^^ called level-3 microscopic n-sums and 
measures PeJi^i^) are called level-3 macrostates. The measure Pp is the 
unique level-3 equihbrium state. 

For each of the three levels, we may heuristically express the asymptotic 
behavior of the distributions Qll;\dx) by the formula Qxp( — nl^'\x))dx. 
Qn\dx) is a measure on the complete separable metric space ^ = U^, 
J^{U^), or Ji^iU^) for / = 1, 2, or 3, respectively. By analogy with coin toss
ing, we may interpret each entropy function Ip\x) as a measure of the multi
plicity of microstates compatible with the macrostate X G ^ . In that sense, 
Ip\x) is also a measure of the randomness of x. 

Varadhan (1966) gave a useful application of the large deviation property 
to calculate the asymptotics of certain integrals. The heuristic formula 
Q^^\dx) '^ Qx^{ — nl^p\x))dx suggests that if i^ is a bounded continuous 
function on ^ , then 

l im-log ^x^{nF{x))Q^\dx) = \xm\\og expln(F(x) - Il'\x))]dx 

= sup{F(x)-Il;\x)}. 

This limit is vahd under suitable hypotheses [Theorem II.7.1] and will be 
applied a number of times in the book. 

So far we have discussed large deviations for i.i.d. random vectors. 
Statistical mechanical systems have a similar three-level structure with one 
additional feature: there need not be a unique equilibrium state for a given 
level. This lack of a unique equihbrium state corresponds physically to a 
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phase transition and probabilistically to a breakdown in the law of large 
numbers (or ergodic theorem) for the corresponding microscopic «-sums. 
But in general, whether or not there is a phase transition, we may consider 
the Legendre-Fenchel transform of the corresponding entropy function. 
This transform defines a convex function which in statistical mechanics is 
called the free energy. Free energy functions will play a central role in 
analyzing statistical mechanical systems in Chapters III-V. 

In the remainder of this chapter we will introduce level-1, 2, and 3 large 
deviations by considering i.i.d. random variables with a finite state space. 
The corresponding entropy functions will be calculated by means of elemen
tary combinatorics. In Chapter II, the three levels of large deviations will be 
generalized to i.i.d. random vectors taking values in U^. Section II.6 presents 
additional large deviation results, which are particularly suited for applica
tions to statistical mechanics. The proofs of the theorems in Chapter II are 
detailed and will be postponed until Chapters VI-IX. In Chapters III-V the 
large deviation results will be appHed to an ideal gas model and to ferromag
netic spin models in statistical mechanics. 

1.2. Large Deviations for I.I.D. Random Variables with a 
Finite State Space 

In its simplest form the theory of large deviations refines the classical law of 
large numbers. Let S„ be the nth partial sum of independent, identically 
distributed random variables Z^, Z2, . . . . The strong law of large numbers 
states that if the expectation £'{|Xi|} is finite, then SJn converges to E{Xi} 
almost surely. This was proved by Kolmogorov (1930). It impHes the weak 
law, which states that SJn converges to E{X^} in probabihty. The first large 
deviation results were those of Cramer (1938) and Chernoff (1952). They 
showed that if Zj has a finite moment generating function in a neighborhood 
of 0, then the probability that SJn deviates from E{X^} by a small amount 
£ > 0 is exponentially small as n^ 00. After Chernoff, these results were 
applied and extended in statistics and probability by many people, and they 
have played a key role in information theory. In a series of papers starting in 
1975, Donsker and Varadhan have generalized these results to Markov 
processes with general state spaces and have found many interesting new 
applications. 

The Donsker-Varadhan theory identifies three levels of large deviations, 
which were mentioned in the previous section. An elementary way of intro
ducing the three levels is by means of well-known but instructive examples 
involving i.i.d. random variables with a finite state space. The rest of this 
chapter focuses upon these examples. Later chapters will generalize the large 
deviation results beyond this elementary setting. 
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Let r > 2 be an integer and consider a finite sQt T = {x^,X2, ... , x j , 
where x^ < ^2 < • • • < x̂  are real numbers. Let ^ ( F ) denote the set of all 
subsets of r . We fix a probabiHty measure p on J*(r) for which pi = p {x J > 0 
for each X^GF. Thus p has the form YJ=I Pt^x- Fc)r A a subset of F p{A} 
equals X^=i A-̂ xj{^}» where d^.{A] equals 1 if x^e^ and equals 0 if x^^y4. 
Denote by co the doubly infinite sequence (. . . ,co_2,co_i,cOo,coi,co2, . . . ) 
with each CDJ G F . Configuration space Q is the set of all such sequences; 
thus Q = F^. Let Pp be the infinite product measure on Q. with identical 
one-dimensional marginals p. To a cylinder set of the form 

(1.3) Z = {COGQ: (D^+i G^i, •. •, co^+fcGi^}, F^, . . . , i^ subsets of F, 

Pp assigns the probability Pp{L] = 115=1 Pi^j)- ^P ^^ uniquely determined by 
these probabilities.* For each integery define the coordinate function A} on 
Q by A}(co) = coj. The functions {XyJeZ] form a sequence of i.i.d. random 
variables with finite state space F and distribution p. 

Until Section L5, we will work with level-1 and level-2. These are defined 
by two random quantities, called level-1 and level-2 (microscopic) «-sums. 
The level-1 «-sum is the average value Sn(co)/n = Yj=i ^ji^)l^-> ^ = 1 , 2 , . . . . 
The level-2 n-sum is defined in terms of the empirical frequency L„i(co) with 
which Xj appears in the sequence X^io)), . . . , X^ico): 

1 " 
(1.4) L„i(co) = - X ^x:(co){^i}. « = 1, 2, . . . , / = 1, . . . , r. 

For each CO, the numbers {L„ j(co); / = 1, . . . , r} define a probability measure 
L„(co, •) on the set of all subsets of F. For A a subset of F, 

(1.5) L„(coM) = I L„j(co) = ^ t ^XM{^}.' 

where <5;f.(ca){̂ } equals 1 if Xj(cD)e A and equals 0 if Xj(oji)^A. The measure 
L„((o, •) is the level-2 n-sum. It is called the empirical measure corresponding 
to Xi(co), . . . ,X„(co). The average value S„(co)/n can be calculated by multi
plying each Xi by the empirical frequency L„i(oj) and summing over F ; i.e., 

r 

(1.6) S„(co)/n = X XiLn,i{(o). 
i = l 

The right-hand side is the mean of the empirical measure. 
With respect to the measure Pp, the asymptotic behavior of S„((o)/n and 

of L„((jo, •) follows from the law of large numbers. Indeed the summands in 
Sn(co)/n are i.i.d. with mean 

Xj((o)Pp(d(D) = X ^iPh 

" Appendix A summarizes all the properties of probability measures that are needed in the 

Q 

text. 
^The sum over an empty set is defined to be 0. 
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while the summands in L„ i(co) are i.i.d. with mean 

Hence for any e > 0 

Urn P {CDEQ: \S„(co)/n - m \ > e} = 0, 
(1.7) 

lim P { C O G Q : max |L„ (̂co) — pJ > e} = 0. 
n-^oo i = l , . . . , r ' 

The vector (pi,p2? • • • ?Pr) is the hmiting mean of the random vector 
(L„ j(co), . . . ,L„ X^)). The probabilities in (1.7) represent large deviations 
since they involve fluctuations of order s of the respective /2-sums away from 
the limiting means, and s is fixed. Below we show by elementary combina
torial arguments that each of these probabilities decays exponentially. 

1.3. Levels-1 and 2 for Coin Tossing 

Coin tossing is defined by the state space T = (0,1} and the measure p = 
1^0 + i^i- The value 0 represents a tail and 1 a head. The proof for this 
simple case will set a pattern of proof for the more general large deviation 
results which follow. We have p^ = p2= ^, m^ = i , L„ (̂co) = 1 — 5„(co)/«, 
and L„ 2(< )̂ = »̂ «(<̂ )/̂ - Hence for each co 

\Ln,i(co) - pi\ = \L^,2(^) - P2I = \Sn(co)/n - rripl 

and so the level-1 and 2 probabihties coincide: 

(1.8) Pp{\SJn - m j > e} = P,{max|L„,, - p,| > s}. 

Let Q[^^ be the P^-distribution of SJn on U and define the closed set 

A = {zeU: \z — m l̂ > e}, where 0 < e < ^. 

The set yl n [0,1] is nonempty and Ql^^^{A} = Pp{\SJn — m l̂ > e} is positive 
for all sufficiently large n. Since A does not contain m^, Ql^^^{A} -^ 0. Accord
ing to the next theorem, Q[^^{A} decays exponentially, and the decay rate is 
given in terms of the entropy function 

(1 9) I^'\z) = ^'^""^^^'^ + ^̂  ~ ^)^^g(2(l - z)) for Z G [ 0 , 1], 
00 for z^ [0,1], 

where 01ogO = 0. Ip^\z) is convex, is symmetric about z = w^ = ^, and 
attains its minimum value of 0 at the unique point z = mp. /j^Ms depicted in 
Figure LI. 
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Theorem 1.3.1. 

limUogQi'^A} = ]imhogP^{\SJn - m j > s} = -mml^'Xz). 
n-^oofl n-^ooH ^ '^ zeA 

Since the set A is closed and does not contain m^^min^^^ I^p^\z) > I^J^Xm^ = 0. 
Hence Q\I~\A] converges to zero exponentially fast as n-^ oo. 

Proof. Let Q„ be the finite configuration space consisting of all sequences 
CO = (a>i,CO2, ...,co„), with each COJEF = {0,1}; thus Q„ = F". If n^P^ is the 
finite product measure on Q„ with identical one-dimensional marginals p, 
then Q^„^^{A} = n„P^{coeQ„: S„{co)/neA}, For fixed n and coeQ„, S„(co) 
may take any value ke{0,\, ... ,n}. Sn(co)/n is in A if and only if k is in 
the set A^ = {^6{0,1, ... ,n}: \k/n — i | > e}. For keA^, define C(n,k) = 
n\/(k\(n — k)\). There are C(n,k) points co in Q„ for which S^(oji) = k, and 
n„Pp{a>} = 2~" for each coeQ^. Hence 

(1.10) ei,^'{^}= I 7r„P,{coeQ„:5„(co)/« = A:/«}= ^ C(«,A:)^. 
keA„ keAfj ^ 

Since there are no more than n + 1 terms in the sum, 

maxC(^, / : )^ < Q'^^^A) < (« + l)maxC(«,/:)4^, 

and since log is an increasing function 

(1.11) max 
keA„ 

i l o g ( c ( „ , ; t ) l ) ] < i l o g e a , { ^ } < M ! L ± 1 ) + 

max 
keA„ 

-log(C(«,A:)^ 

Thus the asymptotic behavior of Ql,^^{A} is governed by the asymptotic 
behavior of the largest summand in (1.10). Entropy arises by the following 
lemma. 

Lemma 1.3.2. Uniformly in ke [0,1, ..., n], 

UogC(n,k) = - ^ l o g ^ - f l - ^ V o g f 1 - - V o(^-^] as « - 00. 
n n n \ n j \ n j \ n j 

Proof. Since C(n, 0) = C(n, n) = 1 and C{n, 1) = C(«, n — I) = n, the lemma 
holds for all 2̂ > 1 and k = 0, \, n — I, n. A weak form of Stirling's ap
proximation states that for all n>2, log(n\) = nlogn — n + P„, where 
\P„\ = 0(logn) [Problem L8.1]. Hence for 2 < /c < « - 2, 

-logC(n,k) = log« - '^logk - "^^login - k) + kpn -Pk- Pn-u)-
n n n n 
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Write 
. k, I n — k, I 
iogn = — l o g log-

n n n n 
and combine these terms with the other log terms to give 

ilogC(«,.)=-^log^-(l4)log(l-^) + l(^„-^,-^„.,). 

For 2 < / : < « — 2, the last term can be bounded by 0{n~^ log/t) uniformly 
in k. This completes the proof. n 

The lemma shows that 

1,0. (C(,a)l) = ,«4 - ^.0,^ - (, - ^),og(l - ^) . oi^^) 

The first three terms are exactly —I^^\k/n), where Ip^Hs defined in (1.9). Thus 

Since n~^ Iogn and n~^ \og(n + 1) both tend to zero, we have by (1.11) 

(1.13) l im-loge| , '>U} = I immaxf - /S^M-I l = - l i m min/i^M - I 

For each «the set {z G [0, l ] : z = Z:/̂  for some A: G ^ „ } is a subset of 4̂ n [0,1]. 
Since Ip^\z) = oo for z$[0,1], we conclude using Problem 1.8.2 that 

lim-logel^U^}= -min h'\z)=-minh'\z). n 
n-*aon zeAn[0,l] ^ zsA ^ 

1.4. Levels-1 and 2 for I.I.D. Random Variables ŵ ith a 
Finite State Space 

In general, the state space F equals {x^, ̂ 2, . . . , x j , where x^ < X2< • • • < 
x^ are real numbers. The exponential decay rates of the two probabilities in 
(1.7) are expressed in terms of a function called the relative entropy. Let ^ ( F ) 
denote the set of all subsets of F and Ji{T) the set of probabihty measures 
on ^ (F ) . Each veJiiT) has the form v^^-^^Vj-^ where v̂ -> 0 and 
Yli=\ î = 1- - ^ ( r ) may be identified with the compact convex subset of W 
consisting of all vectors v = (v^, . . . , v̂ ) which satisfy v̂- > 0 and Y!i=i "^t— •̂ 
The relative entropy^ of v with respect to the measure p = Y!i=i Pi^x- (Pt > ^) 
is defined by 

I(^^\v) = ^ V, log-^ where 0 log 0 = 0. 
i = l Pi 

We have the following properties. 
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Proposition 1.4.1. (a) Ip^\v) is a convex function ofveJiiY). 
(b) Ip^\v) measures the discrepancy between v and p in the sense that 

Ip^Kv) > 0 with equality if and only if v = p. Thus Ip^\v) attains its infimum 
over Ji{T) at the unique measure v = p. 

Proof (a) I^^\v) equals YJi^'^^^^tlPi^Ph where h{x) is the convex function 
xlogx, X > 0. Let pi and v be probability measures on ^ (F ) . Then for 
0 < ^ < 1 

I^'\X^ + (1 - ^)v) = t h{liiilPi + (1 - A)v,/A)p, 
i = l 

< X X /j(Mi/ft)A+(1 - A) i : /i(v,/p,)ft 

= klf\ii) + (1 - A)/f >(v). 

(b) For any x > 0, x\o%x > x — 1 with equality iffx = 1. Hence 

V- V- V-

(1.14) A i o g A > A _ 1 
Pi Pi Pi 

with equality iff v̂  = A- Multiplying this inequality by pi and summing over 
/ yields 

/i»=Zv;log^>0. 
i = l Pi 

lf\v) equals 0 iff equaUty holds in (1.14) for each /; Vj- equals p,- for each / iff 
V equals p. u 

We single out an important special case of relative entropy. 

Example 1.4.2. If p is the uniform measure on F = (x^, ^2, . . . , x j {p^ = l/r 
for each /), then I^^\v) = logr + ^-=1 v l̂ogv .̂ The quantity H(v) = —Y^Ui 
Vj- log Vj- is called the Shannon entropy of v.̂  Since — v̂  log Vj- > 0, H(v) is non-
negative. We show that H(v) is a measure of the randomness in v. By Proposi
tion L4.1, H(v) = \ogr- I^p^\v) < logr; H(v) = logr iff / f (̂v) = 0 and this 
holds iff each v̂  = pi = l/r. Hence H(v) attains its maximum value of logr 
iff V equals the uniform measure p. The measure p is in a sense the most 
random probabihty measure on ^ (F) . At the other extreme, H(v) equals 0 
iff one of the v/s, say v̂ -., is 1 and the other v/s, i ^ i\ are 0. The corresponding 
measures d^., are the least random probability measures on J*(F). 

We now turn to the large deviation results. For each coeQ, the empirical 
measure L„(co, •) = n~^Y!j=i^xi<o)(') is a probability measure on ^ (F ) . 
Hence L„(co, •) takes values in J^(r). Let Ql^^ be the P^-distribution of L„ 
on J^iT) and define the closed set 



1.4. Levels-1 and 2 for I.I.D. Random Variables with a Finite State Space 15 

(1.15) A2 = {veJ^(r): max I v , . - p J > e } 
i = l , . . . ,r 

where 0 < £ < min {pi, 1 — p j . 
i = l , 

The set A2 is nonempty and 2«^H^2} = ^p{inax^=i,...,r|^n,i — A | ^ s} is 
positive for all sufficiently large n. Since A2 does not contain p, gl^^j^a} -^ 0-
According to Theorem 1.4.3, Ql^^{A2} decays exponentially and the decay 
rate is given in terms of the relative entropy Ip^Xv). For this reason /̂ ^ (̂v) is 
called the level-2 entropy function. For level-1, let 2^̂ ^ be the Pp-distribution 
of SJn on IR and define the closed set* 

(1.16) Ai = {ZEU:\Z — Mpl > s} where 0 < £ < min{mp — x^,x^ — nip}. 

The set A^ n [ x i , x j is nonempty and Q[^^{Ai} = Pp{\SJn — m^] > s} is 
positive for all sufficiently large n. Since A^ does not contain m^, 2i^H^i} "^ 
0. According to Theorem 1.4.3, gj,^^{^i} decays exponentially and the decay 
rate is given in terms of a function I^^^ calculated from Ip^\v) by a variational 
formula 

min{/^^^(v): V 6 ^ ( r ) , Y xv; = z] for ze[xi,xS\, 

00 f o r z ^ [ x i , x J . 

/̂ ^̂  is called the level-X entropy function. It is well-defined, and it measures 
the discrepancy between z and nip in the sense that Ip^\z) > 0 with equality 
if and only if z = m^. Thus, the point m^ is the unique minimum point of 
Ip^\z). In addition Ip^\z) is a continuous convex function of Z G [ X I , X J . 

These properties are proved in Sections VII.5 and VIII.3. In Section II.4 we 
give another formula for /̂ ^̂  in terms of a Legendre-Fenchel transform 
[see (2.14)]. 

For coin tossing (F = {0,1}, p = ^d^ + \d^), formula (1.17) for /̂ ^̂  re
duces to (1.9). Indeed the only measure v G ^ ( F ) which satisfies the constraint 
^2^^ x,v, = ZG[0,1] is V = (1 - z)3o -h zd,. Hence by (1.17) 

I^'\z) = / f >((1 - z)So + zd,) = (1 - z)log(2(l - z)) + zlog(2z) 

for ZG [ 0 , 1 ] . 

Formula (1.17), which relates the level-1 and level-2 entropy functions, is 
called a contraction principle. It will be seen to follow directly from (1.6), 
which expresses SJn as the mean of the empirical measure L„. Here is the 
large deviation theorem for levels-1 and 2. 

Theorem 1.4.3. 

(1.18) \im-\ogQi'^{A,} = l i m - l o g P , { | 5 > - m,| > £} = - m i n /^^^(z), 

*The point m̂  = ^[=1 Xipi is in the open interval (xi,x^) since p^ > 0, Y}=i A = 1-
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Mm-log Ql^^{A^} = lim-logPp{ max \L„ .-p,\>E}= - m i n Ij,^\v). 

(1.19) 

Since the set AI is closed and does not contain mp.mm^^^ J^p^\z) > I^p^\m^ = 
0. Similarly the minimum oflf"* over A2 is positive. Hence both 2!,^^{^i} and 
Q^n^i^i] converge to zero exponentially fast. 

It is instructive to interpret Theorem 1.4.3 with reference to the discussion 
in Section I.l. Think of {X^'JeZ} as giving the successive outcomes of a 
gambling game in an infinite number of plays of the game separated by a 
constant time interval. For level-1 the macrostates are all real numbers 
Z 6 [ x i , x j . These correspond to a macroscopic description of the game in 
terms of the expected value of the outcome of a single play. The microscopic 
/?-sums are {*S„(CO)/A2}. The P^-probability that SJn is close to z behaves for 
large n like exp( —^/^X^)) [see (1.12)]. /̂ ^̂  is the entropy function and the 
mean m^ = YJi=i ^tPt ^^ ^^^ equilibrium state. For level-2 the macrostates are 
all probability measures veJiiT). Each v is a candidate for the distribution 
of the r outcomes x^, . .., x/m. each play of the game. The microscopic 
^-sums are {L^ico, •)}• The P^-probabiUty that L„ is close to v behaves for 
large n like exp( —«/̂ ^^(v)) [see (1.21)]. /̂ ^̂  is the entropy function and the 
measure p is the equiUbrium state. 

Proof of Theorem L4.3. First consider level-2. For fixed n and co and ie 
{1, . . . , r}, let /TJ- be the number of times Xj appears in the sequence X^ (co), . . . , 
X^{oj). Then L„ i(co) = kjn, and L„(co, •) is in A2 if and only ifk = (k^,..., 
k^ is in the set 

A2 n = \^ = (ki, . . . ,k^):kie{0,1, . . . ,n}, Y ki = n, max —̂  — pA > e}. 
I i=i i=i,...,r\n I J 

For fixed k6^2,/i? define 

There are C(n,k) points co = (co^,oj2, - - • ,cOn) ^^ the finite configuration 
space Q„ = F" for which L„i(a)) = kJn for each /. Let n^Pp be the finite 
product measure on Q„ with identical one-dimensional marginals p. We have 

Q?^{^2}= I 7r„P,{a;GQ„:L,,,(co) = /:,//2 for each/}= ^ C(n,k)pK 

(1.20) 

The next lemma is proved like Lemma L3.2 [Problem L8.1(b)]. 

Lemma L4.4. Uniformly ink = (k^, ... ,kr), 

-logC(/7,k)= - y ^ l o g ^ + of^^S^^ asn-^00. 
n {^i n n \ n J 
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The lemma implies that for each k, 

Uog(C(n,k)p')) = i^flogp, - l o g ^ ) + o f ^ . 
n i=in\ nj \ n J 

Define the measure v̂ /̂  = ^-=1 (ki/n)S^.eJ^(r). The sum in the last display 
is exactly —/p̂ (̂Vk/„), where Ip^\\ir^ is the relative entropy of v̂ /„ with respect 
to p. Since L„i((o) = kjn for each / if and only if L„(co, •) = v,,/„, we see that 

(1.21) ^ioge<^>K/„} = - / ; ' * ( v + ^ ( ^ ) -

In the sum (1.20) for Qi^^{A2} there are no more than (n + ly terms. As in 
the proof for coin tossing, we conclude that 

logei^>{^.} = max {-/f>(v,„)} + o ( l ^ ) + o f ^ ^ i i ^ ) . 

For each n the set { v e ^ ( r ) : v = v̂ /„ for some ke^^j „} is a subset of A2. 
Problem 1.8.2 yields (1.19): 

limlloge<^'{^2} = - l i m min /;2»(VK,„) = -min/^^»(v). 

The level-1 Hmit is proved by expressing it in terms of a level-2 hmit. Since 
SJn equals Yj=i ^i^n,h ^J^ is in the set A^ if and only if L„ is in the set 
of measures B2 = {veM(r):\Y}=iXiVi - rrip] > s}. Hence Qi^^iA^} equals 
Glî ^ {^2} • The level-2 argument just given for the set A2 can be easily modified 
for the set B2, and we find 

\imhogQ['^{A,} = l imi logei 'H^2} = -min/,^^>(v). 

We evaluate this minimum in two steps: 

mm /(2)(v) = min min Ih^Kv): ve ^ ( F ) , ^̂  x,v̂  = z i 

= min h^\z). 

Since / ^ (̂z) = 00 for z ̂  [x^, x^], it follows that 

l i m ^ l o g a M i } = - m i n / ^ ^ > ( z ) . n 

1.5. Level-3: Empirical Pair Measure 

Level-2 focuses on the empirical measure L„((D, -), which is defined in terms 
of the empirical frequencies {L„j(co)}. We can generalize level-2 by con
sidering the empirical frequencies of pairs of outcomes. Fix coeQ and 
AZG {2,3, . . . } and define Y^"\oji) to be the ordered pair (Xp(cjo),Xp+i(co)) if 
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^ G { 1 , 2 , . . . , « — 1} and to be the cyclic ordered pair {X^(co), X^ (co)) if P = n. 
For each subset {x̂ ,Xy} of F^, let M„JJ((JO) be \/n times the number of pairs 
{Y^p''\co)} for which ^ "̂̂ (co) = (x^,x,)'; thus 

1 " 

For each oj, the numbers {M„^ j(co)} define a probabiHty measure M„(co, •) 
on the set of all subsets of F^. For A a subset of F^, 

(1.22) M^(co,A) = X M, , /co) = ^ ^ V;)(c.){^}. 

The measure M„((D, •) is called the empirical pair measure corresponding to 
X^{CD), . . . ,X^{oj). This measure is consistent with the empirical measure 
L„(co, •) in the sense that both of the one-dimensional marginals of M„(co, •) 
equal L„(co, •)• 

r r 

(1.23) L^,i{cD) = Y, M„jj((o) = X M„^k,i(^) for each / = 1, . . . , r. 

In fact, since M„(co, •) considers the cyclic pair 7j"Xco), the number of times 
Xi appears in the sequence XI((D), . . . , X„(CJO) equals the number of times Xi 
appears as a left-hand member of a pair Y^'^Xco). This gives the first equahty 
in (1.23), and the second is proved similarly. 

With respect to P^ the asymptotic behavior of M„^/co) is determined by 
the ergodic theorem [Theorem A.9.3]. Since 

1 "~̂  1 
(1.24) M„jj((0) = - X Sxpico)l^i] • ̂ Xp^,ico){^j] + -^X„ico){^i} • ̂ X,(c.) W , 

Hm„̂ oo Mf^ij{(jo) equals the limit of the sum. Since F^ is ergodic, 

(1.25) "^°° Ja 

= Pp{co€Q:X^(co)  = Xi,X2(co) = Xj} = p^pj P^-a.s. 

We now formulate a large deviation problem connected with the limit 
(1.25). Let ^(F^) denote the set of all subsets of F^ and ^^i^^) the set of 
probability measures on J*(F^) with equal one-dimensional marginals. As 
we have seen, M^ico, •) takes values ^s(F^) for each co. Any TG.y#s(F^) 
has the form T = X L = I '^iAxi,xj}. where Tij > 0, X L = I ^tj = U and X?=i ŷ = 
YJ=I '^ki for each /. ^s(F^) may be identified with the compact convex subset 
of IR**̂  consisting of all vectors T = {T̂ .̂ ; ZJ* = 1, . . . , r} which satisfy TIJ > 0, 
XL-=I îj = 1, and Xj=i 0̂- = Zfc=i f̂ci for each /. 

Let gj,^^ be the Pp-distribution of M„ on ^s(F^) and define the closed 
set 

^3 = { T G ^ , ( F 2 ) : max lî .̂ - p^pj] > e}, 
(1.26) iJ-l,-,r 

where 0 < s < min {p̂ py, 1 - PiPj}. 
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The set A^ is nonempty and Ql,^}{A^} = P^{max ,̂̂ -=i .̂..,,|M„,,.,̂ . - PiPj\ > e} 
is positive for all sufficiently large n. Let 7i2Pp be the product measure in 
^ , ( r ^ ) with one-dimensional marginals p {7t2Pp{xi,Xj} = PtPj). Since A^ 
does not contain n2Pp, the ergodic hmit (1.25) impHes that QlifH^a} ^ 0. A 
level-3 large deviation problem is to determine the decay rate of this proba-
bihty. In the next section, we will consider other level-3 problems which 
involve the empirical frequencies of strings {xi^,Xi^, . . . ,Xĵ } of arbitrary 
length A: = 3,4, . . . . 

The probabilities Q[^\ {A^} decay exponentially and the decay rate is given 
in terms of a function I^^l which is a natural extension of the level-2 function 
I^^\ The latter determines the decay rate of level-2 probabiHties. For xe 
^ , ( r ^ ) , set (V,), = Y.U ^ij and define 
(1.27) , ; . ( , ) ^ ^ , ^ ^ l , g _ | _ ^ 

where the sum runs over all / and7 for which (vjj- > 0. Ip^^ix) is well-defined 
(OlogO = 0) and equals the relative entropy of T with respect to {(vj^py}. 
We have the following properties [Problems IX.6.1-IX.6.3]. I^^li^) is a 
convex function of T. I^^li^) measures the discrepancy between TeJ^^ir^) 
and 712Pp in the sense that Ip^li^) > 0 with equahty if and only if T = 712Pp. 
Thus the measure 712Pp is the unique minimum point of I^^l on ^^ ( r^ ) . 

Here is a level-3 large deviation theorem for the empirical pair measure. 
We sketch the proof in the case where F consists of two points (r = 2). 

Theorem 1.5.1. 

\im-logQi^}{A^} = lim-logPp{ max \M^jj - p^pjl > s} 
yv.ns) 

= -min/^f](x). 

Since the set A-^ is closed and does not contain 7i2Pp, min^^^ ^p^ii'^) > 
^p^ii^i^p) = ^' Hence 21,̂ 2 {^3} converges to zero exponentially fast. 

Proof for r = 2. For fixed n and co, define Nij = nM^ijia)). M„(co, •) is in A^ if 
and only if N = {A/̂ ;̂ ij' = 1,2} is in the set 

A,,„ = \N= {N,-JJ= 1,2}: N,e{0, I..., n}, t ^u = ^^ 

2 2 

Z ^ j = Z ^ki for each /, max {N^n - p^Pjl > s 

Now fix NeA^^„. Let ki = Yj=i Â / and define y(n,N) to be the number of 
points CO in the finite configuration space Q„ = F" for which M„jj(a)) = 
Nij/n for each / a n d / Then 

2 5 1 ^ 3 } = Z 7r„Pp{coGQ„: M„,f^/a;) = N^j/n for each / and;} 
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where p^ = p\^p^2' The asymptotics of y{n,N) are given by the next lemma. 
Define D„ = {N\ y(n, N)>0}. 

Lemma 1.5.2. IfN^2>^^ then NED^. Uniformly in NeD^, 

(1.29) Uogy{n,N)=Y^\og^- Y%og^ + o(^^^ asn^oo. 
^ n ^'^ ^ i'tin ° n ^ j ^ ^ n ^ n \ ^ J 

Define the measure T^/„ = YJj=i (^»^{xf,x,.}e^,(r^). Since M„jj(co) = 
Nij/n for each / and7 if and only if M„(a), •) = T^/„, the lemma implies that for 
NED„ 

^logei?U%/J = llog(y(n,N)p^) = -/^fJC^/J + o(^-^ 

As in the proof of Theorem 1.4.3, we have 

Um^loge<^>{^3} = - l i m min /<^1(T^/„). 

For each n the set {TEJ^S(^^)'- '^ = '^Nin for some NEA^^n ^ ^n} is a subset of 
^ 3 . Problem 1.8.2 yields (1.28): 

\\mhogQ['}{A,} = -min/;f](T). D 

Formula (1.31) below is due to J. K. Percus (private communication). 

Proof of Lemma 1.5.2. Suppose that F = {x^,X2]. For fixed COGQ^, let Â j = 
nM„ij(co) for i,j = 1 , 2 . The point co has the form (x̂ -̂ , x.-̂ , . . . , x^), where 
each /; = 1 or 2. We introduce the product B(CD) = B: : B: :.. .B: . B, ,• , 

J f \ / iii2 I2I3 ^n-l^n ^M^i' 

where B^^, B^2^ ^21? ^22 ^^^ f̂^̂* positive real variables. In the product 
defining B{co), each B^j appears exactly Nij times, so that B(co) = 
B^{'B^i^B2i'B2i^. The sum of all B{o:i) for coeQ„ can be written in terms of 
the 2 X 2 matrix B = {B^f, ij = 1 , 2 } . In fact,* 

Tr ^ " = I \i2\i, • • • \-l in^ini. 
(1.30) ^1,. .,^„=i 

coeQ„ 

where the last sum runs over all A^= {Nij;iJ= 1,2} such that NijE{0, 
! , . . . , « } , UJ=I Ntj = n, and Y^U^u = lli^kt for each /. If 0 < ^^^ + 
^12 + ^21 + ^22 < 1. then the sum X^=o^" converges and equals the 
inverse matrix (I — B)~^. We find 

00 00 

£ T r 5 " = Tr £ B" = 71(1 - B)'^ 
n=0 n=0 

1 ~ (^11 + ^22 + ^12^21 ~ ^11^22) 

*Tr denotes trace. 

file:///i2/i
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The last term can be expanded in a power series in B^^, B^2^ ^21? ^22-
Comparing this series with (1.30), one calculates [Problem 1.8.5(a)] 

^11 Wi2!A^2JA^22J^1^2 
(1.31) 

Formula (1.29) follows from Stirling's approximation. n 

1.6. Level-3: Empirical Process 

The previous sections have considered three levels of large deviations. 
Level-1 studies SJn, level-2 the empirical measure L„, and level-3 the em
pirical pair measure M„. For each level there is an entropy function Il^\ 
I^^\ and I^fl, respectively. In this section we formulate another level-3 
problem which includes as special cases all the results in the previous sec
tions. Associated with this problem is another level-3 entropy function I^^\ 
The three entropy functions encountered already can be obtained from /̂ ^̂  
by contraction principles. 

A subset Z of Q is said to be a cylinder set if it has the form 

(1.32) Z = {coGQ:(a;^+i, .,. ,co^+j,)eF}, 

where m and k are integers with k > 1 and jpis a subset of F''. For now, we 
consider cyHnder sets of the form 

where x^ ,̂ x^ ,̂ . . . , x̂ -̂  are elements of F (not necessarily distinct). We will 
define a random quantity î „(co, •) which for each co is a strictly stationary 
probability measure on Q. R„(co, S) gives the empirical frequency of the string 
{Xi^,Xi^, . . . ,XiJ in the sequence X^(co),X2(co), . . . ,X„(co). If /: = 1, then 
i^„(co,Z) reduces to the empirical frequency L„ j (co) while if/: = 2, then it 
reduces to the empirical pair frequency M„. ; (co). In general, with respect 
to the measure Pp, i^„(co,Z) converges almost surely to the value Pp{^} = 
Pi^Pi^ . . . Pf̂  as « -» 00. A level-3 large deviation problem is to determine the 
decay rate of the P^-probability that R„(co, S) differs from Pp{L} for finitely 
many cyHnder sets Z. This level-3 problem extends the level-2 problem, 
which studies fluctuations of L„(co, •) away from the measure p, as well as 
the level-3 pair problem, which studies fluctuations of M„(a), •) away from 
the product measure n2Pp. We will see that level-3 large deviation proba
bilities decay exponentially and that the decay rate is determined by a func
tion /̂ ^̂  which is a natural extension of/̂ ^^ and /^f]. 

We first define strict stationarity. The set F is topologized by the discrete 
topology and the set Q = F^ by the product topology. The cr-field generated 
by the open sets of the product topology is called the Borel o-field of Q 
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and is denoted by ^(Q). ^(Q) coincides with the a-field generated by the 
cyUnder sets T in (1.32) [Propositions A.3.2 and A.3.5(b)]. Let T be the 
mapping from Q onto Q defined by 

(T(D)J = O)J+^ foryeZ. 

r i s called the shift mapping on Q, For each Be^(Q), T~^B is also in ^(Q) 
so that T is measurable. A probabiUty measure P on ^(Q) is said to be 
strictly stationary, or translation invariant, if the shift T preserves P: P{B} = 
P{T-^B] for all Be^{Q) or equivalently P{I} = P { r - ^ I } for all cylinder 
sets Z. We denote by Ji^i^) the set of strictly stationary probability measures 
on J'(Q). 

Example 1.6.1. (a) [See Example A.7.3(a)] Infinite product measure. Let v 
be a probability measure on the set F = {xi,X2, . . . , x j . A cylinder set of 
the form Z = {coeQ:co^+i G F J , . . . ^co^^^eFj^, F^, - •, ^k subsets of F, is 
called a product cylinder set. The class of product cylinder sets generates 
^(Q). For such a set, we define P{I} = Uj=iV{Fj}. Clearly P{T-'^T} = 
P{E}. P can be extended uniquely to a strictly stationary probability measure 
on ^(Q). The extension is the infinite product measure with identical one-
dimensional marginals v and is written P^. 

(b) [See Example A.7.3(b)] Markov chain. Let v be a probabihty measure 
on the set F = {xi,X2, . . . , x j and let {yij} be a non-negative r x r matrix 
with row sums 1. Assume that YJ=I î̂ ij — ^j f̂ ^ each/ Let Z be the cylinder 
set {COGQ:(co^+i,... ,a;^+fc)Gi^}, where i^is a subset of F'̂ . We define P{S} = 
v{F} for ^ = 1 and 

Clearly P{r~^L} = P{^}. P can be extended uniquely to a strictly stationary 
probabiUty measure on J*(Q). The extension is a Markov chain with transi
tion matrix {y^̂ }; v is an invariant measure for the chain. 

We now state a level-3 large deviation problem. Given a positive integer 
n, repeat the sequence (Zi(co),Z2(co), . . . ,X„(co)) periodically into a doubly 
infinite sequence, obtaining a point 

X(n,co) = (... X,(ojlX,iojlX,(col.. .,X,(col 

X,(cDlX,(col...,X„{colX,(cDl...) 

in Q; (X(n,co))^ = X^(co), (X(n,cjo))2 = ^li^)^ ^tc. For each COGQ, define a 
probability measure on ^(Q) by 

(1-33) ^>,-) = ^"f Vm«)(-), 

where T^ is the identity mapping and T^ = T(T^~^) for /c = 2 , . . . , « - 1. For 
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each Borel subset B of Q, R„(a),B) is the relative frequency with which 
X(n,(jo), TX{n,co), . . . , r""^X(w, co) is in B. Since Xin.oS) is periodic of 
period n, R(n, •) is for each co a strictly stationary probabiHty measure. It is 
called the empirical process corresponding to A î(co), . . . , X„(a>). 

Let /r be a positive integer less than n. In order to interpret formula (1.33), 
define r̂ ">(co) to be the ^-tuple (Z^(co), A>+i(co), . . . ,Z^+;,_i(a;)) if JSG 
{1,2,.. . ,« — / : + 1} and to be the cyclic ^-tuple (Xp{co),..., Xn{co), X^ (co),..., 
Xp+j^_i_^(cQ)) if j5e{« —/c + 2, . . . , « } . If Z is the cylinder set [coeQ: 

^ 1 = Xi,.(^2 = -^i^' • • • '^fc = - ^ i j . * then 

1 " 
i^„(a;,X) = - X ^y<")(co){ î,.-̂ r,. • • • .^^•J• 

This is the empirical frequency of the string {x^̂ , x^ ,̂ . . . , Xĵ } in the sequence 
Zi(co), . . . , X„(co) (with cyclic counting). The contribution of the cyclic 
terms F "̂̂ (co), J5G{« — A: + 2 , . . . , « } , to jR„(co,E) is o(n) as « -^ oo. 

î „(ft), •) is a natural generalization of the empirical measure L„{co, •) and 
of the empirical pair measure M„(af, •). If Z is the one-dimensional cylinder 
set {coeQ:coi = x j , then 

(1.34) R„(CD, I ) = L„(CD, {x,}) = L„,,(a;). 

Thus L„(a>, •) is the one-dimensional marginal of î „(co, •)• If 2̂  is the two-
dimensional cylinder set {coeQ:co^ = x ,̂ 0)2 = •X:J}, then 

(1.35) i^„(co,E) = M„(co, {x„x,.}) = M„jj(co). 

Thus M„(co, ') is the two-dimensional marginal of î „(co, •). 
If Z is any cylinder set, then the ergodic theorem implies that 

limi^„(co,Z) = P,{Z} P,-a.s. 

[Theorems A.9.2(c) and Corollary A.9.8]. Let Z^, . . . ,Z^ be cylinder sets 
such that 0 < Pp{^k} < I, k = I, ..., N, and define the closed set^ 

(1.36) ^3 = {PeJ^M'^rnaxJP{^,} - />,{ZJ| > e}, 

Let Qi^^ be the P^-distribution of î „ on ^^(Q). For all sufficiently small e > 0 
the set B2 is nonempty, and for all sufficiently large n 

Ql,'^{B,} = P,{a;eQ:^jnax^|i^„(co,Z,) - P,{Z,}| > e} > 0. 

Since B^ does not contain P^, the ergodic theorem impUes that Ql^^{B^} -^ 0. 
In fact, the probabilities decay exponentially, and the decay rate is given in 
terms of a function I^^\ which we now define. 

Let a be a positive integer and n^ the projection of F^ onto F"̂  defined by 

*We use CO since co labels the empirical process. 
^The topology on A/s(Q) is the topology of weak convergence [Sections A.8-A.9]. 
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n^co = (coi, . . . ,o)J. If P is a measure in Jl^i^, then define a probability 
measure n^P on ^(F' ') by requiring 

n,P{F) = P{n;'F} = P{(D:(CO,, . . . , C O J G F } 

for subsets F of F^. The measure n^P is called the a-dimensional marginal of 
P. We consider the quantity 

which is the relative entropy of n^P with respect to n^Pp. In Chapter IX, we 
prove that the limit 

(1.37) /<^>(i') = limi/<f'(7r,i ') 

exists, that /^^ (P) is an affme function of PeJi.iQ), and that I^'^\P) > 0 
with equahty if and only if P = Pp. Thus Ip^\P) measures the discrepancy 
between P and Pp. It is called the mean relative entropy of P with respect to 
Pp. Here are some examples of mean relative entropy. 

Example 1.6.2. Let p be the uniform measure on F = {x ,̂X2» • • • ?-̂ r} iPi = 
l/r for each /)• For PeJ^X^) 

li'Jpin.P) = alogr ^ Z n,P{(o}'logn,P{co} 

since n^Pp{co} = r~* for each co e F"̂ . According to Note 2 of Chapter IX, the 
Umit 

A ( P ) = - l i m - Z 7r,P{co}log7r,P{co} 

exists; /z(P) is called the mean entropy"^ of P. It follows that the Umit Il^\P) 
in (1.37) exists and I^^\P) = log r - h(P). By properties of /^^^(P) men
tioned above, h(P) < logr and h(P) = logr if and only if P = P^. Mean 
entropy h(P) generalizes Shannon entropy, which was discussed in Example 
1.4.2. Accordingly, h(P) can be interpreted as a measure of the randomness 
in P per unit time. 

(a) For the infinite product measure P^ [Example 1.6.1(a)], /̂ ^ (̂Pv) = 
logr — /?(Pv), where h(P^) = —Yj=r'^il^§>^i' The latter is the Shannon en
tropy of V, H(v). 

(b) Let P be a Markov chain with transition matrix {ŷ }̂ and invariant 
measure v [Example 1.6.1 (b)]. Then Ip^\P) = logr — h(P), where h(P) = 

-ZL-=i^t7tjlogyo--

For any measure p in Jf(r) with each Pi> 0 and for any PeJ^^(Q), 
one can express Ip^KP) as an expectation involving relative entropy [see 
(2.20)]. Here is the level-3 large deviation theorem. It will be proved in 
Chapter IX. 
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Theorem 1.6.3. For all sufficiently small £ > 0 

\im-\ogQ^^\B,] = lim^logP^lcoeQ: max |i?„(co,2^) - P ,{EJ | > ^} 
n-^cofl n-^con '^ k=l,...,N ^ 

(1.38) = - m i n / ^ 3 ' ( P ) . 
P G B^ 

Since the set B^ is closed and does not contain P^, miiipg^ ^p^\P) > I^^KP^ = 
0. Hence Q^n^^z] converges to zero exponentially fast. 

The theorem can be interpreted as follows. For level-3, the macrostates 
are all strictly stationary probability measures PeJ^^QL). Each P is a 
candidate for describing the probabilistic structure of a gambling game 
on Q [see page 16]. The microscopic «-sums are the empirical processes 
[Rnioj, •)}• The P^-probability that R^ioj, •) is close to PeMJS^ behaves 
for large n like exp( —«/^^^(P)). /̂ ^̂  is the entropy function and the measure 
Pp is the equiUbrium state. 

We end this chapter by discussing the relationship between Theorem 
1.6.3 and the previous large deviation theorems. Theorem 1.5.1 treated the 
empirical pair measure M„(<JO, ').lf P is SL measure in ^s(Q), then the two-
dimensional marginal 712̂ ^ is a probability measure on F^, and since P is 
strictly stationary, 712^ has equal one-dimensional marginals. Hence 712^ 
belongs to ^ , (F^ ) . In the set B^ in (1.36), let { I J run through all two-
dimensional cylinder sets {cdeQ:cd^ = Xi,cd2 = Xj}, i,j = I, . . . , r. Then 

n^B^ = {xeJiJ<y\.x = n2P for some PeB^} 

= {xeJi.iy^Y max |T .̂ - p^p^ > s}. 
ij=l,-,r 

The latter is the set A^ in (1.26). Since n2Rn(o), •) = M„(co, •) for each co, it 
follows that 

P,{coGQ:M„(a>, ')eA^} = Pp{cDeQ:R„{cD, ')eB,}, 

By Theorem L5.1 the decay rate of the first probability is — min^g^^/^f^(T). 
This must equal the decay rate o{Pp{co e Q: Rn(oj, •) ̂  ̂ 3}? which by Theorem 
L6.3 equals — min {IJ^^\P):PGB^}. The latter can be rewritten as 

-minmin{/^^^(P):PG^,(Q),7C2P = T}. 
T 6 B^ 

Thus, one expects that for x e ^ s ( r ^ ) 

(1.39) /<fi(T) = l^x^jlog-^ = mm{i;,'\Py. PeJ^M, ^ 2 ^ = t} , 

where (vj^ = Yj=i ^o- ^ ^ ^̂ ^̂ ^ prove (1.39) in Chapter IX. It is the contrac
tion principle relating /^fj and I^^\ 

The connection with Theorem 1.4.3 is similar. If P is a measure in ./^^(Q), 
then the one-dimensional marginal TT^P is an element of ^ ( F ) . In the set B^ 
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in (1.36), let {L^} ^^^ through all one-dimensional cylinder sets {COGQ: 

co^ = Xj}, / = 1, . . . , r. Then 

711̂ 3 = {vG^( r ) : v = 7iiPforsomePG^3} 

= {veJ^(r): max \vi-pi\>s}. 
i = l , . . . , r 

The latter is the set A2 in (1.15). Since n^R^ico, •) = L^ico, •) for each co, it 
follows that 

P,{COGQ:L„(CO, Oe^a} = P,{coGQ:i^„(co, ')eB^]. 

Again, comparing decay rates, we have 

min /̂ ^>(v) = min I^^KP) = min mm{I^^\P):PEJ^,(Q\n^P = v}. 
VSA2 P^^3 ^ ^ ^ 2 

In Chapter IX, we prove for veJ^iT) the following contraction principle 
which is consistent with the last display: 

(1.40) I^'Kv) = t n-log-^ = min{I^'\P): PeJiM.n.P = v}. 
i = l Pi 

Finally, for level-1, recall the contraction principle (1.17) relating /̂ ^̂  and 
/^^^:forzG[xi,xJ 

/̂ ^>(z) = min|/;^)(v): veJi{T\ ^ x,v, = z\. 

Comparing this with (1.40), we conclude that for zG [x^, x j , 

(1.41) /<^>(z) = min|/;^>(i>): PeJiM. f x,{7i,P\ = z | . 

This completes our discussion of large deviations for i.i.d. random vari
ables with a finite outcome space. An interesting feature of this chapter was 
the use of combinatorics to calculate explicit formulas for the entropy func
tions /̂ ^ ,̂ /^^\ and /jf]. In the next chapter, the three levels of large devia
tions will be generalized to random vectors taking values in R"̂ . The theory 
will be applied to statistical mechanics in later parts of the book. 

1.7. Notes 

1 (page 3). Wehrl (1978) discusses the historical and physical backgrounds 
of entropy together with modern developments. He Hsts many references. 

2 (page 13). Relative entropy I^^Kv), introduced by KuUback and Leibler 
in 1951, is also known as the KuUback-Leibler information number. It plays 
an important role in statistics, especially in large sample theories of estima
tion and testing [Kullback (1959), Bahadur (1967, 1971)]. / f (̂v) measures 
the statistical distance between v and p. The smaller this distance, the harder 
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it is to discriminate between v and p. Applications of large deviations to 
statistics are discussed by Bahadur (1971), Chernoff (1972), and individual 
articles in "Grandes deviations et applications statistiques," Asterisque 68, 
Societe Mathematique de France, Paris, 1979. 

3 (page 14). Shannon entropy H(v) was first defined by Shannon (1948) 
and independently by Wiener (1948). The form of H(v) can be derived from 
a set of axioms which a reasonable measure of randomness should satisfy; 
see, e.g., Khinchin (1957, pages 9-13). 

4 (page 24). In information theory, the mean entropy h(P), PeJiX^)^ 
measures the amount of information per symbol in a message which is 
generated according to P [Khinchin (1957), MeEliece (1977)]. Large devia
tion bounds, known as Chernoff bounds [see Problem VII.8.9], are widely 
used [Wozencraft and Jacobs (1965), Gallager (1968)]. In ergodic theory, 
h{P) is the Kolmogorov-Sinai invariant of the dynamical system (Q, =^, P, T) 
[Martin and England (1981)]. 

1.8. Problems 

1.8.1. (a) Given «e{2,3, . . . , } , prove that nXogn — n-\- \ < \og{n!) < 
{n + 1) \og{n + 1) — (« + 1) + 1 by considering the area under the graph 
oflogx, X > 1. Deduce the weak form of Stirling's approximation:log(«!) = 
nXogn — n -{- 0{\ogn), n>2. 

(b) Prove Lemma 1.4.4. 

1.8.2. This problem shows how to complete the proofs of Theorems 1.3.1, 
1.4.3. and 1.5.1. Let ^ be a compact subset of W^ a n d / a real-valued function 
on A which is continuous relative to A. Let {A„;« = 1,2,...} be closed subsets 
of A such that for any aeA there exists a sequence a„eAn with a„-^ a SLS 
n^co. Prove that lim„_^ mm^^^^f(x) = min^^^f(x). 

1.8.3. Let p = {pij; /,7 = 1, . . . , r} be a set of positive numbers such that 
I}j=iPij = 1- Define v̂  = Yj=iPij ^^d fij = Y}=iPij' Let p = { A ; / = 1, . . . , 
r} be a sequence of positive numbers such that ^ -=1A = 1. Prove that 

i,j=l PiPj 

i = l Pi 7 = 1 Pj 

with equality if and only ifpij = Vifij for each / a n d / 
If each Pi = 1/r, then we conclude that the randomness in/7 (as measured 

by Shannon entropy) is no greater than the sum of the randomness in v and 
the randomness in p, and that equality holds if and only if p is product 
measure. 
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1.8.4. (a) Prove Jensen's inequality: if vvi, ̂ 2, . . . , ŵ  and > î, Ĵ 2? • • • > Ĵ r ^re 
nonnegative numbers such that Yj=i ^j— 1' ^^^^ 

( Z ^jyjjlog(Z y^jyA < Z ^jyj^^^yy 

IHint: Let h(x) = xlogx. If a = Yj=i ^jyj > 0, then h(yj) > h(a) + h\a) • 
(yj-a).-] 

(b) [Renyi (1970b, page 556)]. Let v = {Vjij = 1, . . . ,r} be a sequence 
of non-negative numbers such that Yj=i ^j~ ^- ^^^ y ~ {̂ /fc} be an r x r 
doubly stochastic matrix (ŷ ^ > 0,Yj=i Iju = 1 for each k, Y!k=i Jju = 1 for 
eachy) and define fi^ = Yj=i ĵ)!/fc- ^^^ Pi — V^ for / = 1, . . . , r. Prove that 

Z f^k^ogfi, < t ^Aogvj and fJ'Kfi) < / f >(v). 
k=l j=l 

See Voight (1981) for generalizations. 

1.8.5 [J. K. Percus (private communication)], (a) Derive formula (1.31). 
iHint: Expand 

_Bjj^-_R 22 

(1 - c)(l - B,,B,Jil - c)) 

= (1 - 5 i i + 1 - 5^2) X (B,2B2xm - c)-"-', 
n>0 

where 1 - c = 1 - (B^^ + B^^ - ^ n ^ ^ j ) = (1 - B,,){\ - B^jll 
(b) For r>2, let fc; = X5=i -^r Show that 

forallA;j> 1, 

where [di^ — Nij/kj']^^ is the aa-cofactor of the r x r matrix {3^ — Nu/kj}. 
\_Hint: U B = {Bij} is an r x r positive matrix with 0 < Zl/=i ^u ^ 1' ^^^^ 
Tr(/ - B)-^ = Xa=i U - B\JdQt(I - B\ where [/ - B\^ is the aa-cofactor 
of I — B. Use the formula (which holds in the sense of distribution theory) 

1 
d e t ( / - ^ ) 

exp[/«x,j;> - <x,Byy)^dxdy'-—-.'] 
(2ny 

L8.6. Let B = {Bij} be a positive 2 x 2 matrix and X(B) the largest eigenvalue 
of B in absolute value. By Lemma IX.4.1, 2.(B) is positive and logX(B) = 
lim„^oo n~^ logTr ^". As in the proof of Lemma L5.2, 

(1.42) T r 5 " = l.y(n,N) H Bl'jiJ. 
ij=l 

file:///_Hint


1.8. Problems 29 

where the sum runs over all Â  = {Niy, ij =1 ,2} such that A^^G {0, 1, . . . , n), 
Yj,j=i ^ij = ^' ^^^ Tj=i ^ij ~ Zfc=i ^ki for each /. Using Lemma 1.5.2, prove 
that 

(1.43) logA(^) = m a x | x T , ^ l o g ^ ? ^ : T 6 ^ , , J , 

where (vj^ = Yjj=i '^tj ̂ ^^ ^s, i is the set of T = {T̂ ;̂ iJ =1 ,2} satisfying T̂^ > 0, 
Yj,j=i '^ij = 1»^^^ Z?=i '̂ y ^ Zfe=i '̂ fei fo^ ̂ ^^^ ^' ^^^ s^^ i^ (1-43) runs over all / 
and j for which (vj,- > 0. Theorem IX.4.4 and Problem IX.6.4 are 
generalizations. 

1.8.7. Verify the calculations in Examples 1.6.2(a), (b). 



Chapter II 

Large Deviation Property and Asymptotics 
of Integrals 

II. 1. Introduction 

The previous chapter treated three levels of large deviations for indepen
dent, identically distributed (i.i.d.) random variables with a finite state space. 
The main results show the exponential decay of large deviation probabiHties. 
A level-1 example is Pp{\SJn — mp| > e}, where 5„ is the «th partial sum of 
the random variables and nip is their common mean. Levels-2 and 3 treat 
analogous probabiHties for the empirical measures {L„} and the empirical 
processes {i^„}, respectively. One purpose of the present chapter is to expand 
the scope of large deviations and to prepare the groundwork for appUca-
tions to statistical mechanics later in the book.^ This chapter extends the 
ideas of Chapter I by considering random vectors taking values in IR'̂ , where 
rf > 1 is a fixed integer. R^ is a natural state space for stochastic models, 
including models in statistical mechanics. The theory, which is somewhat 
technical and detailed, is presented in a manner that closely parallels the 
development in Chapter I, where elementary proofs based upon combina
torics were possible because of the finite state space. The reader who followed 
that development should find the new theorems familiar looking and 
plausible. In order to reach illuminating applications of the theory to 
statistical mechanical models, the proofs of the theorems will be postponed 
until Chapters VI-IX. 

The last section of this chapter shows how one can apply large deviations 
to evaluate the asymptotics of certain configuration space integrals that 
depend on a parameter. The main theorem in this section is due to Varadhan 
(1966). In the next few chapters we will apply Varadhan's theorem to 
study integrals associated with the statistical mechanical models (partition 
functions). 

II.2. Levels-1, 2, and 3 Large Deviations for I.I.D. 
Random Vectors 

The presentation of the three levels of large deviations for vector-valued 
random variables involves some topology. We next outUne the information 
we need, saving a more thorough treatment for Appendix A. 
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The basic underlying model in this chapter is a sequence {Xfje Z} of i.i.d. 
random vectors defined on a probability space (Q, J^, P) and taking values 
in IR"̂ , where (i is a fixed positive integer. Since all of our results depend only 
on the distribution of the random vectors, we may suppose (Q, ^ , P) to be 
the following standard model. 

Q is the space of all sequences a> = {cOj 'JeZ} with each cOj e W^. That is, 
Q is the infinite product space Yljez ^"^ C)r simply (U^)^. We endow Q. 
with the product topology. An open base for this topology consists of 
all sets Yijez ^j^ where all but a finite number of the factors equal U^ 
and the remainder, say Uj^, ..., U^^, are open sets in U^. Convergence 
in this topology is equivalent to coordinatewise convergence in U^. 

^ is the Borel cr-field of Q. The Borel (T-field, denoted by J'(Q), is 
defined as the a-field generated by the open subsets of Q. J*(Q) coincides 
with the a-field generated by the product cyUnder sets 

(2.1) 2:^,fc= {coGQ:co^+iGFi,...,a;^+fcG/;}, 

where m and k are integers with k > 1 and F^, .. . ,F^ are Borel subsets 
of [R̂ . 

P is an infinite product measure on J*(Q) with identical one-dimen
sional marginals, which we denote by p. Thus, for example, 

P{^m,.]=\\p{Fj]. 
7 = 1 

We write Pp for P. Xjj'eZ, is theyth coordinate function on Q defined 
by Xj((jo) = (Oj. The set {Xj 'JeZ} is a sequence of i.i.d. random vectors 
taking values in R^. This sequence is called the coordinate representation 
process. Each A} has distribution p: 

Pp{ojea\X^{(D)eB] = p{B} for Borel subsets B of U^, 

Q can serve as a configuration space for physical systems. In statistical 
mechanical models, Q may be the configuration space for the velocities of a 
system of particles [Chapter III] or for the spins at sites of a ferromagnet 
[Chapters IV and V]. A microscopic model for such a system is completed 
by choice of a probability measure P on (Q, J^). The measure P, called an 
ensemble, expresses the microscopic interactions among the particles or 
spins. Product measure corresponds to the absence of interactions. It models 
a system of independent particles (ideal gas) or independent spins. When 
interactions are present, an ensemble which is not product measure must be 
chosen. 

We now define the three levels for a sequence of i.i.d. random vectors 
{1}'JeZ) on a probabiUty space {Q, J^, P). Let p be the distribution of X^. 
Level-1 large deviations treat the microscopic «-sums Sn(oji)/n = Yj=i Xj(coi)/n, 
« = 1, 2, . . . . The law of large numbers states that if J^^ \\x\\ p{dx) is finite,* 
then 

* IIjc|| = (Zf^i xfy^^, the Euclidean norm of x. 
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(2.2) S„((D)/n -> m = xp(dx) P-a.s. 

Denote by gj,̂ ^ the distribution of SJn on U^. The hmit (2.2) impUes that if 
A is any Borel set whose closure does not contain m^, then Ql^^{A} ^0 as 
n-^ CO. Hence the distributions {2J,^^;« = 1,2, . . . ) converge weakly to the 
unit point measure 5^ on IR'̂  [Theorem A.8.2]. Level-1 large deviations 
study the exponential decay of the probabiHties Ql^^{A}. 

Level-2 large deviations treat the empirical measures L„(co, •) = 
^~^ Zj=i ^xi(o)(')^ « = 1, 2, . . . , which are level-2 microscopic «-sums. For 
each Borel subset B of W^, L„(CD,B) is the relative frequency with which 
X^(CD), . . . , X„((D) is in B. Therefore, for each co, L„(co, •) is an element of 
^(U^), the set of probabiHty measures on ^(U^). The mean of the empirical 
measure is l^dxL„((o,dx) = S„(co)/n. The set ̂ (U^) with the topology of 
weak convergence is a complete separable metric space [Example A.8.4(a)]. 
It is easily checked that if ^ is a Borel subset otJ^iW^), then the set L~^A = 
{(JOGQ:L„((D, ')eA} belongs to the cr-field J^. The distribution of L„ is the 
measure Q\^^ defined by Qi^^{A} = PpiL'^A} for A a Borel subset ofJi{U^). 

For level-2, the Hmit (2.2) is replaced by 

(2.3) L,{(Dr)^P P-a.s. 

This Umit states that the sequence {L„(co, ')\n= \,1, ...] converges weakly 
to p P-a.s. It is a consequence of the ergodic theorem [Corollary A.9.8]. 
The limit (2.3) imphes that if ^ is any Borel subset of ^((R^) whose closure 
does not contain p, then Q^^\A] ^ 0 as n-^ co. Hence the distributions 
{gj,̂ ;̂w = 1,2, . . . } converge weakly to the unit point measure S^ on 
J^(U'^). Level-2 large deviations study the exponential decay of the probabil
ities e[,^H^}-

Level-3 large deviations treat the empirical processes 

(2.4) i?„(«,-) = -"E Vm»)(-), n = l , 2 , . . . , 
n /c = 0 

which are level-3 microscopic «-sums. T is the shift mapping on (W^)^ and 
X(n,co) is the periodic point in (IR'̂ )̂  obtained by repeating (X^(co), 
X2((jo), . . . , X„((o)) periodically [cf.. Section 1.6]. For each Borel subset B 
of (IR )̂̂ , R„(co, B) is the relative frequency with which X{n, co), TX{n, co), . . . , 
r-^X{n, CO) is in B. Therefore, for each co, i?„(co, •) is an element of ^ . ( ( (R^ ) , 
the set of strictly stationary probability measures on 0^{{U^Y-), All the one-
dimensional marginals of Rn{(o, •) equal L„(a;, •)• The set Ji^i^^Y) with 
the topology of weak convergence is a complete separable metric space 
[Theorem A.9.2(a)]. It is easily checked that if ^ is a Borel subset of 
Ji,{UY, then the set R^^A = {(oeQ:R^(co, ')EA} belongs to the a-field 
J^. The distribution of î „ is the measure Qi^^ defined by Qi^^{A} = Pp{R~^A} 
for A a Borel subset of J^,((UY), 

For level-3, the hmits (2.2) and (2.3) are replaced by 

(2.5) R,(co,')^P^ P-a.s. 
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Table II. 1. Definitions of Levels-1, 2, and 3 

Level 

1 

2 

3 

Random 
quantity 

SJn 

Ln 

Rn 

A.s. 
limit 

rUp 

P 

Pp 

Metric 
space 3C 

W^ 

Ji{W) 

j^sm'f) 

Distribution 
e„ on ^(X) 

Q^:^{B} = P ^ e ^ 

Qi'>{B}=^P{L„eB} 

Q'„'^{B} = P{R„eB} 

Weak limit 

of{e„} 

Qi"=>S„, 

Qi'^^5, 

ei^'-^P, 

This limit states that the sequence {R„(o), ');n = 1,2, ...} converges 
w^eakly to P^ P-a.s. It is a consequence of the ergodic theorem [Corollary 
A.9.8]. The limit (2.5) implies that if A is any Borel subset ofJ^,((^Y) whose 
closure does not contain F^, then Q\j^^{A} -^ 0 as w ^ oo. Hence the distribu
tions {Q[^^;« = 1,2, . . . } converge v^eakly to the unit point measure 3p on 
J^^aW^)^). Level-3 large deviations study the exponential decay of the 
probabiHties Q[^\A}. 

Thus for each level there is a random quantity SJn, L„, or R^. Each 
quantity takes values in a complete separable metric space ^ = W^, Ji{U^), 
or Ji^{{R'^Y), and has an a.s. limit which is a point XQ in SC {XQ = m^, p, or 
Pp). The distributions of these random quantities are measures gj,^\ Qj,^\ or 
Q\^^^ on the Borel subsets of the respective space ^ , and they converge weakly 
to the corresponding unit point measure S^^ on ^. Large deviations study 
the asymptotic behaviors of the distributions Ql,^\ 2i^\ and Q[^\ This in
formation is summarized in Table II. 1. 

In the next section, we give an abstract formulation of a class of large 
deviation problems, which includes the three levels of large deviations for 
i.i.d. random vectors. We return to the three levels in Section II.4. 

II.3. The Definition of Large Deviation Property 

A central theme of Chapter I was to express the exponential decay of large 
deviation probabilities in terms of entropy functions. For each of the three 
levels of large deviations we had Hmits of the form 

(2.6) lim -logQ^^{A,} = -min/^^>(x), / = 1, 2, 3. 
n-^CO fl ^^^i 

The functions /̂ ^̂ , fp^\ and /̂ ^̂  are the entropy functions corresponding to 
the three levels and the sets A^ are closed sets not containing the unique 
minimum point of the respective function I^p\ In each case, the minimum of 
/̂ '̂  over A^ is positive. Hence the limit (2.6) impHes that the large deviation 
probabihties 2i'H^i} decay exponentially. The right-hand side is the decay 
rate. 

For example, in Chapter I, A^ is the set {zeU\ \z — m^\ > s} and I^^^ is 
defined by the contraction principle (1.17). The point m^ is the unique min-
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imum point of/^^ The limit (2.6) for / = 1 can be used to show the exponen
tial decay of probabilities of other sets. Let K be any closed set in U which 
does not contain the point m^. Since Â  is a subset oi A^ for sufficiently small 
£, the limit (2.6) implies that there exists a number N = N(K) > 0 such that 

(2.7) Q['^{A:} < ^-"^ for all sufficiently large n. 

In applications, these bounds for closed sets are often as important as limits 
of the form (2.6). Our first task is a formulation of such bounds for distribu
tions on W^, The bounds will be expressed directly in terms of entropy 
functions on W^ which for now we assume, and later will prove, to exist. This 
formulation will suggest how to prove hmits like (2.6) and will motivate the 
general concept of large deviation property. Large deviation property will be 
defined later in the section. 

Let {2„;« = 1,2, . . . } be a sequence of Borel probability measures on 
IR'̂ . Suppose that there exists a non-negative real-valued function I(x), 
XG [R^ such that inf^^^dl(x) = 0 and 

(2.8) limsup-loge„{A:} < - inf/(x) 

for each nonempty closed set K in U^. Assume also that I(x) attains its in-
fimum of 0 at some point in IR"̂ . Such a point is called a minimum point of /; 
a minimum point need not be unique. What additional properties of I{x) 
guarantee that a bound of the form (2.7) holds whenever Â  does not contain 
a minimum point of/? It suffices if the following hold. 

(a) I{x) is lower semicontinuous onW^\ x^-^x implies Uminf̂ ^^o (̂-̂ n) ^ 
I{x). 

(b) I{x) has compact level sets: the set {xeR'^: I{x) < b] is compact for 
each real number b. 

Indeed, i f / (^ ) denotes the infimum of/(x) over K, then (2.8) implies that 

(2.9) Qn{K]< exp(-nI(K)/2) for all sufficiently large n. 

If we prove that I(K) is positive, then we will have a bound of the form (2.7). 
The set 

K^ = Kn {xeU':I{x) < I(K) + 1} 

is nonempty and since I(x) has compact level sets, K^ is compact. According 
to a standard result, a lower semicontinuous function attains its infimum 
over a nonempty compact set [Problem II.9.2]. Since I(K^) = I(K), there 
exists a point ZEK^ ^ K such that I(z) = I(K). 1{I(K) = 0, then z must equal 
a minimum point of /. This contradicts the assumption that K contains no 
minimum point of/. Thus I(K) is positive, and we are done. 

In many cases, functions I(x) arise which take the value oo. Thus it may 
happen that in the argument just given, the infimum I(K) equals oo. But 
then (2.8) implies that for any number Â  > 0, Qn{K} < ^""^ for all suffi
ciently large n. 

Along with the upper bound (2.8), it is reasonable to consider the comple
mentary lower bound for each nonempty open set G in (R"̂ : 
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(2.10) l iminf - loga{G} > - i n f / ( x ) . 
"-*oo n xeG 

Let us deduce a simple criterion on a nonempty Borel subset A of W^ which 
implies that if both bounds (2.8) and (2.10) are vahd, then 

(2.11) \im-\ogQ,{A}= - i n f / ( x ) . 
n-*ao n xeA 

Denote the closure of ^ by c l ^ and the interior of ^ by int^ . Since cXA^ 
^ ^ int^ , it follows that 

— inf I{x) > limsup-logQ„{cl^} > limsup-logQ„{^} 
xec\A n-^ao It n-^cc fl 

(2.12) ^ ^ 
> l iminf- log2„M} > l i m i n f - l o g g j i n t ^ } > - inf I{x). 

«->oo yi n-*(X) yi xeint^ 

If the two extreme terms are equal, then the limit (2.11) follows. 
We return to the level-1 problem studied in Chapter I. Let g„ = Q\^^ be 

the distribution of n~^ YJ)=I ^•' where X^, X2, . . . are i.i.d. random vectors 
taking values in a finite set Y = {xi,X2, . . . , x j with x^ < X2 < • • • < x^. 
According to Theorems IL4.1 and IL5.1 below, the bounds (2.8) and (2.10) 
are vahd for Qi^^; I equals the entropy function /̂ ^̂  defined in (1.17). Let A^ 
be the closed set {z G [R: \z — mp\ > e},whereO < s < min{mp — x^^x^ — nip}. 
Since the infimum of/^^^(z) over ^^ equals the infimum of/^^^(z) over int^^, 
the bounds (2.8) and (2.10) yield 

l i m - l o g e i ^ H ^ i } = - i n f / ; ^ ^ ( z ) . 

In addition, since /̂ ^̂  is a continuous function on the compact set [ x i , x j 
[Theorem 11.4.1(c)], /̂ ^̂  is lower semicontinuous on U and has compact 
level sets. 

This discussion leads us to the definition of large deviation property. We 
want the definition to be general enough to cover the three levels of large 
deviations summarized in Table II. 1. Let ^ be a complete separable metric 
space and {Q„;« = 1,2,... } a sequence of probabiUty measures on the Borel 
subsets of ^ . Suppose that as « -> 00, {Q„} converges weakly to the unit point 
measure 3^^ at some point XQ in ̂ . Thus for most Borel sets A, Qn{A] -^ 0 as 
w -> 00. In the examples we consider, Qn{A] converges to zero exponentially 
fast as « -> 00 with an exponential rate depending on the set A. We allow for 
the possibiHty of other scaUng constants besides n. The situation is abstracted 
in the following definition.^ 

Definition IL3.1. Let ^ be a complete separable metric space, ^ ( ^ ) the 
Borel o--field of ^ , and {Q„; /i = 1,2, . . . } a sequence of probability measures 
on ^(^). {2„} is said to have a large deviation property if there exist a sequence 
of positive numbers {(2„; n= 1,2,...} which tend to 00 and a function I{x) 
which maps ^ into [0, 00] such that the following hypotheses hold. 
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(a) I(x) is lower semicontinuous on ^. 
(b) I(x) has compact level sets. 
(c) limsupn^^ a~^ log Q„{K} < —inf^g|^/(x) for each closed set A în ^ .* 
(d) liminf„^oo a~^ logQn{G} > —mf^^Ql(x) for each open set G in ^ . 

I(x) is called an entropy function of {Q„}. 

We note several consequences of the definition. 
The infimum ofI(x) over 0C equals 0. This follows from the upper and lower 

large deviation bounds (c)-(d) with K= G = 3C. 
I(x) attains its infimum over any nonempty closed set (the infimum may be 

oo). This follows from hypotheses (a) and (b) by the same argument given 
earlier in the case ^ = IR'̂  [page 34]. 

According to the following theorem, if a large deviation property holds, 
then the entropy function is unique.^ 

Theorem II.3.2. Let ^ be a complete separable metric space and {Q^;n = 
1,2,...} a sequence of probability measures on ̂ {^). If for a fixed sequence 
[a^.n = 1,2,...} {Qf^} has a large deviation property with entropy function I 
and with entropy function / , then I(x) = J(x)for all xe^. 

Proof Fix a point xe^ and define Kj and Gj to be the closed ball and the 
open ball, respectively, with radius l/j and center x (7 = 1,2, . . . ) . Since 

-liKj^,) < -KGj) < l iminf-loge„{G,} 

< l imsup- loge„{^ ,} < -J(Kjl 
"-00 a„ 

where if ^ is a subset of ^ , then 1(A) and J(A) denote the infimum of / and 
of/over A, respectively. Repeating the argument with /and /interchanged, 
we see that 

J(Kj) < I(Kj^,) < J(Kj^,) < I(Kj^,) < . . . . 

Hence to prove that I(x) = J(x), it suffices to show that I(Kj) -^ I(x) and 
J(Kj) -^ J(x) as 7 ̂  00. We prove the first. The second is proved the same 
way. Since {I(K^ ;7 = 1,2, . . . } is an increasing sequence and x is a point in 
each set K^, X\v[ij^^I(K^ exists as an extended real-valued number and 
lim^^oo A^j) ^ ^W- /attains its infimum over the closed set Kj. Hence there 
exists a point x^ in K^ such that I(x^ = I(Kj). The sequence {xj;j = 1,2, ...} 
converges to x and by lower semicontinuity 

*If ATor G equals the empty set (/>, then (c)-(d) hold trivially if we set log QM) = log 0 = — 00 
and inf^g^/(x) = 00. 
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I(x) < lim I(x,) = lim I{K:) < I(x). 

Thus I(Kj) -^ I(x), and the proof is complete. n 

We remarked above that if I(x) is an entropy function, then the infimum 
of I(x) over the whole space ^ equals 0. Since ^ is closed, I(x) attains its 
infimum of 0 at some point of ̂ . Such a point is called a minimum point of/. 
Recall the case ^ = IR"̂  which was considered at the beginning of this section. 
We proved using hypotheses (a)-(c) of large deviation property that Qn{K} 
decays exponentially for any closed set ^ not containing a minimum point of 
/. The same proof works for any complete separable metric space ^ , and we 
have the following result. 

Theorem II.3.3. Let ^ be a complete separable metric space, {Q^;n = 
1,2,... } a sequence of probability measures on ̂ {SC), andl(x) a function which 
maps ^ into [0, oo] such that inf_^g^/(x) = 0. Suppose that hypotheses (a)-(c) 
of large deviation property are valid for some positive sequence a„^ oo. Then 
for any closed set Knot containing a minimum point of I, there exists a number 
N = N(K) > 0 such that Q„{K} < e'""^^ for all sufficiently large n. 

We end this section with a condition on a Borel set A which guarantees 
that lim„_̂ oo /̂7^ log Qn{A} = — inf^^^ /(x). The theorem is proved as in (2.12). 

Theorem 11.3.4. Let ^ be a complete separable metric space and {Q^;n = 
1,2, . . . } a sequence of probability measures on ^{^), Suppose that {2„} has 
a large deviation property with constants {a„;n = 1,2, ...} and entropy 
function L Call a Borel subset A of 3C an I-continuity set if 

inf I{x) = inf I(x). 
xe c\ A xe int A 

If A is an I-continuity set, then lim^^o^ a~^ log Qn(^) = —inf^^^I(x). 

II.4. Statement of Large Deviation Properties for 
Levels-1, 2, and 3 

The microscopic «-sums and distributions determining the three levels were 
summarized in Table II. 1. This section states the large deviation property for 
each level, then summarizes the results in Table II.2. 

Level-1. We denote by < •, • > the Euclidean inner product on W^ and by || • || 
the EucHdean norm. 

Theorem II.4.1.* Let X^, X2, . .. be a sequence of i.i.d. random vectors taking 
values in U^ and let peJ^(U^) be the distribution ofX^. For teU^, define 

* Parts (a) and (b) of Theorem IL4.1 are proved in Section VIL5; part (c) is proved in 
Theorem VIIL3.3(c). 
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(2.13) c^(t) = log^{exp</,Zi>} - log exp<r,x>p(Jx). 

Assume that Cp{t) is finite for all t and define 

(2.14) /;i>(z) = s u p { < ^ , z > - c / 0 } for zeW. 

Let S„ denote the nth partial sum ^"=1 A}, « = 1, 2, . . . . Then the following 
conclusions hold. 

(a) {Q^n^], the distributions of{SJn} on U^, have a large deviation property 
with an = n and entropy function I^^K 

(b) ll^\z) is a convex function of z. Ip^\z) measures the discrepancy 
between z and the mean"^ m^ = ^^dxp(dx) in the sense that Ip^\z) > 0 with 
equality if and only ifz = mp. 

(c) If p is supported on a finite set Y = {xi,X2, • . . ?-̂ r} — ^ with x^ < 
X2 < '' • < x^, then Ip^^ is finite and continuous on the interval \_Xi,x^ and 
Il^\z)= o o / o r z ^ [ x i , x J . 

The hypothesis that Cp(t) be finite for all / is satisfied if, for example, X^ 
is bounded. 

In Chapter I, we defined the level-1 entropy function Ip^^hy the contraction 
principle (1.17). A new aspect of Theorem II.4.1 is formula (2.14) for I^^\ 
Although the proof of the theorem is postponed, we will motivate this 
formula by assuming that {Q[^^} has a large deviation property with some 
entropy function /̂ ^̂  and then deducing (2.14) as a consequence. For the 
contraction principle, see Theorem II.5.1. 

If {Qn^^} has a large deviation property with entropy function /^^\ then it is 
tempting to think of Q[^\dz) as having the asymptotic form exp( — nfp^\z))dz. 
Since X^, X2, . . . are i.i.d., 

-log£{exp<^5„>} = - log fl E{cxp{t,Xjy} = logE{cxp{t,X,}} = Cp(t). 
n n j=i 

Using the heuristic formula Ql^^\dz) ̂  Qxp( — nll,^\z))dz, we may write 

Cp(t) = -log^{exp(«<^,SJn})} = - log f exp(nO,z})Qi'\dz) 

^ - l o g 
n 

exp[««r,z>-/^^>(z))]Jz. 

As n-^ CO, the main contribution to the integral comes from where the 
integrand is a maximum (Laplace's method). Hence it is plausible that 

(2.15) c / 0 = s u p { < / , z > - / y > ( z ) } . 

The function Cp{t) is a convex function on U^ [Example VII. 1.2]. Formula 

*J(Rd||x||p((ix) < 00 since Cp{t) < 00 for all /. 
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(2.15) expresses this convex function as the Legendre-Fenchel transform of 
Ip^\z). When the theory of these transforms is developed, we will see that 
formula (2.15) can be inverted to yield formula (2.14) for I^^\ In Section II.7, 
we will justify the manipulations leading to (2.15). The function Cp(t) is well-
known in probabihty theory as the logarithm of the moment generating 
function of p (also called the cumulant generating function of p). By analogy 
with statistical mechanics, we call Cp(t) the free energy function of p. The 
reason for this choice of terminology will be clear in Section IV.5. 

Here are two examples of entropy functions calculated by (2.14). 

Example II.4.2. (a) For coin tossing, p = i^o + 2^1 ^^^ ^p(0 = log[2(1 + 
e^y]. Fix z real. Cp{f) is convex and tz — Cp{f) is concave. Hence tz — Cp{t) 
attains its supremum at t if and only if 

0 = -{tz - Cp{f)) = z - dp{f). 

The derivative Cp{i) = e^/(l + e^) has range (0,1) as t runs through (— 00, 00). 
For ZG(0 , 1) Cp(t) equals z at the unique value t = t(z) = log(z/(l — z)). By 
(2.14) 

fp'\z) = t(z) • z - Cp(t(z)) = zlog(2z) + (1 - z)log(2(l - z)). 

For z = 0 or 1, the supremum in (2.14) is not attained but /^^(0) = /^^^(l) = 
log2; for z^[0 ,1] , /^'^(z) = 00 [Theorem VIII.3.3(b)]. Hence we obtain 
the formula for /̂ ^̂  in (1.9). 

(b) Given m real and cr̂  > 0, consider the Gaussian probabihty measure 
on U 

p(dz) = N(m, G^){dz) = ,^^ 2>.i/2^^P 
{iKG^y 

(z — mY 
iG^ 

dz\ 

m — \^ xp(dx) and G^ = JK (-̂  — mYp{dx). A standard calculation shows that 
c^{t) = ^G^t^ + mt. For any z real the supremum in (2.14) is attained at 
r - (z - m)/G^ and fp'\z) = (z - mY/lG^ 

Theorem II.4.1 has an interesting implication concerning the convergence 
of {SJn}. For any £ > 0, let K be the closed set {ze [R'̂ : ||z - m^|| > s}. The 
distributions {Q[^^} of {SJn} have a large deviation property and the entropy 
function /^^(z) attains its infimum of 0 at the unique point z = nip. By 
Theorem II.3.3, there exists a number TV = N(8) > 0 such that 

(2.16) Qi'^K} = P{\\SJn - m j > s} < e""^ for all sufficiently large n. 

Since Y,^=i Qxp( — nN) is finite, the Borel-Cantelh lemma imphes the strong 
law of large numbers: SJn ^ nip P-a.s. [Theorem A.5.3]. We may sum
marize (2.16) by saying that SJn converges exponentially to m^. Exponential 
convergence will be considered in Section II.6 for other random vectors. 
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Level-2. Let p be a Borel probability measure on R whose support is a finite 
set r = {xi,X2, . . . , x j , with x^ < X2 < ''' < x^. Thus if p̂ - = p{Xj}, then 
each pi is positive and Z[^i A = 1. ^ ( F ) denotes the closed subset of ^(U) 
consisting of probabihty measures v for which v{r} = 1. Let A2 be the set 

{ v G ^ ( r ) : max |v,-— Pj| > e} where 0 < e < min {p ,̂ 1 —/?J. 
i = l,...,r i = l,...,r 

In Theorem L4.3, we proved that 

(2,17) ]im-logQ['^{A2} = l im-logP,{L„6^2} = -min/^^^M, 

where ll^\v) = YA=I ^A^§>(^i/Pi)' We now state a generalization. If VG^(1R'^) 

is absolutely continuous with respect to p e J^(U^), then we write v <<c p and 
denote by dv/dp the Radon-Nikodym derivative of v with respect to p. 

Theorem II.4.3. Let X^, X2, . . . be a sequence of'i.iA. random vectors taking 
values in U^ and let p e Ji{U^) be the distribution ofX^. For v E Ji{U^), define 
the relative entropy ofv with respect to p by the formula"^ 

log^-(x) y{dx) ifv<cp and 
I'Av) = \ Jo,d dp 

00 otherwise. 

0?̂  

. dv 
dv < CO, 

(2.18) 

Let Ln denote the empirical measure n~^ Yj=i ^x-^ ^ = 1? 2, . . . . Then the 
following conclusions hold, 

(a) {Q\^^}, the distributions of {L„} on Ji{R^), have a large deviation 
property with a„ = n and entropy function I^^\ 

(b) /p^ (̂v) is a convex function of v. Ip^\v) measures the discrepancy 
between v and p in the sense that I^^\y) > 0 with equality if and only ifv = p. 

This theorem is proved in Section VIII.2 in the case of a finite state space. 
Theorem II.4.3 implies the limit (2.17). Indeed, if the support of p is 

F = {xi ,X2, . . . , ^ . } , then Q^^^{M{Y)] = 1. For v G ^ ( r ) , / f (̂v) in (2.18) 
reduces to the sum ^[=1 Vjlog(Vf/pj.). The space Jf(r) with the topology of 
weak convergence is homeomorphic to the compact convex subset of IR'' 
consisting of all vectors v = (v^, . . . , vJ which satisfy v̂  > 0 and Yj=i ẑ = ^ 
[Example A.8.4(b)]. Since Ip^\v) is a continuous function on this compact 
set, the set A2 in (2.17) is an /^^^-continuity set relative to ^ ( F ) . The hmit 
(2.17) follows from Theorem II.3.4. 

Level-3. Let p be a Borel probability measure on U whose support is a finite 
set F = {xi, ^2, . . . , x j with x^ < X2 < - - - < x^. J(^{T^) denotes the closed 
subset of ^s(IR^) consisting of probability measures P for which P{F^} = 1. 
LetZi, . . . , 1 ^ be cylinder sets of F^ such that 0 < ^^{1^} < l,yc = 1, . . . ,A ,̂ 
and define the closed set 
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B, = {PeJi,{T^y. max | P { I J - P,{XJ| > e}. 
fc = l , - - , i V 

In Theorem 1.6.3, we stated that for all sufficiently small e > 0 

(2.19) l im-logel 'H^a} = limilogP,{/^„G^3} = -minf/\P). 

Ip^\P) is defined by the limit (1.37). Theorem II.4.4 is a generalization. A 
new theme is a second formula for fj'\ stated in (2.20) below. 

Let p be a Borel probabihty measure on U^ and {A}'Jel} the coordinate 
functions on ((IR^, ^{{U'^Y),Pp). {XjJeZ} is a sequence of i.i.d. random 
vectors with distribution p. If P is a measure in ^^(([R'^)^), then let P^ be a 
regular conditional distribution, with respect to P, of X^ given the a-field 
^({Xjj' < 0}) [Theorem A.6.3]. For each fixed co, P^ is a probability mea
sure on ^([R^. For each Borel subset B of W^, Poy{B} is a version of the 
conditional probabihty P{X^ eB\{Xjj' < 0}} and so is a measurable function 
of ( . . . , X_2(co), All (< )̂i ^o(<^))- There exists a version of/^^^(PJ, the relative 
entropy of P^ with respect to p, which is a non-negative measurable function 
of ( . . . , X.2(col X_i(co), Xo(co)) [Theorem A.9.9]. Formula (2.20) for f/\P) 
is then well-defined. 

Theorem II.4.4. For PeJ^^iW^)^), define the mean relative entropy ofP with 
respect to P^ by 

(2.20) If\P) = [ I</KPjP{dco), 

where Ij,^^ is defined in (2.18). Define the empirical processes {Rn\n = 1 , 2 , 
. ..} by {2A). Then the following conclusions hold. 

(a) {Q^n^}, the distributions of [R^ on Ji^{{U^Y), have a large deviation 
property with a„ = n and entropy function I^^\ 

(b) Ip^\P) is an affine function of P. Ip^\P) measures the discrepancy 
between P and Pp in the sense that Ip^\P) > 0 with equality if and only if 
P = P 
1 ± p. 

The theorem will be proved in Chapter IX in the case of a finite state 
space. There, we will show that the Hmit (1.37) defining /̂ ^̂  coincides with 
formula (2.20). 

Theorem II.4.4 implies the limit (2.19). Indeed, if the support of p is 
r = {xi,X2, . . . , x j , then 2i^H^s(T^)} = 1- Thus we may deduce the limit 
(2.19) by proving that the set B^ is an /^^^-continuity set relative to Ji^{T^). 
Being an entropy function, /̂ ^̂  attains its infimum over the closed set ^3 at 
some measured. P satisfies \P{Lk] -_Pp{^k]\ ^ ^ ^^"^ some ke{\, . . . , A^}. 
Assume that P{2:J - P p j l j > £. If P{^k] - Pp{^k] ^ - e , then the proof 
is similar. We define the closed convex set 
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Table II.2. Large Deviation Properties for Levels-1, 2, and 3 

Where large 
Random A.s. Properties of the deviation pro-

Level quantity limit entropy function perty is proved 

i SJn 

R. 

The interior of C is the set of PeJ^X^^) satisfying P{ZJ - ^^{1^} > s. If 
PQ is any measure in int C, then Ip^\Po) is finite [Theorem IX.2.3], and since 
fp^^ is affine 

inf Ij,'KP) = lf\P) = lim f-/<3'(Po) + 6 - -^ I''\P)) 

•=i™'iK~''»+('-i)4 
Since n'^P^ + (1 - n~^)P belongs to int C, it follows that infp^i^tc^f ^(^) = 
'm{p^B^I^^\P). Since intC is a subset of int53, we conclude that B^ is an 
/^^^-continuity set relative to ^^CF^). 

The large deviation properties for the three levels are summarized in 
Table II.2. 

II. 5. Contraction Principles 

In Chapter I, we stated contraction principles relating levels-1 and 2 [see 
(1.17)] and levels-2 and 3 [see (1.40)]. These generalize essentially without 
change. But they also have additional features that are worth emphasizing. 
The first theorem states the contraction principle relating levels-1 and 2. 

Theorem II.5.1.* Let p be a Borelprobability measure on U^ such that Cp{t) = 
log\^dQxp{t,x}p(dx) is finite for all teU^. Define I^^^ by (2.14) and f/^ by 
(2.18). Then for all points zeU^ 

(2.21) Il'\z) = inf |/^^>(v): v G J^(U'l | xv(dx) = z\ . 

For z = m , (2.21) is certainly valid since Ip^\m) equals 0 and the in-

*Theorem IL5.1 is proved in Donsker-Varadhan (1976a, page 425). It will be proved in 
Chapter VIII [Theorems VIII.3.1, VIII.4.1] under additional hypotheses on p. 
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fimum on the right-hand side is attained at v = p (Il^\p) = 0). For other z 
the right-hand side may be oo unless there exists a probabihty measure v on 
U^ which is absolutely continuous with respect to p and satisfies ^^d xv(dx) = 
z. In order to determine those points z for which the terms in (2.21) are finite, 
consider again the definition (2.14) of/^^ The free energy function c^it) is 
convex and differentiable [Theorem VII.5.1]. Hence the supremum in (2.14) 
is attained ^t teW^ if and only if 

V,«t,zy-c^{t)) = 0 orVc^(t) = z. 

Suppose that this equation has a solution t = t(z). The gradient of c^ can be 
calculated by differentiating under the integral sign; that is, 

— Qxp0.xyp(dx)= \ XiQxp(t,x}p(dx) 
^^i Jud .rod 

and so 

VcJt) = z = XQxp{t,xyp{dx)-
^^dQxp{t,x}p(dx)' 

Define p^ to be the Borel probabihty measure on IR"̂  which is absolutely con
tinuous with respect to p and which has Radon-Nikodym derivative^ 

(2.22) ^ ( x ) = : e x p < r , x > - ^ 
dp ' ^^dQxp<^t,xyp(dx)' 

We see that Vc^(0 equals the mean of p .̂ Since Vc^(0 = z, we conclude that 
the right-hand side of (2.21) is finite for z in the range of Vc^; e.g., the point 
z = nip corresponds to / = 0 and Po = p. In fact, we will see that Ip^\v) 
attains its infimum over the set [v e JiiW^): \^d xv{dx) = z] at the unique 
measure v = p, and /^^^(z) equals Ip^Kpt). The range of Vc^ is closely related 
to the support of p. 

For coin tossing, where p = ^SQ + ^3^ and /̂ ^̂  is given by (1.9), these 
assertions are easy to verify. By Example 11.4.2(a), the equation Cp(t) = z has 
for Z6(0,1) a unique solution t(z) = log(z/(l — z)). Hence 

1 1 ^^ I 1 exp(^(z)) 
2 ^^Qxp(t(z)x)p(dx) ^ 2 ^^Qxp(t(z)x)p(dxy p'i^y = ^r^:3Z7:7^7iT77XT^o + ^-n:±^7^^^7rz7ir. î = (i - ^)^o + ^s,. 

Since p̂ (2) is the only probability measure which is absolutely continuous 
with respect to p and which has mean z, the right-hand side of (2.21) indeed 
attains its infimum at the unique measure v = p^^^^y A short calculation shows 
that Ip^\Pt(z)) = ^p^\^)' This equality also holds for z = 0 (resp., z = 1) 
with PJ(̂ ) replaced by ^o (resp., 3^), and the infimum in (2.21) is attained at 
this unique measure. Finally, for z^ [0,1] Ip^\z) = oo; if v has mean z, then 
V « p cannot hold and Il^\v) = oo. Hence both sides of (2.21) equal oo. 

If p is a Borel probabihty measure on IR whose support is a finite set F, then 
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the situation is analogous to coin tossing. Ip^\v) equals oo unless v <c p, and 
V « p is equivalent to v belonging to ^ ( F ) . Hence any v in ^(U) but not in 
J^(r) contributes Ip^\v) = oo to the infimum in (2.21). The next theorem will 
be proved in Section VIII.3 [Theorem VIII.3.1]. 

Theorem II.5.2. Let p be a Borel probability measure on U whose support is a 
finite setT = [x^,X2, . >. ,Xy] with X^K X2 < • • • < x^. For t real, define 

(2 23) p exp(a,)A ^ exp(/x^)A 
"' j.exp(rx)p(Jx) J ,^p(,^^.)^^. 

7 = 1 

and let p^ be the probability measure Y!i=\ Ptj^x- ^^ ̂ ( T ) . Define 

C *" 
Cp{t) = log exp(tx)p(dx) = log X Qxp(tXi)pi. 

Jr =̂1 
The following conclusions hold. 

(a) For each point z e (x^, x j , there exists a unique value t = t(z) such that 
Cp(t) -= ^^xpXdx) = z. 

(b) For each point ze(x^,x^), Ip^\v) attains its infimum over the set 
{v e Ji{r): m^ = z} at the unique measure p^^^^ and 

xv(dx) = z> < 00 (2.24) /<«(z) = /<2)(p„,,) = inf |/<2>(v): v 6 ^ ( F ) , 

For z = Xi (resp., z = x^) the previous sentence is true with p^^^^^ replaced by 
d^ (resp., (5̂  ).* For z ̂  [x^, x j Ip^\z) equals oo, and since there is nove JiiX) 
with mean z, the infimum in (2.24) is over an empty set. 

The contraction principle stated in part (b) has an interesting interpreta
tion as a principle for inferring a distribution under insufficient knowledge. 
Assume that p is the uniform measure on the set F } with 
x^ < X2< ' '' < x^ (pi= l/r for each 0- Then for veJ^(r) I^^\v) equals 
logr — H{v), where ^(v) = — X!i=i ^A^^'^i is the Shannon entropy of v. As 
we saw in Example 1.4.2, H(v) is a measure of the randomness of v. The 
measure p^^^^ in Theorem II.5.2 gives the infimum of/^^^(v), or the supremum 
of H(v), over the set of v in ^ ( F ) satisfying j^xv(dx) = z. Hence p^^^^^ is the 
most random measure in ^ ( F ) satisfying this constraint. Consider now a 
sequence of i.i.d. random variables with state space F and distribution p. 
Suppose that p is changed to another nondegenerate measure in ^ ( F ) and 
that the only information supplied is that the mean of the new distribution 
is z. Then Pf(̂ ), being the most random measure in J^{r) with mean z, is the 
most reasonable choice for the new distribution. This interpretation of the 
contraction principle has been advanced by Jaynes in a series of papers 
beginning in 1957. 

*For z = Xi (resp., z = x^), the only measure veJ^(T) with mean z is S^ (resp., S^ ). 
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The contraction principle relating levels-2 and 3 is given next. As in the 
contraction principle relating levels-1 and 2, there is a unique measure which 
gives the infimum provided Ip^\v) is finite. Q denotes the space (IR"̂ )̂ . 

Theorem 11.5.3.* Given p a Borelprobability measure on W^, define I^^^ by (2.18) 
and I^^^ by (2.20). For PeJi^^), define n^P to be its one-dimensional mar
ginal. Let V be a Borel probability measure on U^. Then the following con
clusions hold. 

(a) /f)(v) = mf{l'^\Py.PeJiX^\7i,P = v}. 
(b) Let P^ be the infinite product measure with n^P^ = v. If I^p^\v) is finite, 

then Ip^\P) attains its infimum over the set {Pe^s(Q):niP = v} at the 
unique measure P^ and 

(2.25) I'^\v) = I^^\P;) = M{ll,'\P):PeJ^M.n,P = v}. 

When r = {x 1,^2, . . . , x j and p is the uniform measure on F, we recall 
from Example 1.6.2 that Ip^\P) equals logr — h{P), where the mean entropy 
h{P) is a measure of the randomness of P. In this case, the measure P^ in 
Theorem II.5.3 is the most random strictly stationary probabiHty measure 
with one-dimensional marginal v. 

For applications to statistical mechanics, it is useful to combine the two 
contraction principles already stated and obtain a new one relating levels-1 
and 3. We formulate it for a finite state space F = {xi,X2, . . . , x j with 
x^ < X2 < ''' < x^ and consider only points ZG [x^, x j . 

Theorem II.5.4. Assume the hypotheses of Theorem II.5.2. Fix ze{x^,x^). 
Then Ip^\P) attains its infimum over the set {PGJfs(r^):\Y^xn^P(dx) = z] 
at the unique measure Pp^,. ^nd 

rp'\z) = I'p'KPpJ = mfh;\Py.PeJiXT% [ xn,P(dx) = z\< 00. 
(2.26) I Jr J 
Ifz = Xi (resp., z = x^), then the previous sentence is true with Pp replaced 
by P. (resp. P. ). '̂ '̂  

Sketch of Proof. Calculate the infimum in (2.26) in two steps: over all 
PeJ^^(r^) with fixed one-dimensional marginal n^P = veJiiY), then over 
all veJiiX) with mean z. The infimum over P is attained at the unique 
measure P^. Since I^p^\PJ = I^^\v), the theorem follows from Theorem 
II.5.2. D 

The three contraction principles are summarized in Table II.3 for mea
sures pGe^([R^). 

*Theorem II.5.3 is proved in Chapter IX in the case where the support of p is a finite set. 
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Table II .3. Contraction Principles for peJ^iW^) 

Levels Contraction principle 

Unique 
minimizing 
measure Where proved 

1 and 2 I^^\z) = mr{I^^\v):^^dxv(dx) = z) For v = p,^,), Theorems VIIL3.1 
/(2)(v) =/(i)(z). andVIII.4.1 

2 and 3 lf\v) = \Xii{lf\P)\n^P =v} For P = F,, Theorem IX.3.1 
/^3)(p) ^ ji2)^^y (finite state space) 

1 and 3 I^'Kz) = mf{f/KP): ^^dxn^P{dx) = z} For P = P̂ ^̂ ^̂ , Combine previous 

/j3)(P) = /^i)(z). two principles 

II.6. Large Deviation Property for Random Vectors and 
Exponential Convergence 

This is a good place to survey our progress. In Chapter I we considered large 
deviation results for i.i.d. random variables with a finite state space. The 
theorems in Sections II.2-II.5 generalized the Chapter I results to i.i.d. 
random vectors taking values in U^. These theorems included three levels of 
large deviations and contraction principles relating the levels. It would also 
be useful to have a large deviation result for dependent random vectors since 
these arise naturally in statistical mechanics and other applications. In this 
section, we state such a result. It can handle either independent or dependent 
random vectors, and it generalizes the level-1 theorem. Theorem II.4.1. 

Let 1^ = {Pr„;« = 1,2, . . . } be a sequence of random vectors which are 
defined on probability spaces {(Q„, J^„,P„);« = 1,2, . . . } and which take 
values in U^. For example, W^ may be the nth partial sum of a sequence of 
random vectors, but these vectors need not be i.i.d. Also, the probability 
spaces need not be equal. We define functions 

(2.27) c„(0 = -log^„{exp<r, Pr„>}, « = 1, 2, . . . , tel 

where {a„;« = 1,2, . . . } is a sequence of positive real numbers tending to 
infinity, £"„ denotes expectation with respect to P„, and <-, -> is the Euclidean 
inner product on U^. The following hypotheses are assumed to hold. 

(a) Each function c„(r) is finite for all teW^. 
(b) c^{t) = lim„_̂ oo <̂ «(0 exists for all teU^ and is finite. 

Hypothesis (b) is natural for statistical mechanical applications since c^ is 
closely related to the concept of free energy. We call c^ the free energy 
function of #". A basic fact is that c„(0 and c^{t) are convex functions on 
R̂  [Proposition VII. 1.1]. 

The hypotheses on c„(0 and c^{t) are satisfied if, for example, W^ is the 
ni]\ partial sum of i.i.d. random vectors X^,X2, . . . and £'{exp<r,l'i>} is 
finite for all tsU^. In this case, with an = n 
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cM = - log^{exp<r, W,y] = logE{Qxp{t,X,y} = cAty 

This is the free energy function Cp{t) in Theorem TT.4.1. 
Theorem II.6.1 states a large deviation property for the distributions of 

WJa^. A natural candidate for entropy function is the Legendre-Fenchel 
transform 

(2.28) /^(z) = sup {<r,z> - c^t)] for ZG [R̂ . 

Like the level-1 entropy function /^^\ / ^ i s a convex, lower semicontinuous 
function, and it has compact level sets. The infimum of/^ over IR"̂  is 0, and 
the infimum is attained at some point [Theorem VII.2.1]. However, Example 
II.6.2 shows that in contrast to /^^ the minimum point need not be unique. 
Whether or not I^ attains its infimum at a unique point has interesting 
consequences which will be explored below. We prove the next theorem in 
Chapter VII. 

Theorem II.6.1. Assume hypotheses (a) and (b) on page 46. Let Q„ be the 
distribution of WJa^ on R^. Then the following conclusions hold, 

(a) V(z) is convex, lower semicontinuous, and non-negative. I^z) has 
compact level sets and inf̂ ^ ĵ d /^ (z) = 0. 

(b) The upper large deviation bound is valid: 

(2.29) limsup —loga{A:} < - inf 4-(z) for each closed set Kin [R .̂* 
/J-*oo a^ zeK 

(c) Assume in addition that c^t) is differentiable for all t. Then the lower 
large deviation bound is valid: 

(2.30) Hminf—log Qn{G} > — inf/^(z) for each open set G in W^. 

Hence, ifc^(t) is differ entiable for all t, then (2.30) and parts (a) and(h) imply 
that {Q„;n = 1 , 2 , . . . } has a large deviation property with entropy function 

This theorem generaHzes Theorem II.4.1 since the free energy function 
Cp{t) is differentiable for all t [Theorem VII.5.1]. 

Part (a) of Theorem II.6.1 states that the upper bound (2.29) is valid for 
all closed sets K. In the following simple example, the free energy function 
c^ is not differentiable at a single point and the lower bound (2.30) fails for 
a whole class of open sets G. Nevertheless, a large deviation property holds 
(with a nonconvex entropy function). 

Example II.6.2. Let W^ have the distribution ^5„ + ^(5_„. Then with a^^n 

c^{t) = \imUog\{e'" + e-'"} = \ \ ' \ ' ^ \ 
n^oon 2 [—t it t <0. 

*See footnote on page 36. 
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/^(z) = sup{rz- |^ |} =\ 
teU l^ 

Thus, c^(t) = \t\, which is not differentiable at 0, and 

|0 i f | z | < l , 

0̂0 if |z| > 1. 

I^ attains its infimum not at a single point, but on the whole interval [—1,1]. 
If G is any open subset of (—1,1), then Q^{G} = 0 and logQ„{G} = —oo, 
while the infimum of/^ over G equals 0. Thus the lower bound (2.30) fails. 
On the other hand, it is easy to see that the distributions {Q„} of {WJn] 
have a large deviation property with entropy function /(z) = 0 for z = 1 and 
z= - l , / ( z ) = 00 for z^ { 1 , - 1 } . 

In general, if c^(0 exists but is not differentiable for all t, then the validity 
of the large deviation property for the distributions of {Wja^ is an unsolved 
problem. If the large deviation property does hold with some entropy 
function /(z), then the function V(z) defined by (2.28) equals the closed 
convex hull of/(z); the latter is defined as the largest lower semicontinuous, 
convex function majorized by /(z) [Problem VII.8.2]. 

We next introduce a notion of stochastic convergence which is useful in 
statistical mechanics. Let {W„;n = 1,2, ...} be a sequence of random 
vectors on probability spaces {(Q„, J^„,P„);w = 1,2, . . .} and {a^;n= 1,2, 
. . . } a sequence of positive real numbers which tend to infinity. We say 
that WJa„ converges exponentially to a constant ZQ, and write WJa„ - ^ ^ ZQ, 
if for any s> 0 there exists a number Â  = N(s) > 0 such that 

(2.31) P„{II WJa„ - ZQII > e} < ^"^"^ for all sufficiently large n. 

An example of exponential convergence was given in (2.16) (SJn -^m^.^ 
In statistical mechanics, the parameters [a^ may represent the numbers 

of particles in a sequence of systems indexed by [n]. These particles may 
assume different microstates; e.g., positions and velocities of molecules in a 
gas or spins in a magnet. The {W^ represent microscopic sums (e.g., total 
energy or total magnetization) which are proportional to [a^]. The inequaUty 
(2.31) states that in the limit n-^ cc all but an exponentially small set of 
configurations have essentially the same value ZQ of W^ per particle; ZQ is the 
equihbrium value. 

We may apply Theorems II.3.3 and II.6.1 to give a simple criterion for 
the exponential convergence of WJa„ to a constant ZQ . According to Theorem 
II.6.1, if the free energy function c^(t) exists, then the Legendre-Fenchel 
transform /^(z) is non-negative and lower semicontinuous, and it has com
pact level sets. Also the upper large deviation bound (2.29) is valid for all 
closed sets K. These are hypotheses (a)-(c) of large deviation property. Now 
suppose that /^(z) attains its infimum of 0 at a unique point ZQ of U^. By 
Theorem II.3.3 there exists for any s > 0 a number Â  = N(s) > 0 such that 

Pn{\\ K/^n - ^olj > 4 < "̂"""̂  for all sufficiently large n. 

Thus WJa^ converges exponentially to ZQ. 
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The next theorem strengthens this result considerably. It states that 
WJa„ converges' exponentially to a constant if and only if the free energy 
function c^(t) is differentiable at / = 0. Furthermore, the differentiability is 
equivalent to I^(z) attaining its infimum at a unique point. 

Theorem II.6.3. Assume hypotheses (a) and (b) on page 46. Then the following 
statements are equivalent. 

(a) WJa„^z^. 
(b) c^{t) is differentiable at t = 0 and Vc^(O) = ZQ. 
(c) I^(z) attains its infimum over U^ at the unique point z = ZQ. 

The theorem will be proved in Section VII.6. For now, we prove only 
that if c^(t) is differentiable at / = 0, then 

(2.32) E{ WJa„} ̂  Vc^(O) as « ^ oo. 

This shows that ZQ = Vc^(O) is a plausible value for the exponential Umit of 
WJa^. The proof of (2.32) is a nice application of convexity. By definition, 
c^(0 = lim„^^c„(0, where c„(0 = ^~Mog£'„{exp</, PF„>}. The function 
c„(r) is convex and is differentiable at ^ = 0, and 

Vc„{0) = E„{fVJa„} 

[Proposition VII. 1.1 and Remark VII.5.4]. By Lemma IV.6.3, we may inter
change derivatives and Hmits to deduce that Vc„(0) -^ Vc^(O) as « -> oo. This 
gives (2.32). 

Our final theorem shows that if the {W„} are all defined on the same 
space, then exponential convergence impUes almost sure convergence 
provided ^^^iexp( —(3„Â ) is finite for all N > 0. This extra condition is 
needed in order to apply the Borel-Cantelli lemma [see Theorem A.5.3]. 
When used together. Theorems II.6.3 and II.6.4 are a handy tool for proving 
strong laws of large numbers. 

Theorem II.6.4. Assume that the random vectors {W„;n = 1,2, ...} are all 
defined on the same probability space (Q, J^, P). IfYj'^=i ^^P( ~ ^n^) < ^ fa^ 
allN> 0, then W„/a„-^ZQ implies W„/a„^ZQ. 

The theorems in this section were motivated by large deviation results in 
statistical mechanics proved by Lanford (1973). In our formulation of these 
results for random vectors {W„}, the free energy function c^(t) plays a 
central role. If this function is differentiable for all /, then the distributions 
of {WJa^} have a large deviation property [Theorem II.6.1]. The differen-
tiabihty of c^(t) at ^ = 0 is equivalent to the exponential convergence of 
{WJa„} to a constant [Theorem II.6.3]. These theorems will have many 
applications in subsequent chapters. Theorem II.6.1 will be used to derive 
the level-1 theorem for i.i.d. random vectors [Theorem II.4.1] and the 
level-2 and 3 theorems for i.i.d. random variables with a finite state space 
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[Theorems II.4.3 and II.4.4]. Theorem II.6.3 will be applied to the study of 
phase transitions in statistical mechanics. 

II.7. Varadhan's Theorem on the Asymptotics of Integrals 

The basic problems and techniques in the subject of large deviations have 
been inspired by a number of different areas. These include probability, 
analysis, statistics, information theory, and statistical mechanics. Its roots 
in analysis go back to Laplace, who devised a method for studying the asymp
totic behavior of real integrals of the form ^^Qxp(nF(x))dx as « ^ oo.^ 

For example, consider the integral n\ = j'^x"e~^(ix, where nis a positive 
integer. Change variables to z = x/n, obtaining 

poo 

n\ = rf^^ exp[ —^(z — \ogz)']dz. 

Laplace says that the leading order asymptotic behavior of the integral is 
determined by the largest value of the integrand, in this case ^~" since 
z — logz has a minimum value of 1 at z = 1. In fact, it is not hard to prove 
that n\ ^ ^""*'̂ ^"", in the sense that «~Mog(«!/w"^^) ^ —1 as « ^ oo. By 
making a quadratic approximation about z = 1 and suitably expanding, one 
derives Stirhng's formula n! = n"e~''^2nn(l + e„), where e„ is an asymptotic 
series in powers of l/n which converges to 0 as « ^ oo. 

Similar problems arise in probability theory. Let p be a Borel probabihty 
measure on IR"̂  and X^,X2, ... i.i.d. random vectors with distribution p. Set 
5„ = YJ=^ ^j' What is the leading order asymptotic behavior of the expecta
tion 

(2.33) Zi^) = £{exp[/2F(5„M/«)]}, 

where F is a bounded continuous function from [R to R? The special case 
where Z^, Z2, . . . are Gaussian A^(0,1) random variables is easy. For then 
SJn is Gaussian N(0,n~^), and so 

2n 

1/2 

exp nfF(z)-^zA']dz. 

Since n^'^" -^ 1, Laplace tells us that 

(2.34) lim-logZ^^> = sup {F(z) - \z^), 

Thus Z^̂ ^ grows or decays exponentially depending on the sign of the 
supremum. 

One may determine the leading order asymptotic behavior of Z^̂ ^ for 
arbitrary i.i.d. random vectors Â ,̂ Z2, . . . by applying the level-1 large devia
tion property. Indeed, if ĝ ^̂  is the distribution of SJn, then 
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(2.35) Z<» = exp(«F(z))ei,'>(c/z). 

Assume that p satisfies the hypothesis of Theorem II.4.1 (Cp(t) < oo for all 
t e W^). Then {Q[^^} has a large deviation property, which may be summarized 
by the heuristic formula 

dQi'\z)^oxp(-nI^^'\z))dz. 

Inserting this in (2.35), we would like to conclude that by analogy with 
Laplace's method 

(2.36) lim ilogZ^^) = sup {F(z) - I^'Xz)]. 

In order to check this against (2.34), recall from Example 11.4.2(b) that for 
an N{0,1) distribution p, Il^\z) equals \z^. Hence in the Gaussian case 
(2.34) and (2.36) agree. The limit (2.36) is a consequence of Theorem II.7.1 
below. 

The asymptotic evaluation of Ẑ ^̂  gives another way of interpreting large 
deviations. Suppose that the supremum in (2.36) is attained at a unique 
point ZQ. According to (2.33), the configurations co which determine the 
exponential growth or decay of Z^̂ ^ are those for which S„((D)/n is close to 
ZQ for all large n. Since in general ZQ ^ E{^i}, these co represent large 
deviations for SJn. 

The following theorem gives the leading order asymptotic behavior of a 
class of integrals on a complete separable metric space. The theorem is due 
to Varadhan (1966). It is proved in Appendix B.l.^ 

Theorem II.7.1. Let ^ be a complete separable metric space, ^{^) the Borel 
G-field of SC, and {Q^in = 1,2, ..,} a sequence of probability measures on 
^{3C). Assume that {Q„} has a large deviation property with constants {a„} 
and entropy function I. Let F be a continuous function from dC to [R. 

(a) Assume that sup^^ ̂ F(x) is finite. Then sup^^^ {/̂ (x) — /(x)} is finite 
and 

{231) lim—log 
n^co a„ 

Qxp(a„F(x))Q„(dx) = sup {F(x) - /(x)}. 

(b) More generally, assume that F satisfies 

Qxp(a„F(x))Q^(dx) = - o o . (2.38) lim lim sup — log 
L-oo «-oo a„ j^^^^^ 

Then the limit (2.37) holds and is finite. In particular, ifFis bounded above on 
the union of the supports of the {Q„}, then (2.38) is satisfied and thus the limit 
(2.37) holds and is finite. 

Let X^, X2, . . . be a sequence of i.i.d. random vectors with distribution 
pEJi{U'^). As an application of Theorem II.7.1, we derive the formula 
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(2.39) c,(0 = sup{<?,2>-/<i>(z)}, 

where I^^^ is the level-1 entropy function and Cp(0 = log£'{exp<^,Zi>} 
[see (2.15)]. Assume for simplicity that the random vector Z^ is bounded.* 
Since X^, X2, . . . are i.i.d., Cp(t) equals n~^ log£'{exp</, 5„>} and so 

Cp(t) = l im-log cxp(n(t,zy)Qi'\dz). 

Since Z^ and thus SJn is bounded, the function z -^ </, z> is bounded on the 
union of the supports of the {Ql^^}. Hence (2.39) follows from the previous 
theorem and Theorem II.4.1. 

Theorem II.7.1 allows us to analyze the asymptotic behavior of a class of 
measures, examples of which will arise in our study of statistical mechanical 
models. 

Theorem II.7.2. Let 3C bea complete separable metric space and {Q^;n = 1,2, 
...} a sequence of probability measures on ^{^). Assume that [Q^ has a 
large deviation property with constants {a„} and entropy function I. Let F be 
a continuous function from ^ to R such that j^exp(«„F(x))2„(^x) is finite 
for each n and condition (2.38) is satisfied. For « = 1,2, . . . and AEL 
define probability measures 

QnA^) = Qxp(a„F(x))Q„(dx)-
j ^ j^exp(^„i^(x))e„(^x)' 

The following conclusions hold. 
(a) The sequence {Q„j7;« = 1,2, . . . } has a large deviation property with 

constants {a^ and entropy function 

4(x) = I{x) - F(x) - inf {I(x) - F(x)}. 
xedC 

(b) Let Kbe a closed set in ^ which does not contain a minimum point of 
Ip. Then there exists a number N = N(K) > 0 such that 

Q„p{K} < e""""̂  for all sufficiently large n. 

In this sense, the asymptotic behavior of{Qnp] is determined by the minimum 
points oflp. In particular, if Ip has a unique minimum point x, then Q„ p => 5^. 

Sketch of Proof, (a) By the previous theorem, 

H m - l o g r Qxp(a„F(x))Q,(dx) = sup {F(x) - I(x)} = - inf {/(x) - F(x)}. 

*See Problem II.9.9 for a more general case. 



II.7. Varadhan's Theorem on the Asymptotics of Integrals 53 

In Appendix B.2 we will prove that for each nonempty closed set Kin ^ 

Qxp(a„F(x))Q„(dx) < sup {F(x) - I(x)} limsup —log 

= - i n f {/(x)-F(x)} 
xeK 

and that for each nonempty open set G in ^ 

Qxp(a„F(x))Q„(dx) > sup {F(x) - I(x)} 
J xeG 

= -m{{I{x)-F(x)}. 

lim inf— log 

The last three displays yield the upper and lower large deviation bounds for 
{Qn,F} with entropy function 7̂ -. The function Ip is lower semicontinuous 
since / is lower semicontinuous and F is continuous. That Ip has compact 
level sets will be shown in the Appendix B.2. 

(b) Theorems II.3.3 and A.8.2. n 

The next theorem gives three different integrals that can be evaluated by 
Theorem II.7.1. Each evaluation uses one of the levels of large deviations. 
In the next three chapters, we will see that these integrals are associated with 
some basic statistical mechanical models. 

Theorem 11.7.3. Let X^, X2, . . . be a sequence o/i.i.d. random vectors with 
distribution peJi{W^). Suppose that"^ Cp(t) = log£'{exp</, Zi>} is finite for 
all t e R^. Let F:U^^U and G'.W^ x W^ ^Ube bounded continuous functions. 

(a) Define Z\^^ = F{Qxp(nF(Yj=i ^j/n)}. Then 

(2.40) lim -logZ^^^ = sup {F(z) - f'Kz)}. 

(b) Define Z^^^ = £{exp Yj^^ F(Xj)}. Then 

(2.41) l i m i l o g Z f ) = sup \\ F(z)v(dz) - h^\v)\. 

(c) Define Z f ^ = E{txp Yj=l Gi^r ^j+i)}- Then 

(2.42) l im- logZf ) = sup | G{cb^,(b2)P{da)) - Il^\P)\. 

The proof of part (c) involves a comparison between Z^̂ ^ and a related 
expectation. Similar comparisons will recur in later chapters, and so we 
state the elementary fact as a lemma. 

*This hypothesis is needed only to derive (2.40); (2.41)-(2.42) hold without any extra 
hypothesis on p. 
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Lemma 11.7.4. Let (Q, #", P) be a probability space and f and g bounded 
measurable functions from Q to U. Then 

log e^dP - log e^dP 
'Q J Q 

^l|/-^l|oo. 

Proof Almost surely, we have 

exp(^) • e x p ( - 1 1 / - ^IIJ < exp(/) < exp(^) • e x p ( | | / - ^ | | J . 

Integrating and taking logarithms completes the proof. n 

Proof of Theorem II.7.3. (a) We have already seen Z^̂ ^ in (2.33). The limit 
(2.40) follows from Theorems II.4.1 (level-1 large deviation property) and 
Theorem II.7.1. 

(b) For each co 

f F{z)L,{o,,dz)=^-t [ F{z)d^ {dz) = ^-tF{X,{o,)). 

Hence Z^̂ ^ can be written as 

Z<2> = £ | e x p ( ' « [ F(z)L„(oy,dz)\\ = [ cxpfn\ FizMdz)) Qi'\dv), 

where Q^^^ is the distribution of L„ on Ji{U^). The function v -^ l^dF{z)v{dz) 
is a bounded continuous function on Ji(U^). The Hmit (2.41) follows from 
Theorem II.4.3 (level-2 large deviation property) and Theorem II.7.1. 

(c) We may suppose that {X^'Jel.] is the coordinate representation 
process on Q = {U^Y. Lemma II.7.4 implies that sjnce G is bounded, Z^̂ ^ 
has the same leading order asymptotic behavior as Z^̂ ^ = £'{exp(^jli ^ ( ^ ^ 
A;.^0 + ^ (^„ ,^ i ) )}Foreachco , 

G{co^, CO2) ^x^{<o){dcDi)dx^io,){d(02) 

^ " f G(Z»,l^,.+i(co)) + -G{XSoj\X,{o,)l 
7=1 

Thus 

^JQ) 

exp(n f G(a)i,m,)P{dco)\Qi'KdP), 

where gj,̂ ^ is the distribution of î „ on ^^(Q). The function P-^ ^^iG(aj^, 002) 
P{dcd) is a bounded continuous function on ^sC^)- The limit (2.42) follows 
from Theorem II.4.4 (level-3 large deviation property) and Theorem II.7.1. 
D 
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The main results in the first part of this chapter concerned three levels of 
large deviations for i.i.d. random vectors taking values in U^. In Section II.6 
the level-1 theorem was generalized to random vectors for which a free 
energy function exists. In that section we also introduced the notion of 
exponential convergence and related it to the large deviation theorem. In the 
next three chapters, large deviations will be applied to models in statistical 
mechanics. 

11.8. Notes 

1 (page 30) Azencott (1980), Stroock (1984), and Varadhan (1984) treat 
large deviations for discrete time processes and continuous time processes 
with applications. 

2 (page 35). An extended real-valued function on a complete separable 
metric space is lower semicontinuous if and only if it has closed level sets. 
Hence hypothesis (b) in Definition II.3.1 of large deviation property includes 
hypothesis (a). But it is useful to state separately the hypothesis of lower 
semicontinuity. The definition of large deviation property is taken from 
Varadhan (1966, Section 3). Theorem II.3.2 is due to S.R.S. Varadhan 
(private communication). Theorem II.3.4 is given in Donsker and Varadhan 
(1977a). 

3 (page 36) Orey (1985) has a different proof of Theorem II.3.2 (unique
ness of the entropy function). His proof does not use hypothesis (b) of large 
deviation property (compact level sets). 

4 (page 40) In the definition (2.18) of I^^\v), suppose that v <c p and 
dv/dp =f(x). Since/(x)log/(x) is bounded for small/(x),/(x)(log/(x))" is 
always integrable with respect to p. Thus/(x)log/(x)eL^(!R'^,p) if and only 
if/(jc)(log/(x))-' GL\U',PX and then 

eKv) 
j,d 

)v(dx) = \ogf(x)v(dx)=\ f(x)logf(x)p(dxy 

5 (page 43). The measure p^ with Radon-Nikodym derivative dpjdp given 
by (2.22) is said to be in the exponential family generated by p. These famiUes 
are a basic technical tool in many branches of statistics [Barndorff-Nielsen 
(1978), Johansen (1979), Brown (1985)]. 

6 (page 48). Exponential convergence for random variables has been 
studied by Baum, Katz, and Read (1962). 

7 (page 50). Laplace's method is discussed in Erdelyi (1956) and Henrici 
(1977), for example. 

8 (page 51). Special cases of Theorems II.7.1 and II.7.2 are given in 
Schilder (1966) and Pincus (1968). Varadhan (1966, Section 3) generalizes 
Theorem II.7.1 to sequences of functions {/"„;«= 1,2, . . . }. 
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II.9. Problems 

II.9.1. (a) (page 32) L„ maps Q into Ji{U^). Prove that HA is a Borel subset 
ofJi{U^), then L~^ A belongs to the a-field ^ of Q. \_Hint: Consider a basic 
open set ^ o f^(RO-] 

(b) (page 32) R^ maps Q into JiXi^^f)- Prove that if ^ is a Borel subset 
ofJiXiW^Y), then R;^A belongs to the (7-field J^ of Q. 

IL9.2. Let F be an extended real-valued function on a complete separable 
metric space SC. 

(a) Prove that i^ is lower semicontinuous (l.s.c.) if and only if all its level 
sets [xeSC : F(x) < b},b real, are closed. 

(b) Assume that F does not take the value — oo. Let Â  be a nonempty 
compact subset of ^ . Prove that if F i s l.s.c, then inf^ei^F(x) > — cx) and F 
attains its infimum over K, 

IL9.3. Let ^ be a complete separable metric space and {G„;« = 1,2, . . . } 
a sequence of probabiUty measures on J*(^). Suppose that {g„} has a 
large deviation property with a„ = « and entropy function /. Given a Borel 
subset Aof^ and 0 < 9 < 1, let N(A, 6) be the smallest number YIQ such that 
Qn[^] ^ 9 for all n > HQ. Define 1(A) = inf^^^ A-̂ )- Prove that for any 
closed set K and open set G with 0 < I(K), 1(G) < oo 

l i m s u p ? ^ < 1 , l i m i n f ? ( ^ > - ' 
e^o^"^ log 1/0 - I(Ky ,^0^ log 1/0 - 1(G)' 

11.9.4. Let ^ be a complete separable metric space and {Q„;« = 1,2, . . . } a 
sequence of probabihty measures on ^ ( ^ ) . Suppose that {g„} has a large 
deviation property with constants {a„} and entropy function /. Suppose that 
there exists a point x^ in ^ with the property that if K is any closed set 
which does not contain XQ, then for some Â  = N(K) > 0, Qn{K} < e""""̂  
for all sufficiently large n. Prove that 

I(x) > I(XQ) = 0 for all x =/= XQ. 

11.9.5. Let p be a Borel probabihty measure on (R'^,/a bounded continuous 
function from U^ to U, and A a closed interval in U with nonempty interior. 
Define the set C={ve Jii^^): \^df(x)\(dx)eA\. 

(a) Prove that C is a closed set in Jii^^) and that the interior of C contains 
the set {veJt{^^)\\^df(x)v(dx)em\A]. 

(b) Assume that inf̂ g^^p^^C )̂ is finite. Prove that /̂ ^̂  attains its infimum 
over C at some measure v. \Hint: I^^^ is lower semicontinuous and has 
compact level sets.] 

(c) Assume that inf^^c^p^\^) is finite and that there exists a measure VQ 
for which \udf(x)vQ(dx) belongs to in t^ and Ip^\vo) is finite. Prove that C 
is an /^^^-continuity set. iHint: Consider I^^\n~^VQ + (1 — n~^)v), n -^ oo.] 

file:///_Hint
file:///Hint
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11.9.6. [Donsker and Varadhan (1976a, page 431)] Parts (a) and (b) show 
how to derive the level-1 large deviation bounds from the level-2 large 
deviation bounds and the contraction principle (2.21). Let p be a Borel 
probability measure on U^ whose support is a bounded set F. 

(a) Prove that the mapping v -^ m^ = ^j^xv(dx) is a continuous mapping 
of ./#(r) into IR"̂ . What is the image of L„(co, •) under this mapping? 

(b) Using part (a) and the large deviation bounds for L„, prove that for 
each closed set K in W^, 

\imsup-logP{SJneK} < - inf infl/^^V): v G ^ ( r ) , m , = z) 

and that for each open set G in IR'̂  

l iminf- logP{5>GG'} > - i n f inf{/j^>(v): v G ^ ( r ) , m , = z}. 
«-^oo n zsG 

Using (2.21), deduce the level-1 large deviation bounds with entropy function 
/ ( I ) 

(c) Let p be any Borel probabiUty measure on U^, Derive the level-2 large 
deviation bounds from the level-3 large deviation bounds and the contraction 
principle (2.25). 

11.9.7. Let p be a Borel probability measure on IR"̂  with bounded support. 
Using Theorem n.3.2 (uniqueness of entropy function), derive the contrac
tion principle (2.21) from the level-1 and 2 large deviation properties 
[Theorems IL4.1 and n.4.3]. iHint: /(z) = inf{/f >(v): vG^((R^),m, = z} 
is a lower semicontinuous function of z G R"̂  and J{z) has compact level sets 
[Donsker and Varadhan (1976a, page 425)].] 

11.9.8. Fill in the details in the proof of Theorem IL5.4. 

11.9.9. Let p be a Borel probabiHty measure on U^ such that Cp{t) is finite for 
all ^GlR .̂ Using Theorem n.7.1(b), prove formula (2.39). [Hint: Verify 
(2.38). If </,z> > L, then -̂"^^"<''̂ > > 1.] 

IL9.10. Assume that in Theorem n.6.1, c^{i) is finite and differentiable for 
diWteU^. Using Theorem n.7.1, prove that c^(0 = sup2g[j5d{</,z> — V(z)}. 

IL9.11. Let A be the closure of a nonempty bounded open set in W^ and F 
a continuous function from A to U. Using Theorem n.7.1, prove that 
lim„_^ n'^ log j^exp(«F(x))rix = max^^^F(x). 

n.9.12. Let F ht 2i continuous function from [R to [R which satisfies 
limsupi^i^oo ^(^)/(-^^/2) < 1. Using Theorem n.7.1, prove that 

^2) hm -log exp[«(/^(x) — \x^)\dx = sup {F{x) — \x^ < 00. 
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II.9.13. Let Fbe a bounded continuous function from W^ to U. In the notation 
of Theorem II.7.3, prove that 

Iim-log£'Jexp nF X Xj/n 
j = i 

PeJ^^iQ) 
sup JF a,,p(dcd)) - mp)L 

lim-logFJexp t F(Xj)] = sup j f F(a},)Pidco) - I^'\P)\, 

where Q = (IR'')̂  



Chapter III 

Large Deviations and the Discrete Ideal Gas 

III.l. Introduction 

In the next three chapters we apply the theory of large deviations to analyze 
some basic models in equihbrium statistical mechanics.^ This branch of 
physics applies probability theory to study equilibrium properties of systems 
consisting of a large number of particles. The systems fall into two groups: 
continuous systems, which include the solids, liquids, and gases common to 
everyday experience; and lattice systems, of which ferromagnets are the main 
example. This chapter introduces the continuous theory by treating a simple 
model called a discrete ideal gas. This model, which has no interactions, is a 
physical analog of i.i.d. random variables. 

The macroscopic description of a physical system such as an ideal gas is 
given by thermodynamics. Thermodynamics summarizes the properties of 
the gas in terms of macroscopic variables such as pressure, volume, tempera
ture, and internal energy. But this theory takes no account of the fact that 
the gas is composed of molecules. The main aim of statistical mechanics is 
to derive properties of the gas from a probabihty distribution which describes 
its microscopic (i.e., molecular) behavior. This distribution is called an 
ensemble. 

Statistical mechanics identifies certain macroscopic variables with ensem
ble averages of appropriate microscopic sums; that is, as averages of sums 
depending upon the microstate of the system. An example is the internal 
energy of a gas. The corresponding microscopic sums are proportional to 
the sums of the energies of the individual molecules. What approximation 
is involved in replacing the microscopic sums by the ensemble averages? 
For the discrete ideal gas, we prove that the microscopic sums converge 
exponentially to their ensemble averages as the number n of particles in the 
gas increases to infinity. Thus, for all sufficiently large n the sums are close to 
the ensemble averages except for an exponentially small set of microstates. 
One may therefore replace the sums by the averages with a very high degree 
of accuracy. Our key tool for proving the exponential convergence will be the 
large deviation theory developed in Chapter II. 

The set of all ensemble averages of microscopic sums defines a level-1 
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equilibrium state of the discrete ideal gas. In the last section of this chapter, 
we will consider the mathematically convenient system consisting of infinitely 
many particles. We will define a level-3 equihbrium state, which is a strictly 
stationary probability measure on the infinite-particle configuration space. 
For the discrete ideal gas, the level-3 equilibrium state turns out to be product 
measure. This physically uninteresting measure arises because of the absence 
of interactions in the model. When we study phase transitions in the next two 
chapters, it will be clear that the level-3 equilibrium state gives information 
not available in the level-1 description. 

While the central topic of this chapter is the statistical mechanics of the 
discrete ideal gas, it is important to understand its relationship with the 
complementary macroscopic theory, thermodynamics. An overview of 
thermodynamics is given in the next section.^ 

III.2. Physics Prelude: Thermodynamics 

We consider a closed cylinder filled with a homogeneous gas which consists 
of only one kind of molecule (e.g., pure helium). The gas is called simple, 
and the cylinder and gas together are called a simple system. When the 
system suffers a change in its surroundings, its observable properties will 
usually change. For example, if the cylinder is placed in a tub of hot water, 
then its temperature will rise. After a time, however, the system will reach 
a state where no further change occurs. It is then said to have come to thermo
dynamic equihbrium. The equihbrium state is completely determined by the 
volume F of the cylinder and the pressure P exerted by the gas on the cylinder 
walls. Relationships among F, P, and all the other equilibrium properties of 
the system are derived from the four laws of thermodynamics plus empirical 
observations. The zeroth, first, and second laws define the basic concepts 
of temperature, internal energy, and entropy, respectively. These laws are 
explained below. We will not discuss the third law, which is concerned with 
the properties of entropy at low temperatures. 

One can change the equilibrium state of the simple system by a thermo
dynamic process. Such a process may involve mechanical interactions or 
thermal interactions, according to the nature of the cylinder walls. A movable 
wall (e.g., a piston fitted to one end of the cylinder) allows one to change the 
volume of the system by exerting a force which moves the wall. A diathermal 
wall permits the flow of heat and so allows thermal interactions. Two systems 
separated by a diathermal wall are said to be in thermal contact. 

Experimentally, all simple gases behave in a universal way when they are 
sufficiently dilute. The ideal gas is an idealization of this limiting behavior. 
The microscopic picture of the ideal gas is a gas of molecules which do not 
interact with each other and whose energy is all kinetic. 

We now turn to the laws of thermodynamics. Two systems in thermal 
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contact can influence each other by an interchange of heat. We know from 
experience that the heat flows from the warmer system to the cooler system 
until their temperatures equalize. The two systems are said to be in thermal 
equiUbrium when the interchange of heat between them has ceased. The 
zeroth law states that if two systems A and B are separately in thermal 
equilibrium with a third system, then they must also be in thermal equilibrium 
with each other. The pressures as well as the volumes of systems A and B 
will in general have different values. But a simple argument based on the 
zeroth law shows there is a function of the pressure P and volume V—call 
it 6{P, V)—which takes a common value for the two systems [Adkins (1975, 
Section 2.2)]. This common value is called the temperature T, and the equa
tion 9{P, V) = T is called the equation of state. The precise form of this 
equation must be determined experimentally. For the ideal gas, it is found to 
be PV = nkT, when n is the number of molecules in the gas (assumed fixed) 
and /: is a physical constant, called Boltzmann's constant. From now on we 
set /: to 1 in order to simplify the notation. In the absence of phase transitions, 
the equation of state can be used to express either P or V uniquely in terms 
of the other variable and T. Thus the equilibrium state of the simple system 
can be defined equivalently by specifying (P, V) or (P, T) or (V,T). Once 
the volume and temperature, for example, of the system are chosen, the 
value of P at equilibrium is determined uniquely by nature. 

The fundamental measure of temperature in thermodynamics is the 
absolute temperature T, which for the systems under discussion is always 
a positive number. The Hmit T ^ O ^ defines a point called absolute zero 
( —273.16°C) at which no substance has any molecular motion or heat. 

The equilibrium state of the simple system can be changed either by 
performing work on the system or by adding heat. The first law extends the 
principle of the conservation of energy to include both such processes. 
According to the first law, there exists a function U of the equilibrium state 
(F, T) with the property that if the state is changed from (F^, TJ to (F2, T2), 
then the change in the total energy of the system is given by At/ = ^(^2, T2) 
— U{V^,T^) = Q — W. Q is the amount of heat added to the system and W 
is the amount of work performed by the system.* The function U is called 
the internal energy. For the ideal gas. Joule found that U{V, T) is a function 
of Tonly. If, for example, the gas is monatomic,^ then further experiments, 
confirmed by microscopic theories, have shown that U = ^nT. For a nonideal 
simple gas, U depends on both V and T, and one may invert the formula 
U = U(V, T) to express T uniquely as a function of U and V. The variables 
(t/, V) are a useful equivalent label, replacing (K, T), for the equilibrium state 
of the simple system. 

There are processes which, although they conserve energy, do not occur 
in nature. For example, it would not violate the first law if the temperatures 

* ^ < 0 means that the system suppHes heat. W <^ means that work is done on the system. 
Uts molecules are single atoms (e.g., helium, but not diatomic oxygen). 
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of two systems placed in thermal contact were to diverge rather then equalize. 
The second law expresses a natural direction for thermodynamic processes, 
implying in particular that the diverging of the temperatures is impossible. 
The second law appHes most generally to a composite system, which is a 
set of several interacting simple systems. For example, two simple gases 
contained within a closed cylinder and separated from each other by an 
internal piston form a composite system. We assume that the composite 
system is completely isolated; i.e., surrounded by a wall which prevents both 
mechanical and thermal interactions between the system and its surround
ings. Walls within the composite system which prevent interactions among 
the individual subsystems are called internal constraints. If in the above 
example the internal piston is in a rigidly fixed position, then it is an internal 
constraint. Suppose that the composite system is in equilibrium with respect 
to certain internal constraints and that a process occurs which alters some 
of these constraints (in the above example, the internal piston moves). 
Eventually the system reaches a new equihbrium state. The second law 
allows one to determine it. 

We label the equilibrium state of each subsystem by {U,V). According to 
the second law, there exists a function of the equihbrium state known as the 
entropy and written S{U, V). The entropy of the composite system is defined 
to be the sum of the entropies of the individual subsystems. The entropy has 
the following properties. 

III.2.1. Properties of the Entropy, (a) The entropy of a completely isolated 
composite system cannot decrease during any thermodynamic process. 

(b) The new equilibrium state of the system corresponds to the maximum 
value of the entropy consistent with the altered internal constraints. 

Thermodynamics classifies all processes as being either reversible or 
irreversible, the latter encompassing most of the famihar processes in nature. 
For irreversible processes, Property 111.2.1(a) can be strengthened: the 
entropy of the system must increase. Thus this property defines a natural 
direction for change. Property 111.2.1(b) is consistent with Boltzmann's 
interpretation of entropy [page 3]. 

To see the physical meaning of entropy, consider a gas in a cylinder which 
has a rigid, diathermal wall. A standard thermodynamic relation [Callen 
(1960, Chapter 2)] is that if the internal energy U of the gas is increased by 
adding heat, then 

(3.1) ^ ^ ? ^ = 1 > 0 . 

Thus, an increase in entropy is associated with adding heat to the system 
at constant volume. 

In order to illustrate Properties III.2.1, we present an elementary appH-
cation to an irreversible process. A monatomic ideal gas is contained in a 
completely isolated cylinder of volume V2. The gas is confined by a thin 
membrane to a volume V^ of the container (V^ < V2). The unoccupied part 
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of the container is a vacuum. Let 1/^ be the internal energy of the system. 
Suddenly the membrane ruptures, and the gas expands to fill the entire 
container. During the expansion no work is done on the system and no 
heat is added. Hence by the first law, AU =0. We use the second law to 
characterize the new equilibrium state (t/^, V2). Let (C/, V) be a candidate for 
the new equilibrium state after the membrane ruptures (U = Ui,0 < V < V2). 
For a monatomic ideal gas, S(U, V) is given by 

(3.2) S(U. V) = fwlog U+n\ogV+ S^, 

where SQ is a constant [Callen (1960, Section 3.4)]. Hence, A5 = S{U^, V) -
S(U^, Vi) = n\og(V/V^). By Property in.2.1(a), A *̂ must be non-negative. 
Thus, Fmust exceed V^ and the gas must expand. The actual equihbrium state 
(U^, V2) gives the unique maximum in max{5(^7, V):U = 1/^,0 < V< F2}, 
and this is consistent with Property IIL2.1(b). 

After the second law had been formulated, much effort was spent in trying 
to interpret it microscopically.^ As the work of Maxwell and of Boltzmann 
showed, such an interpretation requires a statistical description of matter. 
Given this, the increase in entropy in the previous example, which corre
sponds to the expansion of the gas into the bigger volume, measures an 
observer's increased ignorance about the location of a specific molecule. 
One says that the disorder of the gas has increased. Equation (3.1), which 
shows that the entropy of a system increases when heat is added at constant 
volume, has a similar statistical interpretation. Adding heat increases the 
chaotic, thermal motions of the molecules. The rate of increase of this dis
order per unit of energy added is l/T. 

The second law enables one to determine the equilibrium state of a com
pletely isolated composite system. However, most processes in the real world 
involve a composite system which is not completely isolated but which is in 
thermal contact with a heat reservoir. The latter is a system which is so large 
that its temperature does not change with the gain or loss of any finite amount 
of heat. Hence the reservoir maintains a fixed temperature in each subsystem 
of the composite system. We consider two subclasses of thermodynamic 
processes: those which do not change the volume of the composite system 
and those which do not change its pressure. The Helmholtz free energy, 
rather than entropy, is suited to finding the equihbrium state of a system 
subject to the first kind of process. We label the equilibrium state of each 
subsystem by (F, T). Let U(V,T) be the internal energy. Substituting 
U = U(V, T) into the formula for the entropy S of the subsystem gives the 
entropy as S{V, T). The Helmholtz free energy"^ is defined by F{V, T) = 
U(V, T) — TS(V, T). The Helmholtz free energy of the composite system is 
defined as the sum of the Helmholtz free energies of each subsystem. Suppose 
that the composite system is in equihbrium with respect to certain internal 
constraints and that a process occurs which alters some of these constraints 
without changing the total volume of the system. Eventually the system 
reaches a new equihbrium state. The following properties enable one to 
find the new state. 
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III.2.2. Properties of the Helmholtz Free Energy, (a) The Helmholtz free 
energy of a composite system of fixed volume which is in thermal contact 
with a heat reservoir cannot decrease during any thermodynamic process. 

(b) The new equilibrium state of the system corresponds to the minimum 
value of the Helmholtz free energy (at constant temperature equal to that 
of the heat reservoir) consistent with the altered internal constraints. 

There is another important thermodynamic function called the Gibbs free 
energy. Properties of this function analogous to those in 111.2.2 enable one 
to find the equihbrium state of a composite system which is in thermal contact 
with a heat reservoir and which is subject to a process that does not change 
its pressure. In the statistical mechanics to be developed later in this chapter, 
the Helmholtz free energy rather than the Gibbs free energy will play a 
central role. The importance of the Gibbs free energy will be seen in Chapters 
IV and V when we study the statistical mechanics of ferromagnetic systems. 

This completes our overview of thermodynamics. We now turn to the 
discrete ideal gas, for which we will see analogs of many of the concepts just 
discussed. 

III.3. The Discrete Ideal Gas and the Microcanonical 
Ensemble 

For the standard ideal gas,^ the possible particle velocities are all vectors in 
R^. Our discrete ideal gas model restricts the possible velocities to a finite 
subset of U. This restriction will allow us to use the large deviation results 
in Chapter II developed for random variables with a finite state space. The 
model is first defined dynamically, but for the purpose of studying equilib
rium properties this definition is too detailed. Instead, the properties are 
derived from the microcanonical ensemble and the canonical ensemble, 
two probability distributions on configuration space which give equivalent 
results. 

Let A be a closed bounded interval in U with nonempty interior. The 
interval A may be thought of as a completely isolated, long, thin tube 
containing a gas. The discrete ideal gas is defined by the motions in A of a 
large number n of noninteracting point particles. The mass of each particle 
is one. Fixing a positive integer r, let F be a set of 2r numbers 

F = {Vii / = - r , . . . , - 1 , 1, . . . , r } 

which are to be the possible velocities of the particles. Arrange the {i;J in 
increasing order and assume that v-i= —Vi; thus 

(3.3) v-^ = -V, < • • • < i;_i = -v^ <0 <v^ < ' " <v,. 

At time t = 0, theyth particle has an initial position Xj(0) in the interior of A, 
int A, and an initial velocity j,(0) = VET. The particle moves with constant 
velocity v until it first reaches the boundary of A, bd A, at which time it is 
reflected elastically, moving back into int A with velocity —v. The motion 
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continues at velocity —v until the particle again reaches bdA, undergoes 
elastic reflection, then moves back into int A with velocity —{ — v) = v, etc. 
We may define the velocity yj(t) at time / > 0 to be a piecewise constant, 
left-continuous function taking values in P. The position at time / > 0 is 
defined to be Xj{t) = Xj{0) -h ^oyj(s)ds. 

The motion of the system of n particles is the superposition of all these 
individual motions. Particles may pass through each other. The system at 
time t is represented by the microstate (jo(t) = (x(/), y(0), where x(t) = 
(xi(0, . . . , x,(t)) and y(0 = {y,(t), . . . , j„(0). For each t > 0, (D(t) is a 
point in ^-particle configuration space, which is the set 

Q„= {(D:CO = (X^, . . . , X „ , > ^ I , ...,y„),XjeA,yjer} = A" x r\ 

Mathematically, this dynamical definition is perfectly vaUd. But there are 
obvious practical problems with it. The definition requires one to know the 
initial positions and velocities of all n particles and to follow these motions 
for all time. Since n is typically of the order of 10̂ "̂ , this is of course impos
sible. Even if it could be defined, the microstate (o{t) carries much more 
information than should be needed in order to deduce equilibrium properties, 
which are determined by only a few thermodynamic variables. We now 
consider an alternate approach based upon probability theory. 

It is natural to treat as random the positions and velocities of the n particles 
since they cannot be measured precisely. To do this, we introduce a proba
bility measure P„ on the configuration space Q„ in terms of which the discrete 
ideal gas system will be analyzed. Before defining P„, we return for a moment 
to the dynamics. Conservation of energy restricts the possible motions of the 
particles. Since each particle has mass one, the kinetic energy of the7th par
ticle at time t is iCj/O)^ and the total kinetic energy is U„(t) = Yj=i 2^(0)^-
Since \yt(t)\ = | J/(0)|, we have U„(t) = U„(0). Ideally we should assume that 
^„(0) or, equivalently, the energy per particle U„(0)/n is a fixed number. But 
it is mathematically more convenient to restrict U„(0)/n to lie in an interval 
A. The range of U„(0)/n is the interval Iz^fA^rl- Choose yl to be a closed 
subinterval of (^vf,^v^) with nonempty interior. A can be as small as we 
Uke. Restricting U^(0)/n to lie in A means that the microstate (jo(t) stays in 
the "energy sandwich" D^(A) = {COGQ„: Yj=i^yfl^^'^]' 

For actual physical systems, macroscopic observations cannot possibly 
give a precise value for the energy per particle but only determine the true 
value up to some small error. Hence the introduction of A is physically 
justifiable. One should think of ^ as a small interval which contains the true 
value of the energy per particle for the discrete ideal gas. The mathematics 
supports this interpretation [see Theorem III.4.2]. 

Since the speeds |3^/0| are each constant in time, there are actually n 
conservation laws, one for each particle. But the individual speeds cannot 
be measured, while the total energy can. Conservation of energy is the only 
physically meaningful conservation law. 

We are given the information that the total energy per particle is in the 
set y4. The microstate of the system could be any point in the energy sandwich 
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Dn(A), Therefore it is reasonable to give all microstates in D„(A) an equal 
probability. This leads to the microcanonical ensemble, which is the univer
sally accepted choice of measure for the discrete ideal gas system. This 
ensemble is defined next. We topologize A by the relative topology as a 
subset of R, r by the discrete topology, and Q.„ by the product topology. 
J*(A), ^ (F ) , and ^(Q„) denote the respective Borel a-fields. 

Deflnition III.3.1. Let A be normalized Lebesgue measure on J*(A) with 1{A} 
= 1 and p the uniform measure on ^ (T) defined by p = Y,i<\i\<r(^^)~^^v' 
Let n„P;^^p be the product measure on ^(Q„) defined by 

'^rtPA,p(d(o) = ^(dx^) . . . X(dx„)p(dyJ . . . p(dy„). 

The microcanonical ensemble is the (normalized) restriction of n„F;^p to the 
energy sandwich D„(A). This restriction is the conditional measure 

P„(dco) = n„P^^^{dcD\UJneA}, 

where U„ = Xj=i 2>̂ /- We write P„ = Pn,A,A to emphasize the dependence 
upon A and A. 

With respect to Pn,A,A^ ^he positions and velocities of the n particles are 
random. Given COQ ^ ̂ n and t > 0, define the microstate 

CO(t,(Oo) = (Xi(0, . . . ,^„(0,Jl(0, . • • ,7n(0) 

with initial value co(0, COQ) = COQ. If ^ is any Borel subset of Q„, then for each 

(3.4) P„^^^^{cWoeQ„: co(t,coo)eB} = i'„,A,^{^oe^}; 

i.e., oj(t,(DQ) is also distributed by P„,A,^ [Problem IILlO.l]. Because of 
(3.4), we drop t from the notation for the microstate. Let {1};7 = 1, . . . ,^} 
and {y^ ;7 = 1, . . . , Az} be the coordinate functions on Q„ defined by Xj{co) = 
Xj and Yj((o) = yj. Xj(co) and Yj{oj) are, respectively, the random position 
and velocity of theyth particle. 

III.4. Thermodynamic Limit, Exponential Convergence, 
and Equilibrium Values 

In the laboratory, a gas is studied by measuring observables, which are 
functions of the positions and velocities of the molecules. For the discrete 
ideal gas, we consider observables of the form iv,(co) = Xj=i/(^(<^)' ^^{(D)), 

« = 1, 2, . . . , where / i s a bounded measurable real-valued function on 
A X F. In some cases we must assume t h a t / i s also continuous on A x F. 
The corresponding observable is called a continuous observable. 

Examples in.4.1. (a) For XGA and j e F , define f{x,y) = ^y^. Then 
i^(co) = X!j=i 2 ^•(^)^- This sum is denoted by t/„(a;) and is called the (total) 
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energy in co. The observable U„(co) corresponds to the internal energy U in 
thermodynamics. 

(b) Let / be a subinterval of A and Vi a point in P. For xeA and yeT, 
define/(x,;;) = ZJWX{I;J}W-* Then F„((JO) is the number of particles in co 
with position in / and velocity Vi. F„(a))/n is the fraction of such particles. 
A continuous observable approximating F„(co) is obtained by choosing 
fi^^y) = Q{^)X{vi}(y)^ where g(x) is a continuous function on A which 
approximates Xj(x). 

The aim of this section is to study the asymptotics of continuous observ-
ables F„((D) with respect to the microcanonical ensemble Pn,A,A as w -> oo.^ 
The limit n -> oo is called the infinite-particle limit or the thermodynamic 
limit. The relevant notion of convergence is exponential convergence, defined 
in Section n.6. We prove that there exists a number </> such that Fjn 
converges exponentially to < / > (written FJn ^{f}. That is, for any 
s > 0 there exists a number Â  = N(8) > 0 such that 

P„^^{COGQ„ : \F„(a))/n — < / > | > e} < e~"^ for all sufficiently large n. 

(3.5) 

Thus for large n all but an exponentially small set of microstates have essen
tially the same value </> of the observable per particle. F„(oj)/n is a micro
scopic n-snm which approximates the equilibrium value </>. In Example 
in.4.1 (a) this equiUbrium value is called the specific energy, and in Example 
in.4.1(b) it is called the density of particles in the subset / with velocity i;̂ -. 

As a first case, we consider Example in.4.1(a), where F^ is the energy t/„. 
Some definitions are needed. We have denoted by p the probability measure 
Zi^|.l^.(2r)-M,. on ^(T) . Define 

-i\ 1 2 

^^ l<\i\<r^ 

The set A is closed subinterval of [jvf.jv^^ with nonempty interior. We 
define a new number u(A). If a is in A, let u(A) = a. If a is not in A, let u(A) 
be the point in A closest to a. In general u(A)e(^vf,^v^) [see Figure III.l.]. 
The next theorem shows the physical importance of w(^). 

Theorem III.4.2. Let U„ = X"=i i ^ / ' ^ = 1? 2, . . . . Then as n^ co, 

UJn -> u(A) with respect to the microcanonical ensembles {Pn,A,A}' 

The quantity u(A) represents the equilibrium value of the energy per particle 
and is called the specific {microcanonical) energy of the discrete ideal gas. 

Proof Define the closed set Â  = {usU\\u — u{A)\ > a}, where e is positive. 
Then P„,A,^{|^«/« - w(v4)| > e} = P „ ^ ^ ^ ^ { [ / > G A : } . We prove that there 
exists a number N = N(8) > 0 such that 

* Xc denotes the characteristic function of a set C. 
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^ v 2 2 ^r u(A) 

Figure III.l. The entropy function Ip^\u) and the set A. 

(3.6) Pn.A,A{UJneK}<e- -nN for all sufficiently large n. 

Assume that e > 0 is so small that KnA has nonempty interior. For suffi
ciently large n, n„P;^^p{UJneA} is positive and 

Pn,^,AWneK} = n„P,JUJnGKnA}' 1 
^nPx,pWneA}' 

Since U„ is a function of velocities only, the A-integrals on the right-hand 
side can be done. Let 7i„P^ denote the product measure on ^(F") with 
identical one-dimensional marginals p. The last display reduces to 

P„,A,A{UJnGK} = n„P^{UJneKnA] 1 
n„P^{UJneA}' 

With respect to 7r„Pp, the summands ^ 7 / are i.i.d. and their state space is 
the finite set {^vj, . . . , ^i;^}.* In order to complete the proof of the theorem, 
we use the following level-1 large deviation result. It is a consequence of 
Theorem II.4.1. n 

Lemma III.4.3. For t real, define 

(3.7) c,(0 = log [ txp{\tYl)d{n,P;) = log f ^xp{^ty')p(dyy 
Jr« Jr 

The following conclusions hold. 
(a) The n^Pp-distributions of [UJn] have a large deviation property with 

an = n and entropy function 

(3.8) /^i)(w) = sup{m - Cp{t)], ueU. 

(b) Ip^\u) is a convex function of u. Ip^\u) measures the discrepancy 
between u and a = jrij^^P(^J^) = jr" 2 ^i^'^(^n^p) ^^ the sense that 7p^\u) > 0 
with equality if and only ifu~OL \_see Figure III . l] . 

(c) 7̂ ^̂  is finite and continuous on the interval [jvl,^v^~\ and Ip^\u) = 00 

for u^lWiAvn-
We return to the proof of the theorem. Since the intervals KnA and 

*By(3.3),ivl, = iv}. 

file:///_see
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A are /^^^-continuity sets [Theorem II.3.4], the lemma implies that 

1 

PMI^^A] 

inf / ' ' V ) - inf/<''(") (3.9) 

We will prove that 

(3.10) inf 7̂ ^̂ (w) is attained at the unique point u = u(A). 
ue A 

Since A^n^ is a closed interval which does not contain u(A), (3.10) will 
imply that inf^eKnA^^K^) > ^^^USA^^K^) ^nd thus that the last term in (3.9) 
is negative. The exponential bound (3.6) follows. 

l( aeA, then u(A) equals a, Tp^\oi) equals 0, and (3.10) holds. The case 
a ^ ^ is shown in Figure III.l. Since 7̂ ^̂  is convex with a unique minimum 
point at a, 7̂ ^̂  attains its infimum over ^ at a unique point, which is the 
point in A closest to a. By definition, the closest point is u(A). This proves 
(3.10). n 

Property 111.2.1(b) of the thermodynamic entropy states that for a com
pletely isolated system the equihbrium state is the state of maximum entropy 
S consistent with any internal constraints. The function s(u) = — 7̂ ^̂ (w) is a 
natural microcanonical analog. It is called the specific microcanonical 
entropy. Any point w e ^ is a candidate for the equihbrium value of energy 
per particle. For sufficiently small e > 0 and weint^, Pn,^,A{\^nl^ — u\< &] 
equals 7r„Pp{|t/„/« — u\< s). For u = u(A), Pn,A,A{\^nl^ — ^(^)\ < ^} equals 
n„Pp{u(A) — 8 < UJn < u(A)} or n„Pp{u(A) < UJn < u(A) + s} according 
to whether u(A) is a right-hand end point or a left-hand end point of A. 
Hence by Lemma III.4.3, s(u) measures, with respect to the microcanonical 
ensemble, the multiplicity of microstates co for which Un(co)/n is close to u. 
By (3.10), the equilibrium value u(A) is the unique point at which s(u) attains 
its supremum over the constraint set A. It is the point in A consistent with 
the most microstates. 

The next theorem states that for any continuous observable jp„ = 
Yj=if(^j^ Yj)^ ^nl^ converges exponentially to a number </>. This number 
is the integral o f / w i t h respect to a new measure which we now define. 
For P real, define probabihties 

^ exp( - i f a? ) • (l/2r) ^ e x p ( - i K ) " (l/2r) 
^ • ^ "'•' \r^xp{-\liy')p{dy) I is | , | , .exp(-i iSt ;?)-( l /2r) 

and let pp be the probability measure Yj\<\i\<rPp,i^v: on ^ (F ) . This measure 
is closely related to the measure p^ in Section II. 5. If in the definition (2.23) of 
Pti one replaces t by — jS and x^ by |i;?, then p^^ becomes p^^. The parameter 
jS and the measure pp will be interpreted physically in the next section. 

Theorem 111.4.4.̂  Let u{A) be the specific energy of the discrete ideal gas 
[see previous theorem^ 
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(a) Then there exists a unique real number P = P(u(A)) such that 

(3.12) Uy^p^idy) = uiA). 
Jr 

(b) Let f be a bounded continuous real-valued function o« A x F and 
define 

(3.13) </>A.„(^,= 

where p = P(u(A)). Then 

f{x,y)X{dx)pp{dy), 
Axr 

(3.14) ItA^j^yy^ify^MA) 

with respect to the micro canonical ensembles {Pn,^,A]' 

This theorem is consistent with Theorem III.4.2. If/(x, j ) = \y^, then by 
(3.13), <i/>A,„u) = u{A). Thus (3.14) reduces to UJn"^ u{A). 

While Theorem III.4.2 was proved by level-1 large deviations, the 
proof of Theorem in.4.4 requires the level-2 theory. Define L^iat, •) = 
n~^ Yj=i ^Yi(D)i')^ n= 1,2, ... . This is the empirical measure corresponding 
to Fi, . . . , F„, and it takes values in the set J^(r) of probabiUty measures 
on ^ (F) . Each V G ^ ( F ) has the form Y.i<\i\<rVid^,., where v̂  > 0 and 
Y,i<\i\<r^i = 1- ^p^K^) denotes the relative entropy of v with respect to the 
measure p = ^i<|,|<,(2r)"M,.: 

l'p'Kv)=\ log^(y)v(dy)= X v,log(2rv,). 
J r " P i<|i|<r 

The next lemma states the level-2 large deviation property together with a 
contraction principle relating I^^^ and the function 7̂ ^̂  in Lemma in.4.3. 
Theorem in.4.4 is proved afterwards. 

Lemma IIL4.5. (a) The n^Pp-distributions of {L„} have a large deviation 
property with a„ = n and entropy function I^^\ 

(b) For each point ue{\vl,^v^), there exists a unique value P = P(u) such 
that^y^y^Pp(dy) = u. 

(c) For ue{\vl,^v^), define the set ^(u) = {vGJf(r):^Y^y^v(dy) = u}. 
Then I^^^ attains its infimum over ^(u) at the unique measure p̂ („) and 

(3.15) J),'\u) = I'p\p,,,^ = inf{/^^)(v): vG^(t/)} < ^ . 

Proof (a) Since 7r„Pp{L„e^(F)} = 1, part (a) follows from Theorem 
n.4.3(a) [see Theorem Vin.2.1]. 

(b) For t real, define 

c,(0 = log txp{^tYl)d{n,P^) = log 
Jr" 

QX^{\ty^)p{dy). 
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We have 

and 

If p denotes the 7r„P^-distribution of^Y^, then Cp(t) = log\^e^''p(dx). This is 
the free energy function of p, which was introduced in Section 11.4. The 
support of p is the finite set {jvj, . . . , jv^}. By Theorem 11.5.2(a), for 
ue(^vl,^v^) there exists a unique value j8 = P(u) such that 

c' (A - Jr27^ Qxp(^ty^)p(dy) 
^̂ ^ Jrexp(i//)p(Jj) 

K(-^) = 

c;(-P) = h^Ppidy) = u. 

(c) While it is possible to apply Theorem II.5.2, we prefer a direct proof. 
By definition 

l),^\u) = sup{tu - c^it)} = sup{-iSw - c / - i S ) } . 

By part (b), for ue(^vj,^v^), there exists a unique value jS = jS(w) such that 
^'p(~P) = ^' Since Cp is convex [Example VII. 1.2], this value of jS gives 
the supremum in the last display, and so 

Tin 

Now consider ll^\v) for V6^(w). If jS = P(uX then 

n'\pp) -iPy' - log exp(-i^/)p(J;;) Ppidy) 

lfv=/=pp is any other measure in ^(w), then 

/ f >(v) = f log^iy)vidy) = f log^(y)vidy) + \og-j^(y)v{dy) 

/ if (V) + I[-iiSj^' - log exp(-yy')p(dy) v(dy) 

= 4l\v) -Pu- c^(-p) = 4l\v) + f/Ku). 

Since v =/= pp, 4^^(v) is positive [Proposition 1.4.1(b)] and so Iji^Xv) > Il^\u). 
We conclude that f/\v) > I^^Xu) = ll^\pp) and that equality holds if and 
only if V = p^. This completes the proof. D 

Proof of Theorem III.4.4. (a) Since u(A)e(^vl,^v^), Lemma III.4.5 shows 
that there exists a unique real number P = P(u(A)) solving (3.12). 

(b) We prove the Umit (3.14) first for f(x,y) which are functions only of 
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velocity jF. The strategy is to prove the exponential bound (3.5). If Â  denotes 
the closed set{we[R:|w — </>| > s}, s> 0, then for sufficiently large n 

(3.16) 

1 " 
>e 

n^PM-'lU-iYfeA] 

Each of the sums in this display can be written in terms of the empirical 
measure L„(co, •)• We have 

(3.17) 
f(y)L„(co,dy), 

y^L„(cD,dy). 

Now define two closed subsets of ^ (F ) , 

^ i - J v e ^ ( r ) : f(y)v(dy)eK 

and 

^ . VG yMdy)€A[. 

The ratio in (3.16) becomes n„Pp{L„e^i n T2}/7i„/'p{L„e*P2}. and so by 
the level-2 large deviation property 

l i m s u p - l o g / ' „ , ^ , 4 - I / ( J ; ) 6 4 < - j inf / < » - i n f / < » | . 

We have used the fact that ^2 is an /̂ ^^-continuity set [Problem II.9.5]. In 
order to complete the proof that n~^ ^"=1 f(Yj) -^ </>, we must show that 

(3.18) inf / f V ) > inf/fXv). 
v e ^ i n ^ ' j V64'2 

Bring in the measure pp, where jS = P(u(A)). Since t/(^) is in ^ and by 
(3.12) ^riy^Ppidy) = u{A), p^ is in the set ^2- The key is to prove that 

(3.19) inf Ip^\v) is attained at the unique measure v = Pp^uiA))-

Say (3.19) is proved. By definition jr/MP^(^j) equals </>. Since </> is 
not in K, pp is not in the set ^^ n^2- Since this set is closed, (3.19) will 
yield (3.18). We now prove (3.19). According to Lemma III.4.5 
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and Ppi^uiA)) is the unique measure in ^(u(A)) with this property. If v belongs 
to ^(w) for w in ^ , w ^ u(A), then by (3.10) 

/ f >(v) > inf / f )(v) = Il'\u) > Il,'\u(A)). 
V 6 * P ( M ) 

The last two displays prove (3.19) and complete the proof of the hmit (3.14) 
for functions/of velocity. 

We now prove the limit (3.14) for a bounded continuous function/(x,j;) 
on A X r . Define 

L„(co,dxdy) = n ^ Y. \xAco),Y^(co)){dxdy), n =1,2, ... . 

This is the empirical measure corresponding to (X^, Y^), ..., (X„, Y„). It 
takes values in the set ^ ( A x r)ofprobability measures on ^(A x F)). Each 
measure i in J^(A x F) has the form YJI<\i\<r'^i(d^)^vidy)^ where T^(^X) is a 
measure on ^(A) (0 < TJ(A) < 1). By Theorem II.4.3, the 7r„P;̂  ^-distributions 
of L„(co, dxdy) onJ^(A x F) have a large deviation property with a^ = n and 
entropy function 

log ( 2r—j(x) I Ti(dx) if each T̂  « 2 and 
l<\i\<rjA \ dA J ' JA 
00 otherwise. 

Define sets i^ = {ueR:\u- < /> | >s},s>0, 

1 dXi 
dxi < 00, 

V 

*Pi r e X F): f{x,y)x{dxdy)eK 
Uxr 

and 

'¥,=lxe x F ) : \y^T{dxdy)eA \. 

The set % is closed and since/is continuous, ^^ is closed. Also, ^2 is an 
/jf^-continuity set [Problem II.9.5]. Therefore 

l i m s u p - l o g P „ , ^ , 4 - i / ( ^ ' ^ ) ^ 4 

(3.20) = lim sup - log 
n„P,^^{L„e^^} 

< - \ inf / R ( T ) - i n f / R ( T ) 1 . 
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Let x{dxdy) denote the measure A((ix)p^(„(^))((iy)e^(A x F). Since 
JAxrij^^ ^T = u{A), T is in the set ^2- If we prove that 

(3.21) inf /1^P(T) is attained at the unique measure T = T, 

then since T is not in the set ^ ^ 0 ^ 2 5 it will follow from (3.20) that 
«" 'I"=i/(^- ' I^) ' -^ '</>-Clearly 

We leave it to Problem III. 10.4 to show that if T ^ x is any other measure 
in ^2? then /1^P(T) > Il,^\u(A)). This will prove (3.21) and complete the proof 
of the theorem. n 

III.5. The Maxwell-Boltzmann Distribution and 
Temperature 

We recall the definition of the quantity </>A,U(^) ^^ Theorem III.4.4. For j8 
real, p^ denotes the probability measure Y^i<\i\<rPp,A,i on J*(r), where 

^ exp(-iK)-(l/2r) 

u(A) denotes the specific energy, which is a number in the interval (jvf.^v^) 
[Theorem III.4.2]. There exists a unique real number P = P(u(A)) which 
satisfies j r i / p / ^ > ^ ) = w(^). We defined </>A,„(^) = Uxrf(x,y)^(dx)pp(dy), 
where P = P(u(A)). This integral gives the equiUbrium value per particle of 
a corresponding observable. The set of averages </>A,U(^) for all bounded 
continuous real-valued functions/on A x F defines a level-1 equihbrium 
state of the discrete ideal gas. We first interpret the measure p^ physically 
and then argue that the parameter ^ should be identified with inverse 
absolute temperature. 

Write the specific energy u(A) as u. Theorem III.4.4 impHes that given 
e > 0 and 0 > 0, then for all sufficiently large n 

Pn,A,A >s\< 2:/(^-(a;),y,.(co))-</>A,J 

Since/is bounded, we conclude that 

(3.22) lim I /(Zi,rO^P„,A,A = lim | ^ t/(A^-, 1;)^P„,A,^ = </>A,U. 

Now tag particle number 1 in the gas of n particles. Since (3.22) holds 
for all bounded, continuous functions / we conclude that the measure 
Kdx)Pfi{uMy) on A X F is the limiting marginal distribution of the position 
and velocity of the tagged particle with respect to the microcanonical 
ensemble as ^ -^ 00. In other words, requiring the energy per particle to be 
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close to u for all large n imposes the distribution p^ on the velocities {i;J 
of a single particle. The measure p̂ („) is the equilibrium distribution of the 
velocities {vi}. It is called the Maxwell-Boltzmann distribution. With respect 
to velocities, it is the unique level-2 equilibrium state. 

We can characterize p̂ („) in terms of entropy. Given a probabiHty measure 
veJi(T), define the energy in v to be jrij^^C^J^)- Let ^2 be the set of 
veJi{Y) which satisfy the microcanonical constraint ^Yiy^^ddy)^^. Any 
V 6 ̂ 2 is a candidate for the level-2 equiUbrium state with respect to velocities. 
By (3.19) the actual equiUbrium state p̂ („) is the unique minimum point of 
the relative entropy /̂ ^̂  over ^2- Hence the Maxwell-Boltzmann distribu
tion can be regarded as the most random probabiHty measure on ^ (F ) which 
satisfies the microcanonical constraint. 

The parameter p in the Maxwell-Boltzmann distribution has an important 
physical interpretation. It is identified with the absolute temperature T by 
the formula P = l/T; P = ^(u) is called the inverse (absolute) temperature 
corresponding to specific energy u. According to this identification, since 
T is positive, P should also be positive.^ For fixed P > 0, the sequence of 
equilibrium probabilities {p^ j-; / = 1, 2, . . . , r} of the speeds 0 < t̂ ^ < t;2 
< • • • < t;̂  is monotonically decreasing: p^ ^ > p^ 2 > • * • > pp,r- As one 
intuitively expects, higher speeds, which correspond to higher energies, 
should have lower probabihties. If we allowed j8 < 0, then we would be in 
the reverse situation in which higher energy states would be more likely 
than lower energy states. But for the kind of system which we are modeUng, 
this is nonphysical.^ As jS -> 00, (pp)^ -^ 1 and for /e {2, . . . , r}, (p )̂̂  -^ 0. 
As j? -^ 0"̂ , each (pp)^ -^ (2r)~^ = p^. In other words, as ^ -> 00 or T ^ 0"̂ , 
the higher energy states corresponding to t;2? • • •, t̂^ g^̂  "frozen out," while 
as ^ ^ 0^ or r - > 00, all energy states become equally probable. 

The identification of jS and l/T can also be justified by means of entropy. 
A microcanonical analog of thermodynamic entropy S(U, V) is —I^^\u), 
defined in (3.8). One can show [Problem III. 10.5] that for ue(^vf,^v^), 
d(-I^p^\u))/du = P(u). If we identify p with l/T, then this formula is the 
analog of the thermodynamic formula dS(U, V)/dU = l/T [see (3.1)]. 

III.6. The Canonical Ensemble and Its Equivalence with the 
Microcanonical Ensemble 

The canonical ensemble is a second ensemble with respect to which one can 
calculate equilibrium values of observables per particle. We present the form 
of the ensemble as a definition and motivate it afterwards. In Theorem III.6.2, 
we show that for the purpose of calculating equilibrium values, the micro-
canonical ensemble and the canonical ensemble give equivalent answers. 
The definition of the canonical ensemble involves the parameter p. In order 
to be consistent with the physical interpretation of jS as inverse temperature, 
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we will restrict P to positive values. However, all of the mathematical results 
which follow are valid for any P real. 

Definition III.6.1. Let A be normalized Lebesgue measure on ^(A) with 
A{A} = 1. Given iS>0, define 

_ exp( - i f a f ) • (l/2r) ^ exp( - i fa f ) ' ( l /2 r ) 

and let pp be the probability measure Yji<\i\<rPp,i^v: on J*(r) (Maxwell-
Boltzmann distribution). Let P„,A,/S t)e the product measure on ^-particle 
configuration space Q„ defined by 

Pn,A,p(doj) = Kdx^) ' •' X(dx„)pp(dy^) • • • pp(dy„), 

where co = (x^, ..., x„, y^, ..., y„)eQ„. Pn,A,p is called the canonical 
ensemble. 

The canonical ensemble has an interesting relation to the microcanonical 
ensemble. Fix a positive integer m, let n exceed m, and tag particles 1,2, . . . , m 
in a discrete ideal gas consisting of n particles. Let u = u{A) be the specific 
energy of the discrete ideal gas and P(u) the corresponding inverse tempera
ture [see Note 8]. Then the canonical ensemble Pm,A,p{u) equals the limiting 
marginal distribution of the positions and velocities of the m tagged particles 
with respect to the ^-particle microcanonical ensemble as /2 ^ oo. While we 
have a proof of this fact, the following motivation should convince the reader, 
and so the proof is omitted. ̂ ^ The microcanonical ensemble was defined 
by conditioning the energy per particle to he in the interval A. But as n 
increases, the velocities of the m tagged particles depend less and less upon 
this conditioning. Since the particles do not interact, in the Umit AI -> oo the 
m position-velocity vectors should be independent. Further, for m = 1 the 
hmiting marginal distribution was found in (3.22) to be ^(dx)pp^^^(dy). It 
follows that the limiting marginal distribution of the m tagged particles 
should be product measure with identical one-dimensional marginals 
Kdx)pfi{u){dy)' This product measure is Pm,\,p{u)-

In Definition III.6.1, we defined the canonical ensemble by fixing j8 rather 
than by fixing u and setting j8 = j8(w). Fixing jS corresponds more closely to 
physical situations since in experiments temperature rather than energy is 
the controlling parameter. Physically, the microcanonical ensemble describes 
a completely isolated system. By contrast, the canonical ensemble describes 
a system which is in diathermal contact with a heat reservoir that maintains 
a fixed temperature T= l/p. In the discussion of the relation between the 
two ensembles in the previous paragraph, the role of the heat reservoir is 
played by the n — m untagged particles in the discrete ideal gas where 
eventually n^ co. 

The next theorem is an exponential law of large numbers which determines 
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equilibrium values with respect to the canonical ensemble. We consider 
observables Yj=i fi^j^ Yj),n = 1,2, ..., where/is bounded and measurable. 
The continuity condition on/required in Theorem 111.4.4(b) is not needed. 

Theorem III.6.2. Let f be a bounded measurable real-valued function on 
A x T and define (/^A!?'^ = \\xTA^^y)Kd^)pMy)^ where the inverse 
temperature P is given. Then as n-^ co 

n 
Y, f(^j, Yj) -^ </>A!?"^ ^i^h respect to the canonical ensembles {Pn,A,p}' 

j = i 

Proof. With respect to {Pn,A,p} the summands {f(Xj, Yj)} are bounded and 
i.i.d. and each has mean (/yi^^^ Theorem II.4.1 implies that the distribu
tions of {n"^ Z!/=i/(^j ' ^•)} '^^^^ ^ IsiTgQ deviation property and that if / 
denotes the entropy function, then /has a unique minimum point at ifyt^j\ 
This property of the entropy function impUes exponential convergence 
[Theorem II.6.3]. n 

Iffi^^y) = hy^^ then ihy'^^C^ equals jrij^V^C'^J^)- The latter is called 
the specific canonical energy and is written uj^^). We compare Theorem 
III.6.2 with the microcanonical analog, Theorem III.4.4. The latter says 
that for continuous/ 

^ Z / ( ^ r ^ ) ' - ^ ' < / > A , « = 
np, 

f{x,y)l{dx)p^^^^{dy). 

Ifwe evaluate the limit in Theorem III.6.2 at jS = j8(w), then clearly < / > A , „ = 
</>A!^(M)- III other words, for the purpose of calculating equilibrium values, 
the two ensembles give the same answer. The microcanonical ensemble 
with specific energy u is equivalent to the canonical ensemble with inverse 
temperature P(u). 

This equivalence of ensembles motivates the definition of canonical 
entropy. Microcanonical entropy was defined to be s(u) = —I^^\u). The 
contraction principle (3.15) shows that ^^^(w) =/^^^(p^(„)), where I^^^ is 
relative entropy with respect to p = Zi<|i|<''(^^)~^^v;- If we define the 
specific canonical entropy to be sXP) = —^P^KPB)^ then by (3.15) s(u) = 

The canonical ensemble, which for the discrete ideal gas is product 
measure, is much easier to work with than the microcanonical ensemble, 
which is conditional measure. However, the canonical ensemble is defined 
for a fixed number of particles while experimentally the exact number 
is never known precisely. A third ensemble, called the grand canonical 
ensemble, treats systems in which the number of particles is arbitrary. For 
the purpose of calculating equiUbrium values, this ensemble is equivalent 
to the first two.^^ 
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For future reference, we note an alternate way of writing the canonical 
ensemble Pn,^,p^ Let 7r„/\^ be the product measure on ^(fl^ with identical 
one-dimensional marginals X(dx)p(dy). 

Proposition III.6.3. The canonical ensemble can be written as 

(3.23) Pn,^,Moj): 
exp[-i8^,(co)]7r„P,,,(^co) 

where U„(OJ) = l^ j=i i^(^)^ is the energy in the configuration CD = {x^, . . . , 

Proof, liyj = Vi. is the velocity of the j th particle, then Un(co) = Yj=ii^l 
and 

cxp(-pU„{cD))llp{vij}=U exp(-i^)-^ 

Since pp{Vi,} = Qxp{-^livP'(l/2r)l^rexp(-^liy^)p(dy), the proposition 
follows. n 

The proposition shows that the canonical ensemble is absolutely con
tinuous with respect to the product measure n„P;,p with a density that 
depends only on the energy. 

III.7. A Derivation of a Thermodynamic Equation 

A monatomic ideal gas of AZ particles fills a cylinder of volume Fa t absolute 
temperature T. The equilibrium values of the pressure P and the internal 
energy U are determined from the equations PV= nT (ideal gas law) and 
U = ^nT [see page 61]. Eliminating T between the two equations yields 
PV =^U, which is called Boyle's law.^^ Using the canonical ensemble, we 
will derive the analog of Boyle's law for the discrete ideal gas. 

First, the definition of pressure must be modified since A has no surface. 
Let b denote the left-hand endpoint of A. The linear pressure PI of the discrete 
ideal gas is a thermodynamic variable, defined as the force at b exerted by 
the gas. The analog of Boyle's law for our one-dimensional model is PI • | A | = 
217, where |A| is the length of A and U is the internal energy. The factor ^, 
which appears in Boyle's law for the ideal gas because the latter is a three-
dimensional system, is absent. 

For our derivation we place the thermodynamic variables PI and U by 
observables. Given a microstate co in the ^-particle configuration space Q„, 
define U„(co) = X!!/=ii^(^)^- ^^^^ î  ^^^ energy in co. We now derive a 
formula for the observable Pl„(co), which is the force at b exerted by the gas 
in the microstate co. Newton's second law implies that the force exerted by 
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the gas at b equals the change in the total momentum of the gas at b per 
unit time. Let e be the duration of a short time interval. For all sufficiently 
small e, a particle in the interior of A with velocity Vi will strike b during the 
time interval if and only iivi is negative and its position is within (b,b -\- \vi\s). 
Since the mass of the particle is one, the change in momentum is —Vt — Vi = 
2\vi\. Thus, for all sufficiently small e, 

'^^ ^ vi<0 '^'^ j=l 

This is a sum (over Vi < 0) of observables as in Example in.4.1(b). Both 
Pl„(co) and t4(co) grow with n, and so we will compare Pl„/« with lUJn. 
By Theorem in.6.2, with respect to the canonical ensembles {Pn,\,p], 

(3.24) ^ - \ i / > r ^ > = E \v^p,j a s« - . aD, 

(3.25) 
^'^\ I A4<u,i.^\v,\eM)'Xiv,){ym:^ 

vi<0 \L^\ | A | l < | i | < r 

The last equality follows from the symmetry of the {i;̂ } [see (3.3)]. Let u^ 
and pi denote the equilibrium values of energy per particle and linear pressure 
per particle defined by the limits in (3.24) and (3.25), respectively: 

\<\i\<r 1̂ 1 l<|r|<r 

We have pi • |A| = 2t/̂ . This completes our derivation of Boyle's law. 

III.8. The Gibbs Variational Formula and Principle 

In this section we introduce the magic statistical mechanical function called 
the free energy. This function is an analog of the Helmholtz free energy 
discussed in Section IIL2. Our first theorem evaluates the free energy two 
different ways by means of Varadhan's theorem. An evaluation based on 
level-1 large deviations is related to the exponential law of large numbers 
in Theorem in.6.2. A level-3 evaluation gives a supremum over strictly 
stationary probability measures which is called the Gibbs variational 
formula. The supremum in the Gibbs variational formula is attained at the 
unique strictly stationary probability measure which is the natural extension 
of the canonical ensemble to an infinite particle system. This extension is 
called the level-3 equilibrium state of the discrete ideal gas. In our study of 
ferromagnetic systems in the next two chapters, the level-3 evaluation of the 

file:///vi/s
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free energy will be generalized. This will lead to a level-3 notion of phase 
transition. 

From now on, with respect to the canonical ensemble we consider only 
the marginal distribution of velocities. F", which denotes the set of all 
sequences co = (coi,.. .,co„) with each COJET, is the velocity configuration 
space of n particles. Define rc^Pp to be the product measure on ^(F") 
with identical one-dimensional marginals pp. By Definition IIL6.1, n„P-^ is 
the marginal distribution of the velocities of n particles with respect to the 
canonical ensemble. It is called the reduced-canonical ensemble. As in (3.23), 
this measure can be written as 

(3.26) n„P.(dco) = 
'P' ' Jr„exp[-)8t4(co)]7r„P,(Jco)' 

where U^ico) = Z!/=x 2^(^)^ ^̂  ^^^ energy in co. 
In order to describe the infinite-particle discrete ideal gas, we let « -^ oo 

in the above definitions. The velocity configuration space becomes the set Q 
of all infinite sequences co = (co^,co2, - - -) with each COJEF; thus Q = F^"". 
In order to use the definitions from Chapter II concerning level-3 large 
deviations, we imbed Q in the set Q = F^ of all doubly infinite sequences 
CO = ( . . . ,CO_I,COOJCI)I> • • •) with each COJET. We topologize F by the 
discrete topology and Q by the product topology and let ^^(Q) be the set 
of strictly stationary probabihty measures on the Borel subsets of Q. One 
maps Q onto Q by projecting the point ( . . . ,co_i,a)o?^i?<^2j • • •) onto 
(coi,co2, . . . )• Given P G ^ S ( Q ) , this projection defines a probability measure 
P on Q. Let ^ , ( ^ ) be the set {P: P G ^ , ( Q ) } . For the discrete ideal gas, a 
special measure in J(jS^ is the infinite product measure P^ with identical 
one-dimensional marginals p^. The measure P-p is the infinite-particle 
analog of the reduced-canonical ensemble 7r„Pp in (3.26). Our main theorem, 
Theorem III.8.1, characterizes Pp EMJ^ as the unique solution of a varia
tional formula involving the free energy. We now define the latter function. 

We recall from Section III.2 that for a simple system in the equihbrium 
state (F, r ) , the Helmholtz free energy is defined by F(y, T) = U{V, T) -
TS{V, T), where U and S denote the internal energy and entropy, respec
tively. Analogs of U and S with respect to the canonical ensemble and the 
reduced canonical ensemble are the quantities* uXP) = jr ly^Ppidy) and 
^XP) = ~^p^Kpp)' Hence an analog of F= T(T~^U — S) with respect to 
the reduced-canonical ensemble is 

(3.27) (t>iP) = ii-\pux^) - s,m = r\^u,m + if\m-
The function (/)(j8) is called the specific free energy. We have the simple 
formula 

'^uX^) and sXP) were defined after Theorem III.6.2. 
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(3.28) <i>(p) = - r ' log I exp(-iiS/)p(c/>'). •Mogf^ 

Indeed, 

I^;\h) = f loAyyp^idy) where p , , = r^7^"l\??j\-

cxp(-iPy')pidy) 
r 

Pp(dy) 

Hence 

n'KPp) = f l-^y' - log 

Jr L 

= -puXP) - log f cxpi-lpy')pidy), 

and (3.28) follows. For t real define c^(0 = log jrexp(^/j^^)p(^>'). This func
tion is the free energy function of the probability measure ^i<|^|<^ (2r)~^ (5̂ 2/2, 
and we can write the specific free energy as 

(3.29) <i>{fi)=-r'c,{-P). 

The function c^ was used earher in this chapter [Lemmas III.4.3 and in.4.5]. 
Let Y{(D) — ojj be the coordinate functions on Q = T^ and P^ the infinite 

product measure on ^(Q) with identical one-dimensional marginals p. E^ 
denotes expectation with respect to P^. The function —fi(j){P) equals 
log£'p{exp(—|^j?rf)} or equivalently 

(3.30) -mp) = Uog Z„iP) where Z ^ = EJexpU^ptjA] 

and n is any positive integer. Z„(jS) is called the reduced-canonical partition 
function. It is the numerator in the formula (3.26) for the reduced-canonical 
ensemble. In the next theorem, — jS(/)(̂ ) = lim^^^o n~^ logZ„(j?) is evaluated 
by level-1 and by level-3 large deviations. Formula (3.32) is called the 
Gibbs variational formula}^ 

Theorem IIL8.L Let I^Ku) and Ip^\P) be the level-l and level-3 entropy 
functions defined in Lemma III.4.3 and Theorem II.4.4, respectively. Then the 
following conclusions hold. 

(a) For each P > 0 

(3.31) -mP) = limhogZ^iP) = sup{-pu - f/Ku)}. 

The supremum is attained at the unique point u = u^P) = Ir^y^Ppi^^y)^ which 
is the specific canonical energy. 

(b) For each p>0 

(3.32) -iS(/)(iS) = limilogZ„(iS)= sup {-^ 2 coiPidco)-mp)\. 
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The supremum is attained at the unique measure P = Pp , which is the infinite 
product measure on ^(Q) with identical one-dimensional marginals pp. 

Proof, (a) According to Lemma IIL4.3, the P^-distributions of {Y.^iiYj'/n; 
n= 1,2,...} have a large deviation property with entropy function I^^\ 
Theorem 11.7.3(a) implies that 

-PHP) = lim^logZ„(iS) = sup{-Pu - Il'\u)}. 

The point u = uXP) gives the supremum in this display. Indeed uXP) equals 
Irhy^Ppi'^y)^ and thus P{uXP)), the inverse temperature* corresponding to 
specific energy uXP), is exactly jS. By (3.27) and (3.15), 

(3.33) -mp) = -puXP) - n'Kpp,u,m) = -P^ciP) - y'/KuXP)), 

as we claimed. To show that the point uXP) is the unique point at which 
the supremum in (3.31) is attained, we use the fact that Ty\u) is strictly 
convex and thus —^u — T^^\u) is strictly concave [Theorem VII.5.5(h)]. 
A strictly concave function attains its supremum at a unique point (if at all). 

(b) Let Rnico, •) be the empirical process corresponding to 7^, . . . , 7„ 
(defined by (2.4) with X^, ..., X„ replaced by Y^, . . . , Y„). By Theorem 
11.4.4 the P^-distributions of {P„} have a large deviation property with 
entropy function I^^\ Since 

^ l o g Z „ ( ^ ) = l o g ^ i e x p ( - i i S ? ^ ' 

Theorem 11.7.3(c) implies that 

-PHP) = ^rnhogZ„{P)= sup \-p [ WiP(dco) - I^'XP) 

We now locate where the supremum in this display is attained. For fixed 
ue\}vl,^v^], let 0(w) be the set of PeJf,(^) for which ^^^a>lP(doj) = u. 
In Theorem II.5.4, we stated a contraction principle relating levels-1 and 3. 
By analogy with this result, one can show that 

(3.34) inf Il'KP) = Il'Ku) 

and that if u = uXP), then Ip^\P) attains its infimum over Q>{uXP)) at the 
unique measure Pp [Problem III.10.7]. Any PeJiJS^ belongs to 0(w) for 
some ue\j^v\,\v^\ If w = ^ (̂̂ 5), then 

o,\P(dw) - If\P) < -pu,{fi) - inf / f >(P) 
PeQ>{Uc{p)) 

*See page 75. 
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Equality holds in the first Une of the display if and only ifP = P^ Ifu ^ uXP), 
then by the proof of part (a) of the present theorem 

-i? ^0)iP{d(o) - Il^\P) < -pu~ inf P/\P) = -pu- P'\u) 

<-iiuxP)-ii,'\uxfi)) = -mfi)-

(3.35) <t>{p;P) = r\Pu{P) - s{P)) = rHP 

It follows that the supremum in (3.32) is attained at the unique measure 
P = P-

We now interpret Theorem III.8.1 physically. The level-1 interpretation 
involves the energy observable t4(<^) = Z"=i i^(^)^- E^ch number ue 
(i^iA^r) is a candidate for the equihbrium value of the energy per particle 
U„((D)/n. By Theorem III.6.2, UJn tends exponentially to uX^), and so uXP) 
is the actual equilibrium value. Part (a) of Theorem III.8.1 characterizes this 
number as the unique point at which the function —fiu — lp^\u) attains its 
supremum over ueU. The quantity —P~^\_PuXP) — Ip^\uXP))^ equals the 
specific free energy (j){P). 

For level-3, each measure PeJi^^) defines a measure PeJtJ<^ which 
is a candidate for the infinite-particle description of the gas. We define the 
specific energy in P to be u{P) = ^QjcolPidco), the specific entropy in P to 
be s(P) = —I^p^\P), and the specific free energy in P to be 

WiPidco) + 11,'KP) 
a 

Any measure PeJiJ^ at which — jS(/>(jS;P) attains its supremum over 
JtJ<^ is called a level-3 equilibrium state. The same term applies to the 
corresponding measure PeJijS^. Part (b) of Theorem III.8.1 implies the 
following result, known as the Gihbs variational principle. 

Theorem III.8.2. P-^ is the unique measure in JiJS^ at which — jS(/)(^;P) 
attains its supremum. Thus P-p is the unique level-3 equilibrium state for the 
discrete ideal gas. The quantity (/)(jS; Pp ) equals the specific free energy (j){P). 

Since P is positive, P-p is also the unique measure in Ji^^ ^t which 
(j){P\P) attains its infimum. That the equihbrium state gives the unique 
infimum is the precise analog of Property 111.2.2(b) of the Helmholtz free 
energy. This property is a minimum principle which specifies the thermo
dynamic equilibrium state of a composite system of fixed volume in dia-
thermal contact with a heat reservoir. 

An obvious connection between the level-1 and level-3 interpretations of 
the theorem is that u^P) equals the specific energy in the equihbrium state 

uXP) = u(PjJ 2 

r 
y^ppidy)-
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Another important aspect of the theorem is the entropy characterization of 
P- used in the proof of Theorem 111.8.1(b); namely, 

(3.36) Mll^^KPyPeJiM. WiPidoj) = uXP) 

is attained at the unique measure P-^ . Thus, P^ can be interpreted as the 
most random strictly stationary measure which satisfies the energy constraint 
jnWiPidco) = uXPy 

With (3.36), we have come full circle. The microcanonical ensemble was 
defined by conditioning upon the energy per particle. This conditioning has 
been transmuted into an energy constraint in the entropy principle that 
characterizes the level-3 equilibrium state. As we will see in the next chapter, 
Theorems III.8.1 and II.8.2 have natural extensions to systems with inter
actions. By contrast with the discrete ideal gas, these systems need not have 
unique level-3 equiUbrium states, and microscopic sums associated with the 
systems need not converge exponentially to a constant. This different 
behavior is associated with phase transitions. 

III.9. Notes 

1 (page 59). For an overview of the statistical mechanics of continuous 
systems, Uhlenbeck and Ford (1963) is recommended. Huang (1963), 
Thompson (1972), and Reichl (1980) are also good. All of these texts derive 
the laws of thermodynamics from statistical mechanics. Ruelle (1969) is an 
advanced reference. Lanford (1973) and Martin-Lof (1979) study the statis
tical mechanics of continuous systems and derive the laws of thermodynamics 
using large deviations. Our treatment of the discrete ideal gas is a special 
case. Of historical interest is Khinchin (1949), which was the first extensive 
study of statistical mechanics from the viewpoint of probabihty theory. Also 
see Kac (1959b) and Mackey (1974). The classic treatment of the foundations 
of statistical mechanics is Ehrenfest and Ehrenfest (1959). Penrose (1979) 
reviews modern developments. Truesdell (1961), Farquhar (1964), and 
Lebowitz and Penrose (1973) discuss one of the central foundational issues, 
which is the role of the ergodic theorem in justifying the microcanonical 
ensemble. For nonequiUbrium theories, see for example Prigogine (1973, 
1978), Lanford (1975, 1976), Cercignani (1975), Lebowitz (1978), and Reichl 
(1980). 

2 (page 60). For thermodynamics, Callen (1960) is recommended because 
of his clear treatment of entropy. Pippard (1957), Zemansky (1968), and 
Adkins (1975) are also good. Mendelssohn (1966) is a nice treatment of low 
temperature physics. 

3 Historical Sketch (page 63). The laws of thermodynamics had been 
definitively formulated by Clausius in 1850. But the need for a statistical 
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theory of matter was shown by the very Umited success of Clausius and others 
(including, initially, Boltzmann) in explaining the second law of thermo
dynamics on the basis of the mechanics of particles alone. Maxwell became 
interested in the molecular theory of gases when he read Clausius's papers 
on the subject. While Clausius simply used the average molecular velocity, 
Maxwell saw that an analysis of how molecular velocities were distributed 
would be of fundamental importance. This analysis was given by Maxwell 
in his work on the kinetic theory of gases (1860, 1867), which was the first 
application of probability theory to physics. Maxwell then turned to the 
second law. He invented his famous demon (1867) [see Klein (1970)] to 
show that the second law cannot be derived from mechanics alone, but rather 
that it expresses the statistical regularity of systems composed of very large 
numbers of particles. Spurred in part by Maxwell's work, Boltzmann after 
1867 began to create a systematic statistical theory of gases. The Boltzmann 
equation (1872) enabled him to study how a gas not in equiHbrium can reach 
equilibrium as a result of coUisions among its molecules. The paper of 1877 
expressed his statistical interpretation of entropy and of the second law. 
Gibbs, working in isolation in the United States, had two important achieve
ments. His papers of 1873-1878 invented modern thermodynamics; his 1902 
book was the first systematic exposition of the entire formaHsm of statistical 
mechanics. This work presents a mathematical structure for computations 
which is essentially the one used today. Another important early figure was 
Einstein. His first papers in statistical mechanics (1902-1904) also dealt with 
the general formalism, which he developed independently of Gibbs. He 
appHed the theory to explain Brownian motion as well as many phenomena 
in quantum physics (see references in Pais (1982)). 

4 (page 63). Callen (1960, page 109) explains why the term "free" is used 
in the Helmholtz free energy. 

5 (page 64). Sinai (1977, Lecture 8) treats the ideal gas by means of ergodic 
theory. 

6 (page 67). Our study of the asymptotics of the discrete ideal gas simplifies 
the standard statistical mechanical approach to classical continuous systems 
in a number of ways. The statistical mechanics of classical continuous sys
tems is developed in detail in Ruelle (1969) and in Lanford (1973). 

7 (page 69). Theorem III.4.4 has been proved by Lanford (1973) by a 
different method. A related form of the theorem goes back to Khinchin 
(1949). Blanc-LaPierre and Tortrat (1956, pages 161-162) give a heuristic 
large deviation proof suggested by K. Ito. 

8 (page 75). The physical requirement p > 0 means that the only physically 
meaningful values of the specific energy u are those in the interval (^i^i, a), 
where a = jriy^Pi^y)- Oi^ly for such u is j?(w) > 0. 

9 (page 75). In this chapter we are modeling systems for which the only 
energy is vibrational energy and for which the number of energy levels is 
infinite. For such systems the absolute temperature cannot be negative. 
However, there are other systems (spin systems) which have a finite number 
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of energy levels and for which it is possible to have more nuclei in the higher 
energy levels than in the lower energy levels. This situation corresponds to 
negative absolute (spin) temperatures. Zemansky (1968, Chapter 14) and 
Proctor (1978) are introductions to this matter. 

10 (page 76). Spitzer (1974) and Zabell (1980) each derive the canonical 
ensemble as a limiting marginal distribution, starting from a slightly different 
definition of the microcanonical ensemble (conditioning on UJn = u-\- z^, 
where z„ ->• 0, instead of on UJneA). Also see van Campenhout and Cover 
(1981) and Csiszar (1984). Lenard (1978) has a self-contained justification 
of the canonical ensemble in quantum statistical mechanics. 

11 (page 77). The equivalence of ensembles for continuous systems is 
treated by Aizenmann, Goldstein, and Lebowitz (1978) and for lattice 
systems by Dobrushin and Tirozzi (1977). 

12 (page 78). Boyle's law is discussed in Adkins (1975, Section 8.2). A 
similar derivation of Boyle's law for the ideal gas goes back to Maxwell 
(1860). 

13 (page 81). The specific free energy ^(j6) equals —jS"̂ Cp( —^), where 
^p(0 = lT^^V(kty^)p{.dy) [see (3.29)]. Hence (3.31) can be derived from (3.8) 
by an inverse Legendre-Fenchel transform. 

III. 10. Problems 

111.10.1. Prove equation (3.4). This is related to Liouville's theorem (see 
Thompson (1972, Appendix A)). [Hint: First prove (3.4) for Borel sets of the 
form 

B = J^x '" xJ^x {ViJ X ••• X {t;.J, 

where /^, . . . , /„ are subintervals of A and Vi , ... ,Vi are velocities in F.] 

111.10.2. Prove that the distributions of UJn = iXj=i ^/ /^. « = 1, 2, . . . , 
with respect to the microcanonical ensembles {JP„,A,>I} have a large deviation 
property with entropy function I(u) =^Il^\u) — inf^^^fp^Xz) for UEA, 
I(u) = 00 for u^A. 

III. 10.3. Le t /be a real-valued function on F. Prove that the P„ ^^-distribu-
tions of n~^ Yj=if(Yj), « = 1, 2, . . . , have a large deviation property and 
determine the entropy function. 

III.10.4. Complete the proof of (3.21) by showing that if T is any measure 
in the set ^2 = {^^^(^ ^ ^)'hxr2y^^(dxdy)EA} which differs from 
x(dxdy) = Kdx)ppi^u{A)My), then 

OT)>/1?^(T) = 7^X^)). 

[//mr-Given TG ^2? define f(Jxdy) = ^i<|i|<^A((ix)Vj-4.,whereVj- = \i^^i{dx). 
Show that if I[^l{x) is finite, then 



III. 10. Problems 87 

/IfiW = 4' '(x) +/f ' (V), where v = ^ v^,, 
i<\i\<r 

and use (3.19).] 

111.10.5. (page 75). Prove that d(-I^^\u))/du = P{u\ where 7^^ is defined 
in (3.8). iHint: See the proof of Lemma IIL4.5(b)-(c).] 

111.10.6. We consider sequences of velocities {i;|''̂ ; 1 < |/| < r}, r = 1, 2, . . . , 
of the discrete ideal gas. Suppose that there exists a positive sequence 
{b{r); r = 1,2, . . .} such that i;/''̂  - vl'\ = b(r), b{r) -> 0, and rb{r) ^ oo as 
r -^ 00. Thus as r ^ 00 the velocities become dense in U. Let 

where 

l<\i\<r 

^(.) ^ exp[- i ig( i ; ry]-( l /2r) 
^'' Z i .Ul . .exp[- i i? ( . f )^] - ( l /2r ) -

Prove that lim,^«, u^J\P) = ^p'K 
For large r, u^J\P) ^ ĵS"^ is the analog for the discrete ideal gas of the 

thermodynamic relation t/ = f/?rfor a monatomic ideal gas [see page 61]. 

III.10.7. (page 82). Complete the proof that the supremum in (3.32) is 
attained at the unique measure P = P-^ . \_Hint: Combine Theorem n.5.3 
and Lemma in.4.5(c). Extend the latter to w = ^vj and u = ^vf.^ 

file:///_Hint


Chapter IV 

Ferromagnetic Models on Z 

IV. 1. Introduction 

Phase transitions are a famiUar aspect of nature. Water boils, becoming 
water vapor, or water vapor, under compression, hquefies. These are ex
amples of a liquid-gas phase transition. The Hquid and the gas are said 
to be two phases of the same substance. One of the most interesting problems 
in equiUbrium statistical mechanics is to explain phase transitions in terms 
of the probabiHty distributions on configuration space which describe the 
microscopic behavior of physical systems. The simplest systems for which 
this is possible are ferromagnetic models on a lattice. The present chapter 
introduces these models. 

The phase transition for ferromagnetic systems has many similarities with 
the more common Hquid-gas transition, although each is described by 
different variables.^ Both phase transitions arise as a result of two competing 
microscopic effects. The first effect tends to order the system. It is caused 
by attractive forces of interaction and is measured by energy. The second 
effect tends to randomize the system. It is caused by thermal excitations 
and is measured by entropy. At sufficiently low temperatures, the energy 
effect predominates and a phase transition becomes possible. 

This chapter develops the statistical mechanics of ferromagnetic models 
on the one-dimensional integer lattice Z. Many of the results for models on 
Z generahze to ferromagnetic models on the Z)-dimensional integer lattice 
IP, Z )G{2 ,3 , . . . } . These models will be treated in Chapter V. The next 
section discusses qualitatively the main features of ferromagnetic models 
as established by the theorems of this chapter and the next. 

IV.2. An Overview of Ferromagnetic Models 

The ultimate source of ferromagnetism is the quantum mechanical spinning 
of electrons. Because a small magnetic dipole moment is associated with 
the spin, the electron acts like a magnet with one north pole and one south 
pole. Both the spin and the magnetic moment can be represented by an 
arrow which defines the direction of the electron's magnetic field. The spin 
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can point up (spin value 1) or down (spin value — 1), and it flips between 
the two orientations. Ferromagnetic models were invented in order to 
represent, in simplified form, the interaction of electron spins in real ferro-
magnets. In this section we discuss the most popular ferromagnetic model 
which is the Ising model. Its properties are quahtatively the same as those 
of more complicated models to be discussed later in the book.^ 

Let A be a symmetric hypercube of the D-dimensional integer lattice iP. 
To each site j of A there is assigned a variable cô  which takes the value 1 
(spin-up) or — 1 (spin-down). Fix a number ^ > 0. Associated with each 
configuration co = {coj;7e A} of spins is a Hamiltonian or interaction energy 

-^ ij e A ' j e A 

where / ( / —j) equals J^ if ||/ —j\\ = 1 and equals 0 if ||/ — /| | =/= 1. Thus the 
first sum extends over all nearest neighbor pairs of sites in A. The number ^ 
is the strength of the nearest neighbor coupling and /z is a real number which 
is the strength of an externally appUed magnetic field. The configuration 
space is the set Q^ of all sequences co = {ojj-JeA}; thus Q^ = {1, — 1}" .̂ 
Define ^ ( Q A ) to be the set of all subsets of Q^. Let p be the measure 
^81 + (̂5_i and n^Pp the product measure on ^ ( Q A ) with identical one-
dimensional marginals p. The Ising model is defined by the probabihty 
measure PA,A,/I on ^ ( Q A ) which assigns to each {co}, COGQA, the probability 

PA,p,h{^} = exp[-/?/fA,;i(^)]7CA^pM • ^ . 

The parameter p represents the inverse absolute temperature \/T and is 
positive. Z is the normalization jn^exp[ —jSjF/A,fi(< )̂]̂ A^p(̂ )̂- We call 
^A,p,h ^finite-volume Gibbs state or di finite-volume equilibrium state. Z is 
called di partition function. Suppose that the external field h is nonzero and 
consider the configuration co whose spins are all aligned in the same direction 
as h. Since / is positive, this configuration has the smallest interaction 
energy, hence the largest probability Pj^,p,h{^}^ ^f 1̂1 configurations in QA-
Hence the positivity of / induces an ahgnment effect in the finite-volume 
Gibbs state. The effect becomes weaker as jS is decreased. At j? = 0 it dis
appears entirely as PA,/?,^ reduces to the product measure Tij^Pp which assigns 
equal probability to each configuration. 

We now proceed to explain, without technicalities, the main properties 
of the Ising model. These themes are developed in detail in subsequent 
sections. 

Magnetization. Let 5A(co) be the observable ZjeA^j which gives the 
total spin in A. We introduce two quantities 

M(AJ,h)= I Sj^(o))P^nh(dco) and m(P,h)= lim -^M(AJ,h). 
L A ' ' AU^l^l 

M(A, P, h) is the average value of the total spin in A and is called the mag
netization ; m{P, h) is the magnetization per site in the limit where A expands 
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to fill Z^ and is called the specific magnetization. For /z > 0, M(A, jS, /?) is 
positive and because of the alignment effect built into the finite-volume 
Gibbs state, M(A, jS, h) is an increasing function of h. These properties 
persist for the specific magnetization after the limit A f Z^. However, the 
alignment effect becomes weaker as j? is decreased. This is reflected in 
dramatically different behavior of the limit lim;,^o+^(i^,/?) for different 
values of j?. 

Spontaneous magnetization. By symmetry, M(A, jS,0) equals 0, and so 
m(^, 0) = lim^i^D I A| ~^M(A, j8,0) equals 0. There exists a critical value of ^, 
called the critical inverse temperature and denoted by jŜ , which has the 
following properties. If 0 < j8 < jŜ , then m(P,h) converges to m(jS,0) = 0 
as // -^ 0^. If j5 > P^, then m(P,h) converges to a positive number m(P, + ) 
as h-^0^. Thus for jS > ft' the system remains permanently magnetized 
after the external field is removed; m(jS, + ) is known as the spontaneous 
magnetization. For h <0, m(P,h) behaves similarly: m(P,h) is negative and 
as /z-^O", m(PJt) converges to m(jS, 0) = 0 or to the negative number 
m(jS, —) = —m(j8, + ) according to whether 0 < ^ < ft or j? > ft. The value 
of the critical inverse temperature ft depends upon ^ and upon the dimension 
D of the lattice. If D = 1, then ft is infinite and spontaneous magnetization 
does not occur. By contrast, for any i) > 2, ft is finite. We have not discussed 
the value m(jS, + ) = lim;,̂ o+ ^(P^^) at jS = ft. For the Ising model on Z^, 
m(ft, + ) is 0. While m(ft, + ) is believed to be 0 for any Ising model on Z^, 
Z) > 3, this has not been proved. 

Curves showing m as a function of h for fixed P are depicted in Figure 
IV. 1 for the Ising model on Z^. These curves are called isotherms, and the 
point {P,h) = (ft,0) is called the critical point. Notice that m{P,h) is an 
increasing, concave function of/z > 0. The concavity represents a saturation 
effect. An increment Ah> 0 causes a change Am(ft/z) = m(P,h + Ah) — 
m(P, h) in m. The larger the value of/z, the smaller is Am(P, h). The quantity 
5m(j?, h)ldh, which gives the slope of the isotherms, is called the specific 
magnetic susceptibility and is denoted by xiP^ h). 

Infinite-volume Gibbs states. We now consider the limiting behavior of 
the finite-volume Gibbs states as A t IP. First, we modify these states by 
means of external conditions or boundary conditions. An external condition 
is defined by fixing the values of the spins c3j at each site j which is in 
A"" = Z^\A and has a nearest neighbor in A. The external condition co = [oSj] 
changes the Hamiltonian of a configuration co from H^j^{oS) to 

H^,hA^)= - 9 Z J(i-J)oJiCOj- Z ( ^ + Z J(i-j)ojj)oJi. 

The corresponding finite-volume Gibbs state is defined by the probabiHty 
measure P/^,p,h,w ^^ ^C^A) which assigns to each {co}, co e Q^, the probability 

PA,p,h,a>{^} = ^^Pl-P^A,Kco(0))]n^Pp{0)}-—, 

where Z is a normalization. If each cbj equals 1 (resp., — 1), then the external 
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Figure IV. 1. Isotherms for the Ising model on J?-. (Adapted from Figure 4.29 in L. E. Reichl, 
A Modern Course in Statistical Physics, University of Texas Press, Austin, 1980. Copyright © 

1980 by the University of Texas Press.) 

condition is called plus (resp., minus) and the measure is written as 
P\,p,h,+ (resp., PA,ii,h,-)' The external condition cb depends on A, and so 
we write cb = co(A). For fixed j8 > 0 and h real, let us consider the set of all 
weak hmits 

(4.1) P = w-\imP^, 
A'U 

A',li,h,a>(A')^ 

where {A'} is any increasing sequence of symmetric hypercubes whose union 
is Z^ and d>(A') is any external condition for A'. Each weak Umit P is a prob-
abiUty measure on the infinite-volume configuration space Q = {1, — 1}^ . 
We call a probabiHty measure P on Q an infinite-volume Gibbs state or an 
infinite-volume equilibrium state if P belongs to the closed convex hull of the set 
of weak limits of the form (4.1). 

Classification of infinite-volume Gibbs states. For the Ising model, various 
infinite-volume Gibbs states with different properties arise. They are Hsted 
in Table IV. 1. The set of infinite-volume Gibbs states is denoted by ^^ ,,. 
We now describe the structure of ^^^ for different values of j8 and h. Let 
P^ be the critical inverse temperature. For all jS > 0, /z =/= 0 and 0 < p < P^, 
h = 0, the finite-volume Gibbs states {PA,p,h,co{A)} have a unique weak Hmit 
for any choice of external conditions {d)(A)}. Thus ^^ ,, consists of a unique 
measure Pp^. The measure Pp^ is translation invariant (strictly stationary 
with respect to the shift mappings on Q) and ergodic. The ergodic phases 
are characterized among all translation invariant states by the property 
that macroscopic quantities are given definite values. For example, an 
experimenter might measure the spin per site S^(co)/\A\ = Y,jeA^jl\^\ ^^ 
a sample co drawn from the magnet. The ergodic theorem impHes that 
with respect to an ergodic phase such as Pp^, 5^(co)/| A| tends to a constant 
which is almost surely independent of the sample chosen. This justifies 
calling an ergodic phase pure. 
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Table lY. 1. States of the Ferromagnet 

Name Definition 

Infinite-volume Gibbs state A member of the closed convex hull of the set of 

weak limits of {P^'J^HMA') ; A'T ^^l-

Phase Translation invariant infinite-volume Gibbs 
state. 

Pure phase Ergodic, translation invariant infinite-volume 
Gibbs state. 

Mixed phase Nontrivial convex combination of pure phases. 

For P > Pc aiid h = 0, the situation is radically different, ^^Q contains tw ô 
distinct pure phases ^^,o,+ ^^^ ^p,o,-^ which arise from the finite-volume 
Gibbs states i\^^ o,+ ^^d PA,P,O,- with plus and minus external conditions, 
respectively. The average value of the spin at any site 7 with respect to each 
of these measures is given by 

cojPp^o^ + (dco) = m(j8, + ) > 0, 

(4.2) 

^ A o , - ( ^ ^ ) = - m ( i 8 , + ) < 0 , 
JQ 

where m(P, + ) is the spontaneous magnetization. P^,o,+ is called a pure 
plus phase and Pp,o,- a pure minus phase. In addition, ^^Q contains all 
convex combinations P̂ f̂  = ^^p,o,+ + (1 — ^)Pp,o,-^ 0 < /I < 1. These mea
sures are translation invariant but not ergodic and are called mixed phases. 
Such a phase corresponds physically to the situation where an experimenter 
has an a priori choice of external condition. With probability X he prepares 
each finite-volume Gibbs state to have the plus external condition and with 
probabiHty 1 — A to have the minus external condition. The existence of more 
than one pure phase for ^ > Pc ^^^ h = 0 corresponds to a phase transition. 

The phase transition reflects a crucial instabihty in the model. Choosing 
the plus or minus external condition outside A induces a sUght preference 
for spin-up or spin-down at any fixed site inside A. For P > Pc ^^^ h = 0, 
even this sHght preference is strong enough, in the hmit A | Z^, to push the 
infinite-volume system into a phase with net positive or negative specific 
magnetization. The phase transition is related to the notion of symmetry 
breaking [see page 116]. 

More is known about the structure of ^po for P> Pc- For the Ising 
model on Z^, ^p 0 consists of a unique measure which is a pure phase. For 
P> Pc and /z = 0, ^^0 consists precisely of the measures P^ 0, + ? ^/?,o,-> ^iid 
convex combinations [Aizenman (1979, 1980), Higuchi (1982)]. Thus all 
measures in ̂ ^0 ^^c translation invariant. For the Ising model on Z^ with 
i) > 3, ̂ ^0 contains nontranslation invariant states for any sufficiently large 
P> p, [Dobrushin (1972), van Beijeren (1975)]. 

The pure phases of the Ising model on Z^ are shown in Figure IV.2. The 
interval h == 0, P > Pc is called the coexistence interval for the pure plus 
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^13,0, 

^^,0, 
- • i 3 

Pi3, h • unique pure phase (/3 > 0, h 9̂  0 and 0 < jS < jS ,̂ h 9̂  0) 

P̂ ^ 0, + • pure plus phase (jS > (S^) 

^(5,0, - • P^re minus phase (jS > jSc) 

Figure IV.2. The phase diagram of the Ising model on Z^. 

phase and pure minus phase. Crossing the interval at constant jS by de
creasing h through 0 gives an abrupt transition between phases characterized 
by the discontinuity in the specific magnetization (m(j8,/z) jumps from 
m(jS,+) tom(i8 , - ) ) . 

Correlations.^ Correlations in the Ising model are related to the phase 
transition just discussed. We consider the model on Z^. For D >3 similar 
behavior is expected. The following discussion is heuristic; not all the state
ments have been proved. Fix h = O.At infinite temperature (P = 0), the finite-
volume Gibbs state PA,P,O,(O reduces to the product measure Tî Pp. The corre
sponding infinite-volume Gibbs state is the product measure P^ on Q, with 
respect to which the spins are independent and thus uncorrelated. At small 
but nonzero jS, there is a unique infinite-volume Gibbs state P^Q. Spins begin 
to be positively correlated with their nearest neighbors which in turn begin 
to be positively correlated with the second nearest neighbors, and so on. Since 
i^i)p,o = JQ ̂ iPp,o{d(D) equals 0 for each /, the convariance (or as we will call 
it, the pair correlation) equals <cô cô >̂  o = \a^i^jPp,o{do:i). The correlations 
decrease with distance, and in fact (^coico^)^^ Q has roughly an exponential decay 
when the Euclidean distance ||/ — 7|| is large. We write 

<^f^jVo ^ exp [ - | | / -7||/(^(iS,0)] as ||/ - 7 | | ^ oo. 

This relation defines the (exponential) correlation length i(p, 0). The number 
(̂ (jS, 0) is a rough measure of the distance over which correlations between 
spins are significant. As jS increases, (̂ (j?, 0) increases, and correlations begin 
to extend over larger and larger distances. These correlations take the form 
of spin fluctuations, which are islands of a few spins each that mostly point 
in the same direction. As jS approaches the critical inverse temperature jŜ , 
the correlation length grows rapidly, but the smaller fluctuations are not 
suppressed. They become contained in areas of larger fluctuations which 
themselves can be distinguished only because they have an overall excess 
of one spin orientation. When j8 equals jŜ , the correlation length is infinite. 
Spin fluctuations persist at all scales of length and are extremely sensitive to 
small perturbations in h. The infinite correlation length is reflected in the 
fact that <cOjCOy>̂^ 0 ̂ ^ longer decays exponentially but decays hke a power 
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of||/-yir^: 

<^f^j>^„o'^ \\i-j\\~" as ||/-7*11-^00, 

where z is some positive number (z = ^ for the Ising model on Z^). 
For p larger than P^^ we enter the region of positive spontaneous mag

netization m()8, -f-). We consider the pair correlation with respect to the 
pure plus phase ^^ ,̂0, + . By (4.2), i(DSp,o,+ = <^j>^,o,+ =^(P, +)• As in 
the case jS < jŜ ? the pair correlation decays exponentially: 

= <a;,co,-Vo,+ - [rniP, +)Y ^ exp [ - | | / -j\\/^(PM as ||/ -j\\ ^ (X), 

where 0 < ^(P, 0) < oo. As jS increases, m(j8, + ) increases and the alignment 
effect becomes more rigid. Within a region of up-spins, islands of down-spins 
become, on the average, smaller and i(P,0) decreases. As jS -^ oo, m(jS, + ) 
converges to 1, ^(P,0) converges to 0, and Pp,o^+ converges weakly to the 
state where all spins are oriented up. A similar discussion holds for the 
pure minus phase Pp,o,--

The infinite correlation length at jS = jŜ  is related to the behavior of the 
specific magnetic susceptibility x(j8, h) = 5m(j8, h)/dh at /̂  = 0. In Chapter V, 
we will prove that for 0 < jS < jŜ  

«^o>^„o = <o^k>p„o = 0 for the model on Z^). For 0 < jS < jS„ <a;oCOfc>̂ ,o 
decays exponentially and x(j8,0) is finite. By contrast, at jS = jŜ , (COQCO )̂̂  Q 

decays Hke Ĥ H"̂ "̂̂  and x(Pc^^) is infinite. These conclusions are confirmed 
by Figure IV. 1, in which x(P, 0) is the slope at /z = 0 of the isotherm m(jS, h). 
The infinite slope at /? = 0 of the critical isotherm m{Pc,h) anticipates the 
onset of spontaneous magnetization for P > P^ (^(P, h) discontinuous at 
h = 0). By definition, a large value of liP.h) implies a dramatic response 
of the magnetization to a small change in external field. The divergence of 
the specific magnetic susceptibiHty at the critical point is one way in which 
the extreme sensitivity of the spin fluctuations to small perturbations in h 
shows up in the macroscopic behavior of the ferromagnet."^ 

This completes our qualitative discussion of the Ising model. The study 
of ferromagnetic models on Z begins in the next section. 

IV.3. Finite-Volume Gibbs States on Z 

The models will be defined on the symmetric intervals A = [jeT'. \j\ < N], 
where Nisdi non-negative integer. To each siteye A there is assigned a spin 
(Dj which takes the value 1 (spin-up) or — 1 (spin-down). The configuration 
space is the set Q^ of all sequences oj = {cOj'j'eA}; thus, Q^ = {1, — 1}"̂ . 
The coordinate functions on Q^, defined by Yj(co) = (Oj, are called the spin 
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random variables at the sites j . The presence of interactions distinguishes 
these models from the discrete ideal gas. The Hamiltonian or interaction 
energy of a spin configuration coe^^is defined as 

(4.3) //^ ,(«) = - 5 E J{i -j)o},<Oj - h ^ coj. 
^ iJeA jeA 

We assume that / is a non-negative function on Z which is symmetric; i.e., 
satisfies / ( / — j) = J(j — i) for each i andj. J is called ^ferromagnetic interac
tion."^ The parameter /z is a real number which gives the strength of an external 
magnetic field acting at each site in A. The term —/(/ —j)coiCOj in the first 
sum in (4.2) gives the interaction energy between the spins at sites / andy. 
The interaction strength / ( / —j) is translation invariant; i.e., / (( / -\- k) — 
(j + k)) — Ji} —j) for each k. The factor | is included in (4.3) because each 
pair ij with / f̂ 7 appears twice with equal weight / ( / — j) = J(j — /). The 
term —hcoj in the second sum in (4.3) gives the interaction energy between 
the external field and the spin at site j . An interaction / is said to have 
finite-range if J(k) equals 0 for all sufficiently large k. The range is the smallest 
number L such that J(k) = 0 whenever \k\ > L. 

We denote by ^(O^) the set of all subsets of Q^. Let p be the measure 
\d^ + |^_i and define TI^P^ to be the product measure on ^ ( Q A ) with 
identical one-dimensional marginals p. For each COGQ^, 7i\Pp{(o} equals 
2"'^l, where |A| = 2Â  + 1 is the number of sites in A. Let jS = l / r > 0 be 
the inverse absolute temperature. The ferromagnetic model is defined by 
the probabiHty measure P^^p^h on ^ ( ^ A ) which assigns to each {co}, coeQ.^, 
the probabiUty 

(4.4) PA.,,„{CO} = exp[-i?//^,,(co)]7r^P,{co} • ^ ^ ^ ^ ^ . 

Z(A, jS,h) is a normalization which is picked so that Yu(oeQ.js,PA,p,h{^} — 1 • 

Z{K,^,h)=\ exp[-|Si4,,(co)]7i^P,(Jco) = ^ exp[-^/f^, ,(a))]-J^. 

(4.5) 

For A a subset of fi!/^) we have 

The measure PA,/?,^ is called definite-volume Gibbs state on A. Z(A,P,h) is 
called the partition function.^ Here are some examples of ferromagnetic 
models. 

Example IV.3.1. (a) The Ising model on Z. Fix a number / > 0. Define 
/ ( / —j) to be ^ if |/ — y| = 1 and to be 0 if |/ — y'l =/= 1. This interaction, 
which couples only nearest neighbors, has range 1. 

*More general interactions are discussed in Appendix C.3. 



96 IV. Ferromagnetic Models on Z 

(b) The Curie- Weiss model. Fix a number / Q > -̂ Define 7(/ — j) to be 
/ Q / | A | if both / and 7 are in A and to be 0 if either / or j is not in A. This 
interaction, which depends on the set A, couples all pairs of spins in A with 
equal strength. The range tends to oo as |A| ^ oo. 

(c) Infinite-range models. Fix a number a > 1. Define /(O) = 0 and 
/ ( / — j) = \i — j\""" for all i^jmZ. Since a > 1, this interaction is summable: 
Zfcez^(^) < ^ [̂ ^̂  Section IV.5]. 

In order to exclude trivial cases, we assume that the interaction / ( / — j) 
in (4.3) is positive for at least one distinct pair i,j in A. The finite-volume 
Gibbs state P^^p^h has the same form as the reduced canonical ensemble 
for the discrete ideal gas, which is defined in (3.26). The difference is that 
the kinetic energy ^„(co) in (3.26) is replaced by the interaction energy 
^A,fi(<^)* While (3.26) can be written as a product measure (with identical 
one-dimensional marginals p^), PA,/?,/! cannot be written as a product mea
sure because of the positivity assumption on / . 

Let us examine the form of P^^p^u for different values of jS and h. As 
)S^0 , /A,/?,ft converges weakly to the product measure Tî Pp which gives 
equal probability to each a>. Thus, at j8 = 0 (infinite temperature) the magnet 
is completely random. For jS > 0 an alignment effect comes into play. Since 
PA,ii,h{^] > PA,p,h{^} if and only if HJ^J^{(D} < Hj^f^{(D}, the smaller the 
energy of a configuration, the more probable it is. Thus the most likely 
configurations are those that minimize H/^^ over Q^. These minimizing 
configurations, called ground states, are not hard to identify. Let a)+ (resp., 
a)_) be the configuration with cd+j= 1 (resp., co j= —1) for each ye A. 
If ^ is a subset of Z, then the interaction / is said to be irreducible on A if 
for each pair of sites ij in A either / ( / — 7) > 0 or there exists a finite sequence 
h = U h^ ' • • -> h-i^ h =7 iî  ̂  such that /(/«+! — 4) > 0, a = 1, 2, . . . , r — 1. 
The next result is a consequence of the non-negativity assumption on / 
[Problem IV.9.1]. 

Proposition IV.3.2. (a) For h> 0, co+ is the unique ground state. 
(b) For h < 0, co^ is the unique ground state. 
(c) For h = 0, the ground states include a)+ and (b_. These are the unique 

ground states if and only if J is irreducible on A. 

For /z > 0, the measures {PA,p,h''>P > ^} converge weakly to the unit 
point measure d^^ as jS ^ 00 [Problem IV.9.2]. That is, for /? > 0 and 0 
temperature the totally aligned ground state co+ is the only possible con
figuration. No randomness at all is left in the ferromagnet. A similar situation 
holds for h <0. 

The remarks in the previous paragraphs show that the finite-volume 
state PA,p,h defines a reasonable model for a ferromagnet. The form of 
PA,p,h can also be justified by means of an entropy principle. This principle 

* U„(co) = iXljf=i yf ^^^ ^^^ same form as H^o(co) but with J(i — 7) = 0 for all / ^j. 
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will be generalized later in the chapter. Given a probabihty measure P on 
J*(QJ, we define the energy in P to be U(\h;P) = ^^^H^j^(co)P(dco). 
Let (7niin and f/̂ ax denote the minimum and maximum, respectively, of 
Hj^jj((o) over Q^. Fix a number Ue(U^^^, ^max)- We prove that there exists 
a unique value jS such that the finite-volume Gibbs state PA,p,h is the most 
random probability measure P on ^ ( Q A ) which satisfies the energy con
straint U(A, h; P) = U. The randomness in P, relative to the fixed measure 
Tĉ Pp, is measured by the negative of the relative entropy 

Theorem IV.3.3.^ Let h real and Ue{U^,^, U^^x) be given. Then the following 
conclusions hold. 

(a) There exists a unique value j8 such that U(A,h;Pjs^ pj) = U. 
(b) /̂ ^V (^) attains its infimum over the set {Pe ^ ( Q ^ ) : t/(A, h; PA,p,h) = 

U} at the unique measure P = P^^^^h-

Proof, (a) Define c(0 = log JQ^exp(r//A,ft(<^))^A^p(^<^) for t real.* We 
have 

^ ^ J'QA-^A,f»Mexp[//fA,/,(^)]7^A-Pp(^^) 
jn^ exp[r//A,;,M]7rAi^p(^co) 

c\-P) = [ H^AcD)P^^,^,(dco) = C/(PA,,,.). 

JQA 

If V denotes the TTAPp-distribution of H^j^, then c(t) = log^^e^^'vidx). This 
is the free energy function of v, which was introduced in Section II.4. The 
support of V is a finite set which equals the range of HAJ,(CO), COGQ^. By 
Theorem ITS.2(a), for UE(U^^^, t/^ax), there exists a unique value P such 
ih^tc\-p)=U(A,h;P^^p^,)=U. 

(b) /i^^p/PA,,,,) = j o J - i S i / A , . M - logZ]PA,,,.(^co) = - i S t / - logZ, 
where Z = Z(A, jS, /?). If P ^ PA ^ ^ is any other measure in . /#(QA) for which 
U(A,h;P^^pJ =U, then 

= f log-^(co)P(dco) + 
J Q A ^ ^ A ' ^ ' ^ 

'•c(/) = logZ(A,- / , / i ) . 
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Since P f P^,/?,/.. 4 ^ ^ ^^P) is positive [Proposition 1.4.1(b)], and so li^^p^iP) 
> —pU—logZ. We conclude that 

li'^P^iP) > -pU-\ogZ = n'X(P^,p,,) 

with equality if and only if P = i \ ^ ^ . n 

Let S^(CD) be the random sum YjjeA Yj{co), called the (total) spin in A. 
The magnetization is defined as the expectation 

M(AJ,h) = 

(4.7) 
1 

= Z I co,.exp[-i8//^,,(co)]2 -|AL 

The next theorem states properties of M(A, jS, h) which will be proved in 
Theorem V.4.2. 

Theorem IV.3.4. (a) For each jS > 0, M(A, j8,0) = 0; M(A, jS,/?) w a non-
negative concave function of h>0 and a nondecreasing function of h real. 
It satisfies M(A, p.-h)= - M ( A , 5̂, h) and |M(A, P,h)\< |A|. 

(b) For each h>0, M(A, jS, h) is a non-negative, nondecreasing function 
ofp > 0. 

By (4.7), M(A,P,h) is a continuous function of/z. Since M(A, ^, 0) = 0, 
M(A, j ^ , /z) converges to 0 as /z -> 0 for awj; value of ^ > 0. 

We will study the magnetization per site in the limit as the symmetric 
intervals A expand to fill Z. This limit is called the infinite-volume limit or 
the thermodynamic limit and is denoted by AfZ . We define the specific 
magnetization as 

(4.8) m(P, h) = lim A M ( A , JS, h). 
Atz|A| 

Since M(A, p, 0) equals 0, m(jS, 0) equals 0. We will see that if the interaction 
is summable, then m{P,h) exists, m(P,+) = \imf^^Q+m(P,h) exists, and 
m(P, H-) is non-negative. The model is said to exhibit spontaneous mag
netization at inverse temperature P if m(jS, + ) > 0 = m(jS, 0). The quantities 
m(P,h) and m(jS, + ) are studied in the next two sections. 

IV.4. Spontaneous Magnetization for the Curie-Weiss 
Model 

In order to see how spontaneous magnetization can result from the micro
scopic alignment effects built into PA,p,h^ we first consider the Curie-Weiss 
model. ̂  This model is ideal for doing exact calculations, and the analysis 
of it involves interesting appHcations of large deviation theory. The Curie-
Weiss model is defined in Example IV.3.1(b). To ease the notation, we 
replace A by the set {1,2, . . . , n}, where w is a positive integer. All quantities 
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are indexed by n instead of by A. Thus the finite-volume Gibbs state is 
given by the formula 

(4.9) n , , , , M = exp[-i9//„,,(ft))]7r„P,M • ^ ^ ^ ^ , 

where Q„ = {1 , -1}" , 
n n 

COGQ„, 

Z(nJ,h) = Qxpl- pH„^f,(a))]n„Pp(d(o). 

We write the Hamiltonian as a function of the sum Z"=i (Oj/n: 

1 
Hn,h(^)= -n 

IU^JX , j^=i^; 

This simple form makes the model easy to handle. 
By (4.7) and (4.8), m(/?,/z) equals lim„^^ <5»„,^, ;„ where {-X,p,h 

denotes expectation with respect to P„,/j,/j. We prove that m(jS, + ) = 
Hm̂ _̂ o+ f^iP^^) equals 0 for all 0 < jS < /^^ and is positive for al l^ > f^^. 
Thus spontaneous magnetization occurs at all P > f^^. The number /^^ 
is called the critical inverse temperature for the Curie-Weiss model and is 
denoted by jS cw 

We will determine the hmit of {f(SJn)y^pj^ as n -^ oo for any function 
/e^([R). By doing this we will not only prove spontaneous magnetization 
but also determine the distribution limit of SJn as n^co. Let Q[^\dz) 
denote the distribution of the sum Z"=i ^jl^ with respect to the product 
measure n„P^. Then 

(4.10) 
/ 

n^ p 

n = I f[^h^]exp[-pH„Jco)]n„P^idco) ^ 
n,p,h Z{nJ,h) 

/(2)exp[n(i/?/oZ^ + phz)^Qi'Kdz) 1 
Z{n,p,hY 

and the partition function Z(«, j3, h) can be written as 

(4.11) Z{nJ,h) = explni^p/oz'+ phz)-\Ql,'\dz). 

By Theorem II.4.1, the distributions {Ql,^^;n = 1,2, . . .} have a large devia
tion property with a„ = n and entropy function Ip^\z) = sup,^^^{tz — c^it)} 
= sup,^H {tz — log cosh;}. A simple calculation shows that 

(4.12) /<i'(z) 
' ^ — ^ l o g ( l - z ) + ^ 4 - ^ l o g ( l + z ) f o r | 2 | < l , 

00 for Izl > 1. 
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We define /^,^(z) = -(^/oZ^ + ^hz) + /^^^(z). For large n (4.10) and 
(4.11) suggest the heuristic formula 

(4.13) (/f^-
n,li,h 

/(z)exp[-m^,^(z)](iz-
^^Qxp[-mp^h(z)]dz' 

According to this formula, the Hmit of if(SJn)}„p^f^ as « -^ oo should be 
determined by the points z at which the function /^,^(z) attains its infimum. 
In fact, this statement is true because of the large deviation result stated in 
Theorem II.7.2. We will locate the minimum points, then deduce the limit 
of < / ( 5 » >„,,,,. 

Minimum points of /̂ ^ (̂z) satisfy the equation 

(4.14) ^JiM^o or ^ / „ z + ^/, = (/U))'(z) = i l o g | ± i . 
dz 2 1 — z 

(I^^y(z) is an odd function of ze [— 1,1], is concave for z > 0, and has slope 
m^YiO) = 1 at z = 0. Also, |(/^^y(z)| -^ 00 as \z\ -^ 1. Since the slope of 
the affine function z -^ P/o^ + P^ is P^Q, the nature of the solutions of 
(4.14) depends on whether 0 < p/o ^ 1 or p/o > I. For 0 < p </Q^ and 
any real h, (4.14) has a unique solution z(P,h), and z(P,h) is the unique 
minimum point of /^,;,(z). As h-^0, z(P,h) -^z(jS,0) = 0 [Figure IV.3(a), 
(b)]. For p > / o " ^ Figures IV.3(c), (d) show the solutions of (4.14) for 
small h> 0 and for h = 0. For P > /Q^ and /? ^ 0, (4.14) has a unique 
solution z(P,h) that has the same sign as h, and z(P,h) is the unique mini
mum point of ip^h(z). For P > f^^ and /̂  = 0, the minimum points are the 
nonzero solutions z(jS, + ) and z(jS, - ) = -z{p, + ) of (4.14). As /z ̂  O"*", 
z{p,h) -> z{p, + ) > 0 and as /z ̂  0", z{p,h) -^ z(p, - ) < 0. 

Part (a) of the next theorem gives the limit of {f(SJn)y„pf^ as n^ oo. 
Part (b) shows that spontaneous magnetization occurs at all p > p^"^ = 
fo^. Part (c) states that SJn converges exponentially to m(P,h) for P > 0, 
h ^ 0 and 0 < P < /o^, h = 0 but that exponential convergence to a constant 
fails for P > /^^ and h = 0, 

Theorem IV.4.1. (a) Let f be a bounded continuous function from R to R. 
Then 

\\mif{SJn)\p^h 

^ {f{z{^,h)) forP>0,hi^OandO<P</o\h = 0, 

lifi^iP, +)) + i/(z()?, -)) for p > /,-\ h = 0, 
(4.15) 

(b) Let m(P,h) be the specific magnetization for the Curie-Weiss model 
Then m(p, h) equals z(P, h) for p > 0, h i= 0 and 0 < p < /o\ h = 0, and 

for each choice of sign 

(4.16) mip, ± ) = hm mip,h) = i , . ^ , , „ . o ^ ^ - i 
/.-o* [ziP, ± ) =/= 0 far P> / o \ 
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(c) ^'-^in(p,h) forp>0,hi=0 
andO<P</o\h 

n 
9 1 kb^,p,^ldz) + i(5,(^,-)(^z) for p > /o\ h = 0.̂  

Proof, (a) Denote by Q„j^h the P„^ ^j-distribution of SJn, According to 
(4.10H4.11), if .4 is a Borel subset of R, then Q^^^j^{A] equals 

exp[^(ijS/oZ^+i8/^z)]el^V^) ^ 

By Theorem 11.7.2(a), {2«,/3,/i} has a large deviation property with a„ = n 
and entropy function 

h,h(^) = h,h(^) - inf ipA^) where /^,,(z) = /^i)(z) - (i^g/oZ^ + phz), 
zeU 

(4.17) 

For P > 0,h=/='0 and 0 < jS < / o ~ \ ^ = 0, let ^ be any closed set which does 
not contain the unique minimum point z(jS, h) of /^^. By Theorem n.7.2(b), 
there exists a number N = N(K) > 0 such that 

(4.18) Qn,p,h{^} ^ ^""^ for all sufficiently large n. 

This yields the first line of (4.15). For P > /^^ and h = 0,i{Kis the closed 
set 

{zeU:\z- z(P, + ) | > £ and |z - z(jS, - ) | > s} where 0 < s < z(P, +) , 

then for all sufficiently large n, Qn,p,o{^) ^ ^'"^ ^i" some N = N(K) > 0. 
This yields the second line of (4.15) since the measures {Qn,p,o} are symmetric. 

(b) The range of SJn is contained in the interval [—1,1]. If/is a function 
in ^([R) such that/(x) = x for — 1 < x < 1, then part (b) follows from part 
(a) and the behavior of z(jS, h) as h -^ 0^ and h^0~. 

(c) For jS > 0, /? :f 0 and 0 < iS < /o\ h = 0, m{P, h) equals z(jS, h). The 
bound (4.18) implies that SJn converges exponentially to m(P,h). The con
vergence in distribution for P > f^^ and /? = 0 follows from the second hne 
of (4.15) since/is an arbitrary function in ^{U). u 

Remark IV.4.2. By (4.11) and Theorem n.7.3(a) 

(4.19) limilogZ(^,iS,/2) = sup{ii8/oZ^ + phz - I^^Kz)}. 

The function \jj{P,h) = — jS~Mim„_^«"MogZ(«, jS,/z) is called the specific 
Gibbsfree energy for the Curie-Weiss model. The hmit (4.19) can be derived 
without using large deviations [see Problem IV.9.4]. In ElHs and Newman 
(1978b), the Hmit (4.15) is derived without using large deviations. 

* The second line of part (c) means that SJn converges in distribution to a random variable 
distributed by i^^(/j. + ) + i^m(/j,-)-



IV.5. Spontaneous Magnetization for General Ferromagnets on Z 103 

Let us consider the form of the entropy function /^,^(z) defined in (4.17). 
For P >0,hi=0 and 0 < ^ < /o"^ h = 0, Ip^hiz) is a convex function on IR with 
a unique minimum point at z(P,h) (Ipj^(z(P,h)) = 0). However, for P > /^^ 
and h = 0, I^^hiz) is not a convex function. It has minimum points at z(jS, -f) 
and z(j8, —) and is positive for all other values of z. Another example of a 
nonconvex entropy function was given in Example II.6.2. 

This completes our discussion of spontaneous magnetization for the 
Curie-Weiss model. Other aspects of the model will be studied in Section V.9. 

IV.5. Spontaneous Magnetization for General 
Ferromagnets on Z 

In the Curie-Weiss model the interaction J{i — j) equals / o / | ^ | for each 
/ and j in A. Thus the interaction depends on the set A. We now consider 
other finite-volume Gibbs states P^^^h on symmetric intervals A of Z. The 
interactions / are assumed to satisfy the following hypotheses*: / is inde
pendent of A, / is nonnegative on Z {ferromagnetic) and is not identically 
zero, / is symmetric, and YjkeiJi^) < ^ - This summabiHty hypothesis 
restricts the interaction strength between distant spins. J is called a summable 
ferromagnetic interaction on Z and the corresponding spin models are called 
general ferromagnets on Z. These models cannot be treated by the large 
deviation technique which was used in the Curie-Weiss case. Less direct 
methods are required. In this section, we illustrate one of the most powerful 
of these methods, which is convexity. The main fact about general ferro
magnets on Z is that unless the interaction has infinite range, there is no 
spontaneous magnetization. The behavior of models on Z contrasts sharply 
with the behavior of models on Z^, D >1. The latter exhibit spontaneous 
magnetization for all nontrivial interactions, regardless of whether they have 
finite range or infinite range [Theorem V.5.1]. 

A useful function for studying the magnetization is the Gibbs free energy. 
It is defined as 

(4.20) ^ ( A , p , h ) = - r ' logZ(A,^ ,h\ 

where Z(A,p,h) = ^ n t\p\^--I^H/^ i,(a))^nj^Pp(do}). ^(A,p,h) has a simple 
relation to the magnetization: 

d'i'iA, p, h) _ _ g-i 5Z(A, p,h) 1 
dh "^ dh Z(AJ,h) 

(4.21) 
= E Z co,.exp[-jgJf^.,(a;)]2-l^l / = M(\,li,h). 

Our proofs of the existence and properties of the specific magnetization 
m(P,h) = \imjs^>^^\A\~'^M(A,P,h) will be based on the function 

* More general interactions are discussed in Appendix C.3. 
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(4.22) il/ip,h) = \imj]-^'iA,p,h), 
Atz | A | 

called the specific Gibbs free energy. The existence of the limit (4.22) for a 
summable interaction / is proved in Appendix D.l. Another proof based on 
level-3 large deviations is given in Theorem IV.7.3 below. 

There is a degenerate case of the specific Gibbs free energy that is worth 
pointing out. If the interaction / is identically zero, then Z(A, j?, h) = 
jn^^W(PhY^jeACOj)7i^Pp(dco) and HP,h) = - r'^ogi^,^_,^eP'^p(dx) = 
— ̂ "Mogcosh^/z. Thus ^{P,h) equals —^ ^c^i^h), where Cp{t) is the free 
energy function of the measure p. Properties of the specific Gibbs free energy 
are proved next. 

Theorem IV.5.1. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For each i? > 0, the specific Gibbs free energy il/(p,h) is a concave, 
even function ofh real and is a continuously differentiable function ofh =/= 0. 

(b) For P > 0 and h real, the specific magnetization m{P,h) = lim >̂[̂ 2 
\A\-^M(AJ,h) exists. For p > 0 andh i= 0, m(P,h) = -8\l/(p,h)/dh. 

Proof, (a) Concavity is preserved under pointwise limits. Therefore the 
concavity of (/̂ (jS, h) will follow from the concavity of ^(A, p, h). The latter 
is equivalent to the inequaUty 

(4.23) Z{h,p,Xh,^{\-X)h2)<Z{Kp,h,Y'Z{Kp,h2y-' 

for any h^ and ^2 real and 0 < /I < 1. The left-hand side equals 

(4.24) 

exp ipXh^ X <̂ j )exp( j?(l - X)h2 Z ^JA 

and so (4.23) follows from Holder's inequahty* appHed to the functions 
Qxp(pXh^YjjeA^j) ^^^ exp(j?(l — X)h2YjjeA^j)' Thc cvcnness of il/(P,-) 
follows from the fact that i/^ _ (̂co) = H^j^( — oj). 

(b) The following proof is due to Preston (1974a). The Gibbs free energy 
is related to the magnetization by the formula 

(4.25) ^ ( ^ ( A , P, h) - ^(A, p, 0)) = 
A 

-^M(AJ,s)ds, 
o|A| 

which is equivalent to (4.21). We would like to prove the existence of the 
specific magnetization by passing to the limit A j Z in (4.25). The left-hand 
side becomes il/(P,h) — i/̂ (jS, 0), but care is needed in handling the integral 
on the right. Consider h>0(h<Ois handled similarly). Since 0 < M(A, P, h) 

* Corollary VI.4.2 with;? = l/A, q = 1/(1 - X). 
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< |A|, there exists an infinite subsequence {A'} of {A} such that m(P,h) = 
lim^.|2 \A'\~^M(A\l],h) exists for every rational number h>0. M(A', j8,0) 
equals 0 and thus m(jS, 0) equals 0. Since M(A\P,h) is a concave function 
of /z > 0, a standard convexity result implies that m(P,h) exists for all /z > 0 
[Theorem VL3.3(a)]. The limit m(jS,/z) is concave for A > 0 and hence 
is continuous for /z > 0 [Theorem VI.3.1]. By the Lebesgue dominated 
convergence theorem, m{P,h) satisfies 

(4.26) Hli,h)-Hm=-
h 

m(P,s)ds. 
0 

The preceding argument may be repeated for the functions {| A |" ̂  M(A, j?, /?)}, 
where {A} is an arbitrary infinite subsequence of {A}. This leads to a Umit 
function, say fn{P, h), which satisfies m(jS, 0) = 0 as well as equation (4.26). 
Therefore, m(P,h) equals m{P,h). We conclude that the limit lim^̂ ĵ ^ 
|A|~^M(A, jS,/z) exists along the entire sequence {A} and equals m(P,h). 
Finally, (4.26) impUes that il/(P,h) is a continuously differentiable function 
of h 4^0 and dil/(p,h)/dh = -m{p,h). u 

The specific Gibbs free energy (/̂ (jS, h) need not be differentiable at /? = 0. 
The relationship between spontaneous magnetization and the existence of 
dil/(P,0)/8h is made explicit in the following theorem. Recall that spon
taneous magnetization is said to occur at inverse temperature jS if m(j?, + ) = 
lim;ĵ o+ f^(P^h) is positive. 

Theorem IV.5.2.* Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For li>0 and h =1= 0, m(p,h) = -dil/(p,h)/dh. 
(b) For each jS > 0, m(jS, 0) = 0; m{P,h) is a non-negative, concave func

tion ofh>0 and a nondecreasing function ofh real. It satisfies m(jS, —h) — 
-m(p,h)and\m{p,h)\ < 1. 

(c) For each h>0, m(jS, h) is a non-negative, nondecreasing function of 
p>o. 

(d) For each jS > 0, the limits m(jS, + ) = lim;j_o+ m(P,h) and m(P, —) = 
lim^^o- ^(P->h) exist and m(jS, —) = —m(P, + ) ; m(P, + ) is a non-negative, 
nondecreasing function of P > 0. 

(e) For each P > 0, 

(4.27) miP, + ) = - ^ > m(P,0) = 0 > m(P, - ) = - ^ . 

Thus spontaneous magnetization occurs at P if and only if ^{P,h) is not 
differentiable at h = 0. 

These properties of m(P,h) may be read from Figure IV. 1. Part (a) of 

* Other properties of m{p,h) are derived in Problem V.13.1. 
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Theorem IV.5.2 was proved in Theorem IV.5.1. The properties listed in 
parts (b) and (c) were stated for M(A,j8,/z) in Theorem IV.3.4 and are pre
served under passage to the limit AfZ . Since il/(P,h) is concave for h real 
and differentiable for h =/=0, d^jdh is nonincreasing for /i ^ 0. Hence m(jS, + ) 
= lim^^o+ f^(P^h) = — Hm _̂o+ dil/(p,h)/dh exists and equals the right-hand 
derivative of —ij/ at h = 0 ( —5i/^(j8,0)/5A^); similarly for m(li, —). Since 
for each /z > 0, m(P,h) is a non-negative, nondecreasing function of jS > 0, 
the same properties hold as for m(P, +). This proves part (d) as well as 
(4.27). Since HP.h) is differentiable at /z = 0 if and only if dil/(P,0)/dh-' = 
dil/(P, 0)/dh~, we obtain the last assertion in part (e). 

According to part (e), spontaneous magnetization corresponds to a dis
continuity in the first-order derivative dil//dh. Hence it is known as a first-
order phase transition. 

Spontaneous magnetization indicates a strong cooperation among the 
individual spins, and it occurs only if the aHgnment effects built into the 
fmite-volume Gibbs states persist in the Hmit A f Z. Thus, one might expect 
spontaneous magnetization to occur only if distant spins have a suitably 
strong interaction and the temperature is sufficiently low. The next theorem 
justifies this intuition. 

Theorem IV.5.3. Let J be a summable ferromagnetic interaction on Z and define 
the positive number /Q = XfceZ'̂ C )̂- Define the critical inverse temperature 

l], = sup{P>0:m(p,+) = 0}. 

Then the following conclusions hold. 
(a) Pc is well-defined and J^Q^ < PC^ ^ > l^ particular Pc> 0. 
(b) P,= co ifikezWik) < 00. 
(c) ft < 00 ifJ{k) = k-^ (ki^O)orifJ>0 and J(k) - \k\-\ some 1 < 

a < 2 . * 
(d) For 0 < P < ft, il/ip,h) is differentiable at h = 0 and m(p, + ) = 0. 

For P > Pc, the differentiability fails and spontaneous magnetization occurs: 

Comments on proof (a) Since m(P, + ) is a non-negative, nondecreasing 
function of jS > 0, ft is well-defined. Let m^^{P,h) denote the specific 
magnetization for the Curie-Weiss model with interaction /QI\I\\, where 
/ o equals YuksnJ^^)' Pearce (1981) shows that for jS > 0 and /? > 0, m(j?, h) < 
m'^'^iP^h). Since m^^(ft-1-) = lim.^o-^^'^(ft/^) is positive for P > fo' 
[Theorem IV.4.1(b)], it follows that ft > / Q ^ Pearce's method is outlined 
in Problem IV.9.7.^ 

(b), (c) These parts are discussed below. 

*J(k) ~ \k\-' means lim|fc|_^ [log/(^)/log|/t|] = - a . 

file:///k/-/
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(d) For 0 < P < P„ m(j?, + ) equals 0 and so \l/{P,h) is differentiable at 
h = 0.¥ox P> /?„ m{P, + ) is positive and (4.28) follows from (4.27).^ 

We show a special case of part (b) by proving that p^ equals oo for the 
Ising model. 

Example IV.5.4. For the Ising model, 

(4.29) Z{KP,h)= \ tx^U/Y Cojcoj^i+Ph f co^n^P^idoj). 
JQ^ V J=-N j=-N ) 

Z{K, jS, K) can be expressed in terms of a matrix product. For ai,a2G{l, —1}, 
define B{(i^,(i2) = i^wLP^/^i^i + Ph(ix^ + a2)/2] and let B = BpJ^ be the 
2 x 2 symmetric matrix 

^B(hl) B(l,-l) \ 

^B(-l,l) B(-h-l)J' 

B is called the transfer matrix of the model. A equals {jeZ: \j\ < N} and 

Z(AJ,h) = - X a(co_^)B(co ) ' " B(a)^_^,cOj^)a(cD^) 
^ {coj=±l;jeA} 

^1^ Z a{cD_^)B^^{(D_^,o:)j^)a{co^), 

(4.30) 

where a(x) = exp(|jS/zx). The larger eigenvalue of B^j^ is 

^(Bp,h) = le^^ [coshi8/z + (sinh^ jS/z + ^"^^Z)^/^]. 

By Lemma IX.4.1(d) (Perron-Frobenius) 

(4.31) -mP,h) = lim4rlogZ(A,iS,/?) = logA(5^,,). 
Atz|A| 

For each jS > 0, il/(P, h) is a real analytic function of real h. Hence 5i/̂ (jS, 0)1 dh 
exists for each ^ > 0 and jŜ  equals oo. This calculation can be generalized 
to any finite-range interaction, and as with the Ising model, one finds that 
Pc equals oo [Ruelle (1969, Section 5.6)]. See Appendix C.6 for details. 

According to part (b) of Theorem IY.5.3, jŜ  equals oo not just for interac
tions of finite range but whenever Zkez |^|«^(^) is finite. A method of proof 
is outhned in Problem IV.9.8. This leaves the infinite-range case where 
Yuk€zJ(h)  is finite but Y,kez \^J{k) diverges. It follows from Dyson (1969a) 
that Pc is finite if / is positive and J{k) ^ \k\~'' for some 1 < a < 2. Frohlich 
and Spencer (1982a) proved that P^ is finite also in the borderUne case J{k) = 
k~^ (k =/= 0). These proofs of spontaneous magnetization are difficult and 
are omitted. ̂ ^ 

Finally, we study convergence properties of the random variables *S'̂ /|A|, 
which define the spin per site in A. By (4.7), the expectation of 5 A / | ^ | with 
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respect to the finite-volume Gibbs state PA,p,h gives the magnetization per 
site, M(A, j8, /?)/| A|. By analogy with the Curie-Weiss model, we expect that 
as A t Z, SJ\A\ converges exponentially to the specific magnetization m(P, h) 
for all j8 > 0, /? :f 0, and 0 < jS < jS,, /? = 0. 

Theorem IV.5.5. Let J be a summable ferromagnetic interaction on Z. Then 
there exists a constant m such that 

(4.32) 5A/| A | - ^ m with respect to {PA,^, J 

if and only if\jj{P,h) is differentiable with respect to h. In this case m equals 
m(P,h) = -dil/(li,h)/dh. Thus (4.32) holds for a// jS > 0, /? ^ 0 and for all 
0<P<P,, h = 0; (4.32) fails for P > ji, and h = 0 [Theorems IV.5.1 and 
IV.5.3]. 

Proof According to Section II.6, the exponential convergence can be proved 
by considering the free energy function Cpjj(t) of the sequence {S^}. For 
t real, c^^^it) = lim^|2CA,^,ft(0, where 

^A,p,h{t) = 777 log ^^PUSA(0j)'}PA,p,h(dcD) 
1^1 • ' " A 

\ l o g I txpl-pH^^.ioj) + tS^(oj)]n^P^(doj) ': ^ 
|A| Ja^ Av .J A pv . ZiAJ,hy 

For each coeQ^, 

-PH^CD) + tS^ica) = I ^ J{i -j)coiCOj + (ph + 0 Z <0j 
^ iJeA jsA 

Hence 

1 .ZjAJ^h + t/P) 

= -i8T|rWA,iS, /^ + t/p) - ^(A,i?,/z)] 
|A| 

and Cp^t,(t) = -j8[i/^(j?,/z + t/P) - il/(P,h)]. By Theorem II.6.3, there exists 
a constant m such that ^A/| A| - ^ m if and only if Cp^it) is differentiable at 
r = 0. In this case, m equals c^,/,(0). But Cp^iO) exists if and only ifdil/(P, h)/dh 
exists, and then c^^(O) = —dil/(P,h)/dh. This completes the proof. n 

Theorem IV.5.5 imphes that spontaneous magnetization occurs at P if 
and only if ^SA/IAI fails to converge exponentially to m(jS, 0) = 0. For this 
reason, we are justified in calling spontaneous magnetization a level-l phase 
transition. Let us interpret the level-1 phase transition in terms of entropy. 
According to the proof of Theorem IV.5.5, the free energy function of the 
sequence {S^} with respect to {^A,^,;,} is 
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(4.33) c^.,(0 = -li[_ikiP,h + tIP) - .A()S,/!)]. 

For 0 < P < P, and any h real, Cpj,{t) is differentiable for all / real. Hence 
by Theorem II.6.1, the /\_^ ,,-distributions of 5 /̂1 A| have a large deviation 
property with a^ = | A| = 2N + 1 and entropy function 

/^,,(z) = sup {tz - cp,,(0} = sup {tz + mP,h + t/P)} - il/ip,h) 

(4.34) 
= sup {Pxz + pil/ip,x)} - iphz + piJ/{P,h}'\. 

xeU 

Ip^hiz) is a convex function and it attains its infimum of 0 at the unique 
point c'pj^ifi) = m{P, h) [Theorem II.6.3]. The situation is different for P > Pc-
Let us focus on the case h = 0. The function c^,o(0 is not differentiable at 
t = 0, and Ip^o(z) does not attain its infimum at a unique point. The theory 
of Legendre-Fenchel transforms shows that /^,o(^) attains its infimum on 
the whole interval 

= [m()8,-) ,m(iS,+)], 

where m(jS, + ) is the spontaneous magnetization [Theorem VII.2.1(g)]. 
According to part (b) of Theorem II.6.1, 

limsup^—-\ogPj^pQ{SJ\A\eK} < —inf/^o(^) for each closed set Â  in (R. 

Thus, if ^ is disjoint from the interval [m(jS, —),m(P, + ) ] , then the prob
abilities Pjs^p^Q{SJ\A\eK} decay exponentially as AfZ . However, since 
ĉ  o(0 fails to be differentiable at ? = 0, we are unable to apply part (c) of 
Theorem II.6.1 to conclude that the P^^ o'distributions of SJ\A\ have a 
large deviation property. If the large deviation property does hold with 
some entropy function /(z), then /^,o(^) equals the closed convex hull of/(z) 
[see Problem VII.8.2]. 

This completes our discussion of finite-volume Gibbs states. In the next 
section, we consider probabihty measures which describe the infinite-volume 
ferromagnet. 

IV.6. Infinite-Volume Gibbs States and Phase Transitions 

The finite-volume Gibbs states studied in the previous three sections are 
probability measures on the finite sets Q^ = {1, — 1}^. In this section we 
study states of general ferromagnets on Z. The states are probability measures 
on the infinite-volume configuration space Q = {1, — 1}^. These measures 
are obtained from the finite-volume Gibbs states by weak Umits (AfZ). 
Equivalent notions of infinite-volume measures are discussed in Appendix C. 

The set {1, — 1} is topologized by the discrete topology and the set Q by 



110 IV. Ferromagnetic Models on / 

the product topology. According to Tychonoff's theorem, Q is compact. 
The (7-field generated by the open sets of the product topology is called the 
Borel cr-field of Q and is denoted by ^(Q). ^(Q) coincides with the cr-field 
generated by the cylinder sets of Q [Propositions A.3.2 and A.3.5(b)]. Let 
Ji{Q) be the set of probability measures on ^(Q) and JiX^) the subset of 
Ji{QL) consisting of strictly stationary probability measures. Strict statio-
narity is a natural condition since most of the infinite-volume Gibbs states 
which we obtain are strictly stationary with respect to spatial translations, 
or (as it is usually said) are translation invariant. A translation invariant, 
infinite-volume Gibbs state is called a phase. 

Throughout this section, we fix a summable ferromagnetic interaction 
/ on Z. The finite-volume Gibbs state iA,^,^ defined in Section IV.3 will be 
modified by means of external conditions. The measure P^^^^h models a 
ferromagnet on the set A = {jeT\ \j\ < N), where Â  is a non-negative 
integer. External conditions correspond physically to the situation where 
an experimenter prepares the complement of A, A"" = Z\A, by fixing a 
configuration on that set. Let co be a point in the set Q ĉ = {1, —1}^'. 
The coordinates cbj.jeA', denote the values of the fixed external spins at 
the sites of A^ When we want to indicate the dependence of cb upon A, 
we will write co(A). We define the Hamiltonian of a configuration coeQ^ = 
{ 1 , - 1 } ^ to be* 

-^iJeA ieA\ :^^c J 
(4.35) 

Thus each a)j,jeA\ interacts with the spins in A through the given interac
tion. Compare //A,;I,CO with the Hamiltonian H^j, in (4.3). The external 
condition cb changes i/^,;, by altering the external field acting at each site 
/G A from the value h to the value hi = h -\- Y^j^j^cJ{i —j)cby Since / is 
summable, hi is well-defined. The finite-volume Gibbs state on A with ex
ternal condition c3 is defined to be the probability measure PA,p,h,(o ^^ ^ ( ^ A ) 
which assigns to each {co}, COGQ^, the probability 

(4.36) PA.,,,,5{CO} = e'^P[-)^^A.'..s(«)]^A^p{«>} - ^ ( X X ^ ' 
In this formula, j8 is positive and Z(A,P,h,d)) is the normalization 
JQ^exp[ —JS//A,/I,C5(<^)]^A^P(^^)- There are two important choices of c5. If 
each ojj = 1 (resp., —1), then the external condition is called plus (resp., 
minus) and the measure is written as PA,p,h,+ (resp., PA,p,h,-)' Expectation 
with respect to PA,p,h,(o will be denoted by <->A,^,;,,C5. 

We have defined external conditions by means of points co in Q^^ • ^^^ can 
allow other external conditions such Sisfree (each c5y = 0 in (4.35)) or periodic 

'*We omit from (4.35) the interaction between d>,- and cbj and between h and cD,-. These 
interactions are constants independent of co. If included in (4.35), they would cancel out in 
(4.36). 
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(one modifies the definition of / ( / —J)). These external conditions are useful 
in certain applications. However, restricting external conditions to be points 
in Q ĉ allows for a cleaner formulation of infinite-volume Gibbs states and 
facilitates the proof of the equivalence between these states and other notions 
of infinite-volume measures [Appendix C]. 

Let ^(Q) be the space of bounded, continuous, real-valued functions on 
Q with the supremum norm. We say that a sequence {P„;« = 1,2, . . . } in 
J^(Q) converges weakly to PeJ^(Q), and write P„ => P or P = w-lim^^^o ̂ «? 
if lafdPn^'^afdP for e v e r y / G ^ ( Q ) . If a weak limit P exists, then it is 
unique. With respect to weak convergence, Jf{Q) is a compact metric space 
[Theorem A. 11.2]. 

Let {P„; w = 1,2, . . . } be an arbitrary sequence in Ji{Q). We call a subset 
y of ^(Q) a convergence-determining class if the existence of the hmit 
Wm^^^l^fdP^ for e a c h / G ^ implies that {P„;« = 1,2, . . . } converges 
weakly to some probability measure P. Since Q is compact, ^(Q) itself is a 
convergence-determining class because of the Riesz representation theorem. 
Other well-known examples are the subset consisting of all product functions 
/ ( ^ ) = OieB^^i f̂ ^ P ̂  finite subset of Z (define /(co) = 1 if 5 is empty) 
and the subset consisting of all functions/(co) = %i(co) for Z a cyhnder set 
in Q. These examples are discussed in Theorem A. 11.3. Another useful 
convergence-determining class is given in the next lemma. 

Lemma IV.6.L For B a nonempty finite subset of Z, define fsioj) = 
YlieBLii^ + cOi)^. For B the empty set, define fg(co) = 1. Then the subset of 
^(Q) consisting of all functions f^ioj) is a convergence-determining class. 

Proof. The hmit hm^^^^ l^fudPn exists for any finite set B if and only if the 
limit lim„_oo ja/^^n exists for all functions/(a;) = OieB^^n where/(co) = 1 
if P is empty. Hence the lemma is a consequence of Theorem A. 11.3(a). n 

In order to define infinite-volume Gibbs states, we extend each finite-
volume Gibbs state P/^j^h^^ to a probabihty measure on ^(Q). Let J5^^ 
denote the set {coeQ:cOj = cbj for eachyeA''} and n^ the projection of Q 
onto Q^ defined by (nj^co)^ = cô -, ieA. We define the extension PA,p,h,co of 
the finite-volume Gibbs state by setting 

PA,p,h,co{^} = PA,li,hA^A(^ n P^,s)} = Z PA,p,h,co{^} 

(4.37) 

for A a Borel subset of Q. The right-hand side of (4.37) is given by (4.36). 
Since the support of P ^ ^ ^ ^ is the set B^^-, the extension is compatible with 
the external condition. We note a useful property of PA,p,h,cb- L e t / b e a 
function in ^(Q) such that the value /(co) depends on only finitely many 
coordinates of co; let these coordinates be cOj- , . . . , cOj . If A is any symmetric 
interval containing the sites i^, . . . , i^, then the restriction o f / t o the co
ordinates {cOi'JeA} defines a function in ^ (OA)- We denote the restriction 
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by the same symbol / ; if co = n^cb, CDSQ.^ and coeQ, then /(co) =/(co). 
It is easy to check [Problem IV.9.9] that 

(4.38) 
"A 

An example of such a function / is the function fg in the previous lemma. 
From now on, we will denote the extension FAj,h,z by the same symbol 
P\,^,h,a> ^sed for the original measure. The extension will be called a finite-
volume Gibbs state. 

Since the space Ji{0) is compact, any sequence of finite-volume Gibbs 
states {P^ ^;, 53(̂ ); A t Z } with arbitrary external conditions {co(A)} has a 
convergent subsequence {iA',̂ ,;,,c5(A')}- Each of these weak limits is an infinite-
volume state for the given interaction. It is natural to investigate the depen
dence of the limits upon the choice of external conditions. For different 
values of ^ and h several situations occur: there is a unique weak limit 
regardless of the choice of external conditions and the limit is translation 
invariant; the weak Umit depends upon the choice of external conditions and 
is either translation invariant or not. In the second situation, a phase transi
tion is said to occur. We shall call this a level-3 phase transition in order to 
distinguish it from the level-1 phase transition which is spontaneous magnet
ization. 

Consider the set of Umits 

(4.39) ^^%={PG^(Q):P=M;-limP^,^, , ,^(^,}, 
A't2 

where {A'} is any increasing sequence of symmetric intervals whose union 
is Z and co(A') is any external condition for A'. Define ^ ^ j , to be the closed 
convex hull of ̂ ^̂ ft. This is the intersection of all closed convex subsets of 
J^(Q) containing ^^;,. Equivalently, ^^^^ is the closure, with respect to weak 
convergence, of the set of convex combinations 

(4.40) \peJ^(Q):P= f ^jPp^j> 0,t ^j= ^^^J^^PA 

Each measure P 6 '^^;, is called an infinite-volume Gibbs state. A level-3 phase 
transition is said to occur if ^^,;, consists of more than one measure. 

The passage from ^p^^ to ̂ ^ ;, has an interesting physical interpretation. 
We denote the limit P in (4.39) by Pp,h,{(aiA')}' This measure corresponds 
physically to the situation where an experimenter is sure that the external 
condition for each A' is co(A'). The experimenter may also be uncertain 
about the external conditions. Such an uncertainty is represented by the 
convex combination P in (4.40), where Ai, /l2» . .., 1^ are the probabihties 
of r different choices. 

Before proving properties of infinite-volume Gibbs states, we extend 
the definition of Gibbs free energy to the state PA,p,h,a> with external con
dition (b. Recall that for the finite-volume Gibbs state PA,^,;, without external 
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condition, we defined '¥(AJ,h) = -r'\ogZ(A,p,h), where Z(AJ,h) = 
^a^Qxp\_ — PHp f^((o)~\nj^Pp(dco), If Xfcez«^(^) < ^» then the specific Gibbs 
free energy il/(P,h) = lim^^^\A\~'^^^(A,p,h) exists [Appendix D. l ] . Given 
an external condition co = d>(A), we define the Gibbs free energy in the state 
^A,̂ ,/,,c5 by the formula 

'¥(AJ,h,a))= -li-HogZ(AJ,h,d)) 

= - r ' l o g I exp[-i57f^,,,s(co)]7r^P,(^co). 

The next lemma shows that for any sequence of external conditions {a3(A); 
A^Z} the limit lim^>^2|A|"^^(A, jS,/z,c5(A)) exists and is independent of 
the sequence chosen. 

Lemma IV.6.2. Let J be a summable ferromagnetic interaction on Z. Then for 
j8 > 0 andh real, Hm^>|̂ 21 |̂ ~^^(^? P^ ?̂ ^ (^ ) ) exists and is independent of the 
choice of{cb{A)]. The limit equals lim^^^ |^|~^^(^?i5?^) = ^iP^h). 

Proof We use the comparison lemma. Lemma IL7.4. For any probabiHty 
measure P on ^ ( ^ A ) ^^^ real-valued functions/and g on Q^ 

log IIZ-^lloo, e^dP - log \ e^dP\ 
JQA I 

where \~\^ denotes the maximum over Q^. It follows that 

(4.41) ^ |^(A,)^, /z ,d3) - ^{AJ,h)\ < J ^ | | 7 / A , . , C 5 - ^A,.||oo. 

Since \l/{P,h) = \im^^^\A\~^m{A,P,h) exists, it suffices to prove that 
|A|"^||//A,f,,c5 — ^A,;,||oo ~^^ ^s AfZ . For any 8 > 0, there exists a positive 
integer N^ so that Yj\k\>N^J(h) < £• For any coe^^ 

-^,\H^,HAO:>) - //A,,(CO)| < ^ I Z J{i -J) < -^Y^Jii -J) + ,̂ 
| A | \A\ieAjeA<^ |A | 

(4.42) 

where Z ' denotes the sum over all ieA andyeA^ such that \i — j \ < N^. 
Since Z ' / ( / — 7) < max^^^ (/(/:)) • 2N^, the proof is complete. n 

We recall from Theorems IV.5.1 and IV.5.3(d) that for all j8 > 0, /? ^ 0 
and 0 < ^ < jŜ , h = 0, dil/(l^,h)/dh exists and equals minus the specific 
magnetization m{P,h) = \im^f^\A\~^M(A,P,h). M(A,jS,/?) is the magneti
zation in the finite-volume Gibbs state i\,^,;, without external condition. 
This relation will be extended to the states {PA,p,h,co} by means of the fol
lowing useful convexity result. 
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Lemma IV.6.3. Let {f„;n = 1,2, ...} be a sequence of convex functions on 
an open interval A of U such that f{t) = lim„^^ f(t) exists for every teA. 
If each f and fare differ entiable at some point t^GA, then lim^^o^ fnih) exists 
and equals f'(to). 

Proof DermcgM = (/.(O -/„(^o))/(^ " ^o)and^(0 = (/(/) -fihMt - h) 
for teA, t ^ tQ. Then QniO^diO since by hypothesis/^ ^ / o n A. The 
convexity of f implies that g^(s) <fn(to) < QniO for s < tQ < t {s,teA)^ 
Taking « -^ oo, we see that 

(4.43) sup g(s) < liminff;{t^) < limsupf;,(to) < ^ inf g(t). 
{seA:s<tQ} n-^oo n-^co {teA:t>tQ} 

As the pointwise limit of convex functions, / is convex, and so /'(^o) = 
^^P{seA:s<t^}g(s) = ^^^{teA:t>t^}g(0' Inscrtiug thls iu (4.43) completes the 
proof. D 

Given an external condition w = d)(A), define M(A,P,h,a)) = Y,ieA 
^^i)\,(i,h,(b- This sum is the magnetization in the finite-volume Gibbs state 
P\,fi,h,cb- By the same calculation as in (4.21), d^^(A,P,h,d))/dh equals 
— M(A,P,h,d)), and as in the proof of Theorem IV.5.1, ^{A,p,h,(b) is a 
concave function of h real. Since \A\~^'^{A,P,h,(b{A))-^\l/{^,h) and 
dil/(P,h)/dh exists for jS > 0, /? =f 0 and 0 < jS < i?,, /z = 0, Lemma IV.6.3 
yields the following important fact. 

Lemma IV.6.4. Let J be be a summable ferromagnetic interaction on Z. Then 
for P > 0, h =f^ 0 and 0 < P < 1^,, h = 0, lim^^^ |Ar^M(A, j5,/2,co(A)) exists 
and is independent of the choice of {a){A)]. For these values ofP and h, 

(4.44) lim-^M(A,j5,/z,d)(A))- - ^ ^ ^ = m{P,h). 
ATZ|A| oh 

Let T denote the shift mapping on Q. A probability measure P on .^(Q) 
is said to be translation invariant if for each Borel set A P{T~^A} = P{A}. 
Let J^si^) denote the set of translation invariant probability measures on 
J*(Q). A measure PeJ^^Q) is called ergodic if P{^} equals 0 or 1 for any 
Borel set A which satisfies T~^A = A. We have denoted the set of infinite-
volume Gibbs states by ^pj^. A measure P in "^pj, is called a phase if P is 
translation invariant. Let m{P,h) be the specific magnetization and let 
m{P, + ) = lim^^o+ ^iP^h) and m{P, —) = lim^̂ ^Q- fn(P,h). According to 
Theorem IV.5.3 there exists a critical inverse temperature ^̂  e (0, oo] such that 
spontaneous magnetization occurs at all jS > jŜ  but not at any 0 < jS < j?̂ ; 
i.e., 

m(iS, + ) = 0 = m(P, - ) for 0 < )8 < P„ 

m{P, + ) > 0 > m{p, -) for jS > jS,. 

* See page 214. 
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The next theorem describes phases of the ferromagnet and relates the occur
rence of a level-3 phase transition to that of spontaneous magnetization. 

Theorem IV.6.5. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For each j? > 0 and h real, the weak limits 

(4.45) P ,̂;,,+ = w-limP^,^,^, + , P^,;,,_ = w-lim^A,^,^,. 

exist and are translation invariant. Thus ^p^^, and^pj^ n ^s(Q) are nonempty. 
The measures î ,̂/j,+ and P^^ _ are ergodic. 

(b) Pp,h,+ equals Pp^h,- if cind only if dil/(l^,h)/dh exists. Thus, for j? > 0, 
h ^ 0 and for 0 < ^ < jŜ , /z = 0, Pp^h,+ equals Pp^h,-- ^or these values ofP 
andh, define P^ ,, = P̂ ^̂ +̂ = Pp,h,-' 

(c) If dil/(P,h)/dh exists, then Ppj, is the unique measure in ^^^ and thus 
in ^p^^r\JiXQ). No level-?) phase transition occurs. The mean ^Qa>QPpj^(dco) 
equals the specific magnetization m(P,h). 

(d) For P > jS,, P;,,o,+ + Pp,o,-'Infact, 

(4.46) a;oP^,o, + (^^) = ^ ( i S , + ) > 0 > cooPp,o,-(dco) = miP,-). 

Thus for P > Pc ^^d h = 0, a level-3 phase transition occurs. 
(e) For P > Pc^ ^p 0^ ^JS^ contains {at least) all the measures P^^^ = 

AP ,̂o,+ + ( l - ^ ) ^ / ^ , o ' , - , 0 < A < l . 

The proof of this theorem requires several new results which we will 
present as lemmas at the end of the section. First, we interpret the contents 
of the theorem. See Note 11 for further comments on the structure of ^p ^ 
a n d ^ ^ , , n ^ , ( Q ) . 

Part (a). Let S^{oj) = YjjeA^j be the spin in a symmetric interval A. The 
ergodic theorem [Theorem A. 11.5] impHes that if PG ^ S ( ^ ) is ergodic, then 

(4.47) l i m % ^ = I ojoPido)) P-a.s. 
Atz A 

Let P be the ergodic infinite-volume Gibbs state Pp^h,+ or Pp^n,-- Then 
lim >̂l̂ 2 5'̂ (cL))/|A|, which is the limiting spin per site in a sample co drawn 
from the magnet, is a constant independent of o P-a.s. The measures 
Pp^h,+ ^^^ Pp,h,- ^^^ called pure phases of the magnet. Stronger clustering 
properties of P^ ,, + and Pp,h,- are given in Corollary A. 11.12. 

Parts (b)-(c). According to Lemma IV.6.4, (or P > 0, h =f= 0 and 0 < P < p,, 
h = 0, the limiting magnetization per site, lim^>i-^\A\~'^M(A,P,h,cb{A)), 
exists and is independent of the choice of external conditions {d>(A)}. It 
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equals the specific magnetization m{P,h). For these values of j8 and A, the 
independence of external conditions extends to the infinite-volume Gibbs 
states; that is, P^ ;, = ^^,K+ = ^p,h,- is the unique measure in ^^^ as well as 
in ^^ ,, n ^ , (Q) . The ergodic Hm'it (4.47) and the fact that* 

(4.48) (DoPp,,(dco) = m(j?, h) > 0 for h> 0 

imply that with respect to P^ ,,, for h> 0 almost every cosQ has a majority 
of the spins + 1 . There is a similar statement for A < 0. This support property 
of Ppj^ is the infinite-volume analog of the alignment effect built into the 
finite-volume Gibbs states {PA,p,h}' 

Parts (d)-(e). For jS > jŜ , the distinct measures Pp,o,+ ^^^ Pp,o,- ^^^ t)Oth 
ergodic, and so there exist disjoint subsets ^^ + and 4̂̂  _ of Q such that 
P^ o,+ {̂ /?, + } = 1 ^iid PpQ_{Ap..} = 1 [Theorem A.11.7(b)]. The ergodic 
limit (4.47) and the fact that |n<^o^^,o, + (^^) = ^iP^ + ) > 0 imply that 
with respect to P^,o, + » almost every coeAp^^ has a majority of the spins 
+ 1. Similarly, with respect to P^,o,-» almost every CDGA^.. has a majority 
of the spins — 1. The measures P^,o,+ and P/j,o,- are called ?i pure plus phase 
and a pure minus phase, respectively. These measures are simply related by 
the formula P^o, + (<^(~^)) = ^/3,o,-(^^)5 which follows from the same 
relation for the finite-volume Gibbs states PAJ,O,+ and PAJ^Q,-. For 0 < 
A < 1, the nonergodic measure P^p% = ^Pp,o,+ + (1 — ^)Pp,o,- is called a 
mixed phase. With respect to this measure, the Hmiting spin per site, hm^ î̂ ^ 
5^(0;)/! A|, is not a constant but depends on the choice of co [see Theorem 
IV.6.6(c)]. 

Leve 1-3 phase transition. That ^^1 , consists of a unique measure for jS > 0, 
h =/=0 and 0 < jS < jŜ , /z = 0, contrasts with the nonuniqueness of measures 
in ^pQ for P > Pc' We have called this nonuniqueness a level-3 phase transi
tion. Formula (4.46) shows that spontaneous magnetization is the con
traction of the level-3 phase transition onto level-1. The level-3 phase 
transition can also be looked at as a symmetry-breaking transition.^'^ For 
h = 0, the microscopic interaction energy between each pair of spins cô -, 
(Dj equals —/(/ —j)cOi(Dj. For all / and 7, these energy terms are invariant 
with respect to sign changes (cOi,cOj) -^( —cô , —cOj) in the spins. However 
for P > Pc neither of the states Pp,o, + ^ ^p,o,- retains this invariance. 

The next result refines the ergodic theorem by giving additional con
vergence properties of the microscopic sums {5^/1 A|} as A t Z. We see that 
exponential convergence to a constant distinguishes the values j8 > 0, /z =/= 0 
and 0 < i8 < ft, /z = 0 from the values j8 > ft. /? = 0. 

*The positivity of m(j5, A) for /i > 0 is proved in a footnote on page 165. Also see Problem 
V.13.1(b). 
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Theorem TV.6,6. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For p>0,h-^0 and for 0 < jS < jS„ /? = 0, 

SJ\A\^m(li,h) and SJ\A\^m(P,h) w.r.t. Pp^, as A'lZ''. 

(b) For p > p,, 

- % ^ m ( j 8 , - ) w.r.t, P. 0 - as A'fZ. 
\A\ ' 

In each case, exponential convergence fails. 
(c) For P > Pc ^^d ^^^h 0 < X < 1, there exists a random variable Y^^^ 

on Q with distribution /l(5^(^+) + (1 — A)^^( ,̂_) such that SJ\A\^Y^^^ 
w.r.t. Pl% = ^Pp,o,^ + (1 - 4Pp,o,- as A'lZ.^ 

With respect to the various measures in this theorem, large deviation 
bounds for SJ\A\ can be derived from Theorem II.6.1. We omit the formulas, 
which are easily worked out as in the discussion at the end of Section IV. 5 
(see Lemma IV.6.11 for the calculation of the free energy function). ̂ ^ 

We now turn to the proofs of Theorems IV.6.5 and IV.6.6. The first 
step is to prove that the weak limits Pp,h,+ = w-lim^ î̂ ^ P^^^ + and Pp^h,- = 
w-lim^>l<2 PA,(i,h, - exist. According to Lemma IV.6.1, it suffices to prove that 
for each finite set B the hmits Hm^ >|̂  ̂  j ^ A ^ ^ A , /5, /i, + ̂ ^^ lî ^A 12 !« fBdPA,p,h, -
exist, where/B(<^) = FlreBLiCl + < î)] foi" ^ nonempty. By the discussion 
after that lemma, each integral lafBdP\,p,h,+ or ^afBdPA,p,h,- equals 
ja^fBdPA,p,h,+ or JQ^fBdPA,p,h,-^ respectively, provided A contains B. The 
proof depends upon a powerful monotonicity result due to Fortuin, Kastelyn, 
and Ginibre (1971) and known as the FKG inequahty. 

The FKG inequality is vaUd for a more general measure than the finite-
volume Gibbs state PA,p,h,(a' Let A be an arbitrary nonempty finite subset 
of Z, {Jiji ij'eA} a set of non-negative real numbers, and {hi; ieA} a, set of 
real numbers. Let P be the probabiHty measure on J*(QA) which assigns to 
each {co}, COGQ^, the probability 

(4.49) P{(o} = expi-H(co)]n^P^{co] •^. 

In this formula, i/(co) equals —iX!i,j€A*^j^i<^j ~ ZieA^i^j ^^^ ^ equals 
^Q^expl — H(co)^nAPp(dco). Expectation with respect to P is denoted by 
<->A,{ft.} or by <->. The measure P reduces to PA,p,h,<a if A is a symmetric 
interval, Jij = pJ(i -J), and hi = h-\- X/SA^A^' - y ) ^ / -

Let CO and co be points in Q^- We write co < co if cô  < cô  for each ieA. 
A real-valued function/on Q^ is said to be nondecreasing if fico) </(co) 
whenever oj < co. For example, the function 7(co) = cô  for /G A is non-
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decreasing as is fsioS) for any subset B of A. However, /(co) = cOjCô  (/ ^j 
in A) is not nondecreasing. The FKG inequality is stated in part (a) of the 
next theorem. A useful consequence of the inequahty is stated in part (b). ̂ "̂  

Theorem IV.6.7. Let f and g be nondecreasing functions on Q^, Then the 
following conclusions hold. 

(a) For any values of{h^, the covariance of f and g is non-negative: 

<fd>A,{hi} - <fyA,{hi}<9yA,{hi} ^ 0-

(b) {hi} < m implies </>A,(.,) < </>A,(M-

Proof (a) The following proof is due to Battle and Rosen (1980). The 
argument is by induction on the number of sites | A| in A. We have 

<fgy-<f><gy 
(4.50) 

Ifico) - / ( d ) ) ] [g(oj) - g(cb)]P{do,)P(dco), 

If I A| = 1, then the integrand is non-negative since/and g are nondecreasing. 
Hence {fgy — {fyigy >0. Assume now that the inequality has been 
proved for |A| = 1, . . . , « — 1, some n >2, and consider the inequahty 
for IA| = A2. Fix any site a in A. We set co = (a)\ coj, where co' has the n — I 
components {coi; /G A\{a}}, and rewrite H(co) in the form 

H(C0\ COj= - - Y. Jij^i^j - Z ( ̂ i + ^^Jioi + •4i)^a ) OJi 
^iJeA\{a} i eA \{a} \ ^ / 

For fixed CO^G{1, — 1}, let v^ (doj') be the probability measure on ÂXa} 
defined by 

^coMoj') = Qxpl-H((o\o)J]n^\^^^PJdco') 
1 

where Z(ojJ equals ^^j^ expl-H(co\(oJ']nj^^^^}Pp(do)'). We now write 

<fgy f(w)g(co)Pidco) 

{1,-1} 

f(co\ coJg(aj\ (ojv^ida)') 
'A\{a} 

Z(a>Jp(dojJ • 

The inductive hypothesis clearly applies to the co'-integral. It follows that 

(4.51) <fgy> 
{1,-1} 

(l)(a)Jy(a)JZ(coJp(d(Dj • —, 
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where (/)(coJ = ^^^^^^^f(a)\(oJv^^(dco') and y(coJ = ^a^^^^^g{co\(oJv^^(dco'). 
We prove just below that </> and y are nondecreasing. The result for | A| = 1 
and (4.51) yield (4.50): 

<fgy> 
{1,-1} 

<f><g}-

(l)(coJZ(cDjp(dcoJ • — • y{coJZ((Djp{dcoJ • — 
^ J { i , - i } ^ 

We prove that (/>(—1)<</>(1). The same proof shows that y is non-
decreasing. In the definition of v^^(dco'), replace CO^G{1,—1} by a real 
parameter t. We prove that the function ^ ~^ in/^\,^,f(<^\ l)Vf(dco') is non-
decreasing. Since/is nondecreasing, it will then follow that 

<^(-i) = 

< 

/ (CO ' , - l ) v_ i ( J co ' )< 
'A \ (OC) • ' "A\{ot ) 

/(CO', l)vi(^ffl ') = </>(!). 

/(CO', l)v_,(d(0') 

We have 
d_ ' 
dt ,., f{oi', \)v,{dco') 

fico', 1) 
''Am 

8H{(o', tj 
dt 

Vtidco') 

dH(co', tj 
dt 

v,{dco'). f{co',l)v,idco')-
'^A\{<x) * ' " A \ { a ) ' 

The function -dH(co', t)/dt equals XieA\{«} 2(<̂ ia + /xi)«i + K^ and so it is 
a nondecreasing function on ̂ ^m- By the inductive hypothesis, we conclude 
that c?|n^y„)/(<^'. \)v,{dm')ldt > 0. The FKG inequality is proved. 

(b) Since dHjdhi = -co,- and 

we have 

d 

dz 
dh 

</> = 

1 
Z 

d 
dh 

co;exp[-//(co)]7i^/' (c?aj) 
1 

<co,>, 

/(co)exp[-//(co)];t^P,(6?co)-
" A 

(4.52) = f /(co)-co,.exp[-/f(co)]7t^/',(c/co)-^-</>Z,.--|r 

= < / • « ; > - < / > < c o , > . 

This is non-negative as / and coi are nondecreasing. Thus </>A,{f,} is a 
nondecreasing function of each h^. Part (b) is proved. n 
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Let / be a non-negative, summable, symmetric function on Z. Denote by 
<~)A P h + (resp., <->A p h -) expectation with respect to the measure P 
in (4.49) with J,j = m-j) and /?, = /? + Y.jeAcJ{i -j){+ 1) (resp., h, = 
h-\-Y^j.^cJ{i-j){-\)). 

Corollary IV.6.8. Let {A„;f2 = \,2, ...} be an increasing sequence of finite 
subsets of Z such that h^]T as n ^ co. For B a nonempty finite set in Z, 
pick an integer n(B) so that B is contained in t\.^for all n > n{B); f^{oS) = 
riieB [(1 + <^i)/2] is a nondecreasing function on Q^ whenever n > n(B). For 
)? > 0 and h real, the following conclusions hold. 

(a) For n>n(B), <yB>A ,̂/j,;,,+ is a nonincreasing sequence as n-^oo; 
<yg>^ pj^_ is a nondecr easing sequence as n^ co. 

(h)"The limits </B> ,̂ft,+ = hmA >̂̂ 2</B>A„,A,ft,+ ^nd ifB)p,h,- = Hm^̂ >̂ 2 

<fByAn,p,h,- both exist. 

Proof, (a) The external field h can be chosen to be site-dependent, say 
hi. If hi tends to oo, then hi tends to oo. Choose n > n> n(B), so that A„ c A;̂ . 
The FKG inequality implies that </B>A-^,,,,+ < </B>A„,^,;,,+ because the 
latter can be obtained ft-om the former by taking hi -^ oo for each ieA-^\A„. 
A similar proof shows that if ^ > « > n(B), then </B>A-^,, , ,- > ifB}A„,p,h,+ ' 

(b) This follows from part (a). n 

We now prove two lemmas from which Theorem IV.6.5 will follow. Let 
A be a symmetric interval of Z. For jS > 0 and h real, let PA,p,h,<o be the 
finite-volume Gibbs state on A with external condition cb corresponding to 
a summable ferromagnetic interaction / . We write <->A,f,,c5 for expectation 
with respect to PA,p,h,(a' 

Lemma IV.6.9. Letf^ico) = YlteB [ i( l + ^i)] fa^ ^ ^ nonempty finite subset 
ofZ. For P > 0 and h real, the following conclusions hold. 

(a) The limits ifB\+ = HmAtz</B>A,h,+«^'^</A,- =^'^'^K^z<fByA,h,-
existandforanykeZ </B+/C\,+ = < / B \ + andifs+k>h,- = ( / B X , - -

(b) For any real number /ZQ, hm;,_^^ ( / ^ X + = ( / ^ X ^ + and lim;,..^-
\JB/h,- — \JB/h^,-' 

(c) For any symmetric interval A containing B and any external condition 
^ . <fByA,h,- ^ ifByA,h,cb ^ ifB>A,h,+ ' 

(d) 0 < </^X,^ - < A \ . < 1̂ 1 «cOoX,+ - <cOo\-). 

Proof (a) By Corollary IV.6.8(b), the Hmits 
< / B X , + = ^}^ifB>A,h,+ and ifB^k>h,^ = lim</B+k>A,;«,+ 

AT2 AJI. 
both exist. The interaction strength / ( / —j) between each pair of sites ij is 
translation invariant. Hence if A contains B, then ifB+k)A+k,h,+ = ifByA,h,+ 
and 



IV.6. Infinite-Volume Gibbs States and Phase Transitions 121 

We can find a sequence {A„;« = 1,2, . . .} of symmetric intervals such that 
Ai c A^ + /c c A3 c A^ + ^ c . . . and |J^=i A„ = Z. By Corollajy IV.6.8(b), 
liniA^tz</5+fc>A„,/i,+ exists, where A„ = A„ for n odd, A„ = A„ + ^ for n 
even. The existence of this limit impHes that 

lim <fB+kyA,h,+ = lim </B+fc>A+fc,fa, + -
AtZ AtZ 

Combining this with the previous two displays, we conclude that ifB+k)h,+ 
equals </5>;,, + . That <^fB+k>h,- equals ( / B ) ^ , - is proved similarly. 

(b) Let A contain B, Since </B>ft,+ < </B>A,;,, + , 

(4.53) limsup</BX,+ < lim </B>A,^,+ = </B>A,V+-

Hence limsup;,̂ ^^^ < / A , + < limAtz</B>A,v+= </fi>V + - ^y ^^^ ^ ^ ^ 
inequality, if/? > /?o, then < / B \ , + < </B>;,, + , and so ifB}h^,+ ^ Hminf̂ ^̂ ^̂  
</5>^,+. It follows that lim^̂ ^̂ ^ </B>^,+ = </B>fto,+ • The second half of part 
(b) is proved similarly. 

(c) For any external condition c5, the field hi = h -\- YjjeA'^Ji^ ~J)^j met
ing at site ieA lies between the field corresponding to the plus external 
condition and the field corresponding to the minus external condition. Hence 
the FKG inequality yields part (c). 

(d) The function/(co) = YjteB^i —fsi'^) is nondecreasing. Hence by the 
FKG inequality, if A contains B, then 

(4.54) 0 < <A>A,,,+ - ifB>A,K- ^ Z [< .̂->A,/,,+ - <OJ,yA-h,-\ 
ieB 

Take A t Z and use the fact that <cOf>;,,+ = <coo>;,,+ and <cOj->̂ ,- = <coo>^,-
to complete the proof of part (d). n 

Spontaneous magnetization occurs at P if and only if 

^ ^ ' ^ ^ dh^ l-^^ dh 

is positive. The next lemma relates m(jS,/z), m(jS, +) , and m(j8, —) to the 
quantities <COO))8,/J,+ ^^^ (^o)/?,^,-? defined as 

<^o>)8,/,,+ = lim oJoP^jj,+(dco), 

According to Corollary IV.6.8(b), the limits exist. Later, we will identify 
i^oyp,h,+ ^^^ <^o)i8,fi,- ^s the means of infinite-volume Gibbs states P ,̂ft,+ 
and Pp,h,-^ respectively. 
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Lemma IV.6.10. Let J be a summable ferromagnetic interaction on Z. Then 
the following conclusions hold. 

(a) For p>Oandhi=0, 

(b) For P>Oandh = 0, 

(4.55) 

<cOo> ,̂o,- = m{P, - ) = ^ ^ ^ ^• 

Thus spontaneous magnetization occurs at P if and only if <coo> ,̂o,+ = 
m(jS, + ) > 0. 

Proof (a) For any e > 0, let A^ be a symmetric interval such that 
<<^O)A ,/3,fi,+ ^ <<^o)/?,h,+ + -̂ Given another symmetric interval A which 
contains A ,̂ define ^^(A) = {/e A: A^ + / ^ A}. The sequence {(co^)^^ ;,+} 
is nonincreasing as A t Z [Corollary IV.6.8(a)], and so for any ieBX^) 

(4.56) 

Thus for all symmetric intervals A containing Â  

(4.57) <cOo>̂ ,ft,+ < . .. • Z < f̂>A,/?,ft,+ ^ <^o>p,h,+ + e. 

Recall the quantity M(A,j?,/z,+) = ^leA<<^i)A,/?,/!, + ? which is the mag
netization in the state PAj,h,+ ' Since |A| • |5g(A)|~^ ^ 1 as A t Z , it follows 
from (4.57) that limAt2|A|"^M(A,j8,A, + ) = {(JOoyp,h,+ for any real h. But 
for /z ^ 0 this limit also equals m(P,h) [Lemma IV.6.4]. Thus for A =/= 0 
<coo>^ h + = ^iP^h) = —dil/(P,h)/dh. A similar proof shows that foTh=/=0 
<cOo>p,h,- = m(P,h) = -dHP.h)/dh. 

(b) In part (a) take h-^0^ and use Lemma IV.6.9(b) to obtain <coo> ,̂o,+ 
= m(p, + ) = -dil/(p,0)/dh^. This gives half of (4.55). The other half'is 
proved similarly. n 

Proof of Theorem IV.6.5. (a) The existence and translation invariance of 
the measures Pp^h.+ = w-limAtz^A,^,^,+ and Pp^^,- = ^-^^^Au^A,p,h,- fol
low from Lemmas IV.6.1 and IV.6.9(a). Thus, Pp^h,+ and Pp^h,- belong to 
^p^^nJi^Q). Let ^ be a nonempty subset of Ji{Q). A measure PeS) is 
called an extremal point of ^ if P = XP^-\-{\ - X)P2 for 0 < A < 1 and 
P^Pi^^ impUes P^^P^^ P. The set of extremal points of ^^,^ n ^ , (Q) 
is the set of ergodic measures in ^pj^ [Theorem A.11.8(b)]. Hence in order to 
show that Pp,h,^ is ergodic, it suffices to prove that Pp^h^+ is extremal in 
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^py^csJiX^).^ We prove the stronger statement that Pp^h,+ is extremal in 
^p^^. Assume that Pp^h,+ = ^Pi + (1 - ^)^2 for 0 < /I < 1 and Pi, ^2^^^,^. 
Lemma IV.6.9(c) impHes that for any measure Pe^p^^ ^Q/B^P ^ 
lafBdPp,h,+ for all finite sets ^ in Z {/^{(o) =• 1). The integrals {[o^f^dP', B 
finite} determine P. Hence if either measure Pi in the decomposition of 
Pp^h,+ differs from Pp,h, + ^ then lafB^Pi < \afBdPp,h,+ for some finite set B, 
and so 

(4.58) fBdPn B^'^P,h,+ • f,dP^^,, ^ = A fsdP, + (1 - A) f,dP2 < 

This contradiction proves that Pp^h,+ is extremal in ^pj^ and thus is ergodic. 
A similar proof shows that Pp^h,- is extremal in ^^ j , and thus is ergodic. 

(b) If dil/{p,h)/dh exists, then by Lemma 'lV.6.10(b) <coo>^,;,,+= 
<<^o>/s,ft,-- Lemma IV.6.9(d) implies that for any finite subset B in Z, 
</B>^,f,,+= </B>^,h,-- Thus, Pp^h,+ =Pp,h,-' Conversely, suppose that 
p ^ ^ ^ =Pp^tt,-' If /^^O, then d\l/(P,h)/dh exists by Theorem IV.5.1(a). 
I f V - 0 , then 

0^oPA,p,0, + (do^) (OoPp,o, + idco) = o)QPp^o^_(d(D) 
Q Ja JQ 

^oPA,p,o,-(dco) = {cDoyp 0 , - ? 

n 

<^o>/3,o,+ = l i n i 
AjZ J 

= lim 
AjZ J 

and d\l/(P,0)/dh exists by Lemma IV.6.10(b). 
(c) Lemma IV.6.9(c) implies that if P ,̂ft,+ = Pp,h,- = Pp,h^ then ^^^^ and 

thus ^pj^nJi^Q) consist of the unique measure Ppj^. We have defined 
<^oVft,+ = limAtzI^<^o^A,^,^, + (̂ < )̂- But if d\j/{P,h)ldh exists, then 
PA,p,h,+ =>Pp,h^ and so <coo>^,ft,+= jaa;o^^,ft(^^)- The equality j^coo 
Ppj^(d(D) = m(P,h) follows from Lemma IV.6.10. 

(d) For p > jŜ , dil/(P, h)/dh does not exist at A = 0, and thus <coo> ,̂ft,+ =/= 
i^o)p,h,-' Therefore P^,o,+ 1̂  Pp,o,-- Formula (4.46) follows from Lemma 
IV.6.lb(b) and the fact that PA,/3,O,+ ^^P,O,+ andP^^^o,- =^Pp,o,--

(e) Since ^ ^ o ' ^ ^ s ( ^ ) is convex, it must contain all the measures 
{P^p%; 0 < A < 1}. This completes the proof of Theorem IV.6.5. n 

The key step in proving Theorem IV.6.6 is to calculate the free energy 
functions of the sequence {5^} with respect to the infinite-volume Gibbs 
state Pp,h,+ and Pp,h,-^ respectively. 

Lemma IV.6.11. Let J be a summable ferromagnetic interaction on Z. For 
P > 0, h real, and t real, define 

Cp,h, + (0 = lim—-log<exp(^5'J>^^^,+ , 
Atz |A| 

Cp,h,-(0 = lim—-log<exp(r5J>^^^,_. 
Atz|A| 

*The ergodicity of P^ ;, + and Pp^h,- ^Iso follows from Corollary A.11.12(a). 
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Then 

(4.59) c^,,, + (0 = c^,,,_(0 = -plHP.h^ tIP) - HP,h)l 

Proof. We first evaluate Cph+(t) for t > 0. Define 

CA(0 = 7—-log<exp(r5J>^,^,+. 

For A' a symmetric interval containing A, define ^A, A ' (0 = i^^Pi^'^A))A',^,/I, + • 
Since PA',^,;,,+ =^^^,/i,+ as A'T Z, |A|-i log^A,A'(0'^ CA(0 as A' T ^ for each 
/ > 0. We claim that 

(4.60) <exp(/5A)>A,/^,.,ai < ^A,A'(0 < <exp(/5'A)>A,/̂ ,̂ , + for t > 0, 

where cb is the external condition (bj = 1 for7G(A')^ cbj= — 1 forye A'\A. 
Indeed for / > 0, the function exp(/ Y^JSA^J) is nondecreasing on QA, and the 
right-hand (resp., left-hand) side of (4.60) can be obtained from the middle 
term by letting the external field hi -^ oo (resp., h^ -» — oo) for each ieA'\A. 
Hence (4.60) follows from the FKG inequality. Another application of FKG 
gives <exp(̂ »S'A)>A,/?,ft,- < <exp(/5'A)>A,^,i,,s- As in the proof of Theorem 
IV.5.5, 

-^log<exp(^5A)>A,,,.,- = -P-^U¥(AJ,h + t/P - ) - ^(AJ,h, - ) ] , 
|A| |A| 

-^log<exp(r5A)>A,/.,.,+ = -Pj^ [^(A,i8,^ + t/P, + ) - '¥(AJ,h, + ) ] . 
|A| iA| 

(4.61) 

Thus for / > 0 

-P-l-iyi^(AJ,h + t/p, - ) - '¥(AJ,h, - ) ] 

(4.62) 1̂ 1 

< CA(0 < -p^mAj^h^ tip, + ) - ^{KPA + ) ] . 

By Lemma IV.6.2 (independence of the specific Gibbs free energy of the 
choice of external conditions), we conclude that 

c^,,,^(0 = limcA(0 = -PlHP.h-^ t/P) - HP,h)l 
At2 

A similar proof yields (4.59) for c^^ _(0, t > 0. For t < 0, the function 
— Qxp(tY,jeA^j) is nondecreasing on Q^, and so (4.60) holds with the senses 
of the inequahties reversed. As above, we obtain (4.59) for Cp^f^+(t), t <0. A 
similar proof yields (4.59) for ĉ  ,, _(0, / < 0. 

Proof of Theorem IV.6.6. (a) For j? > 0, A ^ 0 and 0 < P < p,, h = 0, 
d\l/(P,h)/dh exists. Hence by the previous lemma and Theorem II.6.3, 
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SJ\A\-^ —dil/(P,h)/dh = m(P,h). The almost sure convergence follows 
from the ergodic theorem or Theorem n.6.4. 

(b) By the ergodic theorem, SJ\A\-^ <(COQ}PQ + = m(P,-\-) P^ Q+-a.s. 
and ^S /̂lAl -^ <coo>^ Q,- = ^(P^ —) Pp,o,--^'^' ^^ ^^^h case, the almost sure 
convergence cannot be strengthened to exponential convergence since by 
Theorem II.6.3 exponential convergence is equivalent to the existence of 
(cpQ+y(0) or (cp^o^-YiO), respectively. But d{l/(P,0)/dh does not exist for 
P > Pc^ and so by the previous lemma (c^ o,+)X0) ^^^ (< î?,o,-)XO) do not exist 
roTp> p,. 

(c) This follows from the ergodic theorem and Theorem A. 11.7(b). n 

We have now completed the proof of the existence of infinite-volume 
Gibbs states and studied convergence properties of the spin per site SJ\A\ 
with respect to these measures. In the next section, we show how to charac
terize the set of translation invariant infinite-volume Gibbs states in terms 
of a variational principle. 

IV.7. The Gibbs Variational Formula and Principle 

Let / b e a summable ferromagnetic interaction on Z. The set ^pj^ of infinite-
volume Gibbs states was defined as the closed convex hull of the set of weak 
Hmits of finite-volume Gibbs states. The Gibbs variational principle is 
another approach to studying the infinite-volume ferromagnet. It charac
terizes the set of translation invariant infinite-volume Gibbs states directly, 
eliminating the need to consider weak limits at all. The Gibbs variational 
principle expresses the specific Gibbs free energy il/(P, h) as the supremum of 
an energy functional minus an entropy functional over ^s(Q). The set of 
measures at which the supremum is attained is exactly the set ^^ j , n ^s(Q) 
[Theorem IV.7.3]. We recall that in the Gibbs variational principle for the 
discrete ideal gas [Theorem III.8.2], there was a unique solution for each 
value of j6. By contrast, for p > P^,h = 0, the Gibbs variational principle for 
ferromagnets has nonunique solutions since the set ^^ Q n ^ 5 ( Q ) contains 
the distinct measures Pp^o,+ ^ ^P,O,-^ ^^^ ^U convex combinations. 

Before stating the Gibbs variational principle, we consider an analog 
which characterizes the finite-volume Gibbs state PA,i3,ft,c5- Let A be a sym
metric interval of Z and c5 an external condition. Given a probabihty measure 
P on ^ (QA)» we define the energy in P to be 

U(\h,d>;P)= H^^,^^(co)P(dcol 
J Q A 

where H^^^ is the Hamiltonian defined in (4.35). 4^^ (P) denotes the 
relative entropy of P with respect to n^^Pp, 
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[ '°g:y?l^("^)^(^^)= ^ log-^^-P{oj}. 

Z{A,P,h,cb) is the partition function Jfj^exp[—jS^^^;, s(a))];iAPp(Jct)). 

Proposition IV.7.1. For any jS > 0, h real, and external condition cb, 

logZ(A,p,h,&) = sup { -PU(A,h ,&;P) - li'\(P)}, 

and the supremum is attained at the unique measure P = PA,p,h,w-

Proof. For any probability measure P on Q^, 

j8(7(A, h,d>;P) + P/^p^iP) + log Z(A, p, h, cb) 

PM 
JSQA \ S ^nr^Vwi-pH^,H.^{(o)-] • n^P^{co}/Z(A, p,h,(b)) ' ^^"'^-

The sum equals the relative entropy of P with respect to PA,p,h,(o' Hence 

PU(A, h,aj;P) + li'^.^iP) + log Z(A, p, h,aj)>0 

and equality holds if and only if P = P\,p,h,cb [Proposition 1.4.1 (b)]. D 

We now introduce the functionals which appear in the Gibbs variational 
principle. Let P be a translation invariant probabiUty measure on ^(Q), A a 
symmetric interval, and n^ the projection of Q onto Q^ defined by (TÎ CO)̂  = 
(Di, IGA. Define a probabiHty measure TI^P on J*(QA) by requiring njs,P{F} = 
P{nX^F} for subsets Pof Q^ and consider the functional 

^A,/j,c5(A)(^)7C/i 
J Q A 

U(A, K cb{A); n^P) = HA,H,coiA)(^)^AP(do^), 
JQA 

where d)(A) is an external condition. /^^^ (^AP) denotes the relative entropy 
of Tĉ P with respect to Tĉ Pp. 

Lemma IV.7.2. Let J be a summable ferromagnetic interaction on Z. Then 
for jS > 0 andh real, the following conclusions hold. 

(a) lim^iz IAI "̂  log Z(A, p, h, co(A)) exists and is independent of the choice 
of{cb{A)}. The limit equals — jSi/̂ (jS, h), where i/̂ (jS, h) is the specific Gibbs free 
energy. 

(b) For any PeJtJ<S^, u{h,P) = \\vcLf^^^^\A\~^lJ{A,h,(b{A)\niJ') exists 
and is independent of the choice o/{d>(A)}. The limit is given by 

(4.63) u{h\P) = -\Y. ^(^) o)oWj,P(dco) -h\ o^^P{doS) 

and is a bounded, affine, continuous functional of PeJiJ^. The functional 
u{h\P) is called the specific energy in P. 
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(c) For any PsJi^^), lim^>^2|A|"^/i^V^(7r^P) exists and equals I^^P), 
the mean relative entropy of P with respect to Pp. Ip^\P) is an affine, lower 
semicontinuous function of Pe MJ^. 

Proof, (a) Lemma IV.6.2. 
(b) Since P is translation invariant, t/(A, h, c5(A); TT^P) equals 

cooCDkP(doj) - X Z J(l-J)o^j 
) ieAjeA^ 

(4.64) 

coQP(da)) 

-h\A\ a)QP(dco), 

where A (̂A, k) is the number of ordered pairs /, J in A for which i —j = k. 
As in the proof of Lemma IV.6.2, the c5-term is o(\A\) as A f Z [see (4.42)]. 
Since for each k N(A, k) < |A| and |A|-'A^(A, ĉ) ^ 1 as A t Z, (4.63) follows. 
The continuous functional u„(h,P)= —jYj\k\<nJ(^)in^o^k^(^^) - ^JQ 
coQP(da>) converge uniformly over ^^(Q) to u(h; P) as « ^ oo. Hence u(h; P) 
is continuous. The boundedness and affmeness ofu(h; P) are obvious. 

(c) This is proved in Section IX.2. n 

The next theorem is due to Ruelle (1967) and Lanford and Ruelle (1969). 
Part (a) is called the Gibbs variational formula. Part (b), which characterizes 
the translation invariant infinite-volume Gibbs states as solutions of this 
formula, is called the Gibbs variational principle. Heuristically, the theorem 
follows from Proposition IV.7.1 by dividing each term in the latter by |A| 
and taking A t Z. 

Theorem IV.7.3. Let J be a summable ferromagnetic interaction on Z. Then 
for P > 0 and h real, the following conclusions hold. 

(a) -mP.h) = sup,,j,^,^,{-pu(h;P) - 4'\P)}. 
(b) The set ofP e JiJS^ at which the supremum in part (a) is attained equals 

^fi,h ̂  ^s(^)? the set of translation invariant infinite-volume Gibbs states. 

First, we will check the consistency of the theorem with Theorem IV.6.5, 
which analyzed the structure of the set ^^j^ n Ji^i^). Then, we will prove the 
Gibbs variational formula using level-3 large deviations. In Appendix C.5 
we sketch a proof of the Gibbs variational formula and principle for a much 
larger class of models than we are now considering. The proof is due to 
Follmer (1973) and Preston (1976). In Appendix C.6 we solve the Gibbs 
variational formula for finite-range interactions, using techniques to be 
developed in Chapter IX. 

The Gibbs variational principle makes expUcit an energy-entropy com
petition which underlies the ferromagnetic phase transition. First consider 
P = 0. Then in the Gibbs variational formula the energy term is absent, 
and supp^^,^(^){-/^^^(P)} = -infpe^^(Q)/p^X^) is attained at the unique 
measure Pp. This is consistent with Theorem IV.6.5 since for small P 
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^pj^nJiX^ consists of the unique measure P^j^ and Ppj^^=^P^ as ^^0^ 
[Problem V. 13.1(d)]. Now consider large jS. Then in the Gibbs variational 
formula the energy term dominates. For h> 0 

sup { — u(h;P)} = sup \ I J(k) (OQOJJ^CIP + h COQCIP 

is attained at the unique measure P^ , which is the infinite product measure 
with identical one-dimensional marginals d^. This is consistent with Theorem 
TV.6.5 since for all h>0 ^p^nJi^^) consists of the unique measure 
P^h and Ppj,=>P^^ as j8 -> 00 [Problem V. 13.1(d)]. P^^ is supported on the 
totally aligned plus-ground state cd+ (cd+j= 1 for allyeZ). On the other 
hand, if /z = 0, then supp^^ (Q) { —w(0;P)} is attained at all the measures 
p<̂ ) = AP̂  + (1 - A)p^ , 0 < / l < l . * This would be consistent with 
Theorem IV.6.5(d)-(e) if whenever P^ is finite, Pp,o,+ (resp., Pp,o,-) con
verged weakly to P^^ (resp., P^^) as ^ -> oo. A proof of this statement for 
models on Z^, Z) > 2, is sketched in Problem V. 13.1(d). 

We now derive the Gibbs variational formula using level-3 large devia
tions. The interval A consists of the 2N + 1 integers 7 with |7| < Â . In order 
to ease the notation, we consider h = 0 and write Z(A, jS, 0) as 

1 Z(nJ) = exp X J(i-J)cOiCOj 
'i,j=i 

Pp(dco), 

where n = IN + 1. A similar proof is vaUd for h^O. A relatively easy case 
is the Ising model on Z, for which 

Z(nJ) = exp PJdcol / > 0. 

This equals the quantity Zj^^ in Theorem IT?.3(c) with G((jOj,a)j+i) = 
P/cDjCOj+i. Hence by (2.42) 

- # ( i 6 , 0 ) = lim-logZ(«,iS) = sup ip/ I CO, co^P{dco) - mP) 

This gives the Gibbs variational formula since jnC0iC02^P = JQCOQ^I dP}^ 
We now prove the Gibbs variational formula for any finite-range interaction 
/ . We write 

1 
£ / ( / - j)(Di(D^ = ^/(O) + X ^( '̂ - J)^i^j 

'ij=l l<j<i<n 

n—1 n—k 

^ k=i j=i 

*The set of maximizing measures for suppg^ ^Q^{ — U(0;P)} may contain other measures 
besides {P^^\ 0 < 2 < 1} (depending on J). 
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Thus if / has range L and n> L then 

129 

Z{n,p) Qxp\^ 
L 

I 
fc = l 

J(0) + X J(k) X CDjOJ.^j 
j=l 

Ppidcoy 

Let R„((o, •) denote the empirical process «~^Xfc=ô Tfcy(«,a>)(*). where T is 
the shift mapping on Q. and Y(n, co) is the periodic point in Q obtained by 
repeating (Y^ico), ¥2(0)), . . . , Y„(co)) periodically (Yj(oj) = cOj). We have 

_ _ In-k J 
coiCOfc+iî „(co, dco) = - ^ ^j^k+j + - X ^ cyclic terms, 

where the /: cychc terms are cOjCOk+j.^J = n — k -\- I, ... ,n. Thus uniformly 
in CO 

L z 
fc=i 

= 0(L). 

By the comparison lemma, Lemma II.7.4, Z{n, fi) has the same leading order 
asymptotic behavior as 

Z(«,jS)= exp<^«^ 1 

k = l 

J(0) + I ; Jik) (diCO,^iR„{cO,dQ)) PJdw) 

exp[-npu(0;P)m'KdP), 

where Q^^^ is the distribution of /̂ „(co, •) on ^s(Q). By Theorem IX.1.1, 
{21^^} has a large deviation property with a„ = n and entropy function /^^\ 
Varadhan's theorem, Theorem ILT.l, yields the Gibbs variational formula: 

-I^HP,0) = lim-logZ(nJ)= sup {-Pu(0;P) - P/\P)}. 
«-̂ oo n PeJi^iO.) 

We finally prove the Gibbs variational formula for an infinite-range, 
summable interaction / . Take L > 0 and define Jj^ik) = J(k) {ov\k\ < L and 
Jj^(k) = 0 for 1̂ 1 > L. We use the result just proved for the finite-range 
interaction J^. By taking L sufficiently large, we can make the quantities 
-^xl/(P,0) and supp^^^(^){-jSw(0,P) - /^^^(P)} corresponding to J^ arbi
trarily close to the respective quantities corresponding to / . This completes 
the proof of Theorem IV.7.3(a). 

For the general ferromagnet, the translation invariant infinite-volume 
Gibbs states are also characterized by an entropy principle which is equiva
lent to the Gibbs variational principle. The entropy principle involves an 
energy constraint, expressed in terms of the specific energy u(h; P) in the 
state PeJiX^)' For each jS > 0 and h real, define the set 

Ap^y^ = {ueR\ w = w(/z;P) for some P 6 ^ ^ , ^ n ^ , ( Q ) } . 

For )8 > 0, /? =̂  0 and 0 < j8 < jS„ /z = 0, ^^^^ n Ji^i^) consists of the unique 
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measure P^ ;,, and so Apj^ is the single point {u{h;Ppj)}. The situation for 
P > P^,h = 0 can be different since it is possible for ^^ Q ^ -^si^) to contain 
two measures F^ and P2 for which w(0; F^) ^ w(0, F2). Since w(/z; P) is a con
tinuous functional of F, A^Q is a compact interval of R. The next theorem 
generalizes the entropy principle in Theorem IV.3.3, which characterized the 
finite-volume Gibbs state Fj^pj^}^ 

Theorem IV.7.4. Let J be a summable ferromagnetic interaction on Z. For 
P > 0,hreal, andue Apj^ let J^pj^^^ denote the subset of {FE^s(Q):u(lk;F) = 
u] at which inf {I^^\F): F e Ji^^), u(h ;F) = u} is attained. Then the following 
conclusions hold. 

(a) [jueAp,,AH,u = ^p,hr^J^s(^y 
(b) For P > Pc^ h = 0, and u = u(0;FpQ+), the set J'p^o,u contains (at 

least) all the infinite-volume Gibbs states P̂ f̂  = AP̂  0,++ (1 ~'^)^^,o,-, 
0 < /I < 1. 77?w^inf{/^^^(P): P e ^ , ( Q ) , w(0;P) = w(0;P^ 0,+)} is not attained 
at a unique measure. 

Froof. (a) Given Fe^p ^r\MJ^, set u = u{h;F). Then by Theorem 

IY.7.3 

-pil/(li,h) = -fiu - I^^\F) < -Pu - mfm^\F): Feyg,(Q),u(h;F) = u} 

(4.65) < sup {-Puih;F)-fp^\F)}= -Pil/(P,h). 

This implies that FeJpj^^^. Now assume that PeJ^^ ;, „, some ueApj^^ does 
not belong to ^p,^ n ^^(Q). Then for any FQ e^p^^^n JiJ^ with u(h;Fo) = u 

-Pu- I^/\F) = -Mh;P) - I^'\P) 

< -mP.h) = -Pu(h;Fo) - I^\Fo) = -pu - F;\F,). 

Thus II^\FQ) < I^p^\F). This contradicts the hypothesis that P belongs to 
^p,h,u' Part (a) is proved. 

(b) By symmetry w(0;P^o,+) equals w(0;P^o,-)-Hence for alio </I < 1, 
u(0;F^p%) equals w(0;P^ o,+)- Since P̂ f̂  belongs to ^^ ; , n ^ , ( Q ) , the proof 
of part (a) shows that F^p% belongs to 'j^p,hMO;Pp^o,+)' ° 

The nonuniqueness property of I^^^ expressed in part (b) of Theorem 
IV.7.4 is a level-3 analog of a nonuniqueness property of the function 
Ip^oiz), P > Pc^ discussed at the end of Section IV.5. The set of means 
{ia<^oPp%(dco)l^ ^ A < 1} of the measures {F^p%;0 < A < 1} is exactly the 
interval [_m(p, —),m(p, + ) ] on which Ip^oi^) attains its infimum of 0. 

One of the main results in this chapter is that if ^̂  if finite, then for p > Pc 
and h = 0 there exist nonunique, translation invariant infinite-volume Gibbs 
states P^,o,+ and P^,o, + ' In the next chapter we will study ferromagnetic 
models on the lattices Z^, Z)G {2,3, . . . } . These models share many features 
with the models on Z. An important contrast is the fact that ft is finite for any 
nontrivial interaction. 
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IV.8. Notes 

Many of these notes apply with little or no change to ferromagnetic models 
on Z^, Z)e {1,2, . . . } . These models will be treated in the next chapter. The 
notes which do apply are so indicated. 

1 (page 88) (Z^, Z) > 1). The similarities between the phase transitions 
for liquid-gas systems and ferromagnetic systems are discussed by Stanley 
(1971, Chapters 1 and 2). A model that is based on analogies between the two 
kinds of systems is the lattice-gas model [Lee and Yang (1952), Stanley 
(1971, Appendix A)]. 

2 (page 89) (Z^, Z) > 1) (a) Introductions to ferromagnetic models and 
related lattice systems can be found in Griffiths (1971, 1972), Spitzer (1971), 
Georgii (1972), Thompson (1972), Kindermann and Snell (1980), and Gross 
(1982). Ruelle (1969, 1978), Lanford (1973), Preston (1974b, 1976), Israel 
(1979), and Simon (1985) are advanced references. Wightman (1979) is a 
beautiful overview of the thermodynamics of phase transitions (based on 
Gibbs's geometric approach through convexity) and the mathematics of 
lattice systems. Lebowitz (1975) is a useful review of properties of ferromag
netic models. Also see Gallavotti (1972a). 

(b) A rough sketch of the Ising model first appeared in a 1920 paper of 
Lenz, but the model was named after his student, E. Ising. Ising (1925) con
cluded that there is no phase transition forD=l but erroneously tried to 
generalize his argument to D = 2. Brush (1967) discusses the history of the 
model. 

3 (page 93) (Z^, JD > 1) The discussion of correlations in Section IV.2 is 
based upon unpubHshed lecture notes of A. Sokal and upon Wilson (1979). 

4 (page 94) (Z^,Z) > 1) The divergence of the specific magnetic suscep-
tibiUty x(P^^) = dm(P,0)/dh at jS = j^^ is related, in a liquid-gas system, to 
the phenomenon of critical opalescence, which is the strong scattering of 
light by the system at the critical point [Stanley (1^71, Chapter 1)]. The 
strong scattering is caused by abnormally large density fluctuations in the 
system. 

5 (page 95) (Z^, D > 1) (a) A useful generalization of the finite-volume 
Gibbs state PA,p,h ^^ (4.4) is to allow many-body interactions [see Appendix 
C.3]. A second generaUzation is to replace the measure p = 2^1 + i^_i by a 
nondegenerate symmetric probability measure p on [R for which JR^'""'^ 

p{dx) is finite for all a > 0. The measure p is called a single-site distribution. 
For example, see Lebowitz and Presutti (1976), Newman (1976a, 1976c), 
Ruelle (1976), Sylvester (1976b), Cassandro et al. (1978), and van Beijeren 
and Sylvester (1978). A third generalization is to allow vector-valued spins. 
For example, the J-vector spin model corresponds to spins taking values in 
the surface of the unit sphere in IR"̂ , (ie {2,3, . . . } ; the single-site distribution 
is p(dx) = ^i(ll-^ll), XG [R'̂ . The Heisenberg model is the case d = 3. 

(b) Ferromagnetic models have been applied in a number of different 
areas. A useful technique for studying quantum fields is first to study the 
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fields on a lattice, then to let the lattice spacing shrink to zero. The lattice 
approximations are ferromagnetic models whose single-site distributions 
have the form const •exp( — jP(x))(ix, P(x) an even polynomial [Simon 
(1974), Guerra, Rosen, and Simon (1975), Rosen (1977), Glimm and Jaffe 
(1981)]. Stochastic models closely related to spin systems are studied in 
percolation theory [Kesten (1982), Aizenman and Newman (1984), Durrett 
(1984a, 1984b)] and in the theory of interacting particle systems [Spitzer 
(1970), HoUey and Stroock (1976a, 1976b, 1977), Liggett (1977, 1985), 
Griffeath (1978), Durrett (1981)]. 

6 (page 97) (Z^,D > 1) In order to avoid the nonphysical values ^ <0 
in Theorem IV.3.3, restrict Uio the interval (11^^, UQ), where UQ = Hm^̂ o+ 
t/(A,/^;P^,^,,) = ia^H^Ao^)n^Pp(dco) = - i / ( 0 ) | A | . 

7 (page 98) (Z^,D > 1) The Curie-Weiss model is discussed in Kac 
(1968) and in Thompson (1972). It is also known as the Husimi-Temperley 
model [Husimi (1953), Temperley (1954)]. 

8 (page 106) (Z^, D > \) The first Curie-Weiss bounds on p, and m(P, h) 
were found by Fisher (1967a), Griffiths (1967c), and Thompson (1971). For 
subsequent work on such bounds, see Cassandro et al. (1978), Simon (1980b), 
Pearce (1981), Sokal (1982a), Slawny (1983), and the references Usted in 
these papers. Newman (1981b) proves the bound m(P,h) < m^'^(P,h) for 
P > 0 and h>Ohy using a connection between the Curie-Weiss model and 
Burger's equation. 

9 (page 107) (l^,D> 1) Whether m(P,, + ) equals 0 or is positive 
depends on the model [Lebowitz and Martin-Lof (1972, page 282)]. The 
first holds for the Ising model on Z^ [see (5.18)] while the second is believed 
to hold for the model on Z with J(k) = k~^,k =f=0 [see Note 10c]. In general, 
the value of m(jS ,̂ + ) is not known. 

10 (page 107) (Z only) (a) Simon and Sokal (1981) have an entropy-
energy proof of the fact that Y^kezl^^i^) < ^ implies that j8̂  is infinite. 
Dobrushin (1968c), Ruelle (1968), and Bricmont, Lebowitz, and Pfister 
(1979) show by different methods that if X/cez|^k(^) is finite, then there 
exists a unique infinite-volume Gibbs state for all j5 > 0 and h real. This 
implies that jŜ  is infinite [Theorem IV. 6.5]. The latter three papers prove 
analogous results for interactions / of arbitrary sign. 

(b) We show that jŜ  is finite if / > 0 and J(k) ^ lA:!""", some 1 < a < 2 
[Theorem IV.5.3(c)]. There exist Z? > Oand 1 < y < 2 such that/(^) > blk]"^ 
for all ^ :f 0. By Theorem V.4.3(f), P^ corresponding to / i s less than or equal 
to j8̂  corresponding to the interaction J{k) = Z)|^|~^, k ^Q. For the latter 
interaction, Dyson (1969a) proves that 

liminf lim cOiCOjP^ ^ o(d(o) > 0 
\i-j\^co A t z j Q ^ 

for all sufficiently large P (long-range order). 

Proposition IV.8.1. If long-range order holds, then P^ is finite. 
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Proof. By the GKS-2 inequality [see Remark V.4.1(a)], jn^co^co^P^^ o((ico) 

< \a^o)iO)jPA,ii,o, + (^^)^ where PA,P,O,+ is the finite-volume Gibbs state with 
the plus external condition. By Theorem IV.6.5(a), Lemma IV.6.10(b), and 
Corollary A. 11.12(b), 

lim lim co.coP^,^ o, + (̂ < )̂ = [ ^ ( i ^ ,+ ) ]^ 

Thus 0 < liminf|f_j|^oo ^^^AtziaA^i^jPAj,o(d<^) ^ l^(P^ +)V for all suffi
ciently large p. It follows that P^ is finite. n 

(c) The phase transition for the interaction J(k) = k~^ (^ ^ 0) [FrohHch 
and Spencer (1982a)] is beheved to be an unusual kind. Namely, m(jS, + ) is a 
discontinuous function of jS at jS = j?̂ : m(j?, + ) > const > 0 for jS > jŜ  and 
m(P, + ) = 0 for 0 < P < P^, This was first discussed by Thouless (1969) 
and proved in a related hierarchical model by Dyson (1971). Also see Simon 
and Sokal (1981) and Sokal (1982b). 

(d) There is a large literature concerning models on Z. For example, see 
Dyson (1969b, 1972), Dobrushin (1973), Kolomytsev and Rokhlenko (1978, 
1979), Cassandro and Olivieri (1981), Rogers and Thompson (1981), Simon 
(1981), and Imbrie (1982). 

11 (page 115) (a) (Z^,D > 1). The proof that the measures P ,̂ft,+ and 
^p,h,- ^^^ ergodic follows Slawny (1974, page 300). The latter paper uses 
the GKS-2 inequahty instead of the FKG inequality. The rest of Theorem 
IV.6.5 and Lemmas IV.6.9-IV.6.10 are due to Lebowitz and Martin-Lof 
(1972). 

(b) (Z only). Fannes, Vanheuverzwijn, and Verbeure (1982) prove that if 
J(k) is monotonically decreasing for k sufficiently large (e.g., J{k) = l/cl""", 
^ =/= 0, for 1 < a < 2), then every infinite-volume Gibbs state is translation 
invariant. The proof is based on energy-entropy estimates. 

(c) (Z^,D > 1). The fact that ^ ^ j , consists of a unique measure for all 
sufficiently small P [Theorem IV.6.5(c)] also follows from a general unique
ness theorem of Dobrushin (1968a). See Lanford (1973, Section C2) and 
Simon (1979b). 

(d) (Z^,D> 1). Part (e) of Theorem IV.6.5 can be strengthened. The 
following theorem is due to Lebowitz (1977). 

Theorem IV.8.2. Let J be a summable ferromagnetic interaction which is 
irreducible on Z [see page 96]. Pick P > Pc ^^<^h that d(Pil/(P,0))/dp exists. 
Then ^^Q n ^^(Q) consists precisely of all the measures P^^l = AP ,̂o,+ + 
(1 - X)PpQ_, 0 < A < 1; d(Pil/{P, 0))/5jS exists for all but at most countably 
many values of P > P^. 

The quantity d(Pil/(P,0))/dp is called the specific energy [Problem 
IV.9.11]. 

12 (page 116) (Z^,Z) > 1) Symmetry breaking is discussed further in 
Glimm and Jaffe (1981, Section 5.3). 
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13 (page 117) Here is an interesting open problem. According to 
Theorem 11.6.1(b), for jS > jS, and any s > 0, "̂̂ ,0,+ {^A/|A| > m(j?, + ) + s} 
converges to 0 exponentially fast as AfZ . By Theorem IV.6.6(b), for 
jS > jS, and 0 < e < 2m(i?, +) , PP,O,+ {^AI\^\ ^ ^(P^ + ) - e} converges to 0 
but not exponentially fast. What is the decay rate of these probabiUties? 

14 (page 118) The FKG inequaHty originated in work on percolation 
models [Harris (I960)] and has been generaUzed and apphed in many ways. 
See Battle and Rosen (1980), Newman (1980, 1984), Eaton (1982), Graham 
(1983), and the references Usted in these papers. 

15 (page 128) Let T = {1, - 1 } and define ^ . (F^) to be the subset of 
J^(r^) consisting of probabiHty measures T with equal one-dimensional mar
ginals. Clearly, if P belongs to ^^(Q), then T = 712^ belongs to ^^ ( r^ ) . For 
the Ising model on Z, we have 

-m^,0)= sup \p/ t cD.cD^Pidco) - Il'KP)} 

= sup <P/ (O^C02T(d(0) 

te^,(r2) I Jr2 

- inf{/^^)(P):PG^,(Q),7r2P = T } L 

By Theorem IX.3.3, inf{/^^^(P):PG^,(Q),7r2P = T} equals the function 
II^KT) defined in (9.6). Hence, 

(4.66) -mP.O)= sup j j S / f (D,co2T(dco)-Il%(T) 
Te.#s(r2) c Jr2 

The latter can be derived directly if one expresses the partition function 
in terms of the empirical pair measure and uses Theorem IX.4.3 for a = 2. 
Equation (4.31) in Section IV.5 gives another formula for — jSi/̂ (jS, 0) in terms 
of the larger eigenvalue of a 2 x 2 positive matrix. Theorem IX.4.4 shows 
the equaUty of the expressions for —^(/̂ (j8,0) given in (4.31) and (4.66). 
Any finite-range interaction on Z can be handled hke the Ising model on 
Z [Appendix C.6]. 

16 (page 130) (Z^, D > I) There is a contraction principle related to the 
entropy principle in Theorem IV.7.4. The function 

Ii'\h;u) = mf{I^'KP): PeJiMMh'.P) - u} 

is the entropy function of the Tr^P^-distributions of {//̂  J |A |} . The function 
— 7^^\h;u) is called the specific microcanonicalentropy. See Lanford (1973, 
Chapter B), Aizenman and Lieb (1981), and Simon (1985). 

IV.9. Problems 

Many of these problems extend with little or no change to ferromagnetic 
models on Z^, Z ) G { 1 , 2 , . . . } . These models will be treated in the next 
chapter. The problems which do extend are so indicated. 
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IV.9.1. (Z^,i) > 1). Prove Proposition IV.3.2. 

IV.9.2. (Z^,Z) > 1). Prove that if /z > 0, then as jS ^ oo the finite-volume 
Gibbs states {PA,P,O'^P > ^} converge weakly to the unit point measure 
3^^;C0+ is the configuration in Q^ defined by dj+j = 1 for eachye A. 

The next four problems concern the Curie-Weiss model [Section IV.4]. 

IV.9.3. Verify formula (4.12) and the table accompanying Figure IV.3. 

IV.9.4 [Kac (1968, page 247)]. This problem shows how to derive the limit 
(4.19) without using large deviations. 

(a) By substituting in (4.11) the identity 

(4.66) exp(i;;^) = - ^ | Qxp(ty - ^t^)dt, y = ^nPf^z, 

and carrying out the Q^^\dz) integration, prove that 

lim - log Z{n, jS, h) = sup < log cosh / — '̂ —Ĵ  ^ >. 

(b) Using Problem VL7.14, prove that 

sup {log cosh t - i(i8/o)-H^ - Phf] = sup {ii^/oz^ + Phz - /^^>(z)}. 
teU zeU 

IV.9.5. Equation (4.19) shows that for the Curie-Weiss model, the specific 
Gibbs free energy il/(IS,h) equals -jS"^ ^^Pzeu {iPfo^^ + fihz - I^^Xz)]. 

(a) For j8 > 0 and h-j-O, prove that d^C^, h)/dh exists and -d\l/(p, h)/dh 
= z(P, h), where z()S, h) is specified in the table accompanying Figure IV.3. 

(b) For jS > 0 and /z > 0, prove that (I^'Y(z(P,h)) > jS/o. 
(c) For /? > 0 and h > 0, prove that dz(p, h)/dh > 0, dz(P, h)/dp > 0, and 

d^z(P,h)/dh^ <0. 
(d) Verify the conclusions of Theorems IV.5.1 and IV.5.2 for i/̂ (jS, h) and 

for the Curie-Weiss specific magnetization. 

IV.9.6. [Ellis (1981)]. Let c^,,(0 = lim„^^«-Mogj^^exp[^^„(co)]P,,^,,(Ja;), 
where Pn,p,h is defined in (4.9). The function c^^ is the free energy function of 
the sequence {5„; ̂  = 1,2, . . . } for the Curie-Weiss model. 

(a) Prove that Cp^^i^) = sup,^^{tz - ip^hi^)} + inf,^^ipj^(z), where z ,̂;,(z) 
= I^'\z)-(i^/oz' + ^hz). 

(b) 4,,(0) exists for jS > 0, A :^ 0 and 0 < jS < /Q-^ h = 0, but ^,,(0) 
does not exist for p > ^o ^ h — 0. Prove this statement first by explicit cal
culation and then by applying Theorems II.6.3 and IV.4.1. 

(c) Evaluate the Legendre-Fenchel transform of Cpj^. What is the rela
tionship between the Legendre-Fenchel transform and the function Ipj^ in 
(4.17)? IHint: Theorem VI.5.8.] 
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The remaining problems concern general ferromagnets on Z. 

IV.9.7 (Z^,i) > 1) [Pearce (1981)]. Let / be a summable ferromagnetic 
interaction on / and set / Q = Zfcez « (̂̂ )- Let m(jS, /z) be the specific magneti
zation corresponding to / and m^^(jS,/z) the specific magnetization for the 
Curie-Weiss model with interaction / o / | ^ | - F^r h = 0, m^^{P,h) equals 0 
and for /? > 0, m^^(jS,/z) equals the unique positive root z(P,h) of (4.14). 
The present problem shows that for j8 > 0 and h>0, m^^(j?,/z) > m(P,h) 
and thus that j8, > /o"^ [Theorem IV.5.3(a)]. 

Let A be a symmetric interval. For each i,jeA, define J^(z — y) = Xfcez 
/ ( / —j — k\A\). Fix P > 0 and h>0. Let PA,p,h be the finite-volume Gibbs 
state corresponding to / and PA,p,h,p the finite-volume Gibbs state corre
sponding to /^ (p stands for the periodic boundary condition). For ieA, 
define 

J«A J "A 

Since h>0 and Jlf'^>J(i-JX Table V.l(c) implies <CO^>A,P ^ <Cf̂f>A 
[page 147]. 

(a) Show that the sum YjjeA^Ai^ ~j) is independent of / and A and 
equals/o = X/cez^(^)-

(b) Denote by <->o expectation with respect to exp(j8(/o^ + h) Y^jeA^j)' 
K^PpidoS)' ( I /ZQ) , where ZQ is a normalization. Prove that 

^ -<^f>A,p= U ^ - ( ^ t ) e x p j | X Jj^(i-j)(z-a)i)(z-coj)i) •—, 

where z = z(P,h) and Z = <Qxp{iYij^^J^(i -j)(z - co )̂(z - (Oj)}}o' 
(c) Prove that for each positive integer r and sitey e A 

(z - co/explpifoz + h)(Oj^p(dcDj) 
J{ i , - i } 

= i(z + l)''exp[)8(/oZ + h)] {a(p,h) + ( - l)'-^(i?, hy} 

is positive, where z = z(jS, /z) and a(jS, h) = exp[ —2jS(/o^ + ^)]- \_Hint: Use 
(4.14).] 

(d) By expanding the exponential in part (b) and using part (c), prove that 
z{p,h) > <a),>A,p > <co,>A. Deduce that 

m ^^i?, h) > m(p, h) = lim - | - X <CO,>A and p, > /^K 
AtZ | A | ieA 

IV.9.8 (Z only) [Sakai (1976), Bricmont, Lebowitz, and Pfister (1979)]. Let 
/ be a summable ferromagnetic interaction on Z for which Yjksz \^J(^) is 
finite. This problem shows that for all jS > 0 and h = 0 there exists a unique 
translation invariant infinite-volume Gibbs state P^Q. Theorem IV. 6.5 
implies that P^ equals oo, thus proving Theorem IV.5.3(b). 

file:///_Hint
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By Lemma IV.6.9(c), it suffices to prove that Pp o + equals Pp o - ^ r ^^ 
j8 > 0. 

(a) Let Z be any cylinder set in Q. Prove that for all sufficiently large 
symmetric intervals A 

P A . , , O , - { 2 } <exp[4^ X \k\Jm-PA.,>.o.A^}-
keZ 

\_Hmt: Firstprove the bound for cylinder sets of the form {COGQ: cô  = cô  
for each ZGA}, where A is a symmetric interval and a) is a configuration 

(b) By Theorem IV.6.5(a), Pj^^p^o,+^Pp,o,+ and PA,P,O,-=^Pp,o,- as 
A t Z. Deduce a contradiction to part (a) if P^ Q + ^ ^^ o - [_Hint: Theorem 
A.11.7(b)]. 

IV.9.9. (Z^,/) > 1) Prove (4.38). iHint: Suppose that/G^(Q) depends only 
on the coordinates cô ,̂ . . . , co; . If A contains the sites /^, . . . , /,., then/can be 
written in the form Yj=\ ̂ iZio where ^ is a positive integer, a^, . . . , â  are real 
numbers, and Z^, . . . , Z^ are cylinder sets such that 7r̂ (Zf n ^ A , ^ ) = ^A^J- ] 

IV.9.10. (Z only). Fill in the details in the proof of the Gibbs variational 
formula for an infinite-range, summable interaction on Z and for an arbi
trary value of h. 

IV.9.11. (Z^,D > 1). Let / be a summable ferromagnetic interaction on Z. 
H^f, denotes the Hamiltonian defined in (4.3); PA,p,h the corresponding 
finite-volume Gibbs state defined in (4.4); Z(A, jS, h) the partition function 
ia^Qxp[-pH^f,(co)]n^Pp(d(o); 4'(A, j?,/z) the Gibbs free energy 
— P~^ log Z(A, jS, h), and (A(jS, A) the specific Gibbs free energy 

(a) Prove that fi^{h.,fi,h) is a concave function of jS > 0 and that 

S(mMM- r H (rn^P Urn) 

(b) Prove that i{d(Pil/(P,h))/dp exists, then 

hm—- H^_^{co)P^jJdco) -

The limit is called the specific energy. 

file:///_Hmt


Chapter V 

Magnetic Models on Z^ and on the Circle 

V.l. Introduction 

This chapter consists of two parts. Part 1 extends the results of Chapter IV 
to ferromagnetic models on the integer lattices IP, Z )G{1 , 2, . . .} . These 
results included properties of the specific Gibbs free energy, the specific 
magnetization, and infinite-volume Gibbs states. The dimension of the lattice 
enters in a dramatic way in the proof of spontaneous magnetization. For 
Z) = 1, the critical inverse temperature jŜ  is finite only for interactions of 
infinite range; e.g., J(k) = \k\~'^, A: =f 0, for some 1 < a < 2. By contrast, 
for Z) > 2, j?c is finite for any nontrivial interaction / [Theorem V.5.1]. We 
give a complete proof of spontaneous magnetization for D>1. First, a set 
of powerful moment inequalities is proved which allow us to reduce from 
a general model to the Ising model on Z^. Then spontaneous magnetization 
is shown for the latter by means of a combinatorial argument due to Peierls. 
The moment inequaUties also yield monotonicity and concavity properties 
of the specific magnetization which were stated in Chapter IV without 
proof. 

Part 2 of Chapter V presents new material, which includes a central Hmit 
theorem for the total spin and limit theorems for a magnetic model on the 
circle which is related to the Curie-Weiss model. Let ^ denote the set of 
points (jS, h) with jS > 0, A :f 0 and 0 < j8 < jS„ /z = 0. We recall from Theorem 
IV.6.5 that for {P,h) in ^ , there exists a unique infinite-volume Gibbs state 
Ppj^. The proof extends to models on Z^, D >2, without change. For co 
a point in the infinite-volume configuration space Q = {1,—1}^^, let 
Yi,{oj) = coj^ be the spin random variable at site k e IP. We denote by S^ 
the total spin XifceA k̂ î ^ ^ symmetric hypercube A of iP, Define the pair 
correlation 

where <->/?,/, denote expectation with respect to P^^. By one of the moment 
inequalities proved in Part 1, (YQ\ Yk)p,h is positive. Under the assumption 
that the sum (7^(p,h) = Xfcez^<^o5 f̂c)/?,/t is finite, Sjs, is shown to satisfy 
a central limit theorem: for each/e^ 
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'S^-\A\m(P,h)^ 
(5.1) lim ( / f(x)N(0,cj\p,h))(dx), 

ATZ^ \ \ V | A | / / P,h 

where A (̂0, o^){dx) is the Gaussian measure {2TIG^)~^'^ Qxp( — x^/2(T^)dx. The 
finiteness of (j^(P,h) is a reasonable assumption since it means that the 
correlations among distant spins are weak. 

The parameter cr̂ (jS, h) has two interpretations which connect the micro
copies and the macroscopics of the models. On the one hand, a^iP, h) equals 
the limiting variance of 5^/V| A|: 

This follows formally from (5.1) by setting/(x) = x^ (this function is not in 
^{U)). On the other hand, (7-^(P,h) is closely related to the geometry of the 
isotherms m{P,h) for p fixed, h real. Figure IV. 1 depicts the isotherms for 
the Ising model on Z^. The isotherm m(^, /z) for 0 < ^ < P^ passes smoothly 
through 0, while the critical isotherm m(jS ,̂ h) has an infinite slope at /? = 0. 
The infinite slope signals the onset of spontaneous magnetization for P > Pc-
The isotherm for P > Pc ^^^ ^ jump discontinuity at /z = 0 of magnitude 
2m(P, +) . The relation to be proved in Section V.7 is that a^(P,h) equals 
P~^ times the slope dm(P,h)/dh. This slope is called the specific magnetic 
susceptibiHty and is denoted by xiP^h). 

What is the status of the central hmit theorem at the critical point (jŜ , 0)? 
Our results are much less complete, but physically the situation seems clear. 
The susceptibility xiPc^^) ^^^ the limiting variance cr^(jS ,̂0) = P^^xiPc^^) 
are both infinite. Abnormally large fluctuations of 5A cause the central limit 
theorem to break down. An interesting question, discussed in Section V.8, 
is how to rescale Sj^ by a nonclassical scaling |A|^, A > i , such that at the 
critical point ^S /̂lAl̂  has a nondegenerate limit Z i n distribution. The value 
of X and the form of the distribution of Â  (e.g., non-Gaussian or Gaussian) 
depend on the dimension D of the lattice. Theorem V.8.6 gives information 
on X under suitable hypotheses. 

Section V.9 returns to the Curie-Weiss model, which was first studied 
in the previous chapter. One of the results shows that at the critical point 
5A/| A| /̂"̂  converges in distribution to an expHcitly determined, non-Gaussian 
random variable X, Section V.IO studies a magnetic model on the circle 
which generalizes the Curie-Weiss model and which is interesting because 
it exhibits a new kind of phase transition. A number of theorems in these 
last two sections are derived by large deviation techniques. 



PART 1 

CO: 

V.2. Finite-Volume Gibbs States on Z^,D>1 

The definition of finite-volume Gibbs states on Z carries over to Z^ essentially 
without change. But it will ease the exposition if from the start we include 
external conditions in the definitions of these states. Points in the integer 
lattice Z^, Z)G {1, 2, . . . } , are denoted by j = ij\, . . . JD). Given a non-
negative integer N, let A be the symmetric subset of Z^ consisting of all points 
7 satisfying lŷ I < A/̂  for each a = 1, . . . , Z). Thus for Z) = 2, A is a square while 
for Z) = 3, A is a cube. For general D, we will refer to these sets as symmetric 
hypercubes. The number of points in A, denoted by |A|, is {2N -[- 1)^. To 
each site7 there is assigned a spin which takes the value co ê {1, — 1}. Con
figuration space is the set Q^ of all sequences co = {cojijeA}; thus Q^ = 
{1, —1}^. We define the Hamiltonian or interaction energy of a spin con
figuration CO G Q^ to be 

(5.2) H^,uA^) = - i E /(/ -j)<aiO,, -Y.(h+ E J{i-j)&)\ 
iJeA ieA \ jeA^ / 

where A*" = Z^\A. The interaction / is assumed to satisfy the following 
hypotheses: / is independent of A, / is non-negative (ferromagnetic) and is 
not identically zero, J is symmetric (/(/ —j) = J(j — i) for each / and 7), and 
Yukez^J^h) < 00. / is called a summable ferromagnetic interaction on Z^.* 
For each i and 7, the interaction strength / ( / —j) is translation invariant; i.e., 
/ ( / —j) = /(( / -\-k) — (j + k)) for each keZ^. The real number h gives the 
strength of an external magnetic field acting at each site in A. The quantity 
d) = {coj'JeA''} defines the external condition. We recall that in our defini
tion of infinite-volume Gibbs states on Z, cbj took the value 1 or — 1 [Section 
IV.6]. In Sections V.2-V.5, where only finite-volume Gibbs states are 
studied, we will allow more general external conditions in order to increase 
the applicability of the results. In the Hamiltonian H^j^~ in (5.2), the 
quantity d)j,jeA\ takes the value 1 (spin-up), —1 (spin-down), or 0 (site 7 
unoccupied). If cOj equals 0 for each^eA^ then the Hamiltonian /Z ,̂;,,̂ ^ 
reduces to the Hamiltonian 7/^^, defined in (4.3). This choice of c5 is called 

*More general interactions are discussed in Appendix C.3. 
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the free external condition. When we want to indicate the dependence of an d) 
upon A, we will write c5(A). Since / is summable, the quantity hi = h -\-
YjjeA^-^i^ ~J)^j i^ (5-2) is well-defined. Let ||-|| denote the Euclidean norm. 
An interaction / is said to have finite range if J{k) equals 0 for all k with 
||/r|| sufficiently large. The range is the smallest number L such that J{k) = 0 
whenever \\k\\ > L. 

Let ^ ( ^ A ) denote the set of all subsets of Q^- We define \hQ finite-volume 
Gibbs state on A with external condition co to be the probabiUty measure 
^A,ii,h,(b on ^ ( ^ A ) which assigns to each {co}, COGQA, the probability 

(5.3) PAJ^HA^} = exp[-/?//A,f»,c5(^)]7rA^pW- ^ ^ . 

The parameter ^ > 0 is the inverse absolute temperature, TCJ^P^ is the product 
measure on ^ ( Q A ) with identical one-dimensional marginals p = iS^ + i^-i» 
and Z(AJ,h,a}) equals ia^Qxp\_-pH^j,^^(oj)']nj^Pp(dco). Z(Aj,h,(b) is 
called the partition function. For A a subset of QA, we have 

(oe A 

If for each siteye A^ cbj equals 1 (resp., — 1), then the external condition c5 is 
csillcdplus (vQsp., minus) and the measure is written as PA,/i,h, + (i*^sp., iA,/?,̂ , -)• 
For the free external condition (each cbj = 0), we write Pj^^^^^j. This is the 
same as the measure PA,p,h defined in (4.4). 

The ferromagnetic system which has been studied the most extensively is 
the Ising model on Z^ (especially D = 2). As we will see, much more is known 
about this model than about other ferromagnetic systems. 

Example V.2.1. The Ising model on Z^. Fix a number ^ > 0. We define 
J{i —J) to be / if II/ —7II = 1 and to be 0 if ||/ — 7|| =f 1. This interaction, 
which couples only nearest neighbors, has range 1. 

The definition of spontaneous magnetization for models on Z^ coincides 
with the definition given in the previous chapter. Let {Yj'j'eA} be the co
ordinate functions on QA defined by YJ(OJ) = cOj and let S/^(co) = Y,jeA Yj(co). 
The magnetization in the state PA,p,h,cb is defined to be 

M(AJ,h,cb) = 

where <->A,/9,/i,a> denotes expectation with respect to P/^j^h,dS' We write 
M(AJ,h,ai) as M(AJ,h, + ) , M(AJ,h, - ) , or MiAJ,hJ) if c5 is plus, 
minus, or free, respectively. M(A, ̂ , h,f) is the same as the quantity M(A, jS, h) 
defined in (4.7). We will study the magnetization per site in the limit as the 
symmetric hypercubes A expand to fill Z^. This limit, called the infinite-
volume limit or the thermodynamic limit, is denoted by A | Z^. The key fact 
is that for any /z ^ 0 and any sequence of external conditions {c5(A); A ] Z^} 
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the specific magnetization m(j8,/?) = lim^|2^|A|"^M(A, jS,/?,c5(A)) exists 
and is independent of the sequence chosen. This was proved in Lemma IV.6.4 
for models on Z, and the proof extends verbatim to models on iP. In Section 
V.4 we show that the Umit m(jS, + ) = lim;,̂ o+ ^(i^?/^) exists and is non-
negative. Spontaneous magnetization is said to occur at inverse temperature 
j5 if m(j?, + ) is positive. Section V.5 shows that for any model on Z^, D >2, 
with a nontrivial interaction, spontaneous magnetization occurs at all suffi
ciently large j8. The proofs in Sections V.4 and V.5 are based on a set of 
powerful moment inequahties which are presented next. 

V.3. Moment Inequalities*' ^ 

The moment inequalities are valid for a more general measure than the 
finite-volume Gibbs state PA,p,h,a>' Let A be an arbitrary nonempty finite 
subset of Z^, {JIJ-JJ'GA} a set of non-negative real numbers, and {/ẑ ; ze A} 
a set of real numbers. Let P be the probabihty measure on ^ ( Q A ) which 
assigns to each {co}, coeQ^, the probability 

(5.4) P{CD} = exp[-7/(co)]7rAP,H • ^ . 

In this formula, H((jo) = ~iZi,jeA«^j<^i<^j ~ ZieA^i^i ^^^ 

Z= Qxp[-H(co)]nAP^(dco). 
JQA 

Expectation with respect to P is denoted by <-> or by <->(;,.). The measure 
P reduces to PA,p,h,co if A is a symmetric hypercube, Jij = pj{i—j), and 
hi = h -\- YjjeAcJ{i —J)ojj- For B a nonempty subset of A, we define cô  = 

Properties of the magnetization will be derived from the following four 
inequahties. Three of these inequalities require that each hi be non-negative. 
Analogous results hold when each hi is non-positive. The second and third 
inequahties involve covariances of the {cOj} while the last one involves a 
triple moment. 

GKS-1 Inequality [Griffiths (1967a), (1967b), Kelly and Sherman (1968)]. 
Assume that each hi > 0. Then for any nonempty subset B of K, {co^) > 0. 

GKS-2 Inequality [Griffiths (1967a), (1967b), Kelly and Sherman (1968)]. 
Assume that each hi > 0. Then for any nonempty subsets A and B of A, 

Percus Inequality [Percus (1975)]. For arbitrary {hi} and sites /, ye A, 

* These are also called correlation inequalities. 
^ This is a special case of the FKG inequality as well as of the more general Percus inequahty 

in Lemma V.3.1 (b). 
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GHS Inequality [Griffiths, Hurst, and Sherman (1970)]. Assume that each 
hi> 0. Then for arbitrary sites i,j\ ke\ 

<(C0,. - <C0,.»(C0^- - <CO -̂»(CL>fc - ( cOfe) ) ) 

+ 2<co,><co,.><a;,> < 0. 

The FKG inequality is not needed now in order to prove properties of 
the magnetization, but we state it here for later use. Its importance has been 
demonstrated in Section IV.6. 

FKG Inequality [Fortuin, Kastelyn, and Ginibre (1971)].* Let f and g be 
real-valued, nondecreasing functions on Q^. Then for arbitrary {/z,}, (^fg^ — 
ifXg} > 0. In particular, {/7J < {^J implies <f}{hi} ^ <f>{hi}' 

The proofs of the moment inequaUties follow Sylvester (1976a). 

Proof of the GKS-1 inequality. By definition 

JQ^ ViJeA is A ) ^ 

We expand the exponential in its Taylor series and factor the resulting 
integrals over the sites / G A . The proof is reduced to showing that 
111 _i|Cof'p(JcOi) > 0 for each site / and all non-negative integers m. But the 
integral is 0 for m odd and 1 for m even. n 

Proof of the GKS-2 inequality and the Percus inequality. The proof employs 
a method of dupUcate variables. We construct a doubled spin system with 
configuration space Q^ x Q^, spins {cô ; zeA}, \o-^; /e A}, Hamiltonian 

H{(D,O) = H(OS)-VH{G) 

= - 9 Z ^iPi^i - Z ^i^i ~ 9 Z -^ii^i^i - Z K^i^ 

and finite-volume Gibbs state 

P(dcDd(7) = Qxp\_-H(co,(7)']n^Pp(doji)n^Pp(d(T)'—, 

where Z is a normalization. Thus the doubled system consists of two copies 
of the original system which do not interact with each other. We denote 
expectation with respect to P{dojdo) by <->^^^ The inequaUties will follow 
from the next lemma. Part (a) is due to Ginibre (1970) and part (b) to Percus 
(1975). 

Lemma V.3.1. Define t^ = (cOj- + (ydlsfl and q^ = (cô - — (Ti)/-s/2. 
(a) If each h^ > 0, then for any nonempty subsets A andBof K, iqAh}^^^ ^ 

0.̂  

* Nondecreasing means {coj < {coj =>f{{cOi}) </({a),}). The proof of the FKG inequahty 
given in Theorem IV.6.7 appHes to Z) > 1 without change. 
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(b) For arbitrary {/zj and any nonempty subset A of \., <̂ >̂̂ ^̂  > 0. 

Proof, (a) In terms of t^ and q^, 

H{cD, G) 

'-iJeA LL V2 
To + ij 

II .n + 
./2 1 1 >/2 II 

We substitute this expression into the formula 

<^JB> 
(2) . qJs^^Pl-H(oj, G)']n^Pp{doS)n^Pp{dG) 1 

expand the exponential in its Taylor series, and factor the resulting integrals 
over the sites /e A. The proof is reduced to showing that for each site i and 
all non-negative integers m and n 

qrtfp(dcDdpidGi) 
[ l , - l ) x { l , - l ) 

CO; 

V2 V2 
p{dcOi)p(dGi) > 0. 

/ { l , - l ) x { l , - l ) ' 

Since the spins take values 1 or — 1, the integrand is 0 if both m and n are 
positive. If either m or n equals 0, then we are left with moments of ti alone 
or of qi alone, and these are either 0 (odd moments) or positive (even 
moments). 

(b) By (5.5), <̂ >̂̂ >̂ equals 

^^exp( - X ^i^.-^,)exp(- X JiM + ^I.hitA 
QA>^«A ViJ^^ / ViJ^A ieA ) 

i e A ^ 

We expand the first exponential in its Taylor series. It suffices to show that 
for all non-negative integers m̂  

(5.6) 
"AX " A 

ieA x-^ij'eA ieA /ieA 

By symmetry, the integral is 0 unless all the m̂  are even [Problem V.13.2]. 
If all the ffii are even, then the integral is positive. n 

In order to prove the GKS-2 inequality, we express {OJ^CDQ} — <cô > (co^) 
in terms of the doubled system: 
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<O^A^B> - {(^AX^B} = <(^A^B - O^A^BY^^ 

=(n(^)[n(^)-n(^f-" 
When the product niesC^i"" ^dl-sP- is expanded, any term with a negative 
coefficient is cancelled by a corresponding term in the expansion of 
HieB^^i + qi)/y/2. Hence the right-hand side of (5.7) is the expectation of 
a polynomial in {^J and {̂ J which has non-negative coefficients. Lemma 
V.3.1(a) shows that the expectation is non-negative. This proves the GKS-2 
inequality. 

The Percus inequality follows from Lemma V.3.1(b): 

<co,-cô .> - <co,.> {coj} = ^{cOiCOj + (7i(7j - (0^0^ - o^jGiY^'' = iqiq^Y^'' > 0. n 

Proof of the GHS inequality. We introduce a quadrupled spin system with 
configuration space Q̂ ^ x Q^ x Q^ x Q^; spins {COJ;/GA}, {O-J;/GA}, 

{co-; /G A}, {o[; /G A}; Hamiltonian H{CD, a, co\ o') = H(co) + H(G) + H(o)') 
-\- H{G') ; and finite-volume Gibbs state 

P{dcodGd(D'da') 

= Qxpl-HicD,a,oj\a)]nj^Pp(d(o)n^P^(da)n^Fp(dcD')n^Pp(da^ 

where Z is a normalization. Expectation with respect to this measure is 
denoted by <-> '̂̂ ^ The following lemma is due to EUis and Monroe (1975). 

Lemma V.3.2. Define 

_ CÔ- + Oj + Cp; + G[ r> _ O^i + (^i — COj — ^ / 
o^i- 2 ^ Pi- 2 

(̂ •̂ ) , , , , 
_<jOi — (7i-\- (Di — <7i Si _ ~^i~^ ^i + <^i ~ ^i 

yi- 2 ' ^'~ 2 ' 

If each hi > 0, then for any nonempty subsets A, B, C, andD in F, {â iSfiyĉ D)̂ "̂ ^ 
> 0 . * 

Proof Since the transformation (5.8) is orthogonal, 

-H{cD) - H{a) - H(co') - H{G') 

This is a polynomial with non-negative coefficients. By expanding the 
exponential in ^o^APByc^D}^"^^ ^^^ factoring the resulting integrals over the 
sites ieF, we reduce the proof to showing that for each site / and all non-
negative integers k, /, m and n, 
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(5.9) 0ifl]lyTd^p(daj,)p(dGdpidcD;)p(d(7;) > 0. 
J { i , - i } 4 

By symmetry, the integral is 0 unless k, /, m, and n all have the same parity 
[Problem V.13.3]. When the parity is even, the integrand is non-negative 
and (5.9) holds. When the parity is odd, since cof = of = (co-)̂  = (or-)̂  = 1, 
we find that 

afftVW = arpnyr'Sr\PiyA and a,p,yA = KoJiCJi - cD^aCf. 

Hence the integrand is again non-negative, and (5.9) holds. n 

We now prove the GHS inequality. Define 

CO: + (7; CO; — G: , CO- + CT/ , CO'- — (T,-

As noted by Lebowitz (1974), 

<co,-o;̂ .co;,> - <co,.><cô .cO;,> - <cô .><cOiCOfc> - <a;fc><cOiCô .> + 2<cOf><cô .><cOfc> 

The latter term can be written as 

•V2 «t + ft 
V2 

li + <5A (ij + <̂ A /"y,- - ^A A ; - 4 (4) 

V2 A V2 7 V N/2 A V2 

This is non-positive by Lemma V.3.2. The proofs of the moment inequahties 
are complete. 

V.4. Properties of the Magnetization and 
the Gibbs Free Energy 

Spontaneous magnetization for models on Z^, D > 2, will be proved in the 
next section. The proof depends upon properties of the magnetization 
M(A, jS, h,f) as well as on connections between the magnetization and the 
Gibbs free energy. 

Let A be a symmetric hypercube in Z^. For jS > 0 and h real, let /A,/s,ft,c5 
be the finite-volume Gibbs state on A with external condition co correspond
ing to a summable ferromagnetic interaction / . The quantity 

M{K,p,h,&)= Z<J^>A./,,ft,s 

denotes the magnetization in the state PA,/?,^,^- The parameters h and co 
appear in PA,p,h,co ^^ the combination /?i =/? + XjeA^'^0 ~ ^ ) ^ r ^^^• 
Properties of <̂ >A,/3,fi,c5 ^s functions of jS, of the interaction strengths 
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Table V.l. Properties of (F^)^^ ,,̂ ^ 

147 

Property of < y,> 

(a) < y , > > o 

(b)A<r,>^o 

(^^ai)<^'>^^ 
(d)|-<r,>^o 

^^^^<^'>^^ 

Moment 
Inequality 
Used in Proof 

GKS-1 

GKS-2 

GKS-2 

Percus 

GHS 

Conditions on 
hi = h-^ ZieA^^O" -j)(^j. '̂e A 

Each hi > 0 

Each hi > 0 

Each hi > 0, each cbj > 0 O'e A') 

Arbitrary hi 

Each hi > 0 

/, 7, / are sites in A (not necessarily distinct); j? > 0; J{k) >0,k€  IP. We have h^ > 0 if, for 
example, h >0 and d) is plus or free. 

{J(k); ^ G Z^}, and of {h^; /e A} are listed in Table V. 1. M(A, jS, h, co) satisfies 
the same properties (just sum over /e A). All but one of these properties 
require that each /ẑ  be non-negative. This non-negativity restricts the allowed 
values of h and c5. Analogous results hold when each hi is nonpositive. 

Proof of Properties <̂ /"< ^>A,^,^,CO- We write H for 

iJeA 

Z for Z{\,p,h,<x>) = ^a^expi-pHio))^n^P^(d(o), and <-> for <->A,p,,,<5-
The following easily verified calculations are needed: 

(5.10) 

(5.11) 

(5.12) 

dZ 1 
Hico)sxp\_-PH(co)]n^P^id(o)-^^ - < / / > , 

dp Z 

dH(co) I ^ ^ ~ 

' iJeA 
i-j=k 

ie AJe A^ 
i-j=k 

dH(oj) 

dhi 
- c o , - , 

' i , 7eA 

(5.13) % \ - ^ [ co,^xp[-liH(co)}n^P^(do,)'-^ = Picoi} = P{Y,), 

The first sums in (5.11) and (5.12) are absent if there are no sites /,yG A which 
satisfy i —j = k; similarly for the second sums in (5.11) and (5.12). 

(a) If each hi > 0, then <y;> > 0 by the GKS-1 inequality. 

•"'IJO')"! 
LJn 

(OiQxpl-pH{aj)}n^Pp{dco)- — 
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(0,/f(co)exp[-j8//(a))]rr^P,(Jco) -^r 

r r\7 1 
- <^/exp[-iS^(co)]7C^P^(rfco)- — - ^ 

IG A 

If each h^ > 0, then d(Yi}/dp > 0 by the GKS-2 inequahty. 
(c) We have 

5/(/t) 

'^ i,jeA ieAJeA^ 
i-j=k i-j=k 

If each hi>0 and each d)̂ - > 0, then 5< Yiy/dJ(k) > 0 by the GKS-2 inequahty. 

(^) T7~< ̂ > = i5[<^i^i> — <<̂ i> <^i> ] > 0 by the Percus inequahty. 

- «cOfO;,-> - <a;^><co,.»<co^.> 

- {coiyUcDjCDi} - iojj} {(oi))'] 

= P^l<o^i0^j<^i> - iojiyicojCOi} - {coj} icOiCDi} 

- icOiXcOiO^j} + 2<cOf><cô .><cOi>]. 

If each hi > 0, then d^^Yiy/dhidhj < 0 by the GHS inequahty. 

Remark V.4.1. (a) Let ^ be a nonempty subset of A. The GKS-2 inequahty 
imphes that 

d<o^AyA.0,H,B ^ Q ^^^ g<cô >̂A,/>,>..a ^ 0 provided each/z,>0, 

^''^^''^'If'" - ^ provided A; > 0 and each co,. > 0. 

The proof is the same as that of properties (b) and (c) in Table V. 1. For exam
ple, dicoAy/dhi = p[{coACOi} - {co^yicoi}] > 0 by the GKS-2 inequality. 

(b) By (5.13), <cOf> = r^dlogZ/dhi. Let / i , . . . , / , be sites in A. The 
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derivatives 

are called the Ur sell functions or cluster functions. We have 

u^{ij,k) = icOiCD^oj^y - {cDiyiojCDj,} - {ojj} ((DiCOk} - {coj^yicOiCOj} 

+ 2<co,-><a)̂ -><cOfc>. 

An immediate consequence of Table V.l is the following theorem, which 
states properties of M(A, p, hj). 

Theorem V.4.2.* The magnetization M(A,p,h,f) corresponding to the free 
external condition cb = 0 has the following properties. 

(a) For each jS > 0, M(A,jS, 0,/) = 0; M(A,P,h,f) is a non-negative 
concave function ofh>0 and a nondecr easing function of h real. It satisfies 
M(AJ,-hJ)= -M(AJ,hJ)and\M(AJ,h,f)\<\A\. 

(b) For each h >0, M(A, jS, hj) is a non-negative, non-decreasing function 
of P > 0 and of each interaction strength J(k) > 0, keJ.^. 

Proof, (a) The relation M(A, j8, —hj) = — A/(A, jS, h,f) follows from the 
fact that P^p..ijf{co} = PA,p,h,f{ — <^} for each coeQ^. It implies M(A, jS, 0,/) 
= 0. For the free external condition, hi equals h for each site ieA. Hence 
ifh is non-negative, then Table V. 1 applies. By Table V. 1 (a), M(A, p, h,f) = 
Z^eA'\^)A,/3,^,/ ^ Ofor/z > 0. The concavity of M is equivalent to 3^M/5/z^ 
< 0 , and by Table V. 1(e) 

For h real, dM/dh > 0 [Table V.l(d)]. We have 

\M{\,li,h,f)\< Z|<1^>A,, , , , / |< |A| . 
IeA 

(b) For /z > 0, dM/ep > 0 and dM/dJ(k) > 0 by Table V.l(b) and (c), 
respectively. n 

Connections between the magnetization and the Gibbs free energy were 
explored in Sections IV.5 and IV.6 for models on Z. We now extend these 
results to the i)-dimensional models. Fix a summable ferromagnetic inter
action / on Z^. Given a symmetric hypercube A and an external condition 
o) = d)(Cl), we define the Gibbs free energy 

^(A,^,/z,co)= -p-'log Z(A J, h,d)), 

*MiA,P,hJ) equals the function M{A,p,h) in Theorem IV.3.4. 
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where Z(A, jS,/z, co) = JQ^exp[ —jS//^ ^^(a;)]7c^P^((ia;). If co is free, then we 
write ^(A, jS, hj). The latter is the same as the function ^(A, jS, H) defined 
in (4.20). An important property of the Gibbs free energy is that for any 
sequence of external conditions {co(A), A | Z^}, the specific Gibbs free energy 
i/̂ (jS,/2) = lim^>l^2D|A|~^^(A,jS,A,d)(A)) exists and is independent of the 
sequence chosen. The existence of the Hmit for the free external condition is 
proved in Appendix D.l. To prove that the Hmit exists for any sequence of 
external conditions and is independent of the sequence chosen, let us com
pare ^(A,iS,/z,co(A)) with ^(A,i8,/?,/). We use inequality (4.41), which 
holds for arbitrary dimension D: 

(5.14) | ^ | ^ (A , i ? , / ! , f t ) ) - 4 ' (A ,^ ,A , / ) |< -^ | | / / ^ , , , s - / /A . , , ^ |U . 

^\,hj is the Hamiltonian with the free external condition and ||-||^ denotes 
the maximum over Q^. Since ^{P,h) = lim^>i^2^|A|~^^(A, j5,A,/) exists, it 
suffices to prove that | A|"^ \\^A,h,a> — ^A,/I,/||OO ^ 0 as A | / ^ . For any £ > 0, 
there exists a positive integer A/g so that Xl|fc||>iv A^) < -̂ For any coe^^ 

T^|^A,I,,S(C0) - i/A,^,/(C0)| < 4 7 Z Z J{i -j) 

where Z ' denotes the sum over all ieA and ye A'' such that ||/ — 7|| < N^. 
We have Y.'J(i -j) < (maXk^^DJik)) const |A|̂ ^-i^/^A^,^+S where the con
stant depends only on D. It follows that lim^ ĵ̂ ^^ | A| "^^(A, jS, h, cb(A)) exists 
and is independent of the choice of {d)(A)}. 

The next topic is smoothness properties of i/^(j8,/i). We first note that for 
any external condition co, ^(A, jS,A, co) is a concave function of h real. 
Indeed, the concavity is equivalent of the inequality 

(5.15) Z(AJ,Ah, + ( 1 -X)h2,(b)<Z(AJ,h,,d)y-Z(AJ,h2,cby-^ 

for any h^ =/= /z2 i"eal and 0 < A < 1. As in the proof of Theorem IV.5.1(a), 
(5.15) follows from Holder's inequaUty. Since concavity is preserved under 
pointwise Hmits, we conclude that ily(P,h) is a concave function of h real. 
In addition, il/(p,h) is an even function of h since ^(A, jS,/z,/) is an even 
function of h. We next show that il/(p,h) is a continuously differentiable 
function ofh =/= 0. The first step is to relate ^(A, jS, /z, c5) to the magnetization 
M(A, p, h, cb) in the finite-volume Gibbs state PA,p,h,o:>-

5^(A, p, h, (b) ̂  _ 15Z(A, jS, h,6j) 1 

dh "^ dh Z(AJ,h,(b) 

Z Z ^j^^P(-P^A,h,co(^W -|A|_ 1 
j e A c o e Q ^ ' ' Z ( A , / ? , / z , d)) 

= M(AJ,h,Cb). 

In particular, (or h >0 and the free external condition 
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A 

h 1 
M(AJ,sJ)ds, 

o|A| 
Since 0 < M(A, j8,/z,/) < |A|, there exists an infinite subsequence {A'} of 
{A} such that m(j?,/z) = lim^tz^|A'|~^M(A',j8,/z,/)existsfor every rational 
number h>0. M(A\p,0,f) equals 0 and thus m(jS,0) equals 0. Since 
M{A\p,h,f) is a concave function of /? > 0, a standard convexity result 
implies that m{p,h) exists for all h>0 [Theorem VI.3.3(a)]. The limit 
m(P, h) is concave for A > 0 and hence is continuous for /? > 0 [Theorem 
VI.3.1]. By the Lebesgue dominated convergence theorem, m(P,h) satisfies 

HP,h)-HP.O)= -rmiP,s)ds. 
Jo 

This equation shows that il/(P,h) is a continuously differentiable function 
of h>0 and that d\l/(P,h)/dh = —m(^,h). A similar proof works for 
h <0. Since ^(A, jS, h, d>(A)) is a concave function of h real and for /z ^ 0 
dil/(P,h)/dh= —m(P,h) exists, Lemma IV.6.3 implies that for h=/=0, 
lim^l2^|A|~^M(A, j?,/z,c5(A)) exists along the entire sequence {A} and 

hm J—rM(A,jS,/z,a;(A))= - lim -r—y— ^l. ^^ 
At/^|A| Atz^|A| on 

(5.16) 

= — a V ^^^P^^^' 

Thus the limit is independent of the choice of external conditions {d3(A)}. 
The next theorem summarizes the facts about il/(P,h) and m(P,h) which 

have just been proved. It also Usts properties of m(P,h) which follow from 
properties of M(A, j8, h,f) in Theorem V.4.2. 

Theorem V.4.3.* Let J be a summable feromagnetic interaction on Z^. Then 
the following conclusions hold. 

(a) For P > 0 and h real, the specific Gibbs free energy i/̂ (jS, h) = 
hm^l2^|A|~^^(A, ^,/z, d)(A)) exists and is independent of the choice of 
{c5(A)}. 

(b) For each P > 0 il/{P,h) is a concave, even function of h real and is a 
continuously differentiable function ofh=/=0. 

(c) For P>0 and h =/= 0, the specific magnetization m(P,h) = 
lim^>^2^|A|~^M(A, j8,/z,co(A)) exists and is independent of the choice of 
{d)(A)}. Moreover m(P,h) = —dil/(P,h)/dh. 

(d) Define m(j?,0) = 0. For each P > 0, m(P,h) is a non-negative concave 
function of h > 0 and a nondecreasing function of h real. It satisfies m{P, —h) = 
-m(P,h)and\m(p,h)\ < 1. 

(e) For each /z > 0, m(P,h) is a non-negative, nondecreasing function of 
P > 0 and of each interaction strength J(k) > 0, keZ^. 

(f) For each P > 0, the limits m(P, + ) = lim ĵ̂ o^ ^(P^ h) and m(P, —) = 

* Other properties of m{p,h) are derived in Problem V.13.1. 
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lim;j^o- ^(P^h) exist and m(p, —) = —m(P, + ) ; m(jS, + ) is a non-negative, 
nondecreasing function of P > 0 and of each interaction strength J(k) > 0, 

Part (b) of the theorem states that for each ^ > 0 i/̂ (j8, /?) is a continuously 
differentiable function of/? =/= 0. We have the following important extension, 
which is a consequence of the Lee-Yang theorem [Lee and Yang (1952)].^ 
The proof is omitted. 

Theorem V.4.4. Let J be a summable ferromagnetic interaction on Z^. Then 
for each /? > 0 i/̂ (j?, h) is a real analytic function ofh =/= 0. 

Spontaneous magnetization occurs at jS if and only if 

oh h^o^ oh 

is positive. We next relate m{P,h), m(p, + ) , and m(j8, —) to the quantities 
<coo> ,̂;,,+ and (COQ)^,/,,-, defined as 

<(^o>p,h,+ = lim 
A1 

o^oPA,p,h,+ idoj), 

a 

<(^o>p,h,- = l im 
A1 

o^oPA,p,h,-(dco); 

n 
COQ denotes the spin at the origin of Z^. The existence of the Hmits follows 
from the FKG inequahty [Corollary IV.6.8(b)]. Later, we will identity 
i^oyp,h,+ ^^d <a>o)/3,ft,- ^s the means of infinite-volume Gibbs states Pp,h,+ 
and Pp^h,-^ respectively. The following lemma is proved exactly like Lemma 
IY.6.10, and so the proof is omitted. 

Lemma V.4.5. Let J be a summable ferromagnetic interaction on Z^. Then 
the following conclusions hold. 

(a) For p>Oandh^{), 

/ \ rn i\ # ( i^ .^) / \ 

(b) For P>Oandh = 0, 

(5.17) 

< c . o > , , o , . = - ( ^ , - f ) = - ^ > 0 , 

<^oVo,- = ^(P, - ) = g -̂ < 0. 

Thus spontaneous magnetization occurs at P if and only if <coo>^ o,+ = 
m{p, -f) > 0. 

Lemma V.4.5 will be used in the next section in order to prove spon
taneous magnetization for models on Z^, D>2. 
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V.5. Spontaneous Magnetization on Z^, D>1, Via the 
Peierls Argument 

In the previous chapter, we saw that for models on Z spontaneous magne
tization does not occur unless the interaction has infinite range. It occurs, 
for example, if J{k) equals \k\~'^ (k =/= 0) for some 1 < a < 2, but not if 
Zfcez l^l'^(^) converges. Let us contrast this with the behavior of models on 
Z^, D >1. Spontaneous magnetization occurs for the Ising model, whose 
interaction has range 1. More generally it occurs for any model for which 
there exist two linearly independent vectors / and j such that /( /) and J{j) 
are positive. The range of the interaction is not a factor. The next theorem 
proves spontaneous magnetization under the extra assumption that / and j 
are unit vectors. The general case is Problem V. 13.8(b). 

Theorem V.5.1. Let J be a summable ferromagnetic interaction on iP, D >2, 
and define the positive number / Q = X!feez^« (̂̂ )- Define the critical inverse 
temperature 

jS, = sup{i8>0:m(j8,+) = 0}. 

(a) Then P^ ^^ well-defined and /Q^ < ^^l ̂ ^ particular, ft > 0. 
(b) Assume that there exist two linearly independent unit vectors i andj in 

JP such that J{i) and J{j) are positive. Then ft is finite. Spontaneous magne
tization occurs at allP > Pc'^ •̂̂ •? <<̂ o))ff,o,+ = ^(P^ + ) > ^for P > ft. 

For the Ising model on Z^ with zero external field, Onsager (1944) found 
the exact value of the specific Gibbs free energy i/^(j8,0). This calculation, 
one of the most famous in mathematical physics, involved the transfer matrix 
formalism [see Example IV.5.4]. Five years later, he announced without 
proof the exact values of ft and m(P, + ) for this model [Onsager (1949)]: 

(5.18) s i n h 2 f t / = l , m ( f t + ) = [1 - (sinh(2i8/))-^]^/« for jS > ft. 

^ > 0 is the nearest-neighbor interaction strength. These values were later 
confirmed to be correct.^ The lower bound on ft given in Theorem V.5.1(a) 
is not a bad estimate of the true value. By Theorem V.5.1 (a) ft^ > 0.25 
(since / o = 4 / ) while according to (5.18) ft/ = ^sinh"^ 1 = 0.44 + . Notice 
that for the Ising model on Z^, m(ft, + ) = 0; i.e., there is no spontaneous 
magnetization at the critical inverse temperature. For other ferromagnetic 
models, the value of m(ft, + ) is not known. 

The proof of Theorem V.5.1 uses the moment inequaUties developed in 
the previous section. These inequaUties reduce the proof of spontaneous 
magnetization for an arbitrary model to showing spontaneous magnetization 
for the Ising model on Z^. Spontaneous magnetization for the Ising model 
is implied, of course, by the Onsager values in (5.18). We shall present 
another proof which is based on a combinatorial argument due to Peierls 
(1936). The Peierls argument has been generalized and applied to many 
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different models in mathematical physics and is one of the most useful 
tools for understanding phase transitions."^ 

Proof of Theorem V.5.1 (a) The number jŜ  is well-defined since m(^, + ) 
is a non-negative, nondecreasing function of jS > 0. The bound P^ > </o ^ 
which is a Curie-Weiss lower bound on p^, follows from Pearce (1981) 
[see the comments after Theorem IV.5.3 and Note 8 in Chapter IV]. 

(b) Pick / > 0 such that /( /) > / , J(j) > / , and compare the specific 
magnetization m(P,h) with the specific magnetization m2(P,h) of the Ising 
model on Z^ with interaction strength /((1,0)) = /((0,1)) = / . Let / b e the 
interaction obtained from the original J by reducing to 0 all the interaction 
strengths J(k), k ^ /, 7, and by reducing to / the interaction strengths 
/(/) and J{j). For /? > 0, m(P,h) is a nondecreasing function of each J{k) 
[Theorem V.4.3(e)]. Since the specific magnetization of the model on Z^ with 
interaction /equals m2(P,h), we see that if A > 0, then m(P,h) > m2(P,h). 
This impUes that m(P, + ) > m2(P, + ) . Hence spontaneous magnetization 
for the original model will follow once we prove that m2(j?, + ) is positive 
for sufficiently large p. 

Let PA,ii,h,+ be the finite-volume Gibbs state with the plus external con
dition for the Ising model on a symmetric square A in Z^. We prove that 
^liP^ + ) is positive for sufficiently large j8 by proving that <coo>A,̂ ,f,,+ ^ 
const > 0 for all jS > ^ > 0 and all A [see Lemma V.4.5(b)]. Since 

<^o>A,^,o,+ =PA,P,O,+ {^^^A'O^O = 1} -^A,^,o,+ {<^eQA:coo= - 1 } 

= 1 -2PA^P^O, + {(^^^A'(^O= - 1 } , 
(5.19) 

it suffices to prove a uniform bound 

(5.20) i\,^,o, + {^eQ^i coo = - 1 } < i - 5 < i for all jS > ^ > 0 and all A. 

Peierls' idea was to associate a set of closed curves with each configuration 
coeQj^. Define the boundary of A, bd A, to be the set of all sites7 GA*" which 
are a distance 1 from A. Since the interaction has range 1, bd A contains all 
the sites in A'' which interact with sites in A. The external condition fixes each 
spin on bd A to have the value + 1 . Given COEQ^, draw a vertical or horizon
tal segment of unit length halfway between every adjacent pair of plus spin 
and minus spin in A u bd A. Every simple closed curve consisting of such 
segments is called a border contained in the configuration. For example, 
Figure V.l shows five borders, three of length 4, one of length 8, and one of 
length 18. The ambiguity that arises when two borders touch at a corner is 
resolved by cutting the corners adjacent to the sites with minus spins. 

The key observation is that if the spin at the origin is — 1, then because of 
the plus external condition, the configuration must contain a border which 
surrounds the origin. ProbabiHties associated with such borders are not hard 
to estimate. For y a positive integer, let 0^ be the set of all borders of length 
y which surround the origin. We have 
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Figure V.l. A particular configuration on a 5 x 5 square to illustrate the Peierls argument. 
The origin is at the center. The boundary spins (inside circles) are +1 for all configurations.* 

^A,/5,o, + {<^eQ^:coo= - 1 } < X Z ^A,^,0, + {^eQ^ICO contains 0}. 

(5.21) 

The next lemma gives an entropy-energy estimate on the cardinality of 0^ 
and on the probability that co e Q^ contains a border in 0^. Since long borders 
mean many minus spins, it is not surprising that the P^^^ o, + -P^*obability of 
a long border is small. The proof of the next lemma follows the presentation 
in Spitzer (1971, Chapter 7). 

Lemma V.5.2. The following bounds are valid for any symmetric square A 
in Z^ 

(a) | 0 , | < y ^ 3 ^ 
(b) For each border 9e@y of length y 

(5.22) P^^^Q^+{OJEQ^\(D contains 6] < exp( —yjS/). 

Proof (a) This proof uses a counting argument (entropy estimate). A 
border of length y surrounding the origin either passes just to the right of 
the origin or it can be obtained by translation of a border which does. The 

* Figure V.l is adapted from Figure 8 in Griffiths (1972, page 61). 
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number of borders of length y which pass just to the right of the origin is 
at most 3^, since each unit segment of 7 can point in at most three directions. 
The number of possible translations is at most 7^ (y possibilities vertically 
and 7 horizontally). Hence |0y| < y'^V. 

(b) This is proved by studying symmetries of the Hamiltonian (energy 
estimate). Given a fixed border 06©^, let Q^ ^ be the set of configurations 
COGQ^ which contain Q. We map cyeQ^^ into a new configuration coeQ^ 
defined by 

c o , = 
coj if 7 is outside the border 0, 

^ \—o^j if 7 is inside the border Q. 

This map is well-defined by the elementary Jordan curve theorem for simple 
closed polygons. Consider the Hamiltonian 

where cbj equals + 1 and J{i —j) equals ^ > 0 if ||/ — 7|| = 1 and otherwise 
equals 0. For every segment of unit length of the border 6, the map CD^CO 

changes a term of the form cô coj = — 1 or cbjCOi = —I (i and j on opposite 
sides of this segment) from —1 to 1. No other changes take place. Hence 
H^Q +(CD) decreases by / for every unit segment of 6 and so H^Q +(a)) = 
H^ Q +(a)) — yf if 0 has length 7. Substituting this into the definition 

X exp[-)S/f^,o,+(co)] 

/ \ ^ o,+ {<^^^A'^ contains ^} = • 
c o e f i ^ ^ 

Z exp[-iS//^,o, + (co)] ' 

we see that ^ v ou /-^^ 

^A.̂ .o,+ {weQ^: w contains &) = expi-y^/)'^^^^ —— ——-. 

Each configuration (D which occurs in the sum over Q/^Q occurs at most 
once, since two different configurations containing 9 cannot be mapped into 
the same at. Hence the sum over Q̂ ^ ^ is a positive number which is less than 
the sum over Q^ in the numerator. This proves (5.22). n 

We now complete the proof of Theorem V.5.1 by showing spontaneous 
magnetization for the Ising model on Z^ at all sufficiently large jS. By (5.21) 
and the lemma, 

(5.23) 7\,^,O, + {COGQ^:COO = - 1 } </()?) = Z j'^^Wi-yP/l 
y > l 

Up/ > log 3, then/(jS) is finite, and/(j8) -^ 0 as jS ^ 00. Hence given d > 0, 
we can pick a number jS such that /(jS) < ^ — ^ < ^ for all jS > ^. As jS is 
independent of A, we have proved (5.20), and we are done. 
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V.6. Infinite-Volume Gibbs States and Phase Transitions 

In Section IV.6, we introduced the set ^pj, of infinite-volume Gibbs states 
for ferromagnetic models on Z. For different values of j8 and h, we analyzed 
the structure of ^^^ [Theorem IV.6.5] as well as the asymptotic behavior 
of the spin per site ^S /̂lA] with respect to certain translation invariant 
measures in ^^j, [Theorem IV.6.6]. These theorems will be generalized in 
this section to ferromagnetic models on Z^. 

The finite-volume Gibbs state P\,p,h,(b defined in (5.3) is a probability 
measure on Q^ = {1, — 1}^. In Sections V.2-V.5, the external condition was 
defined by the quantity co = [dbyJeK''], where each coj takes the value 1, 
— 1, or 0. In order to stay consistent with the definitions in Section IV.6, 
we now restrict the allowed external conditions by requiring each (bjJeK\ 
to take the value 1 or — 1. Thus co = [cb^ ;7 e A'̂ } is a point in Q^c = {1, — 1 }^^ 
The probability measures studied in the present section are probabiUty 
measures on the infinite-volume configuration space Q = {1, — 1}^ . These 
measures are obtained from the finite-volume Gibbs states by weak hmits 
(AjZ^). 

The set {1, — 1} is topologized by the discrete topology and the set Q by 
the product topology. According to Tychonoff's theorem, Q is compact. The 
(7-field generated by the open sets of the product topology is called the Borel 
(7-field of Q and is denoted by ̂ (Q). ^(Q) coincides with the cr-field generated 
by the cylinder sets of Q [Propositions A.3.2 and A.3.5(b)]. We denote by 
^ ( Q ) the set of probabihty measures on ^(Q). Let A be a symmetric hyper-
cube in Z^, (b = co(A) an external condition, B^^ the set {ooeQ.\(Dj = (bj, 
eachy G A""}, and n^ the projection of Q onto Q^ defined by (TT̂ CO)̂  = CÔ , Z G A. 
We extend PA,p,h,c6 ^^ ^ probabihty measure PA,p,h,c6 ^^ ^ ( ^ ) by setting 

(5.24) PA,p,hA^} = PA,p,hA^A(A n B^^^)} = X PA,p,hA^} 
(o^-rtA(AnBA,(o) 

for A a Borel subset of Q. The right-hand side of (5.24) is given by (5.3). As 
in Section IV.6, the extension will be denoted by the same symbol PA,p,h,(b 
used for the original measure. We say that a sequence {P„; w = 1,2, . . . } in 
Ji{Q) converges weakly to PeJi{Q), and write P„=> P or P = w-\im„^^ P„, if 
l^fdPn -^ lafdP for every/G<^(Q). With respect to weak convergence ^ ( Q ) 
is a compact metric space [Theorem A.l 1.2]. 

Consider the set of hmits 

^^% = { P G ^ ( Q ) : P = w-limP^, ^,,,^(^,)}, 
A'TZ^ 

where {A'} is any increasing sequence of symmetric hypercubes whose union 
is Z^ and d5(A0 is any external condition for A'. Define ^^j^ to be the closed 
convex hull of ^^^. Each measure Pe^^j^ is called an infinite-volume Gibbs 
state."^ The compactness of Ji{Q) assures that ^^;, and thus ^^y^ are non-

* Equivalent notions of infinite-volume measures are discussed in Appendix C. 
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empty. A level-3 phase transition is said to occur if ^/j ^ consists of more than 
one measure. 

For each ae {1, . . . , D } let r« denote the shift mapping on Q defined by 
(T^(o)j = ojj+u^^ where u^ is the unit coordinate vector in the ath direction. 
The shifts T^ commute. A probabiHty measure P on Q is said to be translation 
invariant if for each Borel set A and index a P{T~^A} = P{A}. Let J^sC^) 
denote the set of translation invariant probabiHty measures on ^(Q). A 
measure PeJi^^) is called ergodic if P{^} equals 0 or 1 for any Borel set A 
which satisfies T~^A = A for all indices a. By definition, a.phase is a transla
tion invariant infinite-volume Gibbs state. A phase is called pure if it is 
ergodic. 

The next theorem generalizes Theorems IV.6.5 and IV.6.6. The proofs of 
these theorems used the FKG inequality and properties of the specific Gibbs 
free energy, but since the dimension of the lattice was not a factor, the proofs 
extend with essentially no change to models on Z^. Define 5^(co) = 
YjjeA Yj(<^)^ where A is a symmetric hypercube in Z^ and Yj((o) = coj are the 
coordinate functions on Q. 

Theorem V.6.I.* Let J be a summable ferromagnetic interaction on iP. Then 
the following conclusions hold, 

(a) For each jS > 0 and h real, the weak limits 

Pp,h,+ = vt̂ -lim^A,A,f,,+ and P^ ,, _ = w-limP^^^ ,, _ 

exist and are translation invariant. Thus ^^ ;, and^^j^ n JiJ<^ are nonempty. 
The measures P ,̂/,,+ and P^^^^- are ergodic. 

(b) Pp,h,+ equals Pp^h,- if cind only if dilj(P,h)/dh exists. Thus, for P > 0, 
h=l=0 and for 0 < j8 < jŜ , /z = 0, Pp^h,+ equals Pp^h,-- ^^^ these values ofP and 
h, define P^j^ = P^j^^^ = P^j^_. 

(c) Ifdil/(P, h)/dh exists, then Pp^ is the unique measure in ^pj, and thus in 
^pj^nJ^s(Q). No level-3 phase transition occurs. The mean ^QCDQPP f^(dcoi) 
equals the specific magnetization m(P,h). With respect to Pp^f,, 

SJ\A\^^m(P,h) and SJ\A\-^^m(P,h) asK\U'. 

(d) For P > iS„ Pp^o,+ + Pp,o,-'Infact, 

cooPp^o, + (dco) = ^(P^ + ) > 0 > (DoPp^o^_(dco) = m(jS, - ) . 
Q. Jn 

Thus for P > Pc ^^d h = 0, a level-3 phase transition occurs. We have 

SJ\K\^m{P,+) w.r.t.P^,o,+ , 

5 /̂1 A| ^m(p,-) w.r.t. P^,o,- ^^AjZ^. 
In each case, exponential convergence fails. 

* See Note 11 in Chapter IV for further comments on the structure of^pj, and ^^ ;, n ^s(Q). 
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(e) For P > P^, ^pQ n J^sC^) contains (at least) all the measures P^^^ = 
^^p,o,+ + (1 ~ ^)^/s,o,-' 0 < >̂  < 1. For each 0 < A < 1, there exists a 
random variable Y^^^ on Q with distribution Id^^p +) + (!— )̂(5 (̂̂  _) such that 

We emphasize that as in Theorem IV.6.5 the translation in variance of the 
measures Pp^h,+ ^^d Pp^h,- follows from the translation invariance of the 
interaction strength / ( / — J) between each pair of sites /, j . The almost sure 
convergence in part (c) follows from the ergodic theorem [Theorem A. 11.5] 
or from the exponential convergence in part (c) and Theorem IL6.4. The 
ergodic theorem also yields the almost sure convergence in parts (d) and (e). 

With respect to the various measures in Theorem V.6.1, large deviation 
bounds for SJ \ A | can be derived from Theorem II.6.1. We omit the formulas, 
which are easily worked out as in the discussion at the end of Section IV.5 
(see Lemma IV.6.11 for the calculation of the free energy function). 

Some refinements can be made in Theorem V.6.1 for the Ising model. The 
theorem states that for any ferromagnetic model on Z^, ^^^ consists of a 
unique measure Ppj^ for jS > 0, /z f̂ 0 and for 0 < P < P^/h = 0. This fact 
follows from the existence of 5i/̂ (jS, h)/dh for j? > 0, /z ^ 0 and for 0 < jS < jŜ , 
h = 0. What happens at the critical point (jS^O)? For the Ising model on 
Z^ (5.18) shows that m(p,, + ) = 0. By Lemma V.4.5(b), #(jS„0)/5/z exists, 
and so we conclude that Gp o consists of a unique measure Pp ,0- For any 
ferromagnetic model, a natural question is whether for P > Pc ^p,o contains 
measures which are not translation invariant. For the Ising model on Z^ 
with Z> > 3, there exist nontranslation invariant infinite-volume Gibbs states 
at all sufficiently large p > Pc This was proved by Dobrushin (1972) by 
analyzing the finite-volume Gibbs states {PA,P,OCO} with the nontranslation 
invariant external condition ^(j^,..-,jj^) = signum(7^ + ^). This gives a plus-
external condition on the upper half of the hypercube A and a minus-
external condition on the bottom half of A. Dobrushin's result has been 
generalized and the proof simpHfied by van Beijeren (1975). The same 
construction does not produce nontranslation invariant states for D = 2, 
as was shown by Gallavotti (1972b). In fact, the infinite-volume Gibbs state 
obtained with this external condition is the average ^Pp^o,+ +iPp,o,-' 
Aizenman (1979, 1980) and independently Higuchi (1982) proved the impor
tant extension that for Z) = 2 every measure Pe^p^ has the form P^^l = 
^Pp,o,+ + (1 — ^)Pp,o,- for some 0 < A < 1. In particular, for the Ising 
model on Z^, any infinite-volume Gibbs state must be translation invariant. 
For each 0 < 1 < 1, Abraham and Reed (1976) have produced a sequence 
of external conditions {d);̂ (A)} such that i\,)3,o,c5;̂ (A) =^ /̂?fo as A | Z ^ . Seethe 
review by Pfister (1983). 

We recall that for models on Z the translation invariant infinite-volume 
Gibbs states are characterized by the Gibbs variational principle [Theorem 
IV.7.3(b)]. This principle involves the functional u(h;P) and Ip^\P), which 
are, respectively, the specific energy in P and the mean relative entropy of P 
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with respect to Pp. We now state a generalization of Theorem IV.7.3 for 
models on iP. Let P be a measure in JIJ^\ A a symmetric hypercube; 7î  
the projection of Q onto Q^ defined by (n^oS)^ = cô , /G A; and TI^P the 
probabiUty measure on ^ ( ^ A ) defined by nf^F{F] = P\n~^^F^ for subsets 
i^ of Q^. Let Pp equal the infinite product measure in ^s(Q) with identical 
one-dimensional marginals p = \b^^ + \b-^. Given an external condition 
d)(A), define the functional 

C/(A,/z,d>(A);7CAP)= I ^A,f„S(A)M7rAP(^co), 
JQA 

where //A,h,c5(A) is the Hamiltonian defined in (5.2). /̂ ^̂ p (TTA^) denotes the 
relative entropy of n^P with respect to HfJ^p, 

^og§^Aco)n^P{do:>). 
^^ din^Pp) 

Lemma V.6.2. Let J be a summable ferromagnetic interaction on iP. Then for 
any h real, the following conclusions hold. 

(a) For any PeJi^^), w(/z;P) = limAtzi>|A|"^t/(A,/?,co(A);P) exists 
and is independent of the choice of external conditions {co(A)}. The limit is 
given by 

u(h;P) = - ^ Z J(k) I (Oo(OkP{dco) -h\ o)oP(do}) 

and is a bounded, affine, continuous functional ofPeJ^si^). 
(b) For any PeJi^^), limAî zD|A|" /̂̂ ^^p (TIA^) exists and defines an 

affine, lower semicontinuous functional of PeJiJ^. This functional is 
denoted by If \P). 

Part (a) of the lemma is proved exactly like Lemma IV.7.2(b). Part (b) is 
due to Robinson and Ruelle (1967). Also see Israel (1979, Section II.2) for a 
proof. 

The next theorem states the Gibbs variational formula and the Gibbs 
variational principle (parts (a) and (b), respectively). The theorem is due to 
Ruelle (1967) and Lanford and Ruelle (1969). 

Theorem V.6.3. Let J be a summable ferromagnetic interaction on iP. Then 
for jS > 0 and h real, the following conclusions hold. 

(a) -mP,h) = supp,j,^^^^{-Pu(h;P) - lf\P)}, where HP,h) is the 

specific Gibbs free energy. 
(b) The set ofP e J(J<^ at which the supremum in part (a) is attained equals 

^^^ n JiJ^, the set of translation invariant infinite-volume Gibbs states. 

In Chapter IV, where we studied models on Z, the Gibbs variational 
formula in part (a) was proved by means of level-3 large deviations. For 
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models on Z^, Z) > 2, a large deviations proof of the formula is at present 
not available. In Appendix C.5, we sketch a proof of the Gibbs variational 
formula and principle for a much larger class of models than we are now 
considering. The proof is due to Follmer (1973) and Preston (1976). Formula 
(3.3) of Follmer (1973) generalizes to Z^ formula (2.20) in Chapter II which 
expresses the mean relative entropy in terms of a regular conditional distri
bution. The measures Pe^pj, n ^^(Q) are also characterized by an entropy 
principle as in Theorem IV.7.4. The proof extends to models on Z^ without 
change. 

This completes Part 1 of Chapter V. We have succeeded in generalizing 
to models on Z^ all of the results presented in the previous chapter for 
models on Z. Part 2 is devoted to new material. 



PART 2 

V.7. Infinite-Volume Gibbs States and 
the Central Limit Theorem 

Let / be a summable ferromagnetic interaction on iP and m(P,h) the 
corresponding specific magnetization. The critical inverse temperature P^ is 
defined as sup{jS > 0:m(jS, + ) = 0}, where m(j?, + ) = Hm;,̂ o+ rn{P,h). We 
denote by ̂  the set of points (jS, h) with jS > 0, /z :f 0 and 0 < jS < ^„ A = 0. 
For each {P,h)e% there exists a unique infinite-volume Gibbs state P^;,. 
With respect to P^j^, the spin per site 5A/ |A| = X^eA ^7|^i satisfies a law of 
large numbers with limiting mean m(P,h) [Theorem V.6.1(c)]. The main 
result in this section, Theorem V.7.2, proves a central Hmit theorem for the 
spin S^ = ZjeA ^j wilder the reasonable assumption that the correlations 
among the {Yj} are weak. A fascinating problem occurs at the critical point 
(jSc,0), where the correlations are abnormally large and the central limit 
theorem is thought to fail. This problem will be discussed in Section V.8. 

For {P,h)E^ and keT^, define the quantity 

where YQ denotes the spin at the origin of Z^ and <->/?,;, denotes expectation 
with respect to P^^. {Y^; Yj^y^j^ is called a pair correlation and is non-
negative by the Percus inequality. We say that Sj^ satisfies a central limit 
theorem with respect to Pp^ if F^ = [5^ — |A|m(jS,/z)]/v^|A| converges in 
distribution to a Gaussian random variable with mean 0 and some variance 
(7^(P,h) > 0; i.e., for any/G^(lR) 

lim <f(V^)}p,H f(x)N(0,a\p,hmdxl 

where A (̂0, a^)(dx) = (Ina^y^^^ exp( — x^/2(7^)dx. This Hmit is summarized 
by writing V^ ̂  N(0, G^(P,h)). If Sjs, satisfies a central limit theorem, then 
a reasonable guess for the variance of the Hmiting Gaussian random variable 
is (T^(P,h) = lim^|2D|A|"^Z^(j8,/z), where S^(jS,/z) is the variance of S^. 
Substituting 5^ = ZJEA ^ ' ^ ^ ^^^^ ^^^^ 

I G A jeA 
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The following lemma establishes the existence of a^(p,h) and gives an 
explicit formula for it. The proof is due to Newman (1980). 

Lemma V.7.1. For {P,h)e^, define l^Kl^Jt) = <5'̂ >^,^ - {S^ylh- Then the 
limit G^{p,h) = \\vi\^^^D\A.\~^lL\{P,h) exists as an extended real-valued 
number and G^{p, h) = ^/cez^ < ^o; /̂c>̂ ,ff 

Proof. By translation invariance, <y^; Î > ,̂/, is a function of / —J only, say 
C ( / - 7 ) . Since C ( / - j ) > 0 , 

J-i:l(P,h)<-{- I I C(i-j)= I C(kl 

and so \imsupj,^^D\A\-'i:l(p,h)<Y,kezDC(k). If A = {yeZ^: jyj < TV, 
a - 1, . . . , / ) } , then for any 0 < 8 < 1 define A(e) = {jeZ^: |7;,| < (1 - &)N, 
a = 1, . . . ,Z)}. Note that if/GA(e) and ||/ —7|| < EN, thenyeA. Hence 

-^,^l{fi,h) = ^ I Z C{i-j) > ^ Z ICO-;•) 
| A | | A | i e A j e A | A | i e A ( e ) j e A 

^ ^ Z Z c(i-j)J-^ z cik). 
| A | igA(£) ||i-j||<eiV | A | ||k||<£iV 

Choosing e — % such that £jv ̂  0 and s^N ->> oo as N ^ co, we see that 
liminf^>l^2D|A|-^Z^(j8,/z) >i]keiDC(k). It follows that 

The central Umit theorem for Sj^ is stated next, under the assumption 
that o-̂ (jS, h) is finite.^ We prove that C7̂ (j8, h) is finite for all j8 > 0 and /? ^ 0, 
using the fact that for each P > 0 the specific Gibbs free energy il/(P,h) is a 
real analytic function of h ^ 0 [Theorem V.4.4]. The finiteness of a^(P,h) 
for 0 < ^ < jŜ  and h = 0 will be discussed in Theorems V.7.6 and V.7.7, 
which appear after the proof of the central hmit theorem. For the Ising 
model on / ^ , i) > 2, we will see that G^{p,h) is finite for all {P,h)e^ and 
thus that the central Hmit theorem holds for all (jS, h) e ^ . 

Theorem V.7.2. Let J be a summable ferromagnetic interaction on Z^ and 
(jS,/z) a point in %. 

(a) Ifa^iP.h) = Y^kezDiYoiYj^y^^f^ is finite,'' then 

S^-\h\m{PM ^ ^^^^ ^2^p^ ̂ ^^ ^j^h respect to P^ , as A t / ^ . 
v|A| 

(b) C7̂ (j8, h) is finite for all p > 0 and /z ^ 0. 

The proof of this theorem is lengthy and depends on several auxihary results. 
Lemma V.7.4 will be referred to in the next section. The rest of the proof 
can be skipped with no loss of continuity. 

Lemma V.7.4 yields part (b) of the theorem by relating G^{P,h) to the 

*a^(p,h) is positive by Lemma V.7.3(a) below. 
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quantity x(i?> K) — dm(P, h)/dh. This function, which measures the response 
of the specific magnetization to changes in h, is called the specific magnetic 
susceptibility. The lemma shows that for j8 > 0 and /̂  =/= 0, C7̂ (j8, h) is finite, 
X(j8, h) exists, and 

(5.25) P'G\PM = iS- lim ^MSly,,, - <5^>,^,} = xiP.h). 

To see that (5.25) is reasonable, consider the free energy function Cpf^(t) of 
the sequence {*Ŝ } with respect to the infinite-volume Gibbs state Ppj^. In 
Lemma IV.6.11, the proof of which appHes verbatim to models on Z^, we 
showed that for any real t 

(5.26) = lim T-Tlog<exp(r5J>^„ 
Atz^|A| 

= -Plrk(p^h + t/P)-HP,h)l 

The function Cpj^(t) is differentiable at ^ = 0, and this gave the law of large 
numbers for Sj^ with limiting mean 

lim <SJ\A\y,,,= lim c ; (0)= :4 , , (0 )= - ^ ' ^ ^ = m(iS,/z). 

An easy calculation yields c'^(0) = |A|"^{<5^>^ ;, — {Sj^yjf^}, and since this 
converges to cr^(jS,/z), it is tempting to conclude that 

a\P,h) = YimjliQ) = 4 , ( 0 ) = -p- - ^ ^ 

Lemma V.7.3. Let (P, h) be a point in %, Then the following conclusions hold. 
(a) Forh>Q,0< tkeA<Yol >̂ k>A,A,/a,+ TZ/cez^<^o; Ykyp,h < 00 as 

A t Z ^ . 
(b) For kGZ^andh>0,0<{Yo; };>^,, < <Yo; Y^y^^^^for all t > h. 
(c) ForkeZ''andh>{),iYo',Y^ypj(Yo\Y^yp^^asi-^h\ 

Proof, (a) Given symmetric hypercubes A ^ A' and a site /re A, 
<^o; k̂>A,̂ ,ft,+ can be obtained from (TQ; rfc>A',̂ ,̂ ,+ by taking h^^QO 
for each site /e A'\A. We have [see the calculation on page 148] 

= iY^Y,Y,y - <Fo><F,}^.> - <F,><Fo Ĵ > 

- <}^.><FoF,> + 2<FoXF,><}^>. 

For h>0, this sum is nonpositive by the GHS inequahty. Thus for /j > 0 
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<Yo', f̂c>A,̂ ,ft,+ <<Yo; };>A',̂ ,/,, + , andas A t Z ^ < r o ; Yk>A,p,h,+ increases to 
{YQ; Yj^ypj^. Each term {YQ; 5^>A,/J,/,,+ is non-negative (Percus inequality) 
and XfceA<^o; f̂c>A,̂ ,ft,+ increases to Y.kezD<Yo; 7^)^,^ (monotone conver
gence theorem). By explicit calculation, {YQ; ro>{0},/?,/,,+ is positive, and so 
for any symmetric hypercube A 

^ ^ \Yo', ô/{0},iS,/i,+ ^ \Yo; -'o/A,/?,/i, + -

It follows that Y.keA<Yo; };>A,)S,;,,+ is positive. 
(b) The Percus inequality implies that {YQ;YJ^}P^J>0. The GHS in

equality imphes that 

(5.27) <ro; 5;>/?,r <<Yo; Y^y^^^ for alU > /z > 0 and sites keZ^. 

(c) This is a consequence of (5.27) and Lemma IV.6.9(b). The proof of the 
latter uses the FKG inequahty and extends verbatim to models on Z^. n 

Our proof of the next lemma follows Sokal (1981, Appendix). 

Lemma V.7.4. Let J be a summable ferromagnetic interaction on iP. Then the 
following conclusions hold. 

(a) For P > 0 and h^O, the specific magnetic susceptibility x(jS, h) = 
dm(P, h)/dh = —d^il/(P, h)/dh^ exists, the sum cr^(jS,h) = Y^kez^ < ^o ^ ^>/5,;i is 
finite, and"^ 

(5.28) ^(p,h)=-^^^!^^ = p-a\P,h)>0. 

(b) For 0 < P < Pc and h = 0, %(j8,0) exists and is finite if and only if 
(7^(j8,0) is finite. Formula (5.28) holds in the sense that the three terms are 
all finite or all infinite together. 

Proof, (a) For (j8, /ZQ) e ^ , d\jj{P, h)/dh exists for all h in some neighborhood 
of /zo and -#(jS,/?)/5/z equals m(jS,/z) = (Fo)^,;, = lim^>^2D<ro>A,̂ ,;,,+ 
[Theorem V.4.3 and Lemma V.4.5]. Fix /ZQ > 0 and denote by Z>+i/̂ ()S,Ao) 
the right-hand /z-derivative of dil//dh at (i?,/zo)- Since 5<7O>A,^,;I,+/^^ = 
P' Z/ceA < ^0; YkyA,p,h, +. we have 

-DiHli,h,) = - lim if^^^^^o + )̂ - ^^(f;^o)' 
h-^0^ h\ dh oh 

(5.29) = "^^ ,liTz>^<''°>^-'''^<'^'-'-^ - <J'o>A,.,.„,.) 

= Urn Um 1 
dt 

= P- lim lim J p ^ ' X <ro; y,V,,,.^c/r. 

*For any /S > 0, m('/8, + ) is non-negative. For h > 0 (5.28) implies dm(P,h)/dh > 0. Hence 
for /! > 0 m{P, h) is positive. This fact was needed on page 116. 
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Because of Lemma V.7.3(a), we may interchange the Umit A t Z^ with the 
integral in the last term in (5.29) to obtain 

(5.30) -Dl^\f{P,K) = ^'\lm\ 
keZD 

Assume that (T^(P, HQ) is finite. Lemma V.7.3(b) justifies bringing the sum 
over k in (5.30) outside the limit h-^0^. Lemma V.7.3(c) impHes 

-DlHP.ho) = l^ S l i m U ' ' ^ ' < 7 o ; ^ . V r ^ ^ 

keZD 

Now assume that o-̂ (j8,/zo) is infinite. Then by Lemma V.7.3(c), given arbi
trary L> 0 there exist positive numbers R and h such that Y,\\k\\<R ( ^o I ̂ fc)/?,f 
> L for all /6 [/̂ o, /̂ o + ^ ] - Hence 

X iY,;Y,y^^,dt>pL, 

and since L is arbitrary, —D+il/d^.ho) = oo. The conclusion is that for 
ho > 0, cr^(j8,/ZQ) is finite if and only if D+il/(P,hQ) exists and is finite, and 
then the latter equals —o^{P, ho). 

According to Theorem V.4.4, for each p > 0 ^{P,h) is a real analytic 
function of A ^ 0. This implies that for /z > 0, Dlil/(P,h) exists and equals 
d^il/(P,h)/dh^. By our work in the previous paragraph cr̂ (j?,/z) is then finite 
and equals —d^\l/(P,h)/dh^; (T^(JS,/Z) is positive by Lemma V.7.3(a). This 
proves part (a) of Lemma V.7.4 for h > 0. Since i/̂ (j8, h) is an even function 
of /z, we obtain part (a) for h <0 by symmetry. 

(b) D1\IJ(P,0) equals Dlil/(p,0) (if either exists) since #(jS,/z)/5/7 is an 
odd function of h and 5i/̂ (j5,0)/dh = 0. According to the proof of part (a), 
d^il/(P,0)/dh^ exists and is finite if and only if o-̂ (jS, 0) is finite, and then 
(5.28) holds. This completes the proof of Lemma V.7.4. n 

We are now ready to prove the central hmit theorem. 

Proof of Theorem V.7.2. Part (b) is impHed by Lemma V.7.4(a). The proof of 
part (a) is based on convexity. We give the proof for /z > 0; /z < 0 is handled 
similarly. Define K̂  = [S^ — |A|m(j^,/z)]/^|A|. It suffices to prove that 

(5.31) lim <exp(/FJ>. f, = Qxp(^(j\p,h)t^) for all /G[0,a), 
AtZ^ 

some a > 0 [Theorem A.8.7(a)]. We express <exp(/F^)>^ ;, in terms of the 
function c^(0 = |A|~Mog<exp(r5J>^ .̂ Note that c^(0) = 0, c'^(0) = 
| A r \ 5 ^ > , , , = m(P,hl and cX(0) = |ArH<5 l> , , , - <^A>? , J . By Lemma 
V.7.1 

(5.32) c;;(0) =ui^l (P. h) ^ G\P, h) as A t / ^ . 
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Take t > 0 and set /^ = ?/v | A |. We have by Taylor's theorem with remainder 

log<expOFJ>^,, = |A|C^(?A) - ;VJAJw(iS,/?) 

(5.33) = t\tX'c^itd - Cc'^m 

(1 - s)c';,(st^)ds. 
0 

The following properties of c^ are proved below. 
(5.34) For // > 0, c^ is concave on [0, oo). 
(5.35) For h>0, lim^^^n cl(tjj = a^iP.h) for all rG[0,a), some a > 0. 
The concavity of c^ on [0, oo) implies that c^ is nonincreasing on [0, oo). 
Hence for each 0 < ^ < 1 c'^(t/J < c'^(stj^) < cl(0). By (5.33), for each/ > 0 

i c ; ( / J / ^ < log<exp(rFJ>^,, < ic ; (0) /^ 

By (5.32) and (5.35), the two extreme terms in the last display both converge 
to ^G^{p,h)t^ for all 0 < / < a. This gives (5.31) for all 0 < r < a, and (5.31) 
is obvious for t = 0. Hence the central Hmit theorem will be proved once 
we show (5.34) and (5.35). 

Proof of property (5.34). For h>0, the concavity of c^ on [0, oo) is a con
sequence of the GHS inequality. Consider the sequence of finite-volume 
Gibbs states on symmetric hypercubes {A} in Z^: 

Z(A,iS,/?,+)' 

where 

Since PA,p,h,+ ^ )̂3,;i as A t Z^, we have 

^ A ( 0 = ^ < ^ A e x p ( / 5 J V , - - ^ 

(5.36) =j^,\im(S^cxp(tS^)y^.. - ^ 

lim X <^/cexp(/SJ>x,^,ft,+ 

We rewrite the expectations in the last display. Take A ^ A and let hi = 
^ + Y^jexAi - y ) ( + l ) for zeA. Define new external fields hi(t) = hi + t/P 
for ieA and /?,(/) = hi for /G A\A. Then for each COGQ^ 

tS^iw) - iSi/x,,. + M = f I_^0* -7)co,co,- + iS Y^JiO^i + ^ Z CO, 
^i,je\ ieA is A 

-i5^A, {fc.-W), + • 
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Thus, (5.36) can be rewritten as c'M = lAl"^ liInxtz^ZfceA<>'fc>A,̂ ,{ft,.(0}, + • 
Since each hi(t) is non-negative for t > — jS/z, we have by Table V.l(e) 

^<^fc>A,/^,(Mt)},+ = P~^ I jj^<Yk>x,p,{h^m^ < 0 for ^ > -fih. 

Thus <l̂ fe>A,̂ ,{̂ (0},+ ^̂  ^ concave function of ^ for / > —ph. We conclude 
that 

(5.37) c^ is concave on \_ — ph, 00) for /z > 0. 

This verifies property (5.34). 

The proof of property (5.35) depends on the next lemma. 

Lemma V.7.5. Let {f„;n = 1,2, ...} be a sequence of convex functions on an 
open interval AofR such that f(t) = lim„^^f(t) exists for every teA. Let 
{t„;n = 1,2, ...} be a sequence in A which converges to a point t^eA. Iff^it^ 
and f'{to) exist, then lim„_Qo/„'(^„) exists and equals f {to). 

Proof If each point t^ equals t^, then/^XO -^f(h) by Lemma IV.6.3. We 
modify the proof of this lemma to handle a general sequence t^-^ t^. Define 
Kit) = (fit) -f(t„))/(t - t„) for teA, t ^ t„ and g{t) = (f{t) -f(to))/{t - t^) 
for teA, t =f= tQ. The sequence {f} converges to/uniformly on each compact 
subset of A [Theorem VL3.3(b)]. Since / is continuous relative to A 
[Theorem VL3.1], 

\fnitn) -f(to)\ < \fn(tn) "/(Ol + \f(0 -/(^o)| - 0 aS « - . O). 

Therefore, for each teA, t ^ tQ, h„{t) -^ g{t). The convexity off implies 
that hn{s) <fn{tj < h„{t) foTs < t„< t (s, teA). Taking « -^ oo, we see that 

(5.38) sup 6^(^ )< l iminf / ; (0< l imsup/ ;X0^ sup g(t). 

As the extreme terms both equal/'(^o)? the proof is done. n 

Proof of property (5.35). We first consider h > 0, According to (5.37), each 
function — c^ is convex on [ — ̂ h, oo). Since h> 0, this interval contains the 
origin in its interior. Suppose we show t h a t / ( 0 = lii^Afz^C —<^A(0) exists 
for all te( — (x,(x), some a > 0, and that / ' (0) exists and equals —G^(P,h). 
Lemma V.7.5 then impHes that for any 0 < ^ < a 

-c^A(tN\A\)-^nO)=-c7'(p,h) asATZ^. 

This is property (5.35) for h> 0. We first prove that/(/) exists. By Holder's 
inequahty C/^(t) is a convex function of t real, and as noted in (5.26), ^^(0 
converges to the free energy function Cpj^(t) = — jS[i/̂ (jS, h + t/P) — ij/iP, h)']. 
For h> 0, dil/(P,hQ)/dh exists for all /ZQ in some neighborhood of A. Hence 
there exists a > 0 such that Cpf,(t)=—8il/(P,h-{-t/P)/dh exists for all 

file:///fnitn


V.7. Infinite-Volume Gibbs States and the Central Limit Theorem 169 

— (x<t<0L. Now Lemma IV.6.3 implies that ĉ CO -* 4,^(0 for all — a < / < 
a. We conclude that for —(x<t< (xf(t) = limAtz£>( —^A(O) exists a n d / ( 0 
equals — Cp^f,(t). Since a^iP, h) is finite, Lemma V.7.4(a) shows that 5 î/̂ (j8, /z)/ 
5/̂ 2 exists and equals -jS-a^CjS,^). Hence/^O) = - ^ ^ ( O ) = jS'^aVCiS,^)/ 
5/?̂  exists and equals —cF^(P,h). This completes the proof of property (5.35) 
for /z > 0. 

The proof of (5.35) (or h> 0 used the fact that all the functions { —c^} 
are convex on an interval which contains the origin in its interior. But for 
h = 0, — c^ is convex on [0, oo) and by symmetry is concave on (—oo,0]. 
Hence the above proof must be modified. We fix (^, 0)e% (i.e., 0 < jS < j?J, 
and assume that (T^(P, 0) is finite. Since for 0 < j^ < jŜ  ^^iP^ h)/dh exists for 
all h real, c^,o(0 = -Pi^iPJlP) - <A(iS,0)] is differentiable for all t real. 
Define new functions 

c;(0 for / > 0, ^ r - 4 , o ( 0 for t > 0, 

cl{Q)'t fo r /<0 , ^^^ \-G^{P,0)'t f o r / < 0 ; 

Qjs^ is continuous at 0 (c;^(0) = m(jS,0) = 0) and is convex on [R. By (5.32), 
c^(0) ^ cr̂ (jS, h), and so ^^(0 ^ oif) for all r real. Since o^{P, 0) is assumed 
to be finite, g\0) = -c^oiO) = p~^d^\l/(P,0)/eh^ exists and equals 
-pa^ip, 0). Lemma V.7.5 implies that for any r > 0 

gk(tl^\) = -CA(t/^\)-^g'(0) = -(y'iP.o) as A T Z ^ . 

This proves property (5.35) for /z = 0 and completes the proof of the central 
Hmit theorem. n 

Let (P, h) be a point in ^ (j5 > 0, /z ^ 0 or 0 < jS < jS„ /z = 0). According 
to Lemma V.7.4(a), for any summable ferromagnetic interaction / on Z^, 
the variance G^{P,h) = Yjkez^i^o'^ \yp,h is finite for jS > 0 and /z ^ 0. Set 
/ o = Zfcez^-^W- By Theorem V.5.1(aj, /o"^ < ft. We claim that if the 
interaction decays exponentially (thus, in particular, if the interaction has 
finite range), then for /z = 0 (T^(P,0) is finite at least for all 0 < j5 < /Q^. 
This fact is a consequence of the next result on the exponential decay of the 
correlations {Y^; Y^^y^Q.^ 

Theorem V.7.6. Assume that there exist positive constants c^ and C2 such that 
0 < J(k) < Ciexp(-C2||^||) for all keZ^. Set / o = Xfcez^«^(^)- Then the 
following conclusions hold. 

(a) < YQ ; Yj^y^Q decays exponentially at least for allO < P < /Q^. That is, 
for each 0 < P < ^Q^ and h = 0, there exist positive constants a and x such 
thatO < {YQI Yj^y^^o < aQxp( — x\\k\\)for all keZ'^. In particular, (7^(P,0) = 
T.kezD<Yo; Yj^y^^o is finite. 

(b) For each P > 0 andh =/=0, {Y^; Y^y^^^ decays exponentially. 

Part (a) is proved in Sokal (1982a). Also see the references Usted in that 
paper. The proof of part (a) is outlined in Problem V.13.12. Part (b) is 
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proved in Lebowitz and Penrose (1968) for finite-range interactions and in 
Duneau, Souillard, and lagolnitzer (1975) for exponentially decaying inter
actions. A reasonable conjecture is that for any exponentially decaying 
interaction on Z^, ( F Q ; ^k)^,Q decays exponentially for all 0 < jS < jŜ . This 
is in fact known to hold for the Ising model on iP, D >2. 

Theorem V.7.7. For the Ising model on Z^, i) > 2, < ^o» Yk)p,h decays exponen
tially for 0 < P < P^, h = 0 and P > 0, /z ^ 0; i.e., for all(P,h)e^. In partic
ular, (ĵ (jS, h) = Y^kezD < Yo; Ffc)̂  ,, is finite for all (jS, h)e^. 

The exponential decay for j8 > 0, /z ^ 0 is a consequence of part (b) of 
Theorem V.7.6. As Lebowitz (1972, Section III) points out, the exponential 
decay for JD = 2 and 0 < (i < P^, h = 0 follows from Onsager (1944). Aizen-
man (1984, 1985) proves the exponential decay for D > 2 and 0 < jS < jŜ , 
h = 0. 

The main result in this section is the central hmit theorem. Theorem V.7.2. 
The theorem is vaHd for (P,h) in ^ provided G^{P,h) is finite. For j8 > 0, 
h =/=0, and any summable interaction, the finiteness was proved in Lemma 
V.7.4(a). For 0 < jS < /o~S h = 0, and any exponentially decaying inter
action, the finiteness follows from Theorem V.7.6(a). In the special case 
of the Ising model on Z^, o-̂ (jS, h) is finite for all (jS, h) e %. The next section 
discusses the contrasting situation at the critical point (iSc?̂ )? where the 
central Hmit theorem is expected to break down. 

V.8. Critical Phenomena and the Breakdow^n of the Central 
Limit Theorem 

The term critical phenomena refers to the behavior of a ferromagnetic system 
for (jS, K) near or equal to the critical point (j? ,̂ 0). These phenomena include 
the behavior of functions such as the specific magnetization m(P,h) and the 
specific magnetic susceptibility x{P,h) = dm{fi,h)ldh and the asymptotic 
behavior of random quantities such as the spin S^ = Zje A ^•- ^^ the previous 
section, we proved a central limit theorem for 5^ under the assumption 
that G^{P,h) or equivalently x(P^h) is finite. For reasons to be explained 
below, one expects that at the critical point x(Pc^^) diverges and that the 
central limit theorem for S^ breaks down. An interesting question, discussed 
in the present section, is how to rescale *Ŝ  by a nonclassical scaling [A]'̂ , 
A > I , so that AS^/IAI^ has a nondegenerate limit in distribution. In this 
context, the spin Sj^ is often called a block spin variable and the Hmit in 
distribution of SJ\A \ ^ a block spin scaling limit.^ As we discuss at the end of 
the section, the form of this Hmit (e.g., non-Gaussian or Gaussian) is beHeved 
to depend upon the dimension D of the lattice. Theorem V.8.6 gives informa
tion on the Hmit under suitable hypotheses. 

Before studying block spin scaHng limits, we must fill in background 
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material concerning critical phenomena. It will be useful first to review the 
discussion in Section IV.2 for the Ising model on J?. For h = 0, the model 
exhibits dramatic new behavior as P increases through the inverse critical 
temperature jŜ . For 0 < p < P^ the spontaneous magnetization m(jS, + ) = 
Hm^^o+^(i^'^) is 0 and there exists a unique phase P^Q, which is pure. 
Pair correlations decay exponentially: 

<Y,Yjy,^o ~ exp[- | | ; -7 | | /^()S,0)] as | | / - y | | ^ <X). 
The positive number (̂ (jS, 0) is called the correlation length and is a rough 
measure of the distance over which correlations between spins are significant. 
By contrast, for jS > jŜ , m{p, + ) is positive and there are two distinct pure 
phases. As jS approaches P^ from below, the model anticipates its new 
behavior by making adjustments on a microscopic scale. These adjustments 
appear in the form of spin fluctuations, or islands of correlated spins, which 
grow in size as the critical inverse temperature is approached. At j9 = ft? 
the correlation length is infinite, correlations decay by a power law, and the 
spin fluctuations are extremely sensitive to small perturbations in h. This is 
reflected macroscopically in the divergence of the specific magnetic suscep
tibility x{p,h) = dm(P,h)/dh at (P,h) = (^ ,0) . This divergence can be seen 
in Figure IV. 1. 

The behavior of the Ising model on Z^ suggests how one might expect 
other models to behave. We restrict ourselves to finite-range ferromagnetic 
interactions on / ^ , Z) > 2.* Define % to be the set of points (j5, h) with P > 0, 
h i=0 and 0 < jS < ft, h = 0; ft is the critical inverse temperature corre
sponding to the interaction. 

Definition V.8.1. The point (P,h) = (ft,0) is called a normal critical point 
if the following properties hold. 

(a) 0 < ft < 00, where ft = supjjS > 0:m(ft + ) = lim^^o^ m(P,h) = 0}. 
(b) m(ft, +) = 0. 
(c) The specific magnetic susceptibiHty xiP^^) = dm(p,h)/dh is finite for 

all (p,h)€^  and z(ft,0) = oo.^ 

The definition of ft implies that m(P, + ) = 0 for 0 < jS < ft and m(P, + ) 
> Ofov P > ft. Property V.8.1(b) requires that m(P, + ) vanish also at ft. 

The only model which is known rigorously to have a normal critical 
point is the Ising model on Z^. This model will be discussed again at the 
end of the section. Nevertheless, it is not unreasonable to expect that when
ever ft is finite, the critical point is normal (at least for finite-range 
interactions). 

The next lemma extends to a normal critical point some results proved 
earlier for points (P,h)e%. 

*In other words, the translation invariant interaction strengths / ( / —J) are assumed to be 
independent of A, non-negative, not all zero, symmetric and to vanish for all / andy with ||/ —j\\ 
sufficiently large (finite range). The assumption of finite range is needed for Lemma V.8.3(a) 
(1 < n. 
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Lemma V.8.2. Assume that (jSĉ O) is a normal critical point. Then the fol
lowing conclusions hold. 

(a) ^^ Q^J^si^) consists of a unique measure Pp Q, and for any site 

(b) With respect to Pp^ o, SJ\A\'-% m(p„ +) = Oand SJ\A\ '-5 mip„ + ) 
= 0 a5 A t Z^. 

(c) < 7o; ^fcV,o -^Oas \\k\\ -^ 00. 
(d) dil/ip„0)/dh = 0but 

(5.39) _^!!MiO) = ;̂ (̂ ,̂o) = i9,-(T (̂̂ „o) = ,̂- X <i'o;J;Vo = « . 

(e) Le/ EiCft.O) /'e ;/?e yanance <5^>^ ,̂o «5'A>^^,O = 0 by part (a)). 
r/ien \A\-'I.lip„0) ^ ff2(iS„0) = oo a^ A t Z"*. 

(f) For eacA ? real, 

Proof (a) Since m(j8„ + ) = 0, Lemma V.4.5(b) implies that d\l/(p,,0)/8h 
exists and equals —m(j8 ,̂ + ) = 0; also {Yj^yp^Q = <ro>^^,o = 0- Theorem 
V.6.1(c) implies % o = {Pp,,o}' 

(b) This is proved like Theorem IV.6.6(a). 
(c) Corollary A.lL12(b). 
(d) By the proof of part (a) 5(/̂ (jS ,̂0)/5/z = 0. The proof of Lemma 

V.7.4(b), given for 0 < j? < ft, /z = 0, applies verbatim to j8 = ft, /z = 0. 
Since x(ft, 0) = oo, (5.39) follows. 

(e) The proof of Lemma V.7.1, given for (JS,/Z)G^, applies verbatim to 
^ = ft, /z = 0. Hence by (5.39) |A|-^Zi(ft ,0) ^ (j^(ft,0) = oo as AfZ^. 

(f) This is proved like Lemma IV. 6.11. n 

In order to discuss block spin scaling hmits for ferromagnetic models, 
it is useful to introduce a set of indices called critical exponents. These 
indices describe the behavior, at or near the critical point, of various func
tions associated with the models. Fix a finite-range ferromagnetic interaction 
/ on Z^,D > 2, and assume that the critical point (ft,0) is normal. We 
consider two functions, {YQ; Yj^}p Q as \\k\\ -> oo and mi^^^h) as h-^0^. 

Lemma V.8.2(c) shows that as ||^|| -^ oo, < FQ ? f̂c>/3 ,o "^ ^- What is a reason
able guess for the rate at which {Y^; Yj^y^^Q tends to 0? We appeal to an 
important theoretical tool known as the renormaHzation group, which is the 
basis for most of our information about critical phenomena in ferromag
netic models.^ According to Theorem V.7.6, for exponentially decaying in-
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Table V.2. Critical Exponents rj and 3 for Models on Z^ 

Function Power law* Critical exponent 

n 
3 

* For Z) = 4 the power laws must be modified by logarithmic corrections. See page 179. 

teractions, (To;!^)^,,, decays exponentially for (most) (jS,/2)6^. But if 
< YQ ; r^)^^ 0 also decayed exponentially, then X/cez^ < ^o ; k̂>/3̂ ,o would con
verge, violating (5.39). Renormalization group calculations suggest that to 
leading order in \\k\l {YQ ; }̂ >̂  o is described by a power law function. We 
write < r o ; i ; > / ^ „ o - | | ^ l h x < 0 , if 

^'-''^ ^^,,S^.i4^-^^^<^-^^>^^-
exists. The number x is customarily denoted by —(D — 2 -\- rf), where D is 
the dimension of the lattice; t] is known as the critical exponent correspond
ing to <ro; 7,>^^,o. If <^o; .̂>/̂ „o - \\kf = \\k\\-^''-'^^' holds, then given 
any e > 0 there exists a number 7̂  > 1 such that ||^||''~^ ^ <^o ^ Yf^}p o < 
||ytf+^ for all /CGZ^ with ||yt|| > R. 

The second function whose critical point behavior we discuss is m{P^,h). 
As h ̂  0^, m(P^, h) converges to 0 because of property V.8.1 (b) of a normal 
critical point (m(jS ,̂ + ) = 0). Renormalization group calculations suggest 
that to leading order in /?, miP^.h) is also described by a power law function. 
We write m(jS„ h) -^h\y> 0, if 

(5.41) y= lim -—--logmiP.^h) 
fi->o+ logh 

exists. The number y is customarily denoted by 1/(5; (5 is known as the critical 
exponent corresponding to md^^.h). lfm(Pc,h) ^ h^ = h^'^ holds, then given 
any e > 0 there exists a number /ZQ^C^? 1) such that h^^^ < m{pc,h) < h^~^ 
for all 0 < /z < /ZQ . The definitions of r\ and 8 are summarized in Table V.2. 

Other critical exponents are defined for functions such as the specific 
magnetic susceptibility z(jS,0) as p-^ P~; the spontaneous magnetization 
m(P, + ) as j8 -^ iS+; and the specific heat du{P,0)/dT= -p^du(p,0)/dp as 
P-^ P^ or P^ P^, where u(P,0) is the specific energy d(P\l/{P,0))/dp [see 
Problem IV.9.11]. Critical exponents are discussed in detail in Sokal (1981) 
and in the references listed in Note 9. It is widely believed that each critical 
exponent depends only on the dimension D of the lattice and not on the 
details of the particular interaction. This beUef, which is based on renormah-
zation group arguments, is called universality. It will be discussed further at 
the end of the section. 

The main results in this section are an inequality involving the critical 
exponents rj and d [Theorem V.8.4] and information on block spin scahng 
limits of S^ [Theorem V.8.6]. The next lemma gives bounds on rj and 5 and 
relates rj to other quantities of interest. The hypercube A has been defined as 

file:////k/l
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the set {JEZ'^ : |7^| < A^for a = 1, . . . , D}, where A îs a non-negative integer. 
lfn = IN + 1, then the number of sites in A is |A| =n^. We shall denote the 
variance SiCjS,, 0) of S^ by 1.1 and write L„ for ( I i ( f t , 0))^/^ 

Lemma V.8.3. Let J be a finite-range ferromagnetic interaction on iP, D >2. 
Assume that (jŜ , 0) is a normal critical point, < YQ ; Y^y^^Q ^ \k\~^^~^^'^\ and 
m(^„ h) ^ h'l\ Define G(R) = XH^̂ H^K < Yo \ i;>/^„o, ^ > 1- Then the following 
conclusions hold. 

(a) Y\<\. 
(b) ^ > 1. 
(c) G{R) - R^-"^ and T^ - w^^^-^* 

Comments on proof (a) Simon (1980a) proves that rj < I. The proof, given 
for nearest-neighbor interactions, extends readily to finite-range interactions. 

(b) If (5 < 1, then lim;,̂ o+ f^{Pc^h)lh = 0. But this hmit equals 

h-^o+ h dh^ 

which diverges by Lemma V.8.2(d). The contradiction proves ^ > 1. 
(c) Heuristically, G{R) - i?^"" holds since for large R, G(R) should be

have like the sum Ysi<\\k\\<R \\k\\~^'^~^'^'^\ and this in turn should behave like 
the integral ji<||x||<i?|i-^ir^^~^^'^^ d^^ over U^. Since f/< 1, the integral 
equals constCi^^"'^ - l)."̂  The proof that G(R) ~ 7^^"^ is left as Problem 
V.13.13. 

The proof that E^ ~ n^^^'"^ relies on the following inequalities. For any 
ij'eA, we have ||/ —j\\ < ^J^n, and so 

^ ' = Z I C{i -y) < I I C{i -j) = n'^Gi^n), 
ieAjeA ieA {j-\\i-j\\<>/Dn] 

where C ( / - y ) - (Fo; i^-i>/^,,o = <>^; >̂ ,>/̂ „o. For fixed 0 < a < 1, let 
A„(e) = {jeZ^: \j^\ < (1 - e ) A ^ f o r a = 1, . . . ,Z)}, where « = 27V + 1. Asin 
the proof of Lemma V.7.1, for any n>3 

5:„^>|A„(e)| S Cik)>\AM\ Z Cik) = il~ern^Gaen). 
||fc||<£iV ||fc||<£«/4 

The last two displays imply that 

,. logZ„^ ^ ,. log G(JDn) 
hmsup ^ " < /) + lim ^ ^ ^ % 

«̂ <» logi^Dn) «-̂«> l o g ( ^ « ) 

D + lim , ,:^ / < h m m f - — f ^ . 
«-̂ oo l o g ( i £ W ) «-̂ oo log (^£ /7 ) 

Since G(7?) - R^-\ we conclude that Z^ - n^-^^-\ n 

* 2 - fy = lim^_^ log G(R)/\og R ^nd D + 2 - rj = lim„_<„ log I^i/logn. 

^ If ^ equaled 2, then the integral would equal const • log R. 
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We now turn to block spin scaling limits of 5A. First recall our results for 
(j8,/z)G^.ByLemmaV.7.1,|A|-^Zi(iS,/z)^^^(iS,/z) = X^,z i^<ro;7 ,V,as 
A t / ^ , where l^l(P,h) is the variance of 5A. Consequently, ^j^{p,h) - |A|^/^ 
whenever G^{^,h) is finite (e.g., jS > 0, h =/=0). The central limit theorem 
states that whenever a^(P,h) is finite, then [S^ — |A|m(jS,/0]/>/|A| con
verges in distribution to N(0,(T^(P,h)) [Theorem V.7.2(a)]. By the same 
proof, [5A — |A|m(jS,/z)]/ZA(i8,/z) converges in distribution to A^(0,1). Con
trast this with the situation at a normal critical point. Since a^ip^^O) = 
P;'x(Pc.O) = cx^ and <(SJ^\y},^,o = W^i(Pc.O)^^ as A f Z ^ 
[Lemma V.8.2(e)], the central limit theorem is expected to fail. We now 
consider other scalings for 5A which can lead to non-Gaussian block spin 
scaling limits. If <Y,;Y,}p^^o - \\kV~'^'\ then i:„ = (llKpM'^'^ 
j^(D+2-ri)/2^ and one possibihty is to study the limit in distribution of 5A/ 
^iD+2-rj)/2 ^ sj\A\\whQrQA = (D + 2 - r])/(2D) > i The second possibility 
is to study the hmit in distribution of 5A/S„ directly. This is technically simpler 
since for each n, SJI.„ has fixed variance 1. From now on, we write 5„ for 5A. 

The nature of the limit of 5„/Z„ is closely related to an inequaHty involving 
the critical exponents r] and S. This inequality, given in (5.42), was discovered 
by Buckingham and Gunton (1969); also see Fisher (1969). The proof given 
here is due to Newman (1979). 

Theorem V.8.4. Let J be a finite-range ferromagnetic interaction on Z^, D >2. 
Assume that (j8 ,̂ 0) is a normal critical point, <(YQ ; 1 )̂̂  Q ^ ||/:||~^^~^'^''\ and 
mil^.Jt) ^ h^'\ Then 

(5.42) 2-ri< i ) | ^ . 

Proof For teU, let c„(/) = ^"^log<exp(^5„)>^ o- By Lemma V.8.2(f) 
{\K\ = n% 

(5.43) c^^,o(0 = lim c„(0 = -PdHPc ^/ft) - HPc 0)]. 

We write c(t) for ĉ ^ o(0- By means of the FKG inequality, Newman (1979, 
page 186) shows that c„(t) < c{t) for all r e [R. To prove (5.42), we first show 
that 

(5.44) lim inf/^^c(//i:„) > 0 for any t f 0. 
n-^oo 

The Pp 0 distribution of 5„/Z„ is symmetric. Hence the inequality <:„ < c 
implies 

exp[^^c(r/ZJ] > exp[^^c„(//I„)] = <exp(/5„/Z„)>^^,o 

> l + i / ^ < ( 5 J 2 : „ ) % , o > l . 

Suppose that (5.44) were not vaUd. Then for some infinite subsequence {n'] 
and some / ^ 0, (n')^c(t/lln') would converge to 0, and so by the last display 
<(5„72^n')̂ )/?c,o would also converge to 0. But <(5„/Z„)^>^ Q equals 1 for all 
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n. This contradiction proves (5.44). We now prove (5.42). By Lemma V.8.3, 
I„ - (̂i>+2-̂ )/2 ^^^ rj <l. Also the relation m{p,,h) - h^'^ implies that 

^(0 = c,,,o(0 = -PclHPc.t/P,) - HPc.O)] - t'^'i' as r ^ 0 ^ 
(5.45) 

Hence for any r < ^{D -^ 2 — r\) and all sufficiently large n, Z„ > /7^ Also for 
any p <\ -\- Ijd and all sufficiently small / > 0, c{t) < t^. Hence for all 
sufficiently large n and any t > 0 

Inequality (5.44) impHes that D — pr >0, which in turn impHes that D — 
i ( l + 1/(3)(Z) + 2-r])>0. This is equivalent to (5.42) since d>\. D 

Inequality (5.42) allows us to improve the bounds > 1 [Lemma V.8.3(b)]. 

Corollary V.8.5. Under the same hypotheses as the previous theorem, 

d>{D-V\)l{D-\)> 1. 

Proof. ?7 < 1 and so 1 < D{d - \)l{d + 1); hence 5 > (2) + \)I{D - 1). D 

It is strongly believed that if equahty holds in the Buckingham-Gunton 
inequahty (5.42) and if SJl.^ has a hmit in distribution, then the hmit is non-
Gaussian. Equahty in (5.42) is designated by the term hyper scaling.'^ We 
first motivate a relationship between (5.42) and a scaling limit of {SJl.^, 
then state a rigorous theorem. Let us suppose that for all real t g(t) = 
Um„̂ oo <^xp(^^n/^«))/?c,o exists. If it exists, then g(t) is the moment generating 
function of the presumed scaling hmit of SJ11„. We relate g(t) heurist-
ically to the free energy function ĉ ^ o(0 = l™n->oo<̂ /j(0? where c„(0 = 
«-^log<exp(/S„)>^^,o- By Lemma V.8'3(c) !.„ ̂  n^''^^-''^'^ and by (5.45) 
ĉ ^ o(0 ^ t^^^'^ ^s t -^0^. For large n it is tempting to write 

<exp(r5„/Z„)>^^,o = exp[«^c„(r/X„)] « expKc^^,o(^/^n)] 

^exp[«^const-|^/S„|i+^/^] 

^ exp[const- |r|^^^/^7?^], 

where A = D - ^(l -^ l /^)(^ -i-2 - rj). If there is equahty in (5.42), then 
A = 0. These calculations suggest that 

(5.46) g(t) - lim <exp(/S„/Z„)>. ,o ^ exp(const • \t\'^'f'). 

Since (5 > 1, 1 + 1/(5 does not exceed 2, and (5.46) is consistent with the scal
ing hmit of SJl^n being non-Gaussian (if it exists). One cannot take (5.46) 
hterally since g{t) = exp(const • |/|^^^'^) cannot be the moment generating 
function of a random variable. Indeed, since ^ > 1, ^''(0) equals oo. 

*For discussions of hyperscaling, see Fisher (1973, 1983). 
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The following theorem due to Newman (1979) partially justifies these 
computations. It discusses the nature of the block spin scaling limit under the 
assumption that it exists. The existence of the limit is an unsolved problem 
[cf., Note 7].* Hypotheses (5.47) and (5.48) in the theorem are related to 
the statements that G(R) - R^'"^ [Lemma V.8.3(c)] and c^^,o(0 ^ ^^^^'^ as 
t -^ 0"̂  [see (5.45)], but the hypotheses are not impHed by these statements. 
The proof of the theorem is omitted. 

Theorem V.8.6. Let J be a finite-range ferromagnetic interaction on iP, D>2. 
Assume that (̂ 5 ,̂0) is a normal critical point, ^YQ\ Y^y ^ ||A:||~^^~ '̂̂ ''̂  and 
m(P^, h) ^ h^'^. Suppose that for some 8 > 0 

G{R)= X <ro;r ,>^^,o>£i^ '" ' for all sufficiently large R>\, 
m\<R 

(5.47) 

that 2 — rj = D(d — \)/(d + 1 ) ^equality in (5.42)], and that for some K < GO 

(5.48) c^ ,̂o(0 = -PlHPc, tip,) - HP,,0)] < Kt'^'" 

for all sufficiently small t > 0. 

IfSJll„ converges in distribution to some random variable X, then X satisfies, 
for some 0 < a < oo, 

\at 
1+1/5 

E{Qxp(tX)} < expf ' ' I for all / real, 

(5.49) 

P{X >x}< exp (-^Y^) ^^^ ^^^ '^-^' 

Since (5 > 1 [^Corollary V.8.5], X is non-Gaussian. 

A main hypothesis in the theorems in this section is that (jS ,̂ 0) be a normal 
critical point [Definition V.8.1]. While the validity of this hypothesis is not 
known for the general ferromagnetic model, it holds for the Ising model on 
Z^, as we now discuss. By (5.18), j8̂  is positive and finite [property V.8.1 (a)] 
and m(p^, -h) equals 0 [property V.8.1(b)]. Property V.8.1(c) requires that 
yXP^h) be finite for all {P,h)e% and that xiPc^^) equal oo. The finiteness 
for (P,h)E^ is a consequence of Lemma V.7.4(a) and Theorem V.7.7. 
McCoy and Wu (1973, Section IX.4) calculate the asymptotic behavior of 
< ^0; Yj^y^^Q as k tends to infinity along the diagonal in Z^ (k — (n,n)eZ^, 
n -^ oo). They show that 

(5.50) <7o; l̂ („.«)>/>„o = -^(l + 0(^^yj as « ^ « , 

* Since {{SJllJ^yp^^o = 1 for all n, every subsequence of {SJ1<„} has a subsubsequence that 
that converges in distribution to some random variable X. Any such A'is described by (5.49). 
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T a b l e V . 3 . Limit Theorems for the Ising Model on Z^ 

Limit theorem Value(s) of (j5, H) Statement of limit Where proved 

Law of large 
numbers 

Central limit 
theorem 

Non-central 
limit theorem 
(conjectured) 

{p,h)E^u{p,., 

(P.h)e^ 

(ft,0) 

.0) T-^-)>m(j6,/z) a.s. and 
' ' exponentially 

sj^Ax, 
where S A - I A ^ ' / ' ^ 
P{X>x} <exp{-cx^%x>0 

Theorem V.6.1(c) 
Lemma V.8.2(b) 

Theorem V.7.2 
Theorem V.7.7 

Theorem V.8.6 

where ^ is a positive constant. Since for any keZ^ {YQ; 7^)^ ,o ^ ?̂ it 
follows that 

We discuss the applicabihty of Theorem V.8.6 to the Ising model on Z^. 
Inequahties due to Messager and Miracle-Sole (1977) allow one to compare 
correlations < YQ ; Yj^y^^Q for any A:GZ^ with correlations along the diagonal 
in Z^. These inequahties combined with (5.50) yield the value rj = 1/4.̂ ^ 
One can show that if the relation m(P^,h) ^ h^'^ is valid and certain other 
assumptions hold, then the critical exponent d equals 15.^^ With the values 
rj = 1/4 and (5=15, equahty holds in the Buckingham-Gun ton inequahty 
(5.42): 2 - 1/4 = 2(15 - 1)/(15 + 1). It is not known whether the other 
hypotheses in Theorem V.8.6 are vahd. If they are, then the theorem implies 
that the block spin scahng limit X of SJH^ is non-Gaussian and 

P{X >x}< exp(-const • x^^) for all x>0. 

By Lemma V.8.3(c) I„^ - n^^^'"^ = n^^'"' = \KY^'^. Table V.3 summarizes 
this conjectured limit together with other hmit theorems proved earher in 
the chapter. 

We end this section by summarizing current beliefs about critical expo
nents and the nature of block spin scaling hmits at the critical point. These 
behefs are largely based on renormalization group arguments. Rigorous 
results confirming some of these behefs have been obtained by Sokal (1979), 
Aizenman (1981, 1982), Brydges (1982), Frohlich (1982), Gaw^dzki and 
Kupiainen (1982, 1983), Aizenman and Graham (1983), and Aragao de 
Carvalho, Caracciolo, and Frohlich (1983). For each /) > 2, it is strongly 
beheved that all finite-range ferromagnetic models on Z^ have the same 
critical exponents (universality).* As we discuss below, these critical expo-

* As in the rest of this chapter, all interactions are assumed to be translation invariant. 
Ferromagnetic models with sufficiently rapidly decaying infinite-range interactions are believed 
to lie in the same universality class as finite-range ferromagnetic models; i.e., the former are 
believed to have the same critical exponents as the latter for each D >2. 
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nents depend on D. In particular, for D = 2, rj and S are believed to have 
the Ising values ^ and 15, respectively, so that (5.42) is an equahty (hyper-
scaling). It is also strongly believed that for D = 2, SJH^ has a non-Gaussian 
scaUng Hmit. Most workers now beheve that for Z) = 3 hyperscaling holds 
and 5'„/Z„ has a non-Gaussian scaling limit, but this view has been chal
lenged by some; compare Nickel and Sharpe (1979), Nickel (1981, 1982) 
versus Baker (1977), Baker and Kincaid (1981). We discuss D = 4 below. For 
all finite-range ferromagnetic models on Z^ with Z) > 4, it is widely believed 
that each critical exponent has a fixed value independent of D; namely, the 
value predicted by a simphfied theory of ferromagnetism called mean field 
theory. This theory approximates the given interaction strengths {/(/ —j)} 
among the spins by an average or mean interaction. It will be discussed 
further in the next section. The mean field values of rj and 5 are 0 and 3, 
respectively, so that in particular hyperscaling fails; i.e., for D > 4, (5.42) 
is a strict inequahty (2 < D/2). With the value fy = 0, we have S„ ^ (̂̂ +2)/2 ^ 
n^^^ = \/ |A|. For Z) > 4, it is also believed that *S„/Z„ has a Gaussian scaUng 
hmit. Many aspects of this picture for D > 4 have recently been proved 
rigorously (see the references listed at the beginning of this paragraph). For 
Z) = 4, it is beheved that critical exponents take on their mean field values 
modulo logarithmic correction factors [Larkin and Khmel'nitskii (1969), 
Brezin et al. (1973), Wegner and Riedel (1973)] and that block spin scaling 
hmits are Gaussian. However, few rigorous results for D = 4 are known. 
The dimension D = 4 is called the upper critical dimension for finite-range 
ferromagnetic models. D = I is called the lower critical dimension. 

The basic hypothesis of mean field theory is that each spin feels an average 
interaction caused by all the other spins. This kind of average interaction is 
built into the Curie-Weiss model, which was studied in Section IV.4. We 
return to this model in the next section in order to study its critical phe
nomena and other aspects. 

V.9. Three Faces of the Curie-Weiss Model 

The most obvious aspect of the Curie-Weiss model is that it lends itself 
readily to exact calculations. As we will see in the first part of this section, 
certain features of the model coincide with those of a simple phenomeno-
logical theory of ferromagnetism called mean field theory. Because of this, 
the Curie-Weiss model and mean field theory are often considered to be 
synonymous. But the model also has two other faces. First, it approximates 
general ferromagnetic models on Z^. For example, the specific magnetiza
tion and the critical inverse temperature for such a model are bounded above 
and below, respectively, by the corresponding Curie-Weiss quantities. 
Second, for the Curie-Weiss model most of the behefs expressed in the 
previous section concerning critical phenomena can be explicitly verified. In 
particular, in Theorem V.9.5, we will find the exact form of the block spin 
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scaling limit at the critical point and see that it agrees with the conclusion of 
Theorem V.8.6. We will consider these three faces of Curie-Weiss after sum
marizing the results in Section IV.4, where the model was first studied. The 
notation will be changed sHghtly in order to stay consistent with the notation 
being used in Chapter V. 

Let A be a symmetric hypercube in Z^ and ^^ a positive number. We 
define the Hamiltonian 

where h is real and co = {CD^ ; 7 6 A} is a point in the finite configuration space 
^^ = {1,-1}'^. The Curie-Weiss model is defined by the probability measure 
^A,̂ ,/i o^ ^ ( ^ A ) which assigns to each {CD), coeQ^, the probabiHty 

In this formula, jS is positive, TT^P^ is the product measure on ^ ( Q A ) with 
identical one-dimensional marginals p = ^3^ + ^(5_i, and Zc^(A, jS, h) is the 
nornalization ^^^Qxp^ — pH^'j,{(o)^n^Pp(d(jo). Expectation with respect to 
PA^^H is denoted by <->A^,^ . The form of the Curie-Weiss interaction has 
two consequences. First, since the interaction ^ o / | ^ | depends on the hyper
cube A, the model is not covered by the results in this chapter. Second, since 
each pair of spins in A is coupled with equal interaction strength ^o/|^|? the 
interaction completely ignores the lattice structure of Z^ and thus removes 
all geometry from the model. Because of this, we may replace the hypercube 
A by the subset of the integers consisting of the points {1,2, . . . , |A|}. This 
allows us to use the results of Section IY.4, where spontaneous magnetization 
was proved by a large deviation analysis. 

Let (/̂ ^^(jS, h) be the specific Gibbs free energy for the model. According 
to Remark IV.4.2, (/̂ ^ (̂j8,/z) is given by the variational formula 

(5.51) 
= sup{i)8/oz2 + /S/rz-/<i'(z)}, 

^ l o g ( l - z ) + 4 ^ 1 o g ( l + z) f o r | 2 | < l , 

where /p'* is the level-1 entropy function of the measure p: 

00 for \z\ > 1. 

If a point z gives the supremum in (5.51), then z satisfies the equation 
P/QZ -\- ph = (I^^^Yiz) = i log[( l + z)/(l - z)]. By inversion, solutions of 
the latter coincide with solutions of 

(5.52) z = tanh[jS(/oZ+ /?)]. 
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According to the table accompanying Figure IV.3, for 0 < ^ < /Q'^ and h 
real, this equation has a unique solution z(j8, h) which is 0 for /z = 0. For 
P > /Q^ and h =1=0, it has a unique solution z(jS,h) with the same sign as h, 
For j? > / o ^ and/? = 0, it has three solutions z(jS, + ) > z(jS,0) = 0 > z(jS, - ) . 
Of these three solutions, only z(j?, + ) and z(jS, —) give the supremum in the 
formula -p^^'^iP^O) = sup,,^{^/oz' - I^/\z)}. Let YJ((D) = coj be the 
coordinate functions on Q^ and define ^A = XjeA ^ ^^^ m^^{P,h) = 
lim^i2^ <*^A/I A|>A^,ft. The following facts were found. 

(a) For jS > 0 and h real, m^^{p, h) equals z(j^, h). 
(b) Define m^'^{P, + ) = lim^_o+m^^(j8,/?). Spontaneous magnetization 

occurs if and only if j8 > f^^; in fact, 

^ c w ( ^ ^ ) fO f o r O < ^ ^ A -

^'' ' '^^ W , + ) > 0 f o r i 9 > / o - ^ 

(c) With respect to {PA,^,O}, 

SJ\K\'^m^'^{p,0) = 0 for 0 < i5 < f^\ 

SJ\^\ ^ R ( , , ^ ) + H(^,_) for p > / o - ^ 

The value P^"^ = /o^ is the critical inverse temperature for the Curie-Weiss 
model. 

Face A. The Curie-Weiss Model and Mean Field Theory 

Let / be a summable ferromagnetic interaction on Z^ and A a symmetric 
hypercube. Define the Hamiltonian 

(5.53) H^,h(co) = -^ T. -^0' -J)^i<^j - ^ Z ^ r coeQ^ 
^ iJeA jeA 

and let PA,p,h be the corresponding finite-volume Gibbs state.* The measures 
(P^^^; A symmetric hypercubes} define a ferromagnetic model on Z^ which 
we call a generalferromagnet in order to distinguish it from the Curie-Weiss 
model. Mean field theory is an approximation which replaces Hj^^j^ by the 
Hamiltonian 

(5.54) HZio:') ^-/om Y. coj - h Y^ cOj, 
j e A J e A 

where /o = Xfeez^«^(^)- The parameter m represents an average field which 
is caused by all the spins and with which each spin interacts. It satisfies a 
self-consistency condition to be specified below. The finite-volume Gibbs 
state PA,p,h is replaced by the probability measure 

P^Udoi) = exp[ - ;8i/X!i;(co) ] n^P^idw) • ^^^^^^ ^̂  ^^. 

* In this section, we work only with the free external condition. The external condition is 
not indicated in the notation for //^ ;, and PAj,h-
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Using (5.54), we calculate 

Z^^(A,iS,^)= [ exp[-)8i/^^^(a;)]7r^P,(Jco)=(cosh[i8(/om + /z)] 

Thus, P^^,^ is just the product measure 

(5.55) PA^ ,̂,(rfco) = n |exp(iS(/om + h)o,^p{da,^ 
JeA cosh[i8(/om + /?)] 

Since m represents an average field caused by all the spins, a reasonable self-
consistency condition is to require for each y that fn = ^Q^cOjP^lhidco). 
Equation (5.55) implies that 

(5.56) m = tanh[j8(/om + /z)]. 

This is the same as equation (5.52) which gives the specific magnetization in 
the Curie-Weiss model. In order to avoid ambiguity, we must specify m in 
those cases where (5.56) has multiple solutions. For jS > /Q"^ and h ^0, m 
is set equal to the unique solution which has the same sign as h. For P > /Q~^ 
and h = 0, m is set equal to z(jS, +) . We see that for p > 0, h =/= 0, and for 
0 < j8 < /Q^, h = 0, m equals the Curie-Weiss specific magnetization 
rrf^iP.h) and for jS > /Q^, h = 0,m equals the spontaneous magnetization 
nf^iP, +) . In the next section, we will see that m approximates the specific 
magnetization in the general ferromagnet defined by the Hamiltonians 
{i/^,,} in (5.53). 

In mean field theory, certain critical exponents can be easily calculated. 
For example, the critical exponent d is defined by the relation m(Pc,h) ^ h^'^, 
h^O^. The mean field value of d is found by substituting m = m^^(^,/?), 
P = ^cw ^ ^ - 1 ^ and /i > 0 in (5.56). As x -^ 0, tanhx = x - x^/3 + O(x^). 
Since m^^(jg,^^ /z) ̂  0 as /? -^ 0, (5.56) with j8/o = 1 impHes 

m = m-h ph-^(m^ Phf + 0{\m + ph]^) as /z -^ 0+. 

This yields m ^ h^^^, which gives the mean field value 3 = 3. Since for /z > 0 
m equals m^^(^^^,/z), <5 also equals 3 for the Curie-Weiss model. Now 
consider the critical exponent rj. For a general ferromagnet, rj was defined 
by the relation <7o; ^k>/s„o ^ 11^11"^^"^ '̂'̂  ||^|| ^ oo. However, with respect 
to the mean field product measure (5.55), the individual spins are indepen
dent, and so in mean field theory this definition of rj makes no sense. In 
order to find an alternate definition, we note that mean field theory can be 
regarded as the lowest order of a well-defined, successive approximation 
scheme to general ferromagnets. The next order past mean field theory is 
called the Gaussian approximation [Brezin et al. (1976), Ma (1976)]. This 
approximation yields the asymptotic relation {YoiYj^yp Q ^ \\k\\~^^~^\ 
which in turn gives the value rj = 0. The latter is usually taken as the mean 
field/Curie-Weiss value of the critical exponent rj. 

We now turn to Face B of the Curie-Weiss model as we study how it 
approximates a general ferromagnet. 
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Face B. Approximating General Ferromagnets 

Consider again the general ferromagnet on Z^ defined by the Hamiltonians 
{//^ ;J in (5.53). We replace the spatially varying interaction strengths 
{/(/ —j)} between each pair of sites ij'eAby an average interaction strength 
/ o / | A| = YjkezDJ(k)/\A\. Then H^j^ is replaced by the Curie-Weiss Hamilto-
nian H^^ and the finite-volume Gibbs state PAj,h corresponding to 7/^ ;, is 
replaced by the Curie-Weiss measure PA J,/,. How accurately does PAJ,^ 
approximate PA,p,h'^ 

Let m(P,h) denote the specific magnetization corresponding to {PA,p,h} 
and let P^ be the critical inverse temperature. Our first theorem compares 
m(p,h) and p, with the Curie-Weiss values m^^{P,h) and pf"^ =/~\ 
respectively. It also compares the critical inverse temperature for the Ising 
model on Z^ (with nearest-neighbor interaction strength / = I) with the 
corresponding Curie-Weiss value jSf^(Z)). Since each site in Z^ has 2D 
nearest neighbors, jS^^(Z)) equals {2D)~^. 

Theorem V.9.1. (a) Let J be a summable ferromagnetic interaction on iP 
and set /Q = Yjkez^Jih)- Then for j8 > 0 and h>0, 

(5.57) nf'^iP.h) > m(P,h) and p, > pf"^ = ^^\ 

(b) Let PJjy) denote the critical inverse temperature for the Ising model 
onZ^withf= 1. Then 

PXD)>Pf'^(D) and PXDypf'^iD) = I + (2D)-'+ oiD'') asD-^oo. 

The bounds (5.57) follow from Pearce (1981) [see the comments after 
Theorem IV.5.3]. Note 8 in Chapter IV Usts other references. For part (b), 
see Bricmont and Fontaine (1982). 

Part (b) is particularly interesting. The Curie-Weiss model not only gives 
a rigorous lower bound on PdD) valid for all D, but it gives a correct asym
ptotic Hmit as Z) -^ 00. This asymptotic validity of Curie-Weiss is related to 
the behavior of critical exponents as functions of dimension. In the previous 
section, we mentioned the strongly held belief that critical exponents for 
finite-range ferromagnetic models on Z^ equal their mean field/Curie-Weiss 
values whenever D > 4. This means, for example, that in calculating critical 
exponents for the Ising model on Z^, D > 4, one should get identical results 
whether one uses the given nearest-neighbor interaction or the long-range, 
averaged Curie-Weiss interaction. By contrast, when 1 < Z) < 4, the critical 
exponents are sensitive to the range of the interaction, and a discrepancy 
between the Ising and mean field/Curie-Weiss values occurs. In fact, for 
D = 2, (rj, d) equals (|, 15) versus (0,3), respectively. For Z) = 3, the mean 
field/Curie-Weiss values (f/, d) = (0,3) cannot equal the Ising values since 
the former violate the Buckingham-Gunton inequahty (5.42). 

Part (b) of Theorem V.9.1 shows that for the Ising model on Z^, the 
Curie-Weiss critical inverse temperature is asymptotically correct in the 
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limit of large dimension. Theorem V.9.3 below considers another limit (with 
D fixed) in which the specific Gibbs free energy and the specific magnetiza
tion for a general ferromagnet converge to the corresponding Curie-Weiss 
quantities. If / o is a positive number, then iA^^(A \ P^ h) will denote the 
specific Gibbs free energy for the Curie-Weiss model with interaction 
strength/o/|A|: 

(5.58) - i 8^^^ ( /o '.P.h) = sup {ii8/o2^ + phz - I),'\z)]. 

The corresponding specific magnetization is denoted by rn^'^(/Q;P,h). 
We first motivate Theorem V.9.3 by means of the Gibbs variational 

formula. We restrict to D = I since we have proved the Gibbs variational 
formula only in this case. Let J be a summable ferromagnetic interaction on 
Z and A a symmetric interval. Define the Hamiltonian 

iJeA jeA 

and the specific Gibbs free energy 

(5.59) -pHP,h) = \im-^\og I Qxp[-pH^^,(co)]n^P^(dcD). 

The Gibbs variational formula, derived in Theorem IV.7.3(a) via level-3 
large deviations, states that 

(5.60) -mP,h) = snp{-liu(h;P) - I^'KP)}. 

JiJ<Qi) is the set of translation invariant probability measures on Q = 

{ 1 , - 1 } ^ 

u(h\P) = - \ Y . Jik) \ CDoCO,P(dco) - h 

is the specific energy in P, and Ip^\P) is the mean relative entropy of P with 
respect to the infinite product measure Pp. 

The idea underlying mean field theory is to approximate the finite-
volume Gibbs state of a general ferromagnet by means of a product measure. 
We apply a similar idea in order to bound — jS(/̂ (j8,/z). Let ^pr(Q) be the 
subset of JiJS^ consisting of product measures. For PeJi^^(^, \ 
p{doS) = (j^cooP(da))y for ^ ^ 0, and so 

(jOQP(dco) 
n 

uih;P)=-\j(0)-l-Y.J(k)( CDQP(dcjo) — h 

Jn 

coQP(dco). 

The mean ^^coQPidcD) is a number ze [— 1,1]. Equation (5.60) implies that 

-mP,h) > sup {-pu{h;P) - I^^KP)} 
re Ji pr(ii) 
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a 
= sup <!iMO) + iiS/o 

+ ph { cOoPidco) - I^'\P)\ 

= sup | i M 0 ) + ii5/oz2 + i8^z 
z e [ - l , l ] I 

- M{Il,'KP):PeJ^^M, j co,P(dco) = z}V 

where /^ = Y^k^o Ak)- We have 

inf | /<^)(P):PG^p,(Q), [ (D^P{dcD) = z\ 

= i n f W p ) : P e ^ , ( Q ) , [ co^Pidco) = z}, 

and the latter equals Ip^\z) by the contraction principle in Theorem II.5.4. 
Since I^^\z) equals oo for \z\ > 1, we have the following result. It is analogous 
to the lower bound m{P,h) > m^^(P,h) in Theorem V.9.1(a). 

Theorem V.9.2. Let J be a summable ferromagnetic interaction on Z andil/(P, h) 
the corresponding specific Gibbs free energy. Set /Q = ^kfoJi^)- Then for 
j5 > 0 and h real, 

- mp, h) > wm - pr'^i/o -, P, H) 
= i M O ) + sup {ii?/oz' + Phz - f/Kz)}. 

zeU 

The next theorem determines a sequence of interactions {/̂ ^̂ } on Z^, 
indexed by 0 < y < 1, such that the corresponding specific Gibbs free 
energies {ij/^^^} converge in the limit y ̂  0"̂  to the Curie-Weiss specific free 
energy ^^^{/Q ; jS, h) for some /Q > 0. This will lead to a Hmit involving 
the specific magnetizations m^'^\%h) = -dil/^'^\p,h)/dh (jS > 0,/z ^ 0). Let 
/ ^ 0 be a non-negative, continuous, symmetric function on !R̂  with 
bounded support. For 0 < y < 1 and keZ^, define J^^\k) = y^J(yk). Since 
/ is bounded, J^^\k) converges to 0 as 7 ̂  0"̂ , and the interaction J^^^ has 
range of order l/y. Thus as y ̂  0"̂ , /̂ ^̂  defines a weak, long-range interaction 
on Z^, and the total interaction strength Xfcez^*^^^^ )̂ converges to the 
constant J^Q = ^^DJ(x)dx. As a weak, long-range interaction is reminiscent 
of the Curie-Weiss model, it is plausible that —Pil/^'^\P,h) converges to 
— Pil/^'^(J^Q;P,h) as y -> 0"̂ . This limit was first proved in a special case by 
Kac (1959a) and is now known as a Kac limit.^^ For D = 1, the lower bound 

(5.61) \immf(-pil/^y\p,h)) > -Pi^'^'^i/o-J.h) 
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is immediate from Theorem V.9.2 and the fact that /p^ (̂z) equals oo for 
| z | > 1. 

Theorem V.9.3. Let J ^^ be a non-negative, continuous, symmetric function 
on U^ with bounded support and set /Q = ^^oJ(x)dx. For P > 0, h real, and 
0 < 7 < I, let \l/^'^\p,h) be the specific Gibbsfree energy corresponding to the 
scaled interaction J^^\k) = y^Jiyk), kel.. Then the following conclusions 
hold. 

(a) For P > 0 and h real, 

(5.62) lim (-p^iy\p,h)) = -Pil^^'^i/o'J.h). 

(b) For P>Oandh + 0, 

hm m^^\p,h) = hm — ^, = —-—^f, ^ ^ = m^^{/Q,p,h), 
y-̂ o+ y->o+ \ on J oh 

(5.63) 

where m^'^(J'Q;P,.h) is the Curie-Weiss specific magnetization. For each 
P > 0, the convergence is uniform on compact subsets ofh > 0 and ofh < 0. 

Comments of proof (a) This is proved in Thompson (1972, Appendix C) 
for D = I and in Thompson and Silver (1973) for Z) > 1 and other models. 
Simon (1985) has further generalizations. The order of the limits in part 
(a) is important. The function ij/^^^ is defined by the infinite-volume limit 
A t Z^ as in (5.59). The limit y -> 0"̂  involves the scaled interactions {/̂ ^̂ }. 
The function il/^'^{/Q;P,h) is also defined by the infinite-volume limit 
|A| ^ 00 [see (5.51)], but in this limit the Curie-Weiss interaction /ol\M 
is scaled simultaneously. 

(b) Problem IV.9.5 shows that for h=f=0 dil/^'^(fo'J.h)/dh exists and 
equals — m^^(^o ? P^h). The convexity of —il/^^\P,h) for h real allows us to 
interchange the limit y -> 0"̂  and the differentiation with respect to h [Lemma 
IV.6.3], yielding (5.63). Since m^^\P,h) is concave for /z > 0 and convex for 
h <0, the uniformity of the limit in (5.63) is a consequence of Theorem 
VL3.3(b). 

Theorems V.9.1-V.9.3 have shown that the Curie-Weiss model approx
imates general ferromagnets. We now study its block spin scaling limits. 

Face C. Block Spin Scaling Limits for the Curie-Weiss Model 

Scaling Umits for the Curie-Weiss model will be derived for P in the range 
0 < P < Pf"^ and for h = 0.To ease the notation, the symmetric hypercube 
A in Z^ is replaced by the set A = {1,2, . . . , « } , where «is a positive integer. 
All quantities are indexed by n instead of by A. Also, /o is set equal to 1, 
so that the critical inverse temperature P^"^ equals 1. Thus, we work with 
the probabiUty measure 
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(5.64) P^Joi^oj) = exp 
B " 

n„PJdco) • 1 
Z^^(«,iS,0) 

on the set Q„ of sequences co = (co^,02, . . . ,co„) with each C0je{l, —1}. 
Z^^(«,jS,0) equals ^Q^Qxpl(P/2n)JJj=^a>i(Oj]nnPp(d(jo). For a;eQ„, define 
^n(^) == Z!/=i ^ r ^^ ^^^ study of scaHng limits for general ferromagnets in 
Sections V.7 and V.8, we worked with the infinite-volume Gibbs states for 
the models. However, for the Curie-Weiss model, infinite-volume Gibbs 
states have not been defined. In this section, we will study scaling hmits of 
{S„} with respect to the finite-volume Gibbs states {PnJ,o}' Expectation with 
respect to P^J^o will be denoted by <->„^^,0' 

The first result is a central limit theorem for 0 < jS < j8^^ and h = 0. A 
central limit theorem also holds for any jS > 0 and h ^0 [Ellis and Newman 
(1978b)]. 

Theorem V.9.4. Fix 0 < P < pf"^ = I and define G\P) = (I - p)~\ Then as 
n ^ CO, 

(5.65) - ^ ^ A (̂0, a\p)) w.r.t. the finite-volume Gibbs states {P^Jo}-
^n 

Proof For any/G^(R), </(*S„/V^)>„,^,o equals 

(5.66) l / ( ^ 
exp 

jexp 

W 
m 
^ )i PM<o 

P,{dco) 

) 

where Pp is the infinite product measure on Q = {1, — 1}^ with identical one-
dimensional marginals p = 2^1 + 2^-1. With respect to P^, the coordinates 
{ojj} are i.i.d. The "obvious" step is to apply the classical central Hmit 
theorem* and to conclude that the ratio in (5.66) converges to 

.U/(x)exp(i^x^)7V(0, l)(dx) ^ .U/(x)exp[-^i(l - l])x']dx 
]^Qxpi^Px')N(0,\)(dx) j o . exp [ - i ( l - iS )x^ ] Jx 

As this equals jufix)N(0, (j^(P))(dx), (5.65) will be proved. However, these 
steps must be justified since the function exp(^jSz^) is unbounded. We will 
show that the non-negative random variables W^ioj) = exp[^jS(^"=iCOy/^)^] 
satisfy sup„> ̂  j^^r > |̂ W„dPp -> 0 as a -• 00 (uniform integrabihty). Then (5.65) 
follows from Theorem A.8.6. 

We will prove that 

(5.67) supPp{W^ > a} < 2a-^/^ for a > 1. 

Integration by parts and (5.67) show that uniformly in n 

*i:"j=, coj/^ ^ N(0,1) w.r.t. Pp. 
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W„dP^ = aP^{W„>a} + Pp{W„>t}dt = O{0(.^-^i^). 

This converges to 0 as a -> oo since 0 < jS < 1, and so the uniform integrability 
will be proved. Note first that for any x > 0 and integer y > 1 

I ; Q m>0 m>0 

(5.68) 

Given a > 1, let x = (2(loga)/)S)^'^ > 0. Then by Chebyshev's inequaUty and 
(5.68) 

P,{W„>a} = P^ YU<^j 
>x 

2P„ E"=i CO: 
>x <2exp(-jc2)- I e x p J x ^ ^ ^ ' j p / J a ) ) 

= 2exp(-x^) n I exp( x - ^ \Pp{d(D) < 2exp ( - ^ 

This bound, which is independent of «, yields (5.67). D 

Since for P — j?̂ ^̂  = 1 G^{P) diverges, we expect the central limit theorem 
to fail at the critical point ()S^^ ,̂0) = (1,0). The block spin scahng Hmit at 
the critical point is considered in Theorem V.9.5 below, which shows that 
SJrr'''^ has a non-Gaussian limit in distribution as « -^ oo. The theorem will 
first be motivated by a heuristic argument based on large deviations. 

Let Qn denote the P^-distribution of ^"=i co^jn. Then for any real number 

/I, Pp{X"=i (Oj/n^edz} = Q„(d(z/n^-^)X and so for any/G^([R) 

It is tempting to replace Q„(d(z/n^~^)) by cxp\_ — nl^^\z/n^~^)~\dz, where /̂ ^̂  
is the level-1 entropy function of p. Consider the Taylor expansion of/^^^(z) 
around z = 0: 

l - Z , _ ,, ^ . 1 + ^ 1 . . . . X Z^ , Z"^ 

(5.69) 
c w cw 

/ i ' * ( z ) = - ^ r ^ l o g ( l - z ) + 2 ^OEil+^) = j + j - , + Oiz% 

Hence for large n one expects that 

' ^ ^ *̂ • y.<z))] + • + T„ dz 
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where y^(z) = nO((z/n^-^)^) = Oin^^'^z^). If we pick /I = | , then y„(z) -^ 0 
for each z, and formally the right-hand side of (5.69) converges to 
jg5/(z)exp( —i^z'^)(iz/jexp(—xiz'^)Jz. This leads to our next theorem, which 
was discovered by Simon and Griffiths (1973). The proof given here is due 
to ElHs and Newman (1978b).^^ 

Theorem V.9.5. Fix P = Pf = 1. Then there exists a random variable X 
with density proportional to exp(—i^x'^) such that as n-^ oo 

> X w.r.t. the finite-volume Gibbs states {PnJ,o] 

Proof. While large deviations and the entropy function motivated the 
theorem, the proof involves the free energy function Cp{t) = Xog^^e^'^pidx) = 
log cosh t of the measure p. We will prove that for any real number r 

(5.70) l im/exp r - ^ ^3/4 

CW 

n, 1 ,0 

j'n^exp(rx-i^x'^)Jx 

jo«exp(-i^x^)<ix 

Theorem A.8.7(a) then yields the theorem. The expression 
<exp(r^>3/^)>?,T,o equals 

(5.71) 
exp 

ZU 
,3/4 

«7 ^ i / ' I i ^ i ^ Z 
v« PAd(o) 

exp 
irZ"=i^.^^' PAdc) 

We replace the quantities exp[|(^"=i coy^)^] using the identity exp(^j^) = 
JQ5exp(jx — {x^)dxl-.j2n, then do the Pp integration. After a short calcula
tion, one finds that the ratio in (5.71) equals 

Qx^l-nG{xln^'^)']dx, (5.72) e x p ( - i r W ^ ) f exp[rx - nG{xln^'^)'\dx\ 
Ju I J 

where G(x) = ^x^ — Cp{x) = \x'^ — log cosh x. There exist positive real num
bers A and e such that 

(a) G(x) = i^x^ + 0(x^) for |x| < ^ ; 
(b) G(x) > sx"^ for \x\ <A; 
(c) G(x) > sx^ for |x| > A. 

We split each integral in (5.72) into an integral over |x/w '̂"''| < A and an 
integral over Ix/̂ ^̂ "*"! > A. Property (c) implies that the integrals over 
Ix/fẑ ^̂ l̂ > A converge to 0 as /2-^oo. Given this, properties (a) and (b) 
and the Lebesgue dominated convergence theorem imply that the ratio in 
(5.72) converges to ^^Qxp(rx — Y2X^)dx/j^Qxp(—Y2^'^)dx. This completes 
the proof. n 
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We compare this theorem with Theorem V.8.6. The latter stated that if 
for a general ferromagnet on Z^ the critical exponents r] and b satisfy 2 — rj = 
D(d — 1)1(3 -h 1) (and other hypotheses hold), then a scaling Hmit of SJT^ 
is non-Gaussian and its tail is bounded by exp(—const x^"^ )̂. For the 
Curie-Weiss model, we have seen that 5 equals 3. Although according to 
the Gaussian approximation rj is defined to have the value ?/ = 0, we con
sider another internally consistent definition of rj for the Curie-Weiss 
model. For general ferromagnets, the critical exponent rj was defined by 
the relation <7o; 5̂ fc>̂ „o - ||A:||"^^"^^^\ and this implies that S^ = <5„^> ,̂,o 
^ ^^+2-^/ [Lenijiĵ a V.8.3(c)]; n is the number of sites in each edge of the 
symmetric hypercube A and |A| equals n^. In comparing the Curie-Weiss 
model with a general ferromagnet on Z^, we should consider the model 
on a set A consisting of n^ sites (rather than n sites, as we have done in 
this section). Let S„ denote the corresponding spin on A and <(->^^i Q 
expectation with respect to the finite-volume Gibbs state on A, P^D^I,O 

[see (5.64)]. The asymptotic behavior of <*S'„̂ >„i),i,o follows from the proof 
of Theorem V.9.5. Indeed (5.70) and Theorem A.8.7(b) imply that 

Qxp(—Y2x'^)dx. (5.73) lim <[SJ(nyyy^^, , = f x^exp(-3^x^)Jx 

Thus <S^}nD,i,o - n^""^, A comparison of the relations <^„^>„™i,o - n^""^ 
and E^ ^ n^^^'"^ gives rj = 2 — ^D. With this value of Y\ and with the value 
(5 = 3, the equation 2 — rj = D(d — l)/(d H- 1) holds. It is also consistent 
with Theorem V.8.6 that the density of the Curie-Weiss scaling Hmit is 
proportional to exp(—^x"^) = exp(—^^x^"^^). Notice that the value rj = 
2 — jD agrees with the (Gaussian approximation) value rj = 0 for the upper 
critical dimension D = 4. 

This completes our discussion of the Curie-Weiss model. In the next 
section, we consider a generaUzation. 

V.IO. The Circle Model and Random Waves 

Let 0 denote the unit interval [0,1] with its endpoints identified and let 
A„ denote the subset {6E@:6 =jln,j = 1,2, . . . ,^2}; « is a positive integer 
that eventually tends to 00. The circle model is a magnetic system on the 
subsets {A„} which generalizes the Curie-Weiss model. The circle model 
is interesting because it exhibits a new kind of phase transition described 
in terms of random waves.̂ "^ The present section is based upon the paper 
by Eisele and Ellis (1983). 

We are given a continuous symmetric function / of period 1 on IR. / 
is not necessarily non-negative. We define a Hamiltonian 

(5.74) ^"(-)=-l;J/(^^)-^-^• 
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for each configuration co = (coi, CO2, . . . , co„) eQ„ = {1, — 1 j " ^ " . The quantity 
CO I denotes the value of a spin at the site i/n in A„. The circle model is defined 
by the probabihty measure P„p on ^(^„) which assigns to each {co}, a>eQ„, 
the probabihty 

(5.75) P,,p{co} = exp[ - )? / / „ (a ; ) ]7 r„P ,{co}-^^ . 

In this formula P is positive, n„Pp is the product measure on ^{O.^ with 
identical one-dimensional marginals p = -k^\+ \^-\, and Z(n,P) is the 
partition function j'Q^exp[ —jS//„(a;)]7r„P^((ico). The choice / = 1 defines 
the Curie-Weiss model with external field h = 0. The circle model is more 
comphcated than the Curie-Weiss model since the interaction strength 
between sites depends in general on the distance between the sites. Our main 
results describe the asymptotic behavior of the circle model for different 
interactions / . 

The circle model differs from the general ferromagnetic models previously 
considered. The latter are defined on symmetric hypercubes A which expand 
to fill Z^ (infinite-volume hmit) and their interactions are independent of 
A. By contrast, the circle model is defined on the subsets {A„} of 0 which 
become dense in 0 as fi -^ 00 (a continuum limit). Also the interaction in 
the model, n~^J(i/n —j/n), depends on n. This interaction is reminiscent of 
the scaled interaction J^'^\i — j) = yJ{y{i —j)) which arises in the Kac hmit 
for models on Z. We recall that if / ^ 0 is a non-negative, continuous, 
symmetric function on U with bounded support and h = 0, then the corre
sponding specific Gibbs free energies i/̂ ^̂ (̂jS, 0) tend to the Curie-Weiss 
specific Gibbs free energy IJ/^^(/Q;I],0) as y-^O"^, where /Q = ^^J(x)dx. 
Because of this analogy with the Kac hmit, one might expect that in the hmit 
n^ CO the circle model behaves like the Curie-Weiss model for any / for 
which / o = \@J{0)dO is positive. Our results are consistent with this expecta
tion. For a positive interaction, the asymptotic behavior of the circle model 
coincides with that of the Curie-Weiss model. By contrast, we present an 
example of a /wi th variable sign and /Q = ^Qj(6)d6 < 0 for which the circle 
model exhibits features absent in the Curie-Weiss case. 

Let Yj(a)) = cOj be the coordinate functions on Q„. Given a nonempty 
interval A in 0 of length |A|, define 

S„(A){co) = -]- X Yjico). 
| A | {jee-.j/neA} 

This sum, which is the spin in A, involves approximately ^2|A| summands. 
We shall describe the asymptotic behavior of the circle model by giving the 
hmiting joint distribution, with respect to the finite-volume Gibbs states 
{Pn,p}, of the vector (5'„(Ai)/^, . . . , S„(A„)/n); r is a positive integer and 
Ai, . . . , Â  are any r nonempty intervals in 0 . The limiting joint distribution 
depends strongly on the sign of / . For / > 0, it is described completely in 
terms of the Curie-Weiss model. For a specific choice of / with variable 
sign, it is described in terms of random waves on 0 . 
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In order to motivate the main results, we define a limiting random field 
{Y{Q); 0 6 0 } by the expectations 

(5.76) < / ( n 0 i ) , . . . , m ) ) > , = lim Hm / / ^ " ^ ^ ^ ^ ^"^^^^ 

(or fe^iW). In this formula 6^, . . . , 6̂  are r distinct points in 0 and <->„,^ 
denotes expectation with respect to P„p. We also introduce the set of ground 
states of the Hamiltonian //„, which is defined as the set of configurations 
(D€Q„  which minimize H„. Since H„(co) < H„(co) is equivalent to P„,̂ {co} > 
P„p{co}, the ground states are the configurations to which P^p assigns 
maximal probabiHty. In other words, they are the most Ukely configurations 
for the circle model. According to formula (5.76), the distribution of Y(9) 
for 6e& fixed is approximately the same as the distribution of 5„(A)/« for 
large n and A a small interval centered at 0. As j8 -^ oo, the latter distribution 
is determined by the values {5„(A)(co)/«; cb a ground state}. Indeed, if CD 
is not a ground state, then P„J{(D} ^ 0 as jS ^ OO. 

We first consider an interaction /which is positive.* Such an interaction 
is called ferromagnetic. For any jS > 0 and fixed «, the ground states are the 
totally aligned configurations co+ and cd_ in Q„ (co+j = 1, co_ ^ = —1 for 
each 7 G { 1 , . . . ,/7}). By symmetry, as ^-^oo the measures {P^^;P>0} 
converge weakly to the measure ^d^^ + |^^ on Q„. Thus for any/e^ 

If A is centered at a point 6, then the right-hand side is approximately 
2/(1) + i/C— O5 and this holds independently of the choice of 6. It is con
sistent with (5.77) to hope that for all sufficiently large p > 0 there exists a 
number m(P) > 0 such that <f(S,(A)/n)\p^y(m(P)) + ^f{-m(P)) as 
n^ 00. Then the Hmiting random field Y at each point 6 will equals m(jS) 
or —m(P) with probabiHty | each. The limit (5.78) below with r = 1 shows 
that this is the case. We write 0 and 1 for the constant vectors (0, . . . , 0) 
and (1, . . . , 1) in W and 0 and 1 for the constant functions on 0 . 

Theorem V.10.1. Suppose that J > 0 is a continuous symmetric function of 
period 1 on U and set / o = \@J{e)de. For p > p^"^ = /o\ define m(p) to be 
the Curie-Weiss spontaneous magnetization m^'^iJ^QiP, -\-); m(p) is the 
unique positive solution of the equation z = tanh(jS^o^) V^^^ (5.52)]. Then 
for any positive integer r, nonempty intervals A^, . . . , Â  m 0 , and function 

(5.78) 
m for 0 < i? < i?cw^ 

i/(m()S)l) + i / ( -m()S) l ) for)9>i9,c*. 

*The same results hold for non-negative interactions which are irreducible on 0 . 
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Thus the limiting random field (7(0); 0G0} equals 0 for 0 < ji < P^"^ and 
equalsKm{P)\ for jS > j8^^ ,̂ where Prob{K: = 1} = Prob{K: = - 1 } = i-

The form of Y{0) for P > P^"^ represents a (discrete) symmetry-breaking 
of the sign-in variance of the model {H„{ — a)) = H„{(D) for each coeQ„). It 
corresponds to the symmetry-breaking of the infinite-volume Gibbs states 
Pp,o,+ ^ ^p,o,- for general ferromagnetic models on Z^ [page 116]. 

We now consider an interaction / which is negative. Such an interaction 
is called antiferromagnetic}^ In order to find a ground state, one may try 
to minimize //„(co) by making each summand /(//« —j/n)(DiCOj positive, or 
since / is negative, by making each product cô coj negative. But this is im
possible since each cOj- can take only the values 1 or — 1. The form' of the 
ground state must represent a compromise with this incompatible ordering. 
Specifically, the spins in each ground state cluster into alternating islands 
of plus spins and minus spins, where the number of islands and their sizes 
are determined by / . Since the interaction is translation invariant, the phase 
shifts of the islands are not determined. If co is a ground state, then define 
the translated configurations af''\ a = 1, . . . , « , by 

^ ( a ) ^ | ^ 7 + a i f 7 = l , . . . , « - a , 

The configurations {cô ''̂ } are also ground states. 
Let us consider in more detail the case where there is a unique ground 

state CO up to translations. As jS ^ oo the measures {P„ p;P > 0} converge 
weakly to the measure n~^ ^"=i S^ioc) on Q„, and for any/G^([R) 

Let us think of cOj as the value at j/n of some function ^ on 0 and take A 
to be a small interval centered at a point 0 in 0 . The right-hand side of 
(5.79) is approximately n~^ ̂ "=i f(g(0 + a/n). If ^ is smooth, then for large 
n the latter sum in turn is approximately jef(g(9 + X))dX. In this case it is 
consistent to hope that for all sufficiently large ^ > 0 the Hmiting random 
field Y(9) is described by a wave on the circle 0 whose phase shift A is random 
and whose shape is given by a function ^^. As jS ^ oo, ^^ should converge 
to the above function g. 

We are unable to treat the antiferromagnetic case in any generahty. 
The next theorem verifies the above intuitive picture for the particular 
interaction J(6) = — 1 + bcos(2np6), where Z? is a nonzero real number and 
;? is a positive integer. This function is antiferromagnetic only for |Z7| < 1, 
but interestingly the same wave structure is vaUd for any b =^0. 

Theorem V.10.2. Given b =/=0 and a positive integer /?, define the interaction 
J(0) = - 1 + bcos(2np6), ^ G 0 . For each P > 2/\b\ the equation 

(5.80) y = cos(2np6) tanh[jSfey cos 2np6']d6 
0 
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has a unique positive solution y = y(P,b,p). Define the function 

(5.81) gp{e) = tanh[pbycos(2npe)'], 

and for each point X and nonempty interval A in 0 , let ^^(A;/l) denote the 
average |A|"^ j^^^(0 +/l)^0. Then for any positive integer r, nonempty 
intervals A^, . . . , Â  /« 0 , and function fe^i^^ 

lira ( / I 
"̂ 00 \ \^ n f^ J I n,B 

(5.82) / 
/(O) forO<iS<2/|Z^|, 
[ f(g^(A,;X),...,gp(A,;X))dX for 5̂ > 2/|Z)|. 
J© 

Thus the limiting random field {Y(6);9e&} equals 0 for 0 < P < 2/\b\ and 
equals gp(6 + X)for P > 2/\b\, where X is uniformly distributed in®.^ 

Since for jS > 2/| Z? |, ^̂  is a periodic function with period 1//? and Ip nodes, 
the form of Y{G) validates the island picture of antiferromagnetism presented 
before the theorem. The form of 7(0) for jS > 2/|/7| also represents a con
tinuous symmetry-breaking of the translation invariance of the model. This 
contrasts with the discrete symmetry-breaking in the ferromagnetic case. 

The proofs of Theorems V.10.1 and V.10.2 generalize the large deviation 
analysis of the Curie-Weiss model given in Section IV.4. There are three 
main steps: derive a Gibbs variational formula for the specific Gibbs 
free energy of the circle model; relate this formula to the Hmits in the two 
theorems; determine where the supremum in the Gibbs variational formula 
is attained. Since the proofs of these steps are technical, all details will be 
omitted. Instead, we will motivate the main ideas of the proofs by stressing 
analogies with the Curie-Weiss case. Full details are given in the paper by 
Eisele and ElHs (1983). 

For the Curie-Weiss model we wrote the Hamiltonian //„,;,(co) as 
-« j /o(Z" '=i^y^)^ - nh(Yj=iCOj/n), then expressed the partition function 
as 

Z^^O :nj,h)=! ,xp^n(^iP/,(^d^^ n„PJdco). 

Level-1 large deviations for the distributions of ^"=1 cOj/n gave the variational 
formula for the specific Gibbs free energy: 

-pil/^'^(P,h) = lim i logZ^'^(n,p,h) = sup{i^/oZ^ + phz - I^'\z)}, 

where 

I^'Kz) = ^ l o g ( l - z) + ^ l o g ( l + z) for \z\ < 1 

and I^^Kz) = 00 for \z\ > 1 [see Remark IV.4.2]. 

*AsAi{e},gp(A;X)-^gp(e + X). 
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The specific Gibbs free energy (/̂ (j8) of the circle model is defined by the 
Hmit 

-mP) = ^rn hog Z(nJl 

where Z{n,P) equals j'Q^exp[ —jS^„(a;)]7c„P^(Ja;). The Hamiltonian //„ is 
defined in (5.74). We seek a stochastic process which does for the circle 
model what the sum Yj"i=i^jl^ ^^^ ^^^ ^^^ Curie-Weiss model. Let ^ be 
the space of measurable functions ^ on IR which are of period 1 and which 
satisfy — 1 < essinf^ < ess sup ̂  < 1. ^ is a subspace of the real Hilbert 
space L^(0). Denote by <-,-> the inner product of L^(&). We say that a 
sequence {g„;n = 1,2, ...} in ^converges to an element ^ in ^ if <^„,/> -> 
<^,/> for e a c h / G L ^ ( 0 ) . With this topology, S' is metrizable as a compact 
metric space. For ge^, define 

(5.83) F(g) = - i f { J(e - v)g(e)g(v)dedv. 
JeJe 

F is a bounded continuous functional on ^ . The following facts (proofs 
omitted) allow one to derive a variational formula for the circle model free 
energy. 

(a) There exists a stochastic process ^„(co, 0), « = 1, 2, . . . , co6Q„, 6e&, 
taking values in ^ such that sup^^^^ |^«(<^) — ^F{^nip^^ '))\ = o{n) as « -> 

(b) For A a Borel subset of 3C, define the distribution 

e„{^} = 7r„P,{coGQ„:4(co,0G^}. 

Then the sequence {Qn\n = 1,2, . . .} has a large deviation property with 
a„ = n and entropy function 

(5.84) 1(g) = mg{6))dQ. P 
© 

Fact (a) and the comparison lemma, Lemma n.7.4, imply that the functions 

Z(«,^) = exp[-i8i/„(co)]7r„P/rfco), 
fin 

Z ( « , j 8 ) = [ txvi-npF{Uo^.')^TinPM^) 

have the same leading order asymptotic behavior as n -• oo. Because of the 
large deviation property of {g„}, we may apply Varadhan's theorem, 
Theorem ILT.l, to evaluate 

-iSiA(iS) = lim - log Z(«,iS) = lim -logZ(«,jS) 

(5.85) 

= l im- log tx^i-npFigmnidg). 
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The following theorem states the Gibbs variational formula for the circle 
model. 

Theorem V.10.3. The specific Gibbs free energy ^{P) for the circle model is 
given by 

(5.86) -mP) = sup {-mg) - lig)}-
gear 

If in (5.86) the functions g are restricted to constants ZG [— 1,1], then we 
obtain the Curie-Weiss lower bound* 

-mP) > sup { - m ^ ) - lig)] = sup {i/3/oZ^ - I'/\z)} 
(5.87) ^-' ^ e [ - l , l ] 

= -#^^(/o;i?,0). 

Theorem V. 10.4(a) below shows that for / > 0 the supremum in (5.86) is 
attained only at constant functions g. Hence in this case \l/(p) equals 
iA^^(/o;iS,o). 

We now relate the Gibbs variational formula (5.86) to the Umits in 
Theorems V.10.1 and V.10.2. Again the key idea can be seen in our analysis 
of the Curie-Weiss model. For fe^(U), the heuristic relation (4.13) states 
that 

(5.88) ( / ' ^' - 1 ) - /(z)exp[-m^,^(z)]rfz-p , 
'^/r^,p,h JR exp[-m^,ft(z)](iz 

Ju 

where /^,, = -(iP/oz' + phz) + I^'\z); -i?iA^^(/o;i?,/i) equals 
^^Pz€R{  — ip,h(z)} ^^ —^^fzeRip,h(z)' Theorem 11.7.2(b) showed that the 
Hmit of if(SJn)y^^^h is determined by the points z at which the infimum 
of ip^h(z) is attained. The hmit is given in Theorem IV.4.1(a). 

For the circle model, we now look for an expression analogous to 
(5.88). Let A be a nonempty interval in 0 and define the function G^(6) = 
\A\~^XA(S)' A key observation (proof omitted) is that for any integer r, 
nonempty intervals A^, . . . , Â  and function fe^(W), the quantity 
</(S„(Ai)//7, . . . , S„(Ar)/n)y„p has the same hmit as « -^ oo as the quantity 

[ f«G^,,L(co.')>,... ,<G^ , ,4K-)»exp[ -«m4(co ,0 ) ]7 r„P , ( Ja ; ) 

(5.89) f exp[-/2m^„(co,))]7r„P,(Jco) 

This ratio can be expressed in terms of the distribution Q„(dg) of i„(co, •)• 
Since the distributions {Q„} have a deviation property with entropy function 

* Inequality (5.87) is analogous to the lower bound in Theorem V.9.2. 
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I{g), heuristically we may write Qn(dg) as Qxp( — nl(g))dg and the ratio in 
(5.89) as 

f«GA,,dy, " ' AGA^,g})Qxpl-nip(g)]dg. 1 

Qxpl-mp(g)]dg 

where ip(g) = PF{g) + I{g). This is the analog of the Curie-Weiss expression 
in (5.88). 

We have remarked that {f(S^(AJ/n, . . . , *S„(A )̂/«>„^ and the ratio in 
(5.89) have the same hmits as « -> oo. According to Theorem 11.7.2(b), the 
latter Umit is determined by the functions ^ in ^ at which —ip(g) attains its 
supremum. The next theorem lists the maximizing functions g for the inter
actions in Theorems V.10.1 and V.10.2. The limits in these theorems are 
direct consequences (proof omitted). 

Theorem V.10.4. Let J be a continuous symmetric function of period 1 on U. 
For each P > 0, let ^^ denote the set of functions g in dC for which —PF(g) — 
1(g) equals sup^^^ { — PF{g) — 1(g)}. Then the following conclusions hold. 

(a) ^p is nonempty. Any element in ̂ ^ equals a.s. a solution of the nonlinear 
integral equation'^ 

(5.90) m'(g(e)) = li\ J{d-y)g{v)dv. 

(b) Suppose that J is positive and set /Q = JQj(6)d9. Then 

{0} forO<P<pr = /o\ 

{m(p)l,-mim} forli>Pf 
(5.91) . , - , , _ _ . , _ , . , . _ ^ ,ew 

where m(P) is the Curie-Weiss spontaneous magnetization m^^(^o ? î , +) . 
(c) Suppose that J(6) = — 1 + bcos(2np6), b ^ 0, p > I an integer. Then 

(5 92) ^ = P for0<p<2/\b\, 
' • ^ ' \{g,i-+ ^yjee} forP<2/\b\, 

where gp is defined by (5.80)-(5.81). 

It is not hard to check the conclusions of parts (b) and (c) of Theorem 
V.10.4 in the limits P-^0^ and p^oo. First take /? small. Then in the 
Gibbs variational formula the entropy term dominates, and sup^g^{ —/(^)} 
= —infg^^^Qll^Kg(9))d9 is attained at the unique function g = 0. This is 
consistent with the first lines of (5.91) and (5.92). For large ^ > 0 the energy 
term dominates. The functions at which —Fattains its supremum, or Fi ts 
infimum, depend on the form of / . For J > 0, F attains its infimum at the 
constant functions g = 1 and g = —\. This is consistent with the second 

* A.s. denotes almost surely with respect to Lebesgue measure on 0. Equation (5.90) is the 
analog of the Curie-Weiss equation (4.14). 
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line of (5.91) since nF^{^Q\P,H) converges to 1 as jS-^ oo. On the other 
hand, for J{S) = — 1 + bcos(27ip9), F attains its infimum at the function 
g{0) = sgn(cos(27c/7^)) (g(9) = 0 when cos(2np6) = 0) and at the translates 
{g(6 + A);/ie0} of this function. This is consistent with the second line 
of (5.92) since 0^(6) -^ g(9) as jS -> oo. 

We have now completed our discussion of the circle model. The study 
of critical phenomena for the model is an interesting open problem. 

V. 11. A Postscript on Magnetic Models 

The probabilistic models of magnetism which were analyzed in Chapters 
IV and V span a range of difficulty and exhibit a number of different phe
nomena. Three models were considered. The simplest is the Curie-Weiss 
model, which studies spin random variables on the subsets A = {1, . . . ,^} 
of Z. The interaction strength between each pair of spins is equal (pro
portional to n~^), and thus the model has no geometry. Of intermediate 
difficulty is the circle model, which studies spin random variables on the 
subsets A„ = {9:9 =j/nj' = 1, . . . , « } of [0,1]. It replaces the Curie-Weiss 
interaction by the interaction n~^J(i/n —j/n), where / is a continuous sym
metric function of period 1 on U. The most compHcated of the models are 
the ferromagnetic models on Z^. They study spin random variables on the 
symmetric hypercubes A of Z^ and include, as a special case, the Ising model. 
The interaction strength between each pair of spins /, j depends only on the 
vector / —j\ not on the subset A. 

Large deviation techniques allowed us to analyze the Curie-Weiss model 
and the circle model. For the Curie-Weiss model, this approach showed that 
spontaneous magnetization occurs at all P > jSĵ ^ = /o~^- It also showed 
that the law of large numbers for the spin is vahd for j5 > 0, /z ̂  0 and 
0 < jg < j8,cw, h = 0 and that the law of large numbers fails for j8 > i?,^^, 
h = 0. Finally, it suggested the correct form for the block spin scahng hmit 
at the critical point. Large deviations showed that the asymptotic behavior 
of the circle model depends strongly on the choice of interaction / . For 
/ > 0 this behavior coincides with that of the Curie-Weiss model while for 
a specific / with variable sign the model is described asymptotically by 
random waves. 

In analyzing ferromagnetic models on Z^, we used large deviations to 
prove exponential convergence properties of Gibbs states and to derive 
the Gibbs variational formula for Z) = 1. Using convexity and moment 
inequahties, we found that the phase transitions associated with these models 
exist on two levels: spontaneous magnetization on level-1 and nonuniqueness 
of infinite-volume Gibbs states on level-3. The level-1 phase transition 
represents a sensitivity of the specific magnetization m(pji) to the limit 
h-^0^ versus h-^0~. For each model there exists a number ^6^6(0,00] 
such that for p > jS„ m(P, + ) = lim;,_o+ m(P,h) > 0 > m(l], - ) = 
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Table V.4. Gibbs Variational Formulas 

Model 

Curie-Weiss 

Circle 

Ferromagnetic 
onZ^ 

Formula 

-pily(P,h)= sup { - M / ^ ; ^ ) - / ^ ' ^ ( ^ ) } 

Physical significance of points 
at which supremum is attained 

Value of specific magnetization 

Realization of hmiting 
random field {7(0); 0 G 0 } 

Translation invariant 
infinite-volume Gibbs state 

linifj^Q- m(P,h). The level-3 phase transition represents a sensitivity of the 
infinite-volume Gibbs states to the choice of plus versus minus external 
condition. For P > Pc ^^d h = 0, two distinct infinite-volume Gibbs states 
P^ 0,+ ^iid Pp,o,- exist. Since the mean of the one-dimensional marginal 
of Py5,o,+ is m(P, + ) , spontaneous magnetization is a contraction of the 
level-3 phase transition down to level-1. Among the most interesting prob
lems discussed were critical phenomena of ferromagnetic models. These 
include the form of block spin scaling limits and the relation among these 
Hmits, critical exponents, mean field theory, and dimensionahty. The Curie-
Weiss model plays a central role here. It gives universal bounds on the specific 
magnetization and the critical inverse temperature for ferromagnetic models 
on Z^, and the critical exponents of these models are beheved to coincide 
with their mean field/Curie-Weiss values for dimension D > 4. 

A common theme shared by the three models analyzed in Chapters IV 
and V is the Gibbs variational formula. For each model, this formula 
expresses the specific Gibbs free energy as the supremum, over some complete 
separable metric space, of j8 times an energy functional minus an entropy 
functional. Table V.4 lists the Gibbs variational formulas and the physical 
significance of the points at which the respective suprema are attained. The 
choice of metric space ([R, function space ^ , space of measures J^^Q)) 
reflects the complexity of the model. The Gibbs variational formulas make 
exphcit the energy-entropy competition underlying the phase transitions 
which we studied. For each model, the Gibbs variational formula was 
explicitly solved in the limits P ̂ 0^ (where entropy dominates) and j^ -> oo 
(where energy dominates). 

Chapters IV and V have treated a number of topics in an area of mathe
matical physics which is currently under very active study. The notes and 
problems in the next two sections discuss some other developments. 

V.12. Notes 

1 (page 142). The moment inequalities presented in Section V.3 are valid 
for ferromagnetic models with other single-site distributions besides p = 
id, + i^_i [Problems V.13.4 and V.13.7]. The GKS-1 and GKS-2 inequal
ities extend to models with many-body interactions [Problem V.13.5]. For 
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generalizations of the FKG inequality, see Battle and Rosen (1980), Newman 
(1980, 1984), Eaton (1982), Graham (1983), and the references Hsted in these 
papers. Other moment inequahties have been proved by many people, 
including Griffiths (1967c, 1969), Ginibre (1970, 1972), Lebowitz (1974), 
Newman (1975b, 1975c), Simon (1980a), Lieb (1980), Aizenman (1982), 
Brydges, Frohlich, and Spencer (1982), and Brydges, Frohlich, and Sokal 
(1983). Monroe and Pearce (1979) is a review of moment inequalities for 
vector-spin systems. 

2 (page 152) Yang and Lee (1952) proposed a theory of phase transitions 
based on the location of the zeroes of the partition function Z(A, P, h) as 
a function of complex h, Lee and Yang (1952) showed that for the ferro
magnetic models in Section V.2 all the zeroes lie on the imaginary /z-axis. 
It follows from theorems of Vitali and Hurwitz that since the interaction is 
summable, for P > Q \j/{P,h) is an analytic function of h for Re/z ^ 0. 
Theorem Y.4.4 follows. For discussions and generalizations, see Ruelle (1969, 
Section 5.1), Griffiths (1972, Section IV), Newman (1974, 1975a, 1976b), 
Simon (1974, Section IX.3), Dunlop (1977), Glimm and Jaffe (1981, Sections 
4.5 and 4.6), and Lieb and Sokal (1981). Lebowitz and Penrose (1968) prove 
other analyticity properties of (/̂ (j8, h). 

3 (page 153). The critical inverse temperature for the Ising model on Z^ 
was first located by Kramers and Wannier (1941) by a duahty argument. 
Onsager's formula (5.18) for m(j8, -h) was also derived by Yang (1952) and 
by Montroll, Potts, and Ward (1963) using heuristically equivalent de
finitions of spontaneous magnetization. The values of jŜ  and m(^, + ) given 
in (5.18) were estabhshed rigorously by Lebowitz (1972) and Benettin et al. 
(1973), respectively. Also see Abraham and Martin-Lof (1973). McCoy and 
Wu (1973) treat the Ising model on Z^ in great detail. Baxter (1982) discusses 
other exactly solved models in statistical mechanics. 

4 (page 154). The argument of Peierls (1936) was not rigorous. Rigorous 
versions were given independently by Griffiths (1964) and Dobrushin (1965). 
For proving phase transitions in systems with continuous symmetry, in
frared bounds (Fourier methods) are useful [Frohhch, Simon, and Spencer 
(1976), Frohlich, Israel, Lieb, and Simon (1978)]. For treatments of phase 
transitions in spin systems, see the references Usted in Note 2a of Chapter lY 
together with Frohlich (1978, 1980), Lieb (1978), Frohlich and Spencer 
(1982b), and Sinai (1982). 

5 (page 163). Newman (1980) proves a central limit theorem for the 
spins per site over finitely many disjoint hypercubes in Z^. He shows con
vergence to independent Gaussians as the hypercubes tend to infinity. 
Theorem Y.7.2(a) is a special case. Newman (1983) is a further generaliza
tion. lagolnitzer and Souillard (1979) prove a central limit theorem for the 
spin per site as an application of the Lee-Yang theorem. Also see Martin-Lof 
(1973). Martin-Lof (1979, Section 3.5) presents a heuristic approach to the 
central limit theorem based on large deviations. See Newman (1980) for a 
central limit theorem with respect to P ,̂o,+ ^^d P^,o,- for P > Pc-
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6 (page 169). A proof of Theorem V.7.6(a) based on Griffiths (1967c) is 
sketched in Lebowitz (1975). There is a large Hterature on decay of correla
tions for spin systems. For example, see Penrose and Lebowitz (1974), 
lagolnitzer and Souillard (1977), Gross (1979), and Kiinsch (1982). 

7 (page 170). A somewhat different scaUng limit is studied for the Ising 
model on Z^ by Palmer and Tracy (1981). Their work and the work of other 
authors listed in the references of their paper reveal deep connections among 
the Ising model on 1}, relativistic quantum field theory, and differential 
equations. 

8 (page 171). Let / be a finite-range ferromagnetic interaction on iP, 
D>2, for which the critical inverse temperature P^ is finite. Define / Q = 
Yakez^Jik). According to Theorem V.7.6(a), there exists a number P^e 
l/o'Jc'] such that for p>0, h^O and 0<P<P^, h = 0, {Y^; 7,>^,, 
decays exponentially as ||^|| ^ oo. We assume that PQ is the largest number 
with this property. Let us relate PQ to other quantities of interest. Define the 
correlation length ^{P,h) by the formula 

-——-= - l imsup- - - log<7o ; Y^yp^f,. 

Theorem V.7.6 implies that ^(jS, h) is finite for P > 0, h =1= 0 and 0 < P < PQ, 
h = 0 and that PQ is characterized by the formula 

Po = snp{p€(OJ,-]:ap,0)<co}. 

According to Simon (1980a), PQ equals the number 

p, = sup{Pe(OJ,-]:x(P,0)<co}, 

where xiP.h) is the specific magnetic susceptibihty. Property (c) of Defini
tion V.8.1 of a normal critical point requires that P^, or equivalently PQ, 
equal P^. 

9 (page 172). Surveys of critical phenomena and the renormaHzation 
group are given in Fisher (1965, 1967b, 1974, 1983), Stanley (1971, 1985), 
Wilson (1974, 1979, 1983), Wilson and Kogut (1974), Wegner (1975), Ma 
(1976), Wallace and Zia (1978), and Lang (1981). Jona-Lasinio (1975) and 
Cassandro and Jona-Lasinio (1978) discuss connections between the re-
normalization group and limit theorems in probabihty. Large deviations 
and the renormalization group are discussed by Jona-Lasinio (1983). Also 
see Collet and Eckmann (1978), Dobrushin (1980), Newman (1981a), 
Aizenman (1983), De Coninck (1984), and the references Usted in these 
works. 

10 (page 178). If k = {m,n)eZ^, then define /(m,«) = <7o; J;>^„o-
Suppose that m >n > 0. Inequalities (10) and (11) in Messager and Miracle-
Sole (1977) yield 

^fm -\-n—lm-{-n-l\ ^. x ̂  /•/ x -r . • i i 
/ ^ ? ;; > jv^^n) >jv^,^) um -\- nis odd, 
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I YYi -\- Yl — 2 YYl -\- Yl — 2 \ 
/ I , >firn,n) >f(m,m) if m -\- nis even. 

By symmetry and by the asymptotic relation (5.50), it follows that for any 
(m,n)eZ^ f(m,n) is bounded above and below by const(V^^ + n^)'^'"^ as 
-sjm^ -\- n^ ^ CO. Hence rj equals 1/4. 

11 (page 178). One can show that S equals 15 by combining several 
inequahties for critical exponents given in Griffiths (1972, page 102). This 
was pointed out to me by M. E. Fisher and R. B. Griffiths; also see Abraham 
(1978, page 352). Inequahty 2 together with the known values of the critical 
exponents a' and j8 (0 and 1/8, respectively) yields ^ > 15. Inequahty 9 
together with the known values of the critical exponents a and y (0 and 7/4, 
respectively) yields S^ = S < 15. However, the derivations of the critical 
exponent inequalities involve a number of "tacit" assumptions which though 
extremely reasonable have not all been verified (see page 103 of Griffiths 
(1972)). 

12 (page 185). The Kac Umit for continuous systems of particles was 
proved by Lebowitz and Penrose (1966). Hemmer and Lebowitz (1976) is 
a review of the Kac hmit and related results. 

13 (page 189). The Simon and Griffiths (1973) proof of Theorem V.9.5 is 
closely related to Khinchin's classical result on large deviations for sums of 
independent Bernoulh random variables (1929). Dunlop and Newman (1975) 
generalize Theorem V.9.5 to vector-spin models using a multidimensional 
local limit theorem for large deviations due to Richter (1958). ElUs and 
Newman (1978b) prove Theorems V.9.4 and V.9.5 for other single-site distri
butions p on IR. See Ellis and Newman (1978a, 1978d), Jeon (1983), Ellis, 
Newman, and Rosen (1980), and Chaganty and Sethuraman (1982) for related 
results. Dawson (1983) studies critical dynamics of Curie-Weiss models. 

14 (page 190). Messer and Spohn (1982) and Kusuoka and Tamura (1984) 
discuss models related to the circle model. 

15 (page 193). Antiferromagnets are discussed in Griffiths (1972, Section 
V.C.I). 

16 (page 195). In order to simpHfy the discussion, the exposition on page 
195 avoids an important point. The process (̂ „(co, 0) is actually an array 
^p,„(o^, 0), /?= 1, 2, . . . , « = 1, 2, . . . . We have 

sup |i/„(co) — nF(ip^„(co, 0)1 = o(n) as « -^ oo, /? -* oo, 

lim sup lim sup - log 7r„Pp {(̂ p „ e ^ } < — inf 1(g) for each closed set K in ^ , 
p^oo n-*oo n ' geK 

liminf lim inf-log 7r„Pp{(Jp„ G G } > — inf 1(g) for each open set G in ^. 

A straightforward extension of Varadhan's theorem yields Theorem V.10.3: 
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-pilj(p) = lim-logZ(n,p) 

= lim lim -log exp[-^/?i^((^ (co, '))']%^P{dw) 

= svip{-mg)-Iig)}. 

Similar adjustments must be made on pages 196-197. 

V.13. Problems 

V.13.1. (a) Consider a model on Z^ whose interaction function / is iden
tically 0. Show that the specific magnetization m(P,h) equals tanh^/z for all 
P>0,h real. 

(b) Let / be a summable ferromagnetic interaction on Z^ and m(P, h) the 
corresponding specific magnetization. Prove that m{^,h) > tanh^/z for all 
i? > 0, h>0. This implies that m(p,h) > 0 for jS > 0, /z > 0; for )8 > 0, 
m(P, /z) ̂  1 as /? -» 00; and for h> 0, m(P, /?) ^ 1 as jS ^ oo. 

(c) Assume that there exist two linearly independent unit vectors i and j 
in Z^ such that /(/) and J(j) are positive. Then j8̂  is finite by Theorem 
V.5.1(b). Prove that m(jS,+)-^l and m(P,-)-^-l as ^S^oo. [Hint: 
(5.23)]. 

(d) For P > 0, h 4^0 and 0 < jS < jŜ , // = 0, there exists a unique infinite-
volume Gibbs state Pp^^ [Theorem V.6.1]. Prove the following. 

(i) For any h real, P^ ,̂ => P^ as ^ -> 0^. \_Hint: Use the FKG inequaUty 
to compare \afBdPp,h with jn/B^^A,/?,^,+ and JQ/B^PA,^,;,,- .] 

(ii) For /z > 0 P^^ =>P^̂  as ^ ^ oo and for /? < 0 P^ ;, =^^5_i as jS ^ oo. 
\_Hmt: For /z > 0, show that as ^ -^ oo P^^{COGQ: cOj- = 1} ^ 1 for 
each site zeZ^ and thus that P^ ;j{Z} ^ P^ {Z} for each cylinder 
set I . ] 

(iii) If the assumption of part (c) holds (so that P^ is finite), then P^ Q, + =̂  
Ps^ andP^^o,- =>P^_^ as jS-> oo. 

V.13.2. Supply the symmetry argument which shows that the integral (5.6) 
equals 0 unless all the integers m̂- are even. This will complete the proof of 
Lemma V.3.1(b). 

V.13.3. Supply the symmetry argument which shows that the integral (5.9) 
equals 0 unless the integers k, /, m, n all have the same parity. This will com
plete the proof of Lemma V.3.2. 

For the next four problems, we denote by S' the set of nondegenerate sym
metric probability measures p on [R for which ^^e''''^p(dx) is finite for all 
( T > 0 . 

file:///_Hint
file:///_Hmt
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V.13.4. Let A be an arbitrary nonempty finite subset of Z^, {J^\ iJeK] a set 
of non-negative real numbers, and {/ẑ ; /e A} a set of real numbers. For peS, 
define the probability measure on ^{U^) 

(5.93) PA,P(^CO) = exp[-i/^(co)]7r^P,(rfa;) • ^ , 
Z 

where H^(co) = —lY.ijeA'^ij^i^j ~ ZieA^i^^i ^^d Z is a normalization. The 
measure p is called the single-site distribution. Prove the GKS-1, GKS-2, and 
Percus inequahties for the measure P^.p-

V.13.5 [Griffiths (1967a, 1967b), Kelly and Sherman (1968)]. This problem 
concerns many-body interactions [see Section C.3]. Let A be an arbitrary 
nonempty finite subset of Z^ and {J(A)} a set of non-negative real numbers 
defined for each nonempty subset A of A. For pes', define the probability 
measure on ^(U^) 

PAjdco) = exp[-i/^(co)]7r^P,(Jco) • - , 
Z 

where Hj^(co) = —YJA<=A'^(A)(OA ^^^ Z is a normalization. Prove the GKS-1 
and GKS-2 inequahties for the measure P^ p. 

V.13.6. (a) For peS define the free energy function Cp(t) = logJ[]5exp(rx) 
p(dx). Prove that Cp(t) is finite for all real t and that c^(0 = o(t^) as / -^ oo. 

(b) [Simon and Griffiths (1973)] The function -p-^c^dih) defines the 
specific Gibbs free energy in a single-site system with interaction /(O) = 0, 
inverse temperature P > 0, external field h, and single-site distribution p. 
The derivative c'^iPh) gives the specific magnetization.* For 0 < A < 1, 
define p^ = XSQ + i ( l - X)(S^ + (5_i). Prove that for f < A < 1, c;\(ph) is 
not non-positive for all /z > 0. Conclude that the (one-site) GHS inequahty 
is not valid for p;^. 

V.13.7. For peS, let P^ ^ be the probability measure on ^(U^) defined in 
(5.93). Let GHS denote the set of measures peS such that the GHS inequahty 
is vahd for the measure Pj^ ^ for all nonempty finite subsets A in Z^. In 
Section V.3, we showed that p = i(5i + (̂5_i belongs to GHS. GHS also 
contains the following measures: (k + 1)~^ ^5=0 4-2j for k a positive integer 
[Griffiths (1969)]; the measures p^ = Xd^ + ^(1 - 2)(d, + 5_,) for 0 < A < f; 
and all probabihty measures of the form const • exp(— V{x))dx, where V(x) 
is even and C \ V{x) ^ 00 as |x| -^ 00, and V\x) is convex on [0, 00) [Elhs, 
Monroe, and Newman (1976)]. By Problem V.13.6(b), p;̂  does not belong to 
GHS for f < A < 1. The GHS and related inequalities are discussed further 
in Ellis and Newman (1976, 1978c). 

(a) Prove that if peGHS, then Cp(t) < 0 for alW > 0 and c^(0 < ^ajt^ 

*By Theorem VII.5.1, Cp{t) is real analytic and Cp(t) = l;i^xe^''p(dx)l^^e^''p{cix). 
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for all t real, where o^ = ^^x^p(dx). Measures peS" satisfying Cp(t) < ^(Jp^ 
for all t real are called sub-Gaussian [cf. (5.68)]. 

(b) Let <-> denote expectation with respect to the measure P^ ^ in (5.93). 
For any peS and sites i,j\ k, I in A, prove that 

dhidhjdhj, \M{hi}=o 

Prove that if p e G H S (e.g., p = ^S^ + i<5_i), then (5.94) is non-positive 
[Lebowitz (1974)]. [Hint: d^^coiy/dhjdhj, = 0 when all {hi} equal 0.] 

V.13.8. Let / be a summable ferromagnetic interaction on Z^ and set 
/ o = Z/cez^ A^)- Let jŜ  be the corresponding critical inverse temperature. 

(a) By modifying Problem IV.9.7, prove that p^ > / o ~ \ [Hint: Redefine 

A-] 
(b) Assume that there exist two Hnearly independent vectors / andy in Z^, 

not necessarily unit vectors, such that /(/) and J(j) are positive. By modifying 
the proof of Theorem V.5.1(b), prove that P^ is finite. [Hint: Consider a 
"nearest-neighbor" model on the sublattice A = {ai + bj: a.beZ}.'] 

(c) Let m^iP, + ) and P^ ^ denote the spontaneous magnetization and the 
critical inverse temperature, respectively, for the Ising model on Z^, D >2. 
Prove that 

m^iP, + ) < m^(P, + ) < • • • < mj,(P, + ) , 

where / is the nearest neighbor interaction strength. 

V.13.9. Let / b e a summable ferromagnetic interaction on Z^. Let PLxN,p,h,+ 
be the corresponding finite-volume Gibbs state on a rectangle A in Z^ with 
side lengths L and N. Let ^ be a nonempty finite subset of A and define 
(^A = ncoe^^rPi*ovethat 

<(^Ayp,h,+ = l i n i <COAyNxN,p,h,+ = l i m l i m <COA>LxN,p,h,+ 
N-^oo L->oo iV->oo 

- lim lim<a;^>^xiv,^,;z,+ -

V.13.10. Let / b e a summable ferromagnetic interaction on Z^. In Theorems 
IV.6.5(a) and V.6.1 (a) we stated the existence of infinite-volume Gibbs states 
Pp^h,+ î̂ d Pp^h,-' Pi'ove that these measures are nondegenerate and are not 
product measures. [Hint: Consider {YQ; Yj^ypj^.^ and ( F Q ; Y}^}pj^_.'] 

V.13.11. Let / be a summable ferromagnetic interaction on Z^ and PA,p,h,f 
the corresponding finite-volume Gibbs state on a symmetric hypercube A 
with the free external condition. 

(a) Prove that for any p > 0 and h real, Pp,h,f = ^-^^^AtzDPA,p,h,f exists. 
[Hint: GKS-2 inequality.] 
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(b) Prove that for jS > 0, /z ̂  0 and 0 < jS < jS„ /? = 0, P^^^j equals 
^ ,̂ft,+ = Pp,K- = Pp,h' IHint: FKG inequality.] 

V.13.12 [Sokal (1982a)]. Let / be an exponentially decaying ferromagnetic 
interaction on Z^. Set / o = Z/cez^«^(^)- This problem proves that for 
0 < j8 < /o"^ and /z = 0, the correlations <}^y;>^o decay exponentially 
[Theorem V.7.6(a)]. We consider a finite-volume Gibbs state on a symmetric 
hypercube A with P > 0, h = 0, interaction JiJ(k) (A > 0), and the free 
external condition. Denote by <->A,A expectation with respect to this 
measure. 

(a) For any sites i,j in A, prove that 

(5 95) f̂c.isA 

<|8 Z <YiY,y^^,Jik~l)iY,Yj)^^,. 
k,leA 

[i//«^-Problem V. 13.7(b).] 
(b) U F = {/(/); /G A} is an element of (R ,̂ then define operators /^ and 

F^ on R^ by ( 4 / ) ( 0 =f(i) and ( F A / ) ( / ) = X.eA^O* - 7 ) / 0 ) , /e A. For all 
sufficiently small A > 0 the inverse operator (/^ — /l^i^^) ^ exists. By Szarski 
(1965, Theorem 9.3, page 25) the solution {Yjl^Xj^ of the differential in-
equaUty (5.95) is bounded above by the solution of the corresponding dif
ferential equality with the same initial condition at >! = 0. Using this, show 
that for all sufficiently small 2 > 0 < y; Y/)^^;, < ( 4 - l^F^^K The quantity 
(/^ — ^PF^)7j^ is defined by the formula 

((4 - w^rvm =1(IA- WA)7MJI /e u\ 

(c) For s> 0, let 4 denote the Banach space of functions/e IR for which 
\\f\\e = Zjez^| /(7)k ' ' ' ' is finite (\j\ = \j\\+ ... + \JD\)' Since all norms on 
Z^ are equivalent, we may assume that 0 < J(k) < c^e''^^^^ for all keZ^. 
Define an operator F on 4 by (Ff)(i) = Y,jezDJ(i —j)f(J). Prove that for 
any S > 0 there exists a sufficiently small e > 0 such that 

| | F / | | , < ( / o +5)11/11, foral l /G4. 

Conclude that if 0 < jS < (/o + (5)~\ then (/ - PF)~^ exists and is a bounded 
operator from 4 to /,. [Hint: Consider the Neumann series of (/ — PF)'^.'] 

(d) Show that if 0 < j8 < /Q^, then there exist e > 0 and a> 0 such that 
for any symmetric hypercube A 

<}̂ }̂ ->A,A=i < ( 4 - pF^);j' < ae-^\'-\ iJeA. 

Complete the proof of Theorem V.7.6(a). [Hint: Problem V.13.11(b).] 

V.13.13. (a) Let / be a non-negative, nonincreasing, continuous radial 
function on R^, De{l,2, ...}. Prove that there exist constants c^ > C2> 0 
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such that for all sufficiently large 7̂  > 0 

A\\x\)d^x < c, C2 Z AM) ^ 
{keZ^:\\k\\<R} \x\\<R 

1 /my 
{ksZJ^:\\k\\<R} 

[Hint: Divide the sphere {||x|| < R} into shells {(k - l)a < \\x\\ < ka] for 
suitable a\ similarly for { ^ G Z ^ : ||yt|| < R].'\ 

(b) In Lemma V.8.3(c), prove G{R) - R^~\ 

V.13.14 [Eisele and ElHs (1983, Appendix B)]. Let p be a probability 
measure in the set GHS [see Problem V.13.7]. Define the Curie-Weiss 
probability measure on ^(IR") 

(5.96) P^l,{dw) = tx^U + ^E CD: 

J=l J 

n„PJdco)' 1 

z'^'^inj^hy 
where 

Z^^{n,p,h) = 
w V l^'i^"' V7 = l 

hi CD: 

J = l 

n„Pp{dco). 

(a) Define lA '̂̂ CjS,/?) = -T'\im„^^ n''logZ'''^(n J,h) and let I^'^ be 
the level-1 entropy function of p. Prove that 

-Pxlj^^'^iP^h) = sup {i^z^ + l^hz - I^p'\z)} < log exp(iiSx^ + phx)p(dx). 

(b) Let Sp be the support of p and conv S^ the smallest closed interval 
containing Sp. /̂ ^ (̂z) is differentiable for zGint(conv5'p) [Theorem 
Vin.3.4(a)]. Show that the supremum in part (a) is attained at some point 
zGint(conv5^) for which jS(z + /?) = (/^^OXz). [Hint: If conv 5^ = l-L,L], 

00 as |z| -^ L [Theorem VIII.3.4(a)]. If conv Sp = L<oo,then(/^^OX^)-
prove using Problem V. 13.6(a) that ĵ8z^ + phz — Il^\z) -^ -oo as|z| ^ oo.] 

(c) For p e GHS, one may show that (/̂ ^ )̂X )̂ is strictly convex for z > 0. 
Using this fact, prove that spontaneous magnetization occurs at all P > 1/(T^, 

where (J^ = ^^x^p(dx). 

V.13.15. This problem generalizes Theorem V.9.4. Let p be a probability 
measure in the set GHS and pick 0 < P < l/a^, where dp = ^j^x^p(dx). 
Prove that with respect to the measures {P^J,o} in (5.96) 

[//mr; Problem V. 13.7(a).] 

where (TK)S) = ( ( 7 : ^ - / ? ) - \ 
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Convexity and Proofs of Large 
Deviation Theorems 



Chapter VI 

Convex Functions and the Legendre-
Fenchel Transform 

VI. 1. Introduction 

The first part of this book illustrated the use of entropy concepts in analyzing 
stochastic and statistical mechanical systems. Convexity was a recurring 
theme. Suppose that p is a probability measure on W^ such that 

c^(0 = log exp<r,x>p(Jx) 

is finite for all / in U^. The function Cp(t), called the free energy function of 
p, is a convex function on U^ [Example VII.1.2]. The Legendre-Fenchel 
transform of c^(/) is given by 

/;^>(z) = s u p { < r , z > - c , ( 0 } , ^eR^. 

According to Theorem II.4.1, Ip^\z) is convex and is the level-1 entropy 
function for i.i.d. random vectors distributed by p. In Chapters IV and V, 
the concavity of the specific Gibbs free energy il/(P,h) and of the specific 
magnetization m{P,h) as functions of real h played an important role in 
analyzing spin systems. 

The present chapter summarizes the theory of convex functions on W^} 
For proofs, we refer to Rockafellar (1970) by page number. This chapter 
will provide background material for those parts of Chapters IV and V 
which depended on convexity arguments. The results will be appHed later 
to derive the large deviation theorems and the properties of entropy func
tions which were stated without proof in the first part of the book. 

VI.2. Basic Definitions 

A subset C of W^ is said to be convex if Ax + (1 — /C}y is in C for every xsC, 
yeC, and 0 < X <\. Let / be an extended real-valued function defined 
on a subset C of R^. We say tha t / i s convex, or convex on C, if C is convex, 
f{x) is finite for at least one xe C,/does not take the value — oo, and 
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(6.1) AXx + (1 - X)y) < Xf{x) + (1 - X)f{y) 

for every x and y in C and 0 < A < 1.* The function/may take the value 
00. In order to make sense of (6.1) when/equals oo, we define 

(6.2) a + o o = o o + a = o o for any — oo < a < oo. 

A convex function/on C can always be extended to a convex function on 
all of W^ by defining/(x) = co for all x^C. Because of this, we need consider 
only convex functions on U^. 

L e t / b e an extended real-valued function on R^, We define the effective 
domain o f / t o be the set 

d o m / = {xeU^\f{x) < oo}. 

I f / i s convex, then d o m / i s clearly a convex subset of IR"̂ . We define the 
epigraph o f / t o be the set 

e p i / = {(x,(x)\xeU\(xeU,a >f{x)]. 

It is not hard to prove that / i s convex if and only if/does not take the value 
— 00 and epi/is a nonempty convex subset of IR"̂"̂^ [Problem VI.7.1]. 

Let / be an extended real-valued function defined on a subset C of W^. 
We say that / i s concave on C if its negative —/is convex on C. Unless other
wise noted, all definitions and theorems concerning convex functions carry 
over to concave functions with little or no change, and we shall not bother 
to restate them. 

A real-valued function/defined on a convex set C is said to be affine on 
Cif 

f^Xx + (1 - X)y) = A/(x) + (1 - X)f(y) 

for every x and yinC and 0 < A < 1. Thus, an affine function on C is both 
convex and concave on C. 

A real-valued function / on a convex set C is said to be strictly convex 
on C if 

(6.3) fiXx + (1 - X)y) < Xfix) + (1 - X)fiy) 

for any two distinct points x and y in C and every 0 < A < l . I f C = d o m / 
then / is said to be strictly convex. For example, the function on U which 
equals 0 for x < 0 and x^ for x > 0 is affine on (— oo, 0] and is strictly convex 
on [0, oo). 

Before studying properties of convex functions, we need several more 
definitions. The Euclidean inner product on IR"̂  is denoted by < — ,—>. A 
subset H of IR"̂  is called a hyperplane if it has the form 

H={xGU^:ix,yy = b}, 

* The definition of convex function coincides with the notion of proper convex function in 
Rockafellar (page 24). 
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where y is a nonzero vector in IR"̂  and Z? is a real number. The vector y is 
called a normal to the hyperplane H. The sets {xeU^\(^x,yy <b] and 
{xG [R"̂ : <x, y> > b] are called the closed half-spaces determined by H. H is 
said to be a vertical hyperplane in U^ if the component y^ of y equals 0. Let C 
be a convex set in W^ and z a point of C which Ues in its boundary. H is said 
to be a supporting hyperplane to C at z if z lies in / / and C lies in one of the 
closed half-spaces determined by H. 

Our study of properties of convex functions begins in the next section. 

VI.3. Properties of Convex Functions 

We first state several results which show that convex functions are well 
behaved over large subsets of their effective domains. Let C be a convex 
set in IR"̂ . The closure of C is denoted by cl C and the interior of C by int C. 
The boundary of C is defined as the set difference cl C\int C and is denoted 
by bd C. The concept of interior can be generalized to the more convenient 
concept of relative interior. It is motivated by the fact that a line segment or 
a triangle embedded in [R̂  has a natural interior of sorts which is not a real 
interior in the sense of the whole space [R .̂ A subset M of U^ is said to be 
affine if 2x + (1 — X)y is in M for every xeM, yeM, and real X. If C is a 
convex set in IR"̂ , then the affine hull of C, aff C, is defined to be the inter
section of all the affine sets which contain C. We define the relative interior 
of C, ri C, as the interior which results when C is regarded as a subset of 
affC. The relative boundary of C, rbdC, is defined as the set difference 
cl C\ri C. C is said to be relatively open if ri C = C. For any nonempty convex 
set C in U^, ri C is nonempty [Rockafellar (page 45)]. 

The first theorem is a basic continuity result. 

Theorem VI.3.1 [Rockafellar (page 82)]. A convex function f on W is contin
uous relative to ri(dom/); i.e., if{x„; n = 1,2, ...} is a sequence in ri(dom/) 
and Xn -^ xGri(dom/), thenf(x„) -^f(x). 

A convex function/need not be continuous up to the relative boundary 
of dom/. For example, the function which equals 0 for — oo < x < 1, 1 for 
X = 1, and 00 for X > 1 is convex but is discontinuous at x = 1. 

In many situations, convex functions / arise which are lower semicon-
tinuous on U^; i.e., if x„ -^ x, then liminf„^oo/(-^n) ^fM- Such a function is 
called a closed convex function on W^. A reason for the term "closed" is that 
an extended real-valued function/on W^ is lower semicontinuous on W^ if and 
only if the epigraph of / i s a closed set in U^'^^ [Problem VI.7.1]. According 
to Theorem VI.3.1, any convex function/is continuous, and thus lower 
semicontinuous, relative to ri(dom/). Hence the property of being closed 
involves only the behavior of/ at the relative boundary of d o m / In fact, it 
translates into a continuity property at the relative boundary. Let j be a point 
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in IR'' and x a point in dom/. Since/is convex, 

limsup/(;; + X(x - y)) < limsup [A/(x) + (1 - A)/(j)] =f{y). 

On the other hand, i f / is closed, then 

\imMf(y-i-l(x-y))>f(y). 

These inequaUties yield the following result. 

Theorem VI.3.2. Let f be a closed convex function on U^, y a point in 
rbd(dom/), and x a point in ri(dom/). Then for each 0 < X < I, the point 
Ax + (1 — /C)y lies in ri(dom/) and 

lim f{Xx^ (I-X)y)=f(y), 

The first assertion is proved in Rockafellar (page 45). The second assertion 
is a consequence of the two displays which appear before the theorem. 

For d = 1 the closed convex functions can be easily characterized. A 
convex function/on IR is closed if and only if it is continuous* at each end-
point of d o m / that is in d o m / and f(x) -^ oo as x approaches any finite 
endpoint not in d o m / For example, the convex function mentioned after 
Theorem VI.3.1 is not closed. 

We next state a basic convergence theorem that has been applied several 
times in Chapters IV and V. 

Theorem VI.3.3 [Rockafellar (page 90)]. Let C be a relatively open convex 
set in U^ and { / ; « = 1 , 2 , . . . } a sequence of finite convex functions on C. 
Suppose that the sequence converges pointwise on a dense subset of C. Then 
the following conclusions hold. 

(a) The limit f(x) = lim„^^ f(x) exists for every xeC and defines a 
finite convex function on C. 

(b) The sequence {/} converges to f uniformly on each compact subset ofC. 

This completes the discussion of continuity properties. Convex functions 
also have many useful differentiabiUty properties. Let us first consider the 
one-dimensional case. I f / i s an extended real-valued function on U and x 
is a point where/ is finite, then we define the right-derivative f^{x) and the 
left-derivative f_{x) by the formulas 

y-;(^) = Hm fiyhJ^, f'_ix) = lim / M z i i M . 
y-^x^ y — X y-^x- y — X 

/ i s differentiable at x if and only if/+(x) =f_{x). Now assume t h a t / i s 
convex. Then the difference quotient {f{y) —f(x))/(y — x) is a monotone 
function of y 3.s y ^ x^ or as j -> x~, and sof+(x) and/ l (x) both exist as 

* Relative to dom/. 
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extended real numbers. The following properties are easy to see: if x is in 
int(dom/), then/+(x) and/1 (x) are both finite; if dom/is a closed bounded 
interval [a, jS], then/+ (a) exists but may equal — oo and / I (j8) exists but may 
equal oc [Rockafellar (pages 214, 228)]. 

We now turn to functions on W^. I f / i s an extended real-valued function 
on U^ and x is a point where/ is finite, then / i s said to be differ entiable at 
X if there exists a vector z with the property that 

/ W = / W + <-̂ >v̂  — •̂ > + <̂ (ll>̂  — 1̂1) as w-^x.* 

Such a z, if it exists, is called the gradient o f / a t x and is denoted by V/(x). 
Clearly, if / is differentiable at x, then the partial derivatives df(x)/dx^, . . . , 
df(x)/dx^ exist and 

If the function/is convex on W^, then this statement has a useful converse. 

Theorem VI.3.4 [Rockafellar (page 244)]. Let f be a convex function on U^ 
such that int(dom/) is nonempty. Then f is differentiable at xGint(dom/) 
if and only if the d partial derivatives df(x)/dxi, . . . , df(x)/dx^ exist at x 
and are finite. 

Given/a convex function on W^, define ^ ( / ) to be the subset of int(dom/) 
where/is differentiable. Then the complement of v4(/) in int(dom/) is a set 
of Lebesgue measure zero and V/is continuous on A(f). l{d= 1, then A{f) 
contains all but at most countably many points of int(dom/) [Rockafellar 
(pages 244-246)]. 

Le t /be a convex function on W^. Then for every x and y in U^ such that 
f(y) is finite and every 0 < /I < 1 

^(/(^) -f(y)) >f(y + ^(x - y)) -f{y\ 

I f / is differentiable at y, then as A -^ 0"̂  

A( /W -f{y)) >fiy + A(x - y)) - f{y) 

^^'^^ = KWy), x-yy + o{X\\x - y\\). 

Dividing both sides of (6.4) by /I > 0 and taking X to 0, we obtain the in
equality 

(6.5) /(x) >f{y) + <V/(^),x - yy for all x e R'̂ . 

The notion of subdifferential extends the derivative concept to points at 
which/is not differentiable. If j is a point in U^, then a vector zeW^'is, called 
a subgradient o f / a t y if 

(6.6) /(x) >f{y) + <z,X - yy for all XGU^. 

*||-|| denotes the Euclidean norm on W. 
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af(y) 

f(y) = 
lyl for lyl < 1 
oo for |>̂  I > 1 

Figure VI. 1. A function/and its subdifferential for f̂ = 1. 

For example, i f / i s differentiable at y, then by (6.5) z = Vf(y) is a sub-
gradient o f / a t y. We define the subdifferential o f / a t y to be the set 

^fiy) = {̂ 6IR"̂ : z is a subgradient o f / a t y}. 

It is easily checked that df(y) is a closed convex set. If df(y) is not empty, 
then/ is said to be subdifferentiable at y. Note tha t / i s not subdifferentiable 
at any point y not in d o m / Indeed, since/(j) = oo, the subgradient in
equality (6.6) cannot be satisfied for x e d o m / b y any vector z. The set of all 
y at which / is subdifferentiable is called the effective domain of df and is 
denoted by dom df. 

Condition (6.6) has a simple geometric interpretation when/is finite at y. 
It says that the graph of the affine function g{x) =f{y) + <z,x — j> is a 
non-vertical supporting hyperplane in U^'^^ to the convex set ep i / at the 
point {yj{y)). 

li d=\ and d o m / i s a closed bounded interval [a ,^ ] , then the sub-
differential is easily determined [see Figure VI. 1]: 

(6.7) df{y) = 

f ( - c o , / ; ( a ) ] 

[ / i ( j ) , / ; ( j ) ] 
l [ / l ( j 6 ) , « ) 

for J = a, 

for a < >̂  < j?, 

for y = p. 

Thus, in general, the mapping;; -^ ^f{y) is multivalued. The set df{y) is empty 
if y < oi or y > p. 

The next theorem relates properties o f /wi th topological properties of 
the subdifferential. The proof for d= \h immediate from (6.7). 

Theorem VI.3.5 [Rockafellar (pages 217, 242)]. Let f be a convex function on 
W^. Then the following conclusions hold. 
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(a) For y not in dom/, df{y) is empty. 
(b) For y in ri(dom/), df{y) is a nonempty, closed, convex set. 
(c) df{y) is a nonempty bounded set if and only ify is in int(dom/). 
(d) / is differ entiable at y if and only iff has a unique subgradient at y. 

If unique, this subgradient is Vf(y). 

Parts (a)-(c) of the theorem show that the effective domain of df dom df 
Ues between ri(dom/) and dom/. For d= I, this is easy to check [see (6.7)]. 

As an appHcation of the concept of subdifferential, we prove Jensen's 
inequality. 

Theorem VI.3.6. Let f be a finite convex function on an open interval A ofU. 
Let X be a random variable on a probability space (Q, ^,P) whose essential 
range'*' is a subset of A. 

(a) IfE{X} is finite, then 

(6.8) fiE{X}) < E{fiX)} < 00. 

(b) Suppose that in addition f is strictly convex on A and E{f{X)} is finite. 
Then equality holds in (6.8) if and only ifX is a constant P-a.s. 

Proof (a) Define p to be the P-distribution of X and let C be the smallest 
closed interval of U containing the support of p. By hypothesis on X,C isa 
subset of A, and so the point <p> = ^^xp(dx) lies in A. For all real x and 
a n y z e a / « p » , 

(6.9) / ( ^ ) > / « p » + ^ ( ^ _ < p » . 

Integrating this inequality with respect to p yields (6.8). 
(b) Z is a constant P-a.s. if and only if p is a unit point measure. If 

p is a unit point measure, then clearly equahty holds in (6.8). Conversely, 
suppose that equality holds in (6.8). According to the proof of part (a), if 
J(R/(X)P(JX) is finite, then for all points y in the support of p and zedf{^py) 

(6.10) / ( j ^ ) = / « P » + z ( j - < P » . 

Any point y in C can be expressed as Xy^ + (1 — )̂>̂ 2? where y^ and ^2 ^^^ 
in the support of p and 0 < >̂  < 1. The convexity of/, (6.9), and (6.10) imply 
that 

/ « p » + z{y - < p » <f{y) < Xf{y,) + (1 - X)f{y,) 

= f«P» + z(y-ipy). 

Thus (6.10) holds for all y in C, and / coincides with an affine function 
on this set. Unless p is a unit point measure (so that C reduces to a point), 
we have a contradiction to the strict convexity o f /on A. u 

*This is the smallest closed set B which satisfies P{XGB} = 1. 
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The main concepts introduced in this section were those of a closed 
convex function and of the subdifferential of a convex function at a point. 
These concepts will be explored further when we consider the Legendre-
Fenchel transform of a convex function on U^. But first, in order to motivate 
the Legendre-Fenchel transform, we look at a simple one-dimensional 
example. 

VI.4. A One-Dimensional Example of the Legendre-
Fenchel Transform. 

Let ^ be a real-valued, increasing, continuous function on IR which satisfies 
^(0) = 0, g(x) -^ — 00 as x -^ — oo, and g(x) -> oo as x ^ oo. Its inverse 
function g~^ is well defined and has the same properties as g. Hence, if we 
define functions 

f(x)={ g(s)ds foTxeU, Piy) = \ g-\t)dt ioxyeU, 
Jo Jo 

(6.11) 

t h e n / a n d / * are both strictly convex on IR [Problem VI.7.3(b)]. Figure 
VI.2 shows the graph of t = g{s). The shaded portions represent/(JC) and 

f*(y). 
A number of results follow from the definitions o f / a n d / * or can be seen 

directly from the figure. Part (a) is known as Young's inequality. 

Theorem VI.4.1. 

(a) xy <f(x) +f'^(y)for all x and y in R. 
(b) xy =f{x) H-/*(j) if and only ify =f(x). 

(c) (/*y = (/o-^ 
(d) r(y) = sup,,^{xy-f(x)}foryeR, 
(e) f(x) = supy ^^{xy-f*(y)}forxeU. 

Part (d) gives an alternate definition off*(y) as sup^g[,5{xĵ  — / W } - We 
call/* the Legendre-Fenchel transform off} If we write/**(A:) for (/*)*(x), 
then part (e) states that /**(x) = / ( x ) ; i.e., performing the Legendre-
Fenchel transform twice gives back the original function. Theorem VL4.1 
is generalized in the next section to functions that do not necessarily have the 
form (6.11) (in fact, to all closed convex functions on IR''). 

As a corollary of Theorem VL4.1, we derive Holder's inequality. 

Corollary VI.4.2. Let (Q, J^, P) be a measure space and let p and q be real 
numbers satisfying p > 1, q> 1, l//?-f- 1/^= 1. Suppose that h and k are 
real-valued, measurable functions on Q and that ||/?||p = {JQ|^|^^^}^^^ ^^^ 
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t = g(s) 

Figure VI.2. The functions/and/* defined in (6.11) J 

(6.12) 

= {\a\k\''dPY'''are finite. Then 

L \hk\dp <\\hi\\ki 

\h\ \^ ( \k\ \^ 
with equality if and only if (TTVIT I = iiTir ^-a.s. 

Proof. The inequaUty is trivial if either \h\^ or ||A:||̂  equals 0, so we assume 
that \h\p and ||^||^ are positive. We need consider only x > 0 and j > 0 in 
(6.11). If ^(x) = x^-\ then/(x) =p-^x^ and/*(;;) = q'^y^ and therefore 

xy <-x^ •\- -y^ with equality iff j^ = x^ ^ 

In particular, 

\Kco)\ \k(co)\ ^ 1 \h(oj)\^ ^ 1 \k{co)\^ 

for all 0)6Q such that h((D) and k{(D) are defined; i.e., for P-almost all OJ. 
Integrating both sides of this inequaUty with respect to P, we find that 

1 

lUI^L 
\hk\dP<-^-=\ 

p q 

\k\ ( \h\ V"^ 
with equahty iffTTT-Tr = (Trnr I ^-a.s. 

Since;? — 1 =p\q, (6.12) follows. D 

^Figure VI.2 is adapted from Figure 15.1 in Roberts and Varberg (1973, page 29). 

file:///hk/dp
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VL5. The Legendre-Fenchel Transform for Convex 
Functions on U"^ 

In the previous section, we considered the Legendre-Fenchel transform/* 
for convex functions/on R which can be written as the integral of another 
function g having special properties. In this case, the formula/** = / i s valid. 
Our aim now is to extend the definition of the Legendre-Fenchel transform to 
convex functions / on IR"̂  while at the same time preserving the property 
/** = / . To do this, we take as the definition of the Legendre-Fenchel 
transform 

(6.13) r(y) = sup {{x^y} - / ( x ) } , ye T>d 

The supremum over IR*̂  may be replaced by the supremum over d o m / 
since/(x) equals oo for x^domf. Formula (6.13) reduces to the formula in 
part (d) of Theorem VI.4.1 when d = I. The function/* in (6.13) is also 
known as the conjugate o f / o r as the conjugate function. F o r / a concave 
function on U^, the definition of the Legendre-Fenchel transform changes to 
P{y) = mf^^^d{ix,yy -f{x)}. 

Example VI.5.1. Let F be a symmetric, positive definite rf x J matrix 
(< Vx, x> > 0 for all nonzero x e U^) and define the function/(x) = ^< Vx, x}. 
/ i s strictly convex by Problem VI.7.4(b). To calculate/*, let V^'^ be the 
unique symmetric, positive definite square root of V. Substituting w = 
V^'^x, we have for j^e IR"̂  

P{y) = sup {<x,j> - i < F x , x > } = sup {<w, V-'^'y} - K^^w}} 

= i<v~'y,yy -1 inf <w- v-"^y,w- v-'i'y} = Kv-'y,yy. 

In this example, b o t h / a n d / * are finite on all of IR"̂ . However, it is not 
hard to find examples of convex functions which are everywhere finite but 
whose Legendre-Fenchel transforms are not [see Theorem VIII.3.3]. A 
relationship between closed convex functions/and the effective domains of 
/ * is given in formula (6.19) below. 

Before generalizing Theorems VI.4.1, we note some simple properties 
of/* for convex functions/on W^. Recall t h a t / i s said to be closed if it is 
lower semicontinuous on U^. 

Lemma VI.5.2. Iff is a convex function on Uf^, then dom/* is nonempty and 
/ * is a closed convex function on W. 

Proof If dom/consists of one point JCQ, then for any yeU^ f(x) > f(xQ) + 
<^y,x — XQ} for all x. Hence for all x, <x, j ) —f(x) < <Xo, j> —f(xo) < oo, 
and so/*(>^) is finite. If dom/consists of more than one point, then ri(dom/) 
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is nonempty and 5/(xo) is nonempty for any XQG ri(dom/) [Theorem 
VI.3.5(b)]. For any yedf(xQ),f(x) >/(xo) -\- {y,x — XQ} for all x. Hence 
as above/*(>^) is finite. We conclude that in all cases dom/* is nonempty. 

To prove t h a t / * is convex, note that s i n c e / ^ oo , / * cannot take the 
value — 00. Pick 0 < A < 1 and y^ and y2 in U^. Writing (x^(y) for the affme 
function {x,yy —f(x), we have 

nXy, + (1 - X)y2) = sup {Xa,(y,) + (1 - ^)oc,(y2)} 

< X sup a^(> î) + (1 - A) sup a^(j2) 

= ATCJ'I) + (1 - A)/^^^). 
To prove tha t /* is closed, let {j„;« = 1,2, . . . } be a sequence of points 

in IR"̂  converging to some point y. Then for any point x e R"̂  

/*(j„) > <x, j„> - / ( x ) , liminf/*(>;„) > <x, j> - / ( x ) . 
n-^co 

Since x is arbitrary, we conclude that liminf„^oo /*(j^n) ^/*(>")• î  

Lemma VI.5.2 shows that for any convex function/on [R^ ,̂/** = (/*)* 
is automatically closed. Hence we cannot preserve the property/** = / 
unless we start with a closed convex function. The important fact is that for 
such functions Theorem VI.4.1 can be generalized. Part (b) of the next 
theorem is known as FencheVs inequality. In part (d) the subdifferential 
^/*(j) is well defined since/* is a convex function.^ 

Theorem VI.5.3. Let f be a closed convex function on U^. Then the following 
conclusions hold. 

(a) / * is a closed convex function on U^. 
(b) ix.yy <f(x) +f''(y)for all x andy in (R̂ . 
(c) <x, j> =f(x) + / * ( j ) if and only ifyedf(x). 
(d) y e df(x) if and only ifx e 5/*(JF). 
(e) / ** = / ; i.e.Jix) = sup^,^,{(x,yy - f%y)} for all xe W. 

In order to prove part (e), we need additional information. Consider a 
hyperplane in IR*̂  of the form H = {x 6IR'': <x, y> = Z)}, where 7 is a nonzero 
vector in IR"̂  and 6 is a real number. The sets 

{xG[R^:<x,y> <ft} and {XGIR^: <x,y> > Z?} 

are called the closed half-spaces determined by H. The sets 

{xGlR'^:<x,y> <Z7} and {xelR'̂ : <x,y> > Z?} 

are called the open half-spaces determined by H. Let C^ and C2 be nonempty 
sets in U^. A hyperplane H is said to separate Q and C2 if Q is contained 
in one of the closed half-spaces determined by H and C2 lies in the opposite 
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closed half-space. Let B denote the closed unit ball {XGIR"^: ||x|| < 1}. A 
hyperplane H is said to separate Q and C2 strongly if there exists some £ > 0 
such that Ci + ^B is contained in one of the open half-spaces determined 
by H and C2 + ^B is contained in the opposite open half-space. 

Lemma VL5.4 [Rockafellar (1970, pages 95-98)]. Let Q and C2 he non
empty convex sets in IR*̂. 

(a) Ifx\ Ci andxi C2 have no point in common, then there exists a hyperplane 
H = {xeU^\ <x, 7> = b] which separates Q and C2 and 

sup{<x,y>:xGCi} <b< inf{<x,7>:xGC2}. 

(b) If inf{\\xI — X2\\:x^eCi,X2GC2} is positive, then there exists a hy
perplane H = {x G [R'̂ : <x, y} = b} which separates C^ and C2 strongly and 

s u p { < x , 7 > : X G C J < b < inf{<x,7>:xGC2}. 

Le t /be a closed convex function on IR"̂ . We have defined the epigraph of 
/ t o be the set 

e p i / = {(x,a): XG!R^aG[R,a >f(x)}, 

We will need the fact that if a point (XQ, (XQ) in IR*̂"̂^ does not belong to epi/, 
then (XQ,(XQ) may be separated from ep i /by a non-vertical hyperplane in 
U'^'^^, This fact, due to Fenchel (1949), is proved in the next lemma. We 
follow the presentation of Gross (1982). 

Lemma VL5.5. Let f be a closed convex function on W^. Let XQ be a point in 
U^ and (XQ a real number satisfying OCQ < / ( X O ) . Then there exists a point 
Jo GIR'' such that 

(6.14) ao + iyo,x-Xoy <f(x) forallxeU^. 

Proof. It suffices to prove (6.14) for xedomf S ince/ i s a closed convex 
function, ep i / i s a closed convex set in R"̂ ^̂  [Problem VL7.1]. Since the 
point (XQ,(XQ) does not belong to ep i / there exists a hyperplane in [R"̂ ^̂  
which separates (XQ,(XQ) and epi/strongly. Thus we can find a vector y in 
M!^ and a real number c such that 

(6.15) <7,-^o> + c^o < <y.-^> + ^^ 

for all xGdom/and aGlR satisfying a >f(x). Suppose first that XQ is in 
d o m / With x = XQ, (6.15) states that c(a — ao) > 0 for all a >/(xo). Since 
/(xo) > OCQ,C must be positive. In this case, we may put jo = —c~^y in (6.15) 
to obtain (6.14). Suppose now that XQ is not in d o m / If c were negative, then 
taking a in (6.15) to be sufficiently large and positive would give a contradic
tion. Thus, c must be non-negative. If c is positive, then we proceed as before 
to obtain (6.14). If c is zero, then 

(6.16) 0 < {y,x — XQ} for all X G d o m / 
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To deduce (6.14), we must work harder. Let x^ be any point in dom/. If 
^1 <f(^i)^ then there exists a vector y^ and a real number ĉ  such that (6.15) 
holds with y = yi, c = Ci, XQ = Xi, and ao = a^. As above c^ must be posi
tive, and it follows that 

(6.17) <Ji,x> + « < / (x) for all XGdom/, 

where j i = —Ci^yi anda = â  + cr \yi , -^ i>-Weput jo = yi — ^yforsome 
positive real number s. Ifs is sufficiently large, then (6.16) and (6.17) yield 
(6.14) for all x in dom/: 

^0 + <Jo.^ - -̂ ô) = ^0 + <Ji,x> - <;^i,Xo> - s(y,x- XQ} 

<f(x) -\-(XQ-a- <Ji,Xo> - s(y,x- XQ} 

<f(x). D 

Proof of Theorem VI.5.3. (a) Lemma VI. 5.2. 
(b) Definition of/*. 
(c) The subgradient inequahty defining the condition yedf(x) can be 

written as <j,x> — f{x) > {y.z} —f{z) for all z. But this is the same as 
saying that the function <j^, z> —f(z) attains its supremum at z = x. Since 
by definition this supremum is /*( j ) , we have proved part (c). 

(d) By part (c) applied t o / * and/**, the equation <j,x> =f'^(y) + 
/**(x) holds iffxG3/*(3;) for some j e d o m / * . By part (e), this equation 
is the same as <> ,̂x> = / * ( j ) +f(x), and again by part (c) this holds iffjG 
df(x) for some xedomf Hence J;G3/(X) iff XG5/*(J^) . 

(e) For any x and y, / (x) > <x, j> —/*(3^). This implies that / (x) > 
/**(x). Let XQ be any point in IR'̂ . We prove that/**(xo) >/(xo) using 
Lemma VI.5.5. If ao is any real number satisfying ao <fixQ), then there 
exists a point JQ ^ ^^ such that 

<Jo.-^> -f(x) < <Jo.-^o> -^0 forallxelR^. 

This implies that /*(jo) < (jo^-^o) ~ "̂ o or that 

ao < <>^o,̂ o> -P(yo) < sup {<y,Xo} -f%y)} =/**(^o)-

Letting OCQ converge to/(xo), we conclude that/(Xo) < / * * ( X Q ) . D 

Theorem VI.5.3 shows that the Legendre-Fenchel t ransform/-^/* de
fines a one-to-one correspondence in the class of all closed convex functions 
on W^. We investigate what additional property/* satisfies if/is differentiable 
on int(dom/). Suppose that d = 1 a n d / i s a differentiable convex function 
on all of IR. Then for each x in R, the subdifferential df(x) consists of the 
single point fix). Since y=fXx) if and only if X G 5 / * ( J ) [Theorem 
VI.5.3(d)], we see that whenever j ^ and y2 are different points, the intersec
tion 3/*(j^i) n 5/*(j^2) is empty. Clearly, the only way for this to hold is 
for /* to be strictly convex. A similar argument shows that i f / is finite and 
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Strictly convex on all of [R, then the set dom/* has nonempty interior and 
/ * is differentiable on this interior. 

In order to generahze these statements, we need some definitions. A 
convex function/on W^ is said to be essentially smooth if it satisfies the fol
lowing three conditions. 

(a) C = int(dom/) is nonempty. 
(b) / i s differentiable on C. 
(c) lim„_oo ||V/(x„)|| = 00 whenever {x„;w = 1,2, . . . } is a sequence in 

C converging to a boundary point of C. 

Note that a convex function which is finite and differentiable on all of U^ 
is essentially smooth since condition (c) holds vacuously. 

Le t /be a convex function on W^. The subdifferential mapping 5/defined 
in Section VI.3 assigns to each yeU^ a. certain closed set df(y) in U"^. The 
effective domain of 5 / which is the set 

d o m 5 / = {yeW^: df(y) is non-empty}, 

is not necessarily convex. "'̂  However, it differs very Uttle from being convex, 
in the sense that 

(6.18) ri(dom/) c dom df c d o m / 

[Theorem VI. 3.5]. The function/is said to be essentially strictly convex if 
/ i s strictly convex on every convex subset of d o m 5 / Since ri(dom/) is a 
convex subset of d o m 5 / this condition impHes t h a t / i s strictly convex on 
ri(dom/). Hence for rf= 1, the notions of essentially strictly convex and 
strictly convex coincide. Rockafellar (page 253) gives an example of a closed 
convex function/on U^ which is essentially strictly convex but is not strictly 
convex on the entire set d o m / On the other hand, since df(x) is empty for x 
not in d o m / it follows that i f / i s strictly convex on all of d o m / then / i s 
essentially strictly convex. 

Theorem VI.5.6 [Rockafellar (page 253)]. A closed convex function is essen
tially strictly convex if and only if its Legendre-Fenchel transform is essentially 
smooth. 

Let / be a closed convex function on U^ which is differentiable on the 
set int(dom/) (assumed nonempty). If ran V/denotes the range of the 
gradient mapping V/(x), xGint(dom/), then according to Theorem 
VI.5.3(c), ran V/is a subset of the essential domain of/*. If in addition/is 
essentially smooth, then this relation can be strengthened. 

Theorem VI.5.7. Let f be an essentially smooth, closed convex function on U^; 
in particular, a convex function which is finite and differentiable on all ofR^. 

^See the example in Rockafellar (page 218) for ^ = 2. 
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Then 

ri(dom/*) ^ r a n V / ^ dom/*. 

Sketch of Proof. According to (6.18), ri(dom/*) £ dom 5/* ^ dom/*. The 
range of 5/is defined by IJ^eRd^/Cj) and is denoted by ran 5 / By Theorem 
VI.5.3(d), the range of 5/equals the effective domain of 5/*, so that 

(6.19) ri(dom/*) ^ r a n 5 / ^ dom/*. 

The proof is done once we show that ran 5/equals ran V/ Since/is essentially 
smooth,/is differentiable on int(dom/). Hence df{x) consists of the vector 
V/(x) alone when x is in int(dom/). The set df{x) is empty when x is not 
in d o m / Rockafellar (page 252) shows that condition (c) in the definition 
of essential smoothness guarantees that df{x) is also empty when x is in 
bd(dom/) . It follows that ran 5/equals ranV/ This completes the proof. 

D 

In closing this section, we note that the definition (6.13) of the Legendre-
Fenchel transform/* makes sense even i f / i s not convex. In this case, we 
wish to describe/**. Le t /be an extended real-valued function on U^ which 
is finite on at least one point in IR"̂  and majorizes at least one closed convex 
function. The closed convex hull o f / i s defined as the largest closed convex 
function majorized b y / a n d is denoted by cl(conv/). This function is well 
defined [Rockafellar (pages 36, 52)]. 

Theorem VI.5.8 [Rockafellar (page 104)]. Let f be an extended real-valued 
function on R^ which is finite on at least one point in U^ and majorizes at least 
one closed convex function. Thenf^ is a closed convex function on R^, and 

/ * = (cl(conv/))*, / ** = cl(conv/). 

This completes our discussion of convex functions on U^. The theory 
will now be applied to derive the large deviation theorems stated in Chapter 
II. 

VI.6. Notes 

1 (page 211). For the theory of convex functions on infinite dimensional 
spaces, see Moreau (1962, 1966), loffe and Tikhomirov (1968), Roberts and 
Varberg (1973), and Ekeland and Temam (1976, Chapter I). Chapter I of 
Roberts and Varberg (1973) is an elementary treatment of convex functions 
onR. 

2 (page 218). The Legendre-Fenchel transforms in Section VI.4 are im
portant in the study of Birnbaum-OrUcz spaces. See Krasnosel'skii and 
Rutickii (1961) and Hewitt and Stromberg (1965, page 203). The function 
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/(x) defined in (6.11) has a derivative for all x which is invertible. Hence its 
Legendre-Fenchel transform / * is an example of the classical Legendre 
transformation [Rockafellar (page 256)]. The latter is an important tool in 
the theory of differential equations [Kamke (1930, 1974)], the calculus of 
variations [Courant and Hilbert (1962, pages 32-39)], and Hamiltonian 
mechanics [Goldstein (1959, Section 7.1)]. 

3 (page 221). The formula/** = / f o r closed convex functions on U^ 
[Theorem VL5.3(e)] was discovered by Fenchel (1949) and was extended 
to infinite dimensional spaces by Moreau (1962) and Br^ndsted (1964). 
Relationships between the convergence of a sequence of closed convex func
tions and the convergence of the corresponding Legendre-Fenchel trans
forms are discussed by Wijsman (1966) and Wets (1980). 

VI.7. Problems 

VI.7.1. Le t /be an extended real-valued function on IR"̂ . 
(a) [Rockafellar (page 25)]. Prove t h a t / i s convex if and only if /does 

not take the value — oo and epi/is a nonempty convex subset of W^^^. 
(b) Prove that / is lower semicontinuous if and only if ep i / is a closed 

set in [R^^^ 

VI.7.2 [Rockafellar (page 26)]. L e t / b e a real-valued, twice continuously 
differentiable function on an open interval (a, jS) of IR. 

(a) Prove t h a t / i s convex on (a, j?) if and only \i f\x) > 0 for all x e 
(a,/5). 

(b) Prove t h a t / i s strictly convex on (a,jS) \^ f\x) > 0 for all xG(a,j8). 
Show that the converse is false. 

(c) Prove the strict convexity of the following functions. 

(i) f{x) = e"^"", where a is real; 
(ii) fix) = x^ for X > 0,/(x) = oo for x < 0, where 1 < ;? < oo; 

(iii) f(x) = —x^ for x > 0,/(x) = oo for x < 0, where 0 <p < 1; 
(iv) f(x) = —logx for X > 0,/(x) = oo for x < 0; 
(v) f(x) = xlogx for X > 0,/(x) = 0 for X = 0,/(x) = oo for x < 0. 

VI.7.3. Let / be a real-valued, continuously differentiable function on an 
open interval (a, jS) of IR. 

(a) Prove tha t / i s convex on (a, P) if and only iff is non-decreasing on 
(aj). 

(b) Prove tha t / i s strictly convex on (a, P) iff is increasing on (a, jS). 

VI,7.4.Let/be a real-valued, twice continuously differentiable function on 
an open convex set C in R^. 
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(a) [Rockafellar (page 27)]. Prove t h a t / i s convex on C if and only if 
its Hessian matrix Vj-(x) = {d^f(x)/dxidxj;ij' = 1, . . . ,<i} is non-negative 
definite for all x e C «P}(x)z,z> > 0 for all zeR^). [Hint: The convexity 
o f / o n C is equivalent to the convexity of the function g(X) =f(y + Az) 
on the open real interval {leU:y -^ AzeC} for eachyeCand z6R"^.] 

(b) Prove tha t / i s strictly convex on C if Vf(x) is positive definite for all 
xeC {{ Vj-(x)z,z> > 0 for all nonzero ze R^). 

VI.7.5. Let /(x) be defined by formula (6.11). Given y > 0, let Xo > 0 be 
the unique point such that/X^o) = y. Let b denote the ordinate of the point 
at which the tangent line to the graph of/(x) at XQ intersects the Une x = 0. 
Prove t h a t / * ( 7 ) = -b, 

VI.7.6 Prove Theorem VI.4.1 as a special case of Theorem VI.5.3. \_Hint: 
Reduce the proof to showing that for all j^ e [R 

y rg~'^iy) 

g-\t)dt = sup{xy -fix)} = g '(y)'y- g(s)ds.'] 
0 ^^^ Jo 

VI.7.7. Let T^ and T2 be positive numbers and pick 0 < A < 1. Using the 
strict concavity of the logarithm, prove that 

T^T^^-^^ <XT^ + ( 1 -X)T2 

with equahty if and only if Ty^T^, Deduce Holder's inequahty [Corollary 
VL4.2]. 

VL7.8 [Rockafellar (page 108)]. Calculate the Legendre-Fenchel transform 
of the convex function ^< Vx, x} on U^, where V is 3. d x d symmetric non-
negative definite matrix with nonempty nullspace [cf, Example VI.5.1]. 

VI.7.9 [Rockafellar (page 106)]. L e t / b e a convex function on R^, Prove 
t h a t / = / * if and only if / is the function ^{x, x>, XGW^. 

VI.7.10 [Rockafellar (page 110) and Ekeland and Temam (1976, page 19)]. 
L e t / b e an even, closed, convex function on U which is non-decreasing on 
[0, 00). Define F(x) =f{\\x\\) for xeW. 

(a) Prove that F is closed and convex. 
(b) Prove that F'^(y) =P(\\y\\) for all yeW^. [Hint: For r>0 

sup{<^v,x>:||x|| = r} = r,] 

VI.7.11. Let C be a nonempty subset of U^. The indicator function of C, 
3(x\C), and the support function of C, (j(y\C), are defined by 

[0 fo rxeC, , 
Hx\C) = < . , ^ (T(y\C) = sup{x,y}. 

(^00 f o r X ^ C , xeC 

file:///_Hint
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(a) Prove that C is a convex set if and only if 5( • | C) is a convex function 
on R .̂ 

(b) Prove that if C is a convex set, then cr(- |C) is the Legendre-Fenchel 
transform of (3( • | C). 

(c) Prove that for any subset C of IR*̂, 

a(- |C) = (7(-|cl(convC)), 

where cl(conv C) denotes the closed convex hull of C (the intersection of 
all the closed convex sets containing C). 

(d) Let C be a subspace of W^ and C"̂  its orthogonal complement. Prove 
that(7(-|C) = (5(-|C^). 

VL7.12. (a) Prove that the intersection of an arbitrary collection of convex 
sets is convex. 

(b) Let / be a closed convex function on W^. Prove that the Legendre-
Fenchel transform/* is a closed convex function by showing that epi/* is a 
nonempty closed convex subset of U^'^^ [Problem VL7.1]. 

VI.7.13. The functions in Problem YL7.2(c) are each closed and convex. 
In each case, calculate/* and/** and verify that /** = / . 

VI.7.14 [Eisele and Ellis (1983, Appendix C)] . Le t /and g be closed convex 
functions on U"^. Prove that 

sup {f(x)-g(x)}= sup {g''(y)-r(y)}-
X6 dom g ye dom / * 

VL7.15. Prove Theorem VL5.8. lHint:f> cl(conv/), so /* < (cl(conv/))*.] 



Chapter VII 

Large Deviations for Random Vectors 

VII. 1. Statement of Results 

In Section II.4, we stated three levels of large deviation properties for i.i.d. 
random vectors taking values in U^. In Section II.6 we also stated a large 
deviation theorem for random vectors [Theorem II.6.1] which generalized 
the level-1 property. In this chapter, Theorem II.6.1 will be proved [Sections 
VII.2-VII.4] and the level-1 large deviation property will be derived as a 
corollary [Section VII. 5]. The results on exponential convergence of random 
vectors stated in Theorem II.6.3 will be proved in Section VII.6. 

Let us recall the definitions in Section II.6. if^ = {W^in = 1,2, . . .} 
is a sequence of random vectors which are defined on probabiHty spaces 
{(Q„, #'„, P„); n = 1,2, . . .} and which take values in U^. We define functions 

(7.1) cM = -\ogE,{QxpO,W,y}, n=l,2,,.., teW, 

where {a^\n= 1,2, . . . } is a sequence of positive numbers tending to infinity, 
E^ denotes expectation with respect to P„, and <-,-> denotes the EucHdean 
inner product on W^. The following hypotheses are assumed to hold. 

(a) Each function c^{t) is finite for all teW^. 
(b) c^{t) = lim„_^oo^n(0 exists for all teW^ and is finite. 

The function c^(t) is called the/re^ energy function oj 

Proposition VILLI. c„(t) and c^{t) are convex functions on U^. 

Proof For every t^ and 2̂ in U^ and 0 < A < 1, Holder's inequahty with 
p = IjX and q= 1/(1 — X) implies that 

£ „ { e x p < l / . + ( l - l ) / 2 , ^ r „ > } 

< [£„{exp</i, W„}}y-lE„{^x^{t^, W„y}f-\ 

It follows that c„(0 is convex. Since convexity is preserved under pointwise 
limits, c^{t) is convex. n 

The next example discusses an important special case of free energy 
functions. 
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Example VII.1.2. Let W„ be the nth partial sum of i.i.d. random vectors 
Xi, Z2, . . . on a probability space (Q, #", P). Assume that X^ has distribution 
p and that j^dQxpO,xyp(dx) is finite for all teW^. Then 

cAO = lim-log^{exp<r, W„}} = log^{exp<^,Zi>} 
n^aon 

= log Qxp{t,x}p{dx), 

This function is the free energy function of p, c^(0. By Proposition VII. 1.1, c^ 
is convex on IR'̂ . Properties of c^ and of its Legendre-Fenchel transform (the 
level-1 entropy function of the distributions of {n~^ YJ=I ^ J ) ^̂ ^̂  ^^ deter
mined in Section VIL5. 

We return to the general case. Since the convex function c^{t) is finite 
for all t e W^, c^ is a continuous function on U^ [Theorem VI.3.1]. Hence c^ 
is closed. We define the function V(z) by the Legendre-Fenchel transform 

(7.3) /^(z) = sup{</,z> - c^(0}, zeU". 

The large deviation theorem is stated next.^ 

Theorem II.6.1. Assume hypotheses (a) and (b) on page 229. Let Q„ be the 
distribution of WJa^ on W^. Then the following conclusions holds. 

(a) /^(z) is convex, closed {lower semicontinuous), and non-negative. I^z) 
has compact level sets and inf̂ ^ d̂ lariz) = 0. 

(b) The upper large deviation bound is valid: 

(7.4) limsup — logQ„{K} < —inf/^(z) for each closed set K in R"̂ .* 
n->oo a„ zeK 

(c) Assume in addition that c^t) is differentiable for all t. Then the lower 
large deviation bound is valid: 

(1.5) liminf—logQ„{G} > — inf/^(z) for each open set G in W^. 
n^co a„ zeG 

Hence, ifc^t) is differ entiable for all t, then (7.5) and parts (a) and(h) imply 
that {Q^;n= 1,2, .. .} has a large deviation property with entropy function 

The properties of I^ stated in part (a) will be proved in the next section 
as direct consequences of the theory of Legendre-Fenchel transforms. The 
large deviation bounds will be proved first in Section VII.3 ford= 1. We save 
for Section VII.4 the much harder proofs of these bounds for (i > 1. 

The large deviation theorem is closely related to convergence properties 

* See footnote on page 36. 
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of {WJa„}. Let ZQ be a point in U^. We say that WJa^ converges exponentially 
to ZQ, and write WJa„^SZQ, if for any e > 0 there exists a number N = 
N(8) > 0 such that 

^«{|| ^ n K - Zoll > e} < e"^"^ for all sufficiently large n. 

Theorem II.6.3. Assume hypotheses (a) and(b) on page 229. Then the following 
statements are equivalent. 

(a) WJa„'^Zo. 
(b) c^{t) is differentiable at t = 0 and Vc^(O) = ZQ. 
(c) /^(z) attains its infimum over W^ at the unique point z = ZQ. 

If part (a) holds, then Wn{(o)/a„ is close to ZQ for all but at most an exponen
tially small set of microstates co. We may think of ZQ as the (necessarily 
unique) equihbrium state corresponding to the distributions {Q„} of {WJa^}. 
Theorem II.6.3 will be proved in Section VII.6. 

VII. 2. Properties of / ^ 

As a preliminary to proving the upper and lower large deviation bounds in 
Theorem II.6.1, we estabhsh properties of the function / ^ . We write c(t) for 
c^(0 and I(z) for V(z). 

Theorem VII.2.1. Assume hypotheses (a) and(b) on page 229. Then the follow
ing conclusions hold. 

(a) I(z) is a closed convex function on U^. 
(b) < ,̂ z> < c(t) H- I(z)for all t and z in [R̂ . 
(c) </,z> = c(t) + I(z) if and only ifzedc(t). 
(d) zedc(t) if and only iftedl(z). 
(e) c(t) = sup,,^d{it, z> - I(z)}for all teW. 
(f) I(z) has compact level sets. 
(g) The infimum of I(z) over U^ is 0, and I(ZQ) = 0 if and only if ZQ is in 

dc(0). The latter is a nonempty, closed, bounded, convex subset ofU^. 
(h) The function c(t) is differ entiable for all t if and only ifl{z) is essentially 

strictly convex. In particular, if c(t) is differ entiable for all t, then for d= I, 
I(z) is strictly convex and for d>2,1(z) is strictly convex on ri(dom/). 

Proof, (a)-(e) Since c(t) is a closed convex function. Theorem VI.5.3 may 
be applied. 

(f) Consider a level set Kjj = {zeU^: I(z) < b], where Z? is a real number. 
K^ is closed since /(z) is lower semicontinuous. If z is in Kj^, then for any 
teW^ 

it, z> < c{t) + /(z) < c{t) + b. 

Hence for 7̂  > 0, there exists a constant A independent of z e ^ ^ such that 
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sup </,z> = R\\z\\ < sup c(t) -\- b <A < oo. 
\\t\\<R \\t\\<R 

This implies that K^^ is bounded. 
(g) By the definition of subdifferential, /(z) attains its infimum at ZQ if 

and only if 0 is in dliz^). The point 0 is in 5/(zo) if and only if ZQ is in 5c(0) 
[part (d)] and /(ZQ) = 0 for any ZOG5C(0) [part (c)]. The subdifferential 
5c(0) is a nonempty, closed, bounded, convex set [Theorem VI.3.5(b)-(c)]. 

(h) This follows from Theorem VI.5.6 and the fact that for J = 1, the 
notions of essentially strictly convex and strictly convex coincide. n 

Part (a) of Theorem II.6.1 states that /^(z) is convex, closed, and non-
negative, /^(z) has compact level sets, and m{^^^dl^{z) = 0. These asser
tions follow from parts (a), (f), and (g) of Theorem VII.2.1. 

VII.3. Proof of the Large Deviation Bounds for ^ = 1 

We write c(t) for c^(0 and /(z) for /^(z). If ^ is a nonempty subset of [R, 
then 1(A) denotes the infimum of/over A. I((j)) equals oo. 

Proof of the upper large deviation bound. We show that if K is any non
empty closed subset of R, then 

(7.6) limsup;^loge„{i^} < -I{K\ 
n->oo u ^ 

For the empty set, (7.6) holds trivially. Let c+ (0) and c- (0) denote the right-
hand and left-hand derivatives, respectively, of c at 0. We first prove (7.6) 
for the closed half intervals [a, oo), a > c+(0). For any / > 0 and a > c+(0), 
Chebyshev's inequaUty impHes 

Qn{V^^ oo)} < exp(-a„^a)£'„{exp(^Pf;)} = exp[-a„(/a - c„(0)], 

where c„(0 = a~^ log£'„{exp(rI^)}. Since r > 0 is arbitrary, 

(7.7) linisup —logg„{[a, oo)} < inf {-(^a - c{t))] = - s u p {/a - c{t)}. 
n-*oo <2„ t>0 y>Q 

Lemma VIL3.L Ifoc > c+(0), then supj>o {toe — c(t)} = 1(a) = inf2>^/(z). 

Proof Since c(t) is continuous at / = 0, 

/(a) = sup {toe — c(t)} = sup {toe — c(t)}. 

Since c(t) is convex, c'_(0) > c(t)/t for any t < 0. Therefore, for any t < 0, 

toe - c(t) = t(oe - c(t)/t) < t(oe - c'_(0)) < 0 = 0 • a - c(0). 

The second inequahty holds since a > c+(0) > cL(0). From this display, we 
see that the supremum in the formula for /(a) cannot occur for / < 0. It 
follows that 

I(oe) = sup {ta — c(t)}. 
t>0 



VII.3. Proof of the Large Deviation Bounds for ^ = 1 233 

I(z) is a non-negative, closed, convex function which is 0 on the interval 
dc{0) = [c'_(0), c+(0)]. Thus I(z) is nonincreasing for z < c'_(0) and is non-
decreasing for z > c+ (0). This means that /(a) = inf {/(z): z > a}. n 

Inequahty (7.7) and the lemma imply that if K is the closed interval 
[a, oo), a > c+(0), then (7.6) holds: 

l i m s u p f l o g g j i ^ } < - m = -I(Ky 

A similiar proof yields (7.6) if K = (—oo,a], a < cL(0). 
Let K be an arbitrary nonempty closed set. If Kn [cl(0), cV(0)] is non

empty, then I(K) equals 0 and (7.6) holds trivially since log Qn{K} is always 
non-positive. If Kn [c'_(0), c+(0)] is empty, then let (oc^,(X2) be the largest 
open interval which contains [cl(0), c+(0)] and which has empty inter
section with K. K is 3, subset of ( — o c a j u [a2, oo) and by the first part 
of the proof 

limsup — l o g e n W <limsup —log[e„{(-oo ,a i ]} + e„{[a2,oo)}] 
n-^oo U^ n->oo U^ 

= -min{/(ai),/(a2)}. 

If ai = — 00 or a2 = 00, then the corresponding term is missing. From the 
monotonicity properties of/(z) on ( — oo,c'_(0)] and on \_c+(0), oo), 

/(7^) = min(/(ai),/(a2)). 

We conclude that limsup„^^ a~^ log Qn{K} < —I(K). This completes the 
proof of the upper large deviation bound for d= 1. 

Proof of the lower large deviation bound. Under the hypothesis that c(t) is 
differentiable for all t real, we want to prove that 

(7.8) liminf—log Q„{G} > —1(G) for each nonempty open set G in U. 
n-*QO afj 

For the empty set, (7.8) holds trivially. In order to simpUfy the proof, we 
shall also assume that the range of cXt) is all of [R.* Let z be any point in G. 
Pick 8> 0 such that the interval ^^ ^ = (z — £,z + e) is a subset of G. For 
any t real, we define probability measures 

(7.9) QnA^^) = Qxp(aJx)Q„(dx)'^j-, « = 1, 2, . . . , 

where Z„(t) is the normalization ^^Qxp(aJx)Q„(dx) = exp[a„c„(0]- Ifx is 
a point in A^^^, then —tx> —tz— \t\8. Hence we have 

Qn{G} > Qn{A^J = ZM I Qxp{-aJx)Q,^,(dx) 

> expK(c„(0 - tz) - a„\t\8] ' Q„,t{A,J, 

*This hypothesis will be removed in the next section. 
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(7.10) liminf;J-loge„{G} > c(0 -tz-\t\e + l iminf -^ loge„ . ,K ,J . 

By hypothesis on the range of c\t), there exists a point / such that c\t) = z. 
Substituting this n n (7.10), we have c(0 - tz = -I(z) [Theorem VII.2.1(c)]. 
Below we prove that 

lime,,,{^,,J = l, 

from which it follows that the last term in (7.10) equals 0. Taking e-^O 
yields 

l iminfi- loge„{C?}>-/(z) . 

Since z e G is arbitrary, we may replace — I{z) by sup {— /(z) \zeG] = — I{G). 
This yields (7.8). 

Lemma VIL3.2. Ifc\t) = z and s is positive, then Q^jlA^^^} -^ I asn-^ co. 

iProo/. This is a consequence of Theorem II.6.3. Let i^j = [W^y^n = 1,2, . . . } 
be a sequence of random variables such that W„Ja„ is distributed by Q„,. 
We calculate the free energy function of 1^. For any real number s 

c^(s) = lim —log exp(a„^x)Q„ X^x) 

= l i m — l O g ^ - - r / . .X - i ^ / r x exp[a„(^ + 0-^]e„(^-^)' 
exp[a„c„(0] 

= c(s + 0 - c(t). 

Since c is differentiable at t, c^(s) is differentiable at ^ = 0 and c'̂ (O) = 
c\t) = z. By the impHcation (b) => (a) in Theorem II.6.3, 

WJa:^e\^) = z. 

This implies that Q^\A^^^ -^ 1 as « -^ oo. D 

The proof of the large deviation bounds for ^ = 1 indicates a general 
pattern of proof for many other large deviation estimates. The proof of the 
upper bound rehes on a global estimate which is Chebyshev's inequality. 
By contrast, the proof of the lower bound is a local estimate, and it may be 
interpreted physically as follows. According to Theorem II.6.3, if c is differ
entiable at / = 0, then the macrostate ZQ = c^O) is the unique equiHbrium 
state corresponding to the distributions {Q„}. We have WJa^"^ ZQ, and so in 
particular Q„{A^^^^} -^ 1 for any e > 0. If z differs from the equiHbrium state 
ZQ = c'(0), then QniA^^^} decays exponentially for 0 < 6 < |z — Zo|. Accord
ing to Lemma VII.3.2, if / satisfies c\t) = z, then z is the equiHbrium state 
corresponding to the distributions {2«, J- Since 
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lim i-log^(z) ^tz- c{t) = I(z\ 

I(z) measures the error made in replacing {Q„} by {2n,J-

VII.4. Proof of the Large Deviation Bounds for d> 1 

Proof of the upper large deviation bound. The same notation as in the pre
vious section is used. We show that if ^ i s any nonempty closed set in IR'̂ , then 

(7.11) l imsup ; | - loge„W ^ - A ^ ) -
M-+00 U „ 

If I{K) = 0, then the bound is obvious, so we assume that I(K) is positive. 
For d= I, WQ proved the upper bound first for closed half intervals, then 
for arbitrary closed sets. For d> 1, the half intervals are replaced by certain 
half-spaces. The following lemma is the key. 

Lemma VII.4.1. Let Kbe a nonempty closed set in U^. Given a nonzero point 
t in U^ and a real number a, define the closed half-space 

H+{t,a) = {zeU^\it,zy - c{t) > a}. 

(a) IfO< I(K) < 00, then for any 0 < e < I{K), there exist finitely many 
nonzero points t^, .. ., t^ in W^ such that 

(7.12) K^\jH^(t,J(K)-s). 
i = l 

(b) If I(K) = 00, then for any R> 0 there exist finitely many nonzero 
points ^1, .. ., t^ in R^ such that 

(7.13) K^[JH^(t,,R). 

The lemma will be proved in a moment. If 0 < I(K) < oo, then the upper 
large deviation bound (7.11) follows from (7.12). Indeed Chebyshev's in
equality implies that 

Q„{K] < t P„{WJa„BH^{n,I{K) - £)} 
i = l 

= E PA<h, w„y > a„[_c{td + i{K) - e]} 
i = l 

< t exp{a„[c„(?,.) - c(/;) - I{K) + s]}. 
i = l 

This yields (7.11) since c^it^ -» c{t^ as ^ -^ oo and £G(0 , / (A^) ) is arbitrary. 
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Similarly, if I(K) = 00, then (7.11) follows from (7.13) since i^ > 0 is 
arbitrary. 

Proof of Lemma VII.4.1. (a) Define the set A = {zeU^\ I(z) < I(K) - e}, 
where 0 < ^ < I(K), A is nonempty, closed, and bounded [Theorem 
VII.2.1(f)-(g)], and it is disjoint from K. Let 5 be a closed ball containing 
A such that the boundary of B (bd B) and A are disjoint. Define C = (KnB) 
u bd B. We shall find finitely many nonzero points t^, .,., t^inU^ such that 

(7.14) C ^ (j H^t.JiK) - 8). 
i = l 

Afterwards we prove that (7.14) implies (7.12). 
Write H+(t) for the closed half space H+(tJ(K) - s) and H.(t) for the 

opposite closed half-space 

H_(t) = {ZEU': <r,z> - c(0 < I(K) - s}. 

Since c(t) is continuous at ^ = 0, we have for any ze R"̂  

I(z) = sup {<r,z> - c(t)} = sup{<r,z> - c(0}. 

It follows that A = f]tfoff-(0 and thus that A' = [jt^QintH+(t). Since C 
is a subset of "̂̂  and C is compact, there exist finitely many nonzero points 
^1, ..., t^ such that 

i=l i=l 

We now prove (7.12). The set K equals (KnB)^ (KnB"^), and this is a 
subset of C u ^ ^ Because of (7.14), it suffices to prove that any point JCG^"" 

belongs to ljj=i H^{t^. We argue by contradiction. If there exists a point 
xeB'^ which does not belong to |J[=iH^{t^, then x lies in [^=1 'miH_{t^. 
Pick any point 9eA. Since ^ is a subset of P|-=i//_(rJ and since 
each int H_ {t^ is convex, the set 

{e,x'] = {zEU^'.z = X6^{\ - A ) x , 0 < / 1 < 1} 

is a subset of P|J=iinti/_(r,) [Rockafellar (1970, page 45)]. B was defined 
as a closed ball containing A whose boundary is disjoint from A. Since x 
lies in B"^ and 0 lies in A, the set {9,x~\ must intersect hdB in some point b, 
and thus b belongs to P|[=i 'miH_{t^. As this contradicts (7.14), the proof 
of part (a) is done. 

(b) Repeat the proof of part (a) with A = {ze [R̂ : /(z) < R} and closed 
half-spaces H^{t,R) = [zeR^: <r,z> - c{t) > R], H_{t,R) = {z6[R^: <^,z> 
- c(0 <R}, D 

Proof of the lower large deviation bound. We need the analog of Lemma 
VII.3.2, which follows from the implication (b) => (a) in Theorem II.6.3. This 
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implication is proved first. The proof depends on the upper large deviation 
bound which has just been proved. 

Lemma VII.4.2. (a) If c(t) is different table at t = 0, then Wja^^^^ ZQ = 
Vc(0). 

(b) For t e R^, define the probability measures 

Qn,t(d^) = exp((3„</,x»e„(^x) • —-, « = 1, 2, . . . . 
exp[«„c„(0] 

Assume that c is differentiable at t and let A^^^ be the open ball of radius £ > 0 
centered at z = Vc{t). Then 

QnA^zJ^^ as n-^ CO. 

Proof (a) Since c(t) is differentiable at / = 0, the set dc(0) consists of the 
unique point ZQ = Vc(0) [Theorem VL3.5(d)]. By Theorem Vn.2.1(g), ZQ 
is the unique minimum point of / (/(z) > I(ZQ) = 0 (or Z 4" ^o)- We have 
shown that / is a lower semicontinuous function on W^, that it has compact 
level sets, and that the upper large deviation bound is valid. These are hypoth
eses (a)-(c) of large deviation property. Hence Theorem II.3.3 implies that 

(b) Let #^ = {PF„ ;̂ A7 = 1,2, . . . } be a sequence of random vectors such 
that W„j/a„ is distributed by Q^^. As in the proof of Lemma YII.3.2, the free 
energy function c^(s) of 1^ equals c(s -{-1) — c(t). Since c is differentiable 
at t, c^(s) is differentiable at ^ = 0 and 

Vc^(O) = Vc(0 = z. 

By part (a), W„Ja„ ^ z. This implies that g„^{yl^ J ^ 1 as ^ -> oo. n 

We show that if c(t) is differentiable for all t, then for any nonempty 
open set G in [R̂  

(7.15) l i m i n f l l o g e „ { G } > - / ( G ) . 
«->oo a„ 

The effective domain of/, dom/, has nonempty relative interior ri(dom/). 
Since I(z) equals oo for z ̂  dom /, 1(G) equals oo if G n dom / is empty. In this 
case the lower bound (7.15) is valid. If G n dom/ is nonempty, then /(G) 
equals / ( G n d o m / ) . The set Gnr i (dom/ ) is also nonempty* and by the 
continuity property of/expressed in Theorem VI.3.2, 

/(G n dom/) = I(G n ri(dom/)). 

Hence it suffices to prove that 

(7.16) liminf—logQjG} > - / ( G n r i ( d o m / ) ) , 
n-*co fl„ 

* See Rockafellar (1970, page 46). 
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where G n ri(dom/) is nonempty. Let z be any point in G n ri(dom/). Pick 
£ > 0 such that ^^ g, the open ball of radius & centered at z, is contained in G, 
and pick any / G R'̂ . For any point xG^^g, — <r, x> > — <r,z> — ||r||e. Hence, 
if Q^j(dx) denotes the measure in Lemma VIL4.2(b), then 

Q„{G} > QM.J = exp(a„c,(/)) exp(-«„</,x»e„,r(^-^), 

liminfi-loge.{G} > c(t) - </,z> - \\t\\s + l iminf l loge„ , ,{^ , , J . 

(7.17) 

Since c(t) is finite and differentiable on all of IR"̂ , ri(dom/) is a subset of the 
range of Vc(0, t e W^ [Theorem VL5.7]. Thus we can find a point t such that 
Vc(0 = z. Substituting this t in (7.17), we have c(t) — <r, z> = —/(z) and 
Qn,t{^z,E} ^ 1 as « -^ 00. Hence the last term in (7.17) equals 0. Taking e -^ 0 
yields 

(7.18) l iminf-loge„{G} > - / ( z ) . 
n-+oo df^ 

Since z is an arbitrary point in Gnr i (dom/ ) , we may replace —/(z) by 
—/(Gnri(dom/)) , and we obtain (7.16). This completes the proof of the 
lower large deviation bound (7.15). 

Here is another proof when dom /consists of a single point ZQ. I(ZQ) equals 
0, c(t) equals </,Zo> for all t, and Vc(0) equals ZQ. By Lemma Vn.4.2(a), 
WJa„ -^ ZQ. Thus for any open set G containing ZQ, Q„{G} -> 1 as « -^ oo and 

l i m i n f - l o g S j ^ } = 0 = - / ( G ) . 

If G is a nonempty open set which does not contain ZQ, then 

liminf—loggjG} > - o o = - / ( G ) . 

VII.5. Level-1 Large Deviations for I.I.D. Random Vectors^ 

As a consequence of Theorem n.6.1, we will derive the level-1 large deviation 
property stated in Theorem n.4.1(a). 

Theorem II.4.L (a) Let X^, X2, .. ., be a sequence ofiA.d. random vectors 
taking values in W^ and let peJi{U!^) be the distribution of X^. For teU^, 
define the free energy function 

c^(t) = log^{exp</,Zi>} = log 

Assume that Cp{t) is finite for all t and define 

Qxp<^t,xyp(dx). 

/̂ ^>(z) = sup{<r , z>-c , (0} for ZGC 
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Let S„ denote the ni]i partial sum Yj]=i -^j, '̂  = 1, 2, . . . . Then {Ql,̂ ^}, the 
distributions of [SJn] on W^, have a large deviation property with a„ = n and 
entropy function /̂ ^ \z). 

Below we will prove that Cp(t) is a real analytic function of teU^. This 
implies that Cp(t) is differentiable for all /.* Hence Theorem 11.4.1(a) is a 
consequence of Theorem II.6.1. After proving the real analyticity of Cp(/), 
we will derive properties of the level-1 entropy function. 

Proof of the real analyticity ofCp(t). Let/(x) be a real-valued function on 
an open set A in IR"̂ . We say tha t / i s real analytic on A if in some open ball 
about each point x in A,f(x) is the sum of an absolutely convergent power 
series 

/ (x ) = X ^ n ( x : - X i ) " ' - - - ( x , - x , ) % 
n 

where the sum runs over all <i-tuples n = {ni, .. ., n^) of non-negative 
integers. 

Theorem VII.5.1. Assume that Cp{t) is finite for all teU^. Then the following 
conclusions hold. 

(a) Cp is a real analytic, closed, convex function on R^. 
(b) Cp has mixed partial derivatives of all orders which are likewise real 

analytic functions on U^. These derivatives can be calculated by differentiation 
under the integral sign. In particular, 

dt: 
XiQxpit,xyp(dx)'- ; — — - for re[ 

i ]^dQxp{t,x}p{ax) 

In order to prove the theorem, we need some facts about analytic func
tions. C denotes the complex numbers and C^ the set of all vectors £, = 
((^1, . . . ,^,) with each ^,6 C. For (^GC^ define | |^f = Xi=i | ^ / . We consider 
U^ as a subset of C^ in the obvious way. An open ball in C"̂  is a set of the form 
B(lr) = {(^eC^: 11̂  - III < r} for some | G C ^ and r > 0. B(lr) is called an 
open ball about | . A subset U of 0 is open if U equals a union of open balls. 
Let/((^) be a complex-valued function on an open set U in C^. We say that 
/ i s analytic on ^ i f in some open ball about each point | in U,f(i) is the sum 
of an absolutely convergent power series 

/ ( a = Z ^ n ( ^ l - | l ) " ' - - - ( ^ . - | , ) " ' ' , 
n 

where the sum runs over all t/-tuples n = (n^, ...,n^ of non-negative 
integers. The next lemma is proved in Bochner and Martin (1948). Part (a) 
is Hartogs' theorem on analyticity in each variable. 

*That Cp{t) is differentiable for all / can be proved directly via the Lebesgue dominated 
convergence theorem. 
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Lemma VIL5.2. Letfd) be a complex-valued function on an open set U in C^. 
(a) fis an analytic function on U if and only if for every point ^ in U, each 

function 

m,Q =/«!,...,^j-uCj,ij.u...,a j=\,...,d, 
is an analytic function of the single complex variable Cj on some open ball 
about ^j. 

(b) For ^e U fixed, the analyticity offj(^, Q ^s a function of the complex 
variable Cj is equivalent to the one-time differentiability off{^, Q (^s a function 

(c) If f is analytic on U, then f has mixed partial derivatives of all orders 
which are likewise analytic on U. 

(d) Assume that U has nonempty intersection with W^ and that f maps 
U nU^ into an open set V in U. If h is a real analytic function on V, then 
h(f(x)) is a real analytic function ofxeUnU^. 

Theorem VII.5.1 will be proved by first considering the moment generat
ing function mp{t) of the measure p. This function is defined by the formula 

mp{t)= Qxp(t,xyp(dx) forteW^. 

We shall study m^ as a function of the complex vector ^ = t -\- irj, t and rj 
in U^. The function is well defined since 

| m / 0 | < |exp<(^,x>|p(Jx) = Qxp{t,x}p(dx) = mp{t). 

The proof of the next lemma is taken from Barndorff-Nielsen (1978, 
page 105). 

Lemma Vn.5.3. Assume that m^it) is finite for all t in U^. Then the following 
conclusions hold. 

(a) m^d) is an analytic function on C .̂ 
(b) mp(^) has mixed partial derivatives of all orders which are likewise 

analytic functions on C .̂ These derivatives can be calculated by differentiation 
under the integral sign; that is, ifj\, ... ,jd are non-negative integers, then 

(7.19) ^vr. ^ = \ ^^ • • •^ /exp<^ ,x>p(^x) forc^eC^. 

Proof (a) Let ^ = t -\- irj be any point in C .̂ If Uj denotes the jth unit 
coordinate vector and his a nonzero complex number, then 

^ ^ = \imUm(i + huj) - m(0) = Um 
Qxp(hXj) — 1 

. h 
cxp{i,xy p(dx). 

The interchange of the Hmit h^O and the integral is justified by the Lebesgue 
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dominated convergence theorem and the inequality 

Icxp (hXj) — 1 
< X S'^-'\xj\'^/m\=3-'Qxp(S\xj\) 

m = l 

< d ^[Qxp(dXj) + exp( —(3xj)], |/?| < 5, 

which is vahd for any Xj e U and 5 > 0. It follows that 

(7.20) S n ^ ^ C xjcxpii^xypidx) 

and that mp{^) is an analytic function of ^IGC [Lemma VII.5.2(b)]. By 
Lemma VII.5.2(a), m^(i) is an analytic function of (^eC^. 

(b) The first assertion follows from Lemma VII.5.2(c). Formula (7.20) 
shows that first-order derivatives of m^ are calculated by differentiation 
under the integral sign. The result for general order is proved by induction 
[Problem VIL8.14]. n 

Proof of Theorem VII.5.1. (a) The real analyticity of Cp follows from 
Lemmas VII.5.3(a) and VII.5.2(d) and from the real analyticity of logx 
on (0, oo). The convexity follows from Proposition VII. 1.1. Being finite on 
U^, Cp is continuous on U^ [Theorem VI.3.1] and is therefore closed. 

(b) Lemma VII.5.3(b). n 

The following remark was used on page 49. 

Remark VIL5.4. The proof of Theorem VII.5.1 also apphes to the functions 
c„(0 defined in (7.1). In particular, since c„(0 is finite for all teU^, c„(t) is a 
real analytic function on W^ and 

V c „ ( 0 = - ^ „ { ^ „ e x p < r , ^ „ > } ' ^ 
^^ n, n . . , n.^ ^ J e X p ^ P T ^ ) } -

The differentiability of Cp{t) combined with Theorem VII.2.1 yields 
properties of the level-1 entropy function/^^^(z) = svipt^^d{{t,zy — Cp(t)}. 

Theorem VIL5.5. Assume that Cp(t) is finite for all teU^. Then the following 
conclusions hold. 

(a) Ip^\z) is a closed convex function on W^. 
(b) </, z> < Cp{t) + I\,^\z)for all t and z in U^. 
(c) <^z> = Cp{t) + /̂ ^^(z) if and only if z = VCp(t). 
(d) z = Vcp(t) if and only iftsdl^^Kz). 
(e) Cp{t) = sup,,^d{0,zy - I^p'\z)}for all teW. 
(f) I^^Xz) has compact level sets. 
(g) Let mp = \^dxp{dx). Then for any zeU\ I^^Kz) > 0 and Il^\z) = 0 

if and only ifz = mp. 
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(h) Il^Kz) is essentially strictly convex. In particular, for d=\, Ip^\z) is 
strictly convex and for d >2, Ip^\z) is strictly convex on ri(dom/^^^). 

Proof (a)-(f), (h) These parts follow from Theorem VIL2.1(a)-(f), (h), 
respectively. 

(g) Since Cp{t) is differentiable at r = 0, Ip^\z) attains its infimum over W^ 
at the unique point z = Vc (̂O) [Theorem IL6.3]. According to Theorem 
Vn.5.1(b), 

8cp(t) ^ iudXiQxp{t,xyp(dx) dCpjO) ^ f ^ 

dti ^^dQxp{t,xyp(dx) ' dti j^a 

Hence VCp(O) = nip. n 

This completes our discussion of level-1 large deviations. 

VII.6. Exponential Convergence and Proof 
of Theorem II.6.3 

Theorem n.6.3 states that three properties are equivalent. 

(a) Wja^'-^zo. 
(b) c^(0 is differentiable at r = 0 and Vc^^(0) = ZQ. 
(c) /^(z) attains its infimum over W^ at the unique point z = ZQ. 

We now prove the theorem. We write c(t) for c^(t). 

Proof ( b ) ^ ( a ) Lemma Vn.4.2(a). 
(b )o (c ) c(t) is differentiable at r = 0 if and only if the subdifferential 

dc(0) consists of the unique point ZQ = Vc(0) [Theorem VI.3.5(d)]. By 
Theorem Vn.2.1(g), dc(0) consists of the unique point ZQ if and only if I^(z) 
attains its infimum over W^ at the unique point z = ZQ. 

( a ) ^ ( b ) Let s be an arbitrary unit vector in W^. Define D^c(0) and 
D~c(0) to be the right-hand and left-hand derivatives at 0 of the convex 
function jj, -^ c{iis), /xe [R. By Theorem VL3.4, it suffices to prove 

(7.21) A^^(0) = A"^(0) = < ,̂Zo>. 

For any nonzero real number /i 

^ - <5,Zo> =-^log£„{exp[/ i<5, fF„>]} - <.,Zo> 

= ;r;;'°8£'„{expKyu<if, F„>]}, 

where V„ = a~^W„ — ZQ. Given 8 > 0, we divide the latter expectation into 
two parts: the first over the set where || F„|| < e and the second over the set 
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where || F„|| > s. The first is bounded above by exp(a„|/x|8). For the second, 
we have 

^„{expK//<^,F„>];| |F„| |>8} 

< exp(-a„//<.,Zo»[^„{exp[2//<., ^.>]}]^/'[P.{|iFj| > s}y'\ 

By hypotheses WJa„ ^ ZQ or V„ -> 0. Putting these facts together, we conclude 
that for any e > 0 there exists N(s) > 0 such that for ail ju > 0 and all suffi
ciently large n 

- ^ ^ - < ,̂Zo> < --log{exp(a„|A^|8) 
(7.22) ^ "^ 

+ exp[-fl„/i<^,Zo> + a„-i(c„(2/i^) - A^(e))]}. 

For /i < 0, the sense of the inequahty is reversed. 
Below we prove that for any e > 0 there exist positive numbers Ji = /Z(e) 

and n = n{&, p) such that for all | //| < // and diW n>n 

{121>) \^\^ > - / i<^,Zo> + h{c,{2lis) - N{E)). 

Let us accept this. Then for e > 0, 0 < /i < /x, and all sufficiently large n, we 
have from (7.22) 

while for 8 > 0, —/I < ju < 0, and all sufficiently large n, we have 

/x a^li 

Taking n-^ oo, then ju-^0, then 8 ^ 0, we obtain (7.21): 

<^,Zo> < A"^(0) < A^^(O) < <^,Zo>. 

The function /x -^ c(2;U5) is continuous and N(8) is positive. Hence for 
any e > 0 there exists /I = jii(s) > 0 such that for all |/x| < ju 

\fi\s > -JH^S^ZQ} + ^c(2fis) - iN(8). 

This implies the inequahty (7.23) since the convex functions {c„(2/i^); n = I, 
2, . . .} converge uniformly to c(2jis) for \fi\ < p [Theorem YL3.3(b)]. The 
proof of Theorem n.6.3 is complete. n 

This completes our discussion of large deviations for random vectors 
taking values in W^. In the next two chapters, we will apply the large deviation 
result in Theorem IL6.1 to derive the level-2 and level-3 large deviation 
properties for i.i.d. random variables with a finite state space. 

VII.7. Notes 

1 (page 230). In Ellis (1984), Theorem II.6.1, II.6.3, and VII.2.1 are proved 
under less restrictive hypotheses than those given on page 229. Other authors 

file:///fi/s
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have studied large deviations for random vectors, but their results differ 
from Theorem II.6.1. Dacunha-Castelle (1979) treats the case d= I. 
Steinebach (1978) treats d> I, but he is interested in different large deviation 
estimates and his hypotheses are not the same as ours. See this paper for 
earlier related references. Gartner (1977) contains results related to Theorem 
II.6.1, but he does not prove the large deviation bounds for arbitrary closed 
and open subsets of W^. Our proofs of these bounds depend upon Lemmas 1.1 
and 1.2 in Gartner (1977). Section 1 of Orey (1985) contains results related 
to Theorem II.6.1 as does Section 5.1 of Freidlin and Wentzell (1984). De 
Acosta (1984) and EUis (1984) extend the upper large deviation bound (7.4) 
to certain infinite dimensional problems. 

2 (page 238). Let X^, X2, ... be a sequence of i.i.d. random variables with 
distribution p, mean 0, and variance 1. Define S„ = X^ -\- • • • -{- X„ and 
F„(x) = P{SJ^ < x}, « = 1, 2, . . . , and let 0(x) be the A^(0,1)-Gaussian 
distribution. The central limit theorem implies that for fixed x > 0 

(7.24) ^ H - ^ 1 ' ^ 7 ^-^1 asw->oo. 
l - O ( x ) ^ ( - ^ ) 

Khinchin (1929), Cramer (1938, Theorem 1), and Petrov in 1954 [see Petrov 
(1975, Chapter VIII)] studied the behavior of these ratios when x = x„ tends 
to infinity with n and x„ = o(^). Linnik (1961) and Feller (1966, Section 
XVI.6) also made contributions to this problem. Richter (1957, 1958) 
derived local Umit theorems related to the Cramer-Petrov results. Richter's 
work has been generalized by Chaganty and Sethuraman (1984,1985) and by 
other authors listed in the references of these papers. 

Large deviations, which correspond to the choice x = y/ny in (7.24), are 
not covered by the results in the previous paragraph. For suitable p, Cramer 
(1938, Theorem 6) proved the Umit 

lim-log P{SJn >y}= -I^'Ky) for y>[ xp{dx). 
n-*co n 

Extensions and related results have been found by many people, including 
Chernoff (1952), Blackwell and Hodges (1959), Bahadur and Rao (1960), 
Efron and Truax (1968), Petrov (1975), Hoglund (1979), Martin-Lof (1982), 
Ney (1983) and Bolthausen (1984a). Lanford (1973, Secfion A.4) proves 
large deviation limits by using superadditivity properties of the probabiHties. 
His results have been greatly generalized by Bahadur and Zabell (1979). The 
level-1 large deviation property for i.i.d. random vectors taking values in a 
Banach space has been proved by Donsker and Varadhan (1976a). Azencott 
(1980) and Stroock (1984) give another proof which is based upon the ideas 
of Bahadur and Zabell (1979). Also see de Acosta (1985). 

Theorem 11.4.1(a) is true under less restrictive hypotheses on Cp (see, e.g., 
Ellis (1984)). 
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VII.8. Problems 

VII.8.1. In Section VII.3, we proved the upper large deviation bound (7.6) 
for the closed half interval [a, oo), a > c+(0). Prove the upper bound (7.6) 
for the closed half interval (— oo, a], a < c'_(0). 

VIL8.2. Let {Q„; /t = 1,2, . . .} be a sequence of Borel probability measures 
on W^ which have a large deviation property with constants {a„} and entropy 
function I(z). Assume that c(t) = lim^^^ocin^log^^dexp(a„</,zy)Q„(dz) 
exists and is finite for all t e U^. Prove that the Legendre-Fenchel transform 
of c(t) equals the closed convex hull of I(z). [Hint: Theorems II.7.1 and 
VI.5.8.] 

In the next three problems, assume that i^ = {W„;n = 1,2, .. .} is a 
sequence of random vectors which satisfy hypotheses (a) and (b) on page 229: 

cM = ^iogE,{cxpO,w„y} 

is finite for all t e U^ and c^(/) = lim^^^o c„(t) exists for all tsW^ and is finite. 

VII.8.3 [ElUs (1981)]. (a) Prove that there exists a random vector X such 
that Wn'/a^' -^ X for some subsequence {n} and that the support of X is 
contained in the set dc^(0). [Hint: Prove that 5c^(0) is compact and that 
the distributions {Q„} of {WJa„} are tight [Billingsley (1968, page 37)].] 

(b) Let s be any nonzero vector in IR"̂ . Prove that for any /i > 0 

supE„{Qxpl±jn(s, WJa„y]} = supQxp[a^c„(±iLis/a„)] < oo. 
",+ n,± 

[Hint: Modify the proof of Lemma V.7.5 to show that 

l i m s u p ^ ^ ^ ^ ^ < D^c^O) and liminf^^^^^^^^f^ > A"c^(0), 
fi/a„ n-oo -i^la„ 

where D^ c^ (0) and D~ c^(0) denote the right-hand and left-hand derivatives 
at 0 of the function X -^ c^{Xs), XeU.'] 

(c) Prove that for any nonzero vector s in IR"̂  and positive integer y 

E,\is, WJa,y]^E{is,Xy} as n' ^ ^ , 

where {n} is the subsequence in part (a). 

Vn.8.4 [ElHs (1981)]. (a) Suppose that c^{t) is not differentiable at ^ = 0. 
Prove that if z is a boundary point of 5c^(0) and if E^{WJan} -^ z, then 
WJa^ -^ z and that the convergence in distribution cannot be strengthened 
to exponential convergence. 

(b) Parts (b) and (c) of Theorem IV.6.6 show that for i? > ft the spin per 
site ^S /̂lAl in symmetric intervals A of Z has an almost sure limit with 
respect to the infinite-volume Gibbs state Pp^o, + ^ ^p,o,-^ or P^^^ = XP^Q^^ + 
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(1 - /Z)Pp,,,_(O < 2 < 1). Using part (a) of the present problem, prove the 
9 .  limits in Theorem IV.6.6(b)-(c) with 5 replaced by + ; i.e., for each choice 

of sign 

VII.8.5 [Ellis (1981)l. Let d = 1. Assume the following. 
(i) The random variables { W,; n = 1,2, . . .) are all defined on the same 

probability space (R ,F ,  P). 
(ii) The free energy function c ,  ( t )  is not differentiable at t = 0. 
(iii) There exists a random variable X on (R, 9, P )  with the property 

that for any e > 0 there exists a number N = N(E) > 0 such that 

P{ I W,/a, - x I 2 c) < ( , -OnN for all sufficiently large n 

Prove that for all sufficiently small 6 > 0, X has support in the interval 
[c' (O), cL (0) + 61 and in the interval [c; (0) - 6, c; (O)]. 

VII.8.6. Let p be a Borel probability measure on Rd. Assume that the set of 
t E Rd where c,(t) is finite is a proper subspace of Rd. Prove that c,(t) is a closed 
convex function on Rd. 

VII.8.7. Let {p, ; n = 1,2, . . . } be a sequence of Borel probability measures 
on Rd which converges weakly to a measure p. Assume that sup,,,,,,,., 
cpn(t) < co for each t E Rd. Let W, be the sum of n i.i.d. random vectors with 
distribution p, and define Q, to be the distribution of W,/n. Prove that 
{Q,  ; n = 1,2, . . . ) has a large deviation property with entropy function I:'). 
This result has been generalized by Bolthausen (1984b) to measures on a 
Banach space. 

VII.8.8 [Freidlin and Wentzell(1984, page 142)l. Let p be a Borel probability 
measure on Rd such that cp(t) is finite for all t in some neighborhood of 
t = 0 and the Hessian matrix 

is nonsingular. Let XI, X,, . . . be a sequence of i.i.d. random vectors with 
distribution p and {b, ; n = 1,2, . . . } a sequence of positive real numbers 
such that b,/& + GO and b,/n -+ 0 as n -+ co. Set S, = XI + . . . + X,, 
n = 1, 2, . . . . Prove that the distributions of {(S, - nE{X,))/b,} have a 
large deviation property with a, = b?/n and entropy function I(z) = ~ ( B z ,  z), 
z E Rd, where B is the inverse matrix of 
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In the next four problems, S„ is the nth partial sum of i.i.d. random vari
ables with given distribution p. 

VII.8.9. Let p be a nondegenerate Borel probabiHty measure on U (not a unit 
point measure) with mean 0. Assume that Cp(t) is finite for all teU. Let y be 
a positive real number which is in the range of c^(0? teU. Chernoff (1952) 
proved that 

(7.25) MmUogPpiSJn > y} = -I^'Ky) = -inf/^^>(z). 
n-^oo n z>y 

The purpose of this problem is to prove (7.25) by a method due to Bahadur 
and Rao (1960). 

(a) Denote by t = t{y) the unique solution of Cp(t) = y [Theorem 
VIIL3.3(a)]. Prove that 

= exp [ -n ; ; " ( f ) ] exp[-r £ (x, ~ 7)] f\ pM',) 
J { x i . . . , x „ r e a l : X ? = i U - > ' ) > 0 } i = l i = l 

where Pt is the Borel probabiHty measure on IR which is absolutely con
tinuous with respect to p and whose Radon-Nikodym derivative is given by 

^ ( x ) = exp(/x) • ^ 
dp ^^Qxp(tx)p(dxy 

(b) Let Fi, F25 • • • be a sequence of i.i.d. random variables with distribu
tion pj(y) and sQt Wiiy) = Yi— y. Prove that for any e > 0 

y(n,y, s) • exp[-«/^^Xj) - ^8t(y)] <pJ^>y]< p i f > y] 
(7.26) (- J ^ J 

<exp[-.7/^^)(>;)], 

where y{n,y, s) = P{0 < {W,(y) + --- ^ K(y))/V^ < £}• 
(c) Deduce the limit (7.25). 

VIL8.10. Let p be a nondegenerate Borel probabiHty measure on U with 
mean 0 and variance a^. Assume that Cp(t) is finite for aU /e IR. By an order 
of growth estimate for S„, we mean a sequence of positive real numbers 
{a„; n = 1,2, ...} tending to oo such that P{Sn > a„ i.o.} = 0 . * 

(a) By Theorem Vin.3.4(c), Ip^\z) is real analytic in a neighborhood of 
z = 0. Prove that (/^^^)"(0) = l/a^. It foHows that for \z\ sufficiently smaU, 

11,'Kz) = Z'/(2CT') + O(z^). 

(b) Let {a„;« = 1,2, . . .} be a sequence of positive real numbers tending 
to 00 such that ajn -^ 0. Using (7.26), prove that for any s> 0 

*i.o. means infinitely often. P{S„ > a„ i.o.} = 0 if and only if P<limsup— < 1 
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(7.27) P,{5„ > a j < PM = exp | - ^ ( 1 - s) j as « ^ (^. 

(c) Deduce that P{»S„ > a„ i.o.} = 0 if a„/« -> 0 and if for some 
e > OX«>i/^«(£) converges. 

The best order of growth estimates are due to Feller [see Chung (1968, 
page 213)]. 

VII.8.11. Let p be a nondegenerate Borel probabiHty measure on IR with mean 
0 and variance a^. The law of the iterated logarithm states that 

Hm sup SJoc^ = 1 a.s. where a„ = (la^n log log nY^^. 

According to Lamperti (1966, Section 11), one may prove the law of the 
iterated logarithm by showing that for arbitrary e > 0 

exp 1 - ^ ( 1 + e ) | ^ nSn > «„} 

(7.28) 
< exn ^ — 

2nG 

al < exp \ —^ ^^(^ ~ ^)r as /7 -^ 00. 

Under the extra assumption that Cp{t) is finite for all / G R, one may deduce 
these bounds from the previous two problems. Since a„ ^ oo and ajn -^ 0, 
the upper bound in (7.28) follows from Problem VII.8.10(b). Parts (a)-(c) 
below yield the lower bound in (7.28). 

(a) Let t{y) be as in Problem Vn.8.9(a). Prove that Jnt((xjn) = 0((x^/n) 
as « ^ 00. 

(b) Let y(n,y, s) be the probability P{0 < (W^iy)-\- - • -\- W„(y))/Jn < 
e} in (7.26). Prove that for any e > 0 

Hm y(n, (xjn, s) = {Ina ) 2X-1/2 exp( —x^/2o-^))(ix. 
0 

\_Hint: Consider the characteristic function of (W^(y) -\- • • • + WP^„(j))/V ,̂ 
y = ajn.] 

(d) Deduce the lower bound in (7.28) from (7.26). 

VII.8.12. (a) [Feller (1957, page 166)]. For any w > 0 prove the bounds 

[m„,: £ ( . - ^ ) exp (-ij) . . = ( 1 - J , ) exp (-\.') ] 

(b) Let p be a Gaussian probability measure on U with mean 0 and 
variance a^. For any y > 0, prove from part (a) 

file:///_Hint
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l i m l l o g p J f ! >y\= -I)^\y) = -infI^^\z). 
n^oo n '^ In \ ^ z>y ^ 

VII.8.13. Let F be a symmetric, positive definite d x d matrix. Define on 
W^ the Gaussian probability measure 

p(dx) = [{InYdQt Vy'f^Qxp(-^(V-'x,x})dx. 

(a) Prove that p has mean zero and that its covariance matrix is V 
(^^dXiXjp{dx) = Vij, /,7 = 1, . . . , rf). Verify that 

cp(t) = Hvt, ty and ij,'Kz) = Hv-'z,zy. 
(b) For Borel subsets B of (R"*, define the measures 

Q,{B} = p{xeU':x/^eB}, n = 1,2, . . . . 

Prove that {Q„} has a large deviation property with a„ = n and entropy 
function I^^'\z) = i<F-^z,z>. 

(c) For F a bounded continuous function from W^ to IR, prove that 

l im-log explnF(x/Jn)']p(dx) = sup {F(z) - i<F '^z ,z>}. 

For generalizations, see Schilder (1966), Pincus (1968), Donsker and 
Varadhan (1976a), Simon (1979a, Chapter 18), (1983), Azencott (1980), 
Elhs and Rosen (1981, 1982a, 1982b) Davies and Truman (1982), Chevet 
(1983), and Stroock (1984). 

VII.8.14. In Lemma VIL5.3(b) prove that derivatives of the moment generat
ing function mp(t) can be calculated by differentiation under the integral sign. 
Verify formula (7.19). 

VIL8.15. Let p be a Borel probabihty measure on W^. Assume that there exist 
positive real numbers a and b such that J[,5dexp((2||xP'^^)/)((ix) < oo. Prove 
that Cp(t) is finite for all teW^ and that there exist positive real numbers 
a and P such that 

/;i>(z) > a||zp+^ - p for all zeU^. 

[i/m/.-Problem VL7.10]. 

VII.8.16. Let p and v be Borel probability measures on U^ such that Cp(t) and 
c,(t) are finite for all teW^. Prove that if/^^^(z) equals Il^\z) for all zelR^ 
then p equals v. 



Chapter VIII 

Level-2 Large Deviations for I.I.D. 
Random Vectors 

VIII. 1. Introduction 

Theorem II.4.3 stated the level-2 large deviation property for i.i.d. random 
vectors taking values in W^. This theorem follows from the results contained 
in Donsker and Varadhan (1975a, 1976a), which prove level-2 large devia
tion properties for Markov processes taking values in a complete separable 
metric space. ̂  In Chapter VIII, we will give an elementary, self-contained 
proof of Theorem II.4.3 in the special case of i.i.d. random variables with 
a finite state space. This version of the theorem was appUed in Chapter III 
to study the exponential convergence of velocity observables for the discrete 
ideal gas with respect to the microcanonical ensemble [Theorem III.4.4]. 

Theorems II.5.1 and II.5.2 stated contraction principles relating levels-1 
and 2 for i.i.d. random vectors taking values in U^. In the chapters on 
statistical mechanics, the contraction principles were applied only in the 
case d= I. Proofs for this case are given in Section VIII.3. We save for 
Section VIII.4 the more difficult proofs of the contraction principles for 
d>2. Section VIII.4 can be skipped with no loss in continuity. 

VIII.2. The Level-2 Large Deviation Theorem 

We consider a sequence of i.i.d. random variables X^, X2, . . . with a finite 
state space F. F is topologized by the discrete topology. The Borel cr-field 
^ (F ) of F coincides with the set of all subsets of F. The empirical measure 
L„{cD, •) = n~^ Y^j^i <̂ A:(CO)(*)? n= \,2, . . . , takes values in the space Jf{T), 
which is the set of probability measures on ^ (F) . The topology on JUT) 
is the topology of weak convergence. The following theorem is Theorem 
II.4.3 for the case of a finite state space. 

Theorem VIII.2.1. Let X^, X2, . . . be a sequence 0/i.i.d. random variables 
which take values in a setT = {x^,^2, . . . , x j with x^ < X2 < • * • < x^. Let 
peJiiX) be the distribution of X{, we assume that each p^ = p{xj > 0. If 
V = YJ=I ^A- ^^ ^ probability measure on J^(F), then define the relative 
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entropy ofv with respect to p by the formula 

/<^'(v)=Xv,.log^. 

The following conclusions hold. 
(a) [Q^n^^], the distributions on Ji{r) of the empirical measures {L„}, have 

a large deviation property with a„ = n and entropy function I^^\ 
(b) Ip^\v) is a convex function of v. Ip^\v) measures the discrepancy 

between v and p in the sense that Ip^\v) > 0 with equality if and only ifv = p. 

Part (b) of the theorem was proved in Proposition 1.4.1. If ^ is a nonempty 
subset of ^ ( F ) , then Ip^\A) denotes the infimum of/̂ ^^ over A. I{(j)) equals 
00. In order to prove part (a) of the theorem, we must verify the following 
hypotheses. 

(i) Ip^\y) is lower semicontinuous on Ji{r). 
(ii) /p^ (̂v) has compact level sets in JiiX). 
(iii) lim sup„_^ w"̂  log Q^^^K) < - I^^\K) for each closed set K in Ji{Y). 
(iv) liminf„^^ n'^ log Q^^\G} > -I^p^\G) for each open set G in Ji{T). 

The set JiiX) with the topology of weak convergence is homeomorphic 
to the compact convex subset of W consisting of all vectors v = (v^, . . . , v̂ ) 
with v̂  > 0 and ^-=1 v̂  = 1; that is, v„ => v in Ji{T) if and only if the corre
sponding vectors converge in W. Let Ji denote this compact convex subset 
of W. Since /p^ (̂v) is continuous relative to Ji, hypotheses (i) and (ii) follow. 
The vector in Ji corresponding to the empirical measure L„(a;, •) is the vector 
L^{oji) whose /th component is L^ioj, {-̂ i})- The next theorem establishes a 
large deviation property for the distributions {2i^^} of {L„(co)} on IR''. The 
entropy function /(v) equals I^^\v) for veJt and equals oo for veW\Ji. 
Hence 

limsup-logSi^^l^} < -I{K) = -Iji'KKnJ^) for each closed set A: in r , 
ẑ->oo H 

lim inf-log Qi^^iG} > - 1(G) = - n^\G n J^) for each open set G in W. 
n^ao n 

Since the support of Q\^^ is contained in J^, Q^^^A] equals Q^n'^{A n , 
for any Borel subset A of W. As the topology on Ji is its relative topology 
as a subset of 1R̂  the last display impHes that 

lim sup - log Q^^\K] < - Il^\K) for each closed set K in ^ , 
n^oo n 

lim inf-log Qi^\G} > -I^^KG) for each open set G in Ji. 
n->oo n 

These inequalities yield hypotheses (iii) and (iv) above. 
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Theorem VIII.2.2. Let Qj,̂ ^ be the distribution of the random vector L„(co) on 
W. Then the sequence {gj,^^;« = 1,2, . . . } has a large deviation property with 
a^ = n. The free energy function c(t) and the entropy function I(v) are given by 

^P/\v) forveJ^, 

too forv^Ji. 
U 

c(t) = log X e'ipi and I(v) = sup {</, v> - c(t)} = < ' 

Proof We apply the large deviation theorem for random vectors, Theorem 
II.6.1. I f / i s a vector in U\ then define the function yj(Xj) = ti for X J E F . We 
have 

which is a sum of i.i.d. random variables. In the notation of Theorem II.6.1, 
W„ equals nL„ and a„ equals n. The free energy function of the sequence 
{nL„;« = 1,2, . . . } is given by 

1 *" 
c(t) = lim-log£'{exp(«</,L„»} = log£'{exp/(Zi)} = log ^ '̂̂ Pr 

The function c(t) is differentiable for all te W. Hence the theorem is proved 
once we identify the Legendre-Fenchel transform /(v) of c{t). The lower 
large deviation bound states that 

Um inf-log Qi^^{G} > -1(G) for each open set G in W, 
n-*oo n 

Since the support of Q[,̂ ^ is contained in J^, 1(G) equals oo whenever G is 
open and G r\Ji is empty. Thus I(v) equals oo for v^Ji. The form of /(v) 
for V G ^ is given by part (c) of the next lemma. 

Lemma VIII.2.3. Let Jf denote the set of vectors teW of the form t^ = 
log(Zi/pi)for some vector z e r i ^ . * Then the following conclusions hold, 

(a) c(t) = log YJ=I ^^'Pi equals 0 if and only ift is in J^. 
(h) For any vector t in U\ h(t) = t — c(t)l is in Jf, where 1 is the constant 

vector (1, . . . , 1). 
(c) /(v) equals lf\v) = Y}=i v,- log(Vi/p^) for any v^Ji. 

Proof (a) If n s in Jf, then log ^?=i e'^p^ = log X'=i ^i = 0. If log Yj=i e'^pt 
= 0, then e^i = zjpi, where ẑ  = PiC^^ > 0. Hence / is in J^. 

(h) logZ?=i e'^'^ipt = logX;i=i e^'p, - c(t) = 0. By part (a), h(t) is in ^ . 
(c) For any v e J^, 

I(v) = sup{</, v> - c(t)} > sup{</,v> - c(t)} = sup<r, v>. 
teW ' e ^ tejr 

*x\M denotes the relative interior of M, which is the set of z = ( z i , . . . , ẑ ) satisfying ẑ  > 0 
and 5;j=i Zf = 1 [Rockafellar (1970, page 48)]. 
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For any veJ^, </, v> - c{t) = {t — c(01,v> = </z(0,v>, and since h{t) 
belongs to J^, 

/(v) = sup</z(0,v> < sup <^°,v>. 

It follows that for any vsJ^ 
r 

I(v) = supO,v}= sup ^ v^log(Zi/p^). 

Since /(v) is defined as a Legendre-Fenchel transform, /(v) is a closed convex 
function on W. Suppose we show that /(v) equals /p^^v) for all v in r i ^ . 
Since I^^\y) is continuous relative to Ji, the continuity property in Theorem 
VI.3.2 will imply that /(v) equals I^^\y) for all v in Ji. For any v and z in 
r i ^ 

I v . log^ = t v . log^ + t v . log^ = / f )(v) - / f )(z). 
i= i A t=i Pi i=i ^i 

Since /v^^(z) > 0 with equality if and only if z = v, it follows that /(v) equals 
/^^^(v)forallvGri^. D 

Lemma VIIL2.3 completes the proof of Theorem VIII.2.2. By our remarks 
earlier in the section, Theorem VIII.2.1 follows. 

VIII.3. The Contraction Principle Relating Levels-1 and 2 
(d=l) 

In Theorem II.5.2, we stated a contraction principle relating levels-1 and 2 
for Borel probabiHty measures p onU whose support is a finite set. In the 
present section, a generalization is proved for any Borel probabiUty measure 
p on [R which is nondegenerate (not a unit point measure) and for which 
Cp(t) = logj^exp(tx)p(dx) is finite for all teU. We also obtain additional 
properties of the level-1 entropy function /^^\ including a relationship 
between the effective domain of this function and the support of p. These 
results will be proved in the next section for Borel probabiUty measures p 
on [R^ d>2. 

Let p be a Borel probability measure on IR. A point x e R is said to be a 
support point for p if every neighborhood of x has positive p-measure. The 
support of p is defined as the set of all support points for p and is denoted 
by Sp. The support may be characterized as the smallest closed set having 
p-measure 1. The convex hull of Sp is defined as the intersection of all the 
convex sets containing S^ and is denoted by conv5p. Clearly, conv5p is the 
smallest closed interval containing S^; conv Sp has nonempty interior when
ever p is nondegenerate. If Cp(t) is finite for all teU, then we define p̂  to be 
the Borel probabiUty measure on U which is absolutely continuous with 
respect to p and whose Radon-Nikodym derivative is given by 
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(8.1) dpt 
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1 
-^-{x) = exp(/x)• J——, . ,j . 
dp ]^exp{tx)p{ax) 

According to Theorem VII.5.1(b), c^(0 is differentiable for all t and 

<̂ p(0 = xQxp(tx)p(dx)' tx)p(dx) Ĵ  
= xpt(dx). 

jRexp(/. 

If V is a Borel probability measure on IR, then we define the relative entropy 
of V with respect to p by the formula 

eKv) = log — (x)v(dx) 

I 00 

if V « p and 

otherwise. 

log 
dv^ 
dp 

dv < 00, 

(8.2) 

The next theorem states the contraction principle relating levels-1 and 2. 
The theorem shows that for each zeU 

I^'\z) = inf j / f )(v): VG^(IR), | xv(dx) = z 1, 

and it determines for zeconViS^ where the infimum is attained. A related 
contraction principle was used in Chapter III to show the existence of the 
Maxwell-Boltzmann distribution for the discrete ideal gas [Lemma 111.4.5].^ 

Theorem VIII.3.1. Let p be a nondegenerate Borel probability measure on U 
such that Cp{t) is finite for all teR. Then the following conclusions hold. 

(a) For each point zGint(conv5^), there exists a unique point teU such 
that j[}5 xpf(dx) — z. Ip^\y) attains its infimum over the set {v e Ji{U): ^^ xp(dx) 
= z] at the unique measure pf and 

(8.3) I^^\z) = I^^\p,) = mfU^^\v):vG^{U), \ xv(dx) = z | < oo. 

(b) For z^convSp, 

(8.4) I^'\z) = inf i / f )(v):VG^(R), | xv(dx) = z} = oo 

(c) Suppose that conv Sp has a finite endpoint on. If p has an atom at a 
(p{oc} > 0), then for z = a (8.3) is valid with p^ replaced by d^. If p does not 
have an atom at a, then (8.4) is valid for z = a. 

Part (a) of the theorem states that for each point ZG int(conv5'p), there 
exists a unique real number t such that \^ xpf^dx) = z. Since Cp(t) = ^^ xpj(dx), 
we can prove the statement in part (a) by showing that the function Cp 
defines a one-to-one mapping of U onto int(conv5'p). Lemma VIII.3.2 and 
Theorem VIII.3.3 estabUsh this fact together with other useful information. 
Theorem VIII.3.1 will be proved afterwards. 
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The following lemma is due to Lanford (1973, page 42). 

Lemma VIII.3.2. If the point 0 belongs to int(conv 5^), then Cp(t) = Ofor some 
teU. 

Proof. A continuous function on IR with compact level sets attains its infimum 
over U at some point t. If the function is differentiable, then the derivative 
vanishes at t. Hence it suffices to prove that the level sets Kfj = {tsU: 
Cp{t) <b], b real, are compact. K^ is closed since Cp is a closed convex 
function. Since 0 belongs to int(conv»S'^), there exist numbers 8 > 0 and 
0 < ^ < 1 such that 

p{xeU\x >&]>d>0 and p{xeU\x< -E] > 5 > 0. 

If t is non-negative, then 

Cp{t) > log Qx^{tx)p{dx) > re -h log 5. 
J{^>£} 

Similarly, if t is negative, then Cp{t) >\t\s-\- log^. Thus K^ is a subset of the 
interval {re [R: |r| <{b — log^)/£}, and so K^ is bounded. n 

Lemma VIII.3.2 will be used in the proof of part (a) of the next theorem. 

Theorem VIII.3.3. Let p be a nondegenerate Borel probability measure on R 
such that Cp(t) is finite for all teU. Denote the range of the function Cp(t), 
teU, by ranc^. Then the following conclusions hold. 

(a) Cp defines a one-to-one mapping ofU onto int(conv Sp) and 

int(dom/^^^) = ranc^ = int(convAS'̂ ). 

(b) domfp^^ c conwSpi i.e., I^^\z) = oo ifz^conwSp. 
(c) Suppose that conv Sp has a finite endpoint oc. Then a belongs to dom /̂ ^̂  

if and only ifp has an atom at a; in this case Ip^cf) = — log p {a}. In particular, 
if the support of p is a finite set, then dom /̂ ^̂  equals conv Sp and I^^^ is contin
uous relative to conwSp. 

Proof (a), (b). A short calculation shows that 

(8.5) c;(t) (x - {xyfpXdx), 

where <x>^ = ^u^Pti^^) ^^d the measure p^ is defined in (8.1). Since p is 
nondegenerate, (8.5) implies that Cp{t) is positive. Thus Cp(t) is strictly 
convex [Problem VI.7.2(b)] and the derivative Cp(t) is an increasing function 
on R. In particular, if z is given, then the equation Cp(t) = z has a unique 
solution t whenever a solution exists. We now show that ran c^ = int(conv Sp). 

Step 1: ran c^ c int(conv Sp). Since the support Sp^ of p̂  equals the support 
of p, c'p{t) = \s xpt(dx) must lie in conv 5"̂  for each real t. If c'p{t) were 
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to lie in bd(conv 5 )̂, then p^ and p would have to be point measures. This 
would contradict the nondegeneracy of p. 

Step 2: int(conv S^) £ ran c .̂ Let z be a point in int(conv S^) and consider 
the translated measure p(- + z). The point 0 belongs to the interior of the 
set conViS'̂ (.+2) and 

^pi-+z)iO — xpt(dx) — z = Cp(t) — z. 

Thus finding a point t which satisfies c'p(t) = z is equivalent to finding a 
point t which satisfies Cp(.+̂ )(/) = 0. In other words, without loss of general
ity, it suffices to prove that if 0 belongs to int(conv5'p), then there exists a 
point t which satisfies c'p{t) = 0. This implication was proved in Lemma 
VIIL3.2. 

We have shown that ran ĉ  = int(conv S^) and thus that ĉ  defines a 
one-to-one mapping of IR onto int(conv S^, We now describe the effective 
domain of the function 

/^i)(z) = sup{/z-c,(0}, zeU. 
teU 

Since Cp{t) is convex, the supremum is attained at some point t if and only 
if c'pit) = z. In this case, 

Il'\z) = t(z) • z - Cp(t)) where c;(r(z)) = z. 

Hence all points z in the range of c^ are in the effective domain of /^^\ 
Combining this with the previous result, we have 

ranc^ = int(conv5p) ^ dom/^^ 

We now show that dom /̂  ̂ ^ ^ conv Sp. This will yield part (b) of the theorem, 
and together with the last display it will show that 

int(dom/^^^) = ranc^ = int(conv5p). 

Let z be a point outside conv^S .̂ If z lies to the right of conv5p, then there 
exist real numbers <5 > 0 and b such that 

sup{xG[R:x6conv5p} <b — d<b + 3<z, 

Since Sp is a subset of conv5p, 

Ip^\z) > sup ̂ ẑ — log I Qxp(tx)p(dx) 
t>0 

> sup {t(b + 5)- t(b - 3)} = 00. 
r > 0 

A similar analysis shows that Ip^\z) = oo if z hes to the left of convSp. This 
proves that dom/̂ ^^ ^ conv5p. 

(c) Suppose that a is a right-hand endpoint of conv5p. For fixed xeSp, 
Qxp\_t{x — a)] is a nonincreasing function of t which converges to XM(^) 
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as /-> 00. Hence 

^y^(a) = ~ j ^P^g Qxp[t(x - a)]p(dx) = - l o g X{a}(x)p(dx). 
JSp JU 

I^^\a) equals — logp{a} or oo according to whether or not p has an atom 
at a. A similar proof works for a left-hand endpoint of conv5p. If the 
support of p is a finite set F = {xi,X2, . . . , x j with Xi < X2 < - - - < x^, 
then conViSp = [ x i , x j . Since p has atoms at x^ and at x^, dom/^^^ equals 
conv5^. /̂ ^̂  is continuous relative to conv5p by Theorems VI.3.1 and 
VI.3.2. D 

Proof of the contraction principle, Theorem VIII.3.1. (a) Let z be a point in 
int(conv5'p). Part (a) of Theorem VIII.3.3 implies that there exists a unique 
point teU such that \^xpt{dx) = z. We have 

n'\Pt)= exp(a)p(Jx) p,( 
JU J 

tx — log exp(rx)p((ix) pt{dx) 

= tz-c,{t) = Il'\z). 

Now let V ^ p̂  be any other Borel probabiUty measure on IR which has mean 
z and for which I^^\v) is finite. Then v is absolutely continuous with respect 
to p and to p̂  and 

/<2>(v) = f log^dv = [ l o g ^ ^ v + f Xog^dv 
JR dp J„ dp, JR dp 

= /<f (V) + tx — log Qx^{tx)p{d: Ix) v(dx) 

= I^^Kv) ^tz- Cp{i) = Il^\v) + I^'Kz), 

Since v 4" Pt^ ^p^K^) is positive and so Ip^\v) > Ip^\z). We conclude that for 
vG^([R), / f (̂v) > I^^\z) = I^p^Kpt) and that equality holds if and only if 
v = p,. 

(b) If z does not belong to conv 5^, then any Borel probability measure v 
on U which has mean z is not absolutely continuous with respect to p. 
Therefore 

mtU^p^\v):veJ^{Ul \ xv(dx) = z\ = oo. 

I^^\z) equals 00 by Theorem VIII.3.3(b). 
(c) If a is a finite endpoint of conv S^ and if p has an atom at a, then the 

measure d^ is absolutely continuous with respect to p, 5^ has mean a, and S^ 
is the only Borel probabiUty measure on U with these properties. By Theorem 
VIII.3.3(c) 

/^^)(a) = - logp{a} = Ij^'XS,) = inffc>(v):VG^(R), f xv(dx) = , a > < cx). 
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If p does not have an atom at a, then 

Il^\a) = mf\n^\v):v€^(U),  I xv(dx) = a[ = oo. 

Our final result describes smoothness and mapping properties of the 
entropy function I^^K^). We recall from Theorem VIII,3.3(a) that 

int(dom/^^0 = int(conv5^). 

Theorem VIII.3.4. Let p be a nondegenerate Borel probability measure on U 
such that Cp{t) is finite for all teR. Then the following conclusions hold. 

(a) I\y^\z) is essentially smooth; that is, I^^Kz) is differentiable for ze 
int(dom/yO = intCconv^Sp) and |(/^^y(z)| -^ oo as zGint(conv5'^) converges 
to a boundary point o/int(convS^). 

(b) The function (Ip^^ defines a one-to-one mapping of mt(convSp) onto 
U with inverse Cp. 

(c) Ip^\z) is a real analytic function ofz G int(conv 5^). 

Proof (a) Since p is nondegenerate, Cp(t) is strictly convex [see (8.5)] and 
so Il^\z) is essentially smooth [Theorem VI.5.6]. 

(b) This follows from Theorem VIII.3.3(a) and the fact that for ze 
int(conv5^), t = (fp^^iz) if and only if z = c'p(t) [Theorem VII.5.5(d)]. 

(c) If z is a point in int(conv5p), then there exists a unique solution 
/ = t(z) of Cp(t) = z and 

/<i>(z) = / (z) -z-c , ( r (z) ) . 

It suffices to prove that the function z -^ t(z) is real analytic in some neighbor
hood of each fixed z. The function Cp(t) can be continued into the complex 
plane C to be an analytic function. Since c'p(t(z)) is positive, this continuation 
defines a one-to-one analytic mapping of a complex open neighborhood of 
t(z) onto a complex open neighborhood U of z. The inverse function is also 
analytic [Rudin (1974, page 231)]. Hence the restriction of the inverse 
function to points zeUnU is real analytic. The restriction is the function 
Z -^ t(z). D 

VIII.4. The Contraction Principle Relating Levels-1 and 2 
(d>2) 

Let p be a nondegenerate Borel probabiUty measure on IR with support S^ 
and assume that Cp(t) is finite for all / G [R. In the previous section, we proved 
that the infimum in the contraction principle relating levels-1 and 2 is attained 
for all z in the interior of conv S^ (convex hull of S^) and that the effective 
domain of/̂ ^^ is a subset of conv S^. These results will now be extended to 
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nondegenerate Borel probability measures p on W^, d>2. The sets S^ and 
conv Sp are defined as on page 253. 

The role played by the set conv S^ for <i = 1 is played, for d>2,by the 
closed convex hull of S^. The latter is defined as the intersection of all the 
closed convex sets containing S^ and is denoted by cc»S .̂* We suppose that 
Cp{t) =^ logj(]5dexp</,x>p((ix) is finite for all teU^, and we define p^ to be 
the Borel probabihty measure on U^ which is absolutely continuous with 
respect to p and whose Radon-Nikodym derivative is given by 

(8.6) - ^ ( x ) = exp</,x> •-. 
dp ]^dQX^\t,x)p{dx) 

According to Theorem VII.5.1(b), Cp{i) is differentiable for all t and 

(8.7) 
dc,{t) 

XiQxp{t,xyp(dx) • 
1 

ji]5dexp<r,x>p((ix) 

Thus VCp(t) = ^^dxpXdx). 

Let p be a Borel probabihty measure on R^ such that Cp(t) is finite for all 
teU^. The relative entropy Il^\v) of veJ^iW^) with respect to p is defined 
as in (8.2). Donsker and Varadhan (1976a, page 425) prove that 

(8.8) mz) = M\mv):vE % XV (dx) = z 

for each ZGR^.^ We will prove (8.8) only for z in the relative interior of cc S^ 
and for z^ccS^. For z in the relative interior of cc S^, we will also determine 
where the infimum in (8.8) is attained. 

Theorem VIII.4.1. Let p be a nondegenerate Borel probability measure on U^, 
d>2, such that Cp{t) is finite for all t e W^. Then the following conclusions hold. 

(a) For z e ri(cc 5^), let A^ denote the set of points tfor which \^d xpt(dx) = 
z. Then A^ is nonempty,^ the measures {p^^teA^} are all equal, and Ip^\v) 
attains its infimum over the set {vEJ^{U'^):^^dXv(dx) = z} at the unique 
measure p^, teA^. Furthermore 

'), (8.9) /<i'(z) = /<^>(A) = inf <! /<^>(v): v e 

(b) For z^ccSp, 

(8.10) I^/\z) = inf {l^p'Kvy.ve 

xv(dx) = z> < 00. 

xv{dx) = z> = 00 

* Although Sp is closed, conv5p need not be closed for d>2; e.g., if Sp = {xeR^: jc^elR, 
^2 = 0 or %! = 0, ^2 = 1}, then conv5'p = {;ce[R^:xi GR, 0 < ;c2 < 1 or x^ = 0,^2 = 1}. In 
general, h(ccSp) = ri(conv5'p). 

^A^ consists of a unique point if and only if p is maximal [see Theorems VIIL4.3(a) and 
VIII.4.4(a)]. 
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This theorem generaUzes parts (a) and (b) of Theorem VIII.3.1 to W^, 
d>2. The proof of the latter depended on the relation between the range 
of the function c^(/) and the support of p expressed in Theorem VIII.3.3(a). 
A similar proof will yield Theorem VIII.4.1 once we estabhsh an analogous 
relation between the range of the mapping Vc^(0, teU^, and the support 
of p. 

It is convenient first to consider those measures p for which the convex 
function Cp(t) is a strictly convex function on IR̂ . The next proposition gives 
a simple criterion for this strict convexity. Let aff 5"̂  be the affine hull of the 
support of p. A Borel probabiUty measure p on W^ is said to be maximal if 
aff 5p equals all of W^. This condition is equivalent to S^ not being a subset 
of any hyperplane in IR*̂. For example, if d= 1, then any nondegenerate 
measure is maximal. For d> 1, cc*S^ has nonempty interior whenever p is 
maximal, and intCcc^^) and int(conv5'^) coincide. 

Proposition VIII.4.2. Let p be a Borel probability measure on W^ such that 
Cp{t) is finite for all teU^. Then Cp{t) is a strictly convex function on W^ if 
and only if p is maximal. 

Proof Holder's inequahty impUes that for every t^ and 2̂ in U^ and 0 < A < 1 

exp<>l/i + (1 — X)t2,xyp(dx) < < exp</i,x>p(Jx)i 

. (1-A) 

/g 2j) - I I exp<^2,^>P(^^) 

and that equality holds if and only if 

(8.12) ^ exp</„x> ^ exp<^2,x> ^.^^^ 
Jn5dexp</i,x>/9(rfx) \^dexp(t2,x}p(dx) 

If Cp(t) is not strictly convex on IR"̂ , then there exist distinct points t^ and 2̂ 
and some 0 < 2 < 1 for which equality holds in (8.11). Hence by (8.12) 

(8.13) (t,,xy = Oi.^y + Cp(t,) - Cp(t2) p-a.s. 

This equahty impHes that the support of p is a subset of the hyperplane 

{xeW: <x , t , - t^) = Cp(t,) - Cp(t2)}. 

Hence p is not maximal. Conversely, suppose that p is not maximal, but 
that its support is a subset of the hyperplane H= {xeU^:{x,yy = b}, 
where 7 is a unit vector. Let t^ be a fixed element of H and let A be the set 
of vectors of the form 

t = tQ + (xy, areal (a = <̂  — ^O'^))-
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Since <[x,y} = b for all x in the support of p, we have for ^ G ^ 

Cp(t) = ba + log exp<^o,-^>P(^-^) = b{t - to,y} -f c/^o). 

This shows that c^ is affine on A and thus is not strictly convex on U^. n 

The next theorem generalizes Theorem VIII.3.3 to maximal probabiUty 
measures on [R^ ^ > 2. It is due to Barndorff-Nielsen (1970, 1978).^ Mea
sures which are not maximal will be considered later. 

Theorem VIII.4.3. Let p be a maximal Borelprobability measure on R^, d>2, 
such that Cp{t) is finite for all teU^. Denote the range of the mapping VCp{t), 
teU^, by ran VCp. Then the following conclusions hold. 

(a) VCp defines a one-to-one mapping ofU^ onto int(cc Sp) and 

int(dom/^^^) = ranVc^ = int(cc5^). 

(b) dom/^^^ ^ cc5^; i.e., Il^\z) = oo ifz ^cc Sp. 
(c) Let zbe a boundary point of cc Sp and let Jf̂  be the set of all supporting 

hyperplanes to cc Sp at z. Ifp(H) = Ofor some He J^^, then z does not belong to 
dom/^^>. 

Proof of parts (a) and (b). It is convenient to divide the proof of parts (a) 
and (b) into four steps. The proof of part (c) is omitted [see Barndorff-
Nielsen (1978, pages 140-143) and Problem VIIL6.8.] 

Step 1: WCp defines a one-to-one mapping. Let t^ and 2̂ be any two 
distinct points in W^ and define the function 

f(X) = Cp(t,+X{t2-t,)l XeR. 

Since p is maximal, Cp(t) is strictly convex on R^, and sof(X) is strictly convex 
on R. Thus 

f(0) = <wcpit,\ t, -1{) <r{\) = <ycp{t,\ t, - t,y. 
It follows that VCp(t^) ^ VCp(t2). 

Step 2: ran VCp £ int(cc Sp). We first prove that ran VCp ^ ccSp. Suppose 
that z = VCp(t) lies in the complement of cc5^. By Lemma VI.5.4(b) there 
exists a hyperplane H = {xeR^: <x, y} = b} which separates cc5^ and {z} 
strongly and 

sup{<^x,yy:xeccSp} < b < {z.y}. 

Since the support 5̂ ^ of the measure Pt equals Sp and Sp is a subset of cc5p, 

b < <z, 7> = <grad c^(0,7> = <^, y^pAdx) < b. 
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This contradiction proves that ran Vc^ ^ cc5^. Now suppose that z = 
Vcp(0 lies in bd(cc5'p). By Lemma VI.5.4(a) there exists a hyperplane 
H = {xe^^\ <x,y> = b] which separates ccS^ and {z}, and 

sup{<x,7>:xGcc5'^} <b < <z,7>. 

As above, h < <z,7> = J5 {x,y'^p^{dx) < b. This implies that {x,^) equals 

b for all xeSp^ = Sp, or that S^ is a subset of the hyperplane H. As this 

contradicts the maximahty of p, the proof of Step 2 is done. 
Step 3: int(cc5p) ^ ranVc^. As in the proof of the analogous fact 

for d — 1 [page 256], it suffices to prove that if the point 0 belongs to 
mi{ccSp), then there exists a point t which satisfies Vc^(0 = 0. For d= \, 
this was proved in Lemma VIIL3.2. The same proof appHes to J > 2 once 
we show that the level sets Kij = {teU^\ Cp{t) < b}, b real, are compact.* Kj, 
is closed since Cp is a closed convex function on IR"̂ . If cc Sp = W^, then let 
£ = R, where R is any fixed positive number. Otherwise, let e > 0 be half the 
distance from 0 to the complement of cc Sp. For any unit vector y, define the 
half-space A(y) = {xeW^: <x,7> > e}. We prove below that there exists a 
number 0 < ^ < 1 such that 

(8.14) inf p{A(y)}>5. 

From this it will follow that if t is nonzero, then 

Cp{t) > log Qxpi\\t\\'t/\\tlxyp(dx) > e\\t\\ + log^. 
JAitlWtW) 

The same inequality holds for / = 0 {Cp(0) = 0 > log S). We conclude that 
Kf^ is a subset of the ball {rG[R :̂ ||^|| < e~\b - log(5)} and thus that K^ is 
bounded. 

If (8.14) were not true for some ^ > 0, then there would exist a sequence 
of unit vectors ^i, 72? • • • such that p{A{y^] ^ 0 as w ^ oc. By the compact
ness of the unit sphere in [R"̂ , there would exist a subsequence {y^] and a 
unit vector y such that y^^ -^y. Fatou's lemma would imply p{A{y)] = 0. 
On the other hand, by the definiton of e, the open half-space A(y) contains a 
point in conv^S^, and therefore A{y) contains a point in Sp. It follows that 
p{A(y)} must be positive. This contradiction proves that (8.14) must hold for 
some S > 0 (S < I since p is a probabiHty measure). 

Step 4: int(dom /̂ ^O = int(cc Sp) ^ dom /̂ ^̂  ^ cc 5^. According to The
orem VI.5.3(c) ranVCp ^ domI^^\ and Steps 2 and 3 imply that ranVc^ 
= int(cc5'p). Hence Step 4 is proved once we show that dom/^^^ ^ cc^S^; 
i.e., I^^\z) = 00 for z^ccSp. If z^ccSp, then there exists a hyperplane 
H = {XGW^: <X, y> = b} which separates cc Sp and {z} strongly, and 

sup{<x,y>:xGCC*Sp} <b — d<b-\-5< {z.y} 

for some ^ > 0. Since Sp is a subset of cc5p, 

*The following proof is due to Lanford (1973, page 42). 
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/^^)(z) = s u p { < / , z > - c / 0 } > sup i < r , z > - l o g exp<^,x>p(Jx)l 
teU"^ t=ry,r>0 

> sup {r(b + (5) — r(b — d)} = oo. 
r>0 

This completes the proof of Step 4 and the proof of parts (a) and (b) of 
Theorem VIII.4.3. n 

The previous theorem described the range of the mapping Vc^(0, teU^, 
and the effective domain of/̂ ^^ for maximal measures p. We now consider 
nondegenerate measures p which are not maximal. As a special case, assume 
that the affine hull of S^ equals the subspace A = {xeU^:x^+^ = - - - =z 
x^ = 0} of dimension m < d. Then Cp(t) = log j[j5dexp(^^=i t^x^pidx) is a 
function of ^ e ^ . Since as a measure on ^ p is maximal, the previous theorem 
implies that gradc^ defines a one-to-one mapping of ^ onto riCcĉ S )̂ (the 
interior of cc5^ relative to A) and that ri(dom/^^^) equals ri(cc5'^). In order 
to analyze an arbitrary nonmaximal measure, one reduces to this special 
case. 

Theorem VIII.4.4. Let p be a nondegenerate Borel probability measure on IR"̂ , 
d>2, which is not maximal. Assume that Cp{t) is finite for all teU^. Then 
the following conclusions hold. 

(a) VCp defines a many-to-one mapping ofR^ onto ri(cc Sp) and 

ri(dom/i^^) = ranVc^ = ri(cc5^). 

IfWCp{t^ = ^Cp(t2), then the measures p^ and p^ are equal. 
(b) VCp defines a one-to-one mapping ofdiffSp onto ri(cc5'^). 
(c) dom/^^^ccc5^. 

We prove the assertion in part (a) that if Vc^(/i) = ^Cp{t2), then Pi^ = p^^. 
Suppose that t^^ tj and define the convex function 

f{X) = Cp{h, + {\-X)t,\ keU. 

Since gradc^(/i) = gradc^(^2). it follows that/ '(O) = / ' ( ! ) and thus that 
f{X) is affine on the interval 0 < A < 1. This impUes that 

Cp{Xt^ + (1 - X)t2) = 2.Cp(t,) + (1 - ^)Cp(t2) for all 0 < A < 1. 

The latter is equivalent to condition (8.12), which imphes that p^ = Pt . The 
proof of the rest of the theorem is Problem VIII.6.9. 

Proof of the contraction principle. Theorem VIII.4.1. (a) Since ^^dxp^{dx) = 
VCp(t), the set A^ is the set of t for which Vcp(t) = z. For z6ri(cc*S'^), A^ is 
nonempty by Theorems VIII.4.3(a) and VIII.4.4(a). A^ consists of a unique 
point t if and only if p is maximal. We have just proved that if p is not maximal, 
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then the measures {Pt'je A^] are all equal. The rest of part (a) is proved exactly 
like Theorem VIII.3.1(a). 

(b) If z does not belong to cc Sp, then any Borel probability measure v on 
U^ which has mean z is not absolutely continuous with respect to p. Therefore 

mf\h^\v)\veJi{U^\ xv(dx) = z> = cc. 

fp^\z) equals oo by Theorem VIII.4.3(b). n 

For nondegenerate probabiHty measures p on [R, Theorem VIII.3.4 
described smoothness and mapping properties of the entropy function 
Ip^\z). This has a direct generalization to maximal probabihty measures p 
on [R^ J > 2 [Problem VIII.6.10]. 

We have completed our discussion of level-2 large deviations. The level-3 
problem is the topic of the next chapter. 

VI I I . 5 . N o t e s 

1 (page 250). We describe the results in Donsker and Varadhan (1975a). 
Let ZQ, Zi , ^2, . . . be a stationary Markov process with transition probabil
ities y(x, dy) taking values in a compact metric space ^. Assume that XQ = x 
and that 

(a) y(x, dy) is a Feller transition probability; 
(b) y{x,dy) has a density y{x,y) relative to some reference probabihty 

measure P{dy); 
(c) y{x,y) is uniformly bounded away from 0 and oo. 

Let ^ be the set of positive functions u e ̂ (^). Define for any Borel probabil
ity measure v on ^ 

/ » = - i n f I logf^)(x)v(Jx) , 

where yu(x) = j^u{y)y(x,dy). It is then proved that the distributions on 
J^(^) of the empirical measures L^^^ico, •) = n~^ Yj=o ^x(co)( ')>« = 1,2, . . . , 
have a large deviation property with a„ = n and entropy function /^(v). 

The paper also treats continuous parameter, stationary Markov processes 
{Xfit > 0} taking values in a compact metric space ^ . Let p(t, x, dy) be the 
transition probabiUties. Assume that XQ = x and that for each r > 0 7(x, dy) 
= p(t,x,dy) satisfies hypotheses (a)-(c) above \_^(dy) fixed for all ^ > 0]. 
Let L be the infinitesimal generator of the semigroup associated with 
p(t, X, dy) and ^ the domain of L. Define for any Borel probabihty measure 
V on ^ 

/(v) = - inf 
M>0,ue^ 

^ V x ) v ( J x ) . 
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It is then proved that the distributions on Ji{SC) of the empirical measures 
L^ipj,') = t~^ \^Qdx{co)i')d^^ / > 0, have a large deviation property with 
entropy function /(v); that is, / i s lower semicontinuous, /has compact level 
sets, 

Hm sup - log PjL^co, ')eK} < — inf /(v) for each closed set K in ^ , 
f-*oo t veX 

hm inf- log P{Lj(co, •) e G} > — inf /(v) for each open set G in ^ . 

In Donsker and Varadhan (1976a), a large deviation property is proved 
for Markov processes taking values in a complete separable metric space 
3C. The transition probabihties must satisfy strong transitivity and recurrence 
properties. As a corollary, one obtains the level-2 large deviation property 
for i.i.d. random vectors taking values in ^. Theorem II.4.3 is a special case. 

Donsker and Varadhan have applied these large deviation theorems to a 
number of interesting problems. See references at the end of the book. Large 
deviation results for empirical measures have been obtained by many people, 
including Sanov (1957), Sethuraman (1964), Gartner (1977), Bahadur and 
Zabell (1979), Bretagnolle (1979), Groeneboom, Oosterhoff, and Ruymgaart 
(1979), Kac (1980), Chiang (1982), Jain (1982), Csiszar (1984), Stroock 
(1984), and Pinsky (1985). Luttinger (1982) presents a formal approach. 

2 (page 254) Csiszar (1975) studies a large class of minimization problems 
involving relative entropy. Formula (8.3) is an example as is Problem 
VIII.6.2 below. 

3 (page 259) Donsker and Varadhan (1976a, page 425) prove the contrac
tion principle (8.8) for p a Borel probabihty measure on a Banach space ^ 
which satisfies j ^ ^^"''"pC^^) < ^ for all a > 0. If ^ = IR"̂ , then this condi
tion is equivalent to Cp{t) < oo for all teU^. 

4 (page 261) Theorem VIII.4.3 is proved in Barndorff-Nielsen (1978, 
Section 9.1) for maximal measures p under less restrictive hypotheses on Cp. 

VIIL6. Problems 

VIII.6.1. Let p be a maximal Borel probabihty measure on IR"̂  such that 
c^(0 is finite for a l l /6 R'̂ . 

(a) Show that the Hessian matrix of Cp{t) is positive definite for all 
/ GIR"̂  and thus that Cp is strictly convex on R^. 

(b) Prove that /̂ ^̂  is essentially strictly convex. 

VIII.6.2 [Kagan, Linnik and Rao (1973, Section 13.2.2)]. We are given a 
Borel measure p on IR (not necessarily a probabihty measure); bounded, 
measurable, real-valued functions h^, ... ,h^ on (R; and real numbers 
ai , . . . , a^ . For v a Borel probabihty measure on [R, define 
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\dv < 00, \og-—(x)v(dx) if V <<< p and 
dp 

, dv 
log — 

dp 

otherwise. 

Let 3P denote the set of all Borel probability measures v on [R which are 
absolutely continuous with respect to p, for which dv/dp has the form 

^(x) = exp(iSo + Pih,(x) + . . . + I^Mx)). iSo, . . . , i?. real, 
dp 

and which satisfy ^^hi(x)v(dx) = â , / = 1, . . . ,r. Prove that if ^ is not 
empty, then ^ equals the set of measures at which 

(8.15) m{\l^^\v):ve 

is attained. 

hi(x)Vi(dx) = ai, / = 1, . . . , r 

VIII.6.3. Let p be Lebesgue measure on J*([R). For each of the following 
probabiUty densities, find functions h^, . ., ,h^ such that the probabiUty 
measure on IR with the given density solves the minimization problem (8.15) 
for some constants a^, . . . , a^ . 

(i) f(x) = x"-i(l - x)^-'/P(a, b) on (0,1), ^ > 0, ft > 0 (beta density). 
(ii) f{x) = ae~'''' on (0, oo), a > 0 (exponential density). 
(iii) f{x) = fl^x^"^e"^Vr(ft) on (0, oo), ^ > 0, ft > 0 (gamma density). 
(iv) f(x) = (2na^y^'^Qxp[-(x - m)^/2a^] on ( -oo , oo), m real, ^^ > 0 

(Gaussian density). 
(v) f(x) = ^ae'"'^''^ on (— 00, oo), a> 0 (Laplace density). 

Vin.6.4. Let p be the probability measure i(^(o,o) + <5(i,o) + ^(o,i)) on R^. 
Prove that for each z G cc 5^ 

(8.16) I^'\z) = mru^^\v):veJ^(U^), \ xv(dx) = z l < oo 

and determine the measure v at which the infimum is attained. Theorem 
VIIL4.1(a) states where the infimum in (8.16) is attained only for points 
zGint(cc5^). 

VIII.6.5. Let p be a Borel probabiUty measure on W^. Prove that /̂ ^̂  is a 
strictly convex function on ^(R^); i.e., if ju and v are distinct Borel probabil
ity measures on W^, then for all 0 < /I < 1 

I^/\2^fi + (1 - X)v) < U^'\ix) + (1 - X)ll'\v). 

VIII.6.6. (a) Let p be a Borel probabihty measure on U^ and A a nonempty 
compact convex subset of Ji{U^). Prove that if infyg^/^^^(v) is finite, then 
Ip^\v) attains its infimum over ^ at a unique measure. 
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(b) Let p be a nondegenerate Borel probability measure on IR'̂  such that 
Cp(t) is finite for all t s W^. Let z be a point in rbd(cc S^) such that 

(8.17) mf\l^^\v):veJ^(U'l xv(dx) = z> < CO. 

Prove that the infimum is attained at a unique measure p and that p is the 
weak Hmit of measures {p^^;« = 1,2, . . . } for some sequence {t„;n = 1,2, 
. . . } in [R̂  such that || /J | ^ oo [p,^ is defined in (8.6)]. Theorem VIIL4.1(a) 
states where the infimum in (8.17) is attained only for points z6ri(cc*Sp). 
[Hint: Use (8.8) and the following properties. Il,^\v) is strictly convex; 
I^^\v) is lower semicontinuous; If'\v) has compact level sets; if sup„/^^^(v„) 
is finite for some sequence {v„}, then lim^_ooSup„j'||̂ ,|>^ ||x||v„(Jx) = 0. The 
last three properties are proved in Donsker and Varadhan (1975a, 1976a).] 

VIII.6.7 [Barndorff-Nielsen (1978, page 105)]. Let p be a Borel probabihty 
measure on U^ such that Cp{t) is finite for all tsU^. Sp denotes the support of 
p. Prove that for any nonzero teR^ 

lim \_-XG{t\Sp) + CpiXt)-] = logp{x: <r,x> = (7(r|5,)}, 

where (T(t\Sp) = sup^^s < ,̂ •^) is the support function of S^ [see Problem 
VL7.11]. ' 

Vin.6.8 [Barndorff-Nielsen (1978, pages 140-143)]. Let p be a maximal 
Borel probability measure on W^ such that Cp(t) is finite for all t e U^. Let z be 
a boundary point of cc Sp and J^^ the set of all supporting hyperplanes to cc Sp 
at z. This problem shows that z does not belong to dom/^^^ if p(H) = 0 for 
some He^,. [Theorem Vin.4.3(c)]. 

(a) Any He J f ^ can be written as {x e IR*̂: <x — z, y) = 0}, where y is a unit 
vector and <x — z, y) < 0 for all xeccSp. Prove this statement. 

(b) Suppose that HsJ^^ has unit normal vector y. Prove that 

I^'Kz) > sup {A<7,z> - c^ily)} = lim {A<v,z> - c.^y)}. 
AeO A^cx) 

Conclude that if p(H) = 0, then z does not belong to dom/^^\ IHint: 
Problem Vm.6.7.] 

(c) Prove that if p is absolutely continuous with respect to Lebesgue 
measure, then dom/^^^ = mt(cc Sp). 

VIIL6.9. The purpose of this problem is to prove Theorem Vin.4.4. Assume 
the hypotheses of that theorem. 

(a) Suppose that the dimension m of aff 5^ is less than d. Prove that 
there exist an orthogonal matrix t/and a vector y such that aff S^ = UA + y, 
where A = {xeR^: x^+^ = • • • = x^ = 0}. For Borel subsets B of A, define 
p{B} = p{UB + y}. Prove that for suitable choice of y 
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c,(t) = iUyy + c-^{U\t - 7)), reaffS,, 

where U^ is the transpose of U. Relate the range of Vĉ CO, tedSiSp, to the 
range ofVcp{s), seA, and prove parts (a) and (b) of Theorem VIII.4.4. 

(b) Prove part (c) of Theorem VIII.4.4. 

VIII.6.10. The purpose of this problem is to generalize Theorem VIII.3.4 
to higher dimensions. Let /? be a maximal Borel probabihty measure on U^, 
d>2, such that Cp(t) is finite for all teW^. 

(a) Prove that Ip^\z) is essentially smooth. 
(b) Prove that V/̂ ^^ defines a one-to-one mapping of int(cc*S'̂ ) onto W^ 

with inverse Vc^. 
(c) Using the implicit function theorem for analytic functions [Bochner 

and Martin (1948, page 39)], prove that Ip^\z) is a real analytic function 
of zemt(ccSp). [Hint: For any point zeint(ccSp), there exists a unique 
point t(z)eU^ such that Vc^(/(z)) = z [Theorem VIII.4.3(a)]. The Hessian 
matrix of Cp at t(z) is positive-definite [Problem VIII.6.1(a)]. The mapping 
VCp(t) can be continued into the complex space C^ to be an analytic mapping 
[Bochner and Martin (1948, page 34)].] 



Chapter IX 

Level-3 Large Deviations for I.LD. 
Random Vectors 

IX. 1. Statement of Results 

Theorem II.4.4 stated the level-3 large deviation property for i.i.d. random 
vectors taking values in W^. In this chapter, we prove Theorem II.4.4 in the 
special case of i.i.d. random variables with a finite state space. This version of 
the theorem covers the appHcations of level-3 large deviations which were 
made in Chapters III, IV, and V to the Gibbs variational principle. Theorem 
II.4.4 can also be proved via the methods of Donsker and Varadhan (1983a). 
The main result in that paper is a level-3 theorem for continuous parameter 
Markov processes taking values in a complete separable metric space. ̂  

Let p be a Borel probabihty measure on U whose support is a finite set F. 
We topologize T by the discrete topology and F^ by the product topology. 
With respect to the probabihty space (F^, ^(F^), P^), the coordinate represen
tation process l}(co) = cOj is a sequence of i.i.d. random variables distributed 
by p. JiJ<y^) denotes the set of strictly stationary probabihty measures on 
^(F^) with the topology of weak convergence. The empirical process is 
defined as 

K^^^ •) = - Z Vx(n,co)('), n= 1,2, . . . , COGF^, 

where T is the shift mapping on F^ and X(n, oS) is the periodic point in F^ 
obtained by repeating (Zi(a;),X2(co), . . . ,Z„(co)) periodically. For each 
Borel subset B of F^, JR„(CO, B) is the relative frequency with which X(n, co), 
TX(n, oj), .. ., r"~^Z(«, (D) is in B. Thus 7̂ „(co, •) is for each CD an element of 
Ji^{r^). For PGe/#s(F^), P^ denotes a regular conditional distribution, with 
respect to P, of X^ given the cr-field ^{XfJ < 0}. The level-3 entropy func
tion is defined as 

(9.1) i';\p)= p,'\pjp(dcox 

where Ip^\Pco) is the relative entropy of P^ with respect to p. 
The following theorem is Theorem II.4.4 for the case of a finite state space. 

Theorem IX. 1.1. Let p be a Borel probability measure on U whose support is a 
finite set F. Then the following conclusions hold. 
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(a) [Q^n^], the Pp-distributions on Ji^iX'^) of the empirical processes {i^„}, 
have a large deviation property with a„ = n and entropy function I^^\ 

(b) Ip^\P) is an affine function of P. Ip^\P) measures the discrepancy be
tween P and the infinite product measure Pp in the sense that Ip^\P) > 0 with 
equality if and only if P = Pp. 

If .4 is a nonempty subset of Ji^iX^), then Ip^\A) denotes the infimum of 
/̂ ^̂  over A. I^^\^) equals GO. In order to prove part (a) of the theorem, we 
must verify the following hypotheses. 

(i) Ip^\P) is lower semicontinuous. 
(ii) Ip^\P) has compact level sets. 
(iii) limsup„^^n-HogQi^^{K} < -I^^KK) for each closed set K in 

(iv) \\mmi^^^n-HogQ^^\G}> -ll^\G) for each open set G in 

Hypotheses (i) and (ii) and part (b) of the theorem will be proved in Section 
IX.2. We prove hypotheses (iii) and (iv) by first showing the large deviation 
bounds for finite-dimensional sets in Ji^iT'^). The proof of the bounds for 
such sets depends on the following facts. 

(v) For each a > 1 the distributions of the a-dimensional marginals of 
[R^] have a large deviation property with entropy function denoted 

(vi) /^fj is related to /̂ >̂ by the contraction principle 

inf{/f '(P): PeJ^X^^n^P = t} = /<fj(T), 

where T = n^P is the fixed a-dimensional marginal of P. 

Item (vi) is proved in Section IX.3; (v), (iii), and (iv) are proved in Section 
IX.4. 

IX.2. Properties of the Level-3 Entropy Function 

Let p be a Borel probability measure on IR whose support is a finite set T = 
(xi, ^2, . . . , x j with Xi < X2 < " ' < x^. Set pi = p{xi} > 0. Let a be a 
positive integer and n^ the projection of T^ onto r"" defined by n^co = (co^, 
. . . , CO J. If P is a strictly stationary probability measure on ^(F^), then define 
a probability measure n^P on ^{V) by requiring 

n^P{F} = P{n;'F} = P{coer^: (co,, .. .,coJeF} 

for subsets F of V^. The measure n^P is called the a-dimensional marginal of 
P. We consider the quantity 

n.Plco} 
nX(n.P)= I TT.PHlog 

coer« " ^a^pi^}' 



IX.2. Properties of the Level-3 Entropy Function 271 

which is the relative entropy of n^P with respect to Tî Pp. In Chapter I, the 
level-3 entropy function Il^^{P) was defined as Xim^^^oT^I^^p (n^P) [see 
(1.37)]. We will show in Theorem IX.2.3 that this Hmit exists and coincides 
with the quantity I^p^\P) defined in (9.1). 

Given elements X; , . . . , x.- in F, set 

p(Xi^,.. .,Xi) = p { Z i = Xi^,..., A ; = Xij 

and provided P{X^ = x^^, • • • ,^a-i = ^ i^ .J > 0, let pixt^x^^, . . . ,X/^_i) 
denote the conditional probability P{X^ = XiJX^ = x^^, ... ,X^_i = ^to^-i}-
We define 

H,AP) = 
Z P(^i) ^OE[p(^i)/PiJ for a = 1, 

[l^Pi^i,^ ' ' '^^i)^oglp(XiJxi^, . . . ,•^^•^_l)/AJ for a > 2. 

For a > 2 the sum defining Hp^(P) runs over all / i , . . . , 4-1^4 for which 
/7(x^ ,̂ . . . , Xj-̂ _̂ ) > 0. Since 01ogO = 0, the sum may be restricted to all 
/i , . . . , i^ for which p(xi^, . . . , x̂ -̂ ) > 0. The quantity — Z/^(-^ii ^ • • • ^ -^iJ * 
\ogp(xi \xi^, . . . ,Xj- ) is known as the conditional entropy of X^ given 
Xi, . . . , ^ a - i -

Lemma IX.2.1 (a) Let p^, ... ,p^ and ^ i , . . . ,^iv ^^ non-negative real 
numbers such that Yj=iPi — 1? YJ=I ^i— ^^ andp^ = 0 whenever q^ = 0. Then 

N N 

Y.Pi\ogPi> Y^Pi^^^^i 

with equality if and only ifpi = qtfor all i. 
(b) n^in^P) = H^,^iP) + H^AP) + • • • + H^.a~AP) + H,JP). 
(c) 0 < //,.!(/>) < H^^P) < < / / , . , - , (P) < H^,,{P). 
(d) Hp 2{P) = Hp^{P) if and only if X^ and X2 are independent. 
(e) For a > 3, Hp^{P) = Hp^_^(P) if and only if X^ and X^ are condi

tionally independent given X2, . .., X^_^; that is, if and only if 

P(X: \Xi ,X.- , . . . ,X; J = P(Xi \Xi , . . . ,X.- J 

whenever/?(x.- ,x, , . . . ,X; J > 0.* 

Proof (a) We have 
iV N 

X A l o g A - Z A l 0 g ^ r = Z/^f lOg^. 
i = l 1 = 1 q p O ^ ' 

The latter is non-negative and equals 0 if and only if pi = q^ whenever q^ > 0 
[Proposition 1.4.1(b)]. Since by hypothesis Pi = qi whenever qi = 0, the 
proof of part (a) is done. 

*See page 301. 
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(b) If a > 2 andp(Xi^, . . . ,XiJ > 0, then 
a 

p(Xi^, ...,XiJ=p(Xi)' Y[p(:^i.\xi^, -".Xi ) . 

log '--\- X log ^— ^-^ 
Pi, ^ = 2 Pio 

Hence for a > 2 

= t H,,,{py 

(c)-(e) Hp^{P) equals the relative entropy of TI^P with respect to p and 
so is non-negative. Since P is strictly stationary, 

H,AP)= t p{Xi^.x,)\og^-^. 
i„i^=i Pi^ 

The sum may be restricted to i^J2 for which/?(Xi^) > 0. For \ip{Xi^ = 0, 
then/?(x^ , Xj) = 0 for all /2? and there is no contribution to the sum. Thus 

H,,2(P)-H^,i(P)= Z p(x0\J:p(x,^\x,)\ogp(x,^\x,) 

- E p(^i,\^i)^o§>p(^0>' 

By part (a), Hp^2iP) ^ H^^iiP) with equality if and only ifp(Xi^\xi) = pix^) 
whenever/>(Xj) > 0. The latter condition is equivalent to the independence 
of Zi and X2. Similarly, for a > 3, 

^ p , a ( ^ ) - ^ p , a - l ( i ^ ) 

= Z/̂ (X,̂ , . . . ,X,^_P] i ; ;^K|^/,, . . . ,X,̂ _^)l0g/7(x,Jx,̂ , . . . ,X,̂ _ )̂ 

- t /^Kl^^. ' • •. ,x,^_i)log;?(x,Jx,^, ... ,x,^_^)[, 

where the outer sum runs over all / i , . . . , 4-i for which/7(Xj^, •. •, Xi^_^ > 0. 
By part (a), Hp^{P) > Hp^_^(P) with equality if and only if 

p(Xi IX: , . . . ,Xi J =p(Xi \Xi , . . . ,Xj J 

whenever/?(Xj^, . . . ,Xi^_^) > 0. D 

We also need the following lemma, which arises in the proof of the 
Shannon-McMillan-Breiman theorem in information theory [BilUngsley 
(1965, page 131)]. 
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Lemma IX.2.2. For each /̂  e {1, . . . , r}, 
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0 < 
{^i = H^' 

SUp[-l0gP{A^l = X,]X_,, . . .,Xo]{(D)']P{dco) < <X). 

Proof. For n a non-negative integer, / G { 1 , . . . , r} , and coeT^, define 

f/\co) = -logP{X, = x,\X_„,... ,Zo}(fl>), 

r 

i = l 

Since 0 < P{X^ = ^i\^-n^ • • •, ^o}(^) ^ 1 P-a.s., it suffices to prove that 

(9.2) sup g„(cD)P(d(jo) < oo. 

l{A„ = {CDGT^: maXo< .̂<„̂ (̂co) < A < ^„(a))}, A > 0, then 

^{^.} = I ^{{^1 = ^J n ^ J = t P{{X, = X,} n £<;>}, 
i = l i = l 

where 5<„''= {w6r^:maxo<j<„y;<'\ft>) < A </„<''(«>)}• ^„''' is in the a-field 
generated by X^„, ..., X^, and so 

P j {A-i = X,.} n 5W} = ^{1-1 = x,\X.„, ...,Xo} (w)P(dw) 

= [ exp(-/„<'>(a>))i'(Jco)<e-V{5<'>}. 

Since the sets {B^^^; ^ = 0,1, . . . } are disjoint, 
00 r 00 

re 
/i = 0 1 = 1 / j = 0 

Hence P{co e T^: sup„>o ^„(co) > X] < re~^, and (9.2) follows. n 

Theorem IX.2.3. For PeJ^,{T^), define P/\P) by (9.1). Then 
Um^_^ a"^4^],^(7r^P) ^x/^/^, lim^^^ //p.a(^) exists, and 

lim ^/if^ (TT.P) = lim H^^^iP) = Il'\P) < ^ . * 
a->oo OL ^ P oc-^oo ^ ^ 

Proof By Lemma IX.2.1(b), it suffices to prove that \im^^^ Hp^(P) exists 
and equals Il,^\P). Since P is strictly stationary, we have for n>^ 

H,,„^2(P) = t log[P{Xi = xJX_„, . . . , Xo}/Pt;]dP. 

•There is an elementary proof of the existence of lim^^^ cc ^/^^j, (ng,P) which does not 
identify the form of the limit. See Note 2. 
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As « ^ 00, P{X^ = Xi^\X^„, . . . , XQ} converges to P{X^ = Xi^\{Xj;j < 0}} 
almost surely [Theorem A.6.2(a)]. By the Lebesgue dominated convergence 
theorem and Lemma IX.2.2, we conclude that lim„_̂ oo Hp^(P) exists and* 

i,=lJlX,=Xi^} 

= I \oglP{X,=x,y,Xj-J<0}}/p,J 

-P{X,=x,yXj'J<0}}dP 

{ \og^^P^(dx)P(dco) 

il'\pjp{dco) = p;\p)<(x^, D 

In order to prove properties of/^^^(P), we need a standard lemma. 

Lemma IX.2.4. Let b^, b2, . . . be a super additive sequence of real numbers; 
i.e., b^+n> b^-\- b„ for all positive integers m and n. Then lim,,^^ bjn — 
sup„>i bJn. 

Proof. Define s = sup^^^ bJn and suppose that s is not oo. Given £ > 0 
choose a positive integer k such that bjk > s — s. Any positive integer n 
has the form n = mk + /, where m > 0 and 0 < / < / : . By hypothesis 

bn = Kk+i^f^bk^lb^. 

Hence s > Hminf„_>^ bJn > Hminf̂ ^^o ^nbjn = bJk > s — s. Since £ > 0 is 
arbitrary, it follows that lim^^^o ̂ J^ = ^ if 5" is finite. The proof is similar if 
5-is 00. D 

Ip^\P) is lower semicontinuous. We first prove that for PeJi^iT^) the 
sequence of relative entropies 4 = 7̂ ]̂, {n^P) is super additive. Let a and p be 
arbitrary positive integers and introduce the notation 

coocb = (coi, CO2, . . . , co^, a)i, 0)2, . . . , 0)^)6^^^ for coeV, coeT^. 

Since n^+pPp{coocb} = n^Pp{co}-n^Ppico}, 

Since P is strictly stationary, Xcoer«^a+iS^{<^*^^} = ^/s^l^}? and so 

*The second equality in the display uses (A.3) [page 300]. 
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By Lemma IX.2.1(a) 4+^ - 4 - /^ > 0. It follows from Lemma IX.2.4 that 

P;\P) = ]imhmn^P) = sup^^m (n^P). 
a->oo (X '^ P a > i (X °^ P 

Since the mapping P -^ n^P is continuous, each function I^H, (n^P) is a con
tinuous function of JP e ^^ ( r^ ) . As the supremum of a sequence of continuous 
functions, Ip^\P) is a lower semicontinuous function of PsJi^iY^). 

Ip^\P) has compact level sets. JiJ<y^) is a compact metric space 
[Theorem A.9.2(c)]. Since Ip'^\P) is lower semicontinuous, its level sets 
are closed subsets of ^^ ( r^ ) and thus are compact subsets of ^^^^(r^). 

Ip^\P) is affine. We show that if P and Q are measures in Ji^{r^), then 
for every 0 < A < 1 

(9.3) I'p\kP + (1 - X)Q) = All\P) + (1 - / ) / f >(0. 

Write/?(cL)) for n^P{(D}ln^Pp{aj>} and ^{co} for n^Q{(D}ln^Pp{co],(DeV. Since 
X log X, X > 0, is convex and log x, x > 0, is nondecreasing, 

A / i ^ l , ^ ( P ) + (1 - ^)Pn'}^{Q) = Z ^a i^p{c^} [A;7(C0)log/7(C0) 
COG p a 

+ (1-A)^(co)log^(co)] 

> X 7r,P,{co} IXpico) + (1 - i)^(ct))] 
coer^ 

• \0g\_Ap((D) + (1 - A)^(CO)] 

> Z n^Pp{(^}l^pi(^)\og(Ap(co)) 
coeF^ 

+ (1 - A)^(co)log((l - X)q(oj))] 

= ^̂  Z 7raPp{a;}-j!7(co)log;?(co) 
coeF^ 

+ ( 1 - / ) ^ TT^P^jo;}-^(co)log ^(co) 
coeF" 

+ / log2 + (l -A)log(l -X) 

>;4fl,^(p) + (i-2)/i^},^(0-iog2. 

The sum on the third and fourth lines is /^^], (IP + (1 — A)0 . Dividing each 
term in the display by a and letting a tend to oo, we obtain (9.3). 

Pp^KP) > 0 with equality if and only if P = P^. Given P e ^ , ( r ^ ) , let v 
equal TL^P. If V = p, then by Theorem IX.3.1 below 

Pp^\P) > Pp^Kp) = 0 with equality if and only if P = Pp. 
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If V ^ p, then by Theorems IX.3.1 and VIII.2.1(b) 

This completes the proofs of properties of/^^^ 

IX.3. Contraction Principles 

The first theorem is a contraction principle relating levels-2 and 3. 

Theorem IX.3.1. Let v be a probability measure on ^ (F) and P^ the infinite 
product measure on ^(F^) with n^P = v. Then Ip^\P) attains its infimum over 
the set {PeJfs(r^)'-n^P = v} at the unique measure P^ and 

M{Il\Py.PeJiXT\ n,P - v} = / f ^(P,) = lf\v). 

Proof. Let j / be the set {PsJ(Sy^)\n^P — v} and P any measure in s4. 
Hp^,{P) equals Xl=i v,log(v,/p,) = / f >(v) (v, = v{x,}). By Lemma IX.2.1(c) 
and Theorem IX.2.3, for any k>2 

(9.4) 0 < Hp^,{P) = I^^v) < < H^^,(P) < Hp,u^,(P)U'An 

lfP = P,, then for any ^ > 1 H^^kiPv) = ^p^Kv) = /p'X^v)- We see that f/\P) 
attains its infimum over ^ at the measure P = Py, and that the infimum 
equals I^^\v), The proof is done once we show that P = P^ is the unique 
measure in j ^ for which I^^\P) equals Ip^\v). 

Suppose that Ip^\P) equals Ip^\v) for some P in J^. We prove by induction 
that for all ^ > 1 

(9.5) /?(x,.^,...,x,^) = v^^...v^^. 

This will imply that P equals P^. Formula (9.5) holds for ^ = 1 since n^P 
equals v. Since / f >(P) = / f ^(v), (9.4) shows that H^kiP) equals Hp,i(P) for 
all k >2. With respect to P, X^ and X2 are independent [Lemma IX.2.1 (d)], 
and so (9.5) holds for k = 2. Assume that (9:5) has been shown for k = 1, 
2, . . . , c — 1, some c > 3. With respect to P, X^ and X^ are conditionally 
independent given X2, . . . ,^c-i [Lemma IX.2.1(e)].If;?(Xi-^, . . . ,-^i^_j) > 0, 
then by the induction hypothesis and strict stationarity 

piXi^, . . . , Xi) =p(Xi^, . . . , Xi^_^)p(Xi^\xi^, . . . , Xi^_^) = Vf̂  . . . Vi^_^Vi^, 

If p{Xi^, . . . , Xi^_^) = 0, then p(Xi^, . . . , Xi) = 0 = v̂^ • • • v̂ .̂ Thus (9.5) 

holds for k = c. The proof of the theorem is complete. n 

We now generalize the contraction principle just proved by calculating 
the infimum of Ij,^XP) over all measures PeJ^X^^) with fixed marginal 
T = n^P, aG {2, 3, . . . } . Denote by ^^(F'') the set of probabihty measures T 
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on ^(T") which have the form T = n^P for some P€^,(r^).  For T e MJ^"), 
set T;_...î  = T{X;_, . . . ,X;J aDcl (v,);,...i^_j = Z?^=i T,.̂ ...,.̂  and define 

(9.6) 0 ^ ) - I x , . . , „ log '•••"- , 

where the sum runs over all Ẑ , . . . , 4_i, /„ for which {y^i^...i^_^ > 0. /pfi(T) 
is well defined (0 log 0 = 0) and equals the relative entropy of i with respect 
to {(v^)i^...i^_^PiJ- We have encountered the function /̂ f̂  as the entropy 
function in Theorem 1.5.1, which was a large deviation result for the quan
tities {M„(co, •)} (empirical pair measures). The latter measures are related to 
the empirical processes by the formula M„(co, •) = 7r2^„(co, •) [see (1.35)]. 

In the next section, the distributions of {n^R„((D, •)} on ^ ^ ( n ) will be 
shown to have a large deviation property with entropy function /j^j. Hence 
/^^j is called the level-3,(x entropy function. We now prove that for fixed 
T G ^ , ( n ) /̂ f«̂ (T) equals the infimum o{I^^\P) over the set < = {P G ^ . ( F ^ ) : 
n^P = T}. We also show that Ip^\P) attains its infimum over j / ^ at an 
(a — l)-dependent Markov chain. The latter measures are defined for a = 2 
in Example A.7.3(b) and for a > 3 in Appendix A. 10. 

Lemma IX.3.2. Let a>2be an integer. 
(a) A probability measure T on ^(V) belongs to JiSy^^) if and only if 

r r 

(9-'7) S \---i^_yj= Z '^^.-••ia-i for each/i, . . . , i^_^. 

(b) Let X be a measure in JiJ^V"^). Define Jt^ to be the subset of JiJ<T^) 
consisting of {a — \)-dependent Markov chains which satisfy n^P = i. Then 
Ji^ is nonempty. If(v^)i^...i^_^ > Ofor each / i , . . . , /^-i? ^hen M^ consists of a 
unique measure. 

Proof, (a) If T belongs to Ji^{y), then T equals n^P for some PeJi^iY'^), 
and for each / i , . . . , /«_!, 

r 

j = l 

Z P{a>er^:(Do = x,,,(o^ = x^^, . . . ,co^-i =-^i^.J. 

The last sum equals Zfc=i'^feii-ia-i' ^^^ ^^ (̂ •'7) holds. Now suppose that 
(9.7) holds. We write v for v̂ . For each / i , . . . , ^ - i ^ {1? • • • ? ^}, define 

Ti 
y- • =-^—-^ i =\ r ifv- • >0 

If ^ii--ia-i — ^' ^^^^ define {yt^.-.i^'Joc = 1, . . . ,r} to be any non-negative 
real numbers which sum to 1. We have V; . . . , > 0 , y - ... ,• ,-iV,- ...,• , = 1 , 
and by (9.7) 
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r r r r 

j=l j,l = l j,k = l k = l 

Also 7;. . . ; > 0, y j _i7.-...j = l , v . - . . . j - .Vi ...i =T^i-.-i and by (9.7), 

r r 

Hence assumptions (A.5) and (A.6) in Appendix A. 10 are satisfied. By 
Theorem A.10.1, there exists a unique (a — l)-dependent Markov chain P 
in ^ s ( r^ ) with transition array 7 = {TJ .../ } and invariant measure v = 
Z',,...,^,_i=i \"io,-i ^{^i,,-,xf,_i}- The marginal n^P equals T since 

7r,P{x,^, . . . , x , J = P{X, = x,^, . . . , A ; = x,J 

(b) Part (a) shows that J^^ is nonempty. Suppose that '^i^---i^_^ is positive 
for each / i , . . . , 4-i- If ^ is an (a — l)-dependent Markov chain in ^ s ( r^ ) 
satisfying n^P = T, then P must have invariant measure v and transition array 
^^h---U^h---iot~i^' ^^ conclude that P is unique. n 

Theorem IX.3.3. Let xbea measure in Ji^iT^), a e {2,3, . . . }. Define Ji^ to be 
the subset of JiJ^^~) consisting of (a — \)-dependent Markov chains which 
satisfy n^P = z. Then Ip^\P) attains its infimum over the set {PeJi^{T^)\ 
n^P = x] at all PeJi^ and only at such P. For any PsJi^ 

mi{f;\Py.PeJi,{T%n,P = t} = r;\P) = Il%x). 

Proof. Let s^^ be the set {PsJi^{r^): n^P = x} and P any measure in ^^. If 
(Vt)i...•i,_i =P{Xi^, ... ,Xi^_j) > 0, then /'(x,Jx,-^,... ,Xi^_^) equals ti^...J 
(Vx)i,-.i,_i-Hence 

HUP)=Ex.-...,log /''••'- = n^iix). 
By Lemma IX.2.1(c) and Theorem IX.2.3, for any ^ > a + 1 

(9.8) 0 < //,,,(P) = Il%T) < < Hp^,{P) < Hp,,^,(P) t I^^KPl 

If P is an (a — l)-dependent Markov chain in Jf^, then for any k> oc 
Hp^(P) = Il%x) = I^p^KP), We see that /^^^(P) attains its infimum over ^^ 
at PeJi^ and that the infimum equals /pfa(T). The proof is done once we 
show that the measures P in M^ are the unique measures in s^^ for which 
If\P) equals /^fi(T). 

Suppose that Ip^\P) equals /pfJ(T) for some P in j / ^ . We prove by induc
tion that for all /: > a 

(9.9) p(x,^, . . . ,x,^) = (v^i^...i^_Ji^...i^ . . . 71,.,^,..-i,. 
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where the transition array y is constructed as in Lemma IX.3.2(a). This will 
imply that P is in Ji^. Formula (9.9) holds for /c = a since %^P equals T. 
Since ^^^P) = P^^^ix), (9.8) shows that H^^ki^) equals H^^^iP) for all 
k > oc -\- I. Assume that (9.9) has been shown for /: = a, a + 1, . . . , c — 1, 
some c > oc -\- 1. With respect to P, X^ and X^ are conditionally independent 
given X2, .. . ,-^c-i [Lemma IX.2.1(e)]. If/?(Xi , . . . ,Xi^_^) > 0, then by the 
induction hypothesis and strict stationarity, 

lfp(Xi^, ...,x,.^_^) = 0, then 

p(x,^,.. .,x,) = 0 = (vdi^...i^_jt^...i^... V a + i - V 

Thus (9.9) holds for k = c. The proof of the theorem is complete. n 

The contraction principles just proved will now be used in order to deduce 
the level-3 large deviation bounds. 

IX.4. Proof of the Level-3 Large Deviation Bounds 

In this section we prove that 

limsup-log Ql^^{K} < -f/KK) for each closed set i^in ^ . ( T ^ , 

(9.10) 

l iminf-logel^' lG} > - / f >(G) for each open set G in ^ . (F^) , 
B-co n 

(9.11) 

where Qi^^ is the P^-distribution of i^„(a;, •) on ^ ^ ( r ^ ) . With these bounds, 
we will complete the proof of the level-3 large deviation property since /̂ ^̂  
has already been shown to be lower semicontinuous and to have compact 
level sets. Our strategy is first to show that for each a > 2 the Pp-distributions 
of the a-dimensional marginals {n^R„(co, •)} have a large deviation property 
with entropy function /^fj defined in (9.6). The bounds (9.10) and (9.11) will 
follow by an approximation argument. We prove the large deviation property 
for {n^R„(co, •)} by applying the large deviation theorem for random 
vectors, Theorem n.6.1. In order to calculate the corresponding free energy 
functions, we need some facts about non-negative matrices. 

Let B = {Bij} be a real, square matrix. We say that B is non-negative, and 
write P > 0, if each Bij is non-negative. We say that B is positive, and write 
B > 0, if each Bij is positive. If P is non-negative, then B is said to hQprimitive 
if there exists a positive integer k such that B^ is positive. Clearly, a positive 
matrix is primitive. If B is non-negative, then B is said to be stochastic if 
Yjj^ij = 1 for each /. The next lemma is due to Perron and Frobenius. 
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Lemma IX.4.1. Let B = {Bij} be a non-negative primitive matrix. Then there 
exists an eigenvalue X{B) of B with the following properties. 

(a) X{S) is real and positive and X{B) exceeds in absolute value any other 
eigenvalue of B. 

(b) X{E) is a simple root of the characteristic equation of B. 
(c) With X(B) may be associated a positive left eigenvector u and a positive 

right eigenvector w. These eigenvectors are unique up to constant multiples. 
(d) lim„_oo ̂ ~^ ^^Z^ij = \og k{B) for each i andj."^ 
(e) IfB is stochastic, then X{B) equals 1. 
(f) If the entries of B are ^^ functions of a parameter / e IR"̂ , then k{B) is a 

^^ function ofteW^\ in particular, X{E) is a differentiable function ofteU^. 

Proof (a)-(c) See, e.g., Seneta (1981, Theorem 1.1). 
(d) Let u and w be positive left and right eigenvectors associated with 

k{B) and normalized so that <w, w> = 1 [part (c)]. Define y^^ = BijWj/(A(B)wi). 
The matrix y = {yij} is a stochastic matrix which is primitive since B is 
primitive. Since the vector v̂  = ŵWf satisfies ^^ v^ = 1 and Y^i "^lytj = ^j for each 
7, it follows that ŷ " -^ Vj = UjWj for each / andy [Lemma A.9.5]. This limit and 
the fact that 

y^j = BfjWj/WBrw,l ^ = 1 , 2 , . . . , 
imply that n~^ log^-) -^ log A(^) as « ^ oo. 

(e) Since Y^jBijl = 1, 1(B) cannot be less than 1. if w is a positive right 
eigenvector corresponding to 1(B), then pick an index / such that Wi = 
m^XjWj. We have 

A(B) = Y^BijW^IWi < ^^fjmaxvvy/maxvvy = 1. 
j j J J 

(f) The eigenvalue /I = 2.(B) is a simple root of the characteristic equation 
dQt(?iSij - Bij(t)) = 0, in which the entries Bij(t) are ^^ functions ofteW^. The 
implicit function theorem completes the proof. n 

If a > 2 is an integer, then ^si^"") denotes the set of probabiHty measures 
T on ^(F^) which are of the form T = n^P for some P in ^^( r^ ) . ^^CF") with 
the topology of weak convergence is homeomorphic to a compact convex 
subset ^ 5 ^ of [R'"'̂ . ^ 5 a consists of all vectors! = {T̂  ...̂  ; / i , . . . , 4 = 1, . . . , 
r} which satisfy î .̂..,-̂  > 0 for each i^, ... ,/^, Yj,---,ioc=^^h---ia ^ ^' ^^^ 

(9.12) X \---ioc-iJ = S '̂ feh -ia-i ^^^ ^^^^ iw". h-
j=i k=i 

a-l-

For T = {T̂  ...^ } a point in W , we define the function 

-..w X f^fiW f o r x G ^ . ^ , 

where I^^^ is defined in (9.6). I^^^ is continuous relative to , 

*B-j denotes the //-entry of the product B". 

file:///---ioc-iJ
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Large deviation property of {n^R^ioj, •)}. Denote by /^f] the relative 
entropy function ll^\ The one-dimensional marginal n^Rn(oj, •) equals the 
empirical measure L„(co, •)• The following theorem was proved in Section 
VIII.2. 

TheoremIX.4.2. ThePp-distributionsof {n^R„(a>, •);« = 1,2, . . . , } o n ^ ( r ) 
have a large deviation property with a„ = n and entropy function I^^l = I^^\ 

This was proved by showing a large deviation property for the random 
vectors L„(co) = (L„(co, {x^}), . . . ,L„((D, { X J ) . We now prove a generaliza
tion for the a-dimensional marginals {n^R„(oj, •)}, a > 2; n^R^((jo, •) takes 
values in the space J^X^"")-

Theorem IX.4.3. For a > 2, the Pp-distributions of{n^R„(co, •);/2 = 1,2, . . . } 
on JISX'"') have a large deviation property with an = n and entropy function 

Let M„ 3j(co) denote the vector in W'^ with 

(M„,̂ (co)X.̂ ...,.̂  = 7r^i^„(co,{xi ,̂ . . . , x j ) , / i , . . . , 4 = 1, . . . , r . 

Mi,a(<^) takes values in the compact convex subset Ji^^^ of W"". Exactly as in 
Section VIIL2, it suffices to prove that the distributions of {M„^} on W"" 
have a large deviation property with entropy function ^̂ ,̂ a(T). We apply 
Theorem II.6.1. It is convenient to divide the proof into three steps. 

Step 1: Evaluation of the free energy function. Let us first consider a = 2. 
We write 

1 " 

where Y^"\a)) equals the ordered pair (Xp(oj), Xp+^(co)) for j8e {1, . . . , w - 1} 
and equals the cyclic pair (X„(co), X^ (co)) for p = nA{t = {tij \ij =\, ... ,r] 
is a point in IR'*̂  then define the functionyj(Xf,Xj) = t^^ for Xi.x^eT, Thus 
f{Y^'\oj)) = t,j if 7/">(co) = (x,,xj) and 

In the notation of Theorem II.6.1, W^ equals «M„ 2 and a^ equals n. The free 
energy function C2(t) of the sequence {«M„ 2(<^);« = 1,2, . . .} equals 
hm„^^ c„,2(0. where c„,2(0 is given by 

ilogE,{exp(«</,M„,2»} = - log^pjexp tftiY^ 
n n I p=^ 

= -log t exp(r,^,^ + . . . + ,̂„_ ,̂̂  
'^ i . . • / = 1 
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Define 82(0 to be the positive matrix {e^^Jpj;ij' = I, ... ,r}. Then 

« i, = i 

By Lemma IX.4.1(d), C2(t) = lim„^^c„,2(0 = log2(^2(0)-
In order to evaluate the free energy function c^(t) of the sequence {nM„^^} 

for a > 3, we need some notation. If n > a and if/ i , (2, . . . , ^„e{l, • • • , ^} , 
then define the multi-index 

f(z}+i, /}+2, . . . , /}+«) for 0 <7 < « - a, 

[Oj+i, . . . , i„ ,Zi , ...,?^+^_„) f o r « - a + 1 < 7 < « - 1. 

Given / = { î,...î ; / i , • • . , 4 = 1, . . . , r} a point in [R'̂  let J5«(0 be the r°̂ "̂  x 
xix 

(9.14) exp(r,^,^...,^_^,-^_>,-^_, for 1 < /i,Z2 =7i , /3 =7*2, • • •, 

0 Otherwise. 

Then c^(r) equals lim^^o^ <̂ n,a(0? where for « > a c„^(0 is given by 

1 1 '' /"-I \ 
-log^^{exp(«<r,M„,,»} = - log ^ ^^p ^ ^̂ («,«,7) Pf, • • • Pi, 

(9.15) 
- - log Z 5«(0?....._„,.....,-

^ = B^{t) is primitive since 

By Lemma IX.4.1(d), cM = lim„_oo ^n,a(0 = logX(BM)' 
Step 2: Lar^e deviation property. The free energy function of the sequence 

{«M„ Q̂; n = 1, 2, . . . } equals log/l(5oj(0). Since the entries of B^(t) are ^^ 
functions of relR'*'̂ , X(B^{t)) is a differentiable function of êlR'*" [Lemma 
IX.4.1(f)]; \ogX(BM) has the same property. By Theorem n.6.1, the P^-
distributions of {M„ «} on W'^ have a large deviation property with entropy 
function 

(9.16) I,,M = sup {<r,T> - logA(^,(0)}, TeW\ 

If Qn^ denotes the P^-distribution of M„,(, then 

(9.17) limsup-log Q„ JK} < -L ^{K) for each closed set Kin W\ 
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(9.18) liminfilog Q„AG}>-L ,(G) for each open set G in W". 
n-*oo n ' ^ ' 

Step 3: Evaluation of the entropy function. We show that for a > 2 and 
T GIR'''', /p,a(T) defined in (9.16) equals /^^^(T) defined in (9.13). In other words, 
we prove that 

(9.19) 7;,'A^) = sup {<^T> - logA(^,(0)} for TGR'"^ 

If G is any open subset of IR'*'' which is disjoint from J^s,(x^ then 2n,a{^} 
equals 0, and by the lower bound (9.18) Ip ^(G) equals oo. Thus for T ^ ^ ^ ,̂ 
/p,«(x) = ^ = / ; ' A T ) . 

Since /p,a(T) is defined as a Legendre-Fenchel transform, /p,a(T) is a closed 
convex function on IR''''. Suppose we show that /^^^(T) equals /^^^(T) for all T 

in the relative interior of ^s,a-* Since 7̂ 5̂ ^ is continuous relative to J^s^a^ 
the continuity property in Theorem VI.3.2 will imply that /p,a(x) equals 
Ip^X^) for all T in J^s,a- This will complete the proof of the large deviation 
property of {n^R^ioj, •)} with entropy function I^^^. 

In order to treat all values of a by a single proof, it is useful to introduce 
multi-indices / = (Z ,̂ . . . , i^_^) and j = (j\,... j \ _ ^ ) , where / i , . . . , 4_i, 

j \ , .. . , 7 ^ _ I G { 1 , . . . , r}. For a > 2, we write / ^ y if all the equalities 2̂ =7 i , 
3̂ =72? • • •' ^a-i —Ja-2 hold. Othcrwisc we write z 9^7. For a = 2, we write 

/ ^ 7 for any / a n d / For x e ^ ^ ^ , define T̂ J to be Tj^i^_^j^_j if/ ^ 7 and to be 
0 if / ^j. Set (vjj = XijTij. Po^ teW'^, define tij like T̂ .̂ In this notation 

The sum defining ifXi'^) ^^^^ ^^^i* ^̂ ^ ^ and 7 for which (vĵ - > 0 and / '^7. 
Now let T̂  be any point in the relative interior of ^ 5 ^ . Then x̂ -̂ is positive 
whenever / ^ 7 , and so each (v̂ o)j is positive. If we define 

/̂ . = log--^^^ for a l l / ^ 7 , 

then B^{t\ = T^J/(V% if / - 7 and B^(t%j = 0 if / ^ 7 . B^(t^) is a stochastic 
matrix. Hence logA(^^(^^)) equals 0 [Lemma IX.4.1(e)] and 

In order to prove that 7;,̂ i(T )̂ > /p,,(T^) = sup,,B,.«{<r,T^> - logA(^,(0)}, 
it suffices to prove that log k{B^{i)) > {t, T^> - I^^iT^^) for all t e W\ We will 
in fact show that for all t e W"" 

(9.20) l o g i ( 5 , ( 0 ) = sup {<r,T>-7;,3At)}. 

*The relative interior of ^^.a consists of all positive vectors T in J^s,oc (each 1;̂ ...,- > 0) 
[Rockafellar (1970, page 48)]. 
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If we insert the definition of ^^;^J(T), then the right-hand side of (9.20) becomes 

sup L^ij^o^—— • 

The matrix B^(t) is primitive and B^(t)ij > 0 if and only if / ̂ j. For any T 
belonging to the relative interior of J^s,a^ we have T̂ -̂ > 0, T̂ J > 0 if and only 
if B^(t)ij > 0, Y^ijT:ij = 1, and Yjj'^tj "^ Zfc'̂ fci ^^^ ^^^^ -̂ Hence (9.20) is a 
consequence of the next theorem. 

Theorem IX.4.4. Let B = {Bij} be a non-negative, primitive, m x m matrix 
(some m > 2). Let Ji^ he the set of all T = {ij^; / j ' = 1, . . . , m} which satisfy 
Xij > 0, T̂,- > 0 if and only ifBij > 0, YT,J=I ^tj = 1' ^^^ X7=i ^ij = Y.k=i ^ufor 
each i. Define (vj^ = Yj=i '^tj- Then 

(9.21) \ogX{B) = sup l,r,j\og^^i^, 

where YJB denotes the sum over all i and j for which Bij > 0. 

Proof Let u and w be positive left and right eigenvectors associated with 
X(B) and normalized so that <w, w> = 1. Define T̂ -̂ = UiBijWj/^(B) and vf = 
Yj=i^ii' ^^ = i'^ij} belongs to ̂ B- We prove that the supremum in (9.21) 
is attained at the unique point x^. Since v̂^ equals UiW^, 

(9.22) Z . 4 l o g ^ = Is^fjlog"^^^^ = logXiBl 
Tij Wj 

Let T ^ T̂  be any other point in J^^- Each (vj^ is positive. Indeed, if (vj^ = 0, 
then Xij = 0 = Xki for each j and k, and so Bij = 0 = Bj^i for each J and k. 
The latter cannot hold since B is primitive. Set v = v̂ , ŷ^ = Xi/Vi, and y^j = 
T^./vf.Wehave 

Z . x , l o g ^ = I . T , l o g ^ _ Z . x , l o g ( ^ | ) . 

By the same calculation as in (9.22), the first sum equals logA(^). Since 
xlogx > X — 1 with equality iffx = 1, 

(9.23) 

and equahty holds iff ŷ j = y^j for each / and / Since {y^j] and {y^} are primitive 
stochastic matrices, {yij] = {y-]} impHes that v and v̂  are equal [Lemma 
A.9.5]. Hence equality holds in (9.23) iff T = T^. We conclude that for xe 
MB, J^B^iA^^iBijVi/Xij) < log^(B) with equality iffx = T^. D 

With the last theorem, we have completed the proof of Theorem IX.4.3 
(large deviation property of {n^R„(co, •)}, a > 2). We are ready to prove the 
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large deviation bounds (9.10) and (9.11) for the P^-distributions of {Rn(co, •)} 
on J^s(r^). These bounds will be derived by means of an approximation 
argument based on our previous work in this chapter. 

If A is any subset of ^^ ( r^ ) , then obviously PeA implies n^Pen^A for 
any a > 1. We say that A is finite dimensional if for all sufficiently large 
a, n^Pen^A implies PeA. 

Example IX.4.5. Let Z^, . . . , Ẑ  be cylinder sets, P an element of ^^ ( r^ ) , 
and e > 0. Consider the open set 

Go = {PG^ , ( r ^ ) : |P{EJ - P{XJ| < £ , / = ! , . . . , / } . 

Since we are dealing with strictly stationary measures, we may assume 
without loss of generahty that each Ẑ  has the form 

where â  is a positive integer and Fi is a subset of T^K If a > max^^i ,.. ;aj, 
then 7r~ (̂7r̂ Zj) = Zj- and so 

Go = { P e ^ . C n : |7r,P{7r,IJ - P{I ,} | < £ , / = ! , . . . , / } . 

This shows that Go is finite dimensional. 

For such open sets Go, we can derive the lower large deviation bound (9.11) 
using the large deviation property of {n^Rn((D, •)} with entropy function /̂ f̂  
[Theorems IX.4.2 and IX.4.3] and the contraction principle relating /^f] 
and /̂ ^̂  [Theorems IX.3.1 and IX.3.3]. Given such a set Go, pick a such that 
TL^PETZ^GQ implies PEGQ. Then 

liminf-logQi^^Go} 

= l iminf-logP {TTaT̂ ĜTraGo} (Go finite dimensional) 

> —/pfa(7CaGo) (̂ â̂ o opcu; large deviation 

property of n^R„) 

= - i n f { / f ^(P): P 6 ^ , ( r ^ ) , Ti^Pen^Go} (contraction principle) 

= —I^^XGQ) (GO finite dimensional). 
This is (9.11). A similar proof yields the upper bound (9.10) for closed sets of 
the form Ko = {Pe^.(F^): |P{Z,} - P{Z,} | < e, / = 1, . . . , / } . 

We now prove the lower large deviation bound (9.11) for any nonempty 
open set G in ^^(F^). For the empty set, (9.11) holds trivially. An open 
base for the topology on Jf^T^) is the class of sets of the form 

(9.24) ^ P G ^ , ( F ^ ) : fidP- fidP < s, / = 1, . . . , /c 
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where PeJ(J<y^), / i , . . . ,/feG^(r^), and e > 0. Let j / denote the subset 
of ^( r^) consisting of all finite, real, hnear combinations ^a{i^., where 
{Zj} are cyhnder sets. By the Stone-Weierstrass theorem [Theorem A.l 1.1], 
j / is dense in ^(F^). Hence each set (9.24) contains a set of the form 

(9.25) Go = {Pe Jt^^^y. |P{Z,} - P{ZJ | < 8, / = 1, . . . , / } , 

where Zj , . . . , Zj are cylinder sets. Since each set (9.25) is also a set of the 
form (9.24) (with k = I andy; = Xi-), it follows that the class of sets (9.25) 
is an open base for the topology on ^ ^ ( r ^ ) . Each set GQ in (9.25) is open and 
finite dimensional. If G in J^X^^) is nonempty and open and G = U G Q , 
then for each set GQ contained in G 

liminf-logei^H^} ^liminf-logeL^>{Go} > - /^ 'H^o}-

This follows from the lower large deviation bound for the open, finite-
dimensional set GQ. In the last display, we may replace —I^^\GQ) by 
sup Go c G {~"̂ p"̂ (̂̂ o)}? ^^^ we conclude that 

liminfilogeJ,^>{G} > sup {-II'\GQ)] = - inf I^^GQ) 

= -/f>(uGo) 

This is (9.11). 
We end by proving the upper large deviation bound (9.10) for any non

empty closed set K in ^^ ( r ^ ) . For the empty set, (9.10) holds trivially. Let 
(5 > 0 be given. We have just seen that any nonempty open set in ^^(F^) 
contains a finite dimensional set of the form (9.25). Since /̂ ^̂  is lower semi-
continuous, it follows that for each PeiC there exist cyhnder sets Ej , . . . , 
1^1 (depending on P) and a positive real number Sp such that if P is contained 
in the set 

Kp = {PeJtX^^y, |P{E,} - PJEJI < 8p, / = 1, . . . , / } , 

then If\P) > f/KP) - (5.* We have K<=: IJpeK^p, and since ^ , (F^) is 
compact, K is compact [Lemma A.9.2(c)]. Hence there exist finitely many 
elements P^, ...,P^of Ksuch that K£ \JUiKp., Each set Kp is closed and 
finite dimensional. By the upper large deviation bound for Kp , 

l imsup-log G<^>{î } < l imsup-logf J G<3){i^J 

= max limsup-log2j,^^{A^p} 

^I],^\P) < 00 for PeJ^X^^) [Theorem IX.2.3]. 
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< max {-I^'XKp)} 
I = 1 , . . . , S 

< max {-I^^KPi) + S} 
i = l , . . . , s 

< _ / ( 3 ) ( ^ ) + ^. 

We obtain (9.10) upon letting d tend to 0. This completes the proof of the 
level-3 large deviation property. 

I X . 5 . N o t e s 

1 (page 269). The methods of this chapter can be used to prove large deviation 
properties for Markov chains with a finite state space. The level-1 property 
is given as Problem IX.6.6, the level-2 property as Problem IX.6.7, and the 
level-3 property as Problems IX.6.10-IX.6.15. Donsker and Varadhan (1985) 
prove a level-3 large deviation property for Gaussian processes. Orey (1985) 
studies level-3 large deviation problems related to dynamical systems. 

2 (page 273) Theorem IX.2.3 showed that lim^^o^ ̂ ~^In^p{'^aP) exists and 
equals the quantity Ip^\P) defined in (9.1). Here is an elementary proof of 
just the existence of lim^^oo '^'^^n^p (^a^)- Using the notation on page 271, 
we define 

H^P) = 
- Z P(^i)^OEP(Xi) for a = 1, 

For a > 2, the sum defining H^{P) runs over all z'l, . . . , i^-iJoc for which 
p(xi . . . ,Xi^_-^) > 0. H^(P) is non-negative since 0 <p{Xi^) < 1 and 0 < 
p(XiJxi^, . . . ,Xi^_^) < 1. H^(P) is known as the conditional entropy of X^ 
given Z j , . . . , A^ -̂i- ^ s in Lemma IX.2.1(b), 

nXin^P) = -H,{P) - H,iP) H^iP) - a t PiXi)\ogp,^ 

and Hi(P) > H2(P) > • • • > H^{P)> Since H^(P) is non-negative, the non-
increasing sequence H^(P), H2(P), . . . has a Hmit which we denote by h(P) 
(the mean entropy of P). It follows that Hm„^^ ^^'^^n^p i^aP) exists and 

limi/if> (TT.P) = -h{P) - t Pi^O^ogp,^ < ^ . 

The existence of lim^^^a"^/^^], (n^P) is also a consequence of the super-

additivity of the sequence {/̂ ]̂, (n^P); a = 1, 2, . . . } [page 274] and the 

bounds 

0 < liXin.P) < a t l o g - ' a = 1, 2, . . . . 
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IX.6. Problems 

IX.6.1. Consider the function Ip^lii), a > 2, defined in (9.6). Using Theorem 
IX.3.3 (contraction principle) and the fact that Ip^\P) is lower semicontin-
uous and affine [Section IX.2], prove that /pfi(T) is a closed convex function 
on ̂ s(n-
IX.6.2. Here is another proof of the convexity of/^fj(T), T G ^ , ( n ) . ^ ^ ( n ) 
is homeomorphic to the compact convex subset ^s,a ^f ^'''^ defined after the 
proof of Lemma IX.4.1. By (9.13) and (9.19), 

&^) = 7^'X^) = sup {</,!> - \0gX(B,(t))} for T G ^ , , , . 

For TG [R''^^,,«, I^^^(T) is defined to be oo. 
(a) Using the last display, prove that I^^^ is a closed convex function on 

W"". It follows that /^fj is a closed convex function on ^ ^ ( P ) . 
(b) Prove that I^^^ is essentially strictly convex. \_Hint: Theorem VI.5.6.] 

IX.6.3. (a) Prove that for any T G ^ ^ ( n ) , a > 2, /pfi(T) is non-negative and 
Ip^^ix) equals 0 if and only if x = n^Pp (finite product measure). 

(b) Let V be a probability measure on ^(T). Prove that /pfj(T) attains its 
infimum over the set {\eJi^{y)\n^x = v] at the unique measure n^P^ and 

inf{/^,^)(T):TG^,(n,7riT = v} = /^fj(7r,P.) = /<^>(v). 

IX.6.4. Let B = {Bij] be a positive m x m matrix (some m > 2). Let u and 
w be positive left and right eigenvectors associated with X(B) and normalized 
so that <w, w> = 1. Denote by ^ ^ 2 the set of all x = {itfJJ = 1, . . . ,m} 
which satisfy x^^ > 0 for each i andy, ^^^=1 x^^ = 1, and X;̂ =i '^ij = YJ=i ^u for 
each /. Let (vj^ = Yj=i ^ty ^^^^^ that 

\ogX{B)= sup X T , , l o g ^ ? ^ 

and that the supremum is attained at the unique point T̂^ = u^B^jW^XiB), 
The sum in the last display runs over all / and j for which (vj^ > 0. 
\_Hmt: T̂  is the unique point in r i ^ ^ 2 ̂ t which/(T) = Xu=i '̂ y l^S [^yWi/ 
Tfj] attains its supremum [Theorem IX.4.4]. If p ^ , . . . , p^ are positive numbers 
which sum to 1, then 

m 

/ ( T ) = X x,log(5,/p,)-/^f)(x). 

Complete the proof using Problem IX.6.1.] 

The remaining problems concern finite-state Markov chains. We use the 
following notation. 

F a finite set {x^,X2, . . . , x j with x^ < X2 < • • • < x^. 
y = {ytj} ^ positive r X r stochastic matrix. 

file:///_Hint
file:///_Hmt
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V = {v^;/= 1, . . . ,r} the unique positive solution of the equations 
I}=i^iyij = ^pT!i=i^i = 1-

Py the Markov chain in J^X^^) with transition matrix y and invariant 
measure v. 

{Xj'j'eZ} the coordinate representation process on F^. 
X(B) the largest positive eigenvalue of a primitive matrix B [Lemma 

IX.4.1]. 
^ the set {aeW:ai> 0, Yj=i^i = 1}. ^ is homeomorphic to the set 

J^(r) of probability measures on ^ ( F ) \ a ^ J i corresponds to the measure 
on ^ (F) with (J{xJ = o,. 

IX.6.5. [Renyi (1970a), Spitzer (1971)]. The purpose of this problem is to 
prove the Umit lim^^^o Ti" = ĵ using relative entropy [see Lemma A.9.5.] 

(a) Using Lemma IX.4.1, prove that the equations X^=i Vf̂ ĵ-= Vy, 
Y^i^^ Vi — 1 have a unique positive solution v = (v̂ -; / = 1, . . . , r}. 

(b) Given aeJi, define af^Ji by (^f),-= B= i ^^^S- Set /„((J) = 
^•=1 Vjlog(Vi/(o-y")j). Prove that for eachye{1, . . . , r } , 

with equaHty iff {pf)^ = v̂ . Deduce that /„+i(o-) < J„(CF) with equahty iff 
cry" = V. 

(c) Let {n'} be a subsequence such that v = lim„'̂ oo ^7" exists. Prove that 
lim„._oo-^„'+„(v) = Jn(v) for all « G { 1 , 2 , . . . } . Deduce that cry" ^ v for any 
cr G ^ . It follows that lim^^^o yj) = Vj for each / andy. 

IX.6.6 [EUis (1981)]. Part (a) proves the level-1 large deviation property. 
(a) Let B(t) be the r x r matrix {e^'^'yij'JJ = \, ... ,r], teU. Prove that 

the Py-distributions of SJn = ^"=i XJn have a large deviation property with 
a„ = n and entropy function 

I^^\z) = sup {tz - logX(B{t))} for zeU. 

(b) Prove that Iy^\z) > 0 with equahty if and only if z equals ZQ = 

(c) Prove that SJn—>• YA=I ^t^i-

IX.6.7. This problem proves the level-2 large deviation property. 
(a) Let L„(co, •) = «~^ X/=i^x(co)(*)» « = 1,2, . . . (empirical measure). 

Prove that L„(co, •) ^ v P^-a.s. 
(b) [Ellis (1984)]. Let B{t) be the r x r matrix {e%j;ij= 1, . . . , r} , 

teW. Prove that the Py-distributions of {L„; n = 1,2, . . . } on ^ ( F ) have a 
large deviation property with an = n and entropy function 

I(2\a) = sup{<^,(j> - logA(5(0)} for (7 6 ^ ( F ) . 
feIR'' 
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(c) Let Jf^ denote the set of vectors teW oi the form t^ = log[wf/(yw)j] 
for some u> 0 in W ((yu)i = Yj=i yij^j)- Prove that ^(B(t)) = 1 if and only 
if ^ G J^"- and that for any / e W 

h{t) = t - [logA(^(0)]l belongs to J/^^ (1 = (1, . . . , 1)). 

(d) [Donsker and Varadhan (1975a)]. Prove that for aeJi{Y), f/\(j) = 

-inf„>oZ!*=i f̂ log[(yw)iM]-
(e) Prove that Iy^\(T) > 0 with equahty if and only if a = v. 

IX.6.8. Let ^ be a positive r x r matrix. The purpose of this problem is to 
prove that 

(9.26) X(B) = sup inf Y a , ^ ^ . 
asJ^ u>0 f^^ Ui 

For generalizations, see Donsker and Varadhan (1975e), Friedland and 
Karlin (1975), and Friedland (1981). 

(a) Let^(0 = K % ; / J = 1, • . . ,r},rG[R^where7 = {ytjUJ = 1, • • • ,^} 
is a positive stochastic matrix. Prove that 

logX(B(t)) = sup Ut, ^> + inf Y a^log^1 for te W. 
asJt { ">0 -tl U, J 

(b) Prove that log;i(^) = sup^e^inf„>oXl=i ^tlog[(^w)fM] by suitable 
choice of / and y in part (a). Derive (9.26). 

IX.6.9 [Kac (1980)]. Let J5 be a positive r x r matrix which is also symmetric 
{B^j = Bji). Show that (9.26) reduces to the Rayleigh-Ritz formula 

X(B) = sup i Y. ^ijm • ^i ^eal' Y.^f = ^\ ' 

[^Hint: If aeJ^ is positive, then with ŵ  = uj^'o] {u > 0) 

The next six problems show how to prove the level-3 large deviation 
property. 

IX.6.10. For P e ^ , ( r ^ ) , set /i,']>/7r,P) = Xo.er-^a^{co}log[7r,P{a;}/ 
Ti^Pylco}]. Prove that I^^\P) = lim^^^a~^II,^l(n^P) exists and express 
/ f )(P)asin(9.1) . " ' 

IX.6.11. (a) Prove that ll^\P) is lower semicontinuous, has compact level 
sets, and is affme. 

(b) Prove that / f ^(P) > 0 and that equaUty holds if and only if P = P^. 
[Hint: Problems IX.6.7(e) and IX.6.13.] 
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IX.6.12. F o r T 6 ^ , ( r " ) , a > 2 , set T;,...,-^ = T{xi,, . . . , x,J and {v,\,...,i^^^ 

Wii - - - i a_ iy i< a-VoL 

where the sum runs over all /'i, . . . , z^_i, i^ for which (vjj^...; > 0. Prove 
that 

(9.27) 'mf{I\\PYPeJi,(T%n,P = x} = I\%x) 

and determine the measure(s) P at which the infimum is attained. Formula 
(9.27) is a contraction principle relating /̂ ^̂ ^ and l!^^^. 

IX.6.13. The level-2 entropy function is given by II^\G) = — inf„>oX?=i ^t 
log[(yw)i/Wj], (7G^(r ) [Problem IX.6.7]. The contraction principle relating 
/ f ^ and II^^ states that 

(9.28) in{{Ii^\P): PeJ^X^^l^iP = (^} = ^^\(^) for aeJ^(T). 

According to (9.27), (9.28) can be proved by showing that 

(9.29) Mm^l(T):TeJ^,(r^),KiT = (7}=f/\(T) forae^iT). 

Note that (n^T)i = (vj^ = Yj=i \i' ^^OVQ (9.29) and determine the measure(s) 
P at which the infimum in (9.28) is attained. 
YHint: For a > 0 and w > 0, let f^{u) = Y}=i ^^^^1(7^)J^t]- Show that if 
(̂  > 0 is a minimum point of^, then /^fj W attains its infimum over the set 
{leJfXr^): v^ = a} at the unique measure TJJ = (7iyij^j/(y^)i.'] 

IX.6.14. Let R„(co, •) = f^~^Y!k^o^Tkxin,co)(')^ « = 1, 2, . . . (empirical pro
cess). For a > 2, prove that the P^-distributions of the a-dimensional mar
ginals {K^R„(aj, ');n = 1,2, ...} on JiJ^"") have a large deviation property 
with an = n and entropy function I^^^. 

IX.6,15. (a) Provethati^„(co, •)=>Py P^-a.s. 
(b) Prove that the P^-distributions of {P„(co, •)} on Ji^iX^) have a large 

deviation property with a„ = n and entropy function P/\ 
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Appendix A: Probability 

A.l. Introduction 

In Sections A.2-A.6 of this appendix we list basic definitions and facts from 
probability theory which are needed in the text. No effort at completeness 
has been made. Halmos (1950), Meyer (1966, Chapters I-II), and Breiman 
(1968) are references for these sections. In the rest of the appendix (Sections 
A.7-A.11), we discuss the existence of probability measures on various 
product spaces and study some of the properties of these measures, including 
weak convergence and ergodicity. For application to Chapters I-III and 
VII-IX, the space is (W^)^ or F^, where F is a finite subset of [R, and the 
measures include infinite product measures and Markov chains. The 
Kolmogorov existence theorem is used to construct these m.easures. For 
application to Chapters IV and V, the space is {1, — 1}^ , and the measures 
are infinite-volume Gibbs states. The Riesz representation theorem is used 
to show the existence of these measures. In these last five sections, we 
have aimed at a more self-contained and complete presentation, but the 
results are tailored specifically to our needs in the text. 

A.2. Measurability 

Definition A.2.1. Let Q be a nonempty set and J^ a collection of subsets of 
Q. J^ is said to be a a-field if it contains the empty set and is closed under the 
formation of complements and countable unions. The pair (Q, ̂ ) is called 
a measurable space. 

Definition A.2.2. Let (Q, J^) and (^, ^ ) be two measurable spaces. A mapping 
X from Q into ^ is said to be measurable, or a random vector, if X~^{B)e^ 
for every Be^. Such a mapping is also called a random vector taking values 
in^. 

Definition A.2.3. Let ^ be a collection of subsets of Q. The a-fieId generated 
by ^ , denoted by # ' (^ ) , is defined as the smallest a-field of Q which contains 
^ . Let s/ be some index set and {X^;oies/} a family of mappings from 
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(Q, J^) into measurable spaces {(^a,^J;aGJ3/}. The a-field generated by 
the mappings {X^; a e s^}, denoted by ^{X^; a e J / ) , is defined as the smallest 
(7-field of Q with respect to which all the mappings [X^; ae j / } are measur
able. 

DeHnition A.2.4. Let Q be a topological space. The Borel a-field, denoted 
by ^(Q), is defined as the d-field generated by the open subsets of Q. The 
elements of J*(Q) are called Borel subsets ofQ or simply Borel sets. 

Proposition A.2.5. (a) Let (Q, J^) be a measurable space, X a mapping from 
Q into a set ^ , and^ a collection of subsets of^. Assume that 3C is given the 
afield ^{^). Then X is measurable if and only if X~^{C)e^ for every 

(b) Let Q and ^ be topological spaces and X a continuous mapping from 
Q into ^. Then X is a measurable mapping from (Q, ^(Q)) into {3C, ^ ( ^ ) ) . 

(c) Let Q.be a topological space and assume that the topology ofQ admits 
a countable base (this is the case if for example, Q is a separable metric 
space). Then the afield generated by the countable base is the Borel afield 
J'(Q). 

A.3. Product Spaces 

Definition A.3.1. Let {(Qa? ̂ Jl'^^^} be a family of measurable spaces and 
Q the product space Yiae^^oc- Foi" ^ = {co^;(xes/} a point in Q, define 
X^(co) = CD^. {X^;aes/} are called the coordinate mappings. The cr-field 
# ' (Z^ ;a6 j / ) is called the product afield and is denoted by Hae^^a- A 
cylinder set is defined to be a set of the form {coeQ: (co^ , ... ,CO^)EF}, 

where a^, . . . , â  are distinct elements of j / and i^ is a set in the product 
o--field YYi=i ^a - ^ product cylinder set is defined to be a set of the form 
{oeCl'.co^^eF^, .. . ,co^^eF^}, where a^, . . . , â  are distinct elements of J / 
and ^ i , . . . , iv are sets in J^^, . . . , J^^, respectively. 

Proposition A.3.2. The afield generated by the cylinder sets and the afield 
generated by the product cylinder sets both equal the product afield. 

Notation A.3.3. If the spaces {Q^;aG^} are all equal to a space Q, then 
write of for the product space fjae^ ^- If ^ has finite cardinaUty k, then 
write Q'̂  for Q-^. 

Proposition A.3.4. Let {f',aes^} be a family of measurable mappings from 
a measurable space (^, ^ ) into measurable spaces {(Q^, ̂ J; otes/}. Define 
the mapping ffrom 3C into Q = ][|^g^Q^ by f{x) = {f(x);(xej^}. Then f is 
measurable when Q is given the product a-field. 

If each space Q^ is a topological space, then we take Ĵ ^ to be the Borel 
cr-field ^ ( Q J . The product space Q is a topological space with respect to 
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the product topology. A base for this topology consists of the sets flae^ ^a? 
where all but a finite number of the U^ equal Q^ and the remainder, say 
U^^, . . . , t4^, are open sets in Q^. Thus Q has two natural (x-fields: the 
Borel (7-field ^(Q) and the product cr-field Hae^ ^(^a)-

Proposition A.3.5. (a) J*(Q) ^ flae^^C^a)-
(b) Assume that each Q^ is a separable metric space and that s^ is countable. 

Then m^) = 11..^^(^al 
(c) (Tychonoff) If each topological space Q^ is compact, then Q is compact. 

Example A.3.6. (a) ( R ^ . ForJG{l ,2 , . . . } , U^ denotes (i-dimensional 
EucUdean space. U^ is a complete separable metric space with respect to the 
ordinary metric \\x - y\\ = Yj=i 1(^1 - yiyV^ (x = (xi, . . . , x^), y = iyu 
..., Jd)). The sets in ^(U^) are called (i-dimensional Borel sets. 

(W^)^ denotes the product space Yijez ^^^ where Z is the set of integers. 
By Proposition A.3.5(b), the Borel (T-field ^(((R^)^) equals the product 
cr-field fljez^C^"^)' ^iid the latter coincides with the a-field generated by 
the cylinder sets [Proposition A.3.2]. For x and y in U^, define bQ(x,y) = 
11-̂  —J^||/(l + Ik ~ 3̂ 11)' ^0 is a metric on W^ equivalent to the ordinary 
metric ||x — ;; ||. For co, co e([R^, the function b{a>, co) = Xjez^o(<^/? C0y)2~'-̂ '' 
defines a metric on (IR'̂ )̂ . We have the following facts [Billingsley (1968, 
pages 218-219)]. 

(i) ((W^Y, b) is a complete separable metric space. 
(ii) The topology on {W^Y defined by b coincides with the product 

topology. Convergence in this topology is equivalent to coordinate-
wise convergence in U!^. 

(iii) A subset K of (IR"̂ )̂  is compact if and only if the set {ojf.ojeK] is 
for QdichjeZ a compact set in U^. 

(b) r^, F ^ ff^ finite. Let F be a finite subset of U and F^ the corre
sponding infinite product space with metric b(cD,cb) = Yjjez \^j — coj|2"'^'. 
F is topologized by the discrete topology and F^ by the product topology. 
The topology on F^ defined by b coincides with the product topology. Since 
F is compact, F^ is a compact metric space. J*(F) coincides with the set of 
all subsets of F and J*(F^) with the o--field generated by the cylinder sets 
[Propositions A.3.2 and A.3.5(b)]. 

A.4. Probability Measures and Expectation 

Definition A.4.1. A probability measure on a measurable space (Q, J^) is a 
positive measure P on J^ having total mass 1. The system (Q, J^, P) is called 
a probability space. We say that Ae^ occurs almost surely, and write A 
occurs P-a.s., if P{^} = 1. 

A collection of subsets of Q is called a field if it contains the empty set 
and is closed under the formation of complements and finite unions. 



298 Appendix A: Probability 

Proposition A.4.2. Let #o be afield of subsets ofQ. IfP and Q are probability 
measures on (Q, J^(#o)) ^^^^ ^hat P(F) = Q(F) for every FG^Q, then P 
equals Q on J^(#o)-

Corollary A.4.3. Let {(Q^̂ , J^) ;aGj /} be a family of measurable spaces, Q 
the product space Ylae^^a^ and^ the product (jfieldYlae^^a- A probability 
measure on (Q, J^) is uniquely determined by its values on the cylinder sets 
OfQ. 

Definition A.4.4. A random vector on (Q, ̂ , P) which takes values in U is 
called a random variable. If Z is a random variable on (Q, J^, P) which is 
P-integrable, then E{X] = j^X(co)P(dco) is called the expectation of X. 
L^(Q,P) denotes the set of P-integrable random variables on (Q,#', P). If 
X = (X^, . . . , Z^) is a random vector taking values in W^ and each X^, ... ^X^ 
is integrable, then E{X} = ^QX{co)P(dco) denotes the vector (E{X^}, . . . , 
E{X,}). 

Definition A.4.5. Let Z be a random vector on (Q, J^, P) taking values in a 
measurable space (^, ^). The distribution of Zis the probabiUty measure Px 
on ^ defined by Px(B) = P{X-\B)}, Be^. 

Proposition A.4.6. Let h be a random variable on (^, ^). The function h is 
Px'integrable if and only ifh(X(co)) is P-integrable, and then 

h(x)Pxidx) = h(X(co))P(dco). 

n 

Definition A.4.7. Let {X^; a G J / } be a family of random vectors on (Q, J^, P) 
taking values in a measurable space ( ^ , ^ ) . Then X(CJ) = {X^(o});ass/} is 
a random vector taking values in (^"^^ Flae^^)- Let Px be the distribution 
of Z on H a e ^ ^ ^^^ X ( ^ ) = ^a ^hc coordiuatc mappings on S^^. The 
collection {X^;(xej^} is called the coordinate representation process. Its 
distribution on (^"^, HaG^^^^A:) is the distribution Px of the original 
collection (Z^; a e j / } . 

Definition A.4.8. Let {Z^; a e J / } be a family of random vectors on (Q, J^, P) 
taking values in measurable spaces {(^„, J * J ; a G ^ } . The random vectors 
are said to be independent if 

cce A a e A 

for each nonempty finite subset A of J^/ and arbitrary sets B^e^^. 

Proposition A.4.9. (Chebyshev's Inequality). Let X be a random variable and 
fa non-negative, nondecr easing function on the range of X such that E{f{X)} 
is finite. Then for any real number b for which f{b) is positive, 
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P{co:X(ca)>b}<^i^. 

A.5. Convergence of Random Vectors 

Let {X„ ;n = \,2, ,..} and X be random vectors defined on a probability 
space (Q, J^, P) and taking values in U^. 

X^ is said to converge almost surely to X (written X„ - ^ X ox X^-^X 
P-a.s.) if P{co:lim„^^i;(co) = X{oS)) = 1. 

p 
X^ is said to converge in probability to X (written X^ -> X) if for every 

8 > 0 P{oj\\\X^{oj) - X{(D)\\ > £} -^ 0 as ^ -> 00. 
X^ is said to converge in L^ to Z (written X^ -> Z) if E{\X^ — Â H) -^ 0 as 

« -> 00. 

Proposition A.5.1. (a) If X^-^ X, then X^ ^ X. 

(b) IfX^ -^ X, then X, ^ X. 

Lemma A.5.2 (Borel-Cantelli). Let {A„;n = 1,2, . ..} be subsets of ^ and 
define B = HS^i U^=m^-* /^I^=i ^ { ^ J < ^ ' ^^en P{B} = 0. 

Theorem A.5.3. T/^^^^i P{\\X„\\ > s} is finite for every s > 0, then X„^ 0. 

Proof For each positive integer k, define the set 
00 00 

Bik)= n U {c«:||X„(a;)||>l/^}. 

By the Borel-CanteUi lemma, P{B(k)} =0. Since {co: A;(CO)-^ 0 a.s.}'= 
[jf=i B(k), the proof is done. n 

Theorem A.5.4 (Law of Large Numbers). Let {Xj ;j = 1,2, ...} bea sequence 
of independent, identically distributed (i.i.d.) random vectors and define 
Sn = lU^J- V^{\\^i\\} i'fi^ite^ then 

-n.±l  ̂E{Xi} {strong law) and therefore —̂  -»E{X^] {weak law). 

A.6. Conditional Expectation, Conditional Probability, and 
Regular Conditional Distribution 

Let (Q, J^, P) be a probability space, Y an integrable random variable on 
this space, ^ a a-field contained in J^, and A a subset of #". The conditional 
expectation of Y given Q) is defined as any random variable £"{71^} which 

*5 is the event that the {A^ occur infinitely often. For P{5} we may write P{^„ i.o.}. 
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is measurable with respect to ^ and satisfies 

I (A.l) E{Y\9}dP = YdP for all subsets De9. 
D 

The conditional probability of A given Q) is defined as any random variable 
P{A\Q)\ which is measurable with respect to 2 and satisfies 

(A.2) P{A\Q))dP = P{A n D) for all subsets Dei 
JD 

Theorem A.6.1. (a) E{ Y\^} exists and is determined up to equivalence. 
(b) P{A\^} exists and is determined up to equivalence. A version of 

P{A\^]isE{u\9}.^ 

If X is a non-negative random variable on (Q, ̂ , P), then for any subset 
^ o f J ^ , 

(A.3) I XP{Ap]dP= I XdP. 

To prove this, approximate X by simple functions on (Q, Q), P) and use 
(A.2) and the monotone convergence theorem. 

Let Xi, X2, . . . be random vectors on (Q, J^,P) taking values in W^. If 
9 is the (j-field ^{X^, . . . , Z„) or ^{{X^\j > 1}), then denote P{A\^} by 
P{A\X^, ...,X^} or P{A\{X^\j> 1}}, respectively. Part (a) of the next 
theorem is a consequence of the martingale convergence theorem. 

Theorem A.6.2. (a) P { ^ |Zi, . . . , X^ converges to P{A \ {1} 'J> 1}} almost 
surely. 

(b) P{A\{XfJ > 1}} is a non-negative measurable function of (X^(a)), 
Z^Cco),...). 

Let Â  be a random vector on (Q, J^, P) taking values in W^ and let ^ be 
a o--field contained in J^. A function P(B\^)(OJ) from ^(U^) x Q into IR is 
said to be a regular conditional distribution, with respect to P, of X given ^ 
if the following hold. 

(a) For any Be^(U^) fixed, P{B\^}(OJ) is a version of the conditional 
probability P { Z - H ^ ) | ^ } . 

(b) For any COGQ fixed, P{B\^}(co) is a probability measure on ^(Uy. 
The following theorem is proved in Breiman (1968, page 79). 

Theorem A.6.3. A regular conditional distribution of X given Q) exists. 

Let X, y, and Z be random vectors on (Q, J^, P). We say that Zand 7are 
conditionally independent given Z if for every set A e ^{X) and Be^{Y) 

P{A n B\Z} = P{A\Z]' P{B\Z} P-a.s. 

*XA is the characteristic function of ^. 
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Theorem A.6.4 [Loeve (1960, page 35l)~\. Xand Yare conditionally indepen
dent given Z if and only if for every set AG^(X) 

P{A\Y,Z] = P{A\Z] P-a.s. 

Assume that X, 7, and Z have finite state spaces. Then it is easy to show 
that X and Y are conditionally independent given Z if and only if for all 
points X, y, and z 

P{X =x\Y = y,Z = z} = P{X =x\Z = z} 

whenever P{Y = y, Z = z} > 0. 

A.7. The Kolmogorov Existence Theorem 

For proofs of results in this and the next section, we refer to Parthasarathy 
(1967) and Billingsley (1968) by page number. 

Let P be a probability measure on the product space (([R^^, ^((UY))-
Given integers m and k with /: > 1, let n^j, be the projection from (U^)^ 
into (IR"̂ )̂  defined by Tr̂ ^̂ co = (co^+i, . . . , ojm+k)' Also define projections ij/j^ 
and (/);, from (W^f into ((R^^"' (k > 2) by 

¥k(^m + l^ • • • ? ^m+k) — y^m + 1^ • • • 5 <^m + fe-l)? 

0/c(^m + l . • • • . ^m + k) = (<^m + 2 . • • • . ^m + k)' 

Let jii^j^ be the probability measure on ^((W^f) defined by fi^^ = ^^m,V 
The measures {jLi^f^imeZ} are called k-dimensional marginals of P. Since 
^k'^m,k = ^m,k-i and (l)krcm,k = ^m+i,k-u the measures /i^^^ satisfy the consis
tency conditions 

(A'4) l^m,k-l — l^m,kYk •> l^m + l,k-i — M m,k'rk ' 

Kolmogorov showed that one can reverse this procedure and construct, 
from probabiHty measures {iiim,k} satisfying (A.4), a probability measure P 
on ^(([R^^) with these marginals. 

Theorem A.7.1 [BiUingsley (pages 228-230)]. Let {firn,k} ̂ ^ probability 
measures on (̂(IR" )̂̂ ) which are consistent in the sense that (A.4) holds for 
all integers m andk with k>\. Then there exists a unique probability measure 
P on ^{{U^Y) such that fi^k = Pn^^for all integers m andk \Pith k > \. 

In appHcations, one often wants to construct measures P on the product 
space (F^, ^(F^)) , where F is a finite subset of U. In this case, the consistency 
conditions are particularly simple. 

Corollary A.7.2. Let F be a finite subset of R. Assume that p{s^, ..., s^ is 
specified for all finite sequences of elements ofT and satisfies 

file:///Pith
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X p(Si, . . . , f̂c + i) =p(S2, . . . , f̂e+i), X /^(^l) = 1-

7% «̂ r/zere ^x/^^^ a unique probability measure P on ^(T^) such that P{oj\ 
^m+i — ^1^ ' ' ' ^^m+k "= ^k} = Pi'^i^ ''' ^^k) f^^ ^^l integers m and k with 
k>\. 

Proof. Let s denote a ^-tuple with coordinates in F. For any integer m and 
any nonempty set Be^{U^), the function ^^^^{B] = Xsê nr-̂ /̂ Cs) defines 
a probabihty measure on ^{U^) (i^rn,kW = ^)- The measures {firn,k} ^^^ 
consistent, and so Theorem A.7.1 may be appUed. The resulting measure P 
is easily shown to satisfy P{F^} = 1 and so is a measure on J*(F^). D 

Example A.7.3. (a) Infinite product measure. Let p be a probability measure 
on ^(U^). If B^, •' , Bk ^^^ Borel sets, then define for each integer m 

fi^,,{B,x ••• xB,} = Y\p{B,}; 
i = l 

lii^j^ extends to a probabihty measure on ^((W^)^). The measures {fim,k} ^^e 
consistent. The corresponding measure P on ^((U^)^) is called the infinite 
product measure with identical one-dimensional marginals p and is written 
P^. The coordinate representation process l}(co) = cOj is a sequence of 
independent random vectors on ((UY,^((UY),Pp)' Each Xj has P^-
distribution p. 

(b) Markov chain. Let F be a finite set of distinct real numbers {x^, 
^2, . . . , x J with r >2 and v = (v^, . . . , vj an r-tuple of non-negative real 
numbers which sum to 1. Then v defines the probabihty measure YJ=I ^t^x-
on ^ (F ) . Let y = {yij} be an r x r stochastic matrix (ŷ ^ > 0 and Yj=i ytj — ^ 
for each /) and assume that ^-=1 vju = Vy for each /. We define p(Xi) = v̂-
and for each A:-tuple (Xj-̂ ,Xj.̂ , . . . ,Xj-̂ ) of elements in F with k >2 define 

p(^i,^"-^^ij) = \yHi,'--yiu-iik' 

By the assumptions on v and y, these functions satisfy the hypotheses of 
Corollary A.7.2. Hence there exists a unique probabihty measure P on 
J*(F^) such that for all integers m and k with k > 1 

Clearly, P{OJ:OJ^ = xJ = v̂- and provided P{co:co^+i = Xĵ , . . . , co^+^-i = 
^ik-i) is positive (k > 2) 

P{^''^m + k — -^i^l^m + l — -̂ î ? • • • ? ̂ m+k-1 ~ -^i/c-l) 

= P{0^'0Jm+k = ^ik\^m + k-l = ^ik_^} = yik-iik' 

The measure P is called the Markov chain with transition matrix y and invariant 
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measure v. The same term refers to the coordinate representation process 
A}(co) = coj on (r^, J ' ( r^) , P). If y^j is independent of /, then the condition 
Zî =i ^lyij "^ yj ii^plies that yj = Vy, and the Markov chain reduces to the 
infinite product measure on ^(F^) with identical one-dimensional marginals 
V. 

A.8. Weak Convergence of Probability Measures on a 
Metric Space 

Let ^ be a metric space, J^(^) the Borel a-field of ^ , and ^ W the set of 
probabiUty measures on ^(^). Elements of ^ ( ^ ) are called Borel probabil
ity measures on 3C, Let ^ ( ^ ) be the space of bounded, continuous, real-
valued functions/on ^ with the supremum norm ||/||QO = sup^^^ |/(x)| . 
Each P€Ji{SC)  is uniquely determined by the integrals {\a^fdP\fe^{^)] 
[Billingsley (page 9)]. We say that a sequence {P„;/i = 1,2, . . . } in Ji{SC) 
converges weakly to PeJi(3C), and write P„=>P, if l^fdP^^l^fdP for 
eve ry /G '^ (^ ) . If ^ is a Borel subset of ^ , then int^ denotes the interior of 
A and cl A the closure of ̂ . A is called a P-continuity set if P{int 4̂} = P{cl A). 

Theorem A.8.1 [Billingsley (page 11)]. Let {P„; n = 1,2, . . . } and P be prob
ability measures on (^, ^ ( ^ ) ) . The following five conditions are equivalent. 

(a) P^^P. 
(b) lim„_oo ĵ r f^^n — \x fdP for all uniformly continuous fe ^ ( ^ ) . 
(c) lim sup„_oo ^«{^} ^ ^ { ^ } f^^ ^^^ closed sets K. 
(d) liminf„_oo ^«{^} ^ P{G] for all open sets G. 
(e) lim„_̂ oo ̂ n{^} — P{^] for all P-continuity sets A. 

Let {Pp;p > 0} be a subset of ^ ( ^ ) . We say that {P^} converges weakly to 
P^Ji{3C) as i9-^0+ (resp., jS-^oo), and write P^=>P as j8-^0+ (resp., 
^ -^ oo), if P^ => P for every sequence jS„ -^ 0"*" (resp., jS„ -^ oo). 

The next theorem states a useful fact for large deviation theory. 

Theorem A.8.2. Let {Q„]n = 1,2, ...} be a sequence in Ji{^) and x a point 
in 3f. The following statements are equivalent. 

(a) Qn => S^, where 3^ is the unit point measure at x. 
(b) Q^{A} -^ Ofor any Borel subset Aof^ whose closure does not contain 

X. 

Proof, (a) =̂  (b) If the closure of ^ does not contain x, then ^ is a 5^-continuity 
se tande„{^}-^^^{^} = 0. 

(b) => (a) Let G be an open set containing x and define K = G^ For any 
/ G ^ ( ^ ) 
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fdQn- fdK < sup \fiy) 
ysG 

-/WI + 21 >Qn{K}. 

Since/is continuous at x, the first term can be made arbitrarily small by 
suitable choice of G. The second term converges to 0 as n -> oo by hypothesis 
(b). Thus l^fdQ„^\^fd5,. D 

We make Ji{S^) into a Hausdorff topological space by taking as the basic 
neighborhoods oi P€Ji{X)  all sets of the form 

Qe fidQ fidP < e, i = 1, . . . , k 

where/i, . . . ,7^ are elements of ^ ( ^ ) and s is positive. The resulting topology 
is called the topology of weak convergence. A sequence {P„;« = 1,2, . . .} 
converges to P in this topology if and only if P„ =>P. All allusions to ^ ( ^ ) 
as a topological space refer to Ji{SC) with the topology of weak convergence. 

Theorem A.8.3 [Parthasarathy (pages 43-46)]. (a) If ^ is a complete 
separable metric space, then Ji{^) is metrizable as a complete separable 
metric space. 

(b) If^ is a compact metric space, then J^{5C) is a compact metric space. 

Example A.8.4. (a) ^ = U^. Since U^ is complete and separable, Ji{U^) 
is a complete separable metric space. Given points y and z in W^, we write 
y < z if yi < Zi for each /G {1, ..., d}. A measure PeJ^(U^) has a distribu
tion function (d.f.) defined by F(> )̂ = P{z:z <y}.LQi{P„;n= 1,2, . . .}and 
P be measures in J^{U^) with corresponding d.f.'s {F„;« = 1,2, . . . } and F. 
Then Pn=>P if and only if F^iy) -^ F(y) for all continuity points y of F 
[BilUngsley (page 18)]. 

(b) ^ = r^. Let k > 1 be an integer and T a finite subset of R consisting 
of r numbers. Since F'' is compact, Jf(r^) is a compact metric space. ^ (F^ ) 
is homeomorphic to the compact convex subset of W consisting of all 

> 0 and . . , 4 = 1 , r} which satisfy v̂  
= 1. Thus, v„ => V in ^ (F^ ) if and only if (v„)j 

vectors v = 

for each i^, . . . , 4. 
(c) ^ = (UY- Since (UY is complete and separable, 

complete separable metric space. Given measures {P^;n= 1,2, 
in J^m'fl set (pX,k = Pnn~!k and fi^^, 
integers with k > 1 [see page 301]. Then P„ •• 

'k 

P<k. 

^Y) is a 
} and P 

where m and k are 
P if and only if for all m and 

k{^n)m,k => l^m,k iH J^((U'f) [Billingslcy (page 30)]. 
(d) ^ = r^. Let F be a finite subset of U. Since F^ is a compact metric 

space, =y#(F )̂ is a compact metric space. As in the previous example, a 
sequence {P„;« = 1,2, . . .} converges weakly to P in ^ ( F ^ ) if and only if 
for all integers m and k with A: > 1, (M'n)m,k =^l^m,k ^^ J^iT^). Since every 
subset of F^ is a ix^ ̂ -continuity set, P„ =^ P if and only if ()U„)̂  ^{A} -^ ii^j^{A} 
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for every subset A of T^ [Theorem A.8.1]. Equivalently, P„ =>P if and only 
if P„{L} -> P{^} for ail cylinder sets Z of F^; i.e., for all sets of the form 
Z = {(oer^;(cOfn+i, • • • ,co^+fc)eF}, where Fis Si subset of F''. 

Let {X„;n = 1,2, . . .} be a sequence of random variables on probabiUty 
space {(Q„, J^, PJ; « = 1, 2, . . . } and X a random variable on a probability 
space (Q, J^, P). Denote by Px^ and by / \ the distributions of X„ and of X, 
respectively. X„ is said to converge in distribution to X (written X„ -^ X) if 
Px converges weakly to P^. If P is a probability measure on [R, then X„ 
is said to converge in distribution to P (written X„ ^ P) if / \ converges 
weakly to P. 

Theorem A.8.5 (Central Limit Theorem) [Bilhngsley (page 45)]. Let {A}; 
j = \,2, .,.] bea sequence o/i.i.d. random variables and define S„ = Y!j=i ^j-
IfE{X^} = m and (7^ = E{(X^ — m)^} are finite and a^ > 0, then 

yjn 

^2\ where N(0, G^) is the probability measure on R with density 

(27ra^)-i/2exp[-x2/2(7^]. 

Random variables {X^^n = 1,2,. . .} on probability spaces {(Q„, J^,P„); 
n = 1,2, . . .} are said to be uniformly integrable if 

lim sup \X^\dP„ = 0. 

Theorem A.8.6 [Bilhngsley (page 32)]. Suppose that X„-^ X and that h is a 
continuous function from U into U such that the random variables {h(X„); 
n = 1,2,...} are uniformly integrable. Then Ef^{h{X„)} -^ E{h(X)} as n-^ co. 

D 

We also state a continuity theorem for moment generating functions. 

Theorem A.8.7. Let {P„; n = \,2,...} be a sequence of probability measures in 
Ji{U). Assume that the moment generating functions g^it) = j^QXp{tx)P„(dx) 
are defined for all t in an interval C which has nonempty interior and which 
contains the origin. Assume that for all teC the limit g{t) = lim„^^gn(t) 
exists and that g(t) -^ g(0) = XasteC.t ^0, converges to 0. Then the following 
conclusions hold. 

(a) {P„;« = 1,2, . . . } converges weakly to some P in Ji{U) and 

git) exp (tx) P{dx) for all t e C. 
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(b) If in addition OeintC, then for any 7 G { 1 , 2 , . . . } , \^x^P^{dx)-^ 
j[j5x^P{dx) as n -^ CO. 

See, e.g., Martin-Lof (1973, Appendix C) for a proof of part (a). Part (b) 
follows from part (a) and Theorem A.8.6. 

A.9. The Space J^,((UY) and the Ergodic Theorem 

We write Q for the space (W^)^. Let Tbe the shift mapping on Q defined by 
(Toj)j = coj+i ,y G Z. r i s ^(Q)-measurable. A probability measure P on ^(Q) 
is called strictly stationary or translation invariant if P{T~^B} = P{B} for 
all Borel sets B. By Corollary A.4.3, this condition is equivalent to requiring 
P{r~^E} = P{^} for all cylinder sets E. Let fi^j, denote the /^-dimensional 
marginal of P obtained by projecting P onto the coordinates co^+i, . . . , 
a>^+k [see page 301]. Clearly P is strictly stationary if and only if all the 
A:-dimensional marginals {iJ.^j^;mEZ} are equal for each k > I. When P is 
strictly stationary, the marginals {jn^j^^meZ} will be written as 7i,,P. We 
denote by ^s(O) the subset of ^ ( Q ) consisting of strictly stationary prob-
abihty measures. If F is a finite subset of IR, then ^s ( r^ ) denotes the subset 
of J^X^^) consisting of probabiHty measures P for which P{r^} = 1. 

Example A.9.1. (a) The infinite product measure P^ in J^(Q) [Example 
A.7.3(a)] is strictly stationary. 

(b) Any probability measure on ^(F^) constructed according to Corol
lary A.7.2 is strictly stationary. In particular, the Markov chain in Example 
A.7.3(b) is strictly stationary. The transition probabiUties yij = P{co: cô +fc = 
Xj\co^+k^i = Xi} are stationary in the sense that they are independent of m. 

The relative topology of ^s(Q) as a subset of J^(Q) coincides with the 
topology or weak convergence. An open base for this topology is the class 
of sets of the form 

QeJ^M' fidQ-
Jn 

fidP < 8j= I, . . . ,k 

where P is in ^ s (Q) , / i , . . . , ^ are elements of ^(Q), and e is positive. 
^ , ( 0 ) is a closed subset of J^(Q). Indeed, if {P„;« = 1, 2, . . . } in ^^ (0 ) 

converges weakly to a measure P in J^(Q), then for all functions/in ^(Q) 

fdP = Um I fdP„ = hm | / o TdP, = f fo TdP^ 
71 JQ Jn Ja 

This implies that P is strictly stationary and thus that ^s(Q) is closed. The 

* For CO e Q, / o Tico) = f{T{(o)). 
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next result follows from properties of ^ ( Q ) and J^(r^) [Example A.8.4(c)-
(d)]. 

Theorem A.9.2. (a) ^s(Q) is a closed convex subspace of J^(Q). In par
ticular, JtJS^ is a complete separable metric space. 

(b) Pn=^P in JiJS^ if and only if for all positive integers k n^P^ => n^P in 

(c) IfT is a finite subset o/R, then JiJ^^') is a compact convex subspace of 
M^i^). In particular, JiJJ^^) is a compact metric space. P„ ^P in JiJ^'^') if 
and only z/P^jZ} -^ P{L] for all cylinder sets l^ofQ. 

A Borel subset ^ of Q is said to be invariant if T~^A = A. The class of 
invariant sets forms a c-field J^. A measure P e ^^(Q) is said to be ergodic if 
for every AeJ, P{A} equals 0 or 1. A measure PeJ^^Q) is said to be 
mixing if for any Borel sets A and B 

lim P{A n T'^'B} = P{A} • P{B}. 
«->-cx) 

Birkhoff's ergodic theorem is stated next. 

Theorem A.9.3. (a) Let P be a measure in JtJ^. Then for any function 
feL\a,P) 

1 n - l 

l im- X f{T'o^) = E{f\J} P-a.s. and in LK 

(b) PeJ^,(Q) is ergodic if and only if for every fe L^ (Q, P) E{f\J} = 
E{f] P-a.s. 

(c) If PeJiJ^ is mixing, then P is ergodic. 

Parts (a) and (b) are proved in Breiman (1968, pages 112-115). To prove 
part (c), note that if PeJiJ<S^ is mixing, then P{A] = lP{A}y for any 
invariant set A. Thus P is ergodic. 

If a measure PeJf^Q) satisfies 

lim P{Zi n r-"!:^} = ^{^i}^{^2} 

for all cylinder sets Z^ and Z2, then a standard approximation argument 
[Halmos (1950, page 56)] shows that P is mixing. 

Example A.9.4. (a) Let P^eJ^^'^) be the infinite product measure with 
identical one-dimensional marginals peJ^(U^) [Example A.7.3(a)]. If Z^ 
and Z2 are cyHnder sets, then Pp{^i n T~"1.2} = ^p{^i}^p{^2} for all suf
ficiently large n. Thus Pp is mixing. 

(b) We find conditions on the Markov chain in Example A.7.3(b) which 
ensure that it is mixing. Let F be a finite set of distinct real numbers {x^, 
X2, . . . , x j with r >2 and y = {y^j} an r x r stochastic matrix. The matrix y 
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is called irreducible if for each pair x^ ^ Xy either y^^ > 0 or there exists a 
sequence x^^ = x^, x^^, . . . , x,-̂  = x^ such that y^^^^^^ > 0 for a e {1, . . . , ^ - 1}. 
The matrix y is called aperiodic if for each /e {1, . . . , r} the set of positive 
integers n for which yJJ is positive is nonempty and has greatest common 
divisor 1. Clearly both properties hold if y is a positive matrix (each y^^ > 0). 

Lemma A.9.5 [Feller (1957, page 356)]. (a) The stochastic matrix y is 
irreducible and aperiodic if and only if there exists an integer N > 1 such that 
each 7iJ > 0.* 

(b) Ify is irreducible and aperiodic, then the limit lim^^o^ JiJ = ^j exists and 
is independent ofi, each Vy is positive, and {vy 'J = \, ... ,r} is the unique solu
tion of the equations Yji=i ^iltj = Vy, Y!i=i V/ = 1. We call v = Y}=i Vŷ .̂ the 
invariant measure corresponding to y. 

Theorem A.9.6. Let y be an r x r irreducible, aperiodic stochastic matrix and 
V the corresponding invariant measure. Then the Markov chain P in JiJ^^~) 
with transition matrix y and invariant measure v [Example A.7.3(b)] Ẑ- mixing 
and thus is ergodic. 

Proof Consider cylinder sets of the form 

Whenever n -\- k> j -\- m, 

By Lemma A.9.5(b), y^i^^^'il'"^ -^ v̂ ^ as «-^ oo, and so P{Ai n ^""^2} -^ 
P{A^}P{A2}. It follows that P is mixing. n 

Let Xj{co) = ojj denote the coordinate functions on Q = (R^)^ and X(n, o) 
the periodic point in Q obtained by repeating (X^ (co), ^2(0;), . . . , X„(a))) peri
odically. The empirical measure is defined as L^ico, -) = n~^Yj=i^xico){'}• 
The empirical process is defined as R„(oj, •) = ^~^Zk=o^Tfcx(n,co){*}- F^i" 
each (DEQ, L„{a>, •) is a probability measure on ^(U^) and i?„(a>, •) is a 
strictly stationary probabiHty measure on ^(Q). 

Theorem A.9.7. (a) If PeJ^^i^) is ergodic, then L„(oj, ) =>7i^P P-a.s. 
(b) IfPGJ^,(Q) is ergodic, then R„(co, )=^P P-a.s. 

Proof (a) Since L„(a),-) = n^R„(co,-), this follows from part (b) and 
Theorem A.9.2(b). 

* Such a matrix is called primitive [page 279]. 
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(b) There exists a metric bj, on (IR'̂ )'' with the following properties: bj, is 
equivalent to the Euclidean metric; the set (̂(IR" )̂̂ , Z?̂ ) of bounded, uniformly 
continuous, real-valued functions on ((tR^^? W is a separable Banach space 
with respect to the supremum norm [Parthasarathy (page 43)]. Let Aj^ be 
a countable dense subset of UiiW^Y.b^). The ^-dimensional marginal of 
Rn(co, '), nj^Rn(co, •)? is a probability measure on ^((U^)^). For geAj^, 

1 " / l 

where Yjj^ico) = (A}(co),A}+i(co), . . . ,l}+;,_i(co)). By the ergodic theorem, 
there exists a P-null set Ng such that 

1 " r -

lim - X 9(Yj,k(^)) = g{cD)n^P{dcD) for all cô TV .̂ 

Hence for each/e ^(([R^)^ Z?;,), 

lim f((b)nj^R„((D,dcd) = f{(X))7ii,P{da)) forco^ |J Â .̂ 
" ~ " ^ *^(l}5^)^ •^(0?^)^ ^ ^ ^ / c 

It follows from Theorem A.8.1 that n^R^ico, •) =>n^P for (o^[Jg^^^Ng and 

from Theorem A.9.2(b) that R„(co, -) =>P {or (D^[j^=i U^e^/c-%- ° 
We now restate Theorem A.9.7 for an arbitrary sequence X^,X2, . . . of 

i.i.d. random vectors defined on some probability space (QQ,^Q,PQ) and 
taking values in iR"̂ . Let p be the distribution of Z^ and P^ the corresponding 
infinite product measure on ^((W^)^). Define L„(co, •) and Rn(w, •) to be, 
respectively, the empirical measure and the empirical process corresponding 
t o Z i , Z 2 , . . . , i ; . 

Corollary A.9.8. L„((o, •) ^ P PQ-^.S. andRnico, ')=^Pp PQ-^-^-

Proof. Pp is ergodic [Example A.9.4(a)]. The a.s. convergence of L„(co, •) and 
of Rn((jo, •) depends only on the distributions of the respective quantities. 
Apply Theorem A.9.7. n 

Let P be a measure in J^s(^) ^^^ ^j(^) = ^j the coordinate functions on 
Q. We denote by P^ a regular conditional distribution, with respect to P, of 
X^ given the cr-field ^({X/J < 0}) [see page 300]. The next theorem shows 
that the level-3 entropy function /̂ ^̂  in Theorem n.4.4 is well defined. 

Theorem A.9.9. Let P be a measure in J4^{^ andp a measure in ̂ (W^). Define 

{{dpJ dp) {X) ifP^«p, 
hp(a), x) = 

[00 otherwise. 
Then there exists a version ofhp(o), x) which 
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is a non-negative measurable function of(cd,x)e(YlT=o ^'^) x "̂̂ ^ where co = 
( . . . , Z_2(co), X_i((o), XQ((JO)). The relative entropy 

n'\Po>)= [ \oghp(co,x)P^(dx) 

is a non-negative measurable function ofco. The level-3 entropy function 

is well defined and non-negative. 

h'\PJPidco) 
p 

For each set Be^{U^), PS^) is a measurable function of co [Theorem 
A.6.2(b)]. A theorem of Doob [see Dellacherie and Meyer (1982, page 52)] 
implies the statements about hpico, x), which in turn yield the rest of theorem. 

A measure PeJiJ^ is called an extremal point of JiJ<^ if P = XP^ + 
(1 - X)P2 for A6(0,1) and P^.P^^M^^) implies P^=^P^ = P. Let (f(Q) be 
the set of ergodic measures in ^^(Q). 

Theorem A.9.10. S{Q) is the set of extremal points ofJi^Q). 

Proof If P is in ^^(Q) but not in ^(Q), then there exists an invariant set A 
such that 0 < P{A} < 1. Define measures P^ and P2 in ^^(Q) by 

Then A ^ P2 and P = AP̂  + (1 - A)P2, where 2 = P{A} e (0,1). Thus P is 
not an extremal point. We have shown that every extremal point of ^^(Q) is 
ergodic. Conversely, suppose that PeJi^ifl) is not an extremal point. Then 
there exist distinct measures P^ and P2 in ^s(Q) and a number ylG(0,1) such 
that P = ?.Pi + (1 — X)P2. Suppose that P is ergodic. Then Pj and P2 are 
ergodic. Choose a Borel set A such that Pi{A} i= P2 {A} and for / = 1,2 define 
sets 

Q = L:]im^-txA{T'o,} = P,{A}}, 

By Theorem A.9.3(a), P i l Q } = P i l Q } = 1- Since Q and C2 are invariant 
and disjoint, the ergodicity of P implies that either P{Ci} or P{C2} equals 0. 
But this is impossible because P = /IPi + (1 — 2)P2 and 0 < A < 1. We have 
shown that every ergodic measure is an extremal point of ^^(Q). n 

The proof of Theorem A.9.10 yields the following corollary. 

Corollary A.9.11. Let P^ ^ P2 ^^ ergodic measures in JtJ<^. Then there exist 
disjoint Borel sets C^ and C2 such that P^ {Q} = PzjQ} = 1 {i.e., P^ and P2 
are singular). 
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A. 10. f2-Dependent Markov Chains 

These processes are discussed in Doob (1953, Section V.3) under the name 
multiple Markov chains. They occur in the present book in Section IX.3. 
Let F be a finite set of distinct real numbers {x^, ̂ 2, . . . , x j with r > 2 and 
define Q = F^. In a Markov chain, the conditional probability that co^+j, 
equals x^̂ , given the values co^+^-j == ^i^-J^ U depends only on Xi^_^ 
[Example A.7.3(b)]. By contrast, in an ^-dependent Markov chain (n > 2), 
the same conditional probability depends on the n values {Xi._.;j= 1,2, 

Let {v,. ...; ; / i , . . . , / „ = 1, . . . ,r} be an array of r" real numbers which 

satisfy 

Vf^...^^>0 for e a c h / i , . . . , / „ , 

(A.5) t \ . . .„=1. 

r r 

I.\...in-iJ= E%,...t„_i for each Zi, . . . , z„_ i . 
j=l k=l 

The measure v = Yj^,...,in=i '^i^...i„^{xi ,...,xi} will play the role of invariant 
measure for the ^-dependent chain. Let y = {7i^...i^^^;/i,. ..,/„+1 = l , . . . , r} 
be an array of r""̂ ^ real numbers which satisfy 

yi^...i^^^ > 0 for each/i , . . . , / „+ i , 
r 

(A.6) X yH---in + l = ^ f̂ ^ ^^^^ iu " ' . in. 

r 

y L̂ i li i ^. = ^i i 1̂ for ^ach io, . . . , L+i-

The number yi^...i^^^ will be identified with the conditional probability that 

co„+i equals x^^^^ given the values co„^i_,. = x^^^^_., l<j<n. 

We define ;7(x^ ,̂ . . .,xQ = v^^.i^; for each /c-tuple (x^ ,̂ . . .,xQ with 

1 < A: < « - 1 

and for each ^-tuple (x^ ,̂ . . . , x̂ )̂ with k>n-\-l, 

pyXi^, . . . , Xĵ ) = Vf̂ .ĵ f̂̂ ...!̂ ^^ . . . 7i^_^...i^-

By (A.5) and (A.6), the hypotheses of Corollary A.7.2 are satisfied. Hence 
we have the following result. 

Theorem A.10.1. There exists a unique measure P in ^s(F^) such that for all 
integers m and k with k>\ 
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P satisfies P{co: co^+i = x^̂ , . . . ,(0^+^, = X:} = Vĵ . .; and provided P{(D: 

^m+i = ^i,^ • • '^^m+n = ^ij isfositive, 

P is called the n-dependent Markov chain with transition array y and invariant 
measure v. 

If yi^i^...in^i is independent of z'l, then the ^-dependent Markov chain 
reduces to the {n — l)-dependent Markov chain with transition array 
K-. i„+i '^2. • • 'Jn+i = 1, . . . ,r} and invariant measure Y!i2,---,inY!!i,=i 
^i,...in^[x- ,...,x-}' If'̂  = 1? then the 1-dependent Markov chain is the Markov 
chain in Example A.7.3(b). 

Define Xj(oj) to be the ^-dimensional random vector (!}_„+! (co), 
A}_„+2(co), . . . ,l}(co)), where Xj(co) = cOj are the coordinate functions on 
r^. If P is an fz-dependent Markov chain, then with respect to P, {Xj-j'eZ} 
is a Markov chain. It follows from Theorem A.9.6 that if the transition 
array y and invariant measure v are both positive, then the n-dependent 
Markov chain P is mixing. 

A. 11. Probability Measures on the Space {1,-1}^ 

Given a positive integer D, Z^ denotes the i)-dimensional integer lattice. 

Define Q = {1, — 1}^ to be the product space Hje^^ { '̂ ~ ^} consisting of 
all sequences co = {cojijeZ^} with each cô -e {1, — 1}. Q is the configuration 
space for ferromagnetic spin systems on Z^, which are studied in Chapters 
IV and V. The results of this section are tailored specifically to Q. With minor 
modifications, the results generalize to the space QQ = ^^ , where ^ is a 
compact metric space. Qo serves as the configuration space for lattice gases 
and other lattice systems (see the references in Note 2a of Chapter IV). 

The set r = {1, — 1} is topologized by the discrete topology and the set 
Q by the product topology. The cr-field generated by the open sets of the 
product topology is called the Borel cr-field of Q. and is denoted by ^(Q). 
A cyhnder set is defined to be a set of the form (co G Q: (cOj , . . . , co )̂ e JF}, 
where i^, . . . , ^ ^^^ distinct elements of Z^ and F is a subset of {1, — 1}'*. 
J*(Q) coincides with the a-field generated by the cyhnder sets [Propositions 
A.3.2 and A.3.5(b)]. We define a metric on Q by the formula b(co,co) = 
Ljez^Ni ~ ^i l^"^" ' where ||-|| denotes the Euclidean norm on Z^. The 
topology on Q defined by b coincides with the product topology, and the 
space (Q, b) is a compact metric space. 

Let J^(Q) denote the set of probability measures on ^(Q) and ^(Q) the 
space of bounded, continuous, real-valued functions on Q with the supremum 
norm. We say that a sequence {P„;« = 1,2, . . . } in J^(Q) converges weakly 
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to P 6 ^ ( Q ) , and write P„=>P or P= w-\im„^^ P„, if JQ /^P^ ^ J Q / ^ P for 
e v e r y / G ^ ( Q ) . J^{Q) is a Hausdorff topological space with respect to the 
topology of weak convergence. An open base for this topology consists of 
all sets of the form 

Qe fidQ- fidP < e, / = 1, . . . , /: 

where P is in Ji{^,f^, - - - Jk ^^e elements of ^(Q), and e is positive. 
In order to prove several results in this section, we need the Stone-

Weierstrass theorem for the compact metric space Q. 

Theorem A.11.1 [Dunford and Schwartz (1958, page 272)]. Let s^ be a set 
of continuous functions in ^(Q) with the following properties. 

(a) The constant function f{oj) = 1, COGQ, belongs to s^, 
(b) If f and g belong to s^, then a / + ^g belong to s^ for any a and jS real. 
(c) Iffandg belong to s^, thenfg belongs to s^. 
(d) Ifo^o) are two points ofQ,, then there exists a function f in s^ such 

thatfio}) ^f(cd). 
It then follows that s/ is dense in ^(Q); that is, given any function f in ^(Q) 
and any e > 0, there exists a function g in s^ such that sup^^Q | / W — Q{?^ \ < £• 

We next prove some facts about the space J^(Q). 

Theorem A.11.2. (a) ^(Q) is compact with respect to weak convergence. 
(b) J^(Q) is metrizable. 
(c) P„=>P in J^(Q) if and only if Pn{^] -^ P{^} for all cylinder sets I . 

Proof, (a) This follows from Theorem A.8.3(b), but we prefer a direct 
proof. Let {P„; « = 1,2, . . . } be any sequence in Ji{Q). Since there are only 
countably many cylinder sets, we can find an infinite subsequence {P„} such 
that the Umit Um„.^oo^n'{^} exists for each cyhnder set E. Let s^ be the 
subset of ^(Q) consisting of all finite, real, linear combinations X^i^in 
where {Li] are cyhnder sets. By the Stone-Weierstrass theorem, j / is dense 
in ^(Q). Hence the limit A ( / ) = lim„,^^ UfdPn' exists for eve ry /G^(Q) . A 
defines a nonnegative Hnear functional on ^(Q) and A(l) = 1. The Riesz 
representation theorem guarantees the existence of a measure PeJi{Q) 
such that A ( / ) = J Q / ^ P . We conclude that Pn-^P. It follows that ^ ( Q ) is 
compact. 

(b) Since Q is compact, Q is complete and separable. Hence part (b) 
follows from Theorem A.8.3(a). 

(c) While this can be proved as in Example A.8.4(d), we prefer a direct 
proof. If S is a cyhnder set, then the function/(co) = Xi(co) is continuous, and 
so P„=>P impHes 

Pn{^}= XlHP^idco)-
JQ 

X^{o>)P{d(o) = P{I} 
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For the converse, we apply the Stone-Weierstrass theorem as in part (a). 
P„{I} -^ P{Z} for all cylinder sets I implies P„ => P. n 

Let {P„; Az = 1,2, . . .} be an arbitrary sequence in ^ ( Q ) . A subset 9" of 
^(Q) is called a convergence-deter mining class if the existence of the limit 
Xim^^^l^fdP^ for e a c h / e 5 ^ implies that {P„; « = 1,2, . . . } converges 
weakly to some probability measure P. ^(Q) itself is a convergence-deter
mining class because of the Riesz representation theorem [see the proof of 
Theorem A. 11.2(a)]. 

Theorem A. 11.3. The following subsets of^(Q) are convergence-determining 
classes. 

(a) The set 6^^ consisting of all functions f(co) = YliGB^tfa^ ^ d finite 
subset oflP {define f{oj) =lifB is empty), 

(b) The set 9^2 consisting of all functions f{oS) — Xj:(co)/c?r Z a cylinder set. 

Proof. By the Stone-Weierstrass theorem, the set consisting of all finite, 
real, linear combinations of functions in 9^ (resp., ^2) is dense in ^(Q). 
Hence 9^ (resp., 5̂ 2) is a convergence-determining class since ^(Q) is a 
convergence determining class. n 

For each ae {1, . . . , Z)} let 7^ denote the shift mapping on Q defined by 
(T^co)j = C0j+^ , where u^ is the unit coordinate vector in the ath direction. 
The shifts {T^;a= I, ... ,D} commute. A measure PeJiifl) is said to be 
translation invariant if for each Borel set B and index a P{T~^B] = P{B}. 
This is equivalent to requiring P{77^Z} = P{S} for every cylinder set Z 
and index a. Let ^^(Q) denote the subset of ^ ( Q ) consisting of translation 
invariant probabihty measures. The next theorem restates Theorem A.9.2. 

Theorem A. 11.4. (a) ^^(Q) is a compact convex subspace of Ji{Q). In 
particular, J(J^ is a compact metric space. 

(b) P„ =^P in Ji,{a) if and only ifP„{l^} -^ P{l^}for all cylinder sets I . 

A Borel subset ^ of Q is said to be invariant if T~^A = A for each index 
a. The class of invariant sets forms a (x-field J^. A measure PeJiX^) is said 
to be ergodic if for every AeJ,P{A} equals 0 or 1. Part (a) of the next theorem 
states that for funct ions /GL^(Q,P) , ergodic averages with respect to sym
metric hypercubes in Z^ converge almost surely and in L^. The theorem 
follows from Theorem 4.1 in Brunei (1973). Forj G Z^, T^ denotes the product 
Tt-'Ty>. 

Theorem A. 11.5. (a) Let P be a measure in J^si^ ^^d {A} an increasing 
sequence of symmetric hypercubes whose union is IP. Then for any function 
fGL\Q,Pl 
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lim 4 T Z fiT'cD) = E{f\J} P-a.s. and in LK 
AtZ^ | A | j ^ ^ 

(b) PeJ^si^) is ergodic if and only if for every fEL^(Q,P), E{f\J} = 
E[f} P-^.s. 

An ergodic theorem holds for increasing sequences of rectangles in / ^ 
if/satisfies JQ|/|(logV)^~^<^^ < ^ [Fava (1972)]. Ergodic theorems have 
been proved by many other people, including Wiener (1939), Dunford and 
Schwartz (1958), Tempel'man (1972), Nguyen and Zessin (1979), and Such-
eston (1983). Also see Krengel (1985). 

If ^ is a nonempty subset of J^(Q), then a measure P in ^ is called an 
extremal point of ^ if P = XP^ + (1 - X)P2 for /l6(0,1) and P^, ^ 2 ^ ^ 
imphes P^ = P2 = P. The closed convex hull of ^ is defined as the intersection 
of all closed convex subsets of J^(Q.) containing ^ . 

Theorem A.11.6 [Dunford and Schwartz (1958, pages 439-440)]. (a) If^ 
is a nonempty compact subset of Jiifl), then Q) has extremal points. 

(b) (Krein-Milman) If ^ is a nonempty compact convex subset of Ji{Q), 
then Q) equals the closed convex hull of its extremal points. 

Let ^(Q) be the set of ergodic measures in JiJ^. The next theorem is 
proved exactly like Theorem A.9.10 and Corollary A.9.11. 

Theorem A. 11.7. (a) ^(Q) is the set of extremal points of JIJ<^. 
(b) If P^^ P2 are ergodic measures in JiJ^, then there exist disjoint 

Borel sets Q and Q such that Pi{C^] = P2{Q} = 1 (̂ •̂ •? P\ and P2 are 
singular). 

Let / be a summable ferromagnetic interaction on Z^. Given jS > 0 and 
h real, we define ^^ j , to be the closed convex hull of the set of weak limits 
P = w-lim^.|2^P^'^^^ 2)(A')? where {A'} is any increasing sequence of sym
metric hypercubes whose union is Z^, c5(A0 is any external condition for A', 
and PA',ii,h,(oiA') is the finite-volume Gibbs state on A' corresponding to 
the interaction / . The elements of ^^;, are called infinite-volume Gibbs 
states, ^ph and ^^y^nJi^^) are nonempty. In fact, for any j8 > 0 and h 
real, both sets contain the measure P^^h,+ = w-Um^>|̂ 2^Py^^^ + [Theorems 
IV.6.5(a)andV.6.1(a)].* 

Theorem A.11.8. (a) ^pf^ n ^s(Q) is a nonempty compact convex subspace 
ofJi{Q). In particular, ^^ ,, n Jis(f^) is a compact metric space. 

* A denotes the hypercube {ye Z^: |y |̂ < N,OL= 1, . . . , Z)}, where Â  is a non-negative integer. 
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(b) The set of extremal points of ^^^y, n JIJ^ is nonempty and equals 

Proof (a) Since ^p^ is nonempty, closed, and convex, part (a) follows 
from Theorem A. 11.4(a). 

(b) According to Theorem A. 11.6(a), the set ^^ , , n^s (Q) has extremal 
points. Suppose that P belongs to ^^ ;, n S'(Q). Then P is an extremal point 
of ey#5(Q) [Theorem A. 11.7(a)], and so P is an extremal point of ^^ ;, n ^^(Q). 
The converse uses the Gibbs variational principle, which states that the 
supremum in the formula 

-Pi^(P,h)= sup {-pu(h;P)-I^'\P)} 

is attained precisely on the set ^^^nJ^X^) [Theorems IV.7.3(b) and 
V.6.3(b)]. Suppose that P is an extremal point of ^^j, n J^^i^). If we can 
show that P is also an extremal point of ^^(Q), then by Theorem A. 11.7(a), 
P must be ergodic and thus belong to the set ^^ ;, n ^(Q). This will complete 
the proof of the theorem. We prove that if P = XP^ + (1 - X)P2 for ; IG(0, 1) 
and Pi, ^2 e ^ s ( ^ ) . then P^=P2 = P. Since P is in ^^ ,, n .^,(Q) and u{h;-) 
and /̂ ^̂  are affme, 

-Pi^(P^h)=-pu(h;P)-I^'\P) 

= X[-Mh;P,) - I^'\P,)] + (1 - X)l-pu(h;P2) - I^'KP2)l 
(A.7) 

We claim that the measures P^ and P2 both belong to ^p^ n ^^(Q). Otherwise 
by the Gibbs variational principle, the last term in (A.7) would be strictly 
less than — j8i/̂ (j?,A), and this would give a contradiction. We have shown 
that if Pe^p^f^ n ^ , (Q) can be written as XP^ + (1 - X)P2 for XE(0, 1) and 
Pi, P2 ̂  ^s(^)^ then Pi and P2 are also in ^p^ n ^^(Q). Since P is an extremal 
point of^ph n ^s(Q), we conclude that Pi = P2 = P. Thus, P is an extremal 
point of ^s(Q). D 

Corollary A. 11.9. For each P > 0, h real, and choice of sign, the measure 

Pp,h,± = ^-liniAtz^^A,/?,ii,± ^^ ̂ p,h ^ ^ s ( ^ ) is ergodic. 

Proof. The FKG inequality implies that the measures Pp,h,+ ^^^ Pp,h,- ^re 
extremal points of ^^ ;, [see page 123]. Therefore, these measures are extremal 
points of ^p^f, n ^^(Q). n 

For an exposition of the material in the remainder of this appendix, see 
Preston (1976, Section 2). These results generaUze to the many-body interac
tions introduced in Appendix C.3. A measure PeJ^^i^) is said to be mixing 
if for all Borel subsets A and 5 of Q 

Um P{A n T-^B) = P{A}P{B}. 
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If A is a finite subset of iP, then #^c denotes the cr-field generated by the 
coordinate functions Y^ipS) — Oj foryeA^ A measure PeJi{Q) is said to 
have short-range correlations if for any Borel subset 4̂ of Q and any e > 0, 
there exists a finite subset A of Z^ such that for all sets B in J \ c 

\P{AnB]-P{A]P{B]\ <s. 

Define ^^ = HA^^A^' where the intersection runs over the finite subsets of 

Proposition A.11.10. (a) IfPeJ^X^) is mixing, then P is ergodic. 
(b) IfPeJ^si^) has short-range correlations, then P is mixing. 
(c) PeJi{Q) has short-range correlations if and only if for every Ae^^, 

P{A} equals Q or \. 

Proof (a) If P 6 ^ , ( Q ) is mixing, then P{A} = [P{^}]^ for any invariant 
set A. Thus P is ergodic. 

(b) If P in ^s(Q) has short-range correlations, then for any cylinder sets 
Zi and 1^2 ^^d ^^y £ > 0, there exists a positive real number N such that 

(A.8) |P{Z, n r-^'Z^} - P { Z j P { i : , } | < e 

whenever ||y|| > N. The proof of (A.8) for arbitrary Borel sets A and B 
follows from a standard approximation argument [Halmos (1950, page 56)]. 

(c) See Lanford and Ruelle (1969) or Preston (1976, page 23). n 

Theorem A.11.11. Let J be a summable ferromagnetic interaction on JP and 
for P > 0 and h real, let ^^j^ be the set of corresponding infinite-volume Gibbs 
states. Then the following conclusions hold. 

(a) ^ph is a nonempty compact convex subspace of Ji{D). In particular, 
^^ ;, is a compact metric space. 

(b) The set of extremal points of^pj^ is nonempty [Theorem A. 11.6(a)] and 
equals the set of infinite-volume Gibbs states with short-range correlations. 

Proof, (a) ^pj^ contains Pp^h,+ ^^^ is a closed convex subset of Ji{QL). 
Hence part (a) follows from Theorem A. 11.2. 

(b) See Lanford and Ruelle (1969) or Preston (1976, page 21). n 

The following corollary sharpens Corollary A.l 1.9. 

Corollary A. 11.12. (a) For each P > 0,h real, and choice of sign, the measure 
Pp,h,± = ^-^^^^A]zD^A,p,h,± i^ /̂3,/i ̂  ^ s ( ^ ) has short-range correlations. 

(b) For each choice of sign, let {FQ ? ̂ fe)/?,/j,+ denote the pair correlation 

\ ^ 0 i ^//3,^,± — ^0 YkdPpi YodPpj,, \dPp u + . 

Then for each P > 0,h real, and choice of sign, < YQ ; Yj^ypj^ + -^Oas \\k\\ -> oo. 
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Proof, (a) The FKG inequality implies that the measures Pp,h,+ ^^^ ^p,h,-
are extremal points of ^pj^. Hence these measures have short-range cor
relations. 

(b) Define the cylinder sets S+ = {co: COQ = 1} and Z_ = {co: COQ = — 1} 
and write P for Pp^^ +. Then 

- [P{s+} - P{r-}] • [P{r-^s+} - Plr-'^Z-}]. 
Since /* has short-range correlations, P is mixing, and thus < YQ; I^)^,^,, + ^ 0 
as 11̂  II -> 00. The same proof shows that {YQ; 3̂ >̂  ;, _ -^0 as ||A:|| -^ oo. n 

For finite-range interactions, Martin-Lof (1972) has a direct proof of part 
(b) of the corollary. 



Appendix B: Proofs of Two Theorems in 
Section II.7 

B. 1. Proof of Theorem II.7.1 

(a) Assume that F is a continuous real-valued function on a complete 
separable metric space 3C and that sup^^^^W is finite. Clearly sup^^^ 
{F(x) — I(x)} > — 00, and since / is non-negative, sup^^^ {F(x) — I(x)} < 
00. We prove that 

Um — log Qxp(a^F(x))Q„(dx) = sup {F(x) - I(x)}. 
3C xeX 

For A a Borel subset of ^ , define 

I{A) = inf/(x) and JM) = I Qxp(a„F(x))Q„(dx) 
J A 

and write /„ for J„(^). I{(j)) equals oo. We suppose that for all xe^, F(x) < 
L < CO. Choose a number M < min(L, sup^g^ {F(x) — /(x)}). For Â  a posi
tive integer and7 = I, ..., N, define closed sets 

(B.l) K^j = \xe^:M + ^-^(L - M) < F(x) < M + ^ ( L - M)V 

We have [j^=iK^j = {xe^ :F(x) > M} and the upper large deviation 
bounds 

limsup —loggj/^^,,} < -I(K^,j). 

Therefore, 

limsup —log/„(xG^:F(x) > M}) 

< max \M + -^(L~M)-I(K^J} 

j=i,...,N I Jy J 

< max sup {F(x) — I(x)} H . 
J=1,...,N ^^Kj^. N 

< s u p { F ( x ) - / ( x ) } + ^ ^ ^ . 
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Taking N -^ oo yields 

limsup —log/„({xG^:F(x) > M}) < sup {F(x) - I(x)}. 

Since J„({xe^:F(x) < M}) < ^^"^, it follows that 

lim sup — log /„ < max (M, sup {F(x) — I(x)} 1 = sup {F(x) — I(x)}. 

We now prove that 

(B.2) liminf — log/„ > sup{F(x) - I(x)}. 

Let XQ be an arbitrary point in ^ and e an arbitrary positive number. If G 
denotes the open set {xe^: F(x) > F(XQ) — e}, then the lower large devia
tion bound 

impUes 

l i m i n f - l o g e „ { G } > - / ( G ) 

liminf — log/„ > liminf — log/„(G) 

> F(xo) - s - /(G) > F(xo) - I(xo) - s. 

Since XQ and e are arbitrary, (B.2) follows. This completes the proof of part 
(a) of Theorem II.7.1. n 

(b) We prove the limit (2.37) for a continuous real-valued function F 
which satisfies (2.38). As in the proof of part (a), 

(B.3) liminf —log J„ > sup {F(x) - I(x)}. 
"^°^ ^n xe^ 

Hypothesis (2.38) guarantees that limsup„^^a^Mog/„ is finite. Hence by 
(B.3), sup^g^ {/"(x) — I(x)} is finite. By (2.38) there exists a number L > 0 
such that 

limsup —log/„({xG^:/^(x) > L}) < sup{/^(x) - I(x)}. 

Define F{x) = min[F(x),L] and J„ = j^exp(a„F(x))Q„(Jx). F satisfies the 
hypotheses of part (a). We have 

J„ = J„({xe^:Fix)<L}) + J„({xe^:F(x)>L}) 

= J, + J,({xe^:F(x)>L}l 
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limsup —log/„ < max sup{F(x) — /(x)},sup{F(x) — I(x)} 

= sup{jF(x) — I{x)}. 
xe3C 

This completes the proof of part (b) of Theorem II.7.1. 

B.2. Proof of Theorem IL7.2 

A proof of Theorem II.7.2 was sketched in Section II.7. In order to complete 
the proof, we show the following facts. For A a Borel subset of ^ , let JJ^A) — 
^^Qxp(a„F(x))Q„{dx). 

(a) Hmsup„^oo ^n^ lc>g/„(A )̂ < sup^^^^ {^W — K^)} for each nonempty 
closed set A în ^. 

(b) liminf„^oo^n^log/„(G) > sup^g(j{F(x) — I(x)} for each nonempty 
open set G in ^. 

(c) Ipix) = I(x) — F(x) — inf^g^ {I(x) — F{x)} has compact level sets. 

Proof, (a) First assume that for all xe^, F(x) < L < oo. Choose a number 
M < min(L, sup^ î̂ : {F(x) — I(x)}). For N a positive integer andj = 1, . . . , 
N, define closed sets Kj^j = Kr\K^j, where K^^j is defined in (B.l). As in 
the proof of part (a) of Theorem II.7.1, 

limsup —log/„({xGA::i^(x) > M}) 

< max sup {F{x) — I{x)] + 

T — M 
< s u p { F ( x ) - / ( x ) } + ^ 

TV 

Taking N ^ co yields 

limsup —log/„({xeA::F(x) > M}) < sup{F(x) - I(x)}. 
" ^ ' ^ ^n XGK 

Since J„({xeK:F(x) < M}) < e""^, it follows that 

Umsup —log/„(A:) < max (M, sup {F(x) - I{x)}] = sup {F(x) - I(x)}. 
""" '^ ^n \ xeK ) xeK 

This proves the upper bound (a) for a continuous real-valued function F 
which is bounded above. If F is a continuous real-valued function which is 
unbounded above and satisfies (2.38), then the proof of the upper bound (a) 
proceeds exactly as in the proof of part (b) of Theorem II.7.1. 
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(b) Let XQ be an arbitrary point in ^ and e an arbitrary positive number. 
If G denotes the open set {XEG: F(X) > F(XQ) — e}, then 

liminf — log/„(G) > Uminf — log/„(G) 

> F(xo) - 8 - 1(G) > F(xo) - I(xo) - 8. 

Since XQ and 8 are arbitrary, the lower bound (b) follows. 
(c) IfFis bounded above and continuous, then Ip has compact level sets 

since /has compact level sets. So we assume that Fis unbounded above and 
continuous and satisfies (2.38). By Theorem II.7.1, inf̂ ^^ {I(x) — F(x)} is 
finite. By the lower bound (b) which has just been proved, 

— oo = Urn limsup — log Jn({xe^:F(x) > L}) 

> Hm sup {F(x) — /(x)}. 
^~^°o {x€3r:Fix)>L} 

Thus 

(B.4) lim inf{/(x) - F(x): x e ̂ , F(x) > L} = oo. 
L-^oo 

Consider the level set Â^ = {x e ̂ : Ip(x) <b},b real. We must show that for 
any sequence {x„;n = 1,2, . . . } in Kjj, there exists a subsequence {x„'} 
converging to some element x in Kjj. First suppose that sup„=i 2,...^(-^«) ^ 
c < 00. Then 

sup / ( x j <b-\-c+ inf {/(x) — F{x)} < oo. 
« = 1 , 2 , . . . xe^ 

Since /has compact level sets, there exists a subsequence {x̂ }̂ and an element 
X such that x„' -> x; x belongs to Kj, since / is lower semicontinuous and F 
is continuous. Now suppose that sup„=i 2,...^(-^M) = Q̂ - Then by (B.4) 
sup„=i,2,... {K^n) — PiP^r)} = ^ - Siucc thc kttcr contradicts If(x„) < b, the 
proof is done. n 



Appendix C: Equivalent Notions of 
Infinite-Volume Measures for Spin Systems 

C.l. Introduction 

In Chapters IV and V, we proved the existence and properties of infinite-
volume Gibbs states for ferromagnetic models on Z^. In this appendix, 
we generalize the definition of infinite-volume Gibbs states to include many-
body interactions. We also discuss the equivalence between Gibbs states 
and other notions of infmite-volume measures that are standard in the 
hterature. In Appendix C.5, a proof of the Gibbs variational formula and 
principle is sketched. In the last section of this appendix, we solve the Gibbs 
variational formula for fmite-range interactions on Z. 

C.2. Tw^o-Body Interactions and Infinite-Volume Gibbs 
States 

Let us first recall some definitions from Chapters IV and V. / is a non-
negative, symmetric, summable function on Z^; jS a positive real number; 
h a real number; A a symmetric hypercube in Z^; Q^ the set { 1 , - 1 } ^ ; 
^(Q^) the set of all subsets of Q^̂ ; n^Pp the product measure on ^ ( Q A ) with 
identical one-dimensional marginals p = i(5i + {d_-^; and (b = a)(A) a point 
in Q ĉ = {1, — l}'^''. We defined the finite-volume Gibbs state on A with 
external condition cb to be the probability measure PA,p,h,cc> ^^ ^ ( ^ A ) which 
assigns to each {co}, coeQj^, the probability 

(C.l) PA,p,h,c6{^} = exp[-/?/ /A,^,aM]^A-PpM-^.. n. ..' 
Z ( A , p, /2, CO) 

^A,h,(b(^) is the Hamiltonian 

^ i, j 6 A ie A ie A jeA^ 

and Z(A,^,A,co) is the normalization ja^Q^p\_ — PHj^j^j^(cD)']7ij^Pp(dco). In 
(5.24), PA,p,h,co was extended to a probabiUty measure on ^(Q), which is the 
Borel cr-field of the space Q = {1, — 1}^ . J^(Q) denotes the set of proba-
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bility measures on J*(Q). JiJS^ denotes the subset of ^ ( Q ) consisting of 
translation invariant probability measures. ^^ ,, denotes the subset of ^ ( Q ) 
consisting of infinite-volume Gibbs states, ^^y, was defined to be the closed 
convex hull of the set of weak Umits 

P = w-lim/\,,^,^,^(^,), 

where {A'} is any increasing sequence of symmetric hypercubes whose union 
is iP and d)(A') is any external condition for A'. The reader is referred to 
Appendix A.l 1 for information about the sets ^ ( Q ) , JtJS^, and ^^^. 

Since cof = 1; the Hamiltonian can be written as 

(C.2) 

ie Aje A^ 

The first sum runs over all unordered pairs {ij'} in A x A with / =f y, J({ij'}) 
equals / ( / —7), and /({/}) equals h. The constant —^A^/(0) cancels in the 
numerator and denominator of (C.l). It was useful to allow nonzero /(O) 
since in the Curie-Weiss model / ( / —j) equals /o/\^\ fc>r all / and7 in A. 
The terms J({ij'}) in (C.2) are two-body interactions. The terms /({/}) 
are one-body interactions. Hamiltonians with many-body interactions will 
be considered in the next section. 

In the above definitions, the non-negativity of / is not required. / need 
only be real-valued, symmetric, and summable. For any such / , PA,p,h,co ^^^ 
^^^ are well-defined, and since ^(Q) is compact, ^^^ is nonempty. The 
assumption that J is non-negative was needed in order to analyze the struc
ture of^pj, for different values of ^ and h [Theorems IV.6.5 and V.6.1]. This 
analysis depended on the FKG inequahty and on the moment inequaUties 
proved in Section V.3. 

We also comment on the choice of subsets of Z^ which define the infinite-
volume limit. A number of proofs in Chapters IV and V involved the specific 
Gibbs free energy 

ily(p,h) = - r ' lim ^logZ(A,iS,/z,d>(A)). 

The limit exists and is independent of the choice of external conditions 
{d)(A)} if the sets {A} are increasing symmetric hypercubes whose union is 
Z^. Clearly, since the interaction defined by / is translation invariant, the 
hypercubes need not be symmetric. According to Appendix D.2, other 
sequences of subsets are allowed. The definition of the set of infinite-volume 
Gibbs states may also be modified. We may consider the closed convex hull 
of the set of weak limits of finite-volume Gibbs states {P\',p,h,io{^')\^ where 
{A'} is any increasing sequence of nonempty finite sets whose union is Z^ 
(not necessarily symmetric hypercubes). In the next few sections, we explore 
these and related matters. 
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C.3. Many-Body Interactions and Infinite-Volume Gibbs 
States 

A (many-body) interaction is a function / which assigns to each nonempty 
finite subset ^ of / ^ a real number J {A). The interaction is assumed to be 
translation invariant in the sense that J{A + z) = J{A) for all A and all 
/ G Z ^ . We denote by / the set of interactions for which |||/||| =^^30 
|/(^)|/|y4| is finite* and by / the set of interactions for which ||/||^ = 
Y,ABO | A ^ ) | is finite. /^ is a subset o f / . I f / ( ^ ) is non-negative ibr each A, 
then the interaction is called ferromagnetic. In this appendix, we do not 
restrict to such interactions. 

Let A be a nonempty finite subset of Z^, J din interaction in J, and 
c5 = c5(A) a point in Q ĉ (external condition). The Hamiltonian is defined by 
the formula 

(C.3) //A,,,S(CO) = - X J{^)COA - Z J{A^ B)o^^cbs, ^ e Q ^ , 
^ c z A ^ C A , 5 C : A C 

A,B¥^0 

where cô  = Flie^^i î̂ d cb^ ^WieA^i- The sums converge since 7is in J^ 
We define the finite-volume Gibbs state on A with external condition co to 
be the probabiHty measure iA,j,c5 on ^ ( Q A ) which assigns to each {co}, 
CO GQ^, the probability 

(C.4) PJ,,JAO^] = exp[-//^,^,ai(co)]7rAPp(co) ^ 
Z(A, / , co) 

Z(A,/,co) is the normalization JQ^exp[ —//^ j 53(co)]7r^P^((i(y). We have 
absorbed the temperature dependence into / . As in (5.24), PA, j,c5 is extended 
to a probability measure on J*(Q) (denoted by the same symbol PA,J,«)-

We consider two definitions of infinite-volume Gibbs states. Define ^j 
to be the closed convex hull of the set of weak limits 

where {A'} is any increasing sequence of symmetric hypercubes whose union 
is Z^ and d)(A') is any external condition for A'. Define ^ j to be the closed 
convex hull of the set of weak Umits 

A ' t 2 ^ 

where {A'} is any increasing sequence of nonempty finite sets whose union 
is Z^ andjS(A') is any external condition for A'. Since J^(Q) is compact, both 
^j and "^j are nonempty. By definition ^ j is a subset of ^j; according to 
Theorem C.4.1 below, ^j equals ^j. The structure of the set of infinite-

* 1̂ 1 is the number of sites in A. 
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volume Gibbs states has been analyzed by S. A. Pirogov and Ya. G. Sinai 
(see Sinai (1982, Chapter II)) and by Holsztynski and Slawny (1979). 

C.4. DLR States 

Let / be an interaction in ^. Another formulation of infinite-volume mea
sures for spin systems is due to Dobrushin (1968a, 1968b, 1968c, 1969, 1970) 
and to Lanford and Ruelle (1969). In order to motivate this formulation, 
consider a finite-volume Gibbs state PA,J,« on a nonempty subset A of Z^ 
with external condition co. Let A be a nonempty subset of A, COQ a point in 
Q^, and coi a point in QA\A- ^ straightforward calculation shows that the 
conditional probabihty 

^A,j,co{<^eQx:co = coo on A|co = coj on A\A} equals PA,J,5){^O}. 

where the external condition (b equals cô  on A\A and a) on A"". If we formally 
pass to the Hmit K\lP with A held fixed, then we are led to the definition of 
DLR state given below. 

We need some notation. Let A be a nonempty finite subset of iP; #AC 
the cr-field of subsets of Q. generated by the coordinate mappings Yf(X)) = 
cô ., jsK^\ TTA the projection of Q onto Q^ defined by {ji^oS)^ = CD^, ieA; 
and 71 AC the corresponding projection of Q onto QAC. For each point coeQ, 
TTACCO defines an external condition for A. If P is a probabihty measure on 
J'(Q), then define a probabihty measure n^^P on ^ ( ^ A ) by requiring 

7z^P{F} = P{nl^F} for subsets F of QA• 

A probability measure P on ^(Q) is called a DLR state for the interaction 
J if for each A and each point COQ G^A 

(C.5) P{7rX'{coo}|#Ac}(co) = PA,i,.^c..K} ^-a.s. 

By the definition of conditional probability, this is equivalent to requiring 

(C.6) P{nl'{oj,] nG]=[ PA,j,n^,A(Oo]P(dco) 
JG 

for each A, each point COQGQJ^, and each set G in #AC- One may show that the 
set of DLR states for / is a nonempty compact convex subset of Ji{Q). 

According to the next theorem, the notions of infinite-volume Gibbs state 
and DLR state are equivalent. 

Theorem C.4.1. Let J be an interaction in / . The following are equivalent. 
(a) Pisin'^j. (b) Pisin§j. (c) P is a DLR state for J. 

Comments on Proof, (a) =>(b) By definition, ^j is a subset of ^ j . 
(b) => (c) See Dobrushin (1968a, page 206), Lanford (1973, page 104), or 

Ruelle (1978, page 18). 
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(c)=>(a) Georgii (1973) notes that if P is an extremal DLR state, then 
for P-almost every oj, the sequence {/A,J,^^C«' ^ symmetric hypercubes} 
converges weakly to P as A t Z^. This is an immediate consequence of the 
martingale convergence theorem. Each DLR state for /belongs to the closed 
convex hull of the extremal DLR states for / [Theorem A. 11.6(b)]. It follows 
that if P is a DLR state for / , then P belongs to *^j. D 

C.5. The Gibbs Variational Formula and Principle 

Throughout this section A denotes a symmetric hypercube in Z^. Let / be an 
interaction in / , H^J((D) the Hamiltonian — X^,3A/(^)CO^ (coeQ^), and 
Z(A, / ) the partition function 

(C.7) Z ( A , / ) = [ exp[-//^,,(a;)]7r^P,(Jco). 

According to Theorem D.LI, the Umit 

(C.8) p{J)= l imr |TlogZ(A, / ) 
Atz^|A| 

exists. The functional;?(/) is called ihtpressure. It equals negative the specific 
Gibbs free energy (for P = \). Let P belong to the set Ji^i^) of translation 
invariant probabihty measures on Q. The hmit 

(C.9) </,P> = - l i m ^ [ H^Joj)n^P(dcD) 

exists and 

(C.IO) </,/>>= X(^(^)/Mi) CD^P(d(o), 
n 

Also the limit 

(C.ll) /<3»(/>) = ^l im^/<^V^(. ,P) 

exists, where I},^p (TLJ^P) denote the relative entropy of TT^P with respect to 
n^P^. See, for example, Israel (1979, Chapter II) for a discussion of the limits 
</,P>and/;^>(P). 

The next theorem states the Gibbs variational formula and Gibbs varia
tional principle (parts (a) and (b), respectively). The theorem is due to Ruelle 
(1967) and Lanford and Ruelle (1969). If J(A) equals 0 whenever \A\>2, 
then this theorem reduces to Theorems IV.7.3 and V.6.3. 

Theorem C.5.1. Let J be an interaction. Then the following conclusions hold. 
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(a) For Jsf^, p(J) = supp,^^,„) {</, P) - / f >(/>)}. 
(b) For Je^, the set of PeJiJ^, at which the supremum in part (a) is 

attained equals ^j n ^^(Q), the set of translation invariant infinite-volume 
Gibbs states. 

We sketch a proof of the theorem for interactions / in f. This proof is 
due to Follmer (1973) and Preston (1976). See Pirlot (1980) and Kiinsch 
(1981) for generaHzations. Given measures P and Q in ^^(Q), consider the 
relative entropy I^^^qin^P) ofn^P with respect to n^Q. If the limit 

'i?„m^A^(--^) 

exists, then we denote the limit by h{P\Q) and call it the specific information 
gain of P with respect to Q. Clearly h{P\Q) is non-negative and if Q equals 
the infinite product measure Pp, then h{P\Q) equals Ip^\P). Theorem C.5.1 
for / G / is a consequence of the following result and Theorem C.4.1. 

Theorem C.5.2. Let J be an interaction in J and let Q be a DLR state for J. 
Then for any PeJi^Q) the following conclusions hold. 

(a) h{P\Q) exists and satisfies 

0 < h{P\Q) = p(J) - {J, Py + / f >(P). 

(b) h{P\Q) equals 0 if and only if P is a DLR state for J. 

Sketch of Proof, (a) Consider the probability measure P^j on ^ ( Q A ) 
defined by 

PAA^O] = exp[-7/A,j(<^o)]7^A-Pp{<^o} - ^ . ^ J. forcOoGQA-

We have 

Since g is a DLR state for / , 

By elementary estimates, one shows that for any COQEQ^ and coeQ 

^-a(A) < ^A,J,n^cco{o^o} ^ ^^^^^ 

~ PAA^O} ~ 

where a(A) does not depend on COQ and co and satisfies a(A)/\A\-^0 as 
A t Z^. It follows that 



C.5. The Gibbs Variational Formula and Principle 329 

(C.12) limJ-in^^^in^P) - iP^/n^P)] = 0. 

Since 

^A MAP) = log Z(A, / ) + [ H^JcOo)n^P,(dcOo) + O / ^ A ^ ) , 

we conclude that h(P\Q) exists and satisfies 

0<h(P\Q)=p(J)-{J,P}+I^/\P). 

(b) If P is a DLR state for / , then (C.12) with Q = P shows that h(P\Q) 
equals 0. The most difficult part of the proof is the converse: h(P\Q) = 0 
impHes that P is a DLR state for / . We omit this proof, referring the reader 
to Preston (1976, pages 115-122) for details. D 

We end this section by stating another characterization of the measures 
in ^j n ^sC^). Heuristically, the Gibbs variational formula is a Legendre-
Fenchel transform relating Ip^\P) and/?(/). By Theorem D.1.1, p(J) is a 
convex function ofJef. Let JQ be an interaction in ̂ . A measure PQ e J^si^) 
is said to be in the subdifferential ofp at JQ if 

(C.13) p(Jo + / ) >p(Jo) + <J,Po> for all Jef. 

This equation means that the functional / -> </, PQ) is tangent to the graph 
of p at (JQ,P(JQ)). A measure PQE^^Q) satisfying (C.13) is called a trans
lation invariant equilibrium state for JQ. 

Theorem C.5.3. (a) Let JQ be an interaction in / . Then PQ is a translation 
invariant equilibrium state for JQ if and only if PQ gives the supremum in the 
Gibbs variational formula 

piJo)= sup {iJo,py-r/\p)}. 

(b) Let JQ be an interaction in ̂ . Then the following are equivalent. 

(i) PQ is a translation invariant equilibrium state for JQ. 
(ii) PQ is a translation invariant DLR state for JQ. 

(iii) PQ belongs to the set ^j n Ji^i^). 

Comments on Proof, (a) This follows from Theorem C.5.1 and the inverse 
formula I^^KPQ) = supj^/{</,Po> - / ? ( / ) } . See Ruelle (1978, page 48) or 
Israel (1979, page 49). 

(b) (i) <^ (ii) Part (a) and Theorem C.5.2. 
(ii) o (iii) Theorem C.4.1. n 

Lanford (1973, Chapters B-C), Preston (1976), and Israel (1979) discuss 
in detail the material contained in the previous three sections. 
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C.6. The Solution of the Gibbs Variational Formula for 
Finite-Range Interactions on Z 

Let / be a many-body interaction on Z which has finite range. Thus we sup
pose there exists an integer a > 2 such that ifn^< • • • < ŵ  are integers and 
rij^ — n^> a, then /({«i, . . . ,n^} = 0. We assume that a is the smallest 
integer with this property. Then the range of the interaction is defined to be 
a — 1. As in Sections C.3-C.5, we absorb the temperature dependence into 
/ . We sketch a proof that the supremum in the Gibbs variational formula is 
attained at a unique measure which is a Markov chain if a = 2 and is an 
(a — l)-dependent Markov chain if a > 3. The proof depends on results 
developed in Chapter IX. For two-body ferromagnetic interactions which 
are of finite-range, it follows from Theorems IV.6.5 and C.5.1 that the 
critical inverse temperature jŜ  equals oo. Another proof is given at the end 
of this section. 

Given PeJi^Q) (Q = {1,-1}^), set T = n^P. Because of translation 
in variance, the functional </, P> in (CIO) equals 

X (J(A)/\A\) f oj^PidcD) = X (J(A)/\A\) 
leA^{l,2,...,a} JQ 1 e A^{1,2,...,(X} 

where Q^ = {1, - 1 } ^ Given (x^^,.. .,xQeQ^, set T^̂ ...̂ ^ = T{X,-^, . . . , x j 
and define a point teU^^" by 

h,...i.= I (JiA)/\A\)Ux,j-
l€A^{l,2,...,a}  jeA 

By Theorem IX.3.3 (contraction principle) and (9.13), we can write the 
Gibbs variational formula as 

p(J)= sup {<7, / '>- / f>(/>)}= sup { < ; , T > - / < » } 

= sup { < ; , T > - ^ ' » } . 

According to (9.20), 
sup {{t, T> - 7;.3,'(T)} = log X{BM), 

where the matrix B^{t) is defined in (9.14). As in the proof of Theorem 
IX.4.4, the supremum in the last display is attained at the unique point 

<.../, = w,^...,^_^^,(0,^...,^_,,,^...,^w,^... JA(^ , (0 ) , 

where u and w are positive left and right eigenvectors associated with 
A(j5^(0) and normalized so that <w, w> = 1. Since /(x) = </ ,T> - J^^^ix) 
is concave [Problem IX.6.1 or I X . 6 . 2 ] , / ( T ) attains its supremum over all of 
^ s ^ at the unique point T^ = {^^^-^-i^- We conclude that 

p{J) = sup {<r, T> - ^<^j(T)} = <r, T^> - 7 ; > ^ ) = l o g ^ ( 5 , ( 0 ) 
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and that the supremum in the Gibbs variational formula is attained at a 
unique measure P. If a = 2, then P is the Markov chain satisfying 712^ = T^ ; 
if a > 3, then P is the (a — l)-dependent Markov chain satisfying n^P = x^ 
[Theorem IX.3.3]. BJJ) plays the role of transfer matrix [Example IV.5.4]. 

The analytic impHcit function theorem [Bochner and Martin (1948, page 
39)] impHes that the function \ogX{B^{t)) is a real analytic function of the 
quantities {J{A)}. Now assume that / i s a finite-range ferromagnetic inter
action as we considered in Chapter IV: J{{iJ]) — PJ{i —j)>0 (i =l=j), 
/({/}) = h, and J(A) = 0 whenever | ^ | > 2. It follows that the specific Gibbs 
free energy is a real analytic function of h and thus that the critical inverse 
temperature P, equals 00. 



Appendix D: Existence of the Specific Gibbs 
Free Energy* 

D. 1. Existence Along Hypercubes 

Let / be a non-negative, symmetric, summable function on Z^; A a sym
metric hypercube in Z^; ^ > 0; and h real. In Chapters IV and V, the specific 
Gibbs free energy was defined by the formula 

= -p-^ lim T-rjlog exp ^ ^ J(i-j)a)iCOj + ph ^ coJ TT^P/JCO), 
Atz^ |/\| J^ \_Z ij^^ i^^ J 

(D.l) 

where Q̂ ^ = {1, — 1 j " ^ . We now show the existence of i/̂ (jS, h) by proving the 
existence of a more general quantity. 

We use the notation and terminology of Section C.3. A (many-body) 
interaction / on Z^ is said to have finite-range if J{A) equals 0 for all A 
of sufficiently large diameter. The Hnear space of finite-range interactions 
is denoted by /Q . We denote by / the space of interactions for which 

ilklll = I \JiA)\l\A\ 

is finite. ^ is a separable Banach space and / o is a dense subset of / . For 
A a finite subset of Z^, the Hamiltonian is defined by the formula 

The function P/^(J) = lApMog j^^expC —^^ j(co)]7rAP^(Jcf;) is called the 
pressure for A. Note that 

(D.2) \\H^Jl < X \J(A)\ =Z E \J{A)\/\A\ = |A| • |||/|||, 
^ c A is A {AcA-.ieA} 

(D.3) l;'A(-/)l<^l|/^A.ylloc<ll|/|ll, 

(D.4) \p^(J) -p^(Jo)\ ^TX\\\Hj,.j - //A,,JU < Ilk- ^ 1 

*This appendix follows Israel (1979, Section 1.2). 
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where \\-\\^ denotes the maximum over Q^. The first inequaHty in (D.4) 
follows from the comparison lemma, Theorem II.7.4. 

Theorem D.1.1. For positive integers b, let K{b) be a hypercube of side length 
b. Then for Je/, p(J) = limjj^^p^^j,^(J) exists and is a convex, Lipschitz 
continuous function. The function p {J) is called the pressure. 

Proof. By (D.4), it suffices to prove the theorem for Je /Q . Let m be a positive 
integer such that J {A) equals 0 whenever A has diameter at least m. Let a 
and b be positive integers such that b > a -\- m. Thus b = n(m + a) + c for 
some n > 1 and Q < c <m + a. We write the hypercube A(Z?) as the union 
of two sets A' u A''; A' equals the union of n^ hypercubes of side length a 
which are separated by corridors of width m; A'' equals A\A' [see Israel 
(1979, page 11)]. Since the n^ hypercubes in A' do not interact with each 
other, Hj^' J is the sum of n^ copies of H^^^^j which are independent with 
respect to n^>Pp. Therefore 

PA'(J)=-^^D^^og Qxp[-H^>^j(oj)]n^>P^(da)) 

= ^ l O g QWl-HMa),j(^)']^A(a)Pp(^0)) = PA(a)(J)-
*̂  ^A(a) 

We have 

< Z |/(^)|<|A(^)\A'Hkll~, 
Aci\(b),Ai:A' 

where ||/||~ = E^.o \J(A)\. Dividing through by |A(Z))| = b^ yields 

|(«fl/^)Xa,W -PAaJ)\ ^ (1 - inalbf)\\J\\~. 

For each fixed a, as b ^ GO, n(a + m)/b -^ 1 and so na/b = a/(a + m) + o(\). 
Thus 

(D.5) 

a ^^ 
+ 0(1) PAiaM) - PA(b)(J) 

a + m 

< ( 1 - ( — ^ — + 0(1)1 | | | / | |~ as 6-* 00, 
\a + in 

(D.6) limsup|/7^„,(/) - J P A „ , ( / ) | < 2 (l-(^-\')\\j\\^. 

Taking (2-> oo in (D.6), we see that {/?A(b)(«̂ )} forms a Cauchy sequence 
with limit p{J). The convexity of/?^(fe)(/), and thus of/?(/), follows from 
Holder's inequaHty. The Lipschitz continuity of /?(/) is a consequence of 
(D.4). D 
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Corollary D.1.2. Let J be a symmetric, summable function on JP. Then the 
specific Gibbs free energy il/(P,h) defined in (D.l) exists, 

Proof Let 7 be the interaction defined hy_J({iJ}) = pj(i—j) {ii=j), 
J({i]) = ph, and J{A) = 0 whenever |^ | > 2. 7is in / since / is summable. 
We have 

D.2. An Extension 

For each positive integer a and point neZ^, let A„(a) be the hypercube 
{jeZ^: n^a <j < (n^ + l)a, a = 1, . . . , D], For fixed a and A a finite subset 
of Z^, we define N^(A) as the number of sets A„(a) which intersect A and 
N~(A) as the number of sets A„(a) which are contained in A. A sequence 
of finite subsets {A} of Z^ is said to converge to infinity in the sense of van 
Hove if for all a, N~(A) -» oo and N~(A)/N^(A) -^ 1. Roughly, this means 
that the boundaries of {A} become negligible in the limit as compared to 
{A}. 

Theorem D.2.1. If {A} converges to infinite in the sense of van Hove and if 
jE/,thenp^{J)-^p{J). 

A proof is given in Israel (1979, page 12). 
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Symbol Meaning Section 

affC 
a.s. 

a.s. 
• 

bdC 
i^(^) 
C 

c* cc^ , 
clA 
conv Sp 
cAt) 
'^{SC) 

c,{t) 
_9_^ 

d o m / 
dvjdp 

E{ } 
ep i / 

exp 

£•{71^} 
^ 
^{X^\aes^) 

f\y) 
f'^{x),f'_{x) 

dfiy) 
^P.H 

HP) 
HA,H((^), H^,h,sico) 
H(v) 

Affine hull of the convex set C 
Almost surely 
Almost sure convergence 
Boundary of the convex set C 
Borel c7-field of fi 
Set of complex numbers 
Complex Euclidean space 
Closed convex hull of the support of p 
Closure of the set A 
Convex hull of the support of p 
Free energy function of the sequence W 
Space of bounded continuous real-valued 
functions on the metric space ^ 
Free energy function of p 
Convergence in distribution 
Effective domain of/ 
Radon-Nikodym derivative of v with 
respect to p 
Expectation 
Epigraph of/ 
Exponential convergence 
Conditional expectation of Y given ^ 
ff-field 
(T-field generated by {X^;ae^} 
Legendre-Fenchel transform of/ 
Right-hand derivative and left-hand 
derivative o f / a t x 
Subdifferential o f /a t y 
Set of infinite-volume Gibbs states 
Mean entropy of P 

VI.3 
A.4 
A.4 

VI.3 
A.2 

VII.5 
VII.5 

VIII.4 
A.S 

VIII.3 
II.6 
A.8 

II.4 
A.S 

VI.2 
II.4 

A.4 
VI.2 
II.6 
A.6 
A.2 
A.2 

VI.5 
VI.3 

VI.3 
IV.6 

1.6 
Hamiltonian or interaction energy IV.3, IV.6 
Shannon entropy of v 1.4 



336 List of Frequently Used Symbols 

int A Interior of the set A A.8 
/^ (z) Legendre-Fenchel transform of c^ (t) II.6 
I^^Kz) Level-1 entropy function II.4 
Ip^\v) Relative entropy of v with respect to p 1.4, II.4 

(level-2 entropy function) 
I^^\P) Mean relative entropy of P with respect II.4 

to Pp (level-3 entropy function) 
L„, L„(a;, •) Empirical measure 1.2 
log Natural logarithm I.l 
Ji{^) Set of probabiHty measures on the A.8 

metric space 3C 
J(J^ Set of strictly stationary probabiHty A.9 

measures on the space Q 
m(P,h) 
m(iS,+),m(i8,-) 
Mp 

mp{t) 
P{A\9} 

Pn,A,A 

^n,A,p 

p p p pW 

^A,p,h^ P\,p,h,(b^ 

PA,p,h,+ -> PA,P,h,-

Pf> 

P^,P{B\9]{co) 

Qi'^ 
Qi'' 
&n'' 
rbdC 
W 
{u^Y 

r iC 
R,,R,{(D,') 
S„, 5„(co) 
Sj,(co) 

^ P 

T 
% 

z, z-" 
Z^ 

specific magnetization 
Limits of m(^, /?) as /? -> 0"̂  and h-^0~ 
Mean of p 
Moment generating function of p 
Conditional probabiUty of A given ^ 
Microcanonical ensemble of the 
discrete ideal gas 
Canonical ensemble of the discrete 
ideal gas 
Infinite-volume Gibbs state 
Finite-volume Gibbs state on A 

Infinite-product measure with identical 
one-dimensional marginals p 
Regular conditional distribution 
Distribution of SJn 
Distribution of L„ 
Distribution of R„ 
Relative boundary of the convex set C 
Real EucHdean space 
n^' 

a e Z 

Relative interior of the convex set C 
Empirical process 
«th partial sum of i.i.d. random vectors 
Total spin in A 
Support of p 
Shift mapping 
{(p,h): p > 0, ft i= 0 andO < p < p„ 
h = 0} 
Set of integers, set of positive integers 
D-dimensional integer lattice 

VI.3 
VI.5 
II.4 

VII.5 
A.6 

in.3 

III.6 

IV.6 
[V.3, IV.6 

A.7 

II.4, A.6 
1.3 
1.4 
1.6 

VI.3 
A.3 
A.3 

VI.3 
1.6 
1.2 

IV.3 
VIII.3 

1.6 
V.7 

1.1,111.8 
V.2 
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Z(A, j8, h), Z(A, jS, h, cb) Partition function IV.3, IV.6 
Pc 
^ 
KB) 

V <3c; /> 

n„P, 

n^P 
n^Pp 

Pp 
4>m 

Xc 
xiP,h) 
HP,h) 
(n,^,p) 
^A 

< , > 

INI 
IMU 

Critical inverse temperature 
Unit point measure at x 
Largest positive eigenvalue of the 
primitive matrix B 
V is absolutely continuous with respect 
to p 
Finite product measure with identical 
one-dimensional marginals p 
a-dimensional marginal of P 
Product measure on Q̂ ^ with identical 
one-dimensional marginals p = ^d^ + ^^.^ 
Maxwell-Boltzmann distribution 
Specific free energy of the discrete 
ideal gas 
Characteristic function of the set C 
Specific magnetic susceptibility 
Specific Gibbs free energy 
Probability space 

{1,-ir 
Euclidean inner product on W 
Euclidean norm on W 

Supremum norm 
Weak convergence of probability 
measures 

IV.5 
1.2 

IX.4 

II.4 

1.3 

1.6 
IV.3 

III.5 
III.8 

III.4 
V.7 

IV.5 
A.4 

IV.3 
II.4 
II.4 

A.8 
A.8 
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