
7

Self-Organizing Maps and Unsupervised
Classification

F. Badran, M. Yacoub, and S. Thiria

This chapter is dedicated to the second group of neural networks: Topologi-
cal self-organizing maps. Those models are subject to unsupervised learning,
in contrast with multilayer perceptrons, which were described in previous
chapters. Primarily, the purpose of those models is purely descriptive: some
structure is sought in given data. There is neither precise action to perform,
nor desired response to obtain. Alternatively, information compression can be
considered as the purpose of unsupervised learning: a compact description of
the data, with minimal distortion, is sought.

The unsupervised learning methods that are used by topological self-
organizing maps stemmed from techniques that were first designed for compet-
itive learning. Among pioneering works in the field, one may quote
[Didday 1976] and [von der Malsburg 1973]. The models were made of parallel
filters that analyzed the same observation. For that observation, the filters’
responses were different, and the filter that generated the highest response
was said to win the competition. That winner is then favored by competitive
learning, and the training algorithm enhanced the response of that filter to
that observation. The same operation is performed for all observations of the
training set until stabilization of the parameters of the filters. At that stage,
each filter has been made sensitive to features that are specific to a subset of
the data set: it operates as a feature detector.

Topological maps or self-organizing maps were first introduced by T. Ko-
honen in 1981. The first models were designed for processing high-dimensional
data. Very large data sets with high dimensional data vectors were involved
in the applications under consideration. In order to process such data, the
topological map visualization methodology is designed to partition available
data into clusters of data that exhibit some similarity. The training process is
driven by the data set. The specificity of topological maps is to provide the
clusters with a neighborhood structure, which is actually a graph structure on
a discrete set. Low-dimension lattices (1D, 2D or 3D grid) are most frequently
considered.

380 F. Badran et al.

The most important feature of self-organizing maps is the possibility of
comparing clusters, which summarize the data. Each observation is allocated
to a cluster. Each cluster is projected onto a node of the map. The compari-
son of projections stemming from different observations allows estimating the
proximity between their respective clusters: similar observations are projected
onto the same node. Otherwise, the dissimilarity increases with the distance
that separates the two projections; that distance is computed on the map.
Thus, the cluster space is identified to the map, so that projection enables
visualizing simultaneously the cluster space and the observation space.

Unsupervised classifiers and self-organizing maps are closely related; most
such methods of clustering aim at aggregating similar data. In that context,
similar means close with regard to the application field and the underlying
metric. The topological ordering is the specific contribution of neural networks
with unsupervised learning to clustering, a key theme in data analysis [Duda
et al. 1973; Jain et al. 1988].

In current decision systems, any clustering may contribute to supervised
classification as well. Most applications that use self-organizing maps are clas-
sifiers. Moreover, some of them are perform regression. Several explanations
help to understand that fact:

• Straightforward modifications of the basic algorithm allow its use as a
supervised training algorithm [Cerkassky et al. 1991].

• Results of unsupervised training algorithms may easily be integrated into
data processing systems that touch the same areas of interest as multilayer
Perceptrons. Therefore, self-organizing maps are used to pre-process data:
information provided by self-organizing maps may be processed by other
algorithms for regression or classification.

Actually, clustering or unsupervised classification turns out to be complemen-
tary to discrimination or supervised classification (as described in Chap. 6
of this book). It can be considered in a sense, that any application project
uses supervised information to some extent. Any system needs to be vali-
dated before use: therefore, available expert knowledge must be used, since
an expert has processed some available data so that the associated desired
response is known and may be used to tune the automatic system. In partic-
ular, this knowledge may be used to improve unsupervised models. If expert
knowledge is widely available, then it is possible to take advantage of it from
the beginning of the analysis, using supervised forms of self-organizing maps.
Conversely, if it is scarce, it can be only used to interpret results of the un-
supervised analysis: expert knowledge will be used after achieving clustering
tasks. Thus, the approach is sequential: first, a partition of the data set is
sought; the recognition itself is subsequently performed.

Self-organizing maps and their theoretical foundations are presented in this
chapter. Those algorithms are described under a unified formalism, in order to
connect them with data analysis methods from which they actually stemmed:
self-organizing map algorithms may be viewed as extensions of well-known

7 Self-Organizing Maps and Unsupervised Classification 381

algorithms of pattern recognition and clustering. The formalism that we use
here is slightly different from the original Kohonen formalism. We will discuss
all the necessary links between the various versions of the basic algorithm.
Then a section will show in detail how expert knowledge can be used after
performing unsupervised training.

This chapter is also application-oriented to a large extent. Two detailed
studies of real-world applications are presented. Numerous self-organizing map
based concrete projects were carried out in various application fields. Some re-
cent books describe some of those applications [Oja et al. 1999; Kohonen 2001].
A review paper provides a fairly complete bibliography of all papers published
between 1981 and 1997 ([Kaski et al. 1998] www.soe.ucsc.edu/NCS). The
Helsinki University Web site (http://www.cis.hut.fi/ research/som-research/)
addresses a large variety of topics: computer vision, image analysis, image
compression, medical imagery, handwriting recognition, speech recognition,
signal analysis, music analysis, process control, robotics, Web searching and
so on.

The first application that is described in the present chapter deals with re-
mote sensing. By analyzing the details of the modeling that was performed, we
will help understand how self-organizing maps are used to perform data analy-
sis. Kohonen’s research group performed the second application: the Websom
system, which is aimed at document searching on the Web. This application
is interesting because the relevant data exhibit very large dimensionality. It
is a striking example demonstrating the expected computational power of
self-organizing maps.

7.1 Notations and Definitions

This section defines the notations that will be used throughout the present
chapter. The set D denotes the observation space. We assume that the obser-
vations are real-valued and multidimensional; therefore, D is a subset of the
n-dimensional vector space R

n. Each vector belonging to D is associated to
a particular encoding of an individual observation, which is taken from the
given population. N observation vectors are assumed to be available: they are
associated to N individuals. They form the subset A = {zi; i = 1, . . . , N}. Ac-
tually, A is included in D. Naturally, it is assumed that A is a representative
sample of the considered population. According to that assumption, A is the
training set that allows parametric estimation.

All the methods that will be described aim, in a first step, at reducing the
information that is present in D. They do so

• by building a finite subset W = {wc; c = 1, . . . , p} of D; those n-
dimensional vectors will be called reference vectors or simply reference
throughout this chapter;

382 F. Badran et al.

Fig. 7.1. General diagram of the modeling process: one observation z is associated
to an index c that is selected among p indices using a function χ; that index allows
defining the associated reference wc

• by defining an allocation function χ from D into the index set {1, . . . , p};
that function performs a partition P = {P1, . . . , Pc, . . . , Pp} of D into p
subsets, Pc = {z ∈ D/χ(z) = c}.
Figure 7.1 describes graphically the modeling process: one observation z

is associated to an index c that is selected among p indices using a function
χ; that index allows defining the associated reference wc. Thus, the reference
vector wc is the representative example of the set Pc. It summarizes all the
information contained in Pc. In the following, reference wc or its associated
index c will be used, depending on the context, for representing the observation
subset Pc. We will estimate the model parameters from the observations of
the training set A. Therefore, we denote by nc the number of elements of Pc.

The knowledge of the reference vector set W and of the allocation func-
tion χ generates what is called a vector quantization. All known methods to
determine W and χ can be derived from a variational principle and amount
to a cost function minimization. Each method has a specific cost function.
The latter incorporates the specific properties of the associated quantization.
The vector quantization permits the allocation of a reference wχ(z) to any
observation z ∈ D. That reference index is χ(z). Furthermore, the knowledge
of the allocation function χ completely determines the partition of the set D
into p subsets.

Although the cost functions are different for different methods, all methods
that will be described share common features. In the following, the formalism
of dynamic clustering will be used. That approach is iterative. Each iteration
consists in two steps: a minimization step computes the reference vectors, and
an allocation step changes the allocation function χ. Under some assumptions,
the cost function decreases at each step and eventually converges towards a
local minimum. That minimum depends strongly on the choice of the reference
vector set that was selected to initialize the algorithm.

7 Self-Organizing Maps and Unsupervised Classification 383

The k-means algorithm is a traditional unsupervised classification algo-
rithm. It is the ancestor of self-organizing maps. In the next section, we de-
scribe both the most classical form of that algorithm, and its variants that
give insight into the connections with self-organized maps.

For all methods, we first describe the standard version of each algorithm.
Then we describe its most popular variants (stochastic or probabilistic ver-
sions).

7.2 The k-Means Algorithm

7.2.1 Outline of the k-Means Algorithm

The most known vector quantization method is the k-means algorithm. That
method finds the set of reference vectors W and the allocation function χ by
minimizing the cost function:

I (W,χ) =
∑

zi∈A

∥∥zi − wχ(zi)

∥∥2 =
∑

c

∑
zi∈Pc

⋂
A

‖zi − wc‖2
.

The quantity
Ic =

∑
zi∈Pc

⋂
A

‖zi − wc‖2

is the local inertia, with respect to the reference vector wc, of the observations
of the learning set A that are allocated to that reference vector. Therefore,
those observations belong to the subset Pc. That inertia is the squared quanti-
zation error performed when the observations of the subset Pc are replaced by
the reference vector wc that represents them. The total cost I(W,χ), which
is to be minimized, is the sum of the local inertias Ic. In order to minimize
I(W,χ), one must define the allocation function χ. The quantity to minimize
becomes

I (W,χ) =
∑

c

Ic =
∑

c

∑
zi∈A

χ(zi)=c

‖zi − wc‖2
.

The algorithm is implemented sequentially. An iteration is split into two
phases. The first sep consists in minimizing I(W,χ): assuming that the ref-
erence vectors are kept fixed, it computes the activation function χ. In the
second step, the value of the allocation function takes on the value that was
just computed: the cost function is then minimized with respect to the para-
meters W of the reference set. In that two-phase iterative process, the value
of the cost function I(W,χ) decreases at each step.

384 F. Badran et al.

Thus, an iteration can be summarized as follows:

• Allocation phase: I(W,χ) is minimized with respect to the χ; during that
phase, the reference vectors retain their previous values (or the initial
values for the fist iteration). The minimization is performed when each
observation zi is allocated to the reference wc by the allocation function
χ:

χ(z) = arg min
r

‖z − wr‖2
. (1)

In that relation, r varies from 1 to p (the number of reference vectors). By
allocating the closest reference vector (in the sense of Euclidean distance)
wc to each observation zi, the cost function I(W,χ) is minimized. The
new allocation function χ defines a new partition P of the set D (the
closest reference vector has to be understood according to the Euclidean
distance). In the following, nc is the cardinal of the set A ∩ Pc.

• Minimization phase: I(W,χ) is minimized with respect to the reference
set W ; the allocation function χ that was computed at the previous step
is kept constant. The cost function I(W,χ) is then a convex quadratic
function with respect to W . Its global minimum is reached for

∂I

∂W
=
[
∂I

∂w1
,
∂I

∂w2
, . . . ,

∂I

∂wp

]T

= 0.

The computation of the gradient that is associated to each reference vector
wc provides a new set of vector equations

2
∑
zi∈A

χ(zi)=c

(zi − wc) = 0,

which define the new reference vectors

wc =
1
nc

∑
zi∈Pc

⋂
A

zi. (2)

That algorithm can be proved to converge. If the allocation function that
was computed in the first phase is applied, the class of an observation z
changes only if its contribution to the global inertia that is computed with re-
spect to the reference setW decreases. Therefore, that global inertia is smaller
than the current value of I(W,χ). The second phase consists in updating the
reference set W . Each reference vector wc defines the center of inertia of the
observation set Pc ∩ A. That requires that I(W,χ) decrease, since it is the
inertia with respect to the center of inertia of partition P . When the two
phases are alternatively iterated, the cost function I(W,χ) decreases. I(W,χ)
is expressed as a function of the trace of partition P on the data set A. That
trace is a partition of A. Since the number of partitions of set A is finite, the
iterative process converges to a local minimum of the cost function I(W,χ)
with respect to the reference set and to the allocation function.

7 Self-Organizing Maps and Unsupervised Classification 385

The implementation of the k-means algorithm can be summarized as
follows:

k-Means Algorithm

1. Initialization phase: t = 0, choose the initial p reference vectors (randomly,
in general), choose the maximal number of iterations Niter.

2. Iteration: at iteration t, the reference setW t−1 is known from the previous
step:
Allocation phase: update the allocation function χt that is associated to
the reference set W t−1: a reference vector is allocated to each observa-
tion z, as given in (1).
Minimization phase: compute the new reference vectors W t, as given in
(2).

3. Iterate until the specified maximum number of iterations is reached, or
until I stabilizes.

Note that the k-means algorithm may be considered as belonging to the
family of dynamic clustering algorithms [Didday 1976]. It is a general method
that provides a local minimum of a cost function. That method is based on
using two entities: the set of partitions of the original data set into p subsets,
and the space W of the representation (which may be different from the data
set). Then, a subset Pk of the partition will be represented by an element
wk, which will be its associated element of W . The discrepancy between an
element x of the data set and its associated element wk will be assessed by a
positive dissimilarity function d such that the smaller d(x,wk), the better x
agrees with wk. Thus, it is necessary to define a partition P = {Pk/k = 1 . . . p}
into p data subsets and jointly a set W = {wk/k = 1 . . . p} of p representative
elements such that they minimize a cost function. The latter will be defined
from the training set by

H (P,W) =
p∑

k=1

∑
xi∈Pk

⋂
A

d (x,wk).

The dynamic clustering algorithm minimizes that function iteratively way.
First, p representative elements are selected to initialize the process. Then,
the general iteration consists of two phases: first an allocation phase that
minimizes the cost function with respect to the partition, given the represen-
tative elements. Then, during the subsequent phase, the criterion is minimized
with respect to the p representative elements, retaining the previous allocation
function. In the particular case of k-means algorithm, the reference vectors are
the representative elements and the dissimilarity function d is the Euclidean
distance.

386 F. Badran et al.

7.2.2 Stochastic Version of k-Means

The previous algorithm has all the shortcomings of deterministic optimization
algorithms. Generally, those algorithms depend strongly on initial conditions,
and converge to a local minimum. The optimization mechanism does not allow
exploring all the local minima of the cost function. As shown in Chap. 2, op-
timization can be improved simply by running several optimization processes
from various initial conditions, and selecting the best local minimum. In the
case of unsupervised learning, the best reference vector set and the best par-
tition will be selected, i.e., those which generate the smallest value of the cost
I(W,χ).

At each iteration, during the minimization phase, the reference set that
minimizes the cost function I(W,χ) for a given allocation function χ is de-
termined. Yet, it is not necessary to complete the move towards the global
minimum of the cost function to guarantee that it decreases. At time t, given
the allocation function χt, finding a reference vector set W t such that

I
(
W t, χt

) ≤ I (W t−1, χt
)

is sufficient.
One may implement a simple gradient descent algorithm, which guarantees

the decrease of I(W,χ) at each step. The computation of the gradient requires
the computation of the partial derivatives of I(W,χt) with respect to all the
components of each reference vector wc,

∂I

∂wc
=

∑
xi∈A

χt(zi)=c

2 (wc − zi).

The computation of the reference vectors that was performed by relation
wc = 1/nc

∑
zi∈Pc

⋂
A zi at each step is replaced by

wt
c = wt−1

c − µt
∂I

∂wc
= wt−1

c − 2µt

∑
xi∈A

χt(zi)=c

(
wt−1

c − zi

)
.

That is the simple gradient descent optimization method that was de-
scribed in Chap. 2. The allocation function χt that appears in the expression
of the gradient is defined in the allocation phase of iteration t, the quantity µt

is the training rate at iteration t, and the reference vector wt−1
c was computed

during previous iteration. That algorithm is not adaptive, since it minimizes
the global cost function I(W,χ). To implement any change, the whole data
set A has to be used.

The adaptive or stochastic version of the k-means algorithm is obtained
by the following modification of the basic optimization procedure. The min-
imization is now performed stochastically: the terms of the sum in relation
I(W,χ) are considered separately. At each iteration, a single observation zi of

7 Self-Organizing Maps and Unsupervised Classification 387

the data set is presented. It leads to the update of the closest reference vector
wχ(zi). It amounts to decrease only the single term ‖zi − wt

χ(zi)
‖2 of I(W,χ)

by gradient descent.
Then the partial gradient 2(wt

χ(zi)
− zi) is used to update the reference

vector wχ(zi) as follows:

wt
χt(zi)

= wt−1
χt(zi)

− 2µt

(
wt−1

χt(zi)
− zi

)
.

A good minimum is obtained by presenting each observation of the data
set A repeatedly (Niter must be large enough). When updating the reference
vectors, the gradient step µ decreases. When training starts, the value of µ is
relatively large, and the decrease of the cost function is not strictly guaranteed.
As training proceeds, µt becomes small enough, each reference vector update is
small, and several updates must be performed to produce a significant change
in the cost function. In that case, there is no major difference between the
total gradient and the addition of several steps of the partial gradient. Then
the stochastic gradient algorithm behaves as the classical version of the k-
means algorithm does. The stochastic algorithm shows that k-means may be
considered as a competitive algorithm, where each observation of the data set
attracts the closest reference vector. Repeatedly presenting each observation
while the gradient step µ decreases allows finding a satisfactory partition P
such that each reference vector is the center of inertia of each subset of the
partition.

The following summary of stochastic k-means may be useful for algo-
rithm implementation:

Stochastic k-Means

1. Initialization: t = 0,
Choose the initial p reference vectors (randomly, in general),
choose the maximal number of iterations Niter and the law of decrease of
the gradient step µt.

2. Iteration t: keeping the reference set W t−1 constant, as computed at the
previous iteration, choose randomly or sequentially an observation zi, and
compute the gradient step (or learning rate) µt.
Allocation phase: givenW t−1,zi is assigned assign to the closest reference
element of W t−1, which defines a new allocation function χt.
Minimization phase: the new reference vector wt

χ(zi)
is computed (2).

3. Iterate until the specified maximum number of iterations is reached, or
until I stabilizes.

388 F. Badran et al.

The learning rate must decrease as the number of iterations t increases.
It may be piecewise constant, equal to 1/

√
t, or have any other ap propriate

form.
The three experiments that are shown on Fig. 7.2 allow understanding the

evolution of the k-means algorithm, classical and stochastic. They demon-
strate the sensitivity of the solution to the number of reference vectors and
to their initialization. For those experiments, the observations were gener-
ated randomly from spherical Gaussian laws with standard deviation σ = 0.1.
Those laws are called the Gaussian modes. The first experiment is seeks a
two-class partition; it shows the evolution of the set of reference vectors that
capture observations from the four modes. During training, the two reference
vectors are attracted by the two blocks made of the observations of the left-
hand and right-hand sides. They stabilize at the centers of the two observation
blocks. The second experiment makes use of the same observation data set,
but seeks a four-class partition, with two different initializations of the refer-
ence vectors: at the center in the first experiment, and at the bottom right
in the second experiment. In the first case, the position, which is symmetric
with respect to the problem, allows finding the four classes produced by the
four Gaussian modes. With the second initialization, three reference vectors
are assigned to the data generated by the two right-hand Gaussian modes,
and the last one is assigned to the data generated by the other two modes.

7.2.3 Probabilistic Interpretation of k-Means

The k-means is minimizes the cost function I(W,χ), which is the sum of the
local inertias Ic. We defined that cost function by following geometric and
kinetic intuition. It is possible to follow another approach. Actually, the cost
function has a natural probabilistic interpretation. In order to get insight into
that, a probabilistic model of data generation must be defined: we assume
that the observations of the training set are an i.i.d. sample of a mixture of p
Gaussian modes,

p (z) =
p∑

c=1

αcfc (z) , with
p∑

c=1

αc = 1.

Each Gaussian mode has density fc with expectation wc and covariance
matrix equal to Σc. Therefore, this density is given by

fc (z) =
1

(2π)n/2 det (Σc)
1/2

exp
[
−1

2
(z − wc)

T
Σ−1

c (z − wc)
]
.

It is well known that a Gaussian mixture model is a general formalism,
which can be used for modeling complex probability distributions [Duda et al.
1973]. The mixture assumption states that each observation is a realization
of one of the hidden random variables with normal density fc. The mode is

7 Self-Organizing Maps and Unsupervised Classification 389

Fig. 7.2. Examples of operation of the k-means algorithm: sensitivity to initial
conditions and to the number of reference vectors. Observations and reference vectors
are shown on the same picture. (a) Representation of the learning set A: the data
are generated from four Gaussian modes. (b) Evolution of the two reference vectors
that were initialized at bottom right of the picture: each reference vector is assigned
the observations that are generated from two Gaussian modes. Pictures (c) and (d)
show the evolution of four reference vectors that were generated in two different
ways. (c) The reference vectors are initialized at the center of the picture; each of
them is assigned observations coming from one a Gaussian mode (d) The reference
vectors are initialized at the bottom right of the picture: three reference vectors
share the observations generated by two Gaussian modes; the last reference vector
collects the observations generated by the other two modes

selected among p Gaussian modes with the prior distribution αc. Equivalently,
to generate the data, one must first choose randomly the mode according
to the discrete probability αc, and then to generate the observation from
the probability law of the selected mode. Thus, that model generates a data
set, which is partitioned by construction into p subsets. The subset that is
labeled by index c contains about Nαc observations. Those observations are
split around the reference vector wc. The subset has an ellipsoidal shape

390 F. Badran et al.

that is defined by the eigenvectors and eigenvalues of the covariance matrix
Σc. Note that the mixture model is general, since it can approximate any
probability distribution with arbitrary accuracy when the number of modes p
and the Gaussian mode parameters are selected appropriately. The geometric
characteristics of the data set repartition may be described in an analytic way
using the mixture model.

In that framework, the probabilistic k-means interpretation requires addi-
tional assumptions:

• The prior density on the mode set is uniform, i.e. all the αc’s are equal to
1/p.

• The p normal densities fc has the same covariance matrix equal to σ2I,
where I is the identity matrix and σ is the common standard deviation.
Therefore, those densities are given by

fc (z) =
1

(2π)n/2
σn

exp

[
−‖z − wc‖2

2σ2

]
.

• The set A is an i.i.d. sample of a random variable that has the probability
density p(z).

Those assumptions restrict the validity domain of the interpretation. The
observations must be assumed to be partitioned into p clusters. Those clusters
are assumed to be isotropic, to have the same number of elements and to have
the same probability distribution.

Thus, the probabilistic version of k-means amounts to estimating the
reference vectors and the common standard deviation by maximizing the
likelihood of the data set A. That estimation is performed by maximizing
p(z1,z2, . . . ,zN) where z1,z2, . . . ,zN are the observations. Under the inde-
pendence assumption one has

p (z1,,z2, . . . ,zN) =
N∏

i=1

p (zi).

As in the previous section, the allocation function χ is supposed to assign
to each observation zi its generating mode. The random generating modes
are the mixture components. Therefore the allocation function χ defines a
partition of the training set A into p subsets. If the classifying likelihood is
defined by

p (z1,z2, . . . zN |χ) =
N∏

i=1

αχ(zi)fχ(zi) (zi) =
(

1
p

)N N∏
i=1

fχ(zi) (zi),

then maximizing the classifying likelihood amounts to minimizing

V (W,σ) = − ln p (z1,z2, . . . ,zN)

7 Self-Organizing Maps and Unsupervised Classification 391

=
1

2σ2

N∑
i=1

∥∥zi − wχ(zi)

∥∥2 +Nn lnσ + cte

=
1

2σ2
I (W,χ) +Nn lnσ + cte.

The minimization of V (W,σ, χ) may be performed in two steps:

• In the first step, the cost function I(W,χ) that appears in the expression of
V (W, σ) is minimized. One recognizes the global inertia term discussed in
the previous section. The k-means algorithm is implemented (also in two
steps as described above). That step leads to a local minimum of I(W,χ),
denoted as Imin.

• In the second step the quantity

1
2σ2

Imin +Nn lnσ

is minimized with respect to σ. That expression is minimum when its
derivative is equal to zero. Therefore, one has

σ =

√
Imin

Nn
.

Thus, the k-means algorithm can be interpreted in a probabilistic framework.
The minimization of the cost function I(W,χ) amounts to the parametric es-
timation of a probabilistic mixture model under very restrictive assumptions.
The assumption of the isotropic identical distribution of the components of
the mixture, with the single covariance matrix σ2I, should be emphasized.
From a geometric point of view, that algorithm assumes that the data are
split into p equally weighted spherical clusters with the same radius. Such
is not always the case, so that the assumption is a severe limitation to the
application range of the original k-means algorithm.

The following simulation gives insight into the behavior of k-means when
the true data distribution does not comply with the assumptions of the prob-
abilistic model. The observations that are shown on Fig. 7.3 are significantly
non-isotropic and do not comply with the assumption of equal standard devia-
tions. Therefore, the implementation of k-means in that case favors a solution,
which is associated to a partition into two subsets that are as spherical as pos-
sible. Thus, the reconstructed partition is far from the original one (Fig. 7.3b).

In order to circumvent the problem, it may be efficient to display a larger
number of reference vectors: Fig. 7.4 shows the reference vectors and the asso-
ciated partition if five reference vectors are used. In that case, four reference
vectors are allocated to the left mode while the last reference vector represents
the other mode. Then, the problem of clustering the modes to reconstruct the
two original classes must be solved. Alternative data analysis methods, such
as hierarchical classification, can be taken advantage of. That methodology
will be demonstrated in the section “Classification and topological maps,”
where the introduction of expert knowledge is addressed.

392 F. Badran et al.

Fig. 7.3. Example of application of the k-means algorithm: a Gaussian mixture
model of two modes with different anisotropic covariance matrixes generates the
data. Crosses denote the positions of the reference vectors. (a) Training set A.
(b) The reference vectors and the associated partition after stabilization of the algo-
rithm; an oblique line separates the two sets. The algorithm has not reconstructed
the true partition

In order to reconstruct the original distributions, the assumption of
isotropic covariance must be relaxed. That is possible if the covariance ma-
trices Σc of the Gaussians are not supposed to be identical (yet semi-positive
definite). Then, the n(n − 1)/2 elements of the matrices must be estimated,
in addition to the reference vectors wc. The model is more complex since
it has a larger number of parameters. A maximum likelihood methodology
may perform the estimation, using the EM (Expectation-Maximization) algo-
rithm [Dempster et al. 1977].

7.3 Self-Organizing Topological Maps

7.3.1 Self-Organizing Maps

In the early 1980’s, Kohonen described a self-organization algorithm that de-
fines a projection of the data space D onto a discrete, low-dimensionality
space. That space has a non-oriented graph structure that is a generally a 1-,
2- or 3-dimensional mesh; that graph will be hereinafter termed the map. Ac-
tually, the set C is made of interconnected neurons: the connections between

7 Self-Organizing Maps and Unsupervised Classification 393

Fig. 7.4. Application of k-means with 5 reference vectors on the same data distri-
bution as in Fig. 7.3; observations are distributed according two Gaussian modes
with different anisotropic covariance matrices. Crosses denote the positions of the
reference vectors. Four reference vectors are allocated to the first Gaussian mode.
The last reference vector is allocated to the second Gaussian mode

neurons are the edges of the graph. For simplicity, we denote the whole graph
and the set of its nodes with the same letter C. The graph structure allows
the definition of an integer distance δ on C as follows: the length of a path on
the graph is the number of edges of that path. For all the couple of neurons
(c, r) of the map, δ(c, r) is the length of the shortest path on C between c and
r. For any neuron c, that integer distance leads to defining the neighborhood
of c of order d,

Vc (d) = {r ∈ C, δ (c, r) ≤ d} .
As mentioned above, the maps that are currently used are regular lattices.

Therefore, the distance and the neighborhoods are quite easy to visualize,
and they define the discrete topology on the map in a straightforward way.
Examples of distance and neighborhoods are shown on Fig. 7.5 for a 2D grid.

For self-organizing maps, an association is sought between neurons of C
and reference vectors in data space D, similarly to k-means. Training enables
the set of reference vectors to sample the underlying probability distribution
on the data set as faithfully as possible. In the case of topological maps,

394 F. Badran et al.

Fig. 7.5. The discrete topology of a 2D-topological map. The map features 10× 10
neurons; each dot of the picture denotes a neuron c. The distance δ between two
neurons is defined on the grid. (a) shows Vc(1), Vc(2), Vc(3), which are neighborhoods
of order 1, 2 and 3 of neuron c; (b) shows some distances between neurons: δ(c, c1) =
4, δ(c, c2) = 1, δ(c, c3) = 2, δ(c, c4) = 3

an additional constraint is imposed to retain the topology of the map: two
neighboring neurons r and c are associated to reference vectors wc and wr

that are close for the Euclidean distance in data space D.
That cursory description shows clearly that the self-organizing map algo-

rithm is an extension of k-means. We will further show that it minimizes an
appropriate cost function, which takes into account the inertia of the parti-
tion of the data set, and which guarantees that the topology of C is retained.
In order to design such a cost function, the inertia function of the k-means
algorithm will be generalized, by adding specific terms that take into account
the topology of the map, through the distance δ and the associated neighbor-
hoods.

The concept of neighborhood is taken into account through kernel func-
tions K which are positive and such that lim|χ|→∞K (x) = 0. Those kernels
define influence regions around each neuron c. The distances δ(c, r) between
neurons c and r of the map allow the definition of the relative influence of the
neurons on elements of the data set. The quantity K(δ(c, r)) quantifies that
influence.

7 Self-Organizing Maps and Unsupervised Classification 395

k(δ(i, j))

k(δ(i, j))

i

Location of cell i δ (i, j) δ (i, j)

T

Interaction with the
cells of the map

Interaction with the
cells of the map

Temperature
T(2)

T(1)
T(0)

i

Location of cell i

Fig. 7.6. Threshold neighborhood kernel (left picture) and Gaussian neighborhood
kernel (right picture). In the case of the threshold kernel, neurons either belong to the
neighborhood and share the same influence, or do not belong to the neighborhood,
hence have no influence at all. In the case of Gaussian kernels, the influence between
two neurons depends on their mutual distance

To take advantage of the size of the neighborhood, the family of kernels
KT that is parameterized by T (where T stands for temperature) will be used:

KT (δ) = K (δ/T)

Figure 7.6 shows kernel functions that are commonly used in applications:

• K(δ) =
{

1 if δ < 1
0 otherwise hence KT (δ) =

{
1 if δ < T
0 otherwise

• K(δ) = exp(−|δ|) hence KT (δ) = exp
(
− |δ|

T

)
• K(δ) = exp(−δ2) hence KT (δ) = exp

(
− δ2

T 2

)
.

Figure 7.7 shows graphs of various kernels, for different values of parameter
T . If we choose a level α such that the influence of a neuron that is below α
is considered negligible (KT (δ) < α), the radius of the effective neighborhood
of a neuron can be computed for each value of T . For neuron c, that influence
zone is exactly the ball V T

c = {r ∈ C/KT (δ(c, r)) > α}. Figure 7.7 shows
that the size of the neighborhood decreases with T : the smaller T , the fewer
the neurons that belong to the neighborhood V T

c . The self-organizing map
training algorithms minimize a cost function. When the minimum is reached,
one gets a partition that is made of sets that are compact enough, and, in
addition, it is possible to define an order that stems from the topology of the
map. That cost function will be hereinafter noted as JT

som. It plays the role
of the cost function I of the k-means algorithm that was described in the
previous section. We will now consider the most popular function JT

som, which
is

JT
som (χ,W) =

∑
zi∈A

∑
c∈C

KT (δ (c, χ (zi))) ‖zi − wc‖2
.

396 F. Badran et al.

Fig. 7.7. Families of kernel functions that are used to control the neighborhood
on the map; x-axis: distance on the map (length of the shortest path between two
neurons). The curves show the kernels for different values of T ; from top to bot-
tom, T takes on values from 10 to 1 (a) KT (δ(c1, c2)) = exp(−0.5 δ(c1, c2)/T) (b)
KT (δ(c1, c2)) = exp(−0.5 δ2(c1, c2)/T 2)

In that relation, χ is an allocation function, andW is the set of the p reference
vectors of the map. χ(zi) stands for the neuron of the map C that is associated
to the observation zi, and δ(c, χ(zi)) is the distance on the map C between
a neuron c and the neuron that is allocated to observation zi. As for the
k-means algorithm, it is possible to view the links between the map and the
data space. Actually, the basic principles of those two algorithms are very
similar, as shown on Fig. 7.8. The difference stems from the fact that the set
of labels, shown on Fig. 7.1, is replaced by the label graph of the map. The
cost function JT

som is a mere extension of the k-means cost function I(W,χ) =∑
zi∈A ‖zi − wχ(zi)‖2, where the Euclidean distance between an observation

zi and its associated reference vector is replaced by a generalized distance,
denoted dT , which takes into account all the neurons of the map

dT
(
zi,wχ(zi)

)
=
∑
c∈C

KT (δ (c, χ (zi))) ‖zi − wc‖2
.

Note that the distance between z and wχ(z), as expressed by the distance
function dT , is a weighted sum of the Euclidean distances between z and all
the reference vectors of the neighborhood of the neuron χ(z). Function JT

som

is equal to the function I(W,χ) if parameter T is small enough. In that case,
the distance dT is identical to the Euclidean distance.

The minimization of the cost function JT
som (χ,W) is performed in different

ways, depending on whether an adaptive or a batch optimization is desired.
In addition, a probabilistic formalism leads to a third version, which explicitly
estimates probability densities. Those three versions of the topological map
training algorithm are presented in the next sections.

7 Self-Organizing Maps and Unsupervised Classification 397

Fig. 7.8. Basic principle of self-organizing map modeling of data space. A label c,
which is selected among P neurons of map C, is associated to any observation z
of the data set D, using the allocation function χ(χ(zi = c)); that label allows the
definition of the reference vector wc

7.3.2 The Batch Optimization Algorithm for Topological Maps

In the present section, we describe the minimization of the cost function
JT

som (χ,W). The only difference between the k-means and the self-organizing
map algorithm is the difference between the two cost functions. When T is
kept constant, the minimization of JT

som may be written in the dynamic clus-
tering formalism (see the section that is devoted to k-means). Here, just as
in the previous section, that formalism provides a proof of convergence of the
algorithm to a local minimum of the cost function.

When T is kept fixed, the minimization of JT
som is performed iteratively.

Each iteration has two phases. The first phase is an allocation phase and the
second phase is a minimization phase where the cost function that is associated
to the current partition is minimized:

• Allocation phase. JT
som (χ,W) is minimized with respect to the allocation

function χ. The set W of reference vectors is kept fixed during that phase.
The expression of JT

som(χ,W) and of dT
(
zi,wχ(zi)

)
show that the best

allocation function is defined for each observation z by

χT (z) = arg max
r∈C

∑
c∈C

KT (δ (c, r)) ‖z − wc‖2 = arg max
r∈C

dT (z,wr).

That phase allows defining an allocation function χ and the associated
partition of data space D. Then the closest reference vector with respect
to the weighted distance dT is allocated to each observation.

• Minimization phase. JT
som (χ,W) is minimized with respect to the reference

vector set W . That minimization is performed while freezing the alloca-
tion function χ that was previously computed. Since JT

som is convex with
respect to the parameters from W , the minimization can be performed by

398 F. Badran et al.

computing the value for which the gradient of the cost function is zero.
That defines the new reference vector set

wT
c =

∑
r∈C K (δ (c, r)) Zr∑
r∈C K (δ (c, r))nr

,

where Zr =
∑

zi∈A, χ(zi)=r zi is the sum of all observations of the training
set A that are allocated to neuron r. Note that each new reference vector
is the center of mass of the mean vector of the subsets Pr ∩A, each center
of mass being weighted by K(δ(c, r))nr.

To summarize, we get the following algorithm:

Batch Algorithm of Topological Maps: T Fixed

1. Initialization: t = 0. Select the p reference vectors (randomly, in general),
the structure of the map and its size, the maximum number of iterations
Niter.

2. Iteration t. The reference vector set W t−1 is known from the previous
step,
Allocation phase: update the allocation function χt that is associated to
W t−1. Then each observation zi is allocated to a reference vector accord-
ing to

χT (z) = arg max
r∈C

∑
c∈C

KT (δ(c, r))‖z − wc‖2 = arg max
r∈C

dT (z,wr);

Minimization phase: apply relation

wT
c =

∑
r∈C

K(δ(c, r))Zr/
∑
r∈C

K(δ(c, r))nr

to compute the new set W t of reference vectors.
3. Iterate until the maximum iteration is reached, or until JT

som stabilizes in
a local minimum according to a stopping criterion.

As for k-means, a close look at the behavior of self-organizing maps for sim-
ple examples gives insight into the implementation problems that may arise.
The following numerical experiment illustrates the role of the temperature
parameter T in the minimization. The data are the same as on Fig. 7.2 in the
section on k-means. As mentioned before, the data are a sample of a uniform
mixture of four Gaussian modes with partial pairwise overlap. On Fig. 7.9, the
results (topological graph and quantization) are displayed in data space. Ko-
honen’s representations are used. The observations and the reference vectors
are shown on the same diagram. The map-induced topology of neighboring
neurons is shown as well. Reference vectors that are relative to neighboring
neurons on the graph are connected by edges on the picture. At initialization,
reference vectors were selected randomly around the center of the observation

7 Self-Organizing Maps and Unsupervised Classification 399

Fig. 7.9. Observation set and initial order generated on the map by random selection
of the reference vectors

cloud according to a peaked Gaussian law (its standard deviation is equal to
0.01). Initially, no ordering between the positions of the reference vectors can
be observed.

Figure 7.10 shows the maps that are obtained for four distinct values of
T : T = 10, T = 5, T = 3 and T = 1.

For large values of T , the reference vectors are gathered around the center
of mass of the observation cloud. For small values of T , the neighborhood
interaction is weaker and the map is unfolded from the same initialization.

The above procedure, for a fixed value of the temperature parameter T ,
finds a local minimum of the cost function JT

som with respect to χ and W .
Actually, Kohonen originally suggested to repeat that minimization a num-
ber of times, with a monotonous decrease of T . In that approach, the process
performs successive steps of Fig. 7.10. The reference vectors are randomly ini-
tialized and order appears when T value is still large: the map then unfolds
until it covers the whole space of the observation distribution. The perfor-
mance of the model on completion of training, and the associated partition,
depend on the parameters of the minimization algorithm. The most important
parameters are:

• the temperature variation interval [Tmin, Tmax] of the temperature para-
meter T , i.e. the initial value of T (Tmax) and its terminal value (Tmin);

• the number of times Niter the iterative step is repeated;
• the cooling schedule, i.e. how T decreases in time when it spans the tem-

perature interval [Tmin, Tmax].

400 F. Badran et al.

Fig. 7.10. Performing batch algorithm with T fixed (from top to bottom and from
left to right : T = 10, T = 5, T = 3 and T = 1)

Figure 7.11 shows that the cooling schedule may be crucial. On that figure,
several final results are displayed for the same training data set, the same
temperature variation interval and different cooling schedules. If temperature
decreases too fast (quenching), the self-organization is not efficient and the
induced neighborhood relation among reference vectors from the data space
is not a faithful representation of the graph-induced topology. Using neuronal
analogy, one may say that the receptive fields of neurons that are close in
cortical maps are not close in the perceptual space. Note that topological self-
organization is highly sensitive to the whole parameter set of the algorithm. No

7 Self-Organizing Maps and Unsupervised Classification 401

Fig. 7.11. Representation of the order that is induced by the topological map. The
maps are obtained for different cooling schedules of T , the same random initialization
at the center of the observation cloud and the same variation interval for T

general rule guarantees an appropriate self-organization of the reference vector
set. Therefore, it is advisable to test that the algorithm has performed well and
that the final set of reference vectors exhibits appropriate self-organization. A
relevant real-life example is described in detail below.

For implementation purpose, the batch algorithm of topological maps for
a usual cooling schedule can be summarized as follows:

Batch Optimization of Topological Maps (T Decreasing)

1. Initialization: perform the dynamic clustering SOM (Self-organizing map)
algorithm for T = Tmax, set t = 0

2. Iteration t. The reference vector set W t−1 is known from previous step.
Compute the new temperature value according to the cooling schedule:

T = Tmax

(
Tmin

Tmax

) t
Niter−1

For that temperature T , perform sequentially the two following phases:
• Allocation: update the allocation function that is associated to W t−1.

A reference vector is allocated to each observation belonging to the
training data from relation:

χT (z) = arg max
r∈C

∑
c∈C

KT (δ (c, r)) ‖z − wc‖2 = arg max
r∈C

dT (z,wr).

• Minimization: apply relation

402 F. Badran et al.

wT
c =

∑
r∈C

K(δ(c, r))Zr/
∑
r∈C

K(δ(c, r))nr

in order to compute the new reference vector set W t.
3. Repeat the iterative step until T = Tmin.

The expression of wT
c shows that the SOM algorithm takes advantage of

the neighborhood function KT (δ), which is parameterized by T in order to
introduce topological self-organization. At high temperatures, a single obser-
vation zi generates a significant change of many reference vectors. Conversely,
at low temperatures, KT (δ(c, r)) can be neglected if c �= r: an observation in-
fluences only the updating of its closest reference vectors. While the algorithm
proceeds, the various values of T lead to the gradual localization of the refer-
ence vectors. More specifically, relation

wT
c =

∑
r∈C

K(δ(c, r))Zr/
∑
r∈C

K(δ(c, r))nr

shows that, for a given temperature, the update of a reference vector wc

depends on the observations of the training set that belong to the subset Pc

of the partition, and also of the observations of Pr if r is located in a significant
neighborhood of c, r ∈ V T

G = {r|KT (δ(c, r)) ≤ α}.
The smaller T , the smaller the number of neurons belonging to a neigh-

borhood V T
c , and the smaller number of observations that have an influence

on the updating of a reference vector. For T small enough, V T
c is restricted

to the single neuron c, and JT
som strictly amounts to relation the k-means cost

function; in that case, SOM is strictly identical to k-means.
Since Kohonen’s original SOM training algorithm includes a cooling sched-

ule within bounds that are defined by the temperature variation interval
[Tmin, Tmax], the convergence to a solution occur in two steps. The first step
takes place for large values of T : repeated iterations of the dynamic cluster-
ing SOM algorithm (with T fixed) tends to guarantee a topological similarity
between the reference vector set and the map. The second step takes place
at low temperature T : the algorithm tends to get more similar to k-means
until complete similarity when T is very small and when K(δ(c, r)) ≡ 0 for
any couple (c, r) of distinct neurons. Thus, the first step may be considered
as the initialization step of the k-means, using initial reference vectors that
retain the topological structure of the map.

The following experiments show how the maps unfold and finally cover
the manifold of the training observations. Figure 7.12 describes the progress
of training for two different topologies (1D chain and 2D grid) for the four-
gaussian-mixture example. The 1-D chain features 50 neurons. The 2-D grid
is a 10× 10 square mesh. When the reference vectors are initialized randomly
around the center of the training data set, the following behavior is observed:

7 Self-Organizing Maps and Unsupervised Classification 403

Fig. 7.12. Evolution of the batch training algorithm for the four Gaussian mixture
example (pictures a and b) for two different topologies: 1-D with 50 neurons et
2-D with 10 × 10 neurons. Top pictures display the 1-D map after 20, 200, 2,000
iterations. The same experiment was performed for the 2-D map model; the bottom
pictures show the evolution after 50, 500, 5,000 iterations. In the two cases, when
convergence is reached, the map covers the whole support of the observation density

• During the first phase, when T is large, the map collapses onto the center
of mass, and topological self-organization appears. Then, as T decreases,
the map is organized in order to minimize the total inertia of the partition
that is associated to the reference vector set. At the end of the algorithm,
some reference vectors are positioned at the heart of the observation cloud.
Others are trapped in void or low-density regions.

• A close look at the resulting partition provides an interpretation of the hid-
den structure of observations. Figure 7.13 displays the map. The neurons
that have not captured any observation are shown as black dots. Thus, it
is possible to separate the data set into two distinct clusters: the algorithm
detects natural boundaries.

404 F. Badran et al.

Fig. 7.13. Visualization of natural boundaries of the partition of the data set into
two subsets. The neurons without any observation allocation are shown as black
dots

7.3.3 Kohonen’s Algorithm

The original SOM algorithm, as suggested by T. Kohonen, stems from the
dynamic clustering version that was described above. We will now describe
its specific features. As for k-means, a stochastic version of SOM is available.
It suffices to observe that, during the minimization phase, it is not necessary
to terminate the minimization process and compute the global minimum of
JT

som(χ,W) for a given allocation function χ: one just has to make it decrease.
Therefore, relation wT

c =
∑

r∈C K(δ(c, r))Zr/
∑

r∈C K(δ(c, r))nr may be re-
placed by a simple gradient descent step. Thus, at iteration t and for neuron
c, one has

wt
c = wt−1

c − µt ∂J
T
som

∂wt−1
c

,

where µt is the gradient step at iteration t,

∂JT
som

∂wc
= 2

∑
zi∈A

KT (δ (c, χ (zi))) (zi − wc).

7 Self-Organizing Maps and Unsupervised Classification 405

That batch algorithm requires that the whole data training set A be avail-
able. The contribution of the single observation zi to parameter wc to the
update is 2KT (δ(c, χ(zi)))(zi − wt−1

c). Alternatively, one may use the sto-
chastic gradient algorithm that computes the reference set once again, at each
presentation of an observation zi. That adaptive version is closer to training
processes in natural systems. It was the initial version that was suggested by
Kohonen. It differs from the batch version that was presented above in two
respects: first, the data flow is used instead of the stored data; second the
allocation function χ is not the same; Kohonen’s algorithm uses the same as
in k-means: χ(zi) = arg minc ‖zi − wc‖2.

Therefore, at each presentation of an observation, the new reference vectors
are computed for all the neurons of the map C, depending on the selected
neuron,

wt
c = wt−1

c − µtKT (δ (c, χt (zi)))
(
wt−1

c − zi

)
.

Thus, Kohonen’s algorithm may be summarized as follows:

Kohonen’s Algorithm

1. Initialization
• select the structure and size of the map;
• choose the initial position of the p reference vectors (usually, this choice

is random);
• choose Tmax, Tmin and the maximum number of iterations Niter;
• initialize t = 0.

2. Iteration t: with the reference vector set W t−1, as computed at the pre-
vious iteration:
• take the current observation zi (or select randomly an observation

from the training set);
• compute the new value of T according to the cooling schedule:

T = Tmax

(
Tmin

Tmax

) t
Niter−1

• For that value of T , the following two phases must be performed:
– Allocation phase: W t−1 being known, neuron χt(zi) is assigned

to the current observation zi by the allocation function χ(z) =
arg minr ‖z − wr‖2;

– Minimization phase: the new set of reference set W t is computed;
the reference vectors are updated according to

wt
c = wt−1

c − µtKT (δ(c, χt(zi)))(wt−1
c − zi),

depending on their distance to the neuron that was selected during
the allocation phase.

3. Iterate with decreasing temperature T , until the maximum number of
iterations Niter is reached.

406 F. Badran et al.

7.3.4 Discussion

An in-depth analysis of Kohonen’s algorithm unravels its salient features.

• In the update rule for reference vectors, the gradient step µt decreases
as the number of iterations increases. When the algorithm starts, µt is
large, and JT

som is not guaranteed to decrease. Later, when the gradient
step becomes small enough, the reference vector updates are small for each
iteration. In that situation, Kohonen’s SOM algorithm behaves in a way
similar to the dynamic clustering SOM version.

• If we assume that KT (δ) becomes negligible when distance δ exceeds a
given threshold dT , then KT (δ(c, r)) is significant only for neurons that
belong to a given neighborhood of neuron c, whose size is tuned by dT .
That neighborhood will be denoted as Vc(dT). Thus, when an observa-
tion zi is taken into account, the reference vector χ(zi) will be updated,
together with the reference vectors of all neurons of the neighborhood
Vχ(zi)(d

T).
• From the point of view of the neuronal representation, the operation of

Kohonen’s maps can be understood by taking into account the lateral
connections between neurons of the map: each neuron c is connected to
neighboring neurons r, and any modification of the reference vector wc

generates updates for all reference vectors that are associated to neurons
belonging to Vc(dT) with intensity KT (δ(c, r)), which decreases with in-
creasing distance δ(c, r).

• If KT (δ) is chosen as a threshold function (see Fig. 7.6), it is constant
on the interval [−dT , dT] and equal to zero elsewhere, the difference be-
tween Kohonen’s SOM and k-means is clear. The weight update is the
same for the two algorithms; however, in Kohonen SOM, not only is the
closest reference vector r updated: the reference vectors associated to neu-
rons of the neighborhood Vc(dT) are updated as well. Thus, topological
self-organization arises: neurons that are close on the map represent ob-
servations that are close in data space.

• When temperature T is small, updates according to relation wt
c = wt−1

c −
µtKT (δ(c, χt(zi)))(wt−1

c − zi) are performed for a subset of all neurons,
and, when dT < 1, Kohonen’s SOM algorithm is identical to stochastic k-
means. Actually, in that case, the only neuron to be updated is the winner
of the competition selected by the allocation function χ.

The fact that self-organizing maps are considered as belonging to the family
of neural methods stems from the fact that the neural interpretation allows
a crisp understanding of the training process. In the following section, we
elaborate on that point.

7.3.5 Neural Architecture and Topological Maps

The training algorithms that were described in the previous section allow the
determination of the reference vector setW = {wc; c ∈ C} of a self-organizing

7 Self-Organizing Maps and Unsupervised Classification 407

Fig. 7.14. 2-D topological map. The network has two layers: an input layer contains
the observations, and a representation layer, for which a topology must be defined
(distance δ between neurons and neighborhood function). Each neuron c stands for
a reference vector wc; it is fully connected to the input layer. The connection weight
vector of each neuron c is the reference vector wc associated to neuron c

map. A 2-layer neural network provides a joint representation of the map and
of the reference vectors (see Fig. 7.14):

• Observations are present in the input layer of the network. The state of
each unit is a component of one observation. Therefore, the number of
neurons of that layer is equal to the dimension of input space.

• The second layer is the neuronal map. The structure of the map may
be decided a priori. In more flexible versions, the structure can evolve
during training. The neurons simply compute a distance. Each neuron c is
connected to all input units. The reference vector that is associated to the
current neuron c of the second layer is actually the vector of connection
weights afferent to neuron c. Each neuron has n afferent connections since
it is connected to all units of the input layer. When an observation z
is presented to the input layer, the output of neuron c of the map is
‖z − wc‖2.

During training, the network connection weights change using various up-
dating rules. Thus, the neurons of the map compute their distances to the
current observation in parallel. The main feature of the self-organization
process is to focus the adaptation process on the most active area of the
map. Kohonen’s original algorithm, which is the simplest one, considers that
the active zone is the neighborhood of the neuron c that is closest to the
observation under consideration, i.e. whose output ‖z − wc‖2 is smallest. That
neighborhood generates topological constraints that lead to self-organization.

As indicated in the previous section, it models in a simple way, the lateral
coupling between an active neuron and its neighbors on the connection graph

408 F. Badran et al.

of the cortical map. Thus, at the end of training, neuronal connection weights
have converged in order to guarantee that a neuron has discriminative abilities,
i.e. that it is active only for a subset of the observations of the training set. A
neuron c, which is represented by the reference vector wc, may be considered
as an average observation that is a compressed representation of the data set
Pc of the observations that it has been assigned. Thus, the whole neuronal
map performs a vector quantization of the whole data set D, which is obtained
by the analysis of the training set A. The quality of the quantization (faithful
or not) strongly depends on whether the training set is representative or not.

7.3.6 Architecture and Adaptive Topological Maps

Self-Organizing Maps produce simple representations of data that are embed-
ded in spaces of very large dimension. That representation is performed in
a low-dimension discrete set C with a graph structure. The problem of the
choice of architecture consists in selecting a suitable graph structure for the
map, i.e. a structure that is appropriate for the specific problem of interest.
Therefore, one must define a measure of the adequacy of a map to the prob-
lem of interest. The data set D and the map C are related in two ways: the
embedding of C into D that maps each neuron c of C onto a reference vector
wc of C, and the allocation function χ of D into C, which associates to each
observation vector in D a neuron c of the map. Those two mappings have to
be topologically consistent in the following sense:

• Two neurons that are neighbors in the map C must be represented by two
reference vectors that are close in D.

• Reciprocally, data that are approximately similar must be allocated by χ
to the same neuron or to neighboring neurons.

If the dimension of the map does not fit with the underlying dimension of the
data cloud (dimension of the manifold that is generated by the observations),
two observations that are close in data space D may be allocated to distant
neurons in the map. Yet, the topological consistency is an interesting property
because it allows reducing the dimension of the data while retaining similari-
ties. In previous sections, it was assumed that the graph structure of the map
was given a priori. That choice was not data-driven, which has shortcomings:
it does not guarantee the adequacy between the structure of the map and the
internal structure of the data distribution.

Usually, in applications, the dimension of the data space may be very large
if the number of features describing the data is large, but the observations are
not distributed uniformly in the data set. They are located in specific regions
with various concentrations. Reference vectors must be located in high-density
regions, and one must avoid wasting reference vectors by locating them in void
regions. The choice of the graph structure of the map is very important be-
cause, when it is appropriate, it guarantees the topological consistency of the
map and a good representation of the underlying data probability distribution.

7 Self-Organizing Maps and Unsupervised Classification 409

In order to solve that problem, one may consider an oversize map (with
respect to the underlying dimension of the problem) and apply Kohonen SOM
algorithm to it. After training, neurons that capture no observation of the
training set are discarded. Kohonen’s algorithm is performed on the resulting
new structure. That pruning process is iterated as long as necessary.

Another technique consists in defining the map (size and dimension) during
training while updating the reference vectors. Thus, the map is built incre-
mentally, allowing the addition of some neurons and the deletion of others.
Several methods have been proposed in the literature. They can be classified
into two categories:

• In the first category, the dimension k of the map is decided a priori, and
the map is built adaptively by addition and deletion of neurons. In order to
perform those operations in a systematic way, simple graphical structures
such as segments for k = 1, triangles for k = 2, tetrahedrons for k = 3 and
so on, are processed. [Oja et al. 1999].

• A second category allows the data to drive the selection of the dimen-
sion of the map, which may vary from one region to another. The neural
gas algorithm [Oja et al. 1999; Fritzke 1995] is building the graph by in-
troducing the connection links in the data space itself. In that method,
whenever an observation is presented, the two closest reference vectors are
selected; if they are connected, the connection is activated, otherwise the
corresponding connection link is created. The connection links that are
inactive during a fixed number of iterations are deleted.

7.3.7 Interpretation of Topological Self-Organization

The structure of the cost function JT
som gives insight into the topological self-

organization during training. The subsets Pr ∩ A generate a partition of the
training set A, so that JT

som can be written as follows:

JT
som =

∑
r

∑
zi∈Pr

⋂
A

∑
c

KT (δ (c, r)) ‖zi − wc‖2

=
∑

c

∑
r

∑
zi∈Pr

KT (δ (c, r)) ‖zi − wc‖2
.

Decomposing that relation shows that the cost function JT
som generates a vec-

tor quantization and guarantees topological consistency

JT
som =

⎡
⎣∑

c

∑
r �=c

∑
zi∈Pr

KT (δ (c, r)) ‖zi − wc‖2

⎤
⎦

+KT (δ (c, c))
∑

c

∑
zi∈Pr

‖zi − wc‖2

410 F. Badran et al.

=
1
2

∑
c

∑
r �=c

KT (δ (c, r))

[∑
zi∈Pr

‖zi − wc‖2 +
∑

zi∈Pc

‖zi − wr‖2

]

+KT (δ (c, c))

[∑
c

∑
zi∈Pc

‖zi − wc‖2

]
.

This decomposition gives two terms, the sum of which must be minimized:

• The second term is I of k-means, weighted by KT (δ(c, c)) = K(0). Its
influence is controlled by the temperature parameter T : the smaller the
temperature, the more influential that term during minimization. It tends
to build a partition into compact subsets, and the reference vectors tend
to be the centers of mass of the partition subsets.

• The first term enforces the topological consistency constraint: if two neu-
rons r and c are close on the map, KT (δ(c, r)) is large, because δ(c, r) is
small. Minimizing that term decreases the distance between the subsets Pc

and Pr that are allocated to c and r. Thus, proximity on the map enforces
proximity in the data set.

The above form of JT
som also gives insight into the presentation of the algo-

rithm as consisting in two different steps that depend on the temperature T
(see above the section on batch optimization algorithm of topological maps).
The first step occurs when T is large: the first term is dominant, and the task
of the algorithm is mainly to guarantee the topological consistency of the
map. The second step occurs at lower temperature. In that case, the second
term becomes dominant and the algorithm essentially minimizes the inertia
of the partition. The temperature allows performing the appropriate tradeoff
between the two terms of JT

som. Since the topological self-organization occurs
during the first part of training, then the minimization is useful to obtain
subsets that are as compact as possible. It is the k-means phase of the algo-
rithm that consists in approximating locally the data distribution. Thus, the
algorithm may be cursorily described as a version of the k-means algorithm
subject to the constraint of topological consistency of the reference vectors
with the map.

The following experiment gives insight into the difference between SOM
and k-means. We consider again the example that was displayed on Fig. 7.2[d]
to illustrate k-means. In that case, a topological map with a 1D chain structure
is used with four neurons, and the parameters of the map are estimated from
the training set, generated from a mixture of four Gaussians.

The four reference vectors were initialized at the bottom right of the fig-
ure just as for the previous k-means experiment. The two solutions that are
obtained by k-means and SOM are shown on Fig. 7.15. The map topology
constraint allows locating the four neurons at the centers of the four Gaussian
modes. Thus, the SOM algorithm was able to determine the solution of the
k-means problem under the topological consistency constraint (Fig. 7.15 [b]);

7 Self-Organizing Maps and Unsupervised Classification 411

Fig. 7.15. Comparison k-means (a) and SOM (b) for the same initialization. The
reference vectors are initialized in the right bottom of the picture

that solution is different from the solution that was found by the straight-
forward implementation of k-means (Fig. 7.15 [a]). To summarize, the map
provided a better representation of the training set.

Fig. 7.16. Modeling of the SOM according to a probability density mixture. The
map is shown in the neural formalism: 3 layer architecture: an input layer and two
layers that are maps with similar size and similar topology. A neuron of C1 represents
a gaussian with expectation vector wc and scalar covariance matrix σcI; a neuron of
C2 represents a Gaussian mixture, whose density is given by p(z) =

∑
c2

p(c2)pc2(z)
where pc2(z) =

∑
c1

p(c1 | c2)p(z | c1)

412 F. Badran et al.

7.3.8 Probabilistic Topological Map

Similarly to k-means algorithm, a probabilistic version of SOM, called PR-
SOM, can be defined [Anouar et al. 1997; Gaul et al. 2000]. The difference
between SOM and PRSOM is essentially that, for PRSOM, a Gaussian density
fc is associated to each neuron c of the map. Each Gaussian density function
fc is completely defined by the mean vector (the equivalent of reference vec-
tor of SOM) wc = (w1

c , w
2
c , . . . , w

n
c), and by its covariance matrix that is a

square symmetric positive-definite matrix Σc, restricted to isotropic densities:
Σc = σ2

cI, where I is the (n, n) unit matrix. Then the density functions can
be written as

fc(z) =
1

(2π)n/2
σn

c

exp

(
−‖z − wc‖2

2σ2
c

)
.

Thus, in the PRSOM, each neuron c of the map is allocated to the mean
vector wc and to the positive scalar σc. As for SOM, the data space D is
partitioned into subsets of the family {Pc/c ∈ C}. The subset Pc is described
by the density function fc : wc represents its associated reference vector,
and σc estimates the standard deviation of the observation of Pc ∩ A around
wc. The two parameter sets W = {wc; c ∈ C} and σ = {σc; c ∈ C} define
completely the PRSOM. Their values must be estimated during training from
the training set A.

If we assume that the data underlying distribution is a Gaussian mixture,
the PRSOM allows an estimating of the parameters of the mixture. A neural
interpretation of PRSOM can be given: the architecture that is associated to
the PRSOM has three layers architecture (Fig. 7.16):

• Data is presented to the input layer.
• The map C is duplicated into two similar maps C1 and C2 that have the

same topology as the map C in the SOM model. The generic neuron of
maps C1 (resp. C2) will be denoted c1 (resp. c2).

That approach was first described by Luttrel [Luttrel 1994]; it assumes that
a random propagation occurs forward and backward through the 3 layers of
the network. In the backward direction, from the map to the data space,
that propagation is described by the conditional probabilities p(c1|c2) and
p(z|c1, c2). Moreover, the Markov assumption is postulated, namely that
p(z|c1, c2) = p(z|c1). Then the probability of each observation z can be com-
puted explicitly as

p(z) =
∑
c2

p(c2)pc2 , (z)

with
pc2(z) =

∑
c1

p(c1 | c2)p(z | c1).

7 Self-Organizing Maps and Unsupervised Classification 413

The probability density is fully determined by the network architecture, which
provides an expression of the conditional probability p(c1|c2) using the neigh-
borhood relation on the map and the conditional density of the observation
p (z |c1) = fc1 (z,Wc1 , σc1). If we assume that the neighborhood relationships
permit the definition

p (c1|c2) =
1
Tc2

KT (δ (c1, c2)) , with Tc2 =
∑

r

KT (δ (c2, r));

then the posterior probability densities of the observations may be expressed
as a function of the Gaussian distributions of the neurons:

pc2(z) =
1
Tc2

∑
r∈C1

KT (δ (c2, r)) fr (z,wr, σr).

Thus, pc2(z) can be interpreted as a local mixture of Gaussian densities that
are associated to each neuron of the map. The set of average vectors W =
{wc; c ∈ C} and the set of scalar standard deviations σ = {σc; c ∈ C} are the
parameters to be estimated by training. The probabilistic formalism makes
it possible now to maximize the likelihood of the observation set just as for
the probabilistic version of k-means. If the observations of the training set A
are assumed to be the independent, and that each observation zi is generated
by the Gaussian mode pχ(zi) that is associated to neuron χ(zi), and if it is
further assumed that neurons c2 of C2 have similar prior probabilities, the
classifying likelihood can be written as

p (z1,z2, . . . ,zN |W,σ, χ) =
N∏

i=1

pχ(zi) (zi),

which must be maximized with respect to the parameters of the model W , σ
and the allocation function χ. According to the usual strategy, it is performed
by a minimization process

E (W,σ, χ) = −
N∑

i=1

ln
∑
r∈C

KT (δ (χ (zi) , r)) fr (zi,wr, σr)

by using the dynamic clustering formalism. The phases of allocation and min-
imization are sequentially and alternatively iterated until convergence:

• Allocation phase. Assume that the parameters {W,σ} have the values com-
puted at the previous iteration or at initialization. Then E must be mini-
mized with respect to the allocation function χ. A new allocation function
must be found that assigns each observation z to a neuron. That step
generates a new partition of the training data space D. It can easily be
seen that the optimal allocation function associates to a given observation
zi the most probable neuron c according to the density pc2 :

χ(z) = arg max
c2

pc2 (z)

414 F. Badran et al.

• Minimization phase. During that phase, the allocation function is kept
constant, and E(W,σ, χ) is minimized with respect to W and σ.

The parameters W and σ are updated as in the batch version of the SOM al-
gorithm by canceling the partial derivatives of the cost function E(W t, σt, χt).
To solve the equation, an iterative procedure is used as in [Duda et al. 1973],
assuming that for ith iteration the initial values of the parameters are close
to the optimal values. The update relations are the following:

wt
r =

N∑
i=1

ziK
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

N∑
i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

(
σt

r

)2 =

N∑
i=1

∥∥wt−1
r − zi

∥∥2
K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

n
N∑

i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

.

In both above relations, the parameters at iteration t are expressed as func-
tions of the parameters at iteration t− 1.

Since the model is complex, an appropriate initialization is desirable. Since
PRSOM can be considered as extensions of SOM, one can first perform a SOM
estimation of the reference vector set W in order to initialize the mean vector
set of PRSOM.

Thus, the PRSOM training algorithm can be summarized as follows:

PRSOM Algorithm with Constant Temperature T

1. Initialization: t = 0. The initial values W 0 of the references are computed
using a SOM training algorithm, the σ0

r is computed by the mean of the
local inertia Ir (Sect. 7.2.1). The initial allocation function χ0 is derived
from the update relation

wt
r =

N∑
i=1

ziK
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

N∑
i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

,

(
σt

r

)2 =

N∑
i=1

∥∥wt−1
r − zi

∥∥2
K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

n

N∑
i=1

K
(
δ
(
r, χt−1 (zi)

)) fr

(
zi,w

t−1
r , σt−1

r

)
Pχt−1(zi) (zi)

.

7 Self-Organizing Maps and Unsupervised Classification 415

The maximal number of iterations Niter is chosen.
2. Iteration t : W t−1 and σt−1 were computed at the previous iteration.

• Minimization phase: computation of the new parameters W t and σt;
• Allocation phase: update of the allocation function χt that is associated

to W t and σt from relation χ(z) = arg maxc2pc2(z).
2. Iterate until t > Niter or until stabilization of the cost function E(W,σ, χ).

As for SOM training, PRSOM uses a neighborhood whose size is controlled by
the temperature parameter T . During training, the size of the neighborhood
decreases according to the cooling schedule. At the end of training, the map
provides an organized structure of the average vector set, and the partition
associated to the map is defined by the final allocation function χNiter . As for
other versions of SOM, the data space D is divided into M subsets: each neu-
ron c of the map represents a data subset Pc = {z/χNiter

(z) = c}. That map and
that partition were determined from probability distributions, whereas SOM
just uses Euclidean distances. The probability density estimation gives access
to additional information that may be useful for application purposes. Actu-
ally, that information is crucial as far as classification problems are concerned.
No stochastic version of PRSOM is available: a large sample of the data is
necessary to estimate the initial variance before updating the parameters.

PRSOM provides a lot of additional information about the training data
(tracking outliers, computing probabilities, etc.). However, that model can be
used only if the training observation set is large enough to allow an accurate
estimation of the standard deviations of the Gaussian modes of the mixture
in the initialization phase. Remote sensing, where a tremendous amount of
data is available, is ideally suited to applications of SOM. The detection of
ocean color is described in the next section.

7.4 Classification and Topological Maps

Among the various applications of SOM, many of them are classification
tasks. As stated above, classification is not a straightforward application of
self-organization: unsupervised learning provides an allocation function that
assigns any observation to a cluster of a partition of the training set, irrespec-
tive of the semantics of the data. In such problems, it is assumed that a lot of
noise-corrupted observations are available with not knowledge of their class.
The partition that is obtained depends on the probability density underlying
the training set. Regions that contain a high density of data will be covered
by a fine partition; low-density regions will be covered by a coarse partition.
The large amount of data available in high-density regions provides accurate
information on those regions. On the other hand, the geometry of the parti-
tion depends on the nature of the encoding of the observations. Thus, for a
given problem and a given data set, several different encodings may generate
several partitions of the data space. With the SOM algorithm, the selection

416 F. Badran et al.

of the code provides information about the problem of interest. The basic
principle of the algorithm is to favor the emergence of clusters (the partition
subsets) that are appropriate for the application under consideration. If the
application involves a classification task into S classes, each partition subset
must be included in one class as completely as possible. Then, one can assign
one of the S classes to a whole cluster. Since each subset is assigned to one
neuron of the map, the classification problem amounts to labeling each neuron
of the map. The label set is the set of the S classes of the problem. Labeling
can be performed in two different ways. Since each reference vector represents
a subset of the partition P , and since the reference vector may be interpreted
as an average experiment, it is possible to use expert knowledge to recognize
the class of the reference vector on the basis of its characteristics:

1. by asking an expert of the domain to classify some data extracted from
the training set,

2. by first aggregating the neurons on a statistical basis and then use the
expert knowledge to label the clusters.

7.4.1 Labeling the Map Using Expert Data

Assume that a S-class classification task must be performed, and that the
labels of those classes must belong to a label set L = {li, i = 1, . . . , S}. At
the end of SOM training, when all parameters of the map are estimated, each
observation z is assigned to a neuron c = χ(z), so that the label lc of that
neuron can be assigned to the observation. Therefore, the problem is: how to
label the neurons of the map with the labels of L?

Labeling the neurons of the map is the first step in the design of a classifier
from a SOM. If the amount of data classified by the expert is very large,
labeling may be performed by majority voting (see hereafter Fig. 7.17):

• Assign the expert-classified data to the various neurons of the map using
the allocation function provided by the SOM training.

• For every neuron c, select the label li that is the most commonly used
label for the expert classified-data assigned to neuron c.

• All the data belonging to the subset that is represented by neuron c are
now labeled by label li.

At the end of the labeling phase, the set of neurons c that have the same label
l can be used to approximate the probability distribution of the data of class
l. The larger the amount of expert-classified data, the better the classifier.
Of course, neurons that represent data lying on the boundaries of the classes
may get the wrong label. Another source of error is the lack of expert-classified
data in some subset represented by a given neuron: the corresponding region
of the data space is thus poorly identified.

7 Self-Organizing Maps and Unsupervised Classification 417

Fig. 7.17. Map labeling using expert-classified data. Classified data are assigned to
the relevant neurons of the map. Then each neuron is labeled using majority voting
among classified data that are allocated to that neuron

7.4.2 Searching a Partition that Is Appropriate to the Classes

If the amount of expert-labeled data is too small, the above labeling method
is inappropriate. Majority voting result has a large variance and may gener-
ate classification error with significant probability. The presence of a single
wrongly labeled observation may lead to assigning a wrong label to the associ-
ated neuron. Thus, a whole region of the data space may be wrongly classified.
Furthermore, due to the small amount of labeled data, a significant number
of subsets of the partition may include no labeled data, so that the algorithm
is not able to provide them with any label.

In that case, it is possible to take into account an additional phase, in which
the various observation subsets are clustered as appropriately as possible. A
coarser partition is sought, and labeling will be performed after that addi-
tional clustering phase. When one fuses several partition subsets, more expert-
classified data are available to label a larger subset. Of course, as before, the
whole process is valid only if the original clustering is consistent with the
classification, so that majority voting can select the right label.

If the map and the partition that are provided by SOM are assumed to
be relevant, then the two following additional assumptions are taken into
consideration:

• The data quantization is correct, so that each reference vector is a good
representative of its allocated data.

• Topology is relevant: two subsets that are represented by neighboring neu-
rons on the map contain observations that are close in data space.

418 F. Badran et al.

Fig. 7.18. Looking for a partition that is appropriate to the desired classes. The
method consists in clustering the neurons of the map by bottom-up hierarchical
classification, and testing the obtained partition with respect to the expert-classified
data

Underlying the second assumption is the hypothesis that there exists a struc-
ture on the dataset that fits the classification problem, and that it is possible
to exhibit that structure with the topological self-organization of the map.
Thus, two subsets that are represented by neighboring neurons have a strong
probability of representing observations that belong to the same class.

Of course, those assumptions are very strong. It is implicitly supposed
that a right data encoding is already known to perform the classification.
Therefore, that point must be solved in a preliminary analysis, providing
an appropriate data representation, stemming from an appropriate variable
selection and the design of a relevant coding. The effect of the coding process
on the classification result will be shown in the section devoted to applications.

Bottom-up hierarchical classification [Jain et al. 1988] may perform the
second stage of the process by appropriately clustering the neurons (see
Figs. 7.18 and 7.19).

This method computes a partition hierarchy. The various partitions of the
hierarchy are found iteratively. The initial partition is the finest one. It is made
of all the singletons of the map. From that initial partition, two subsets of the
current partition are clustered at each iteration. To select the two subsets that
are going to be clustered, a measure of the similarity between two subsets is
defined. Among all the possible subset pair, the pair that is made of the most
similar subsets, with respect to the chosen similarity criterion, is selected.

Summary of the hierarchical classification algorithm:

Hierarchical Classification Algorithm

3. Initialization. Consider the finest partition that is made by all the sin-
gletons; each neuron is allocated to a distinct subset. Choose the desired
number of subsets K.

7 Self-Organizing Maps and Unsupervised Classification 419

Fig. 7.19. Clustering the neurons of the map using bottom-up hierarchical classifi-
cation: the leaves of the tree represent the neurons (here there are six neurons); for
each cluster, the vertical axis provides the clustering index for the selected similarity

4. For a given partition, find the closest subsets in the sense of the selected
similarity criterion, and cluster them together in order to get a single
subset.

5. If the number of clusters of the current partition is larger than K, go to
step (2), otherwise terminate the algorithm.

Several similarity measures are proposed in the literature [Jain et al. 1988].
The most popular one is due to Ward. It consists in aggregating clusters in
such a way that the sum of the cluster inertia is as small as possible. That is
a way of favoring clusters that are as compact as possible in the (Euclidean)
data space. If that criterion is selected to cluster the neurons of the map, the
working space is the data space and the associate reference vectors are the
neurons. Conversely, since the neurons are distributed on the map with its
awn discrete graph topology, one may choose to favor aggregation in a way
that takes into consideration that discrete structure. Those clusters will be
made of neurons that tend to form connected sets on the map [Murtagh 1985;
Yacoub et al. 2001]. The choice one of those two strategies, or the use of a
hybrid strategy that combines both of them, may have a crucial influence on
the results.

Hierarchical classification allows generating an arbitrary number of sub-
sets, since clustering may be stopped at any iteration. For a given similarity
measure, the number of partition elements depends on the number S of classes
that are sought. That number also depends on the agreement between the
unsupervised statistical partitioning and the partition into S classes that is
determined by the application. That number may be higher than S if a class

420 F. Badran et al.

is not homogeneous from a statistical point of view. Then it is inferred that
the expert has assigned to the same class instances of the observation space
that are quite different. The analysis of the most consistent partition, ob-
tained by hierarchical classification, allows analyzing the homogeneity of the
classification performed by the expert. Therefore, a refinement of the expert
classification into S′ classes, with S′ > S, may be designed.

7.4.3 Labeling and Classification

After labeling of the map, the probabilistic version of self-organizing maps
(PRSOM) can perform a probabilistic classification. As mentioned above, a
normal law is associated to each neuron. An observation z is assigned to a
neuron according to the probability p(c|z), which is defined by Bayes relation
as shown below. A probabilistic assignment is thus obtained. Since the map
is labeled according to one of the above procedures, the posterior probability
that the considered observation z belongs to class l can be estimated. The
PRSOM stem from a probabilistic modeling where it is assumed that the
observations are generated according to the mixture distribution:

p(z) =
∑

c

p (c) pc (z)

where pc(z) is also a normal law local mixture

pc(z) =
1
Tc

∑
c

KT (δ (c, r)) fr (z,w, σr)

where Tc =
∑

cK
T (δ(c, r)) and f is a normal law with mean wr and scalar

covariance matrix σ2
rI. The quantities pc(z) are computed from the neurons

of the map and the quantities p(c) are computed from the partition that
has been proposed by PRSOM. If N stands for the observation number of
the training set A and nc is the number of observations that are assigned to
neuron c by the allocation rule χ(z) = arg maxc p(z | c), the prior probability
p(c) of neuron c can be estimated as nc/N . Then Bayes rule allows computing
the posterior probability of neuron c given observation z:

p (c |z) =
p (c) pc(z)
p(z)

=
ncpc (z)∑

r∈C

nrpr(z)
.

After training, the topological map that is proposed by PRSOM determines
the parameters of the normal laws that characterize the various neurons. For
any observation z, it is then possible, applying the above relation , to compute
the posterior probability of an obervation being assigned to a given neuron.
Since a class is represented by a subset of neurons, the posterior probability
that the observation z belongs to the class li is derived from the neurons that
are labeled by li. If the subset of those neurons is denoted Ci, one gets

7 Self-Organizing Maps and Unsupervised Classification 421

p (li | z) =
∑
c∈Ci

p (c | z) =

∑
c∈Ci

ncp(z)

∑
r∈C

nrpr (z)

where
pc (z) =

1
Tc

∑
c

KT (δ (c, r)) fr (z,w, σr).

Note that this probability relies on the labeling of the map. That step is
crucial for the computation of the posterior probabilities. Their consistency
depends on the quality of the map. Thus, the classifier performances depend
jointly on the amount of expert data, on the accuracy of the approximation
of the observation density, and on the topological order that is built by the
self-organization process.

The knowledge of posterior probabilities leads to a classification rule that
is based on probabilistic estimation. Using those relations, the vector of class
membership probabilities can be computed for each observation z . Finally,
the assignment of the observation to a class is performed by the application of
Bayes rule: choose the class for which the membership probability is highest.

7.5 Applications

Self-organizing maps gave rise to a large number of applications. Specific de-
velopments were required for some of them, but they are in actual operation.
At the moment, the most important research center for those topics is lo-
cated at University of Technology of Helsinki (UTH). The major part of the
research that is developed in its computer science laboratory (Laboratory of
Computer and Information Science) is performed by the Neural Network Re-
search Center, created by T. Kohonen in 1994, and now headed by E. Oja.
The description of a large number of applications is now available on the Web
site of NNR (http://www.cis.hut.fi/research/). The main research axis and the
current applications are generally focused on self-organizing maps. Companies
now exploit many applications. They arose from original, multidisciplinary re-
search, and several research groups specialized such fields as bioinformatics,
speech and writing analysis and recognition, and image analysis.

Actually, the implementation of self-organizing maps into larger systems
widely uses the specific features of the application domain. The coding of the
information, the organization of data bases, the analysis and visualization of
the data, require specific, multidisciplinary research whose results are crucial
for the performance of the self-organizing maps.

In the following, two applications will be described in detail. They were
selected as representative of the domains to which self-organizing maps are
relevant. The target of this presentation is twofold:

422 F. Badran et al.

• The first section describes a satellite remote sensing application. It is a
field of growing importance, and a lot of statistical problems must be
solved by physicists and research engineers who are in charge of designing
models. Considering that a very large amount of data is now available,
this field is particularly suited to neuronal modeling. That application will
fully illustrate the methodology that was described in previous sections.
It uses the probabilistic model of self-organizing maps (PRSOM).

• The second section gives a brief account of one of the most popular applica-
tions that was developed at UTH: the WEBSOM system. That is devoted
to information research on the Web. The earlier version was implemented
in 1995. The salient feature of that application is the high dimensionality
of the data. Dimensioning the topological map with a very large set of neu-
rons and tuning the algorithm (regarding computing time and convergence
accuracy) were the basic issues that were successfully faced at UTH. The
development of WEBSOM spurred research oriented towards shortening
the training phase for the design, and towards shortening the document
research time during the exploitation phase.

7.5.1 A Satellite Remote Sensing Application

A lot of data is generated by the observation of earth with on-board sensors,
and handed to geophysicists. All the neural methods that are presented in this
book are helpful to process those data because they solve multidimensional
statistical problems. Among those methods, unsupervised training is espe-
cially useful, because it allows extracting information even when expert infor-
mation is scarce. Gathering expert information often requires costly analyses
(ground mission, sophisticated biological and chemical analyses). That ex-
plains why expert-appraised data is scarce as compared to the amount of
available satellite data.

Self-organizing bring valuable contributions to satellite data analysis, be-
cause estimating the observation probability density, and designing represen-
tative data partitioning, can be performed in a relatively straightforward way.
Such information provides new insights into the physical phenomena of inter-
est:

1. PRSOM estimate the variance and local uncertainty of the observations.
2. The partitions that are obtained are useful to the expert of the various

application fields (physicists, chemists . . .) because they may serve as an
accurate summary of the observation set. Investigating such a summary
may be crucial for understanding the phenomena of interest.

3. In all the fields that are concerned by experiments, heavy and expen-
sive experimental campaigns are carried out regularly. With respect to
the amount of satellite data, the expert-assessed observations are scarce,
but they contain extremely valuable information. A few expert-labeled
observations allow the identification of subsets of the partition from the

7 Self-Organizing Maps and Unsupervised Classification 423

topological map. The classification methodology that is presented below
in the section �Classification and PRSOM� allow that identification.

4. In order to demonstrate the various capabilities of self-organizing maps,
the presentation of the next application is organized as follows:
• Description of the application field, of the problems of interest, and of

the available data;
• Description of experiments that allow the understanding of the influ-

ence of data encoding on the partition and on the topological order
that is obtained;

• Description of experiments that allow the assessment of the impact of
expert knowledge

7.5.1.1 The Color of the Ocean

The biological activity of the ocean is crucial for the natural economy of
the earth, for it is strongly connected to the fishing resource, and is part
of the biochemical cycles with strong climate consequences. During the past
few years, several multi-spectral sensors dedicated to measure the color of
the ocean were launched on different satellites ((MOS, POLDER-1, OCTS,
SEAWIFS, MODIS) or will be in the future (MERIS, POLDER-2, GLI). They
are expected to estimate the chlorophyll contents of the upper layer of the
ocean, and to assess its space and time variability.

Two steps are needed to recover the pigment fields from the ocean color
satellite data. The first step deals with atmospheric correction (indeed, the at-
mosphere contributes more than 80% of the measured signal); the second step
is dedicated to ocean interaction (see Fig. 7.20). The atmospheric correction
algorithm currently computes sea-level reflectance by canceling atmospheric
effects (aerosols and air molecules). The second step aims at inverting that
reflectance to provide the chlorophyll pigment concentration. This is a tricky
issue, because one has to take into account both uncertainties that arise from
atmospheric corrections, and uncertainties that are intrinsically related to the
variation of biological population. Thus, the knowledge of the atmospheric
aerosol composition and of the water constituent concentration is crucial. The
following experiments aim at assessing various classes of aerosols and waters
from the top of atmosphere spectra, which are provided by the sensors.

7.5.1.2 The Data

The data that are used hereafter were provided by US radiometer SeaWifs,
which was located on the SeaStar satellite. That sensor has eight spectral
bands in the visible and the near infrared spectrum (see Table 7.1).

For each measurement location at the ocean surface, the observation vector
is 8-dimensional. Its components are the eight radiances that are measured
on the top of atmosphere. The following results are a representative example

424 F. Badran et al.

Fig. 7.20. Outline of the physical phenomena that are relevant to explain the
observations. The observations consist in the set of reflectance spectra that are
measured by the SeaWifs radar. That radar uses eight wavelengths for analyzing
the surface

of ocean color data processing. They come from a SeaWifs image. This image
was over West Africa and the Canarie islands on January 5th, 1999. Two
pictures of that zone, which were obtained on the same day with different
resolutions, are available: a LAC (Local Area Coverage) image, with 2141 ×
793 = 1, 697, 813 pixels (Fig. 7.21) and lower resolution, GAC (Global Area
Coverage) image with 536×199 = 106, 664 pixels. The topological map design
was performed from a sampled LAC image. Sampling was performed by line
decimation of the original LAC image. Thus the training set had 238× 793 =
188, 734 pixels. The quality of the resulting vector quantization, was assessed
from the full LAC picture. Since 90% of the pixels had no contribution to

Table 7.1. Spectral bands of SeaWifs

Bands Wavelengths
K (nanometers) λk

1 412
2 443
3 490
4 510
5 555
6 670
7 765
8 865

7 Self-Organizing Maps and Unsupervised Classification 425

Fig. 7.21. ThiS SeaWifs image has been taken over West Africa and the Canarie
islands on January 5th, 1999. LAC picture 2141 × 793

the training phase, and considering the large amount of available data, the
performances thus estimated may be considered as fully significant.

The expertise was provided through the GAC image. That image had
additional information, from two sources:

• Information that was provided by SeaWifs was available, such as land
masking, presence of clouds.

• A pixel classification of the GAC image, using different optical models pro-
vided from atmosphere experts, was also available. Figure 7.22 shows the
expert-processed GAC picture. On that image, five classes were identified
by the expert: aerosols that arise from the desert, so-called case 2 waters,
which are waters with high organic matter contents, sea aerosols, clouds
and land. Actually the pixels that are assigned the land label are residual
pixels for which no label was provided by the expert

• Note that both types of information may contain errors, just as any expert-
based classification of highly complex phenomena. For instance, the expert
sought five classes. Therefore, different aerosols may have been clustered
in the same class if he had no appropriate physical model to discriminate
between them.

426 F. Badran et al.

Fig. 7.22. Expert-processed GAC image. The picture represented five zones whose
boundaries had been defined by the expert: the aerosols coming from the desert
(black), the case-2 waters (light grey), the marine aerosols (dark grey), the clouds
(medium grey) and the earth (white)

7.5.1.3 The Role of Encoding

Numerical experiments were performed using different encodings of SeaWifs
spectra.

The first encoding uses directly the reflectance at the top of the at-
mosphere. In order to normalize the influence of the wavelengths, the re-
flectance spectrum values were normalized to the [−1,+1] interval. The re-
flectance for wavelength λk, is denoted ρ(λk), the normalization has been
computed from the learning set for each wavelength, (k = 1, . . . , 8). Thus,
each observation was encoded by an 8-dimensional vector, each component of
that vector being the normalized reflectance for a given wavelength. Since the
reflectance values ρ(λk) are numbers between 0 and 1, they were normalized
between −1 and 1, using to 2ρ(λk) − 1.

The sampled LAC image that was used for training (actually one picture
line out of ten), after coding as described above, will be denoted by Appcod1.
A second coding was performed, in order to highlight the shape of the spectra
of interest. To that effect, the slopes of spectra were taken into account. They
were computed for each wavelength. Thus, the kth component of the new
coding vector was computed from the reflectance as

7 Self-Organizing Maps and Unsupervised Classification 427

∆ρ (λk) =
ρ (λk+1) − ρ (λk)
λk+1 − λk

.

Seven slopes were thus computed for k from 1 to 7. In order to keep infor-
mation about the spectrum intensity, a component of the observation vector
was the norm ‖ρ‖ of the spectrum. Thus, each observation was encoded in an
8-dimensional vector

[∆ρ(λ1), . . . ,∆ρ(λ7), ‖ρ‖]T.
The sampled LAC image that was used for training was encoded according
to that second scheme; the result will be denoted Appcod2. Normalization
between –1 and 1 was performed as previously. Since the slopes and the norm
do not have the same order of magnitude, the normalization was implemented
separately for each component as

2
x− min

max−min
− 1,

where x is a derivative (namely (∆ρ(λk)k = 1, . . . , 7),min (resp. max) are the
minimum (resp. the maximum) over the set of all the derivatives in Appcod2.

For all test data, the same encodings were used. The following numerical
experiments are an illustration of the methodology, which has been described
in the section “Classification and PRSOM.” They use quantizations, which
are followed by classifications. The quantizations are obtained from the prob-
abilistic maps, and clustering is performed by hierarchical classification. All
self-organizing maps have the same architecture:

• The input layer has 8 units
• The map is 2-dimensional, with 10 × 10 neurons. The neighborhoods are

defined from the exponential kernel family K(δ) = exp(−δ2).

7.5.1.4 Quantization Using PRSOM

In the first part of the study, PRSOM was used for determining the patterns
that are representative summaries of the set of all observed spectra. In that
case, a fine quantization of the training set is sought. Actually, the result is
a summary of the training set; if it is statistically representative, it is also
a summary of all observations. Otherwise, the generalization may be poor
since a subset of the set of observations was overlooked. The two encoding
schemes that were described above (normalized radiance vales for the first
one, slopes + norm for the second one), resulted in different maps. Those
maps will illustrate the importance of the encoding process for quantization
and topological order. Each map quantizes the observation set intro 100 sub-
sets. Figure 7.23 shows the map that was obtained with Appcod1; on that
figure, the number that is located above the neuron indicates how many pixels
from the training set are allocated to that neuron. Figure 7.24 shows the

428 F. Badran et al.

Fig. 7.23. PRSOM (10× 10) map obtained using Appcod1 as the training set. The
map representation displays the 2D topological ordering. Each square contains a
number that identifies the neuron, and the figure above each square is the number
of pixels of the training set that are assigned to that neuron

same map, and, for each neuron, the associated variance. It is clear that
scattered values of the reflectance are represented at the upper right corner
of the map, whereas the lower left corner contains representative of similar
spectra. Physical considerations provide an interpretation of the various zones
of the map:

• The spectra are more stable if the sky is clear and if the signal permits an
analysis of the ocean

• High variability zones may stem from atmospheric influence that is due to
aerosols or to cloud reflection

The hundred patterns associated to the neurons are characterized by spectra
that are of the same kind as the observations (vectors of R

8). Figure 7.25 is
presenting for the first coding, the set of patterns and their topological con-
nections through the map. It is the same map than in Figs. 7.23 and 7.24 but
each neuron is now attached to its encoded pattern. Each encoded pattern
is an average spectrum over the allocated reflectance observations. The pat-
terns are organized according an order, which is visualized through the map.
The patterns that are associated to weak variance local densities have similar
shapes: the observation space is sampled there in a very fine way. Patterns
that belong to the high variance regions are sampling the observation space

7 Self-Organizing Maps and Unsupervised Classification 429

Fig. 7.24. Estimated variance for PRSOM. The map is the (10×10) map of the pre-
vious figure. The area of the disk above the neuron is proportional to the estimated
variance of the associated Gaussian distribution

430 F. Badran et al.

in a coarser way. The visualization technique enables to select some patterns
and then to specifically study the set of observations that are allocated to one
of these patterns or to locate them on the SeaWifs image.

A first investigation is useful to check the quality of the process (Fig. 7.25):
it is possible to identify wrong spectra with respect to the measurement
process. Actually, on this map, patterns that are associated to neurons
17,28,35 and 39 have a vanishing wavelength reflectance. If one gathers the
concerned information, it appears that they all present the same fault. It is
then possible to infer that in these cases a channel was defective and that
some neurons have specialized in detecting this fault. Figure 7.26 displays the
spectral patterns that are associated to neurons 17 and 35. and their variance.

One may perform a similar analysis for any of the 100 neurons of the
map. Figure 7.27 shows the spectrum that is associated to neuron 51, which
is located in a high-density zone. Then the set of allocated radiance spectra
is displayed as well as the associated geographical zone on SeaWifs image.
When it is compared with SeaWifs image of Fig. 7.21 one may notice that
neuron 51 controls a light colored zone located on the sea and for which there
is apparently neither desert aerosols nor clouds. When the ordering of spectra
that is proposed on Fig. 7.25 is inspected, one notices that the proposed
coding is governed by the spectral intensities. Thus the ordering favors the
emergence of underlying physical properties. The same experiments have been
performed using another encoding process that takes into account both the
intensity and the shape of the spectra (Appcod2). Figure 7.28 shows the new
ordered patterns that were obtained. (On that figure, the patterns have been
decoded in order to show their original spectrum profile). The organization
of the neurons is now performed with respect to their intensities and their
shapes.

7.5.2 Classification and PRSOM

The first experiment group allowed us to assess the quality of the vector
quantizations, which were obtained using PRSOM. We shall use now these
quantizations to achieve classification tasks.

A first possibility was displayed in previous section. Recall it amounts to
study separately the physical property of each neuron pattern of the map.
This study has to be performed by an expert, who is able to recognize the
aerosol class and thus to label the patterns from their spectral properties. If all
the neurons are identified, then the partition that is obtained through the self-
organizing map enables to use it straight to classify the whole image SeaWifs.
Moreover, if the learning set is representative of the physical problem, it may
be used to label other SeaWifs images that share the same physical properties.

If this identification process is not possible, i.e. if the expert is not able to
label accurately every neuron of the map, it is possible to cluster the neurons
according to an unsupervised way. One can proceed as it was demonstrated in
the previous section “Classification and topological map,” by aggregating the

7 Self-Organizing Maps and Unsupervised Classification 431

Fig. 7.25. Vector quantization from the previous PRSOM (10 × 10) map from the
training set Appcod1. The number that identifies the neuron is above the square, the
associated spectral pattern is drawn inside each frame

432 F. Badran et al.

Fig. 7.26. Figures (a) and (c) represent the spectral patterns that are associated
to neurons 17 and 35. Vertical bars represent the variance for each wavelength.
Figures (b) and (d) represent the radiance subset that are respectively represented
by neurons 17 and 35. (PRSOM 10 × 10 map obtained from Appcod1)

7 Self-Organizing Maps and Unsupervised Classification 433

Fig. 7.27. Representation of neuron 51 spectral characteristics: (a) representation
of the spectral observation vectors of the learning set Appcod1 that are allocated to
neuron 51 (b) representation of the spectral observation vectors of the geographical
zone, which is allocated to neuron 51, (c) representation of the geographical zone
in the total image, (d) representation in black of this geographical zone. (PRSOM
10 × 10 map obtained from Appcod1)

434 F. Badran et al.

Fig. 7.28. Representation of vector quantization, which is associated to PRSOM
map that is obtained from Appcod2. The identification number of the neuron is above
the frame. The associate pattern spectrum is depicted inside the frame

7 Self-Organizing Maps and Unsupervised Classification 435

neurons into classes and trying to label the classes that were obtained through
hierarchical classification. In order to illustrate as best as possible the quality
of results when PRSOM and BUHC (Bottom-Up Hierarchical Classification)
are sequentially processed, two experiments of different complexity are pre-
sented:

• The first experiment is relative to the determination of a mask that is able
to detect the thick clouds and to discriminate them from other spectra. It is
known that clouds are strongly reflecting the signal: the top of atmosphere
signal that are registered by the satellite sensors are presenting stronger
and more variable intensities than when sea or aerosols are concerned. The
discrimination between thick clouds and other constituents amounts to
build a binary classifier. Since clearly distinct properties in the observation
set physically characterize this problem, the two classes that are searched
have to be fully separated.

• In the second experiment one tries to recover the five classes, which have
been identified by the expert; these classes have been determined by com-
paring the data with aerosol physical models. Actually, the number of
classes is higher and the expert has possibly introduced a lot of mistakes,
so this problem is far more complex.

The two vector quantizations that have been obtained using PRSOM will
be used to recognize the expert-identified classes. Class determination will be
performed through bottom-up hierarchical classification using the Ward index
that has been previously defined in the paragraph �Looking for a partition
that suits the classes of interest�.

In the first experiment, bottom-up hierarchical classification is performed
on the PRSOM 10× 10 map obtained from Appcod1. Since the searched clas-
sification is a binary classification to select thick clouds, clustering has been
pursued up to the obtention of two classes. Figures 7.29 and 7.30 show the clas-
sifications that were obtained on the topological map and on the image. The
visualization of the map enables to observe the neurons of each class. Clearly,
the associated zones are well connected on the map. This classification has
been compared with the expert-based classification by computing the confu-
sion matrix. Here, SeaWifs provided the expert-based classification since the
cloud mask is available. The confusion matrix is represented on Table 7.2; it

Table 7.2. Confusion matrix that compares the SeaWifs labeled classification and
the classification that was obtained from PRSOM + BUHC. PRSOM was obtained
from Appcod1 and BUHC uses Ward index

PRSOM + BUHC

Clouds Apparent sea

SeaWifs-labeled clouds 0.91 0.09

436 F. Badran et al.

Fig. 7.29. Presentation on the map of the two classes that are proposed by PRSOM
+ BUHC: PRSOM was determined from Appcod1, and BUHC uses the Ward index.
The number at the right of the neuron frame represents the class that is obtained
through hierarchical classification. The set of dark grey neurons constitutes class 1
and the set of light grey neurons constitutes class 2

allows to compare the two classifications. The division between two geograph-
ical zones that is displayed on Fig. 7.30 shows a good adequacy to the division
that comes straight from the satellite data. It shows that the two classes have
been correctly demarcated by using PRSOM algorithm and then bottom-up
hierarchical classification onto the raw physical measurements without any
additional expert information. The nice consistency of hierarchical classifica-
tion results at the top level of the classification tree allows expecting that
clustering is consistent at any level of the hierarchy.

The second experiment is searching a zone that is already provided by
expert knowledge. Actually this class is case 2 water. This experiment confirms
the quality of vector quantization. In Fig. 7.22, this zone, which is endowed
with particular optical properties is colored in light grey. Investigation of
the various geographical zone that are associated to the 100 neurons of the
map enables to select three neurons. The subset of their associated spectra
allows to find a geographical zone that can be superimposed to the expert-
based region. Figure 7.31 shows the three patterns (w33, w82, w93) and the
associated geographical zones.

If the full hierarchy that arises from BUHC is investigated, one notices that
the three neurons of interest (namely 33, 82 and 93 constitute a subset that is

7 Self-Organizing Maps and Unsupervised Classification 437

Fig. 7.30. Presentation of the two classes that are proposed by PRSOM + BUHC:
the left image is representing the original SeaWifs image the center image represents
the land mask that is provided by SeaWifs (in white on the image) and the right
image presents the binary classification that is provided by PRSOM + BUHC (the
light zone is similar to the class 2 of Fig. 7.29 and represent thick clouds, the dark
zone includes various aerosols); PRSOM was achieved using Appcod1 as learning set
and BUHC uses the Ward index

clustered at the level 35 of the hierarchy. Thus, it is possible to propose from
this result a classifier that enables to automatically identify the case 2 water
labeled pixels. The neurons 33, 82 and 93 will be labeled case 2, all the other
neurons will be labeled by a negative label that points out they do not belong
to case 2. Then, it appears that in that case, using the hierarchical clustering
without additional expert knowledge may allow retrieving information which
comes from the physics of measure.

The last experiment is using straight expert knowledge. Knowledge is used
to label neurons according to the methodology that was presented previously
in the section about classification and topology. The test set is the expert-
labeled GAC image. Each neuron is then mastering pixels of GAC image that
are allocated to that neuron. These pixels constitute a subset of labeled ele-
ments. The label of the associate neuron is determined by a majority voting.
The two classifications are compared on Table 7.3 where the confusion ma-
trix is represented. It is clear that the neurons correctly provide the expert
knowledge.

438 F. Badran et al.

Fig. 7.31. Representation of the patterns, of the observation subsets and of the
geographical zones that are allocated to neurons 33, 82 and 93 (PRSOM map 10×10
using Appcod2 as learning set). Figures (a), (b), (c) represent the neuron spectra,
Figures (d) and (e) represent the associated learning set spectra for neurons 33 and
82. The zones that are associated to neurons 33 and 93 have been colored in black
in figure (f) and (g)

Table 7.3. Confusion matrix allowing the comparison between the expert-based
classification (GAC image) and the PRSOM-based classification. On this map, the
hundred neurons have been labeled using majority vote from expert data

PRSOM + majority vote

Class 1 Class 2 Class 3 Class 4

Marine aerosols 0.8 0.04 0 0.16
Expert Clouds 0.03 0.91 0.01 0.05

Case 2 0.03 0.22 0.71 0.03
Desert aerosols 0.1 0.04 0 0.86

7 Self-Organizing Maps and Unsupervised Classification 439

The bunch of results that were obtained in that application demonstrates
that topological maps are correctly operating when they are used to process
numerical data.

The following application is due to T.Kohonen. It shows that the algorithm
is performing well when it is used for textual processing.

7.5.3 Topological Map and Documentary Research

This last paragraph presents another real-world application in a field that
is completely different: documentary research. The general objective of the
Websom system that was created by Kohonen and his collaborators is to cre-
ate a content-based labeling of a set of texts. The current working version
allows organizing 7,000,000 texts in a single documentary data basis. Thus
documents with close-by semantics are endowed with neighbor label. A visual
inspection of the basis representation provides a global hint about the content
of the documents that are stored in a particular zone of the basis. Looking
for the keywords that are associated to the zone and considering the topics of
the different documents allow document searching in an original way. Consid-
ering his short description of Websom system’s main characteristics, one feels
how self-organizing maps are used: semantically close observations (texts) are
allocated to neighbor neurons on the map. In order for the application to be
operational, several additional properties have to be checked:

• As for the remote-sensing satellite data application, the quality of the
system depends closely on the semantics of the texts of interest.

• Documentary research is useful only if the number of stored texts is large
enough and if the visualization is fine enough. Thus the dimension of the
map has to be very high.

• The system is supposed to be operated on-line, thus it has to work fast.
• The basis algorithms has to be changed to allow

1. introducing a linguistic knowledge that enables textual manipulation,
2. training high-dimensional maps to be able to process as many docu-

ments as possible,
3. using a friendly interface which really helps the user to perform docu-

ment research,
4. reducing the duration of an average research session.

7.5.3.1 Information Coding

When a text is preprocessed significant information is extracted that depends
on the specificities of the general field of the research. Of course, the encoding
has to be made according the specifications of the topological maps: Kohonen’s
algorithm is processing numerical multidimensional data. Thus any text has
to be represented by an n-dimensional numerical vector. The current version
of Websom system is processing a corpus that contains 6,840,568 English

440 F. Badran et al.

summaries. The average length of such abstract is 132 words. To process
also number and symbols, it has been decided to cancel the words that are
too scarce (less that 50 occurrences) and also to cancel 1355 words that are
semantically poor. Eventually a set of 43,222 words has been considered for
the whole corpus.

Several versions of the system exist. The earlier was coding straight the
text histogram by a vector, the length of which was the word number of the
corpus. According to that coding, each component of the text representative
vector represents the weighted occurrence frequency of the associated word
in the text. The weights were fixed according to the influence of the word
on the document global meaning. This dimension was too large to allow fur-
ther processing. Several data compression methods were proposed to cope
with this high dimension problem: projection reduction (principal component
analysis) or random projection. Eventually a random projection method was
implemented. A 500-dimensional vector represents each text. Such a vector is
a text summary coming from a statistical analysis of the text vocabulary. The
coding complexity is O(NL)+(n), where N is the document number, L is the
average number of distinct words in a document and n is the initial histogram
dimension. To appreciate the reduction, it is interesting to point out that the
simpler projection compression method has a complexity equivalent to Nld.
Thus, the reduction is quite important and enables to extend Websom over
the whole corpus.

7.5.3.2 Specific Features of Learning Process

A visual representation of the corpus organization is possible through the two-
dimensional map. That is a great help for documentary research. At the end
of the learning phase, the allocation phase that associates a neuron to a doc-
ument enables to locate a given document with respect to the global corpus:
texts with similar meanings are supposed to be located in close zones on the
map. In Websom’s last version, the corpus is divided into 21 sections (agricul-
ture, transportation, chemistry, electricity, etc.). To extract this information,
each neuron is endowed with one of the section labels and a set of key words.
These keywords are extracted from the subset of texts that are allocated to
this neuron. More precisely, the type is determined through a majority voting
over the text subset and the keywords are selected by building the intersection
of the key-words set of every text of the text subset.

When Websom is used, texts with close meaning are projected in closed
regions of the two-dimensional map. So, projecting the text onto the map
enables to locate its meaning with respect to the whole set of texts of the
learning basis, actually the whole corpus. Using the map labeling enables to
interpret a new text through an automatic process. The neighbor neurons
provide subsidiary information that allows a finer understanding.

Considering the very large number of documents that lie in the basis,
a large amount of neurons are required in order to perform a fine enough

7 Self-Organizing Maps and Unsupervised Classification 441

document analysis. The more important change that was introduced enables
to train fast high-dimensional maps. The topological map that is used for
Websom is composed by 1,002,240 neurons. It is impossible to train this map
because the connection number is too large: 1,002,240 × 500. The new idea
relies on the simple fact that a good initialization considerably increases the
convergence speed. This good initialization is found through a hierarchical
procedure that enables to guide the training from one step to the next one. In
the Websom implementation, the parameters are tuned using a first rectan-
gular map of 435 neurons. This first map is extracted form the learning basis.
Then a second map that uses a finer sampling is initialized using the results of
the first one: the initial values of a parameter of the second map are obtained
through an interpolation of the values of the three closest neighbors extracted
from the 435 neurons of the first map. In that way, the number of neurons
increases from step to step up to 1,002,240 neurons. For each step, there is a
new learning phase of the whole corpus. The initial learning phase (for the 435
neurons of the first map) requires 300,000 iterations; every further learning
phase only requires five iterations of the “dynamical clouds” versions of the
algorithms. In such a way, it is possible to train very large maps. Moreover,
the hierarchical order that was found in the previous steps is used to find the
closest neighbors during the successive learning steps.

7.5.3.3 Discussing Websom Performances

The various improvements, which were implemented in Websom are quite ef-
ficient with respect to the time complexity of the computation. The method-
ology that was previously detailed allows reducing the number of opera-
tions from O(dN2) for the original Kohonen algorithm to O(dN2) O(dM2)+
O(dN) +O(M2) for Websom. In that expression, N is the number of neurons
in the actual map, M is the number of neurons in the initial map and d is
the dimension of the input layer (d = 500 for Websom). The comparisons
that were achieved with the original Kohonen methodology show that the last
version of the implementation has the same performances than the original al-
gorithm with respect to the quantization error and the classification error. The
final version of the map was obtained through a six-week learning phase that
was performed on a six-processor computer (SGI O2000). The performances
over the seven millions text basis go up to 64% of correct classification. As
it is generally the case for data mining applications, the interface was very
carefully designed : the map is presented as a sequence of HTML pages. It
is easy to explore it by using the mouse. A simple click enables to reach the
documents and then to visualize and to read them.

References

1. Anouar F., Badran F., Thiria S. [1997], Self Organized Map, A Probabilistic
Approach, Proceedings of the Workshop on Self-Organized Maps, Helsinki Uni-
versity of Technology, Espoo, Finlande, 4–6 juin 1997

442 F. Badran et al.

2. Bock H.H. [1996], Probabilistic Models in Data Analysis, Computational Sta-
tistics and Data Analysis, 23, pp 5–28

3. Bock H.H. [1998], Clustering and neural networks, in Rizzi et al. (éd.), Advances
in data science and classification, Springer verlag, pp 265–278

4. Cerkassky Y., Larmnajafih [1991], Constrained topological mapping for non
parametric regression analysis, Neural Network, vol. 4, pp 27–40

5. Dempster A.P., Laird N. M., Rubin D. [1977], Maximum Likelihood from in-
complete data via the E.M. algorithm (with discussion), Journal of the Royal
Statistical Society, series B 39, pp 1–38

6. Didday E., Simon J.C. [1976], Clustering Analysis, in Digital Pattern Recogni-
tion, K.S. Fu, Springer verlag

7. Duda R.O., Hart P.E. [1973], Pattern Classification and Scene Analysis, John
Wiley

8. Fritzke B. [1995], A growing Neural Gaz Network learns topology, D.S. Touretzky
and T.K. Leen (editors), Advanced in Neural Information Processing Systems
7, MIT Press, Cambridge MA

9. Gaul W., Opitz O., Schader M. (éd.) [2000], Data Analysis Scientific Modeling
and Practical Application, Springer

10. Jain A.K., Dubes R.C. [1988], Algorithms for Clustering Data, Prentice Hall
11. Kaski S., Honkela T., Lagus K., Kohonen T. [1998], WEBSOM-self-organizing

maps of document collections, Neurocomputing, vol. 21, pp 101–117
12. Kaski S., Kangas J., Kohonen T. [1998], Bibliography of self organizing map

(SOM) papers 1981–1997, Neural Computing Survey, vol. 1, pp 102–350. On
peut trouver cet article à l’adresse: http://www.icsi.berkeley.edu/∼JAGOTA/
ncs/

13. Kohonen T. [1984], Self organization and associative memory, Springer Series
in Information Sciences, 8, Springer Verlag, Berlin (2nd éd. 1988)

14. Kohonen T., Kaski S., Lagus K., Salojrvi J., Honkela J., Paatero V., Saarela A.
[2000], Self organization of a massive document collection, IEEE transaction on
neural networks, vol. 11, no 3

15. Kohonen T. [2001], Self Organizing Maps, Springer, 3e édition
16. Luttrel S.P. [1994], A bayesian analysis of self-organizing maps, Neural Comput,

6
17. Murtagh F. [1985], A survey of algorithms for contiguity-constrained clustering

and related problems, The Computer Journal, vol. 28, pp 82–88
18. Oja E., Kaski S. [1999], Kohonen Maps, Elsevier
19. Vichi M., Bock H.H. [1998], Advances in Data Science and Classification,

Springer, Heidelberg, pp 397–402
20. Von der Malsburg C. [1973], Kybernetik 14, 85
21. Yacoub M., Badran F., Thiria S. [2001], Topological Hierarchical Clustering :

Application to Ocean Color Classification, ICANN’2001, Springer 2001, Pro-
ceedings, pp 492–499

